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Abstract

This thesis is devoted to the study of a regression estimator for estimating the

tail index of the heavy-tailed distribution. In particular, it is shown that the

considered estimator is in general based on the method of weighted least squares.

The main objective of the thesis is extend the work of Zyl and schall ; 2012, for estimating

the shape parameter of the Frechet distribution. By deriving the large sample variances and

using the inverse of the approximate variance to calculate the weights for this estimator.

Simulation study using R statistical software is carried out to evaluate performance of

a new estimator wich has been shown to perform better than other considered methods

estimator based on order statistics for small and large sample size, and in case of real

data.

Keywords: Extreme value Theory, Extreme value index, Heavy-tails, Least squares es-

timator, Weighted least squares, Rank regression, Frechet distribution.
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Abbreviations and Notations

(
;A;P) probability space

rv random variable

X rv dened on (
,A,P), population

E[X] expectation of (or mean of X)

V ar[X] variance of X

pdf probability density function

df distribution function

Fn empirical df

F generalized inverse of F ,quantile function

F df of X

f pdf of X

Q quantile function,generalized inverse of X

Qn empirical quantile function

X1;n � ::: � Xn;n order statistics pertaining to the sample (X1; :::; Xn)

k numbers of top statistics (upper observations)

xF upper endpoint

EV I extreme value index

EV T extreme value theory

GEVD generalized extreme value distribution

GPD generalized Pareto distribution
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D(:) domain of attraction

RV� regular variation at 1 with index �

RV0 regular variation at 0 with index �

a:s! almost sure convergence

P! convergence in probability

d! convergence in distribution

iid independent identically distributed

i:e: in other words

N (�; �2) normal or Gaussian distribution

� tail index

 extreme value index

MLE maximum likelihood estimator

exp or e exponential

log logarithm

LSE least squares estimator

WLS weighted least squares

MPSE maximum product of spacings estimation

RMSE root mean squared error
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Introduction

In statistical studies, the excessive behavior of any phenomenon is the only elementof interest because we can encounter many cases of extreme situations. Most of the

extreme events, some of which were catastrophic, caused widespread damage, for example,

�res, earthquakes and extreme weather conditions (extremely low or high ), along with the

virus that swept the world and was an extreme case that caused signi�cant deaths around

the world. To counter these extreme situations mentioned above, Extreme Value Theory

could give a great help.

In particular, extreme value theory, also known as tail distributions, plays an increas-

ingly important role in the treatment of rare event modeling, as it focuses on the tail of

the distribution that generates the studied various extreme phenomenon. EVT, is mainly

depends on the limit distributions of the extremes and their domain of attractions, and

there are two models : Generalized Extreme Value Distributions (GEVD) and Generalized

Pareto Distributions (GPD):

Thus, it all began with the development of this theory for the �rst time in the context

of independent observations, the preliminary work of Frechet, Fisher and Tippett [24], 1928

shows that, under certain conditions, only limited distributions to the extremes are the

distributions of Frechet, Gumbel and Weibull. This allows us to classify most distribution

into three domains of attraction where each domain is identi�ed by the descriptions on the

distribution functions (see Embrechts et al., [22], 1997; De Haan and Ferreira [16], 2006).

A parametrization of the three limiting behaviors into a single distribution, namely the
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Introduction

GEVD is due to Von Mises [56], 1954. One of the important parameters is the index of

extreme values (tail index) which describes the heaviness of the tail of the distribution.

In extreme value statistics, estimating the tail index parameter is one of the primal

objectives in EVT. For heavy-tailed distributions the Hill estimator [34], 1975 is the most

popular way to estimate the tail index parameter, and the Hill estimator has also been

improved by recent work in various ways, for example the double bootstrap method by

Danielsson et al., [12] 2001, or a model based on Kolmogorov-Smirnov distance by Daniels-

son et al., [13] 2016. In this memory, we are interested in the study of estimation in the

�eld of regression. The term "linear regression" dates back to Francis Galton in 1886 [26]

in a paper referring to the phenomenon of "average regression" of son height as a function

of father height. In addition, the term is also used for certain curve �tting methods. It

consists of techniques for modeling the relationship between a dependent variable and one

or more independent variables.

In regression, the dependent variable is modeled as a function of independent vari-

ables, corresponding regression parameters (coe¢ cients), and a random error term, the

parameters of the regression models can be estimated using di¤erent methods : the least

squares method LS and the weighted least squares WLS method. It consists of solving a

linear system by minimizing the quadratic error between the data and the estimates. The

main objective of this memory is to study linear regression, which we present in a new

empirical method, which can estimate tail index parameters well and may also be useful

in all sample sizes.

The outline of this thesis is a blend of tow parts, we start as preliminary Chapters :

1; 2 and 3. Then second part discuse main results. This is organized as follows :

Chapter 1 :

We adopted to study some essential theoretical elements of the theory of extreme

values, we start with foundations de�nitions like the empirical distribution function, the

survival function... etc. Also, we make the main results concerning the limit distributions

2



Introduction

of the largest observations of a sample as well as the domains of attraction.

Chapter 2 :

The second chapter contains some mathematical preliminaries to the design of re-

gression and their properties. We begins with a few reminders on basic concepts such

as regression function , regression model and simple linear regression model. Also, we

give the most important result about parameter estimation methods, in order that we can

leverage them in the next.

Chapter 3 :

In the last chapter in preliminary part we discuses the important part of our research

is devoted to the extension of the Weigthed Least Squares estimation method. It worth

to mention that we present the di¤erent work in expressions of the weigth, in order to

estimating the parameters of di¤erent distributions, such as Weibull, Gumbel and Pareto.

The performance of the proposed estimators is proved by making use of expressions the

weigth illustrated through some simulations.

Chapter 4 :

The chapter deals with the regression estimator for the tail index. The main objective

of this chapter is to propose a method WLS from introduce a new estimator of the

cumulative distribution function for heavy tailed of the Frechet distribution. A simulation

study and application to real data were performed to the e¢ ciency of this new estimator

proposed .

3
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Preliminary Theory
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Chapter 1

Extreme value theory

The theory of extreme values EVT was developed for the estimation of probabilities

of occurrences of rare events. It makes it possible to extrapolate the behavior of the tail

of the distribution from the largest data observed (the extreme data of the sample).

For a detailed description of this study, see the excellent books in the works of Em-

brechts, Klüuppelberg and Mikosch [22] 1997, Coles [9], Reiss and Thomas [51] 2001;

Beirlant et al., [4] 2004, De Haan and Ferreira [16] 2006, David [15] 1970, and Balakrish-

nan [3] 1991.

This chapter we review some of the basic notions of elementary probability and stat-

istics. Then, we introduce various asymptotic models available in the classical EV T .

1.1 Foundations de�nition

De�nition 1.1.1 (Distribution and survival functions) If X is a rv de�ned on aprob-

ability space (
; F; P ) then, its df and survival function (also called hazard function) are

respectively de�ned on R by

F (x) := P (X � x) and F (x) := 1� F (x)

5



Chapter 1. Extreme value theory

De�nition 1.1.2 (The empirical distribution function) Let the sample X1; :::; Xn of

a positive r.v X, for n � 1 size, with the df F . The empirical distribution function Fn is

de�ned by:

Fn :=
1

n

nX
i=1

IfXi�xg 8x � 0

where IfAg is the indicator function of the set A. So we can conclude that Fn is the

proportion of the n variables which are less than or equal to x.

De�nition 1.1.3 (The empirical survival function) Let the sample X1; :::; Xn of a

positive r.v X and of n � 1 size, where S its a survival function. The empirical survival

function noted by Sn, is given by:

Sn := 1� Fn =
1

n

nX
i=1

IfXi>xg 8x � 0

So Sn is the proportion of observations that exceeds x.

De�nition 1.1.4 (Quantile function) The quantile function of F is generalized inverse

function of F de�ned by : for all 0 < s < 1;

Q(s) = F (s) := inffx : F (x) � sg

with the convention that inf(?) =1.

De�nition 1.1.5 (Empirical quantile function) The empirical quantile function of

the sample (X1; :::; Xn) is de�ned by : for all 0 < s < 1:

Qn(s) := inf fx : Fn(x) � sg := inf
(
x :

1

n

nX
i=1

IfXi�xg � s

)

where Fn is the empirical distribution function.

6



Chapter 1. Extreme value theory

1.1.1 Order statistics

De�nition 1.1.6 (Order statistics) Let the sample X1; :::; Xnof an independent and

identically distributed r.v of the same df F . The order statistics of X1; :::; Xn is the in-

creasing rearrangement of the previous sample, noted

X1;n � ::: � Xn;n;

and the rv Xk;n is the kth order statistics for 1 � k � n.

De�nition 1.1.7 (Extreme order statistics) Two order statistics are particular-interesting

for the study of extreme events. noted by X(1;n) and X(n;n) are de�ned respectively by:

X(1;n) := minX(i) and X(n;n) := maxX(i)

De�nition 1.1.8 (Extreme order statistics distributions) The distributions FX1;nand

FXn;n of the extreme order statistics X1;n and Xn;n are respectively de�ned by:

FX1;n(x) := 1� [1� F (x)]n

FXn;n(x) := [FX(x)]
n:

Pdf of X1;n and Xn;n are respectively de�ned by:

fX1;n(x) := nf(x)[1� F (x)]n�1

fXn;n(x) := n[F (x)]n�1f(x):

De�nition 1.1.9 (Distribution function of the K th upper order statistic) For

k = 1; :::; n let FXk;n denote the df of Xk;n , then

F
k;n
(x) :=

k�1X
r=0

0B@ n

r

1CAF
r
(x)F n�r(x):

7



Chapter 1. Extreme value theory

If F is continuous, then

F
k;n
(x) :=

Z x

�1
f
k;n
(z)dF (z);

where

f
k;n
(x) :=

n!

(k � 1)!(n� i)!
[F (x)]k�1[1� F (x)]n�kf(x)

i.e. f
k;n
is a density of F

k;n
with respect to F:

De�nition 1.1.10 (Empirical df ) The empirical df of the sample (X1; :::; Xn) is eval-

uated using order statistics as follows:

Fn(x) :=

8>>>><>>>>:
0 si x < X1;n

i�1
n

si Xi�1;n � x < Xi;n 2 � i � n

1 si x � Xn;n

De�nition 1.1.11 (Upper end point) We denote by xF (resp x�F ) the upper extreme

point (resp. Lower) of the distribution F (i.e. the greatest possible value for Xk;n which

can take the value +1 (resp �1) ) in the sense that:

xF := supfx : F (x) < 1g � 1

and

x�F := inffx : F (x) > 0g

1.2 Distribution of extreme values

This section is concerned with classicalEV T . The result is the Fisher Tippett theorem

[24] 1928, which speci�es the form of the limit distribution for centred and normalised

maxima.

Analogously to the central limit theorem, the theory of extreme values shows that

8



Chapter 1. Extreme value theory

there are sequences fang and fbng; n 2 N� , with an > 0 and bn 2 R; as

lim
n!1

P

�
Xn;n � an

bn
� x

�
= lim

n!1
F n(anx+ bn) = H(x) 8x 2 R; (1.1)

where H is a non-degenerate df. Since extreme value df�s are continuous on R, assumption

1.1 is equivalent to the following weak convergence assumption

Xn;n � an
bn

d! H as n!1

Remark 1.2.1 The sequences fang and fbng, n � 1 are called sequences of normal-

ization, the constants an 2 R�+ and bn 2 R are called constants of normalization and the

random variable 1
an
(Xn;n � bn) is called the normalized maximum.

