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Abstract

The objective of this thesis is to study a problem of optimal control with regime switching
jump-diffusion model of mean-field type. In the first part we recall a result in the stochastic
maximum principle whose horizon is finite. In the second part, we devote ourselves to presenting
the two main results of this thesis, in the first result we give the necessary and sufficient conditions
of optimality whose control system is governed by a stochastic differential equation with regime
switching of infinite horizon and by way of illustration, we have given two examples where in
both cases the equation of state is linear and the objective function is of utility form. The second
contribution on the maximum principle for a control problem of conditional mean field type of

finite horizon, we illustrate our result by a model which gives an explicit solution

Keys words. Stochastic maximum principle, Optimal control, Partial information, Regime

switching, Jump-diffusion model, Mean-field type.
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Résumé

L’objectif de cette theése est d’étudier un probléme de contréle optimal pour un systéme
de diffusion avec saut & changement de régime de type champs moyen. Dans la premiére partie
nous rappelons un résultat sur le principe de maximum stochastique dont I’horizon est fini.
Dans la deuxiéme partie, on se consacre a présenté les deux résultat principaux de cette theése,
dans le premier résultat on donne les conditions nécessaires et suffisantes d’optimalité dont
le systéme controle est gouverné par une équation différentielle stochastique a changement de
régime d’horizon infini et & titre d’illustration, nous avons donné deux exemples o dans les deux
cas, I’équation d’état est linéaire et la fonction objectif est de forme utilitaire. La deuxiéme
contribution sur le principe de maximum pour un probléme de controle de type champs moyen
conditionnel d’horizon fini, nous illustrons notre résultat par un modele qui donne une solution

explicite.

Mots Clés. Principe du maximum stochastique, Controle optimal, Information partielle,

Changement de régime, Modeéle diffusion-saut, Type champ moyen.
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Index of notations

Index of notations

Here we give some the different symbols and abbreviations used in this thesis:

(Q,F,P)

(Qa]:’{]:}tEO’P)

{F}izo
B (t)tE[O,T]

T = G

S
*

Probability space.

Filtred probability space.

Filtration.

Brownian motion.

Almost surely.

Almost everywhere.

Almost surely with respect to the probability measure.

Right continuous with left limits.

Real numbers.

d — dimensional real Euclidean space.

The set of all n x d real matrixes.

Natural numbers.

The set of continuous F;-measurable process {‘Pt}te[o,T]
which satisfy E |supg<;<p loe?| < o0.

Finite state space.

The set of values taken by control wu.

The set of admissible controls.

Opimal control.

Rate matrix.

Transpose of a victor y.

The Borel o-field generated by the open subsets of RT.

The compensated poisson random measure.

The compensated Markov regime-switching random measure.

n-step transition probability of a Markov chain.
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Index of notations

E[X|F]
SDEs
SDEJs
BSDE
BSDEJs
HMM
ged {E'}

Transition probability matrix of the Markov chain.
The indicator function of A.

Expectation at X.

Conditional expectation.

Stochastic differential equations.

Stochastic differential equation with jumps.
Backward stochastic differential equation.

Backward stochastic differential equation with jumps.
Hidden Markov Model.

Greatest common divisor of E.
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Introduction

Introduction

In the past years, regime switching models have been widely used in finance and stochastic
optimal controls. The basic idea of such models is to modulate the model with a continuous
time, finite state Markov chain where each state represents a regime of the system or level of
economic indicator. For example, in the stock market, the up-trend volatility of a stock tends
to be smaller than its down-trend volatility (see Zhang [56] for further details). Therefore, it is
reasonable to describe the market trends by a two-state Markov chain, much work has been done
on stability and stochastic control problems for the regime switching system, such as [[31]-[57]].
The regime switching model in economic and finance fields was first introduced by Hamilton in
[29] to describe a time series model and then intesively investigated in the past two decades in
mathematical finance.

In the deterministic case, the maximum principle was introduced by Pontryagin & al [45] in the
1950’s. Since then, a lot of works have been done for systems driven by Brownian motion such
as Bismut [10], Kushner [32], Bensoussan [9] and Haussman [30]. Peng [42] derived a general
stochastic maximum principle where the control domain is not necessarly convex and the diffusion
coefficient can contain the control variable. Mezerdi [11] generalized the principle of Kushner
to the case of a SDE with non smooth drift. It was extended to systems with jumps by Tang
& al [53], and later by Framstad & al [24]. In infinite horizon, Haadam & al [25], introduced a
maximum principle for infinite horizon jump diffusion processes for partial information. They
proved necessary and sufficient maximum principles for this problem. The results obtained
are applied to several problems which appear in finance. However, Maslowski and Veverka
[34] establish a sufficient stochastic maximum principle for infinite horizon discounted control
problem. As an application, they study the controlled stochastic logistic equation of population
dynamics.

The concept of mean-field theory is widely used for the description of interacting many-body
systems in physics and probability theory. The behind idea is not to treat the many-body
system by summing up all mutual two-body interactions of the particles but to discribe the
interaction of one particle with the remaining ones by an average potential created by the other

particles.



Introduction

Stochastic optimal control problems for the mean-field stochastic differential equations (SDEs)
have attracted an increasing attention. The history of the mean field SDEs can trace their roots
to the Mckean-Valsov model, which was first introduced by Kac (1956) and Mckean (1966) to
study physical systems with a large number of interacting particles. Lasry and Lions (2007)
extended applications of the mean-field models to economics and finance. Intuitively speaking,
the adjoint equation of a controlled state process driven by the mean field SDE is a mean-field
backward stochastic differential equation (BSDE). In 2009, Backdahn et al established the theory
of the mean-field BSDEs that the stochastic maximum principle for the optimal control system
of mean-field type has become a popular topic. Interested readers may refer to Andersson and
Djehich (2011), Backdahn et al (2011), Li (2012). In Shen and Siu [49], the authers proved
the existance and uniqueness of solutions to mean-field BSDEs driven by Brownian motions and
Poisson jumps. All these works established a solide foundation to cope with stochastic optimal
control problems of mean-field models.

The optimal control problem for the Markov regime switching model has seen great interest in
recent years. See, for example [36],[51], [59], [20], what characterizes these models is that there
are two components, a diffusion part which is continuous and another discert one representes by
continuous Markov chain, moreover in an empirical sense these last models are more preferred
than the classical one for example, Mean -Variance with regime switching [61], Option pricing
[23], American options [I7] . The first version on mean field stochastic optimal control with
regime switching is due to Zhang et al [60] in their paper they gave the necessary and sufficient
conditions of optimality of an optimal control when the coefficients of the system depend on the
solution as well as it’s expect value, inspired by the paper of Buckdahn et al [I6] and another
very powerfull model proposed by Nguyen et al [39], a very interesting paper introduced by So
et al [38] in that paper the authors treat the convexe case with full information.

In this thesis, we present a mean-field optimal control of diffusion with regime-switching.

Let us briefly describe the contents of this thesis:

In Chapter 1, We recall some result about stochastic calculs with jumps in which we define
the Lévy processes, brownian motion and state few important properties such as the Markov
property, stochastic integral with respect to Lévy process.

In Chapter 2, We present some notions about Markov chains in continuous and discret time in
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which we define the transition function and transition rate matrix. Finnaly, we give some models
that illustrate regime switching.

In Chapter 3, We recall a result in stochastic optimal control of a Jump-Diffusion with finite
horizon, sufficient and necessary maximum principles are presented under partial information.
In Chapter 4, We give our first result about optimal control of jump-diffusion with Markov
regime switching in infinite horizon. Firstly we prove that our system have unique solution,
then sufficient and necessary maximum principles are developed under partial information . An
optimal portfolio and consumption in a switching diffusion market are studied.

In Chapter 5, We present our second result about stochastic optimal control problem for a
Markov regime switching in the conditional mean-field model. Sufficient and necessary maximum
principles for optimal control under partial information are obtained. Finally we illustrate our
result through a model which gives an explicit solution.

Relevant Papers

The content of this thesis was the subject of the following papers:

1. Benabdallah, Hani, Lazhar Tamer, and Nassima Chaouchkhouane. "Stochastic maximum
principle for a Markov regime switching jump-diffusion in infinite horizon." International

Journal of Nonlinear Analysis and Applications (2022).

2. "Partial Information Maximum Principle for Optimal Control Problem with Regime Switch-

ing in the Conditional Mean-Field Model"; paper accepted for publication.



Chapter 1

Some Elements of Jump Processes

In this chapter, we recall some result about stochastic calculs with jumps in which we define
the Lévy processes, brownian motion and state few important properties such as the Markov

property, stochastic integral with respect to Lévy process.

1.1 Stochastic processes

1.1.1 Filtration and processes

Definition 1.1.1 Let (Q,F, P) be a probability space. A filtration is an increasing family of

o-algebras (]:t)te[o,T} Vt>s>0, Fs CF, CF.

Definition 1.1.2 A stochastic process is collection of random variables (Xt)te[o,T} such that for

each fired t € [0,T], Xy is a random variable from (2, F, P) to (E,9).

Definition 1.1.3 (adapt process) A process (Xi)o 1 is adapted (with respect to (Fi)jo 1) if
for all [0,T], X; is Fi-measurable.

Definition 1.1.4 (Progressively measurable, optional and predictable process)

(1) A process (Xt)[oﬂ is progressively measurable if for any [0, 7], the mapping (s, w) — X (w)

is measurable on [0,¢] x © equipped with the product o-field B ([0,t]) ® F;.

(2) A process (X¢);( is optional if the mapping (s,w) — X (w) is measurable on [0, 7] x

equipped with the o-field generated by the (ft)t[gvT]-adapted and cadlag processes.

4
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(3) A process (X)o7 is predictable if the mapping (s, w) — X (w) is measurable on [0, T] x €2

equipped with the o-field generated by the (Ft)[O’T]—adapted and continuous processes.

Proposition 1.1.1 If the process X is optional, it is progressively measurable. In particular, if
it is cadlag and adapted, it is progressively measurable.
1.1.2 Brownian motion

Definition 1.1.5 A standard d-dimensional Brownian motion on [0,T] is continuous process
valued in RY, (Bt)jo,r = (B, ..., Bf) 0.7] such that:

(i) Bo =0.

(ii) For all0 < s <t in[0,T], the increment B; — By is independent of o (By,u < s) and follows

a centered Gaussian distribution with variance-covariance matriz (t — s) I,.

Definition 1.1.6 (Brownian motion with respect to filtration) A vectorial (d-dimensional)
Brownian motion on [0, T] with respect to a filtration (7)o 1s a continuous (F) o -adapted

process, valued in RY, (Bt)i>0 = (B, ..., B) 0.7] such that:

(i) By = 0.

(ii) For all 0 < s < t in [0,T], the increment By — B is independent of Fs and follows a

centered Gaussian distribution with variance-covariance matriz (t — s) 1.

Remark 1.1.1 A standard Brownian motion is a Brownian motion with respect to its natural

filtration.
Proposition 1.1.2 Let (By)y ) be a Brownian motion with respect to (F¢)o 1y -

(1) Symmetry: (—Bt)jo ) is also a Brownian motion.
(2) Scaling: for all A > 0, the process ((1/A) Bxz¢)jo 1 15 also a Brownian motion.

(3) Invariance by translation: for all s > 0, the process (Bit+s — BS)[QT] is a standard Brownian

motion independent of Fs.
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1.2 Lévy process and strong Markov property

Definition 1.2.1 (Lévy process) Let X = (Xt);>o be an R9-valued stochastic process. We

say X 1s a Lévy process if it satisfies the following conditions:
(1) Xo=0 a.s.;

(2) X has cadlag trajectories a.s.;

(8) X has independent and stationary increments.

The third item in the definition above means that, for alln € N and 0 =19 < t; < ... < t,, the

random variables (X, — Xt,—1)1<;j<,, and (X410 — Xt;—14h)1<;<,, have the same law.

Example 1.2.1 Brownian motions (with constant drift and standard deviation) and compound

Poisson processes are Lévy processes.

Definition 1.2.2 A stochastic process B = (Bt)tZO on R is a Brownian motion if it is a Lévy

process and if

(1) For allt >0, has a Gaussian distribution with mean 0 and covariance tTd.

(2) There is Qo € F with P (Qy) =1, for every w € Qq, B (t,w) is continuous in t

Definition 1.2.3 (Poisson process) A poisson process w(t) of intensity X > 0 is a Lévy pro-

cess taking values in NU {0} and such that

At)"
P[?T(t):n]:(n') e M n=0,1,2,..

Let F = (Ft);5¢ be the natural filtration associated to X. We recall that a [0, +oo[-valued random
variable T is a stopping time with respect to F if for all ¢ > 0, the event {T" < ¢t} belongs to F;.

We also denote by
Fr={Aec A: An{T <t} € F, vVt >0} (1.1)

the g-algebra of events prior to this stopping time. We may now state the following proposition.
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Proposition 1.2.1 (Strong Markov property) Let X = (Xt),5q be a Lévy process and T a
stopping time such that T < oo a.s. The process (Xpi¢ — XT)tZO 18 a Lévy process independent
of Fr and distributed as X.

Of course, the strong Markov property implies the simple version of it, when T is a deterministic

time.

