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ABSTRACT

Our work is situated in the field of extreme values’ statistics for incomplete
data namely the truncation and the censoring. In this context, several

approaches for estimating distribution tails under random truncation have re-
cently been developed: Gardes & Stupfler (2015) [18], Benchaira et al. (2015) [5],
Benchaira et al. (2016a) [6], Benchaira et al. (2016b) [7], et Haouas et al. (2018)
[21].

The first objective of this thesis is to define a new method ” the semi-
parametric method” to estimate the tail index of the distribution, while the
majority of the existing method depend on the non-parametric estimator of the
tail distribution index such as LyndeBell and Woodroofe, the ours is based on the
semi-parametric estimator defined in Wang 1989 [48] that allows us introducing
new estimators with high efficiency.

For the second objective, at this point, we are interested in correcting the
error of kernel estimators, such as Benchaira et al. (2016b)’s estimator, so we have
introduced a new kernel estimator with reduced bias at the same time.

Without forgetting the complete data, in the third objective of this thesis we
add a new estimator of the extreme value’s index beside the well-known estimators
such as Hill, Peng, ... etc. The new one is characterized by its robustness and
stability and was developed by using the idea which was presented in Basu 1998
[2] based on the density power divergence function.
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RÉSUME

Il s’agit de la statistique des valeurs extrêmes pour les données incomplètes
a savoir la troncature et le censure. Dans ce contexte, plusieurs approches

d’estimation des queues de distribution sous troncature aléatoires sont récemment
développées: Gardes & Stupfler (2015) [18], Benchaira et al. (2015) [5], Benchaira
et al. (2016a) [6], Benchaira et al. (2016b) [7], et Haouas et al. (2018) [21].

Le premier objectif de cette thèse est de définir une nouvelle méthode "la
méthode semi-paramétrique" pour estimer l’indice de la queue de distribution,
alors que la majorité des méthodes existantes dépendent de l’estimateur non
paramétrique de la fonction de distribution tel que LyndeBell et Woodroofe, le
nôtre est basé sur l’estimateur semi-paramétrique défini par Wang 1989 [48]. qui
nous permet d’introduire de nouveaux estimateurs avec une forte efficacité.

Pour le deuxième objectif, dans ce point, nous nous intéressons à la correc-
tion du biais des estimateurs a noyaux, comme l’estimateur de Benchaira et al.
(2016b), nous avons donc introduit en même temps un nouvel estimateur a noyau
et a biais réduit.

Sans oublier les données complètes, dans le troisième volet de cette thèse
nous ajoutons un nouvel estimateur de l’indice des valeurs extrêmes, caractérisant
par sa robustesse et sa stabilité et a été développé en utilisant l’idée qui a été
présentée dans Basu 1998 [2] basant sur la fonction de divergence de puissance
de la densité.
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ABBREVIATIONS AND NOTATIONS

The various abbreviations and notations used throughout this thesis are ex-
plained below.

F̄ tail of the F distribution F

xF the end point of F, equals to sup {x : F(x)< 1}

(X1,n, . . . , Xn,n) order statistics associated to (X1, . . . , Xn)

an = o(bn) an/bn → 0 as n →∞

an =O(bn) an/bn is bounded

P→ convergence in probability

D→ convergence in distribution

an = op(bn) an/bn
P→ 0

A. bias Absolute bias

RMSE Root Mean Squared Error

MSE Mean Squared Error
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INTRODUCTION

Since time immemorial, human has sought to develop his knowledge, tech-

niques and sciences in order to facilitate his daily life. One of these sciences

is statistics. People use statistics for a variety of purposes, including as predicting

the weather and preparing for natural disasters like earthquakes, floods...etc.

Also, it makes it possible to help humanity to prevent certain diseases by deter-

mining the probability for a person to develop the disease or to study the evolution

of its waves over time in terms of its rate of spread and the severity of its effects,

as was recently the case with Corona virus.

Global Overview and Motivation

Generally, several areas of research are developed in statistics namely data

analysis, inferential statistics, order statistics, and the extreme values theory

(EVT). The EVT theory has received much attention from many researchers, such

as Laurens de Hann who is known as the father of this theory. Various subjects

were developed such as extreme value index estimation (Hill, 1975) and the

Peaks-Over-Threshold (POT) method (Balkema and de Haan, 1975). Remember

that the principle of EVT is to study events with a low probability of occurrence

having serious consequences for human beings, property, and the environment.

From this point, the applications of this theory become to cover many fields, for

example, in hydrology to predict floods, in insurance to predict major disasters, in

oceanography to study rogue waves, in meteorology, demography, etc..

The major aim of EVT is to know the asymptotic behaviour of extremes

(maximum and minimum). In other words, it allows the study of the behaviour

of the distribution tails from the largest observed data. Researchers Fisher and
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Tippett prove that the distributions tail of the extremes is one of the three cases

(according to the value of index γ called extreme value index): Weibull (γ < 0),

Gumbull (γ= 0), or Frechet (γ> 0). Thereby, estimating the γ index becomes quite

important.

In fact, literature is full of estimators of such an index. We can mention here

the works of Hill 1975, Pickand, Peng,...etc. Such estimators deal in particular

with complete data. Recently, and even for the case of incomplete data, researchers

have proposed a very specific estimators of the tail index.

It should be noted here that incomplete data represent the case in which we

lose some observations about the phenomenon under study. There are basicly two

forms of this data:

• Censoring data: some observations will be censored, meaning that we

only know that they are below (or above) some bound. This can for instance

occur if we measure the concentration of a chemical in a water sample. If

the concentration is too low, the laboratory equipment cannot detect the

presence of the chemical. It may still be present though, so we only know

that the concentration is below the laboratory’s detection limit.

• Truncation data: the process generating the data is such that it only is

possible to observe outcomes above (or below) the truncation limit. This can

for instance occur if measurements are taken using a detector that only is

activated if the signals it detects are above a certain limit. There may be

lots of weak incoming signals, but we can never tell using this detector.

Main Objectives

The goal of this thesis is to introduce a new approach method to estimate the tail

index under randomly right truncated data.

• The first objective of the thesis is to derive an estimator for the tail index of

Pareto -type distribution that is randomly right truncated based on the semi-

parametric estimation method and establish its consistency and asymptotic

normality.

2
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• The second objective is to introduce a bias reduction for the developed

kernel estimators of the tail index of under right truncated Pareto-type

distributions.

• The third objective is the robustness of smoothed estimators for the Pareto-

tail index.

Thesis Structure

This thesis is organized as follows:

Chapter 1 is dedicated to the preliminary concepts concerning the EVT, regular

variation, order statistics, censoring, and truncated data, which will be used

through the thesis. It ends by surveying the estimation for the tail index under

the right truncated data.

Chapter 2 provides a full description of the semi-parametric estimation for the

extreme value index of the Pareto-type distribution of randomly right trun-

cated data, a simulation study, and an application to a real dataset of induction

times of AIDS diseases is done.

Chapter 3 introduces a bias reduction to a kernel estimation of the tail index of

randomly right truncated Pareto-type distribution, and its asymptotic normal-

ity is made. The finite sample behaviour of the proposed estimator is checked by a

simulation study. We end by giving an application to a real dataset of lifetimes of

auto-mobile brake pads.

Chapter 4 presents the robustness of the smooth estimators by beginning

to introduce the crucial function called weighted minimum density power
divergence leading to this class of estimators. We also establish the consistency

and asymptotic normality of this estimator, and its finite sample behaviour is

carried out by simulation study.
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Publications

As a result of this thesis the following publications were produced:

• Mancer, S., Necir, A., & Benchaira, S. (2022). Semiparametric tail-index

estimation for randomly right-truncated heavy-tailed data. Arab Journal of

Mathematical Sciences, (ahead-of-print).

• Mancer, S., Necir, A., & Benchaira, S. (2022). Bias Reduction in Kernel Tail

Index Estimation for Randomly Truncated Pareto-Type Data. Sankhya A,

1-38.

• A weighted minimum density power divergence estimator for the Pareto

tail index, with Prof. Abdelhakim Necir and Prof. Djamel Meraghni. (in
preparation).
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It seemed necessary to us before approaching the subject to recall

some basic notions so that the reader understands the sequence of

this thesis. For this, the extreme values theory and their properties

are presented in section 1. Then, the incomplete data are reviewed in

sections 2 and 3 by interesting in their definitions with explanatory

examples. We end the chapter with results already obtained by other

authors concerning the estimation of the index of extreme values under

randomly right-truncated data.
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1.1 Extreme value theory

Extreme value theory is concerned with the behaviour of tails of distributions. In

other words, it studies phenomena whose probability of occurrence is negligible. It

is particularly interested in the asymptotic law of the maximum and the minimum

of the observations. As min(X1, ..., Xn)=−max(−X1, ...,−Xn), then it suffices to

study the behaviour of the maximum (max), then reformulate the results for the

minimum (min).

Throughout this section, we denote by X a random variable (rv) defined over

some probability space (Ω,A ,P) with continuous cumulative distribution function

F (cdf) and its survival function or the well-known tail distribution: F= 1−F. We

also introduce xF := sup {x ∈R, F(x)< 1} the end point of F, and u ≤ xF a real

number called threshold.

1.1.1 Limit law distribution of Maxima

Let X1, ..., Xn be a sample of independent identically distributed (iid) rv’s from

the distribution F and X1,n, ..., Xn,n the order statistics associated, where

X1,n :=min(X1, ..., Xn) and Xn,n :=max(X1, ..., Xn)

We know that the law of the maximum is defined as follows:

FXn,n(t)= P(Xn,n ≤ t)= P(X1 ≤ t, ..., Xn ≤ t)

= [F(t)]n

then,

lim
n→∞FXn,n(x)= lim

n→∞ [F(x)]n =
{

1 if x ≥ xF

0 if x < xF

In practice, the law F is unknown, then the behavior of FXn,n will be even more

difficult to study because this distribution is a degenerate law and this result

provides very little information on the asymptotic behaviour of the max Xn,n.

Our goal is to obtain a non-degenerate law, but how?
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Well, the idea is to carry out a transformation, the best known in statistics

is the normalization illustrated through the Central Limit Theorem TCL which

gives a non-degenerate asymptotic distribution of the mean X n of n rv’s.

Theorem 1.1 (Central Limit Theorem). Let X1, ..., Xn be a sequence of iid rv’s
with mean µ and finite variance σ2, then

p
n

(
X n −µ

)
σ

D−→
n→∞ N (0,1)

equivalent to
X n −bn

an

D−→
n→∞ N (0,1)

where: an = σp
n > 0 and bn ∈R are called normalization constant.

The proof of this theorem could be found in any standard book of statistics,

see for instance, Saporta, G.(1990) page 66.

Similarly, for the maximum Xn,n there exists an > 0 and bn ∈R such that:

lim
n→∞P

( Xn,n −bn

an
≤ x

)
= lim

n→∞Fn(anx+bn)= H(x), ∀x ∈R (1.1)

where: H is a non-degenerate distribution function called the extreme value

distribution.

It is worthy to know that Fisher was the first who observed the behaviour of

the maximum and its variations. The crucial theorem in EVT is the following.

Theorem 1.2 (Fisher and Tippett). If cdf F satisfies assumption (1.1) , then cdf H
is the same, up to location and scale, as one of the following distribution:

Gumbel: Λ (x)= exp(−exp(−x)) , x ∈R.

Frechet: Φξ (x)=
{

0 , x ≤ 0

exp(−x−ξ) , x > 0
,ξ> 0

Weibull: Ψξ (x)=
{

exp(−(−xξ
)
) , x ≤ 0

1 , x > 0
,ξ> 0
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In the following paragraph, we consider rv (X1, ..., Xn) iid as well as their

maximum Xn,n. We are looking for sequences an > 0 and bn ∈ R, such that the

sequence
(
a−1

n
(
Xn,n −bn

))
converges in law to a non-degenerate limit. We consider

random variables with uniform, exponential and Cauchy distributions.

1.1.2 Generalized extreme value distribution

Definition 1.1 (Generalized extreme value distribution). The generalized extreme
value distribution GEVD is a df Hγ defined for all x ∈ R such that 1+γx > 0, as
follows

Hγ (x)=
{

exp
(
−(

1+γx
)−1/γ

)
, if γ 6= 0

exp(−e−x) , if γ= 0

the real parameter γ is called extreme value index, tail index or also shape param-
eter.

In the following proposition, we express the three extreme value distribution

Λ,Φξ and Ψξ in terms of the GEVD Hγ.

Proposition 1.1. We note that:
Φξ (x)= H1/ξ (ξ (x−1)) , x > 0

Ψξ (x)= H−1/ξ (ξ (x+1)) , x < 0

Λ (x)= H0 (x) , x ∈R

Remark 1.1. Given the above proposition, we can write:

Hγ =


Ψ−1/γ (x) ,γ< 0

Λ , γ= 0

Φ1/γ (x) ,γ> 0

we recall that Gumbel type corresponds to γ= 0 , Frechet type to γ> 0 and Weibull
type to γ< 0.
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1.1.2.1 Properties of each distribution

γ> 0 : the endpoint associated to the distribution Φ 1
γ

is xF =+∞ , i.e., this

distribution has a heavy tail and the moments of order greater than or equal

to 1
γ

do not exist.

γ= 0 : the endpoint associated to the distribution Λ is xF ≤+∞, but, this

distribution has a light tail "Light tail" and all the moments exist.

γ< 0 : the endpoint associated to the distribution Ψ− 1
γ

is xF =−1
γ
, so this

distribution has a "Short tail".

1.1.3 Regular variation and Domains of attraction

The EVT could not have been developed and come into being without the use and

application of the theory of regularly varying functions (RV) and its properties.

The notion of regularly varying functions was introduced by J. Karamata in 1930

in the case of continuous functions, while the case of measurable functions was

treated by Korevaar in 1949; these functions are continuous, differentiable, ... etc.

For more details you can see [9].

The set of regularly varying functions has generalizations and extensions they

are called first and second-order condition. These last are the most substantial

notions for which the EVT should be well understood to study.

1.1.3.1 Regular variation

The regularly varying functions are exactly the functions that model the tails F
of the distributions F and the first-order condition is exactly the necessary and

sufficient condition which ensures that the distribution F is in the domains of

attraction of the max. The role of this condition appeared in the construction of the

estimators of the tail index, and the second-order condition gives the consistency

and the asymptotic normality of this estimators.

Definition 1.2. f is said to be a function with regular variation at infinity of

9
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index ρ (noted f ∈ RVρ ) if it satisfies:

lim
t→∞

f (tx)
f (t)

= xρ ∀x > 0

Definition 1.3. f is said to be a function with regular variation to the right of 0

with index
(−ρ)

, if for all x > 0:

lim
s→0

f (sx)
f (s)

= x−ρ,

and we note f ∈ RV−ρ(+0).

Remark 1.2.

• If ` ∈V R0, then we say that ` is a slowly varying function at infinity.

• Any measurable function, positive, and its limit is positive (in particular, the
positive constants), is a slowly varying function at infinity.

• If f ∈ RVρ and ` ∈ RV0, then f (x)= xρ`(x).

Theorem 1.3 (Karamata’s representation). We say that ` is a slowly varying
function at infinity iff:

`(t)= c(t)exp
{∫ t

a
ε(u)du/u

}
, t ≥ a

where c(t)→ c > 0 and ε(t)→ 0 as t →∞.

Example 1.1.

• The functions: xρ log(1+ x), xρ loglog(e+ x), xρ log(x), and xρ exp{(log x)α},
0<α< 1 are regularly varying functions at infinity.

• Whereas, 2+sin x, 2+sinlog x, and xexpsinlog x are not regularly varying
functions.

Theorem 1.4 (Uniform convergence theorem). If f is a regularly varying func-
tions at infinity of index ρ, then:

sup
x∈A

∣∣∣∣ f (λx)
f (x)

− xρ
∣∣∣∣→ 0 as x →∞,
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where:

A =


[a,b] if ρ = 0.

]0,b] if ρ > 0, suppose that f is bounded on ]0,b].

[a,∞[ if ρ < 0.

Proposition 1.2.

1. If f ∈ RVρ, then f α ∈ RVαρ.

2. If f1, f2 ∈ RVρ and f2(x)→∞ as x →∞, then f1 ◦ f2 ∈ RVρ1ρ2 .

3. If f1, f2 ∈ RVρ, then f1 + f2 ∈ RVρ where ρ =max
(
ρ1,ρ2

)
.

4. (Potter’s inequality, 1942) If f ∈ RVρ, then there exists t0 such that, for all
x ≥ 1, t ≥ t0:

(1−ε) xρ−ε < f (tx)
f (t) < (1+ε) xρ+ε, ∀ε> 0.

Proposition 1.3 (Drees(1998)). If f ∈ RVρ, then there exists t0 = t0(ε,δ) such that,
for t, tx ≥ t0 : ∣∣∣ f (tx)

f (t) − xρ
∣∣∣≤ εmax

(
xρ+δ, xρ−δ

) ∀ε,δ> 0.

Theorem 1.5 ( Karamata’s theorem). Let f ∈ RVσ, and locally bounded on x0 ≤
x <∞.

If σ≥−1, then:

lim
x→∞

xf (x)∫ x
x0

f (t)dt
=σ+1 (1.2)

If σ<−1 (If σ=−1 and
∫ ∞

x f (t)dt <+∞), then:

lim
x→∞

xf (x)∫ ∞
x f (t)dt

=−(σ+1) (1.3)

Conversely, if f verifies (1.2) for −1<σ<∞, then f ∈ RVσ. While if f verifies
(1.3) with −∞<σ<−1, then f ∈ RVσ.
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1.1.3.2 Domains of attraction

In order to characterize the domains of attraction, we need to propose necessary

and sufficient conditions on F so that it can be in DM (Hγ). these conditions are

known by the conditions of von Mises (1936). The interested reader is referred

to [24] for more details about such conditions. Since our work focuses on the case

of heavy-tailed distributions, we are only interested in the domains of attraction

of the latter.

Definition 1.4. The set of laws F satisfying (1.1) is called the domain of attraction
of Hγ, and we write F ∈ DM (Hγ).

Let U be a quantile function such that U(t)= F−1(1− 1
t ),∀t > 1. For all γ ∈R,

we have:

F ∈ DM (Hγ)⇔U ∈ RVγ.

i-e, for all x > 0:

lim
t→∞

U(tx)−U(t)
a(t)

=
{

xγ−1
γ

,γ 6= 0

ln x ,γ= 0.
(1.4)

In this case, (1.4) is the first order condition for the regularly varying function;

we have a special case for γ> 0 where a(t)= γU(t).
By replacing a(t)= γU(t) in (1.4) we get:

lim
t→∞

U(tx)
U(t)

= xγ ∀x > 0. (1.5)

Thus, the first order condition for regularly varying functions is defined, i.e:

F ∈ DM(Φ 1
γ
)⇔U ∈ RVγ. (1.6)

Depending on F̄ :

F ∈ DM(Φ 1
γ
)⇔ F̄ ∈ RV− 1

γ
. (1.7)

i-e, for all x > 0:

lim
t→∞

F̄(tx)
F̄(t)

= x−
1
γ ⇐⇒ F̄(x)= x−

1
γ`(x)

where: ` ∈ RV0.
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1.1.4 Estimation of the extreme value index

There are several methods and techniques to estimate the extreme value index.

In this part of chapter, we are limited to three principle methods.

Let X1, ..., Xn be independent and identically distributed (iid) of non-negative

random variables (rv’s) as n copies of a rv X , defined over some probability space

(Ω,A ,P) , with cumulative distribution function (cdf) F. We assume that the tail

distribution F := 1−F is regularly varying at infinity with negative index
(−1/γ

)
,

i.e., for every x > 0,
F (xu)

F (u)
→ x−1/γ, as u →∞. (1.8)

The parameter γ> 0 is called the shape parameter or the tail index or the extreme

value index (EVI). It plays a very crucial role in the analysis of extremes as it

governs the thickness of the distribution right-tail. The problem of estimating the

EVI has received a lot of attention in the last four decades.

1.1.4.1 Hill estimator

The most popular estimator of γ is Hill’s estimator [25], defined by

γ̂(H)
k := 1

k

k∑
i=1

log
Xn−i+1:n

Xn−k:n
=

k∑
i=1

i
k

log
Xn−i+1:n

Xn−i:n
,

where X1:n ≤ ... ≤ Xn:n denote the order statistics pertaining to the sample

X1, ..., Xn and k = kn is an integer sequence satisfying 1 < k < n, k → ∞ and

k/n → 0 as n →∞. The discrete character and non-stability of Hill’s estimator

present major drawbacks. Indeed, adding a single large-order statistic in the

calculation of the estimator, that is, increasing k by 1, may deviate from the

true value of the estimate substantially. Thus, the plotting of this estimator as a

function of the upper order statistics often gives a zig-zag figure. To overcome this

issue, the authors introduce the following estimator

1.1.4.2 Csörgő et al.(1985) estimator

Csörgő et al.(1985) (CDM) introduced more general weighs instead of the natural

one i/k that appears in the second formula of γ̂(H)
k , to define the following kernel
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estimator

γ̂(CDM)
k,K :=

k∑
i=1

i
k

K
(

i
k

)
log

Xn−i+1:n

Xn−i:n
, (1.9)

where K is a continuous nonnegative nonincreasing function on (0,1) such that∫ 1
0 K (s)ds = 1.

1.1.4.3 Hüsler et al.(2006) estimator

The work presented in [28] used the weighted least squares estimator (WLSE)

given by

γ̂k,J :=

1
k

k∑
i=1

J
(

i
k

)
log

Xn−i+1:n

Xn−k:n∫ 1
0 J (s) log s−1ds

, (1.10)

where J is a suitable continuous nonnegative nonincreasing function defined on

(0,1) such that
∫ 1

0 J (s)ds = 1. Similar estimators to γ̂k,J are also considered in [?
], [? ] and recently [11]. The authors pointed out that the least squares estimator

γ̂k,J may be rewritten into CDM’s one γ̂(CDM)
k,K for the kernel function

K (s)= 1
s

∫ s

0
J (t)dt

(∫ 1

0
J (t) log t−1dt

)−1

, s ∈ (0,1) . (1.11)

For example, let Jlog (s) = −1(0,1) (s) log s, we get K (s) = 1(0,1) (s) (1− log s) . The

converse is not necessarily true, i.e., it may be K is a kernel function without the

function J being. For example, taking K (s) :=−1(0,1) (s) log s, we get J (s)= 0. The

notation 1A stands for the indicator function of a set A. The commonly used kernel

functions J are: the indicator J0 := 1(0,1), the linear-weight, biweight, triweight

and quadweight functions defined on 0< s < 1 by

J1 (s) := 2(1− s) , J2 (s) := 15
8

(
1− s2)2 ,

J3 (s) := 35
16

(
1− s2)3 , J4 (s) := 315

128
(
1− s2)4 ,

(1.12)

and zero elsewhere respectively, where 1A stands for the indicator function of a

set A. For the use of this type of weight functions one refers to [19] and [28].

The nice properties of this type of estimators are the smoothness and the

stability, contrary to Hill’s one which rather exhibits fluctuations along the range
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of upper extreme values. However, these estimators do not take into account

possible deviations from assumed extreme value models. These may arise as a

result of possible outliers in the data that may (or may not) have been recorded in

error. In such a dataset, the estimators mentioned above are known to be sensitive

to these outlying observations, affecting their quality. In addition, small errors in

the estimation of model parameters, such as the tail index, can cause significant

errors in the estimation of extreme events such as high quantiles and exceedance

probabilities (see e.g., Brazauskas and Serfling 2000). And this what we will see

in the last chapter of this thesis.

1.2 Incomplete data

In this section, our interest is to present briefly the incomplete data which

includes censoring and truncating data. To truncate data is to completely delete

a value from the dataset, whereas to censor data is to simply capture a portion

of information about a value. Both of them induce information loss in a dataset,

however truncating causes more information loss since it requires completely

eliminating some data values.

1.2.1 Cencoring data

Censoring data values means collecting only partial information that is higher

or smaller than a certain value. We may clarify this definition using the example

below.

Example 1.2 (A vitamin D test). A vitamin D test, also known as hydroxyvitamin
D(25OH), is one of the best ways to monitor our body’s vitamin D levels. The test
determines whether these levels are too high, too low, or normal. The analysis
is performed by taking a simple blood sample from the vein of the patient who
needs to know his vitamin D level. It is measured according to the Office of Dietary
Supplements (ODS) by measuring the level of calcifediol in units (nmol/L) or
(ng/mL).

