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Abstract

The objective of this thesis is to study a problem of optimal control with regime switching

jump-di¤usion model of mean-�eld type. In the �rst part we recall a result in the stochastic

maximum principle whose horizon is �nite. In the second part, we devote ourselves to presenting

the two main results of this thesis, in the �rst result we give the necessary and su¢ cient conditions

of optimality whose control system is governed by a stochastic di¤erential equation with regime

switching of in�nite horizon and by way of illustration, we have given two examples where in

both cases the equation of state is linear and the objective function is of utility form. The second

contribution on the maximum principle for a control problem of conditional mean �eld type of

�nite horizon, we illustrate our result by a model which gives an explicit solution

Keys words. Stochastic maximum principle, Optimal control, Partial information, Regime

switching, Jump-di¤usion model, Mean-�eld type.
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Résumé

L�objectif de cette thèse est d�étudier un problème de contrôle optimal pour un système
de di¤usion avec saut à changement de régime de type champs moyen. Dans la première partie

nous rappelons un résultat sur le principe de maximum stochastique dont l�horizon est �ni.

Dans la deuxième partie, on se consacre a présenté les deux résultat principaux de cette thèse,

dans le premier résultat on donne les conditions nécessaires et su¢ santes d�optimalité dont

le système contrôle est gouverné par une équation di¤érentielle stochastique à changement de

régime d�horizon in�ni et à titre d�illustration, nous avons donné deux exemples où dans les deux

cas, l�équation d�état est linéaire et la fonction objectif est de forme utilitaire. La deuxième

contribution sur le principe de maximum pour un problème de contrôle de type champs moyen

conditionnel d�horizon �ni, nous illustrons notre résultat par un modèle qui donne une solution

explicite.

Mots Clés. Principe du maximum stochastique, Contrôle optimal, Information partielle,

Changement de régime, Modèle di¤usion-saut, Type champ moyen.
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Index of notations

Index of notations

Here we give some the di¤erent symbols and abbreviations used in this thesis:

(
;F ; P ) : Probability space:�

;F ; fFgt�0 ; P

�
: Filtred probability space.

fFgt�0 : Filtration.

B (t)t2[0;T ] : Brownian motion.

a:s : Almost surely:

a:e : Almost everywhere.

P � a:s : Almost surely with respect to the probability measure:

c�adl�ag : Right continuous with left limits.

R : Real numbers.

Rd : d� dimensional real Euclidean space.

Rn�d : The set of all n� d real matrixes.

N : Natural numbers.

L2 ([0; T ] ;Rn) : The set of continuous Ft-measurable process f'tgt2[0;T ]
which satisfy E

h
sup0�t�T j'tj2

i
<1:

S : Finite state space.

U : The set of values taken by control u:

U : The set of admissible controls.

u� : Opimal control.

� : Rate matrix.

y> : Transpose of a victor y:

B (R+) : The Borel �-�eld generated by the open subsets of R+:

N : The compensated poisson random measure.eN� : The compensated Markov regime-switching random measure.

P
(n)
ij : n-step transition probability of a Markov chain.
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P : Transition probability matrix of the Markov chain.

IA (s) : The indicator function of A:

E [X] : Expectation at X:

E [Xj Ft] : Conditional expectation.

SDEs : Stochastic di¤erential equations.

SDEJs : Stochastic di¤erential equation with jumps.

BSDE : Backward stochastic di¤erential equation.

BSDEJs : Backward stochastic di¤erential equation with jumps.

HMM : Hidden Markov Model.
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Introduction

Introduction

In the past years, regime switching models have been widely used in �nance and stochastic
optimal controls. The basic idea of such models is to modulate the model with a continuous

time, �nite state Markov chain where each state represents a regime of the system or level of

economic indicator. For example, in the stock market, the up-trend volatility of a stock tends

to be smaller than its down-trend volatility (see Zhang [56] for further details). Therefore, it is

reasonable to describe the market trends by a two-state Markov chain, much work has been done

on stability and stochastic control problems for the regime switching system, such as [[31]-[57]].

The regime switching model in economic and �nance �elds was �rst introduced by Hamilton in

[29] to describe a time series model and then intesively investigated in the past two decades in

mathematical �nance.

In the deterministic case, the maximum principle was introduced by Pontryagin & al [45] in the

1950�s. Since then, a lot of works have been done for systems driven by Brownian motion such

as Bismut [10], Kushner [32], Bensoussan [9] and Haussman [30]. Peng [42] derived a general

stochastic maximum principle where the control domain is not necessarly convex and the di¤usion

coe¢ cient can contain the control variable. Mezerdi [11] generalized the principle of Kushner

to the case of a SDE with non smooth drift. It was extended to systems with jumps by Tang

& al [53], and later by Framstad & al [24]. In in�nite horizon, Haadam & al [25], introduced a

maximum principle for in�nite horizon jump di¤usion processes for partial information. They

proved necessary and su¢ cient maximum principles for this problem. The results obtained

are applied to several problems which appear in �nance. However, Maslowski and Veverka

[34] establish a su¢ cient stochastic maximum principle for in�nite horizon discounted control

problem. As an application, they study the controlled stochastic logistic equation of population

dynamics.

The concept of mean-�eld theory is widely used for the description of interacting many-body

systems in physics and probability theory. The behind idea is not to treat the many-body

system by summing up all mutual two-body interactions of the particles but to discribe the

interaction of one particle with the remaining ones by an average potential created by the other

particles.
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Introduction

Stochastic optimal control problems for the mean-�eld stochastic di¤erential equations (SDEs)

have attracted an increasing attention. The history of the mean �eld SDEs can trace their roots

to the Mckean-Valsov model, which was �rst introduced by Kac (1956) and Mckean (1966) to

study physical systems with a large number of interacting particles. Lasry and Lions (2007)

extended applications of the mean-�eld models to economics and �nance. Intuitively speaking,

the adjoint equation of a controlled state process driven by the mean �eld SDE is a mean-�eld

backward stochastic di¤erential equation (BSDE). In 2009, Backdahn et al established the theory

of the mean-�eld BSDEs that the stochastic maximum principle for the optimal control system

of mean-�eld type has become a popular topic. Interested readers may refer to Andersson and

Djehich (2011), Backdahn et al (2011), Li (2012). In Shen and Siu [49], the authers proved

the existance and uniqueness of solutions to mean-�eld BSDEs driven by Brownian motions and

Poisson jumps. All these works established a solide foundation to cope with stochastic optimal

control problems of mean-�eld models.

The optimal control problem for the Markov regime switching model has seen great interest in

recent years. See, for example [36],[51], [59], [20], what characterizes these models is that there

are two components, a di¤usion part which is continuous and another discert one representes by

continuous Markov chain, moreover in an empirical sense these last models are more preferred

than the classical one for example, Mean -Variance with regime switching [61], Option pricing

[23], American options [17] . The �rst version on mean �eld stochastic optimal control with

regime switching is due to Zhang et al [60] in their paper they gave the necessary and su¢ cient

conditions of optimality of an optimal control when the coe¢ cients of the system depend on the

solution as well as it�s expect value, inspired by the paper of Buckdahn et al [16] and another

very powerfull model proposed by Nguyen et al [39], a very interesting paper introduced by So

et al [38] in that paper the authors treat the convexe case with full information.

In this thesis, we present a mean-�eld optimal control of di¤usion with regime-switching.

Let us brie�y describe the contents of this thesis:

In Chapter 1, We recall some result about stochastic calculs with jumps in which we de�ne

the Lévy processes, brownian motion and state few important properties such as the Markov

property, stochastic integral with respect to Lévy process.

In Chapter 2, We present some notions about Markov chains in continuous and discret time in

2



Introduction

which we de�ne the transition function and transition rate matrix. Finnaly, we give some models

that illustrate regime switching.

In Chapter 3, We recall a result in stochastic optimal control of a Jump-Di¤usion with �nite

horizon, su¢ cient and necessary maximum principles are presented under partial information.

In Chapter 4, We give our �rst result about optimal control of jump-di¤usion with Markov

regime switching in in�nite horizon. Firstly we prove that our system have unique solution,

then su¢ cient and necessary maximum principles are developed under partial information . An

optimal portfolio and consumption in a switching di¤usion market are studied.

In Chapter 5, We present our second result about stochastic optimal control problem for a

Markov regime switching in the conditional mean-�eld model. Su¢ cient and necessary maximum

principles for optimal control under partial information are obtained. Finally we illustrate our

result through a model which gives an explicit solution.

Relevant Papers
The content of this thesis was the subject of the following papers:

1. Benabdallah, Hani, Lazhar Tamer, and Nassima Chaouchkhouane. "Stochastic maximum

principle for a Markov regime switching jump-di¤usion in in�nite horizon." International

Journal of Nonlinear Analysis and Applications (2022).

2. "Partial Information Maximum Principle for Optimal Control Problem with Regime Switch-

ing in the Conditional Mean-Field Model"; paper accepted for publication.
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Chapter 1

Some Elements of Jump Processes

In this chapter, we recall some result about stochastic calculs with jumps in which we de�ne

the Lévy processes, brownian motion and state few important properties such as the Markov

property, stochastic integral with respect to Lévy process.

1.1 Stochastic processes

1.1.1 Filtration and processes

De�nition 1.1.1 Let (
;F ; P ) be a probability space. A �ltration is an increasing family of

�-algebras (Ft)t2[0;T ] : 8t � s � 0; Fs � Ft � F :

De�nition 1.1.2 A stochastic process is collection of random variables (Xt)t2[0;T ] such that for

each �xed t 2 [0; T ] ; Xt is a random variable from (
;F ; P ) to (E; #) :

De�nition 1.1.3 (adapt process) A process (Xt)[0;T ] is adapted (with respect to (Ft)[0;T ]) if

for all [0; T ], Xt is Ft-measurable.

De�nition 1.1.4 (Progressively measurable, optional and predictable process)

(1) A process (Xt)[0;T ] is progressively measurable if for any [0; T ], the mapping (s; w)! Xs (w)

is measurable on [0; t]� 
 equipped with the product �-�eld B ([0; t])
Ft:

(2) A process (Xt)t�0 is optional if the mapping (s; w) ! Xs (w) is measurable on [0; T ] � 


equipped with the �-�eld generated by the (Ft)t[0;T ]-adapted and càdlàg processes.

4



Some Elements of Jump Processes

(3) A process (Xt)[0;T ] is predictable if the mapping (s; w)! Xs (w) is measurable on [0; T ]�


equipped with the �-�eld generated by the (Ft)[0;T ]-adapted and continuous processes.

Proposition 1.1.1 If the process X is optional, it is progressively measurable. In particular, if

it is càdlàg and adapted, it is progressively measurable.

1.1.2 Brownian motion

De�nition 1.1.5 A standard d-dimensional Brownian motion on [0; T ] is continuous process

valued in Rd, (Bt)[0;T ] =
�
B1t ; :::; B

d
t

�
[0;T ]

such that:

(i) B0 = 0:

(ii) For all 0 � s � t in [0; T ], the increment Bt�Bs is independent of � (Bu; u � s) and follows

a centered Gaussian distribution with variance-covariance matrix (t� s) Id:

De�nition 1.1.6 (Brownian motion with respect to �ltration) A vectorial (d-dimensional)

Brownian motion on [0; T ] with respect to a �ltration (Ft)[0;T ] is a continuous (Ft)[0;T ]-adapted

process, valued in Rd, (Bt)t�0 =
�
B1t ; :::; B

d
t

�
[0;T ]

such that:

(i) B0 = 0:

(ii) For all 0 � s � t in [0; T ], the increment Bt � Bs is independent of Fs and follows a

centered Gaussian distribution with variance-covariance matrix (t� s) Id:

Remark 1.1.1 A standard Brownian motion is a Brownian motion with respect to its natural

�ltration.

Proposition 1.1.2 Let (Bt)[0;T ] be a Brownian motion with respect to (Ft)[0;T ] :

(1) Symmetry: (�Bt)[0;T ] is also a Brownian motion.

(2) Scaling: for all � > 0; the process ((1=�)B�2t)[0;T ] is also a Brownian motion.

(3) Invariance by translation: for all s > 0; the process (Bt+s �Bs)[0;T ] is a standard Brownian

motion independent of Fs:

5



Some Elements of Jump Processes

1.2 Lévy process and strong Markov property

De�nition 1.2.1 (Lévy process) Let X = (Xt)t�0 be an Rd-valued stochastic process. We

say X is a Lévy process if it satis�es the following conditions:

(1) X0 = 0 a.s.;

(2) X has càdlàg trajectories a.s.;

(3) X has independent and stationary increments.

The third item in the de�nition above means that, for all n 2 N and 0 = t0 < t1 < ::: < tn; the

random variables (Xti �Xti�1)1�i�n and (Xti+h �Xti�1+h)1�i�n have the same law.

Example 1.2.1 Brownian motions (with constant drift and standard deviation) and compound

Poisson processes are Lévy processes.

De�nition 1.2.2 A stochastic process B = (Bt)t�0 on Rd is a Brownian motion if it is a Lévy

process and if

(1) For all t > 0; has a Gaussian distribution with mean 0 and covariance tTd.

(2) There is 
0 2 F with P (
0) = 1, for every w 2 
0; B (t; w) is continuous in t

De�nition 1.2.3 (Poisson process) A poisson process � (t) of intensity � > 0 is a Lévy pro-

cess taking values in N [ f0g and such that

P [� (t) = n] =
(�t)n

n!
e��t; n = 0; 1; 2; :::

Let F =(Ft)t�0 be the natural �ltration associated to X:We recall that a [0;+1[-valued random

variable T is a stopping time with respect to F if for all t � 0; the event fT � tg belongs to Ft.

We also denote by

FT := fA 2 A : A \ fT � tg 2 Ft; 8t � 0g (1.1)

the �-algebra of events prior to this stopping time. We may now state the following proposition.

6



Some Elements of Jump Processes

Proposition 1.2.1 (Strong Markov property) Let X = (Xt)t�0 be a Lévy process and T a

stopping time such that T <1 a.s. The process (XT+t �XT )t�0 is a Lévy process independent

of FT and distributed as X:

Of course, the strong Markov property implies the simple version of it, when T is a deterministic

time.

1.2.1 The Itô formula and related results

Theorem 1.2.1 (The One-Dimensional Itô Formula) Suppose X (t) 2 R is an Itô-Lévy

process of the form

dX (t) = � (t; w) dt+ � (t; w) dB (t) +

Z
R
 (t; z; w) eN (dt; dz)

where

eN (dt; dz) =

8><>: N (dt; dz)� v (dz) dt if jzj < R

N (dt; dz) if jzj � R

for some R 2 [0;1) :

Let f 2 C2
�
R2
�
and de�ne Y (t) = f (t;X (t)) : Then Y (t) is again an Itô-Lévy process and

dY (t) =
@f

@t
(t;X (t)) dt+

@f

@x
(t;X (t)) [� (t; w) dt+ � (t; w) dB (t)]

+
1

2
�2 (t; w)

@2f

@x2
(t;X (t)) dt

+

Z
jzj<R

ff (t;X (t�) +  (t; z; w))� f (t;X (t�))

�@f
@x
(t;X (t�))  (t; z; w)

�
v (dz) dt

+

Z
R
ff (t;X (t�) +  (t; z; w))� f (t;X (t�))g eN (dt; dz) :

Example 1.2.2 (The Geometric Lévy Process) Consider the stochastic di¤erential equa-

tion

dX (t) = X (t�)
�
a dt+ b dB (t) +

Z
R
c (t; z) eN (dt; dz)

�
;

where a; b are constants and c (t; z) � �1: To �nd the solution X (t) of this equation we rewrite

7



Some Elements of Jump Processes

it as follows:
dX (t)

X (t�) = a dt+ b dB (t) +

Z
R
c (t; z) eN (dt; dz) :

Now de�ne

Y (t) = ln X (t) :

Then by Itô formula,

dY (t) = X(t)
X(t) [a dt + b dB (t)]�

1
2b
2X�2 (t)X2 (t) dt

+

Z
jzj<R

fln (X (t�) + c (t; z)X (t�))� ln (X (t�))

�X�1 (t�) c (t; z)X (t�)
	
v (dz) dt

+

Z
R
fln (X (t�) + c (t; z)X (t�))� ln (X (t�))g eN (dt; dz)

=
�
a� 1

2b
2
�
dt+ b dB (t) +

Z
jzj<R

fln (1 + c (t; z))� c (t; z)g v (dz) dt

+

Z
R
ln (1 + c (t; z)) eN (dt; dz) :

Hence

Y (t) = Y (0) +

�
a� 1

2
b2
�
t+ b dB (t) +

Z t

0

Z
jzj<R

fln (1 + c (s; z))

�c (s; z)g v (dz) ds+
Z t

0

Z
R
ln (1 + c (s; z)) eN (ds; dz)

and this gives the solution

X (t) X (0) exp

��
a� 1

2
b2
�
t+ b dB (t)

+

Z t

0

Z
jzj<R

fln (1 + c (s; z))� c (s; z)g v (dz) ds

+

Z t

0

Z
R
ln (1 + c (s; z)) eN (ds; dz)

�
:

(1.2)

In analogy with the di¤usion case (N = 0) we call this process X (t) a geometric Lévy process.