1.2.1 The It6 formula and related results

Theorem 1.2.1 (The One-Dimensional It6 Formula) Suppose X (t) € R is an [to-Lévy

process of the form
dX (£) = a (£, w) dt + o (¢, w) dB (£) + /7 (t, 2 w) N (dt, d2)
R

where

. N (dt,dz) —v (dz)dt if |z| <R
N (dt,dz) =
N (dt, dz) if 2| >R

for some R € [0,00).

Let f € C* (R?) and define Y (t) = f (¢, X (t)). Then'Y (t) is again an Ito6-Lévy process and

dy (1) = g{(t,X( ))dt+§£(t X (1) a (t,w) dt + o (t,w) dB (t)]
2
o () O (4 X (1)

H[ X )z - £ (X ()
5?<R

(t X (¢ ))'y(t,z,w)}v(dz)dt
/{ftX )+ (t z,w) — (¢, X ()N (dt, dz) .

Example 1.2.2 (The Geometric Lévy Process) Consider the stochastic differential equa-
tion

dX (t) = X (t—) [a dt+bdB(t) + /Rc (t,2) N (dt,dz)]

where a, b are constants and ¢ (t,z) > —1. To find the solution X (t) of this equation we rewrite
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it as follows:

=adt+0bdB(t) +/c(t,z)N(dt,dz).
R

Now define
Y(t)=In X (t).

Then by Ité formula,

dY (1) =% ladt +bdB ()] — 362X 2 (1) X2 (1) dt
+/ {In(X (t7 ) +c(t,2) X (t7)) — In (X (£7))
|z|<R
X () e(t,2) X (t7) v (dz)dt

+/R {In(X (t7) +c(t,2) X (t7) —In (X (t7))} N (dt, dz)

~—

= (a—3b*)dt+b dB(t)+/| R{ln(1+c(t,z))—c(t,z)}v(dz)dt

+/Rln(1 +c(t,2)) N (dt,dz).

Hence

= a—12 t n c(s,z
Y (t) —Y(0)+< Qb>tjbd3(t)+/o/z|<3{l (14c(s,2))
—c(s,z)}v(dz)ds+/0/IRln(1+c(s,z))/\~f(ds,dz)

and this gives the solution

X (1) X(O)exp{(a—;bz>t+bd3(t)
+/0 /|ZI<R{1n(1+c(s,z))—c(s,z)}v(dz)ds (1.2)

+/Ot/Rln(1+c(s,2))/\7(d87dz)}-

In analogy with the diffusion case (N = 0) we call this process X (t) a geometric Lévy process.

1.3 Stochastic integral with respect to Lévy process

Let (2, F, P) be a given probability space with the o-algebra (F),-, generated by the underline

driven processes; Brownian motion B (t) and independent compensated Poisson random measure
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/\7, such that
N (dt,dz) := N (dt,dz) — v (dz) dt. (1.3)

For any ¢, let N (dt,dz), z € Ry, s < t, augmented for all the sets of P-zero probability.

For any Fi-adapted stochastic process 0 = 6 (t,z),t > 0, z € Ry such that
E [fOTfROQQ (t,z) v (dz)dt| < oo, for some T > 0, (1.4)
we can see that the process
Ry (t) := f§ﬁzl2%9 (s,2)N (ds,dz), 0<t<T (1.5)
is a martingale in L? (P) and its limit
R (t) hmR fo fR N (ds,dz), 0<t<T (1.6)

in L? (P) is also martingale. Moreover, we have the It6 isometry

[(fo Jr,? N (ds dz))z] =E KfOTfROHQ (t,2)v (dz) dt)] . (1.7)

The It6- Lévy decomposition.is a sum of two independent parts, a continuous part and a part

expressible as a compensated sum of independent jumps.

Theorem 1.3.1 (Ité-Lévy decomposion) The It6-Lévy decomposion for a Lévy process X is
given by

X (t) = bot + oo B (¢ +f‘ 2N (dt, dz) +f‘ |>12N(dt dz), (1.8)

<1
where by, 00 € R, N (dt,dz) is the compensated Poisson measure of X (.) and B (t) is an inde-

pendent Brownian motion with the jump measure N (dt,dz) .

We assume that

E[X? ()] < oo, t>0, (1.9)
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then

f‘z|21 1212 v (dz) < oo

We can represent (1.8]) as
X (t) = byt + oo B (t) + fof]R ZN (ds, dz), (1.10)

where bt = b+ fmzlzz/ (dz) . if o9 = 0, then a Lévy process is called a pure jump Lévy process.

Let us consider that the process X (t) admits the stochastic integral representation as follows
X)) =z+ [jb(s)ds+ [yo( )+ fofR N (ds,dz), (1.11)
where b(t), o (t), and 6 (t,.) are predictable processes such that, for all ¢ > 0, z € Ry,
fg {|b(s)| + 02 (s) + fR092 (s,z)v(dz)|ds < oo P —a.s. (1.12)

Under this assumption, the stochastic integrals are well-defined and local martingales. If we

strengthened the condition

[fo [|b )+ a2 (s) + fROQZ (s,z)v (dz)} ds} < 00, (1.13)
for all ¢ > 0, then the corresponding stochastic integrals are martingales.

Theorem 1.3.2 We call such a process an Ito-Lévy process. In analogy with the Brownian

motion case, we use the short-hand differential notation

dX (t) =b(t)dt+o(t)dB(t) + [3,0 (t,2) N (dt,dz),
X(0) =zekR

(1.14)

The conditions satisfied by the coefficients to obtain existence and uniqueness of the solution of

a SDEs with jumps, are given in the following theorem.

10



Some Elements of Jump Processes

1.3.1 Stochastic differential equations driven by Lévy processes

By the It6-Lévy decomposition, we can introduce the SDE for Lévy process.
For simplicity, we only consider the one dimentional case. The extension to several dimensions

is straightforward.

Theorem 1.3.3 (Existence and uniqueness) Consider the following Lévy SDE in R :

dX (t) =b(t, X (1)) dt+0 (8, X (1)) dB () + [y, 0 (8, X (7, 2) N (dt. d2)

(1.15)
X (0) =zeR,
where
b:[0,T] xR —R,
0:[0,T] xR — R,
0:[0,7] x R xRy — R.
We assume that the coefficients satisfy the following assumptions
1. (At most linear growth) There exists a constant C1 < oo such that
lo (&, )12 + [b (£, 2)|? + [, 160 (.2, 2) v (d2) < Oy (1 + |x|2) , z€R. (1.16)

2. (Lipschitz continuity) There exists a constant Cy < 0o such that

o (t,2) — o (tLy)l> +1b(tx) = bty + fp, 10 (t2,2) — 0 (t,y,2)] v (dz)
< Cy (1+\x—y\2),

for all x,y € R.

Then there exists a unique cadlag adapted solution X (t) such that (1.9) is satisfied.

11



Chapter 2

Markov Regime Switching Model

In this chapter, we present some notions about Markov chains in continuous and discret time in
which we define the transition function and transition rate matrix. Finnaly, we give some models

that illustrate regime switching.

2.1 Introduction

The Markov regime switching model, first described by G. Lindgren, 1978, is a type of
specification in which the main point is handling processes driven by different states, or regimes
of the world. The behaviour of the time series is characterized by multiple equations, decided
by the different states of the model.

The difference between the Markov regime switching model and othor switching models is that
the switching mechanism is controlled by an unobservable variable which follows the hidden
Markov chain. By means of Markov properties, the present value depends only on its previous
value. This means that a structure in the chain may prevail for a random period of time, before
being replaced by another structure when the switch occurs. Through this method, the Markov
system switching model is able to capture more complex dynamic patterns.

The idea of the financial market finding itself in different countries and times is attractive. On
the other hand, it has been found that financial time series display some facts that can be usefully
reproduced by hidden Markov model. This has made the Markov system shift model one of the

most popular nonlinear time series models in the literature (Cont, 2001, Hamilton, 1989, 2005,

12
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Lindgren, 1978).

2.2 Markov chains

Definition 2.2.1 Markov chain {X,},~, is a stochastic process that satisfies the following re-
lationship (Markov property)

For all natural numbers n and all states x,,

P (XnJrl = $n+1| Xn = Tn, Xpn-1=Tp-1,..., X0 = CC())

=P (Xn+1 = .Tn+1| Xn = :L'n) . (21)

Definition 2.2.2 The conditional probabilities (2.1]), now written as P (Xn11 = j| Xn =) are

called the transition probabilities of the Markov chain. They are denoted by:
P, =P(Xp1 =7 Xn=1),
and we define the transition probability matrix P of the Markov chain as :
P= (Pm)i,jes-

Definition 2.2.3 A Markov chain {Xn}nzo on a state space S is said to be homogeneous if, for

alln,k € N and i,j € S, we have :
P (Xnir = jl Xk = 1) = P (X = j| Xo =4

2.2.1 The nth-step transition matrix

In this subsection, we are going to investigate the n-step transition probability PE;-L) of a Markov

chain process.

Definition 2.2.4 Define PZ(;L) to be the probability that a process in state i will be in state j after

n additional transitions. In particular, we have Pg-)) = Py;.

13
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Proposition 2.2.1 We have P(™ = P" where P is the n-step transition probability matriz
and P is the one-step transition matriz.

Proof. Clearly the proposition is true when n = 1. We then assume that the proposition is true
forn.

We note that

P"=P-P.-...P.
—

n times

Then we have

Pt = ZP,k P = ZP,k Py; = [P

keM keM
By the principle of mathematical induction the proposition is true for all non-negative integer n.

2.2.2 Irreducible Markov chain and classifications of states

Definition 2.2.5 State ¢ is said to be reachable from state j if PZ(-?) > 0 for some n > 0. This

means that starting from state j, it is possible to enter state i in a finite number of transitions.

Definition 2.2.6 State i and state j are said to communicate if state © and state j are reachable

from each other.
Remark 2.2.1 The definition of communication defines an equivalent relation.

(1) state i communicates with state i in 0 step because

(2) If state i communicates with state j. = State j communicates with state i.

(3) If state i communicates with state j and state j communicates with state k. = State i

communicates with state k. Since Pé.;n), P,(;;.) > 0 for some m and n, we have

pt) — ZP Py, > PUIPL > 0.
heM
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Definition 2.2.7 A Markov chain is said to be irreducible, if all states belong to the same class

(The states that communicate), i.e. they communicate with each other.

Definition 2.2.8 For any state i in a Markov chain, let f; be the probability that starting in

state 1, the process will ever re-enter state i. State i is said to be recurrent if f; = 1 and transient

if fi <1.

Proposition 2.2.2 In a finite Markove chain, if state i is recurrent (transient) and state i

communicates with state j then state j is also recurrent (transient).

2.2.3 Aperiodic Markov chains

Definition 2.2.9 The period d (i) of a state i € S is defined by:
d(i) =ged{n>1; (P"), >0},
using the convention d (i) = 0 if (P™),; =0, for alln > 1. If d(i) = 1 then the state i is said to

be aperiodic.

Remark 2.2.2 gcd {E} the greatest common divisor of E, that is the largest integer that divides

all integers of E.
Theorem 2.2.1 ifi < j then d (i) =d(j).
Proof. See Theorem 1.20 [48]. m

Definition 2.2.10 A Markov chain is said to be aperiodic if all its states have the same period
equal to 1.
2.3 Continuous-Time Markov chains

Definition 2.3.1 A stochastic process X = {X;},~, with values in a countable state space S is
a continuous-time Markov chain if for all m > 0, for all instants 0 < sg < ... < s < s < t and

for all states ig, ...,1n,1,j € S, we have:

P(Xp=7| Xe=14,Xq, =in, .. Xeg=d0) =P ( Xy =j | Xs=1).

15
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Definition 2.3.2 A continuous time Markov chain X = {Xi},- is homogeneous ift,s > 0 and
i,j € S, we have:

P(Xiyys=j| Xs=9)=P(Xy=j ]| Xo=1).

2.3.1 Transition function and Q-Matrix

Definition 2.3.3 Let X = {Xi},-, be a continuous-time Markov chain on a countable state
space S. For alli,j € S andt > 0, we set P;;(t) = P(Xy=j| Xo=1) and we define the

matriz P (t) by P (t) = (P;; (1)) The functions P; ; (t) are called the transition functions.

i,jES "

Lemma 2.3.1 If X = {Xt}tzo 18 a continuous-time Markov chain then, for all m > 1, for all

mstants 0 < t1 < ... < t, and for all states ig, i1, ..., in € S, we have:

P (th - ina th71 — in_l, ...,th = 7/1‘ XO — ’LO)

=Pigiy (t1) Piyip (2 — 1) - Py, (o — 1) -

Proof. The result is true for n = 1 from definition of the transition functions P;; (¢). Let us
assume that the result is true at step n — 1. By conditioning and then using the Markov property

as well as the homogeneity of X, we have:

P( Xy, =in, Xty = in—1,..., Xy, = i1 Xo =1o)
=P (th = ina ‘ th—l = 'L.nfl) P (th—l = infl,...,th =1 XO = 1/0)

= Pigiy (t1) Piyiy (b2 —t1) Py, (B — tn-1)
which completes the proof. m

Remark 2.3.1 At time t = 0, we have, by definition P (0) = I, where I denotes the intensity

matriz whose dimension is defined by the contex.