In medical laboratories, we can record the following values:
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• Patient 1: 10.23 ng/mL.

• Patient 2: < 8 ng/mL.

In this case, for Patient 2, we only know that his vitamin level is less than 8,
and we cannot know the exact value as we knew it for Patient 1.

1.2.1.1 Types of censoring

In literature we have three types of consoring.

1. Right censoring:

The variable of interest is said to be right-censored if the individual con-

cerned has no information about its last sighting. Thus, in the presence of

the right censorship, the variables of interest are not all observed. A typical

example is where the event considered is the death of a sick patient and

the duration of observation is the total duration of hospitalization. We also

find this type of phenomenon in reliability studies when the failure of a

device or an electronic component does not allow continued observation of

another device or component. We can also find these kinds of phenomena

in hydrology, rainfall, etc. The experimenter can set an end date of the

experiment and the observations for the individuals for whom the event of

interest was not observed before that date will be censored at right.

2. Left censoring:

There is left censoring when the individual has already undergone the event

before he is observed. We only know that the variable of interest is less than

or equal to a known variable. For example, if we want to study the reliability

of a certain electronic component that is connected in parallel with one

or more other components: the system can continue to operate, although

aberrant way until this failure is detected (for example during control or

in the event of a system shutdown). Thus, the duration observed for this

component is left censored. In everyday life, there are several phenomena

that present both right and left censored data.
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3. Interval censoring:

In this case, as its name suggests, we observe both a lower bound and an

upper bound of the variable of interest. We find this model usually in medical

follow-up studies where patients are checked periodically if a patient does

not show up for one or more check-ups and then presents itself after the

event of interest has occurred. We also have this kind of data which is right

censored or, more rarely, to the left. An advantage of this type is that it

allows data to be presented right or left censored by intervals of the type

[c,+∞[ and [0, c] respectively.

1.2.2 Truncated data

Truncation of data values means removing valuesfrom a set of data that are

less than or greater than a certain value. For concrete examples of truncated

data in medical treatments one refers, among others, to [31] and [48]. Truncated

data schemes may also occur in many other fields, namely actuarial sciences,

astronomy, demography and epidemiology, see for instance the textbook of [32].

Also, we have three types of the truncated data which are:

1. Left truncated:

When people below a threshold are absent from the sample, our data are left-

truncated. For instance, fish smaller than the net grid won’t be included in

our sample if we want to determine the size of a certain fish using specimens

caught using a net.

2. Right truncated:

Think about the AIDS study that is discussed in chapter 2’s section 5.

Here, samples of people with AIDS caused by transfusions were taken. The

amount of time between an infection at the moment of transfusion and the

onset of clinical AIDS was calculated retrospectively using the transfusion

times. Only people who had experienced AIDS before their waiting period

from transfusion to June 30,1986 the date the registry was sampled were
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accessible for observation. Patients who received blood transfusions before

June 30,1986 but contracted AIDS after that date were not tracked down

and are right-truncated.

3. Interval truncated:

Or if an individual is potentially seen and only if its failure-time falls inside

a specific range, specific to that individual, doubly shortened failure-time

develops. The statistical analysis of astronomical observations and survival

analysis both heavily rely on doubly truncated data.

In this thesis, we are interested in the randomly right-truncated, for that

we drive, in the next section, the related works with Tail index estimation under

right truncating data.

1.3 Tail index estimation under right truncating
data

This section discusses the estimators for the tail index that the authors recently

proposed. Before that, let us present the most important elements used from this

part to the end of the thesis.

Let (Xi,Yi) , i = 1, ..., N ≥ 1 be a sample from a couple (X,Y) of independent

positive random variables (rv’s) defined over a probability space (Ω,A ,P) , with

continuous distribution functions (df ’s) F and G respectively. Suppose that X is

right-truncated by Y, in the sense that Xi is only observed when Xi ≤ Yi. Thus,

let us denote (X i,Yi) , i = 1, ...,n to be the observed data, as copies of a couple of

dependent rv’s (X ,Y ) corresponding to the truncated sample (Xi,Yi) , i = 1, ..., N,

where n = nN is a random sequence of discrete rv’s. By the weak law of large

numbers, we have

n/N P→ p :=P (X≤Y)=
∫ ∞

0
F (w)dG (w) , as N →∞, (1.13)

where the notation P→ stands for the convergence in probability. The constant

p corresponds to the probability of observed sample which is supposed to be
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non-null, otherwise nothing is observed. The truncation phenomena frequently

occurs in medical studies, when one wants to study the length of survival after

the start of the disease: if Y denotes the elapsed time between the onset of the

disease and death, and if the follow-up period starts X units of time after the

onset of the disease then, clearly, X is right-truncated by Y.

From [18] the marginal df ’s F∗ and G∗ corresponding to the joint df of (X ,Y ) are

given by

F∗ (x) := p−1
∫ x

0
G (w)dF (w) and G∗ (x) := p−1

∫ x

0
F (w)dG (w) .

By the previous first equation we derive a representation of the underlying df F
as follows:

F (x)= p
∫ x

0

dF∗ (w)

G (w)
, (1.14)

which will be for a great interest thereafter. In the sequel, we are dealing with

the concept of regular variation. A function ϕ is said to be regularly varying at

infinity with negative index −1/η, notation ϕ ∈ RV
(−1/η

)
, if

ϕ (st) /ϕ (t)→ s−1/η, as t →∞, (1.15)

for s > 0. This relation is known as the first-order condition of regular variation

and the corresponding uniform convergence is formulated in terms of "Potter’s

inequalities" as follows: for any small ε> 0, there exists t0 > 0 such that for any

t ≥ t0 and s ≥ 1, we have

(1−ε) s−1/η−ε <ϕ (st) /ϕ (t)< (1+ε) s−1/η+ε. (1.16)

See for instance Proposition B.1.9 (assertion 5, page 367) in [24]. The second-order

condition ,see [20], expresses the rate of the convergence (1.15) above. For any

x > 0, we have
ϕ (tx) /ϕ (t)− x−1/η

A (t)
→ x−1/η xτ/η−1

τη
, as t →∞, (1.17)

where τ< 0 denotes the second-order parameter and A is a function tending to

zero and not changing signs near infinity with regularly varying absolute value

with positive index τ/η. A function ϕ that satisfies assumption (4.9) is denoted

ϕ ∈ RV2
(−1/η;τ, A

)
. We now have enough material to tackle the main goal of the

19



PRELIMINARIES

paper. To begin, let us assume that the tails of both df ’s F and G are regularly

varying. That is

F ∈ RV
(−1/γ1

)
and G ∈ RV

(−1/γ2
)
, with γ1,γ2 > 0. (1.18)

Under this assumption, [18] showed that

F
∗ ∈ RV

(−1/γ
)

and G
∗ ∈ RV

(−1/γ2
)
, (1.19)

where

γ := γ1γ2

γ1 +γ2
. (1.20)

For details on the proof of this statement, on refers to [6] (Lemma A1).

1.3.1 Gardes and Stupfler estimator

Recently Gardes and Stupfler(2015) introduced an estimator of γ1 defined by:

γ̂(GS)
1 (k1,k2) := γ̂2 (k2) γ̂ (k1)

γ̂2 (k2)− γ̂ (k1)
,

where k1 and k2 are two distinct sample fraction used respectively in Hill’s

estimator of tail indices γ and γ2

γ̂ (k1) := 1
k1

k1∑
i=1

log Xn−i+1:n − log Xn−k1:n

and

γ̂2 (k2) := 1
k2

k2∑
i=1

logYn−i+1:n − logYn−k2:n

These estimators are based on the top order statistics Xn−k:n ≤ ... ≤ Xn:n and

Yn−k:n ≤ ... ≤ Yn:n pertaining to the samples (X1, ..., Xn) and (Y1, ...,Yn) respec-

tively.

1.3.2 Benchaira et al estimator

Benchaira et al.(2015) in [5] considered a sample fraction k = k1 = k2 satisfy-

ing k →∞ and k/n → 0 as n →∞ and they defined the following estimators of γ

and γ2

γ̂ := 1
k

k∑
i=1

log Xn−i+1:n − log Xn−k:n,
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and

γ̂2 := 1
k

k∑
j=1

logYn− j+1:n − logYn−k:n

and

γ̂(BMN1)
1 :=

1
k
∑k

i=1
∑k

j=1 log Xn−i+1:n
Xn−k:n

− log Yn− j+1:n
Yn−k:n∑k

i=1 log
(

Yn−i+1:n Xn−k:n
Yn−k:n Xn−i+1:n

) .

they also provided a Gaussian representation in terms of two-parameter Wiener

process which leads to consistency and asymptotic normality of γ̂(BMN1)
1 .

1.3.3 Worms and Worms estimator

By using a Lynden-bell integral, Worms and Worms(2016) in [50] proposed

the following estimator for the tail index γ1 :

γ̂(W)
1 (u) := 1

F(1)
n (u)

n∑
i=1

1 (X i > u)
F(1)

n (X i)
Cn (X i)

log
X i

u
,

for a given deterministic threshold u > 0, where

F(1)
n (x) := ∏

X i>x

[
1− 1

nCn (X i)

]
,

is the popular nonparametric maximum likelihood estimator of cdf F introduced

in the well-known work Lynden-Bell(1971) [36], with

Cn (x) := 1
n

n∑
i=1

1 (X i ≤ x ≤Yi) .

Independently, Benchaira et al.(2016a) in [6] used a Woodroofe-integral

with a random threshold, to derive the following estimator

γ̂(BMN2)
1 := 1

F(2)
n (Xn−k:n)

k∑
i=1

F(2)
n (Xn−i+1:n)

Cn (Xn−i+1:n)
log

Xn−i+1:n

Xn−k:n
, (1.21)

where

F(2)
n (x) := ∏

X i>x
exp

{
− 1

nCn (X i)

}
,

is the so-called Woodroofe’s nonparametric estimator of df F.
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1.3.4 Kernel estimator

Benchaira et al.(2016b) in [7] proposed a Kernel (smoothed) version to γ̂1

given by

γ̂1,K := 1

nFn (Xn−k:n)

k∑
i=1

Fn (Xn−i+1:n)
Cn (Xn−i+1:n)

gK

(
Fn (Xn−i+1:n)

Fn (Xn−k:n)

)
log

Xn−i+1:n

Xn−k:n
, (1.22)

where gK is the Lebesgue derivative of function s → sK (s) and K is a nonnegative

kernel function satisfying the following assumptions:

• [A1] K (s)≥ 0 for s ∈ (0,1] , otherwise K (s)= 0.

• [A2] gK is positive nonincreasing over some interval in (0,1] .

• [A3]
∫
RK (s)ds = 1.

• [A4] K and its first and second Lebesgue derivatives K ′ and K ′′ are bounded.

• [A5] K is nonincreasing.

The commonly used kernel functions are: the indicator, the biweight, triweight

and quadweight kernels respectively defined, for 0< s ≤ 1, by

K1 := 1 {[0,1)} , K2 (s) := 15
8

(
1− s2)2

,

K3 (s) := 35
16

(
1− s2)3

, K4 (s) := 315
128

(
1− s2)4

,

and zero elsewhere, where 1 {A} stands for the indicator function of a set A. It

is worth mentioning that assumptions [A1]− [A4] are usually made to construct

and investigate the asymptotic behavior of the tail index kernel estimators, see

for instance [13], [19] and [12]. Assumption [A5] will be used later on to define

a weighted estimator for the asymptotic bias of γ̂1,K . Notice that the second

assumption [A2] allows to assign weights which preserve the decreasing nature

of the tail F. Assuming the second-order conditions

F ∈ RV2
(−1/γ1;τ1, AF

)
and G ∈ RV2

(−1/γ2;τ2, AG
)
, (1.23)

Benchaira et al.(2016b) in [7] also showed that, whenever γ1 < γ2, one has

p
k

(
γ̂1,K −γ1

) D=N

(
0,

(
γ2/γ1

)2
∫ 1

0
ϕ2

K (s)ds
)
+η1,K

p
k AF (n/k)+ oP (1) , (1.24)
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as n →∞, provided that
p

k AF (n/k)=O (1) , where η1,K := η1,K (τ1)= ∫ 1
0 s−τ1 K (s)ds,

and

ϕK (s) := s−1
∫ s

0
t−γ/γ2

{
K

(
tγ/γ1

)
− γ1

γ2
t−γ2/γ1 K

(
tγ/γ1

)
+ tγ/γ1 K ′

(
tγ/γ1

)}
dt. (1.25)

The condition γ1 < γ2 ensures that we have at our disposal enough observations

pertaining to the right-tail of X.

1.3.5 Haouas et al. estimator

Haouas et al.(2019) in [22] respectively proposed a Kernel-smoothed and a

reduced-biais versions of this estimator and establish their consistency and asymp-

totic normality. It is worth mentioning that Lynden-Bell integral estimator γ̂(W)
1 (u)

with a random threshold u = Xn−k:n becomes

γ̂(W)
1 := 1

F(1)
n (Xn−k:n)

k∑
i=1

F(1)
n (Xn−i+1:n)

Cn (Xn−i+1:n)
log

Xn−i+1:n

Xn−k:n
. (1.26)

In a simulation study, [21] compared this estimator with γ̂(BMN)
1 . They pointed out

that both estimators have similar behaviors in terms of biases and mean squared

errors.
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2
SEMIPARAMETRIC TAIL-INDEX ESTIMATION FOR

RANDOMLY RIGHT-TRUNCATED HEAVY-TAILED DATA

The present chapter deals with semi-parametric estimation methods

that are used for models which are partly parametric and partly non

parametric. The choise of this method seems the best when parametric

information of the truncation distribution is available. Indeed, the

section 1 derive the semiparametric estimator for the distribution

function F based on the Conditional Maximum Likelihood method

proposed by Wang. Section 2 present the methodology estimation of

the new estimator for the tail index under randomly right-truncated

heavy-tailed data and we establish in section 3 their consistency and

asymptotic normality. The performance of the proposed estimator is

checked by simulation in section 4. An application to a real dataset

composed of induction times of AIDS diseases is given in section 5.
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2.1 Semi-parametric estimator of the truncation
distribution function F

Recall that the nonparametric Lynden-Bell estimator F(1)
n was constructed on

the basis of the fact that F and G are both unknown. In this paper, we are dealing

with the situation when F is unknown but G is parametrized by a known model

Gθ, θ ∈Θ⊂Rd, d ≥ 1 having a density gθ with respect to Lebesgue measure. [48]

considered this assumption and introduced a semiparametric estimator for df F
defined by

Fn
(
x; θ̂n

)
:= Pn

(
θ̂n

) 1
n

n∑
i=1

1 (X i ≤ x)

Gθ̂n
(X i)

, (2.1)

where

1/Pn
(
θ̂n

)
:= n−1

n∑
i=1

1/Gθ̂n
(X i)

and

θ̂n := argmax
θ∈Θ

n∏
i=1

gθ (Yi) /Gθ (X i) , (2.2)

denoting the conditional maximum likelihood estimator (CMLE) of θ, which is

consistent and asymptotically normal, see for instance [1]. On the other hand,

[48] showed that Fn
(
x; θ̂n

)
is an uniformly consistent estimator over the x-axis

and established, under suitable regularity assumptions, its asymptotic normality.

[48] and [40] pointed out that the semiparametric estimate has greater efficiency

uniformly over the x-axis. In the light of a simulation study, the authors suggest

that the semiparametric estimate is a better choice when parametric information

of the truncation distribution is available. Since the apparition of this estimation

method many papers are devoted to the statistical inference with truncation data,

see for instance: [8], [34], [42], [44], [41], and [45].

2.2 Construction of the new estimator

Motivated by the features of the semiparametric estimation, we next propose

a new estimator for γ1 by means of a suitable functional of Fn
(
x; θ̂n

)
. We start

our construction by noting that from Theorem 1.2.2 in de [24], the first-order
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condition (1.18) (for F) implies that

lim
t→∞

1

F (t)

∫ ∞

t
log(x/t)dF (x)= γ1. (2.3)

In other words, γ1 may viewed as a functional ψt (F) , for a large t, where

ψt (F) := 1

F (t)

∫ ∞

t
log(x/t)dF (x) .

Replacing F by Fn
(·; θ̂n

)
and letting t = Xn−k:n yield

γ̂1 =ψXn−k:n

(
Fn

(·; θ̂n
))

= 1

Fn
(
Xn−k:n; θ̂n

) ∫ ∞

Xn−k:n

log(x/Xn−k:n)dFn
(
x; θ̂n

)
, (2.4)

as new estimator for γ1. Observe that∫ ∞

t
log(x/t)dFn

(
x; θ̂n

)
= Pn

(
θ̂
)∫ ∞

Xn−k:n

log(x/Xn−k:n)1 (x ≥ Xn−k)dFn
(
x; θ̂n

)
,

which may be rewritten into

Pn
(
θ̂n

)
1

n

n∑
i=1

∫ ∞

Xn−k:n

log(x/Xn−k:n)1 (x ≥ Xn−k)

Gθ̂n
(X i)

d1 (X i ≤ x)

= Pn
(
θ̂n

) 1
n

k∑
i=1

log(Xn−i+1/Xn−k:n)

Gθ̂n
(Xn−i+1:n)

.

On the other hand, F
(
Xn−k:n; θ̂n

)
equals

Pn
(
θ̂n

) 1
n

n∑
i=1

1 (X i:n ≤ Xn−k:n)

Gθ̂n
(X i:n)

= Pn
(
θ̂n

) 1
n

n−k∑
i=1

1/Gθ̂n
(X i:n) .

Hence

F
(
Xn−k:n; θ̂n

)=
1
n

n∑
i=1

1/Gθ̂n
(X i:n)− 1

n

n−k∑
i=1

1/Gθ̂n
(X i:n)

1
n

n∑
i=1

1/Gθ̂n
(X i:n)

= Pn
(
θ̂n

) 1
n

k∑
i=1

1/Gθ̂n
(Xn−i+1:n) .
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Thereby, the form of our new estimator is

γ̂1 =
∑k

i=1

(
Gθ̂n

(Xn−i+1:n)
)−1

log(Xn−i+1/Xn−k:n)∑k
i=1

(
Gθ̂n

(Xn−i+1:n)
)−1 . (2.5)

2.3 Main results and Proofs

In this section, we present Theorems that are dealing with the consistency

and asymptotic normality of our new estimator by giving their proofs. The asymp-

totic behavior of γ̂1 will be established by means of the following tail empirical

process

Dn
(
x; θ̂n;γ1

)
:=

p
k

(
Fn

(
xXn−k:n; θ̂n

)
Fn

(
Xn−k:n; θ̂n

) − x−1/γ1

)
, for x > 1.

This method was already used to establish the asymptotic behavior of Hill’s

estimator for complete data ([24], page 162) that we will adapt to the truncation

case. Indeed, by using an integration by parts and a change of variables of the

integral (2.4) , one gets

γ̂1 =
∫ ∞

1
x−1 Fn

(
xXn−k:n; θ̂n

)
Fn

(
Xn−k:n; θ̂n

) dx,

and therefore p
k

(
γ̂1 −γ1

)= ∫ ∞

1
x−1Dn

(
x; θ̂n;γ1

)
dx. (2.6)

Thus for a suitable weighted weak approximation to Dn
(·; θ̂n;γ1

)
, we may easily

deduce the consistency and asymptotic normality of γ̂1. This process may also

contribute to the goodness-of-fit test to fitting heavy-tailed distributions via,

among others, the Kolmogorov-Smirnov and Cramer-Von Mises type statistics

sup
x>1

∣∣Dn
(
x; θ̂n, γ̂1

)∣∣ and
∫ ∞

1
D2

n
(
x; θ̂n, γ̂1

)
dx−1/γ̂1 .

We note that, the regularity assumptions, denoted [A0] , concerning the

existence, consistency and asymptotic normality of the CLME estimator θ̂n, given

in (2.2) , are discussed in [1]. Here we only state additional conditions on df

Gθ corresponding to Pareto-type models which are required to establish the

asymptotic behavior of our newly estimator γ̂1.
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• [A1] For each fixed y, the function θ→Gθ (y) is continuously differentiable

of partial derivatives G( j)
θ

=: ∂Gθ/∂θ j, j = 1, ...,d.

• [A2] G( j)
θ ∈ RV

(−1/γ2
)
.

• [A3] y−εG( j)
θ (y) /Gθ (y)→ 0, as y→∞, for any ε> 0.

For common Pareto-type models, one may easily check that there exist some

constants a j ≥ 0, c j and d j, such that G( j)
θ (y)∼ c j

(
y−1/γ2 +d j

)
log y, for all large x.

Then one may consider that the assumptions [A1]− [A3] are not very restrictive

and they may be acceptable in the extreme value theory.

2.3.1 Important Lemma

Lemma 2.1. For any small ε> 0, we have

F
∗
n (Xn−k:nw)

F
∗

(Xn−k:n)
=OP

(
w−1/γ+ε/2

)
, uniformly on w ≥ 1.

Proof. Let Vn (t) := n−1 ∑n
i=1 1 (ξi ≤ t) be the uniform empirical df pertaining to

the sample ξi := F
∗

(X i) , i = 1, ...,n, of iid uniform(0,1) rv’s. It is clear that, for an

arbitrary x, we have Vn

(
F

∗
(x)

)
= F

∗
n (x) almost surely. From Assertion 7 in [46]

(page 415), Vn (t) /t =OP (1) uniformly on 1/n ≤ t ≤ 1, this implies that

F
∗
n (Xn−k:nw)

F
∗

(Xn−k:nw)
=OP (1) , uniformly on w ≥ 1. (2.7)

On the other hand, by applying Potter’s inequalities (1.16) to F
∗
, we get

F
∗

(Xn−k:nw)

F
∗

(Xn−k:n)
=OP

(
w−1/γ+ε/2

)
, uniformly on w ≥ 1. (2.8)

Combining the two statements (2.7) and (2.8) gives the desired result. �

2.3.2 Theorems and Proofs

Theorem 2.1. Assume that F ∈ RV2
(−1/γ1;ρ1,A

)
and Gθ ∈ RV

(−1/γ2
)

satisfying
the assumptions [A0]− [A3] , and suppose that γ1 < γ2. Then on the probability
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space (Ω,A ,P) , there exists a standard Wiener process {W (s) ,0≤ s ≤ 1} such that,
for any small 0< ε< 1/2, we have

sup
x>1

xε
∣∣∣∣Dn

(
x; θ̂n,γ1

)−Γ (x;W)− x−1/γ1
xρ1/γ1 −1
ρ1γ1

p
k A (ak)

∣∣∣∣ P→ 0,

provided that
p

k A (ak)=O (1) , where

Γ (x;W) := γ

γ1
x−1/γ1

{
x1/γW

(
x−1/γ

)
−W (1)

}
+ γ

γ1 +γ2
x−1/γ1

∫ 1

0
s−γ/γ2−1

{
x1/γW

(
x−1/γs

)
−W (s)

}
ds,

is a centred Gaussian process and ak := F∗← (1−k/n)1.

Proof. Let us first notice that the semiparametric estimator of df F given in (2.2)
may be rewritten into

Fn
(
x; θ̂n

)= Pn
(
θ̂n

)∫ x

0

dF∗
n (w)

Gθ̂n
(w)

, (2.9)

and 1/Pn
(
θ̂
) = ∫ ∞

0 dF∗
n (w) /Gθ̂n

(w) , where F∗
n (w) := n−1 ∑n

i=1 1 (X i ≤ w) denotes

the usual empirical df pertaining to the observed sample X1, ..., Xn. It is worth

mentioning that by using the strong law of large numbers Pn
(
θ̂n

)→ P (θ) (almost

surely) as n →∞, where P (θ)= 1/
∫ ∞

0 dF∗ (w) /Gθ (w) (see e.g. Lemma 3.2 in [48]).

On the other hand from equation (1.14) , we deduce that p = 1/
∫ ∞

0 dF∗ (w) /G (w) ,

it follows that p ≡ P (θ) because we already assumed that G≡Gθ. Next we use

the distribution tail

F (x)= P (θ)
∫ ∞

x

dF∗ (w)

Gθ (w)
, (2.10)

and its empirical counterpart

Fn
(
x; θ̂n

)= Pn
(
θ̂n

)∫ ∞

x

dF∗
n (w)

Gθ̂n
(w)

.

