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Abstract

Nowadays, getting an efficient segmentation of Glioblastoma Multiforme (GBM) brain
tumors in multi-sequence MRI images as soon as possible, gives an early clinical diag-
nosis, treatment, and follow-up. The MRI technique is designed specifically to provide
radiologists with powerful visualization tools to analyze medical images, but the chal-
lenge lies more in the information interpretation of radiological images with clinical and
pathologies data and their causes in the GBM tumors. This is why quantitative research
in neuroimaging often requires anatomical segmentation of the human brain from MRI
images for the detection and segmentation of brain tumors. The objective of the thesis is
to propose automatic Deep Learning methods for brain tumors segmentation using MRI
images.
First, we are mainly interested in the segmentation of patients’ MRI images with GBM
brain tumors using Deep Learning methods, in particular, Deep Convolutional Neural
Networks (DCNN). We propose two end-to-end DCNN-based approaches for fully auto-
matic brain tumor segmentation. The first approach is based on a pixel-wise technique in
addition to a new guided optimization algorithm to optimize the suitable hyperparame-
ters while the second one is based on a patch-wise technique. Then, through experiments,
we prove that the latter is more efficient in terms of segmentation performance and com-
putational benefits compared to the first approach.
Second, to enhance the segmentation performance of the proposed approaches, we pro-
pose new segmentation pipelines of patients’ MRI images, where these pipelines are based
on deep learned features and two stages of training. We also address problems related to
unbalanced data in addition to false positives and false negatives to increase the model
segmentation sensitivity towards the tumor regions and specificity towards the healthy
regions.
Finally, the segmentation performance and the inference time of the proposed approaches
and pipelines are reported along with state-of-the-art methods on a public dataset anno-
tated by radiologists and approved by neuroradiologists.

Keywords— Glioblastomas, MRI images, brain tumor segmentation, Deep Learning,
Deep Convolutional Neural Networks, unbalanced data, false positives and false negatives



Résumé

De nos jours, fournir une segmentation précise des tumeurs cérébrales de Glioblastome
Multiforme (GBM) à partir d’images IRM multimodales le plus tôt possible, permet de
délivrer un diagnostic clinique précoce, pour un traitement et un suivi efficaces. La tech-
nique d’imagerie IRM est spécialement conçue pour fournir aux radiologues des outils
puissants de visualisation pour analyser des images médicales, mais le challenge réside
dans l’interprétation de ces images radiologiques avec les données cliniques et patho-
logiques, et la cause de ces tumeurs GBM. C’est la raison pour laquelle la recherche
quantitative en neuroimagerie nécessite souvent une segmentation anatomique du cer-
veau humain à partir d’images IRM, afin d’aider à la détection et la segmentation des
tumeurs cérébrales. L’objectif de cette thèse est de proposer des méthodes automatisées
de Deep Learning pour la segmentation des tumeurs cérébrales à partir d’images IRM.
Dans un premier temps, nous nous intéressons principalement à la segmentation d’images
IRM de patients atteints de tumeurs GBM en utilisant le Deep Learning, en particulier,
Deep Convolutional Neural Networks (DCNNs). Nous proposons deux approches DCNNs
”End-to-End” pour la segmentation automatique des tumeurs cérébrales. La première ap-
proche est basée sur la technique pixel-wise et un nouvel algorithme d’optimisation des
hypeparamètres tandis que la deuxième approche est basée sur la technique patch-wise.
Ensuite, à travers des expérimentations, nous prouvons que la deuxième approche est
plus efficace en termes de performance de segmentation et de temps de calcul par rapport
à la première approche.
Dans un deuxième temps, pour améliorer les performances de segmentation des approches
formulées, nous proposons de nouveaux pipelines de segmentation des images IRM de pa-
tients, basés sur des attributs extraits des DCNNs et de deux étapes de training. Nous
abordons également les problèmes liés aux données déséquilibrées en plus les faux positifs
et les faux négatifs pour augmenter la sensibilité de segmentation vers les régions tumo-
rales et la spécificité de segmentation vers les régions saines.
Finalement, les performances et le temps de segmentation des approches et des pipelines
proposés sont rapportés avec les méthodes de l’état de l’art sur une base de données
accessible au public, annotée par des radiologues et approuvée par des neuroradiologues.

Mots-clés :—Glioblastome, Images IRM, Segmentation des Tumeurs Cérébrales, Ap-
prentissage Profond, Réseaux de Neurones Convolutifs Profonds, Données Déséquilibrées,
Faux Positifs et Faux Négatifs
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1.1 Thesis Context

Cancer cells have a mechanism that does not undergo the growth and proliferation of

the human body system. When these cells begin to grow and expand, they infiltrate and

invade nearby surrounding tissue. The results of this uncontrolled growth are primary

tumors, but the important property of these malignant metastasis cells is that they begin

to grow and proliferate outside their primary site to another part of the body. Usually,

the cancer cells invasion is toward the brain by blood vessels or the lymphatic system,

this process is called Metastasize. Brain tumors are a growing abnormal cell in the brain

or central spinal canal [Young and Knopp, 2006]. Moreover, one of the outcomes of can-

cers in the lung, breast, skin (melanoma), colon or kidney is a brain tumor (ABTA 1).

In the USA, according to the NBTS 2 that estimates every year 13.000 patients die, and

29.000 patients suffer from primary 3 brain tumors [Singh et al., 2012]. In 2007, they ex-

pected in the UK, more than 4.200 patients have a brain tumor each year [Logeswari and

1. ABTA: American Brain Tumor Association
2. NBTS: National Brain Tumor Society
3. Primary tumor is a tumor, but it starts in the brain
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Karnan, 2009]. These statistical samples are proportional to the population number in

many countries in the world. In addition, if we count also the potentiality of medical mis-

takes besides low survival rates of patients with life-threatening diseases such as Gliomas.

Based on the mentioned statistics, we can take a forward-looking snapshot of the global

health; the origin of all these diseases in the world in two words: globalization and urban-

ization; firstly, as the population grows, it is aging. Secondly, according to the WHO 4

classification, the spread of risk factors in the population: tobacco, lifestyle, unhealthy

diet and alcohol. Thus, nowadays it is difficult for clinicians and medical practitioners to

make a link among these causes and factors with the diagnosed diseases during a session

of 30 minutes. To increase survival and diagnosis rates, first we need to increase disease

awareness campaigns and intensive prevention programs that represent the first lines of

defense against disease, they can also improve early detection and prediction of diseases.

Second, we need to get help from technology and machines currently present, especially

in the field of artificial intelligence and deep learning in order to assist radiologists and

oncologists in the detection and diagnosis of diseases.

1.2 Thesis Motivation and Objectives

In this thesis, we are interested in the segmentation of patients’ MRI images with

Glioblastoma Multiforme (GBM) brain tumors. GBM are the most frequent primary

brain tumors in adults [Holland, 2001]. According to the WHO classification [Louis et al.,

2016; Gupta and Dwivedi, 2017], Glioma brain tumors have 4 grades (I, II, III, IV) where

the GBM tumors are the grade IV of Glioma tumors. Moreover, GBM affect children

between 5 and 10 years old [Goodman and Fuller, 2014], and adults between 30 and 40

years old [Schneider et al., 2010]. What makes the diagnosis of GBM very challenging is

that each patient has a different health condition, age, gender, along with the property of

the GBM makes these tumors appear anywhere in the brain. With this large number of

patients worldwide and a massive medical data produced from different medical imaging

techniques such as magnetic resonance imaging (MRI), positron emission tomography

(PET), computed tomography (CT), emerged the need to discover new techniques to

overcome the limits of conventional methods of diagnosis and treatment of patients. In

4. WHO: World Health Organization
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the last decades, we noticed that the number of published papers involving brain tumor

segmentation increased exponentially [Menze et al., 2015], this increase indicates that

creating a Computer-Aided Diagnosis (CAD) [Akram and Usman, 2011; El-Dahshan

et al., 2014] has always been a highly needed option and necessary [Zhang et al., 2001].

In addition, some patients have aggressive tumors (e.g. GBM) that need to be treated in

less than two months. This CAD system can decrease the needed time for the diagnosis

process [El-Dahshan et al., 2014] and it can give to oncologists more time with their

patients in treatment and follow-up procedures during the therapy planning process.

This process generally begins with multimodal MRI image generation and acquisition,

segmentation, diagnosis, treatment and follow-up. This 5-phase procedure takes at least 2

months and approximately 5% of patients remain under this procedure for 5 years [Ostrom

et al., 2014]. Moreover, the manual segmentation is a time-consuming procedure, where

the radiologist takes between 3 and 5 hours [Kaus et al., 2001] for each patient. The

automation of the radiologist’s mission, given the time of manual segmentation, indicates

that automatic image interpretation and analysis through a CAD system can have a

significant impact on the patient’s diagnosis.

MRI is the investigation tool of choice for the segmentation of GBM brain tumors, and

for the evaluation of treatment response [Bangiyev et al., 2014]. Usually, an expert radiol-

ogist uses MRI as the most effective technique [Akram and Usman, 2011; Bhandarkar and

Nammalwar, 2001a] to generate Multi-modal images to identify different tumor regions in

the soft tissues. The use of MRI images to visualize the brain, has become the standard

protocol and routine in the therapy planning process of patients with brain tumors in

recent decades. In general, radiologists generate four standard MRI images modalities for

GBM diagnosis (See figure 1.1): T2-weighted fluid-attenuated inversion recovery (Flair),

T1-weighted (T1), T1-weighted contrast-enhanced (T1c), and T2-weighted (T2) for each

patient. The brain tumor segmentation procedure involves radiologists and oncologists in

a process of patients’ MRI images interpretation. In this procedure, they need to segment

each region of GBM tumors pixel-by-pixel in each slice until the 3D (height, width and

depth) brain volume is divided into meaningful regions (See figure 1.1 (GT)). After that,

this 3D segmentation image will be used for diagnosis of patients’ organs and assess its

risk, treatment sessions, surgery planning, and follow-up to see if the tumor is growing

or shrinking.
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Figure 1.1 – The four multi-sequence MR images of patients with Glioblastomas tumors.
From left to right: Flair, T1, T1c, T2, Ground Truth (GT) labels. The color is used to
distinguish between the tumor regions: red: Necrotic and Non-Enhancing tumor, green:
Peritumoral Edema, yellow: Enhancing tumor, black: Healthy tissue and background.

Medical image analysis is a set of successive operations and computational analysis

methods to extract relevant features within the medical images; in this case, segmen-

tation of GBM brain tumors. The segmentation step is a process of dividing a medical

image of the brain into significant regions, where each region represents various structures

such as organs, tissue classes or pathologies. The idea is to use the extracted diagnostic

features from medical images such as shape, texture, size, pixels’ intensities or a combi-

nation of them to (1) delineating the tumor region and its sub-regions and discriminating

them from the background and healthy tissue and to (2) obtaining clinically relevant

information and knowledge such as the target volume and the tumor volume (See fig-

ure 1.2) that are the most important information to establish treatment that usually

include radiotherapy planning of patients with brain tumors [Cheng et al., 2015]. Fur-

thermore, determining (1) and (2) helps clinicians to delimit the radiation doses in the

radiotherapy planning process, which is a manual work that depends considerably on their

experience in analyzing medical images. Moreover, determining radiation doses is critical

and crucial as they can affect adjacent normal tissues, where the use of a higher dose of

radiation has aggressive consequences on patients after radiotherapy treatment, among

these consequences: higher incidence of fatigue or malaise, insomnia, and poor emotional

functioning [DeAngelis, 2001]. For radiologists and oncologists, the radiation dose quan-

tity is very important and it depends significantly, firstly, on the manual segmentation,

where in many cases, we obtain a remarkable variability in manual segmentation of brain

tumors: intra-rater, 20 ± 15%; inter-rater, 28 ± 12% [Mazzara et al., 2004]. Secondly, on

the information interpretation of radiological images with clinical and pathologies data.

Consequently, we can conclude that obtaining an accurate segmentation of GBM brain

tumors is crucial for optimal radiotherapy planning and for determining organs at risk,
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and it makes a difference between life and death for patients under treatment.

Figure 1.2 – Example of Glioma brain tumors, which are registred on CT (top) images and
on T2-weighted axial MRI (Bottom) images. The body contour (green) on CT images is
used for radiotherapy planning. The outer red contour is the target volume, and and the
inner red contour is the tumor volume [Cheng et al., 2015].

In this thesis, we have been motivated by the success of Deep Learning in computer

vision and in the context of brain tumor classification and segmentation. After the break-

through in 2012 in the field of computer vision where a team developed a deep learning

model called AlexNet [Krizhevsky et al., 2012], this model outperformed the state-of-the-

art methods and it achieved the best results in the field of object recognition. Since 2014,

many deep learning-based research [Pereira et al., 2015; Havaei et al., 2017] have been

proposed in the field of brain tumor segmentation.

Current state-of-the-art image segmentation in the field of Deep Learning are based on

Convolutional Neural Networks (CNNs) [LeCun et al., 1998]. In typical CNNs architec-

tures [Krizhevsky et al., 2012; Simonyan and Zisserman, 2014], we usually find a feature

extractor with a bank of convolution filters (i.e., trainable parameters). Then pooling
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layers to make the images less sensitive and invariant to small translations in addition

to reducing the feature maps dimensionality. The last stage in CNNs architectures, is

a classifier which classifies each pixel (or voxel) into one of many classes. The success

of Deep Learning and CNNs architectures, is due to their operations (e.g., Convolution,

Pooling,...etc.) that can be parallelized to take advantage of massive parallel architectures

such as GPU and TPU implementations, also due to the large public datasets and to the

improvement of learning methods. Moreover, most of the gains in machine learning and

deep learning come from extracting great and relevant features, where CNNs algorithm

is considered as the best features extraction algorithm in computer vision (See figure 3.1

and figure 5.3)

Finally, despite the success of Deep Learning and CNNs in the field of computer vision

and brain tumor segmentation, but they still have limitations, in particular, how to de-

sign dedicated and efficient architectures in terms of computational cost and segmentation

performance. Another problem known in CNNs is the combinatorial explosion of choices

which are due to the large number of hyperparameters (Patches, feature maps, kernels,

strides, activation functions, connectivity between layers,...etc), where these choices limit

and affect the robustness of CNNs. In addition, the choice of the input shape is impor-

tant to obtain high results in terms of segmentation performance. The problem of input

shape is due to the fact that conventional CNNs do not take into account the global

context of the image. Moreover, the most common problem among image segmentation

methods is unbalanced data, where we find a class or a label of interest has the minority

of data compared to other classes. This kind of problems makes Articial Neural Networks

(ANNs), including CNNs, bias toward the more frequent label. Thus, training a CNNs

model with such kind of data, will make predictions with low sensitivity, where the most

important part in medical applications is to make the model more sensitive toward the

lesion-class, i.e. tumoral regions. Another important issue is the performance degrada-

tion due to many factores: false positive and false negative regions, vanishing gradient

and overfitting. The objective of this thesis is to overcome these limitations: the impact

of hyperparameters on the segmentation performance, reducing the computational cost

without affecting the performance, the issue of conventional CNNs with the global con-

text, training CNNs models with Unbalanced data, and finally the issue of performance

degradation.

19



Chapter 1 – Introduction

1.3 Thesis Contributions

In this thesis, we aim to propose automatic, efficient, and accurate Deep Learning

pipelines for brain tumors segmentation using MRI images. The proposed pipelines are

used to segment the brain tumors of Glioblastomas with both high- and low-grade. More-

over, these pipelines could assist clinicians and radiologists to provide better therapeutic

monitoring of patients affected by Glioblastoma multiforme. For achieving this goal, our

contributions are divided into fourfold:

1. We propose two End-to-End DCNN-based approaches for fully automatic seg-

mentation of GBM brain tumors. The first approach is an ”Incremental XCNet”

algorithm which is a pixel-wise-based technique. The proposed algorithm gener-

ates DCNNs architecture, i.e. from a base model (a limited number of layers) we

obtain deeper and scalable models. The second approach is based on an OCM

module which is an inspired and a patch-wise-based technique, where through this

inspired model, we improved the second approach to provide better results in terms

of segmentation performance and computational benefits. Then, to enhance the

segmentation performance of DCNN architecture, we propose two steps of post-

processing based on connected-components and morphological opening operator.

2. We propose a new methodology to train Deep Learning architectures, where the

proposed method called ”ELOBA” which is a supervised learning algorithm for

optimizing an objective function. This method takes into account the most influ-

encing hyperparameters (The number of epochs, learning rate, optimizer, batch

size). The algorithm of ”ELOBA” bounds and sets a roof to these hyperparame-

ters to fast the training of the generated DCNNs architecture. In particular, we

address problems related to vanishing gradient and computational costs.

3. To overcome the issue of unbalanced data, we study the impact of Cross-Entropy

loss function on the segmentation results of the DCNNs architectures for the prob-

lem of brain tumor segmentation. We then propose a modified, adaptive and more

robust version of this loss function called Online Class-Weighting, where our pro-

posed function and after each training epoch provides a set of weights for a multiple

number of classes. Moreover, to demonstrate the performance of the Online Class-
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Weighting loss function, we evaluate our proposition within a case study applied to

a fully automatic brain tumor segmentation of Highly Unbalanced Glioblastoma

tumors.

4. To address the limits of Deep Learning architectures, in particular, false positives

and false negatives, resulting from the fact that in multi-classification issue, the

classifier Softmax function is simple and does not take into account any prior

knowledge. Thus, we propose new pipelines and two phases of training to boost

the prediction of GBM tumoral regions. These pipelines are based on 3 stages.

In the first stage, we develop DCNNs architecture, then in the second stage we

extract multi-dimensional features from the higher-resolution representation of

DCNNs, in the third stage, we develop machine learning algorithms. We then

feed the extracted features from DCNNs into different algorithms such as Random

Forest (RF) and Logistic Regression (LR), and Principal Component Analysis with

Support Vector Machine (PCA-SVM).

1.4 Thesis Overview

In this thesis, we are interested in the segmentation of brain tumors using DCNNs

architectures trained on MRI images, to assist the radiologists and oncologists in the

therapy planning process, in particular, the segmentation of patients’ MRI images with

GBM brain tumors. The thesis is organized as follows:

Chapter 2: we present a detailed state-of-the-art in the field of MRI image segmen-

tation. Moreover, a description of the most challenging issues in the medical field, in

particular, challenges in the brain tumor segmentation, and in the segmetation of MRI

images of patients with Glioblastoma multiform tumors. Finally, a description and an

illustration of Glioblastoma multiform tumors anatomy and the tumoral regions that

need to be segmented. Also, we study BRATS challenge dataset [Menze et al., 2014;

Bakas et al., 2017] of patients with Glioblastoma (high- and-low grade), in addition to

the evaluation metrics to measure the segmentation performance and the computational

benefits of our proposed pipelines.
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Chapter 3: is devoted to a brief introduction to Deep Learning, in particular, Con-

volutional Neural Networks, in addition to the fundamental building blocks of CNNs

algorithm, and the operations behind this algorithm such as convolution, non-linear ac-

tivation functions, pooling, upsampling, fully-connected layers, forward, and backward

propagation. Also, we present the difficulties, limitations and the motivation to apply

CNNs algorithms for the context of segmentation of patients’ MRI images with Glioblas-

toma multiform brain tumors.

Chapter 4: we present two approaches based on Deep Convolutional Neural Net-

works (DCNNs) for the issue of MRI image segmentation, where these approaches are

dedicated to patients with Glioblastoma brain tumors. In the first approach, we propose

a DCNNs-based pixel-wise approach for the segmentation of Glioblastoma brain tumors.

The proposed DCNNs model is an End-to-End incremental DCNNs model for fully au-

tomatic brain tumor segmentation. Moreover, a description of the challenging issues to

apply DCNNs for medical images, in particular, getting the best hyperparameters for each

DCNNs model, and the issue of vanishing gradient. Moreover, we adopt an Ensemble

learning technique to design a more efficient architecture. And for solving the problem of

training CNNs architectures, we propose a new training strategy which takes into account

the most influencing hyperparameters by bounding and setting a roof to these hyperpa-

rameters to accelerate the training phase. The second approach is dedicated to solve

two important problems: reducing the computational complexity and increasing segmen-

tation performance, thus we have introduced some improvements to the first approach

by introducing the patch-wise approach instead of pixel-wise approach, also we propose

an overlapping patches technique to solve the issue of conventional DCNNs architectures

with the global context.

Chapter 5: in order to solve the issue of training DCNNs models with unbalanced

data, where this kind of issues makes DCNNs bias toward the more frequent label. Hence,

training a DCNNs model with such kind of data (unbalanced data) will make predictions

with low sensitivity. Moreover, it is important in medical applications to make the model

more sensitive toward the lesion class, i.e. tumoral regions. The second issue is the mis-

classification regions that are produced by the proposed approaches. To overcome this
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issue (i.e. misclassified regions), we present novel pipelines specifically to reduce the false

positives and false negatives regions. These pipelines are based on Deep learned features

and machine learning algorithms; in the first stage, we train DCNNs architecture, then

in the second stage we train these algorithms with the trained and extracted features in

the first stage. These pipelines show a high segmentation performance, in addition to

their ability to reduce the misclassification tumoral regions.

Finally, our conclusions, summary of the contributions and directions for future re-

search are presented in Chapter 6.
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Brain Tumor Segmentation
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2.1 Introduction

In this chapter, we present firstly state-of-the-art machine learning and Deep learning

methods in the field of MRI image segmentation, in particular, Glioblastoma brain tumors

and its properties and the ways of diagnosis and assessment of patients with these diseases.

Secondly, we explain the used dataset in this study, which is a Glioblastoma public dataset

called BRATS dataset. Thirdly, we discuss the limitation of MRI imaging as a technique

to assist radiologists and oncologists to diagnose patients in the process of radiotherapy

planning and for determining organs at risk. Finally, we present different evaluation
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metrics to measure the segmentation performance, the computational benefits and to

compare several state-of-the-art methods.

2.2 Survey on MRI image segmentation

Most research on Pattern Recognition, Computer Vision and Machine Learning from

1970s to 1990s, were based on low-level image operations and mathematical modeling

[Litjens et al., 2017]. At this time, researchers generally use a few examples data to build

a base of knowledge and rules, i.e., a set of if-then-else statements, what was known after

that as expert systems such as MYCIN [Shortliffe et al., 1975; Gordon and Shortliffe,

1984]. Then, the research after 1990s jumped to develop systems based on supervised

learning algorithms, features extraction (i.e., vector of binary or real values) and statisti-

cal models [Litjens et al., 2017]. In this era, researches use features engineering techniques

(i.e., hand-designed features) to extract discriminant features from training MRI images

to represent and classify each image as for example malignant or benign, or to detect

each object or region inside the image. Thus, the use of discriminative models such as

SVM [Cortes and Vapnik, 1995] and feature engineering became popular, especially in

medical image analysis. Example include the use of large number of training data to

extract several features then by using a classifier or a model at the end of the pipeline to

distinguish between the different classes or groups. The issue of features engineering is

that it requires high domain knowledge of the given task, therefore, for each task, we need

people with specialized knowledge, besides, in many cases, the process of gathering data

is expensive such as medical data. The annotation of medical data requires collaboration

between different people from different backgrounds such as radiologists, oncologists...etc.

All these reasons have contributed and pushed the academic research and the industry

to explore and discover more practical and less expensive methods, and here the era of

machine learning and deep learning comes in. Thus, the research has transitioned from

feature engineering to designing networks with many layers to extract features. This per-

ception allows us to see machine learning and deep learning methods as an automation

of feature engineering to advance research and to reduce the computational cost. The

following sections will give an overview of classical and modern approaches, presenting

in the first section five approaches, and discussing their differences and challenges. In
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the second section, we discuss modern approaches, in particular, methods-based deep

learning. In the last section, a summary and the most challenging issues of deep learning

methods with GBM brain tumor segmentation.

2.2.1 Classical approaches

Here, we present the most popular classical MRI image segmentation approaches:

— Threshold-based methods [Gibbs et al., 1996; Stadlbauer et al., 2004]: these

methods use one type of MRI images, usually a MRI image with more contrast

(e.g., T1 or post-contrast T1 weighted). They rely on a high-intensity signal as

a threshold value in MRI images to extract relevant tissue that is classified after

that as a tumor class or healthy tissue class. These methods are iterative, in

which they apply a global threshold, local or an adaptive threshold to distinguish

between all different tissues for many iterations. These methods are simple and

computationally efficient but they have a lot of drawbacks and generally, they fail

in real applications. Among these drawbacks: they are sensitive to noise, need

a user-interaction, applicable more to binary segmentation issues; so they do not

scale to more complicated and multi-classification issues.

— Region-based methods [Kaus et al., 2001; Letteboer et al., 2004; Cates et al.,

2005]: these methods are based on the technique of subdivision or composition

of an image into homogenous regions, where each region has a set of connected

pixels. These methods deal with pixel-level and they apply two metrics. First,

homogeneity criteria-based metrics to connect all candidate pixels. Second, dis-

continuity criteria-based metrics to find the boundaries among different regions.

These methods apply a repetitive algorithm of composition or of split and merge

until constituting a uniform region (e.g., tumor region).

— Edge-based methods [Caselles et al., 1993; Lefohn et al., 2003; Cates et al.,

2004]: edge detection technique is a very important step in image processing and

computer vision fields. Moreover, edge detection in a MRI image helps to ex-

tract and reduce useful information which in its turn aid to apply image analysis

techniques. Edges correspond to object or region boundaries. At the pixel level,

the edge is where we can see a significant change between two or more neigh-
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boring pixel values. We can group edge detection techniques into two categories:

gradient-based methods and laplacian-based methods. The first category relies

on the maximum and minimum in the first derivative such as Prewitt, Sobel,

Roberts operators while the second category relies on zero-crossings in the second

derivative.