Lemma 2.3.2 the transition functions P; j (t) are right-continuous at 0, that is for all i,j € S,

we have:

lim Py j (t) = Pij (0) = 1=y

Proof. See Lemma 2.2 [48]. =
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Lemma 2.3.3 For all s,t > 0, we have P (t +s) =P (t) P (s), that is for all i,5 € S,
Pij(t+s)=> Pir(t)Pr;(s).
kesS
Proof. See Lemma 2.3 [48]. =
Definition 2.3.4 The Q-matriz ( transition rate matriz or infinitesimal generator) of a continuous-

time Markov chain allows us to encode all properties the chain (Xi);~q in a single matriz. By

differentiating the semigroup relation with respect to t we get, by componentwise differentiation :

P(t+h)—P ()

P g O
L PHPH) PO
" h—0 h
=P(t)Q,

where
P (h) —P(0)

=P =1i
Q (0) = lim .

is called the Q-matriz of (Xt);>q -

When S = {0,1,..., N} we will denote by A, ;, 7,7 € S the entries of the transition rate matrix

Q= ()‘@J')i,jes7 ie.
dP (t)
dt |,

= P\i,j]ogi,jgN

Denoting @ = [A; ;] for all ¢ € S we have

i,j€ES
(i) 0 < =N < oo for all 4

(ii) Aij >0 for all 4 # j;

(i) ) "Aij =0 for all i,

jes
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Example 2.3.1 Assume the matriz @ is defined as

-05 05 0 O
05 =15 1 0

2.4 The hidden Markov model

2.4.1 Introduction

The term Hidden Markov Model (HMM) has become quite familiar in the speech signal processing
community and is gaining acceptance for communication systems. It can be less difficult, but
more obscure than the term partially observed dynamic stochastic system model, which is a

translation familiar to people in systems.

Definition 2.4.1 A hidden Markov model (HMM) is a bivariate discrete time process {St, Yi}y>q
where {S¢} is an underlying Markov chain and {Y;} is a sequence of independent random vari-
able, of which follows that the conditional distribution of Yy only depends on Si. Since the Markov

chain Sy is hidden, only the stochastic process {Y:}.

A HMM has an interesting dependence structure, which comes handy when dealing with e.g.
financial time series. For an intuitive hint on how this dependency works, it is represented like

this: :model

! !
Y; Yin

As form implies, the distribution of a variable Siy1 conditional on the history of the process
S0, .., St, is determined only by the value of the preceding variable, S;. Future events are com-
pletely independent of the past, depending only on the present state. In addition, the distribution

of Y; is conditionally determined on the previous observations Yy, ..., Y;_1 and the previous value
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of the case, Sy, .., St, by S; only (Rydén et al, 2005). state

P (Sp41] St, .., S1) = P (S| St) (2.2)

P (Y Si-1,..-,51, Y1, ..., Y1) = P (Y| Sy) (2.3)
2.4.2 Assumptions of the hidden Markov model

Some assumptions about the HMM used here must be made in order to benefit from the model.
First, the hidden Markov chain is supposed to be time independent. This means that the chain

transmission probabilities;
P,j=P(Si11=j|St=1) =P (Sey1 =345 =14,5 1=k, ...,5 =1) (2.4)

between two states ¢ and j in a finite state space Q = {1,..., N} needs to be constant over time.

This is convenient, since said transition probabilities and the Markov chain’s initial probabilities;

are all that is needed to define the dynamic of the HMM.
Secondly, the Markov chain is assumed to be ergodic (aperiodic and positive recurrent) This is
necessary in order to ensure consistency of the estimates of the model (Campigotto, 2009).

2.5 Method : specification of chosen Markov regime switching

The model applied is based on a mixture of normal distributions, mainly based on Campigotto,
2009, Hamilton, 2005 and Perlin, 2015.

The model is assumed with a process of the following :

Y = ps, + et (2.5)
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Where;

Y; is the observed return of the time series at time ¢

is, is the intercept, or expected return, while in state S;.

€¢ 18 a normal random stochastic

variable, e, ~ N (07 Ug})

This is a simple case of a model with a switching dynamic. The model in equation (2.5 is

switching states with respect to an indicator value S;, meaning that with IV states there will be

N values for pg, and U?gt. Here, the residuals e; are assumed to be normal distributed.

2.5.1 Markov regime switching model with N regims

Now, assume that the number of

states (or regimes) in N, i.e. Sy € Q= {1,..., N}. This implies

that e.g. the log returns of a financial time series are drawn from N distinct normal distributions,

depending on what state the HMM is currently in. This would give us the following model to

work with:

Where;

This means that the HMM state

Y; = p1 + e for state 1 (2.6)
Y; = po + e for state 2 (2.7)
Y; = uny + ¢ for state N. (2.8)
et ~ N (0, O'%) for state 1 (2.9)
et ~ N (0, O'%) for state 2 (2.10)
et ~ N (0, 012\,) for state N. (2.11)

for time ¢ is 1, the expectation of the dependent variable is p

20



Markov Regime Switching Model

and the variance of innovations is o2, etc.

Since the underlying Markov chain is hidden, one cannot directly observe which state the HMM
is in, but only infer that it is operating from the observed behavior of Y;. In order to arrive
at the probability law that governs the observed data Y; a probabilistic model of what causes
the change from state S; = i to state S; = j. This can be determined using the transition

probabilities of the N state HMM (Hamilton, 2005);

Pi,j:P(StJrl :j|St:Z) i,jEQ:{l,Q,..,N}. (212)

The transition probability (2.12)) is by the Markov property described in (2.4) dependent of the
past only through the value of the most recent state. This in one of the central points of the

structure of a stochastic process itself.
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Chapter 3

Stochastic Maximum Principle with

Partial Information

In this chapter, We recall a result in stochastic optimal control of a Jump-Diffusion with finite

horizon, sufficient and necessary maximum principles are presented under partial information.

3.1 Finite horizon

3.1.1 Formulation of the problem

Let B(t) = (B1(t),.., By (t)) (where ()" denotes transposed) and 1 (£) = (1 (£),...,nn (£)) " be
n-dimensional Brownian motion and n independent pure jump Lévy martingales, respectively,
on a filtered probability space (Q, FAFtti>0s P) .

If NV; (dt,dz) denote the jump measure of 7; (.) and v; (dz) denotes the Lévy measure of n; (.),

then we can write
t

n; (t) = / / zNi; (ds, dz)

0 Ro

where

N (ds,dz) = N; (ds,dz) — v; (dz) ds

is the compensated jump measure of n; (.), 1 <i<n; Ry=R—{0}.
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For simplicity we assume that

/z%i (dz) <oo for i=1,..,n.

Ro

Definition 3. 1 1 An admissible control is a measurable, adapted processes u : [0,T] x Q@ — U,

such that E fu ds] < 0.

Suppose the state process X () = X () (t) € R™ is given by a controlled stochastic differential

equation of the form

dX (t) =b(t, X (t),u(t))dt+ o (t, X (t),u(t)dB (t)
/etX (t),z)N (dt,dz); 0<t<T

Here b: [0,T] xR" xU — R™", 0 : [0, T] x R" xU — R™™ and 0 : [0,T] x R" x U x Ry — R"*"
are given functions, C'! with respect to  and u, and T > 0 is a given constant. The process u (t)
is our control process, required to have values in a given set 4 C R* and required to be adapted

to a given filtration {e;},,, where

gt CF, forallt

For example, ¢; could be the §-delayed information defined by

Et:f(t_5)+ ; tZO

where § > 0 is a given constant delay.

We let A = A, denotes a given family of ;-adapted control process

u(t) =u(t,w):[0,T] xQ—U.
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Suppose we are given a performance functionnal (cost fuctionnal)

/ftX ) dt+g(x(1T)|, ueA

where f:[0,T] x R®* xU — R and g : R® — R are given C! functions satisfying the condition

T

E /|f(t,X(t),u(t))|dt+|g(X(T))| <o ueA (3.1)

0

The partial information control problem is to find ®. and u* € A such that

&, = supJ (u) = J (u"),
ueA

where u* is an optimal control which maximized the cost fuctionnal.

3.1.2 A partial information sufficient maximum principle

In this subsection we state and prove a sufficient maximum principle for the partial information

control problem (3.1 .

Let Rdenote the set of functions r : [0,7] x Ry — R™*"™ such that

6;; (t,x,u, 2) rij (t, 2)|vj (dz) < oo for all 4, j, ¢,z
Ro

We define the Hamiltonian H : [0,7] X R” x U x R" x R x R x Q — R; by
H(t,x,u,p,q,r () = f(t,z,u)+b" (t,x,u)p—l—tr( (t,x,u) Z/ ij (tx,u, 2) i (t, 2) vj (dz)
Ro

5,j=1
(3.2)

The adjoint equation in the unknown F-predictable processes p (t), q (t), r (¢, z) is the following
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backward stochastic differential equation (BSDE) :

dp (t) = =V H (t,z (t),u(t),p(t),q(t),r(¢.)dt+q(t) B(?) (3:3)

+/ r(t,2) N (dt,dz); 0<t<T,
Ro

p(T) = Vg (X(T)). (3.4)
o o \ 1 . . .
where 7, (.) = (6—;, s ﬁ) is the gradient of ¢ : R” — R with respect to y = (y1, ..., Yn) -

Theorem 3.1.1 (Partial information sufficient maximum principle) Let u* € A. with
corresponding state process X* (t) = X ") (t) and suppose there exists a solution (p* (t),q* (t) ,7* (,.))

of the corresponding adjoint equation (3.3|) — (3.4) satisfying

T T
B[ (x0-x"0) 06+ | 0T 2w ) (X ) - X0 ) | < o
(3.5)
T
E /Op* )" oo’ (£, X (t),u(t) + RneeT (t,X(t),u(t))v(dz)]p(t)dt] < 00, (3.6)
forallu e A
and
T
E VO VW H (8, X* (), (8) , 9 (8) . 4" () , 7™ (1, .))\Zdt] < o0, (3.7)

assume that H (t,x,u,p* (t),q* (t),r* (t,.)) and g are concave with respect to x, u respectively.

(the partial information maximization condition)

E[H (t, X (t),u” (t),p" (t),q" (), v (t,.))] &]

(3.8)
= rilealj(E [H (t, X" (t),v,p* (t),¢* (t),r* (t,.))]e] -
Then u* is a partial information optimal control.
Proof. Choose u € A. and consider
J (u) — J (u*) = I + I, where
T
L-E [ [ e x®um) - rex 0.0 o)), (3.9)
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and

by definition of H (3.2),

L =5Ly—1Io—I13—I14,

with

Ly =E [foT {H (X (8),u(t),p" (t),q" (t),r" (t,.) = H (X" (), uw" {t),p" (t),q" (t),r" ()} dt

(3.10)

Do =By {b(6X (1), u(0) = b6 X" (0),u" (1)) 5" (1) dt] (3.11)

L3=E [/OTtr [(a (6, X (), u(t) — o (&, X* (), u* (1) ¢ (t)} dt} : (3.12)

Ls=E

i/OT/RO (0ij (8, X (t),u(t),2)

1,j=1

—0;; (t, X* (t),u" (1), 2)) Tf,j (t,2) v; (dz) dt] .
H is concave, we have

H X (t),u(t),p" ()¢ (&), (t,.) = H & X (1), w" (), p" (@), ¢" (), 7" (£,.))  (3.13)
< VRH (8, X7 (8) u” (), 07 (1) g7 (1), 7" (8,)) T (X (8) = X* (£)

+ Vo H (8, X7 (8) 0" (1) 0" (1) g7 (8) 7 (8,2)) T (u(t) —u” (£).

Since u — E[H (t, X*(t),u,p* (t),q¢" (t),r* (t,.))|et]; v € U is maximal for v = u* (¢) and
u (t),u* (t) are e;-measurable, we get by (3.7

0> VB [(t,. X" (1) u.p" (6).0° (£) 7 (1, )| erl ey (u () —u” (1)) (3.14)

=E [Vu (8, X7 (8) u™ (1), 0" (1), q" (8) 7" (¢,)) " (u(t) —u” (2) €t] :
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Combining (??), (3.5)), (3.10), (3.13) and (3.14]) , we obtain

r T

Ly <E [/ Vo (6, X* (t),u” (t),p" () . q" (1), 7" (£,.)) (X (1) — X*(2))dt
0
T
—B|[ X0 -x 0 ar )] =

0

Using (3.4) and g is concave together and by the Ito formula,

I, =Elg(X (7)) - g(X* (T)] < E[Vg (X" (T)) (X (t) - X* (1))
—E[(xX () - X" () 5 (T)

T
= El/o (X (t) = X*(t)) (=VH (t, X*(t) ,u* (t),p* (t),q¢" (t),r* (¢,.)))dt
+/0 p*(6)T{b (4 X (8),u () = b(t, X* () ,u* (1))} dt

T
[ e[l X @) o X0 @) 00 )0 (0]
0
o D Joy 1005 (6. X (), (), 2)) — O (8, X5 (8) ,u* (), 2)} r* (£, 25) v (dzy) dt
ij=1

=J+ho+Tizg+ 4.

So we have,

J(uw)—J (W) =h+Lh=hai+hao+hLz+Liat+1>
<-Nh—lhip—hzy—ha+i+ha+Liz+1a
=0.