1.3 Stochastic integral with respect to Lévy process

Let (
;F ; P ) be a given probability space with the �-algebra (Ft)t�0 generated by the underline

driven processes; Brownian motion B (t) and independent compensated Poisson random measure

8



Some Elements of Jump Processes

eN ; such that eN (dt; dz) := N (dt; dz)� � (dz) dt: (1.3)

For any t; let eN (dt; dz) ; z 2 R0; s � t; augmented for all the sets of P -zero probability.

For any Ft-adapted stochastic process � = � (t; z) ; t � 0; z 2 R0 such that

E
hR T
0

R
R0�

2 (t; z) v (dz) dt
i
<1; for some T > 0; (1.4)

we can see that the process

Rn (t) :=
R t
0

R
jzj� 1

n
� (s; z) eN (ds; dz) ; 0 � t � T (1.5)

is a martingale in L2 (P ) and its limit

R (t) lim
n!1

Rn (t) :=
R T
0

R
R0� (s; z)

eN (ds; dz) ; 0 � t � T (1.6)

in L2 (P ) is also martingale. Moreover, we have the Itô isometry

E

��R T
0

R
R0� (s; z)

eN (ds; dz)
�2�

= E
h�R T

0

R
R0�

2 (t; z) � (dz) dt
�i
: (1.7)

The Itô- Lévy decomposition.is a sum of two independent parts, a continuous part and a part

expressible as a compensated sum of independent jumps.

Theorem 1.3.1 (Itô-Lévy decomposion) The Itô-Lévy decomposion for a Lévy process X is

given by

X (t) = b0t+ �0B (t) +
R
jzj<1z

eN (dt; dz) +
R
jzj�1zN (dt; dz) ; (1.8)

where b0; �0 2 R; eN (dt; dz) is the compensated Poisson measure of X (:) and B (t) is an inde-

pendent Brownian motion with the jump measure N (dt; dz) :

We assume that

E
�
X2 (t)

�
<1; t � 0; (1.9)

9



Some Elements of Jump Processes

then R
jzj�1 jzj

2 � (dz) <1:

We can represent (1:8) as

X (t) = b00t+ �0B (t) +
R t
0

R
R0z

eN (ds; dz) ; (1.10)

where b00t = b0+
R
jzj�1z� (dz) : if �0 = 0; then a Lévy process is called a pure jump Lévy process.

Let us consider that the process X (t) admits the stochastic integral representation as follows

X (t) = x+
R t
0 b (s) ds+

R t
0� (s) dB (s) +

R t
0

R
R0� (s; z)

eN (ds; dz) ; (1.11)

where b (t) ; � (t) ; and � (t; :) are predictable processes such that, for all t > 0; z 2 R0;

R t
0

h
jb (s)j+ �2 (s) +

R
R0�

2 (s; z) � (dz)
i
ds <1 P � a:s: (1.12)

Under this assumption, the stochastic integrals are well-de�ned and local martingales. If we

strengthened the condition

E
hR t
0

h
jb (s)j+ �2 (s) +

R
R0�

2 (s; z) � (dz)
i
ds
i
<1; (1.13)

for all t > 0; then the corresponding stochastic integrals are martingales.

Theorem 1.3.2 We call such a process an Itô-Lévy process. In analogy with the Brownian

motion case, we use the short-hand di¤erential notation

8><>: dX (t) = b (t) dt+ � (t) dB (t) +
R
R0� (t; z)

eN (dt; dz) ;

X (0) = x 2 R:
(1.14)

The conditions satis�ed by the coe¢ cients to obtain existence and uniqueness of the solution of

a SDEs with jumps, are given in the following theorem.

10
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1.3.1 Stochastic di¤erential equations driven by Lévy processes

By the Itô-Lévy decomposition, we can introduce the SDE for Lévy process.

For simplicity, we only consider the one dimentional case. The extension to several dimensions

is straightforward.

Theorem 1.3.3 (Existence and uniqueness) Consider the following Lévy SDE in R :

8><>: dX (t) = b (t;X (t)) dt+ � (t;X (t)) dB (t) +
R
R0� (t;X (t

�; z)) eN (dt; dz)

X (0) = x 2 R;
(1.15)

where

b : [0; T ]� R! R;

� : [0; T ]� R! R;

� : [0; T ]� R� R0 ! R:

We assume that the coe¢ cients satisfy the following assumptions

1. (At most linear growth) There exists a constant C1 <1 such that

k� (t; x)k2 + jb (t; x)j2 +
R
R0 j� (t; x; z)j

2 � (dz) � C1

�
1 + jxj2

�
; x 2 R: (1.16)

2. (Lipschitz continuity) There exists a constant C2 <1 such that

k� (t; x)� � (t; y)k2 + jb (t; x)� b (t; y)j2 +
R
R0 j� (t; x; z)� � (t; y; z)j

2 � (dz)

� C2

�
1 + jx� yj2

�
;

for all x; y 2 R:

Then there exists a unique càdlàg adapted solution X (t) such that (1:9) is satis�ed.

11



Chapter 2

Markov Regime Switching Model

In this chapter, we present some notions about Markov chains in continuous and discret time in

which we de�ne the transition function and transition rate matrix. Finnaly, we give some models

that illustrate regime switching.

2.1 Introduction

The Markov regime switching model, �rst described by G. Lindgren, 1978, is a type of

speci�cation in which the main point is handling processes driven by di¤erent states, or regimes

of the world. The behaviour of the time series is characterized by multiple equations, decided

by the di¤erent states of the model.

The di¤erence between the Markov regime switching model and othor switching models is that

the switching mechanism is controlled by an unobservable variable which follows the hidden

Markov chain. By means of Markov properties, the present value depends only on its previous

value. This means that a structure in the chain may prevail for a random period of time, before

being replaced by another structure when the switch occurs. Through this method, the Markov

system switching model is able to capture more complex dynamic patterns.

The idea of the �nancial market �nding itself in di¤erent countries and times is attractive. On

the other hand, it has been found that �nancial time series display some facts that can be usefully

reproduced by hidden Markov model. This has made the Markov system shift model one of the

most popular nonlinear time series models in the literature (Cont, 2001, Hamilton, 1989, 2005,

12
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Lindgren, 1978).

2.2 Markov chains

De�nition 2.2.1 Markov chain fXngn�0 is a stochastic process that satis�es the following re-

lationship (Markov property)

For all natural numbers n and all states xn;

P (Xn+1 = xn+1jXn = xn; Xn�1 = xn�1; :::; X0 = x0)

= P (Xn+1 = xn+1jXn = xn) : (2.1)

De�nition 2.2.2 The conditional probabilities (2:1), now written as P (Xn+1 = jjXn = i) are

called the transition probabilities of the Markov chain. They are denoted by:

Pi;j = P (Xn+1 = jjXn = i) ;

and we de�ne the transition probability matrix P of the Markov chain as :

P = (Pi;j)i;j2S :

De�nition 2.2.3 A Markov chain fXngn�0 on a state space S is said to be homogeneous if, for

all n; k 2 N and i; j 2 S; we have :

P (Xn+k = jjXk = i) = P (Xn = jjX0 = i)

2.2.1 The nth-step transition matrix

In this subsection, we are going to investigate the n-step transition probability P(n)ij of a Markov

chain process.

De�nition 2.2.4 De�ne P(n)ij to be the probability that a process in state i will be in state j after

n additional transitions. In particular, we have P(0)ij = Pij :

13
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Proposition 2.2.1 We have P(n) = Pn where P(n) is the n-step transition probability matrix

and P is the one-step transition matrix.

Proof. Clearly the proposition is true when n = 1: We then assume that the proposition is true

for n:

We note that

Pn = P �P � :::: �P| {z }
n times

:

Then we have

P
(n+1)
ij =

(n)X
k2M

Pik P
(1)
kj =

(n)X
k2M

Pik Pkj =
�
Pn+1

�
ij
:

By the principle of mathematical induction the proposition is true for all non-negative integer n.

2.2.2 Irreducible Markov chain and classi�cations of states

De�nition 2.2.5 State i is said to be reachable from state j if P(n)ij > 0 for some n � 0: This

means that starting from state j, it is possible to enter state i in a �nite number of transitions.

De�nition 2.2.6 State i and state j are said to communicate if state i and state j are reachable

from each other.

Remark 2.2.1 The de�nition of communication de�nes an equivalent relation.

(1) state i communicates with state i in 0 step because

P
(0)
ii = P

�
X(0) = i

��� X(0) = i
�
= 1 > 0

(2) If state i communicates with state j. ) State j communicates with state i:

(3) If state i communicates with state j and state j communicates with state k. ) State i

communicates with state k: Since P(m)ji ; P
(n)
kj > 0 for some m and n, we have

P
(m+n)
ki =

(m)X
h2M

P
(n)
hi Pkh � P

(m)
ji P

(n)
kj > 0:

14
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De�nition 2.2.7 A Markov chain is said to be irreducible, if all states belong to the same class

(The states that communicate), i.e. they communicate with each other.

De�nition 2.2.8 For any state i in a Markov chain, let fi be the probability that starting in

state i, the process will ever re-enter state i. State i is said to be recurrent if fi = 1 and transient

if fi < 1:

Proposition 2.2.2 In a �nite Markove chain, if state i is recurrent (transient) and state i

communicates with state j then state j is also recurrent (transient).

2.2.3 Aperiodic Markov chains

De�nition 2.2.9 The period d (i) of a state i 2 S is de�ned by:

d (i) = gcd fn � 1; (Pn)ii > 0g ;

using the convention d (i) = 0 if (Pn)ii = 0; for all n � 1: If d (i) = 1 then the state i is said to

be aperiodic.

Remark 2.2.2 gcd fEg the greatest common divisor of E; that is the largest integer that divides

all integers of E:

Theorem 2.2.1 if i, j then d (i) = d (j) :

Proof. See Theorem 1:20 [48].

De�nition 2.2.10 A Markov chain is said to be aperiodic if all its states have the same period

equal to 1:

2.3 Continuous-Time Markov chains

De�nition 2.3.1 A stochastic process X = fXtgt�0 with values in a countable state space S is

a continuous-time Markov chain if for all n � 0, for all instants 0 � s0 < ::: < sn < s < t and

for all states i0; :::; in; i; j 2 S; we have:

P (Xt = j j Xs = i;Xsn = in; :::; Xs0 = i0) = P (Xt = j j Xs = i) :
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De�nition 2.3.2 A continuous time Markov chain X = fXtgt�0 is homogeneous if t; s � 0 and

i; j 2 S, we have:

P (Xt+s = j j Xs = i) = P (Xt = j j X0 = i) :

2.3.1 Transition function and Q-Matrix

De�nition 2.3.3 Let X = fXtgt�0 be a continuous-time Markov chain on a countable state

space S. For all i; j 2 S and t � 0; we set Pi;j (t) = P (Xt = j j X0 = i) and we de�ne the

matrix P (t) by P (t) = (Pi;j (t))i;j2S : The functions Pi;j (t) are called the transition functions.

Lemma 2.3.1 If X = fXtgt�0 is a continuous-time Markov chain then, for all n � 1; for all

instants 0 � t1 < ::: < tn and for all states i0; i1; :::; in 2 S; we have:

P
�
Xtn = in; Xtn�1 = in�1; :::; Xt1 = i1

�� X0 = i0
�

= Pi0;i1 (t1)Pi1;i2 (t2 � t1) � � �Pin�1;in (tn � tn�1) :

Proof. The result is true for n = 1 from de�nition of the transition functions Pi;j (t) : Let us

assume that the result is true at step n�1: By conditioning and then using the Markov property

as well as the homogeneity of X; we have:

P
�
Xtn = in; Xtn�1 = in�1; :::; Xt1 = i1

�� X0 = i0
�

= P
�
Xtn = in; j Xtn�1 = in�1

�
P
�
Xtn�1 = in�1; :::; Xt1 = i1

�� X0 = i0
�

= Pi0;i1 (t1)Pi1;i2 (t2 � t1) � � �Pin�1;in (tn � tn�1) ;

which completes the proof.

Remark 2.3.1 At time t = 0; we have, by de�nition P (0) = I; where I denotes the intensity

matrix whose dimension is de�ned by the contex.

Lemma 2.3.2 the transition functions Pi;j (t) are right-continuous at 0; that is for all i; j 2 S;

we have:

lim
t!0

Pi;j (t) = Pi;j (0) = 1fi=jg:

Proof. See Lemma 2:2 [48].
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Lemma 2.3.3 For all s; t � 0; we have P (t+ s) = P (t)P (s) ; that is for all i; j 2 S;

Pi;j (t+ s) =
X
k2S
Pi;k (t)Pk;j (s) :

Proof. See Lemma 2:3 [48].

De�nition 2.3.4 The Q-matrix ( transition rate matrix or in�nitesimal generator) of a continuous-

time Markov chain allows us to encode all properties the chain (Xt)t�0 in a single matrix. By

di¤erentiating the semigroup relation with respect to t we get, by componentwise di¤erentiation :

P0 (t) lim
h!0

P (t+ h)�P (t)
h

= lim
h!0

P (t)P (h)�P (t)
h

= P (t)Q;

where

Q := P0 (0) = lim
h!0

P (h)�P (0)
h

is called the Q-matrix of (Xt)t�0 :

When S = f0; 1; :::; Ng we will denote by �i;j ; i; j 2 S the entries of the transition rate matrix

Q = (�i;j)i;j2S ; i.e.

Q =
dP (t)

dt

����
t=0

= [�i;j ]0�i;j�N

Denoting Q = [�i;j ]i;j2S ; for all i 2 S we have

(i) 0 � ��i;i � 1 for all i;

(ii) �i;j � 0 for all i 6= j;

(iii)
X
j2S

�i;j = 0 for all i:
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Example 2.3.1 Assume the matrix Q is de�ned as

Q =

0BBBBBBB@

�0:5 0:5 0 0

0:5 �1:5 1 0

0 0 �2 2

0 0 3 �3

1CCCCCCCA
2.4 The hidden Markov model

2.4.1 Introduction

The term Hidden Markov Model (HMM) has become quite familiar in the speech signal processing

community and is gaining acceptance for communication systems. It can be less di¢ cult, but

more obscure than the term partially observed dynamic stochastic system model, which is a

translation familiar to people in systems.

De�nition 2.4.1 A hidden Markov model (HMM) is a bivariate discrete time process fSt; Ytgt�0 ;

where fStg is an underlying Markov chain and fYtg is a sequence of independent random vari-

able, of which follows that the conditional distribution of Yt only depends on St: Since the Markov

chain St is hidden, only the stochastic process fYtg.

A HMM has an interesting dependence structure, which comes handy when dealing with e.g.

�nancial time series. For an intuitive hint on how this dependency works, it is represented like

this: :model

:::: ! St ! St+1 ! ::::

# #

Yt Yt+1

As form implies, the distribution of a variable St+1 conditional on the history of the process

S0; ::; St; is determined only by the value of the preceding variable, St: Future events are com-

pletely independent of the past, depending only on the present state. In addition, the distribution

of Yt is conditionally determined on the previous observations Y0; :::; Yt�1 and the previous value
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of the case, S0; ::; St, by St only (Rydén et al, 2005). state

P (St+1jSt; :::; S1) = P (St+1jSt) (2.2)

P (YtjSt�1; :::; S1; Yt�1; :::; Y1) = P (YtjSt) (2.3)

2.4.2 Assumptions of the hidden Markov model

Some assumptions about the HMM used here must be made in order to bene�t from the model.

First, the hidden Markov chain is supposed to be time independent. This means that the chain

transmission probabilities;

Pi;j = P (St+1 = jjSt = i) = P (St+1 = jjSt = i; St�1 = k; :::; S1 = l) (2.4)

between two states i and j in a �nite state space 
 = f1; :::; Ng needs to be constant over time.

