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0Abstract
This work is about a nonparametric approach of both cumulative distribution and
quantile function to improve boundary effects in the kernel estimation method.
It is very often the case that the natural support of a distribution to be estimated
is not the whole real line but an interval bounded on one or both sides. Hence,
the kernel distribution estimator may not provide appropriate estimates of the
distribution function at such points. To remove this effect, a variety of methods
have been developed in the literature, the most widely used is the reflection, the
convex combination, ... In this thesis, we introduce a new method of boundary
correction when estimating both cumulative distribution and quantile function.
Our technique based on a self elimination between the Bias and the estimator it
self. we turned out that, with an adequate choice of the parameters of the two
proposed estimators, the rate of convergence of two estimators will be faster than
the existing kernel proposed.
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ملخص0

 يدور هذا العمل حول مقاربة غير معلمية لكل من التوزيع التراكمي والدالة الكمية لتحسين التأثير ات

 تقدير النواة�
 غالبًا ما يكون مجال تعريف دالة التوزيع المراد تقديره ليس مجال الحقيقي بأكمله ولكن مجال جزء منه  محدد على 

التوزيع في هذه  لوظيفة   التقليدي  مناسب   النواة  توزيع  اداء مقدر  ، قد لا يكون  ثم  ومن  أو كلاهما�  الجانبين  أحد 

النقاط� لإزالة هذا التأثير ، تم تطوير مجموعة متنوعة من الأساليب و الطرق للعديد من  الباحثين ، وأكثرها استخدامًا 

هو الانعكاس ، والتركيبة المحدبة ،  ���في هذه الأطروحة ، نقدم طريقة جديدة  لتصحيح الحدود عند تقدير كل من 

التوزيع التراكمي والكمي تعتمد تقنيتنا على القضاء الذاتي بين الانحياز  والمقدر نفسه� لقد تبين لنا أنه مع الاختيار 

 الحالية المناسب لمعلمات المقدرين المقترحين h, k  ، فإن معدل تقارباثنین من 

.تاثیرات الحدود، الكلمات المفتاحیة : تقدیر دالة توزیع النواة، تقدیر دالة التوزیع العكسي، النطاق الترددي الامثل

 المقدرين سيكون أسرع من المقدرات  
 الموجودة� 

الحدودية في طريقة�



0Résumé

Ce travail traite d’une approche non paramétrique de la distribution cumulative 
et de la fonction quantile pour améliorer les effets de frontière dans la méthode 
d’estimation à noyau. Il arrive très souvent que le support naturel d’une distribu-
tion à estimer ne soit pas toute la droite réelle mais un intervalle borné d’un ou 
des deux côtés. Par conséquent, l’estimateur de distribution par noyau peut ne pas 
fournir d’estimations appropriées de la fonction de distribution à ces points. Pour 
supprimer cet effet, diverses méthodes ont été développées dans la littérature, les 
plus utilisées sont la réflexion, la combinaison convexe, ... Dans cette thèse, nous 
introduisons une nouvelle méthode de correction des limites lors de l’estimation 
à la fois de la distribution cumulative et de la fonction quantile. Notre technique 
est basée sur une auto-élimination entre le Bias et l’estimateur lui-même. nous 
nous sommes avérés qu’avec un choix adéquat de paramètres des deux estimateurs 
proposés, le taux de convergence de deux estimateurs seront plus rapides que le 
noyau existant proposé.

viii

Mots-clés : Estimation de la function de distribution du noyau, Estimation de 
l'inverse de la function de distribution du noyau, Bande passante optimale, 
Effects de frontière.
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1 Introduction

Nonparametric methods are gradually coming popular in satistical analysis of
many fields problems, such as in Economics, Biology, and actuarial Science, this is
because of the lack of information about the variable being analyzed and requires
minimum assumptions like the continuity of the sampled population and it’s quite
powerful even if the sample sizes are small when compared with the parametric
estimation method. Knowledge of the density function or distribution function, or
their estimates, allows one to characterize the random variable more completely.
Especially for the distribution function, we can derive some other characteristics of
random variables from that, such as quantiles, survival function, hazard rate, etc.
The kernel estimation method belongs to a general category of techniques for
nonparametric curve estimation including nonparametric density estimators, non-
parametric distribution estimators, and nonparametric quantile estimators. These
estimators are now popular and in wide use with great success in statistical appli-
cations. Some results on kernel density estimation are due to Rosenblatt [39] and
Parzen[35]. Good references in this area are Silverman [46], and Wand and Jones
[56]. In the case of the estimation of the distribution and the inverse distribution
function (quantiles function) have been proposed and studied extensively, refer-
ences can be found in the work of Yamato,[61], Azzalini [4], and in the books of
Galambos[18] and David [11].

Kernel estimation method depends on two parameters. The first one is called
a bandwidth denoted ℎ which controls the smoothness of the estimator indeed, a
low value of ℎ parameter implies a low degree of smoothing of the estimator. In
contrast, a wide value of ℎ leads to an over-smooth estimator. Several methods for
choosing the bandwidth are discussed later, which allowed us to conclude that an
adequate ℎ is necessary for the good performance of the estimator. The second
parameter is a kernel denoted 𝑘 which plays a role of weight function. As far as the
kernel function is concerned, a key parameter is its order which is related both to
the number of its vanishing moments and to the number of existing derivatives for
the underlying curve to be estimated. In Generally, the choice of kernel is relatively
unimportant with respect to the choice of the smoothing parameter ℎ, which deter-
mines the extent of the kernel on each side of the observation. In certain applicable
restrictions for the convenience of theoretical developments, Epanechnikov [15]

1



Chapter 1 Introduction

propose a kernel that is optimal in the sense of integrated mean squared error
(MISE), i.e. the kernel which minimizes the MISE, a more precise definition of the
MISE will be given later. Rao 1983 it came to the conclusion that the choice of a
kernel other than the optimal kernel only led to a slight loss of precision. Lall and
al [28] defined that the choice of the kernel has a certain importance, but that its
influence on the overall estimate is relatively low. It is however important to bring
some precision to these conclusions.

The use of the classical form of kernel estimator causes the increase of the bias
estimator, particularly in the so-called boundary region, near to end of support. In
practical problems such a situation occurs often as many random variables consid-
ered in the problems of economic, technical or natural sciences are characterized
by bounded support on one or both sides. In most situations, left boundary equals
zero when the data under consideration are measurements of positive quantities.
In different analyses, random variables with non-negative values are considered
(duration of unemployment, the stock price, time of performing the specific techni-
cal operations, the amount of inventory in the warehouse, time of growing plants,
and amount of atmospheric fall).
The problem of estimating a quantile function from observed data 𝑋1, . . . , 𝑋𝑛 of

a continuous random variable 𝑋 is typically solved by estimating the distribution
function assuming that all observations are mutually independent and come from
identical distributions. In the context of kernel distribution function estimation, the
asymptotic properties of the classical estimator Nadaraya [32] in Interior region
[𝑎 + ℎ,𝑏 − ℎ[ do not hold anymore for the points near the left [𝑎, 𝑎 + ℎ[ or right
[𝑎 + ℎ,𝑏 [ end of the support[𝑎, 𝑎 + ℎ[ when the density function has compact
support [𝑎, 𝑏] where 𝑎 < 𝑏. Hence, the kernel distribution estimator may not
provide appropriate estimates of the distribution function at such points. The
boundary problem in kernel distribution estimation is less severe than in kernel
density estimation. This is due to the extra information 𝐹 (𝑎) = 0 and 𝐹 (𝑏) = 1.
Kolacek and Karunamuni [26] considered the boundary problem in distribution
function estimation in estimating ROC curves using the transformation method
discussed in Zhang and al [63]. Tenreiro [51] proposed a boundary kernel method
for correcting the boundary problem. However, Tenreiro [51] did not reveal the
fact that there is no boundary problem in distribution function estimation if the
density has a value of zero at the endpoints of the support. In his method, the
boundary kernel 𝑘𝑐 is constructed by truncating a density kernel at [−𝑐; 𝑐], and
then normalizing it so that it integrates to 1 on [−𝑐 ; 𝑐]. Realizing the fact that such
boundary kernel corrects the boundary problem by shrinking the bandwidth to
zero when data is near the boundary the resulting distribution estimates may have

2



Introduction Chapter 1

high variability at such points. Zhang [64] develop a boundary distribution kernel
method for correcting the boundary problem of the classical, which is continuous,
non-decreasing, and does not have the aforementioned high variability problem
of the estimator proposed in Tenreiro [51]. Tour and al [53] develop a new kernel
estimator of the distribution function for heavy-tailed distributions based on the
modified Champernowne transformation.

Some previous research has already studied nonparametric estimation of the in-
verse distribution. On the one hand, Azzalini [4] suggested estimating the CDF and
then obtaining the quantile from its inverse function. On the other hand, Harrell
and Davis [21] proposed an alternative quantile estimator, based on a weighted
sum of sample observations. Later, Sheather and Marron [49] analyzed the exist-
ing kernel methods for quantile estimation and proposed a smoothing parameter.
Most of the existing estimators suffer from either a bias or an inefficiency for high
probability levels (𝑝 near 1). Inspired by Wand et al. [55]; Buch-Larsen et al [8]
showed that for heavy-tailed distributions, the tail performance of the classical
kernel density estimator could be significantly improved by using a tail flattening
transformation. They used modified Champernowne distribution to estimate loss
distributions in insurance which is categorically heavy-tailed distributions. Sayah
et.al[43] produce a kernel quantile estimator for heavy-tailed distributions, which
is based on the estimation of quantiles of the transformed variable so it can easily
to be estimated using a classical approach of the kernel estimation and then taking
the inverse transform, this idea was first used in the context of density estimation
by Devroye and Gyorfi [13] for heavy-tailed observations.

The rest of this thesis is organized in two parts as follows.

The first part It is an introduction to the non-parametric estimation method,
where some common approaches are presented in the distribution and inverse
distribution function context and its asymptotic properties. Chapter (2).
Most estimators of both functions mentioned above have a problem with bias in
the case when the data is near the boundary, chapter (3) deals with boundary effect
where some recent methods of boundary correction have been discussed.
The second part contains our main results in order to reduce the bias in kernel
distribution estimation and the inverse distribution context at the boundary region.
In chapter (4), two kernel distribution function estimators are introduced and inves-
tigated in order to improve the boundary effects, we will restrict our attention to
the right boundary. The theoretical properties of our estimators are established and
their performance is evaluated by a simulation study and two real data applications.
In chapter (5), we suggested an alternative estimator to the inverse distribution

3



Chapter 1 Introduction

kernel estimator and provided its asymptotic behavior when quantile near the
boundary value. A simulation study and two real data applications were included
to demonstrate the efficiency and reliability of our theoretical results.
Throughout this thesis, the following assumptions hold for 𝑓

• 𝑓 is differentiable with bounded derivative 𝑓 (1)

• 𝑓 (1) is continuous in the neighborhood of 𝑄 (𝑝) and 𝑓 (1) (𝑄 (𝑝)) ≠ 0

4
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2 Nonparametric Estimation

The aim of this introductory part is to present the context in which the present
dissertation takes place. The problem of estimating the inverse distribution func-
tion from observed data 𝑋1, . . . , 𝑋𝑛 assuming that all observations are mutually
independent and come from identical distributions (iid) of a continuous random
variable 𝑋 is typically solved by estimating the distribution function according to
the form

𝐹−1(𝑝) = 𝑖𝑛𝑓 {𝑥 ∈ 𝑅 : 𝐹 (𝑥) ≥ 𝑝}, 𝑝 ∈]0, 1[.

Estimating the cumulative distribution function (CDF) is a fundamental goal in
many fields in which analysts are interested in estimating the risk of occurrence
of a particular event, for example As an effect of global warming, the insurance
industry is increasingly exposed to extreme events such as hurricanes, hail storms
and tornados, etc. Such events cause catastrophic losses. It is necessary to estimate
the probability of such events and the probability of the payout exceeding certain
amounts (such as 1, 000, 000) in order for the insurance companies to determine the
appropriate premiums. Denote by 𝑋 the amount of the payout from an accident,
the quantity of interest is 𝑃 (𝑋 > 𝑥), where 𝑥 is a prespecified amount of payout.
We assume that 𝑋 is a random variable from a population with density 𝑓 and CDF
𝐹 where 𝐹 (𝑥) = 𝑃 (𝑋 ≤ 𝑥) and the corresponding inverse function (quantiles) is
𝑄 (𝑝) = 𝐹−1(𝑝). Note that 𝑄 (.) is the left-continuous inverse of 𝐹 . several methods
have been proposed to estimate CDF among them :

2.1 Empirical estimation method

2.1.1 Empirical distribution function estimator EDF

Let 𝑋1, 𝑋2, ..., 𝑋𝑛 be a data sample of a continuous random variable 𝑋 . The most
commonly used nonparametric estimation of a function 𝐹 is an empirical distribu-
tion function (EDF) 𝐹𝑛 , that puts mass 1

𝑛
at each data point 𝑥𝑖 defined at some point

𝑥 as

𝐹𝑛 (𝑥) =
1
𝑛

𝑛∑
𝑖=1

𝟙]−∞,𝑥] (𝑋𝑖),

7



Chapter 2 Nonparametric Estimation

where 𝟙 is the indicator function defined by

The EDF is most conveniently defined in terms of the order statistics of a sample.
Suppose that the 𝑛 sample observations are distinct and arranged in increasing
order so that 𝑋(1) is the smallest and the 𝑋(𝑛) is the largest. A formal definition of
the E.D.F. 𝐹𝑛 (𝑥) is

Statistical properties of the EDF

Using properties of the binomial distribution, we get the following results.

▶ Corollary 2.1. The mean and the variance of 𝐹𝑛 (.) are

𝐸 (𝐹𝑛 (𝑥)) = 𝐹 (𝑥) and 𝑉 (𝐹𝑛 (𝑥)) =
𝐹 (𝑥) (1 − 𝐹 (𝑥))

𝑛
.

◀

The corollary shows that 𝐹𝑛 (.), the proportion of sample values less than or equal to
the specified value 𝑥 , is an unbiased estimator of 𝐹 (𝑥) and shows that the variance
of 𝐹𝑛 (𝑥) tends to zero as 𝑛 tends to infinity. Thus, using Chebyshev’s inequality,
we can show that 𝐹𝑛 (𝑥) is a consistent estimator of 𝐹 (𝑥).

▶ Corollary 2.2. For any fixed real value 𝑥 , 𝐹𝑛 (𝑥) is a consistent estimator of
𝐹 (𝑥), or, in other words, 𝐹𝑛 (𝑥) converges to 𝐹 (𝑥) in probability. ◀

The convergence in probability is for each value of 𝑥 individually, whereas some-
times we are interested in all values of 𝑥 , collectively. A probability statement can
be made simultaneously for all 𝑥 , as a result of the following important theorems.

8

8<
=:  

1 if i � 

0 if i  
𝟙]−∞,𝑥] (𝑋𝑖 )

Fn(x) =

8>>>><>>>>:
0 if x < X(1)
i

n
if X(i) � x < X(i+1)

1 if x � X(n):

▶ Theorem 2.3 (Glivenko-Cantelli Theorem). 𝐹𝑛 (𝑥) converge uniformly (Con-
vergence almost-surely) to 𝐹 (𝑥), that is

lim
𝑛→∞

sup
𝑥∈ℝ

𝑠→|𝐹𝑛 (𝑥) − 𝐹 (𝑥) |
𝑎. 0.

◀



Empirical estimation method Section 2.1

This theorem has been called the fundamental theorem of (nonparametric) statis-
tics.

▶ Theorem 2.4 (Dvoretsky-Kiefer-Wolfowitz). For any Y > 0,

𝑃

(
sup
𝑥∈ℝ

|𝐹𝑛 (𝑥) − 𝐹 (𝑥) | > Y
)
≤ 2𝑒−2𝑛Y2

.

◀

▶ Theorem 2.5. As 𝑛 → ∞, the limiting probability distribution of the standard-
ized 𝐹𝑛 (𝑥) is standard normal, or

√
𝑛(𝐹𝑛 (𝑥) − 𝐹 (𝑥))√
𝐹 (𝑥) (1 − 𝐹 (𝑥))

𝐿→ 𝑁 (0, 1).
◀

Despite the good statistical properties of 𝐹𝑛 , the known fact that smoothing can
lose, figure (2.1), shows that For a discrete real random variable the distribution
function (Poisson’s law)is constant on any interval of empty intersection with the
support of the law. It is therefore constant in pieces, 𝐹𝑛 is a step function even in
case 𝐹 is continuous ( Gaussian’s law) and even when n is large, 𝐹𝑛 loses smoothing,
one could prefer a rather smooth estimate.

9

Figure 2.1: Smoothing of the empirical distribution function
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2.1.2 Inverse of the empirical distribution function estimator

The corresponding estimator of 𝑄 (𝑝) is the 𝑝𝑡ℎ sample quantile which is given by

𝑄𝑛 (𝑝) = 𝑖𝑛𝑓 {𝑥 ∈ 𝑅 : 𝐹𝑛 (𝑥) ≥ 𝑝} = 𝑋[𝑛𝑝]+1              𝑝 ∈]0, 1[ ,

where [np] denotes an integral part of np.
When 𝐹 is continuous, it is more natural to use a smooth random function as an
estimator of 𝐹 since there is a substantial lack of efficiency, caused by the variability
of individual order statistics. Indeed, the choice of 𝐹𝑛 does not always lead to the
best estimator of 𝐹 (see, Read [39]), which has shown that 𝐹𝑛 is inadmissible with
respect to the integrated square loss).
Different approaches to estimating sample quantiles through weighted order statis-
tics have been proposed. A popular class of these estimators is called kernel quantile
estimators.

2.2 Kernel estimation method

Nadaraya [32] proposed a smooth nonparametric alternative to the EDF estimator,
namely, kernel distribution estimator (KDF) we denoted by 𝐹𝑛. This estimator is
obtained by integrating the Rosenblatt-Parzen kernel density estimator, we denoted
by 𝑓𝑛 , that we briefly present in the following subsection.

2.2.1 Kernel density function estimator

It might seem natural to estimate the density 𝑓 as the derivative of 𝐹𝑛 (𝑥), but this
estimator would be a set of mass points, not a density, and as such is not a useful
estimate of 𝑓 (𝑥). Instead, consider a discrete derivative. For some ℎ small

𝑓𝑛 (𝑥) =
𝐹𝑛 (𝑥 + ℎ) − 𝐹𝑛 (𝑥 − ℎ)

2ℎ ,

we can write this as

𝑓𝑛 (𝑥) =
1

2𝑛ℎ

𝑛∑
𝑖=1

𝟙[𝑥−ℎ,𝑥+ℎ] (𝑋𝑖),

=
1

2𝑛ℎ

𝑛∑
𝑖=1

𝟙[−1,1]

(
𝑋𝑖 − 𝑥
ℎ

)
,

10
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=
1
𝑛ℎ

𝑛∑
𝑖=1

𝑤

(
𝑋𝑖 − 𝑥
ℎ

)
,

where

𝑤 (𝑡) =
{ 1

2 |𝑡 | ≤ 1
0 |𝑡 | > 1

where ℎ is selected in such a way that ℎ := ℎ𝑛 (ℎ → 0 and 𝑛ℎ → ∞ as 𝑛 → ∞)
is the smoothing parameter, called the bandwidth, which controls the smoothness
of the estimator

𝑓𝑛 (𝑥) is a special case of the Rosenblatt-Parzen estimator that is called the naive
estimator. The naive estimator is not wholly satisfactory from the point of view
of using density estimates for presentation. It follows from the definition that is
not a continuous function but has jumped at the points 𝑋𝑖 − ℎ and 𝑋𝑖 + ℎ and has
zero derivatives everywhere else. In figure (2.2), we plotted the performance of
the naive estimator for the beta density function by giving two different values
of ℎ to illustrate the fact that the naive estimator is less smoothing. It is easy to

Figure 2.2 : Performance of the naive estimator.

generalize the naive estimator to overcome some of the difficulties discussed above.
Replace the weight function 𝑤 by a kernel function 𝑘 . The only real restriction

11
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on the kernel 𝑘 is that its integration over the whole domain of the definition of
𝑥 must be equal to one. One sometimes encounters other theoretical restrictions
which are applied to 𝑘 , such as

1. 𝑘 (−𝑡) = 𝑘 (𝑡) hence 𝑘 is a symmetric function.