Then u* is a partial information optimal control. m

3.1.3 A partial information necessary maximum principle

We assume the folowing;:

(A1) For all t,h such that 0 <t <t+h < T, all i = 1,..,k and all bounded &;-measurable

a = a(w), the control 3 (s) := (0, ..., Bi (s),0,...,0) € U C R¥ defined by
Bi (8) = iXjpasn) ()5 s €[0,T] (3.15)
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belonge to A..

(A2) For all u,5 € A. with 8 bounded, there exists § > 0 such that v + y8 € A. for all
y € (—4,9).

We define the derivative process ¢ (t) = &9 (t) by

€)= 2 XU = (6 0)nn ) (3.16)
Note that
§(0)=0
& (t) = Ni () dt+ ) ij (£)dB; (1) + Y /R Gij (t,2) Nij (dz, dt)
j=1 7j=1""0
where

i (£) = Vabi (1, X (£),u (8) "€ (6) + Vb (6, X () ,u ()" B (1),
pij (£) = Va0 (6, X (8),u(8) T € (1) + Vuoy (6, X (1), u (1) B (1),
Cij (tv Z) = vIgiJ (tv X (t) U (t) 7Z)T 3 (t) + vueij (tv X (t) U (t) 7Z)T B (t) )

Theorem 3.1.2 (Partail Information Necessary Maximum Principle) Suppose u* € A,
is a local mazimum for J (u), meaning that for all bounded B € A. there exists a 6 > 0 such that

u* +yp € A; for ally € (—0,0) and
h(y):=J (W +yB), y € (-4,9) (3.17)

is mazimal at y = 0. Suppose there exists a solution (p* (t),q* (t),r* (t,.)) to the adjoint equation

dp* (t) =-V.H (tv X (t) ,u* (t) , D (t) v q" (t> ,T (t7 )) dt + q* (t) aB (t)
+/ (6, 2) N (dt,dz); 0<t<T
R,

n
0

p*(T) Vg (X*(T)), where X*= X",

Moreover assume that if € (t) = £"B) (), with corresponding coefficients \* (t) eii (), ¢ (t2),
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we have

e’ [q*q*T (t) + /nr*r*T (t,z)v (dz)] £ (¢) dt] < 00, (3.18)

and

E

T
/ P ()’ [‘PSOT (t, X* (1), u* (t))+/
0 Rn

0

007 (t, X* (t),u* (t),2)v (dz)] p*(t)dt| < oo.
(3.19)

Then u* is a stationary point for E[H|e] in the sense that for all t € [0,T],

E [V, H (t, X" (t),u* (t),p" (), ¢" () , 7" (&, )] &] = 0.

Proof. Put X* (t) = X®") (¢). Then with h as in (3.17) we have

r T
— (), ut (1)
5| [ {v.rex w07

0 =h(0)
iXU*-i-yﬂ (t)ly=o + Vuf (£, X* (t) ,u” ()" 8 (t)} dt
+E [Vg (x*(1)" dd X (T)|y=0]

- /fotX* u* (0)7 € (t) dt

T
[ Vs @ @) pwaB[vecc @) e ]|
(3.20)

By (3.18)), (3.19)) , and Ito’s formula we get

E Vg (X" ()" ¢ *< >} —E [p (1) ¢ (1)]
-B| 2 {n b (£, X% (8) ,u* (8) T €% (8) + Vabi (8, X7 (£) ,u* (£)) T B(1)

€1 (1) (-V H(t X* (1) 0t (0),07 (8),0° (8),7° (1),
#3245 0) (Voo (6, (0,00 () €° (1) + Vuey (1.X° (00" ()T 5.0)

3 17 (b 2 (vwe,-j (t, X* (1) u (t),2) T €5 (t) + Vb (£, X* (), u* (1) ,z)TB(t)> Ydi].

J=1IR
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Now

n n
VUH (ta xr,u,p,dq, T) vuf (ta Z, ’LL) + Zvub] (ta Z, u) bj + Z vuak] (ta z, u) qkj
j=1 i1
n
+ Z vuekj (taxvuv Z) Tkyj (ta Z) Uy (dz) )
k,j=17Ro
and

VCEH (t7$7u7p7 q, T) me (t,JI,U) + vabj (t,l‘,U) bj + Z vmak] (t,l’,U) kg

=1 kj=1
n
+ Z Vb (t,x,u, 2) rj (t, 2) v (dz) .
k,j=17Fo0

Combined with (3.19)) and (3.20]) this gives

Tn 9
0 =B|[Y {4 tX" @), )
0i=1
+2 <p§ (t) 32] (t, X* (), u (1) + > [q}ij (t) %%j (t, X*(t),u" (ﬂ))
i=1 k=1

+[r kj (t,2) %0755 (t, X*(t),u*(t),2)v; (dz)]} Bi (t) dt]

Ro
T
=E | [V,H (t, X*(t),u* (t),p* (t),q¢" (t),r* (¢, ))T B (t) dt] )
0
Fix ¢t € [0,T] apply the above to g = (0, ..., ..., Bi, ...,0) where

Bi(s) = aiXi+n) (5), s€[0,T]

where t + h < T and a; = o; (w) is bounded, g;-measurable

E [/tHh@iiH(s’X* (s),u*(s),p"(s),q" (s),r" (s,.)) aids} =0

Differentiating with respect to h at h = 0 gives

E [aiiH(“X* (1), u* (8),p* (1), ¢* (t) , 7" (t,.))ai] —0.
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Since this holds for all € measurable «, using , we have that

0

E
8ui

H(t, X7 (), u” (8),p" () ,q" (8),r" (£,.)) | &| = 0.

which proves the theorem. m
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Chapter 4

Stochastic Maximum Principle for a
Markov Regime Switching

Jump-Diffusion in Infinite Horizon

In this chapter we have been studied an optimal control problem with regime switching and infin-
ite horizon. In section 1, we present the optimal control problem for our Markov regime switching
jump-diffusion model and the main assumptions . In Sect. 2 , we prove the existence—uniqueness
theorem for BSDE with jumps and regimes. In Sects. 3 and 4 sufficient and necessary maximum
principles are developed under partial information. An optimal portfolio and consumption in a

switching diffusion market is studied in Sect 5 .

4.1 Preliminaries

Let (0, F,F ={F},5(, P) be complete filtered probability space. The filtration {F},. is right-
continuous, P-completed and all of the processes defined below including the Markov chain, the
Brownian motions and the Poisson random measures are adapted to it. We consider a continuous-
time, finie-state Markov chain {« (t) /t > 0} with a finite state space S ={ey,...,ep} ,where D €
N, e; € RP, and jthe component of e; is the Kronecker delta 0;; for each 7,5 = 1,2,..., D. the
state space S is called a canonical state space and its use faciliates the mathematics. We suppose

that the chain is homogeneous and irreducible. To specify statistical or probabilistic properties
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of the chain a. we define the generator A = {);; 1 <i < j < D} of the chain under P. this is
also called the rate matrix, or the @-matrix. Here, for each ¢,j = 1,2,.., D, \;; is the constant

transition intensity of the chain from state e; to state e; at time ¢. Note that \;; > 0 for i # j
D

and Z)\ij =0, so Ay < 0. In what follows for each ,j = 1,2, .., D which i # j, we suppose that
j=1
>\ij > 0, SO )\ii < 0.

Elliott et al. [22] obtained the following semimartingale dynamics for the chain « :

a(t):a(0)+/0ATa(u)du+M(t)

where {M (t) \ t > 0} is an RP-valued, ({f}t>0 , P)—martingale and y' denotes the transpose
of a matrixe (or, in particular, a victor).
To model the controlled state process, we first need to introduce a set of Markov jump martingales

associated with the chain a. Here we follow the results of Elliott et al. [22].

For each 4,5 = 1,2,.., D, wich i # j, and ¢ € [0, 0o[ let J¥ (¢) be the number of jumps from state

e; to state e; up to time ¢. Then

FI0= 3 fa(s-) e a(s) o)

0<s<t

= Z (a(s—),ei)(a(s) —a(s—),€j>

0<s<t

= [HaGm)eodas) e

= / (a(s—) ,ei>(AToz (s),ej)ds + / (o (s—),e;)(dM (s),ej)ds
0 0

= /\ij/o <a (S—) ,6i>d5 + mgj (t) s

t
where m;; = {my; (t)\t € 7} with m; (t) = / (a(s—),e;)(dM (s),ej) is an ({f}t>0,P)—

0 >
martingale, the m;;’s are called the basie martingales associated with the chain a.

Now, for each fined j =1,2,.., D, let ®;(t) be the number of jumps into state e; up to time ¢.
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Then

D
O;(t)= Y JU(1)
i=1, i#j

- ZM’/O (o (s), e)ds + ®; (L),

i=1, i

D
where ®; (t) = Zmij (t) and, for each j = 1,2,.., D, ®; (t) = {5] (t)\t € T} isaan ({.7-}}t>0 , P)—
i=1, i -
martingale.

Write for each j =1,2,..., D

D t
N =S 0y / (a(s), ei)ds. (4.1)
i=1, i#;” 0
Then for each j =1,2,.., D,
D, (t) =®; (t) — A (1), (4.2)

is an ({]:}tzo , P) -martingale.

We now introduce a Markov regime-switching Poisson random measures. Let RT = [0, +oc[ be
the time index set and (R*, B (R")) be a measurable space. Where B (R") is the Borel o-field
generated by the open subsets of RT.

Let Ry = R\ {0} and By the Borel o-field generated by open subset O of Ry whose closure O does
not contain the point 0. In what follows, suppose that N (dz, dt), J =1,..., M, are independent
Poisson random measure on (RT x Ry, B(R") x By) where M € N. Assume that the Poisson

random measures N7 (dz, dt) has the following compensator :
Mo (At d2) = Vo (d2) dt = (o (t=) V' (d2))dt, (4.3)

where

V' (dz) = (Vi (d2), V., (dz), .., l/éD (alz))—r € RP

) €2

For each¢=1,2,... M, 7 =1,2,..,D, yéj is assumed to be o—finite measure on Ry satisfying

1/2], (O) < o0, VO € By and / min (1, 2?) ugjj (dz) < co. Here we use the subscript « in ¢, to

Ro
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indicate the dependence of the probability law of the Poisson random measures on the Markov
chain. Indeed, 1/2], (dz) is the conditional Lévy density of jump sizes of the random measure

N (dz,dt) when a(t—) = ej. Moreover, denote the compensated Poisson random measuren

Ny (dz,dt) by

Na (dz,dt) == (N2 (dz, dt) — vl (d2) dt, ..., NM (dz, dt) — M (dz)dt) " . (4.4)

We now introduce the state process X = {X (¢)\t € [0,00[}. Suppose that we are given a
set U C RE and a control process u (t) = u (t,w) : [0,00] x @ — U. We also require that
{u (t,w) \t € [0,00[} is Fi-predictable and has right limits. Let X (t) = X® (t) be a controlled

Markov regime-switching jumps-diffusion in R described by the stochastic differential equation

AX () = bt X (1), u(t),a () dt+ o (6 X (1),u(t),a ) dB @)
+/ 0 (6 X (1), 0 (), a(t),2) No (dz dt)
Ro

+y (6 X (), u(t),a®)dd(t) 0<t<oo,

X (0) = Zo-

Here b : [0,00[ X RE XU xS - RE o : [0,00[ x RE x U x & — RN 1 [0, 00[ x RE x
U xS xRy— RE*M and ~ 1 [0,00] x RF x U x S — REXP | are given continuous functions
, B(t) == (B1(t),..., By (t)) is an N—dimensional standard Brownian motion, N, (dz,dt) is
M-dimentional Markov regime-switching random measures definied by ® (t) = (&)1, - d D)
whith &, (t), j = 1,2, .., D, defined by (5.2) .

Let ¢4 C F; be a given subfiltration, representing the information avialable to the controller at
time ¢, ¢ > 0. The control process u (t) assumed to be {et},-, predictable and with value in a

convexe set U C R, Let A. be our family of e;-predictable controls.

Consider a performance criterion defined for each z € RY, e; € S as

J(z,eu) = By, [/Ooof(t,X(t),u(t),a(t))dt |
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Here E; . is the conditional expectation given X (0) =0 and « (0) = ¢; under P, and

E

/Ooo{!f(t,X(t),u() N1+ |40, (1), (1) (1))

for all u € A, , we study the problem to find u* € A. such that

J(x*,e;,u”) = sup J (x, e, u) . (4.6)
u€Ae

Denote by R the set of functions 7 : [0, 0o[ x Rf — REXM such that

[Mm (8, 2,4, €5, 2) T (L, 2)| Ve, (dz) < oo, forl all n,m, z,t,
Ro

and M? the set of functions s (-) : [0, 0o[ — RE*P such that
D L

Zz%m (t,z,u, €;) Spm (t) Aim (t) < 0o, forl all n, m,x, ¢,

m=1n=1

and define the Hamiltonian H : [0, 00[ x RL x U x 8 x RE x REXN x RxREXP — R by

H(t,x,u,e;,p,q,7,8) = f(t,z,u,e;) + bl (t,z,u,e)p+tr (O’T (t,z,u,e;) q)

/R ZZnnm (t, @, u, €4, 2) T (t, 2) v (dz) (4.7)

On lml

+ erynm t,r,u, ez Snm (t) )\zm

m=1n=1

The adjoint equation in the unknown Fi-predictable processes (p(t),q (t),r (t,2),s (t)) where
p(t) € Rl g(t) € REXN r(t,2) € REXM 5(¢) € RI*P is the following backward stochastic

differential equation (BSDE)
n (1) = %f(tX<>,u<t>,a<>,p<t>,q<t>,r<t,.>,s<t>>dt
q(t)dB(t +/ 7 (t,2) Ny (dz, dt) + s (£) dD (t), ¢ > 0.
Ro
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4.2 Existence and uniqueness

In this section, we prove the existence and uniqueness of the solution (Y (t), Z (t), K (t,5),V (1))

of infinite horizon BSDEs of the form:

;

Y (t)=  —gt,at),Y (), Z1t),K(t.),V(t)dt+ Z(t)dB(t)
/. — K (t,) N (ds, dt) + V (£)d® (t), 0<t<rT, (4.9)
| imY (¢) = &(7) Lo,eo[ (7)

where 7 < 00 is a given Fi-stopping time, possibly infinite. We assume the following.