We begin by decomposing k−1/2Dn
(
x; θ̂n

)
, for x > 1, into the sum of

Mn1 (x) := x−1/γ1
Fn

(
xXn−k:n; θ̂n

)−Fn (xXn−k:n;θ)

F (xXn−k:n)
,

1F∗← (s) := inf {x : F∗ (x)≥ s} , 0 < s < 1, denotes the quantile (or the generalized inverse)
function pertaining to df F∗.
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Mn2 (x) := x−1/γ1
Fn (xXn−k:n;θ)−F (xXn−k:n)

F (xXn−k:n)
,

Mn3 (x) :=− F (xXn−k:n)

Fn (Xn−k:n;θ)

Fn (Xn−k:n;θ)−F (Xn−k:n)

F (Xn−k:n)
,

Mn4 (x) :=
(

F (xXn−k:n)

Fn (Xn−k:n;θ)
− x−1/γ1

)
Fn (xXn−k:n;θ)−F (xXn−k:n)

F (xXn−k:n)

and

Mn5 (x) := F (xXn−k:n)

F (Xn−k:n)
− x−1/γ1 .

Our goal is to provide a weighted weak approximation to the tail empirical

process Dn
(
x; θ̂n;γ1

)
. Let ξi := F

∗
(X i) , i = 1, ...,n be a sequence of independent

and identically distributed rv’s. Recall that both df ’s F and Gθ are assumed to

be continuous, this implies that F∗ is continuous as well, therefore P (ξi ≤ u)= u,

this means that (ξi)i=1,n are uniformly distributed on (0,1) . Let us now define the

corresponding uniform tail empirical process

αn (s) :=
p

k (Un (s)− s) , for 0≤ s ≤ 1, (2.11)

where

Un (s) := k−1
n∑

i=1
1 (ξi < ks/n) , (2.12)

denotes the tail empirical df pertaining to the sample (ξi)i=1,n . In view of Proposi-

tion 3.1 of [17], there exists a Wiener process W such that for every 0≤ ε< 1/2,

sup
0≤s<1

s−ε |αn (s)−W (s)| P→ 0, as n →∞. (2.13)

Let us fix a sufficiently small 0< ε< 1/2. We will successively show that, under

the first-order conditions of regular variation (1.18), we have, uniformly on x ≥ 1,

for all large n :

p
k Mn2 (x)= γ

γ1
x1/γ2W

(
t−1/γ

)
+ γ

γ1

∫ ∞

x1/γ2
W

(
t−γ2/γ

)
dt+ oP

(
x

1
2

(
1
γ2

− 1
γ1

)
+ε

)
(2.14)

and

p
k Mn3 (x)=−x−1/γ1

(
γ

γ1
W (1)+ γ

γ1

∫ ∞

1
W

(
t−γ2/γ

)
dt

)
+ oP

(
x−1/γ1+ε

)
, (2.15)
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while p
k Mn1 (x)= oP

(
x−1/γ1+ε

)
,
p

k Mn4 (x)= oP

(
x

1
2

(
1
γ2

− 1
γ1

)
+ε

)
, (2.16)

and p
k Mn5 (x)= x−1/γ1

xρ1/γ1 −1
ρ1γ1

p
k A (ak)+ oP

(
x−1/γ1

)
. (2.17)

Throughout the proof, without loss of generality, we assume that aε≡ ε, for any

constant a > 0. We point out that all the rest terms of the previous approximations

are negligible in probability, uniformly on x > 1. Let us begin by the term Mn1 (x)
which may be made into

x−1/γ1

F (xXn−k:n)
Pn

(
θ̂n

)(∫ ∞

x

dF∗
n (Xn−k:nw)

Gθ̂ (Xn−k:nw)
−

∫ ∞

x

dF∗
n (Xn−k:nw)

Gθ (Xn−k:nw)

)

= x−1/γ1

F (xXn−k:n)
Pn

(
θ̂n

)∫ ∞

x

(
1

Gθ̂ (Xn−k:nw)
− 1

Gθ (Xn−k:nw)

)
dF∗

n (Xn−k:nw) .

Applying the mean value theorem (for several variables) to function θ→ 1/Gθ (·) ,

yields

1

Gθ̂ (z)
− 1

Gθ (z)
=

d∑
i=1

(
θ̂i,n −θi

) G(i)
θ̃ (z)

G
2
θ̃ (z)

, for any z > 1,

where θ̃n is such that θ̃i,n is between θi and θ̂i,n, for i = 1, ...,d, therefore

Mn1 (x)= x−1/γ1

F (xXn−k:n)
Pn

(
θ̂n

) d∑
i=1

(
θ̂i −θi

)∫ ∞

x

G(i)
θ̃ (Xn−k:nw)

G
2
θ̃ (Xn−k:nw)

dF∗
n (Xn−k:nw) .

Recall that by assumptions (1.18) and [A2] both Gθ and G(i)
θ are regularly varying

with the same index
(−1/γ2

)
and on the other hand, Xn−k:n

P→∞ and w > 1, imply

that Xn−k:nw P→∞. Applying Pooter’s inequalities (1.16) , we get

Gθ̃ (Xn−k:nw)

Gθ̃ (Xn−k:n)
= (1+ oP (1))w−1/γ2+ε = G(i)

θ̃ (Xn−k:nw)

G(i)
θ̃ (Xn−k:n)

,

it follows that

Mn1 (x)= (1+ oP (1))Pn
(
θ̂n

) x−1/γ1

Gθ̃ (Xn−k:n)F (xXn−k:n)

×
d∑

i=1

G(i)
θ̃ (Xn−k:n)

Gθ̃ (Xn−k:n)

∣∣θ̂i,n −θi
∣∣∫ ∞

x
w1/γ2−εdF∗

n (Xn−k:nw) .
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Under some regularity assumptions, [1] stated that
p

n
(
θ̂n −θ

)
is asymptotically

a centred multivariate normal rv, which implies that θ̂i,n −θi = OP
(
n−1/2) and

thus θ̂n
P→ θ. On the other hand, by the law of large numbers Pn (θ) P→ P (θ) as

n →∞, then we may readily show that Pn
(
θ̂n

) P→ P (θ) as n →∞ as well. Note

that since θ̂n is a consistent estimator of θ then θ̃n is too. Then by using the fact

that Xn−k:n
P→∞ and both conditions [A1] and [A3] , we show readily that

(Xn−k:n)−ε
G(i)
θ̃n

(Xn−k:n)

Gθ̃n
(Xn−k:n)

P→ 0, as n →∞,

and Gθ (Xn−k:n) /Gθ̃n
(Xn−k:n) P→ 1. In view of Lemma A1 in [6], we infer that

Xn−k:n = (1+ oP (1)) (k/n)−γ , thus

Mn1 (x)= (k/n)−εγ oP

(
n−1/2

)
M̃n1 (x) ,

where

M̃n1 (x) := x−1/γ1 P (θ)

Gθ (Xn−k:n)F (xXn−k:n)

∫ ∞

x
w1/γ2−εdF∗

n (Xn−k:nw) .

Making use of representation (2.10) , we write

M̃n1 (x)= x−1/γ1

(∫ ∞

x

Gθ (Xn−k:n)

Gθ (Xn−k:nw)
d

F∗ (Xn−k:nw)

F
∗

(Xn−k:n)

)−1

(2.18)

×
(∫ ∞

x
w1/γ2−εd

F∗
n (Xn−k:nw)

F
∗

(Xn−k:n)

)
.

Once again by using the routine manipulations of Potter’s inequalities, we show

that the first integral in (2.18) is equal to

(1+ oP (1))
∫ ∞

x
w1/γ2+ε/2d

F∗ (Xn−k:nw)

F
∗

(Xn−k:n)
.

An integration by parts to the previous integral yields

x1/γ2+ε/2 F
∗

(Xn−k:nx)

F
∗

(Xn−k:n)
+ (

1/γ2 +ε/2
)∫ ∞

x
w1/γ2+ε/2−1 F

∗
(Xn−k:nw)

F
∗

(Xn−k:n)
dw.

Recall that from (1.19) we have F
∗ ∈ RV(−1/γ), then

F
∗

(Xn−k:nw)

F
∗

(Xn−k:n)
= (1+ oP (1))w−1/γ+ε/2,
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uniformly on w > 1. Therefore the previous quantity reduces into

(1+ oP (1))
(
1+ 1/γ2 +ε/2

−1/γ1 +ε
)

x−1/γ1+ε.

Thereby the first expression between two brackets in (2.18) equals OP
(
x1/γ1−ε) .

Let us consider the second factor in (2.18) . By similar arguments as used for the

first factor, we show that

x1/γ2+ε/2 F
∗
n (Xn−k:nx)

F
∗

(Xn−k:n)
+ (

1/γ2 +ε/2
)∫ ∞

x
w1/γ2+ε/2 F

∗
n (Xn−k:nw)

F
∗

(Xn−k:n)
dw,

multiplied by (1+ oP (1)) , uniformly on x > 1. From Lemma 2.1, we have

F
∗
n (Xn−k:nw)

F
∗

(Xn−k:n)
=OP

(
w−1/γ+ε/2

)
,

which implies that the previous expression equals OP
(
x−1/γ1+ε) , thus M̃n1 (x) =

OP
(
x−1/γ+ε) and therefore

p
k Mn1 (x)= (k/n)1/2−εγOP

(
x−1/γ1+ε

)
.

By assumption k/n → 0, it follows that
p

k Mn1 (x)= oP
(
x−1/γ1+ε) which meets the

result of (2.18) . Let now consider the second term Mn2 (x) which may be rewritten

into

− x−1/γ1
k/n

F
∗

(Xn−k:n)

F (Xn−k:n)

F (xXn−k:n)

Gθ (Xn−k:n) /F
∗

(Xn−k:n)

F (Xn−k:n)

×
∫ ∞

x

Gθ (Xn−k:n)

Gθ (Xn−k:nw)
d

F
∗
n (Xn−k:nw)−F

∗
(Xn−k:nw)

k/n
.

In view of Potter’s inequalities, it is clear that

F (Xn−k:n)

F
∗

(Xn−k:n) /Gθ (Xn−k:n)

P→ γ1

γ
P (θ)

and
F (Xn−k:n)

F (xXn−k:n)
P→ x1/γ1 .
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Smirnov’s lemma (see, e.g., Lemma 2.2.3 in de Haan and Feriera, 2006) with

the fact that F
∗

(Xn−k:n) d= ξk+1:n imply that n
kξk+1:n

P→ 1, hence n
k F

∗
(Xn−k:n) =

1+ oP (1) . Therefore

Mn2 (x)=− (1+ oP (1))
γ

γ1

∫ ∞

x

Gθ (Xn−k:n)

Gθ (Xn−k:nw)
d

F
∗
n (Xn−k:nw)−F

∗
(Xn−k:nw)

k/n
.

On the other hand, using an integration by parts yields

Mn2 (x)= (1+ oP (1))
γ1

γ

(
M(1)

n2 (x)+M(2)
n2 (x)

)
,

where

M(1)
n2 (x) :=

∫ ∞

x

F
∗
n (Xn−k:nw)−F

∗
(Xn−k:nw)

k/n
d

Gθ (Xn−k:n)

Gθ (Xn−k:nw)
and

M(2)
n2 (x) := Gθ (Xn−k:n)

Gθ (Xn−k:nx)

F
∗
n (Xn−k:nx)−F

∗
(xXn−k:n)

k/n
.

By using the change of variables t =Gθ (Xn−k:n) /Gθ (Xn−k:nw) , it is easy to verify

that

M(1)
n2 (x)=

∫ ∞
Gθ(Xn−k:n)
Gθ(Xn−k:nx)

n
k

{
F

∗
n

(
G←
θ

(
1−Gθ (Xn−k:n) t−1

))
−F

∗ (
G←
θ

(
1−Gθ (Xn−k:n) t−1

))}
dt.

Observe that

M(1)
n2 (x)=

∫ ∞
Gθ(Xn−k:n)
Gθ(Xn−k:nx)

(Un (ϑn (t;θ))−ϑn (t;θ))dt,

where ϑn (t;θ) := n
k F

∗ (
G←−
θ

(
1−Gθ (Xn−k:n) t−1

))
and Un are the tail empirical df

given in (2.12) . Thereby
p

k M(1)
n2 (x)=

∫ ∞
Gθ(Xn−k:n)
Gθ(Xn−k:nx)

αn (ϑn (t;θ))dt,

with αn being the tail empirical process defined in (2.11) . Let us decompose the

previous integral into∫ ∞
Gθ(Xn−k:n)
Gθ(Xn−k:nx)

(αn (ϑn (t;θ))−W (ϑn (t;θ)))dt+
∫ ∞

Gθ(Xn−k:n)
Gθ(Xn−k:nx)

W (ϑn (t;θ))dt

= Sn +Rn.
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By applying weak approximation (2.13) we get

Sn = oP (1)
∫ ∞

Gθ(Xn−k:n)
Gθ(Xn−k:nx)

(ϑn (t;θ))1/2−εdt.

Observe that F
∗ (

G←−
θ

(
1−Gθ (Xn−k:n)

))
= F

∗
(Xn−k:n) , thereby

ϑn (t;θ)= n
k

F
∗

(Xn−k:n)
F

∗ (
G←−
θ

(
1−Gθ (Xn−k:n) t−1

))
F

∗ (
G←−
θ

(
1−Gθ (Xn−k:n)

)) .

It is easy to check that F
∗ (

G←−
θ (1−·)) ∈ RV

(
γ2/γ

)
, then once again by means of

Pooter’s inequality, we show that ϑn (t;θ)= (1+ oP (1)) t−γ2/γ+ε, therefore

Sn = oP (1)
∫ ∞

Gθ(Xn−k:n)
Gθ(Xn−k:nx)

(
t−γ2/γ+ε

)1/2−ε
dt.

By using an elementary integration we get

Sn = oP (1)

(
Gθ (Xn−k:n)

Gθ (Xn−k:nx)

)(−γ2/γ+ε)(1/2−ε)+1

= oP

(
x

1
γ2

− 1
2γ+ε

)
.

By replacing γ by its by its expression given in (1.20) , we end up with

Sn = oP

(
x

1
2

(
1
γ2

− 1
γ1

)
+ε

)
.

The term Rn may be decomposed into∫ x1/γ2

Gθ(Xn−k:n)
Gθ(Xn−k:nx)

W (ϑn (t;θ))dt+
∫ ∞

x1/γ2
W (ϑn (t;θ))dt = Rn1 +Rn2.

It is clear that

|Rn1| <

 sup
t> Gθ(Xn−k:n)

Gθ(Xn−k:nx)

|W (ϑn (t;θ))|
(ϑn (t;θ))ε


∫ x1/γ2

Gθ(Xn−k:n)
Gθ(Xn−k:nx)

(ϑn (t;θ))εdt.

It is ready to check, by using the change of variables ϑn (t;θ)= s, that the previous

first factor between the curly brackets equals

sup
0<s< n

k F
∗
(Xn−k:nx;θ)

|W (s)|
sε

< sup
0<s< n

k F
∗
(Xn−k:n;θ)

|W (s)|
sε

.
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From Lemma 3.2 in [17] sup0<s≤1 s−δ |W (s)| = OP (1) , for any 0 < δ < 1/2, then

since nF
∗

(Xn−k:n;θ) /k P→ 1, as n →∞, we infer that

sup
0<s< n

k F
∗
(Xn−k:n;θ)

s−ε |W (s)| =OP (1) .

for all large n. On the other hand, we already pointed out above that

ϑn (t;θ)= (1+ oP (1)) t−γ2/γ+ε,

which implies that the second factor is equal to

OP (1)
∫ x1/γ2

Gθ(Xn−k:n)
Gθ(Xn−k:nx)

(
t−γ2/γ+ε

)ε
dt =OP (1)

∫ x1/γ2

Gθ(Xn−k:n)
Gθ(Xn−k:nx)

t−εγ2/γ+εdt,

which after integration yields

OP (1)


(

Gθ (Xn−k:n)

Gθ (Xn−k:nx)

)−εγ2/γ+ε+1

−
(
x−1/γ

)−εγ2/γ+ε+1
 .

Recall that from formula (1.20) we have γ2/γ> 1, then by using the mean value

theorem and Pooter’s inequalities, we get Rn1 = oP (x−ε) . The second term Rn2

may be decomposed into

Rn2 =
∫ ∞

x1/γ2

(
W (ϑn (t;θ))−W

(
t−γ2/γ

))
dt+

∫ ∞

x1/γ2
W

(
t−γ2/γ

)
dt.

From Proposition B.1.10 in [24], we have with high probability,

cn (t;θ) :=
∣∣∣ϑn (t;θ)− t−γ2/γ

∣∣∣≤ εt−γ2/γ−ε, as n →∞, (2.19)

this means that supx>1 supt>x1/γ2 cn (t;θ) P→ 0, as n → ∞. This implies by using

Levy’s modulus of continuity of the Wiener process see, e.g., Theorem 1.1.1 in [14],

that ∣∣∣W (ϑn (t;θ))−W
(
t−γ2/γ

)∣∣∣≤ 2
√

cn (t;θ) log(1/cn (t;θ)) ,

with high probability. By using the fact that log s < εs−ε, for s ↓ 0 together with

inequality (2.19) , we show that∣∣∣W (ϑn (t;θ))−W
(
t−γ2/γ

)∣∣∣< 2εt−(γ2/γ−ε)/2,
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uniformly on t > x1/γ2 , it follows that∣∣∣∣∫ ∞

x1/γ2

(
W (ϑn (t;θ))−W

(
t−γ2/γ

))
dt

∣∣∣∣= oP (1)
∣∣∣∣∫ ∞

x1/γ2
t−(γ2/γ−ε)/2dt

∣∣∣∣ .

Recall that the assumption γ1 < γ2 together with the equation 1/γ= 1/γ1 +1/γ2,

imply that γ2/
(
2γ

)> 1, thus −(
γ2/γ−ε) /2+1< 0, therefore

∣∣∣∫ ∞
x1/γ2 t−(γ2/γ−ε)/2dt

∣∣∣=
oP

(
x−1/γ1−ε) . Then we showed that

Rn1 = oP
(
x−ε

)
and Rn2 =

∫ ∞

x1/γ2
W

(
t−γ2/γ

)
dt+ oP

(
x−1/γ1−ε

)
,

hence
p

k M(1)
n2 (x)= Rn +Sn =

∫ ∞

x1/γ2
W

(
t−γ2/γ

)
dt+ oP

(
x−1/γ1−ε

)
+ oP

(
x

1
2

(
1
γ2

− 1
γ1

)
+ε

)
.

It is clear that(
− 1
γ1

−ε
)
−

(
1
2

(
1
γ2

− 1
γ1

)
+ε

)
=−γ1 +γ2 +4εγ1γ2

2γ1γ2
< 0.

then p
k M(1)

n2 (x)=
∫ ∞

x1/γ2
W

(
t−γ2/γ

)
dt+ oP

(
x

1
2

(
1
γ2

− 1
γ1

)
+ε

)
.

By using similar arguments we end up with

p
k M(2)

n2 (x)= x1/γ2W
(
t−1/γ

)
+ oP

(
x−

1
γ1

+ε) ,

therefore we omit further details. Finally we have

p
k Mn2 (x)= γ

γ1
x1/γ2W

(
t−1/γ

)
+ γ

γ1

∫ ∞

x1/γ2
W

(
t−γ2/γ

)
dt+ oP

(
x

1
2

(
1
γ2

− 1
γ1

)
+ε

)
.

Let us now focus on the term Mn3 (x) . From the latter approximation, we infer

that

p
k Mn2 (1)=

p
k

Fn (Xn−k:n;θ)−F (Xn−k:n)

F (Xn−k:n)

= γ

γ1
W (1)+ γ

γ1

∫ ∞

1
W

(
t−γ2/γ

)
dt+ oP (1) , (2.20)

which implies that

p
k

Fn (Xn−k:n;θ)−F (Xn−k:n)

F (Xn−k:n)
=OP (1) .
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In other words, we have

Fn (Xn−k:n;θ)

F (Xn−k:n)
= 1+OP

(
k−1/2

)
. (2.21)

The regular variation of F (·) and (2.21) together imply that

F (xXn−k:n)

Fn (Xn−k:n;θ)
= x−1/γ1 + oP

(
x−1/γ1+ε

)
. (2.22)

By combining the results (4.27) and (4.18) we get

p
k Mn3 (x)=−x−1/γ2

(
γ

γ1
W (1)+ γ

γ1

∫ ∞

1
W

(
t−γ2/γ

)
dt

)
+ oP

(
x−1/γ1+ε

)
.

For the fourth term Mn4 (x) we write

p
k Mn4 (x)=

(
F (xXn−k:n)

Fn (Xn−k:n;θ)
− x−1/γ1

)(p
k

Fn (xXn−k:n;θ)−F (xXn−k:n)

F (xXn−k:n)

)
.

From (4.18) the first factor of the previous equation equals oP
(
x−1/γ1+ε) . On the

other hand, the change of variables s = t−γ2/γ, yields∫ ∞

x1/γ2
W

(
t−γ2/γ

)
dt = γ

γ2

∫ x−1/γ

0
s−γ/γ2−1W (s)ds.

Since sup0<s<1 s−1/2+ε |W (s)| =OP (1) , then we easily show that∫ ∞

x1/γ2
W

(
t−γ2/γ

)
dt =OP

(
x

1
2

(
1
γ2

− 1
γ1

)
+ε

)
,

it follows that
p

k Mn2 (x)=OP

(
x

1
2

(
1
γ2

− 1
γ1

)
+ε

)
as well. Therefore

p
k

Fn (xXn−k:n;θ)−F (xXn−k:n)

F (xXn−k:n)
= x1/γ1OP

(
x

1
2

(
1
γ2

− 1
γ1

)
+ε

)
=OP

(
x

1
2γ+ε

)
.

Hence we have
p

k Mn4 (x)= oP

(
x−1/γ1+ε

)
OP

(
x

1
2γ+ε

)
= oP

(
x

1
2

(
1
γ2

− 1
γ1

)
+ε

)
.

By assumption F satisfies the second-order condition of regular variation (4.9) ,

this means that for

lim
t→∞

F (tx) /F (t)− x−1/γ1

A (t)
= x−1/γ1

xρ1/γ1 −1
ρ1γ1

, (2.23)
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for any x > 0, where ρ1 < 0 is the second-order parameter and A is RV
(
ρ1/γ1

)
.

The uniform inequality corresponding to (2.23) says: there exist t0 > 0, such that

for any t > t0, we have∣∣∣∣∣F (tx) /F (t)− x−1/γ1

A (t)
− x−1/γ1

xρ1/γ1 −1
ρ1γ1

∣∣∣∣∣< εx−1/γ1+ρ1/γ1+ε,

see for instance assertion (2.3.23) of Theorem 2.3.9 in [24]. It is easy to check

that the latter inequality implies that

p
k Mn5 (x)=

p
k

(
F (xXn−k:n)

F (Xn−k:n)
− x−1/γ1

)

= x−1/γ1
xρ1/γ1 −1
ρ1γ1

p
k A (Xn−k:n)+ oP

(
x−1/γ1

xρ1/γ1 −1
ρ1γ1

p
k A (Xn−k:n)

)
.

Recall that ak = F∗← (1−k/n) and notice that Xn−k:n/ak
P→ 1 as n →∞, then in

view of the regular variation of A we infer that A (Xn−k:n)= (1+ oP (1))A (ak) . On

the other hand, by assumption
p

k A (ak) is asymptotically bounded, therefore

p
k Mn5 (x)= x−1/γ1

xρ1/γ1 −1
ρ1γ1

p
k A (ak)+ oP

(
x−1/γ1

)
.