2. `1 = 0 and `2 < ∞, where ` 𝑗 =
+∞∫
−∞

𝑡 𝑗𝑘 (𝑡)𝑑𝑡 .

However, these restrictions are mainly introduced in order to simplify theoretical
developments. The nonparametric estimation of the density function of a sample
can be seen as the cumulation of the functions 𝑘 of each observation over the whole
domain:

𝑓𝑛 (𝑥) =
1
𝑛ℎ

𝑛∑
𝑖=1

𝑘

(
𝑥 − 𝑋𝑖
ℎ

)
,

As an example, to compare the smoothness of the kernel density estimator with the
naive estimator. We did an estimation based on 𝑛 = 200 observations of the Beta
distribution, we can see that the naive estimator is less smoothing than the kernel
estimator for 𝑘 (𝑡) = 3

4 (1 − 𝑡
2)𝟙[−1,1] (𝑡) and ℎ = 0.07.

Figure 2.3: Comparison of the smoothness of the density estimators.

Optimal choice of kernel
The problem of the optimal choice of 𝑘 consists in finding an optimal kernel under
the constraint of positivity (𝑘 ≥ 0). We recall the asymptotic properties of 𝑓𝑛

12
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`2(𝑘∗) =𝑚𝑖𝑛𝑘∈𝜓 (𝑘)`2(𝑘)

where𝜓 (𝑘) denotes the set of positive kernels of order 1 satisfying the conditions

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

𝑘 (𝑡)𝑑𝑡 = 1,     𝑡𝑘 (𝑡)𝑑𝑡 = 0   𝑎𝑛𝑑     𝑡2𝑘 (𝑡)𝑑𝑡 < +∞.

The solution of the problem is given by the following proposition.
Proposition(Tsybakov [54]) Let 𝑘 be a kernel function, where `2(𝑘) < ∞, then 𝑘∗
is

𝑘∗(𝑡) = 3
4 (1 − 𝑡

2)𝟙[−1,1] (𝑡).

13

,

for 𝑥 ∈ ℝ we have

𝐵𝑖𝑎𝑠 (𝑓𝑛 (𝑥)) =
ℎ2

2 𝑓
2(𝑥)

∫+∞
−∞

𝑥2𝑘 (𝑥)𝑑𝑡 + 𝑜 (ℎ2),

and

𝑉𝑎𝑟 (𝑓𝑛 (𝑥)) =
1
𝑛ℎ
𝑓 (𝑥)

∫+∞
−∞

𝑘 (𝑥)𝑑𝑥 + 𝑜
(

1
𝑛ℎ

)
,

then the mean square error is

𝑀𝑠𝑒 (𝑓𝑛 (𝑥)) =
(
𝐵𝑖𝑎𝑠 (𝑓𝑛 (𝑥)

)2
+𝑉𝑎𝑟 (𝑓𝑛 (𝑥)),

and the asymptotic mean integrated square error 𝐴𝑚𝑖𝑠𝑒 is

1
𝑛ℎ

−∞

𝐴𝑚𝑖𝑠𝑒 (𝑓𝑛 (𝑥)) = 𝑘2(𝑡)𝑑𝑡 + ℎ4 (`2(𝑘))2
∫+∞ 4 ∫+∞

−∞

(
𝑓 (2) (𝑡)

)2
𝑑𝑡 .

We note that the dependence of the 𝐴𝑚𝑖𝑠𝑒 with respect to the kernel 𝑘 is expressed
by the intervention of its variance `2. An optimal kernel 𝑘∗ is therefore a kernel
that minimizes the functional `2
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We can consider the efficiency of  each of  the symmetrical kernels presented in 
table(2.1), compared with the Epanechnikov kernel. Efficiency is defined (see 
Silverman [46]) by :

𝑒 𝑓 𝑓 (𝑘) = 𝐶 (𝑘
∗)

𝐶 (𝑘) ,

where 𝐶 (𝑘) = (`2(𝑘))
2
5
( +∞∫
−∞

𝑘2(𝑡)𝑑𝑡
) 4

5
.

The problem of finding optimal kernels as minimizers of certain functionals was
introduced into the theory of kernel density estimators by Epanechnikov [15].
Further results can be found in Gasser and Muller [19] and in Eddy [14] derive the
optimal kernels for kernel estimators of the mode produce good results can be used,
the following table presents the most frequently used kernels functions.

14

Table 2.1: Usual kernel functions

Kernel Support          k(t) Efficiency 

Epanechnikov [−1, 1]
3
4

(1 − x2) 1

Cosinus [−1, 1] π
4 cos(

π
2

x) 0, 999

Biweight [−1, 1]
15
16

(1 − x2)2 0, 994

Triweight [−1, 1]
35
32

(1 − x2)3 0, 987

Triangulaire [−1, 1] 1−|x| 0, 986

Gaussien R
1
√

2π
1
2exp (− x2) 0, 946

Uniforme [−1, 1]
1
2

0, 930

Double Epanechnikov [−1, 1] 3|x|(1−|x|) 0, 816

Double Exponential            R
1
2

1
2exp {− |x|} 0, 759
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In table 2.1, we can see that the efficiency values obtained are very close to 1 and
that there is very little difference between different kernels based on asymptotic
mean integrated square error, for this fact the choice of the kernel is less important
in kernel estimation method.

▶ Example 2.6. An example is drawn in figure (2.3), where we show the perfor-
mance of the kernel estimator by using two different kernel functions 
Epanechnikov and Gaussian kernels for a fixed value of ℎ = 1.4 for Normal density 

2.2.2 Kernel distribution function estimator

As we can see in figure (2.2) the kernel density estimator is more smoothing than
the naive estimator. the condition that 𝑘 is a density function guarantees the
existence of the primitive of the kernel 𝑘

𝐾 : ℝ → [0, 1]

i.e

𝐾 (𝑡) =
𝑡∫

−∞

𝑘 (𝑦)𝑑𝑦,

15

Figure 2.3: Influence of the kernel function to the performance of the kernel 
estimation.
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then it is easy to construct a kernel estimator for the distribution function 𝐹𝑛 as:

𝐹𝑛 (𝑥) =
𝑥∫

−∞

𝑓𝑛 (𝑦)𝑑𝑦,

=
1
𝑛ℎ

𝑛∑
𝑖=1

𝑥∫
−∞

𝑘

(
𝑡 − 𝑋𝑖
ℎ

)
𝑑𝑡,

using the substitution 𝑦 =
𝑡 − 𝑋𝑖
ℎ

leads to

𝐹𝑛 (𝑥) =
1
𝑛

𝑛∑
𝑗=1

𝑥−𝑋𝑖
ℎ∫

−∞

𝑘 (𝑦)𝑑𝑦,

then the classical kernel distribution estimator of 𝐹 at the point 𝑥 ∈ ℝ is defined as

𝐹𝑛 (𝑥) =
1
𝑛

𝑛∑
𝑖=1

𝐾

(
𝑥 − 𝑋𝑖
ℎ

)
,

we assume that the kernel function 𝑘 is a continuous density such that is bounded,
and symmetric about zero 𝑘 (−𝑡) = 𝑘 (𝑡). Thus 𝑘 satisfies a kernel condition and the
smoothing parameter ℎ which tends to 0 as 𝑛 → ∞.

The estimate 𝐹𝑛 has been investigated by several authors, Nadaraya [32] has
proved under mild conditions that 𝐹𝑛 has asymptotically unbiased and has the same
variance as 𝐹𝑛 with 𝑓 is continuous Nadaraya [32], Winter [58], and Yamato [61] are
obtains its uniform convergence to 𝐹 with probability one, and without conditions
on 𝑓 Singh and al [47], Winter [59] also shows that checks the Chung-Smirnov
property, that

lim sup
𝑛→∞

{(
2𝑛

log log𝑛

)1/2
sup
𝑥∈ℝ

���𝐹𝑛 (𝑥) − 𝐹 (𝑥)���} ≤ 1

with probability 1. Watson and Leadbetter [57] proved the asymptotic normality of
𝐹𝑛 . Reiss [40] proves that the asymptotic relative inefficiency of 𝐹𝑛 compared to 𝐹𝑛
tends rapidly to infinity as the sample size increases with an appropriate choice of
kernel, e.g.

16
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𝑘 (𝑥) = 9
8

(
1 − 5

3𝑥
2
)
𝟙[−1,1] (𝑡).

Falk [16], who has shown that the asymptotic performance of 𝐹𝑛 (𝑥) is better than
that of 𝐹𝑛 in the sense of relative deficiency for appropriately chosen kernels and
sufficiently smooth cdf’s F.
Azzalini [4] derived also an asymptotic expression for the mean squared error Mse
of 𝐹𝑛 (𝑥) and determined the asymptotically optimal smoothing parameter, to have
an Mse lower for 𝐹𝑛 , and he obtained the asymptotic expressions for the mean
integrated squared error Mise of 𝐹𝑛 (𝑥). Some conditions verified in particular when
the support of 𝑘 is bounded and

𝜑 (𝑘) = 2
+∞∫

−∞

𝑥𝑘 (𝑥)𝐾 (𝑥)𝑑𝑥 > 0

Falk [16] provides a complete solution to this problem by establishing the repre-
sentation of the relative inefficiency of 𝐹𝑛 versus 𝐹𝑛 under the above conditions
especially when the support of 𝑘 is bounded. The number 𝜑 (𝑘) is introduced by
Falk [16] as a measure of the asymptotic performance of the kernel 𝑘 . But he shows
that any square-integrable kernel does minimize 𝜑 . Then he uses the number

𝜌 (𝑘) =
+∞∫

−∞

𝑘2(𝑦)𝑑𝑦

, defined by Epanechnikov [15] as a measure of the performance of the kernel in
density estimation. In the sense of 𝜌 , the Epanechnikov kernel is the best but the
Gaussian or Uniform kernels have very similar performance. Using the criterion 𝜌
the Epanechnikov kernel is then by far the best of the three.
In the sense of mean integrated squared error Mise; the best kernel is the Uniform
kernel although the performance of other kernels (Epanechnikov, Normal, Triangu-
lar) are, in practice, only slightly less good (Jones [23]. It is interesting to note that
this is not the best kernel in the estimation of density.
The asymptotic expression of Mise. is also studied by SwanPoel [50]). For a contin-
uous function 𝑓 , he proves that the best kernel is the Uniform kernel.
Whereas for discontinuous 𝑓 in a finite number of points, the Exponential kernel

𝑘 (𝑥) = 𝑐

2𝑒𝑥𝑝 (−𝑐 |𝑥 |) 𝑥 ∈ ℝ.

17
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for an arbitrary constant 𝑐 > 0, 𝐹𝑛 (𝑥) is again more efficiency than 𝐹𝑛 for ℎ𝑛 =

𝑜 (𝑛−1/2). However, 𝐹𝑛 (𝑥) does not always provide a better estimate than 𝐹𝑛 .

Indeed, in the case of a uniformly Lipschitz function 𝐹 , Fernholz [17] obtains
that

√
𝑛∥ 𝐹𝑛 (𝑥) − 𝐹𝑛 (𝑥) ∥∞ → 0 𝑎.𝑠

and √
𝑛∥ 𝐹𝑛 (𝑥) − 𝐹 (𝑥) ∥∞

and √
𝑛∥ 𝐹𝑛 (𝑥) − 𝐹 (𝑥) ∥∞

have the same asymptotic distribution. In addition, Shirahata and Chu [48] show
that under certain hypotheses on 𝐹 the integrated square error

𝐼𝑆𝐸 =

+∞∫
−∞

(
𝐹𝑛 (𝑥) − 𝐹 (𝑥)

)
𝑑𝐹 (𝑥)

for 𝐹𝑛 is almost certainly higher than that of 𝐹𝑛 .

▶ Example 2.7. In figure (2.4), where we show the performance of the kernel
estimator by using two different kernel functions Epanechnikov and Gaussian
kernels for a fixed value of ℎ.
In figure (2.5) we examine the performance of KDF for three different values of ℎ
for the Epanechnikov kernel. The data sample consists of 200 random numbers of
a Beta distribution with parameters (1,3). ◀

18

Figure 2.4: Influence of the kernel function to the performance of 
the KDF estimator.
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As we can see, the choice of the kernel function does not have a strong influence 
on the performance of the KDF, which confirms the results obtained in the case of 
the density kernel estimator (Table 2.1). While selecting an adequate bandwidth is 
essential for the good performance of the KDF estimator.

The problem of the choose an adequate bandwidth to ensure good performance 
of the 𝐾𝐷𝐹 estimator consists in finding a minimization of a global measure of the 
error incurred when estimating 𝐹 (𝑥) with          along 𝑥 ∈ ℝ. A typical measure of 
performance for a 𝐾𝐷𝐹 estimator is the mean integrated square error 𝑀𝑖𝑠𝑒 (ℎ)  
for this fact we need to present some properties of the 𝐾𝐷𝐸 estimator before we 
discuss the bandwidth selection method.

Statistical properties of KDF

Assume that 𝑘 is symmetric and has a compact support [−1, 1]. Several properties
of 𝐹𝑛 (𝑥) are well known, we start with the evaluation of 𝐸 (𝐹 (𝑥)) at the point 𝑥 ∈ ℝ:

𝐸

(
𝐹𝑛 (𝑥)

)
=

+∞∫
−∞

𝐾

(𝑥 − 𝑦
ℎ

)
𝑓 (𝑦)𝑑𝑦,

=

𝑥−ℎ∫
−∞

1𝑓 (𝑦)𝑑𝑦 +
𝑥+ℎ∫
𝑥−ℎ

𝐾

(𝑥 − 𝑦
ℎ

)
𝑓 (𝑦)𝑑𝑦 +

+∞∫
𝑥+ℎ

0𝑓 (𝑦)𝑑𝑦,

= 𝐹 (𝑥 − ℎ) + ℎ
1∫

−1
𝐾 (𝑡) 𝑓 (𝑥 − ℎ𝑡)𝑑𝑡,

19

Figure 2.5: Influence of the bandwidth to the performance of the KDF 
estimator.

𝐹𝑛 (𝑥)
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we use the Taylor expansion we have(
𝐹𝑛 (𝑥)

)
= 𝐹 (𝑥) − ℎ𝑓 (𝑥) + 1

2ℎ
2𝑓 (1) (𝑥) + ℎ

1∫
−1
𝐾 (𝑡)

(
𝑓 (𝑥) − ℎ𝑡 𝑓 (1) (𝑥) + 𝑜 (ℎ)

)
𝑑𝑡

= 𝐹 (𝑥) − ℎ𝑓 (𝑥) + 1
2ℎ

2𝑓 (1) (𝑥) + ℎ𝑓 (𝑥) − ℎ2𝑓 (1) (𝑥)
1∫

−1
𝑡𝐾 (𝑡)𝑑𝑡

= 𝐹 (𝑥) + 1
2ℎ

2𝑓 (1) (𝑥) − ℎ2𝑓 (1) (𝑥)
(
1 − `2

2

)
+ 𝑜

(
ℎ2)

Here, we notice that they yield an interesting formula for Bias

𝐵𝑖𝑎𝑠 (𝐹𝑛 (𝑥)) =
1
2𝐹

(2) (𝑥)`2ℎ
2 + 𝑜 (ℎ2). (2.1)

For the variance, according to the definition we have

𝑉𝑎𝑟

(
𝐹𝑛 (𝑥)

)
=

1
𝑛

©«
+∞∫

−∞

𝐾2
(𝑥 − 𝑦
ℎ

)
𝑓 (𝑦)𝑑𝑦 − ©«

+∞∫
−∞

𝐾

(𝑥 − 𝑦
ℎ

)
𝑓 (𝑦)𝑑𝑦ª®¬

2ª®®¬,
we are only dealing with the first term since the second is given in (2.1) Thus

𝐾2
(
𝑥

ℎ

)
=

𝑥−ℎ∫
−∞

1𝑓 (𝑦)𝑑𝑦 +
𝑥+ℎ∫
𝑥−ℎ

𝐾2
(𝑥 − 𝑦
ℎ

)
𝑓 (𝑦)𝑑𝑦

= 𝐹 (𝑥 − ℎ) + ℎ
1∫

−1
𝐾2(𝑡) 𝑓 (𝑥 − ℎ𝑡)𝑑𝑡,

= 𝐹 (𝑥) + ℎ𝑓 (𝑥)
(

1∫
𝐾2(𝑡)𝑑𝑡 − 1

)
+ 𝑜 (ℎ)

−1 

Since the expression of the Bias (2.1) can gives

𝐸

(
𝐾

(
𝑥 − 𝑋𝑖
ℎ

))
= 𝐹 (𝑥) + 𝑜 (ℎ)

20

𝐸 ,

,

.

∫+∞
−∞

− 𝑦
d𝑦
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Then the expression of 𝑉𝑎𝑟
(
𝐹𝑛 (𝑥)

)
is

𝑉𝑎𝑟

(
𝐹𝑛 (𝑥)

)
=

1
𝑛
𝐹 (𝑥) (1 − 𝐹 (𝑥)) − ℎ

𝑛
𝑓 (𝑥)©«1 −

1∫
−1

𝐾2(𝑡)𝑑𝑡ª®¬ + 𝑜
(
ℎ

𝑛

)
,

therefore

𝑉𝑎𝑟

(
𝐹𝑛 (𝑥)

)
=

1
𝑛
𝐹 (𝑥) (1 − 𝐹 (𝑥)) − ℎ

𝑛
𝑓 (𝑥)𝜑 (𝑘) + 𝑜

(
ℎ

𝑛

)
. (2.2)

The previous result shows that the asymptotic variance of 𝐹𝑛 (.) is of order 𝑜
(
ℎ

𝑛

)
and it’s smaller than the variance of the EDF. It is evident that for larger values
of ℎ, the quantity ℎ𝑓 (𝑥)𝜑 (𝑘) increases, resulting in a smaller variance expression
but a larger bias. This observation has important implications for choosing the
bandwidth, i.e the choice of bandwidth ℎ implies a variance-bias trade-off

• Larg ℎ : 𝐹𝑛 is over-smoothing. Low Variance, high Bias,

• Small ℎ : 𝐹𝑛 is under-smoother. High Variance, low Bias,

so we looking for ℎ that

ℎ = 𝑎𝑟𝑔𝑚𝑖𝑛

(
𝑀𝑖𝑠𝑒 (𝐹𝑛 (𝑥))

)
.

To obtain the Mean Squared Error (𝑀𝑠𝑒) we combine (2.1) and (2.2), where

𝑀𝑠𝑒

(
𝐹𝑛 (𝑥)

)
=

(
𝐵𝑖𝑎𝑠 (𝐹𝑛 (𝑥)

)2
+

(
𝑉𝑎𝑟 (𝐹𝑛 (𝑥)

)
,

then we have

𝑀𝑠𝑒

(
𝐹𝑛 (𝑥)

)
=
𝐹 (𝑥) (1 − 𝐹 (𝑥))

𝑛
−ℎ
𝑛
𝑓 (𝑥) (𝜑 (𝑘)) +ℎ

4

4

(
𝐹 (2) (𝑥)

)2
`2

2+𝑜
(
ℎ

𝑛
+ ℎ4

)
, (2.3)

implicit that the expression of the asymptotic mean squared error 𝐴𝑚𝑠𝑒
(
𝐹𝑛 (𝑥)

)
is

𝐴𝑚𝑠𝑒

(
𝐹𝑛 (𝑥)

)
=
𝐹 (𝑥) (1 − 𝐹 (𝑥))

𝑛
− ℎ
𝑛
𝑓 (𝑥) (𝜑 (𝑘)) + ℎ

4

4

(
𝐹 (2) (𝑥)

)2
`2

2 .