(H1) The function g : Q@ x Ry x S x RE x REXN xR x REXP — RL | is such that there exist real

numbers u, A, K1, Ko and K3 such that K;, Ko and K3 > 0, and A > 2M+K12 + K22 —|—K§.
We assume that the function g satisfies the following requirement:
(a) g(.ei,y,z, k,v) is progressively measurable for all y, z, k, v and

|g(t, ey, 2, k,v) — g (t, ey, z',k:',v’)‘ <K; Hz — Z/H + Ky Hk — k:'HR + K3 Hv - U/HM2 ,

where
2|2 = trace (zz*),

kOl = 32121 Yo f TR ()7 02} (d2)

D
Wike =D v P @)
j=1

<y - ylag(t76iay7 Z,k,’U) -9 (ta ei,y’,z,k,v» < 2 ‘Z/ - y/} ) for all yvy/7z7kvv P—a.s.

-
E/ Mg (t,e:,0,0,0,0)|? dt < oo,

0
(d) y+— g(t ey, 2, k,v) is continuous for all ¢, e;, z,k, v. P — a.s.
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(H2) A final condition £ which is a an F;—mesurable and m-dimensional random variablen such

that
E [ |¢?] < oo,

.
E/ eM g (ta€i7ft777ta¢t,90t)|2 dt < oo,
0

where 7 is an Fy-stopping time , & = E(§/F;),n € L_27_-p, (VNS Fg and @ € Mg such that:

a:E<5>+/O°°n<s>st+/0°° Rw<s,<>ﬁa<dc,ds>+/0°°so<s>d€><s>,

where
o0
L}p = {f : RN _valued F; — predictable process, s,t. E {/ IF ()2 dt] < oo} :
’ 0
o0
2 = {f : REXM_yalued F; — predictable process, s,t. E {/ [FACASIES dt] < oo} .
0

o
Mg = {f : REXP_yalued F; — predictable process, s,t. E [/ Ilf (t)HfVlg dt] < oo} )
0

A solution of the BSDE (|4.9),is a quadreplet (Y, Z, K, V') of progressively measurable processes

with values in RE x REXN x REXM o RLXD gt 7, K, Vi =0, when t > 7, and

[ T T T
E(suptzoewwwm / M\ Z (1) dt + / M (1)]13 di + / MV (0)]%0 dt) <,
0 0 0

TAT TNT
Y(f)IY(T)+/ 9(8,04(8),Y(S),Z(S),K(t,-%V(S))dS—/ Z (s)dB (s)
tAT tAT
TAT _ TAT "
- K (s,6) Ny (ds,ds) — V (s)d® (s); for all deterministic T' < oo.
tAT Ro tAT

| Y =¢ on theset {t>7}.

Theorem 4.2.1 (Existence and Uniqueness) Under the above conditions there exists a
unique solution (Yi, Zy, Ki, Vi) of the BSDE (4.9)), which satisfies moreover, for any A > 2u +

K} + K3 + K3,

B (supocyc, ™ |V (OF + f7 M |Z ()P de + [ K Ok de+ J7 |V (1) )
<B [P+ / g (£, e3,0,0,0,0) 2 dt

0
(4.10)
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Proof of uniqueness. Let (Y, Z, K,V) and (Y', Z', K', V') be two solutions, which satisfy
and let (Y,Z,K,V) = (Y -Y',Z-Z',K — K',V — V). Tt follows from It6’s formula, and the
above assumption that
ANTAT) ‘37 (T)|2 _ AtAT) |37 (t)|2
(TAT)
= () Y (6,2, K (). (9)

—g(s,a(s),Y'(s),Z'(s),K'(s,.),V'(s)),Y (s) —Y'(s))ds

(TAT) B ) ) ,
T e 7 0

(TAT) B
+j;) N (5, s+ S5 IV (9)

(TAT) _ . i ) ) i

+2/t Y Z (s) >+ft/\r)T / As (K2 (S,O—2<Y(s),K(5,C)>)/\/‘a (ds, ds)

T/\T) B )
+//\) —2(Y (5),V (5))) d® (s)

SO

) (TA7) B (TAT) _ _
eMtAﬂ}y(t)}QJr/(m 2 (MY )+ 2 9)] )ds+/A) e (|IE (5,0l + 1V ()] ) s
|2

< e)\(T/\T) ‘Y (T)

(T'AT) N _ 9 3 _ 3
w2 e (uIFOF 5T G 12O+ ¥ O 1 6Ol + K7 617 6] ) o

tAT)

(T'AT) _ (T'AT) B _ _
_2/( (Y (s), 2 /t /RO N (B2 (5,0) — 2(Y (5), K (5,0))) N (ds, ds)

tAT)

tAT)

(TAT) B _ _ ~
e ) -7 ). 7 ) d ).
By the fact that

21 [V )| | Z )| < (|2 ()P + K2 [V ()]

2K |V (s)| || K (5, ) 1K (5,0)||7 + E3|Y ()]

I <

23 [V ()| IV () pe < V() + EZ [V (5)]7,
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and since A > 2p + K? + K2 + K2,we deduce that for t < T,
E <e,\(t/\T) v (t)\2> <E (eA(T/\T) v (T)|2> .
The same result holds with A remplaced by )\, with
2u+ K7+ K3+ K; <N <A

Hence

E (MO0 |7 ()]7) < O NTE (X ¥ (1) Tigery)

With our conditions the second factor of the right hand side remains bounded as T" — oo, while
the first factor tend to 0 as T" — oo. Uniquenessis is proved.
Proof of existence. For each n, we construct a solution {(Y™ (¢t),Z™ (t), K™ (t),V"™(t)) ;t > 0}

of the BSDE

g(s,a(s),Y™(s),Z™(s),K™(t,.),V™(s)) ds—/n TZ" (s)dB (s)

tAT

NnAT

Y™ (1) =§+/

tAT
nAT . nAT -
/ K" (s,6) Ny (ds, ds) — / V" (s)d®(s), t >0,
tAT Ro tAT
as follows. {(Y" (t),Z™(t),K™(t),V"(t));0 <t < n} is defined as the solution of the following
BSDE on the fixed intervall [0, 7] :

.

Yyn (t) (f/fn) + /tnI[O,T]g (S, (67 (S) Y™ (s) AL (3) , K™ (t, ) , vV (s)) ds

nzn( )dB(s)—/tn i K™ (s,6) Ny (ds, ds)
nV"()deS(s), 0<t<n,

=E
{(Y"™(t),Z™(t), K™ (t),V™(t)) ;t > n} is defined by

YU (t) =&, 2" (1) = (s), K" (1) = 9 (5,6), V" (t) = ¢ (s).-
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Foranye >0,0<p<1,0<a<1,0< B <1, wehaveforallt>0ycREe €D,zc¢

REXN | e REXM [y e RIXP jf ¢ = 1,

2(y,9(t,eiy, 2,k v))  =2(y,g(t ey, 2,k,0) — g (t,€;,0,2,k,v))
+2 (y,g (t,ei,0,2,k,v) — g (t e;,0,0,k,v))
+2(y, g (t,ei,0,0,k,v) —g(t,e;,0,0,0,v))
+2(y, g (t,€;,0,0,0,v) — g (t,e;,0,0,0,0))
+2(y, g (t, e;,0,0,0,0))
< (20+1K3+ LK+ 5KG +¢) Iy
+pllzl + allk ()% + 5 l[vllie

+c |g (ta €i, 0’ 07 07 0)|2 .

From these and Ito's formula, we deduce that

AW EanP+ [T (Y @F +pl2n (9P ds
(tAT)

+ / G K" (5,0 % ds+ [ Bes |V (s)|2pe ds
(tnT) (tnT)

<R 4o / | (s, ¢1,0,0,0,0)[* s

(tAT)

i /( ;T A (Y (5), 27 (5) dB (s))

_/(t/\T)

_/(t/w)e)\s ((V")2 (s) +2(Y"(s), V" (s)>> dd (s),

)
X (K7 (5,Q) +2(Y" (), K™ (5,0)) ) N (ds, ds)
Ro
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withf\:)\—2u—%K%—éK%—%K§—5>O,ﬁzl—p>0,5z:1—aandﬁ_:1—ﬁ.Itthen

follows from Burkholder’s inequality

T

E [supio, OO Y A n) 4 [ or (r) 2 02 dr

(tAT)

o [ (1 Ol v ) d
AT

t

< CE [e” €2 +/ eM g (r, ei,0,0,0,0)|2dr] .

(tNnT)

Let now m > n, and define

AY () = Y™ (£) — Y™ (), AZ () =Z™ (t) — 2" (1),

AK () = K™ () — K™ (£), AV (£) = V™ () — V" (t).

We first have that for n <t < m,

AY (1) _/tm Tg(s,a(s), Y™ (), 27 (5), K™ (£,.), V™ (5)) ds

AT

- /t N (s)dB (s) — / " A (5,) Ny (ds, ds)

AT tAT Ro

—/thAvm (s)d® (s).

AT
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Consequently, again for n <t < m,

(mAT)

AT AY () + /

(tnT)

s ()\ IAY ()] + | AZ (s)||2) ds

(mAT) \ ) )
tf (18K O+ 18V () e) ds

tAT)

(mAT)
- 2/< (% (g (s, (s), Y™ (5), 27 (5), K™ (5,.), V™ () , A (s)) d

tAT)
(mAT) (mAT) _
2 Teay (),82(98 ) - [ ’ [ (B2 (.0 +2(8Y (5), AK (5,0)) N (ds. ds)
((;579/@) (tAr)  JRo
- s ((AV)2 (s) +2(AY (5), AV (s)>) dd (s).
(t/\?;n/\‘r)
<2f e {uAY OF + Ky AY GIIAZ () + KalAY ()] 14K 6.0l
+ K3 |AY (s)| |[AV ()] pg2 } ds
(mAT) (mAT)
2 X |AY (5)|1g (5, €4, sy s s, 05) | dis — 2/ N (AY (s),AZ (s)dB (s))
tAT (tAT)

tAT)

Jonn)
_/(<m T)/ROEAS ((AK) (5,0) +2(AY (5), 5K (5,0)) ) N (ds, ds)
)

/< T BV (9) 42067 (). 5V (5)) dB (5.

tAT)

We then deduce, by an argument that already used , that

MmAT

E [supucicn @Y @ADE+ [ (1aY 0F 4182 ()P

AT

FIAK (5, Ol + 18V (5) ) ds|

S C €>\S |g (87 ei,f&ns: w& 903)’2 dS,
(nAT)

and this last term tends to zero, as n — oo. Next , for t < n,

(nAT)
AY () =AY (n)+ / {g(s,a(s), Y™ (s),Z™(s), K™ (s,.),V™(s))

(tnT)

—g(s,a(s),Y™(s),Z2™(s), K" (s,.),V"(s))} ds?

nAT

- AZ(s)dB(s)—/W/R AK (5,0 N (dends) — [ AV (s)db (s).

tAT tAT tAT
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It follows from the same argument as in the proof of uniqueness that

E (6/\(15/\7) |AY (t)|2> <E (eA(n/\T) IAY (n)|2)

,
<C eMs ‘g (376i75877787w87908)|2d8'

(nAT)

It now follows that the sequence (Y™, Z™, K™ V") is Cauchy with the norm

lv™, 20 K" VP = B | sup Y ()] + /0 = (|Y<t>12+||z<t>|2+|K<t>\|$z+||v<t>ui42)dt},

0<t<r

and that the limit (Y, Z; K, V) is a solution of the BSDE (4.9) The proof is complete. [ |

4.3 Optimal control with partial information and infinite hori-

zon

In the following we assume that L = M = N = 1.

Now, let us get back to the problem of maximizing the performance functional

J (2, ¢iu) = By, [/ F6X (1), ult), () de|
0
where X (t) is of the from (4.5). Our goal is to find a u* € A, such that

J(x*,e;,u”) = sup J (x,e;,u),
ucAe

where u (t) is a control which adapted to subfiltration e; C F;, with value in a set U C R.

Let H be the Hamiltonian defined by (4.7) and (p,q,r, s) the solution to the adjoint equation

(4.8) . Then we have the following maximum principle.