To summarize, at this stage we showed that

Dn
(
x; θ̂

)= γ

γ1
x1/γ2W

(
t−1/γ

)
+ γ

γ1

∫ ∞

x1/γ2
W

(
t−γ2/γ

)
dt

− x−1/γ2

(
γ

γ1
W (1)+ γ

γ1

∫ ∞

1
W

(
t−γ2/γ

)
dt

)
+ x−1/γ1

xρ1/γ1 −1
ρ1γ1

p
k A (ak)+ς (x) ,

where ς (x) := oP
(
x−1/γ1+ε)+ oP

(
x−1/γ1

)+ oP

(
x

1
2

(
1
γ2

− 1
γ1

)
+ε

)
. By using a change of

variables, we show that sum of the first three terms equals the Gaussian process

Γ (x;W) stated in Theorem 3.1. Recall that γ1 < γ2 and

1
2

(
1
γ2

− 1
γ1

)
+ε< 0,
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then it is easy to verify that ς (x)= oP

(
x

1
2

(
1
γ2

− 1
γ1

)
+ε

)
. It follows that

xε
{

Dn
(
x; θ̂

)−Γ (x;W)− x−1/γ1
xρ1/γ1 −1
ρ1γ1

p
k A (ak)

}
= oP

(
x

1
2

(
1
γ2

− 1
γ1

)
+2ε

)
= oP (1) ,

uniformly on x > 1, therefore

sup
x>1

xε
∣∣∣∣Dn

(
x; θ̂

)−Γ (x;W)− x−1/γ1
xρ1/γ1 −1
ρ1γ1

p
k A (ak)

∣∣∣∣= oP (1) ,

for any samll 0< ε< 1/2, which completes the proof of Theorem 3.1. �

Applying the weak approximation presented in Theorem 3.1, we establish

both consistency and asymptotic normality of our new estimator γ̂1, that we state

in the second Theorem.

Theorem 2.2. Under the assumptions of Theorem 3.1, we have

γ̂1 −γ1

= k−1/2
∫ ∞

1
x−1Γ (x;W)dx+A (ak)

∫ ∞

1
x−1/γ1−1 xρ1/γ1 −1

ρ1γ1
dx+ oP

(
k−1/2

)
,

this implies that γ̂1
P→ γ1. Whenever

p
k A (ak)→λ<∞, we get

p
k

(
γ̂1 −γ1

) D→N

(
λ

1−ρ1
,σ2

)
,

where σ2 := γ2 (
1+γ1/γ2

)(
1+ (

γ1/γ2
)2

)(
1−γ1/γ2

)3 , and 1 (A ) stands for the indi-
cator function pertaining to a set A .

Proof. From the representation (2.6) we write

γ̂1 −γ1 = Tn1 +Tn2 +Tn3,

where

Tn1 := k−1/2
∫ ∞

1
x−1

{
Dn

(
x; θ̂;γ1

)−Γ (x;W)− x−1/γ1
xρ1/γ1 −1
ρ1γ1

p
k A (ak)

}
dx
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Tn2 := k−1/2
∫ ∞

1
x−1Γ (x;W)dx

and

Tn3 :=−A (ak)
∫ ∞

1
x−1/γ1−1 xρ1/γ1 −1

ρ1γ1
dx.

Using Theorem 3.1 yields Tn1 = oP
(
k−1/2)∫ ∞

1 x−1+εdx = oP
(
k−1/2)= oP (1). Since

E |W (s)| ≤ s1/2, then it is easy to show that
∫ ∞

1 x−1Γ (x;W)dx = OP (1) , it follows

that Tn2 = OP
(
k−1/2) = oP (1) . Using an elementary integration, we get Tn3 =

A (ak) /
(
1−ρ1

)
which tends to zero as n →∞, because ak →∞ and |A| is regularly

varying with negative index. Therefore γ̂1
P→ γ1, as n →∞ which gives the first

result of Theorem. To establish the asymptotic normality, we write
p

k
(
γ̂1 −γ1

)=p
k Tn1 +

p
k Tn2 +

p
k Tn3,

where p
k Tn1 = oP (1) ,

p
k Tn2 =

∫ ∞

1
x−1Γ (x;W)dx

and p
k Tn3 =

p
k A (ak)
1−ρ1

.

Note that Γ (x;W) is a centred Gaussian process and by using the assumptionp
k A (ak)→λ<∞, we end up with

p
k

(
γ̂1 −γ1

) D→N

(
λ

1−ρ1
,E

[∫ ∞

1
x−1Γ (x;W)dx

]2)
.

By elementary calculations (we omit the details) we show that

E
[∫ ∞

1
x−1Γ (x;W)dx

]2
=σ2.

�

2.4 Simulation study

In this section we will perform a simulation study in order to compare the fi-

nite sample behavior of our new semiparametric estimator γ̂1, given in (2.5) , with

Woodrofee and Lynden-Bell integral estimators γ̂(BMN)
1 and γ̂(W)

1 , given respec-

tively in (1.21) and (1.26) . The truncation and truncated distributions functions

F and G, will be chosen among the following two models:
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• Burr
(
γ,δ

)
distribution with right-tail function:

H (x)=
(
1+ x1/δ

)−δ/γ
, x ≥ 0, δ> 0, γ> 0;

• Fréchet
(
γ
)

distribution with right-tail function:

H (x)= 1−exp
(
−x−1/γ

)
, x > 0,γ> 0.

The simulation study be made in fours scenarios following to the choice of the

underlying df ’s F and Gθ:

• [S1] Burr
(
γ1,δ

)
truncated by Burr

(
γ2,δ

)
; with θ = (

γ2,δ
)

• [S2] Fréchet
(
γ1

)
truncated by Fréchet

(
γ2

)
; with θ = γ2

• [S3] Fréchet
(
γ1

)
truncated by Burr

(
γ2,δ

)
; with θ = (

γ2,δ
)

• [S4] Burr
(
γ1,δ

)
truncated by Fréchet

(
γ2

)
; with θ = γ2

To this end, we fix δ = 1/4 and choose the values 0.6 and 0.8 for γ1 and 55%

and 90% for the portions of observed truncated data given in (1.13) so that the

assumption γ1 < γ2 stated in Theorem 3.1 holds. In other words the values of p
have to be greater than 50%. For each couple

(
γ1, p

)
, we solve the equation (1.13)

to get the pertaining γ2-value, which we summarize as follows:

(
p,γ1,γ2

)= (55%,0.6,1.4) , (90%,0.6,5.4) , (55%,0.8,1.9) , (90%,0.8,7.2) . (2.24)

For each scenario, we simulate 1000 random samples of size N = 300 and compute

the root mean squared error (RMSE) and the absolute bias (ABIAS) corresponding

to each estimator γ̂1, γ̂(BMN)
1 and γ̂(W)

1 . The comparison is done by plotting the

ABIAS and RMSE as functions of the sample fraction k which varies from 2 to 120.

This range is chosen so that it contains the optimal number of upper extremes

k∗ used in the computation of the tail index estimate. There are many heuristic

methods to select k∗, see for instance [10], here we use the algorithm proposed by

[43] in page 137, which is incorporated in the R software “Xtremes”package. Note

that the computation the CMLE of θ is made by means of the syntax "maxLik"
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of the MaxLik R software package. The optimal sample fraction k∗ is defined, in

this procedure, by

k∗ := arg min
1<k<n

1
k

k∑
i=1

iω
∣∣γ̂ (i)−median

{
γ̂ (1) , ..., γ̂ (k)

}∣∣ ,

for suitable constant 0 ≤ω≤ 1/2, where γ̂ (i) corresponds to an estimator of tail

index γ, based on the i upper order statistics, of a Pareto-type model. We observed,

in our simulation study, that ω= 0.3 allows better results both in terms of bias

and rmse. It is worth mentioning that making N vary did not provide notable

findings, therefore we kept the size N fixed. The finite sample behaviors of the

above mentioned estimators are illustrated in Figures 2.1-2.8.
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Figure 2.1: Absolute bias (left two panels) and RMSE (right two panels) of γ̂1
(black) and γ̂(BMN)

1 (red) and γ̂(W)
1 (blue), corresponding to two situations of sce-

nario S1 :
(
γ1 = 0.6, p = 55%

)
(top two panels) and

(
γ1 = 0.6, p = 90%

)
(bottom two

panels) based on 1000 samples of size 300.
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Figure 2.2: Absolute bias (left two panels) and RMSE (right two panels) of γ̂1
(black) and γ̂(BMN)

1 (red) and γ̂(W)
1 (blue), corresponding to two situations of sce-

nario S1 :
(
γ1 = 0.8, p = 55%

)
(top two panels) and

(
γ1 = 0.8, p = 90%

)
(bottom two

panels) based on 1000 samples of size 300.

The overall conclusion is that the biases of three estimators are almost equal,

however in the case of medium truncation (p ≈ 50%) the RMSE of our new semi-

parametric γ̂1 is clearly the smallest compared that of γ̂(BMN)
1 and γ̂(W)

1 .

Actually, the medium truncation situation is the most frequently encountered

in real data, while the strong truncation (p >> 50%) remains, up to our knowledge,

theoretical. In this sense, we may consider that the semiparametric estimator is

more efficient than the two other ones.
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Figure 2.3: Absolute bias (left two panels) and RMSE (right two panels) of γ̂1
(black) and γ̂(BMN)

1 (red) and γ̂(W)
1 (blue), corresponding to two situations of sce-

nario S2 :
(
γ1 = 0.6, p = 55%

)
(top two panels) and

(
γ1 = 0.6, p = 90%

)
(bottom two

panels) based on 1000 samples of size 300.

We point out that the two estimators γ̂(BMN)
1 and γ̂(W)

1 have almost the same

behavior which actually was noticed before by [21]. The optimal sample fractions

and estimate values of the tail index obtained through the three estimators are

given in Tables 2.1-2.4.

k∗ γ̂1 k∗ γ̂(BMN)
1 k∗ γ̂(W)

1
S1 44 0.600 41 0.599 40 0.600
S2 18 0.601 17 0.600 16 0.597
S3 21 0.601 20 0.601 19 0.599
S4 30 0.603 27 0.600 25 0.598

Table 2.1: Optimal sample fractions and estimate values of the tail index γ1 = 0.6
based on 1000 samples of size 300 for the four scenarios with p = 0.55 .
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Figure 2.4: Absolute bias (left two panels) and RMSE (right two panels) of γ̂1
(black) and γ̂(BMN)

1 (red) and γ̂(W)
1 (blue), corresponding to two situations of sce-

nario S2 :
(
γ1 = 0.8, p = 55%

)
(top two panels) and

(
γ1 = 0.8, p = 90%

)
(bottom two

panels) based on 1000 samples of size 300.
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Figure 2.5: Absolute bias (left two panels) and RMSE (right two panels) of γ̂1
(black) and γ̂(MBN)

1 (red) and γ̂(W)
1 (blue), corresponding to two situations of sce-

nario S3 :
(
γ1 = 0.6, p = 55%

)
(top two panels) and

(
γ1 = 0.6, p = 90%

)
(bottom two

panels) based on 1000 samples of size 300.
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Figure 2.6: Absolute bias (left two panels) and RMSE (right two panels) of γ̂1
(black) and γ̂(BMN)

1 (red) and γ̂(W)
1 (blue), corresponding to two situations of sce-

nario S3 :
(
γ1 = 0.8, p = 55%

)
(top two panels) and

(
γ1 = 0.8, p = 90%

)
(bottom two

panels) based on 1000 samples of size 300.
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Figure 2.7: Absolute bias (left two panels) and RMSE (right two panels) of γ̂1
(black) and γ̂(BMN)

1 (red) and γ̂(W)
1 (blue), corresponding to two situations of sce-

nario S4 :
(
γ1 = 0.6, p = 55%

)
(top two panels) and

(
γ1 = 0.6, p = 90%

)
(bottom two

panels) based on 1000 samples of size 300.
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Figure 2.8: Absolute bias (left two panels) and RMSE (right two panels) of γ̂1
(black) and γ̂(BMN)

1 (red) and γ̂(W)
1 (blue), corresponding to two situations of sce-

nario S4 :
(
γ1 = 0.8, p = 55%

)
(top two panels) and

(
γ1 = 0.8, p = 90%

)
(bottom two

panels) based on 1000 samples of size 300.
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k∗ γ̂1 k∗ γ̂(BMN)
1 k∗ γ̂(W)

1
S1 82 0.610 82 0.611 82 0.611
S2 37 0.640 37 0.640 37 0.640
S3 46 0.633 37 0.625 37 0.625
S4 52 0.610 52 0.610 52 0.610

Table 2.2: Optimal sample fractions and estimate values of the tail index γ1 = 0.6
based on 1000 samples of size 300 for the four scenarios with p = 0.9 .

k∗ γ̂1 k∗ γ̂(BMN)
1 k∗ γ̂(W)

1
S1 59 0.799 57 0.800 54 0.799
S2 21 0.803 21 0.803 20 0.799
S3 24 0.802 22 0.798 22 0.801
S4 51 0.799 52 0.800 50 0.801

Table 2.3: Optimal sample fractions and estimate values of the tail index γ1 = 0.8
based on 1000 samples of size 300 for the four scenarios with p = 0.55 .

k∗ γ̂1 k∗ γ̂(BMN)
1 k∗ γ̂(W)

1
S1 90 0.804 90 0.806 90 0.807
S2 34 0.845 34 0.846 34 0.846
S3 40 0.831 40 0.831 40 0.831
S4 71 0.814 71 0.814 71 0.815

Table 2.4: Optimal sample fractions and estimate values of the tail index γ1 = 0.8
based on 1000 samples of size 300 for the four scenarios with p = 0.9 .

2.5 Real data example

In this section, we give an application to the AIDS data set, available in the

"DTDA" R package and the textbook of [29] (page 19) and already used by [31].

The data present the infection and induction times for n = 258 adults who were

infected with HIV virus and developed AIDS by June 30,1986. The variable of

interest here is the time of induction T of the disease duration which elapses

between the date of infection M and the date M +T of the declaration of the
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disease. The sample (T1, M1), ..., (Tn, Mn) are taken between two fixed dates: "0"

and "8", i.e. between April 1,1978, and June 30,1986. The initial date "0" denotes

an infection occurring in the three months: from April 1,1978, to June 30,1978.

Let us assume that M and T are the observed rv’s, corresponding to the underlying

rv’s M and T, given by the truncation scheme 0≤ M+T ≤ 8, which in turn may

be rewritten into

0≤ M ≤ S, (2.25)

where S := 8−T. To work within the framework of the present paper, let us make

the following transformations:

X := 1
S+ε and Y := 1

M+ε , (2.26)

where ε= 0.05 so that the two denominators be non-null. Thus, in view of (2.25), we

have X ≤Y , which means that X is randomly right-truncated by Y . Thereby, for

the given sample (T1, M1), ..., (Tn, Mn), from (T, M) , the previous transformations

produce a new one (X1,Y1), ..., (Xn,Yn) from (X ,Y ) .

Let us now denote by F and G the df ’s of the underling rv’s X and Y corresponding

to the truncated rv’s X and Y , respectively. By using parametric likelihood meth-

ods, [35] fit both df ’s of M and S by the two-parameter Weibull model, this implies

that the df ’s of F and G by may be fitted by two-parameter Fréchet model, namely

H(a.r) (x) = exp(−arx−r) , x > 0, a > 0, r > 0, hence both F and G are heavy-tailed.

The estimated parameters corresponding to the fitting of df G are a0 = 0.004 and

r0 = 2.1, see also [31] page 520. Thus on may consider that df G is known and

equals Gθ =H(a0,r0), where θ = (a0, r0) . By using the Thomas and Reiss algorithm,

given above, we compute the optimal sample fraction k∗ corresponds to the tail

index estimator γ̂1 of df F is γ1. We find

k∗ = 19, Xn−k:n = 0.356 and γ̂1 = 0.917. (2.27)

The well-known Weissman estimator [49] of the high quantile, qv :=F−1 (1−vn) ,

corresponding to the underling df F is given by

q̂v := Xn−k:n

(
v

Fn (Xn−k:n)

)−γ̂1

,
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where v = 1/(2n) , and Fn is the semiparametric estimator of df F of X given in

(2.1) . From the values (2.27) , we get q̂v = 0.061. Let us now compute the high

quantile of T based on the original data, T1, ...,Tn. Recall that P (X≥ qv) = v
and X= 1/ (8−T+ε) , this implies that P (T≥ 1/qv −8+ε) = v, this means that

1/qv −8+ε is the high quantile of T, which corresponds to the end-time tend that

we want to estimate. Thereby t̂end = 1/q̂v −8+10−2 = 1/0.061−8+10−2 = 8.40, the

value the end time of induction of AIDS is: 8 years, 4 months and 24 days.
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3
BIAS REDUCTION IN KERNEL TAIL INDEX

ESTIMATION FOR RANDOMLY TRUNCATED

PARETO-TYPE DATA

The current chapter, allows to introduce A bias reduction to a kernel

estimator of the tail index of randomly right-truncated Pareto-type dis-

tributions is made. The asymptotic normality of the derived estimator

is established by assuming the second-order condition of regular vari-

ation. A simulation study is carried out to evaluate the finite sample

behavior of the proposed estimator and compare it to those with non-

reduced bias. An application to a real dataset of lifetimes of automobile

brake pads is done.
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3.1 Bias reduction of γ̂1,K

In this section we propose a bias reduction to γ̂1,K by means of a weighted es-

timator to the rate of convergence AF (n/k) given in asymptotic approximation

(1.24) . More precisely, given estimators for η1,K and AF (n/k) , denoted η̂1,K and

ÂF,K (n/k) , we propose an asymptotically centred normal estimator of γ1 defined

by

γ̂∗1,K := γ̂1,K − η̂1,K ÂF,K (n/k) . (3.1)

For the construction of ÂF,K (n/k) , we opt for a similar approach as the one used in

[4] to the bias-reduction in tail index estimation for censored data by introducing

a weight function. To this end, let us define

L t,K :=
∫ ∞

1

F (tx)

F (t)
K

(
F (tx)

F (t)

)
dx
x

and E t,K
(
β
)

:= 1−β
∫ ∞

1
x−β−1K∗

(
F (tx)

F (t)

)
dx,

(3.2)

for β > 0, where K∗ is a measurable positive weight function that depends on

K . The weight function K∗ has to be chosen so as to improve the estimation of

AF (n/k) leading to the accuracy of the bias-reduced estimator γ̂∗1,K as function

of the tuning parameter β. The first condition which K∗ has to fulfill is that

its derivative be positive nonincreasing in order to assign less weight to the

distribution tail corresponding to the estimator Êk,K
(
β
)

of E t,K
(
β
)
, given in (3.6)

below. It is convenient that both γ̂1,K and ÂF,K (n/k) be related to two weight

functions depending on the same kernel function K in order to get an easy-to-use

formula to γ̂∗1,K . At first glance, we tried K∗ (s) = sK (s) , as in L t,K , but this did

not give satisfaction in the finite sample behavior (in terms of bias and mean

squared error as well). Our second choice fell on the form K∗ (s) = ∫ s
0 K (t)dt,

where, in addition to assumptions [A1]− [A4] , the kernel K needs here to satisfy

the fifth one [A5] . This provides interesting results and improves those of the

non-weighted case (see Section of simulation study). Of course, this form is not

unique and one can suggest other forms to K∗. It is clear that when using the

indicator kernel K = K1 in (3.2) , both the tail functionals L t,K and E t,K
(
β
)

meet

those introduced, without weight functions, by [4]. One may check that the three

kernel functions K i, i = 2,3,4 fulfill the conditions [A1]− [A5] .
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In proposition 3.1, we state that L t,K → γ1 and E t,K
(
β
) → η2,K as t →∞, for a

fixed β> 0, where

η2,K = η2,K
(
β;γ1

)
:= 1−βγ1

∫ 1

0
sγ1β−1K∗ (s)ds.

Moreover, we show that

AF (t)= E t,K
(
β
)− f∗

(
L t,K

)
η3,K − f ′∗

(
γ1

)
η1,K

(1+ o (1)) , as t →∞, (3.3)

where

f∗ (x) := 1−βx
∫ 1

0
sβx−1K∗ (s)ds, for β> 0, (3.4)

and

η3,K = η3,K
(
β;τ1,γ1

)
:= β

τ1

∫ 1

0
sγ1β

(
1− s−τ1

)
K (s)ds.

Let us set

η4,K = η4,K
(
β;γ1

)
:= f ′∗

(
γ1

)=−β
∫ 1

0
sβγ1−1 (

βγ1 log s+1
)
K∗ (s)ds.

To obtain an estimator to AF (n/k) it suffices to substitute, in (3.3) , both γ1 and

L t,K by γ̂1,K and replace ηi,K , i = 1, ...,4 by their respective estimators η̂1,K :=
η1,K (τ̂1) , η̂2,K := η2,K

(
β; γ̂1

)
, η̂3,K := η3,K

(
β; τ̂1, γ̂1

)
and η̂4,K := η4,K

(
β; γ̂1

)
, where

τ̂1 is the consistent estimator for second-order parameter τ1 first proposed by [22].

It is worth mentioning that η̂2,K coincides with f∗
(
γ̂1,K

)
, this means that η̂2,K is

an estimator for f∗
(
L t,K

)
. For the estimation of E t,K

(
β
)
, we substitute F by Fn

and t by Xn−k:n, to get

Êk,K
(
β
)= 1−β

∫ ∞

1
K∗

(
Fn (xXn−k:n)

Fn (Xn−k:n)

)
x−β−1dx, (3.5)

which by an integration by parts becomes

Êk,K
(
β
)= ∫ ∞

Xn−k:n

K

(
Fn (x)

Fn (Xn−k:n)

)
(x/Xn−k:n)−βd

Fn (x)

Fn (Xn−k:n)
.

The relation between df’s F and F∗ is
∫ ∞

x dF (y) /F (y) = ∫ ∞
x dF∗ (y) /C (y) , where

C (y) :=P (X ≤ y≤Y ) denotes the theoretical counterpart of Cn defined above in

Woodroofe’s nonparametric estimator Fn, see for instance equation (1) in [47].
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Differentiating leads to the following crucial equation C (x)dF (x)=F (x)dF∗ (x) ,

which implies that Cn (x)dFn (x)=Fn (x)dF∗
n (x) , where F∗

n (x) := n−1 ∑n
i=1 1 (X i ≤ x)

being the empirical counterpart of df F∗. This allows to rewrite (3.5) into

Êk,K
(
β
)= ∫ ∞

Xn−k:n

Fn (x)
Cn (x)

K

(
Fn (x)

Fn (Xn−k:n)

)
(x/Xn−k:n)−βd

F∗
n (x)

Fn (Xn−k:n)
,

which may be made into

Êk,K
(
β
)= 1

nFn (Xn−k:n)

k∑
i=1

Fn (Xn−i+1:n)
Cn (Xn−i+1:n)

K

(
Fn (Xn−i+1:n)

Fn (Xn−k:n)

)(
Xn−i+1:n

Xn−k:n

)−β
. (3.6)

A smoothed estimator

ÂF,K (n/k) := Êk,K
(
β
)− η̂2,K

η̂3,K − η̂4,K η̂1,K
,

is now constructed of AF (n/k) . Substituting this expression in (3.1) we end up

with the new bias-reduced estimator of γ1 :

γ̂∗1,K
(
β
)

:= γ̂1,K − η̂1,K
Êk,K

(
β
)− η̂2,K

η̂3,K − η̂4,K η̂1,K
, for β> 0. (3.7)

In particular, considering the indicator kernel function K1, we get

η1 = 1
1−τ1

, η2 = 1
βγ1 +1

,

η3 = −β(
βγ1 +1

)(
βγ1 −τ1 +1

) and η4 =− β(
βγ1 +1

)2 .

Once again, substituting γ1 by γ̂1 and τ1 by τ̂1, we derive estimators to η̂i for ηi,

i = 1, ...,4, leading to the corresponding estimator of AF (n/k) given by

ÂF (n/k) := (1− τ̂1)
(
βγ̂1 +1

)2 (
βγ̂1 − τ̂1 +1

)
β2τ̂1γ̂1

(
Êk

(
β
)− 1

1+βγ̂1

)
,

where Êk
(
β
)

:= Êk,K1

(
β
)
. Thereby, we define two reduced estimators to γ1, which

are less performing then γ̂∗1,K
(
β
)
, given by

γ∗1,K
(
β
)

:= γ̂1,K−η̂1,K ÂF (n/k) and γ̃∗1
(
β
)

:= γ̂1− 1
1− τ̂1

ÂF (n/k) . (3.8)
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non-reduced estimator of γ1 estimator of AF (n/k)
γ̂∗1,K

(
β
)

K K∗

γ∗1,K
(
β
)

K no weight
γ̃∗1

(
β
)

no weight no weight
γ̂1,K K /
γ̂1 no weight /

Table 3.1: Tail index estimators of γ1 according to the assigned weights.