This is convenient, since said transition probabilities and the Markov chain�s initial probabilities;

�i = P (S1 = i) ; 1 � i � N;

are all that is needed to de�ne the dynamic of the HMM.

Secondly, the Markov chain is assumed to be ergodic (aperiodic and positive recurrent) This is

necessary in order to ensure consistency of the estimates of the model (Campigotto, 2009).

2.5 Method : speci�cation of chosen Markov regime switching

The model applied is based on a mixture of normal distributions, mainly based on Campigotto,

2009, Hamilton, 2005 and Perlin, 2015.

The model is assumed with a process of the following :

Yt = �St + "t: (2.5)
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Where;

Yt is the observed return of the time series at time t

�St is the intercept, or expected return, while in state St:

"t is a normal random stochastic variable, "t s N
�
0; �2St

�
This is a simple case of a model with a switching dynamic. The model in equation (2:5) is

switching states with respect to an indicator value St; meaning that with N states there will be

N values for �St and �
2
St
: Here, the residuals "t are assumed to be normal distributed.

2.5.1 Markov regime switching model with N regims

Now, assume that the number of states (or regimes) in N; i.e. St 2 
 = f1; :::; Ng : This implies

that e.g. the log returns of a �nancial time series are drawn from N distinct normal distributions,

depending on what state the HMM is currently in. This would give us the following model to

work with:

Yt = �1 + "t for state 1 (2.6)

Yt = �2 + "t for state 2 (2.7)

...

Yt = �N + "t for state N: (2.8)

Where;

"t � N
�
0; �21

�
for state 1 (2.9)

"t � N
�
0; �22

�
for state 2 (2.10)

...

"t � N
�
0; �2N

�
for state N: (2.11)

This means that the HMM state for time t is 1, the expectation of the dependent variable is �1
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and the variance of innovations is �21, etc.

Since the underlying Markov chain is hidden, one cannot directly observe which state the HMM

is in, but only infer that it is operating from the observed behavior of Yt. In order to arrive

at the probability law that governs the observed data Yt a probabilistic model of what causes

the change from state St = i to state St = j. This can be determined using the transition

probabilities of the N state HMM (Hamilton, 2005);

Pi;j = P (St+1 = jjSt = i) i; j 2 
 = f1; 2; ::; Ng : (2.12)

The transition probability (2:12) is by the Markov property described in (2:4) dependent of the

past only through the value of the most recent state. This in one of the central points of the

structure of a stochastic process itself.
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Chapter 3

Stochastic Maximum Principle with

Partial Information

In this chapter, We recall a result in stochastic optimal control of a Jump-Di¤usion with �nite

horizon, su¢ cient and necessary maximum principles are presented under partial information.

3.1 Finite horizon

3.1.1 Formulation of the problem

Let B (t) = (B1 (t) ; ::; Bk (t))
> (where ()> denotes transposed) and � (t) = (�1 (t) ; :::; �n (t))

> be

n-dimensional Brownian motion and n independent pure jump Lévy martingales, respectively,

on a �ltered probability space
�

;F ; fFtgt�0 ; P

�
:

If Ni (dt; dz) denote the jump measure of �i (:) and vi (dz) denotes the Lévy measure of ni (:) ;

then we can write

ni (t) =

tZ
0

Z
R0

z eNi (ds; dz)
where eNi (ds; dz) = Ni (ds; dz)� vi (dz) ds
is the compensated jump measure of ni (:) ; 1 � i � n ; R0 = R� f0g :
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For simplicity we assume that

Z
R0

z2vi (dz) <1 for i = 1; :::; n:

De�nition 3.1.1 An admissible control is a measurable, adapted processes u : [0; T ] � 
 ! U ;

such that E

"
TR
0

u (s) ds

#
<1:

Suppose the state process X (t) = X(u) (t) 2 Rn is given by a controlled stochastic di¤erential

equation of the form

8>>>>>><>>>>>>:

dX (t) = b (t;X (t) ; u (t)) dt+ � (t;X (t) ; u (t)) dB (t)

+

Z
Rn0

� (t;X (t) ; u (t) ; z) eN (dt; dz) ; 0 � t � T

X (0) = x 2 Rn:

Here b : [0; T ]�Rn �U ! Rn; � : [0; T ]�Rn �U ! Rn�n and � : [0; T ]�Rn �U �R0 ! Rn�n

are given functions, C1 with respect to x and u, and T > 0 is a given constant. The process u (t)

is our control process, required to have values in a given set U � Rk and required to be adapted

to a given �ltration f"tgt�0 ; where

"t � Ft; for all t

For example, "t could be the �-delayed information de�ned by

"t = F(t��)+ ; t � 0

where � > 0 is a given constant delay.

We let A = A" denotes a given family of "t-adapted control process

u (t) = u (t; w) : [0; T ]� 
! U:
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Suppose we are given a performance functionnal (cost fuctionnal)

J (u) = E

24 TZ
0

f (t;X (t) ; u (t)) dt+ g (X (T ))

35 ; u 2 A

where f : [0; T ]� Rn � U ! R and g : Rn ! R are given C1 functions satisfying the condition

E

24 TZ
0

jf (t;X (t) ; u (t))j dt+ jg (X (T ))j

35 <1 ; u 2 A: (3.1)

The partial information control problem is to �nd �" and u� 2 A such that

�" = sup
u2A

J (u) = J (u�) ;

where u� is an optimal control which maximized the cost fuctionnal.

3.1.2 A partial information su¢ cient maximum principle

In this subsection we state and prove a su¢ cient maximum principle for the partial information

control problem (3:1) :

Let Rdenote the set of functions r : [0; T ]� R0 ! Rn�n such that

Z
R0
j�i;j (t; x; u; z) rij (t; z)j vj (dz) <1 for all i; j; t; x

We de�ne the Hamiltonian H : [0; T ]� Rn � U � Rn � Rn�n � R� 
! R; by

H (t; x; u; p; q; r (:)) = f (t; x; u)+b> (t; x; u) p+tr
�
�> (t; x; u) q

�
+

nX
i;j=1

Z
R0
�i;j (t; x; u; z) rij (t; z) vj (dz)

(3.2)

The adjoint equation in the unknown F-predictable processes p (t) ; q (t) ; r (t; z) is the following
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backward stochastic di¤erential equation (BSDE) :

dp (t) = �rxH (t; x (t) ; u (t) ; p (t) ; q (t) ; r (t; :)) dt+ q (t)B (t) (3.3)

+

Z
R0
r (t; z) eN (dt; dz) ; 0 � t � T;

p (T ) = rg (X (T )) : (3.4)

where 5y' (:) =
�
@'
@y1

; :::; @'@yn

�T
is the gradient of ' : Rn ! R with respect to y = (y1; :::; yn) :

Theorem 3.1.1 (Partial information su¢ cient maximum principle) Let u� 2 A" with

corresponding state process X� (t) = X(u�) (t) and suppose there exists a solution (p� (t) ; q� (t) ; r� (t; :))

of the corresponding adjoint equation (3:3)� (3:4) satisfying

E

"Z T

0

�
X� (t)�X(u) (t)

�>
[q�(q�)> +

Z
Rn0
r�(r�)> (t; z) v (dz)]

�
X� (t)�X(u) (t)

�
dt

#
<1;

(3.5)

E

"Z T

0
p� (t)> [��> (t;X (t) ; u (t)) +

Z
Rn0
��> (t;X (t) ; u (t)) v (dz)]p (t) dt

#
<1; (3.6)

for all u 2 A

and

E

�Z T

0
jruH (t;X� (t) ; u� (t) ; p� (t) ; q� (t) ; r� (t; :))j2 dt

�
<1; (3.7)

assume that H (t; x; u; p� (t) ; q� (t) ; r� (t; :)) and g are concave with respect to x; u respectively.

(the partial information maximization condition)

E [H (t;X� (t) ; u� (t) ; p� (t) ; q� (t) ; r� (t; :))j "t]

= max
v2U

E [H (t;X� (t) ; v; p� (t) ; q� (t) ; r� (t; :))j "t] :
(3.8)

Then u� is a partial information optimal control.

Proof. Choose u 2 A. and consider

J (u)� J (u�) = I1 + I2; where

I1 = E

�Z T

0
ff (t;X (t) ; u (t))� f (t;X� (t) ; u� (t))g dt

�
; (3.9)
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and

I2 = E [g (X (T ))� g (X� (T ))] ;

by de�nition of H (3:2) ;

I1 = I1;1 � I1;2 � I1;3 � I1;4;

with

I1;1 = E
hR T
0 fH (t;X (t) ; u (t) ; p

� (t) ; q� (t) ; r� (t; :))�H (t;X� (t) ; u� (t) ; p� (t) ; q� (t) ; r� (t; :))g dt
i

(3.10)

I1;2 = E
hR T
0 fb (t;X (t) ; u (t))� b (t;X

� (t) ; u� (t))g> p� (t) dt
i

(3.11)

I1;3 = E

�Z T

0
tr
h
(� (t;X (t) ; u (t))� �� (t;X� (t) ; u� (t)))> q� (t)

i
dt

�
; (3.12)

I1;4 = E

24 nX
i;j=1

Z T

0

Z
R0
(�i;j (t;X (t) ; u (t) ; z)

��i;j (t;X� (t) ; u� (t) ; z)) r�i;j (t; z) vj (dz) dt
�
:

H is concave, we have

H (t;X (t) ; u (t) ; p� (t) ; q� (t) ; r� (t; :))�H (t;X� (t) ; u� (t) ; p� (t) ; q� (t) ; r� (t; :)) (3.13)

� rxH (t;X� (t) ; u� (t) ; p� (t) ; q� (t) ; r� (t; :))> (X (t)�X� (t))

+ruH (t;X� (t) ; u� (t) ; p� (t) ; q� (t) ; r� (t; :))> (u (t)� u� (t)) :

Since u ! E [H (t;X� (t) ; u; p� (t) ; q� (t) ; r� (t; :))j "t] ; u 2 U is maximal for u = u� (t) and

u (t) ; u� (t) are "t-measurable, we get by (3:7)

0 � ruE [ (t;X� (t) ; u; p� (t) ; q� (t) ; r� (t; :))j "t]>u=u�(t) (u (t)� u
� (t)) (3.14)

= E
h
ru (t;X� (t) ; u� (t) ; p� (t) ; q� (t) ; r� (t; :))> (u (t)� u� (t))

��� "ti :
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Combining (??) ; (3:5) ; (3:10) ; (3:13) and (3:14) ; we obtain

I1;1 � E
�Z T

0
rx (t;X� (t) ; u� (t) ; p� (t) ; q� (t) ; r� (t; :))> (X (t)�X� (t)) dt

�
= �E

�Z T

0
(X (t)�X� (t))> dp� (t)

�
= �J1:

Using (3:4) and g is concave together and by the Itô formula,

I2 = E [g (X (T ))� g (X� (T ))] � E [rg (X� (T )) (X (t)�X� (t))]

= E
h
(X (t)�X� (t))> p� (T )

i
= E

�Z T

0
(X (t)�X� (t)) (�rxH (t;X� (t) ; u� (t) ; p� (t) ; q� (t) ; r� (t; :)))dt

+

Z T

0
p� (t)> fb (t;X (t) ; u (t))� b (t;X� (t) ; u� (t))g dt

+

Z T

0
tr
h
f� (t;X (t) ; u (t))� � (t;X� (t) ; u� (t))g> q� (t)

i
dt

+
R T
0

nX
i;j=1

R
R0 f�i;j (t;X (t) ; u (t) ; zj)� �i;j (t;X

� (t) ; u� (t) ; zj)g r� (t; zj) v (dzj) dt

35
= J1 + I1;2 + I1;3 + I1;4:

So we have,

J (u)� J (u�) = I1 + I2 = I1;1 + I1;2 + I1;3 + I1;4 + I2

� �J1 � I1;2 � I1;3 � I1;4 + J1 + I1;2 + I1;3 + I1;4

= 0:

Then u� is a partial information optimal control.

3.1.3 A partial information necessary maximum principle

We assume the folowing:

(A1) For all t; h such that 0 � t � t + h � T; all i = 1; ::; k and all bounded "t-measurable

� = � (w) ; the control � (s) := (0; :::; �i (s) ; 0; :::; 0) 2 U � Rk de�ned by

�i (s) = �i�[t;t+h] (s) ; s 2 [0; T ] (3.15)
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belonge to A":

(A2) For all u; � 2 A" with � bounded, there exists � > 0 such that u + y� 2 A" for all

y 2 (��; �) :

We de�ne the derivative process � (t) = �(u;�) (t) by

� (t) =
d

dy
X(u+y�) (t)

���
s=0

= (�1 (t) ; :::; �n (t))
> : (3.16)

Note that

� (0) = 0:

d�i (t) = �i (t) dt+
nX
j=1

'ij (t) dBj (t) +
nX
j=1

Z
Rn0
�ij (t; z) eNj (dz; dt) ;

where

�i (t) = rxbi (t;X (t) ; u (t))> � (t) +rubi (t;X (t) ; u (t))> � (t) ;

'ij (t) = rx�i;j (t;X (t) ; u (t))> � (t) +ru�ij (t;X (t) ; u (t))> � (t) ;

�ij (t; z) = rx�i;j (t;X (t) ; u (t) ; z)> � (t) +ru�ij (t;X (t) ; u (t) ; z)> � (t) ;

Theorem 3.1.2 (Partail Information Necessary Maximum Principle) Suppose u� 2 A"

is a local maximum for J (u) ; meaning that for all bounded � 2 A" there exists a � > 0 such that

u� + y� 2 A" for all y 2 (��; �) and

h (y) := J (u� + y�) ; y 2 (��; �) (3.17)

is maximal at y = 0: Suppose there exists a solution (p� (t) ; q� (t) ; r� (t; :)) to the adjoint equation

dp� (t) = �rxH (t;X� (t) ; u� (t) ; p� (t) ; q� (t) ; r� (t; :)) dt+ q� (t) dB (t)

+

Z
Rn0
r� (t; z) eN (dt; dz) ; 0 � t � T

p� (T ) rg (X� (T )) ; where X� = X(u�):

Moreover assume that if �� (t) = �(u
�;�) (t) ; with corresponding coe¢ cients ��i (t) ; '

�
ij (t) ; �

�
ij (t; z) ;
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we have

E

"
�� (t)>

"
q�q�> (t) +

Z
Rn0
r�r�> (t; z) v (dz)

#
�� (t) dt

#
<1; (3.18)

and

E

"Z T

0
p� (t)>

"
''> (t;X� (t) ; u� (t)) +

Z
Rn0
��> (t;X� (t) ; u� (t) ; z) v (dz)

#
p� (t) dt

#
<1:

(3.19)

Then u� is a stationary point for E [Hj "t] in the sense that for all t 2 [0; T ] ;

E [ruH (t;X� (t) ; u� (t) ; p� (t) ; q� (t) ; r� (t; :))j "t] = 0:

Proof. Put X� (t) = X(u�) (t) : Then with h as in (3:17) we have

0 = h0 (0)

= E

�Z T

0

�
rxf (t;X� (t) ; u� (t))>

d

dy
Xu�+y� (t)jy=0 +ruf (t;X� (t) ; u� (t))> � (t)

�
dt

+E

�
rg (X� (T ))>

d

dy
Xu�+y� (T )jy=0

�
= E

�Z T

0
rxf (t;X� (t) ; u� (t))> �� (t) dtZ T

0
ruf (t;X� (t) ; u� (t))> � (t) dt+E

h
rg (X� (T ))>> �� (T )

i�
:

(3.20)

By (3:18) ; (3:19) ; and Itô�s formula we get

E
h
rg (X� (T ))> �� (T )

i
= E

h
p� (T )> �� (T )

i
= E

�
nP
i=1

R T
0

n
p�i (t)

�
rxbi (t;X� (t) ; u� (t))> �� (t) +rubi (t;X� (t) ; u� (t))> � (t)

+��i (t) (�rxH (t;X� (t) ; u� (t) ; p� (t) ; q� (t) ; r� (t; :)))i

+
nP
j=1

q�ij (t)
�
rx�ij (t;X� (t) ; u� (t))> �� (t) +ru�ij (t;X� (t) ; u� (t))> � (t)

�
+

nP
j=1

R
R
r�ij (t; z)