1.2.1 Limit distributions

We shall �nd all distribution functions H that can occur as this limit. These distribu-

tions are called extreme value distributions. The class of distributions F satisfying 1.1 is

called the maximum domain of attraction or simply domain of attraction of H. we have a

similar notion in identify all extreme value distributions and their domains of attraction.

The following theorem gives a necessary and su¢ cient condition for the existence of

a non-degenerate limit distribtion for the maximum.

Theorem 1.2.1 (Fisher & Tippett ) Let (Xn)n�1be a sequence of random variables

(i:i:d)random variables with distribution function F . If there exists two real normalizing

sequences (an)n�1 > 0 and (bn)n�1 2 R ; and a non-degenerate law of distribution H such

lim
n!1

P

�
Xn;n � an

bn
� x

�
= H�(x);

where H is the distribution of extreme values. The distribution function of the limit is of

9



Chapter 1. Extreme value theory

the type of the following three classes :

Gumbel : H0(x) = �(x) = exp[� exp(�x)] x 2 R

Frechet : H�(x) = ��(x) =

8><>: 0 x � 0

exp(�x�1=�) x > 0
� > 0:

Weibull : H�(x) = 	�(x) =

8><>: 1 x � 0

exp(�(�x)��) x < 0
� < 0:

Proposition 1.2.1 (Density function of extreme values) The density functions of

the distribution of standard extreme values and the di¤erent types of extreme distribution,

are as follows:

Gumble : �(x) = exp[�
�
x+ e�x

	
] x 2 R

Frechet : �(x) = �x���1 exp(�x�1=�) x > 0

Weibull :  (x) = (�x)���1 exp(�(�x)��) x < 0

Figure ?? illustrates the density functions of �(x); �(x) and  (x); we chose � = 1 for the

Frechet and the Weibull distributions.

The three previous formulas can be combined in theorem 1.2.1 into a single type of

distribution (Weibull, Gumbel and Frechet ); called a the generalized extreme values

distribution (GEVD). A better analysis is o¤ered thanks to the work of von Mises [56]

1954, and Jenkinson [38] 1955.

De�nition 1.2.1 (Generalized extreme values distribution) Let  2 R; we call the

GEVD any df H or any probability law which has H as a function of distribution, for

all x 2 R such that 1 + x > 0, as follows:

H(x) =

8><>: exp
n
� [1 + x]�1=

o
if  6= 0

exp (� exp(�x)) if  = 0
(1.2)

10



Chapter 1. Extreme value theory

Figure 1.1: Densities of the standard extreme value distributions.

where the parameter  is called the index of extreme values (EVI ).

Remark 1.2.2 The GEVDH can be written in a more general form so for
�
1 + 

�
(x� �) > 0

	
:

H;�;�(x) =

8>>><>>>:
exp

(
�
�
1 + 

�
x� �

�

���1=)
 6= 0

exp

�
� exp

�
�x� �

�

��
 = 0

x 2 R

where � 2 R and � > 0 are respectively the location and scale parameters.

Gnedenko [29],1943 accomplished an important result on this issue.

In the applications of the theory of extreme values, which make it possible to classify

the three types of extreme distributions Frechet;Weibull and Gumbel in a single type

which is the type of generalized extreme value distribution. This proposition gives us a

very important result. Indeed, we have the following proposition:

11



Chapter 1. Extreme value theory

Proposition 1.2.2 (Ferreira, 2006) Let H( 2 R) be the generalized extreme value

distribution and �;�� and 	�the distribution of standard extreme values with � > 0 we

have :

H(x) :=

8>>>><>>>>:
�1= (1 + x)

	�1= f� (1 + x)g

�(x)

if  > 0

if  < 0

if  = 0

8x 2 R such that 1 + x > 0:

In other words, Hence the three extreme value distributions can be characterized by the

sign of the tail index  : Frechet type to  > 0; Weibull type to  < 0 and Gumbel type

corresponds to  = 0.

De�nition 1.2.2 (Generalized Pareto Dstribution GPD) The generalized Pareto

distribution any function distribution G; for all  2 R; such that 1 + x > 0, as fol-

lows:

G(x) =

8><>: 1� (1 + x)�1= if  6= 0

1� exp (�x) if  = 0
8 x � 0

Remark 1.2.3 The GPD G can be written in a more general form that we denote

by G�;�;� a parameter is shown of localization � 2 R and a scale parameter � > 0 for

1 + �
�
x��
�

�
> 0 and 8x � � ; as follows:

G�;�;�(x) =

8>><>>:
1�

�
1 + �

�
x� �

�

���1=�
if � 6= 0

1� exp
�
�x� �

�

�
if � = 0

:

The parameter � 2 R is called the "tail index" shape parameter from which we can thus

see the generalized Pareto distribution.

12



Chapter 1. Extreme value theory

1.3 Domain of attraction

In this section, we recall the necessary and su¢ cient conditions on the distribution

function F so that it belongs to one of the domains of attraction of one of the three limit

laws of extreme values. These conditions, basically due to von Mises [56], 1936 called von

Mises condition.

De�nition 1.3.1 (Domain of attraction) We say that a distribution function F be-

longs to the domain of attraction of H, if F veri�es theorem 1.2.1, denoted by F 2 D(H):

Now in the following theorem, we shall establish necessary and su¢ cient conditions

for a distribution function F to belong to the domain of attraction of H:

Theorem 1.3.1 According to the sign of ; let xF its right endpoint. The distribution

function F is in the domain of attraction of the extreme value distribution D(H) if and

only if

1. For  > 0, xF is in�nite and

lim
t!1

1� F (tx)

1� F (t)
= x�1=

for all x > 0. This means that the function 1 � F is regularly varying at in�nity with

index �1=:

2. For  < 0 : xF <1 and for all x > 0

lim
t#0

1� F (xF � tx)

1� F (xF � t)
= x�1=:

3. For  = 0 : here the right endpoint xF may be �nite or in�nite and

lim
t"xF

1� F (t� f(t+ xf(t)))

1� F (xF � t)
= ex

for all real x, where f is a positive suitable function.

13
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1.3.1 Characterizations of domain attraction

Before characterizing the domain of attraction, we de�ne the functions with variations.

For more details, refer to Bingham et al., [7] 1987 where many results on regularly varying

functions are given.

De�nition 1.3.2 (Regularly varying and slowly varying functions) Let a meas-

urable function G : R+ ! R+ is regularly varying at 1 with the index � (G 2 RV�),

if

lim
x!1

G(tx)

G(x)
= t� ,8t > 0

A measurable function l : ]a;+1[! R+with (t > 0) is said slowly varying at in�nity, if:

lim
x!1

l(tx)

l(x)
= 1

Theorem 1.3.2 (Kramata representation) Every slowly varying function l (i.e l 2

RV0) if and only if can be represented as : for all x > 0,

l(x) = c(x) exp

8<:
xZ
1

t�1"(t)dt

9=; ;

where c and " are two measurable functions,

lim
x!1

c(x) = c 2 ]0;+1[ and lim
t!1

"(t) = 0

If the function c is constant, we say that l normalized.

Proof. See Resnick [52],1987; Corollary 2:1

Di¤erent characterizations of three domain of attraction of Frechet, Weibull and Gum-

bel, according to the sign of , we can distinguish three domain of attraction :

14
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Characterization of D(�) :

If  > 0, we say that F 2 D (�) , and F has an in�nite right end point (xF = +1),

this domain of attraction of heavy-tailed distributions, that is, which have a polynomial

decay survival function. The result below stated by Gnedenko [29],1943 and a simple proof

of which can be found in Resnick�s book [Proposition 1:11]:

Theorem 1.3.3 F 2 D (�) with parameter  > 0; xF = +1 if and only if :

1� F (x) = x�1=l(x)

where l is a slowly varying function. In this case, a possible choice for the sequences an

and bn are an = F�1(1� 1
n
) and bn = 0.

Characterization of D (	) :

If  < 0 , we say that F 2 D (	), and F has a �nite right end point (xF < +1).

This domain of attraction of survival functions whose support is bounded above. The

following result (see Gnedenko [29],1943 ;Resnick [52],1987[45, Proposition 1:13]) shows

that we pass from the domain of attraction of Frechet to that of Weibull by a simple

change of variable in the distribution function.

Theorem 1.3.4 F 2 D (	) with  < 0 i¤ xF = +1 and 1 � F � is a function with

regular variations of index �

1� F (x) = xF � x�1 = x�1=l(x)

where the function l slowly varying of index 1=. In this case, a possible choice for the

sequences an and bn is

an = xF � F�1(1� 1

n
) and bn = xF

15



Chapter 1. Extreme value theory

this domain of attraction has been considered by Falk [23],1995; Gardes [27]; 2010 to give

an endpoint estimator of a distribution.

Characterization of D (�) :

If  = 0 we say that F 2 D (�) the end point xF can then be �nite or not.This

domain of attraction of distributions with light tails, that is to say which have an ex-

ponentially decaying survival function. The result below is proved notably in Resnick

[52],1987 [Proposition 1:4].

Theorem 1.3.5 A distribution function F belongs to the Gumbel domain of attraction if

and only if there exists z < xF <1 such that

F (x) = c(x) exp

8<:�
1Z
z

1

a(t)
dt

9=; ; z < x < xF

where c(x) ! c > 0 when x ! xF and a(:) is a positive and di¤erentiable function with

derivative �a (:) such that lim
x!xF

�a(:) ! 0.

The tables 1.1, 1.2 and 1.3 give di¤erent examples of standard distributions in these three

domains of attraction.

Distributions F (x) or density f 

Burr(�; �; �) � > 0; � > 0; � > 0

�
�

� � x�

��
1
��

Frechet
�
1
�

�
, � > 0 1� exp(�x��) 1

�

Loggamma � > 0;m � 0 �m

�(m)

1R
x

(log(u))m�1u�(�+1)du 1
�

Log-logistic � > 0; � > 0 1
1+��

1
�

Pareto � > 0 x��; x > 0 1
�

Table 1.1: Some distributions associated with a positive index
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Distribution F (x) 
Uniforme [0; 1] 1� x �1

Inverse Burr (�; �; �; x� ); �; �; � > 0
�

�

� + (x� + x)��

��
� 1
�

Table 1.2: Some distributions associated with a negative index.

Distributions The F (x) or density f 

Gamma (m;�); m 2 N; � > 0 f(x) = �m

�(m)

1R
x

um�1 exp(��u)du 0

Gumbel (�; �); � 2 R; � > 0 f(x) = exp
�
� exp

�
�x��

�

��
0

Logistic F (x) = 2
1+exp(x)

0

Log nomale (�; �); � 2 R; � > 0 f(x) = 1
2�

1R
x

1
�
exp(� 1

2�2
(log u� u)2)du 0

Weibull (�; �); � > 0; � > 0 F (x) = exp(��x� ) 0

Table 1.3: Some distributions associated with a null index.

1.4 Tail Index Estimators

The estimate of the tails index, plays an important role in limiting an extreme law,

when it exists, is indexed by a parameter called extreme value index, there are two methods

for estimating the extreme value index : parametric methods, meaning that the data

follow an exact GEV distribution, and semi-parametric methods, where the parameter has

both a �nite-dimensional and an in�nite-dimensional and are therefore based on partial

properties of the underlying distribution, such as the Pickands [50], Hill [34] and Moment

[19] estimators.

In the following, we brie�y review the estimators that have been proposed for tail

index estimation.