The bandwidth which minimizes the 𝐴𝑚𝑖𝑠𝑒 can be calculated by differentiating
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the expression of the 𝐴𝑚𝑖𝑠𝑒
(
𝐹𝑛 (𝑥)

)
, setting the equation to 0 and solving it for ℎ.

where

𝐴𝑚𝑖𝑠𝑒

(
𝐹𝑛 (𝑥)

)
=

+∞∫
−∞

𝐴𝑚𝑠𝑒

(
𝐹𝑛 (𝑥)

)
𝑑𝑥, (2.4)

The result is referred to

ℎ𝐴mise
𝑜𝑝𝑡 = 𝐶𝑛−

1
3 =

( ∫ +∞
−∞

𝑉 2
𝐹
(𝑥)𝑑𝑥∫ +∞

−∞
𝐵2
𝐹
(𝑥)𝑑𝑥

) 1
3
, (2.5)

where 𝐵2
𝐹
(𝑥) = 1

2

(
𝑓 (1) (𝑥)

)2
`2

2 and 𝑉 2
𝐹
(𝑥) = 2𝑓 (𝑥)𝜑 (𝑘).

Bandwidth selection in kernel distribution function estimation

In practice, to evaluate an optimal global bandwidth (2.5) we need to develop a
method to replace the true distribution by her estimator. Several methods already ex-
ist to obtain different bandwidth selectors depending on the details of the procedure
developed to minimize (2.4) without needing any additional estimate of distribution
derivatives. Despite the great number of bandwidth selection techniques in other
settings, for example in density or regression estimation Jones [23], Sheather and
Marron [49] and Rio [41] . However in the distribution estimation context, only two
popular methods have been investigated are plug-in and cross-validation methods.

Plug-in method
Because the constant𝐶 in equation (2.5) depends on the kernel function and the the-
oretical distribution function of the data unknown in practice, a plug-in estimation
considers the bandwidth

ℎ𝑝𝑙 = 𝐶𝑛
− 1

3 , (2.6)

where𝐶 is estimated through the data sample. The way of obtaining𝐶 differs from
one author to another.
Altman and Leger [3] consist in estimating nonparametric the unknown terms 𝐶 ,
using Altman and Leger’s notation, equation (2.5) can be written as:

ℎ𝐴mise
𝑜𝑝𝑡 =

(
1
4𝑉2

𝐵3

) 1
3

𝑛
−1
3 . (2.7)

where 𝑉2 = 𝜑 (𝑘)
∫ +∞
−∞ (𝑓 (𝑥))2𝑑𝑥 and 𝐵3 = 0.25(`2)2

∫ +∞
−∞ (𝑓 (1) (𝑥))2𝑓 (𝑥)𝑑𝑥 .
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So the plug-in bandwidth is

ℎ𝐴𝐿 =

(
1
4𝑉2

𝐵3

) 1
3

𝑛
−1
3 , (2.8)

where

𝑉2 = 𝜑 (𝑘)
1

𝑛(𝑛 − 1)

𝑛∑
𝑖=1

𝑛∑
𝑗=1,𝑖≠ 𝑗

1
𝛼
𝑘

(𝑥𝑖 − 𝑥 𝑗
𝛼

)
,

and

𝐵3 = 0.25(`2(𝑘))2 1
𝑛3𝛼4

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑛∑
𝑘=1

𝑘

(𝑥𝑖 − 𝑥 𝑗
𝛼

)
𝑘

(𝑥𝑖 − 𝑥𝑘
𝛼

)
.

Polansky and Baker [36] plug-in Based also on Equation (2.6), using their notation
can be written as

ℎ𝐵𝑃 =

(
𝜑 (𝑘)

−𝑛`2(𝑘)2𝜓2(𝑔2)

) 1
3

(2.9)

Polanski and Baker [36] developed an iterative method for calculating the plug-in
bandwidth, which we detail below. Let 𝑏 > 0 be an integer.
First step. Calculate �̂�2𝑏+2 using the formula

�̂�r =
(−1)𝑟/2𝑟 !

(2�̂� (𝑥𝑖))𝑟+1(𝑟/2)!𝜋1/2
,

where �̂� (𝑥𝑖) =𝑚𝑖𝑛
(
𝑠,
𝑄3 −𝑄1

1.349

)
with �̂� the sample standard deviation, and 𝑄1, 𝑄3 denoting the first and third
quartile, respectively.
Second step. Begin from 𝑗 = 𝑏 to 𝑗 = 1, calculating �̂�2 𝑗

(
𝑔2 𝑗

)
where

𝑔2 𝑗 =

(
2𝐿(2 𝑗) (0)

−𝑛`2(𝐿)�̂�2 𝑗+2

)1/(2 𝑗+3)

with
�̂�2 𝑗+2 =

{
�̂�2𝑏+2 if 𝑗 = 𝑏

�̂�2 𝑗+2
(
𝑔2 𝑗+2

)
if 𝑗 < 𝑏

.

In practice, it is sufficient to consider 𝑏 = 2 for most applications.
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Cross-validation methods The cross-validation procedure is based on directly
estimating the function MISE in Equation (2.4), and then selecting the bandwidth
to minimize this function. Sarda [44] proposed to use

𝐶𝑉𝑆 (ℎ) =
1
𝑛

𝑛∑
𝑖=1

(
𝐹𝑛 (𝑥𝑖) − 𝐹−𝑖 (𝑥)

)2
𝑑𝑥,

where 𝐹−𝑖 (𝑥) denotes the kernel estimator constructed from the data with obser-
vation 𝑥𝑖 omitted.
In spite of the asymptotic optimality theorem proven in Sarda [44], this method
does not provide good results in practice. Instead, the modified cross-validation
proposal of Bowman et al [7] is also asymptotically optimal and works well in
simulation studies and real cases. It consists in minimizing the function

𝐶𝑉𝐵 (ℎ) =
1
𝑛

𝑛∑
𝑖=1

∫ +∞

−∞

(
𝟙[0,+∞[ (𝑥 − 𝑥𝑖) − 𝐹−𝑖 (𝑥)

)2
𝑑𝑥,

Lopez and al [31] 𝐶𝑉𝐵 (ℎ) is an unbiased estimator of MISE(h) plus an unknown
constant that does not depend on ℎ. They also demonstrate that minimization of
𝐶𝑉𝐵 (ℎ) leads to a bandwidth that is asymptotically equivalent to the bandwidth
minimizing MISE(h).
Bowman and al [7] use a simulation study to compare this method with the plug-
in one of Altman and Leger [3] . Better results are obtained, in general, with
cross-validation. A drawback is the worse performance in terms of computational
time, obviously, this is not really a drawback, for a real data situation, because the
minimization process is carried out only once.
▶ Example 2.8. In figure (2.5), we show the performance of the kernel estimator
by using three bandwidth selection methods, using a normal kernel and a standard
normal distribution, in each case.
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2.2.3 Kernel inverse Distribution Function Estimator
The main drawback to sample quantiles is that they experience a substantial lack
of efficiency caused by the variability of individual order statistics in practical
applications, we observe a finite number of samples. Indeed, 𝑄𝑛 is the inverse of
the empirical distribution function.
Estimating the inverse distribution function has been treated extensively by several
authors mention among them Parzen [35], Azzalini [4], Falk [16], Nadaraya [32],
Yamato [61], Yang [62], Harrell and Davis [2.8], and Sheater and Marron [49]. As
we see later, this type of kernel quantile estimator has a slower rate of convergence
when 𝑝 is a boundary point than when 𝑝 is a fixed interior point. Indeed, An
alternative estimator to 𝑝𝑡ℎ sample quantile based on the Nadaraya [32] estimator
𝐹 is the kernel quantile estimators given by

𝑄𝑛 (𝑝) = 𝑖𝑛𝑓 {𝑥 ∈ ℝ \ 𝐹𝑛 (𝑥) ≥ 𝑝}, 𝑝 ∈ [0, 1] (2.10)

Nadaraya [32] showed under some assumptions for 𝑘 , 𝑓 and ℎ 𝑄 (𝑝) has an asymp-
totic standard normal distribution. The almost sure consistency was obtained by
Yamato [61]. Ralescu and Sun [39] obtained the necessary and sufficient conditions
for the asymptotic normality of 𝑄 .
Shankar [45] proved that for all 𝑝 ∈]0, 1[ we have

𝐵𝑖𝑎𝑠

(
𝑄𝑛 (𝑝)

)
=

ℎ2
(
𝑓 (1) (𝑄 (𝑝))

)2

2𝑓 2(𝑄 (𝑝)) + 𝑜
(
ℎ2),

and

𝑉𝑎𝑟

(
𝑄𝑛 (𝑝)

)
=

𝑝 (1 − 𝑝)
𝑛𝑓 2(𝑄 (𝑝)) −

ℎ

𝑛𝑓 (𝑄 (𝑝))𝜑 (𝑘) + 𝑜
(
ℎ

𝑛

)
,

then the mean squared error of 𝑄𝑛 (𝑝) is

Mse
(
𝑄𝑛 (𝑝)

)
=

𝑝 (1 − 𝑝)
𝑛𝑓 2(𝑄 (𝑝)) +

ℎ4
(
𝑓 (1) (𝑄 (𝑝))

)2

4𝑓 2(𝑄 (𝑝)) − ℎ

𝑛𝑓 (𝑄 (𝑝))𝜑 (𝑘) + 𝑜
(
ℎ

𝑛
+ ℎ4

)
.
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▶ Corollary 2.9. The optimal bandwidth of  𝐴𝑚𝑠𝑒
(
𝑄𝑛 (𝑝)

)
is

ℎopt
(
𝑄𝑛 (𝑝)

)
=

(
𝑓 (𝑄 (𝑝))𝜑 (𝑘)

𝑛
(
𝑓 (1) (𝑄 (𝑝))

)2
`2

2 (𝑘)

) 1
3
.

◀

Parzen [35] proposed a version of the kernel quantile estimator as below:

𝑄𝑛 (𝑝) =
𝑛∑
𝑖=1


𝑖
𝑛∫

𝑖−1
𝑛

1
ℎ
𝑘

(𝑥 − 𝑝
ℎ

)
𝑑𝑥

𝑋(𝑖) . (2.11)

In practice, Yang [62] propose the following approximation to 𝑄𝑛 (𝑝) is often
used:

𝑄𝑎𝑛 (𝑝) =
1
𝑛ℎ

𝑛∑
𝑖=1

𝑋(𝑖)𝑘

(
𝑖
𝑛
− 𝑝
ℎ

)
, (2.12)

under suitable conditions on 𝐹 , Falk [16] proposed the following kernel quantile
estimator

�̌�𝑛 (𝑝) =
1
ℎ

∫ 1

0

𝑄𝑛 (𝑥)𝑘
(𝑥 − 𝑝
ℎ

)
𝑑𝑥, (2.13)

this kernel quantile estimator can then be approximated by 
Yang [62]) provided the asymptotic normality property and the mean squared con-
sistency of 𝑄𝑛 (𝑝) and proved that 𝑄𝑛 (𝑝) and 𝑄𝑎𝑛 (𝑝) are asymptotically equivalent
in terms of mean square errors.
Falk [16] showed that the asymptotic performance of 𝑄𝑛 (𝑝) is better than that of
the empirical sample quantile𝑄𝑛 (𝑝) in terms of relative deficiency for appropriately
chosen kernels and sufficiently smooth distribution functions.
Building on Falk [16], Sheater and al [49] gave the asymptotic mean squared error
of 𝑄𝑛 (𝑝).

• If the second derivative of 𝑄 is continuous in a neighborhood of 𝑝 and if 𝐹 is
not symmetric or 𝐹 is symmetric but 𝑝 ≠

1
2 then Sheater and marron [49]
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Provid the asymptotic properties of 𝑄𝑛 (𝑝) are

𝐵𝑖𝑎𝑠 (𝑄𝑛 (𝑝)) =
ℎ2

2

(
𝑄

(2) (𝑝)
)
`2 + 𝑜 (ℎ2),

and

𝑉𝑎𝑟 (𝑄𝑛 (𝑝)) =
𝑝 (1 − 𝑝)

𝑛

(
𝑄 (1) (𝑝)

)2
− ℎ
𝑛

(
𝑄 (1) (𝑝)

)2
𝜑 (𝑘) + 𝑜

(
ℎ

𝑛

)
.

Therefore

𝐴𝑚𝑠𝑒

(
𝑄𝑛 (𝑝)

)
=

𝑝 (1 − 𝑝)
𝑛

(
𝑄

(1) (𝑝)
)2

+ ℎ
4

4

(
𝑄

(2) (𝑝)
)2
`2

2 −
ℎ
𝑛

(
𝑄

(1) (𝑝)
)2
𝜑 (𝑘) (𝑘), (2.14)

the optimal bandwidth for 𝐴𝑚𝑠𝑒
(
𝑄𝑛 (𝑝)

)
is

ℎ𝑜𝑝𝑡

(
𝑄𝑛 (𝑝)

)
=

©«
(
𝑄

(1) (𝑝)
)2
𝜑 (𝑘)

𝑛

(
𝑄

(2) (𝑝)
)2
`2

2

ª®®¬
1
3

. (2.15)

• if 𝐹 is symmetric and 𝑝 = 1
2 then the asymptotic mean squared error

of 𝑄𝑛 (𝑝)

𝐴mse
(
𝑄𝑛 (𝑝)

)
= 𝑛−1

(
𝑄

(1) ( 1
2
) )2

[
1
4 − ℎ2𝜑 (𝑘) +

1
𝑛ℎ
𝜌 (𝑘)

]
,

where 𝜌 (𝑘) =
∞∫

−∞
𝑘2(𝑥)𝑑𝑥 .

In this case, there is no single optimal bandwidth minimizing the Amse             .

Choice of the bandwidth We are interested in the choice of the smoothing
parameter ℎ of 𝑄 (𝑝) in the case where 𝐹 is not symmetric or 𝐹 is symmetric but
𝑝 ≠

1
2 . Several data-based methods can be made to find the asymptotically optimal

bandwidth in kernel quantile estimators for 𝑄𝑛 given by (2.15). In practice, to
evaluate an optimal global bandwidth, we need to develop a method to replace the
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true derivatives of the quantile with her estimators. Note that

𝑄 (1) (𝑝) = 1
𝑓 (𝑄 (𝑝)) 𝑎𝑛𝑑 𝑄 (2) (𝑝) = −𝑓 (1) (𝑄 (𝑝))

𝑓 3(𝑄 (𝑝)) ,

can be estimated as follows (Jones [23]) :

𝑄
(1)
𝑛 =

1
ℎ

𝑛∑
𝑖=1

𝑋(𝑖)

(
𝑘

( (𝑖−1)
𝑛

− 𝑝
ℎ

)
− 𝑘

( (𝑖)
𝑛
− 𝑝
ℎ

))
,

and

𝑄
(2)
𝑛 =

1
ℎ2

𝑛∑
𝑖=1

𝑋(𝑖)

(
𝑘 (1)

( (𝑖−1)
𝑛

− 𝑝
ℎ

)
− 𝑘 (1)

( (𝑖)
𝑛
− 𝑝
ℎ

))
.

Ali Al-Kenani [1] proposes a cross-validation method suitable for smoothing of ker-
nel quantile estimators based on unbiased estimation of a mean integrated squared
error curve of which the minimizing value determines an optimal bandwidth.
Note that when ℎ → 0, 𝑘 (𝑥) → 𝛿 (𝑥), where 𝛿 (.) Dirac delta function.
Now, from (2.12) when ℎ → 0

𝑄𝑛 (𝑝) → 𝛿

(
𝑖

𝑛
− 𝑝

)
𝑋(𝑖),

where and thus a cross-validation function can be written as

CV(ℎ) = 1
𝑛

𝑛∑
𝑖=1

∫ 1

0

{
𝛿

(
𝑖

𝑛
− 𝑝

)
𝑋(𝑖) −𝑄−𝑖

(
𝑖

𝑛

)}2
𝑑𝑝

The smoothing parameterℎ is then chosen to minimize this function. By subtracting
a term that characterizes the performance of the true (𝑝) we have

𝐻 (ℎ) = CV(ℎ) − 1
𝑛

𝑛∑
𝑖=1

∫ 1

0

{
𝛿

(
𝑖

𝑛
− 𝑝

)
𝑋(𝑖) −𝑄

(
𝑖

𝑛

)}2
𝑑𝑝

where the notation𝑄−𝑖
(
𝑖
𝑛

)
with positive subscript denotes a kernel estimator based

on a sample size of 𝑛 − 1. The proceeding arguments demonstrate that 𝐶𝑉 (ℎ)
provides an asymptotic unbiased estimator of the true𝑀𝐼𝑆𝐸 (ℎ) curve for a sample
size 𝑛 − 1.
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▶ Example 2.10. we compare the performances of the two bandwidth selection
methods through the Mse, by using Exponential (1) distribution for 𝑛 = 100.
p 0.05 0.20 0.40 0.60 0.80 0.95
CV method 0.0006 0.0019 0.0058 0.0128 0.0373 0.1212
Sheater’s method 0.0016 0.0021 0.0060 0.0138 0.0407 0.6668

we may conclude that in terms of Mise CV bandwidth selection method is more
efficient than Sheather’s method. ◀
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3 Boundary correction problems in
kernel estimation

Kernel estimation methods depend largely on the smoothing bandwidth, and very
little depends on the type of kernel. It is well known that the performance of the
classical kernel estimator at boundary points differs from the interior points even
if we choose an adequate bandwidth due to so-called "boundary effects".

In order to deal with the boundary effects that occur in nonparametric, we note
that the boundary problem in kernel density estimation has a non-consistency
problem, in addition to the slow convergence problem of the bias ( Gasser and al
[20], Zhang and Karunamuni [63] and Bouredji and Sayah [6] ). It is necessary to
note that in the boundary region the estimator of the KDE is consistent. In such
cases, modification of the KDF is needed to improve the Bias.

3.1 Boundary correction problems in kernel
distribution estimation

It is very often the case that the natural support of a distribution to be estimated
is not the whole real line but an interval bounded on one or both sides [𝑎, +∞[,
[−∞, 𝑏 [ and [𝑎, 𝑏 [ where 𝑎 < 𝑏. The boundary problem in kernel distribution
estimation is less severe than in kernel density estimation, this is due to the extra
information 𝐹 (𝑎) = 0, 𝐹 (𝑏) = 1 where 𝑥 ∈ [𝑎, 𝑏]. However, if we know that
𝑓 (𝑎) = 0 or 𝑓 (𝑏) = 0. Hence, the distribution kernel estimator 𝐹𝑛 (𝑥) is free of
boundary problems in such a case. In other cases, there has been intensive work in
the literature about the Bias reduction in kernel distribution estimation, especially
for the left boundary region in such a situation some methods are discussed among
them

• Generalized reflection method : Kolǎcek and Karunamuni [26] consid-
ered the boundary problem in distribution function estimation in estimating
ROC curves using the transformation method discussed in Zhang and al [63].
The proposed estimator has the form

𝐹𝑛,𝑟𝑜𝑐 (𝑥) =
1
𝑛

𝑛∑
𝑖=1

𝐾

(
𝑥 − 𝑔1(𝑋𝑖)

ℎ

)
+ 1
𝑛

𝑛∑
𝑖=1

𝐾

(
𝑥 − 𝑔2(𝑋𝑖)

ℎ

)
, (3.1)
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where 𝑘 is a kernel function with support [−1; 1], and 𝑔𝑖, 𝑖 = 1, 2 are two
transformations nonnegative, continuous and monotonically increasing func-
tions defined on [0, +∞[, that need to be determined.
The trivial choice 𝑔1(𝑦) = 𝑔2(𝑦) = 𝑦 represents the classical reflection method
estimator proposed by Horova and al [22]), other various improvements trans-
formations can be found in Kolǎcek and Karunamuni [26].
Under the assumption that 𝑔−1(0) = 1 and 𝑔(1) (0) = 0, where 𝑔−1 is the
inverse function of 𝑔, the expectation value of the Bias and Variance of the
estimator at 𝑥 = 𝑐ℎ, 0 ≤ 𝑐 ≤ 1, are :

𝐵𝑖𝑎𝑠
(
𝐹𝑛,𝑟𝑜𝑐 (𝑥)

)
=ℎ2

𝑓 (1) (0)©«
𝑐2

2 + 2𝑐
−𝑐∫

−1

𝐾 (𝑡)𝑑𝑡 −
𝑐∫

−𝑐

𝑡𝐾 (𝑡)𝑑𝑡ª®¬
− 𝑓 (0)𝑔(2)1 (0)

𝑐∫
−1

(𝑐 − 𝑡)𝐾 (𝑡)𝑑𝑡

−𝑓 (0)𝑔(2)2 (0)
−𝑐∫

−1

(𝑐 + 𝑡)𝐾 (𝑡)𝑑𝑡
 + 𝑜

(
ℎ2),

𝑛 Var
(
𝐹𝑛,𝑟𝑜𝑐 (𝑥)

)
=𝐹 (𝑥) (1 − 𝐹 (𝑥)) + ℎ𝑓 (0)


𝑐∫

−1

𝐾2(𝑡)𝑑𝑡

−2
𝑐∫

−1

𝐾 (𝑡)𝐾 (𝑡 − 2𝑐)𝑑𝑡 +
−𝑐∫

−1

𝐾2(𝑡)𝑑𝑡
 + 𝑜 (ℎ).