�
rx�ij (t;X� (t) ; u� (t) ; z)> �� (t) +ru�ij (t;X� (t) ; u� (t) ; z)> � (t)

�
gdt]:
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Now

ruH (t; x; u; p; q; r) ruf (t; x; u) +
nX
j=1

rubj (t; x; u) pj +
nX

k;j=1

ru�kj (t; x; u) qkj

+
nX

k;j=1

Z
R0
ru�kj (t; x; u; z) rkj (t; z) vj (dz) ;

and

rxH (t; x; u; p; q; r) rxf (t; x; u) +
nX
j=1

rxbj (t; x; u) pj +
nX

k;j=1

rx�kj (t; x; u) qkj

+

nX
k;j=1

Z
R0
rx�kj (t; x; u; z) rkj (t; z) vj (dz) :

Combined with (3:19) and (3:20) this gives

0 = E

"
TR
0

nP
i=1

n
@f
@ui
(t;X� (t) ; u� (t))

+
nP
i=1

�
p�j (t)

@bj
@ui
(t;X� (t) ; u� (t)) +

nP
k=1

h
q�kj (t)

@�kj
@ui

(t;X� (t) ; u� (t))

�
+
R
R0
r �kj (t; z)

@�kj
@ui

(t;X� (t) ; u� (t) ; z) vj (dz)]
o
�i (t) dt

#

= E

"
TR
0

ruH (t;X� (t) ; u� (t) ; p� (t) ; q� (t) ; r� (t; :))> � (t) dt

#
:

Fix t 2 [0; T ] apply the above to � = (0; :::; :::; �i; :::; 0) where

�i (s) = �i�[t;t+h] (s) ; s 2 [0; T ]

where t+ h � T and �i = �i (w) is bounded, "t-measurable

E

�Z t+h

t

@

@ui
H (s;X� (s) ; u� (s) ; p� (s) ; q� (s) ; r� (s; :))�ids

�
= 0

Di¤erentiating with respect to h at h = 0 gives

E

�
@

@ui
H (t;X� (t) ; u� (t) ; p� (t) ; q� (t) ; r� (t; :))�i

�
= 0:
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Since this holds for all " measurable �; using (3:7), we have that

E

�
@

@ui
H (t;X� (t) ; u� (t) ; p� (t) ; q� (t) ; r� (t; :)) j "t

�
= 0:

which proves the theorem.
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Chapter 4

Stochastic Maximum Principle for a

Markov Regime Switching

Jump-Di¤usion in In�nite Horizon

In this chapter we have been studied an optimal control problem with regime switching and in�n-

ite horizon. In section 1 , we present the optimal control problem for our Markov regime switching

jump-di¤usion model and the main assumptions . In Sect. 2 , we prove the existence�uniqueness

theorem for BSDE with jumps and regimes. In Sects. 3 and 4 su¢ cient and necessary maximum

principles are developed under partial information. An optimal portfolio and consumption in a

switching di¤usion market is studied in Sect 5 .

4.1 Preliminaries

Let (
;F ;F = fFgt�0 ; P ) be complete �ltered probability space. The �ltration fFgt�0 is right-

continuous, P -completed and all of the processes de�ned below including the Markov chain, the

Brownian motions and the Poisson random measures are adapted to it. We consider a continuous-

time, �nie-state Markov chain f� (t) /t � 0g with a �nite state space S = fe1; :::; eDg ;where D 2

N; ei 2 RD; and jthe component of ei is the Kronecker delta �ij for each i; j = 1; 2; :::; D: the

state space S is called a canonical state space and its use faciliates the mathematics. We suppose

that the chain is homogeneous and irreducible. To specify statistical or probabilistic properties
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of the chain �: we de�ne the generator � = f�ij 1 � i � j � Dg of the chain under P . this is

also called the rate matrix, or the Q-matrix. Here, for each i; j = 1; 2; ::; D, �ij is the constant

transition intensity of the chain from state ei to state ej at time t: Note that �ij � 0 for i 6= j

and
DX
j=1

�ij = 0; so �ii � 0: In what follows for each i; j = 1; 2; ::; D which i 6= j; we suppose that

�ij > 0; so �ii < 0:

Elliott et al. [22] obtained the following semimartingale dynamics for the chain � :

� (t) = � (0) +

Z t

0
�>� (u) du+M (t)

where fM (t) n t � 0g is an RD-valued,
�
fFgt�0 ; P

�
-martingale and y> denotes the transpose

of a matrixe (or, in particular, a victor) :

To model the controlled state process, we �rst need to introduce a set of Markov jump martingales

associated with the chain �: Here we follow the results of Elliott et al. [22].

For each i; j = 1; 2; ::; D; wich i 6= j, and t 2 [0;1[ let J ij (t) be the number of jumps from state

ei to state ej up to time t. Then

J ij (t) =
X
0�s�t

h� (s�) ; eiih� (s) ; eji

=
X
0�s�t

h� (s�) ; eiih� (s)� � (s�) ; eji

=

Z t

0
h� (s�) ; eiihd� (s) ; eji

=

Z t

0
h� (s�) ; eiih�>� (s) ; ejids+

Z t

0
h� (s�) ; eiihdM (s) ; ejids

= �ij

Z t

0
h� (s�) ; eiids+mij (t) ;

where mij = fmij (t) nt 2 �g with mij (t) =

Z t

0
h� (s�) ; eiihdM (s) ; eji is an

�
fFgt�0 ; P

�
-

martingale, the mij�s are called the basie martingales associated with the chain �:

Now, for each �ned j = 1; 2; ::; D; let �j (t) be the number of jumps into state ej up to time t:
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Then

�j (t) =

DX
i=1; i6=j

J ij (t)

=
X

�ij
i=1; i6=j

Z t

0
h� (s) ; eiids+ e�j (t) ;

where e�j (t) = DX
mij (t)

i=1; i6=j
and, for each j = 1; 2; ::; D; e�j (t) = ne�j (t) nt 2 �o is a an �fFtgt�0 ; P�-

martingale.

Write for each j = 1; 2; :::; D

�j (t) =

DX
�ij

i=1; i6=j

Z t

0
h� (s) ; eiids: (4.1)

Then for each j = 1; 2; ::; D, e�j (t) = �j (t)� �j (t) ; (4.2)

is an
�
fFgt�0 ; P

�
-martingale.

We now introduce a Markov regime-switching Poisson random measures. Let R+ = [0;+1[ be

the time index set and (R+;B (R+)) be a measurable space. Where B (R+) is the Borel �-�eld

generated by the open subsets of R+.

Let R0 = Rn f0g and B0 the Borel �-�eld generated by open subset O of R0 whose closure O does

not contain the point 0. In what follows, suppose that N i (dz; dt),
R
= 1; :::;M; are independent

Poisson random measure on (R+ � R0;B (R+)� B0) where M 2 N: Assume that the Poisson

random measures N i (dz; dt) has the following compensator :

�i� (dt; dz) = �i�(t�) (dz) dt = h� (t�) ; �
i (dz)idt; (4.3)

where

�i (dz) =
�
�ie1 (dz) ; �

i
e2 (dz) ; ::; �

i
eD
(dz)

�> 2 RD
For each i = 1; 2; :::;M; j = 1; 2; ::; D; �iej is assumed to be ���nite measure on R0 satisfying

�iej (O) <1 ; 8O 2 B0 and
Z
R0
min

�
1; z2

�
�iej (dz) <1. Here we use the subscript � in �

i
� to
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indicate the dependence of the probability law of the Poisson random measures on the Markov

chain. Indeed, �iej (dz) is the conditional Lévy density of jump sizes of the random measure

N i (dz; dt) when � (t�) = ej : Moreover, denote the compensated Poisson random measureneN� (dz; dt) by
eN� (dz; dt) := �N 1

� (dz; dt)� v1� (dz) dt; :::;NM
� (dz; dt)� vM� (dz) dt

�>
: (4.4)

We now introduce the state process X = fX (t) nt 2 [0;1[g : Suppose that we are given a

set U � RK and a control process u (t) = u (t; w) : [0;1[ � 
 ! U . We also require that

fu (t; w) nt 2 [0;1[g is Ft-predictable and has right limits. Let X (t) = X(u) (t) be a controlled

Markov regime-switching jumps-di¤usion in RL described by the stochastic di¤erential equation

8>>>>>>>>>>><>>>>>>>>>>>:

dX (t) = b (t;X (t) ; u (t) ; � (t)) dt+ � (t;X (t) ; u (t) ; � (t)) dB (t)

+

Z
R0
� (t;X (t) ; u (t) ; � (t) ; z) fN� (dz; dt)

+ (t;X (t) ; u (t) ; � (t)) de� (t) 0 � t � 1;

X (0) = x0:

(4.5)

Here b : [0;1[ � RL � U � S ! RL; � : [0;1[ � RL � U � S ! RL�N ; � : [0;1[ � RL �

U � S � R0! RL�M and  : [0;1[ � RL � U � S ! RL�D; are given continuous functions

, B (t) := (B1 (t) ; :::; BN (t))
T is an N�dimensional standard Brownian motion, fN� (dz; dt) is

M-dimentional Markov regime-switching random measures de�nied by (4:4) e� (t) = �e�1; ::; e�D�
whith e�j (t) ; j = 1; 2; ::; D; de�ned by (5:2) :
Let "t � Ft be a given sub�ltration, representing the information avialable to the controller at

time t, t � 0: The control process u (t) assumed to be f"tgt�0 predictable and with value in a

convexe set U � RK : Let A" be our family of "t-predictable controls.

Consider a performance criterion de�ned for each x 2 RL; ei 2 S as

J (x; ei; u) = Ex;ei

�Z 1

0
f (t;X (t) ; u (t) ; � (t)) dt

�
:
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Here Ex;ei is the conditional expectation given X (0) = 0 and � (0) = ei under P; and

E

"Z 1

0

(
jf (t;X (t) ; u (t) ; � (t))j+

����@f@x ((t;X (t) ; u (t) ; � (t)))
����2
)
dt

#
<1;

for all u 2 A" , we study the problem to �nd u� 2 A" such that

J (x�; ei; u
�) = sup

u2A"
J (x; ei; u) : (4.6)

Denote by R the set of functions r : [0;1[� RL0 ! RL�M such that

Z
R0
j�nm (t; x; u; ei; z) rnm (t; z)j �mei (dz) <1; forl all n;m; x; t;

andM2 the set of functions s (�) : [0;1[! RL�D such that

DX
m=1

LX
n=1

nm (t; x; u; ei) snm (t)�im (t) <1; forl all n;m; x; t;

and de�ne the Hamiltonian H : [0;1[� RL � U � S � RL � RL�N �R�RL�D ! R by

H (t; x; u; ei; p; q; r; s) = f (t; x; u; ei) + b
T (t; x; u; ei) p+ tr

�
�T (t; x; u; ei) q

�
+

Z
R0

LX
n=1

MX
m=1

�nm (t; x; u; ei; z) rnm (t; z) �
m
ei (dz)

+
DX
m=1

LX
n=1

nm (t; x; u; ei) snm (t)�im:

(4.7)

The adjoint equation in the unknown Ft-predictable processes (p (t) ; q (t) ; r (t; z) ; s (t)) where

p (t) 2 RL; q (t) 2 RL�N ; r (t; z) 2 RL�M ; s (t) 2 RL�D is the following backward stochastic

di¤erential equation (BSDE)

dp (t) = �@H
@x

(t;X (t) ; u (t) ; � (t) ; p (t) ; q (t) ; r (t; :) ; s (t)) dt

+ q (t) dB (t) +

Z
R0
r (t; z) eN� (dz; dt) + s (t) de� (t) ; t � 0:

(4.8)
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4.2 Existence and uniqueness

In this section, we prove the existence and uniqueness of the solution (Y (t) ; Z (t) ;K (t; &) ; V (t))

of in�nite horizon BSDEs of the form:

8>>>>>><>>>>>>:

dY (t) = �g (t; � (t) ; Y (t) ; Z (t) ;K (t; :) ; V (t)) dt+ Z (t) dB (t)

+

Z
R0
�K (t; &) eN� (d&; dt) + V (t) de� (t) ; 0 � t � �;

lim
t!�

Y (t) = � (�) 1[0;1[ (�) ;

(4.9)

where � � 1 is a given Ft-stopping time, possibly in�nite. We assume the following.

(H1) The function g : 
�R+�S � RL�RL�N �R�RL�D ! RL; is such that there exist real

numbers �; �;K1;K2 and K3 such that K1;K2 and K3 > 0, and � > 2�+K2
1 +K

2
2 +K

2
3 :

We assume that the function g satis�es the following requirement:

(a) g (:ei; y; z; k; v) is progressively measurable for all y; z; k; v and

��g (t; ei; y; z; k; v)� g �t; ei; y; z0; k0; v0��� � K1

z � z0+K2

k � k0R +K3

v � v0M2 ;

where

kzk2 = trace (zz�) ;

kk (:)k2R =
PL
l=1

PM
m=1

R
jklm (z)j2 vmei (dz) ;

kvk2M2 =
PL
l=1

DX
j=1

j�lj (t)j2 �j (t) :

(b)



y � y0; g (t; ei; y; z; k; v)� g

�
t; ei; y

0; z; k; v
��
� �

��y � y0�� ; for all y; y0; z; k; v P � a:s:
(c)

E

Z �

0
e�t jg (t; ei; 0; 0; 0; 0)j2 dt <1;

(d) y 7! g (t; ei; y; z; k; v) is continuous for all t; ei; z; k; v: P � a:s:
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(H2) A �nal condition � which is a an F��mesurable and m-dimensional random variablen such

that

E
h
e�� j�j2

i
<1;

E

Z �

0
e�t jg (t; ei; �t; �t;  t; 't)j2 dt <1;

where � is an Ft-stopping time , �t = E (�=Ft) ; � 2 L2F ;p;  2 F 2p and ' 2M2
p such that:

� = E (�) +

Z 1

0
� (s) dBs +

Z 1

0

Z
R0
 (s; &) eN� (d&; ds) + Z 1

0
' (s) de� (s) ;

where

L2F ;p =

�
f : RL�N -valued Ft � predictable process, s,t. E

�Z 1

0
jf (t)j2 dt

�
<1

�
:

F 2p =

�
f : RL�M -valued Ft � predictable process, s,t. E

�Z 1

0
kf (t; :)k2R dt

�
<1

�
:

M2
p =

�
f : RL�D-valued Ft � predictable process, s,t. E

�Z 1

0
kf (t)k2M2 dt

�
<1

�
:

A solution of the BSDE (4:9),is a quadreplet (Y; Z;K; V ) of progressively measurable processes

with values in RL � RL�N � RL�M � RL�D s.t Zt;Kt; Vt = 0; when t > �; and

8>>>>>>>>>>><>>>>>>>>>>>:

E

�
supt�0 e

�t jY (t)j2 +
Z �

0
e�t kZ (t)k2 dt+

Z �

0
e�t kK (t)k2R dt+

Z �

0
e�t kV (t)k2M2 dt

�
<1;

Y (t) = Y (T ) +

Z T^�

t^�
g (s; � (s) ; Y (s) ; Z (s) ;K (t; :) ; V (s)) ds�

Z T^�

t^�
Z (s) dB (s)

�
Z T^�

t^�

Z
R0
K (s; &) eN� (d&; ds)� Z T^�

t^�
V (s) de� (s) ; for all deterministic T <1:

Yt = � on the set ft � �g :

Theorem 4.2.1 (Existence and Uniqueness) Under the above conditions there exists a

unique solution (Yt; Zt;Kt; Vt) of the BSDE (4:9), which satis�es moreover, for any � > 2� +

K2
1 +K

2
2 +K

2
3 ;

E
�
sup0�t�� e

�t jY (t)j2 +
R �
0 e

�t kZ (t)k2 dt+
R �
0 e

�t kK (t)k2R dt+
R �
0 e

�t kV (t)k2M2 dt
�

< cE

0@e�� j�j2 + �Z
0

e�t jg (t; ei; 0; 0; 0; 0)j2 dt

1A :

(4.10)
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Proof of uniqueness. Let (Y; Z;K; V ) and (Y 0; Z 0;K 0; V 0) be two solutions, which satisfy (4:9)

and let
�
�Y; �Z; �K; �V

�
= (Y � Y 0; Z � Z 0;K �K 0; V � V 0). It follows from Itô�s formula, and the

above assumption that

e�(T^�)
�� �Y (T )��2 � e�(t^�) �� �Y (t)��2

= �
Z (T^�)