The estimator γ∗1,K
(
β
)

is half-weighted in the sense that γ̂1,K is assigned by the

kernel function K 6= K1 and ÂF (n/k) is without kernel, while in γ̃∗1
(
β
)

both γ̂1

and ÂF (n/k) are without kernel. Both estimators are introduced to illustrate

the performance of the bias reduction following the weights that are assigned to

each one of γ̂1 and ÂF (n/k) . In the simulation study, we will show that indeed

γ∗1,K
(
β
)

performs better than γ̃∗1
(
β
)

and that γ̂∗1,K
(
β
)

in turn improves γ∗1,K
(
β
)
.

Notice that the second formula in (3.8) was first introduced by [4] to reduce the

bias in tail index estimation for censored data that we adapt to the truncation

case and generalize to the kernel estimation framework. The aforementioned five

estimators of γ1 are summarized in Table 4.3 according to the assigned weights

to the non-reduced estimator of γ1 and the estimator of AF (n/k) .

3.2 Main results and proof

Theorem 3.1. Assume that both second-order conditions (1.23) hold. Let k = kn be
a sequence of integer such that k →∞, k/n → 0 and

p
k AF (n/k) is asymptotically

bounded. Then, for a given nonincreasing kernel function K satisfying assumptions

[A1]− [A5] and for a fixed β> 0, we have

p
k

(
γ̂∗1,K

(
β
)−γ1

)
D→N

(
0,

(
γ2/γ1

)2
∫ 1

0
q2
β,K (s)ds

)
,

as n →∞, provided that γ1 < γ2, where

qβ,K (s) := γ

γ1
Kβ

(
sγ/γ1

)
− γ

γ2
s−γ/γ1

∫ sγ/γ1

0
u−γ2/γKβ (u)du, (3.9)

with Kβ (u) := u−1 ∫ u
0

(
1+ρKη4,K +ρK sβγ1

)
K (s)ds and ρK := (

η3,K /η1,K −η4,K
)−1 .
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Remark 3.1. Note that γ̂∗1,K (0) reduces to γ̂1,K before the bias reduction. For this
particular case, β= 0, we have η4,K = 0 and K0 = K , therefore q0,K =ϕK , given in

(1.25) . Thus Theorem 3.1 meets that of [7] stated in (1.24) .

3.2.1 Instrumental result

Proposition 3.1. Assume that F ∈ RV2
(−1/γ1;τ1, AF

)
and K satisfies assump-

tions [A1]−[A4] , then: (i) E t
(
β
)= η2+η3AF (t) (1+ o (1)) , for β> 0, and for a given

twice-differentiable function f : (ii) f
(
L t,K

) = f
(
γ1

)+ f ′
(
γ1

)
η1AF (t) (1+ o (1)) ,

where ηi = ηi,K , i = 1,2,3 are stated in (1.24) and subsection 3.3.1 respectively.
Moreover

(iii) AF (t)= E t
(
β
)− f∗ (L t)

η3 − f ′∗
(
γ1

)
η1

(1+ o (1)) , as t →∞,

where f∗ is as in (3.4) , E t
(
β
)

:= E t,K
(
β
)

and L t := L t,K .

Proof. Recall that (3.2) , and let us decompose E t
(
β
)

into the sum of

E(1)
t

(
β
)

:= 1−β
∫ ∞

1
x−β−1K∗

(
x−1/γ1

)
dx

and

E(2)
t

(
β
)

:=−β
∫ ∞

1
x−β−1

(
K∗

(
F (tx)

F (t)

)
−K∗

(
x−1/γ1

))
dx.

Using the change of variables s = x−1/γ1 we readily show that E(1)
t

(
β
) = η2, for

β> 0. Applying Taylor’s expansion to K∗, we may rewrite E(2)
t

(
β
)

into the sum of

E(2,1)
t

(
β
)

:=−β
∫ ∞

1
x−β−1

(
F (tx)

F (t)
− x−1/γ1

)
K

(
x−1/γ1

)
dx

and

E(2,2)
t

(
β
)

:=−β
2

∫ ∞

1
x−β−1

(
F (tx)

F (t)
− x−1/γ1

)2

K ′ (ξt (x))dx,

where ξt (x) is between F (tx) /F (t) and x−1/γ1 . Since F ∈RV 2
(−1/γ1;τ1, AF

)
, then

making use of Potters inequalities corresponding to the second-order condition of

df F, we write ∣∣∣∣∣∣∣
F(tx)
F(t)

− x−1/γ1

AF (t)
− x−1/γ1

xτ1/γ1 −1
τ1γ1

∣∣∣∣∣∣∣≤ εx−1/γ1+τ1/γ1+ε, (3.10)
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for any ε> 0, for all x > 1 and for all large t, see for instance

Theorem 2.3.9 in [24]. Using this inequality, we end up with

E(2,1)
t

(
β
)=− (1+ o (1)) AF (t)β

∫ ∞

1
x−β−1/γ1−1 xτ1/γ1 −1

τ1γ1
K

(
x−1/γ1

)
dx.

Once again, using change of variables s = x−1/γ1 , we show easily that the previous

integral equals to η3. In view of assumption [A4] , the function K ′ is bounded, it

follows that

E(2,2)
t

(
β
)=O (1)

∫ ∞

1
x−β−1

∣∣∣∣∣F (tx)

F (t)
− x−1/γ1

∣∣∣∣∣
2

dx.

Let ε> 0 so small such that −1/γ1 +ε< 0. The Potters inequalities corresponding

to the first order condition of regularly varying functions says:∣∣∣∣∣F (tx)

F (t)
− x−1/γ1

∣∣∣∣∣≤ εx−1/γ1+ε < ε,

for all x ≥ 1 and for all large t, see for instance

Proposition B.1.9, assertion 5 in [24]. It follows that

E(2,2)
t

(
β
)= o (1)

∫ ∞

1
x−β−1

∣∣∣∣∣F (tx)

F (t)
− x−1/γ1

∣∣∣∣∣dx.

Let us write

E(2,2)
t

(
β
)= o (AF (t))

∫ ∞

1
x−β−1

∣∣∣∣∣∣∣
F(tx)
F(t)

− x−1/γ1

AF (t)

∣∣∣∣∣∣∣dx.

Subtracting x−1/γ1 xτ1/γ1−1
τ1γ1

, inside the sign of the previous absolute value, and

adding the same quantity, then applying inequality (3.10) , we may readily show

that E(2,2)
t

(
β
)= o (AF (t)) , as t →∞, that we omit further details. Thereby E(2,1)

t
(
β
)=

(1+ o (1))η3 leading to the result of assertion (ii) . To show the second assertion

(ii) , is suffices to use Taylor’s expansion to function f and similar arguments as

used to first assertion (i) , that we omit details. Let us now focus on the third one

(iii) . Multiplying, the equation of assertion (i) by f
(
γ1

)
, we write

f
(
γ1

)
E t

(
β
)= f

(
γ1

)
η2 + f

(
γ1

)
η3AF (t) (1+ o (1)) , (3.11)
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and from assertion (ii) we have f
(
γ1

) = f (L t)−η1 f ′
(
γ1

)
AF (t) (1+ o (1)) . Substi-

tuting the previous expression into the first term of the right-side of equation

(3.11) , yields

f
(
γ1

)
E t

(
β
)= (

f (L t)−η1 f ′
(
γ1

)
AF (t)

)
η2 (1+ o (1))+ f

(
γ1

)
η3AF (t) (1+ o (1)) ,

which gives

AF (t)=
E t

(
β
)− f (L t)

f (γ1)η2

η3 − f ′(γ1)
f (γ1) η2η1

(1+ o (1)) .

In particular, for f = f∗, we have f∗
(
γ1

)= η2, it follows that

AF (t)= E t
(
β
)− f∗ (L t)

η3 − f ′∗
(
γ1

)
η1

(1+ o (1)) ,

which gives the third assertion (iii) . �

3.2.2 Proof of the Theorem

To simplify the notation, let us set γ̂∗1 := γ̂∗1,K
(
β
)
, γ̂1 := γ̂1,K , Êk := Êk,K

(
β
)

and

ρ̂k := (
η̂3,K /η̂1,K − η̂4,K

)−1 . Fix β > 0 and observe that from (3.7) we may write

γ̂∗1 −γ1 =
(
γ̂1 −γ1

)− ρ̂k
(
Êk − η̂2

)
, which may be decomposed into the sum of S1,k :=

γ̂1 −γ1, S2,k := −ρ̂k
(
Êk −η2

)
and S3,k := ρ̂k

(
η̂2 −η2

)
. We first consider the third

term S3,k. It is obvious that S3,k = ρ̂k
(
f∗

(
γ̂1

)− f∗
(
γ1

))
, where f∗ is as in (3.4) .

Applying Taylor’s expansion, yields

S3,k = ρ̂k
(
γ̂1 −γ1

)
f ′∗

(
γ1

)+ 1
2
ρ̂k

(
γ̂1 −γ1

)2 f ′′∗
(
γ1

)
, (3.12)

where f ′′∗ (x) :=−β2 ∫ 1
0 sβx−1 (log s)

(
βx log s+2

)
K∗ (s)ds and γ1 is between γ̂1 and

γ1. From asymptotic approximation (1.24) , we deduce that
p

k
(
γ̂1 −γ1

)=OP (1)
and therefore γ̂1

P→ γ1, it follows that γ1
P→ γ1 too. On the other hand, since K is

bounded on the real line then there is M > 0, such that K∗ (s)< Ms, thus

∣∣ f ′′∗ (x)
∣∣≤ Mβ2

∫ 1

0
sxβ (|log s|)(βx |log s|+2

)
ds,

which equals Mβ3 (
4xβ+2

)(
xβ+1

)−3 . It is easy to check that for all 0≤ x ≤ 1, the

previous expression is less than Mβ3 (
4β+2

)
, which implies that f ′′∗

(
γ1

)=OP (1) .
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We noticed that τ̂1 is a consistent estimator for τ1, then thanks to the consistency

of γ̂1, we have ρ̂k
P→ ρ = (

η3/η1 −η4
)−1 . All the aforementioned arguments imply

that the second term in (3.12) , times
p

k , tends to zero in probability as n →∞, it

follows that
p

k S3,k = ρη4
p

k
(
γ̂1 −γ1

)+ oP (1) , where η4 = f ′∗
(
γ1

)
. Thus

p
k

(
S1,k +S3,k

)= (
1+ρη4

)p
k

(
γ̂1 −γ1

)+ oP (1) . (3.13)

Let us now focus on the second term S2,k. We have ρ̂k = ρ+ oP (1) , then

S2,k =−ρ (
Êk −η2

)+ oP
(
Êk −η2

)
. (3.14)

Observe that formula (3.5) may be rewritten into

Êk = 1−
∫ ∞

1
K∗

(
Fn (xXn−k:n)

Fn (Xn−k:n)

)
x−β−1dx,

thereby the first term in (3.14) equals

ρ

∫ ∞

1
x−β−1

{
K∗

(
Fn (xXn−k:n)

Fn (Xn−k:n)

)
−K∗

(
x−1/γ1

)}
dx.

By applying Taylor’s expansion to function K∗, we decompose
p

k S2,k into the

sum of p
k S(1)

2,k := ρ
∫ ∞

1
x−β−1Dn (x)K

(
x−1/γ1

)
dx,

p
k S(2)

2,k := k−1/2ρ

2

∫ ∞

1
x−β−1D2

n (x)K ′ (`n (x))dx,

and
p

k S(3)
2,k :=p

k oP
(
Êk −η2

)
, where `n (x) is a random sequence between x−1/γ1

and Fn (xXn−k:n) /Fn (Xn−k:n) , and

Dn (x) :=
p

k

(
Fn (xXn−k:n)

Fn (Xn−k:n)
− x−1/γ1

)
, x ≥ 1,

is the tail empirical process for randomly truncated data introduced by [6]. The

authors showed that, there exists a standard Wiener process {W (x) ; x ≥ 0} , defined

on the probability space (Ω,A ,P) , such that, for a sufficiently small ξ > 0 and

x0 > 0, one has

sup
x≥x0

x(1/2−ξ)/γ
∣∣∣∣Dn (x)−Γ (x;W)− x−1/γ1

xτ1/γ1 −1
τ1γ1

AF (n/k)
∣∣∣∣ P→ 0, as n →∞, (3.15)
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where

x1/γ1Γ (x;W) := γ

γ1
B (x;1)+ γ

γ1 +γ2

∫ 1

0
s−γ/γ2−1B (s; x)ds,

is a Gaussian process, with B (s; x) := x1/γW
(
x−1/γs

)−W (1) . Applying weak ap-

proximation (4.23) , yields

p
k S(1)

2,k =
p

k S(1,1)
2,k +ρη3

p
k AF (n/k)+ oP (υ (x)) ,

where p
k S(1,1)

2,k := ρ
∫ ∞

1
x−β−1Γ (x;W)K

(
x−1/γ1

)
dx,

and υ (x) :=β∫ ∞
1 x−(1/2−ξ)/γ−β−1K

(
x−1/γ1

)
dx. Recall that K is bounded and for any

sufficiently small ξ> 0,
∫ ∞

1 x−(1/2−ξ)/γ−β−1dx = 2γ
2βγ−2ξ+1 , then υ (x) is finite, hence

oP (υ (x))= oP (1) . Thereby

p
k S2,k = ρ

∫ ∞

1
x−β−1Γ (x;W)K

(
x−1/γ1

)
dx+ρη3

p
k AF (n/k)+ oP (1) .

On the other hand, [6] showed that

p
k

(
γ̂1 −γ1

)= ∫ ∞

1
x−1Γ (x;W)K

(
x−1/γ1

)
dx+η1

p
k AF (n/k)+ oP (1) ,

it follows from (3.13), that
p

k
(
S1,k +S3,k

)
equals

(
1+ρη4

)∫ ∞

1
x−1Γ (x;W)K

(
x−1/γ1

)
dx+ (

1+ρη4
)
η1

p
k AF (n/k)+ oP (1) .

To summarize, we showed that
p

k
(
γ̂∗1 −γ1

)
is asymptotically approximated by∫ ∞

1
x−1Γ (x;W)u

(
x−1/γ1

)
dx+ ((

1+ρη4
)
η1 +ρη3

)p
k AF (n/k)+ oP (1) ,

where u
(
x−1/γ1

)
:= (

1+ρη4 +ρx−β
)
K

(
x−1/γ1

)
. Substituting ρ by its expression(

η3/η1 −η4
)−1 , we get

(
1+ρη4

)
η1 +ρη3 = 0, therefore

p
k

(
γ̂∗1 −γ1

)= ∫ ∞

1
x−1Γ (x;W)u

(
x−1/γ1

)
dx+ oP (1) , as n →∞.

An elementary calculation yields∫ ∞

1
x−1Γ (x;W)u

(
x−1/γ1

)
dx = (

γ2/γ1
)∫ 1

0
s−1W (s)d

{
sqβ (s)

}=: Z,
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where

qβ (s) := s−1
∫ s

0
t−γ/γ2

{
Kβ

(
tγ/γ1

)
− γ1

γ2
t−γ2/γ1 Kβ

(
tγ/γ1

)
+ tγ/γ1 K ′

β

(
tγ/γ1

)}
dt,

where Kβ is as in Theorem 3.1. Using the change of variables u = tγ/γ1 , the

previous expression meets that is (3.9) . Making use of Lemma 8 in [13], we show

that the variance of the centred Gaussian rv Z equals
(
γ2/γ1

)2 ∫ 1
0 q2

β (s)ds. Next

we show that
p

k S(2)
2,k = oP (1) . Indeed, in view of assumption [A4] , the function

g′ is bounded, then there exists a constant C > 0, such that

p
k S(2)

2,k ≤ Ck−1/2
∫ ∞

1
x−β−1D2

n (x)dx.

Note that E |W (s)| ≤ s1/2, then it is easy to show that supx≥1 |Γ (x;W)| = OP (1) .

Thanks to weak approximation (4.23) , we infer that supx≥1 |Dn (x)| = OP (1) too,

which implies that
∫ ∞

1 x−β−1D2
n (x)dx =OP (1) as well, therefore

p
k S(2)

2,k =OP
(
k−1/2)

which converges in probability to zero. Since
p

k
(
Êk −η2

)
is an asymptotically

normal rv, hence it is bounded in probability, therefore
p

k S(3)
2,k = oP (1) . The proof

of Theorem 3.1 is now completed.

3.3 Simulation study

3.3.1 Graphical diagnostics

We will study the performance of the kernel bias-reduced estimator γ̂∗1,K :=
γ̂∗1,K

(
β
)
, given in (3.7) , and compare it with γ∗1,K := γ∗1,K

(
β
)

and γ̃∗1,K := γ̃∗1,K
(
β
)

as

well as the non bias-reduced ones γ̂1,K and γ̂1. To this end, let us consider sets of

truncated and truncation data drawn from Burr and Fréchet models:

• Burr (δ,θ,λ) distribution with right-tail function:

F (x)=
(

δ

δ+ xθ

)λ
, x > 0, δ> 0, θ > 0, λ> 0,

with the tail index γ= 1/(λθ) and the second-order parameter τ=−1/λ.
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• Fréchet (ξ) distribution with right-tail function:

F (x)= 1−exp
(
−x−1/ξ

)
, x > 0, ξ> 0,

with the tail index γ= ξ and the second-order parameter τ=−1.

We first choose three different values for the tuning parameter β = 0.5, 1, 2,

consider the triweight kernel function K3 and its corresponding bias-weight

K∗
3 (s) :=

∫ s

0
K3 (t)dt = 1

16
s
(
5s6 +21s4 −35s2 +35

)
1 {[0,1)} . (3.16)

For each distribution, we generate 2000 random samples of length N = 500 and

plot the absolute biases and RMSE’s (root of the mean squared error) of the

above-mentioned five estimators (y-axis) against different values of the number

k of upper quantiles used in the estimation (x-axis). We consider two cases: a

Burr distribution truncated by another Burr distribution (Figures 3.1−3.6) and a

Fréchet distribution truncated by another Fréchet distribution (Figures 3.7−3.12).

. Both tail indices γ1 and γ2 have to be chosen so that p > 1/2 which corresponds

to average to strong truncation in the tail. For this, we take γ1 = 0.6, 0.8 and

p = 0.55, 0.7, 0.9 leading to the triplets
(
γ1,γ2, p

)= (0.6,0.73,0.55) , (0.6,1.4,0.7) ,

(0.6,5.4,0.9) , (0.8,0.97,0.55) , (0.8,1.86,0.7) and (0.8,7.2,0.9) . Our oveall results

are taken as the empirical averages over the 2000 replicates. The situation p < 1/2

(strong truncation) is not considered in our simulation study since the proposed

bias-reduced estimators are defined thanks to the asymptotic distribution (1.24)
which is given provided that p > 1/2. The figures 3.1−3.6, corresponding to the

Burr-Burr scheme, show that the three bias-reduced estimators perform better

in terms of bias with reasonable RMSE for a large interval of k−values which is

helpful to choose an appropriate value of k. As expected, the "full" kernel estimator

γ̂1,K works well compared to γ∗1,K and γ̃∗1,K . Note that for weak truncations, that

is for large p, the three mentioned estimators behave well both in terms of bias

and RMSE. In this scenario, we also observe that the tuning parameter β does

not have any influence on the quality of the estimation, at least for the three

values 0.5, 1 and 2, thus the choice of this parameter may be arbitrary. As far

as the Fréchet-Fréchet scheme is concerned, the quality of the new estimators is

not as good. Indeed, while the biases are low, the RMSE’s are high mainly with
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the medium truncation rate, that is when p is close to 1/2 (see the top panels

of Figures 3.7−3.12). This was somehow expectable because an improvement

of the bias component may be made at the expense of the variance leading to a

larger RMSE. On the other hand, unlike the first scheme, a change in the value

of the tuning parameter has an impact on the estimation quality. At this stage we

cannot say more about the optimal choice of β but it seems that the value 1 gives

satisfactory results for both moderate and light truncation cases.

3.3.2 A heuristic procedure to estimate the tail Index γ1

The choice of the number of top order statistics k̂ used in the computation of the

tail index estimate is crucial. Several heuristic methods to select this latter are

available in the extreme value theory literature, see for instance [10]. Here, we

consider Reiss-Thomas’s algorithm given in [43], page 137, in which the optimal

sample fraction is defined by

k̂ := arg min
1<k<n

1
k

k∑
i=1

iε
∣∣γ̂ (i)−median

{
γ̂ (1) , ..., γ̂ (k)

}∣∣ , (3.17)

for a suitable constant 0 ≤ ε ≤ 1/2, where γ̂ (i) is an estimator of tail index γ,

based on the i extreme values corresponding to a Pareto-type model. From our

simulation study, we observed that ε= 0.3 provides better results both in terms

of bias and RMSE. We pointed out that this agrees with that early found by

[39] in complete data case. We will opt for this procedure to select k̂ in the

computation of aforementioned five tail index estimators. Here, we consider two

sample sizes N = 500 and N = 150, keep the kernel K3 and, for brevity, choose

β = 1. The performances of the estimators, in terms of the biases and RMSE’s,

are summarized in Tables 3.2-3.4. The second columns of the tables contain the

size n of the really observed sample which, due to the truncation, is expectedly

less than the original size N. Actually, in real applications, one only has in hand

datasets that are already truncated (i.e. of size n). We note that, in all instances,

the estimators γ̂1 and γ̂1,K overestimate the tail index while the estimators γ̃∗1 and

γ∗1,K underestimate it. However, the newly proposed estimator γ̂∗1,K alternate the

sign of its (smaller) bias meaning that it can be considered as a good compromise

between the first two categories of estimators.
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γ1 = 0.6, N = 500
n k̂ γ̂∗1,K k̂ γ̂1 k̂ γ̂1,K k̂ γ̃∗1 k̂ γ∗1,K

p = 0.55 257 102 0.59 90 0.72 91 0.66 98 0.48 96 0.54
p = 0.70 278 99 0.59 93 0.68 93 0.63 96 0.52 95 0.55
p = 0.90 304 101 0.63 99 0.66 98 0.64 99 0.58 97 0.60

γ1 = 0.6, N = 150
n k̂ γ̂∗1,K k̂ γ̂1 k̂ γ̂1,K k̂ γ̃∗1 k̂ γ∗1,K

p = 0.55 76 37 0.71 27 0.69 28 0.71 30 0.36 29 0.53
p = 0.70 83 35 0.69 30 0.68 30 0.67 31 0.46 30 0.56
p = 0.90 91 37 0.70 31 0.64 33 0.65 32 0.55 32 0.61

Table 3.2: Optimal sample fractions k̂ and estimate values, through γ̂∗1,K , γ̂1, γ̂1,K ,
γ̃∗1 and γ̄∗1,K , of the tail index γ1 = 0.6 based on 2000 samples from a Fréchet
distribution truncated by another Fréchet distribution with: N = {500,150}, β= 1
and three truncating proportions.

γ1 = 0.8, N = 500
n k̂ γ̂∗1,K k̂ γ̂1 k̂ γ̂1,K k̂ γ̃∗1 k̂ γ∗1,K

p = 0.55 257 99 0.82 91 0.94 87 0.88 96 0.63 94 0.71
p = 0.70 279 98 0.82 94 0.90 95 0.86 99 0.74 95 0.77
p = 0.90 303 103 0.82 97 0.88 98 0.85 100 0.76 99 0.78

γ1 = 0.8, N = 150
n k̂ γ̂∗1,K k̂ γ̂1 k̂ γ̂1,K k̂ γ̃∗1 k̂ γ∗1,K

p = 0.55 77 35 0.77 28 0.84 27 0.80 29 0.42 28 0.58
p = 0.70 82 34 0.92 28 0.89 30 0.90 31 0.66 28 0.78
p = 0.90 90 35 0.93 32 0.87 31 0.86 31 0.71 30 0.79

Table 3.3: Optimal sample fractions k̂ and estimate values, through γ̂∗1,K ,
γ̂1,γ̂1,K ,γ̃∗1 and γ̄∗1,K , of the tail index γ1 = 0.8 based on 2000 samples from a Fréchet
distribution truncated by another Fréchet distribution with: N = {500,150}, β= 1
and three truncating proportions.
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γ1 = 0.6, N = 500
n k̂ γ̂∗1,K k̂ γ̂1 k̂ γ̂1,K k̂ γ̃∗1 k̂ γ∗1,K

p = 0.55 275 98 0.47 83 1.07 84 0.86 94 0.22 91 0.29
p = 0.70 350 103 0.56 86 0.94 89 0.80 96 0.44 94 0.47
p = 0.90 450 101 0.63 93 0.81 94 0.74 100 0.55 99 0.57

γ1 = 0.6, N = 150
n k̂ γ̂∗1,K k̂ γ̂1 k̂ γ̂1,K k̂ γ̃∗1 k̂ γ∗1,K

p = 0.55 81 39 0.43 23 0.68 26 0.66 28 0.56 27 0.57
p = 0.70 105 37 0.53 33 0.68 35 0.66 36 0.57 36 0.57
p = 0.90 135 38 0.57 34 0.65 36 0.65 36 0.58 35 0.58

Table 3.4: Optimal sample fractions k̂ and estimate values, through γ̂∗1,K ,
γ̂1,γ̂1,K ,γ̃∗1 and γ̄∗1,K , of the tail index γ1 = 0.6 based on 2000 samples from a
Burr distribution truncated by another Burr distribution with: N = {500,150},
β= 1 and three truncating proportions.