(3.2)

• A modified Champernowne transformation : Tour and al [53] propose
an estimator of heavy-tailed of 𝐹 , based on ideas of the Generalized reflection
method, and the work of Buch Larsen and al [8]. The transformation idea is
based on transforming the original data by a new parametric transformation
𝑇 , chosen by the modified Champernowne distribution function.
The modified Champernowne distribution is defined for 𝑥 ≥ 0 formulated as

𝑇 (𝑥) = (𝑥 + 𝑐)𝛼 − 𝑒𝛼
(𝑥 + 𝑐)𝛼 + (𝑀 + 𝑐) − 2𝑐𝛼 𝑥 ≥ 0, (3.3)

with parameter 𝛼 > 0, 𝑀 > 0 and 𝑐 ≥ 0.
Notice that 𝑇𝑎,𝑀,0(𝑀) = 0.5 this suggests that 𝑀 can be estimated by the
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empirical median ( see Lehmann [29]).
In the other cases, 𝑇 (𝑥) has a density given by

𝑡 (𝑥) = 𝛼 (𝑥 + 𝑐)𝛼−1((𝑀 + 𝑐)𝛼 − 𝑐𝛼 )
((𝑥 + 𝑐)𝛼 + (𝑀 + 𝑐) − 2𝑐𝛼 )2 𝑥 ≥ 0,

the modified Champernowne distribution converges to a Pareto distribution
in the tail:

𝑡𝛼,𝑀,𝑐 (𝑥) →
𝛼 ((𝑀 + 𝑐)𝛼 − 𝑐𝛼 )

𝑥𝛼+1 as 𝑥 −→ ∞,

for more details about modified Champernowne distribution see for instance
Buch Larsen and al [8].
The form of the estimator of the original data set, 𝑋1, 𝑋2, . . . , 𝑋𝑛 is defined for
𝑥 = 𝑐ℎ, 0 ≤ 𝑐 ≤ 1 as,

𝐹𝑎 (𝑥) = 𝐻c(𝑇 (𝑥)),
where

𝐻𝑐 (𝑦) =
1
𝑛

𝑛∑
𝑖=1

𝐾

(
𝑦 − 𝑔(𝑌𝑖)

ℎ

)
+ 1
𝑛

𝑛∑
𝑖=1

𝐾

(
−𝑦 + 𝑔(𝑌𝑖)

ℎ

)
,

thus 𝐹𝑎 (𝑥) is a natural boundary continuation of the classical kernel distribu-
tion estimator.
then the expectation value of the Bias and variance are :

Bias(𝐹𝑎 (𝑥)) = ℎ2

(
𝑓

𝑇 (1)

) (1)
(0) 1
𝑇 (1) (0)

©«𝑐
2

2 + 2𝑐
−𝑐∫

−1

𝐾 (𝑡)𝑑𝑡 −
𝑐∫

−𝑐

𝑡𝐾 (𝑡)𝑑𝑡ª®¬
− 𝑓 (0)
𝑇 (1) (0)

𝑔(2) (0)©«
𝑐∫

−1

(𝑐 − 𝑡)𝐾 (𝑡)𝑑𝑡 +
−𝑐∫

−1

(𝑐 + 𝑡)𝐾 (𝑓 )𝑑𝑡ª®¬
 + 𝑜

(
ℎ2),

(3.4)
and

Var(𝐹𝑎 (𝑥)) =
𝐹 (𝑥) (1 − 𝐹 (𝑥))

𝑛
+ ℎ
𝑛

𝑓 (0)
𝑇 (1) (0)

2
−𝑐∫

−1

𝐾2(𝑡)𝑑𝑡 − 𝑐

+
𝑐∫

−𝑐

𝐾2(𝑡)𝑑𝑡 − 2
𝑐∫

−1

𝐾 (𝑡)𝐾 (𝑡 − 2𝑐)𝑑𝑡
 + 𝑜

(
ℎ

𝑛

)
.
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In the case where the support of the variable is [𝑎, 𝑏] we have

• Boundary kernel method : Tenreiro [51] proposed a boundary kernel
method for correcting the boundary problem. However, Tenreiro [51] did
not reveal the fact that there is no boundary problem in distribution function
estimation if the density has a zero value at the endpoints of the support. In
his method, the boundary kernel 𝑘𝑐 is constructed by truncating a density
kernel at [−𝑐, 𝑐], and then normalizing it so that it integrates to 1 on [−𝑐, 𝑐].
Realizing the fact that such boundary kernel corrects the boundary problem
by shrinking the bandwidth to zero when the data is near the boundary the
resulting distribution estimates may have high variability at such points. Re-
cently, Zhang and al [64] defined, the boundary distribution kernel estimator
is defined for 𝑥 ∈ [𝑎, 𝑏] as

𝐹𝐵 (𝑥) =



1
𝑛

𝑛∑
𝑖=1

𝐾𝑐

(
𝑥 − 𝑋𝑖
ℎ

)
, 𝑎 ≤ 𝑥 < 𝑎 + ℎ, 𝑐 = (𝑥 − 𝑎)/ℎ

1
𝑛

𝑛∑
𝑖=1

𝐾

(
𝑥 − 𝑋𝑖
ℎ

)
, 𝑎 + ℎ ≤ 𝑥 ≤ 𝑏 − ℎ

1
𝑛

𝑛∑
𝑖=1

𝐾∗
𝑐

(
𝑥 − 𝑋𝑖
ℎ

)
, 𝑏 − ℎ ≤ 𝑥 ≤ 𝑏, 𝑐 = (𝑏 − 𝑥)/ℎ

(3.5)

where 𝑘∗𝑐 and 𝑘𝑐 are the right and the left boundary kernel respectively and
they must fulfill the following relation

1∫
−𝑐

𝑐 + 𝑡
𝑐
𝑘 (𝑡)𝑑𝑡 = 1,

𝑐∫
−1

𝑐 − 𝑡
𝑐
𝑘 (𝑡)𝑑𝑡 = 1.

Then the expectation value of the Bias and variance for 𝑥 = 𝑎+𝑐ℎ, 0 ≤ 𝑐 ≤ 1
are

Bias(𝐹𝐵 (𝑥)) =
ℎ2

2 𝑓
(1) (𝑎)


𝑐∫

−1

(𝑐 − 𝑦)2𝑘𝑐 (𝑦)𝑑𝑦 − 𝑐2
 + 𝑜

(
ℎ2) (3.6)

and
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Var(𝐹𝐵 (𝑥)) =
2ℎ
𝑛
𝑓 (𝑎)

𝑐∫
−1

(𝑐 − 𝑦)𝑘𝑐 (𝑦)𝐾𝑐 (𝑦)𝑑𝑦 + 𝑜
(
ℎ

𝑛

)
.

For 𝑥 = 𝑏 − 𝑐ℎ, 0 ≤ 𝑐 ≤ 1,

Bias(𝐹𝐵 (𝑥)) =
ℎ2

2 𝑓
(1) (𝑏)


1∫

−𝑐

(𝑐 + 𝑦)2𝑘∗𝑐 (𝑦)𝑑𝑦 − 𝑐2
 + 𝑜

(
ℎ2) (3.7)

and

Var(𝐹𝐵 (𝑥)) =
2ℎ
𝑛
𝑓 (𝑏)

1∫
−𝑐

(𝑐 + 𝑦)𝑘∗𝑐 (𝑦)
[
1 − 𝐾∗

𝑐 (𝑦)
]
𝑑𝑦 + 𝑜

(
ℎ

𝑛

)

From (3.2), (3.6), (3.7) and (3.4) we turned out that the bias has been reduced
to the second power of the bandwidth, while the bias of the kernel distribution
function estimator has the first power of the bandwidth at the boundary, while the
variance remains in the same order as the classical estimator.

3.2 Boundary correction problems in kernel
inverse distribution estimation

It’s well known that for high probabilities (0.95, 0.975 or 0.99), the classical esti-
mators can be quite inefficient because have a large bias when 𝑝 is close to 1. (see
Wand and al [55], Jones and al [23], and reference therein).

• Beta Kernel estimation Harrell and Davis [21] or Park [34] suggest using
the symmetric kernel, namely, the Beta-type kernel that as follows

𝐻𝐷𝑛 (𝑝) =
𝛤 (𝑛 + 1)

𝛤 ((𝑛 + 1)𝑝)𝛤 ((𝑛 + 1) (1 − 𝑝)

1∫
0

𝐹−1
𝑛 (𝑦)𝑦 (𝑛+1)𝑝−1(1−𝑦) (𝑛+1) (1−𝑝)−1𝑑𝑦,

where 𝐹−1
𝑛 (𝑥) is the inverse of the empirical distribution function
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𝐹−1
𝑛 (𝑦) =

{
𝑋(𝑖) if (𝑖 − 1)/𝑛 < 𝑦 ≤ 𝑖/𝑛
𝑋(𝑛) if 1 − 1/𝑛 < 𝑦 < 1.

and 𝛤 is the gamma function that is defined by.

𝛤 (𝑘) =
+∞∫

0

𝑥𝑘−1𝑒−𝑥𝑑𝑥, 𝑘 > 0.

The 𝐻𝐷𝑛 (𝑝) estimator can be expressed as L-estimator

𝐻𝐷𝑛 (𝑝) =
𝑛∑
𝑖=1

𝑤𝑛,𝑖 (𝑝)𝑋(𝑖),

where

𝑤𝑛,𝑖 (𝑝) =
𝛤 (𝑛 + 1)

𝛤 ((𝑛 + 1)𝑝)𝛤 ((𝑛 + 1) (1 − 𝑝)

𝑖/𝑛∫
(𝑖−1)/𝑛

𝑦 (𝑛+1)𝑝−1(1 − 𝑦) (𝑛+1) (1−𝑝)−1𝑑𝑦.

Notice that the expected value of the 𝑘𝑡ℎ order statistic is given by

𝐸
(
𝑋(𝑘)

)
=

𝛤 (𝑛 + 1)
𝛤 (𝑘)𝛤 (𝑛 − 𝑘 + 1)

1∫
0

𝑄 (𝑦)𝑦𝑘−1(1 − 𝑦)𝑛−𝑘𝑑𝑦

Asymptotic behavior of HD estimator
Harrel and Davis [21] show for 𝐹 be an absolutely continuous distribution
function with a strictly positive continuous density function 𝑓 , such that

+∞∫
−∞

|𝑥𝛼 |𝑓 (𝑥)𝑑𝑥 < ∞ for some 𝛼 > 0.

The 𝐻𝐷 estimator satisfies the same central limit theorem as does 𝑄𝑛 :

√
𝑛(𝐻𝐷𝑛 (𝑝) −𝑄 (𝑝)) D→ N

(
0, 𝑝 (1 − 𝑝)
𝑓 2(𝑄 (𝑝))

)
, as 𝑛 → ∞ for 𝑝 ∈]0, 1[.
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• Beta Kernel estimation involving transform data : In order to correct
the bias problems in kernel quantile, Charpentier and Oulidi [9] suggested
several nonparametric quantile estimators based on the beta-kernel and ap-
plied them to transform data by the generalized Champernowne distribution
initially fitted to the data.
Transforming observations Given a random variable 𝑌 , if 𝐻 is a strictly
increasing function, then the 𝑝-quantile of𝐻 (𝑌 ) is equal to𝐻 (𝑄 (𝑌, 𝑝)). Thus,
an idea can be to transform initial observations {𝑋1, . . . , 𝑋𝑛} into a sample
{𝑌1, . . . , 𝑌𝑛} = {𝐻 (𝑋1), . . . , 𝐻 (𝑋𝑛)} taking values in [0, 1], and then to use a
beta-kernel based estimator, if 𝐻 : ℝ → (0, 1). Then

𝑄𝑐ℎ,𝑛 (𝑝) = 𝐻−1(𝑄𝑛 (𝑌, 𝑝)),

In theory, any transformation 𝐻 : ℝ → [0, 1] should work. but Buch-Larsen
and al [8] suggested to chose a transformation 𝐻 such that 𝐻 (𝑋 ) is closed
to the uniform distribution. But since 𝐹 is unknown, we need to find a
distribution with nice goodness of fit properties, at least in tails (since we
want to have a consistent estimate when p is close to one). And furthermore,
since we want a standard procedure, we need a distribution that fits well
losses and can be easily estimated. Thus, Buch-Larsen and al [8] suggested
to set 𝑌𝑖 = 𝐻 (𝑋𝑖) where 𝐻 is a Champernowne distribution. Charpentier and
Oulidi [9] use a monte Carlo study to explain the asymptotic behavior of
𝑄𝑐ℎ,𝑛 in MSE criteria.

• Champernowne transformation Sayah and al. [43] proposed a new es-
timator of the quantile function, based on the modified Champernowne
transformation noted by 𝑇𝐾𝑄𝐸. The idea is to transform the initial data
{𝑋1, . . . , 𝑋𝑛} into {𝑍1, . . . , 𝑍𝑛}, where 𝑍𝑖 := 𝑇 (𝑋𝑖), 𝑖 = 1, . . . , 𝑛.
This can be assumed to have been produced by a (0, 1)-uniform rv 𝑍 .
Thus, (2.11) yields the transformed kernel quantile estimator (TKQE)

�̂�𝑛,𝑋 (𝑝) := 𝑇 −1
(
�̂�𝑛,𝑍 (𝑝)

)
(3.8)

where 𝑇 −1 is the inverse of 𝑇 (3.3) and

�̂�𝑛,𝑧 (𝑝) :=
𝑛∑
𝑖=1

𝑍𝑖,𝑛

𝑖
𝑛∫

𝑖−1
𝑛

𝐾ℎ (𝑧 − 𝑝)𝑑𝑧
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The estimation procedure is described as follows:

1. Compute the estimates (𝑎, �̂�, 𝑐) of the parameters of the modified Cham-
pernowne distribution (3.3).
Then estimate the pair (𝛼, 𝑐) which maximizes the log-likelihood func-
tion (see, Buch-Larsen and al. [8]):

𝑙 (𝛼, 𝑐) = 𝑛 log𝛼 + 𝑛 log((𝑀 + 𝑐)𝛼 − 𝑐𝛼 ) + (𝛼 − 1)
𝑛∑
𝑖=1

log(𝑋𝑖 + 𝑐)

− 2
𝑛∑
𝑖=1

log((𝑋𝑖 + 𝑐)𝛼 + (𝑀 + 𝑐)𝑎 − 2𝑐𝛼 )

2. Transform the data 𝑋1, . . . , 𝑋𝑛 into 𝑍1, . . . , 𝑍𝑛 by

𝑍𝑖 = 𝑇𝛼,�̄�,𝑐 (𝑋𝑖), 𝑖 = 1, . . . , 𝑛

3. Using (2.11), calculate the kernel quantile estimator �̂�𝑚,𝑍 (𝑝) of the
transformed data: 𝑍1, . . . , 𝑍𝑛 .

4. The resulting TKQE of the original data 𝑋1, . . . , 𝑋𝑛 is given by

�̂�𝑛,𝑥 (𝑝) = 𝑇 −1
𝑎,𝑋,𝑐

(
�̂�𝑛,𝑍 (𝑝)

)
Then the Bias and the Variance of �̂�𝑛,𝑥 (𝑝) are respectively

Bias
(
�̂�𝑛,𝑥 (𝑝)

)
=
ℎ2

2

[ (
𝑇 −1) (2) (𝑄𝑍 (𝑝)) (𝑄 (1)

𝑍

)2
(𝑝) +

(
𝑇 −1) (1) (𝑄𝑍 (𝑝))𝑄 (2)

𝑍
(𝑝)

]
`2(𝐾)+𝑜

(
ℎ2),

and

Var
(
�̂�𝑛,𝑋 (𝑝)

)
=

( (
𝑇 −1) (1) (𝑄𝑍 (𝑝))𝑄 (1)

𝑍
(𝑝)

)2
(
𝑝 (1 − 𝑝)

𝑛
− ℎ
𝑛
𝜑 (𝐾)

)
+ 𝑜

(
ℎ

𝑛

)
,

where `2(𝐾) :=
∫
𝑡2𝐾 (𝑡)𝑑𝑡, 𝜑 (𝐾) := 2

∫
𝑡𝐾 (𝑡)

(∫ 𝑡

−∞𝐾 (𝑠)𝑑𝑠
)
𝑑𝑡,𝑄

(1)
𝑍

and 𝑄 (2)
𝑍

are the first and the second derivatives of 𝑄𝑍 .
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4

4.1 Introduction
The cumulative distribution function 𝐹 is used to determine the probability that a
random observation 𝑋 that is taken from an unknown population will be less than
or equal to a certain 𝑥-value. Several approaches have been made to estimate this
probability in this paper, we consider the classical kernel estimator 𝐹𝑛 proposed
by Nadaraya [32] defined for 𝑋1, 𝑋2, ..., 𝑋𝑛 a sample of a continuous real random
variable by:

𝐹𝑛 (𝑥) =
1
𝑛

𝑛∑
𝑖=1

𝐾

(
𝑥 − 𝑋𝑖
ℎ

)
, 𝑥 ∈ ℝ (4.1)

such an estimator arises as an integral of kernel density estimator 𝑓𝑛 which is
introduced by Rosenblatt [42] and Parzen [35] that has the form:

𝑓𝑛 (𝑥) =
1
𝑛ℎ

𝑛∑
𝑖=1

𝑘

(
𝑥 − 𝑋𝑖
ℎ

)
, 𝑥 ∈ ℝ (4.2)

where ℎ := ℎ𝑛 is a bandwidth that controls the smoothness of 𝐹𝑛 and satisfying
ℎ → 0 also 𝑛ℎ → +∞ if 𝑛 → +∞. The distribution function 𝐾 is defined from a

41
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1
Abstract In this paper, two kernel cumulative distribution function estimators are
introduced and investigated in order to improve the boundary effects, we will re-
strict our attention to the right boundary. The first estimator uses a self-elimination
between modify theoretical Bias term and the classical kernel estimator itself. The
basic technique of construction the second estimator is kind of a generalized re-
flection method involving reflection a transformation of the observed data. The
theoretical properties of our estimators turned out that the Bias has been reduced
to the second power of the bandwidth, simulation studies and two real data ap-
plications were carried out to check these phenomena and are conducted that the
proposed estimators are better than the existing boundary correction methods.
keywords : Boundary effects, Bias reduction, Cumulative distribution function,
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Chapter 4 Nonparametric Kernel Distribution Function Estimation Near Endpoints

kernel function 𝑘 with the support [−1, 1] as:

𝐾 (𝑥) =
𝑥∫

−1

𝑘 (𝑡)𝑑𝑡 . (4.3)

Many theoretical properties of 𝐹𝑛 have been investigated among them, the uniform
convergence of 𝐹𝑛 to 𝐹 with probability one, was proved byWinter [59] and Yamato
[61], the asymptotic normality of 𝐹𝑛 is established by Watson and Leadbetter [57]
and an asymptotic expression for the mean squared error of 𝐹𝑛 and the asymptoti-
cally optimal smoothing parameter proved by Azzalini [4]. These properties are
satisfactory, but when the support of the variable is bounded kernel estimation may
suffer. It is well known that 𝐹𝑛 is a biased estimator near the boundary of its support,
due to so-called boundary effects, this fact can be clearly seen by examining the
behavior of 𝐹𝑛 at interior points ]ℎ, 1 − ℎ] and at the right boundary, ]1 − ℎ, 1].
The value of Bias and Variance of 𝐹𝑛 at interior points provided by Azzalini [4] are
respectively:

1
2 𝑓

(1) (𝑥)`2(𝑘)ℎ2 + 𝑜 (ℎ2), (4.4)

and
𝐹 (𝑥) (1 − 𝐹 (𝑥))

𝑛
+ ℎ
𝑛
𝑓 (𝑥)©«

1∫
−1

𝐾2(𝑡)𝑑𝑡 − 1ª®¬ + 𝑜
(
ℎ

𝑛

)
, (4.5)

where `2(𝑘) =
∫

𝑡2𝑘 (𝑡)𝑑𝑡 and 𝑓 (1) denote the first derivative of 𝑓 .