1.4.1 Semi-parametric estimators

We present here di¤erent estimators constructed under the domain of attraction con-

ditions. That is, the data (X1; :::; Xn) are assumed to be drawn from a population X

with df F . This semi-parametric statistical procedures don�t assume the knowledge of the

17
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whole distribution but only focus on the distribution tails. The case  > 0 has got more

interest because data sets in most real-life applications, exhibit heavy tails. The two most

common estimators in the literature are the estimators from Hill and Pickands. We give

a study in this section of estimators with some of their statistical properties.

Let X1;n � ::: � Xn;n be the order statistics based on the sample X1; :::; Xn, with

distribution F and Xk;n is the kth upper order statistic. The intermediate order statistics

Xn�k;n !1 and k = kn be a sequence of positive numbers satisfying the conditions

1 � kn � n; kn !1 and
kn
n
! 0 as n!1

By the way, it is necessary to calculate this estimator on the tails of the distribution.

A sub-sample that is too small does not allow the estimators to reach their level of stability

on the contrary choosing k too high generates the risk of taking non-outliers into account,

thus we will note that a non-parametric approach is only possible if one has a large number

of observations : if the samples small, then we�ll turn on to the parametric approach.

Pickand�s estimator

James Pickands proposed his estimator in 1975; [50] for any  2 R and k = kn series

of integers with 1 < k < n: Let X1;n � ::: � Xn;n the order statistics of X1; :::; Xn from F

such that F 2 D (� 1

), the Pickand estimator is de�ned by:

b(P ) = b(P )k := (log 2)�1 log

�
Xn�k;n �Xn�2k;n

Xn�2k;n �Xn�4k;n

�
A full analysis on b(P ) is to be found in Dekkers and de Haan [19]; 1989 where improvements
of this estimator were introduced in particular by Drees [21],1995 from which the following

result is taken.

18
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Theorem 1.4.1 (Asymptotic Properties of b(P ) ) Assume that F 2 D (H);  2 R;

k !1 and
k

n
! 0 when n!1:

1. Weak Consistency :

b(P ) P!  when n!1

2. Strong consistency : if k= log log n!1 when n!1, then

b(P ) a:s!  when n!1

3. Asymptotic normality: under further conditions on k and F ,

p
k(b(P )k � )

d! N (0; �2) when n!1;

where

�2 :=
2(22+1 + 1)

(2(2 � 1) log 2)2

A generalization of the Pickands estimator was introduced by Yun [58],2002 as follows

b(Y )n;k;u;v := (log v)
�1 log

�
Xn�k+1;n �Xn�[uk]+1;n

Xn�[vk]+1;n �Xn�[uvk]+1;n

�
;

where, u; v are positive real numbers di¤erent from 1 such that [uk]; [vk] and [uvk] do not

exceed n. For u = v = 2, we have b(P )k :

Hill�s Estimator

Hill�s estimator, is one of the most common estimators for the tail index of heavy

tailed distributions, where research has mainly focused on when the EV I is positive

( = 1
�
> 0) because data sets in most real applications , which corresponds to the

distributions belonging to the domain of attraction of Fréchet F 2 D (� 1

), that is, when
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the distribution tail has a Pareto shape, identi�ed by Hill [34],1975 :

bH = b(H)k :=
1

k

kX
j=1

logXn�j+1;n � logXn�k;n (1.3)

The construction of this estimator is given in the books by De Haan et al.,[16],2006 and

Beirlant et al.,[4], 2016. Other estimators have been proposed in particular by Beirlant

et al., [4],2016 who use an exponential regression model base to the Hill estimator and by

Csörgö et al.,[11], 1985 who use a kernel in the Hill estimator.

The asymptotic properties of Hill�s estimator are summarized in the following theorem.

Theorem 1.4.2 (Asymptotic Properties of b(H)) Assume that F 2 D (� 1

);  > 0;

k !1 and k
n
! 0 when n!1:

1. Mason [46],1982 has proven weak consistency :

b(H) P!  when n!1

2. Strong consistency was established by Deheuvels et all. [18],1985 under the condition

that : k= log log n!1 , then

b(H) a:s!  when n!1,

and more recently by Necir [47], 2006.

3. Asymptotic normality was established under a suitable extra assumption, known as the

second-order regular variation condition (see De haan and Stadtmüller [17],1996 and De

haan and Ferreira [16],2006), with mean  and variance 2=k :

p
k

�b(H) � 



�
d! N (0; 1)

Figure 1.2, show that the Hill estimator against k performs well with both the Frechet
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distribution, the sample size is n = 1000 :

Figure 1.2: Hill estimator for samples of a Frechet distribution, with parameter  = 0:6

Moment estimator

Another estimator which can be considered as an adaptation of Hill�s estimator, to

obtain the consistency for all  2 R, has been proposed by Dekkers et al., [19],1989. This

is the moment estimator, given by

̂(M) = ̂
(M)
k :=M1 + 1�

1

2

 
1�

(M
(1)
(k))

2

M
(2)
(k)

!�1
;

M
(r)
k :=

1

k

kP
i=0

(logXn�i+1;n � logXn�k;n)
r ; r = 1; 2:

Theorem 1.4.3 (Asymptotic properties of ̂(M)) Suppose that F 2 D(H),  2 R,

k !1 and k=n! 0 when n !1 :

1. Weak consistency :

̂(M) P!  when n!1:
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2. Strong consistency : if k=(log n)� !1 when n!1 for certain � > 0, so

̂(M) a:s!  when n!1:

3. Asymptotic normality: (see Theorem 3:1 and Corollary 3:2 of [19])

p
k(̂(M) � )

d! N (0; �2) when n!1;

or

�2 :=

8><>:
1 + 2  � 0;

(1�)(1� 2)
�
4� 81� 2

1� 3 +
(5� 11)(1� 2)
(1� 3)(1� 4)

�
;  < 0:

The normality of this estimator was established by Dekkers et al., [19] under suitable

regularity conditions.

1.4.2 Parametric estimators

Maximum likelihood estimator

The maximum likelihood estimator is built from the observations of the maxima, it

involves estimating the index of extreme values as well as the two normalizing sequences

an et bn:

Let X1; :::; Xn be a sample of n maxima, in the case  6= 0 the log-likelihood function

obtained from the de�nition is written:

L((; bn; an);X) = �n log an�
�
1


+ 1

� nX
i=1

log

�
1 + 

Xi � bn
an

�
�

nX
i=1

�
1 + 

Xi � bn
an

��1=

In the case where  = 0;

L((0; bn; an);X) = �n log an �
nX
i=1

exp�
�
Xi � bn
an

�
�

nX
i=1

Xi � bn
an
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Smith [54],1985: demonstrated the consistency properties and the asymptotic normality

of this estimator when  > 1=2 and m!1 :

p
m
��b;ban;bbn�� (; an; bn)�! N

�
0; I�1

�
where I is the Fisher information matrix estimated by its empirical version

I(�) = �E
�
@2L(X; �)

@�2

�

L(X; �) is the log-likelihood function associated with the law of the random variable X, �

parameterized by a set of parameters �:

For  > �1; Zhou [61],2009 and Dombry [20],2013 proved that the maximum likelihood

estimator exists and is consistent. Then Zhou [62],2010 ; also obtained the asymptotic

normality for �1 <  < �1=2.

Weighted moment estimator

This method, which dates back to Hosking et al., [36], 1985 is based on the following

quantity, called the weighted moment of order r :

!r := E(X H r
;�;�(x)); r 2 N:

This quantity exists for  < 1 and given by:

!r :=
1

r + 1

�
�� �


(1� �(1� )(r + 1))

�
;

where � is Euler�s gamma function. In this case, three weighted moments are enough to

calculate �; � and .
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8>>>><>>>>:
!̂0(�) = �� �


(1� �(1� )) ;

2!̂1(�)� !̂0(�) =
�

�(1� )(2 � 1);

3!̂2(�)� !̂0(�)

2!̂1(�)� !̂0(�)
=
3 � 1
2 � 1 :

Thus by replacing respectively !r, r 2 f0; 1; 2g by its empirical estimator

!̂r;n :=
1

n

nX
i=1

Xi;n

�
i� 1
n

�r
:

The weighted moment estimator (WME) is obtained by solving the system of three equa-

tions

!r = !̂r;n , r = 0; 1; 2:

The solution to this equation is the WM estimator ̂ of . The other parameters � and

� are estimated respectively by:

�̂ =
(2!̂1 � !̂0)̂

�(1� )(2 � 1) ;

and

�̂ = !̂0 +
�̂

̂
(1� �(1� ̂)) :

Regression estimator

The parameters of the distribution of extreme values can be estimated by the regres-

sion method, Gumbel [28] 1958 and Kinnison [42] 1985; presented this method consists

of four steps, as follows:

� Choose the maximum pro�tability from a set of daily pro�tability. At each date, we

observe a realization of the variableX. After n time units, we therefore have n observations

denoted X1; X2; :::; Xn, from which we extract the greatest value denoted Y1;n. Of the

following n observations, we extract again the maximum term called Y2;n. If we have
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N obs = n:N observations, then N observations of maxima Y1;n; Y2;n; ; :::; YN;n:

� Row the sequenceY1;n; Y2;n; ; :::; YN;n in ascending order to obtain ordered statistics

�Y1;n; �Y2;n; ; :::; �YN;n is verify: �Y1;n � �Y2;n;� :::; �YN;n:

� Use random frequencies FY ( �Y1;n); FY ( �Y2;n); ; :::; FY ( �YN;n) and assumes that the extreme

observations are exactly taken from the extreme value distributionH given by the theorem

1.2.1. For each value of i, FY ( �Yi;n) , the distribution of this random variable is given by :

FZ(y) =
N !

(N � i)! i !
i yi�1(1� y)N�i where Z = FY ( �Yi;n);

note that the law of the variable FY ( �Yi;n) is independent of the variable Y and only depends

on the order i:The random frequencies FY ( �Yi;n) are distributed around their mean values

E
�
FY ( �Yi;n)

�
. The mean value of the ith frequency is given by :

E
�
FY ( �Yi;n)

�
=

i

n+ 1
;

this result leads to the statistical model

FY ( �Yi;n) = E
�
FY ( �Yi;n)

�
+ "i;n =

i

n+ 1
+ "i;n; (1.4)

the error term "i;n has zero mean and is normally asymptotically distributed if the quotient

i=N is not too close to zero and unity.

� Estimate equation 1.4 by transforming it by taking twice the logarithm of FY ( �Yi;n) and

of E
�
FY ( �Yi;n)

�
and obtaining a non-linear model :

� log
�
� log

�
i

n+ 1

��
=
1


log � � 1


log
h
� � 

�
�Yi;n � �

�i
+ �i;n , (1.5)

the study is according to sign of the tail index , which determines the type of the asymp-

totic distribution.

The case  = 0 (Gumbel), it is necessary to estimate a following model:
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� log
�
� log

�
i

n+ 1

��
=
�Yi;n � �

�
+ �i;n (1.6)

The equations 1.5 and 1.6 are estimated by minimizing the sum of the squares of the re-

siduals, under the assumption of normality and independence of the residuals, minimizing

this function amounts to maximizing the likelihood of each model. Estimators of ; � and

� are relatively accurate although slightly biased.

For more details on this issue, one my consult please check (Gumbel [28] 1958, page

176� 178) and (Kinnison [42] 1985,page 68� 71).
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Regression conceptions

In this chapter, we will indeed the most important aspects of regression theory. The

main de�nition and characteristics of this concept are presented. To make things easier,

we start with a brief reminder of linear regression model. As this is a model with only

one explanatory variable, we speak of simple regression or to explain a variable Y using

a variable X. Then, focusing on the most important de�nitions the regression line to

be estimated from the data of a sample by the least squares method [53]. One of the

assumptions of the least squares estimation method is the assumption of constant variance,

but in situations where the underlying distribution is continuous but skewed, constant

variance cannot be assumed. This situation can best be solved by modifying least squares

using a weighted least square, which allows the variance of the error term to be almost

constant.