— Atlas-based methods [Moon et al., 2002; Prastawa et al., 2003; Menze et al.,

2010]: these methods deal with more global information extracted from an im-

age; they attempt to segment a MRI image with no well-known relation between

regions and pixels’ intensities. Usually, the process of Atlas-based segmentation

methods involves many stages, the most important ones are image registration and

Atlas construction. Atlas refers to a template or a model, where for each different

application, we construct a different template. Some simple applications use a sin-

gle template while in other we need to use multiple templates; for each population

of images, they construct an Atlas (e.g., an Atlas for a healthy population and an

Atlas for a diseased population).

— Classification and Clustering methods [Ozkan et al., 1993; Clark et al., 1998;

Bhandarkar and Nammalwar, 2001b; Fletcher-Heath et al., 2001; Geremia et al.,

2011]: these methods are a subpart of machine learning methods. Classification

is a supervised learning algorithm while clustering is an unsupervised learning

algorithm. Classification methods uses training dataset (images and labels) to

minimize or maximize an objective function (loss function) such as SVM algo-

rithm with radial basis function kernel which tries through an objective function

to maximize the margin between two diffirent classes. Thus, SVM algorithm clas-

sifies each pixel to one of the predefined numbers of classes. Clustering methods is

an iterative algorithm that tries to subdivide training images into several disjoint

clusters such as K-means algorithm that works by partitioning an image into a

number of centroids, where each one represents the center of a cluster. Thus, the

K-means algorithm tries to label each pixel by assigning it to one centroid among

the predefined number of centroids, i.e., the number of centroids is the number of

classes.
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2.2.2 Modern approaches

In 2006, appeared a new type of learning algorithms called Deep Neural Networks

(DNNs) [Hinton and Salakhutdinov, 2006; Hinton et al., 2006; Bengio et al., 2007] which

use a large number of data to extract many lower-level features such as lines, edges with

different orientations then it combines them in a hierarchical way to obtain higher-level

features such as shapes, objects and faces,...etc. In this era, two DNNs algorithms be-

came increasingly popular: Stacked Auto-Encoders and Deep Belief Networks 1 [Hinton

et al., 2006; Lee et al., 2009]. Those algorithms have solved the issue of training large

and deep architecture of DNNs, but the training is relatively slow [Zeiler et al., 2011].

In 2014, the research started to use different variants of DNNs architectures in medical

image analysis, in particular, tumor and lesion segmentation.

[Zikic et al., 2014] proposed a CNNs model for the segmentation of GBM brain tu-

mors using MRI images. The input of their algorithm is a (4*19*19) 2D patch (i.e., four

channels: T1, T2, T1c, and FLAIR). Their CNNs network is used to segment the MRI

images to five classes: non-tumor, necrosis, edema, non-enhancing tumor and enhancing

tumor. Moreover, their CNNs model is a sequential network contains 5 layers.

Another work used CNNs introduced by [Urban et al., 2014] for GBM brain tumor

segmentation, where their approach is different. They used a sequential 3D-CNNs model,

in which the input data are 3D patches of size (9*9*9) voxels with four channels (i.e.,

T1, T1c, T2, FLAIR). Moreover, as known in several CNNs models, they did not use the

pooling layers to reduce the size of feature maps and therefore, to reduce the computa-

tional costs. Moreover, they used an additional post-processing step, where they removed

all regions of less than 3000 voxels. In addition, this method takes one minute to segment

the whole brain using a GPU implementation.

[Axel et al., 2014] proposed a CNNs architecture for the segmentation of GBM brain

images. The input data of their network is 2D patches of size (32*32) pixels. The network

is divided into two parallel pathways; the first pathway is a CNNs architecture (i.e., two

Maxout convolutional layers -Maxout is the result of merging two or more feature maps-

1. Deep Belief Networks consist of layers of Restricted Boltzmann Machines
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), and the second pathway is a fully connected Maxout layer, then these two pathways

are concatenated at the end into a softmax layer. Moreover, this architecture takes 20

minutes to segment the whole brain using a GPU implementation.

[Pereira et al., 2015] developed a method based on CNNs for GBM brain tumor

segmentation. They used two CNNs architectures for each type of Glioblastomas (i.e.,

High-Grade HGG and Low-Grade LGG). Their method takes as inputs 2D patches of size

(33*33) pixels with four channels (i.e., four MRI sequences: T1, T2, T1c, and FLAIR).

The last implemented step in their algorithms is a post-processing method, they applied

a morphological filter to delete isolated regions. In addition, this model takes 10 minutes

to segment the complete brain using a GPU implementation.

[Havaei et al., 2017] proposed a fully automatic brain tumor segmentation method

based on Cascaded Convolutional Neural Networks which are an extended version of

[Axel et al., 2014]. These Cascaded Networks used two pathways that are trained in

different phases to capture local and global features. They also used as inputs 2D Axial

patches with four MR sequences as channels (i.e., T1, T2, T1c, and FLAIR) where each

pathway has a different input patch size. Moreover, they proposed two stages of training

for the problem of class-imbalance to correct in the second training stage the patches

that are biased toward the wrong class. After that they applied a threshold technique

as a post-processing method to remove the connected-components near to the skull. In

addition, this Cascaded architecture takes 180 seconds to segment the complete brain

using a GPU implementation.

[Chang et al., 2016] developed a CNNs model that is based on two concepts (1) a fully

convolutional architecture that predicts a dense output matrix size as used in the original

input [Long et al., 2015], (2) Hyperlocal features concatenation; the input MR images is

re-introduced in the concatenation layer before the output. This technique is used first

by [Yang and Ramanan, 2015] in their architecture Directed-Acyclic-Graph which is a

new variant of standard CNNs [LeCun et al., 1998]. The architecture of [Chang et al.,

2016] has 7 convolution layers in addition to upsampling and concatenation layers. In

their CNNs architecture, 4 channels of MRI images are used as inputs (i.e., FLAIR, T2,
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T1c and T1). Moreover, this architecture takes 0.93 seconds to segment the entire brain

using a GPU implementation.

[Ellwaa et al., 2016] proposed an iterative method which is based on a random forest

with 100 trees, each of which has depth 45. Their method extracts 328 features from MRI

images. These features are: gradient features, appearance features, and context aware

features. The input to their method is 4 channels MRI images (i.e., FLAIR, T1, T1c and

T2). This iterative method works by choosing in each iteration 5 patients’ MRI images,

then they add these images to the training set, after that they continue the training of

this random forest until the training set reaches 50 patients, where at 50 patients their

iterative method stops.

[Kamnitsas et al., 2016, 2017] developed a 3D-CNNs model for GBM brain tumor

segmentation based on the model’s performance of [Urban et al., 2014]. These 3D-CNNs

networks composed of dual pathway with 11 layers, the input to this network is 3D MRI

images (i.e., FLAIR, T1, T1c and T2). Also, each pathway has a different input patch size

(i.e., 4 * 253, 4 * 193). Then, they added conditional random field as a post-processing

operation to remove misclassification regions and as a spatial regularization. Moreover,

they extended their CNNs network with residual connections [He et al., 2016], in which

this new extended network [Kamnitsas et al., 2016] did not obtain a big improvement

compared to the original model [Kamnitsas et al., 2017]. Their 3D CNNs model takes

24 hours for training using a GPU implementation, and for testing it takes 35 seconds to

segment the entire brain.

[Zhao et al., 2018] developed a GBM brain tumor segmentation method based on the

integration of CNNs and conditional random field in one network, as opposed to [Kamnit-

sas et al., 2017] who used conditional random field as a post-processing step. The authors

of [Zhao et al., 2018] developed 3 CNNs networks that take as an input 3 types of MRI

images (i.e., FLAIR, T1c and T2). Each of these 3 networks use two pathways similar

to [Havaei et al., 2017; Kamnitsas et al., 2017], where these pathways are trained on 2D

image patches (i.e., 33 * 33 and 65 * 65) and slices (i.e., 240 * 240) from Axial, Coronal

and Sagittal views. At the testing step, the prediction results from 3 views is fused using

30



Chapter 2 – Brain Tumor Segmentation

a voting strategy. Moreover, these 3 networks took 12 days for training using a GPU

implementation, and for testing, each model took for each view (i.e., Axial, Sagittal or

Coronal) in average 3 minutes to segment the entire brain, i.e., 3 networks * 3 minutes

equals to 9 minutes in addition to the fusion time which is not reported in the original

paper.

[Mlynarski et al., 2019] developed a fully automatic GBM brain tumor segmentation

method based on a combination of six models of 3D CNNs architectures. Each of these

architectures is composed of three (or five) CNNs architectures, also, these architectures

are trained independently and dedicated for one MRI view (e.g., Axial, Coronal or Sagit-

tal slices of the input image) and one architecture based on 3D-CNNs. The proposed

segmentation 3D CNNs model is trained on channels concatenation between extracted

feature maps from the Axial, Coronal and Sagittal dedicated architectures and two (T2,

T1c) or four (T2, FLAIR, T1, T1c) 3D multisequence MR images. The technique of

using feature maps as an additional input into the architecture of another CNNs, is used

by [Havaei et al., 2017]. Moreover, [Mlynarski et al., 2019] adressed two issues: the first

one is long rang context, to solve this issue, they used 2D CNNs (its input is one of

three views) to capture rich information through increasing the size of the receptive field.

The second issue is unbalanced data, where they solved this issue by using weighted

cross-entropy as a loss function.

2.2.3 Discussion

There are several classical approaches for MRI image segmentation as it is mentioned

in section 2.2.1, each approach has its own advantages and disadvantages and therefore,

MRI image segmentation methods are application-based, there is no general approach

or method for all applications, but it depends significantly on the type of applications

and the type of images. These conventional methods have many advantages: they are

simple for implementation, they exploit important properties such as the neighboring

pixels that have some similarity, they separate groups or classes based on criteria and

metrics, they incorporate information and knowledge such as shape, orientation, continu-

ity, elasticity or smoothness within the segmentation model (e.g., Atlas-based methods)

[Kalinić, 2009]. However, they have many drawbacks: they generally produce poor results
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and need a user interaction most of the time, where the choice of the right seed points

(e.g., region growing) or the threshold value (e.g., thresholding algorithm) is important.

And they are sensitive to noise (e.g., edge detector), to poor contrast and to acquisition

artifact. Moreover, they need prior knowledge from experts and feature engineering. In

general, the most remarkable and shared drawback of the classical approaches lies in the

subjectivity of their processing and decision-making when it comes to real applications.

Table 2.1 shows a summary of state-of-the-art modern approaches. These approaches

are based on Deep learning algorithms, in particular, Convolutional Neural Networks and

its variants. Moreover, these approaches are applied to the Glioblastoma brain tumors

segmentation. In this thesis, we have been motivated by the recent deep learning models

[Chang et al., 2016; Havaei et al., 2017; Zhao et al., 2018], especially when the perfor-

mance in the field of brain tumor segmentation methods becomes more accurate and the

inference time is decreased compared to the time spent by radiologists to detect all tu-

moral regions. In addition, these automatic brain tumor segmentation methods provide

an objective, fast, and reproducible assessment of patients MRI segmentation compared

to radiologists who produce a subjective, slow, and difficult to reproduce even for the

same patient MRI images.

Table 2.1 – Summary table of the state-of-the-art approaches, where these approaches
are applied GBM brain tumor segmentation. These approaches are trained and tested
on BRATS datasets. The performance of the these approaches is evaluated using Dice
scores and inference time (Speed).

Reference Pre-processing Algorithm Dataset Performance

[Pereira et al., 2015] normalization,

bias field

correction

CNNs BRATS-2013,

BRATS-2015

Dice for complete, core, and enhanc-

ing regions:

- BRATS-2013: 0.88, 0.83, 0.77.

- BRATS-2015: 0.78, 0.65, 0.75.

Speed: 8 min

[Havaei et al., 2017] bias correc-

tion

CNNs BRATS-2013 Dice for complete, core, and enhanc-

ing ( 0.88, 0.79, 0.73),

Speed: 25 s to 3 min
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Table 2.1 – continued from previous page

Reference Pre-processing classification Dataset Performance

[Chang et al., 2016] normalization CNNs BRATS-2016 Dice for enhancing, core, and com-

plete ( 0.72, 0.81, 0.87),

Speed: 0.52 s for 64 images

[Kamnitsas et al.,

2016, 2017]

skull strip-

ping, nor-

malization,

registration

DeepMedic

+

CRF

BRATS-2015 Dice for whole, core, and enhancing

(0.89, 0.75, 0.72)

[Zhao et al., 2018] bias correc-

tion, normal-

ization

FCNN

+

CRF

BRATS-2013,

BRATS-2015

Dice for complete, core, and enhanc-

ing:

- BRATS-2013: 0.87, 0.82, 0.76.

- BRATS 2015: 0.8, 0.68, 0.65.

Speed: 8 min

[Hussain et al., 2018] normalization,

bias field

correction

Deep

CNN

BRATS-2013,

BRATS-2015

Dice for complete, core, and enhanc-

ing:

- BRATS-2013: 0.87, 0.89, 0.92.

- BRATS 2015: 0.86, 0.87, 0.9.

[Farahani et al., 2013] normalization SDAE BRATS-2015 Dice for whole, core, and active

(0.84, 0.71, 0.81)

[Farahani et al., 2013] / SegNet BRATS-2015 Dice for complete, core, and enhanc-

ing (0.75, 0.77, 0.76)

[Farahani et al., 2013] / NablaNet BRATS-2012 Dice for whole, core, and enhancing

(0.87, 0.69, 0.56)

[Farahani et al., 2013] bias correc-

tion, normal-

ization

3D

CNN

BRATS-2016 Dice for whole, core, and active

(0.725, 0.611, 0.572)

[Farahani et al., 2013] / DNN BRATS-2015 Dice for complete, core, and enhanc-

ing (0.87, 0.75, 0.71)

[Farahani et al., 2013] normalization 3D

CNN

BRATS-2015 Dice for whole, core, and active

(0.89, 0.76, 0.37)

All recent cited papers [Zikic et al., 2014; Urban et al., 2014; Pereira et al., 2015;

Havaei et al., 2017; Chang et al., 2016; Ellwaa et al., 2016; Kamnitsas et al., 2016, 2017;

Zhao et al., 2018; Mlynarski et al., 2019] address the main problem of automatic GBM

brain tumor segmentation in different ways using either 2D, 3D Patches or large number
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of features. The most common things among these advanced methods are: they use at

least 3 MRI image modalities and deal with them as input channels (i.e., FLAIR, T2,

T1c), they also use CNNs algorithm and 2D patches. Despite the variety of the proposed

deep learning and CNNs architectures, the segmentation of GBM brain tumors with the

following subproblems is still a challenging issue: (1) unbalanced data; the class of interest

(i.e., tumoral region) has the minority of labels which represent for example in our dataset

almost 2% of data, while the healthy class has 98% of data [Havaei et al., 2017]. This

subproblem is solved by two training step [Havaei et al., 2017], equal sampling of training

patches [Havaei et al., 2017; Zhao et al., 2018], weighted cross-entropy [Mlynarski et al.,

2019], (2) computational costs: conventional deep learning architectures, in particular,

architectures-based on 3D patches, during training they need to compute the gradient of

the loss function for each 3D filter per pass. Consequently, they perform thousands even

millions of operations, and therefore, they need a massive computing and large memory

in each epoch of training. Moreover, in images segmentation applications, one of the

important subproblems in CNNs is (3) global context; the relationship among patches,

because the training method typically used in CNN is patch-by-patch [Kamnitsas et al.,

2017], we refer to this method as adjacent patches. The limit of this method (adjacent

patches) is that it does not take into consideration [Havaei et al., 2017; Zhao et al., 2018]

that a set of patches represents the full image, that is why we need a new approach for

modeling both the context of MRI image and spatial relationship among the patches. Fi-

nally, the (4) subproblem of performance degradation that is due to vanishing gradient,

overfitting, false positives- where the model predicts non tumor regions as tumor regions

but in fact they are not-, and false negatives -where the model classifies some regions as

non-tumor regions but in fact they are. The subproblem of false positives is solved in

recent methods of deep learning by the threshold technique [Urban et al., 2014; Havaei

et al., 2017]. In this thesis, we focus on four main issues in addition to automatic seg-

mentation of GBM brain tumors: unbalanced data, computational cost, global context,

performance degradation.
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2.3 Glioblastoma brain tumors

Glioma tumors are the most frequent primary brain tumors in adults [Holland, 2001],

these tumors represent 81% of all malignant brain tumors [Ostrom et al., 2014], and

45% of all primary brain tumors [Liu et al., 2016]. Some patients with Glioma tumors

have survival rate between 0.05% and 4.7% [Ostrom et al., 2014], representing with that

one of the top reason of death. According to the WHO classification [Louis et al., 2016;

Gupta and Dwivedi, 2017], Glioma brain tumors have 4 grades (I, II, III, IV) where the

GBM tumors are the grade IV of Glioma tumors. Moreover, in the last century, they

discovered based on histopathology and markers in the tumors, that the cell of origin of

Glioma tumors is glial cells [Lindberg et al., 2009; Jiang and Uhrbom, 2012].

Reports and research indicate that ionizing radiation is the number one risk factor

that has been identified for glial tumors [DeAngelis, 2001]. Moreover, they found that

the radiation even with low dose (i.e., less than 10 Gy) can increase the incidence of

glial by a factor of 3 to 7 [Walter et al., 1998], with the shortest 2 and longest latency at

adults brain tumors being 14 and 59 years, respectively [Pollak et al., 1998]. The most

observed symptoms of patients exposed to radiation are: headaches, mental impairment,

focal neurological findings, late onset seizures, increased intracranial pressure, trophic

changes of the scalp consisting of alopecia, atrophy and scarring of the skin. However,

most patients with these symptoms have shown improvement after surgery [Pollak et al.,

1998].

The treatment of patients with brain tumors, including Glioblastoma brain tumors, re-

quires many sessions of radiotherapy with often a combination of surgery and chemother-

apy. Clinicians inject a suitable photosensitizer in the tumor, before surgery, to concen-

trate all tumoral cells at the tumor site. Then, at the surgery, they use photodynamic

therapy and after tumor removal, they irradiate any remaining malignant cells with laser

light to destroy them [Gibbs et al., 1996].

The assessment of patients with Glioblastoma brain tumors (or with tumor recurrence)

2. The shortest latency of brain tumors at childhood equals to the patient’s age at the time of diagnosis
minus 10 [Pollak et al., 1998]
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carried out either by clinical indicators which are subjective procedure and expertise-

based or by MRI images which are an objective assessment. In addition, MRI has many

advantages. First, it does not use ionizing radiation that is one of the causes of brain

tumors, especially glioma tumors. Second, the results of the MRI are accurate and re-

producible and applicable for all patients with Glioblastoma brain tumors [Gibbs et al.,

1996]. Expert raters (radiologists) use MRI [Bhandarkar and Nammalwar, 2001a; Akram

and Usman, 2011] as a non-invasive technique to generate multi-sequence images and

to identify different regions in soft tissue (central nervous system, muscles, hearts, and

tumors ...etc.). Usually, the radiologists generate four types of MRI images for each

patient for the diagnosis of Gliomas [Işın et al., 2016]: T2-weighted fluid attenuated

inversion recovery (T2-Flair), T1-weighted (T1), T1-weighted contrast-enhanced (T1c),

and T2-weighted (T2). Moreover, to generate MRI images of type T1c, radiologists inject

Gadolinium-Containing Radiocontrast Agents (GCRA) to follow tumor regions through

the contrast of GCRA 3.

In patients’ MRI images with GBM tumors, we find 4 sub-regions in addition to back-

ground and healthy tissue. Moreover, the challange of Glioma brain tumors, including

GBM, is that they invade the surrounding tissue rather than displacing it, causing un-

clear boundaries. In addition, Glioma tumors in MRI images have the same appearance

as Gliosis, stroke, inflammation, blood spots [Goetz et al., 2015]. These challenges that lie

to the detection of Glioma brain tumors features make the mission of radiologists and on-

cologists very difficult to diagnose and to assess the therapeutic responses of these tumors.

To interpret brain MRI images, a specialized radiologist employs a manual segmen-

tation using information from MRI images with anatomical and physiological knowledge

[Işın et al., 2016]. Where it’s known that the manual segmentation in MRI images is a

time-consuming and a tedious procedure [Abd-Ellah et al., 2016]. The key challenge is

the interpretation and the segmentation of brain MRI images that depend on the exper-

tise of each radiologist [Akram and Usman, 2011]. Moreover, the mission of radiologist

3. Research and studies [Grobner, 2006] have found that patients injected with GCRA can develop undesirable side
effects such as nephrogenic systemic fibrosis in patients with preexisting renal dysfunction. Moreover, other later studies
[McDonald et al., 2015] say that the injected GCRA accumulates in neuronal tissue and can stay in the brain for a long
time, and they also confirm that the accumulation of GCRA occurs in the absence of renal or hepatobiliary dysfunction.
This issue opens the door for discovering an alternative solution in the future for T1c images such as image synthesis using
generative adversarial networks.
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becomes very difficult in the case if the tumor region has intra-tumoral structures such

as the GBM tumors which have four different structures besides healthy tissue inside the

tumor region: edema, non-enhancing solid core, necrotic core, enhancing core (See figure

2.1). That’s why the Dice score of human rater (i.e. radiologists) is in the range 74% -

85% [Menze et al., 2015]. In addition, the radiologist spends between 3 and 5 hours [Kaus

et al., 2001], to extract features manually from MRI images then to label each pixel if it

belongs to a tumor region and which region from 4 regions or it belongs to healthy tissue.

Thus, the manual segmentation is a time-consuming compared to automated methods

which take between few seconds and 20 minutes using a modern GPU implementation.

Since the aim is to obtain a segmentation of brain tumors, given the number of patients,

obviously automated segmentation methods are practical for day-to-day use in clinical

centers and for research.

Figure 2.1 – An example of manual annotation (segmentation) by a radiologist (expert rater). The segmentation process
passes through two stages: first, each GBM tumor’s sub-region is detected in a different MRI modality: they detect the
whole tumor in FLAIR (A), the tumor core in T2 (B), the enhancing tumor structures in T1c (blue), the surrounding
necrotic components of the core (green) (C). In the second stage, they combine all annotations from different MRI modalities
into one template (D): edema (yellow), non-enhancing solid core (red), necrotic core (green), enhancing core(blue) [Menze
et al., 2015].

2.4 BRATS datasets

To develop Deep Learning models for the segmentation of GBM brain tumors, we

need to use an annotated dataset of MRI images and validated by radiologists. Thus,

to validate these models, we have to evaluate our experiments on real patient’s data, in
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which we use three BRATS 4 datasets: BRATS 2017, BRATS 2018, and BRATS 2019

datasets. The training sets of BRATS 2017 and 2018, each has 210 patient’s brain images

with high-grade (HGG) and 75 patient’s brain with low-grade (LGG) while BRATS 2019

training set has 259 patients’ brain images with HGG and 76 patient’s brain images with

LGG. Each patient’s brain image comes with 4 MRI sequences (i.e. T1, T1c, T2, FLAIR)

and the ground truth of the 4 segmentation labels which are obtained manually by radiol-

ogists experts: Healthy tissue, Necrotic and Non-Enhancing tumor, Peritumoral Edema,

Enhancing core. BRATS 2018 validation set contains 66 images of patients while BRATS

2019 validation and testing sets contain 125 and 166 images respectively with unknown

grade, i.e. the validation set does not have the ground truth labels. BRATS datasets are

collected from different centres–Bern University, Debrecen University, Heidelberg Univer-

sity, Massachusetts and General Hospital– and using different MRI scanners (1.5T, 3T)

[Menze et al., 2015].

The initial preprocessing operations performed by the organizer and the provider of

the dataset are: first, to homogenize the MRI images, they registered rigidly all images

to the T1c MRI in addition to resampling to 1 mm3 resolution. Second, to guarantee the

anonymization of the patients they skull stripped all MRI patients images.

There are four essential points in the BRATS dataset: first, the size of each patient’s

MRI image is 240 ∗ 240 ∗ 155 (height*width*number of slices). Second, each voxel is

labeled manually by an expert annotation (radiologist), where after that each voxel is

assigned to one class: healthy tissue and background (class 0), non-enhancing core (class

1), edema (class 2) contrast-enhancing core (class 3). Third, there are no negative cases,

in other words, all patient MRI images contain GBM brain tumors. Fourth, there is

in many cases a remarkable variability in manual segmentation of brain tumors: intra-

rater, 20 ± 15%; inter-rater, 28 ± 12% [Mazzara et al., 2004], indicating that the manual

segmentation by expert raters is not the same even for the same patient MRI image,

thus, to avoid an individual baised segmentation, they fused the decision of many expert

4. BRATS data is the only known, largest and publicly available dataset for patients with Glioblas-
toma, possibly due to the issue of data privacy and confidentiality, data security, data access rights,
and these issues open the door to the exploration of two approaches adapted to these issues: federated
learning and reinforcement learning.
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raters in one consensus 5 segmentation (See figure 2.2). Fifth, the experts use a specific

annotation and clinical protocol to label each voxel [Menze et al., 2015]:

1. They detect the edema region primarily from T2 images, they also use FLIAR

image to check and discriminate edema’s extensions from ventricles and fluid-filled

structures

2. After that, the two tumors sub-structures, i.e., enhancing and non-enhancing are

detected in T1c images together with T1 images.

3. They determine visually an intensity threshold to segment the enhancing core in

T1c images within the result of step (3) in addition to using GCRA and excluding

the necrotic and vessels.

4. The necrotic core is segmented within the enhancing rim visible in T1c images.

5. Finally, the remaining part after subtraction the enhancing core and the necrotic

core sub-structures, they obtain the non-enhancing (solid) core.