γ1 = 0.8, N = 500
n k̂ γ̂∗1,K k̂ γ̂1 k̂ γ̂1,K k̂ γ̃∗1 k̂ γ∗1,K

p = 0.55 275 99 0.81 83 1.25 88 1.08 93 0.54 91 0.64
p = 0.70 349 101 0.84 88 1.09 93 0.98 98 0.72 98 0.75
p = 0.90 449 105 0.81 92 0.96 96 0.89 99 0.74 99 0.76

γ1 = 0.8, N = 150
n k̂ γ̂∗1,K k̂ γ̂1 k̂ γ̂1,K k̂ γ̃∗1 k̂ γ∗1,K

p = 0.55 82 37 0.70 32 0.89 33 0.86 34 0.40 34 0.44
p = 0.70 106 38 0.72 35 0.89 35 0.85 36 0.70 35 0.66
p = 0.90 135 38 0.75 36 0.88 35 0.85 36 0.72 35 0.74

Table 3.5: Optimal sample fractions k̂ and estimate values, through γ̂∗1,K ,
γ̂1,γ̂1,K ,γ̃∗1 and γ̄∗1,K , of the tail index γ1 = 0.8 based on 2000 samples from a
Burr distribution truncated by another Burr distribution with: N = {500,150},
β= 1 and three truncating proportions.
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Figure 3.1: Absolute biases (left panel) and RMSE’s (right panel) of
γ̂∗1,K , γ̂1,K , γ̂1, γ̃∗1 and γ∗1,K for a Burr distribution truncated by another Burr distri-
bution, with β= 1 and γ1 = 0.6 under the following cases: p = 0.55 (top), p = 0.7
(middle) and p = 0.9 (bottom). The simulation is based on 2000 replicates of size
500.
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Figure 3.2: Absolute biases (left panel) and RMSE’s (right panel) of
γ̂∗1,K , γ̂1,K , γ̂1, γ̃∗1 and γ∗1,K for a Burr distribution truncated by another Burr distri-
bution, with β= 0.5 and γ1 = 0.6 under the following cases: p = 0.55 (top), p = 0.7
(middle) and p = 0.9 (bottom). The simulation is based on 2000 replicates of size
500.
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Figure 3.3: Absolute biases (left panel) and RMSE’s (right panel) of
γ̂∗1,K , γ̂1,K , γ̂1, γ̃∗1 and γ∗1,K for a Burr distribution truncated by another Burr distri-
bution, with β= 2 and γ1 = 0.6 under the following cases: p = 0.55 (top), p = 0.7
(middle) and p = 0.9 (bottom). The simulation is based on 2000 replicates of size
500.
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Figure 3.4: Absolute biases (left panel) and RMSE’s (right panel) of
γ̂∗1,K , γ̂1,K , γ̂1, γ̃∗1 and γ∗1,K for a Burr distribution truncated by another Burr distri-
bution, with β= 1 and γ1 = 0.8 under the following cases: p = 0.55 (top), p = 0.7
(middle) and p = 0.9 (bottom). The simulation is based on 2000 replicates of size
500.
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Figure 3.5: Absolute biases (left panel) and RMSE’s (right panel) of
γ̂∗1,K , γ̂1,K , γ̂1, γ̃∗1 and γ∗1,K for a Burr distribution truncated by another Burr distri-
bution, with β= 0.5 and γ1 = 0.8 under the following cases: p = 0.55 (top), p = 0.7
(middle) and p = 0.9 (bottom). The simulation is based on 2000 replicates of size
500.
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Figure 3.6: Absolute biases (left panel) and RMSE’s (right panel) of
γ̂∗1,K , γ̂1,K , γ̂1, γ̃∗1 and γ∗1,K for a Burr distribution truncated by another Burr distri-
bution, with β= 2 and γ1 = 0.8 under the following cases: p = 0.55 (top), p = 0.7
(middle) and p = 0.9 (bottom). The simulation is based on 2000 replicates of size
500.
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Figure 3.7: Absolute biases (left panel) and RMSE’s (right panel) of
γ̂∗1,K , γ̂1,K , γ̂1, γ̃∗1 and γ∗1,K for a Fréchet distribution truncated by another Fréchet
distribution, with β = 1 and γ1 = 0.6 under the following cases: p = 0.55 (top),
p = 0.7 (middle) and p = 0.9 (bottom). The simulation is based on 2000 replicates
of size 500.
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Figure 3.8: Absolute biases (left panel) and RMSE’s (right panel) of
γ̂∗1,K , γ̂1,K , γ̂1, γ̃∗1 and γ∗1,K for a Fréchet distribution truncated by another Fréchet
distribution, with β= 0.5 and γ1 = 0.6 under the following cases: p = 0.55 (top),
p = 0.7 (middle) and p = 0.9 (bottom). The simulation is based on 2000 replicates
of size 500.
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Figure 3.9: Absolute biases (left panel) and RMSE’s (right panel) of
γ̂∗1,K , γ̂1,K , γ̂1, γ̃∗1 and γ∗1,K for a Fréchet distribution truncated by another Fréchet
distribution, with β = 2 and γ1 = 0.6 under the following cases: p = 0.55 (top),
p = 0.7 (middle) and p = 0.9 (bottom). The simulation is based on 2000 replicates
of size 500.
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Figure 3.10: Absolute biases (left panel) and RMSE’s (right panel) of
γ̂∗1,K , γ̂1,K , γ̂1, γ̃∗1 and γ∗1,K for a Fréchet distribution truncated by another Fréchet
distribution, with β = 1 and γ1 = 0.8 under the following cases: p = 0.55 (top),
p = 0.7 (middle) and p = 0.9 (bottom). The simulation is based on 2000 replicates
of size 500.
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Figure 3.11: Absolute biases (left panel) and RMSE’s (right panel) of
γ̂∗1,K , γ̂1,K , γ̂1, γ̃∗1 and γ∗1,K for a Fréchet distribution truncated by another Fréchet
distribution, with β= 0.5 and γ1 = 0.8 under the following cases: p = 0.55 (top),
p = 0.7 (middle) and p = 0.9 (bottom). The simulation is based on 2000 replicates
of size 500.
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Figure 3.12: Absolute biases (left panel) and RMSE’s (right panel) of
γ̂∗1,K , γ̂1,K , γ̂1, γ̃∗1 and γ∗1,K for a Fréchet distribution truncated by a nother Fréchet
distribution, with β = 2 and γ1 = 0.8 under the following cases: p = 0.55 (top),
p = 0.7 (middle) and p = 0.9 (bottom). The simulation is based on 2000 replicates
of size 500.
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For further illustration of the dispersion of the five estimators, we provide, in

Figures 3.13-3.16, box-plot representations which show two things. The first one

is that the three estimators γ̂∗1,K , γ∗1,K , γ̃∗1 have, as expected and mentioned above,

slight dispersions with respect to the remaining two. The second, is that all five

estimators globally exhibit symmetric distributions.
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Figure 3.13: Box-plots corresponding to estimators γ̂∗1,K , γ∗1,K , γ̃∗1 , γ̂1,K and γ̂1
for a Fréchet distribution truncated by another Fréchet distribution, with β= 1,
γ1 = 0.6, p = 0.55 and p = 0.9 based on 2000 replicates of size N = 500.
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Figure 3.14: Box-plots corresponding to estimators γ̂∗1,K , γ∗1,K , γ̃∗1 , γ̂1,K and γ̂1
for a Fréchet distribution truncated by another Fréchet distribution, with β= 1,
γ1 = 0.8, p = 0.55 and p = 0.9 based on 2000 replicates of size N = 500.
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Figure 3.15: Box-plots corresponding to estimators γ̂∗1,K , γ∗1,K , γ̃∗1 , γ̂1,K and γ̂1 for
a Burr distribution truncated by another Burr distribution, with β= 1, γ1 = 0.6,
p = 0.55 and p = 0.9 based on 2000 replicates of size N = 500.
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Figure 3.16: Box-plots corresponding to estimators γ̂∗1,K , γ∗1,K , γ̃∗1 , γ̂1,K and γ̂1 for
a Burr distribution truncated by another Burr distribution, with β= 1, γ1 = 0.8,
p = 0.55 and p = 0.9 based on 2000 replicates of size N = 500.
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Figure 3.17: Fitting the Fréchet model to samples X and Y with respective
Kolmogorov-Smirnov’s p-values 0.8026 and 0.1934.

3.4 Real data example

We consider, as it is already used in [18], [6] and [22], the (originally left-

truncated) lifetimes, denoted, L of car brake pads by the mileage, denoted M, given

in [32], page 69. [18] gave a detailed description of these data and transformed

them to X and Y in a right-truncation scheme. They also discussed the Pareto-like

nature of their distributions. As far as we are concerned, we graphically checked

the heavy-tailedness of X and Y , see Fig 3.17. Moreover, we applied Kolmogorov-

Smirnov goodness-of-fit testing procedure to fit Fréchet models to both datasets

with respective (large) p-values of 0.8026 and 0.1934.

High quantile estimation An extreme quantile of df F is a value qν defined

in terms of the generalized inverse by qν :=UF (1/ν) for v ↓ 0. In other words, it

is an X -value which is sufficiently large so that the probability of exceeding it

is very small. Also known as value-at-risk (VaR), this quantity is largely used,

as a risk measure, in several fields such as in finance, insurance, hydrology and
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ν Transformed data Original data
0.990 0.101 16.819
0.995 0.138 14.185
0.999 0.284 10.468

Table 3.6: Extreme quantiles for car brake pad lifetimes.

reliability. For asymptotic needs, we suppose that v is a function of the observed

sample size n, denoted by v = vn, and assumed to be much smaller than 1/n. The

estimation of high quantiles of heavy-tailed distributions, in the case of complete

data, has been extensively studied in the literature (see, for instance, [24]). The

well-known Weissman estimator [49] of high quantile qν adapted to our new tail

index estimator γ̂∗1,K is given by

q̂ν := Xn−k:n

(
ν

Fn (Xn−k:n)

)−γ̂∗1,K
,

where Fn is Woodroofe’s nonparametric estimator of df F.

Using He-Wang’s estimator [23] , we estimated proportion p of the ob-

served sample, defined in (1.13), by 0.86 := p0 which means that the truncation is

relatively weak. Then, as is noticed the simulation study, the tuning parameter β

may be chosen equals 1. The sample size of this data set is n = 98 which almost

equals 100, then relying to the results in Tables 3.2-3.4 (for N = 150), we suggest

that the new estimator γ̂∗1,K3
is a better candidate to estimate the tail index γ1.

Making use of Reiss-Thomas’s algorithm, we select the optimal sample fraction

k̂ and then compute the corresponding value of γ̂∗1,K3
.

The result gives γ̂∗1,K3
= 0.46, however [22] obtained the value 0.49, thereby,

we compute, for three different high levels ν = 1−ν = 0.990, 0.995 and 0.999

the corresponding extreme quantiles (see 3.4). Finally, via the aforementioned

transformation, we obtain the pertaining extreme quantiles of the original dataset.

The results are summarized in Table 3.6.

For instance, we may conclude that the estimated value of the brake pad

lifetime is less than 16.819 km for 1% of the cars. However, only one out of a

thousand brake pads lasts less than 10.468 km.
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4
A WEIGHTED MINIMUM DENSITY POWER

DIVERGENCE ESTIMATOR FOR THE PARETO-TAIL

INDEX

Assigning a weight function to the density power divergence, we derive

a new class of estimators for the tail index of a Pareto-type distribution.

The proposed estimators may be considered as a robust generalization

of the weighted least squares estimator and the kernel estimator of the

tail index. The consistency and asymptotic normality of the proposed

class of estimators are established. The study of finite sample behavior

of the given estimator are done.
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4.1 Minimum density power divergence

Given two probability densities ` and h, [2] introduced a new distance between

them called the density power divergence

dα (h,`)=


∫
R

[
`1+α (z)−

(
1+ 1

α

)
`α (z)h (z)+ 1

α
h1+α (z)

]
dz, α> 0

∫
Rh (z) log

h (z)
` (z)

dz, α= 0.
(4.1)

where α is a nonnegative tuning parameter. The case corresponding to α= 0 is

obtained from the general case by letting α→ 0 leading to the classical Kullback-

Leibler divergence denoted d0 (h,`) . Let us consider a parametric model of densi-

ties {`θ :Θ⊂Rp} and suppose that we consider the estimation of the parameter θ.

Let H be the cdf corresponding to the density h. The minimum density power diver-

gence (MDPD) is a functional Tα (H) defined by dα
(
h,`Tα(H)

)=minθ∈Θdα (h,`θ) .

It is clear that the term
∫

h1+α (z)dz in (4.1) does not contribute in the minimiza-

tion of dα (h,`θ) over θ ∈Θ. Then minimization in the computation of the MDPD

functional Tα (H) reduces to

δα (h;θ) :=


∫
R`

1+α
θ (z)dz−

(
1+ 1

α

)∫
R`

α
θ (z)dH (z) , α> 0,

−∫
R log`θ (z)dH (z) , α= 0.

(4.2)

Given a random sample Z1, ..., Zn from the distribution H we may estimate the

objective function h in (4.2) by substituting H with its empirical counterpart Hn.

For a given tuning parameter α, the MDPD estimator θ̂n,α of θ may be obtained

by minimizing (over θ ∈Θ) the quantity

δ∗n.α (θ) :=


∫
R`

1+α
θ (z)dz−

(
1+ 1

α

)∫
R`

α
θ (z)dHn (z) , α> 0,

−∫
R log`θ (z)dHn (z) , α= 0,

,

which in turn equals
∫
R`

1+α
θ (z)dz−

(
1+ 1

α

)
1
n

n∑
i=1
`α
θ (Zi) , α> 0,

−1
n

n∑
i=1

log`θ (Zi) , α= 0.
. (4.3)
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Thus the parameter θ minimizing δ∗n,α (θ) will be a solution of the following

equation 
∫
R

d
dθ

`1+α
θ (z)dz−

(
1+ 1

α

)
1
n

n∑
i=1

d
dθ

`α
θ (Zi)= 0, α> 0,

1
n

n∑
i=1

d
dθ

log`θ (Zi)= 0, α= 0.

This may be rewritten into
∫
Ruθ (z)`α+1

θ (z)dz− 1
n

n∑
i=1

uθ (z)`αθ (Zi)= 0, α> 0,

1
n

n∑
i=1

uθ (z) (Zi)= 0, α= 0.

where uθ (z) := d log`θ (z) /dθ called the score function pertaining to density `θ.

The role of the tuning parameter α is crucial in the sense that it offers a com-

promise between efficiency and robustness of the MDPD. In other terms when

α is close to zero the estimator becomes more efficient however is less robust

against outliers, while when α increases the robustness increases as well and

the efficiency decreases. It is found that the estimators with small ac have strong

robustness properties with little loss in asymptotic efficiency relative to maximum

likelihood under model conditions.

4.2 Weighted MDPD

Since we are dealing with the upper extreme values, then it is convenient to

assign a suitable weight to the right-tail of distributions. To this end, we consider

the weighted densities instead of the original ones, namely `J := J
(
L

)
` and

hJ = J
(
H

)
h, where L (z) := ∫ z

−∞` (y)d y denotes the cdf corresponding to the

density function ` and J be a nonnegative nonincreasing function such that∫ 1
0 J (s)ds = 1, so that `J ,hJ ≥ 0 and

∫
R`J (z)dz = ∫

RhJ (z)dz = 1. We define the

weighted minimum density power divergence (WMDPD), pertaining to a weight
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function J, between ` and h by dα,J (h,`) := dα (hJ ,`J) , that is

dα,J (h,`) :=


∫
R

[
`1+α

J (z)−
(
1+ 1

α

)
`αJ (z)hK (z)+ 1

α
h1+α

J (z)
]

dz, α> 0,

∫
RhJ (z) log

hJ (z)
`J (z)

dz, α= 0.
(4.4)

Considering the indicator weight function J1 := 1[0,1), the distance dα,J1 (h,`)
reduces to the original one dα (h,`) . The term

∫
h1+α

J (z)dz in (4.4) remains has no

role in the minimization of dα,J (h,`θ) over θ ∈Θ, therefore it suffices to minimize

d∗
α,J (h,`)=


∫
R`

1+α
J (z)dz−

(
1+ 1

α

)∫
R`

α
J (z) J

(
H

)
dH (z) , α> 0∫

R J
(
H

)
log`J (z)dH (z) , α= 0.

Following the above procedure, the corresponding estimator θ̂n,α,J of θ can be

obtained by minimizing (over θ ∈Θ) the quantity

δ∗n,α,J (θ) :=


∫
R`

1+α
θ,J (z)dz−

(
1+ 1

α

)
1
n

n∑
i=1

J
(
H (Zi)

)
`α
θ,J (Zi) , α> 0,

1
n

n∑
i=1

J
(
H (Zi)

)
log`θ,J (Zi) , α= 0.

.

4.3 WMDPD estimation of the tail index

Let us now consider the estimation the tail index γ by using the WMDPD. To

this end, let us consider the relative excess rv Zu := X /u given X > u, with cdf

Hu (z) = 1−F (uz) /F (uz) of corresponding density function hu. In this case, the

parametric model of densities is

`γ (z) := d
dz

(
1− z−1/γ

)
= γ−1z−1−1/γ, z ≥ 1, γ> 0.

We are dealing to minimize the density weighted power divergence objective

function the quantity

d∗
u,α,J

(
γ
)

:=


∫ ∞

1 `1+α
γ,J (z)dz−

(
1+ 1

α

)∫ ∞
1 `α

γ,J (z) J
(
Hu (z)

)
dHu (z) , α> 0,∫ ∞

1 J
(
Hu (z)

)
log`γ,J (z)dHu (z) , α= 0,

(4.5)
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for sufficiently large u, which equals

∫ ∞
1 `1+α

γ,J (x)dx−
(
1+ 1

α

)∫ ∞
1 `α

γ,J (x) J

(
F (ux)

F (u)

)
d

F (ux)

F (u)
, α> 0,

∫ ∞
1 J

(
F (ux)

F (u)

)
log`γ,J (x)d

F (ux)

F (u)
, α= 0.

Substituting F by its empirical cdf Fn (x) := n−1 ∑n
i=1 1(X i≤x) and letting u = Xn−k:n

in the previous functional, we end up with
1
k

k∑
i=1

J
(

i
k

)
d

dγ
`α
γ,J

(
Xn−i+1:n

Xn−k:n

)
= α

α+1
∫ ∞

1
d

dγ
`1+α
γ,J (x)dx, α> 0,

1
k

k∑
i=1

J
(

i
k

)
d

dγ
log`γ,J

(
Xn−i+1:n

Xn−k:n

)
= 0, α= 0.

(4.6)

This may be rewritten into
1
k

k∑
i=1

J
(

i
k

)
uγ,J

(
Xn−i+1:n

Xn−k:n

)
`α
γ,J

(
Xn−i+1:n

Xn−k:n

)
= ∫ ∞

1 uγ,J (x)`α+1
γ,J (x)dx, α> 0,

1
k

k∑
i=1

J
(

i
k

)
uγ,J

(
Xn−i+1:n

Xn−k:n

)
`γ,J

(
Xn−i+1:n

Xn−k:n

)
= 0, α= 0,

(4.7)

where uγ (x) := d log`γ,J (x) /dγ is the weighted maximum likelihood score func-

tion.

Jlog J0 J1 J2 J3 J4

L 1 0 s log s
s−1 4s2 log s

s2−1 6s2 log s
s2−1 8s2 log s

s2−1
ζ1 1 0 1 2 3 4
ζ2 0 0 0.644 0.934 1.40 1.86

Thereby, we define our newly WMDPD tail index estimator of γ, denote by γ̂k,α,J

as a solution of equation (4.6) (or (4.7)). It is worth noting that in the case α= 0,

the class of WMDPD estimators asymptotically meets that of WLSE ones, in other

terms γ̂k,0,J = γ̂k,J + oP (1) , as n →∞. Indeed, let us introduce the class of weight

functions J satisfying [A1] below and further assume that

ζ1 := sup
0<s<1

L (s)<∞ and ζ2 :=
∫ 1

0

∣∣L ′ (s)
∣∣ds <∞, (4.8)
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where L (s) := (
J′ (s) /J (s)

)
s log s, for s ∈ (0,1) and L ′ stands for the first derivative

of L . The function L is nonnegative because log s < 0 and J is nonincreasing on

(0,1) . The additional regularity assumptions (4.8) on J is somewhat not restrictive,

in the sense that the common weight functions satisfy it. Indeed, in Table 4.3,

we give the formula of function L and both the values of ζ1 and ζ2 for the

aforementioned weight functions. Assuming (4.8) , we showed in Lemma 4.1, that

γ̂k,0,J :=
(∫ 1

0
J (s) log s−1ds

)−1 1
k

k∑
i=1

J
(

i
k

)
log

Xn−i+1:n

Xn−k:n
+OP

(
k−1) ,

which asymptotically meets to the weighted least squares estimator γ̂k,J sated in

(1.10) . Moreover, Theorem 2.1 and Theorem 2.2 in [28] concerning the consistency

and asymptotic normality of γ̂k,J lead to that of γ̂k,0,J . Thus, we may consider

that γ̂k,α,J for α > 0 is a robust generalization of γ̂k,J and γ̂(CDM)
k,K . Anyway, the

assumption (4.8) does not concern the estimator γ̂k,α,J for α> 0.

Next we study the asymptotic behavior of the solution to the estimating equation

(4.6) , for α> 0. To this end we assume that the underlying distribution F satisfies

the second-order condition of regular variation [20], that is: for any x > 0

lim
t→∞

U (tx) /U (t)− xγ

a (t)
= xγ

xρ−1
ρ

, (4.9)

where ρ < 0 is the second-order parameters and a is a function tending to zero

and not changing signs near infinity with regularly varying absolute values with

index ρ. The notation U (t) := F← (1−1/t) , t > 1, where F← (s) := inf {x : F (x)≥ s} ,

0< s < 1, stands for the quantile function.

4.4 Main results

We state two theorems in which we establish existence and consistency of a

sequence of solutions to the estimating equation (4.6) , for α> 0. We will consider

the class of weight functions satisfying the following regularity assumptions:

• [A1] J is nonincreasing nonnegative on (0,1) with
∫ 1

0 J (s)ds = 1.

• [A2] J and their first three derivatives J′, J′′ and J′′′ are bounded on (0,1) .
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From now on we denote the true value of γ by γ0.

Theorem 4.1. (existence and consistency) Let X1, ..., Xn be a sample of iid rv’s
from a cdf satisfying condition (4.9) . Let J be a continuous function fulfilling
assumptions [A1]− [A2] and let k be a sequence of integers such that k →∞ and
k/n → 0, as n →∞. Then with probability tending to 1, there exists solution γ̂k,α,J ,

for α> 0, of the estimating equation (4.6) such that γ̂k,α,J
P→ γ0, as n →∞.

Proof. To show the existence and consistency of γ̂k,α,J we adapt the proof of

Theorem 1in [15] which in turns is an adaptation of the proof of Theorem 5.1

in Chapter 6 of [33], proving the existence and establishing the consistency of

solutions of the likelihood equations, to the WMDPDE context. Let d∗
n,α,J

(
γ
)

denotes the empirical counterpart of the weighted density power divergence

objective function d∗
u,α,J

(
γ
)
, given in (4.5) , namely

d̂∗
n,α,J

(
γ
)

:=
∫ ∞

1
`1+α
γ,J (x)dx−

(
1+ 1

α

)
1
k

k∑
i=1

J
(

i
k

)
`αγ,J

(
Xn−i+1:n

Xn−k:n

)
, α> 0.