In this conceptions, we focus on methods which using linear regression based on a

simple linear model.
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2.1 The simple regression model

Generally, we consider the modelling between the dependent and one independent

variable. When there is only one independent variable in the linear regression model, the

model is generally termed as a simple linear regression model.

As a �rst approach, a natural idea is to suppose that the variable to be explained Y

is a function ne of the explanatory variable x, that is to say of look for g in the set z of

functions a¢ ne from R to R. This is the principle of simple linear regression.

Before presenting the simple linear model, we de�ne the regression function.

2.1.1 De�nitions

De�nition 2.1.1 (Regression function) Let X and Y be two random variables such

that E(jY j) <1. The function g : R! R de�ned by :

g(x) = E(Y jX = x)

is said to be the regression function of Y on X.

De�nition 2.1.2 (Regression model Y on X) We note Y the real random variable to

be explained and X the explanatory variable. The model amounts to supposing, that on

average E(Y )is an a¢ ne function of X (i.e, writing the model implicitly assumes a prior

notion of causality in the sense that Y depends on X because the model is not symmetrical,

see [10]). In the case where X is deterministic, the model is written:

E(Y ) = f(X) = a0 + a1X

In the case where X is random, the model is then written conditionally on the observations

of X :

E(Y jX = x) = a0 + a1x
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De�nition 2.1.3 (Simple linear regression model) A simple linear regression model

is de�ned by an equation of the form ,

Yi = a0 + a1xi + "i 8i = 1; n

where a0 and a1 are parameters and independent of the residuals "i.

To make an inference of the model parameters, recall several main assumptions of

simple linear regression :

� Yi represents the ith value of the response (dependent) random variable y.

� xi represents the ith value of the predictor (independent) deterministic variable x.

� a0 and a1 are the coe¢ cients (represented by the intercept and slope of the model).

� The errors are uncorrelated Cov("i; "j) = 0, 8i 6= j.

� We�ll model "i as being Gaussian, 8i = 1; n :

"i � N (0; �2"i) 8i = 1; n (2.1)

� �2 is constant throughout the range.

� Relationship is linear between X and Y , i.e., relation is a straight line.

The residual plot below suggests that : In the �rst case (left), all assumptions seem

satis�ed, but in the second graph ( right), the relationship does not seem linear, the

variance �2; is not constant throughout the range.
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Figure 2.1: Examples of scatter plot the residuals

In addition, the simple linear regression model de�ned by 2.1.3 can be written in matrix

form :

Y = Xa+ ",

0BBBBBBB@

y1

y2
...

yn

1CCCCCCCA
=

0BBBBBBB@

1

1

...

1

x1

x2
...

xn

1CCCCCCCA
0B@ a0

a1

1CA+
0BBBBBBB@

"1

"2
...

"n

1CCCCCCCA
:

The assumptions of this model can of course be relaxed. Note that the a¢ ne hypo-

thesis is not as restrictive as it seems, variables can be changed. For example:

Yi = a0 + a1 log(xi) + "i,

Y 2
i = a0 + a1 exp(xi) + "i; and

log(Yi=(1� Yi)) = a0 + a1xi + "i (logistic model) are also linear models.

Remark 2.1.1 :

Error distribution "i distributed according to 2.1 is used when we want to determine the

distance of the estimators (â0 ; â1), the con�dence intervals and the hypothesis tests. So for

each value of xi (�xed),Yi has a normal distribution of expectation E(Yi) = a0 + a1xi + E("i)

and V ar(Yi) = V ar(a0 + a1xi + "i) = �2 .The expectations of the di¤erent Yi are thus

aligned on the regression line that we have to estimate by the method of least squares,
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which we will present in the next section.

2.2 Parameter estimation methods

In statistics, the maximum likelihood estimator for observations with additive gaus-

sian noise is the least squares estimator, given a sample (xi)1�i�n, a simple regression

model assumes that the results observed for yi are related to xi. We represent in a graph

the set of observations (xi; yi). We can then propose a linear model, that is to say look

for the line whose equation is yi = a0 + a1xi and which passes as close as possible to the

points of the graph.

We recall here two notions of the methods :

2.2.1 The least squares method

To �nd good estimates for the coe¢ cients a0 and a1, we employ the Least Squares

(LS) method, which gives the line that minimizes the sum of the vertical distances from

each point to the line.

De�nition 2.2.1 To estimate parameters a0and a1, by minimizing the sum of the squares

of the di¤erences between observations and model 2.1.3, Least squares are given by the

following formulas :

ba1 = Sxy
S2x

& ba0 = y � ba1x;
where :

y =
1

n

nP
i=1

yi , x =
1

n

nP
i=1

xi,

S2y =
1

n� 1

nX
i=1

(yi � y)2 , S2x =
1

n� 1

nX
i=1

(xi � x);2

Sxy =
1

n� 1

nX
i=1

(xi � x)(yi � y):
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Statistical properties of LS estimates :

� These estimators are unbiased estimators : E(ba1) = ba1 and E(ba0) = ba0:
� V ar(ba1) = �2

nP
i=1

(xi � x)2
=

�2

nS2x

� V ar(ba0) = �2
nP
i=1

x2i

n
nP
i=1

(xi � x)2
=
�2

n
(1 +

x2

S2x
)

� Cov(ba0;ba1) = Cov(ba1;ba0) = � �2x
nP
i=1

(xi � x)2
= � x

nS2x
:

Remark 2.2.1 An unbiased estimator of �2" is given by :

S2" =
1

n� 2

nX
i=1

(yi � ŷi)
2 =

1

n� 2

nX
i=1

"2i

Fitting a straight line

The method of least squares is a procedure to determine the best �t line to data, the

proof uses simple calculus and linear algebra. The basic problem is to �nd the best �t

straight line y = a0 + a1x given that, for i = 1; n:

We consider that the points are on the line of equation, the vertical distance corres-

ponding to the ith observation is : "i = yi � a0 � a1xi; these vertical distances are called

the least squares residuals, the sum of squares of these distances can then be written as:

Q(a0; a1) =

nX
i=1

(yi � a0 � a1xi)
2 ; i = 1; n

The goal is then to �nd the right equation minimizing this error term, that is to say

to determine a0 and a1 minimizing Q is minimal (see the de�nition 2.2.1), we calculate
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its derivative with respect to each of these two variables :

@Q

@a0
= 0 &

@Q

@a1
= 0

Finally, the least squares regression line is given by :

by = ba0 + ba1x
Determination and correlation coe¢ cients

The line of �t by = ba0 + ba1x is called the regression line or least squares, for graphical
presentation and the calculation of the empirical linear correlation coe¢ cient prompts one

to try to �t a simple linear regression model. According to [49], we recall the de�nition of

the coe¢ cient of determination .

De�nition 2.2.2 (The coe¢ cient of determination) The measure R-squared ( R2)this

coe¢ cient expresses the part of variation of Y explained by the variation of X. It expresses

the ratio between the variance of Y explained by the model and the total variance. It is an

indicator of the goodness of �t of the regression equation. It allows to have a global idea

of the �t of the model is de�ned by the following relation :

R2 :=
SSR

SST
= 1� SSE

SST

where :

SSR =
Pn

i=1(ŷi � y)2 (Regression sum of squares)

SST =
Pn

i=1(yi � y)2 (Total sum of squares)

SSE =
Pn

i=1(yi � ŷi) (Error sum of squares.)
Since 0 � SSE � SST , we note that:

0 � R2 � 1
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De�nition 2.2.3 (The linear correlation coe¢ cient) A measure of linear association

between Y and X when both Y and X are random is the coe¢ cient of correlation �.This

measure is the signed square root of R2 :

�(X; Y ) = �
p
R2;

where �1 � �(X;Y ) � 1 , this means that we have a relation of the type y = a1x + a0

between the variables X and Y .

Tests and con�dence intervals

Following the estimation of the regression coe¢ cients, the statistical test is the second

step following the regression. It allows to quantify if an explanatory variable has a stat-

istically signi�cant e¤ect, in this section we have seen how to perform hypothesis tests

on the parameters a0 and a1 of the simple regression model, as well as on how to build

con�dence intervals.

a) Slope and intercept parameters test :

The hypothesis test concerning the slope a1 and the intercept a0 is of the form

respectively : 8><>: H0 : a1 = 0

H1 : a1 6= 0
&

8><>: H0 : a0 = 0

H1 : a0 6= 0

Since that ba1 and ba0 are a linear combination of the observation Yi, so ba1 and ba0 will be
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normally distributed and can be expressed as follows :

ba1  N
�
a1;

�2

nS2x

�
, ba1 � a1

�p
nSx

 N (0; 1)

ba0  N
�
a0;

�2

n

�
1 +

x2

S2x

��
, ba0 � a0

�p
n

s
1 +

x2

S2x

 N (0; 1)

Since � is unknown, we replace it by S , and therefor we obtain :

Ta1 =
ba1 � a1
Sp
nSx

 tn�2 & Ta0 =
ba0 � a0

Sp
n

s
1 +

x2

S2x

 tn�2

Under the null hypothesis we�ll �nd:

Ta1 =
ba1
Sp
nSx

 tn�2 & Ta0 =
ba0

Sp
n

s
1 +

x2

S2x

 tn�2

Accordingly, at the level of signi�cance � 2 [0; 1], H0 is to be rejected if:

jTa1j > t1��
2
(n� 2) & jTa0j > t1��

2
(n� 2)

where, t1��
2
(n� 2) is the (1 � �=2) percentile of the student distribution with (n � 2)

degrees of freedom.

b) Con�dence interval

The point value of an estimator is generally insu¢ cient and it is necessary to add a

con�dence interval to the signi�cance level � (or to the con�dence level 1� �). It is

interesting to give the con�dence intervals of level of con�dence (1� � ), of the parameters
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a0 and a1;we can make the following probability statement :

P
�
jTa1j < tn�2;1��

2

�
= 1� �

P
�
jTa0j < tn�2;1��

2

�
= 1� �

Therefore, the (1� �) con�dence limits for a0 , a1 respectively are :

ba1 � tn�2;1��
2

Sp
nSx

;

ba0 � tn�2;1��
2

Sp
n

s
1 +

x2

S2x
:

Finally, the residual variance is constant over the studied domain, meaning that all

distributions of Y (y
i
) must have the same standard deviation. In another way, it is

precisely in the hypotheses that it is necessary to check the equality of the variances of

errors. If the variance is not constant over the entire range, we use �Least squares�with

the variance potentially inverted for weighting. In the next section, we�ll take a look at

this method.

2.2.2 The weighted least squares method

Weighted Least Squares (WLS) is an estimation technique which weights the obser-

vations proportional to the reciprocal of the error variance for that observation and so

overcomes the issue of non-constant variance. This term was originally used in Nelder and

Wedderburn [57],1972.

De�nition 2.2.4 (WLS in Simple Regression) Consider the following model :

Yi = a0 + a1Xi + "i

where "i � N (0; �2=wi) for known constants w1; :::; wn. The weighted least squares estim-

36



Chapter 2.Regression conceptions

ates of a0 and a1 minimize the quantity

Qw(a0; a1) =
nX
i=1

wi (yi � a0 � a1xi)
2 :

Remark 2.2.2 :

� Since each weight is inversely proportional to the error variance, it re�ects the inform-

ation in that observation. So, an observation with small error variance has a large weight

since it contains relatively more information than an observation with large error variance

(small weight).