(t^�)
e�s hg (s; � (s) ; Y (s) ; Z (s) ;K (s; :) ; V (s))

� g (s; � (s) ; Y 0 (s) ; Z 0 (s) ;K 0 (s; :) ; V 0 (s)) ; Y (s)� Y 0 (s)i ds

+

Z (T^�)

(t^�)
(e�s

 �Z (s)2 + �e�s �� �Y (s)��2)ds
+

Z (T^�)

(t^�)
e�s
 �K (s; �)2R ds+ R (T^�)(t^�) e�s kV (s)k2M2 ds

+2

Z (T^�)

(t^�)
e�s


�Y (s) ; �Z (s) dB (s)

�
+
R (T^�)
(t^�)

Z
R0
e�s
�
�K2 (s; �)� 2



�Y (s) ; �K (s; �)

�� eN� (d&; ds)
+

Z (T^�)

(t^�)
e�s
�
�V 2 (s)� 2



�Y (s) ; �V (s)

��
de� (s) :

so

e�(t^�)
�� �Y (t)��2 + Z (T^�)

(t^�)
e�s
�
�
�� �Y (s)��2 +  �Z (s)2� ds+ Z (T^�)

(t^�)
e�s
� �K (s; �)2R +  �V (s)2M2

�
ds

� e�(T^�)
�� �Y (T )��2

+2

Z (T^�)

(t^�)
e�s
�
�
�� �Y (s)��2 +K1

�� �Y (s)��  �Z (s)+K2

�� �Y (s)��  �K (s; �)R +K3

�� �Y (s)��  �V (s)M2

�
ds

�2
Z (T^�)

(t^�)
e�s


�Y (s) ; �Z (s) dB (s)

�
�
Z (T^�)

(t^�)

Z
R0
e�s
�
�K2 (s; �)� 2



�Y (s) ; �K (s; �)

�� eN� (d&; ds)
�
Z (T^�)

(t^�)
e�s
�
�V 2 (s)� 2



�Y (s) ; �V (s)

��
de� (s) :

By the fact that

2K1

�� �Y (s)��  �Z (s) �  �Z (s)2 +K2
1

�� �Y (s)��2 ;
2K2

�� �Y (s)��  �K (s; �)R �  �K (s; �)2R +K2
2

�� �Y (s)��2 ;
2K3

�� �Y (s)��  �V (s)M2 �
 �V (s)2M2 +K

2
3

�� �Y (s)��2 ;
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and since � > 2�+K2
1 +K

2
2 +K

2
3 ;we deduce that for t < T;

E
�
e�(t^�)

�� �Y (t)��2� � E�e�(T^�) �� �Y (T )��2� :
The same result holds with � remplaced by �0, with

2�+K2
1 +K

2
2 +K

2
3 < �0 < �:

Hence

E
�
e�

0(t^�) �� �Y (t)��2� � e(���
0)TE

�
e�(T^�)

�� �Y (T )��2 IfT<�g� :
With our conditions the second factor of the right hand side remains bounded as T !1; while

the �rst factor tend to 0 as T !1: Uniquenessis is proved.

Proof of existence. For each n, we construct a solution f(Y n (t) ; Zn (t) ;Kn (t) ; V n (t)) ; t � 0g

of the BSDE8>>>><>>>>:
Y n (t) = � +

Z n^�

t^�
g (s; � (s) ; Y n (s) ; Zn (s) ;Kn (t; :) ; V n (s)) ds�

Z n^�

t^�
Zn (s) dB (s)

�
Z n^�

t^�

Z
R0
Kn (s; &) eN� (d&; ds)� Z n^�

t^�
V n (s) de� (s) ; t � 0;

as follows. f(Y n (t) ; Zn (t) ;Kn (t) ; V n (t)) ; 0 � t � ng is de�ned as the solution of the following

BSDE on the �xed intervall [0; n] :

8>>>>>>><>>>>>>>:

Y n (t) = E (�=Fn) +
Z n

t
I[0;� ]g (s; � (s) ; Y

n (s) ; Zn (s) ;Kn (t; :) ; V n (s)) ds

�
Z n

t
Zn (s) dB (s)�

Z n

t

Z
R0
Kn (s; &) eN� (d&; ds)

�
Z n

t
V n (s) de� (s) ; 0 � t � n;

f(Y n (t) ; Zn (t) ;Kn (t) ; V n (t)) ; t � ng is de�ned by

Y n (t) = �t; Z
n (t) = � (s) ;Kn (t) =  (s; &) ; V n (t) = ' (s) :
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For any " > 0, 0 < � < 1; 0 < � < 1 ; 0 < � < 1 , we have for all t � 0,y 2 RL; ei 2 D; z 2

RL�N ; k 2 RL�M ; v 2 RL�D if c = 1
� ;

2 hy; g (t; ei; y; z; k; v)i = 2 hy; g (t; ei; y; z; k; v)� g (t; ei; 0; z; k; v)i

+2 hy; g (t; ei; 0; z; k; v)� g (t; ei; 0; 0; k; v)i

+2 hy; g (t; ei; 0; 0; k; v)� g (t; ei; 0; 0; 0; v)i

+2 hy; g (t; ei; 0; 0; 0; v)� g (t; ei; 0; 0; 0; 0)i

+2 hy; g (t; ei; 0; 0; 0; 0)i

�
�
2�+ 1

�K
2
1 +

1
�K

2
2 +

1
�K

2
3 + "

�
jyj2

+� kzk+ � kk (:)k2R + � kvk
2
M2

+c jg (t; ei; 0; 0; 0; 0)j2 :

From these and Itô0s formula, we deduce that

e�(t^�) jY n (t ^ �)j2 +
Z �

(t^�)
e�s
�
�� jY n (s)j2 + �� kZn (s)k2

�
ds

+

Z �

(t^�)
��e�s kKn (s; �)k2R ds+

Z �

(t^�)
��e�s kV n (s)k2M2 ds

� e�� j�j2 + c
Z �

(t^�)
e�s jg (s; ei; 0; 0; 0; 0)j2 ds

�2
Z �

(t^�)
e�s hY n (s) ; Zn (s) dB (s)i

�
Z �

(t^�)

Z
R0
e�s
�
(Kn)2 (s; �) + 2 hY n (s) ;Kn (s; �)i

� eN� (d&; ds)
�
Z �

(t^�)
e�s
�
(V n)2 (s) + 2 hY n (s) ; V n (s)i

�
de� (s) ;
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with �� = �� 2�� 1
�K

2
1 � 1

�K
2
2 � 1

�K
2
3 � " > 0 , �� = 1� � > 0; �� = 1� � and �� = 1� �: It then

follows from Burkholder�s inequality

E

"
supt�s e

�(t^�) jY n (t ^ �)j2 +
Z �

(t^�)
e�r
�
jY n (r)j2 + kZn (r)k2

�
dr

+

Z �

(t^�)
e�r
�
kKn (r; �)k2R + kV n (r)k

2
M2

�
dr

#

� CE

"
e�� j�j2 +

Z �

(t^�)
e�r jg (r; ei; 0; 0; 0; 0)j2 dr

#
:

Let now m > n, and de�ne

4Y (t) = Y m (t)� Y n (t) ; 4Z (t) = Zm (t)� Zn (t) ;

4K (t) = Km (t)�Kn (t) ; 4V (t) = V m (t)� V n (t) :

We �rst have that for n � t � m;

4Y (t) =

Z m^�

t^�
g (s; � (s) ; Y m (s) ; Zm (s) ;Km (t; :) ; V m (s)) ds

�
Z m^�

t^�
4 Zm (s) dB (s)�

Z m^�

t^�

Z
R0
4Km (s; &) eN� (d&; ds)

�
Z m^�

t^�
4 V m (s) de� (s) :
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Consequently, again for n � t � m;

e�(t^�) j4Y (t)j2 +
Z (m^�)

(t^�)
e�s
�
� j4Y (s)j2 + k4Z (s)k2

�
ds

+

Z (m^�)

(t^�)
e�s
�
k4K (s; �)k2R + k4V (s)k

2
M2

�
ds

= 2

Z (m^�)

(t^�)

�
e�s hg (s; � (s) ; Y m (s) ; Zm (s) ;Km (s; :) ; V m (s)) ;4Y (s)i

�
ds

�2
Z (m^�)

(t^�)
e�s h4Y (s) ;4Z (s) dB (s)i �

Z (m^�)

(t^�)

Z
R0
e�s
�
(4K)2 (s; �) + 2 h4Y (s) ;4K (s; �)i

� eN� (d&; ds)
�
Z (m^�)

(t^�)
e�s
�
(4V )2 (s) + 2 h4Y (s) ;4V (s)i

�
de� (s) :

� 2
Z (m^�)

(t^�)
e�s
n
� j4Y (s)j2 +K1 j4Y (s)j k4Z (s)k+K2 j4Y (s)j k4K (s; �)kR

+ K3 j4Y (s)j k4V (s)kM2g ds

�2
Z (m^�)

(t^�)
e�s j4Y (s)j jg (s; ei; �s; �s;  s; 's)j2 ds� 2

Z (m^�)

(t^�)
e�s h4Y (s) ;4Z (s) dB (s)i

�
Z (m^�)

(t^�)

Z
R0
e�s
�
(4K)2 (s; �) + 2 h4Y (s) ;4K (s; �)i

� eN� (d&; ds)
�
Z (m^�)

(t^�)
e�s
�
(4V )2 (s) + 2 h4Y (s) ;4V (s)i

�
de� (s) :

We then deduce, by an argument that already used , that

E

�
supn�t�m e

�(t^�) jY (t ^ �)j2 +
Z m^�

n^�
e�s
�
j4Y (s)j2 + k4Z (s)k2

+ k4K (s; �)k2R + k4V (s)k
2
M2

�
ds
i

� C

Z �

(n^�)
e�s jg (s; ei; �s; �s;  s; 's)j2 ds;

and this last term tends to zero, as n!1: Next , for t � n;

4Y (t) = 4Y (n) +
Z (n^�)

(t^�)
fg (s; � (s) ; Y m (s) ; Zm (s) ;Km (s; :) ; V m (s))

� g (s; � (s) ; Y n (s) ; Zn (s) ;Kn (s; :) ; V n (s))g ds2

�
Z n^�

t^�
4 Z (s) dB (s)�

Z n^�

t^�

Z
R0
4K (s; &) eN� (d&; ds)� Z n^�

t^�
4 V (s) de� (s) :
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It follows from the same argument as in the proof of uniqueness that

E
�
e�(t^�) j4Y (t)j2

�
� E

�
e�(n^�) j4Y (n)j2

�
� C

Z �

(n^�)
e�s jg (s; ei; �s; �s;  s; 's)j2 ds:

It now follows that the sequence (Y n; Zn;Kn; V n) is Cauchy with the norm

k(Y n; Zn;Kn; V n)k2 = E
�
sup
0�t��

e�t jY (t)j2 +
Z �

0
e�t
�
jY (t)j2 + kZ (t)k2 + kK (t)k2R + kV (t)k

2
M2

�
dt

�
;

and that the limit (Y; Z;K;V ) is a solution of the BSDE (4:9) The proof is complete. �

4.3 Optimal control with partial information and in�nite hori-

zon

In the following we assume that L =M = N = 1:

Now, let us get back to the problem of maximizing the performance functional

J (x; ei; u) = Ex;ei

�Z 1

0
f (t;X (t) ; u (t) ; � (t)) dt

�
;

where X (t) is of the from (4:5). Our goal is to �nd a u� 2 A" such that

J (x�; ei; u
�) = sup

u2A"
J (x; ei; u) ;

where u (t) is a control which adapted to sub�ltration "t � Ft; with value in a set U � R:

Let H be the Hamiltonian de�ned by (4:7) and (p; q; r; s) the solution to the adjoint equation

(4:8) : Then we have the following maximum principle.

Theorem 4.3.1 (Su¢ cient In�nite Horizon Maximum Principle) Let u� 2 A" and let

(p� (t) ; q� (t) ; r� (t; z) ; s� (t)) be an associated solution to Eq (4:8). Assume that for all u 2 A"
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the following terminal condition holds :

0 � E
h
lim
t!1

[p� (t) (X (t)�X� (t))]
i
<1: (4.11)

Moreover, assume that H (t; x; u; ei; p� (t) ; q� (t) ; r� (t; �) ; s� (t)) is concave in x and u and

E [H (t;X� (t) ; u� (t) ; � (t) ; p� (t) ; q� (t) ; r� (t; :) ; s� (t)) ="t] (4.12)

= max
u2U

E [H (t;X� (t) ; u; � (t) ; p� (t) ; q� (t) ; r� (t; :) ; s� (t)) ="t] :

In addition we assume that for all T <1;

E

24Z T

0
(X� (t)�Xu (t))2

8<:(q�)2 (t) +
Z
R0
(r�)2 (t; z) �� (dz) +

DX
j=1

�
s�j
�2
(t)�j (t)

9=; dt

35 <1;
(4.13)

and

E

24Z T

0
(p�)2 (t)

8<:(� (t))2 +
Z
R0
(� (t; z))2 �� (dz) +

DX
j=1

�
j
�2
�j (t)

9=; dt

35 <1 (4.14)

E

"���� @@uH (t;X� (t) ; u� (t) ; � (t) ; p� (t) ; q� (t) ; r� (t; :) ; s� (t))

����2
#
<1; (4.15)

and that

E

�Z 1

0
jH (t;X (t) ; u (t) ; � (t) ; p� (t) ; q� (t) ; r� (t; :) ; s� (t))j

�
<1; (4.16)

for all u: Then we have that u� (t) is optimal.

Proof. Let

I1 := E

�Z 1

0
ff (t;X (t) ; u (t) ; � (t))� f (t;X� (t) ; u� (t) ; � (t))g dt

�
= J (x; ei; u)� J (x�; ei; u�) :
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Then I1 = I11 � I12 � I13 � I14 � I15 , where

I11 := E

�Z 1

0
(H (s;X (s) ; u (s) ; � (s) ; p� (s) ; q� (s) ; r� (s; :) ; s� (s))

� H (s;X� (s) ; u� (s) ; � (s) ; p� (s) ; q� (s) ; r� (s; :) ; s� (s))) ds] ;

I12 := E

�Z 1

0
p� (s) (b (s;X (s) ; u (s) ; � (s))� b� (s;X� (s) ; u� (s) ; � (s))) ds

�
;

I13 := E

�Z 1

0
q� (s) (� (s;X (s) ; u (s) ; � (s))� �� (s;X� (s) ; u� (s) ; � (s))) ds

�
;

I14 := E

�Z 1

0

Z
R0
(� (s;X (s) ; u (s) ; � (s) ; z)� �� (s;X� (s) ; u� (s) ; � (s) ; z)) r� (s; z) ��(s) (dz) ds

�
;

I15 := E

24Z 1

0

DX
j=1

�
j (s;X (s) ; u (s) ; � (s))� �j (s;X� (s) ; u� (s) ; � (s))

�
s�j (s)�j (s) ds

35 :
For the simpli�cation we put

Ht;x;u;�;p�;q�;r�;s� := H (t; x; u; � (t) ; p� (t) ; q� (t) ; r� (t; �) ; s� (t)) ;

and the same for the other expressions. We have from concavity that

Ht;X;u;�;p�;q�;r�;s� �Ht;X�;u�;�;p�;q�;r�;s�

� @

@x
H (t;X� (t) ; u� (t) ; � (t) ; p� (t) ; q� (t) ; r� (t; :) ; s� (t)) (X (t)�X� (t))

+
@

@u
H (t;X� (t) ; u� (t) ; � (t) ; p� (t) ; q� (t) ; r� (t; :) ; s� (t)) (u (t)� u� (t))

(4.17)

Then we have from (4:12),(4:15) and that u (t) is adapted to "t;

0 � @

@u
E
h
Ht;X�;u;�;p�;q�;r�;s�="t

i
u=u�(t)

(u (t)� u� (t))

=
@

@u
E
h
Ht;X�;u�;�;p�;q�;r�;s� (u (t)� u

� (t)) ="t
i
:

(4.18)

Combining (4:8), (4:13), (4:17) and (4:18), we get

I11 � E
�Z 1

0

@

@x
Ht;X�;u�;�;p�;q�;r�;s� (X (s)�X

� (s)) ds

�
= E

�Z 1

0
dp� (s) (X (s)�X� (s))

�
:= �J1:
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From (4:13) ; (4:14), and Ito�s formula , we have that