5. Given the consensus segmentation (Ground truth) is done by the fusion of the results of many
experts, the number of experts still affects the final result, and this issue opens the door to exploring
other segmentation approaches in the future such as unsupervised and reinforcement learning.
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Figure 2.2 – MRI examples from the BRATS dataset. In each row, we have two cases of HGG tumor (rows 1–4), LGG
tumor (rows 5–6). Also, for each MRI image, we have different views (i.e., axial, sagittal, and coronal), different types:
the whole tumor region in FLAIR (left), the core region in T2 (center), the active tumor region in T1c (right) and two
segmentations: individual segmentation is shown in blue lines, while the consensus segmentation is shown in magenta lines.
[Menze et al., 2015].
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2.5 MRI image quality limitations

In this section, we highlight the most challenges and issues in MRI images, that can

affect different image segmentation approaches:

— Noise: MRI images prone to noise especially white noise which can be modeled

by Rician distribution, this type of issues affect significantly threshold-based ap-

proaches. These approaches do not have the ability to deal with noise which makes

the separation of structures or regions very difficult due to the corruption of the

MRI image histogram [Pham et al., 2000].

— Intensity inhomogeneity: this type of issues is due to intensity variation for each

MRI image, which can lead after that to destroying the image histogram [Yazdani

et al., 2015] and to generating a shading effect over the MRI image. Intensity

inhomogeneity issue arises from the process of the image acquisition limitation

(see figure 2.3), where the sources of this issue came from two reasons: firstly,

static field inhomogeneity, bandwidth filtering, radio frequency transmission and

reception inhomogeneity. Secondly, the state of the object inside the magnet, the

magnetic permeability and dielectric properties of the object [Vovk et al., 2007].

Figure 2.3 – Example of the Intensity inhomogeneity issue in a MRI image [Vovk et al.,
2007].

— Intensity non-standardization: the MRI images of the BRATS datasets are taken

using different MRI scanners and parameters in different acquisition centers as it

is mentioned in section 2.4. MRI scanners manufacturers use different imaging

protocols, and therefore, they provide different MRI images even for the same
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patient [Sugita et al., 2010]. Unlike X-ray and CT scans, the pixel intensities in

MRI scans have different values for the same issue [Alegro et al., 2012].

— Patient motion: it is known that the patient moves between image acquisitions

after administration of Gd-DTPA 6 contrast agent, especially if we know that the

MRI exams take for about 30 minutes [Gibbs et al., 1996]. Moreover, with this

issue, we obtain MRI images with contrast and anatomic variations which lead to

difficulties and challenges in image registration. The latter is an important step

in image segmentation approaches and especially it delimits Atlas-based segmen-

tation methods [Yazdani et al., 2015].

— Partial volume effect: the results of this issue are: getting connected regions despite

they are separated and a blurring of intensity at the boundary between regions (see

figure 2.4). The latter issue is due to the contribution of different tissues to a single

voxel. The partial volume effect is the first reason for the existence of uncertainty in

the region boundaries, consequently, the existence of a soft segmentation resulting

from the overlapping of the regions. On the other hand, hard segmentation does

not allow the voxel to be in two regions at the same time (whether inside or outside

the region) [Pham et al., 2000].

Figure 2.4 – Example of the partial volume effect issue [Pham et al., 2000]: (a) ideal
image, (b) acquired image by a MRI scanner.

6. Gd-DTPA: Gadolinium-diethylenetriamine pentaacetic acid
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2.6 Evaluation metrics

To evaluate the performance of Deep Learning architectures, we used BRATS online

evaluation system 7, where we upload the segmentation results and the system provides

the quantitative evaluations contain Dice score equation 2.1, Sensitivity equation 2.2,

Specificity equation 2.3, and Hausdorff distance equation 2.4. For each one of these

metrics we have three sub-metrics: Complete (i.e. Necrotic and Non-Enhancing tumor,

Peritumoral Edema, Enhancing tumor), Core (i.e. Necrotic and Non-Enhancing tumor,

Enhancing tumor), Enhancing (i.e. Enhancing tumor). The following figure 2.5 shows

the used regions to compute the evaluation metrics:

Figure 2.5 – The quantitative evaluations: Dice score, Sensitivity, Specificity, Hausdorff distance are computed from the
outlined four regions. T1 is the true lesion region (blue line), T0 is the remaining normal region, P1 is the predicted lesion
region (red line) and P0 is the predicted to be normal region [Menze et al., 2015].

The evaluation metrics (i.e., Dice score, Sensitivity, Specificity, Hausdorff distance)

are calculated as follows:

Dice(P, T )= |P1 ∧ T1|
(|P1| + |T1|)/2

(2.1)

7. Center for Biomedical Image Computing and Analytics University of Pennsylvania,
Url:https://ipp.cbica.upenn.edu/
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Sensitivity(P, T )= |P1 ∧ T1|
|T1|

(2.2)

Specificity(P, T )= |P0 ∧ T0|
|T0|

(2.3)

Hausdorffdistance(P, T )= max { sup
p∈∂P1

inf
t∈∂T1

d(p , t) , sup
t∈∂T1

inf
p∈∂P1

d(t , p) } (2.4)

Where ∧ is the logical AND operator, P is the model predictions and T is the ground

truth labels. T1 and T0 represent the true lesion region and the remaining normal region

respectively. P1 and P0 represent the predicted lesion region and the predicted to be

normal respectively. (|.|) is the number of pixels. MRI image is a 3D space (i.e. a set

of points in R3): height, width and depth (i.e. a set of slices), each point on the image

is a voxel, and a set of voxels represent a volume. To compute the Hausdorff distance,

first we differentiate the voxels of each class (i.e. creating a map) then we save only the

voxels that belong to the borders of each class, these voxels represent a surface (Voronoi

surface). ’p’ and ’t’ are two points on the surface ∂P1 and ∂T1 respectively, and d(p,t),

d(t,p) are the shortest least-squares distance between point ’p’ and ’t’ and vice versa

for d(t,p). Finally, instead of calculating the maximum distance, we compute only 95%

of the surface distance between each point from the first surface (i.e. the true lesion

region) and the other surface (i.e. the predicted lesion region). This fractional distance

is a robust version of Hausdorff because the existence of outliers can have a considerable

impact on the last one (i.e. Hausdorff), also, it is proven that it gives better results than

the maximum distance [Menze et al., 2015].

In addition to the four metrics provided by the online evaluation system (i.e., Dice score,

Sensitivity, Specificity, Hausdorff distance), we use another evaluation metrics to compute

the computational benefits: the number of parameters (trainable weights), inference time

that represents the needed time to make prediction on a new data set, which means

the quantity of operations that needed to execute the model on the platform (device).

Moreover, to focus on the effectiveness of Deep learning models, we measure the metric

of Dice whole density, i.e. Dice whole divided by the number of parameters. The best

model is the one that has a high Dice whole density, in other words, the model that uses
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effectively its parameters. Measuring information density is one of the most used metrics

to measure the effectiveness of deep learning models; information density shows us the

ability of each model to use its parameters efficiently [Canziani et al., 2016; Bianco et al.,

2018].

In this thesis, we propose different contributions with different deep learning architectures

to introduce an improvement of seven evaluation metrics of state-of-the-art methods: Dice

score, Sensitivity, Specificity, Hausdorff distance, inference time, number of parameters,

Dice whole density.

2.7 Discussion and Conclusion

In this chapter, we presented a survey on MRI image segmentation approaches. We

also showed the anatomy and the origin of Glioblastoma brain tumors, besides, how ra-

diologists and oncologists diagnose and assess patients’ MRI images with these tumors.

The limitation and the challenges of MRI image quality are presented in addition to

their influence on the segmentation and classification methods. Moreover, we presented

the evaluation metrics that will be used to compare the performance of state-of-the-art

methods.

Through a variety of applications in medical image analysis, in particular, Glioblastomas

brain tumors segmentation, Convolutional neural networks have proven their effective-

ness in predicting these tumors. In addition, they provide a promising segmentation

performance compared to conventional approaches and state-of-the-art methods in terms

of MRI image segmentation and inference time.

In the next chapter, we present Convolutional Neural Networks (CNNs), and how these

Networks can be applied to input matrices, and from this principle, how we can apply

CNNs to MRI images as input for Glioblastomas image segmentation. Furthermore, we

present the fundamental building blocks of CNNs algorithm, and the operations behind

this algorithm such as convolution, non-linear activation function, pooling, upsampling,

and fully-connected layers. In addition, we present two important algorithms: firstly,

the forward algorithm to transform the input and the output of the each layer from a

representation space to another non-linear representation space, also how this algorithm

is used to compute the inference and loss function in each epoch. Secondly, the backward
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algorithm which is considered the workhorse for optimizing deep learning networks is used

to adjust the parameters (weights, biases) of each layer towards the global minimum. At

each epoch, the backward algorithm computes the gradient of the objective function with

respect to each parameter before determining the next value of each parameter in the

continuous landscape of hills and valleys of the objective function.
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3.1 Introduction

Deep learning is a subfield of machine learning that allows computers to learn from ex-

perience and data, and machine learning, in turn, is a subfield of Artificial Intelligence 1

(AI). AI is a set of fields that study how can machines mimic the congitive functions

of the human being such as learning and problem solving. Machine learning is basically

about how to program a computer without being explicitly programmed. So in fact, Deep

Learning dates back to 1940s with the work of (McCulloch and Pitts, 1943; Hebb, 1949;

Rosenblatt, 1958 ), which consist of a set of algorithms inspired by the brain function

1. At an important conference in 1955 among many experts in information theory and mathematics,
they used the word Artificial Intelligence for the first time to present an academic discipline.
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and the idea of stacking many layers of neural networks to transform raw data from one

representation space to another with more compact and discriminative features. In this

chapter, we focus more on deep learning, precisely, on Convolutional Neural Networks

(CNNs).

In recent years, CNNs [Fukushima, 1980; LeCun et al., 1989] have proved that they

are a powerful tool for feature detection and extraction in many computer vision tasks.

One of the first known CNNs architectures is LeNet5, this architecture developed by [Le-

Cun et al., 1998], and it appeared after many previous versions of CNNs since the work

of handwritten zip code recognition in 1989 [LeCun et al., 1989].

CNNs networks are usually applied to images or in general to matrices because images

have a spatially correlated nature, also, the image’s features are distributed across the

whole image. So, CNNs networks have exploited these properties and added a new layer

called convolution. This convolution layer is applied to the input images (raw pixels).

The idea of adding the convolution layer before classifier allowed to extract relevant fea-

tures at multiple locations. By stacking many convolution layers (pooling layer can be

added alternatively with convolution), kernels in each CNNs layer play an important role

as a feature detector. So, by choosing a specific kernel we can detect a specific feature

that we want. Moreover, the kernels’ parameters represent the weights that need to be

updated to obtain the most suitable configuration, in another word, the kernels tuned

during the training process for pushing it to respond strongly to specific features. This

updating operation of weights is often done by the Backpropagation [Rumelhart et al.,

1986] algorithm. Where lower-kernels’ parameters at lower-layers of CNNs networks are

trained to detect features such as edges, corners, and higher-kernels’ parameters at higher-

layers of CNNs are trained to detect more complex features or high-level features such as

shapes and object parts. CNNs algorithm is based on four standard operations: Convolu-

tion, Pooling, Non-linear activation function, Multi-Layer Perceptron (MLP) [Rosenblatt,

1961] in addition to two algorithm for computing the loss function and the new param-

eters: forward and backward algorithms. In this chapter, we present the fundamental

building blocks of Convolutional Neural Networks such as convolution, non-linear activa-

tion function, pooling, upsampling, fully-connected layers, and Dropout, in addition to,
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the forward and backward algorithms.

3.2 Convolutional Neural Networks

In this section, we describe the important operations behind the CNNs algorithm:

Convolution, Pooling, Upsampling, Non-linear Activation function, Fully-conncected lay-

ers. The important property of these operations is that they can be applied to the Input

images or to the output of the hidden layers.

3.2.1 CNNs operations

3.2.1.1 Convolutional Layer

To a computer, an image is a grid or matrices of numbers, so, to apply a Convo-

lution 2 operation over the input image, a set of filters (also known as Kernels) is used

on raw pixels. Moreover, applying filters 3 on images is known in conventional methods

such as Sobel filter, Gaussian filter, high-pass filter, ...etc., the new added property of

CNNs compared to conventional methods is that CNNs use many filters with trainable

parameters in successive layers. Therefore, the latter property allows CNNs to overcome

the conventional methods by extracting hierarchical features (See figure 3.1) across the

whole image with the same filters (shared weights) and only some input units contribute

to the output unit (sparse connectivity). Furthermore, the advantage of Convolution is

that it is applicable to many types of multidimensional data and to many computer vision

tasks.

Moreover, the used filters in many stackable convolutional layers (other layers can be

added alternatively with convolution) act as a feature detector. So, by choosing a specific

filter we can detect a specific feature that we want. The filter parameters represent

the weights that need to be updated to get the most suitable configuration, in another

word, the filter tuned during the training process for pushing it to respond strongly to a

2. The original idea of Convolution is Cross-correlation which shifts a filter (window) through the
input to find the large numbers which are a matching indicator between the filter and the input.

3. In conventional methods, filters are used often to highlight edges, to remove noise or to increase
image details,...etc.
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Figure 3.1 – Visualization of the first convolutional layer ’s filters of the AlexNet model
[Krizhevsky et al., 2012]. Those filters are trained to detect lower-features such as lines
and edges in a different directions.

specific feature. This updating operation of weights is often done by Backpropagation 4

[Rumelhart et al., 1986] algorithm, i.e, the goal of the Backpropagation is to minimize

the objective function (also called loss function) by adjusting the parameters (weights

and biases) towards the global minimum. Where lower-filters parameters are trained to

detect features such as edges, corners, and higher-filters parameters are trained to detect

more complex features or high-level features such as shapes and object parts. The output

of convolution operation called feature map which is calculated as follows:

Yi = bi +
∑

j

Wij ∗Xj (3.1)

For 2D inputs (single-channel image), the convolution operation of input image X ∈

Rf×h and kernel matrix W ∈ Rn×m is defined as follows:

Yab =
n∑

i=1

m∑
j=1

Wij ∗Xa+i−1,b+j−1 (3.2)

Where Y is a feature map (the output of convolution operation), bi is a trainable

parameter bias, Wij is trainable parameter weights. In CNNs architectures Wij are the

kernel matrices parameters. X is the input, * is the convolution operator. Convolution

layer reduces the number of dot-product operations by using the property of sparse inter-

actions 5 which is in contrast with traditional feed forward neural networks that have a

4. See section 3.2.3 for further details
5. Sparse connectivity has fewer connections between two successive layers.

50



Chapter 3 – Background Theory: Convolutional Neural Networks

dense connectivity, i.e, all input units are connected to all hidden layer units. The Con-

volution operation works by convolving the filter with the input where the filter starts

with the leftmost part, then it slides to the right by a step called stride after computing

the elementwise production between the filter elements and the input elements. Then,

the results are summed, plus a bias term, to form an output unit (see figure 3.2). This

process is repeated until the filter slides all positions of the input and computing all the

output units. Each filter is initialized with different weights to push it to look for a

specific and different feature on the input. In standard CNN architecture (e.g. AlexNet

[Krizhevsky et al., 2012]), multiple filters are used for each layer, where after calculating

the feature map, they are grouped together to form the output.

Figure 3.2 – An allustartion of Convolution Operation on a single-channel image (Equa-
tion 3.2). Feature maps (Y) is the result of convolving the input (X) with a Filter (W).
.

The size and the number of the feature maps are controlled by three parameters in

addition to the size of the Input Image:

— Depth: the depth of the output (Convolved feature) is related to the number of

filters we use for the Convolution operation. In the standard CNNs architecture,

we use many filters in each layer and as a result we obtain many features maps,

so, these feature maps will be stacked as 2D matrices.

— Stride: is how much a kernel is shifted across the input image with each step

— Zero-padding: is the operation of adding zeros around the border (outside the

matrix), like this we can control the size of output (feature map), this operation

called also wide convolution

More formally, in the following section, we define the relationship between these pa-

rameters:
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Relationship 3.1 A convolution output OL+1 of layer L+1, is described by Input IL,

Kernel KL, Padding PL and Stride SL:

OL+1 = IL + 2PL −KL

SL
+ 1 ∀O, S, I,K, P ∈ N (3.3)

if No zero padding (i.e., P = 0) then:

OL+1 = IL −KL

SL
+ 1 ∀O, S, I,K ∈ N (3.4)

Example: Let’s consider an Input I = 5 X 5, Kernel K = 3 X 3, Padding P = 1

and Stride S = 2, thus, the output O of the convolution operation in this case: O =

[(5+(2*1)-3)/2]+1 = 3, see figure 3.3 for more details.

Remark: if the Input I or the Kernel K are not square (e.g., I = 4 X 5 or K = 3 X

2), in this case, equation 3.3 must be applied independently to each axis (i.e., horizontal

and vertical axes).

Figure 3.3 – An example of the convolution layer, an Input image I= 5 × 5 (blue), Kernel K= 3 × 3 (gray), Padding P=
1 ,Strides S = 2, the produced output O = 3 × 3 (green). Figure from [Dumoulin and Visin, 2016].

3.2.1.2 Activation function

After the convolution operation, we apply another important operation called non-

linear activation function to separate and to transform the feature maps after each con-

volution operation from a space representation to another representation with more dis-

criminative feature maps. In literature, there are many activation functions (See figure

3.4): Sigmoid (see equation 3.5) has a function curve in the range [0,1], Hyperbolic tan-

gent (Tanh 6) (see equation 3.6) has a function curve in the range [-1,1], and Rectified

6. Tanh was first used in the 1760s independently in the work of Vincenzo Riccati and Johann Heinrich
Lambert. In addition, Johann Heinrich Lambert proved that Tanh can be written as a series of a
continued fraction (known as Lambert’s continued fraction).
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Linear Units (ReLU) (see equation 3.7) has a function curve in the range [0, ∞[. The

cited functions arised naturally in neural networks theory as the activation function of a

neural unit [Cybenko, 1989] and they have recently been adopted into almost deep learn-

ing networks. The drawback of Sigmoid and Tanh activation functions is that they lead

to the problem of vanishing or exploding gradient when they used with gradient-based

algorithms to adjust neural networks’ parameters [Gao et al., 2019] such as stochastic

gradient descent and its variants.

Figure 3.4 – An illustration of Sigmoid, Tanh, and Relu function curves. The principal
axes represent the pre-activation and activation function. Figure from [Gao et al., 2019]

The most used activation function in the field of deep learning is ReLU function

[Glorot et al., 2011] due to its properties: it is a non-linear function, differentiable (it has

either 0 or 1 slope), and it has a non-saturating property on the positive side [0, +∞[.

F (w × x+ b) = Sigmoid(w × x+ b) = 1
1 + e−(w×x+b) (3.5)

F (w × x+ b) = Tanh(w × x+ b) = e(w×x+b) − e−(w×x+b)

e(w×x+b) + e−(w×x+b) (3.6)

F (w × x+ b) = Relu(w × x+ b) =

 w × x+ b , if(w × x+ b) > 0

0 , otherwise
(3.7)
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Where (w × x + b) ∈ R is the neuron’s output, w and b are trainable parameters

weight and bias respectively. F is the activation function that transfoms the neurons’

output from linear space to non-linear space.

Figure 3.5 – An example of applying ReLU as an activation function. (a) is the result of
convolution operation called feature maps, (b) is the result after applying ReLU nonlin-
earity. ReLU works by replacing neuron’s output (x) by zero if x < 0, else Relu acts as
a linear function with slope equals to 1.

Moreover, ReLU activation function works by replacing all negative pixel (or feature)

values in the convolved feature map by zero, this property allows Relu function to create a

sparse representation (see figure 3.5). In addition, the purpose of activation function is to

introduce the non-linearity in CNNs networks because the Convolution operation is a lin-

ear operation. The empirical experiments in figure 3.6 show that training CNNs networks

with Relu activation function will converge six times faster compared to Tanh activation

function [Krizhevsky et al., 2012] that is used mostly in shallow neural networks.
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Figure 3.6 – An illustration of a comparison between the training curve of a CNNs model
with Tanh (dashed line) function and ReLU (solid line) function. Relu unit shows 6 times
faster in convergence in terms of training error rate compared to Tanh unit. Figure from
[Krizhevsky et al., 2012].

3.2.1.3 Transposed convolution layer

One of most used technique in Deep Learning architectures to obtain a higher-resolution

feature map (higher-dimensional space) from a lower-resolution feature map is Up-sampling

technique 7 (also known as Transposed convolution). This technique does not use any

trainable parameters, which works by inserting zeros padding internally between pixels,

where the number of zeros is determined by the stride parameter. Final step is to con-

volve the sparse feature maps with trainable parameters (i.e. convolution operation) to

obtain dense features maps, this technique helps to avoid the problem of Overfitting 8

[Badrinarayanan et al., 2015]. More formally, the technique of Up-sampling operation

works as follows:

Mi(n) = UpsamplingL,n(Gi) (3.8)

7. There is another technique called deconvolution, but this technique uses trainable parameters and
it is less used because it is highly prone to overfitting.

8. The model begins to learn patterns unique to the training data but irrelevant when it comes to
the test data.
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Mi =

 Gi(n/L) if(n/L) ∈ N

0 otherwise
(3.9)

Where G ∈ Rf×h is a lower-resolution feature map matrix, and M ∈ R(a.f)×(b.h) is a

higher-resolution feature map matrix. Up-sampling operator works by inserting L − 1

zeros between G(n) and G(n+1) for all input units. The obtained sparse feature map M is

convolved with a Convolution Kernel to transform M from sparse to a dense feature map.

Transposed convolution technique is used in many deep learning architectures [Zeiler

et al., 2011; Zeiler and Fergus, 2014; Long et al., 2015; Radford et al., 2015; Visin et al.,

2015; Ronneberger et al., 2015; Im et al., 2016] as a technique to transform the feature

map shape back to the original image shape 9. Formally, the following definition explains

the relationship that controls the size of the Transposed convolution output, when it is

applied to a 2D input image:

Relationship 3.2 A Transposed convolution output OL+1 of layer L+1, is described by

Input IL, Kernel KL, Padding PL, Stride SL and aL ∈ {0,...,SL-1} to relax the constraint

on the input size:

OL+1 = SL(IL − 1) +KL + aL − 2PL ∀O, S, I,K, a, P ∈ N (3.10)

if No zero padding (i.e., P = 0) then:

OL+1 = SL(IL − 1) +KL + aL ∀O, S, I,K, a ∈ N (3.11)

Example: Let’s consider an Input I = 3 X 3, Kernel K = 3 X 3, Padding P = 1, Stride

S = 2 and a = 1, thus, the output O of the Transposed convolution operation in this case:

O = 2*(3 - 1) + 3 + 1 - 2*1 = 6, see figure 3.7 for more details.

Remark: if the Input I or the Kernel K are not square (e.g., I = 4 X 5 or K = 3 X 2),

in this case, equation 3.10 must be applied independently to the horizontal axis and to the

vertical axis.

9. Note that the transposed convolution technique is not the inverse of convolution, so it returns a
feature map that has the same width and height of the input.
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Figure 3.7 – An example of transposed convolution layer, applied on a single-channel image (Equation 3.8 and Equation
3.9). Input image I= 3 × 3 (blue), Kernel K= 3 × 3 (gray), Padding P= 1, a = 1 (an added border of zeros, to the bottom
and right edges) , Strides S = 2, the produced output O = 6 × 6 (green). Figure from [Dumoulin and Visin, 2016].

3.2.1.4 Pooling layer

On of the most used technique to reduce the feature maps dimensionality is Pooling

technique. Moreover, the Pooling technique is a powerful operation for various types

of distortion, it has also a shifting and rotation invariant property. To downsample

the resulted feature maps, in overall Max-Pooling operation is applied, which takes the

maximum value of each non-overlapping square (i.e. subregion) of feature map. Pooling

operation reduces the dimensionality of each Convolved feature maps and in the same

time it summarizes the most important information by keeping the maximum activated

components. There are many type of Pooling: Max, Average, ...etc. The Max-Pooling

operation output Kij is computed as follows:

Ki,j = max
h

Zi+h,j+h (3.12)

Where h ∈ N is the size of sub-region, i, j ∈ N are the stride values for the vertical

and horizontal axes respectively.

The following definition explains the relationship that controls the size of the Pooling

operation output:

Relationship 3.3 A Pooling output OL+1 of layer L+1, is described by Input IL, Pooling

Window WL, Stride SL:

OL+1 = IL −WL

SL
+ 1 ∀O, S, I,W ∈ N (3.13)

Example: Let’s consider an Input I = 4 × 4, Pooling Window W = 2 × 2, Stride S

= 2, thus, the output O of the Pooling operation in this case: O = ((4 - 2)/2) + 1 = 2,
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so the Pooling ouput size equals to 2× 2, see figure 3.8 for more details.

Figure 3.8 – An example of max-pooling operation. (a) is the output of convolution
operation, (b) is the result after applying 2 × 2 max-pooling operation. In typical CNN
architectures, they use a window of 2 × 2 (which is most common) because it provides
the minimum spatial reduction of feature maps.

In this example (see figure 3.8), we shift 2 × 2 Pooling window by two cells (called

stride) over the Rectified Feature map then we take the maximum value in each region

then we shift again the window to the right. We repeat this process until the Pool-

ing windows slides all the position of the feature maps. In typical CNNs architectures

[Krizhevsky et al., 2012; Simonyan and Zisserman, 2014], they apply Pooling operation

to the output of the Convolution operation (Feature maps).