However, in the right boundary, we assume 𝑥 = 1 − 𝑐ℎ where 0 ≤ 𝑐 < 1, then
the Bias and Variance of 𝐹𝑛 at 𝑥 are respectively:

− ℎ𝑓 (1)
−𝑐∫

−1

𝐾 (𝑡)𝑑𝑡 + ℎ2𝑓 (1) (1)©«𝑐
2

2 −
𝑐∫

−1

𝑡𝐾 (𝑡)𝑑𝑡 + 𝑐
−𝑐∫

−1

𝐾 (𝑡)𝑑𝑡ª®¬ + 𝑜 (ℎ2), (4.6)

and

𝐹 (𝑥) (1 − 𝐹 (𝑥))
𝑛

+ ℎ
𝑛
𝑓 (1)©«−𝑐 − 2

−𝑐∫
−1

𝐾 (𝑡)𝑑𝑡 +
𝑐∫

−1

𝐾2(𝑡)𝑑𝑡ª®¬ + 𝑜
(
ℎ

𝑛

)
. (4.7)
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In the results, we can see that for densities taking value zero at the endpoints
of the support the first order term in (4.6) disappears and the Bias converges to
zero at the usual rate 𝑜 (ℎ2). Otherwise, the Bias of 𝐹𝑛 is of order 𝑜 (ℎ2) at the
interior instead is of order 𝑜 (ℎ) near the right boundary points this is the bound-
ary problem of the kernel distribution estimator. In order to correct this problem,
many methods have been proposed for kernel estimation in regression and density
function estimation, among them, reflection of data Silverman [46], pseudo-data
method Cowlling [10] and also the boundary kernel method gasser and marron
[20]. However, methods in kernel distribution function estimation are relatively
few, this is due to the extra information 𝐹 (0) = 0 and 𝐹 (1) = 1. Karunamuni and al
[26] considered this problem in estimating ROC curves using the transformation
method, Tour and al [53] used a Champernowne transformation for heavy-tailed
distributions in the left side of the support, and Tenreiro [51] and Zhang and al
[64] proposed a boundary kernel method free of boundary problems. In this paper,
we propose two estimators for kernel distribution function to improve the right
boundary effects.

The rest of the paper is organized as follows. Notations and theoretical properties
of the proposed estimators are introduced in Section 2. In Section 3 we support the
theoretical results by simulation studies and two real data applications. The paper
is finalized with some concluding remarks.

4.2 Assumptions and main results

For each result in this section, one at least of the following two assumptions will
be used

• 𝐴1 : 𝐹 is twice continuously differentiable in a neighborhood of 𝑥 and 𝑓 (1) ≠
0.

• 𝐴2: The kernel 𝑘 is a probability density, nonnegative, bounded, symmetric,
and has compact support [−1, 1].

▶ Remark 4.1. If 𝑥 is a point in the right boundary, we can write 𝑥 = 1−𝑐ℎ where
𝑐 ∈ [0, 1[ therefore we have 1 − 𝑐ℎ > ℎ. ◀
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4.2.1 Modify Bias of Kernel Estimator
In the context of Bias reduction in distribution estimation, our proposed estimator
𝐹𝑛 consists to subtract the modify of the theoretical 𝐵𝑖𝑎𝑠 (𝐹𝑛 (𝑥)) term (4.6) from 𝐹𝑛
itself when the data near the right boundary of the support for 𝑥 = 1 − 𝑐ℎ defined
by

𝐹𝑛 (𝑥) = 𝐹𝑛 (𝑥) + ℎ𝛹 (𝑐) 𝑓𝑛 (𝑥) + ℎ2𝛼 𝑓 (1)𝑛 (𝑥), (4.8)

where 𝑓 (1)𝑛 denote to the first derivative of kernel density estimator. Then the
explicit form of our estimator is given by

𝐹𝑛 (𝑥) =
1
𝑛

𝑛∑
𝑖=1

𝐾

(
𝑥 − 𝑋𝑖
ℎ

)
+ℎ𝛹 (𝑐)

(
1
𝑛ℎ

𝑛∑
𝑖=1

𝑘

(
𝑥 − 𝑋𝑖
ℎ

))
+ℎ2𝛼

(
1
𝑛ℎ2

𝑛∑
𝑖=1

𝑘 (1)
(
𝑥 − 𝑋𝑖
ℎ

))
,

where 𝑘 (1) is the first derivative of kernel 𝑘 , 𝛼 is a positive constant and𝛹 (𝑐) to be
determined in the following proof in such a way the terms of ℎ in the Bias vanish.

▶ Theorem 4.2. Under the above assumptions 𝐴1 and 𝐴2 we obtain at 𝑥 = 1 − 𝑐ℎ

𝐵𝑖𝑎𝑠 (𝐹𝑛 (𝑥)) = ℎ2𝑓 (1) (1)𝜙 (𝑐) + 𝑜 (ℎ2), (4.9)

𝑉𝑎𝑟 (𝐹𝑛 (𝑥)) =
𝐹 (𝑥) (1 − 𝐹 (𝑥))

𝑛
+ ℎ
𝑛
𝑓 (1)𝜌 (𝑐) + 𝑜

(
ℎ

𝑛

)
, (4.10)

where

𝜙 (𝑐) = 𝑐2

2 −
𝑐∫

−1

𝑡𝐾 (𝑡)𝑑𝑡 +
−𝑐∫

−1

𝑐𝐾 (𝑡)𝑑𝑡 −
1∫

−𝑐

((𝑡 + 𝑐)𝛹 (𝑐) − 𝛼)𝑘 (𝑡)𝑑𝑡,

𝜌 (𝑐) = 𝑐 −
𝑐∫

−1

𝐾2(𝑡)𝑑𝑡 + 2
−𝑐∫

−1

𝐾 (𝑡)𝑑𝑡 −
1∫

−𝑐

(
𝛹 (𝑐)𝑘 (𝑡) + 𝛼𝑘 (1) (𝑡)

)2
𝑑𝑡

−2
1∫

−𝑐

(
𝛹 (𝑐)𝑘 (𝑡) + 𝛼𝑘 (1) (𝑡)

)
𝐾 (𝑡)𝑑𝑡 .
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Additionally, it can be seen that the optimal bandwidths ℎ∗𝑜𝑝𝑡 for minimizing𝑀𝑠𝑒
is :

ℎ∗𝑜𝑝𝑡 =

(
𝑓 (1)𝜌 (𝑐)

4𝑛
(
𝑓 (1) (1)𝜙 (𝑐)

)2 ,

◀

Proof. For 𝑥 ∈]1 − ℎ, 1], we have

𝐸 (𝐹𝑛 (𝑥)) = 𝐸 (𝐹𝑛) + ℎ𝛹 (𝑐)𝐸 (𝑓𝑛 (𝑥)) + ℎ2𝛼𝐸
(
𝑓
(1)
𝑛 (𝑥)

)
.

We calculate each term separately

𝐸 (𝐹𝑛 (𝑥)) =
1∫

0

𝐾

(𝑥 − 𝑧
ℎ

)
𝑓 (𝑧)𝑑𝑧

= ℎ

1
ℎ
−𝑐∫

𝑐

𝐾 (𝑡) 𝑓 (𝑥 − 𝑡ℎ)𝑑𝑡 + ℎ
𝑐∫

−𝑐

𝐾 (𝑡) 𝑓 (𝑥 − 𝑡ℎ)𝑑𝑡,

by using the remark (4.1) and the property 𝐾 (𝑡) = 1−𝐾 (−𝑡) on the first integration,
we have

𝐸 (𝐹𝑛 (𝑥)) = 𝐹 (1 − 2𝑐ℎ) − ℎ
−𝑐∫

−1

𝐾 (𝑡) 𝑓 (𝑥 + 𝑡ℎ)𝑑𝑡 + ℎ
𝑐∫

−𝑐

𝐾 (𝑡) 𝑓 (𝑥 − 𝑡ℎ)𝑑𝑡,

depending on a Taylor expansion and some algebraic calculation, we have

𝐸 (𝐹𝑛 (𝑥)) = 𝐹 (𝑥) − ℎ𝑓 (1)
−𝑐∫

−1

𝐾 (𝑡)𝑑𝑡 + ℎ2𝑓 (1) (1)©«𝑐
2

2 −
𝑐∫

−1

𝑡𝐾 (𝑡)𝑑𝑡 + 𝑐
−𝑐∫

−1

𝐾 (𝑡)𝑑𝑡ª®¬ + 𝑜 (ℎ2).

This is proof the relation(4.6).
By the same procedure, we have

𝐸 (𝑓𝑛 (𝑥)) = 𝑓 (1)
1∫

−𝑐

𝑘 (𝑡)𝑑𝑡 − ℎ𝑓 (1) (1)
1∫

−𝑐

(𝑡 + 𝑐)𝑘 (𝑡)𝑑𝑡 + 𝑜 (ℎ),

and

𝐸

(
𝑓
(1)
𝑛 (𝑥)

)
= 𝑓 (1) (1)

1∫
−𝑐

𝑘 (𝑡)𝑑𝑡 + 𝑜 (1).

At last, we combine all terms, we obtain
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𝐸 (𝐹𝑛 (𝑥)) = 𝐹 (𝑥) + ℎ𝑓 (1)©«−
−𝑐∫

−1

𝐾 (𝑡)𝑑𝑡 +𝛹 (𝑐)
1∫

−𝑐

𝑘 (𝑡)𝑑𝑡ª®¬ + ℎ2𝑓 (1) (1)©«𝑐
2

2 −
𝑐∫

−1

𝑡𝐾 (𝑡)𝑑𝑡

+
−𝑐∫

−1

𝑐𝐾 (𝑡)𝑑𝑡 −
1∫

−𝑐

(𝛹 (𝑐) (𝑡 + 𝑐) − 𝛼)𝑘 (𝑡)𝑑𝑡ª®¬ + 𝑜 (ℎ2),

therefore, 𝐸 (𝐹𝑛 (𝑥)) can be improved the Bias by letting the terms in ℎ, vanish if
and only if we choice𝛹 (𝑐) by

𝛹 (𝑐) =

−𝑐∫
−1

𝐾 (𝑡)𝑑𝑡

1∫
−𝑐

𝑘 (𝑡)𝑑𝑡

.

This completes the proof of expression (4.9).
On the other hand

𝑉𝑎𝑟

(
𝐹𝑛 (𝑥)

)
= 1

𝑛
𝐸

(
𝐾

(
𝑥 − 𝑋𝑖
ℎ

)
+ ℎ𝛹 (𝑐)𝑘

(
𝑥 − 𝑋𝑖
ℎ

)
+ 𝛼ℎ2𝑘 (1)

(
𝑥 − 𝑋𝑖
ℎ

))2

− 1
𝑛

(
𝐸

(
𝐾

(
𝑥 − 𝑋𝑖
ℎ

)
+ ℎ𝛹 (𝑐)𝑘

(
𝑥 − 𝑋𝑖
ℎ

)
+ 𝛼ℎ2𝑘 (1)

(
𝑥 − 𝑋𝑖
ℎ

)))2

= 𝐽11 + 𝐽12 + 𝐽13 + 𝐽14 + 𝐽15 + 𝐽16,
where

𝐽11 =
1
𝑛
𝐸

(
𝐾2

(
𝑥 − 𝑋𝑖
ℎ

))
− 1
𝑛

(
𝐸

(
𝐾

(
𝑥 − 𝑋𝑖
ℎ

)))2

=
ℎ

𝑛

1
ℎ
−𝑐∫

−𝑐

𝐾2(𝑡) 𝑓 (𝑥 − 𝑡ℎ)𝑑𝑡 − 1
𝑛
𝐹 2(𝑥) + 𝑜

(
ℎ

𝑛

)
= ℎ

𝑛

𝑐∫
−𝑐

𝐾2(𝑡) 𝑓 (𝑥 − 𝑡ℎ)𝑑𝑡 + ℎ
𝑛

1
ℎ
−𝑐∫

𝑐

(1 − 𝐾 (−𝑡))2𝑓 (𝑥 − 𝑡ℎ)𝑑𝑡 − 1
𝑛
𝐹 2(𝑥) + 𝑜

(
ℎ

𝑛

)
,

by Taylor expansion, we have

𝐽11 =
𝐹 (𝑥) (1 − 𝐹 (𝑥))

𝑛
+ ℎ
𝑛
𝑓 (1)©«−𝑐 − 2

−𝑐∫
−1

𝐾 (𝑡)𝑑𝑡 +
𝑐∫

−1

𝐾2(𝑡)𝑑𝑡ª®¬ + 𝑜
(
ℎ

𝑛

)
,

= 𝑉𝑎𝑟 (𝐹𝑛 (𝑥)).

This is proof of the relation (4.7).
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𝐽12 = 1
𝑛
𝐸

(
ℎ𝛹 (𝑐)

(
1
ℎ
𝑘

(
𝑥 − 𝑋𝑖
ℎ

)))2
− 1
𝑛
𝐸2

(
ℎ𝛹 (𝑐)

(
1
ℎ
𝑘

(
𝑥 − 𝑋𝑖
ℎ

)))
= ℎ

𝑛
(𝛹 (𝑐))2𝑓 (1)

1∫
−𝑐

𝑘2(𝑡)𝑑𝑡 + 𝑜
(
ℎ

𝑛

)
,

𝐽13 = ℎ4𝛼2

𝑛
𝐸

((
1
ℎ2𝑘

(1)
(
𝑥 − 𝑋𝑖
ℎ

)))2
− 1
𝑛

(
𝐸

(
𝛼ℎ2

(
1
ℎ2𝑘

(1)
(
𝑥 − 𝑋𝑖
ℎ

))))2

=
ℎ𝛼2

𝑛
𝑓 (1)

1∫
−𝑐

(
𝑘 (1) (𝑡)

)2
𝑑𝑡 + 𝑜

(
ℎ

𝑛

)
,

𝐽14 = 2
𝑛
ℎ𝛹 (𝑐)

(
𝐸

(
1
ℎ
𝐾

(
𝑥 − 𝑋𝑖
ℎ

)
𝑘

(
𝑥 − 𝑋𝑖
ℎ

))
− 𝐸

(
1
ℎ
𝐾

(
𝑥 − 𝑋𝑖
ℎ

))
𝐸

(
𝑘

(
𝑥 − 𝑋𝑖
ℎ

)))
= 2

𝑛
ℎ𝛹 (𝑐) 𝑓 (1)

1∫
−𝑐

𝑘 (𝑡)𝐾 (𝑡)𝑑𝑡 + 𝑜
(
ℎ

𝑛

)
,

𝐽15 = 2𝛼
𝑛
ℎ2

(
𝐸

(
1
ℎ2𝐾

(
𝑥 − 𝑋𝑖
ℎ

)
𝑘 (1)

(
𝑥 − 𝑋𝑖
ℎ

))
− 𝐸

(
𝐾

(
𝑥 − 𝑋𝑖
ℎ

))
𝐸

(
1
ℎ2𝑘

(1)
(
𝑥 − 𝑋𝑖
ℎ

)))
= 2𝛼ℎ𝑓 (1)

𝑛

©«
1∫

−𝑐

𝑘
(1) (𝑡)𝐾 (𝑡)𝑑𝑡ª®¬ + 𝑜

(
ℎ

𝑛

)
,

and

𝐽16 = 2𝛼𝛹 (𝑐)ℎ3

𝑛

(
𝐸

(
1
ℎ
𝑘

(
𝑥 − 𝑋𝑖
ℎ

)
1
ℎ2𝑘

(1)
(
𝑥 − 𝑋𝑖
ℎ

)))
− 𝐸

(
1
ℎ
𝑘

(
𝑥 − 𝑋𝑖
ℎ

))
𝐸

(
1
ℎ2𝑘

(1)
(
𝑥 − 𝑋𝑖
ℎ

))
= 2𝛼ℎ𝛹 (𝑐)

𝑛
𝑓 (1)

1∫
−𝑐

𝑘 (𝑡)𝑘 (1) (𝑡)𝑑𝑡 + 𝑜
(
ℎ

𝑛

)
.

This completes the proof of expression (4.10). ■
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4.2.2 Reflection Transformation Kernel Estimator

The technique of generalized reflection method involving reflecting a transfor-
mation of the observed data in kernel distribution estimation used by [26] when
the data is near the left side of the support. Our proposed estimator 𝐹𝑛 developed
this technique when the data near the right boundary of the support, given for
𝑥 ∈]1 − ℎ, 1] by

𝐹𝑛 (𝑥) =
1
𝑛

𝑛∑
𝑖=1

𝐾

(
𝑥 − 𝑔(𝑋𝑖)

ℎ

)
+ 1
𝑛

𝑛∑
𝑖=1

𝐾

(
𝑥 − 2 + 𝑔(𝑋𝑖)

ℎ

)
, (4.11)

where 𝑔 is a transformation which is selected from a parametric family, we assume
that verify:

• 𝐻1 : 𝑔 is a continuous and monotonically increasing function from [0, 1] to
[0, 1].

• 𝐻2 : 𝑔−1 exist and verify 𝑔−1(1) = 1 and 𝑔(1) (1) = 1 where 𝑔−1 and 𝑔(1)
denoting respectively the inverse and the first derivative function of 𝑔.

It is clear that there are various possible choices available for the function 𝑔 that
satisfy the above assumptions. Based on extensive simulations, we choose the
following transformation 𝑔 which well adapts to various shapes of distributions
and improve the Bias

𝑔(𝑡) = 𝑡 − 𝑡 (1 − 𝑡)2
1∫

𝑐

𝐾 (𝑡)𝑑𝑡, 𝑐 ∈ [0, 1[.