0 � E
h
lim
t!1

[p� (t) (X (t)�X� (t))]
i

= E

�
lim
t!1

Z t

0
p� (s) (b (s;X (s) ; u (s) ; � (s))� b (s;X� (s) ; u� (s) ; � (s))) ds

+

Z t

0
p� (s) (� (s;X (s) ; u (s) ; � (s))� �� (s;X� (s) ; u� (s) ; � (s))) dB (s)

+

Z t

0

Z
R0
p� (s) (� (s;X (s) ; u (s) ; � (s) ; z)� �� (s;X� (s) ; u� (s) ; � (s) ; z)) eN� (ds; dz)

+

Z t

0
p� (s) ( (s;X (s) ; u (s) ; � (s))� � (s;X� (s) ; u� (s) ; � (s))) de� (t) + Z 1

0
(X (s)�X� (s))

�
�
� @

@x
H� (s;X� (s) ; u� (s) ; � (s) ; p� (s) ; q� (s) ; r� (s; :) ; s� (s))

�
ds

+

Z t

0
q� (s) (X (s)�X� (s)) dB (s) +

Z 1

0

Z
R0
r� (s; z) (X (s)�X� (s)) eN� (ds; dz)

+

Z t

0
s� (s) (X (s)�X� (s)) de� (t)

+

Z t

0
q� (s) (� (s;X (s) ; u (s) ; � (s))� �� (s;X� (s) ; u� (s) ; � (s))) ds

+

Z t

0

Z
R0
r� (s; z) (� (s;X (s) ; u (s) ; � (s) ; z)� �� (s;X� (s) ; u� (s) ; � (s) ; z)) v�(s) (dz) ds

+

Z t

0

Z
R0
r� (s; z) (� (s;X (s) ; u (s) ; � (s) ; z)� �� (s;X� (s) ; u� (s) ; � (s) ; z)) eN� (ds; dz)

+

Z t

0
s� (s) ( (s;X (s) ; u (s) ; � (s))� � (s;X� (s) ; u� (s) ; � (s))) de� (t)

+

Z t

0

DX
j=1

s�j (s)
�
j (s;X (s) ; u (s) ; � (s))� �j (s;X� (s) ; u� (s) ; � (s))

�
�j (s) ds

35 :
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From (4:13) and (4:14) ; we have that

E

�Z 1

0
p� (s) (b (s;X (s) ; u (s) ; � (s))� b (s;X� (s) ; u� (s) ; � (s))) ds+

Z 1

0
(X (s)�X� (s))

�
�
� @

@x
H� (s;X� (s) ; u� (s) ; � (s) ; p� (s) ; q� (s) ; r� (s; :) ; s� (s))

�
ds

+

Z 1

0
q� (s) (� (s;X (s) ; u (s) ; � (s))� �� (s;X� (s) ; u� (s) ; � (s))) ds

+

Z 1

0

Z
R0
r� (s; z) (� (s;X (s) ; u (s) ; � (s) ; z)� �� (s;X� (s) ; u� (s) ; � (s) ; z)) v�(s) (dz) ds

+

Z 1

0

DX
j=1

s�j (s)
�
j (s;X (s) ; u (s) ; � (s))� �j (s;X� (s) ; u� (s) ; � (s))

�
�j (s) ds

35
= I12 + J11 + I13 + I14 + I15 :

Finally, combining the above we get

J (x; ei; u)� J (x�; ei; u�) � I11 � I12 � I13 � I14 � I15

� �J11 � I12 � I13 � I14 � I15

� 0:

This holds for all u 2 A"; so the proof is complete. �

4.4 Necessary maximum principle

In this section, we establish optimality necessary conditions for our control problem. We will to

prove : if u� is optimal does it satisfy

E [H (t; X� (t) ; u� (t) ; � (t) ; p� (t) ; q� (t) ; r� (t; :) ; s� (t)) ="t]

= max
u2U

E [H (t; X� (t) ; u; � (t) ; p� (t) ; q� (t) ; r� (t; :) ; s� (t)) ="t] :

(4.19)

We assume the following:

(A1) For all t, h such that 0 � t � t + h � 1 and for all bounded "t-measurable random

variables � = � (!) ; the control process � (s) de�ned by
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� (s) = �1[t;t+h] (s) ;

belongs to A": Here

1[t;t+h] (s) =

8><>: 1 if t 2 [t; t+ h] ;

0 otherwise.

(A2) For all u 2 A" and all � 2 A" bounded, there exists � > 0 such that

u+ �� 2 A" for all � 2 [��; �] :

(A3) The derivative process

� (t) :=
d

d�
Xu+�� (t)

����
�=0

;

exists and belongs to L2 (m� P ) ; where m denotes the Lebesgue measure on R:

d� (t) =

�
@b

@x
(t) � (t) +

@b

@u
(t)� (t)

�
dt+

�
@�

@x
(t) � (t) +

@�

@u
(t)� (t)

�
dB (t)

+

Z
R0

�
@�

@x
(t; z) � (t) +

@�

@u
(t; z)� (t)

� eN� (dt; dz)
+

�
@

@x
(t) � (t) +

@

@u
(t)� (t)

�
de� (t) ;

where, for simplicity of notation, we de�ne

@b

@x
(t) :=

@b

@x
(t; X (t) ; � (t) ; u (t)) :

Note that

� (0) = 0:

(A4) Assume that f satis�es a Lipschitz condition of the form

jf (x1; u1; ej)� f (x2; u2; ej)j � C (t) (jx1 � x2j+ ju1 � u2j) ;
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for any t; xi; ui; i = 1; 2; ej 2 S:

We have the following theorem.

Theorem 4.4.1 (Partial Information Necessary Maximum Principle) Suppose u� 2 A"

is a local maximum for J (u) meaning that for all bounded � 2 A" there exists a � > 0 such that

u� + �� 2 A" for all � 2 (��; �) and h (�) := J (u� + ��) ; � 2 (��; �) is maximal at � = 0: Let

(p� (t) ; q� (t) ; r� (t; z) ; s� (t)) be the solution to the adjoint equation

dp� (t) = �@H
@x

(t; X� (t) ; u� (t) ; � (t) ; p� (t) ; q� (t) ; r� (t; :) ; s� (t)) dt

+ q� (t) dB (t) +

Z
R0
r� (z; t) eN� (dz; dt) + s� (t) de� (t) :

Moreover assume that if �� (t) = �(u
�;�) (t), with corresponding coe¢ cients ��t ; �

�
t ; &

�
t;z; '

�
t ; where

�t =

�
@bt;X;u;�
@x

�
� (t) +

�
@bt;X;u;�
@u

�
� (t) ;

�t =

�
@�t;X;u;�
@x

�
� (t) +

�
@�t;X;u;�
@u

�
� (t) ;

&t;z =

�
@�t;X;u;z;�

@x

�
� (t) +

�
@�t;X;u;z;�

@u

�
� (t) ;

't =

�
@t;X;u;�
@x

�
� (t) +

�
@t;X;u;�
@u

�
� (t) ;

we have

lim
T!1

E [p� (T ) �� (T )] = 0; (4.20)

E

�Z 1

0
C (t) (1 + j�� (t)j) dt

�
<1; (4.21)

E

24Z T

0
(�� (t))2

8<:(q�)2 (t) +
Z
R0
(r� (t; z))2 v� (dz) +

DX
j=1

�
j
�2
(t)�j (t)

9=; dt

35 <1 (4.22)

where � (t) = (�1 (t) ; ::; �D (t))
T ;and

�Z T

0
(p� (t))2

�
(��)2 (t; X� (t) ; � (t) ; u� (t)) +

Z
R0
(&�)2 (t; X� (t) ; � (t) ; u� (t) ; z) v� (dz)

+
DX
j=1

�
'j�
�2
(t; X� (t) ; � (t) ; u� (t))�j (t)

35 dt
35 <1;

(4.23)
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for all T <1: Then u� is a stationary point for E [H = "t] in the sense that for all t � 0;

E

�
@

@u
H (t; X� (t) ; ei; u

�; p� (t) ; q� (t) ; r� (t; :) ; s� (t)) ="t

�
= 0: (4.24)

Proof. First note that by (A3), (A4) and (4:21) we have that

0 =
@

@�
J (u� + ��)

����
�=0

(4.25)

=
@

@�
E

�Z 1

0
f
�
t; Xu�+�� (t) ; u� (t) + ��; � (t)

�
dt

�����
�=0

= lim
�!0

1

�
E

�Z 1

0

n
f
�
t; Xu�+�� (t) ; u� (t) + ��; � (t)

�
� f

�
t; Xu� (t) ; u� (t) ; � (t)

�o
dt

�
= E

�Z 1

0

�
@f

@x

�
t; Xu� (t) ; u� (t) ; � (t)

�
�� (t) +

@f

@u

�
t; Xu� (t) ; u� (t) ; � (t)

�
� (t)

�
dt

�
:

We Know by the de�nition of H that

@f

@x
(t) =

@H

@x
(t)� @b

@x
(t) p (t)� @�

@x
(t) q (t)�

Z
R0

@�

@x
(t; z) r (t; z) v� (dz)�

DX
j=1

@j

@x
(t) sj (t)�j (t)

(4.26)

and the same for @f@u (t) :

Applying the Itô formula to

p� (t) �� (t) ;
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we obtain by (4:20), (A2), (4:22) and (4:23)

0 = lim
T!1

E [p� (T ) � (T )]

= limT!1E

�Z T

0
p� (t)

�
@b
@x (t) �

� (t) + @b
@u (t)� (t)

	
dt+

Z T

0
�� (t)

�
�@H�(t)

@x

�
dt

+

Z T

0
q� (t)

�
@�
@x (t) �

� (t) + @�
@u (t)� (t)

	
dt

+

Z T

0

Z
R0
r� (t; z)

n
@�
@x (t; z) �

� (t) + @�
@u (t; z)� (t)

o
v� (dz) dt

+

Z T

0

DX
j=1

s�j (t)
n
@j

@x (t) �
� (t) + +@j

@u (t)� (t)�j (t)
o
dt

35
= limT!1E

�Z T

0
�� (t)

�
@b
@x (t) p

� (t) + @�
@xq

� (t) +

Z
R0

@�
@x (t; z) r

� (t; z) v� (dz)

+
DX
j=1

@j

@x (t) s
�
j (t)�

@H�(t)
@x

9=; dt

+

Z T

0
� (t)

8<: @b
@u (t) p

� (t) + @�
@uq

� (t) +

Z
R0

@�
@u (t; z) r

� (t; z) v� (dz) +
DX
j=1

@j

@u (t) s
�
j (t)

9=; dt

= limT!1E

�Z T

0
�� (t)

n
�@f
@x (t)

o
dt+

Z T

0
� (t)

n
@H�(t)
@u � @f

@u (t)
o
dt

�
= � limT!1E

�Z T

0

n
@f
@x (t) �

� (t) + @f
@u (t)� (t)

o
dt

�
+ limT!1E

�Z T

0
� (t) @H

�(t)
@u

�

Hence

d

d�
J (u� + ��)j�=0 = lim

T!1
E

24 TZ
0

@H�

@u
(t)� (t) dt

35
If

� (s) = �1[t;t+h] (s) ;

then

E

24t+hZ
t

@

@u
H� (s; X�

s ; ei; u
�
s; p

�
s; q

�
s ; r

� (s; :) ; s�s) �ds

35 = 0:
Di¤erentiating with respect to h at h = 0, we have

E

�
@

@u
H� (t; X�

t ; ei; u
�
t ; p

�
t ; q

�
t ; r

� (t; :) ; s�t ) �

�
= 0:
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This holds for all "t-measurable � and hence we obtain that

E

�
@

@u
H� (t; X�

t ; ei; u
�
t ; p

�
t ; q

�
t ; r

� (t; :) ; s�t ) ="t

�
= 0:

Which proves the theorem. �

4.5 Applications

4.5.1 Example 01(Optimal portfolio and consumption with regime switching)

We consider a continuous-time, �nite-state, hidden Markov chain � = f� (t) ; t 2 [0;1[g taking

values in a �nite-state space S = f1; 2; :::; ng :

The �nancial market consists of two assets with S0 the prices of the risk-free asset and S1 of

the stock are given

dS0 (t) = �S0 (t) dt for all t 2 [0;1[ ; S0 (0) > 0; (4.27)

and

dSk (t) = Sk (t) fb (t; � (t)) dt+ � (t; � (t)) dB (t)g ; (4.28)

respectively, where the interest rate � is a constant, the appreciation rate b (t; i) and the volatility

� (t; i) 6= 0 are assumed to be deterministic and bounded.

The wealth of an agent x (t) de�ned as

8><>:
dx (t) = x (t) [(� (t) (b (t; � (t))� �) + �� c (t)) dt+ � (t)� (t; � (t))] dB (t) ;

x (0) = x0 > 0;

(4.29)

where � (:) is the fraction of the agent�s wealth that is invested in the risky asset and c (:) is the

consumption of the agent and the control process u (t) = (� (t) ; c (t)) ; we have that

x (t) = x0 exp

�Z t

0

�
�+ � (s) (b (s; � (s))� �)� c (s)� 1

2
�2 (s)�2 (s; � (s))

�
ds+

Z t

0
� (s)� (s; � (s)) dB (s)

�
;

(4.30)
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and the associated cost functional is

J (u) = E

�Z 1

0
e��t ln (c (t)x (t)) dt

�
; (4.31)

where � > 0:The objective is to �nd an optimal control u�(:) = (c� (:) ; �� (:)) that maximizes

(4:31).

Now the Hamiltonian is

H (t; x; c; �; i; p; q) = e��t ln (cx) + (� (b (t; i)� �) + �� c)xp+ �� (t; i)xq; (4.32)

then

rxH (t; x; c; �; i; p; q) = e��t 1x + (� (b (t; i)� �) + �� c) p+ �� (t; i) q;

on the other hand we have

dp (t) = �
�
e��t 1

x(t) + (� (b (t; � (t))� �) + �� c (t)) p (t) + �� (t; � (t)) q (t)
�
dt

+q (t) dB (t) s (t) + s (t) de� (t) ; (4.33)

r�H (t; x; c; �; i; p; q) = (b (t; i)� �) px+ � (t; i) qx ; (4.34)

rcH (t; x; c; �; i; p; q) = e��t 1c � px (4.35)

so that

q (t) = � (b(t;i)��)
�(t;i) p (t) ; (4.36)

and

c� (t) = e��t 1
p(t)x(t)

(4.37)

then

dp (t) = �
h�
e��t 1

x(t) + � (b (t; � (t))� �) + �� e
��t 1

p(t)x(t)

�
p (t)� � (b (t; � (t))� �) p (t)

i
dt

� (b(t;�(t))��)
�(t;�(t)) p (t) dB (t) + s (t) de� (t)

= ��p (t) dt� (b(t;�(t))��)
�(t;�(t)) p (t) dB (t) + s (t) de� (t)

= �p (t)
�
�dt+ (b(t;�(t))��)

�(t;�(t)) dB (t)
�
+ s (t) de� (t) ;
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Let us try to choose s (t) = 0. Then we have that

p (t) = p (0) exp

"Z t

0

(
��� 1

2

(b(s;�(s))��)2

�2 (s; � (s))

)
ds�

Z t

0

(b (s; � (s))� �)
� (s; � (s))

dB (s)

#
: (4.38)

So to ensure that the requirement

E
h
lim
t!1

[p (t) (x (t)� x� (t))]
i
� 0;

is satis�ed it su¢ ces that

E
h
lim
t!1

[p� (t) (x� (t))]
i
� 0: (4.39)

Let us try to choose c� (t; !) = c� and �� (t; !) = ��:

Then from (4:37) we get

p (t) = e��t 1
c�x(t)

= 1
c�x0

exp
hR t
0 �

�
�+ �� (b (s; � (s))� �)� c� � 1

2�
�2�2 (s; � (s)) + �

	
ds�

R t
0 �

�� (s; � (s)) dB (s)
i

(4.40)

comparing (4:38) with (4:40) we get

�+ �� (b (t; i)� �)� c� � 1
2�

�2�2 (t; i) + � = �+ 1
2

(b(t;i)��)2

�2(t;i)

��� (t; i) = (b(t;i)��)
�(t;i)

then

c� = �� (b (t; i)� �)� 1
2

 
��2�2 (t; i) +

(b(t;i)��)2

�2 (t; i)

!
+ � (4.41)

�� =
(b (t; i)� �)
�2 (t; i)

(4.42)

Substituting into (4.41) this gives

c� =
(b (t; i)� �)2

�2 (t; i)
� 1
2

 
(b (t; i)� �)2

�2 (t; i)
+

(b(t;i)��)2

�2 (t; i)

!
+ � = � (4.43)
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By (4.30) and (4.40) we have

p (t)x� (t) = p (0) exp
hR t
0

n
�� (s; � (s))� 1

2

(b(t;i)��)2

�2(t;i)

o
ds�

R t
0
(b(t;i)��)
�(t;i) dB (s)

i
�x0 exp

hR t
0

n
� (s; � (s)) + (b(t;i)��)2

�2(t;i)
� ĉ� 1

2
(b(t;i)��)2
�2(t;i)

o
ds+

R t
0
(b(t;i)��)
�(t;i) dB (s)

i
= p (0)x0 exp [�c�t]

Therefore (4.39) holds.