� The weights have to be known (or more usually estimated) up to a proportionality con-

stant.

De�nition 2.2.5 To estimate parameters a0and a1; the WLS estimates are then given

as :

â1 =

nP
i=1

wi(yi � yw)(xi � xw)

nP
i=1

wi(xi � xw)2
& â0 = yw � â1xw

where xw and yware the weighted means with ;

xw =

nP
i=1

wixi

nP
i=1

wi

& yw =

nP
i=1

wiyi

nP
i=1

wi

Statistical properties of WLS estimates

� These estimators are unbiased estimators

� V ar(â1) =
�2P

wi(xi � xw)2

� V ar(â0) =
�
1P
wi
+

x2wP
wi(xi � xw)2

�
� The weighted error mean square Qw(ba0;ba1)=(n� 2) also gives us an unbiased estimator
of �2:

37



Chapter 2.Regression conceptions

De�nition 2.2.6 (General WLS Solution) Let W be a diagonal matrix with diagonal

elements equal to w1; :::; wn. The weighted residual sum of squares is de�ned by

Qw(�) =

nX
i=1

wi(yi � xti�)
2

= (Y �X�)tW (Y �X�)

The general solution to this is

b� = �X tWX
��1

X tWY

De�nition 2.2.7 (WLS as a Transformation) In general suppose we have the linear

model

Y = X� + "

where V ar(") = W�1�2. Let W 1=2 be a diagonal matrix with diagonal entries equal to
p
wi. Then we have V ar(W 1=2") = �2In . Hence we consider the transformation

�Y = W 1=2Y; �X = W 1=2X and �" = W 1=2"

This gives rise to the usual least squares model

�Y = �X� + �"

using the results from regular least squares we then get the solution

b� = �( �X)tX��1 ( �X)t �Y = �X tWX
��1

X tWY

hence this is the weighted least squares solution.
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Example 2.2.1 : Recall from the model yi = a0 + a1xi + "i where V ar("i) = x2i�
2, we

can transform this into a regular least squares problem by taking

y
0

i =
yi
xi

x
0

i =
1

xi
"
0

i =
"i
xi

Then the model is

y
0

i = a1 + a0x
0

i + "
0

i where V ar("
0

i) = �2

The residual sum of squares for the transformed model is

Q(a0; a1) =
nX
i=1

�
y
0

i � a1 � a0x
0

i

�2
=

nX
i=1

�
yi
xi
� a1 � a0

1

xi

�2
=

nX
i=1

�
1

xi

�2
(yi � a0 � a1xi)

2

This is the weighted residual sum of squares with wi = 1=x2i , hence the weighted least

squares solution is the same as the regular least squares solution of the transformed model.

Choice of the weights

How should we choose the weights ? Gauss considered di¤erences in precision of �

assuming a known variance (�2) and generalized his method of least squares with weights

as inverses of the square root of variances (Plackett; [48]1949).

In general, we will choose the weights wi in simple regression as follows :

wi =
�2

V ar("i)
;

it is therefore necessary to evaluate the form of V ar("i) as a function of xi to know the

weights to use.
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� To de�ne this form, we generally draw the graph of the residuals or of the variance of

the residuals as a function of the explanatory variable x. We can then make assumptions

about the form of V ar("i) as a function of the xi in order to make a weighted regression

with each of the proposed forms and choose the one for which the graph of the residuals

as a function of x is the best. We can also take as weight the inverse of the variances:

wi =
1

V ar(xi)
:

In cases where the variance of "i is proportional to xi; then

wi =
1

xi
:

In cases where the variance of "i is proportional to x2i ; then

wi =
1

x2i
:

Remark 2.2.3 :

1. Another common case is where each observation is not a single measure but an average

of ni actual measures and the original measures each have variance �2.In that case,

standard results tell us that

V ar("i) = V ar(yi) =
�2

ni
;

thus we would use weighted least squares with weights wi = ni:

2. In many real-life situations, the weights are not known, in such cases we need to

estimate the weights in order to use weighted least squares.
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Example 2.2.2 The data taken from Tomassone et al., [55], 1998.

We consider data comprising 10 observations with the explanatory variable X. The vari-

able Y is generated using the following model :

yi = 3 + 2xi + "i;

where the "i are normally distributed E("i) = 0; et V ar("i) = (0:2xi)
2 , we present the

data thus generated in the following table :

xi 1 2 3 4 5 6 7 8 9 10
Yi 4:90 6:55 8:67 12:59 17:38 13:81 14:60 32:46 18:73 20:27

Table 2.1: Values xi and Yi generated by the model studied

A simple regression study always begins with a plot of the observations (xi; yi), i = 1; 10.

This �rst representation makes it possible to know if the linear model is relevant.

Graphic Representation : in �gure 2.2, we plot Yi and individuals xi:

Figure 2.2: plot Yi and individuals xi
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1. The least squares method :

The least squares method provides the following estimated coe¢ cients on the example, for

all i = 1; 10. The regression equation is ,

Ŷi = 3:49 + 2:09xi

The estimated slope of the line : â1 = 2:09

The estimated y-intercept : â0 = 3:49

Least squares regression line :

We are looking for the line for which the sum of the squares of the vertical deviations

of the points from the line is minimum. On the graph, we have drawn any line through the

data and we represent the errors for some points, �gure 2.3 below illustrates the regression

line by least squares.

Figure 2.3: Linear regression line and scatter plot.

We �rst compute the residuals, "i, the basic regression is shown in table 2.2 :

the regression model explains 62:94% of the total variation.
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SSE =
10P
i=1

"2i 212:39b�2 = SSE =n� 2 26:55
R2 = SSR =SST 0:6294

Table 2.2: Regression results for the LS method

2. The weighted least squares method :

A weighted regression study, using the values (1=x2) as weights. These weights are known

since they must be proportional to the true variances, the occurrence equal to (0:2xi)2:

The weighted least squares method provides the following estimated coe¢ cients on the

example :

Ŷi = 2:53 + 2:28xi:

In table 2.3, the regression using the method of weighted least squares :

SSE =
10P
i=1

"2i 3:75b�2 = SCR =n� 2 0:47
R2 = SSR =SST 0:8611

Table 2.3: Regression results for the WLS method

the regression model explains 86:11 % of the total variation.

� The residuals are always immediately available, so we can graph them :

Figure 2.4: Scatter plot the residuals for the LS and WLS methods.
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Remark 2.2.4 On this basis, the following comments can be made:

1. All quantities related to the sum of the squares of the dependent variable are assigned

by weights and are not comparable to those obtained by the least squares regression.

2. The estimated coe¢ cients are relatively close to those of the least squares regression.

Generally, the weighted least squares method, like the other least squares methods,

is also sensitive to extreme values. We can �nd out in the following parts.
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A weighted least-squares estimation

method for distributional parameters

In the �elds of mathematics and statistics, regression procedures are often used for

estimating distributional parameters. In this procedure, the distribution function is trans-

formed to a linear regression model. The aim of the current chapter, we consider weighted

least squares WLS estimation method, based on an di¤erent expressions of weight, for

distributional parameters. The considered estimation method is then applied to the es-

timation of parameters of di¤erent distributions, such as Weibull, Gumbel and Pareto.

We also extract the approximate results and explain the performance of these estimates

in a simulation study.

3.1 Preliminary

A linear regression model was obtained, in which the dependent variable is a nonpara-

metric estimate of the value of the distribution function at the ranked sample. Then, the

estimates of least squares LS of the coe¢ cients of the regression model become the estim-

ates of the parameters of the statistical distribution. However, heteroscedasticity (non-

constant variance) is present in the used regression model, whereby LS estimates lose the
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e¢ ciency property. In such cases, the use of WLS regression to estimate the parameters

of some distributions, such as the parameters of the Weibull, Gumbel and Pareto distri-

butions, have been studied by regression estimation methods (Bergman [5]1986, Hossain

and Howlader, [37]1996, Zhang et al., [59] 2007, [60] 2008, Zyl [64] 2012, Zyl and Schall

[65] 2012, Kantar and Arik, [39] 2014, Kantar and Yildirim, [40] 2015, Lu and Tao [45]

2007.)

When performing a WLS, the variances of the dependent variables are unknown and

must be estimated to perform of this method. Hung [33] 2001, Lu et al., [44] 2004, Zyl

and Schall [65] 2012 emphasize that a weight function should be used when performing

regression methods, and propose di¤erent weights using large sample properties of the

empirical distribution function or order statistics, to stabilize the variance in order to

perform the WLS estimation method.

In this chapter, we propose a weighted least squares WLS estimation method for

distributional parameters. Also, knowing how to calculate the weights with two ideas : a

weight function proposed by Bergman [5] 1986 and the idea of Zyl and schall [65] 2012.

Simulation results showed that this method performs well with respect to some other

existing methods .

3.2 Estimation of distributional parameters by re-

gression models

In estimate the parameters of the considered distributions, the distribution functions

are transformed into a linear regression model.

To motivate our methodology, the Weibull distribution is one of the widely used dis-

tributions in technical practice. This distribution was �rst introduced by Walodi Weibull
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(1887�1979), who used it in the theory of reliability. We consider that the cdf is presented:

F (x; �; �) = 1� e�(�x)
�

; for x > 0; (3.1)

where : � is the scale parameter, � is the shape parameter. After some algebraic manip-

ulation, equation 3.1 can be expressed as follows :

ln [� ln(1� F (x; �; �))] = � ln�+ � lnx; (3.2)

For a sample of size n and x(1) � x(2) � ::: � x(n), equation 3.2 the regression model can

be rewritten as follows :

ln
�
� ln(1� F (x(i)))

�
= � ln�+ � lnx(i); (3.3)

where i the order number .

For estimates of F (x(i)); Bernard and Bosi-Levenbach [6],1953 using the following

methods of estimation summary in table 3.1, where bFi is some non-parametric estimate
of F (x(i)) :

Method bFi
Mean Rank

i

(n+ 1)

Median Rank
i� 0:3
(n+ 0:4)

Symmetric CDF
i� 0:5
n

Table 3.1: Methods of estimation

For complete samples,
i

(n+ 1)
and

i� 0:3
(n+ 0:4)

are generally used (Zyl [64] 2012�Zyl and

Schall [65], 2012).
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If we replace ln(� ln(1 � bFi)) with Y(i), � ln� with a, � with b, and lnx(i) with X(i), the

regression model with error term occurs as:

Y(i) = a+ bX(i) + "(i) (3.4)

For the Gumbel or extreme value distribution type I, the cdf is given by

F (x; �; �) = exp
�
�e

�(x��)
�

�
; (3.5)

where � is the scale parameter and � is the shape parameter. Equation 3.5 can be linearized

as follows:

� ln [� ln(F (x; �; �))] = x

�
� �

�
(3.6)

Equation 3.6 may be written as:

� ln
�
� ln(F (x(i)))

�
=
x(i)
�
� �

�
(3.7)

If we replace x(i) with Xi; �
�

�
with a,

1

�
with b and � ln

h
� ln( bFi)i with Yi, the linear

regression model is obtained for the Gumbel distribution.

The cdf of the Pareto random variable is given as follows:

F (x; �; �) = 1�
�
�

x

��
; (3.8)

where � is the scale parameter and � is the shape parameter.

The Pareto distribution, which is generally used to model extreme values, is skewed and

heavy-tailed.