Theorem 4.3.1 (Sufficient Infinite Horizon Maximum Principle) Let u* € A, and let

(p* (t),q* (t),r* (t,2),s* (t)) be an associated solution to Eq (4.8)). Assume that for all u € A,
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the following terminal condition holds :

0 <E|Tm [p* (1) (X (1) — X* (t))]] < o0. (4.11)

Moreover, assume that H (t,z,u,e;, p* (t),q¢* (t),r* (t,-),s* (t)) is concave in z and u and
E[H (t, X" (t),u"(t),a(),p" (t),q" (), r" (t,.),s" (1) /e (4.12)
=maxE [H (¢, X* (t),u,a (t),p* (t),q" (t), 7" (t,.),s" (t)) [et] -

uelU

In addition we assume that for all T' < oo,

T 2 2 2 o 2
B[ rm-x 0P @O+ [ 07 62+ 3 (5) 0 0| <o

7j=1
(4.13)
and
4 )2 2 2 o )2
E /0 W2 ()4 (0 (1) + /R 00,2 v (82 +; ()N (1) bt <o (414)
a 2

E %H (t, X (), u" (t),a(t),p* (t),q" (t),r"(t,.),s" (t)) ] < o0, (4.15)

and that

E [/ |H (t, X (t),u(t),a(t),p* (t),q¢" t),r*(t,.),s" (t))@ < 00, (4.16)
0
for all u. Then we have that u* (¢) is optimal.

Proof. Let

o= [T X 0 ) 0) - X 00 (00 0) il
0

=J (z,ei,u) — J (z*,e;,u").
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Then I = IT° — I3° — I3° — If° — Ig°, where
170 = [/Ooo (H (s, X (s),u(s),a(s),p" (s),q" (s),r" (s,.), " (s))
— H (5, X" (s),u"(s),a(s),p"(s),q"(s),7" (s,.),8" (5))) ds],
@%:ELgﬂfwﬂuaxwxu@»a@»—bWaXW$nf@La@»m%,
I5°=E [/Oooq* (s) (o (s, X (s),u(s),a(s)) —oc* (s, X" (s),u*(s) ,a(s)))ds} ,

1=K UOOO/RO (0 (s, X (s),u(s),a(s),z) =n" (s, X" (s),u"(s),a(s),2)) " (5, 2) a(s) (dZ)dS] ,

D

I°:=E /OOOZ (’yj (5, X (5),u(s),a(s)) =7 (s, X*(s),u* (s), (s))) 57 (s) Aj (s) ds] .
j=1

For the simplification we put

Hy g = H (L w,a(8),0° (0,4 (0,07 (6,7), 87 (1)
and the same for the other expressions. We have from concavity that

H

K gk ok ok _H * * * ok
t7X7u7a7p 7q 77‘ 78 t7X*7u 7a7p 7q*7r 78

< DH@X 000 (0.0 0).p (0.0 (1).7° (1), 5 () (X (1)~ X* (1) (4.17)

g GXT (), u (1), at),p" (),¢" (t),r" (t,.), 8" (1)) (u (t) — " (1))

Then we have from (4.12)),(4.15)) and that w (¢) is adapted to e,

0
> v _ *
02> 8uE [Ht7X*,u,a,p*,q*,T*7S*/Et u=u*(t) (u(t) = (©)
0

(4.18)
- %E [Ht,X*,u*,a,p*vq*W*,s* (u (t) —u (t)> /Et} )

Combining (4.8), (4.13)), (4.17) and (4.18)), we get

5 SB[ e (X6 = X ) a5 =B [T () (0 (9~ X0 0)

T

= —Jl.
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From (4.13), (4.14]), and Ito’s formula , we have that

_l’_
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From (4.13)) and (4.14)) , we have that

B[ 065X (9,000 (6) = b6 X ()0 (9 a(e)ds + [ (X ()= X7 (5)
(g (5T (9,07 (), (6) 7 61,47 (9,17 (557 (9)) s

/°°*<s>< (5, () (5) () = 0" (5, X" () (), (5)) s

//R (502) (0 (5, X (), (5) 2 (5),2) = (5, X7 ), 0" ), (), 2)) i (d2) s

+ /0 ZS} (5) (V7 (5, X (8) u(s),a(s)) =77 (s, X" (s) ,u" (), (5))) Aj () ds
j=1
= [0+ JX° + I° 4 I° + I,
Finally, combining the above we get

J(z,e,u) — J (2%, e, u) < IP° — I3° — I — I — IE°
< JP [P P [ [

<0.

This holds for all u € A., so the proof is complete. |

4.4 Necessary maximum principle

In this section, we establish optimality necessary conditions for our control problem. We will to

prove : if u* is optimal does it satisfy

E[H (t, X*(t), u* (), a(t), p (), ¢* (), r* (t..), s* (1)) /e
(4.19)

= maxB [H (&, X* (), w, a(t), 9 (1), ¢ (1), 7° (1), 5" () /ed]

We assume the following;:

(A1) For all ¢, h such that 0 < t < t+ h < oo and for all bounded &;-measurable random

variables § = 6 (w), the control process  (s) defined by
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B(s) = 01[t,t+h] (s)s

belongs to A.. Here
1 iftelt t+h)],

L1t t4m) (s) =
0 otherwise.

(A2) For all u € A; and all § € A. bounded, there exists € > 0 such that

u+ef € A, for all € € [—0,4].

(A3) The derivative process

d
€)= g X

exists and belongs to L2 (m x P), where m denotes the Lebesgue measure on R.

_ {ab (€ (t) + QZ (t)ﬁ(t)} dt + {2; BEw0 + 5 “Wﬂ} 4B()
{677 0+, (t)} N, (dt, dz)
{a’V (t)ﬁ(t)}dﬂf(t),

where, for simplicity of notation, we define

ob ob
g () =5 (t X (1), a(t), u(t).

Note that

£(0) = 0.

(A4) Assume that f satisfies a Lipschitz condition of the form

|f (w1,u1,€5) — f (22, u2,€5)] < C () (|o1 — 22| + |u1 — uz]),
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for any t,z;,u;, 1 =1,2,¢; € S.
We have the following theorem.

Theorem 4.4.1 (Partial Information Necessary Maximum Principle) Suppose u* € A,
is a local maximum for J (u) meaning that for all bounded B € A. there exists a § > 0 such that
u*+eB € Ac for all e € (—6,0) and h(e) := J (u* +€8), € € (—0,09) is mazimal at € = 0. Let
(p* (), ¢*(t), r*(t,z), s*(t)) be the solution to the adjoint equation

0OH

dp* () = =5 (t, X* (), w" (1), a(t), p" (), ¢"(t), 7" (t,.), s™ (1)) d¢

+¢* ) dB @)+ | 7 (2,t) Ny (dz, dt) + s* (t) d® (1) .
Ro

Moreover assume that if £* (t) = €8 (t), with corresponding coefficients 77, 77, St pr> where

we have
Jim B ()€ (T)] = 0 (1.20)
E [/0000(75) (1+)¢" (t)|)dt} < 0, (4.21)

(4.23)
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for all ' < co. Then u* is a stationary point for E [H / ] in the sense that for all ¢ > 0,

E [(;ZH (t, X*(t), e, u*, p*(t), ¢* (t), ™ (t,.), s*(t)) /er| = 0. (4.24)
Proof. First note that by (A3), (A4) and we have that
0= gJ (u* + €f) (4.25)
€ =0
_ (fiE Uooof (t, XUHB (1)t () + B, a(t)) dt] _
:%%E UOOO {f (t, XUHB (1)t (t) + B, a(t)) ¥ (t, XU (1), u (t) ,a(t))}dt}
—E Uooo{gi (1 X @), v ) a) & @+ 9

We Know by the definition of H that

b
5 0= = 5 OO~ T 00 - [ Tt ) - g%’; (4)5 () ()
(4.26)
and the same for % (t).

Applying the It6 formula to
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we obtain by (£20), (A2), (E22) and (E23)

0= lim E[p" (T)€(T)]
T
= limy_, 0o * ob * ab * 8H*
_1TT E[/Op (1) {2 (tyer () + 2 (¢ }dt+/§ )dt
/ () {2 <>5*<>+§z (1)} dt
// b {2 (e )+ <t,z>6<t>}va<dz>dt
Ro

/ {avj()ﬁ ()++3W()B(t))\j(t)}dt]
B[ [ e {200 O+ 0 0+ [ 200 0,20 @)

D .
+3 2 (1) s () — 2 gy

T
+/0 B(t) {gfi(t)p* (t) + Goa" () +/ w (8,2) 7" (8, 2) va (d2) +

_an%OE[/OTg* (t){ dt+/ Bt
T

}d]
o[

-8 [ {%(t)g*(t)m(t)ﬁ(t)}d} +limr_o B [ [0 250
Hence .
S e) o= m B | [T @p0 dt]
o
If
B(s) =01 41n(s),
then

t+h

E
ou

0
—H" (s, XI, e, us, pi, ¢, 7°(s,.), sﬁ)&ds] = 0.
t

Differentiating with respect to h at h = 0, we have

0
E [auH* (t, X/, e, uf, p;, qf, " (t,.), sf)@] =0.
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This holds for all e;-measurable 6 and hence we obtain that

8 * * * k * * *
E %H (t, X/, e, uf, vy, qi, v*(t,.), s;) /ee| =0.

Which proves the theorem. |

4.5 Applications

4.5.1 Example 01(Optimal portfolio and consumption with regime switching)

We consider a continuous-time, finite-state, hidden Markov chain o = {« (t),t € [0, o[} taking
values in a finite-state space S = {1,2,...,n}.

The financial market consists of two assets with Sy the prices of the risk-free asset and S7 of
the stock are given

dSo (t) = pSo (t) dt for all ¢t € [0, 00[, Sy (0) > 0, (4.27)

and

Sk () = Sy, (t) {b(t, @ (t)) dt + o (t,a (1)) dB (1)}, (4.28)

respectively, where the interest rate p is a constant, the appreciation rate b (¢,7) and the volatility
o (t,i) # 0 are assumed to be deterministic and bounded.

The wealth of an agent z (¢) defined as

dz (t) =z (t)[(m (@) (b(t,a®) —p)+p—c(t))dt+7(t)o(tat)]dB(t),
(4.29)

33(0) =1z >0,

where 7 (.) is the fraction of the agent’s wealth that is invested in the risky asset and ¢ (.) is the

consumption of the agent and the control process u (t) = (7 (t),c(t)), we have that

t t
@ (t) = o exp [/0 {p+7r(8)(b(s,a(8))—p)—C(S)—7T (S)JQ(S,a(S))}dH/OW(S)U(s,a(S))dB(S) ;
(4.30)
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and the associated cost functional is

J(u) = E [/Oo e~ In (¢ (1) () dt| (4.31)

0

where ¢ > 0.The objective is to find an optimal control u*(.) = (¢* (.),7*(.)) that maximizes
(4.31)).

Now the Hamiltonian is

H (t,$, Caﬂ-ai’pv Q) = 6_& In (C:E) + (ﬂ' (b (t,Z) - 10) + p— C) p + 7o (t>Z) xq, (432)

then

V:BH (t,;U,C,?T,i,p, Q) = eiétl + (7T (b (t7i) - p) + p— C)p + 7o (t>i) q,

x

on the other hand we have

dp(t) =-— (e*&ﬁ + (7 (b(t, oz~(t)) —p)+p—c(t)p(t)+mo(t,a(t))q (t)) dt (433
+q(t)dB (t)s(t) + s (t)dd (¢),
vﬂ'H (t,fL‘,C,?T,i,p, Q) = (b (t,i) —p)p$+a(t,i) qx ’ (434)
V.H (t,x,c,m,i,p,q) = e“st% — px (4.35)
so that
g(t) =-"dp (1), (4.36)
and
c(t) = e_étp(t)lx(t) (4.37)
then
dp(t) = |(e Pty +mbLa®) —p)+p— el ) p) — m(b(La®) - p)p @) d
—CLaOD)) (1) dB (1) + 5 () d (1)
= —pp (t) dt — LEEDD (1) dB (1) + 5 (t) dP (1)

= —p(t) (pdt + (a2l ip (t)) + 5 () dD (1),
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Let us try to choose s(t) = 0. Then we have that

t (b(s,0(s))—p)? t b (s.als)) —
p<t>—p<o>exp[/0 {—p—;M}ds—/o O 0o ZPp ). a3y

o (s,a(s)

So to ensure that the requirement

E [T [p(t) (= (t) - 2* ()] >0,

t—o00

is satisfied it suffices that

E [lim b (t) (z* (t))]] <0. (4.39)

t—o00

Let us try to choose ¢* (t,w) = ¢* and 7* (t,w) = 7*.

Then from (4.37)) we get
p (t) = e_(St C*Z‘l(t)
— ﬁ exp [fg —{p+7*(b(s,a(s)) —p) — " — 37202 (s, (s)) + 6} ds — fé o (s, (s))dB (s)]
(4.40)
comparing (4.38) with (4.40) we get
t,i)—p)?2
Pt (b(Li) = p) = & = 5507 (1) +6 = p+ 5 gy
x N — (b(t1)—p)
0o (t,1) = (i)
then
C—W((tﬂ)—/’)—§ 7r0<t72)+m + (4.41)
«_ (0(t,i) —p)
= 0" 4.42
o? (t,1) (442)
Substituting into (4.41]) this gives
o) —p)? 1) - p)? | I
_ 1 _ 4.4
=m0 2\ et w70 (443)
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By (4.30)) and we have

X (b(t,1)—p)> ji
p()a" () =pO)exp |3 {-p(s.a(s) — - pas - f3 CL52aB (s)]
i)—p)? ~ : 7
myesp [ i { (5,0 () + COE" — e~ JOGEER s+ P05 dB )]

= p(0) zg exp [—c*t]

Therefore (4.39) holds.