We have proved the following theorem.

Theorem 6.1 The optimal control of (4:29)� (4:31) are given by (4:42) and (4:43) :

4.5.2 Exemple 02

We consider the following optimization problem which is to maximize the performance functional:

J (u) = E

�
2

Z 1

0
e��t

p
u (t)dt

�
; (4.44)

where x(t) is subject to

8><>:
dx (t) = (A (t; � (t))x (t)� u (t)) dt� C (t; � (t))x (t) dB (t) ;

x (t) = x0;

(4.45)

where �; x0 > 0; A (t; i) ; C (t; i) > 0 , for all i 2 S = f1; 2; :::; ng .

In this case the Hamiltonian function takes the form

H (t; x; u; i; p; q) = 2
p
ue��t + (A (t; i)x� u) p� C (t; i)xq;

then

Hu (t; x; u; i; p; q) = e��t 1p
u
� p

Hx (t; x; u; i; p; q) = (A (t; i)) p� C (t; i) q:

Therefore, if Hu = 0 we get

e��t
1p
u
� p = 0 (4.46)
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The adjoint equation is given by

dp (t) = � [A (t; � (t)) p (t)� C (t; � (t)) q (t)] dt

+q (t) dB (t) + s (t) de� (t) :
Let us try to choose q (t) = s (t) = 0. So

dp (t) = �A (t; � (t)) p (t) dt;

this leads to

p (t) = p (0) e�
R t
0 A(s;�(s))ds; (4.47)

for some constant p (0) and by (4:46) ;

u� (t) =
e�2�t�

p (0) e�
R t
0 A(s;�(s))ds

�2 (4.48)

Inserting u� (t) into (4:45) ; we get

8><>:
dx� (t) = x� (t)A (t; � (t))� p (0)�2 e2

R t
0 (A(s;�(s))��)dsdt� x� (t)C (t; � (t)) dB (t) ;

x (t) = x0;

Let us consider the process � (:) de�ned by

� (t) = exp

�Z t

0
�C (s; � (s)) dB (s) +A (s; � (s)) ds� 1

2

Z t

0
C2 (s; � (s)) ds

�
;

Using integration by part we get

x� (t) = x� (0) � (t)� p (0)�2
Z t

0

e2
R s
0 (A(r;�(r))��)dr

� (s)
� (t) ds:

Hence

E
h
x� (t) e�

R t
0 A(s;�(s))ds

i
= x� (0)� p (0)�2

Z t

0
E
�
e
R s
0 (A(r;�(r))�2�)dr

�
ds;
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Therefore to ensure the positivity condition , we get the optimal p (0) as

p� (0) =

24 x� (0)R1
0 E

�
e
R s
0 (A(r;�(r))�2�)dr

�
ds

35� 1
2

; (4.49)

and we can verify that

lim
T!1

E [x� (T ) p� (T )] = 0:

Therefore the transversality condition is veri�ed, then with p (0) = p� (0) given by (4:49) ; the

control u� given by (4:48) is optimal.

58



Chapter 5

Partial Information Maximum

Principle for Optimal Control

Problem with Regime Switching in

the Conditional Mean-Field Model

In this chapter, we present our second main result. In Sects. 1 and 2 su¢ cient and necessary

maximum principles are developed under partial information. An example of switching optimal

control problem in conditional mean �eld setting is studied in Sect 3 .

We consider the following controlled regime-switching di¤usion equation:

8>>>><>>>>:
dX (t) = b

�
t;X (t) ;E

�
� (X (t)) =F�t�

�
; u (t) ; � (t�)

�
dt

+ �
�
t;X (t) ;E

�
' (X (t)) =F�t�

�
; u (t) ; � (t�)

�
dB (t)

X (0) = x0;

(5.1)

where x0 is a real number. This mean-�eld SDE is obtained as the mean-square limit as n!1

of a system of interacting particles of the form

dX i;n (t) = b

�
t;Xi;n (t) ; 1n

nP
i=1
�
�
Xi;n (t)

�
; u (t) ; � (t�)

�
dt

+�

�
t;Xi;n (t) ; 1n

nP
i=1
'
�
Xi;n (t)

�
; u (t) ; � (t�)

�
dBi (t)
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where
�
Bi (:) ; i � 1

�
is a collection of independent standard Brownian motions. Note that for

more generality we consider the mean-�eld term as nonlinear functions of the state with the use of

� (:) and ' (:), respectively. Moreover, in (5:1), the conditional expectationsE
�
� (X (t)) =F�t�

�
and

E
�
' (X (t)) =F�t�

�
appear instead of the expectations E (� (X (t))) and E (' (X (t))) because of

the e¤ect of the common switching process � (t) t � 0. Because all the particles depend on the

history of this process, their average (mean-�eld term) must depend on the history of � (t); see

[39].

Here :

b :[0; T ]� R� R�U � S ! R

� :[0; T ]� R� R�U � S ! R

f :[0; T ]� R� R�U � S ! R

�; ';  ; % R! R;

are given continuous functions. B (t) is one dimensional standard Brownian motion and the

control process u (t; !) : [0; T ]� 
! U (U � R) required to be Et�predictable and

E

�Z T

0
ju (t)j2 dt

�
<1:

Where Et � Ft be a given sub�ltration, representing the information avialable to the controller

at time t: We denote by A" the set of all admissible controls.

For each ei 2 S we introduce the following assumptions:

H1) The functions � (:),' (:) , (:) and % (:) are continuously di¤erentiable; g(:; :; ei) is continu-

ously di¤erentiable with respect to (x; y); b(:; :; :; :; ei);�(:; :; :; :; ei); and f(:; :; :; :; ei) are

continuous in t and continuously di¤erentiable with respect to (x; y; u).

H2) For each t and ei 2 S , all derivatives of � (:), ' (:) ,  (:) ; g(:; :; ei); b(t; :; :; :; ei); �(t; :; :; :; ei);

and f(t; :; :; :; ei) with respect to x; y, and u are Lipschitz continuous and bounded.

The existence and uniqueness of (5:1) is given in [38]:

The cost functional is de�ned as follows:

J (x0; ei; u) = E
hR T
0 f

�
t;X (t) ;E

�
 (X (t)) =F�t�

�
; u (t) ; � (t�)

�
dt

+ g
�
X (T ) ;E

�
% (X (T )) =F�T�

�
; � (T )

��
;

(5.2)
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where

f : [0; T ]� R� R�U � S ! R

g : R� R�U � S ! R

are functions such that for all xi = x; y; u

E
hR T
0

���f �t;X (t) ;E � (X (t)) =F�t�� ; u (t) ; � (t�)��� dt
+
��� @f@xi �t;X (t) ;E � (X (t)) =F�t�� ; u (t) ; � (t�)����2

�
dt

+
��g �X (T ) ;E �% (X (T )) =F�T�� ; � (T )���+ ��� @g@xi �X (T ) ;E �% (X (T )) =F�T�� ; � (T )����2

�
<1:

Our control problem is to �nd u� 2 AE such that

J (x0; ei; u
�) = sup

u2AE
J (x0; ei; u) (5.3)

Now let us de�ne the Hamiltonian as follows:

H : R4 � R� R� S! R;

H (t; �x; u; p; q; ei) = f (t; x; y1; u; ei) + b (t; x; y2; u; ei) p

+� (t; x; y3; u; ei) q

where �x = (x; y1; y2; y3). For simplicity, for a random variable x, H(t; x; u; p; q; ei) will be used in-

stead of H(t; x;E
�
� (X (t)) =F�t�

�
;E
�
' (X (t)) =F�t�

�
;E
�
 (X (t)) =F�t�

�
; u; p; q; ei) with luttle

abuse of notation. That is,

H (t; x; u; p; q; ei) = f
�
t; x;E

�
 (x) =F�t�

�
; u; ei

�
+ b

�
t; x;E

�
� (x) =F�t�

�
; u; ei

�
p

+�
�
t; x;E

�
' (x) =F�t�

�
; u; ei

�
q

(5.4)

The adjoint equation corresponding to u� andXu�(:) in the unknown, adapted processes (p (t) ; q (t) ; s (t))
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is the backward stochastic di¤erential equation

8>>>>>>><>>>>>>>:

dp (t) = � [b�x (t) p (t) + ��x (t) q (t) + f�x (t)] dt

+
�
E
�
b�y (t) p (t) =F�t�

�
��x (t) +E

�
��y (t) q (t) =F�t�

�
'�x (t) +E

�
f�y (t) =F�t�

�
 �x (t)

�
dt

+q (t) dB (t) + s (t)fd� (t)
p (T ) = g�x (T ) +E

�
g�y (T ) =F�T�

�
%�x (T )

(5.5)

In view of [38] this backward equation has a unique solution (p (t) ; q (t) ; s (t)) 2 S2F ([0; T ] ;R)�

L2F ([0; T ] ;R)�M2
F
�
[0; T ] ;RD

�
. Where

S2F ([0; T ] ;R) =
n
f : R�valued Ft � adapted càdlàg processes, s.t.:E

h
sup0�t�T jf (t)j2

i
<1

o
;

L2F ([0; T ] ;R) =
n
f : R�valued F�progressively measurable process : kfk22 = E

hR T
0 jf (t)j

2 dt
i
<1

o
;

M2
F
�
[0; T ] ;RD

�
=

8<:f : RD � valued Ft-predictable processes, s.t.E
24R T

0

DX
j=1

jfj (t)j2 �j (t) dt

35 <1
9=; :

For an admissible control u (:), denote the corresponding trajectory of (5:1) by Xu (:). In par-

ticular, if u�(�) is an optimal control, then Xu� (:) is the associated optimal trajectory. In the

sequel we use the following abbreviation:

b� (t) = b
�
t;Xu� (t) ;E

�
�
�
Xu� (t)

�
=F�t�

�
; u� (t) ; � (t�)

�
�� (t) = �

�
t;Xu� (t) ;E

�
'
�
Xu� (t)

�
=F�t�

�
; u� (t) ; � (t�)

�
f� (t) = f

�
t;Xu� (t) ;E

�
 
�
Xu� (t)

�
=F�t�

�
; u� (t) ; � (t�)

�
g� (t) = g

�
t;Xu� (t) ;E

�
%
�
Xu� (t)

�
=F�t�

�
; � (t)

�
�� (t) = �

�
Xu� (t)

�
; '� (t) = '

�
Xu� (t)

�
 � (t) =  

�
Xu� (t)

�
; %� (t) = %

�
Xu� (t)

�
;

also we use ha = @h
@a for all a = x; y; u; and h = b; �; f; g; b�; ��; :::::

5.1 Partial information su¢ cient maximum principle

In this section we state and prove a su¢ cient maximum principle for the partial information

control problem (5:1)� (5:3) :
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Theorem 5.1.1 (Partial Information Su¢ cient Maximum Principle). Let u� 2 AE with corres-

ponding state process X� (t) = Xu� (t) and suppose there exists a solution (p� (t) ; q� (t) ; s� (t))

of the corresponding adjoint equations (5:5) satisfying

E
hR T
0 (p

� (t) (� (t)� �� (t)))2 + (q� (t) ((t)�X (t)))2

+
P
j

R T
0 (X

� (t)�X (t))2 jsj (t)j2 �j (t)
i
dt <1;

(5.6)

and

E

"Z T

0

���� @@uH (t;X� (t) ; u� (t) ; p� (t) ; q� (t) ; ei)

����2 dt
#
<1 (5.7)

for all admissible controls u 2 AE . Further suppose that for all t 2 [0; T ] :

1. The functions � (:) ; ' (:) ;  (:) ; and % (:) are concave, the function g(:; :; :) is concave in

(x; y), and the Hamiltonian H(:; :; :; :; :; :) is concave in (x�; u).

2. The functions by(:; :; :; :; :); �y(:; :; :; :; :); fy(:; :; :; :; :), and gy (:; :; :) are nonnegative.

3.

E [H (t;X� (t) ; u� (t) ; p� (t) ; q� (t) ; ei) =Et] = max
u2U

E [H (t;X� (t) ; u; p� (t) ; q� (t) ; ei) =Et] :

(5.8)

Then u� is a partial information optimal control.

Proof. Choose u 2 AE and Xu (t) the corresponding state trajectory , we set

� (t) = � (Xu (t)) ; ' (t) = ' (Xu (t)) ;

 (t) =  (Xu (t)) ; % (t) = % (Xu (t))

b (t) = b
�
t;Xu (t) ;E

�
� (Xu (t)) =F�t�

�
; u (t) ; � (t�)

�
� (t) = �

�
t;Xu (t) ;E

�
' (Xu (t)) =F�t�

�
; u (t) ; � (t�)

�
f (t) = f

�
t;Xu (t) ;E

�
 (Xu (t)) =F�t�

�
; u (t) ; � (t�)

�
g (T ) = g

�
T;Xu (T ) ;E

�
% (Xu (T )) =F�T�

�
; � (T )

�
H (t) = H (t;Xu (t) ; u (t) ; p� (t) ; q� (t) ; � (t�))

Ĥ (t) = H
�
t;Xu� (t) ; û (t) ; p� (t) ; q� (t) ; � (t�)

�
;
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and consider

J (u)� J (u�) = J1 + J2,

where

J1 = E
hR T
0 f

�
t;Xu (t) ;E

�
 (Xu (t)) =F�t�

�
; u (t) ; � (t�)

�
� f

�
t;Xu� (t) ;E

�
 
�
Xu� (t)

�
=F�t�

�
; u� (t) ; � (t�)

��
J2 = E

�
g
��
T;Xu (T ) ;E

�
% (Xu (T )) =F�T�

�
; � (T )

��
� g

�
T;Xu� (T ) ;E

�
%
�
Xu� (T )

�
=F�T�

�
; � (T )

��
:

Note that

J1 = J1:1 � J1:2 � J1:3;

where

J1:1 = E
hR T
0 (H (t)�H

� (t)) dt
i

J1:2 = E
hR T
0 (b (t)� b

� (t)) p� (t) dt
i

J1:3 = E
hR T
0 (� (t)� �

� (t)) q� (t) dt
i

By concavity we have

H (t)�H� (t)

� H�
x (t) (X

u (t)�X� (t)) + b�y (t)E
�
� (t)� �� (t) =F�t�

�
p� (t)

+��y (t)E
�
' (t)� '� (t) =F�t�

�
q� (t) + f�y (t)E

�
 (t)�  � (t) =F�t�

�
+H�

u (t) (u (t)� u� (t))

� H�
x (t) (X

u (t)�X� (t)) + b�y (t)E
�
�x (t) (X

u (t)�X� (t)) =F�t�
�
p̂ (t)

+��y (t)E
�
'x (t) (X

u (t)�X� (t)) =F�t�
�
q� (t) + f̂y (t)E

�
 x (t) (X

u (t)�X� (t)) =F�t�
�

+H�
u (t) (u (t)� u� (t))

since u! E [H (t;X� (t) ; u; p� (t) ; q� (t) ; i) =Et] is maximal for u = u� (t) and u (t) ; u� (t) are Et�mesurable,

we get :

0 � @
@uE [H (t;X

� (t) ; u; p� (t) ; q� (t) ; ei) =Et]u=u�(t) (u (t)� u� (t))

= E [Hu (t;X
� (t) ; u; p� (t) ; q� (t) ; ei) (u (t)� u� (t)) =Et]u=u�(t)

(5.9)
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Combining (5:6)� (5:7)� (5:8) and (5:9) we obtain

J1:1 � E
hR T
0

�
H�
x (t) (X

u (t)�X� (t)) + b�y (t)E
�
��x (t) (X

u (t)�X� (t)) =F�t�
�
p� (t)