Similar to the Weibull and Gumbel distributions, the obtained regression model for the
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Pareto distribution is presented as follows:

ln (1� F (x)) = � lnx� � ln � (3.9)

For the ordered sample, the regression model is rewritten as:

ln
�
1� F (x(i))

�
= � lnx(i) � � ln �; (3.10)

If we replace lnx(i) with Xr, �� ln � with a, � with b and ln
�
1� F (x(i))

�
with Yi, the

linear regression model is obtained for the Pareto distribution.

Generally, using the regression model given in 3.4, we can easily use LS and other

regression estimation methods to estimate distribution parameters.

3.3 Expressions of the weights

Weights expressions in regression are required in probability plotting type regression,

there are several expressions performing a weighted regression. In this section, we focus on

expressions of weights proposed by Bergman [5] 1986, in order to, estimating parameters

using a weight function. Also, expressions Zyl and Schall [65] 2012 using large sample

properties of order statistics.

Next, we will present the di¤erent expressions for weights :

3.3.1 Expressions using a weights functions

One problem with the linear regression is that each datum point has been given the

same weight. It has been shown that this assumption is erroneous Bergman [5], 1986. If

a linear regression is to be performed in a correct way it is obvious that a weight function

should be used, as he proposed an analytic expression for the appropriate weight function

by using the theory of propagation of errors. It is the intention of this section to �nd
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exact expressions for estimate the parameters of the Pareto distribution proposed by Lu

and Tao [45] 2007, using this weight function.

Suppose that random variables X1; X2; :::; Xn are independent and identically distrib-

uted as 3.9. If the regression model is in the form of equation 3.4. In the following:

� The weighted sum is given by

Q =
nX
i=1

wi(Y(i) � Y (x(i)))
2; Y (x(i)) = � lnx(i) � � ln �

� Bergman[5] emphasized that it is unreasonable for x(i) to have the same weight in

Equation 3.10 and proposed that a weight function should be used in performing the

linear regression. The weight factor Bergman proposed is

wi =
h�
1� bF (x(i))� ln�1� bF (x(i))�i2 ; i = 1; n

� After minimizing Q, we obtain the WLS estimators of �̂ and �̂ which are respectively

as follows :

�̂ = �
Pn

i=1wiYi
Pn

i=1wiXi �
Pn

i=1wi
Pn

i=1wiYiXiPn
i=1wi

Pn
i=1wiX

2
i � (

Pn
i=1wiXi)

2

�̂ = exp

"Pn
i=1wiYi � �̂

Pn
i=1wiXi

�̂
Pn

i=1wi

#

Remark 3.3.1 From the property of Pareto distribution, we learn that Yi = � ln(1� FX(x(i)))

is standard exponential distribution (i.e.: E(Yi) =
Pi

j=1
1

(n�j+1)
and V ar(Yi) =

Pi
j=1

1
(n�j+1)2

)

and the variance of the order statistics does not satisfy the condition of being constant

(according to, Balakrishnan and Cohen [3], 1991).That is, the weight of each point is not

identical.
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3.3.2 Expressions using derivation of weights for least-squares

The expressions for weights used in least squares regression are from the large sample

variances, by deriving the inverse of the approximate variance of the scalar function � of

the order statistic. It is assumed that the derivative of ^ is continuous at the expected

value of the order statistic.

Below we mention the basic properties of this expression, and then continue with

some applications for estimating distributional parameters.

Proposition 3.3.1 (Zyl & Schall,2012) Let x1; x2; :::; xn be an i:i:d sample from a

distribution F with corresponding o:s x(1) � x(2) � ::: � x(n): The WLS expression to

minimize with respect to the parameters is

nX
i=1

wi
�
E(�(x(i)))� �(x(i))

�2
;

where the weight for the ith squared residual u2i =
�
�(Xi)� �(x(i))

�2 is
wi = 1=V ar(�(x(i))); i = 1; n

Corollary 3.3.1 (Zyl & Schall,2012) The statistics F (x(1)); :::; F (x(n)) are beta dis-

tributed with F (x(i)) � Beta(i; n� i+ 1)

E(F (x(i))) =
i

(n+ 1)
= mi

V ar(F (x(i))) =
i(n� i+ 1)

(n+ 2)(n+ 1)2
=
mi(1�mi)

(n+ 2)

Let Xi be such that F�1(Xi) = i=(n+ 1) Asymptotically ; for i = 1; n

p
n
�
x(i) �Xi

� d! N (0; �2i ) with �2i =
mi(1�mi)

(F 0(Xi))
2
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provided F
0
(mi) = f(mi) exists. If the �rst derivative of � is continuous at Xi and

�
0
(Xi) 6= 0 . Then

p
n
�
�(x(i))� �(Xi)

� d! N
 
0; V ar(x(i))

�
d�(x(i))

dx(i)

�2!
It follows that

V ar(�(x(i))) �
mi(1�mi)

(n+ 2) (f(Xi))
2

�
d�(x(i))

dx(i)

�2
x(i)=xi

(3.11)

Remark 3.3.2

1. The function ^ need not be a linear function of the order statistics.

2. Order statistics and thus also functions of order statistics are asymptotically independ-

ently distributed . In this work we treat the residuals, ui = �(Xi) � �(x(i)) of the least

squares regression as if they were independent.

Finally, readers interested on this properties of this expression can refer to [DasGupta

[14], 2008 page 93,Kendall, Stuart and Ord [41], 1987 page 462] and references therein.

Applying this expression for estimation of parameters of Weibull and Gumbel distri-

butions proposed by Zyl and Schall [65] 2012; yield the following results:

According to Weibull distribution ;

Let �(x(i)) = ln
�
� ln(1� F (x(i)))

�
and �i = E(�(x(i))). Then

�(x(i)) = � ln�+ � lnx(i)

�(x(i)) + (�i � �i) = � ln�+ � lnx(i)

�i = � ln�+ � lnx(i) + (�i � �(x(i)))

�i = � ln�+ � lnx(i) + ui

where ui = �i � � ln� � � lnx(i), i = 1; n , are the residuals for the regression and the

weights are the inverses of the variances of the residuals.
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The approximate variance of ln
�
� ln(1� F (x(i)))

�
by 3.11, is :

V ar(ln
�
� ln(1� F (x(i)))

�
) � mi(1�mi)

(n+ 2) (f(Xi))
2

"
d ln

�
� ln(1� F (x(i)))

�
dx(i)

#2
x(i)=xi

� mi(1�mi)

(n+ 2) (ln(1�mi))
2 (1�mi)2

� i

(n+ 2)

�
ln(

n� i+ 1

n+ 1
)

�2
(n� i+ 1)

For this reason, theWLS regression equation is solved by letting : b�WLS = (X
tWX)

�1
X tWY ;

where W matrix is diagonal, X =

0BBBB@
1 ln(x(1))

: :

1 ln(x(i))

1CCCCA ;

Y t =
�
ln(� ln(1� bF1)); :::; ln(� ln(1� bFi))� and b� =

0B@ b� ln b�
b�

1CA ; b� = exp��b�1=b�2� ; b� = b�2 .
Then it follows that,

b�2 := Piwi(xi � �x)(yi � �y)P
iwi(xi � �x)

; b�1 := �y � b�2�x with wi = 1=V ar(�(x(i)))

According to Gumbel distribution ;

In order to �nd the expressions for estimate b� = �
1b�2
�
and b� =  b�1b�2

!
by WLS. Us-

ing similar arguments as for the Weibull regression the equation used to estimate the

parameters with �i = E(�(x(i))) is :

�i = ui �
x(i)
�
+
�

�
where ui = � ln(� lnF (x(i)))�

x(i)
�
+
�

�

53



Chapter 3. A weighted least-squares estimation method for distributional parameters

The weights are the inverses of the variances of the residuals, is de�ned by :

V ar(� ln
�
� ln(F (x(i)))

�
) � 1�mi

(n+ 2) (ln(mi))
2

� n� i+ 1

(n+ 1)(n+ 2)

�
ln(

i

n+ 1
)

�2
For more details and proofs, the reader can refer to the following work: Gradshteyn and

Ryzhik [30]1980, Zyl [63] 2016.

Remark 3.3.3

� The variances of the residual values are functions of the order statistics and are inde-

pendent of the parameters of the distribution can easily be found by using simulation by

comparing the approximation of the variance 3.11 with to the true variance.

�� As theoretical results, looking the work of Zyl and Schall [65] 2012, Zyl[63] 2016,

mi =
i

(n+1)
and the Bernard median ranks were used in the approximation of the vari-

ance, where the approximation was good even for a relatively small sample size, and that

Barnard�s median ranks result in better approximations of the variances for any parameters

of the two distributions considered, the Weibull and the Gumbel distributions.

3.4 Simulation results

In this section, we present some simulation results which are designed to evaluate

the feasibility of the proposed WLS (Zyl and Schall) estimation method, by comparing

with the maximum likelihood estimation (MLE) for the parameters of the Weibull and

Gumbel distributions.

In addition, we compare the performance of the proposed WLS (Lu and Tao) with

LS estimation (regression of Y on X) andMLE for the parameters of Pareto distribution.
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In the following tables (3.2 , 3.3 and 3.4 ), the estimation was performed on simulated

samples based on the mean square error (MSE) and bias.

In table 3.2 samples were generated from the Weibull distribution with � = 1:5, � = 1.

It can be seen that : for all samples sizes, the weighted regression method outperforms

MLE especially with respect to bias in the estimation of the shape and scale parameters,

and the use of the Bernard weights decreased the bias. Also, the MSE of the MLE

outperforms the weighted regression method with respect to the estimation of the shape

parameter. In addition, the MSE is small for the weighted methods of estimating the

scale parameter.

Methods MSE (�) Bias(�) MSE(�) Bias(�)
n = 10

MLE
WLS
WLS

(Bernard)

0:0231
0:0529
0:1856

0:0519
0:0230
0:0219

0:3224
0:2264
0:0510

0:2213
�0:0316
�0:0185

n = 30

MLE
WLS
WLS

(Bernard)

0:0310
0:0312
0:0529

0:0040
0:0039
0:0034

0:1321
0:1134
0:0170

0:1024
�0:0521
�0:0496

n = 50

MLE
WLS
WLS

(Bernard)

0:0152
0:0156
0:0409

0:0039
0:0042
0:0038

0:0734
0:0677
0:0131

0:0594
�0:0223
�0:0199

n = 100

MLE
WLS
WLS

(Bernard)

0:0074
0:0075
0:0159

0:0067
0:0069
0:0065

0:0296
0:0292
0:0052

0:0315
�0:0079
�0:0070

Table 3.2: Bias and MSE of estimated parameters of the Weibull distribution(10000
simulated samples).

From the simulation results presented in table 3.3 samples were generated from a

Gumbel distribution with � = 0:5 and � = 2. It was found that, with respect to bias,
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the weighted estimate outperforms the ML estimation, in estimating shape and scale

parameters.

Also, it can be seen a smallMSE for the weighted regression methods for both shape

and scale parameters and it is better to use Bernard�s median ranks when calculating the

weights.

Methods MSE (�) Bias(�) MSE (�) Bias(�)
n = 10

MLE
WLS
WLS

(Bernard)

0:4812
0:4675
0:4755

0:0353
0:0230
0:0209

0:7622
0:7333
0:4724

0:2213
�0:0356
�0:0329

n = 30

MLE
WLS
WLS

(Bernard)

0:1463
0:1444
0:1455

0:0045
0:0039
0:0035

0:1583
0:1526
0:1186

0:1024
�0:0622
�0:0610

n = 50

MLE
WLS
WLS

(Bernard)

0:0956
0:0913
0:0908

0:0040
0:0037
0:0034

0:1284
0:1196
0:0824

0:0597
�0:0249
�0:0208

n = 100

MLE
WLS
WLS

(Bernard)

0:0498
0:0465
0:0467

0:0076
0:0069
0:0063

0:0397
0:0340
0:0309

0:0415
�0:0083
�0:0079

Table 3.3: Bias and MSE of estimated parameters of the Gumblel distribution(10000
simulated samples).