▶ Theorem 4.3. Under the above assumptions 𝐴1, 𝐴2, 𝐻1 and 𝐻2, the asymptotic
properties of our proposed estimator 𝐹𝑛 at 𝑥 = 1 − 𝑐ℎ are

𝐵𝑖𝑎𝑠 (𝐹𝑛 (𝑥)) = ℎ2𝛤 (𝑐) + 𝑜 (ℎ2), (4.12)

and
𝑉𝑎𝑟 (𝐹𝑛 (𝑥)) =

𝐹 (𝑥) (1 − 𝐹 (𝑥))
𝑛

+ ℎ
𝑛
𝑓 (1)𝛺 (𝑐) + 𝑜

(
ℎ

𝑛

)
, (4.13)

therefore, the value of ℎ∗∗𝑜𝑝𝑡 which is the bandwidth that minimizes the𝑀𝑠𝑒 is
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ℎ∗∗𝑜𝑝𝑡 =

(
(𝑓 (1)𝛺 (𝑐))4

4𝑛𝛤 (𝑐)

)1/3

,

where

𝛤 (𝑐) = −𝑐2

2 𝑓 (1) (1)+
(
𝑓 (1) (1) − 𝑔(2) (1) 𝑓 (1)

)©«−2𝑐2 + 2𝑐
−𝑐∫

−1

𝐾 (𝑡)𝑑𝑡 −
𝑐∫

−𝑐

𝐾 (𝑡) (𝑡 + 𝑐)𝑑𝑡ª®¬,
and

𝛺 (𝑐) = −𝑐 +
𝑐∫

−1

𝐾2(𝑡)𝑑𝑡 +
−𝑐∫

−1

𝐾 (𝑡) (𝐾 (𝑡) − 2)𝑑𝑡 + 2
1∫

−𝑐

𝐾 (𝑡)𝐾 (−2𝑐 − 𝑡)𝑑𝑡 .

◀

Proof. For 𝑥 ∈]1 − ℎ, 1], we have

𝐸 (𝐹𝑛 (𝑥)) = 𝐸

(
𝐾

(
𝑥 − 𝑔(𝑋𝑖)

ℎ

))
+ 𝐸

(
𝐾

(
𝑥 − 2 + 𝑔(𝑋𝑖)

ℎ

))
=

1∫
0

𝐾

(
𝑥 − 𝑔(𝑧)

ℎ

)
𝑓 (𝑧)𝑑𝑧 +

1∫
0

𝐾

(
𝑥 − 2 + 𝑔(𝑋𝑖)

ℎ

)
𝑓 (𝑧)𝑑𝑧

= 𝐼1 + 𝐼2,
where

𝐼1 =
1∫

0

𝐾

(
𝑥 − 𝑔(𝑧)

ℎ

)
𝑓 (𝑧)𝑑𝑧,

= ℎ

1
ℎ
−𝑐∫

−𝑐

𝐾 (𝑡) 𝑓 (𝑔−1(𝑥 − 𝑡ℎ))
𝑔(1) (𝑔−1(𝑥 − 𝑡ℎ))

𝑑𝑡,

= ℎ

1
ℎ
−𝑐∫

𝑐

𝐾 (𝑡) 𝑓 (𝑔−1(𝑥 − 𝑡ℎ))
𝑔(1) (𝑔−1(𝑥 − 𝑡ℎ))

𝑑𝑡 + ℎ
𝑐∫

−𝑐

𝐾 (𝑡) 𝑓 (𝑔−1(𝑥 − 𝑡ℎ))
𝑔(1) (𝑔−1(𝑥 − 𝑡ℎ))

𝑑𝑡,
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by using the property 𝐾 (𝑡) = 1 − 𝐾 (−𝑡) on the first integration we have

𝐼1 = 𝐹 (𝑔−1(1 − 2𝑐ℎ)) − ℎ
−𝑐∫

−1
ℎ

+𝑐

𝐾 (𝑡) 𝑓 (𝑔−1(𝑥 + 𝑡ℎ))
𝑔(1) (𝑔−1(𝑥 + 𝑡ℎ))

𝑑𝑡 + ℎ
𝑐∫

−𝑐

𝐾 (𝑡) 𝑓 (𝑔−1(𝑥 − 𝑡ℎ))
𝑔(1) (𝑔−1(𝑥 − 𝑡ℎ))

𝑑𝑡,

we use a Taylor expansion of the function 𝐹 (𝑔1(.)),

𝐹
(
𝑔−1(1 − 2𝑐ℎ)

)
= 𝐹 (𝑔−1(1)) − 2ℎ𝑐 𝑓 (𝑔−1(1))

𝑔(1) (𝑔−1(1))

+ 2(𝑐ℎ)2

(
𝑓 (1)

(
𝑔−1(1)

)
𝑔(1)

(
𝑔−1(1)

)
− 𝑔(2)

(
𝑔−1(1)

)
𝑓
(
𝑔−1(1)

)[
𝑔(1) (𝑔−1(1))

]3

)
+ 𝑜 (ℎ2).

By the existence and continuity of 𝐹 (2) (.) near 1, we obtain for 𝑥 = 1 − 𝑐ℎ
𝐹 (1) = 𝐹 (𝑥) + 𝑐ℎ𝑓 (𝑥) + 1

2 (𝑐ℎ)
2𝑓 (1) (𝑥) + 𝑜

(
ℎ2) .

𝑓 (𝑥) = 𝑓 (1) − 𝑐ℎ𝑓 (1) (1) + 𝑜 (ℎ)

𝑓 (1) (𝑥) = 𝑓 (1) (1) + 𝑜 (1).
Therefore

𝐹
(
𝑔−1(1 − 2𝑐ℎ)

)
= 𝐹 (𝑥) − 𝑐ℎ𝑓 (1) + 3(𝑐ℎ)2

2 𝑓 (1) (1) − 2(𝑐ℎ)2
(
𝑔(2) (1) 𝑓 (1)

)
+ 𝑜 (ℎ2).

Eventually, we obtain

𝐼1 = 𝐹 (𝑥) − (𝑐ℎ)2

2 𝑓 (1) (1) − ℎ𝑓 (1)
−𝑐∫

−1

𝐾 (𝑡)𝑑𝑡

+ ℎ2(𝑓 (1) (1) − 𝑓 (1)𝑔(2) (1))©«−2𝑐2 +
−𝑐∫

−1

(𝑐 − 𝑡)𝐾 (𝑡)𝑑𝑡 −
𝑐∫

−𝑐

(𝑐 + 𝑡)𝐾 (𝑡)𝑑𝑡ª®¬ + 𝑜 (ℎ2).

Similar computation give 𝐼2

𝐼2 =
1∫

0

𝐾

(
𝑥 − 2 + 𝑔(𝑧)

ℎ

)
𝑓 (𝑧)𝑑𝑧

= ℎ

−𝑐∫
−1

𝑓 (𝑔−1(2 − 𝑥 + 𝑡ℎ))
𝑔(1)𝑔−1(2 − 𝑥 + 𝑡ℎ)

𝐾 (𝑡)𝑑𝑡,
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we use a Taylor expansion of the function 𝑓 (𝑔−1(.))
𝑔(1) (𝑔−1(.))

, we obtain

𝐼2 = ℎ𝑓 (1)
−𝑐∫

−1

𝐾 (𝑡)𝑑𝑡 + ℎ2
(
𝑓 (1) (1) − 𝑔(2) (1) 𝑓 (1)

) −𝑐∫
−1

(𝑡 + 𝑐)𝐾 (𝑡)𝑑𝑡 + 𝑜 (ℎ2).

We combine 𝐼1 and 𝐼2 we obtain the expression of 𝐵𝑖𝑎𝑠 (𝐹𝑛) (4.12).
To prove (4.13), note that

𝑛𝑉𝑎𝑟 (𝐹𝑛) = 𝐸

(
𝐾

(
𝑥 − 𝑔(𝑋𝑖)

ℎ

)
+ 𝐾

(
𝑥 − 2 + 𝑔(𝑋𝑖)

ℎ

))2

−
(
𝐸

(
𝐾

(
𝑥 − 𝑔(𝑋𝑖)

ℎ

)
+ 𝐾

(
𝑥 − 2 + 𝑔(𝑋𝑖)

ℎ

)))2

= 𝐴1 −𝐴2,

where

𝐴1 = 𝐸

(
𝐾

(
𝑥 − 𝑔(𝑋𝑖)

ℎ

)
+ 𝐾

(
𝑥 − 2 + 𝑔(𝑋𝑖)

ℎ

))2
,

= 𝐴11 +𝐴12 + 2𝐴13,

it can be shown that

𝐴11 =

1∫
0

𝐾2
(
𝑥 − 𝑔(𝑧)

ℎ

)
𝑓 (𝑧)𝑑𝑧

= ℎ

1
ℎ
−𝑐∫

𝑐

𝐾2(𝑡) 𝑓 (𝑔−1(𝑥 − 𝑡ℎ))
𝑔(1) (𝑔−1(𝑥 − 𝑡ℎ))

𝑑𝑡 + ℎ
𝑐∫

−𝑐

𝐾2(𝑡) 𝑓 (𝑔−1(𝑥 − 𝑡ℎ))
𝑔(1) (𝑔−1(𝑥 − 𝑡ℎ))

𝑑𝑡

= ℎ

1
ℎ
−𝑐∫

𝑐

(1 − 𝐾 (−𝑡))2 𝑓 (𝑔−1(𝑥 − 𝑡ℎ))
𝑔(1) (𝑔−1(𝑥 − 𝑡ℎ))

𝑑𝑡 + ℎ
𝑐∫

−𝑐

𝐾2(𝑡) 𝑓 (𝑔−1(𝑥 − 𝑡ℎ))
𝑔(1) (𝑔−1(𝑥 − 𝑡ℎ))

𝑑𝑡,

by Taylor expansion, we have

𝐴11 = 𝐹 (𝑥) + ℎ𝑓 (1)©«−𝑐 +
𝑐∫

−1

𝐾2(𝑡) − 2
−𝑐∫

−1

𝐾 (𝑡)𝑑𝑡ª®¬ + 𝑜 (ℎ),
and similarly, we obtain
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𝐴12 =

1∫
0

𝐾2
(
𝑥 − 2 + 𝑔(𝑧)

ℎ

)
𝑓 (𝑧)𝑑𝑧

= ℎ𝑓 (1)
−𝑐∫

−1

𝐾2(𝑡)𝑑𝑡 + 𝑜 (ℎ),

and

𝐴13 = ℎ𝑓 (1)
1∫

−𝑐

𝐾 (𝑡)𝐾 (−2𝑐 − 𝑡)𝑑𝑡 + 𝑜 (ℎ).

we combine 𝐴11, 𝐴12 and 𝐴13 to obtain 𝐴1.
With the expression of the 𝐵𝑖𝑎𝑠 (𝐹𝑛), we find:

𝐴2 =

(
𝐸

(
𝐾

(
𝑥 − 𝑔(𝑋𝑖)

ℎ

)
+ 𝐾

(
𝑥 − 2 + 𝑔(𝑋𝑖)

ℎ

)))2

= 𝐹 2(𝑥) + 𝑜 (ℎ).
This completes the proof of expression (4.13) ■

4.3 Simulation study
A simulation study presented in this section to support the theoretical results of the
proposed estimators, which was made through the comparison of the asymptotic
properties of our estimators with the existing estimators summarized in the coming
subsection. For each estimator, we evaluate the Bias and Mse at the right boundary
from different distributions with support [0, 1] are listed in the table ( 4.1). To be
more specific, for each distribution we generated {𝑋1, 𝑋2, ..., 𝑋𝑛} a sample of size
𝑛 = 200 and we did 𝑟 = 1000 replication by using software R. Let \̂𝑖 be estimator
of \ based on the 𝑖𝑡ℎ generated random numbers of size 𝑛 then Bias and Mse are
estimated by

𝐵𝑖𝑎𝑠 (\̂ ) = 1
𝑟

𝑟∑
𝑖=1

(
\̂𝑖 (𝑥) − \ (𝑥)

)
,

𝑀𝑠𝑒 (\̂ ) = 1
𝑟

𝑟∑
𝑖=1

(
\̂𝑖 (𝑥) − \ (𝑥)

)2
.

We ran a cross-validation method [37] to choose bandwidth for the Epanechnikov
kernel, the main reason for this choice is that it provides a fair basis for comparison
among the different estimators without regard to bandwidth effects.
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4.3.1 Existing estimators used in comparison
In this subsection, we briefly discuss existing distribution kernel estimators and
propose important modifications.
For the first estimator (denote it by 𝐹𝑛), inspired from the generalized reflection
kernel distribution estimator Karunamuni et al [27], we find

𝐹𝑛 (𝑥) =
1
𝑛

𝑛∑
𝑖=1

𝐾

(
𝑥 − 𝑋𝑖
ℎ

)
+ 1
𝑛

𝑛∑
𝑖=1

𝐾

(
𝑥 − 2 + 𝑋𝑖

ℎ

)
.

The second estimator (denote it by 𝐹𝑛), considers the boundary-modified kernel
distribution function estimator suggested by Zhang et al [64].

𝐹𝑛 (𝑥) =
1
𝑛

𝑛∑
𝑖=1

𝐾𝑐

(
𝑥 − 𝑋𝑖
ℎ

)
,

where 𝐾𝑐 is a kernel distribution function, and 𝑘𝑐 satisfying

1∫
−𝑐

𝑐 + 𝑥
𝑐

𝑘𝑐 (𝑥)𝑑𝑥 = 1,

for the Epanechnikov kernel we choice

𝑘𝑐 (𝑡) = 12 1 − 𝑡
(1 + 𝑐)4

(
3𝑐2 − 2𝑐 + 1

2 − 𝑡 (1 − 2𝑐)
)
,−𝑐 ≤ 𝑡 ≤ 1.

To account these estimators for different situations, we use distributions sum-
marized in table (4.1), Note that the densities function 𝐷4,𝐷5 and 𝐷6 satisfies
𝑓 (0) = 𝑓 (1) = 0.
The simulation results measure the performance of the different estimators in

the meaning of the Bias and Mse, are summarized in tables ( 4.2) and ( 4.3).
From Table ( 4.2), we can see that all the kernel distribution estimators previously

mentioned have smaller Bias than the classical kernel distribution estimator 𝐹𝑛.
Comparing among the kernel distribution estimators, we see that the reflection
transformation estimator 𝐹𝑛 has a smaller Bias for the almost used distribution,
except in the case of truncated exponential, the boundary distribution kernel
estimator 𝐹𝑛 has an asymptotically smaller Bias when compared with our proposed
estimator 𝐹𝑛 . The comparison of the modify Bias of kernel estimator 𝐹𝑛 depends
on the choice of the positive constant 𝛼 . When 𝛼 is relatively small 𝛼=0.1 we can
see that 𝐹𝑛 has roughly the same Bias as 𝐹𝑛 and when 𝛼 increases gradually, 𝐹𝑛
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Table 4.1: Distributions used in the simulation study

Description Density for 𝑥 ∈ [0, 1]

𝐷1 Truncated Normal(0,1) 𝑒𝑥𝑝 (−𝑥2/2)/
1∫

0
𝑒𝑥𝑝 (−𝑥2/2)𝑑𝑥.

𝐷2 Truncated Exponential(3) 3𝑒𝑥𝑝 (−3𝑥)/(1 − 𝑒𝑥𝑝 (−3)) .
𝐷3 Truncated Exponential(0.02) (0.02)𝑒𝑥𝑝 (−0.02𝑥)/(1 − 𝑒𝑥𝑝 (−0.02)) .
𝐷4 Truncated Beta(2, 2)[ 1

3 ;1] 4.05𝑥 (1 − 𝑥)
8𝑥3(1 − 𝑥4)
20𝑥3(1 − 𝑥)
3𝑥2

𝐷5      Kumaraswamy(4,2) 
𝐷6      Beta(4,2)
𝐷7      Beta(3,1)
𝐷8      Uniform(0,1) 1

Table 4.2: Bias values at 𝑥=1, Results are re-scaled by the factor 0.001.

𝐹𝑛 𝐹𝑛 𝐹𝑛 𝐹𝑛 𝐹𝑛
𝛼 = 0.1 10 100

𝐷1 7.3783 2.8055 3.0703 2.7219 7.3780 5.7302 2.9829
𝐷2 5.27695 4.7483 8.70152 0.2531 5.2506 3.4679 0.3246
𝐷3 3.1702 2.19568 2.8583 2.1256 3.1621 3.1548 2.9564
𝐷4 6.2859 6.3277 6.6596 5.0277 6.2836 5.5245 5.0252
𝐷5 1.7211 1.6835 1.6731 1.6720 1.7211 1.7012 1.7005
𝐷6 3.5881 2.4585 2.4521 2.3023 3.5811 2.4012 2.3505
𝐷7 5.2351 3.6521 4.5231 1.6731 5.4587 4.6812 2.6802
𝐷8 0.1404 0.1306 0.1370 0.1285 0.1434 0.1374 0.1298

improve the performance of the estimator. For the other estimators in general, the
boundary distribution kernel estimator 𝐹𝑛 has a second smaller Bias followed by
the reflection estimator 𝐹𝑛. From Table ( 4.3), our proposed estimator 𝐹𝑛 has an
asymptotically smaller𝑀𝑠𝑒 when compared with the other estimators, which they
organized in the sens of𝑀𝑠𝑒 by 𝐹𝑛 followed by 𝐹𝑛 followed by 𝐹𝑛 which is less than
𝐹𝑛 for the almost used distribution.

4.4 Real data application
The aim of our applications is to compare the performance of the two proposed
kernel distribution estimators given respectively in (4.8) and (4.11) using the cross-
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Table 4.3: Mse values at 𝑥=1, Results are re-scaled by the factor 0.001.

𝐹𝑛 𝐹𝑛 𝐹𝑛 𝐹𝑛 𝐹𝑛
𝛼 = 0.1 10 100

𝐷1 2.5926 1.8345 1.8321 1.8021 2.5912 2.3147 1.8745
𝐷2 1.7097 1.5795 1.5767 1.5710 1.7034 1.6524 1.6314
𝐷3 1.9258 1.9177 1.9124 1.9102 1.9258 1.9247 1.9235
𝐷4 1.8206 1.6904 1.7124 1.6814 1.8204 1.8045 1.7352
𝐷5 0.5641 0.5641 0.5639 0.5635 0.5641 0.5641 0.5638
𝐷6 2.2535 2.2012 2.1540 2.1201 2.2445 2.2354 2.1721
𝐷7 4.1521 3.2155 2.1325 0.1284 4.2354 3.4521 1.2572
𝐷8 0.4441 0.3897 0.3175 0.2210 0.4378 0.4102 0.3548

Figure 4.1:Mse of different estimators

validation method to bandwidth selection for two real data sets, in order to demon-
strate its usefulness in practical application. The first data set 𝑋 consists of the
number of deaths due to COVID-19 recorded from february 29, 2020 to December
31,2020 in 50 states of the United States of America taken from www.nytimes.com,
where 𝑋𝑖 ∈ [0, 3808]. The second data set taken from [30] represents the failure
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Figure 4.2: Mise of different estimators

times of the air conditioning system of an airplane, it consists of 30 observations
in [1.68, 6.81]. For each data set we can be mapped onto the unit interval by the
transformation 𝑍𝑖 = (𝑋𝑖 − 𝑎)/(𝑏 − 𝑎), where {𝑋𝑖} a real observation in [𝑎, 𝑏]. The
table below gives a basic statistical description of the real data sets, a quick analysis
of this table provides a preliminary insight concerning the distribution of data.

Table 4.4: Basic statistical description of real data sets

Mean Median Skewness Kurtosis Std.error Std.deviation
First data 0.2972 0.2578 1.0413 3.9265 0.0117 0.2058

Second data 0.5156 0.5263 -0.4167 3.0934 0.0181 0.1985

We have plotted the performance of our estimators and compared them to the
previous mentioned estimators. In figure (4.3), we denote by red line to the classical
estimator, green line to the modify Bias and bleu line to the reflection transforma-
tion, cyan line to boundary modified and pink line to reflection kernel distribution
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estimator. We see that our estimators well distributed over ]1 − ℎ, 1], the perfor-
mance of 𝐹𝑛 estimator improves when the positive constant 𝛼 is large in this graph
we chose 𝛼 = 10. It is remarkably clear that our estimators remove the boundary
effect and has improved the performance of the classical estimator when the data
near the right boundary.