We have proved the following theorem.

Theorem 6.1 The optimal control of (4.29) — (4.31]) are given by (4.42)) and (4.43]) .

4.5.2 Exemple 02

We consider the following optimization problem which is to maximize the performance functional:

J(u)=E [2 /0 et mdt] : (4.44)

where z(t) is subject to

de(t) = (Alt,at)z(t)—u(t)dt—C(tal)z(t)dB (),

(4.45)
x (t) = 19,
where 8,29 >0, A(t,i),C (t,i) >0, forallieS={1,2,...,n}.
In this case the Hamiltonian function takes the form
H (t,2,u,i,p,q) = 2v/ue " + (A (t,i)x —u)p— C(t,9) g,
then
H'LL (t,x,u,i,p,q) = eiﬁtﬁ - P
H, (t,z,u,i,p,q) = (A(t,1))p—C(t,0)q.
Therefore, if H, =0 we get
1
P _p= 4.46
T (4.46)
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The adjoint equation is given by

dp(t) =—[At,a@)p(t)—C(tat))qt)]dt
+q(t)dB () + 5 (t) d® (t) .

Let us try to choose ¢ (t) = s(t) = 0. So
dp (t) = —A(t, e (t)) p (t) dt,

this leads to
p(t) = p(0)e o AlsaleNds (4.47)

for some constant p (0) and by (4.46)) ,

u* () = (4.48)

Inserting u* (t) into (4.45)) , we get

do* (t) =a* () A(t,a(t)) —p(0) 2 e2lo(Asale)=Bds gy — o% (4) C (¢, () dB (t)

z (t) = g,

Let us consider the process I' (.) defined by

I (t) = exp </Ot—C’(s,a(s))dB(s)—|—A(s,a(s))ds—;/OtCz(s,a(s))ds>,

Using integration by part we get

t €2f0 A(r,a(r))—B)dr
o) = OT O -2 [ s

I'(t)ds.

Hence

B [a" () e~ B ACO] =gt (0) (o) [ B (A2 g
0
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Therefore to ensure the positivity condition , we get the optimal p (0) as

N

. z* (0)
o 7 4.49
p* (0) = (ef;m(na(r))—%)dr) ds Y

and we can verify that

lim E [z* (T) p* (T)] = 0.

T—o0o
Therefore the transversality condition is verified, then with p (0) = p* (0) given by (4.49), the

control u* given by (4.48) is optimal.
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Chapter 5

Partial Information Maximum
Principle for Optimal Control
Problem with Regime Switching in

the Conditional Mean-Field Model

In this chapter, we present our second main result. In Sects. 1 and 2 sufficient and necessary
maximum principles are developed under partial information. An example of switching optimal
control problem in conditional mean field setting is studied in Sect 3 .

We consider the following controlled regime-switching diffusion equation:

dX () = b(t,X(@1),E(o(X (1) /F),u(t),a(t-))dt
+ o (6, X1),E(p(X 1) /F),u(t),a(t—))dB(t) (5.1)
X(O) = Zo,

where z¢ is a real number. This mean-field SDE is obtained as the mean-square limit as n — oo

of a system of interacting particles of the form

dxn (1) = b (t,xw (1,136 (X" 1) ,u(t),a (t—)> dt
‘o (t, X0 (8), 1350 (X0 (1)) ,u (1) o (t—)) dB (1)
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where (Bi (.),1> 1) is a collection of independent standard Brownian motions. Note that for

more generality we consider the mean-field term as nonlinear functions of the state with the use of

¢ (.) and ¢ (.), respectively. Moreover, in (.1]), the conditional expectations E (¢ (X (¢)) /F¢.) and
E (¢ (X (t)) /F{) appear instead of the expectations E (¢ (X (¢))) and E (¢ (X (t))) because of

the effect of the common switching process « (t) ¢ > 0. Because all the particles depend on the

history of this process, their average (mean-field term) must depend on the history of « (t); see

[39].

Here :
b 0, T] x RxRxU xS —R

o 0, T]xRxRxU xS —R
f 0, T]xRxRxU xS — R
o000 R—=R,
are given continuous functions. B () is one dimensional standard Brownian motion and the

control process u (t,w) : [0,T] x @ - U (U C R) required to be & —predictable and

E[/)Tyu(t)y2dt] < 0.

Where & C F; be a given subfiltration, representing the information avialable to the controller
at time t. We denote by A, the set of all admissible controls.

For each e; € § we introduce the following assumptions:

H1) The functions ¢ (.),p(.) ;¢ (.) and o (.) are continuously differentiable; g(., ., ¢;) is continu-
ously differentiable with respect to (z,y); b(.,.,.,.,€);0(.,.,.,.,€i), and f(.,.,.,.,e;) are
continuous in ¢ and continuously differentiable with respect to (z,y,u).

H2) Foreachtande; € S, all derivativesof ¢ (.), 0 () , ¥ (.), g(.,.,€:),b(t,.,.,.,€); o(t,.,.,.,ei),

and f(t,.,.,.,e;) with respect to x,y, and u are Lipschitz continuous and bounded.

The existence and uniqueness of (5.1]) is given in [38].

The cost functional is defined as follows:

J(zg,e5,u) =E [fOTf (6, X t),E (X ) /Fr),ut),alt-))dt
+9(X(7),E (e(X(T))/Ff_),a(T))],

(5.2)
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where
fi [0,T]xRxRxU xS —R

g: RxRxUxS—R

are functions such that for all x; = z,y,u

B [f (17 (6 X (@), B (6 (X (1) /7 u(t), o (t-)] dt
9 (1, X (1), B (v (X (1) /F2) u(t),a (t—))‘2> dt

+g (X (T),E (o (X (7)) /F&_) ,a(T))| +

_l’_

(X (T),E (o (X (1)) /FE) o (T))ﬂ < o0.

Our control problem is to find u* € Ag such that

J (wo,e;,u”) = sup J (o, e;,u) (5.3)
ucAg

Now let us define the Hamiltonian as follows:

H:R*xRxRxS—R,

H(tajvuap7q7 ei) = f(t7x7y17u7€i> + b(t7m7y27u7 el)p

+o (t,x,y3,u,€)q

where Z = (z,y1,y2,y3). For simplicity, for a random variable z, H(t, z, u, p, g, ¢;) will be used in-
stead of H(t,z,E (¢ (X (t)) /F),E (¢ (X (¢) /F~) E (¥ (X () /F) su,p, g, e;) with luttle

abuse of notation. That is,

H(t,z,u,p,q,e;) =f (t,:p,E (¢ (z) /]—"to‘_) ,u,ei) +b (t,x,E (¢> () /]—'to‘_) , U, ei)p

(5.4)
+o (t,2,E (¢ (z) /JFE) u,e) g

The adjoint equation corresponding to u* and X% (.) in the unknown, adapted processes (p (t),q (t), s (1))
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is the backward stochastic differential equation

dp(t) =—[b; (®)p(t)+03 () q(t)+ fz (1) dt
+[E (b (1) p () /F2) &% (1) + E (05 (1) g (8) /F2) @3 () + B (f; (8) /F2) 05 (1)) dt
+q(t)dB () + s (t) d® (t)

p(T) =gi(T)+E(g;(T)/F2_) o} (T)

In view of [38] this backward equation has a unique solution (p (t), ¢ (t),s(t)) € S%([0,T],R) x
£%([0,T],R) x M% ([0, T],R”). Where

5%.([0,T7,R) = {f : R—valued F; — adapted cadlag processes, s.t.:E [SUPogth |f (t)ﬂ < oo} ,
L% ([0,7],R) = {f : R—valued F—progressively measurable process : || f||3 = E [fOT If @) dt} < oo} ,
D
MZ([0,T],RP) =< f:RP — valued F;-predictable processes, s.t.E fOT Z £ 1PN () dt| < oo
j=1

For an admissible control u (.), denote the corresponding trajectory of (5.1) by X*(.). In par-
ticular, if u*(-) is an optimal control, then X" (.) is the associated optimal trajectory. In the

sequel we use the following abbreviation:

b () =0b(tL XY (t),E(¢ (XY () /FL) u(t),a(t—))
ot (t) =0 (tLX" (1),E(p (X (1) /F2) v (), e (t-))
)y =X 0),E @ (XY @) /F) ur (), at-))
gt =g(tX"1),E (X" ®)/FL), o)

¢*(t) = (XY (1), 9" (1) = (X (1))

P (t) =9 (X (1), 0" (t) =0 (X (1)),

also we use h, = g—Z for all @ = x,y,u, and h = b, 0, f,g,b", 0", .....

5.1 Partial information sufficient maximum principle

In this section we state and prove a sufficient maximum principle for the partial information

control problem (5.1) — (5.3)) .
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Theorem 5.1.1 (Partial Information Sufficient Maximum Principle). Let u* € Ag with corres-
ponding state process X* (t) = X" (t) and suppose there exists a solution (p* (t),q* (t),s* (t))

of the corresponding adjoint equations (5.5)) satisfying

E [ng (p* (1) (o (£) = o™ (1)))* + (a7 (£) (1) — X (1)))”

. (5.6)
0 0y (X7 (0 = X (1) Is; (P A (8)] dt < o,
and
E /0 H (1 X (1) (0,07 (1), 0" (1), e0)| e (5.7)

for all admissible controls u € Ag. Further suppose that for allt € [0,T].

1. The functions ¢ (.),¢(.),% (.), and p(.) are concave, the function g(.,.,.) is concave in

(z,y), and the Hamiltonian H(.,.,.,.,.,.) is concave in (z*, u).

2. The functions by (., ., ;) 0y(es s eses-), fyleseresos.), and gy (., .,.) are nonnegative.

E[H (X7 (t),u" (t),0" (t),q" (), e:) /&] = max B[H (8, X* (8) ,u,p" (t) ,¢" (t) , &) /&1] -
(5.8)

Then u* is a partial information optimal control.

Proof. Choose u € Ag and X" (t) the corresponding state trajectory , we set

¢ (t) = o (X" (1), ¢ (t

) =
P () =9 (X" (@), e()

b(t)=0b(t, X" (t),E (¢ (X ())/ﬂ"‘) u(t),a(t-))
o(t)=0(t,X"1),E(p(X“@)/Fr),u(t),alt—))
Ft)=f(t, X"t ,E( (XU (@) /7)) u(t), a(t-))

g(T) =g (T,X"“(T),E (e(X"(T)) /F¢_) ,a(T))

H(t) =H (¢, X“() u(t),p*(t),q" (¢),a(t-))

H(t)=H(tLX" (8),a(t),p" (1), q" (1), a(t-)),
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and consider

J(’U,) —J(’U,*) =J1+ Jo,

where
B =B X0, B (0 (X (0) /F) u ), (t-)
— F (X (@) B (6 (X (1) /7)) (1), ()]
B2 =E[g((T,X"(T),E (e(X" (1)) /F}_) o (T)))
— g (T.X" (1), E (o (X (1)) /F¢_) ,a(T))]
Note that
J=J11—Ji2— Ji3,
where

D =E [ (5 (t) - B (1) dt]
B2 =B (b1 = b (1) p" (t)d]
Na=E [ (0 (t) o™ (1) q (1) dt]

By concavity we have

H(t) - H* (1)

< Hy () (XU (t) = X (1) + b, (D E (6 (t) — ¢* () /F2) " (1)

+oy (D E (9 (t) —¢* (1) /F) ¢ () + f O E (¥ (1) —* (1) /F)

+Hy (1) (u(t) = u* (1))

< Hj (£) (X" (1) — X* (8) + b} (1) E (¢ (8) (X (£) — X*(8)) /F2) P (¢)

+oy () E (e (£) (X" (8) = X7 (6)) /FE) ¢ (1) + fy () B (b (1) (X" (1) = X* (8)) /F)
+H; (1) (u(t) = u* (1))

sincew — E[H (t, X* (t),u,p* (t),q" (t),4) /&] is maximal for u = u* (¢) and u (¢) , u* (t) are &—mesurable,

we get :

]
v
gl
=
<
S

H (ta X (t) tiad) - (t) aq* (t) vei) /gt]u:u*(t) (u (t) —u* (t))
=E[H, (X" (), u,p" (8), 4" (8) , ei) (w(t) —u* (£)) /€|y (r)
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Combining — and we obtain

I S B (0 (X0 = X7 (0) + by (0B (65 (1) (X (1) = X* (1) /) p* (1)
oy (1B (i (1) (X (1) = X (1) /F2) " (6)+ 5 (0B (5 (1) (X* (1) = X* () /i) } ]

Similarly, since g is concave we get,

Jo =E[g((T.X“(T),E (o(X"(T)) /Fg_ ) a(T))) —g (T, X" (T),E (o (X (1)) /F¢_) ,a(T))]
<E{g: (D) (X*(T) - X* (1)) + g (T (g<X“ ) — o (X*(T)) /F5_)}
<E{g: () (X*(T) — X* (1)) + g5 (T) E (¢ (T) (X*(T) — X* (1)) /F5_)}