3.2.1.5 Fully connected layers

In typical CNN architectures [Krizhevsky et al., 2012; Simonyan and Zisserman, 2014],

the output of the pooling layer will be flattened to act afterward as an input for the

Fully Connected layers (FC). The FC layers are just a Multi-Layer Perceptron (MLP)

with three types of layers (see figure 3.9): input, hidden, and output layers. The input

layer (blue) is the flattened vector of features which can be integer or float vector. The

hidden layers (green) extract more representative features by transforming them from

non-linear space representation into another space representation with more compact

and discriminative features. The first hidden layers extract lower-level features such as

lines, edges while the last hidden layers extract higher-level representative features such

as objects, shapes, faces,...etc. The output layer (purple) embeds a classifier at the end to

classify the extracted features from the input to one of the predefined classes, in our case
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for the issue of Glioblastoma brain tumors segmentation, there are 4 classes: edema, non-

enhancing core and necrotic core, enhancing core, and healthy tissue. The classifier can

be Softmax (see equation 3.16), Sigmoid 10 (see equation 3.17) or a traditional machine

learning classifier such as Support Vector Machine (SVM). The embedded functions in

the classifier should have an important property that squashes the outputs to be between

0 and 1 for classification issue, i.e., the neural networks output the posterior probabilities

z = p(y = i|x; θ) with z ∈ [0,...,1], where z is the output of the classifier. After computing

the vector of probabilities of the output layer, we assign the winning or the most probably

true class C with the one with the highest probability. For a jth neuron in MLP network,

the neuron’s output is computed as follows:

s = σ(Wx+ b) (3.14)

Where s ∈ R is the neuron’s output, x is the input, W ∈ Rf×h is the weight matrix,

b ∈ Rh is the bias vector. The latter (bias) is considered as the intercept added to the

activation function. σ is the activation function (see section 3.2.1.2) for further details.

Usually, in deep learning networks, Relu function and its variants such as leaky Relu,

ELU,...etc, are used as an activation function of hidden layers. After computing the

outputs of one layer, we can now increase the depth 11 by stacking more hidden layers as

a composition of functions in order to extract more discriminative and complex features

as follows:

σ3 ◦ σ2 ◦ σ1(Wx+ b) = σ3(σ2(σ1(Wx+ b)))

= σ3(W3σ2(W2σ1(W1x+ b1) + b2) + b3)
(3.15)

Where ◦ is a composition of functions σd. Wd is the weight matrix of the layer d. bd is

the bias vector of the layer d. According to universal approximation theorem, [Cybenko,

1989] proved that any neural network with one hidden layer and Sigmoidal 12 activation

function can approximate any continuous function. Therefore, the composition of many

non-linear activation (i.e., many hidden layers) functions has not an impact on neural

network theory and it provides only a desirable response to each type of feature.

10. One neuron with Sigmoid function at the end of the classifier is used in traditional applications for binary clas-
sification, and therefore, it deals with linearly separable issues but it is not capable to work with non-linear separable
issues.

11. Deep neural network is any neural network with more than one hidden layer.
12. Any function with curve similar to Sigmoid and Tanh activation functions.
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Figure 3.9 – Multilayer perceptron architecture (MLP). MLP has three types of layers:
input (blue), hidder (green), output (purple). ”a” is a neuron, ”w” is an weight between
input layer and first hidden layer, and ”b” is a bias parameter.

Softmax(x)i = p(y = i|x; θ) = exi

N∑
j=1
exj

i ∈ [C0, ..., CN ] (3.16)

Sigmoid(x) = p(y = i|x; θ) = 1
1 + e−x

i ∈ [C0, C1] (3.17)

Where x ∈ R is the input to the classifier. i represents one of the N classes Ci in

the dataset, and θ is the parameters of the neural networks. The condition (y|x; θ) of

the probability p(y|x; θ) that the prediction y is i, given x and θ, in the case of Sigmoid

function is subject to Bernoulli distribution:

p(y = C0|x; θ) = g(x)

p(y = C1|x; θ) = 1− g(x)
(3.18)

Where g(x) ∈ R is the the posterior probability. The two equations of 3.18 can be

written as follows:

p(y|x; θ) = g(x)y(1− g(x))1−y (3.19)

The equation 3.19 is able to estimate the contribution of neural networks’ parameters

on the final results. We can estimate the value of the parameters (weights and biases)

60



Chapter 3 – Background Theory: Convolutional Neural Networks

by maximizing the likelihood of the neural networks’ parameters, and therefore, it is

equivalent to minimizing the loss 13 function such as cross-entropy, hinge loss [Rosasco

et al., 2004],...etc, which is done usually in deep learning networks by gradient-based

algorithms such as stochastic gradient descent and its variants.

3.2.2 Forward Propagation

In Deep Neural Networks family, including Convolutional Neural Networks, there are

two important algorithms, i.e., forward propagation and backward propagartion 14. The

first algorithm (Forward Propagation 15) allows deep learning architectures to compute

and predict the probability p(y = C|x) that a class ”C” is true. At the phase of the

training, a training set contains a pair of input observation X1:m and corresponding

target Y1:n of a dataset (X1:m, Y1:n), where the class ”C” ∈ [C1, ..., Cn]. The objective of

Forward algorithm at the trainin phase is propagate the data X from the input layer to

the hidden layers then to the output layer and to calculte the error ”E” relative to the

desired output Y using a differentiable Loss function L (also known as cost, or objective

function). For example for a regression problem, the Mean Squared Error (MSE) function

is computed as follows (see equation 3.20):

LMSE(y, o)i = 1
n

n∑
i=1
‖ yi − oi ‖2 (3.20)

In a binary classification problem, where the number of classes is 2 (i.e., C = 2),

we use a binary cross-entropy 16 (CE) (also CE is known as Logistic Loss, log-loss, and

Multinomial Logistic Loss.) loss function as follows:

LCE(y, o) = −
C=2∑
i=1

yi log(oi)

LCE(y, o) = −(y1 log(o1) + y2 log(o2))

LCE(y, o) = −(y1 log(o1) + (1− y1) log(1− o1))

(3.21)

Where ”o” is deep learning model prediction, ”y” is the ground truth for each class i in

13. The loss function is an function with one or more variables to measure the efficiency of a model.
14. See section 3.2.3 for further details.
15. Forward propagation is used in many methods such as hidden Markov model to compute the joint

probability p(yt, x1:t) at each time step, given the history of evidence, where yt is the hidden state, and
x1:t are the observations 1 to t.

16. Cross-entropy is a function that computes the difference between true and estimated distributions.
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C, i.e, ”i” ∈ [1, ..., C], ”o1” and ”y1” are the prediction and ground truth of C1, therefore,

”o2” = (1− o1) and ”y2” = (1− y1) for C2. In a binary classification problem, ”o” is the

output of either softmax or sigmoid functions ( see equation 3.16 or see equation 3.17

respectively).

In a multi-class classification problem, where the number of classes could be more

than two classes (i.e., C > 2):

LCE(y, o) = −
C∑

i=1
yi log(oi) (3.22)

Usualy, in a multi-class classification problem, one-hot encoding is used to encode the

labels (Ground truth) over the C classes, i.e., this encoding gives all probabilities of the

ground truth to one class (i.e., the correct class), and the other classes become zero, e.g.

q = [1,0,0,0], this vector q indicates that the first class is the correct class, in this case,

the equation 3.22 can be written as follows (see equation 3.23):

LCE(y, o) = − log( eop∑C
j e

xj
)

LCE(y, o) = − log(eop) + log
C∑
j

exj

(3.23)

Where LCE is cross-entropy loss functions of the output ”i” ∈ [1, ..., C], ”y” is the

real value (Ground truth), ”o” is the prediction/approximation of the Neural Networks

(op is the prediction for the positive class). Moreover, the role of the loss function is to

calculate the distance between the Ground truth and the prediction value over the overall

training set, i.e., how much the prediction gives value simulates the Ground truth for all

images data.

If Neural Networks have more than one output, in this case, the total loss function is

the sum of all error values of all outputs (see equation 3.24):

Ltotal =
C∑

i=1
Ei = E1 + E2 + ....+ EC (3.24)

Where Ei is the error for the ith output, with ”i” ∈ [1, ..., C]. For the Neural Networks

in figure 3.9, the total loss function of the equation 3.20 for a regression problem can be
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written as follows (see equation 3.25):

Ltotal =
2∑

i=1
Ei = E1 + E2 = 1

2(y1 − o1)2 + 1
2(y2 − o2)2 (3.25)

In Neural Networks, if the input data is propagated in batches 17 b with b ∈ [1, ..., n],

in this case, the total loss function Ltotal is the sum of losses of all batches (see equation

3.26):

Ltotal,b1:n =
n∑

i=1
Lbi = Lb1 + Lb2 + ....+ Lbn (3.26)

The forward algorithm is able to estimate the value of the error in each iteration

through a loss function dedicated to each task (e.g, regression, classification), in addition,

to producing the inference of input to obtain an output.

3.2.3 Backward propagation

The second important algorithm in Deep Neural Networks is Backward algorithm

(also known as Backpropagation). The objective of Backward algorithm is to compute

the new parameters (i.e., weights, and biases) associated with each layer and connection

between every two successive neurons, i.e, the objective is the find the best weights ”W”

and biases ”b” that give the best prediction ”o” over all images.

The algorithm of Backpropagation applies chain rule 18 to calculate the gradient of the

error from the output layer to the input layer. The chain rule is computed as follows:

ifz = f(x) and x = g(t) and y = h(t) then

dz

dt
= dz

dx
.
dx

dt
+ dz

dy
.
dy

dt

(3.27)

Where dz

dt
is the derivative of z with respect to t. In Neural Networks, each layer is

a function of its previous layer, thus, to compute the derivative of a parameter ”W”, we

need to compute the derivative of all parameters before ”W”.

Updating the weights and biases for many epochs leads to minimizing th error between

17. In programming frameworks such as Tensorflow and Keras,...etc, the data is propagated through
Networks using a variable called batch size.

18. Chain rule is a technique to compute the derivative of a composite function

63



Chapter 3 – Background Theory: Convolutional Neural Networks

the predicted output and real value, thus, to compute the new parameters, we need to

propagate the gradient of the error using the chain rule method. To obtain the best

parameters of W31,W32, b (see figure 3.10), we need first to compute the gradient of the

loss function, second we need to propagate the gradient back from the output layer to

Figure 3.10 – Example of propagating the gradient of the error through a network of one
neuron. W, b are the the weight and bias, Net X is the pre-activation function, Out X is
the output of the neuron, Out h is the input.

the input layer. The partial derivative ∂Ltotal

∂W31
(also known as the gradient) of the total

error Ltotal (See section 3.2.2) with respect to weight W31 is computed as follows:

∂Ltotal

∂W31
= ∂Ltotal

∂X3
∗ ∂X3

∂NetX3
∗ ∂NetX3

∂W31
(3.28)

Where X3 is the neuron’s output, NetX3 is the pre-activation function. We have

X3 = OutX3 the predicted output, therefore:

NetX3 = W31 ×Outh1 +W32 ×Outh2 + b (3.29)

OutX3 = Sigmoid(NetX3) = 1
1 + e−NetX3

(3.30)

Backpropagation algorithm uses gradient-based algorithms to adjust the parameters

(i.e., weights and biases), where it works basically by moving the parameters in the
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opposite direction 19 of the gradient at learning rate η.

Figure 3.11 – Visualization of the gradient descent trajectory towards the global minimum
(the red point). The principal axes are the parameters (e.g. weight 1 and weight 2). F(a),
F(b) are the starting point and the second best parameters, respectvely. At the global
minimum point, the model gets the best parameters among all iterations. Based on figure
8.3 [Murphy, 2012].

From the figure 3.11, computing the second best parameters of F(a) is done as follows

(see equation 3.31):

F (b) = a− η∇F (a) (3.31)

Where ∇ F(a) is the derivative of F(a) with respect to ”a”, and η is the learning rate

which represents the step size between two successive updates.

For the example in figure 3.10, the new weight W+
31 is computed as follows:

W+
31 = W31 − η(∂Ltotal

∂W31
)

W+
31 = W31 − η(

∂(1
2(yi − oi)2)
∂W31

) , oi = X3

W+
31 = W31 − η(

∂(1
2(y −X3)2)
∂W31

)

(3.32)

Where ∂Ltotal

∂W31
is the partial derivative of the total error Ltotal (See section 3.2.2) with

respect to weight W31, η is the learning rate, X3 is the output of the neuron, y is the

19. In practice, we do not expect to reach a global minimum.
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ground truth (also is known as the desired output). In a multi-class classification problem,

i.e. we have many output neurons, therefore, computing the gradient with respect to the

positive class (i.e., the correct class) is done as follows:

∂Ltotal

∂op

=
∂(− log( eop∑C

j
exj

))

∂op

∂Ltotal

∂op

=
∂(log ∑C

j e
xj − log(eop))
∂op

∂Ltotal

∂op

=
∂ log ∑C

j e
xj − ∂ log(eop)
∂op

∂Ltotal

∂op

= 1∑C
j e

xj

∂
∑C

j e
xj

∂op

− ∂ log(eop)
∂op

∂Ltotal

∂op

= eop∑C
j e

xj
− ∂ log(eop)

∂op

(3.33)

Where xj ∈ R is the output of the jth neuron with j ∈ [1, ..., C], ∂Ltotal

∂op
is the partial

derivative of the total error with respect to the positive class, op is the CNNs prediction

for the positive class. In a multi-class classification problem, computing the gradient with

respect to the other classes on (negative classes) is done as follows:

∂Ltotal

∂on

=
∂(− log( eop∑C

j
exj

))

∂on

∂Ltotal

∂on

= eon∑C
j e

xj

(3.34)

Where xj ∈ R is the output of the jth neuron with j ∈ [1, ..., C], ∂Ltotal

∂on
is the partial

derivative of the total error with respect to the negative class, on is the CNNs prediction

for the negative class.

For the example in figure 3.12, where Sigmoid (See equation 3.17) is applied as an

activation function 20, the derivative of the error E with respect to weight W3 is computed

as follows:

∂Ltotal

∂W31
= ∂Ltotal

∂X3
∗ ∂X3

Net3
∗ ∂Net3
∂W31

∂Ltotal

∂W31
= (y −X3) ∗X3(1−X3) ∗X2

(3.35)

20. The important property of the activation function is to be differentiable, therefore, the backprop-
agation algorithm can flow the gradient of the loss function back to update and correct the parameters.
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Figure 3.12 – Example of the backpropagation algorithm. Backpropagation computes the
gradient of the objective function with respect to the parameters, then it backpropagates
this gradient from the last layer to the first layer.

The derivative of the error E with respect to weight W2 is computed as follows:

∂Ltotal

∂W21
= ∂Ltotal

∂X2
∗ ∂X2

Net2
∗ ∂Net2
∂W21

∂Ltotal

∂W21
= (∂Ltotal

∂X3
∗ ∂X3

∂Net3
∗ Net3
∂X2

) ∗X2(1−X2) ∗X1

∂Ltotal

∂W21
= (∂Ltotal

∂X3
∗ ∂X3

∂Net3
∗W31) ∗X2(1−X2) ∗X1

(3.36)

The derivative of the error E with respect to weight W1 is computed as follows:

∂Ltotal

∂W11
= ∂Ltotal

∂X1
∗ ∂X1

∂Net1
∗ ∂Net1
∂W11

∂Ltotal

∂W11
= (∂Ltotal

∂X2
∗ ∂X2

∂Net2
∗ Net2
∂X1

) ∗X1(1−X1) ∗X0

∂Ltotal

∂W11
= (∂Ltotal

∂X2
∗ ∂X2

∂Net2
∗W21) ∗X1(1−X1) ∗X0

(3.37)

Where ∂Ltotal

∂Z
is the partial derivative of the total error with respect to Z, Netj is the

pre-activation function of the layer j, Xj is the output of neuron of the layer j. Therefore,

the new weights W+
31,W

+
21,W

+
11 are computed as follows:

W+
31 = W31 − η(∂Ltotal

∂W31
)

W+
31 = W31 − η((y −X3) ∗X3(1−X3) ∗X2)

(3.38)
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W+
21 = W21 − η(∂Ltotal

∂W21
)

W+
21 = W21 − η((∂Ltotal

∂X3
∗ ∂X3

∂Net3
∗W31) ∗X2(1−X2) ∗X1)

(3.39)

W+
11 = W11 − η(∂Ltotal

∂W11
)

W+
11 = W11 − η((∂Ltotal

∂X2
∗ ∂X2

∂Net2
∗W21) ∗X1(1−X1) ∗X0)

(3.40)

Where ∂Ltotal

∂Z
is the partial derivative of the total error with respect to Z, Wij,W

+
ij

are the old weight and new weight of connection between layer i and layer j, respectively.

The key operation of the backward 21 algorithm is to compute the gradient of the

objective function with respect to some parameters, which is obtained by an application

of the chain rule technique. Moreover, the backward algorithm has the ability to estimate

the next best parameters of Deep Neural Networks based on the previous parameters.

3.2.4 Regularization Dropout

One of the known issues in Deep learning models is overfitting, where the model gives a

much better prediction on training dataset compared to test dataset, this issue is known as

data fitting-generalization tradeoff, in other words, the model has learned patterns specific

to training dataset but are irrelevant to test dataset. Generally, the issue of overfitting is

due to either using a very complex model with a large number of parameters (i.e., weights

and biases) or training a model with a small dataset. To prevent Deep learning models

from overfitting, the best solution after getting more training data is using the technique

of Dropout [Srivastava et al., 2014]. This technique is based on ”dropping out” randomly

some neurons (see figure 3.13), therefore, this technique eliminats the dependence among

neurons and encourags the creation of specialised neurons, e.g., for a layer’s output vector

q = [0.4, 0.5, 0.2, 0.1, 0.6, 0.3]. And after applying Dropout technique with a ”dropout

rate” R = 0.5, i.e., we randomly omit each element in the vector q with probability R =

0.5, so the vector q becomes q’ = [0.4, 0, 0, 0.1, 0, 0.3]. Therefore, the use of Dropout

technique is equivalent to random sampling from 2N different Neural Networks that share

weights. Dropout is a much better regularization technique than the penalties L1 or L2

21. The most interesting thing about backward is its ability to be used in an End-to-End fashion to
train large and Deep Neural Networks.
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that drag the weights towards zero. At test phase, the values of the neurons of each layer

will be scaled down by a factor equals 1
1−R

.

Figure 3.13 – Example of Dropout technique with different ”dropout rates” for each layer.
Left: is a fully-connected neural network. Right: is the same fully-connected neural
network, where we randomly eliminate each hidden unit with a predefined probability.
Figure from [Srivastava et al., 2014].

3.3 Discussion and Conclusion

In this chapter, we presented Deep Neural Networks, in particular, Convolutional

Neural Networks, in addition to the fundamental building blocks of CNNs algorithm,

and the operations behind this algorithm such as convolution, non-linear activation func-

tion, pooling, upsampling, and fully-connected layers.

The formalism of adding the convolution stage with a bank of filters to extract hierarchical

features instead of using many blocks of features engineering as in classical machine learn-

ing methods in addition to transforming lower-level feature maps into higher-level feature

maps and verse versa and reducing feature maps dimensionality using pooling operations

represents the important property behind CNNs. Dropout regularization technique helps

Deep learning, in particular, CNNs to prevent from the issue of overfitting. Consequently,

the use of the Dropout regularization technique allows CNNs architectures to incorporate

a large number of filters and neurons without raising the issue of Overfitting. Additionally,

Dropout is considered as the easiest way to learn many different Deep Neural Networks
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in parallel, therefore it helps to extract a lot of knowledge from the training data.

Finally, the success of Convolutional Neural Networks, is due to 3 important proper-

ties: the availability of large and public datasets, learning methods, and frameworks that

take advantage to parallelize CNNs operations. The fundamental building blocks such

as convolution for features extraction over the input data, pooling to reduce the dimen-

sionality of feature maps, Upsampling to transform features maps from lower-resolution

to higher-resolution representation allow CNNs architectures to develop a feature extrac-

tor of hierarchical representation with more compact and discriminative features without

the need of features engineering as in classical machine learning methods. However, de-

spite the advantage of CNNs architectures, many drawbacks have appeared with these

architectures such as, firstly, the structure of the architecture, the hyperparameters and

parameters (weight and bias). It is interesting to note that Cybenko’s theorem proof

[Cybenko, 1989] does not define how many neurons can be included in the hidden layer

or how to obtain the hyperparameters. In the next chapter, we propose two algorithms to

solve and answer questions related to the structure of the architecture, hyperparameters

and parameters. Secondly, the development of very deep architectures leads in most cases

to the issue of vanishing gradient. To solve this issue, we propose a new methodology

to train a Deep Learning architecture, which involves hyperparameters in addition to

learning methods in one learning graph.
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4.1 Introduction

In this chapter, we present the issue of developing an efficient brain tumor segmen-

tation model using Multi-sequence MRI images, where getting an efficient and accurate
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prediction of Glioblastoma brain tumors as soon as possible gives an early clinical diagno-

sis, treatment, and follow-up. Glioblastoma tumors have four main properties: different

sizes, shapes, contrasts, besides, these tumors appear anywhere in the brain. Thus, de-

tecting Glioblastoma brain tumors in MRI images is a challenge and needs to take into

account all the properties of Glioblastoma tumors. To study Glioblastoma tumors, in this

chapter, we used BRATS dataset which has patients’ MRI images with Glioblastoma

tumors. Moreover, BRATS dataset has the largest public MRI data for Glioblastoma

tumors. Each patient’s brain MRI image comes with 4 MRI sequences (i.e. T1, T1c,

T2, FLAIR) and the ground truth labels of 4 segmentation labels which are obtained

manually by radiologists: healthy tissue and background (class 0), non-enhancing core

(class 1), edema (class 2) contrast-enhancing core (class 3). Furthermore, ground truth

labels are created by radiologists and approved by expert board-certified neuroradiolo-

gists. Although a large number of MRI data in this dataset, few medical image analysis

works have been carried out to study these tumors. This chapter aims to develop new

Convolutional Neural Networks architectures for the segmentation of Glioblastoma brain

tumors. The proposed architectures are used to segment the brain tumors of Glioblas-

toma with both high- and low-grade. We propose in section 4.2 the first approach for

brain tumor segmentation of Glioblastoma, which takes into account 2 main issues: how

to develop efficient Convolutional Neural Networks architectures, in addition to a new

methodology of training to solve the issue of vanishing gradient. In section 4.3, we pro-

pose a second approach that is an inspired architecture by the function and structure

of the visual cortex to improve the first approach and to provide better results in terms

of segmentation performance and computational benefits, in addition to proposing two

steps of post-processing.

4.2 End-to-End incremental Deep learning

4.2.1 Problem statement

During the last three decades, the problem of brain tumor segmentation has attracted

many researchers, in which the number of huge published papers as noted by [Menze

et al., 2014] involving brain tumor segmentation increased exponentially. These statistics

indicate that the creation of a smart brain tumor segmentation system has always been a
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highly needed option. The motivation behind the need to create a smart system powered

by Deep Learning and CNNs is that instead of wasting time that takes between 3 and 5

hours per patient [Kaus et al., 2001]. With manual diagnosis by radiologists, this smart

segmentation system decreases the needed time for the diagnosis process. This way gives

radiologists and oncologists more time with their patients in the therapy planning process,

especially in the treatment and follow-up stages.

MRI is the investigation tool of choice for the segmentation of brain tumors such as

Glioblastoma tumors and the evaluation of treatment response [Bangiyev et al., 2014].

Usually, an expert radiologist uses an MRI scanner to generate a sequence of images

(Flair, T1, T1 contrast, T2, ...etc) to identify different regions of the tumors. This

variety of images helps radiologists to extract different types of information about the

tumor (e.g., shape, volume,...etc).

A large number of studies have been carried out for automating the task of radiolo-

gists, i.e., algorithms for the localization and segmentation of the whole tumor and its

sub-regions. These algorithms are classified into two categories [Menze et al., 2014]: first

Generative probabilistic models [Van Leemput et al., 2001; Gering et al., 2002; Prastawa

et al., 2004; Seghier et al., 2008] that incorporate domain-specific prior knowledge about

tumor, appearance, and spatial distribution of the different tissue types. However, the

limit of these models is that they require recording several parameters on the features

of the tumors in order to obtain an automated image segmentation. In the case of

Glioblastoma tumors, they have unpredictable properties to incorporate in Generative

probabilistic models. Discriminative models [Ho et al., 2002; Zhang et al., 2004; Schmidt

et al., 2005; Görlitz et al., 2007; Zikic et al., 2012] directly learn a decision boundary

and the characteristics of tumors and how to segment it from MRI images using manu-

ally annotated data by radiologists without any domain knowledge. Many discriminative

models need large training data such as Deep Learning algorithms, in particular, Con-

volutional Neural networks (CNNs) to extract a large hierarchy of latent feature maps

through learned kernels. CNNs network architecture is the most suitable machine learn-

ing solution to handle 4 multi-modalities (Flair, T1, T1 contrast, T2) of MRI images

for the issue of Glioblastoma tumors due to the ability of CNNs to take into account

the correlation between the adjacent voxels, in addition to that images have a spatially

correlated nature. But the biggest challenges that we face are: first Glioblastoma tumors
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have four unpredictable properties: different sizes, shapes, contrasts, moreover, these tu-

mors appear anywhere in the brain. Second, Glioblastoma tumors have four sub-regions

[Menze et al., 2014] which are respectively 4 types of intra-tumoral structures: edema,

non-enhancing core, and necrotic core, enhancing core, and healthy tissue. Third, Deep

Learning and CNNs architectures are computationally expensive 1 and they need a very

efficient GPU implementation in addition to a large memory.

The aim of this section is to propose a methodology to develop a fully automatic

method for the segmentation of glioblastoma brain tumors using MRI images. To achieve

this goal, we propose the following contributions:

1. From the first era of Neural Networks until Deep Learning, there is not a specific

method to develop a Neural Network architecture. As previously mentioned in

chapter 3, Cybenko’s theorem proof [Cybenko, 1989] proved that any neural net-

work with one hidden layer and Sigmoidal activation function can approximate

any continuous function but it does not define the hyperparameters, for exam-

ple, how many neurons can be included in the hidden layer. Most of nowadays

architectures follow trial-and-error 2 process which does not use any guided ap-

proach to obtain the architecture and hyperparameters. So the first challenging

issue in this section is how to develop a strategy that can be used, after that, to

develop a CNNs architecture for the segmentation of Glioblastomas brain tumors.