The performance the considered WLS is evaluated for the shape parameter of the

Pareto distribution, which is summarized in Table 3.4. Moreover the proposed WLS

estimation shows better performance next to LSE and MLE for most of the considered

sample sizes and shape parameter cases.

In conclusion, the results of the simulations demonstrate that the considered WLS

better performance than certain alternative estimation methods in terms of MSE and

bias for most of the considered sample sizes, scale and shape cases.

56
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shape
Methods 0:5 1

MSE Bias MSE Bias
n = 10

MLE
LSE
WLS

0:37793
0:33463
0:20697

�0:23616
0:12155
�0:00887

0:64652
0:55351
0:40388

�0:36161
0:13296
�0:02669

n = 30

MLE
LSE
WLS

0:21024
0:22036
0:10046

�0:04675
0:03511
0:00373

0:32873
0:34982
0:20983

�0:08123
0:05828
0:00735

n = 50

MLE
LSE
WLS

0:08017
0:01483
0:08730

�0:03157
0:03255
0:00329

0:2688
0:29834
0:2636

�0:05252
0:05296
0:00510

n = 100

MLE
LSE
WLS

0:06421
0:07876
0:06487

�0:02110
0:02781
0:00210

0:21689
0:24596
0:20061

�0:02091
0:04425
0:00384

Table 3.4: Bias and MSE of the estimated shape parameters of the Pareto distribu-
tion.(10000 simulated samples).
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Main results
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Chapter 4

Heavy tail index estimator through

weighted least-squares rank

regression

The main aim of this chapter is to propose a weighted least square estimator based

method to estimate the shape parameter of the Frechet distribution by deriving approxim-

ate weights to stabilize the variances . A simulation study was performed to evaluate the

behavior of the proposed estimator, it is found that the considered weighted estimation

method shows better performance than other methods in terms of bias and root mean

square error, and in the case of real data.

4.1 Introduction

In many theoretical concepts, the parametric estimating distribution methods have

received great interest, among them are : Maximum likelihood estimation (MLE) method

which has good theoretical properties for large sample sizes and is often preferred. On the

other hand, the use of regression depends on a probability plot to estimate the parameters

of statistical distributions because the procedure for its implementation is simple in cases
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Chapter 4. Heavy tail index estimator through weighted least-squares rank regression

of complete and censoring data. Where it represents the linear regression model, and

its dependent variable is the nonparametric estimate for the value of the distribution

function at the ranked sample, is obtained. From it, the estimates of the least squares of

the parameters of the resulting regression model become the estimates of the parameters

of the studied statistical distribution.

The Frechet (extreme value type II) distribution is one of the probability distribu-

tions used to model extreme events. The extreme value distribution is becoming increas-

ingly important in engineering statistics as a suitable distribution to represent phenomena

with usually large maximum observations, introduced by French mathematician Maurice

Frechet in 1927.

Let (X1; X2; :::; Xn) denotes a sample of size n from a Frechet distribution F: The

probability density function (pdf) with shape parameter � > 0 is,

f(x;�) = �x�(�+1) exp(�x��); for x > 0 (4.1)

the cumulative distribution function (cdf) is given by :

F (x;�) = exp(�x��) (4.2)

The principles of least squares estimation (LSE) are independently discovered

by Gauss [25], 1795; Legendre [43], 1805 and Adrain [1] 1808, based on the relationship

between the empirical cumulative distribution function (cdf) and the order statistics are

frequently used to estimate parameters of distributions. The distribution function can be

transformed to a linear regression model, if it can be written as an explicit function.

The weighted least squares method (WLS) is applied for parameter estimation, this

method is comparatively concise and easy to perceive. In the literature, WLS estimation

can be a better alternative that is superior to the existing methods : some research has

been conducted on the Frechet distribution where Annasaheb and Girish [2], 2018 studied
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the performance of three di¤erent estimation methods of scale parameter LS; WLS and

MLE, for two parameters Frechet distribution, where the weights proposed by Bergman

[5], 1986 and the results of the Monte Carlo simulation were show that the MLE method

was the best as compared to LS andWLS method in terms of bias as well as mean square

error.

The rest of this chapter is organized as follows : in the second section, we state

our estimators and main results. This is followed by a simulation study of our proposed

estimator where we discuss its behavior with a illustrative example from Danish data.

4.2 Estimators and main results

In this section, we describe the methods of estimation for the shape parameter Frechet

distribution.

4.2.1 Least squares method

Least squares, or least sum of squares, requires that a straight line be �tted to a set

of data points, such that the sum of the squares of the distance of the points to the �tted

line is minimized.

Suppose that random variables X1; X2; :::; Xn are independent and identically distributed

from the Frechet distribution. After algebraic manipulation, Equation 4.2 can be linearized

as follows :

� log(� log(F (x)) = � log(x)

We consider that random variables x(1) � x(2) � ::: � x(n) be the order statistics of

x1; x2; : : : ; xn, the regression model is rewritten as:

� log(� log(F (x(i);�))) = � log(x(i)) (4.3)
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Comparing equation 4.3 with Yi = �Xi, we get Yi = � log(� log(F (x(i);�))) and Xi = log(x(i));

the regression model with error term occurs as :

Y(i) = �x(i) + "(i) (4.4)

On the other hand, the error term of the model given in equation 4.4 is not identically

distributed as mentioned model have no equal variance. This situation may adversely a¤ect

the LSE. In such cases, alternative estimation approaches to stabilize variances should

be used.

In estimation, the sum of the squares of the errors, which is de�ned below, should be

minimized

min
�

nX
i=1

(Yi � � log(x(i)))
2 with Yi = � log(� log(F (x(i);�))) (4.5)

The estimator of F (x(i)) can be considered to follow the mean rank estimator :

bF (x(i)) = i

n+ 1

where i is the rank of the data point in the sample in ascending order and bFi is non-
parametric estimate of F (x(i);�). See Barnard [6].

Therefore, the estimate the parameter � is given by di¤erentiating equation 4.5 partially

� and equaling to zero, to estimate of the EV I : ( = 1=�) by LSE is :

bLSE =
nP
i=1

� log(� log bF (x(i))) log(x(i))
nP
i=1

�
log(x(i))

�2
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4.2.2 Weighted Least Squares method

One of the main advantages of using regression procedure for estimating parameter is

that its implementation is simple for Frechet distribution, the order statistics x(1) � x(2) � ::: � x(n)

denotes a sample of size n from a Frechet distribution F , the regression model based on

equation

Y
(i)
= �X

(i)
; (4.6)

called regression of Y onX by Zhang [59], knowing that the order statistics x(1) � x(2) � ::: � x(n)

do not have constant variance, nor do the log transformed order statistics X; so that the

regression model 4.6 is non-homogeneous.

Equation 4.3 with error term yield the following equation and replacing F (x(i)) by its

estimate, called F̂i, we obtain the equation

� log(� log(F̂ (x(i))) = � log(x(i)) + "i (4.7)

To estimate b� of the regression parameter �, than the regression model can be expression
to minimize the function

min
�

nX
i=1

wi
�
Y(i) � � log(x(i))

�2
;

where wi is the weight factor i = 1; :::; n.

Next to, in order to calculate weights, using the large sample properties of the em-

pirical distribution function or order statistics, and by deriving least squares weights from

the large sample variances, using the approximate inverse of the variance of the scalar

function �, to stabilize the variances in order to perform the WLS estimation method

suggested by Zyl and Schall [65] 2012; speci�ed in the following formula

V ar(�(x(i))) �
mi(1�mi)

(n+ 2)
�
f(x(i))

�2 �d�(x(i))dx(i)

�2
x(i)=xi

(4.8)
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Furthermore if �(x(i)) is of the form as �(x(i)) = �(F (x(i))); it can be seen that

�
d�(x(i))

dx(i)

�2
x(i)=xi

=

�
d�(F (x(i)))

dF (x(i))

dF (x(i))

dx(i)

�2
x(i)=xi

= f
�
x(i)
� �d�(F (x(i)))

dF (x(i))

�2
x(i)=xi

;

So, the relationship � log(� log(F (x)) = � log(x) is used to perform rank regression, the

approximate variance of � log(� log(F (x(i);�))) = � log(x(i)) using the formula 4.8 is

V ar(� log(� log(F (x(i)))) � mi(1�mi)

(n+ 2)

"
d
�
� log(� log(F (x(i);�)))

�
d
�
x(i)
� #2

� mi(1�mi)

(n+ 2)

1

m2
i

, mi =
i

n+ 1

� i

(n+ 1� i)2
;

therefore, we get the weights are independent of the parameter of the considered distribu-

tion.

In addition, the linear regression model given in 4.6, The weighted least-squares re-

gression equation is solved by letting

Yi = Y t = (� log(� log(F̂1)); :::;� log(� log(F̂n));

Xi = X t = (log(x(1)); :::; log(x(n))) and

w = diag (w1; w2; :::; wn) ; wi =
(n+1�i)2

i
; i = 1; :::; n

which is solved by

b� = (X twX)�1X twY:

Finally, we build our estimator ̂
WLS

as follow :

̂
WLS

:=

nP
i=1

�wi log(x(i)) log(� log F̂ (x(i)))
nP
i=1

wi(log(x(i)))2
; wi � 1=V ar(� log(� log(F (x(i))))):
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In Table 4.1, we will show values ̂
LSE

and ̂
WLS

by changing values of  = (1:67; 1: 11;

0:5) and sample size n = (10; 20; 30; 50; 100; 200; 500; 1000; 2000):

4.3 Simulation study and application

4.3.1 Performance of the estimator

In this section, we examines the performance of our estimators ̂
LSE

and ̂
WLS

against the maximum likelihood estimator ̂
MLE

and Maximum product of spacing

estimation ̂
MPSE

, by simulation studies. A common approach to select the best method

is the Monte Carlo simulation by using appropriate criteria: bias and mean squared error

MSE [39].

We propose a Monte Carlo study of 10000 randomly generated samples, for each

sample sizes ranging from n = 10; 20; 30; 50; 100; 200; 500; 1000 to 2000 for Frechet distri-

bution and the shape parameters are considered as  = (1:67; 1:11; 0:5). The performance

of this new estimator named by ̂
WLS

is evaluated in terms of bias and root mean squared

error (RMSE) which are summarized in table 4.2.

The Bias of an estimator is Bias(̂) = E(̂) � : The RMSE is de�ned as root of

the sum of the variance and the squared bias of an estimator.

4.3.2 Results and discussion

According to bias criterion :

We evaluate the estimator WLS the proposed in this study in term of bias criterion, is

best for the small sample size n = 10 and it is the best performer next to the LSE; MLE

and MPSE. For other size n > 10 and in all cases of shape parameters we shows that

in general the estimator WLS is clearly the best estimator in term of bias next to the

MLE, MPSE and LSE. In addition, bias decreases with increasing sample size and
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shape parameters cases.