<E[p* (1) (X*(T) - X* (1))}

By the It6 formula

Ep* (T) (X" () ~ X*(T))

=B [} (XU = X* 0)dp" (1) + " () (X" (1) = X" (5) + " (1) (0 (8) — 0" (1)) ]

= —E{ [ (X" (1) = X* (1) [b3 ()" (&) + 03 (1) " (6)+ fi (1) + E (0 (1) p (1) /F-) 65 (1)
+ B (o (1) q (8) /F2) ¢ (6) + B (f7 (8) /F2) o ()] dt ]

E [ [0 () (0(6) = b (1) + " (0) (0 (8) — 0* (1)) ]

= —B{ (X" () = X* (1) [H; 0) + B (05 () p (1) /F22) b (0)
+E<ay<>q<>/f“) () +E (£ (8) /F) v (1)] dt}

FE [ " 0 (b(t) = b (1) + 0" () (o (8) — o (£))] ]

)
() +
) +
)
(t)
)

+
+

65



Partial Information Maximum Principle for Optimal Control Problem with Regime Switching
in the Conditional Mean-Field Model

<E [fy {H2 () (X" (8) = X (£) + b () F (65 (1) (X" (£) = X* (1) /F2) 9" (1)

3y (5B (82 (£) (X" () = X7 (£) /FE) 0" (8) + F (0B (0 (1) (X" (1) — X* () /F2) } ]
—E [ 6 =5 ) p* W at] =B [ (0(t) =" (1)) ¢" (1) ]

—E{ o (X () = X* () [Hy (8) + E (0 () p (1) /F) 65 (8)

+ E (o5 (1) q (1) /F) @5 (8) + E(fy (1) /F) 03 (1)) dt}

FE [J) 7 () (b(8) = b7 (1) + 0" () (0 (8) — o (£))] ]

=B [y {H (8) (X" () = X" (1) + b (1) B (65 (8) (X" () — X* (1) /F2) " (1)

oy (0B (i3 (1) (X* (8) = X (1)) /FE) q* (1) + f5 (1) (45 () (X" (1) — X* (1)) /7 ) } ]
—E L)X (8) = X7 (1) [Hy (8) + b () E (5 (8) /F2) v (1)

+ oy () E (05 (8) /F) a" (8) + £ (1) E (5 (1) /7)) dt}

=0.

Since this holds for all © € Ag , the result follows. =

5.2 A partial information necessary maximum principle

In the previous section we proved that (under some conditions) an admissible control u* satisfying
the partial information maximum condition (5.8 is indeed optimal. We now turn to the converse
question: If u* is optimal, does it satisfy (5.8))

In addition to the assumptions in Section 2 we now assume the following:

(A1) For all ¢, h such that 0 <¢ < t+ h <T and all bounded &-measurable random variables

a, the control process (3 (t) defined by
6(3) = al[t,t-{-h] (S) y 8 € [OaT]

belongs to Ag
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(A2) For all u, 5 € Ag with § bounded, there exists € > 0 such that

u+yB € Ag for all y € (—¢,€) .

(A3) For given u, § € Ag with 8 bounded we define the derivative process Y (t) = Y (%#) (¢) by

V() = L xus (p)

dy =0

note Y (0) = 0 and
dY (t) = K (t)dt+ L (t)dB (1),

where

K(t) =by ()Y (1) +by ()E (Y () ¢ (X (1)) /F) +bu () B(2)
L(t) =o0.()Y (t)+oy()E (Y () (X1)/F)+0u(t)B(t)

(5.10)

Theorem 5.2.1 (Partial Information Necessary Maximum Principle). Suppose that u* € Ag is
a local maximum for J(u), in the sense that for all bounded f € Ag there exists € > 0 such that

u+ypB € Ag for all y € (—e,€) and

k(y) :=J (u* +yp) (5.11)

is mazimal at (y = 0) .Suppose there exists a solution (p* (t),q" (t),s* (t)) of the associated ad-

joint Equations (5.5)), that is,

dp* (t) = —1[b5 (t)p* (t) + o3 (t) ¢* () + [ (V)] dt
+ [E (b5 (1) p* (t) JF) ¢ (1) + E (o5 (8) ¢ (t) /F) % (1) + E (f (8) /F2) i (1)) dt
+q* () dB (t) + s* (t) d® (t)

| p (1) = g5 (D) +E (g (T) /F3) 0} (D).

Moreover, suppose that, if Y*(t) = Y @B (t) and K* (t) and L* (t) are the corresponding coef-
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ficients (5.10). Moreover, let us assume that,

E‘{OT(P*@)Q{(?Z) B Y )+ (%) (t)ﬂ()}+Y*() *(t)2>dt] < 5o -
5.12
E

t))* Z]:foT |7 (£)17 A (¢) dt] < o0
Then u* is a stationary point for E[H (t) /&] in the sense that for a. a. t € [0,T] we have
E[H, (t, X" (t),u",p" (1), q" () ,€i) /&] = 0
Proof. Put X* (t) = X% (¢). Then with k as in (5.11)) we have

0 —K(0) = d%J(u*—lryB)‘y:O

:E[foT{fx (62X (8),B ( (X (1) /F2) oy (1=)) d%Xu*wB(t)’

y=0

+ fy (t,X“ ), E (¥ (X (t) /JFL) ,u*,a(t—))E (df;q/} (xutvs (t))‘y:O /]—"ﬁ_)
+ fu (6 X (6 E (v (X (1) /JF) ur (), a(t-)) B (t)} dt

g: (X (7). B (o (X (1)) /Ff_) (D) X7 0)|

gy (X (T),E (o (X (1)) /F5_)

(t,
9a ( )
w( a@)E(fox )] i)
[ {fx (82X (8) B (v (X (1) /)

fy (6 X (1), E (¥ ) /FR) e (b)) B (YT (8) b (X (1) /)
+fu (6, X" (1), E (v )
+E [g: (X“ (1), E(

(

(5.13)
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By (5.12)), and the It6 formula,

B g5 (1) ¥ (T) + g5 (D) B (Y* (1) o2 (X (1)) /7]
= E[p" (T)Y* (7))

= B[ [ (0 {05 ()Y (9) + b5 (0B (¥ (6) 6 (X* (1)) /) + b5 (1) B (1)
Y () B (O p* (0) + 0% (g (1) + £2 (1)

+E (by (1) p* () /F2) & (1) + B (o (1) ¢ (1) /FF) 3 () + E (fy (1) /F) 5 ()}
+ ¢ () (03 () Y™ (1) + oy () E (Y™ () 0o (X* (1) /F1) + 07 (1) B () }]

Now

Hy (t) = fo(8)+ fy B (0 (8) /FL) + (b2 () + by () B (60 (8) /7)) p (1)
+ (02 (t) + 0y () E (x () /7)) a (t)
Hy (t) = fu(®)+bu () p(t) +0u(t)q(t).

Combined with (5.13]) and (5.14]) this gives

0 =E [ [fult, X (1),E (XY ) /F),u* (1), o))
(0B (1) B (8) +a" (£) o (1)) B (1)
=B [y Hu (X7 (), 0" ()57 (0),07 (£) 1) B (1) e

Fix ¢t € [0,7] and apply the above to 5 where

B(s) = alyypyn) (s) , s€[0,T]

where t + h < 7T and « is bounded &;-measurable random variables. Then

t+h
E[t Hy, (s, X" (s),u"(s),p" (s),q"(s),e;)ads| =0

Differentiating with respect to h at h = 0 gives

E[H, (s, X" (s),u" (s),p"(s),q" (s),e;)a] =0
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Since this holds for all bounded &;-measurable random variables @ we have that
E[H, (s, X" (s),u" (s),p" (s),q" (s),e:i) /&] = 0,

which proves the theorem. m

5.3 Application

As an example, consider the following optimization problem which is to maximize the perform-
ance functional:

J(u) = S E[S (@ (D)) (X (T))’] (5.15)

where X (t) is subject to

dX (1) =[A(a(t=)) X (t)+ A" (a(t-)E (X () /F~) + B (a(t—)) u(t)] dt
+[C(a(t=))u(t)]dB(t) (5.16)
X (0) = X0

Here, A(i), A*(i), B(i), S(i),z0 € R and C(i) > 0 for each i € S. (§ ={1,2,3,...,D})

We associate to this problem the Hamiltonian

H(t,x,u,p,q,i) =[A(i)z+ A*()E (z/F) + B (i)u]p

(5.17)
+[C (@) ulq
and the adjoint equation
dp(t) =—[A(a(t-))p(t)+ A (a(t=)E(p(t) /F)] dt
+q(t)dB (t) + s (t) d® (t) (5.18)
p(T) =-5(a(T))X(T)

For simplicity, put X*(¢t) = E (X (t) /fﬁ) ,p(t) =E (p (t) /ft"i) ,q" (t) = E (q (t) /ffi) and
L(t)=L(a(t—)),forall L=AA* B,C,S.
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Via the conjecture of Peng to solve this system, we put

p(t) =v(ta(t=)X )+t alt-))E(X @) /F)

for some functions v(.,.),v(.,.) : [0;7] x S— R differentiable in ¢ to be determined. For each

i € S and t >0, denote v’ (t,7) = $v (t,i) and ' (t,i) = %~ (t,i).We have
dv(t,i) = |V () + 2 (v(E5) —v ()N @) dt+ 3 (v(t ) —v(ti) dd (t),
J j

A similar equation holds for v (¢, (t—)). Denote v (t) = v (t,a (t—)), 0" (¢t) =" (¢, (t—)),v(t) =

v(t,a(t=)),y (t) =+"(t,a(t—)). Then by the It6 formula

dp(t) =d(v(t,a(t=)X )+t alt-)E(X (1) /FL))
=X (t)dv (t) +v (t)dX (t) + E (X (t) JF&) dy (t) + v (t) dE (X (t) JF)

— X (1) [0 (t,0) + X (0 (8,5) — v (£,0) Ay (8)
J

dt + X (1) > (v (t,7) —v(t,3))d® (t)

J

+o(t) [AQ) X (1) + A* O E (X (t) /F2) + Bt)u(t)] dt

V(1) + 22 (v (E9) =y (E,4) A4 (2) | dt

o (1) [C () u(t)]dB (1) + B (X (1) /F5)

FE (X (8) /F2) X (y () — 7 (8,4) d ()

+v (@) (AR +A* @) E(X ) /F)+B@)E (u(t) /Fr)) dt,
(5.19)

and by (5.18]) we get
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—[A®)p @)+ A" (1) p" (t)]
=X (@) |V (£,9) + 2 (vt 5) —v(t0) A ()| +ov @) [AE) X (8) + A" (6) X* () + B (¢) u (1)]

J

+X7 () |7 () + 22 (v (85) = (8,8) Ay (B)

+y(8) (A1) + 4% () X* (1) + B E (u(t) /7))

VAl
~—~

o~
S~—

I

X ()X (vt g) —v(td) + B (X () /F) X (v (t.5) = (t1)
’ ’ (5.20)

Let 4 (t) € Ag be a candidate for an optimal control and let X (), (p(t),q(t),5(t)) be the
corresponding solutions of (5.16)), (5.18). If & = o {a (s),s < t}, then

E[H (X (t),u,p(t),qt),i)/&] =AGE[X D) /&
+AME[X (1) /8] +BOEPR() /&) u
+C M) E[g(®) /& u.

Since this is a linear expression in u, we get

B)E[p()/&]+C @) E[q(t)/&] =0, (5.21)
and by ,
Ct)q(t)=v(t)C?(t)ul(t)
Ct)q(t)=v(t)C*(t)ul(t)
and
B (t)p* (t) = B(t) (v () + (1) X*(t)
then by
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then
_ B @)+~ (@) X" ()
u(t) =— o () CZ (1) , (5.22)
dX*(t) = (A (t) + A" (t) — B? (t) W) X*(t)dt (5.23)

by (5.20) — (5.22) — (5.23)

—[A®)p @)+ A" (1) p" (1)]
= —[A@®) (v() X (&) + 7 @) X (1) + A" (£) (v (&) + 7 (£)) X* (2)]

Ul (1) + 30 (v (8 5) — v (t,4) A (t)]
o (8) [A (1) X (1) + A7 (1) X7 (1) - B2 (1) S xe (o)
7 () + 2 (0 (4 5) =y (50) A (t)]
J
(

+y (8) (A () + A* (t) — B2 (t) <g<(ggzg§>) X* (1)

— X (¢)

X (1)

then
O (t,4) + 20 (v () — v (t0) A (1) + 24 (v (t) =0
j (5.24)
v(T)=-5(T)
and

7 (&) +2 (A@0) + 47 (1) - BB) 7 (1) - s () + (247 () — 28 ) v () + 2 () =7 (1) Ay ()

(5.25)

Theorem 5.3.1 The solution u* of the optimal control (5.15) (5.16) is given by (5.22)) with
v (t),y(t) given by (5.24) — (5.25) .
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Conclusion

Conclusion

"T'his thesis contains two main results. The first one is the necessary and sufficient conditions
of optimality where the control systeme is governed by stochastic differential equation (SDE) with
regime switching in infinite horizon, which is mentioned in [7]. The second main result is the
maximum principle of optimal control for conditional mean field type in finite horizon, cited in

[1], where we motivate our study by two examples in finance.
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