To overcome this issue, we propose two algorithms to build, develop, and train

in one time efficient CNNs architectures, that take into account the architecture’s

structure in addition to the choices of hyperparameters (epochs, batch size, layers,

optimizer,...etc). Moreover, the proposed training strategy takes into account the

most influencing hyper-parameters of Neural Networks, then, by bounding and

setting a roof to these hyperparameters we can accelerate the training phase and

the process of hyperparameters optimization much better than trial-and-error.

2. Solving the issue of vanishing gradient 3 (See figure 4.1), where it is known that

the adjustment of the parameters of CNN architecture starts at the output layer

1. AlexNet network architecture [Krizhevsky et al., 2012] with 60 million parameters takes between
five and six days to train on two GPUs.

2. The trial-and-error process involves running a model in a loop of all possible configurations of
hyperparameters until we get the best model with the suitable hyperparameters.

3. Vanishing gradient issue discovered for the first time in Hochreiter’s diploma thesis in 1991.
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and ends at the first layers for many iterations until the convergence of the loss

function. So, the gradient of the error when it comes to the first layers, it comes

with value zero (∂Etotal

∂W
= 0) because of using a deep architecture with many layers

and because of using chain rule; for example sigmoid activation fuction squashes

the numbers to be between [0,...,1] or Tanh numbers between [-1,...,1] (See figure

4.1). For very large values of sigmoid (or Tanh) the derivative starts to close from

zero, therefore, multyplying N small derivatives with M layers leads the gradient

to decrease with each layer (for instance taking 0.9 as a weight for a network of 3

layers: 0.9*0.9*0.9 equal 0.7). As it is mentioned, the adjustment of parameters

(i.e., weights and biases) using backprogation algorithm starts from the last layer

and it gets back to the first layer, thus, using many layers makes the gradient of

the error signal ”vanish” until it arrives with value equals zero, consequently, and

according to the rule of updating the parameters (See equation 4.1), the value of

previous parameters (i.e., W and b) equals the value of actual parameters. As

a result, the issue of vanishing gradient causes the stopping of training phase,

therefore, extracting a new representation of the input observations.

W+ = W − η(∂Etotal

∂W
)

b+ = b− η(∂Etotal

∂b
)

If
∂Etotal

∂W
= 0 and

∂Etotal

∂b
= 0 then :

W+ = W − η ∗ (0)

W+ = W

b+ = b− η ∗ (0)

b+ = b

(4.1)

Where ∂Etotal

∂p
is the gradient of the total error with respect to parameter p (p is

weight or bias), W (W+) and b (b+) are trainable parameters (weights and biases

respectively), η is the learning rate.
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Figure 4.1 – An illustration of non-Linear activation functions: Sigmoid and Tanh with
their derivatives. The principal axes are the neuron’s input and the output after applying
an activation function.

4.2.2 Incremental XCNet Algorithm

As previously mentioned, there is no specific method to develop a CNNs network

architecture for the issue of brain tumor segmentation. Indeed, it is so difficult to an-

swer questions related to hyperparameters and architecture’s structure of a deep learning

model in advance and directly because these questions depend on the type of data and

application. Therefore, questions such as the number of neurons in the hidden layers,

the number of layers or of batch size...etc are the central question in the development of

a CNNs network capable of detecting all glioblastoma brain tumors. consequently, our

idea for answering these questions is to develop two capable algorithms that can answer

these questions by themselves. First, Incremental XCNet algorithm (See algorithm 1) is

based on the development of a generic algorithm; where from a different configuration,

it generates a different CNNs architecture. XCNet Algorithm is based on an incremental

technique; we create a base model (each base model called block) then we train this block

using ELOBA λ (See algorithm 2) until the block stops learning new relevant features.

At this point, we add another block depending on the results and so on until we obtain an

efficient architecture. Incremental XCNet algorithm combines the development and train-

ing of a deep learning model at the same time. These two algorithms are different from

trial-and-error process; in the field of machine learning, trial-and-error process builds

an architecture, then it tries all possible configurations of hyperparameters without any

guided approach. Moreover, we have shown through experiments that putting a roof to
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each of the hyperparameters could avoid the combinatorial explosion problem and more

branching in the search space. Furthermore, the use of a trial-and-error process leads

to high complexity in terms of testing all possible configurations, and perhaps we will

not reach to the architecture that has a high performance, especially with low computing

resources.

Algorithm 1: Incremental XCNet
Data: X: the number of convolution layers, S ∈ {0, 1}: the number of pooling

layers, F: the number of filters, FC: the number of fully connected layers
Result: M: a CNNs trained model

1 Creating a block (X , S) and FC: M0 ← (X,S) + FC # Creating the first block
2 M0 = ELOBA λ ( M0 ) # Running the training using ELOBA λ to adjust the

Network’s parameters
3 while (The new added block is not null) do
4 Removing FC and freeze all layers of Mi−1(i∈N) : Mi−1(i∈N) ← (X,S)
5 Doubling the number of filters
6 Adding a new block (X , S) and FC: Mi(i∈N) ←Mi−1(i∈N) + (X,S) + FC
7 Mi(i∈N) = ELOBA λ ( Mi(i∈N) )
8 end while

The algorithm of Incremental XCNet is based on adding a new block (block has a set

of Convolution and Pooling layers) after each training phase. The user sets the first base

model (first block) that will be accumulated using the Incremental XCNet algorithm.

Then, as long as we go with the training phase, the model starts to evolve over time

and adds other blocks to the first block. At the end of the training phase, we obtain

automatically another larger model based on the first base model. For example, the first

base model is two convolution layers (2C) and one Max-Pooling layer (1P), so the first

base model is 2C+1P, after the first iteration of training using ELOBA λ algorithm (see

algorithm 2), the Incremental XCNet algorithm adds another two convolution layers and

one Max-Pooling layer to the first base model, so the model becomes 2C+1P+2C+1P,

and so on for the next iterations.

The algorithm of Incremental XCNet is related with the algorithm of ElOBA λ (al-

gorithm 2), in which unlike other CNNs-based models that define the architecture at the

beginning then they train it. Here, we focus on the development of a CNNs model to give

a high predictive performance and at the same time, designing an optimized architecture

in terms of layers and parameters. For achieving these goals, we follow a simple technique:
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in algorithm 1: line 1 we create a base model (first block) with a number of Convolutions,

i.e., X is the number of Convolution layers and it is predefined at the beginning. Then,

in algorithm 1: line 2, we train this base model with the algorithm of ELOBA λ, the first

execution of (algorithm 1: line 1 and line 2), gives M0 = (X,S) + FC, i.e., we have a

known number of Convolution and Pooling layers and a number of fully connected layers.

Then in algorithm 1: line 4, we remove the fully connected layers (classifier) then we

freeze all layers of the last base model Mi (i.e., the parameters inside the layers will not

update any more). Then, in algorithm 1: line 5 we double the number of filters, i.e.,

when the number of features is small (and this number depends on the model’s size) then

S=0 (see figure 1 (a) block (4)), otherwise S=1. In algorithm 1: line 6 we add a new

block and fully connected layers to the last base model. Then, in algorithm 1: line 7, we

continue the training using ELOBA λ, after the first execution of (algorithm 1: line 6

and line 7) we will get M1 = M0 +(X,S)+FC, i.e., besides M0 we have a known number

of Convolution and Pooling layers and a number of fully connected layers.

All our architectures based on 2D image patches, where these architectures predict

the pixel’s class which is the center of the 2D patch. In addition, after several experi-

ments on the size of the patch that gives the best result, we found that the size of 32*32

pixels provides good results. The algorithm of Incremental XCNet takes as an input a

(4*32*32) patch matrix in which the width*height is (32*32) and the number of chan-

nels is four: flair, T1, T1c, T2. The outputs are four different classes: healthy tissue,

edema, non-enhancing (solid) core, and necrotic (or fluid-filled) core, enhancing core.

Our architectures are designed and trained from scratch based on the general rule that is

taken from ILSVRC 4 challenge and from [Szegedy et al., 2015]: every time we add more

layers, we obtain high performance models. Moreover, instead of using kernels with a

large receptive field, we choose to use small filters (3 * 3). Small filters have proved in

[Simonyan and Zisserman, 2014], that they keep a lot of information, and at the same

time, they reduce the number of operations. Also, Incremental XCNet Algorithm doubles

the number of filters after each pooling layer. The strategy of the Incremental XCNet

Algorithm allows CNNs architecture to be deeper in terms of layers, which is needed to

detect high level, complicated and hierarchical features. In the next section, we combine

4. ILSVRC: Large Scale Visual Recognition Challenge
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the developed architectures in one architecture.

4.2.2.1 Extended Models

To improve the performance of each architecture, we combine the instance of the

algorithm Incremental XCNet: 2CNet ( See figure 4.2(a)) and 3CNet (See figure 4.2(b)).

Both architecturess (2CNet and 3CNet respectively) produce complete predicted images

h and g, each image with size n*n. Then, next step is image fusion, in which we combine

these two images (h and g) to get more accurate result (i.e., the final image). The non-

parametric fusion function between g and h is performed using the following equation:

f(i, j) =

 Ih(i,j) if Ih(i,j) = Ig(i,j)

min(Ih(i,j), Ig(i,j)) if Ih(i,j) 6= Ig(i,j)

(4.2)

where Ih(i,j), (respectively Ig(i,j)) is the intensity of pixel h(i,j) (respectively g(i,j)), in

which ∀(i, j) ∈ [1, n]2. The combination of Incremental XCNet’s instances (i.e, 2CNet

and 3CNet) and the fusion function, gives us at the end the EnsembleNet (figure 4.2(c))

model. EnsembleNet aggregates the segmentation results that are obtained from 2CNet

and 3CNet models using a non-parametric fusion function. Moreover, the fusion function

is used after getting the segmentation results of 2CNet architecture and 3CNet for the

following reasons:

— The fusion of 2CNet and 3CNet at the fully connected layers level will lead to

obtaining a large architecture with a large number of parameters. Obviously,

the resulted architecture, in this case, will require huge computation resources

to train it, in addition, it might lead to overfitting due to using a large number

of parameters, otherwise, it will take a long time to converge (or to give the

prediction results). Thus, the solution is to use the fusion function after getting

the segmentation results to minimize the training and the prediction time.

— Glioblastoma tumors have many connected regions (blobs) with different sizes and

shapes. Some studies [Urban et al., 2014] propose a global threshold operation as

a post-processing to remove these false blobs (i.e., non-tumor region classified as

tumor region) which are generated by the architecture but this threshold also

removes some small tumor regions. Overall, this threshold could improve the

segmentation results, but it is not a good method for patient-specific. For the
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a) 2CNet b) 3CNet

c) EnsembleNet

Figure 4.2 – Schematic representation of our proposed CNNs architectures. (a) is the
architecture of 2CNet, (b) is the architecture of 3CNet, (c) is the architecture of En-
sembleNet. The symbols used inside the boxes indicate: Conv: convolution, #@: is the
number of filters, Relu: is the non-linear function Relu, #*#: is the size of filter (or the
size of sub-window in the case of pooling), S: stride, FC: fully connected layers.
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example in figure 4.3, patient has 11 tumor regions inside 3D MR volume: 1

region with 20442 voxels, 7 regions with 1 voxels, 1 region with 2 voxels, 1 region

with 4 voxels, 1 region with 32 voxels. If we apply a fixed threshold = 3000 voxels

as used in [Urban et al., 2014], we will get only the first region. Thus, to address

this issue of false blobs automatically we propose a non-parametric fusion function

that aggregates the predicted pixels that are true (tumor regions) with a high rate

from two deep learning architecture (2CNet and 3CNet).

Figure 4.3 – An illustration of an example of patient ID= Brats17 2013 13 1 MRI image
from BraTS 2017 dataset with 3 views from left to right: Axial, Sagittal and Coronal
respectively.

4.2.3 ELOBA λ Algorithm

When investigating the most used methods for training deep learning architectures,

it is interesting to note that there is no specific method for training CNN architectures.

Users have many hyperparameters that should be selected before starting the training

phase of CNNs architectures without any guarantee that this architecture will succeed

or fail to converge to the global minimum. For these reasons, we propose a new strat-

egy to unify the training method of CNNs architectures that will be called: ELOBA λ

(E: Epochs, L: Learning rate, O: Optimizer, B: Batch size, A: Architecture, λ is the

number of epochs). ELOBA λ (algorithm 2) is used for training our 2CNet and 3CNet

architectures. The algorithm of ELOBA λ takes into account the most influencing hyper-

parameters (i.e., Epochs, Batch size, Learning rate, Optimizer). First, we create a base

model architecture, then we train (algorithm 2: line 5) this base model. In the next step
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Algorithm 2: ELOBA λ

Data: M : an untrained CNNs base model, λ: Epochs, Bs: Batch size
∈ [bs min, bs max], K: a positive integer , Lr: Learning rate
∈ [r min, r max], R: a positive number, Op: ∈ Optimizer = {Adam,
RMSprop, SGD}

Result: M : a trained CNNs base model
1 for (j = 1 : j ← j+1 : j = 3) do
2 Op = Optimiser (j)
3 for (Lr = r max : Lr ← Lr

R
: Lr = r min) do

4 for (Bs = bs min : Bs ← Bs + K : Bs = bs max) do
5 Training(M,λ,Bs, Lr,Op) # Running the back-propagation with the

hyper-parameters (λ, Bs, Lr, Op)
6 Dicet(M) # Computing the Dice coefficient
7 while (Dicet(M) > Dicet−1(M) ) # Where Dicet−1(M) is the Dice

score of the last iteration, in the first execution (Dice0(M)) is equal
to 0

8 do
9 Saving the model M and its parameters

10 Training(M,λ,Bs, Lr,Op)
11 Dicet(M)
12 end while
13 end for
14 end for
15 end for

(algorithm 2: line 6), we compute Dice score (See section 2.6), where the Dice score in the

first iteration is initialized to 0. If we get a better Dice score than the last iteration (algo-

rithm 2: line 7), then we save the model (algorithm 2: line 9) and continue the training

for another λ epochs. If we get a worse Dice score, then we back to the hyperparameters:

we increase the Batch size (algorithm 2: line 4) then we continue the training for λ epochs

and so on until the Batch size becomes greater than bs max. In the same way, we decrease

the Learning rate (algorithm 2: line 3) and we continue the training phase. When the

Learning rate becomes very small less than r min (i.e., because small steps need a lot of

time to converge), then we should change the optimizer 5 to another one (e.g., RMSprop,

SGD) (algorithm 2: line 2) and initialize the Learning rate (algorithm 2: line 3) and the

Batch size (algorithm 2: line 4) to the first state. The stopping criteria are met when

there is no improvement after testing all the optimizers (i.e., Adam, RMSprop, SGD).

In this case, we need to change the CNNs architecture which is done using the algorithm 1.

5. See section 4.2.4.3 for further discussion on this point
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The algorithm of ELOBA λ is based on exploring different search spaces: Optimizers,

Batch size, Learning rate for many training epochs. This way helps to converge more

toward the global minimum by trying different search spaces. Indeed, ELOBA λ is used

to unify the methods of training and to get the optimal hyperparameters (i.e., epochs,

Batch size, Learning rate, Optimizer) for each deep learning architecture. Training a deep

learning architecture for brain tumor segmentation of Glioblastoma tumors is solved as an

optimization of a non-convex function. Non-convex function has a ”cosine” function shape

with many local minimum points and one global minimum, in practice, we don’t expect

to achieve the global minimum, but we try to achieve at least one of the local minimum

points that are localized before the global minimum point. Moreover, optimizing a non-

convex function is an NP-hard problem and it’s not easy to avoid all local minimum

points of this function. One of the techniques that have an impact on the optimization

of non-convex function is using the batch size, where adding or reducing the batch size

will lead to introducing some noise; with this way, we can escape at least from the first

minimum points, but using learning rate will not help a lot to get rid of these points. For

these reasons, we start by using batch size until we explore all its search space then we

adjust a little bit learning rate to improve more the segmentation results.

Figure 4.4 – illustration of the training strategy ELOBA λ. Where ”M” is the Model
architecture, ”Op” is the Optimizer, ”Lr” is the Learning rate, ”Bs” is the Batch size.

Figure 4.4 shows the training method of ELOBA λ in order to explore different search

spaces. As we can see, from a base model architecture at the higher-level node ”M”, each

node (e.g., Optimizer = Adam) after that discovers the range of lower-level nodes (e.g.,

Learning rate = r max) to the leaf nodes (e.g., Batch size = bs min). The algorithm of
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ELOBA λ attempts to find the global minimum by exploring three search spaces: Opti-

mizers, Batch size, Learning rate. As each path represents a potential hyperparameter,

so ELOBA λ tests the response of each path in this tree using depth-first search.

The goal of the Incremental XCNet and ELOBA λ algorithms is to develop, train

at the same time of an efficient deep learning architecture, in addition to accelerating

the training phase and optimizing the hyperparameters. Incremental XCNet automates

network architecture engineering. It aims to learn a network topology that can achieve

the best performance on a brain tumor segmentation task. Moreover, in this thesis, we

are interested more in improving the segmentation performance in terms of the evaluation

metrics that are mentioned in the next section.

4.2.4 Experiments and Results

This section presents the results of our experiments and some discussions. Also, our

brain tumor segmentation method is evaluated using the BRATS dataset which has real

patient data with Glioblastoma brain tumors (both high- and low-grade). Finally, we

explain the libraries and frameworks that are used in our work. Then, we evaluate our

proposed architectures with a set of metrics that are used in state-of-the-art such as Dice

score, Sensitivity (Recall), Specificity, and Hausdorff Distance.

4.2.4.1 Dataset Preprocessing

To remove noise and to enhance the quality of images, especially MRI images of the

BRATS dataset that are generated using different MRI devices and acquisition protocols,

in addition to patient motion after administration of Gd-DTPA (See section 2.5.).

The applied preprocessing operations in addition to normalization are performed as

follows:

1. Removing the 1% highest and lowest intensities: this technique proved experi-

mentally that it helps to remove some noise at the tail of the histogram, where

this step has provided good results in many research [Havaei et al., 2017; Tustison,

2013].

2. Subtracting the mean value and dividing by the standard deviation in all channels:
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Figure 4.5 – An illustration of an example of 5 Flair scans before (top row) and after
(bottom row) the proposed intensity normalization. Arrow red indicates where the images
have improved after applying the normalization steps (see bottom row). We show 5 Flair
scans only for simplicity.

Figure 4.6 – Image intensity histograms of Flair scans of 10 subjects (Each subject is
distinguished using different color) from the BRATS 2017 training dataset before (left)
and after (right) the intensity normalization steps. We show 10 Flair scans only for
simplicity.
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this technique is used to center and to put the data on the same scale, i.e., bringing

the mean intensity value and the variance between one and minus one [1,...,-1].

3. Selecting the slices that have more than 100 pixels representatives of each class

among the four classes. After several experiments to select the best number of

pixels representatives, we found that 100 pixels provide the best results, where in

these slices, Glioblastoma multiforme tumors appear in their largest size.

The image intensity normalization effect is illustrated with Flair scans in Figure 4.5.

The results shown in Figure 4.5 clearly demonstrated the effectiveness of the proposed

intensity normalization steps. Moreover, the improvement is further confirmed by image

intensity histograms of 5 subjects from the BRATS 6 2017 training dataset, as shown in

Figure 4.6.

4.2.4.2 Implementation

For the implementation of our CNNs architectures (2CNet, 3CNet, EnsembleNet), we

use Keras 7 and Theano [Al-Rfou et al., 2016] as a backend. Keras is a high-level open

source deep learning library that runs on top of Theano which can benefit from a massive

parallel architecture such as GPU 8 to optimize deep learning architectures. In this work,

all our results are obtained using Python environment on windows 64 bit, Intel Xeon

processor CPU @2.10 GHz with 24 GB RAM, and for the training phase, it is done on

Nvidia Quadro GPU K1200 with 4 GB memory.

4.2.4.3 ELOBA λ hyper-parameters

Based on many experiments, we obtained the following hyperparameters:

— Optimizer (Op): ”Adam”, at the beginning of the ELOBA λ algorithm, we used

”Adam” [Kingma and Ba, 2014] as an optimizer because it is faster than the other

optimizers to converge toward the global minimum. The other optimizers that we

used too: RMSprop and the last one is stochastic gradient descent (SGD) with

Nesterov’s Momentum.

6. Each year, the Center for Biomedical Image Computing & Analytics at the University of Pennsyl-
vania creates a new version of BRATS dataset, for instance, BRATS 2017 created in 2017.

7. Keras: https://keras.io/
8. GPU: Graphics Processing Unit
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— Learning rate (Lr): R= 10−1, R is a decreasing rate used to update the learning

rate. r max= 10−3, r min= 10−8, the range [r min, r max] represents a search space

(i.e., the space of all possible solutions) for the optimization algorithms. Thus,

based on our experiments, the three chosen optimizers do not give guaranteed

solutions out the range [r min, r max].

— Batch size (Bs): bs min=32, bs max=256, k=32, batch size is the number of

training examples for one forward/backward pass. With the problem of non-

convex functions, it is hard to get rid of the local minima points. Moreover, one

of the techniques that influences the optimization of non-convex functions is the

batch size, in which the use of small batch size leads to introduce some noise; this

will helps to escapes from saddle points. And the use of big batch size (more than

256) leads to consume a lot of memory space. Thus, the best solution is to use a

batch size in the range [32-256].

— The number of epochs λ= 20, where according to our experiments:

— The algorithm of ELOBA λ gives 20 epochs to each configuration of hyper-

parameters. Thus, the first configuration of hyper-parameters for example,

has 20 epochs, after getting a better result, the successful model will continue

for another training with 20 epochs and so on, but if this model gets a worse

Dice score then we update the hyper-parameters for the same model then

we continue the training with the new hyper-parameters and so on. Thus,

ELOBA λ orients the training phase by testing the results (Dice score of the

model) after every 20 epochs.

— One of the biggest problems that we face with Deep learning models is the

weights initialization. To address this issue, ELOBA λ starts the training of a

new deep learning model where the last model has stopped, in other words, the

new model benefits from the last model in the initialization of weights. Thus,

the algorithm 2 uses the first model to initialize the larger models.

— ELOBA λ rewards successful models that show an improvement of the Dice

score during their first 20 epochs, however, it reduces the training time for

poorly performing models.

— Using a high number of epochs with a decreasing rate (Lr/10 ) will lead the

learning rate (Lr) to become infinitesimally small, obviously the model will take
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a long time to converge, and this point of weakness is well known in the Adagrad

[Duchi et al., 2011] algorithm. Thus, after many experiments we found that 20

epochs is enough for the new model to obtain a small improvement compared

to the last model because the new model will start the training where the last

model has stopped, not from scratch, if the new model obtains a better result

(Dice score) it will get another 20 epochs with the same hyper-parameters

to converge more and to give a better result and so on (see the algorithm of

ELOBA λ, line 7 to line 12).

4.2.4.4 Results

In this section, we evaluate our models on a public dataset such as BraTS. We show the

results of our proposed architectures with state-of-the-art architectures measuring both

the segmentation performance (See section 2.6): Dice score, Sensitivity, Specificity and

Hausdorff distance and the inference time. Our architectures 2CNet, 3CNet have deep

architectures which help to extract relevant and very higher-level features. Moreover,

EnsembleNet takes the advantage of these deep architectures to build a parallel archi-

tecture that brings together the most important features of the same subject. Thanks

to ELOBA λ training strategy that uses a simple and practical idea based on the use of

many optimizers over a bounded range of training space.

The EnsembleNet’s outputs are the ”valid” pixels or pixels that are true with a high

rate from both architectures 2CNet and 3CNet. Non-parametric fusion function (see

equation 4.2) increases the Dice score over the complete region but at the same time it

gives results less accurate over the core and the enhancing regions due to the fact that after

getting the segmentation results by 2CNet and 3CNet, EnsembleNet model aggregates the

results of 2CNet and 3CNets models using a non-parametric fusion function, this fusion

function does not take any prior knowledge or any priority for any region in the predicted

image, empirically this fusion function has improved the complete region compared to

other regions because:

— The complete region holds all the other regions (core, enhancing). Thus, any

improvement of any region will remains under the complete region and it will be

also counted for the complete region.

— BraTS dataset is an unbalanced dataset, in which 98% of data are healthy tissue
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with label 0 and 1.1% of data are Edema with label 2 . In addition, it is well

known that the healthy tissue class (label 0) and the edema class (label 2) do not

belong to core or enhancing regions. Thus, any improvement of class two will be

counted for the complete region.

— Equation 4.2 updates any confusion between labels of the same pixel to the label

that has the minimum value, which obviously the zero value is the minimum value

among all labels.

— The EnsembleNet model was influenced by the classes that have a minority of

existence in the dataset because the 4 classes are not equivalent in any subject

(input MRI image). In addition, we noticed that class zero (healthy tissue) and

class two (edema) always win when the same pixel is confused.

Table 4.1 illustrates the results of the segmentation performance of state-of-the-art

methods. As we can see, our models (2CNet, 3CNet, EnsembleNet) improved the Dice

score compared to the state-of-the-art methods [Zikic et al., 2014; Axel et al., 2014;

Pereira et al., 2015]. Moreover, EnsembleNet outperforms the method of [Havaei et al.,

2017; Urban et al., 2014] in terms of Dice score and it obtains competitive results on other

evaluation metrics (Specificity, Sensitivity). Our three models are also evaluated on the

Hausdorff distance metric, it can be observed that our models achieve good results (i.e.,

13 mm to 20 mm), in which the Hausdorff distance: [14.62 mm - 17.59 mm], [17.40 mm

- 20.25 mm], [12.04 mm - 16.39 mm] for whole tumor, tumor core, enhancing tumor core

respectively.