Next we show that

Pγ0

(
d∗

n,α,J
(
γ0

)< d∗
n,α,J

(
γ
)
, for all γ ∈ Iε

)
→ 1, as ε ↓ 0, (4.10)

where Iε := (
γ0 −ε,γ0 +ε

)
, for 0< ε< γ0. By applying Taylor’s expansion near γ0

to function γ→ d∗
n,α,J

(
γ
)
, we decompose d∗

n,α,J
(
γ
)−d∗

n,α,J
(
γ0

)
into

π(1)
k

(
γ0

)(
γ−γ0

)+2−1π(2)
k

(
γ0

)(
γ−γ0

)2 +6−1π(3)
k

(
γ̃
)(
γ−γ0

)3

=: S1,k +S2,k +S3,k,

where

π(m)
k

(
γ0

)
:=

∫ ∞

1

dm

dγm`
α+1
γ0,J (x)dx−

(
1+ 1

α

)
A(m)

k

(
γ0

)
, (4.11)

A(m)
k

(
γ0

)
:= 1

k

k∑
i=1

J
(

i
k

)
dm

dγm`
α
γ0,J

(
Xn−i+1:n

Xn−k:n

)
, m = 1,2 (4.12)

and γ̃ is between γ and γ0. The result (4.21) of Lemma 4.2 gives π(1)
k

(
γ0

) P→ 0, as

n →∞. In the other terms, for any ε> 0 sufficiently small
∣∣∣π(1)

k

(
γ0

)∣∣∣< ε2, which

entails that
∣∣S1,k

∣∣< ε3, for ever γ ∈ Iε, with probability tending to 1. Once again
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using assertion (4.21) of Lemma 4.2, we deduce that π(2)
k

(
γ0

) P→ ηγ0 as n →∞,

where ηγ0 is as in (4.13) , therefore S2,k = (1+ oP (1))2−1ηγ0

(
γ−γ0

)2 . Observe that

ηγ0 > 0, then there exists c > 0 and ε0 > 0 such that for ε< ε0 such that S2,k > cε2.

Note that γ̃ is a consistent estimator for γ0, then by Lemma 4.6 π(3)
k

(
γ̃
)=OP (1) .

This means that with probability tending to 1 there exists a constant d > 0 such

that
∣∣S3,k

∣∣< dε3. Combining the above we find that

min
γ∈Iε

(
S1,k +S2,k +S3,k

)> cε2 − (d+1)ε3,

with probability tending to 1. Choosing 0 < ε< c/ (d+1) gives cε2 − (d+1)ε3 > 0

leading to inequality (4.10) . To complete the proof of existence and consistency,

we follow the same steps to those used in the proof of Theorem 3.7 in Chapter 6 of

[33]. Let ε> 0 be small so that 0< ε< c/ (d+1) and Iε ⊂ (0,∞) , then consider the

set

Sn (ε) :=
{
γ : d∗

n,α,J
(
γ0

)< d∗
n,α,J

(
γ
)

for all γ ∈ Iε
}

.

We already showed that Pγ0 {Sn (ε)} → 1 for any such ε, then there exists a se-

quence εn ↓ 0 such that Pγ0 {Sn (εn)}→ 1 as n →∞. Note that γ→ d∗
n,α,J

(
γ
)

being

differentiable on (0,∞) , then given γ ∈ Sn (εn) there exists a point γ̂k,α,J (εn) ∈ Iεn

for which d∗
n,α,J

(
γ
)

attains a local minimum, thereby π(1)
k

(
γ̂k,α,J (εn)

)= 0. Let us

set γ̂∗k,α,J = γ̂k,α,J (εn) for γ ∈ Sn (εn) and arbitrary otherwise. Obviously

Pγ0

{
π(1)

k

(
γ̂∗k,α,J

)
= 0

}
≥Pγ0 {Sn (εn)}→ 1, as n →∞,

thus with probability tending to 1 there exists a sequence of solutions to estimating

Equation (4.6) . Observe now that for any fixed ε > 0 and n sufficiently large

Pγ0

{∣∣∣γ̂∗k,α,J −γ0

∣∣∣< ε} ≥ Pγ0

{∣∣∣γ̂∗k,α,J −γ0

∣∣∣< εn

}
→ 1, as n →∞, which establishes

the consistency of γ̂∗k,α,J , as sought. �

Theorem 4.2. (asymptotic normality) Let X1, ..., Xn be a sample of iid rv’s from a
cdf satisfying the condition (4.9) and assume that γ̂k,α,J , for α> 0, is a consistent
estimator for γ0 satisfying (4.6) . Let J be a continuous function fulfilling assump-
tions [A1]− [A2] and let k be a sequence of integers such that k →∞, k/n → 0 andp

k a (n/k)→λ ∈R. Then, in the probability space (Ω,A ,P) there exists a standard
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Wiener process {W (x) , x ≥ 0} , such that(
1+ 1

α

)
ηγ0

p
k

(
γ̂k,α,J −γ0

)
=

∫ ∞

1

(
W

(
x−1/γ0

)
− x−1/γ0W (1)

)
J

(
x−1/γ0

)
dΨ(1)

γ0 (x)+λB(1)
γ0 + oP (1) ,

where

ηγ0 := (1+α)
∫ ∞

1

(
Ψ(1)
α,γ0 (x)

)2
`α−1
γ0,J (x)dx,Ψ(1)

α,γ0 (x) := d`αγ0,J (x) /dγ (4.13)

and
B(1)
γ0 := 1

ργ0

∫ 1

0
s
(
1− s−ρ

)
J (s)dΨ(1)

α,γ0

(
s−γ0

)
.

Thus
p

k
(
1+ 1

α

)
ηγ0

(
γ̂k,α,J −γ0

) D→N
(
λB(1)

γ0 ,σ2
γ0

)
, as n →∞, where

σ2
γ0

:=
∫ 1

0

∫ 1

0
(min(s, t)− st) J (s) J (t)dΨ(1)

α,γ0

(
s−γ0

)
dΨ(1)

α,γ0

(
t−γ0

)
.

Proof. Applying Taylor’s expansion of the estimating equation π(1)
k

(
γ̂k,α,J

)= 0,

yields

0=π(1)
k

(
γ0

)+π(2)
k

(
γ0

)(
γ̂k,α,J −γ0

)+ 1
2
π(3)

k

(
γ̂0

)(
γ̂k,α,J −γ0

)2 ,

where

π(3)
k

(
γ0

)
:=

∫ ∞

1

d3

dγ3`
α+1
γ0,J (x)dx−

(
1+ 1

α

)
A(3)

k

(
γ0

)
(4.14)

and

A(3)
k

(
γ0

)
:= 1

k

k∑
i=1

J
(

i
k

)
d3

dγ3`
α
γ0,J

(
Xn−i+1:n

Xn−k:n

)
, (4.15)

with γ̂0 is between γ0 and γ̂k,α,J . We have γ̂0
P→ γ0 as n →∞, then by Lemma 4.6

we get π(3)
k

(
γ̂0

)=OP (1) . On the other hand γ̂k,α,J
P→ γ0, it follows that

2−1π(3)
k

(
γ̂0

)(
γ̂k,α,J −γ0

)2 = oP (1)
(
γ̂k,α,J −γ0

)
,

therefore

π(2)
k

(
γ0

)p
k

(
γ̂k,α,J −γ0

)
(1+ oP (1))=−

p
kπ(1)

k

(
γ0

)
, as n →∞.
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Once again using Gaussian approximation (4.18) of Lemma 4.2, we may write(
1+ 1

α

)
π(2)

k

(
γ0

)p
k

(
γ̂k,α,J −γ0

)
=

∫ ∞

1

(
W

(
x−1/γ0

)
− x−1/γ0W (1)

)
J

(
x−1/γ0

)
dΨγ0 (x)+λB(1)

γ0 + oP (1) ,

where {W (x) , x ≥ 0} is a standard Wiener process, B(1)
γ0 is as in (4.20) andΨ(1)

α,γ0 (x)=
d`α

γ0,J (x) /dγ. From Assertion (4.21) of Lemma 4.2, we have π(2)
k

(
γ0

) P→ ηγ0 there-

fore (
1+ 1

α

)
ηγ0

p
k

(
γ̂k,α,J −γ0

)→N
(
λB(1)

γ0 ,σ2
γ0

)
,

as n →∞, where

σ2
γ0

:=
∫ ∞

1

∫ ∞

1

(
min

(
x−1/γ0 , y−1/γ0

)− x−1/γ0 y−1/γ0
)

×J
(
x−1/γ0

)
J

(
y−1/γ0

)
dΨ(1)

α,γ0 (x)dΨ(1)
α,γ0 (y) ,

which equals
∫ 1

0
∫ 1

0 (min(s, t)− st) J (s) J (t)dΨ(1)
α,γ0 (s−γ0)dΨ(1)

α,γ0 (t−γ0) . This completes

the proof of Theorem 4.2. �

4.5 Influence function

The infulence function

IFt
(
x,T,Lγ

)= 1 (x > t) J

(
F (xt)

F (t)

)
uγ,J (x)`αγ,J (x)−∫ ∞

1 uγ,J (z)`1+α
γ,J (z)dz∫ ∞

1 u2
γ,J (z)`1+α

γ,J (z)dz
.

First its worth noting that∫ ∞

1
uγ,J (z)`1+α

γ,J (z)dz <∞ and 0 6=
∫ ∞

1
u2
γ,J (z)`1+α

γ,J (z)dz <∞.

For all large t, we have

IFt
(
x,T,Lγ

)= 1 (x > t) J
(
x−1/γ)uγ,J (x)`αγ,J (x)−∫ ∞

1 uγ,J (z)`1+α
γ,J (z)dz∫ ∞

1 u2
γ,J (z)`1+α

γ,J (z)dz
+ o (1) ,

uniformly on x ≥ 1. We show that
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1 (x > t) J
(
x−1/γ)uγ,J (x)`αγ,J (x)→ 0, as x →∞,

then

lim
x→∞ lim

t→∞IFt
(
x,T,Lγ

)=−
∫ ∞

1 uγ,J (z)`1+α
γ,J (z)dz∫ ∞

1 u2
γ,J (z)`1+α

γ,J (z)dz
,

this means that IFt
(
x,T,Lγ

)
is asymptotically bounded.

4.6 Simulation study

We consider three distributions in the Fréchet domain of attraction namely the

Fréchet and Burr. For each distribution F, we generated samples from a mixture

contaminated model: 1 E F EG where G is a nuisance distribution. Specifically,

G is chosen in two ways: from the same distribution as F but with different

parameters and a different distribution from F. In each case, we assess the

robustness of the estimators under different contamination scenarios with E 0:05

and E 0:15: Furthermore, to assess the effect of the robustness parameter, we take

three values of a, at 0.1, 0.5 and 1 representing levels for increased robustness.

4.7 Important lemma

Lemma 4.1. Assume that F satisfies the condition (1.8) and let J be a weight
function fulfilling assumptions [A1] and (4.8) , then

0= 1
k

k∑
i=1

J
(

i
k

)
d

dγ
log`γ,J

(
Xn−i+1:n

Xn−k:n

)

= γ−1
∫ 1

0
J (s) log sds+γ−2 1

k

k∑
i=1

J
(

i
k

)
log

Xn−i+1:n

Xn−k:n
+OP

(
k−1) , as n →∞,

and therefore

γ̂k,0,J =
(∫ 1

0
J (s) log s−1ds

)−1 1
k

k∑
i=1

J
(

i
k

)
log

Xn−i+1:n

Xn−k:n
+OP

(
k−1) .
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Figure 4.1: Plotting the estimators γ̂α,k,J (red line) and γ̂α,k,1 (blue line) for a
Fréchet distribution with tail index: γ= 0.5 and different values of α, based on 20
samples of size 1000.

Proof. We have

1
k

k∑
i=1

J
(

i
k

)
d

dγ
log`γ,J

(
Xn−i+1:n

Xn−k:n

)
= n

k

∫ ∞

1
J

(n
k

Fn (xXn−k:n)
) d

dγ
log`γ,J (x)dFn (xXn−k:n)=: Ik,
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Figure 4.2: Plotting the estimators γ̂α,k,J (red line) and γ̂α,k,1 (blue line) for a Burr
distribution with tail index: γ= 0.5 and diffrent values of α, based on 20 samples
of size 1000.
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Figure 4.3: Absolute bias (left panel) and MSE (right panel) of γ̂α,k,J (red) and
γ̂α,k,1 (blue), corresponding to Frechet distribution with tail index: γ = 0.4 and
diffrent values of α ,based on 20 samples of size 300.
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Figure 4.4: Absolute bias (left panel) and MSE (right panel) of γ̂α,k,J (red) and
γ̂α,k,1 (blue), corresponding to Fréchet distribution with tail index: γ = 1.5 and
diffrent values of α ,based on 20 samples of size 300.
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Figure 4.5: Absolute bias (left panel) and MSE (right panel) of γ̂α,k,J (red) and
γ̂α,k,1 (blue), corresponding to Burr distribution with tail index: γ= 0.4 and diffrent
values of α ,based on 20 samples of size 300.
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Figure 4.6: Absolute bias (left panel) and MSE (right panel) of γ̂α,k,J (red) and
γ̂α,k,1 (blue), corresponding to Burr distribution with tail index: γ= 1.5 and diffrent
values of α ,based on 20 samples of size 300.

103



A WEIGHTED MDPD ESTIMATOR

50 100 150 200 250

0.
00

0.
10

0.
20

A
B

IA
S

 

α = 0.1

50 100 150 200 250

0.
00

0.
02

0.
04

0.
06

M
S

E

50 100 150 200 250

0.
00

0.
10

0.
20

A
B

IA
S

 

α = 0.5

50 100 150 200 250

0.
00

0.
02

0.
04

M
S

E

50 100 150 200 250

0.
00

0.
10

0.
20

A
B

IA
S

 

α = 1

50 100 150 200 250

0.
00

0.
02

0.
04

0.
06

M
S

E

Figure 4.7: Comparaison in terms of absolute bias (left panel) and MSE (right
panel) of the two estimators γ̂k,α,J ( red) and γ̂k,J (blue) in the both cases when the
estimators are pure ( solid line) and contaminated (dashed line), corresponding
to Burr distribution with tail index γ= 0.5 and different values of α, based on 20
samples of size 500
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Figure 4.8: Comparaison in terms of absolute bias (left panel) and MSE (right
panel) of the two estimators γ̂k,α,J ( red) and γ̂k,J ( blue) in the both cases when
the estimators are pure ( solid line ) and cntaminated (dashed line), corresponding
to Frechet distribution with tail index γ= 0.5 and different values of α, based on
20 samples of size 500.
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where Fn being the empirical cdf pertaining to the sample X1, ..., Xn. Recall that

`γ,J (x)= J
(
x−1/γ)`γ (x) and let us decompose Ik into the sum of

I(1)
k := n

k

∫ ∞

1
J

(n
k

Fn (xXn−k:n)
) d

dγ
log J

(
x−1/γ

)
dFn (xXn−k:n)

and

I(2)
k := n

k

∫ ∞

1
J

(n
k

Fn (xXn−k:n)
) d

dγ
log`γ (x)dFn (xXn−k:n) .

Next we show that I(1)
k

P→ γ−1 ∫ 1
0 J (s) log sds+γ−1, as n →∞. It is clear that

I(1)
k =

∫ ∞

1

d
dγ

log J
(
x−1/γ

)
dϕ

(n
k

Fn (xXn−k:n)
)
,

where ϕ (s) := ∫ 1
s J (s)dt. Observe that

d
dγ

log J
(
x−1/γ

)
= x−1/γ

γ

J′ (x−1/γ)
J

(
x−1/γ

) log x =−1
γ

L
(
x−1/γ

)
,

where L (s) := (
J′ (s) /J (s)

)
s log s, therefore

I(1)
k =−1

γ

∫ ∞

1
L

(
x−1/γ

)
dϕ

(n
k

Fn (xXn−k:n)
)
.

By assumption (4.8) we have sup0<s<1 |L (s)| <∞, this implies that L (0+)<∞.

Then using an integration by parts, yields

γI(1)
k =−L (0+)+

∫ ∞

1
ϕ

(n
k

Fn (xXn−k:n)
)
dL

(
x−1/γ

)
.

By a change of variables, we write

γI(1)
k =−L (0+)−

∫ 1

0
ϕ

(n
k

Fn
(
s−γXn−k:n

))(
d
ds

L (s)
)

ds.

Observe that

ϕ
(n

k
Fn (s−γXn−k:n)

)
=

{
ϕ

(n
k

Fn (s−γXn−k:n)
)
−ϕ (s)

}
+ϕ (s)

=: ωn (s)+ϕ (s) .

Note that dϕ (s) /ds =−J (s) , then by the mean value theorem, yields

ωn (s)=−
{n

k
Fn

(
s−γXn−k:n

)− s
}

J (ξn (s)) ,
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where ξn (s) is between s and
n
k

Fn (s−γXn−k:n) . The function J being bounded,

then there exists a constant M1 > 0, such thatωn (s)=OP (1)
(n

k
Fn (s−γXn−k:n)− s

)
.

From weak approximation (4.23) , we infer that for a sufficiently small ε > 0,
n
k

Fn (s−γXn−k:n)− s = sεOP
(
k−1) , uniformly over 0 < s < 1, thus ωn (s) = oP (sε) ,

leading to

ϕ
(n

k
Fn

(
s−γXn−k:n

))=ϕ (s)+ sεoP
(
k−1) ,

uniformly over 0< s < 1. Then we showed that

γI(1)
k =−L (0+)−

∫ 1

0
ϕ (s)

d
ds

L (s)ds+OP
(
k−1)∫ 1

0
sε

∣∣L ′ (s)
∣∣ds,

where L (0+) := limε↓0 L (ε) . From assumption (4.8) , we have
∫ 1

0
∣∣L ′ (s)

∣∣ds <∞,

thus

γI(1)
k =−L (0+)−

∫ 1

0
ϕ (s)dL (s)+OP

(
k−1) .

By using an integration by parts, we get

γI(1)
k =−

∫ 1

0
J (s)L (s)ds+ oP (1)=: r+OP

(
k−1) .

We have L (s)= (
J′ (s) /J (s)

)
s log s, then r =−

∫ 1

0
J′ (s) s log sds, which by an inte-

gration by parts becomes
∫ 1

0
J (s) log sds+1, thereby

I(1)
k = 1

γ

∫ 1

0
J (s) log sds+ 1

γ
+OP

(
k−1) . (4.16)

Let us now consider the term I(2)
k , which equals∫ ∞

1
J

(
Fn (xXn−k:n)

Fn (xXn−k:n)

){
− 1
γ2

(
γ− log x

)}
d

Fn (xXn−k:n)

Fn (xXn−k:n)

=−γ−1
∫ ∞

1
J

(
Fn (xXn−k:n)

Fn (xXn−k:n)

)
d

Fn (xXn−k:n)

Fn (xXn−k:n)

+γ−2
∫ ∞

1
J

(
Fn (xXn−k:n)

Fn (xXn−k:n)

)
log xd

Fn (xXn−k:n)

Fn (xXn−k:n)
.

Observe that

−γ−1
∫ ∞

1
J

(
Fn (xXn−k:n)

Fn (xXn−k:n)

)
d

Fn (xXn−k:n)

Fn (xXn−k:n)
=−γ−1

∫ 1

0
J (s)ds =−γ−1,
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it follows that

I(2)
k =−γ−1 +γ−2 1

k

k∑
i=1

J
(

i
k

)
log

Xn−i+1:n

Xn−k:n
. (4.17)

Combining two equations (4.16) and (4.17) together yields

Ik = I(1)
k + I(2)

k

= γ−1
∫ 1

0
J (s) log sds+γ−2 1

k

k∑
i=1

J
(

i
k

)
log

Xn−i+1:n

Xn−k:n
+OP

(
k−1) ,

as n →∞, as sought. �

Lemma 4.2. Let X1, ..., Xn be a sample of iid random variables from a distribu-
tion function satisfying (4.9) . Let J be a continuous function fulfilling assump-
tions [A1]− [A2] and k be a sequence of integers such that k →∞, k/n → 0 andp

k a (n/k)→λ ∈R. Then, in the probability space (Ω,A ,P) there exists a standard
Wiener process {W (x) , x ≥ 0} , such that

−
(
1+ 1

α

)−1p
kπ(1)

k

(
γ0

)
=

∫ ∞

1

(
W

(
x−1/γ0

)
− x−1/γ0W (1)

)
J

(
x−1/γ0

)
dΨ(1)

γ0,α (x)+λB(1)
γ0 + oP (1) , (4.18)

and

−
(
1+ 1

α

)−1p
k

(
π(2)

k

(
γ0

)−ηγ0

)
(4.19)

=
∫ ∞

1

(
W

(
x−1/γ0

)
− x−1/γ0W (1)

)
J

(
x−1/γ0

)
dΨ(2)

γ0,α (x)+λB(2)
γ0 + oP (1) ,

as n →∞, where ηγ0 is as in (4.13) ,

B(m)
γ0 :=

∫ ∞

1
x−1/γ0

xρ/γ0 −1
ργ0

J
(
x−1/γ0

)
dΨ(m)

γ0,α (x) , m = 1,2. (4.20)

and Ψ(m)
γ0,α (x) := dm`α

γ0,J (x) /dγm denotes the m-th derivative of function γ→ `α
γ,J in

γ= γ0. Moreover,

π(1)
k

(
γ0

) P→ 0 and π(2)
k

(
γ0

) P→ ηγ0 , as n →∞. (4.21)
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Proof. Recall that

π(m)
k

(
γ0

)
:=

∫ ∞

1
Ψ(m)
γ0,α+1 (x)dx−

(
1+ 1

α

)
A(m)

k

(
γ0

)
and

A(m)
k

(
γ0

)
:= 1

k

k∑
i=1

J
(

i
k

)
Ψ(m)
γ0,α

(
Xn−i+1:n

Xn−k:n

)
, m = 1,2. (4.22)

Let us rewrite A(1)
k

(
γ0

)
into

∫ ∞

1
J

(
Fn (xXn−k:n)

Fn (Xn−k:n)

)
Ψ(1)
γ0,α (x)d

Fn (xXn−k:n)

Fn (Xn−k:n)
,

where Fn being the empirical cdf pertaining to the sample X1, ..., Xn. It is clear

that

A(m)
k

(
γ0

)=−
∫ ∞

1
Ψ(1)
γ0,α (x)dϕ

(
Fn (xXn−k:n)

Fn (Xn−k:n)

)
,

where ϕ (v) := ∫ v
0 J (t)dt. From Lemma 4.6 we have Ψ(1)

γ0,α (1)=Ψ(1)
γ0,α (∞)= 0, then

using an integration by parts yields

A(m)
k

(
γ0

)= ∫ ∞

1
ϕ

(
Fn (xXn−k:n)

Fn (Xn−k:n)

)
dΨ(1)

γ0,α (x) .

By Lemma 4.3, we have∫ ∞

1

d
dγ

`α+1
γ0,J (x)dx =

(
1+ 1

α

)∫ ∞

1
`γ0,J (x)

d
dγ

`αγ0,J (x)dx.

Recall that `γ0,J (x)= J
(
x−1/γ0

)
`γ0 (x)= γ−1

0 x−1/γ0−1J
(
x−1/γ0

)
, it follows that∫ ∞

1

d
dγ

`α+1
γ0,J (x)dx =−

(
1+ 1

α

)∫ ∞

1
J

(
x−1/γ0

) d
dγ

`αγ0,J (x)dx−1/γ0 ,

which equals −(
1+ 1

α

)∫ ∞
1 Ψ(1)

γ0,α (x)dϕ
(
x−1/γ0

)
. By using an integration by parts

yields ∫ ∞

1

d
dγ

`α+1
γ0,J (x)dx =

(
1+ 1

α

)∫ ∞

1
ϕ

(
x−1/γ0

)
dΨ(1)

γ0,α (x) .