Figure 4.3: Performance of different estimators in real applications

4.5 Conclusions
The kernel method is an intuitive simple, and useful procedure, especially in density
and distribution function estimation. When the support of the random variable is
bounded, this procedure needs modification. In this paper, we proposed two new
kernel distribution estimators to avoid the difficulties near the right boundary, by
using two techniques that have been inspired from boundary correction methods.
Depending on the theoretical and simulation results, it turned out that our proposed
estimators have been reducing the Bias to the second power of the bandwidth, which
is smaller than estimators have considered in this paper.
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5 Estimating the Inverse Distribu-
tion Function at the Boundary

5.1 Introduction

The estimation of population quantiles is of great interest when a parametric form
for the underlying distribution is not available. It plays an important role in both sta-
tistical and probabilistic applications, namely: the goodness-of-fit, the computation
of extreme quantiles and Value-at-Risk in insurance which are important measures
of random performance, business and financial risk management, in reliability
and medical studies, quantiles are adopted for characterize the survival distribu-
tion. Also, a large class of actuarial risk measures can be defined as functionals of
quantiles (see, e.g. [12]).

Let𝑋1, ..., 𝑋𝑛 be independent and identically distributed with an unknown density
𝑓 (.) and absolutely continuous distribution function 𝐹 (.), while 𝑋(1) ≤ ... ≤ 𝑋(𝑛)
denote the corresponding order statistics. The quantile function 𝑄 (.) is defined to
be the left-continuous inverse of 𝐹 (.) as follows:

𝑄 (𝑝) = inf{𝑥 : 𝐹 (𝑥) ≥ 𝑝} = 𝐹−1(𝑝), 0 < 𝑝 < 1. (5.1)

Indeed, to estimate a quantile function we need an estimator of the distribution
function.

We recall two classical estimators. Traditionally, the estimator of the distribution
function is the empirical function 𝐹𝑛 (.), which is defined as

𝐹𝑛 (𝑥) =
1
𝑛

𝑛∑
𝑖=1

1]−∞,𝑥] (𝑋𝑖),

59

1
Abstract. Most of the existing quantile estimators have problems of inefficiency in
extreme quantiles. To solve this problem, In this paper, we suggested an alternative
estimator and provided its asymptotic behavior when quantile near the boundary
value. Simulation studies and two real data applications were included to demon-
strate the efficiency and reliability of our theoretical results.
keywords: Kernel quantile estimation, Mean Square Error, Optimal Bandwidth,
Boundary Quantiles.

1 This chapter is a paper appeared in Journal of Siberian Federal University Mathematics and Physics 15:4 
(2022), 510–522.Joint work with ALMI Nassima, SAYAH Abdallah.
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where the indicator function 1]−∞,𝑥] (𝑋𝑖) = 1 if 𝑋𝑖 ≤ 𝑥 and 0 otherwise.
Theoretical properties of 𝐹𝑛 (.) have been investigated by several authors, (see, e.g.
[61], [40] and [16] ). It is well known that 𝐹𝑛 (.) is less smoothing, this fact leads to
the effort to obtain a smooth estimate. Rosenblatt [??], Parsen [35] and Nadaraya
[??] introduced the kernel estimators of 𝑓 (.) and 𝐹 (.) at 𝑥 by:

𝑓𝑛 (𝑥) =
1
𝑛ℎ

𝑛∑
𝑖=1

𝑘

(
𝑥 − 𝑋𝑖
ℎ

)
,

and

𝐹𝑛 (𝑥) =
1
𝑛

𝑛∑
𝑖=1

𝐾

(
𝑥 − 𝑋𝑖
ℎ

)
,

respectively, where ℎ = ℎ𝑛 is the smoothing parameter (or the bandwidth) since
it controls the amount of smoothness in the estimator, and satisfy ℎ := ℎ𝑛 → 0
as 𝑛 → ∞, 𝑘 (.) is a kernel function which is a predetermined density function
symmetric about 0 and the function 𝐾 is defined from a kernel 𝑘 as

𝐾 (𝑥) =
𝑥∫

−∞

𝑘 (𝑡)𝑑𝑡 .

When the support of the variable is bounded, the asymptotic properties are not
satisfactory when the data is near the endpoints of the support, due to so-called
boundary problem. To remove this boundary problem several methods have been
proposed, (see, e.g. [27], [51], [53], [64], [2], [52]). As a result, the corresponding
estimators of the quantile function have been proposed and studied extensively, in
references can be found in the books of Galambos [18] and David [11].

A basic estimator of 𝑄 (.) is the empirical quantile or the sample quantiles which
is given by

𝑄𝑛 (𝑝) = inf{𝑥 : 𝐹𝑛 (𝑥) ≥ 𝑝}=𝑋( [𝑛𝑝]),

where [.] denotes the integer part.

The corresponding estimator of the quantile function 𝑄 = 𝐹−1 is then defined by

�̃�𝑛 (𝑝) = inf{𝑥 : 𝐹𝑛 (𝑥) ≥ 𝑝}, 0 < 𝑝 < 1. (5.2)

Nadaraya [32] showed under some assumptions for 𝑘, 𝑓 and ℎ, �̃�𝑛 (𝑝) has an
asymptotic standard normal distribution. The almost sure consistency was obtained
by Yamato [61]. Ralescu and Sun [38] obtained the necessary and conditions for
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the asymptotic normality. Azzalini [4] obtains the asymptotic mean squared error
of �̃�𝑛 (𝑝) :

𝐴𝑀𝑆𝐸

(
�̃�𝑛 (𝑝)

)
=

ℎ4

4
©«
𝑄

(2)
(𝑝)(

𝑄
(1) (𝑝)

)2
ª®®¬

2

`2
2 +

𝑝 (1 − 𝑝)
𝑛

(
𝑄

(1) (𝑝)
)2

− ℎ
𝑛
𝑄

(1) (𝑝)𝜓 (𝑘),

(5.3)

where 𝜓 (𝑘) = 2
∞∫

−∞
𝑡𝑘 (𝑡)𝐾 (𝑡)𝑑𝑡, `2 =

∞∫
−∞

𝑡2𝑘 (𝑡)𝑑𝑡 and 𝑄 (1) , 𝑄 (2) are the first, the

second derivative of 𝑄 respectively.
It can be seen that the optimal bandwidth for minimizing (5.3) has the form

ℎ̃𝑜𝑝𝑡 =
©«
(
𝑄

(1) (𝑝)
)5
𝜓 (𝑘)

𝑛

(
𝑄

(2) (𝑝)
)2
`2

2

ª®®¬
1/3

.

Parzen [35] proposed a version of the kernel quantile estimator as below:

�̂�𝑛 (𝑝) =
𝑛∑
𝑖=1

[∫ 𝑖
𝑛

𝑖−1
𝑛

1
ℎ
𝑘

(𝑥 − 𝑝
ℎ

)
𝑑𝑥

]
𝑋(𝑖) . (5.4)

In practice, the following approximation to �̂�𝑛 (𝑝) is often used:

�̂�𝑎𝑛 (𝑝) =
1
𝑛ℎ

𝑛∑
𝑖=1

𝑋(𝑖)𝑘

(
𝑖
𝑛
− 𝑝
ℎ

)
. (5.5)

Under suitable conditions on 𝐹 , Falk [16] proposed the following kernel type
quantile estimator

�̌�𝑛 (𝑝) =
1
ℎ

∫ 1

0
𝑄𝑛 (𝑥)𝑘

(𝑥 − 𝑝
ℎ

)
𝑑𝑥 . (5.6)

This kernel-type quantile estimate can then be approximated by �̂�𝑛 (𝑝).
Yang [62] provided the asymptotic normality property and the mean squared consis-
tency of �̂�𝑛 (𝑝) and proved that �̂�𝑛 (𝑝) and �̂�𝑎𝑛 (𝑝) are asymptotically equivalent in
terms of mean square errors. Falk [16] showed that the asymptotic performance of
�̂�𝑛 (𝑝) is better than that of the empirical sample quantile𝑄𝑛 (𝑝) in terms of relative
deficiency for appropriately chosen kernels and sufficiently smooth distribution
functions. Building on Falk [16], Sheater and al [49] gave the asymptotic mean
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squared error of �̂�𝑛 (𝑝).
If the second derivative of 𝑄 is continuous in a neighborhood of 𝑝 and if 𝑓 is not
symmetric or 𝑓 is symmetric but 𝑝 ≠ 1

2 then asymptotic mean squared error of
�̂�𝑛 (𝑝) is

𝐴𝑀𝑆𝐸

(
�̂�𝑛 (𝑝)

)
=

𝑝 (1 − 𝑝)
𝑛

(
𝑄

(1) (𝑝)
)2

+ ℎ
4

4

(
𝑄

(2) (𝑝)
)2
`2

2 −
ℎ
𝑛

(
𝑄

(1) (𝑝)
)2
𝜓 (𝑘).

(5.7)
The optimal bandwidth for 𝐴𝑀𝑆𝐸

(
�̂�𝑛 (𝑝)

)
is

ℎ̂𝑜𝑝𝑡 =
©«
(
𝑄

(1) (𝑝)
)2
𝜓 (𝑘)

𝑛

(
𝑄

(2) (𝑝)
)2
`2

2

ª®®¬
1/3

. (5.8)

When 𝐹 is symmetric and 𝑝 = 1/2 then the asymptotic mean squared error of �̂�𝑛 (𝑝)

𝐴𝑀𝑆𝐸

(
�̂�𝑛 (𝑝)

)
= 𝑛−1

(
𝑄

(1) (1/2)
)2 [

0.25 − 0.5ℎ𝜓 (𝑘) + (𝑛ℎ)−1𝜌 (𝑘)
]
,

where 𝜌 (𝑘) =
∞∫

−∞
𝑘2(𝑥)𝑑𝑥.

But all these estimators have a large bias when 𝑝 is close to the boundary. In order to
correct the bias problems in the case of extreme quantiles, Harrell et al [21] and Park
[34] suggest using an asymmetric kernel, namely the Beta-type kernel. In particular,
in the case of heavy-tailed distributions and for the same aim, Charpentier et al [9]
suggested several nonparametric quantile estimators based on the beta-kernel and
applied them to transformed data. Sayah et al [43] propose a new approach based
on the modified Champernowne distribution. The main objective of this paper is to
propose a new estimator to improve the asymptotic problems of extreme quantiles.

The paper organised as follows: In section 5.2, we propose our estimator and drive
its asymptotic properties. In section 5.3, a simulation study was conducted where
we compare the performance of our proposed estimator with both the empirical and
the classical quantile estimators at specific values of 𝑝 . In section 5.4, we compare
graphically the mentioned estimators by using two real data applications. The
paper is finalized with a brief conclusion.
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5.2 Main results

According to the work of Almi et al [2], our estimator is based on a self-elimination
between the Bias �̂�𝑛 (𝑝) of the estimator from itself

𝑄𝑛 (𝑝) = �̂�𝑛 (𝑝) − ˆ𝐵𝑖𝑎𝑠
(
�̂�𝑛 (𝑝)

)
, (5.9)

then the explicit form of our estimator is given by

𝑄 (𝑝) = 1
ℎ

𝑛∑
𝑖=1

(∫ 𝑖
𝑛

𝑖−1
𝑛

(
𝑘

(𝑥 − 𝑝
ℎ

)
− 1

2`2𝑘
(2)

(𝑥 − 𝑝
ℎ

))
𝑑𝑥

)
𝑋(𝑖) .

The following theorem shows that the Bias of 𝑄𝑛 (𝑝) is of order 𝑂 (ℎ4), while that
of �̂�𝑛 (𝑝) is 𝑂 (ℎ2), and it gives the expressions for the bias and the variance of the
proposed estimator

▶ Theorem 5.1. Assume that 𝑄 has four bounded, continuous derivatives in a
neighborhood of 𝑝 and the kernel function 𝑘 is a continuous bounded density,
symmetric about zero, then if 0 < ℎ → 0, 𝑛ℎ4 → ∞, for all fixed 𝑝 ∈ ]0, 1[, we
have

𝐵𝑖𝑎𝑠
(
𝑄𝑛 (𝑝)

)
=
ℎ4

24𝑄
(4) (𝑝)

(
`4 − 6`2

2
)
+ 𝑜

(
ℎ4),

and

𝑉𝑎𝑟
(
𝑄𝑛 (𝑝)

)
=
𝑝 (1 − 𝑝)

𝑛

(
𝑄

(1) (𝑝)
)2

− ℎ
𝑛

(
𝑄

(1) (𝑝)
)2
𝛹 (𝑘) + 𝑜

(
ℎ

𝑛

)
+ 𝑜 (1),

where

𝛹 (𝑘) = 𝜓 (𝑘)−1
4`

2
2

+∞∫
−∞

(
𝑘 (1) (𝑡)

)2
𝑑𝑡−`2

©«
+∞∫

−∞

𝑡𝑘 (𝑡)©«
𝑡∫

−∞

𝑘 (2) (𝑡)𝑑𝑡ª®¬𝑑𝑡 +
+∞∫

−∞

𝑡𝑘 (2) (𝑡)©«
𝑡∫

−∞

𝑘 (𝑡)𝑑𝑡ª®¬𝑑𝑡ª®¬,
`4 =

∞∫
−∞

𝑡4𝑘 (𝑡)𝑑𝑡 . ◀

Proof. As a result, our proposed estimator is

𝑄𝑛 (𝑝) = �̂�𝑛 (𝑝) − 1
2ℎ

2�̂�
(2)
𝑛 (𝑝)`2.
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We can easily see that

𝐸
(
𝑄𝑛 (𝑝)

)
= 𝐸

(
�̂�𝑛 (𝑝)

)
− 1

2ℎ
2`2𝐸

(
�̂�

(2)

𝑛 (𝑝)
)
,

by a Taylor expansion, we have

𝐸

(
�̂�𝑛 (𝑝)

)
=

1
ℎ

1∫
0
𝑄 (𝑥)𝑘

(𝑝 − 𝑥
ℎ

)
𝑑𝑥

=

∞∫
−∞

𝑘 (𝑡) (𝑄 (𝑝 − ℎ𝑡))𝑑𝑡

= 𝑄 (𝑝) + 1
2ℎ

2𝑄
(2)
(𝑝)`2 +

ℎ4

24𝑄
(4)
(𝑝)`4 + 𝑜

(
ℎ4) .

Moreover

𝐸

(
�̂�

(2)
𝑛 (𝑝)

)
=

1
ℎ3

1∫
0
𝑄 (𝑥)𝑘 (2)

(𝑝 − 𝑥
ℎ

)
𝑑𝑥

=
1
ℎ

1∫
0
𝑄

(2) (𝑥)𝑘
(𝑝 − 𝑥
ℎ

)
𝑑𝑥

=

∞∫
−∞

𝑘 (𝑡)𝑄 (2) (𝑝 − ℎ𝑡)𝑑𝑡

= 𝑄
(2) (𝑝) + 1

2ℎ
2𝑄

(4)
(𝑝)`2 + 𝑜

(
ℎ2) .

Thus, we have

𝐵𝑖𝑎𝑠
(
𝑄𝑛 (𝑝)

)
=

ℎ4

24𝑄
(4)
(𝑝)

(
`4 − 6`2

2
)
+ 𝑜

(
ℎ4) .

On the other hand

𝑉𝑎𝑟
(
𝑄𝑛 (𝑝)

)
= 𝑉𝑎𝑟

(
�̂�𝑛 (𝑝) −

1
2ℎ

2�̂�
(2)

𝑛 (𝑝)`2

)
= 𝑉𝑎𝑟

(
�̂�𝑛 (𝑝)

)
+ 1

4ℎ
4`2

2𝑉𝑎𝑟
(
�̂�

(2)

𝑛 (𝑝)
)
− ℎ2`2𝐶𝑜𝑣

(
�̂�𝑛 (𝑝), �̂�

(2)

𝑛 (𝑝)
)
,
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the variance of �̂�𝑛 (𝑝) can be computed as

𝑉𝑎𝑟

(
�̂�𝑛 (𝑝)

)
=

1
𝑛

(
𝑄

(1) (𝑝)
)2

(
−𝑝2 + 2

∞∫
−∞

(𝑝 − ℎ𝑡)𝑘 (𝑡)𝐾 (𝑡)𝑑𝑡
)
+ 𝑜

(
ℎ

𝑛

)
=

𝑝 (1 − 𝑝)
𝑛

(
𝑄

(1) (𝑝)
)2

− ℎ
𝑛

(
𝑄

(1) (𝑝)
)2
𝜓 (𝑘) + 𝑜

(
ℎ

𝑛

)
and

𝑉𝑎𝑟

(
�̂�

(2)
𝑛 (𝑝)

)
=

1
𝑛ℎ3

(
𝑄

(1) (𝑝)
)2

∞∫
−∞

(
𝑘

(1) (𝑡)
)2
𝑑𝑡 + 𝑜

(
1
𝑛ℎ3

)
+ 𝑜 (1).

Now we will calculate the third term on the right hand side of 𝑉𝑎𝑟
(
𝑄𝑛 (𝑝)

)
.

We have

𝐶𝑜𝑣

(
�̂�𝑛 (𝑝), �̂�

(2)

𝑛 (𝑝)
)

= 𝐸

(
1
ℎ

(
1∫

0
𝑄𝑛 (𝑥)𝑘

(𝑝 − 𝑥
ℎ

)
𝑑𝑥 −

1∫
0
𝑄 (𝑥)𝑘

(𝑝 − 𝑥
ℎ

)
𝑑𝑥

)
1
ℎ3

(
1∫

0
𝑄𝑛 (𝑥)𝑘

(2)
(𝑝 − 𝑥
ℎ

)
𝑑𝑥 −

1∫
0
𝑄 (𝑥)𝑘

(2) (𝑝 − 𝑥
ℎ

)
𝑑𝑥

))
=

1
ℎ2𝐸

(( ∞∫
−∞

𝑘 (𝑡)
(
(𝑝 − ℎ𝑡) − 𝐹𝑛 (𝑝 − ℎ𝑡)

)
𝑄

(1) (𝑝 − ℎ𝑡)𝑑𝑡
)

( ∞∫
−∞

𝑘
(2) (𝑡)

(
(𝑝 − ℎ𝑡) − 𝐹𝑛 (𝑝 − ℎ𝑡)

)
𝑄

(1) (𝑝 − ℎ𝑡)𝑑𝑡
))
,

where 𝐹𝑛 is the empirical distribution function according to 𝑛 independent, uni-
formly on [0, 1] distributed random variables.
Furthermore

𝐶𝑜𝑣

(
�̂�𝑛 (𝑝), �̂�

(2)

𝑛 (𝑝)
)

=
1
𝑛ℎ2

1∫
0

( ∞∫
−∞

𝑘 (𝑡) (
(
𝑝 − ℎ𝑡) − 1]0,𝑝−ℎ𝑡 [ (𝑦)

)
𝑄

(1) (𝑝 − ℎ𝑡)𝑑𝑡
)

( ∞∫
−∞

𝑘
(2)
(𝑡)

(
(𝑝 − ℎ𝑡) − 1]0,𝑝−ℎ𝑡 [ (𝑦)

)
𝑄

(1) (𝑝 − ℎ𝑡)𝑑𝑡
)
𝑑𝑦,
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𝐶𝑜𝑣

(
�̂�𝑛 (𝑝), �̂�

(2)

𝑛 (𝑝)
)

=
1
𝑛ℎ2

(
1∫

0

( ∞∫
−∞

𝑘 (𝑡) ((𝑝 − ℎ𝑡) − 1]0,𝑝−ℎ𝑡 [ (𝑦)𝑄 (1) (𝑝)𝑑𝑡
)

( ∞∫
−∞

𝑘
(2)
(𝑡)

(
(𝑝 − ℎ𝑡) − 1]0,𝑝−ℎ𝑡 [ (𝑦)

)
𝑄

(1) (𝑝)𝑑𝑡
)
𝑑𝑦 + 𝑜 (ℎ)

)
=

(
𝑄

(1) (𝑝)
)2

𝑛ℎ2

1∫
0

©«
𝑝−𝑦
ℎ∫

𝑝−1
ℎ

𝑘 (𝑡)𝑑𝑡
𝑝−𝑦
ℎ∫

𝑝−1
ℎ

𝑘
(2) (𝑡)𝑑𝑡ª®¬𝑑𝑦 + 𝑜

(
1
𝑛ℎ

)
+ 𝑜 (1).