The figure 4.7 shows examples of the segmentation results. As we can see, 2CNet,

3CNet models detect almost most tumoral regions, these models also generate small

regions (misclassified region) with different sizes which are classified as tumor regions

(red circles). To address this issue, we use a simple but effective non-parametric fusion

function, by using this fusion function we are able to detect which region of these regions

are actually tumor regions. Non-parametric fusion function acts as a voting function

that elects only the tumoral region with a high probability. EnsembleNet model (right

column) aggregates the segmentation results of 2CNet and 3CNet models using this fusion

function, as it can be observed that EnsembleNet detects only the tumor regions (blue

circles) that are predicted by 2CNet and 3CNet in the first stage.

After the training phase, it comes the production phase where the trained model is
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Figure 4.7 – Illustration of the segmentation results of 2 patients from the BRATS
2017 dataset. The first and second row for the 42th and 77th slice of patient ID =
”Brats17 2013 10 1”. The third and fourth row for the 50th and 80th slice of patient
ID= ”Brats17 CBICA ABM 1”. From left to right: Flair, T1, T1c, T2, segmentation
results of 2CNet, segmentation results of 3CNet, segmentation results of EnsembleNet.
Red circle: non-tumor classified as tumor, blue circle: tumor regions.
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Table 4.1 – Segmentation results of our three proposed models which are noted by adding
”*” to the architecture’s name with state-of-the-art methods. WT, TC, ET denote Whole
Tumor (complete), Tumor Core, Enhancing Tumor core respectively. Fields with (- , -/-)
are not mentioned or given as a number in the published work. Best results in bold.

Methods Dice Specificity Sensitivity Hausdorff
WT TC ET WT TC ET WT TC ET WT TC ET

2CNet* 0.88 0.80 0.83 0.74 0.76 0.77 0.88 0.86 0.78 17.59 20.25 16.39
3CNet* 0.87 0.81 0.83 0.74 0.78 0.80 0.89 0.84 0.74 16.86 18,99 13.67
EnsembleNet* 0.89 0.76 0.81 0.74 0.77 0.78 0.82 0.82 0.69 14.62 17.40 12.94
[Zikic et al.,
2014]

0.84 0.74 0.69 - - - - - - - - -

[Urban et al.,
2014]

0.88 0.83 0.72 - - - - - - - - -

[Axel et al.,
2014]

0.79 0.68 0.57 - - - 0.79 0.67 0.63 - - -

[Pereira et al.,
2015]

0.87 0.73 0.68 - - - 0.86 0.77 0.70 - - -

[Havaei et al.,
2017]

0.88 0.79 0.73 0.89 0.79 0.68 0.87 0.79 0.80 -/- -/- -/-

used to infer/predict new data. And for benchmarking the models, inference time is

used, i.e., the inference time represents the needed time to make a prediction on new

data. Thus, to deploy deep learning on a large scale, it is necessary to improve the deep

learning inference time. EnsembleNet is the fastest method among all other CNNs-based

models based on the inference time (see Table 4.2).

Table 4.2 presents a comparison of our models (2CNet, 3CNet and EnsembleNet) with

the state-of-the-art CNNs models. As we can see, our models outperform all cited CNNs

models in the table in terms of inference time (21.39, 19.7, 21.49 respectively). We also

notice that the inference time has decreased (21.49 seconds, almost eight times faster)

compared to the state-of-the-art model of [Havaei et al., 2017] (three minutes), and about

three times faster than [Urban et al., 2014].

The model of [Havaei et al., 2017] developed a deep learning architecture that exploits

the local and the global features of the input patches using two pathways. The use of

two pathways leads to losing time during the first and second stages of the fusion layer.

However, our model EnsembleNet uses a parallel architecture technique but without losing

time; EnsembleNet is the main process and it has 2 threads (2CNet, 3CNet) that run in

parallel, and each model computes a different predicted image for the same input image.

Then, we aggregate these two images (image for each model) by using a non-parametric

fusion function. Thus, the timing required by EnsembleNet is the maximum between the
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Table 4.2 – evaluation results of the state-of-the-art methods with our 3 proposed models
which are noted by adding ”*” to the architecture’s name. Best results in bold.

Methods Inference time (seconds) (architecture)
2CNet* 21.39 (GPU)
3CNet* 19.72 (GPU)

EnsembleNet* 21.49 (GPU)
[Zikic et al., 2014] - (-)

[Urban et al., 2014] 60 (GPU)
[Axel et al., 2014] 1200 (GPU)

[Pereira et al., 2015] 600 (GPU)
[Havaei et al., 2017] 180 (GPU)

timing required by 2CNet (21.39 seconds) and 3CNet (19.72 seconds) then we add the

maximum to the timing required by the non-parametric fusion function (0.1 seconds).

Therefore, the timing required by EnsembleNet is 21.49 (21.39 + 0.1) seconds. Hence,

EnsembleNet needs only 21.49 seconds to segment the whole tumor and its subregions

(see Table 4.2). The development of 3D CNNs model as used in [Urban et al., 2014]

leads to getting a huge model that is hard to train it, i.e., during the training phase they

need to compute the gradient for each 3D filter per pass. Moreover, it uses too much

memory and massive computing due to using a large number of parameters. In addition,

this model needs 40 hours for training while our model 2CNet reached the same complete

Dice score with only 2D patches instead of 3D patches. Our EnsembleNet model uses

a valid pixel-wise classification technique with a high rate from other models (2CNet,

3CNet) to predict the new image; this technique helps to replace the post-processing

operation inside the algorithm. Thus the brain tumor segmentation pipeline does not

need to use more operations after obtaining of predicted image.

4.2.5 Discussion and conclusion

In this section, we proposed three fully automatic models (2CNet, 3CNet, Ensem-

bleNet) for the segmentation of Glioblastoma brain tumors using Deep Convolutional

Neural Networks and MRI images. Through the empirical experiments, we proved that

using two or three consecutive layers of convolution with small filters (3 x 3), gives a

good performance in terms of segmentation performance and speed. The advantage of

these models are: (i) they are incremental architectures; from a base model that is fed

into our training strategy ELOBA λ, we obtain a deeper model with high performance.
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(ii) EnsembleNet takes the advantage of parallel architecture without losing time; 2CNet

and 3CNet extract features at the same time from the same Glioblastomas MRI image

then EnsembleNet aggregates the results of both models (2CNet and 3CNet) to get a

more accurate result. (iii) optimized architectures; Incremental XCNet algorithm allows

our models to get suitable architecture in terms of layers. (iv) these three models are

end-to-end deep learning approaches, and fully automatic.

In addition, we developed a new training strategy ELOBA λ. First, ELOBA λ proved

itself as an effective strategy and a simple method. Second, ELOBA λ is created for giving

us the exact time when we should change the model’s architecture. Finally, ELOBA λ

is a dynamic and adaptable method, in which we can change all the hyper-parameters

(i.e., epochs, Learning rate, Batch size, Optimizers) based on the workstation computing

power and the architecture’s size.

At the beginning of this section, we cited as issues of deep learning: the architecture’s

structure and the hyperparameters. To overcome these issues, we proposed two efficient,

adaptable, and accurate algorithms: Incremental XCNet and ELOBA λ that are capable

to answer these questions at the end of the training phase, in particular, how many layers,

neurons, batch size, learning rate, epochs.

Our intuition behind the proposed Incremental XCNet algorithm is as follows: we

assume that we have unlimited computing and storage resources, where in practice, at

a certain point, the memory gets overwhelmed by the blocks that are added after each

iteration of training. That’s the case here with our used memory, we could achieve only

3 and 5 blocks for each architecture, in this case, the number of blocks is limited by the

computing and storage resources. In very large experiments, we need more computing

and storage resources to exhaustively cover the entire search space. For these reasons, in

the next section, we propose a new method for developing deep learning architectures.
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4.3 Deep Learning-based selective attention

4.3.1 Problem statement

With the huge number of patients in the world and the massive medical data such

as magnetic resonance imaging, positron emission tomography, ultrasound, computed to-

mography, X-rays...etc, emerged the need to discover new techniques for the treatment of

patients. In addition, the diagnosis period plays a very important role, especially when

we have patients with life-threatening diseases such as Glioblastoma brain tumors.

The addressed problem in this section is how to obtain the most accurate and reliable

brain tumor segmentation in the light of many challenges:

1. Glioblastoma multiforme tumors have 3 sub-regions in addition to Healthy tis-

sue: Necrotic and Non-Enhancing tumor, Peritumoral Edema, Enhancing tumor.

Also, Gliomas, including Glioblastomas, invade the surrounding tissue rather than

displacing it, causing unclear boundaries, and they have the same appearance as

Gliosis, stroke, inflammation, and blood spots [Goetz et al., 2015].

2. The second challenge is that Convolutional Neural Networks do not perform well

with highly unbalanced data such as the BRATS dataset where 98% of data [Havaei

et al., 2017] are healthy tissue (i.e. non-tumorous). Training a CNNs architecture

with unbalanced data will make predictions with low sensitivity, consequently,

CNNs architecture will bias toward the healthy class. In medical applications, the

most important metric for a clinical decision support system is sensitivity [Hashemi

et al., 2018] toward tumoral regions.

3. The third challenge is common with the semantic image segmentation problem,

where this challenge is about the reduction of features during the pooling layers

and convolution striding [Chen et al., 2017].

4. The fourth challenge is about modeling the global context and spatial relationship

among image patches. It is known that conventional deep learning architectures,

in particular, CNNs architectures do not take into account the relationship among

image patches [Zhao et al., 2018] and these patches together make up the entire

MRI image.
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5. The fifth challenge is about developing a light CNNs architecture that can run in

GPU and CPU by focusing on maximizing features extraction instead of developing

a very deep architecture.

4.3.2 Visual areas-based interconnected modules

The MRI technique is designed specifically to provide radiologists powerful visualiza-

tion tools to analyze medical images. These tools produce images that show a contrast

between the soft tissue of the brain (or other human organs such as liver) [Akram and

Usman, 2011; El-Dahshan et al., 2014]. Some MRI images do not clearly show the border

between brain regions, where the brain appears as a single mass. Thus, to extract only

the tumoral regions from the whole brain, the proposed architecture has to extract more

features about the healthy tissue and the tumoral regions. To solve this issue, we propose

a CNNs architecture that is based on the maximization of the features’ representation, in

other words, these architectures have to extract many relevant features [Ghebrechristos

and Alaghband, 2018] from the MRI images.

The idea of our inspired architectures is to develop a ”lightweight” and compressed

deep learning architecture that can run in GPU and CPU with more focus on the max-

imization of feature extraction instead of developing a very deep architecture. In addi-

tion, our architecture is inspired by the structure of the visual cortex, in particular, the

Occipito-Temporal pathway (OTP). Our idea behind this inspiration is as follows: the al-

gorithm of CNNs [LeCun et al., 1989, 1998] originally is inspired by the visual system. In

1962, Hubel and Wiesel [Hubel and Wiesel, 1962] discovered that each type of neurons in

the visual system, responds to one specific feature: vertical lines, horizontal lines, shapes

...etc. From this discovery, the algorithm of Neocognitron is developed [Fukushima and

Miyake, 1982], but the problem of Neocognitron is: it does not have a supervised learn-

ing algorithm [LeCun et al., 2015], where in CNNs they solved this problem by using

Backpropagation algorithm [Rumelhart et al., 1986]. Moreover, what was the ”missing

part” of CNNs is the architecture’s structure. Thus, in this work, we attempt to inspire

from the visual system its internal structure. And by inspiring the structure of the visual

system, we could add to the function of CNNs a specific architecture.
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The proposed CNNs model is inspired by Occipito-Temporal pathway which has a special

function called selective attention 9 that uses different receptive field sizes in successive

layers to figure out the crucial regions (or object) among many regions (or objects) in

an image. Therefore, using selective attention technique to develop a CNNs model, helps

to maximize the extraction of relevant features from MRI images. The OTP structure

made up of many interconnected areas (i.e. modules): V1, V2, V4 and IT (see figure 4.8)

[Desimone et al., 1989; Manassi et al., 2013]. OTP structure is important and critical for

object recognition [Desimone et al., 1989] and for the brain’s memory 10 [Ono and Nishijo,

1992]. The design of our CNNs model based on these interconnected modules allows to

maximize the features’ representation of Glioblastomas tissue, also leads to detect and

predict even small regions with fuzzy borders. Moreover, developing a model based on

the rule of using many interconnected modules, is known in the state-of-the-art methods

and it provides a good performance in many applications such as GoogleLetNet model

[Szegedy et al., 2015] that is built based on the module of Inception, ResNet model [He

et al., 2016] which is based on many modules of residual layers.

To determine a shape in the visual system, for example, a person’s face, it will be

processed from lines and edges at V1 area to shapes at V2 area to objects at V4 area to

faces at the end at IT area [Herzog and Clarke, 2014; Manassi et al., 2013]. The OTP

structure has four properties (i.e. N:1 to N:4):

1. Retina is the input of the visual system.

2. The visual cortex treats the forms hierarchically; object has different shapes, and

shape has different lines and edges and so on.

3. OTP structure is composed of several interconnected visual areas (i.e. V1, V2,

V4, IT), where each area responsible for a specific task.

4. Each visual area receives a Receipted Field larger than the one at the previous

area.

9. Selective attention is a behavioral and cognitive process to filter stimuli received by the brain.
Attention is a limited resource, so selective attention is a mechanism that allows us to focus on something
that is relevant to the task at hand while tuning out irrelevant details. An example of selective attention
is called the ”cocktail party effect”. There is quite a lot of research that has found a relation between
selective attention mechanism and patients with an autism spectrum disorder, also between selective
attention and people with sensory processing challenges.

10. Klüver-Bucy syndrome (KBS), experiments of Klüver and Bucy 1937
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Figure 4.8 – Illustration of the brain visual cortex’ regions and how the information gets
processed and reduced from one region to another. Top image shows the structure of
the OTP structure that is made up of many interconnected regions: V1, V2, V4, and IT,
in addition to the task of each region, for instance, V1 is responsible for extracting lines
and edges. Bottom image shows the quantity of information that passes from region
to another.

In our work, we attempt to build a CNNs model inspired by the OTP structure, thus,

we inspired:

1. The Retina represents the input images.

2. The hierarchical function using convolution operators.

3. We have developed two modules inspired by the area V1 and V2, interconnected

to each other using direct and skip connections.

4. To take into account the last property (N: 4) of visual cortex, there are two ways:

(a) Reducing the feature maps at each level using Pooling operation.

(b) Or using larger kernels at each convolution layer incrementally.

The use of larger kernels (i.e. the property 4.b) increases the computational time, i.e.,

it increases the number of operations. On the other hand, the use of small kernels, has

proved previously that they keep a lot of information and it allows a CNNs model to be

deeper in terms of layers [Simonyan and Zisserman, 2014]. Thus, based on the issue of

reducing the number of operations, the best option is the first one (i.e. 4.a).
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4.3.2.1 First module V1

In this work, we consider the structure of V1 is the same as V2, V4, IT, but the

output of these modules is different from module (e.g. V1) to another (e.g. V2). Thus,

the module of V1 is composed as shown in figure 4.9 of: an input (phase 1), then we have

convolution layers (phase 2), and a max-pooling layer (phase 3), then another convolution

layers (phase 4), upsampling (phase 5) and concatenation layers (phase 6):

Figure 4.9 – An illustration of visual area V1. C is a convolution operator, Z and G are feature maps, K is the output
of Pooling layer, M is a high-resolution feature map, ↓ R is a pooling layer, ↑ L is an upsampling operator, M ||Z is a
concatenation layer between M and Z. Also, the continuous lines are direct and skip connections, and dashed lines are used
to build the second module of visual area V1 (i.e. DenseConnectionOCM).

1. First phase: let’s consider Retina as the input (i.e. X) to our model.

2. Second phase: obtaining hierarchical features is guaranteed by the method of

convolution operation; convolution uses a filter bank (i.e. trainable parameters)

to extract many levels of features across the entire input images. Moreover, from

section 4.2, we found that using two consecutive convolution layers with kernel

size equals to 3 × 3 provides a high performance. Thus, in this work we will use

two consecutive convolution layers Z = Conv(Conv(X)). The output of convolution

layer called feature maps Z which are calculated as follows (see equation 4.3):

U = bi +
m∑

j=1
Wij ∗ V (4.3)

Where bi and Wij (i, j ∈ N) are trainable parameters, called respectively bias and

weights. m is the size of the input (m ∈ N). V and U are respectively input

and output, and ’*’ is the convolution operation. After that we apply a non-linear

activation function Relu(U) = max(0, U). In CNNs architecture, Wij is the kernel

parameters.
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3. Third phase: to reduce the feature maps dimensionality (as described in property

N: 4), we use Max-Pooling 2 × 2 operation to provide the minimum reduction of

feature maps in addition to the shifting invariant property. Max-Pooling takes the

maximum value of each non-overlapping square (i.e. sub-region) of feature map

Z. MaxPooling Kij is computed as follows (see equation 4.4):

Ki,j = max
h

Zi+h,j+h (4.4)

Where h ∈ N is the size of sub-region, i, j ∈ N are the stride values for the vertical

and horizontal axes respectively.

4. Fourth phase: using trainable parameters G = Conv(Conv(K)) again to extract

more feature maps from the Max-pooling output. Also, to compute the feature

maps G, we use equation 4.3:

5. Fifth phase: to concatenate two types of features maps (i.e. feature maps of phase

2 and phase 5), where these two types of feature maps are not at the same scale.

Thus, to obtain higher-resolution feature maps from lower-resolution feature maps

in CNNs architecture, there are two techniques: (1) deconvolution, (2) upsampling.

The first one uses trainable parameters, but the second technique does not use any

trainable parameters, this technique works by inserting zeros padding internally

between pixels, where the number of zeros is determined by the stride parameter.

The final step is to convolve the sparse feature maps with trainable parameters

(i.e. convolution operation) to obtain dense features maps, this technique helps

to avoid the problem of Overfitting [Badrinarayanan et al., 2015]. The method of

upsampling operator works as follows (see equation 4.5 and 4.6):

ML[n] = G(n)↑L

Mi(n) = upsamplingL,n(Gi)
(4.5)

Mi =

 Gi(n/L) , if(n/L) ∈ N

0 , otherwise
(4.6)
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Upsampling operator works by inserting L− 1 zeros between G(n) and G(n + 1)

for all n elements.

6. Sixth phase: is the concatenation layer, where in this layer, we concatenate the

feature maps of phase 2 and phase 5.

We used the phases from 1 to 6 to build a Sparse Connection OCM (OCcipito Module)

module (see figure 4.10.a), and a Dense Connection OCM module (see figure 4.10.b). In

the second module (i.e. Dense Connection OCM module), we added 1 × 1 convolution

layer [Lin et al., 2013] which operates over N-dimensional volumes and also we considered

it as a preliminary classification of the input images. Dense Connection OCM and Sparse

Connection OCM modules are two representations of the visual area V1, in which from

these two modules, we have deduced three CNNs architectures (see section 4.3.2.2.2),

each with two modules V1 and V2. Moreover, we did not build the entire visual path,

but for each architecture, we build two modules V1 and V2. These two modules attempt

to model the structure of OTP, in addition to, they extract different representations

from the input MRI images where this technique of extracting different representations

is used by GoogleLetNet in its Inception module [Szegedy et al., 2015]. We have used

two different types of convolution operations (i.e., 3× 3 and 1× 1) for the module Dense

Connection OCM and Sparse Connection OCM to diverse the feature representations of

the MRI images:

— Sparse Connection OCM module: applies a sparse connectivity, where we connect

a subset of convolution layers to each other. This module has one input and two

outputs (i.e. output 1 and output 2). We refer to this module as SparseConnec-

tionOCM. The details are illustrated in figure 4.10.a.

— Dense Connection OCM module: applies two strategies (1) Dense connectivity

and (2) 1 × 1 convolution operation, where we concatenate all high-level feature

maps and low-level feature maps in the concatenation layer before the output.

This module has one input and one output compared to the previous module (i.e.,

Sparse Connection OCM). We refer to this module as DenseConnectionOCM. The

details are illustrated in figure 4.10.b.
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(a) SparseConnectionOCM, where we use a skip connection to connect
between low-level feature maps and a pre-output concatenation layer.
This module has 38,848 parameters.

(b) DenseConnectionOCM, where we use multiple skip connections to
connect data and low-level feature maps and pre-output concatenation
layer together. This module has 48,100 parameters.

Figure 4.10 – Schematic representation of the SparseConnectionOCM and DenseConnectionOCM. Each or-
ange/purple/yellow box corresponds to multi-channel feature maps. The input represents the multi-modal MRI images.
Each output (i.e. output 1, output 2, and output) is an input to the next module. Conv is the convolution operator, 1 ×
1 and 3 × 3 are the filter’s size, pooling 2 × 2 is the max-pooling operator with 2 × 2 window. Relu is the non-linear acti-
vation function, upsampling is the upsampling operator, Conca is the concatenation layer, skip connection is a connection
between two non-successive layers.

4.3.2.2 CNNs architectures

To connect between different modules of a CNNs architecture, we use two types of

connections: first a direct connection from layer HL−1 to layer HL through a mapping

non-linear activation function f (see equation 4.7), secondly a special type of connection
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called skip connection that connect layer HL−i to layer HL where i > 1 (see section

4.3.2.2.1).

HL = f(WL ×HL−1 + bL) (4.7)

Where bL, WL are trainable parameters, called respectively bias and weights.

4.3.2.2.1 Skip connections

Skip connections help to backpropagate the gradient signal across several layers and

leads to a fast convergence [Drozdzal et al., 2016] and since its first introduction [He

et al., 2016], have been shown an improvement of accuracy for many computer vision

tasks. For example in the field of biomedical image segmentation [Drozdzal et al., 2016]

such as U-net [Ronneberger et al., 2015], and Fully Convolutional Networks (FCN) were

applied for semantic segmentation [Long et al., 2015], also for image recognition such as

ResNet [He et al., 2016], ResNext [Xie et al., 2017], DenseNet [Huang et al., 2017]. Skip

connections (see figures 4.11) encourage a CNNs model to reuse low-level features such

as lines, edges; where the model uses these low-level features many times with high-level

features such as shapes, objects at the same level. Thus, the combination of low-level

features and high-level features in MRI images using skip connections, helps to localize

the tumor region and then to detect the shape and the boundaries of Glioblastoma intra-

tumoral structures. Skip connections connect between two non-successive layers: layer

HL−i and layer HL (see equation 4.8):

HL = f(WL ×HL−i + bL) (4.8)

Where bL, WL are trainable parameters, called respectively bias and weights. HL−i,

HL (i ∈ N & 2 ≤ i) are two layers.

4.3.2.2.2 Sparse and Dense architectures

CNNs are known for its ability to extract many hierarchical features from images.

To develop a deep CNNs architecture, we have either pixel-wise approach or patch-wise

approach. In the first approach, CNNs deal with Pixels, while in the second approach,

CNNs deal with Patches. Our method is based on Patch-wise technique, and it takes
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Figure 4.11 – An example of Skip connections [He et al., 2016].

as input patches with limited size (in our case 64 x 64) to produce an output patch

with predicted tumoral regions. The most used technique to generate patches is adjacent

patches 11. Moreover, pixel-wise classification is computationally expensive such as the

architecture of AlexNet [Krizhevsky et al., 2012], VGGNet [Simonyan and Zisserman,

2014]. From another side, Fully Convolutional Networks (FCN) [Ronneberger et al.,

2015; Çiçek et al., 2016; Milletari et al., 2016] is based on patch-wise classification, and

it has shown a great performance and more accurate results, in addition, it is efficient

in terms of computation compared to pixel-wise technique. In this work we investigate

three variants of CNNs patch-wise architectures:

— Sparse MultiOCM architecture: this architecture made up of two modules of Spar-

seConncentionOCM which has two outputs (i.e. output 1 and output 2). Then,

we concatenate the first output (i.e. output 1) with a pre-output concatenation

level (i.e. conca layer) of the second module, and the second output (i.e. output

2) is used as an additionnel input to the second module. We refer to this architec-

ture as SparseMultiOCM. The details of this architecture are illustrated in figure

4.12.a.

— Input Sparse MultiOCM architecture: in this architecture we investigate the effect

of adding directly the input as another concatenation feature maps. We refer to

this architecture as InputSparseMultiOCM. The details of this architecture are

illustrated in figure 4.12.b.

— Dense MultiOCM architecture: in this architecture we attempt to extract different

11. CNNs predict labels separately from each others; label of second patch will be predicted without
any relation with the first patch and so on for third, fourth ...etc. see section 4.3.3 for further details
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(a) SparseMultiOCM, we use two modules of SparseConnectionOCM to
build this architecture. This architecture has 127,876 parameters.

(b) InputSparseMultiOCM, we concatenate the input with the pre-output con-
catenation level in two modules. This architecture has 130,180 parameters.

(c) DenseMultiOCM, we use two modules of DenseConnectionOCM to build the com-
plete architecture. This architecture has 181,124 parameters.

Figure 4.12 – An illustration of the proposed CNNs architectures to solve the problem of fully automatic brain tumor
segmentation. Each orange/red/purple/yellow box corresponds to multi-channel feature maps. The output 1 × 1 × 4 is
a 1 × 1 convolution layer with 4 classes of BRATS dataset where we have 4 sub-regions: Healthy tissue, Necrotic and
Non-Enhancing tumor, Peritumoral Edema, Enhancing core.

feature representations from the input MRI images. We refer to this architecture

as DenseMultiOCM. The details of this architecture are illustrated in figure 4.12.c.

Finally, after building these architectures that are made up of two modules (i.e. Spar-

seConncentionOCM, DenseConncentionOCM), we have added two consecutive convolu-

tion layers before the final output (i.e. output 1 × 1 × 4) to extract unified features.

The motivation of adding these consecutive convolution layers is: we have concatenated

several feature maps including input Patches (i.e. raw pixels) from many levels at the
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concatenation layer of the second module, thus we have heterogeneity of features and

pixels at one level that need to be unified before classifying them into 4 classes.