According to the RMSE criterion :

For the sample size n = 10 and for  = (1:67; 0:5); the proposed WLS shows smaller

than RMSE of the LSE; MPSE and MLE, also for  = 1:11 the RMSE of MLE it�s

smaller than RMSE of the MPSE; LSE and the WLS:

For n > 10 we show the RMSE of LSE it�s larger than MPSE; MLE and WLS for

each shape parameters cases. Since the RMSE of the WLS is asymptotically the best, it

can be seen from analysis that MLE and MPSE have better performance as the sample

size increases the RMSE decreases in each methods and shape parameters cases, thus we

conclude that there are accurate increments of the parameters.

4.3.3 Real data example

As a real application, We take 2167 observations from the Danish data that describe

large �re insurance claims in Denmark from Thursday 3rd January 1980 until Monday 31st

December 1990 available in �evir�package of the Rsoftware [31].This data has been used

by many value theories in an important application context.

In this section, we are concerned performance of the proposed estimator in weekly and

monthly maximum losses during the mentioned period. There are 310 weekly maxima and

132 monthly maxima from the given 2167 observations which would provide an excellent

example of the use of extreme as all studies con�rm that the Danish data show a heavy

tail with an index between 1 and 2:

This allows us to �t the data to heavy-tailed models with the proposed estimator

which meets the objective of this study and compare it with new bias-reduced estimator

for � in the case of in�nite second moment proposed by Brahimi et al., [8], 2013 (see table

7) de�ned by the following formula
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�̂ := (k=n)(nĉ=k)1=b�
 b�b�� 1 + d̂ĉ��̂=b�(k=n)�̂=b��1

�̂ � 1

!
+
1

n

nX
i=k+1

Xn�i+1;n

Our case study is mostly based on samples from the Frechet distribution 4.2 with

shape parameter � = 1:5 ( = 1=�) we then calculate estimate of shape parameter using

the previously mentioned estimation method in this study, see Table 4.3.
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n Methods  = 1:67  = 1:11  = 0:5

10

MLE
MPSE
LSE
WLS

1:32995
1:30107
2:49297
2:06358

0:95437
1:89420
1:61866
1:48917

0:45015
0:4126
0:49807
0:47880

20

MLE
MPSE
LSE
WLS

1:49870
1:46761
2:09857
2:04806

0:99107
0:95218
1:66033
1:34121

0:52681
0:49972
0:70631
0:68271

30

MLE
MPSE
LSE
WLS

1:60355
1:54872
2:16820
2:06776

1:07210
1:01028
1:35582
1:28703

0:56824
0:49935
0:70790
0:60878

50

MLE
MPSE
LSE
WLS

1:44972
1:42337
1:48879
1:44812

1:05178
1:01293
1:37017
1:04935

0:47361
0:44725
0:47361
0:45039

100

MLE
MPSE
LSE
WLS

1:52108
1:41076
1:38191
1:19045

1:04215
1:03052
1:13933
1:09802

0:45006
0:43118
0:47727
0:46916

200

MLE
MPSE
LSE
WLS

1:70824
1:69816
1:82353
1:77158

1:22987
1:21880
1:22692
1:19479

0:53599
0:54960
0:55239
0:53146

500

MLE
MPSE
LSE
WLS

1:65717
1:52088
1:79043
1:66917

1:12576
1:02215
1:13586
1:12096

0:49174
0:47583
0:47122
0:49279

1000

MLE
MPSE
LSE
WLS

1:65780
1:63754
1:73552
1:68209

1:12194
1:08834
1:14054
1:11442

0:49958
0:46457
0:51225
0:51928

2000

MLE
MPSE
LSE
WLS

1:63653
1:60534
1:64144
1:65295

1:08665
1:06778
1:11822
1:11291

0:51535
0:50646
0:52656
0:51404

Table 4.1: The estimation of b by di¤erent estimators at true value  = (1=0:6; 1=0:9; 0:5)
(note: the value of each entry is mean, and results are re-scaled by the factor 0.00001)
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 = 1:666  = 1:111  = 0:5
n Methods Bias RMSE Bias RMSE Bias RMSE

10

MLE
MPSE
LSE
WLS

�0:42880
�0:44991
�0:33831
�0:33348

0:57890
0:55032
0:54721
0:53601

�0:95252
�0:97364
�0:89221
�0:88898

1:03148
1:04259
1:05260
1:05734

�0:42863
�0:43001
�0:40149
�0:40004

0:47367
0:46928
0:46417
0:41580

20

MLE
MPSE
LSE
WLS

�0:32511
�0:33076
0:33339
0:32463

0:28018
0:30029
0:59442
0:20644

�0:21651
�0:22108
0:22226
0:21442

0:58715
0:60739
0:69628
0:50429

�0:09743
�0:09956
0:10002
0:09239

0:18422
0:19070
0:19833
0:18193

30

MLE
MPSE
LSE
WLS

�0:21613
�0:23182
0:25063
0:20260

0:25724
0:30835
0:46406
0:26453

�0:11059
�0:14268
0:16709
0:15507

0:55177
0:57266
0:60937
0:50969

�0:07176
�0:73280
0:07519
0:06978

0:16830
0:18033
0:19922
0:13936

50

MLE
MPSE
LSE
WLS

�0:11182
�0:14393
0:17100
0:10558

0:17517
0:27124
0:33949
0:14598

�0:11782
�0:11813
0:11953
0:10372

0:41691
0:42014
0:42633
0:33065

�0:04952
�0:05096
0:05136
0:04367

0:08261
0:09907
0:10185
0:07379

100

MLE
MPSE
LSE
WLS

�0:09519
�0:09938
0:10359
0:08920

0:12317
0:16086
0:22574
0:11128

�0:05947
�0:06458
0:06906
0:04345

0:32213
0:35150
0:39049
0:28419

�0:03155
�0:03479
0:03696
0:02676

0:04696
0:05707
0:06772
0:03939

200

MLE
MPSE
LSE
WLS

�0:05917
�0:06157
0:06246
0:05417

0:08742
0:10553
0:15187
0:06031

�0:04145
�0:04194
0:04203
0:03611

0:30828
0:33039
0:35125
0:30687

�0:01665
�0:01778
0:01874
0:01525

0:02923
0:03045
0:04556
0:02809

500

MLE
MPSE
LSE
WLS

�0:02649
�0:02988
0:03100
0:02109

0:05554
0:07663
0:09109
0:05095

�0:01999
�0:20984
0:02067
0:01739

0:13703
0:15184
0:17072
0:11530

�0:00744
�0:01032
0:01182
0:00703

0:01966
0:02104
0:02733
0:01838

1000

MLE
MPSE
LSE
WLS

�0:01663
�0:01475
0:01767
0:01599

0:03994
0:05597
0:07299
0:03091

�0:01091
�0:01109
0:01178
0:01066

0:02627
0:03230
0:04199
0:01727

�0:00619
�0:00428
0:00945
0:00480

0:01182
0:01187
0:01189
0:01127

2000

MLE
MPSE
LSE
WLS

�0:00940
�0:01002
0:01027
0:00899

0:02776
0:03387
0:04365
0:01911

�0:00626
�0:00657
0:00685
0:00599

0:01850
0:02521
0:02910
0:01274

�0:00302
�0:00306
0:00308
0:00270

0:00833
0:00945
0:01309
0:00473

Table 4.2: Simulated bias and RMSE when  = (1:667; 1:111; 0:5), and results are re-scaled
by the factor 0.00001
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Monthly
N ̂

MLE
̂
MPSE

̂
LS

̂
WLS

�̂
132 0:63622 0:67531 0:71649 0:68363 0:466853

Weekly
N ̂

MLE
̂
MPSE

̂
LS

̂
WLS

�̂
310 0:67842 0:65912 0:69471 0:67593 0:408663

Table 4.3: Parameter estimate for Frechet distribution of the weekly and monthly maxima
of the Danish �re losses.
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Conclusion & discussion

In this thesis, we aim to use a class of weighted least squares estimators for the tail

index of a distribution function. Di¤erent weight functions and tail index to compare the

WLS and the least squares LS estimators show that in some cases the use of the weights

makes the asymptotic variance smaller, by derivation of weights for least-squares from

large sample variances.

Our approach is based on the method of WLS where the weights are inspired from

the ideas of Zyl & schall; 2012 and independent of the parameters the distribution .

A simulation study is carried out to evaluate the performance of the proposed

estimator, and the e¢ ciency of the method with the proposed weights, it has been shown

that our newly estimator of Frechet distribution is perform better than other considered

methods estimators based on the order statistics in all the shape parameters and sample

cases, and for real data set of danish �re.

Moreover, it is also emphasized that the considered estimation methods can be applied

to BurrXII, Cauchy and other distributions, which have explicit cumulative distribution

functions, after calculating the inverse of the approximate variance them, and estimating

the variances in the WLS estimation.

In future research, we plan to investigate the performance of the WLS estimation

method in the case of right censored data and contaminated data.
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Résumé 

Cette thèse est consacrée à l'étude d'un estimateur par la régression 

pour estimer l'indice de queue de la distribution à queue lourde. En 

particulier, il est montré que l'estimateur considéré est en général basé 

sur la méthode des moindres carrés pondérés.  

L'objectif principal de la thèse de prolonger les travaux de Zyl et schall, 

2012 ;  pour estimer le paramètre de forme de la distribution de 

Fréchet. En dérivant les grandes variances de l'échantillon et en utilisant 

l'inverse de la variance approximative pour calculer les poids de cet 

estimateur. 

Une étude de simulation à l'aide du logiciel statistique R est réalisée 

pour évaluer les performances du nouvel estimateur qui s'est avéré plus 

performant que les autres estimateurs de méthodes considérés sur la 

base de statistiques d'ordre pour des échantillons de petite et grande 

taille, et en cas de données réelles. 

 ملخص

     لتوزيع الذيل مؤشر لتقدير نحدارالا رد  مق لدراسة مخصصة الأطروحة هذه    

 عام بشكل يعتمد المدروس المقدر أن يتضح ، الخصوص وجه على. الثقيل الذيل

. الموزونة الصغرى المربعات طريقة على  

لتقدير   2012زيل  و شال   عمل تمديد هو الأطروحة من الرئيسي الهدف    

 واستخدام الكبيرة العينة تباينات اشتقاقمن خلال  فريشيه لتوزيعمعامل الشكل 

 .المقد ر هذا أوزان لحساب التقريبي التباين معكوس

 أداء المقد ر لتقييم   Rالإحصائي البرنامج  باستخدام محاكاة دراسة إجراء تم      

   على بناء   ىالأخر الطرق مقدرات من أفضل بشكل يعمل أنه ثبت الذي الجديد

         .الحقيقية البيانات حالة وفي والكبير، الصغير العينة لحجم الطلب إحصائيات

                

 

 


	Dedication 
	Acknowledgments
	Sientific contributions
	Abstract
	Abreviations and notations
	Contents
	List of Figures
	List of Tables
	Introduction
	I Preliminary Theory
	blueExtreme value theory
	Foundations definition
	Order statistics

	Distribution of extreme values
	Limit distributions

	Domain of attraction
	Characterizations of domain attraction

	Tail Index Estimators
	Semi-parametric estimators
	Parametric estimators


	blueRegression conceptions
	The simple regression model
	Definitions

	Parameter estimation methods
	The least squares method
	The weighted least squares method


	blueA weighted least-squares estimation method for distributional parameters
	Preliminary
	Estimation of distributional parameters by regression models
	Expressions of the weights
	Expressions using a weights functions
	Expressions using derivation of weights for least-squares

	Simulation results


	II Main results
	blueHeavy tail index estimator through weighted least-squares rank regression
	Introduction
	Estimators and main results
	Least squares method 
	Weighted Least Squares method

	Simulation study and application
	Performance of the estimator
	Results and discussion
	Real data example


	 Conclusion
	Bibliographie