Let us now write

−
(
1+ 1

α

)−1
π(1)

k

(
γ0

)= ∫ ∞

1

{
ϕ

(n
k

Fn (xXn−k:n)
)
−ϕ

(
x−1/γ

)}
dΨ(1)

γ0,α (x) .
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Applying Taylor’s expansion, we may decompose the later quantity into the sum

of

T(1)
k :=

∫ ∞

1

(n
k

Fn (xXn−k:n)− x−1/γ0
)

J
(
x−1/γ0

)
dΨ(1)

γ0,α (x)

and

R(1)
k := 1

2

∫ ∞

1

(n
k

Fn (xXn−k:n)− x−1/γ0
)2

J′ (dn (x))dΨ(1)
γ0,α (x) ,

where dn (x) is between x−1/γ0 and n
k Fn (xXn−k:n) . It is clear that

p
k T(1)

k =
∫ ∞

1
Dk (x) J

(
x−1/γ0

)
dΨ(1)

γ0,α (x) ,

where Dk (x) :=p
k

(
n
k Fn (xXn−k:n)− x−1/γ0

)
, x ≥ 1. In Proposition 4.1 we showed

that, on the probability space (Ω,A ,P) , there exists a standard Wiener process

{W (x) , x ≥ 0} , such that for x ≥ 1 and 0< ε< 1/2,

sup
x≥1

x(1/2−ε)
∣∣∣∣Dk (x)−Γ (x;W)− x−1/γ0

xρ/γ0 −1
ργ0

p
k A0 (n/k)

∣∣∣∣ P→ 0, (4.23)

as n →∞, where Γ (x;W) :=W
(
x−1/γ0

)−x−1/γ0W (1) and A0 (t)∼ a (t) , as t →∞. Let

us now decompose
p

k T(1)
k into the sum of

N(1) :=
∫ ∞

1
Γ (x;W) J

(
x−1/γ0

)
dΨ(1)

γ0,α (x) ,

B(1)
k :=

p
k A0 (n/k)

∫ ∞

1
x−1/γ0

xρ/γ0 −1
ργ0

J
(
x−1/γ0

)
dΨ(1)

γ0,α (x)

and

S(1)
k :=

∫ ∞

1

(
Dk (x)−Γ (x;W)−

∫ ∞

1
x−1/γ0

xρ/γ0 −1
ργ0

p
k A0 (n/k)

)
× J

(
x−1/γ0

)
dΨ(1)

γ0,α (x) .

Next we show that S(1)
k

P→ 0 as n →∞. Applying Gaussian approximation (4.23)
yields

S(1)
k = oP (1)

∫ ∞

1
x−(1/2−ε)J

(
x−1/γ0

)∣∣∣∣ d
dx
Ψ(1)
γ0,α (x)

∣∣∣∣dx.

From Lemma 4.5, we have supx≥1

∣∣∣ d
dxΨ

(1)
γ0,α (x)

∣∣∣<∞, it follows that

S(1)
k = oP (1)

∫ ∞

1
x−(1/2−ε)J

(
x−1/γ0

)
dx.
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The function J is bounded then the last integral is finite and therefore S(1)
k =

oP (1) . Let us now consider the term R(1)
k . It is clear that there exists a constant

c > 0, such that

p
k

∣∣∣R(1)
k

∣∣∣≤ ck−1/2
∫ ∞

1
D2

k (x)
∣∣∣∣ d
dx
Ψ(1)
γ0,α (x)

∣∣∣∣dx.

From Lemma 4.7, we have supx≥1 x(1−2ε)D2
k (x)=OP (1) , therefore

p
k R(1) =OP

(
k−1/2

)∫ ∞

1
x−1+2ε

∣∣∣∣ d
dx
Ψ(1)
γ0,α (x)

∣∣∣∣dx.

Since supx≥1 x−ε
∣∣ d

dxΨ
(1) (x)

∣∣ < ∞, hence
p

k R(1)
k = oP (1) , as n → ∞. Let us now

consider the asymptotic bias

B(1)
k =

p
k A0 (n/k)

∫ ∞

1
x−1/γ0

xρ/γ0 −1
ργ0

J
(
x−1/γ0

)
dΨ(1)

γ0,α (x) .

Since
p

k A0 (n/k)→λ<∞, then B(1)
k = (1+ o (1))λB(1)

γ0 , as n →∞, where B(1)
γ0 is as

in (4.20) . Since J is bounded, then is easy to verify that the previous integral is

finite, therefore B(1)
k =λB(1)

γ0 + o (1) . In summary, we showed that

−
(
1+ 1

α

)−1p
kπ(1)

k

(
γ0

)
=

∫ ∞

1

(
W

(
x−1/γ0

)
− x−1/γ0W (1)

)
J

(
x−1/γ0

)
dΨ(1)

γ0,α (x)+λB(1)
γ0 + oP (1) ,

thus (4.18) holds. Let us now prove assertion (4.19). From Lemma 4.3 we have∫ ∞

1

d2

dγ2`
α+1
γ0,J (x)dx =

(
1+ 1

α

)∫ ∞

1
`γ0 (x)Ψ(2)

γ0,α (x)dx+ηγ0 ,

it follows that(
1+ 1

α

)−1 (
π(2)

k

(
γ0

)−ηγ0

)
=

∫ ∞

1
`γ0 (x)Ψ(2)

γ0,α (x)dx− A(2)
k

(
γ0

)
.

Using similar arguments as used in the proof of assertion (4.18) , we also show

that the right side of the previous equation equals∫ ∞

1

(
W

(
x−1/γ0

)
− x−1/γ0W (1)

)
J

(
x−1/γ0

)
dΨ(2)

γ0,α (x)+λB(2)
γ0 + oP (1) , as n →∞,
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thus (4.19) holds too. To show (4.20) , let us first note that

E
∣∣∣∣∫ ∞

1

(
W

(
x−1/γ0

)
− x−1/γ0W (1)

)
J

(
x−1/γ0

)
dΨ(m)

γ0,α (x)
∣∣∣∣

≤
∫ ∞

1

∣∣∣B (
x−1/γ0

)∣∣∣ J
(
x−1/γ0

)∣∣∣∣∣dΨ(m)
γ0,α (x)
dx

∣∣∣∣∣dx,

where B (s) :=W (s)− sW (1) is a Brownian bridge. Note that

E
∣∣∣B (

x−1/γ0
)∣∣∣≤ x−1/(2γ0) ≤ 1, for x ≥ 1,

and J is bounded, then the right-side of the previous inequality is less than

or equal to This implies that there exist a constant 0 < M < ∞, such that

M
∫ ∞

1

∣∣∣dΨ(m)
γ0,α (x) /dx

∣∣∣dx, which from Lemma 4.4 is finite. By the last argument, it

is obvious that
∣∣∣B(m)

γ0

∣∣∣<∞, thereby

p
kπ(1)

k

(
γ0

)=OP (1)
p

k
(
π(2)

k

(
γ0

)−ηγ0

)
,

therefore π(1)
k

(
γ0

)= oP (1)=
(
π(2)

k

(
γ0

)−ηγ0

)
, because k−1 → 0, as n →∞ as sought.

�

Lemma 4.3. For any α> 0, we have

d
dγ

`α+1
γ,J (x)=

(
1+ 1

α

)
`γ,J (x)

d
dγ

`αγ,J (x)

and

d2

dγ2`
α+1
γ (x)=

(
1+ 1

α

)
`γ (x)

d2

dγ2`
α
γ (x)+ (1+α)

(
d

dγ
`γ (x)

)2
`α−1
γ (x) .

Proof. The proof of first equation is obvious. Indeed

d
dγ

`α+1
γ,J (x)= (1+α)`αγ,J (x)

d
dγ

`γ,J (x)=
(
1+ 1

α

)
`γ,J (x)

d
dγ

`αγ,J (x) .

For the second, we write

d2

dγ2`
α+1
γ (x)= d

dγ

[
(1+α)

d
dγ

`γ (x)`αγ (x)
]

= (1+α)
[

d2

dγ2`γ (x)`αγ (x)+α
(

d
dγ

`γ (x)
)2
`α−1
γ (x)

]
.
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On the other hand

`γ (x)
d2

dγ2`
α
γ (x)=α`γ (x)

[
d2

dγ2`γ (x)`α−1
γ (x)+ (α−1)

(
d

dγ
`γ (x)

)2
`α−2
γ (x)

]
,

it follows that(
1+ 1

α

)
`γ (x)

d2

dγ2`
α
γ (x)

= (α+1)
[
`γ (x)

d2

dγ2`γ (x)`α−1
γ (x)+ (α−1)

(
d

dγ
`γ (x)

)2
`α−1
γ (x)

]
.

Thus

d2

dγ2`
α+1
γ (x)=

(
1+ 1

α

)
`γ (x)

d2

dγ2`
α
γ (x)+ (1+α)

(
d

dγ
`γ (x)

)2
`α−1
γ (x) .

�

Lemma 4.4. There exists a constant 0< Mγ <∞, such that for every z ≥ 1∣∣∣∣ dm

dγm`
α
γ,J (z)

∣∣∣∣≤ Mγz−α(1+1/γ)
m∑

j=0
log j z, α> 0.

Moreover ∫ ∞

1

dm

dγm`
α
γ,J (z)dz <∞, sup

z≥1

∣∣∣∣ d
dz

dm

dγm`
α
γ,J (z)

∣∣∣∣<∞,

and
∫ ∞

1

∣∣∣ d
dz

dm

dγm`
α
γ,J (z)

∣∣∣dz <∞.

Proof. Observe that the first two derivatives of `αγ are

d
dγ

`αγ (z)=αγ−3−αz−α(1+1/γ) (
log z−γ)

,

and
d2

dγ2`
α
γ (z)=αγ−5−αz−α(1+1/γ) (

(2+α)γ2 −3γ log z−α log2 z
)
.

Thus we may easily shown that or every z ≥ 1

dm

dγm`
α
γ (z)= z−α(1+1/γ)

m∑
j=0

a j,γ,α log j z, α> 0.
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for some constants 0< a j,γ,α <∞. We have `γ,J (z)= J
(
x−1/γ)`γ (z) , so dm

dγm`
α
γ,J (z)

will be linear combinations of
{

z−α(1+1/γ)−βm logm z
}

0≤m≤3
and derivatives{

dm

dzm J
(
x−1/γ)}

0≤m≤3
, for some sequence of constants βm > 0.

In other terms

dm

dγm`
α
γ,J (z)= z−α(1+1/γ)

m∑
j=0

b j,γ,α,J log j z, α> 0, (4.24)

for some constants 0< b j,γ,α <∞. Since z−βm ≤ 1, for every z ≥ 1 and J and their

four three derivatives are bounded, then using equation (4.24) , we show that

there exists a constant 0< Mγ <∞ such that for every z ≥ 1∣∣∣∣ dm

dγm`
α
γ,J (z)

∣∣∣∣≤ Mz−α(1+1/γ)
m∑

j=0
log j z, m = 1,2,3,4,

It is obvious that supz≥1 z−α(1+1/γ)+ε log z j, for every sufficiently small 0 < ε <
α

(
1+1/γ

)
, which implies that∣∣∣∣∫ ∞

1

dm

dγm`
α
γ,J (z)dz

∣∣∣∣≤ Mγ

∫ ∞

1
z−εdz <∞.

Using equation (4.24) and an elementary calculus yields

d
dz

dm

dγm`
α
γ,J (z)= γ−1z−α(1+1/γ)−1

m∑
j=1

b j,γ,α

(
γ j log j−1 z−α(

1+γ)
log j z

)
.

Since supz≥1 z−α(1+1/γ)−1 log j z is finite, for j = 0, ...,m, then supz≥1

∣∣∣ d
dz

dm

dγm`
α
γ,J (z)

∣∣∣
is finite as well. �

Lemma 4.5. We have

d3

dγ3`
α+1
γ,J (z)=

(
1+ 1

α

)
`γ,J (z)

d3

dγ3`
α
γ,J (z)+ gγ (z) , α> 0,

where z → gγ (z) is a function such that
∫ ∞

1 gγ (z)dz <∞.

Proof. It is easy to check that

d3

dγ3`
α+1
γ,J (z)=

(
1+ 1

α

)
`γ,J (z)

d3

dγ3`
α
γ,J (z)+ gγ (z) ,
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where

gγ (z) :=
(
1+ 1

α

)
d

dγ
`γ,J (z)

d2

dγ2`
α
γ,J (z)

+ (1+α)`α−2
γ,J (z)

d
dγ

`γ,J (z)
{

2`γ,J (z) d2

dγ2`
α
γ,J (z)+ (α−1)

(
d

dγ
`γ,J (z)

)2}
.

Using Lemma 4.6, we show that indeed
∫ ∞

1 gγ (z)dz <∞ that we omit further

details. �

Lemma 4.6. Given a consistent estimator γ̂ of γ0, we have π(3)
k

(
γ̂
)=OP (1) .

Proof. Let us first show that π(3)
k

(
γ0

)=OP (1) . Recall that

π(3)
k

(
γ0

)= ∫ ∞

1

d3

dγ3`
α+1
γ0,J (x)dx−

(
1+ 1

α

)
1
k

k∑
i=1

J
(

i
k

)
d3

dγ3`
α
γ0,J

(
Xn−i+1:n

Xn−k:n

)
.

Making use of Lemma 4.5, we may rewrite π(3)
k

(
γ0

)
into the sum of

∫ ∞
1 gγ0 (x)dx

and
(
1+ 1

α

)
A(3) (γ0

)
, where

A(3) (γ0
)

:=
∫ ∞

1

d
dγ

`γ0,J (x)
d3

dγ3`
α
γ0,J (x)dx− 1

k

k∑
i=1

J
(

i
k

)
d3

dγ3`
α
γ0,J

(
Xn−i+1:n

Xn−k:n

)
.

By similar arguments as those used in the proof of Lemma 4.2, we also show that

A(3) (γ0
) P→ 0, that we omit further details. So π(3)

k

(
γ0

) P→ ∫ ∞
1 gγ0 (x)dx <∞, thus

π(3)
k

(
γ0

)=OP (1) . Next we prove that π(3)
k

(
γ̂0

)−π(3)
k

(
γ0

)= oP (1) , as n →∞. Indeed,

let us write

π(3)
k

(
γ̂
)−π(3)

k

(
γ0

)
=

∫ ∞

1

{
d3

dγ3`
α+1
γ̂,J (x)− d3

dγ3`
α+1
γ0,J (x)

}
dx

−
(
1+ 1

α

)
1
k

k∑
i=1

J
(

i
k

){
d3

dγ3`
α
γ̂,J

(
Xn−i+1:n

Xn−k:n

)
− d3

dγ3`
α
γ0,J

(
Xn−i+1:n

Xn−k:n

)}
.

Using the mean value theorem, yields∫ ∞

1

{
d3

dγ3`
α+1
γ̂,J (x)− d3

dγ3`
α+1
γ0,J (x)

}
dx = (

γ̂−γ0
)∫ ∞

1

d4

dγ4`
α+1
γ̂∗0 ,J (x)dx,
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where γ̂∗0 is between γ̂ and γ. Recall that γ̂ P→ γ0 and by Lemma 4.4 we have∫ ∞
1

d4

dγ4`
α+1
γ̂∗0 ,J (x)dx =OP (1) , thus

∫ ∞

1

{
d3

dγ3`
α+1
γ̂,J (x)− d3

dγ3`
α+1
γ0,J (x)

}
dx = oP (1) .

On the other hand

1
k

k∑
i=1

J
(

i
k

){
d3

dγ3`
α
γ̂,J

(
Xn−i+1:n

Xn−k:n

)
− d3

dγ3`
α
γ0,J

(
Xn−i+1:n

Xn−k:n

)}

=
∫ ∞

1
J

(
Fn (xXn−k:n)

Fn (Xn−k:n)

){
d3

dγ3`
α
γ̂,J (x)− d3

dγ3`
α
γ0,J (x)

}
d

Fn (xXn−k:n)

Fn (Xn−k:n)
.

Once again making use of the mean value theorem, we write

(
γ̂−γ0

)∫ ∞

1
J

(
Fn (xXn−k:n)

Fn (Xn−k:n)

)
d4

dγ4`
α
γ∗0 ,J (x)d

Fn (xXn−k:n)

Fn (Xn−k:n)
,

where γ∗0 is between γ̂ and γ0. Using similar arguments as above, we show that

the previous quantity equals oP (1)
∫ 1

0 J (s)ds = oP (1) . Thus we showed that

π(3)
k

(
γ̂
)−π(3)

k

(
γ0

)= oP (1) ,

leading to π(3)
k

(
γ̂
)=OP (1) as well. �

Lemma 4.7. For sufficiently small 0< ε< 1/2, we have

sup
x≥1

x1/2−ε |Dk (x)| =OP (1) , as n →∞.

Proof. Let 0 < ε< 1/2 be sufficiently small so that 0 < δ := γ0 (1/2−ε) < 1/2 and

rewrite Dk (x) into the sum of Γ (x;W) and[
Dk (x)−

{
W

(
x−1/γ0

)
− x−1/γ0W (1)

}
− x−1/γ0

xρ/γ0 −1
ργ0

p
k A0 (n/k)

]
+

[
x−1/γ0

xρ/γ0 −1
ργ0

p
k A0 (n/k)

]
=: Vk,1 (x)+Vk,2 (x) .
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From weak approximation (4.23) , we have supx≥1 x(1/2−ε) ∣∣Vk,1 (x)
∣∣ = oP (1) . On

the other hand
p

k A0 (n/k) → λ as n →∞, then supx≥1 x(1/2−ε) ∣∣Vk,2 (x)
∣∣ = OP (1) ,

therefore

sup
x≥1

x(1/2−ε) |Dk (x)| ≤ sup
x≥1

x(1/2−ε)
∣∣∣W (

x−1/γ0
)
− x−1/γ0W (1)

∣∣∣+OP (1) .

Note that W (1)=OP (1) , it follows that

sup
x≥1

x1/2−ε |Γ (x;W)| ≤ sup
0<s≤1

s−δ |W (s)|+OP (1) .

In view of Lemma 3.2 in [? ], we infer that sup0<s≤1 s−δ |W (s)| is stochastically

bounded which entails

sup
x≥1

x(1/2−ε) |Γ (x;W)| =OP (1)= sup
x≥1

x(1/2−ε) |Dk (x)| .

�

Proposition 4.1. On the probability space (Ω,A ,P) there exists a standard
Wiener process {W (x) , x ≥ 0} , such that for x ≥ 1 and 0< ε< 1/2,

sup
x≥1

x(1/2−ε)
∣∣∣∣Dk (x)−Γ (x;W)− x−1/γ0

xρ/γ0 −1
ργ0

p
k A0 (n/k)

∣∣∣∣ P→ 0, (4.25)

as n →∞, where Γ (x;W) :=W
(
x−1/γ0

)− x−1/γ0W (1) and A0 (t)∼ a (t) , as t →∞.

Proof. Let us set D̃k (z) :=p
k

(
n
k Fn (zak)− z−1/γ

)
, for z ≥ 1, where ak :=U (n/k)

and let us decompose Dk (x) into the sum of

En1 (x) := D̃k

(
x

Xn−k:n

ak

)
and En2 (x) := x−1/γpk

((
Xn−k:n

ak

)−1/γ
−1

)
.

From Theorems 5.1.4 page 161 in [24], we have, on the probability space (Ω,A ,P)
there exists a standard Wiener process {W (z) , z ≥ 0} , such that for x ≥ 1 and

0< ε< 1/2,

sup
z≥1

z(1/2−ε)
∣∣∣∣D̃k (z)−W

(
z−1/γ0

)
− z−1/γ0

zρ/γ0 −1
ργ0

p
k A0 (n/k)

∣∣∣∣ P→ 0, (4.26)
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as n →∞, where A0 (t)∼ a (t) , as t →∞. It is clear that

sup
x≥1

x(1/2−ε)
∣∣∣En1 (zn (x))−W

(
(zn (x))−1/γ0

)
− (zn (x))−1/γ0

(zn (x))ρ/γ0 −1
ργ0

p
k A0 (n/k)

∣∣∣∣ ,

=
(

ak

Xn−k:n

)(1/2−ε)
sup

zn≥ Xn−k:n
ak

(zn (x))(1/2−ε)
∣∣∣D̃k (zn (x))−W

(
(zn (x))−1/γ0

)

− (zn (x))−1/γ0
(zn (x))ρ/γ0 −1

ργ0

p
k A0 (n/k)

∣∣∣∣ ,

where zn (x) := x Xn−k:n
ak

. We have Xn−k:n/ak
P→ 1, this means that the probability of

An,ε := {|Xn−k:n/ak −1| < ε} tends to 1 as n →∞, for any small ε> 0. Then in the

set An,ε the right-side of the previous equation is less than or equal to

sup
zn(x)≥1−ε

(zn (x))(1/2−ε)
∣∣∣D̃k (zn (x))−W

(
(zn (x))−1/γ0

)
− (zn (x))−1/γ0

(zn (x))ρ/γ0 −1
ργ0

p
k A0 (n/k)

∣∣∣∣ ,

which by equals oP (1) as n →∞. This means that

sup
x≥1

x(1/2−ε)
∣∣∣En1 (x)−W

(
(zn (x))−1/γ0

)
− (zn (x))−1/γ0

(zn (x))ρ/γ0 −1
ργ0

p
k A0 (n/k)

∣∣∣∣= oP (1) .

Since zn (x) = (1+ oP (1)) x, uniformly over x ≥ 1,
p

k A0 (n/k) = OP (1) and ρ < 0,

then it is easy to check that

(zn (x))(1/2−ε)−1/γ0
(zn (x))ρ/γ0 −1

ργ0
= x(1/2−ε)−1/γ0

xρ/γ0 −1
ργ0

+ oP (1) ,

uniformly over x ≥ 1. [6] (page 235) showed that with probability one∣∣∣W (
(zn (x))−1/γ0

)
−W

(
x−1/γ0

)∣∣∣≤ 2εx−(1−ε)/(2γ0),

uniformly over x ≥ 1, for any small ε> 0, as n →∞. Note that for sufficiently small

ε> 0, x−(1−ε)/(2γ0)+(1/2−ε) < 1, then (almost surely) uniformly over x ≥ 1

x(1/2−ε)
∣∣∣W (

(zn (x))−1/γ0
)
−W

(
x−1/γ0

)∣∣∣≤ 2ε,
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Therefore

sup
x≥1

x(1/2−ε)
∣∣∣En1 (x)−W

(
x−1/γ0

)
−x−1/γ0

xρ/γ0 −1
ργ0

p
k A0 (n/k)

∣∣∣∣= oP (1) . (4.27)

For the term En2 (x) note that by Theorem 2.4.8 in [24],

p
k (Xn−k:n/ak −1)−γ0W (1)= oP (1) ,

it follows that p
k

(
(Xn−k:n/ak)−1/γ0 −1

)
+W (1)= oP (1) ,

thus supx≥1 x(1/2−ε) ∣∣En1 (x)+ x−1/γ0W (1)
∣∣ = oP (1) . Combining the last statement

and (4.27) , the weak approximation (4.25) comes. �
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CONCLUSION

As we have seen throughout this thesis, we proposed a new method to estimate

the tail index under randomly right truncated data, which is the so-called

semi-parametric estimation that gives us an estimator with more efficiency than

the existing ones. Also, we proved its consistency and asymptotic normality by

using a weak approximation of the corresponding tail empirical process, and to

guarantee the best performance of the proposed estimator we made the simulation

study in terms of bias and rmse.

The other important point is the introduction of a bias reduction to a kernel

estimator of the tail index of randomly right-truncated Pareto-type distributions.

The asymptotic normality of the derived estimator is established by assuming the

second-order condition of regular variation. A simulation study is carried out to

evaluate the finite sample behavior of the proposed estimator and compare it to

those with non-reduced bias. An application to a real dataset of the lifetimes of

automobile brake pads is done.

While we concluded this thesis with our interest in the estimation of the tail

index for complete data and this is by presenting a robust estimator which is

not affected by the outliers in the data. We also established its consistency and

asymptotic normality, and the study of the finite sample behavior of the given

estimator is done.

Nevertheless, this does not imply that the novel estimators which we

presented in our research are without flaws. For instance, only if the distribu-

tion function G is known can the first estimator be used. The second estimator,

although it reduces the bias, it increases the RMSE and that is the price to pay.

Whereas, the third estimator has lower efficiency than the original estimator.

But this does not prevent the continuation of research to always find the best.
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