4.3.3 Overlapping Patches

Our CNNs architectures are built upon 2D image Patches (Patch is a set of pixels),

in which these architectures predict the pixel’s class which is the center of the 2D Patch

(i.e. see figure 4.13, green points). A lot of research [Urban et al., 2014; Pereira et al.,

2015; Havaei et al., 2017; Ben naceur et al., 2018] use the technique of Adjacent Patches

(see figure 4.13.a); Patches that are next to each other, but the limit of CNNs with

Adjacent Patches is that CNNs do not take into account the fact that these Adjacent

Patches together make up the entire image [Havaei et al., 2017; Pereira et al., 2017; Zhao

et al., 2018], which means that if we mix the location of patches, for CNNs is the same

thing with or without mixing the location of patches, and this is the weak point of CNN

algorithm with the patch segmentation approach. To overcome this issue and to create a

sort of memory in CNNs architecture for the location of patches as a human being does

when we try to sort an image divided into multiple patches. The first thing we do is

looking for some patches that have something in common and this is a natural algorithm

implemented in our brains 12. For these reasons, we extract Overlapping Patches (see fig-

ure 4.13.b) which help the architectures to see the local (Red Patches, see figure 4.13.b)

and the larger context (Blue Patches, see figure 4.13.b), in addition, it provides a data

augmentation [Hashemi et al., 2018] through a better balance of data examples; where

through extracting a new patch by taking 25% from the other patches, the new patch is

considered as a shifting of each patch horizontally and vertically on the width axis, then

on the height axis respectively (see figure 4.14).

It is well-known that CNNs work by convolving each kernel with the corresponding

Patch in the image, then this kernel moves to the next Patch until completing the entire

image. Then, through the learning process, CNNs will classify these adjacent Patches

into different classes (in our case 4 sub-regions), so the final segmented image will be the

12. This is the source of inspiration for many algorithms in literature, such as KNN, K-means [Zhang
et al., 2019] or CRF [Wu et al., 2014], that are defined over all pixels or all labels of the full image, in
this way, the prediction of a label is shared among all pixels, or labels through a proximity distance or
a mean-field message, respectively.
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(a) Adjacent Patches.

(b) Overlapping Patches.

Figure 4.13 – Examples of A) Adjacent Patches (one prediction per Patch) and B) Overlapping Patches (5 predictions per
Patch) from an input MRI image. The training dataset is created by extracting Overlapping Patches (i.e. Red and blue
boxes). Best viewed in color.

result of only one pixel prediction (i.e., green point) per Patch as shown in figure 4.13.a.

However, with the Overlapping Patches, the final segmented image will be the result of 5

predictions per Patch as shown in figure 4.13.b. Thus, with the technique of Overlapping

Patches, CNNs is able to classify and see the larger context even using small Patches, in

addition, it could learn to build a relationship among these Patches (See figure 4.14). In
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Figure 4.14 – Examples of (a) an Axial MRI image and the patches of the shaded region, where the red cross signe represents
the shared region with the patch number 5. (b) 2D CNNs in case of Adjacent Patches: at each epoch of training we use
only 4 patches at the shaded region. (c) 2D CNNs in case of Overlapping Patches: at each epoch we use 4 patches in
addition to a new patch (number 5) constructed from the four patches.

this case, CNNs can figure out through the concept of memory, and through the frequency

of patches that come in the same position, that this patch for example is next to this

patch. And because for each patch we have many patches with the same label around it,

that can influence positively on the prediction of that patch at the center, so, we can say

that overlapping patches is like voting but through time (See figure 4.14).

4.3.4 Class-Weighting technique

One of the main problems of medical imaging applications [Hashemi et al., 2018] is

unbalanced data, we find, for example, in BRATS dataset, the class of interest (i.e. tu-

moral region) is the minority class which has almost 2% of data, while the healthy class

has 98% of data [Havaei et al., 2017]. Training a CNNs model on an unbalanced data

will bias toward the majority class (i.e. healthy class), and will produce a low Sensitivity.

In literature, there are many proposed methods such as two training steps [Havaei et al.,

2017], median frequency balancing [Badrinarayanan et al., 2015], asymmetric similarity

loss function [Hashemi et al., 2018]. To overcome the issue of unbalanced data, we have

conducted a preliminary experimental analysis, where we applied two techniques during

the training stage: first step, we extract image Patches from the axial view randomly, and

each class has the same number of training Patches, this technique is useful to mitigate

the problem of unbalanced data [Zhao et al., 2018], but it turns out that this step is

not enough to solve completely the issue as you can see in the experiments in Table 4.3

(first two experiments without using any weighting factors). That’s why in the second
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step, we used class-weighting technique to weight the vote of each class, in other words,

this technique gives to each output a specific weight Wj according to its contribution in

the segmentation results. Also, as you can see from the same table that when we start

adding weighting factors, the results of the segmentation started to be better in terms

of the evaluation metrics compared to the first two experiments without the weighting

factors. Here, we can prove 2 things; first, using the same number of patches will mitigate

the issue, but it will not solve it. Secondly, the experiments with the weighting factors

prove the efficiency of using weighted cross-entropy loss function compared to using the

technique of equal sampling of patches.

As mentioned previously in chapter 3, the forward propagation computes the inference

of CNNs using Softmax function (see equation 4.9)

pj = expzj

K∑
k=1

expzk

(4.9)

So, the technique of class-weighting is based on weighted-cross entropy loss function

(See equation 4.10) to compute the error between the ground truth and the predicted

image during the training phase:

LW (p, q) = −
K∑

j=1
Wj × qj × log(pj) (4.10)

Where K is the number of classes (K ∈ N), qj is the jth element of the normalized

ground truth vector (qj ∈ R) and pj is the jth element of the estimated vector (pj ∈ R)

for the class j (j is an integer ∈ [1..K]). Wj (0 < Wj < 1 and
K∑

j=1
Wj = 1) is

a specific weight assigned to the class j. L(p,q) and LW(p , q) are two loss functions

that represent the error between the estimated vector and the normalized ground truth

vector. Softmax function gives the estimated vector pj at the end after each forward

propagation by squashing the outputs to be between 0 and 1, i.e. the outputs become

as probabilities. Then these probabilities are fed into the weighted Cross-entropy loss

function, this function after that computes the ’real’ error based on the Cross-entropy

function and the class-weight Wj for each class. Moreover, to make the prediction of the

estimated vector accurate and faster, we use one-hot encoding, where this encoding gives

all probabilities of the ground truth to one class (i.e. the correct class), and the other
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classes become zero, e.g. q = [1,0,0,0], this vector q indicates that the first class is the

correct class. In this case, to calculate the error we need only one operation instead of

many operations for all classes. Softmax function attempts to predict this vector (i.e.

q vector) after each forward/backward propagation until the end of training. The ad-

vantage of Weighted Cross-entropy Loss function is: it could compute the real error for

each class, so as a result, it rewards or penalizes only the correct classes. The drawback

of this function is how to calculate the weight for each class. To answer this question,

we have conducted an experimental analysis of the effect of Class-Weighting technique

on the segmentation results. As it is shown in Table 4.3, there are different and totally

independent experiments. We have put our proposed CNNs architectures under different

regularization techniques such as Instance normalization, Dropout (with different rates),

L2 regularization (with different rates), but these regularization techniques did not im-

prove a lot the segmentation results. To evaluate the segmentation performance of each

experiment, we computed Average Dice score as follows:

Average Dice = 1
N

∑
i

Dicei

= Complete+ Core+ Enhancing

3

(4.11)

Where N is the number of Dice score sub-metrics (i.e., N=3).

Table 4.3 – the parameters and the results of different and independent experiments of the class-weighting technique.
Healthy, Necrotic and Non-Enhancing tumor (NCR/NET), Peritumoral Edema (Edema), Enhancing tumor represent the
different Glioblastomas tumor sub-regions, in which we assigned a percentage of contribution for each class. Moreover, for
each experiment we show the Dice score of 10 MRI images from BRATS 2018. The last experiment (No = 14) has the
best mis-classification costs for our proposed CNNs architectures. Fields with (/) mean we did not apply class-weighting
technique.

No. Patch type Class-Weights Dice score Average Dice
Healthy NCR/NET Edema Enhancing tumor Complete Core Enhancing

1 Adjacent / / / / 0.760 0.595 0.659 0.671
2 Overlap / / / / 0,902 0,8 0,631 0,778
3 Adjacent 0.3 0.2 0.2 0.3 0.772 0.593 0.655 0.673
4 Overlap 0,3 0,2 0,2 0,3 0,899 0,793 0,736 0,809
5 Overlap 0,3 0,15 0,3 0,25 0,909 0,816 0,752 0,826
6 Overlap 0,3 0,12 0,33 0,25 0,901 0,826 0,745 0,824
7 Overlap 0,3 0,1 0,38 0,22 0,906 0,828 0,779 0,838
8 Overlap 0,3 0,06 0,425 0,215 0,912 0,83 0,775 0,839
9 Overlap 0,29 0,05 0,448 0,212 0,903 0,837 0,7505 0,830
10 Overlap 0,29 0,1 0,4 0,21 0,908 0,828 0,747 0,8277
11 Overlap 0,28 0,08 0,43 0,21 0,91 0,838 0,777 0,8417
12 Overlap 0,27 0,08 0,44 0,21 0,905 0,826 0,758 0,8297
13 Overlap 0,27 0,1 0,43 0,2 0,906 0,842 0,775 0,841
14 Overlap 0,28 0,08 0,43 0,21 0,916 0,866 0,812 0,865
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Figure 4.15 – The effect of class-weighting on the CNNs performance. Horizontal axis
represents the experiment number in the table 4.3 (i.e., No.). The vertical axis represents
the average Dice score of each experiment (Table 4.3 column 10).

1. First: we used Adjacent Patches (i.e., table 4.3, first row), and Overlapping

Patches (i.e. table 4.3, second row) without any class-weighting or regularization

techniques and as it is shown in the table 4.3 and figure 4.15, the first experiment

with Adjacent Patches achieved on Average Dice 0.671. However, in the second

experiment with Overlapping Patches achieved on Average Dice 0.778, which is

remarkable that the difference between both experiments is 10.7%.

2. Second: we used Adjacent Patches (i.e., table 4.3, third row) and Overlapping

Patches (i.e., table 4.3, fourth row), we used also the same mis-classification costs

[0.3, 0.2, 0.2, 0.3] for both types of Patches. We have achieved with Adjacent

Patches on Average Dice 0.673. However, with Overlapping Patches achieved on

Average Dice 0.809, the difference between both experiments is 13.6%.

In summary, training CNNs architectures with Overlapping Patches provides a good

segmentation result compared to using adjacent Patches, where we have reported rep-

resentative results in table 4.3 and in figure 4.15. The experiments demonstrate the

effectiveness and the efficiency of Overlapping Patches for training CNNs architectures.

Moreover, the last experiment (No=14) provides the best mis-classification costs (The

class-weight of Healthy tissue=0.28, the class-weight of Necrotic and Non-Enhancing tu-

mor= 0.08, the class-weight of Peritumoral Edema= 0.43, the class-weight of Enhanced

tumor= 0.21).
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4.3.5 Experiments and Results

This section presents the results of our experiments and some discussions. Also, our

brain tumor segmentation method is evaluated using the BRATS dataset which has real

patient data with Glioblastoma brain tumors (both high- and low-grade). Finally, we

explain the libraries and frameworks that are used in our work. Then, we evaluate our

proposed architectures with a set of metrics that are used in state-of-the-art such as Dice

score, Sensitivity, Specificity, and Hausdorff Distance.

4.3.5.1 Dataset Preprocessing

To remove some noises and to enhance the quality of MRI images, especially the MRI

images of the BRATS dataset are generated using different MRI devices and acquisition

protocols.

Figure 4.16 – An illustration of an example of 5 Flair scans before (top row) and after
(bottom row) the proposed intensity normalization. Arrow red indicates where the images
have improved after applying the normalization steps (see bottom row). We show 5 Flair
scans only for simplicity.

Our preprocessing and normalization method of each 2D axial slice are as follows:

1. Removing 1% highest and lowest intensities: this technique helps to remove some

noises at the tail of the histogram, where this step has provided good results in

many research [Havaei et al., 2017; Tustison, 2013].

2. Subtracting the mean and dividing by the standard deviation of non-zero values

in all channels: this technique is used to centre and to put the data in the same

scale, i.e., bringing the mean intensity value at zero and the variance at one.
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Figure 4.17 – Image intensity histograms of Flair scans of 10 subjects (Each subject is
distinguished using different color) from the BRATS 2018 training dataset before (left)
and after (right) the intensity normalization steps. We show 10 Flair scans only for
simplicity.

3. In this step, we try to isolate the background from the tumoral regions by assigning

the minimum values to -9, where it has been observed that using integer numbers

between -5 to -15, fits our CNNs architectures. The application of the second

pre-processing step led to bring the mean intensity of tumoral region, the healthy

tissue + background to zero value as shown in the histogram (See figure 4.17). As

we know, the intensity of background pixels of MRI images in BRATS data equals

to 0, thus to isolate the zero pixels (i.e. background) from the other regions, we

normalized the histogram of the MRI images by shifting the background pixels to

another bin. We found that the bin -9 in many experiments, gives good results in

the training and testing phases.

The image intensity normalization effect is illustrated with Flair scans in figure 4.16.

The results shown in figure 4.16 clearly demonstrated the effectiveness of the proposed

intensity normalization steps. Moreover, the improvement is further confirmed by image

intensity histograms of 5 subjects from the BRATS 2018 training dataset, as shown in

figure 4.17.

4.3.5.2 Post-processing

To remove some mis-classified and isolated regions (i.e., non-tumor regions) from the

segmentation results of our proposed CNNs architectures, we have applied two post-

processing techniques:
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1. Using a global threshold for each slice (i.e., 2D MRI image) to remove small non-

tumoral regions based on connected-components, after many experiments (e.g. 80,

100, 150, 200 ..etc), we found that using 110 pixels provide the best result for this

global threshold. Thus, any connected-components smaller than 110 pixels will be

removed. We refer to this Post-processing as Post-processing 1.

2. The second post-processing is applying morphological opening operators g(x) =

(f 	 s)⊕ s, where g(x) is the output and f is the input image, with a structuring

element s of size 3 x 3 (see table 4.4). Structuring element in mathematical mor-

phology is a set of pixels, it represents the level of observation, where it is used

to differentiate regions in an image based on the size and shape of the structuring

element. We used a small structuring element to capture small tumoral regions

and to remove them later using an opening operator, in addition, to adding a

sharpening effect such as emphasizing differences in adjacent pixels. Opening op-

erator uses erosion g(x) = f 	 s, then dilation g(x) = f ⊕ s in succession, where

we noticed that this operator improves the results of the first post-processing (i.e.,

Post-processing 1). We refer to this Post-processing as Post-processing 2.

0 1 0
1 1 1
0 1 0

Table 4.4 – Illustration of the 3× 3 structuring element

We have observed that the application of post-processing 1 + post-processing 2 to

the output of the CNNs architectures provides a better segmentation result than the

application of a single type of these post-processing techniques.

4.3.5.3 Implementation

To implement our proposed CNNs architectures, we used Keras which is a high-level

open source Deep Learning library, and Theano [Al-Rfou et al., 2016] as a Back-end,

where Theano exploits GPUs to optimize Deep Learning architectures. To compute the

inference time, we used Python environment on Windows 64 bits, Intel Xeon processor

CPU @ 3.30 GHz with 8 GB DDR4 RAM, and Nvidia Quadro GPU K2000 with 2 GB

GDDR5 memory.
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One of the problems with artificial neural networks, including deep learning, is the ini-

tialization of weights. To overcome this problem, we tested two most used techniques:

”Glorot Uniform” [Glorot and Bengio, 2010], ”he normal” [He et al., 2015]. he normal

initialization provides a fast convergence toward the global minimum compared to Glo-

rot Uniform, also in this work [He et al., 2016] they found that he normal initialization

gives the best results.

For the optimizer, we chose SGD with mini-batch size from 1 to 120, where mini-batch

size equals to 8 provides the best results. The initial learning rate (LR) is LR0 = 0.001,

then it is deceased by the equation 4.12:

LRi = 10−3 × 0.99LRi−1 (4.12)

Where LRi (i ∈ N+) is the new learning rate, LRi−1 is the learning rate of the last

epoch, 0.99 is a decreasing factor.

To avoid the Overfitting problem, we have used two methods: (1) BRATS dataset has

only 285 MRI images with both high- and low-grade, this number of training data is small

to train a Deep Learning model on a multi-classification problem. Thus, we used a large

number of Overlapping Patches (30.660 Patches) that provide a better balance of training

data among the four classes (i.e. 4 sub-regions) of Glioblastomas tumors. In addition,

Overlapping Patches technique provides a data augmentation [Hashemi et al., 2018] to

the original BRATS dataset. (2) Theoretically, the error on the training and validation

sets decreases after many epochs, but in practice, the error on the validation set at a cer-

tain point will start to increase again (See figure 4.18). Thus, at this point which is the

minimum, the training is then stopped using early stopping technique (see equation 4.13).

Eo(t) = min
t′≤t

Ev(t′) (4.13)

Where Eo, Ev are the optimal error (i.e. lowest validation set error) and the validation

error, respectively on the validation set.

All our variants of CNNs architectures are trained from scratch using a large number of

MRI image Patches (i.e. 64 × 64× 4) equals to 30.660 Patches. After many experiments,

we found that splitting dataset into 70% for training 30% testing is the best distribution,
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Figure 4.18 – An illustration of the early stopping technique. The figure shows the
training and validation error curves. The principal axes are the epochs and the error
value. Based on figure 1 [Prechelt, 1998]

then in the validation phase, we used BRATS 2018 validation set which contains 66 MRI

images of patients with unknown grade. For the evaluation of our CNNs architectures

on the validation dataset, we have used an online evaluation system 13. We upload the

segmentation results and the system provides the quantitative evaluations contain Dice

score, Sensitivity, Specificity, and Hausdorff distance. For each one of these metrics we

have three sub-metrics: Complete (i.e. Necrotic and Non-Enhancing tumor, Edema,

Enhancing tumor), Core (i.e. Necrotic and Non-Enhancing tumor, Enhancing tumor),

Enhancing (i.e. Enhancing tumor).

4.3.5.4 Results

4.3.5.4.1 Segmentation performance

In this section, we compare the segmentation performance of our 3 variants of CNNs

architectures with the state-of-the-art methods.

Table 4.5 shows a comparison of our proposed Deep CNNs architectures with state-of-

the-art methods, these comparisons are based on four metrics: Dice score, Specificity,

Sensitivity and Hausdorff distance. It can be observed that there is no single method

13. Center for Biomedical Image Computing and Analytics University of Pennsylvania,
Url:https://ipp.cbica.upenn.edu/
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that surpasses all methods on all metrics simultaneously even to human rater (i.e., Ra-

diologists, first row) and that due to the difficulties and the challenges (see problem

statement section) and also data heterogeneity because of using MRI images acquired

from several scanners and using different acquisition protocols. Second observation is:

when we applied our architectures with post-processing techniques, i.e., DenseMulti-

OCM*+ Post-processing 14 1 & Post-processing 2, we notice a marked improvement over

the segmentation results in terms of Dice score and Hausdorff distance. This improvement

demonstrates the effectiveness of our proposed post-processing techniques. Third obser-

vation is: methods-based CNNs provide a better segmentation performance compared to

machine learning methods such as [Ellwaa et al., 2016] who developed an random forest

Iterative method. However, the method of [Ellwaa et al., 2016] provides 100% results

in terms of specificity metric on the enhancing tumor class (see table 4.5). Also our

method InputSparceMultiOCM and the method of [Chang et al., 2016] have competitive

results and that due to the way of building the architectures, where both architectures

re-introduce the input (i.e., raw pixels) in the concatenation layer. Moreover, the method

Table 4.5 – Comparison of the segmentation results of our three proposed models which are noted by adding ”*” to
the architecture’s name with the state-of-the-art methods. WT, TC, ET denote Whole Tumor (complete), Tumor Core,
Enhancing Tumor core respectively. Post denotes post-processing. Fields with (-) are not mentioned or given with a specific
number in the published work. Numbers in bold are the best values.

Methods Dice Specificity Sensitivity Hausdorff
WT TC ET WT TC ET WT TC ET WT TC ET

Human Rater [Menze et al.,
2015]

0.88 0.93 0.74 - - - - - - - - -

[Havaei et al., 2017] 0.88 0.79 0.73 0.89 0.79 0.68 0.87 0.79 0.80 - - -
[Chang et al., 2016] 0.87 0.81 0.72 - - - - - - 9.1 10.1 6.0
Iterative average (HGG +
LGG)[Ellwaa et al., 2016]

0.82 0.72 0.56 0.985 0.99 1.00 0.835 0.805 0.63 - - -

DeepMedic + CRF [Kamnitsas
et al., 2017]

0.847 0.67 0.629 - - - 0.876 0.607 0.662 - - -

[Zhao et al., 2018] 0.84 0.73 0.62 - - - 0.82 0.76 0.67 - - -
3CNet [Ben naceur et al., 2018] 0.87 0.81 0.83 0.74 0.78 0.80 0.89 0.84 0.74 16.86 18,99 13.67
2D-3D model [Mlynarski et al.,
2019]

0.90 0.808 0.772 - - - - - - - - -

SparseMultiOCM* 0.858 0.746 0.713 0.993 0.996 0.998 0.855 0.756 0.771 21.519 15.160 11.140
SparseMultiOCM* + post 1 0.860 0.748 0.730 0.994 0.996 0.998 0.846 0.756 0.774 8.518 13.466 9.406
SparseMultiOCM* + post 1 & 2 0.860 0.744 0.725 0.994 0.996 0.998 0.842 0.751 0.753 7.814 13.522 6.713
InputSparseMultiOCM* 0.864 0.746 0.716 0.993 0.996 0.998 0.863 0.7548 0.784 16.899 14.669 10.104
InputSparseMultiOCM* + post
1

0.866 0.747 0.748 0.994 0.996 0.998 0.856 0.753 0.789 10.1868 11.834 6.142

InputSparseMultiOCM* + post
1 & 2

0.865 0.744 0.745 0.994 0.996 0.998 0.853 0.748 0.770 10.044 11.504 4.608

DenseMultiOCM* 0.862 0.737 0.710 0.995 0.998 0.998 0.848 0.710 0.76 14.488 15.673 6.582
DenseMultiOCM*+ post 1 0.861 0.736 0.725 0.995 0.998 0.998 0.841 0.709 0.759 8.514 13.444 5.142
DenseMultiOCM*+ post 1 & 2 0.860 0.733 0.732 0.995 0.998 0.998 0.838 0.702 0.740 8.521 13.324 4.406

14. The drawback of the first post-processing is not a patient-specific, but it is very effective when the
brain tumor has only one connected region.
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of DeepMedic + CRF [Kamnitsas et al., 2017] provides a good segmentation result for

the metric of sensitivity on the whole tumor, but for the rest of metrics all our architec-

tures outperformed the method of DeepMedic + CRF. Furthermore, DeepMedic + CRF,

and 2D-3D model [Mlynarski et al., 2019] are computationally expensive and use a lot of

memory due to using 3D MRI images and the need to compute the 3D gradients for each

forward/backward pass. On the other hand, DenceMultiOCM uses only 2D MRI Patches

and that makes it efficient in terms of computational time and in terms of memory. The

method of [Mlynarski et al., 2019] obtained good results for the dice metric on the whole

tumor class due to using 3D CNNs and using 2D CNNs feature maps as an additional

input. [Zhao et al., 2018] developed a CNNs method with an integrated CRF technique

in contrast to [Kamnitsas et al., 2017]. The method of [Zhao et al., 2018] predicts the

final images by averaging the results from 3 views (axial, sagittal, and coronal). If we

compare this method with DenseMultiOCM*+ Post-processing 1 & Post-processing 2,

we find that our CNNs architecture outperformed and provides a better segmentation

performance than [Zhao et al., 2018] in terms of all metrics except the sensitivity metric

on the tumor core as shown in the table 4.5.

Figure 4.19 shows examples of the segmentation results of Glioblastoma with Low-

Grade (LGG) and High-Grade (HGG) using 3 variants of CNNs architectures (i.e., Sparse-

MultiOCM, InputSparseMultiOCM, DenceMultiOCM). It can be observed that the pro-

posed architectures detect effectively the tumor region (from left to right, column 3 and

8) and its sub-regions: Red: Necrotic and Non-Enhancing tumor, Green: Peritumoral

Edema, Yellow: enhancing tumor. Also, these architectures are able to detect and seg-

ment even small tumoral regions without any shift of the segmentation results to another

spatial position (e.g. patients in row 2, 6, 10) as shown in figure 4.19, Moreover, we can

see that our post-processing techniques improved the spatial segmentation results (from

left to right, column 4, 5, 9 and 10). The performance of the segmentation results in figure

4.19 due to (1) Overlapping Patches that introduce more context to the architectures;

using different neighborhood around the same pixels helps to take into account several

posterior probabilities (Several decisions) which can be maximized over all labels of the

training dataset. Thus, the final prediction of the pixel’s label of the architectures with

respect to their parameters will be based on the vote of majority of decisions. Moreover,
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Figure 4.19 – Illustration of three CNNs architectures segmentation results for Glioblastoma brain tumors with High-Grade
and Low-Grade. Each row represents segmentation results of a different patient’s brain tumor from the Axial view. From
left to right: the first five × twelve matrix are High-Grade, and the second five × twelve matrix are Low-Grade. Each
architecture has 40 different images. The first and six columns are MR scans of different patients (we show Flair MRI
modality only for simplicity), the second and the seventh column are the Ground truth segmentation that are created by
the radiologists, the third and the eighth columns are the segmentation results of our 3 variants of CNNs architectures,
the fourth and ninth column are the segmentation results of each architecture + post-processing 1, the fifth and the tenth
column are the segmentation results of each architecture + post-processing 1 +post-processing 2. Colors indicate the tumor
regions: Black: Healthy and background, Red: Necrotic and Non-Enhancing tumor, Green: Peritumoral Edema, Yellow:
Enhancing tumor.
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Using (2) the technique of selective attention that is based on the rule of interconnected

modules, this technique plays a very important role of features maximization inside each

module.