+��y (t)E
�
'�x (t) (X

u (t)�X� (t)) =F�t�
�
q� (t) + f�y (t)E

�
 �x (t) (X

u (t)�X� (t)) =F�t�
�	
dt
�

Similarly, since g is concave we get,

J2 = E
�
g
��
T;Xu (T ) ;E

�
% (Xu (T )) =F�T�

�
; � (T )

��
� g

�
T;Xu� (T ) ;E

�
%
�
Xu� (T )

�
=F�T�

�
; � (T )

��
� E

�
g�x (T ) (X

u (T )�X� (T )) + g�y (T )E
�
% (Xu (T ))� % (X� (T )) =F�T�

�	
� E

�
g�x (T ) (X

u (T )�X� (T )) + g�y (T )E
�
%�x (T ) (X

u (T )�X� (T )) =F�T�
�	

� E [p� (T ) (Xu (T )�X� (T ))] :

By the Itô formula

E [p� (T ) (Xu (T )�X� (T ))]

= E
hR T
0 (X

u (t)�X� (t)) dp� (t) + p� (t) d (Xu (t)�X� (t)) + q� (t) (� (t)� �� (t)) dt
i

= �E
nR T

0 (X
u (t)�X� (t))

�
b�x (t) p

� (t) + ��x (t) q
� (t) + f�x (t) +E

�
b�y (t) p (t) =F�t�

�
��x (t)

+ E
�
��y (t) q (t) =F�t�

�
'�x (t) +E

�
f�y (t) =F�t�

�
 ̂x (t)

i
dt
o

+E
hR T
0 [p

� (t) (b (t)� b� (t)) + q� (t) (� (t)� �� (t))] dt
i

= �E
nR T

0 (X
u (t)�X� (t))

h
H�
x (t) +E

�
b�y (t) p (t) =F�t�

�
�̂x (t)

+ E
�
��y (t) q (t) =F�t�

�
'�x (t) +E

�
f�y (t) =F�t�

�
 �x (t)

�
dt
	

+E
hR T
0 [p

� (t) (b (t)� b� (t)) + q� (t) (� (t)� �� (t))] dt
i

65



Partial Information Maximum Principle for Optimal Control Problem with Regime Switching
in the Conditional Mean-Field Model

Then

J (u)� J (u�)

� E
hR T
0

�
H�
x (t) (X

u (t)�X� (t)) + b�y (t)E
�
��x (t) (X

u (t)�X� (t)) =F�t�
�
p� (t)

+�̂y (t)E
�
'̂x (t) (X

u (t)�X� (t)) =F�t�
�
q� (t) + f�y (t)E

�
 �x (t) (X

u (t)�X� (t)) =F�t�
�	
dt
�

�E
hR T
0 (b (t)� b

� (t)) p� (t) dt
i
�E

hR T
0 (� (t)� �

� (t)) q� (t) dt
i

�E
nR T

0 (X
u (t)�X� (t))

�
H�
x (t) +E

�
b�y (t) p (t) =F�t�

�
��x (t)

+ E
�
��y (t) q (t) =F�t�

�
'�x (t) +E

�
f�y (t) =F�t�

�
 �x (t)

�
dt
	

+E
hR T
0 [p

� (t) (b (t)� b� (t)) + q� (t) (� (t)� �� (t))] dt
i

= E
hR T
0

�
H�
x (t) (X

u (t)�X� (t)) + b�y (t)E
�
��x (t) (X

u (t)�X� (t)) =F�t�
�
p� (t)

+��y (t)E
�
'�x (t) (X

u (t)�X� (t)) =F�t�
�
q� (t) + f�y (t)E

�
 �x (t) (X

u (t)�X� (t)) =F�t�
�	
dt
�

�E
nR T

0 (X
u (t)�X� (t))

�
H�
x (t) + b

�
y (t)E

�
��x (t) =F�t�

�
p� (t)

+ ��y (t)E
�
'�x (t) =F�t�

�
q� (t) + f�y (t)E

�
 �x (t) =F�t�

��
dt
	

= 0:

Since this holds for all u 2 AE , the result follows.

5.2 A partial information necessary maximum principle

In the previous section we proved that (under some conditions) an admissible control u� satisfying

the partial information maximum condition (5:8) is indeed optimal. We now turn to the converse

question: If u� is optimal, does it satisfy (5:8)

In addition to the assumptions in Section 2 we now assume the following:

(A1) For all t, h such that 0 � t < t + h � T and all bounded Et-measurable random variables

�; the control process � (t) de�ned by

� (s) = �1[t;t+h] (s) ; s 2 [0; T ]

belongs to AE
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(A2) For all u; � 2 AE with � bounded, there exists � > 0 such that

u+ y� 2 AE for all y 2 (��; �) :

(A3) For given u; � 2 AE with � bounded we de�ne the derivative process Y (t) = Y (u;�) (t) by

Y (t) :=
d

dy
Xu+y� (t)

����
y=0

note Y (0) = 0 and

dY (t) = K (t) dt+ L (t) dB (t) ;

where

K (t) = bx (t)Y (t) + by (t)E
�
Y (t)�x (X (t)) =F�t�

�
+ bu (t)� (t)

L (t) = �x (t)Y (t) + �y (t)E
�
Y (t)'x (X (t)) =F�t�

�
+ �u (t)� (t)

(5.10)

Theorem 5.2.1 (Partial Information Necessary Maximum Principle). Suppose that u� 2 AE is

a local maximum for J(u); in the sense that for all bounded � 2 AE there exists " > 0 such that

u+ y� 2 AE for all y 2 (��; �) and

k (y) := J (u� + y�) (5.11)

is maximal at (y = 0) :Suppose there exists a solution (p� (t) ; q� (t) ; s� (t)) of the associated ad-

joint Equations (5:5), that is,

8>>>>>>><>>>>>>>:

dp� (t) = � [b�x (t) p� (t) + ��x (t) q� (t) + f�x (t)] dt

+
�
E
�
b�y (t) p

� (t) =F�t�
�
��x (t) +E

�
��y (t) q

� (t) =F�t�
�
'�x (t) +E

�
f�y (t) =F�t�

�
 �x (t)

�
dt

+q� (t) dB (t) + s� (t)fd� (t)
p� (T ) = g�x (T ) +E

�
g�y (T ) =F�T�

�
%�x (T ) :

Moreover, suppose that, if Y � (t) = Y (u
�;�) (t) and K� (t) and L� (t) are the corresponding coef-
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�cients (5:10). Moreover, let us assume that,

E
hR T
0

�
p� (t)2

n�
@�
@x

�2
(t)Y � (t)2 +

�
@�
@u

�2
(t)� (t)2

o
+ Y � (t)2 q� (t)2

�
dt
i

<1

E

"
(Y � (t))2

P
j

R T
0 jsj (t)j

2 �j (t) dt

#
<1

(5.12)

Then u� is a stationary point for E [H (t) =Et] in the sense that for a. a. t 2 [0; T ] we have

E [Hu (t;X
� (t) ; u�; p� (t) ; q� (t) ; ei) =Et] = 0

Proof. Put X� (t) = Xu� (t). Then with k as in (5:11) we have

0 = k0 (0) = d
dyJ (u

� + y�)
���
y=0

= E

�R T
0

�
fx
�
t;Xu� (t) ;E

�
 
�
Xu� (t)

�
=F�t�

�
; u�; � (t�)

�
d
dyX

u�+y� (t)
���
y=0

+ fy
�
t;Xu� (t) ;E

�
 
�
Xu� (t)

�
=F�t�

�
; u�; � (t�)

�
E

�
d
dy 

�
Xu�+y� (t)

����
y=0

=F�t�
�

+ fu
�
t;Xu� (t) ;E

�
 
�
Xu� (t)

�
=F�t�

�
; u� (t) ; � (t�)

�
� (t)

	
dt

+ gx
�
Xu� (T ) ;E

�
%
�
Xu� (T )

�
=F�T�

�
; � (T )

�
d
dyX

u�+y� (t)
���
y=0

+ gy
�
Xu� (T ) ;E

�
%
�
Xu� (T )

�
=F�T�

�
; � (T )

�
E

�
d
dy%

�
Xu�+y� (t)

����
y=0

=F�t�
��

= E
hR T
0

�
fx
�
t;Xu� (t) ;E

�
 
�
Xu� (t)

�
=F�t�

�
; u�; � (t�)

�
Y � (t)

+ fy
�
t;Xu� (t) ;E

�
 
�
Xu� (t)

�
=F�t�

�
; u�; � (t�)

�
E
�
Y � (t) x

�
Xu� (t)

�
=F�t�

�
+fu

�
t;Xu� (t) ;E

�
 
�
Xu� (t)

�
=F�t�

�
; u� (t) ; � (t�)

�
� (t)

	
dt
�

+E
�
gx
�
Xu� (T ) ;E

�
%
�
Xu� (T )

�
=F�T�

�
; � (T )

�
Y � (T )

+ gy
�
Xu� (T ) ;E

�
%
�
Xu� (T )

�
=F�T�

�
; � (T )

�
E
�
Y � (T ) %x

�
Xu� (T )

�
=F�t�

��
:

(5.13)
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By (5:12), and the Itô formula,

E
h
g�x (T ) Ŷ (T ) + g

�
y (T )E

�
Y � (t) %x

�
Xu� (T )

�
=F�t�

�i
= E [p� (T )Y � (T )]

= E
hR T
0 p� (t)

�
b�x (t)Y

� (t) + b�y (t)E
�
Y � (t)�x (X� (t)) =F�t�

�
+ b�u (t)� (t)

+Y � (t) fb�x (t) p� (t) + ��x (t) q� (t) + f�x (t)

+E
�
b�y (t) p

� (t) =F�t�
�
��x (t) +E

�
��y (t) q

� (t) =F�t�
�
'�x (t) +E

�
f�y (t) =F�t�

�
 �x (t)

	
+ q� (t)

�
��x (t)Y

� (t) + ��y (t)E
�
Y � (t)'x (X� (t)) =F�t�

�
+ ��u (t)� (t)

�	�
(5.14)

Now

Hx (t) = fx (t) + fy (t)E
�
 x (t) =F�t�

�
+
�
bx (t) + by (t)E

�
�x (t) =F�t�

��
p (t)

+
�
�x (t) + �y (t)E

�
'x (t) =F�t�

��
q (t) ;

Hu (t) = fu (t) + bu (t) p (t) + �u (t) q (t) :

Combined with (5:13) and (5:14) this gives

0 = E
R T
0

�
fu
�
t;Xu� (t) ;E

�
 
�
Xu� (t)

�
=F�t�

�
; u� (t) ; � (t�)

�
+ p� (t) b�u (t)� (t) + q

� (t)��u (t)]� (t) dt

= E
hR T
0 Hu (t;X

� (t) ; u� (t) ; p� (t) ; q� (t) ; ei)� (t) dt
i

Fix t 2 [0; T ] and apply the above to � where

� (s) = �1[t;t+h] (s) ; s 2 [0; T ]

where t+ h � T and � is bounded Et-measurable random variables. Then

E

�Z t+h

t
Hu (s;X

� (s) ; u� (s) ; p� (s) ; q� (s) ; ei)�ds

�
= 0

Di¤erentiating with respect to h at h = 0 gives

E [Hu (s;X
� (s) ; u� (s) ; p� (s) ; q� (s) ; ei)�] = 0
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Since this holds for all bounded Et-measurable random variables � we have that

E [Hu (s;X
� (s) ; u� (s) ; p� (s) ; q� (s) ; ei) =Et] = 0;

which proves the theorem.

5.3 Application

As an example, consider the following optimization problem which is to maximize the perform-

ance functional:

J (u) =
�1
2
E
h
S (� (T )) (X (T ))2

i
(5.15)

where X(t) is subject to

8>>>><>>>>:
dX (t) =

�
A (� (t�))X (t) +A� (� (t�))E

�
X (t) =F�t�

�
+B (� (t�))u (t)

�
dt

+ [C (� (t�))u (t)] dB (t)

X (0) = x0

(5.16)

Here,A(i); A�(i); B(i); S(i); x0 2 R and C(i) > 0 for each i 2 S. (S = f1; 2; 3; :::; Dg)

We associate to this problem the Hamiltonian

H (t; x; u; p; q; i) =
�
A (i)x+A� (i)E

�
x=F�t�

�
+B (i)u

�
p

+ [C (i)u] q
(5.17)

and the adjoint equation

8>>>><>>>>:
dp (t) = �

�
A (� (t�)) p (t) +A� (� (t�))E

�
p (t) =F�t�

��
dt

+q (t) dB (t) + s (t)fd� (t)
p (T ) = �S (� (T ))X (T ) :

(5.18)

For simplicity, put X� (t) = E
�
X (t) =F�t�

�
; p� (t) = E

�
p (t) =F�t�

�
; q� (t) = E

�
q (t) =F�t�

�
and

L (t) = L (� (t�)) ;for all L = A;A�; B; C; S.
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Via the conjecture of Peng to solve this system, we put

p (t) = � (t; � (t�))X (t) +  (t; � (t�))E
�
X (t) =F�t�

�
for some functions �(.,.); (.,.) : [0;T ] � S! R di¤erentiable in t to be determined. For each

i 2 S and t � 0; denote �0 (t; i) = d
dt� (t; i) and 0 (t; i) = d

dt (t; i) :We have

d� (t; i) =

"
�0 (t; i) +

P
j
(� (t; j)� � (t; i))�j (t)

#
dt+

P
j
(� (t; j)� � (t; i)) de� (t) ;

A similar equation holds for  (t; � (t�)). Denote � (t) = � (t; � (t�)) ; �0 (t) = �0 (t; � (t�)) ;  (t) =

 (t; � (t�)) ; 0 (t) = 0 (t; � (t�)) : Then by the Itô formula

dp (t) = d
�
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�
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��
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�
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"
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P
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#
dt+X (t)

P
j
(� (t; j)� � (t; i))fd� (t)
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P
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�
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u (t) =F�t�

��
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(5.19)

and by (5:18) we get
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� [A (t) p (t) +A� (t) p� (t)]

= X (t)

"
�0 (t; i) +

P
j
(� (t; j)� � (t; i))�j (t)

#
+ � (t) [A (t)X (t) +A� (t)X� (t) +B (t)u (t)]

+X� (t)
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(� (t; j)� � (t; i)) +E

�
X (t) =F�t�
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(5.20)

Let �u (t) 2 AE be a candidate for an optimal control and let �X (t) ; (�p (t) ; �q (t) ; �s (t)) be the

corresponding solutions of (5:16), (5:18). If Et = � f� (s) ; s � tg, then

E
�
H
�
t; �X (t) ; u; �p (t) ; �q (t) ; i

�
=Et
�

= A (t)E
�
�X (t) �p (t) =Et

�
+Â (t)E

�
�X (t) =Et

�
+B (t)E [�p (t) =Et]u

+C (t)E [�q (t) =Et]u:

Since this is a linear expression in u; we get

B (t)E [�p (t) =Et] + C (t)E [�q (t) =Et] = 0; (5.21)

and by (5:20) ;

C (t) q (t) = � (t)C2 (t)u (t)

C (t) q̂ (t) = � (t)C2 (t)u (t)

and

B (t) p� (t) = B (t) (� (t) +  (t))X� (t)

then by (5:21)

B (t) (� (t) +  (t))X� (t) + � (t)C2 (t)u (t) = 0
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then

u (t) = �B (t) (� (t) +  (t))X
� (t)

� (t)C2 (t)
; (5.22)

since

dX� (t) =
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�
X� (t) dt (5.23)

by (5:20)� (5:22)� (5:23)
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(5.24)

and

0 (t) + 2
�
A (t) +A� (t)� B2(t)

C2(t)

�
 (t)� B2(t)

�(t)C2(t)
2 (t) +

�
2A� (t)� B2(t)

C2(t)

�
� (t) +

P
j
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 (T ) = 0

(5.25)

Theorem 5.3.1 The solution u� of the optimal control (5:15) (5:16) is given by (5:22) with

� (t) ;  (t) given by (5:24)� (5:25) :
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Conclusion

This thesis contains two main results. The �rst one is the necessary and su¢ cient conditions
of optimality where the control systeme is governed by stochastic di¤erential equation (SDE) with

regime switching in in�nite horizon, which is mentioned in [7]. The second main result is the

maximum principle of optimal control for conditional mean �eld type in �nite horizon, cited in

[1], where we motivate our study by two examples in �nance.
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