By integration by part we find

𝐶𝑜𝑣

(
�̂�𝑛 (𝑝), �̂�

(2)

𝑛 (𝑝)
)

=

(
𝑄

(1) (𝑝)
)2

𝑛ℎ3

1∫
0
𝑦
©«𝑘

(𝑝 − 𝑦
ℎ

) 𝑝−𝑦
ℎ∫

𝑝−1
ℎ

𝑘
(2)
(𝑡)𝑑𝑡

+ 𝑘
(2)

(𝑝 − 𝑦
ℎ

) 𝑝−𝑦
ℎ∫

𝑝−1
ℎ

𝑘 (𝑡)𝑑𝑡ª®¬𝑑𝑦 + 𝑜
(

1
𝑛ℎ

)
+ 𝑜 (1)

=

(
𝑄

(1) (𝑝)
)2

𝑛ℎ2
©«

𝑝

ℎ∫
𝑝−1
ℎ

(𝑝 − ℎ𝑡)𝑘 (𝑡)©«
𝑡∫

𝑝−1
ℎ

𝑘
(2)
(𝑡)𝑑𝑡ª®¬𝑑𝑡

+
𝑝

ℎ∫
𝑝−1
ℎ

(𝑝 − ℎ𝑡)𝑘 (2) (𝑡)©«
𝑡∫

𝑝−1
ℎ

𝑘 (𝑡)𝑑𝑡ª®¬𝑑𝑡ª®¬ + 𝑜
(

1
𝑛ℎ

)
+ 𝑜 (1)

=
−1
𝑛ℎ

(
𝑄

(1) (𝑝)
)2

( ∞∫
−∞

𝑡𝑘 (𝑡)
(

𝑡∫
−∞

𝑘
(2)
(𝑡)𝑑𝑡

)
𝑑𝑡

+
∞∫

−∞
𝑡𝑘

(2) (𝑡)
(

𝑡∫
−∞

𝑘 (𝑡)𝑑𝑡
)
𝑑𝑡

)
+ 𝑜

(
1
𝑛ℎ

)
+ 𝑜 (1).

By adding up all these terms we have the desired result for the variance of 𝑄𝑛 . ■

▶ Corollary 5.2. Suppose that the conditions of previous theorem5.1 hold. The
asymptotic mean squared error of 𝑄𝑛 (𝑝) is given by

𝐴𝑀𝑆𝐸
(
𝑄𝑛 (𝑝)

)
=

(
ℎ4

24𝑄
(4)
(𝑝)

(
`4 − 6`2

2
) )2

+ 𝑝 (1 − 𝑝)
𝑛

(
𝑄

′ (𝑝)
)2

− ℎ
𝑛

(
𝑄

′ (𝑝)
)2
𝛹 (𝑘).

It can be seen that the optimal bandwidth for minimizing 𝐴𝑀𝑆𝐸
(
𝑄𝑛 (𝑝)

)
is both of

order 𝑂
(
𝑛−1/7

)
and has the form
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ℎ̄𝑜𝑝𝑡 =
©«

72
(
𝑄

′ (𝑝)
)2
𝛹 (𝑘)

𝑛

(
𝑄

(4) (𝑝)
(
`4 − 6`2

2
) )2

ª®®¬
1/7

,

and the associated asymptotic mean squared error is given by

𝐴𝑀𝑆𝐸𝑜𝑝𝑡
(
𝑄𝑛 (𝑝)

)
=
𝑝 (1 − 𝑝)

𝑛

(
𝑄

(1) (𝑝)
)2

− 7

©«

(
1
8

(
𝑄

(1) (𝑝)
)2
𝛹 (𝑘)

)8

((
1
24𝑄

(4) (𝑝)
(
`4 − 6`2

2
) )2

) ª®®®®®®¬

1/7

𝑛−8/7.

◀

5.3 Simulation study

In this section, we report results of a Monte Carlo study which was conducted to
compare the performance of our proposed estimator𝑄𝑛 (𝑝) with the classical �̂�𝑛 (𝑝)
and the empirical quantile estimators �̃�𝑛 (𝑝), by computing the Bias and Mse for spe-
cific values of p where 𝑝 ∈ {0.025, 0.05, 0.10, 0.20, 0.40, 0.60, 0.80, 0.90, 0.95, 0.975}.
It is well known that bandwidth plays a critical role in the kernel estimation, for
this reason we use the optimal bandwidth for 𝐴𝑀𝑆𝐸

(
�̂�𝑛 (𝑝)

)
on each p-values, by

using triweight kernel 35
32 (1 − 𝑡2)31|𝑡 |≤1. In order to account for different cases,

we generate a thousand samples of two sizes 𝑛 = 50 and 𝑛 = 200 from different
distributions listed in the Table 1, results of the comparison are shown in Tables 2
to 11.
where 𝜙−1 denote the Inverse of standard normal distribution.

After examining all tables, the classical estimator �̂�𝑛 does not perform as well at
near boundary points p =0.025 to 0.10 and p =0.90 to 0.975 as at interior points from
𝑝 = 0.20 to 𝑝 = 0.80, However, it can be observed that our proposed estimator 𝑄𝑛
produces lower Bias(MSE) for almost values of p specifically extreme values in all
distributions considered, except for Weibull distribution in the case where p=0.05
the performance of the classical estimator is better than our estimator for the small
size. Both estimators are more efficient than the empirical quantile estimator �̃�𝑛 in
most situations.
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Table 5.1: Distributions used in the simulation study

Distribution Theorical quantille 𝑄 (𝑝)

Weibull ( 3
2 , 1) (− log(1 − 𝑝)) 2

3

Log-normal (0, 1
2 ) 𝑒𝑥𝑝 ( 1

2𝜙
−1(𝑝))

Chi-square (1) (𝜙−1( 𝑝+1
2 ))2

Log-logistic (1, 3) 1
3

(
𝑝

1−𝑝

)
Pareto (3, 1)

(
1

1 − 𝑝

) 1
2
− 1

Table 5.2: Bias(MSE) values for Weibull distribution, n=50, Results are re-scaled by the
factor 0.0001.

p Q̃ Q̂ Q̄
0.025 921.8(851.8) 67.49(8.130) 33.35(4.673)
0.050 872.0(760.4) 29.16(8.812) 32.21(10.97)
0.100 787.2(619.4) 17.64(15.67) 16.25(14.80)
0.200 642.2(412.4) 43.34(34.93) 26.63(24.63)
0.400 371.0(137.7) 22.15(20.78) 15.45(12.27)
0.600 297.0(267.9) 19.31(12.89) 9.298(3.918)
0.800 264.6(218.4) 19.11(6.300) 5.810(5.128)
0.900 307.7(125.4) 27.62(11.86) 12.41(11.31)
0.950 547.1(544.6) 96.32(47.93) 33.57(20.53)
0.975 261.9(159.2) 105.3(102.7) 98.05(65.27)
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Table 5.3: Bias(MSE) values for Weibull distribution, n=200, Results are re-scaled by the
factor 0.0001.

p Q̃ Q̂ Q̄
0.025 91.84(37.23) 15.85(6.271) 8.210(3.764)
0.050 86.69(75.16) 18.75(6.188) 17.36(5.389)
0.100 78.19(61.14) 6.156(8.972) 4.025(7.439)
0.200 63.71(40.59) 5.627(8.628) 1.929(6.379)
0.400 36.60(33.39) 1.103(19.49) 0.137(17.56)
0.600 21.03(34.17) 0.955(31.91) 0.128(30.42)
0.800 63.66(405.3) 1.263(59.20) 0.134(57.26)
0.900 27.23(80.20) 2.177(10.92) 0.165(10.80)
0.950 62.74(60.91) 3.333(20.22) 0.318(20.04)
0.975 147.9(102.8) 87.32(78.69) 29.48(34.66)

Table 5.4: Bias (MSE) values for Log-normal distribution, n=50, Results are re-scaled by
the factor 0.0001.

p Q̃ Q̂ Q̄
0.025 692.5(874.8) 251.9(222.9) 224.6(183.1)
0.050 656.6(849.7) 167.9(205.2) 120.5(56.68)
0.100 478.1(496.2) 152.4(171.9) 98.47(22.09)
0.200 368.6(257.6) 148.6(249.4) 159.5(253.2)
0.400 124.0(254.2) 88.39(83.43) 75.51(68.43)
0.600 98.36(96.20) 48.36(47.50) 38.51(32.16)
0.800 99.57(95.47) 79.02(73.13) 65.15(60.21)
0.900 354.8(135.2) 281.6(156.2) 102.9(98.25)
0.950 97.22(48.21) 47.00(45.21) 31.42(27.52)
0.975 106.8(231.2) 94.27(194.2) 56.22(152.7)
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Table 5.5: Bias(MSE) values for Log-normal distribution, n=200, Results are re-scaled by
the factor 0.0001.

p Q̃ Q̂ Q̄
0.025 525.8(973.5) 209.2(214.4) 146.1(143.0)
0.050 365.6(511.6) 119.1(147.2) 101.3(137.7)
0.100 278.1(437.0) 109.9(204.2) 83.91(129.3)
0.200 368.6(188.5) 27.7(28.46) 5.168(19.84)
0.400 124.0(254.2) 88.39(83.48) 68.43(75.71)
0.600 87.50(255.1) 8.891(31.66) 4.475(14.99)
0.800 486.8(410.2) 12.91(9.126) 9.848(7.638)
0.900 264.8(301.4) 18.98(35.20) 7.667(18.07)
0.950 686.7(261.6) 305.2(184.1) 76.70(156.6)
0.975 437.0(545.1) 568.0(315.5) 387.9(231.7)

Table 5.6: Bias (MSE) values for Chi-square distribution, n=50, Results are re-scaled by the
factor 0.0001.

p Q̃ Q̂ Q̄
0.025 57.08(41.67) 28.72 (25.07) 24.32 (20.59)
0.050 20.10(18.72) 1 3.46 (12.74) 8. 029 (6.447)
0.100 44.23(38.56) 26.27(24.28) 14.082(10.35)
0.200 94.08(97.85) 56.06(53.25) 19.084 (17.83)
0.400 88.94(84.51) 37.12(32.35) 32.35(20.47)
0.600 80.89(72.16) 29.18 (27.32) 11.00(10.31)
0.800 85.51(75.92) 30.83(27.46) 14.68(12.10)
0.900 96.79(95.75) 41.97(37.65) 7.484(5.908)
0.950 195.6(193.8) 185.6(176.1) 158.6(155.7)
0.975 196.4(195.5) 185.4(134.4) 153.0(144.2)
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Table 5.7: Bias (MSE) values for Chi-square distribution, n=200, Results are re-scaled by
the factor 0.0001.

p Q̃ Q̂ Q̄
0.025 257.0(246.7) 150.2(122.4) 144.7(132.4)
0.050 18.07(15.84) 5.725(3.278) 0.487(0.222)
0.100 28.92(19.78) 16.43(12.70) 6.843(4.683)
0.200 9.408(8.851) 4.544(2.065) 2.201 (2.035)
0.400 13.29(13.23) 8.518(7.256) 6.235(5.524)
0.600 29.66(28.80) 9.882(9.504) 1.182(1.087)
0.800 40.78(36.63) 16.47(12.71) 4.830(2.333)
0.900 45.02(44.27) 20.38(19.23) 4.845(2.201)
0.950 46.00(43.11) 21.94(14.61) 3.487(2.516)
0.975 136.30(131.80) 115.31(112.40) 101.3(98.45)

Table 5.8: Bias (MSE) values for Log-logistic distribution, n=50, Results are re-scaled by
the factor 0.0001.

p Q̃ Q̂ Q̄
0.025 849.7(7.222) 229.6(5.246) 83.33(0.694)
0.050 987.4(9.751) 205.2(4.214) 56.68(0.321)
0.100 967.9(9.370) 171.9(2.95) 22.09(0.048)
0.200 188.8(35.66) 162.1(2.624) 19.84(0.039)
0.400 490.2(43.03) 284.6(8.102) 75.90(0.576)
0.600 487.4(57.24) 384.1(46.80) 221.6(4.914)
0.800 479.1(105.0) 279.3(77.91) 80.53(64.85)
0.900 462.4(234.6) 444.3(171.6) 130.9(127.7)
0.950 429.1(489.2) 198.1(392.7) 152.7(233.2)
0.975 107.2(1214) 92.13(848.8) 99.90(458.7)
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Table 5.9: Bias (MSE) values for Log-logistic distribution, n=200, Results are re-scaled by
the factor 0.0001.

p Q̃ Q̂ Q̄
0.025 85.547(0.7305) 110,20(1.214) 38.083(0.145
0.050 334.21(111.69) 84.898(0.720) 14.621(0.021)
0.100 967,98(937.00) 55.155(0.304) 4.789(0.002)
0.200 921.69(849.51) 49.941(0.494) 8.084(0.006)
0.400 782.80(612.78) 80.428(0.646) 11.409(0.013
0.600 505.02(255.02) 182,61(3.334) 49.413(0.244
0.800 640.53(410.28) 569.59(32.44) 122.44(1.499
0.900 545.72(297.87) 404.6(99.81) 276.37(7.638)
0.950 3549.0(301.4) 2411.4(304,7) 990.34(98.07)
0.975 511.55(626.85) 409.28(475,1) 109.844(120.6)

Table 5.10: Bias (MSE) values for Pareto distribution, n=50, Results are re-scaled by the
factor 0.0001.

p Q̃ Q̂ Q̄
0.025 946.5(975.1) 257.7(421.4) 150.7(52.13
0.050 950.9(937.1) 261.0(654.2) 79.53( 258.7)
0.100 45.83(583.7) 44.56(331.5) 39.39(250. 02)
0.200 48.95(96.10) 26.61(85.10) 12.73(83.8)
0.400 48.66(93.20) 39.63(93.00) 29.14(85.04)
0.600 48.01(158.2) 9.677(51.20) 4.853 (23. 55)
0.800 78.00(278.4) 26.99(258.4) 2.474(20.01)
0.900 457.7(673.5) 32.46(140.6) 19.51(76.42)
0.950 2439(1954) 308.8(531.1) 278.4(445.9
0.975 3135(3298) 848.8(1104) 87.25(300.1)
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Table 5.11: Bias (MSE) values for Pareto distribution, n=200, Results are re-scaled by the
factor 0.0001.

p Q̃ Q̂ Q̄
0.025 503.7(763.5) 232.2(404.5) 105.0(43.85)
0.050 201.4(528.6) 159.3(401.7) 34.69(36.87)
0.100 9.509(280.6) 9.489(400.1) 9.109(36.76)
0.200 8.869(86.30) 1.693(39.96) 0.163(35.75)
0.400 10.71(58.61) 3.885(39.99) 2.917(36.72)
0.600 4.238(58.61) 1.421(40.11) 1.302(36.65)
0.800 72.47(256.0) 34.20(41.08) 5.521(36.73
0.900 472.3(301.7) 272.6(145.8) 96.73(101.2)
0.950 2037(1582) 1051(780.0) 803.2(386.6)
0.975 671.9(330.0 347.8(459.5) 187.5(221.4)

5.4 Application

In this section, we compare the performance of our proposed estimator with the
empirical and the classical estimators by using the graphical representation of two
real data sets. The first data set consist of 100 observations of breaking stress of
carbon fibers (in Gba) given by Nichols and Padget [33] and the second data set
consist of 63 observations related to the strength of carbon fibers tested under
tension at gauge lengths of 10 mm, The data has been recently reported and
analyzed by Bi and Gui [5] among others, the choice of the bandwidth bases to
cross-validation method. The results are shown in Figures 1 and 2 respectively.
It’s remarkably clear that our newly proposed estimator is closer to the unknown
quantile function as compared to both estimators the classical and the empirical
kernel estimators, this yields that our estimator improves the performance of the
classical estimator in extreme quantiles.
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Figure 5.2: Performance of different estimators in real applications
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5.5 Conclusion

This paper proposes a smooth estimator of the quantile function to improve the
efficiency of the classical kernel estimator at extreme quantiles. Depending on the
theory it turned out that the Bias of our proposed estimator is of fourth-order power
of the bandwidth, while that of the classical is second-order. The numerical results
are summarized in Tables 2 to 6 and Figures 1 and 2 conducted that our proposed
estimator is better than both the classical and the empirical quantile estimators in
the meaning of Bias and Mse for almost all p-values and specifically at extremes.
These numerical results coincide with the theoretical results in Theorem (5.1).

Figure 5.1: Performance of different estimators in real applications



6 Conclusions & Outlook

Kernel estimation methods are not well implemented when the data is near the
boundary of the compressed support, even if we choose the appropriate bandwidth
which we call the boundary effect. Several authors considered this problem in
kernel density and regression estimates. Whereas, in the kenel distribution esti-
mation and the inverse distribution estimation (quantile function ) are relatively
few, though these functions have found in numerous applications in econometrics,
climatology, and hydraulics, among others.
In this thesis, we are interested to improve the performance of the classical esti-
mators of both functions the distribution function Nadaraya [32] and the inverse
distribution function Parzen [35] in the case when the data near the right bound-
ary, we applied a new method based on self-elimination between the Bias and the
estimator itself.

• Depending on the theoretical results it turned out that our proposed estimator
reduces the order of bias from 𝑜 (ℎ2) to 𝑜 (ℎ4), while the variance remains at
the same order as the existing estimators.

• the numerical results it is shown that the MISE of the proposed estimators
is smaller than that of the used estimators in all distributions and for each
sample size. Note that the reduction of the MISE is mainly due to the bias,
and the variance parts for all estimators are very close.

• As a result we reveal the superior performance of the proposed estimator.
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5Appendix A: Abbreviations and Notations

The di�erent abbreviations and symbols used throughout this thesis are explained below:

A{

-

(-1, ..., -=)(
-1,=, ...-=,=

)
-8,=

� [- ]
+0A (- )
?3 5

3 5

5

�

�=
�

:random variable
:rv de�ned on (S,A, P), population
:samples of size n from -

:order

 

statistics

 

pertaining to (-1, ..., -=)

 

:8th

 

order

 

statistics

 

(8

 

=

 

1,

 

=)
:expectation

 

of

 

(or

 

mean

 

of

 

-

 

)

probability

 

density

 

function
:distribution

 

function
:pdf of -
:cumulative distribution function of -
:empirical

 

df
:gneralized

 

inverse of F, quantile function

:5 ( G) = > ( 6(G)) as G → G0 : 5 ( G)/6(G) → 0 as G → G0
:5 ( G) = $ ( 6(G)) as G → G0 : ∃" > 0, | 5 ( G)/6(G)| ≤ " as G → G0

> (.)
$ (.)

-1

:indicator function of set A1A

:variance of (X)

:integer part of a real number [X]

MSE
MISE
AMISE

iid

inf �

: Mean squared error

: Mean integrated squared error 
: Asymptotic Mean integrated squared error 
:independent identically distributed 
:infinimum of set A
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5Appendix B: Useful R commands

The di�erent function used throughout this thesis are explained below:

ecdf :
kcdf :

quantile :
npquantile :

Compute an empirical cumulative distribution function.
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PBbw :

CVbw :

kde :

Returns the largest integers not greater than the corresponding elements.

ALbw :

floor :

sd :

kerdiest :  kerdiest-package

Compute the nonparametric kernel estimate for cumulative
    distribution  function
Compute the sample quantiles corresponding to the given probabilities.

Computes smooth quantiles from a univariate unconditional kernel
     cumulative distribution estimate

Kernel distribution function estimatorker

Plug-in bandwidth selection of Altman and Leger.

Plug-in bandwidth selection of Polansky and Baker.

Cross-validation bandwidth selection of Bowman, Hall and Prvan.

Compute the standard deviation of the values in x
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