4.3.5.4.2 Inference time and Computational benefits

Developing a Deep CNNs model and getting a fast Inference time is one of the chal-

lenging issues known in state-of-the-art. One of the factors that is very important to

Table 4.6 – Results of training time, inference time and the number of parameters of the state-of-the-art segmentation
methods with our 3 proposed models which are noted by adding ”*” to the architecture’s name. ”-” indicates that the
information is not provided in the published paper.

Methods Inference time (seconds)(GPU) Inference time (seconds)(CPU) training time (hours)(GPU) parameters
Radiologist [Kaus et al., 2001] ≈14400 - - -
[Havaei et al., 2017] 180 (GPU) -(-) - (GPU) 802,368
[Chang et al., 2016] 93 (GPU) -(-) 2 (GPU) 130,400
Iterative average (HGG +
LGG)[Ellwaa et al., 2016]

- (-) -(-) - (-) -

DeepMedic + CRF [Kamnitsas
et al., 2017]

30 (GPU) -(-) 72 (GPU) -

[Zhao et al., 2018] 540 (GPU) -(-) 288 (GPU) -
3CNet [Ben naceur et al., 2018] 19.72 (GPU) -(-) 5 (GPU) 1,072,420
2D-3D model [Mlynarski et al.,
2019]

- (GPU) -(-) - (GPU) -

SparseMultiOCM* 10.77 (GPU) 18.51 (CPU) 1 (GPU) 127,876
InputSparseMultiOCM* 11.68 (GPU) 19.62 (CPU) 1 (GPU) 130,180
DenseMultiOCM* 15.98 (GPU) 24.55 (CPU) 1 (GPU) 181,124

reduce the Inference time is the number of parameters (weights and biases) [Chen et al.,

2014], where there is a direct correlation between these two (i.e., the number of parame-

ters and the Inference time). Table 4.6 shows a comparison of our proposed Deep CNNs

architectures with the state-of-the-art methods, this comparison is based on 3 metrics:

inference time, training time, and the number of parameters. SparseMultiOCM architec-

ture has 8 times less parameters compared to 3CNet with the same GPU, and we have

noticed that the Inference time decreased to almost the half: 10.77 seconds (SparseMul-

tiOCM) compared to 19.72 seconds (3CNet). In addition, the inference time on CPU

decreased to 18.51 seconds, almost 7% faster. SparseMultiOCM could segment the whole

brain tumor only in 10.77 seconds on GPU and 18.51 seconds on CPU, while radiologists

spend on average 4 hours [Kaus et al., 2001] to segment only one brain tumor. However,

SparseMultiOCM could segment 1415 brain tumor (i.e., 1415 patients) in the same period

of time (4 hours ≈ 14400 seconds). Also, it can be observed that our architectures (i.e.,

SparseMultiOCM, InputSparseMultiOCM, DenceMultiOCM) outperformed all methods

that are cited in the table 4.6 in terms of inference time (10.77, 11.68, 15.98 on GPU
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and 18.51, 19.62, 24.55 on CPU respectively) and the needed time for training (1 hour of

training on GPU) with a lower number of parameters.

SparseMultiOCM model decreased a lot the inference time, almost 16 times faster on

GPU and 9 times faster on CPU in comparison with the state-of-the-art methods such

as [Havaei et al., 2017], and almost 50 times faster on GPU and 29 times faster on CPU

than the method of [Zhao et al., 2018] where their CNNs model took 12 days (288 hours)

of training.

The computational benefits of our architectures in terms of training time (one hour) and

inference time (12 seconds on GPU and 20 seconds on CPU) are due to: (1) features

maximization through selective attention technique. (2) We used two consecutive layers

of convolution, where with this technique we proved that it gives a good performance

in terms of segmentation performance and speed [Ben naceur et al., 2018]. (3) Limited

number of filters in each layer, as the use of many filters at each layer leads to redundant

and noisy features, in addition, the use of small filters (3 x 3) have proved in [Simonyan

and Zisserman, 2014] that they keep a lot of information and reduce the number of mul-

tiplications between the input (or the previous layer) and the large number of filters. (4)

Also, the use of fully convolutional networks [Long et al., 2015] instead of fully connected

layers as the classifier, helped the architecture to give accurate results and to reduce the

training time due to sparse connectivity. (5) The use of skip connections helps to reduce

the time of training [Szegedy et al., 2017]. (6) Applying convolution to multi-resolution

features after applying Max-pooling and Up-sampling allows us to detect relevant fea-

tures with lower parameters and operations, in addition, this technique contributed to

reduce the inference time. (7) Finally, The use of Overlapping Patches helps to reduce

the Inference time due to using small Patches; it is known that CNNs architecture is a

set of feature maps that represent the extracted features from the input data, and the use

of small input Patches leads to obtaining small feature maps, thus getting small feature

maps size helped to reduce the number of operations and, consequently, the required

computational time.

To focus on the effectiveness of Deep learning models, we measured the metric of Dice

whole density, i.e., Dice whole divided by the number of parameters. The best model is

the one that has a high Dice whole density, in other words, the model that uses effectively

its parameters. Measuring information density is one of the most used metrics to mea-
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sure the effectiveness of deep learning models; information density shows us the ability of

each model to use its parameters efficiently [Canziani et al., 2016], [Bianco et al., 2018].

In figure 4.20.a, we can clearly see that the most efficient models are SparseMultiOCM,

[Chang et al., 2016] and InputSparseMultiOCM, where their Dice whole density is greater

than 6.66. Also, from the figure 4.20.b of density information, it can be seen that al-

though 3CNet [Ben naceur et al., 2018] and [Havaei et al., 2017] have a large number of

parameters but they do not take the advantage of their capacity in the learning process;

these models have a huge number of parameters that do not contribute to the segmenta-

tion results. Moreover, our proposed SparseMultiOCM model is efficiently designed for

the given task (brain tumor segmentation problem), it achieved the highest Dice whole

density score among the state-of-the-art methods with 9x less parameters.

Figure 4.20 – Dice whole density (a) and Dice whole vs. Dice whole density (b). Dice whole Density metric gives us an
insight about the efficiency of each model.

As a summary, the design of Deep CNNs architectures is very important, where

our proposed architectures (i.e., SparseMultiOCM, InputSparseMultiOCM, DenseMul-

tiOCM) achieve the tradeoff between the segmentation performance and the inference

time. Moreover, we achieved inference time on average 12 seconds on GPU and 20 sec-

onds on CPU, i.e., the number of operations and parameters of our proposed architectures

are optimized to be executed on GPU and CPU in a small range of 14 seconds compared

to the state-of-the-art methods.
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4.3.6 Discussion and Conclusion

In this section, we presented a fully automatic brain tumor segmentation method

using End-to-End Deep CNNs and MRI images of patients with Glioblastoma brain tu-

mors. Our three variant architectures are built upon 2D Axial images Patches that are

equally and randomly sampled from the training dataset. This technique of generating

image Patches in addition to using the Weighted Cross-entropy loss function during the

training phase helped to solve the issue of unbalanced data.

Moreover, we proposed a new Overlapping Patches technique to model the global context

and relationship among image Patches that led the architectures to take into account the

local and larger context without using larger Patches. Also, we demonstrated that using

Overlapping Patches is better than using Adjacent Patches to train Deep CNNs architec-

tures. The proposed architectures are based on the rule of interconnected modules that

are connected by skip connections to build the technique of selective attention. The latter

technique plays a very important role in maximizing the features representation within

each module.

The proposed Deep CNNs architectures in this section (i.e., SparseMultiOCM, InputSparse-

MultiOCM, and DenseMultiOCM) perform nearly identically without applying post-

processing, due to the way of building those architectures and to the fact of having a

similar number of parameters, while it is interesting to note that the architecture of

DenseMultiOCM has the best results after applying the post-processing step. This im-

provement after applying post-processing is an indicator of the importance of this step

for reducing the misclassified regions.

The advantages of our proposed architectures are (i) first, these architectures have a

similar segmentation performance with radiologists as confirmed by the extensive exper-

iments and the evaluation metrics (i.e. Dice, Sensitivity, Specificity, Hausdorff distance).

(ii) The efficient design of our proposed architectures in addition to the slice-by-slice

segmentation technique makes these architectures computationally efficient. (iii) These

architectures are an End-to-End Deep Learning approach, and fully automatic without

any user interventions.

Finally, the obtained results illustrate that our proposed architectures achieved state-of-

the-art performance in terms of accuracy and speed, and give a very accurate result for
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the segmentation of Glioblastoma tumors with low- and high grade.

In the next chapter, we present the issue of training deep learning architectures with

unbalanced data, in addition to the issue of misclassified regions (i.e., false positives and

false negatives) that are generated by Deep CNNs architectures. Furthermore, those

issues (i.e., unbalanced data and misclassified regions) are treated independently in two

different sections.
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Deep learning with unbalanced data

and misclassified regions
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5.1 Introduction

In this chapter, we solve the limits of training deep learning architectures, in partic-

ular, Deep convolutional neural networks with two issues independently. The first issue

is unbalanced data where we find a class of interest has a minority of data compared to

other classes. The second issue is misclassified regions; Deep CNNs architectures pre-

dict tumoral regions where the tumor is located, in addition to false positive regions and
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false negative regions which are wrong predictions. The experiments are carried out on

Glioblastoma MRI images of the BRATS dataset. This chapter aims to develop new

techniques for the proposed Deep CNNs architectures in chapter 4 to solve independently

these two issues of unbalanced data and misclassified regions. We present in section 5.2 in

more detail the issue of Unbalanced data and its impact on the final segmentation results,

in addition to our proposed Online Class-weighting function to solve this issue (Unbal-

anced data). Then, in section 5.3, we present another issue known in Deep learning with

especially medical data as misclassified regions (i.e. false positives and false negatives)

that are produced by the proposed Deep CNNs architectures in chapter 4.

5.2 Deep learning with Online class-weighting

5.2.1 Problem statement

Current state-of-the-art image segmentation methods are based on Deep CNNs archi-

tectures, where in general we find a feature extractor with a bank of trainable parameters.

Then, pooling layers to make the images less sensitive and invariant to small translations

(i.e. resisting to local translation). The last stage in Deep CNNs architectures is a clas-

sifier that classifies each pixel (or voxel) into one of many predefined classes. In the field

of medical image classification and segmentation, we can classify methods-based Deep

learning into two categories: 2D or 3D models. For the first category (i.e. 2D-based

methods), there are many studies such as [Axel et al., 2014; Pereira et al., 2015; Chang

et al., 2016; Zhao et al., 2018; Havaei et al., 2017], where these methods use 2-dimensional

patches (2D patches) as an input to train Deep CNNs network which is used after that

to classify Glioblastoma image data. For the second category (i.e. 3D-based methods),

we can cite studies such as [Urban et al., 2014; Kamnitsas et al., 2016, 2017], where

these methods use 3-dimensional image patches (3D patches) as an input to Deep CNNs

network.

In Deep learning, the most common problem among image segmentation methods is

unbalanced data, where we find a class of interest has the minority of data compared

to other classes. For instance, as it is shown in (See figure 5.1), healthy class has more

than 98% of data compared to other classes of interest: edema class, non-enhancing core
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and necrotic core class, enhancing core class. This kind of issues makes Artificial Neural

Networks, including Convolutional Neural Networks, bias toward the more frequent label

(i.e. healthy class). Thus, training a CNNs architecture with this type of data will make

predictions with low sensitivity, where the most important part in medical applications

is to make the architecture more sensitive toward the lesion-class (i.e. tumoral regions).

Figure 5.1 – Illustration of labels distributions among the 4 classes in BRATS dataset:
edema class, non-enhancing core and necrotic core class, enhancing core class, and healthy
tissue class. Healthy tissue has 98% of data, non-enhancing core and necrotic core has
0.28% of data, Edema has 0.64% of data, and enhancing core has 0.20% of data.

The issue of unbalanced data is common across multi-label image segmentation tasks,

where there are many proposed methods in state-of-the-art. In overall, there are two cat-

egories of solutions to this issue: some methods try to mitigate this problem by proposing

equal sampling of training images patches [Lai, 2015; Havaei et al., 2017], on the other

hand, some methods propose a new loss functions: cross entropy-based median frequency

balancing [Badrinarayanan et al., 2017], cross entropy-based weight map [Ronneberger

et al., 2015], combination of sensitivity and specificity [Brosch et al., 2016], asymmetric

similarity loss function [Hashemi et al., 2018]. Most of the cited methods define usually a

specific function dedicated for well-defined applications, however, they may do not work

well for other applications because of the dependence between the proposed function and
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the input data.

Our purpose in this chapter is to overcome the issue of training Deep CNNs architectures

with unbalanced data that is due to using classical loss functions. To this end, we propose

a new method called Online Class-Weighting which is based on weighted cross-entropy

loss function to rebalance between the contribution of each class on the final segmentation

results. Then, to evaluate the impact and the effectiveness of our new proposed Online

Weighted Cross-entropy loss function, we train a Deep CNNs architecture with Online

Class-Weighting function to tackle and improve the architecture’s accuracy proposed in

chapter 4 for the issue of fully automatic brain tumor segmentation. In the next section,

we present our proposed Online class-weighting for solving the issue of training Deep

CNNs architectures with unbalanced data.

5.2.2 Online class-weighting approach

Cross-entropy loss function is one of most used loss function in multi-classification

problems (See section 3.2.2), in particular, image-related applications [Badrinarayanan

et al., 2017; Ronneberger et al., 2015]. However, the issue of cross-entropy loss function is

that it biases toward to class of the majority of data, in our case, toward the healthy tissue.

As mentioned previously in chapter 3, for a multi-classification problem the forward

propogation computes the inference (i.e. estimated probability) of CNNs architecture by

using Softmax function (See equation 5.1):

pj = expzj

n∑
k=1

expzk

for j ∈ {1, .., n} (5.1)

Where pj ∈ [0, 1] is the estimated probability of the class ”j”, with j ∈ {1, .., n}, and

n is the number of classes, ”z” is the neuron’s input of the output layer.

Then, CNNs architectures in multi-classification problem, use cross-entropy as a loss

function (See equation 5.2) to compute the error Loss(p, q)j between the ground truth and

the predicted image during the training phase. The latter loss functun (i.e. cross-entropy)

127



Chapter 5 – Deep learning with unbalanced data and misclassified regions

takes as input the estimated probability pj and the ground truth qj.

Loss(p, q)j = − 1
n

(×
∑

j

qj × log(pj)) (5.2)

As mentioned previously, cross-entropy loss function (See equation 5.2) biases toward

the class of majority of data. And to make this loss function insensitive and unbiased, we

propose an Online Class-Weighting function that works by introducing, first, weighting

factors W to the cross-entropy function to obtain Weighted cross-entropy loss function

(See equation 5.3):

Loss(p, q)j = − 1
n

(
∑

j

Wj × qj × log(pj)) Wj ∈ [0, 1] &
n∑

j=1
Wj = 1 (5.3)

Where Loss (q, p)j is the loss function that represents the error between the estimated

probability pj ∈ [0,1] and the ground truth class qj ∈ {0,1}. n is the number of classes,

wj ∈ [0, 1] is the weighting factor assigned to the class j. The ground-truth qj is a one-hot

probability distribution over the n classes. One-hot encoding gives all probabilities of the

ground truth to one class (i.e. the correct class), and the other classes become zero. For

instance, vector q = [1,0,0,0] indicates that the correct class among the four classes is the

first class with value ”1”. In this case, to calculate the overall error using equation 5.3,

we need only one operation instead of many operations for all classes.

The estimated probability is computed using Softmax function (See equation 5.1)

which is used in the last layer of Neural Network after a forward propagation, where this

function squashes the output to become between 0 and 1 as probabilities. Then, these

probabilities are fed into Weighted cross-entropy function to compute the error between

the estimated probability and the ground truth. The latter function defines a weighting

factor wj ∈ [0, 1] assigned to the class j. The main issue of the Weighted cross-entropy

loss function is how to find the weighting factors wj for each class, in our case, we have

four classes: healthy tissue and background class, non-enhancing core class, edema class,

contrast-enhancing core class. To overcome this issue, we propose Online Class-Weighting

function that allows to find the weighting factors wj for each class during the training

phase using the training rate progress of each class with respect to different training iter-

ations. Online Class-Weighting function starts by initializing the weighting factors based
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on computed measurements such as an evaluation metric or an error’s change. In the

beginning, the Online Class-Weighting function measures the performance by evaluating

the training results with and without the initialization of the weighting factors of each

class. This evaluation helps to measure the training accuracy of each class. After that,

new training is launched while rewarding each class with an adapted weighting factor wj

until the Online Class-Weighting function reaches the stopping criteria (e.g., the number

of iterations). Weighting factor wj is computed based on the previous accuracy of the

corresponding class. Furthermore, Online class-weighting, is generic and it does not has

any prior knowldege about the data, in addition, it can be applied with any number of

classes and suitable for different possible weighting factor initialization and evaluation

metrics. Online Class-Weighting algorithm describes as follows:

Algorithm 3: Online Class-Weighting
Data: training dataset of m instances (X1:m, Y1:n), where an input image

Xt ∈ Rd×d, and a target image Yj ∈ Nd×d, j ∈ {1, ..., n} and n is the
number of classes. Z, S are respectively the total number of epoches and
a set of epoches. Z, S, ∈ N+, where 0 < S < Z.

Result: a set of weighting factors {wj, /
n∑

j=1
wj = 1, wj ∈ [0, 1]}, and the final

evaluation results Mj for each class j.
1 Initialization of the n weighting factors w1,j = 1
2 Launching training for S epoches with the initialized weighting factors w1,j

3 Evaluation of the first training results for each class (M1,j)
4 Re-initialization of Weighting factors w2,j where w2,j = f(X),

n∑
j=1
w2,j = 1

5 Launching second training for S epoches with the initialized w2,j

6 Re-evaluation of the second training results for each class (M2,j)
7 Computing stopping criteria: C = g(Error2(training), Error2(testing))
8 Initialization of the iteration index: i = 3
9 while (stopping criteria is not satisfied) do

10 Updating the weighting factors: wi,j = h(Mi−1,j,Mi−2,j), where
n∑

j=1
wi,j = 1

and i is the iteration index of the current S epoches
11 Launching training with the updated weighting factors wi,j

12 Re-evaluation of the training results for each class (Mi,j)
13 Computing stopping criteria: C = g(Errori(training), Errori(testing))
14 Iteration index i equals to: i = i+ 1
15 end while

The algorithm of Online Class-Weighting works as a policy for the assessment of a

Deep Learning model performance. Lines from 1 to 6 evaluate the behavior of a Deep
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learning model without and with applying the weighting factors. This assessment consists

of computing an evaluation metric (e.g. Dice coefficient, area under precision-recall curve

[Hashemi et al., 2018]) of the training results for each class, i.e., for Healthy tissue class,

Necrosis and Non-enhancing tumor class, Edema class, and Enhancing tumor class. After

that, we use these measurements to calculate the change in these weighting factors over

the training phase. Line 7 computes the stopping criteria based on the training and

testing errors. Lines 10 and 11 calculate the new weighting factors based on the evaluation

metrics between the current training iteration and the two previous ones. To prove the

effectiveness of Online Class-Weighting approach, we carry out a series of experiment in

the next section.

5.2.3 Experiments and Results

5.2.3.1 Online Class-Weighting hyperparameters

After the definition of the Online Class-Weighting algorithm, here we introduce dif-

ferent hyperparameters:

1. We initialize the weighting factors Wj using two methods

— Mean distributions: each weighing factor Wj, where j ∈ {1, ..., n} and n is the

number of classes, is initialized according to mean distributions of all classes:

Healthy regions class, Necrosis, and Non-enhancing tumor class, Edema class,

and Enhancing tumor class (See equation 5.4).

Wj = f(X) = 1
n

n∑
j=1
Xj (5.4)

Where Wj is the weighting factor of the class ”j”, with j ∈ [1, ..., n] and ”n” is

the number of classes, Xj is frequency distributions of the class ”j”.

— Relative frequency distributions: each weighting factor Wj of each class is

initialized according to its distribution (See figure 5.1, C1 = 98.88, C2 =

0.28, C3 = 0.64, C4 = 0.20, where C is the class number) in the BRATS dataset

(see equation 5.5)

Wj = f(X) = CFj
n∑

j=1
Xj

(5.5)
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Where CFj is the class frequency of the class ”j”, with j ∈ [1, ..., n] and ”n” is

the number of classes, Xj is frequency distributions of the class ”j”.

As it is shown in table 5.1, the Online Class-Weighting algorithm with Mean

distribution initialization provides better segmentation results than with Relative

frequency distributions. And this performance is due to the fact that the Mean

distribution has an equal distance to all classes compared to the relative frequency

distributions that weight the minority classes more than the dominant class (i.e.

Healthy tissue).

Table 5.1 – Results of Online Class-weighting with two methods of initialization. For each experiment,
we show the Dice score of 10 MRI images from the BRATS-2018 dataset.

Experiment Initialization Dice score
Complete Core Enhancing

1 Relative frequency distributions 0,88 0,79 0,72
2 Mean distributions 0.88 0.83 0.75

2. The second point is about the selection of the best candidates for each iteration (i)

during the training phase,where the selection process is carried out as an equation

of distance between the training results of iteration (i − 1) and iteration (i − 2).

After each S epoches (i.e. S = 5) of training, the algorithm updates the weighting

factor according to the equation h: wi,j = h(Mi−1,j,Mi−2,j), where Mi−1,j and

Mi−2,j are the Dice coefficient of the training iteration (i−1) and (i−2) respectively

for class ”j” where j ∈ {1, ..., n} and ”n” is the number of classes. The equation h

elects two candidates in each iteration as follows:

Candidate(class)u = Argmax
j∈[1:n]

(Mi−1,1 −Mi−2,1), ...(Mi−1,4 −Mi−2,4) (5.6)

Candidate(class)v = Argmin
j∈[1:n]

(Mi−1,1 −Mi−2,1), ...(Mi−1,4 −Mi−2,4) (5.7)

Where in each iteration the Online Class-Weighting algorithm chooses two candi-

dates (u and v); equation 5.6 returns the class u that showed an improvement for

the last S epoches, in this case the algorithm rewards this class. And equation

5.7 returns the class v that did not get an improvement because it is stuck in the

suboptimal point at the local minima of the loss function. Therefore, the stuck

class has more frequent labels in the dataset, in this case the algorithm of Online
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class-weighting penalizes this class.

3. After selecting the best candidates, the Online Class-Weighting algorithm com-

putes the new weighting factors as follows:

Wi,u = Wi−1,u + β Wi,v = Wi−1,v − β (5.8)

Where Wi,u, and Wi,v are the best candidates for the iteration i, β is the rate

of weight’s change, where β in our experiments is initialized to 0.2 for obtaining

a soft weight’s change between two successive iterations, and it provided good

segmentation performance.

4. The stopping criteria of Online Class-Weighting algorithm is computed as follows:

(a) If the error’s change (EC) between training and testing sets is greater than a

threshold th equals, in our experiment to th = 0.1:

EC = | Error(testing) - Error(training) | > th.

(b) If testing set accuracy does not improve for a number of epoches K. We found

K = 20 provides the best results in our experiments (See figure 5.2).

(c) If the above two criteria (i.e. a and b) are always false, thus the algorithm

stops after a defined number of epoches Z, where in our case study Z = 240.

Figure 5.2 – Illustration of an example of the stopping criteria curve. EC is the Error’s
change, K is the total number of epochs, S is the number of iterations. The online class
weighting algorithm stops after satisfying the following conditions: EC, K, S periods.
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5.2.3.2 Results

To demonstrate the performance of the Online Class-Weighting algorithm, we com-

pare our loss function with state-of-the art Cross-entropy and Focal loss [Lin et al.,

2017] functions. Table 5.2 shows the results of our proposed DenseMultiOCM architec-

ture (See section 4.3.2.2.2) with 3 loss functions: Focal loss, Cross-Entropy, and Online

Class-Weighting. As it is shown in table 5.2, DenseMultiOCM + Online Class-weighting

outperform Focal loss in all metrics: Dice score of Healthy, NCR/NET, Edema, Enhanc-

ing, Complete, and Core. Moreover, DenseMultiOCM + Online Class-weighting have

competitive results with Cross-Entropy loss function on 3 metrics: Dice score of Healthy,

NCR/NET, and Edema. Consequently, DenseMultiOCM + Online Class-weighting al-

gorithm outperforms the results of Cross-Entropy and Focal loss function, in addition to

providing the best results on 5 over 6 metrics.

Table 5.2 – Results of Online Class-weighting against Cross-entropy and Focal loss functions. Healthy,
Necrosis and Non-enhancing tumor (NCR/NET), Edema, Enhancing tumor represent the different
Glioblastoma tumor subregions segmentation results of DenseMultiOCM architecture with 3 different
loss functions: Focal loss, Cross-Entropy, and Online Class-Weighting. Moreover, for each experiment
we show the Dice score of 10 MRI images from BRATS-2018 dataset. Values in bold are the best results.

Methods Dice score
Healthy NCR/NET Edema Enhancing Complete Core

DenseMultiOCM + Focal loss 0.99 0.38 0.70 0.60 0.79 0.62
DenseMultiOCM + Cross-Entropy loss 0.99 0.63 0.80 0.72 0.87 0.81

DenseMultiOCM + Online Class-weighting 0,99 0,61 0,80 0,75 0,88 0,83

Table 5.3 illustrates the results of the segmentation performance of state-of-the-art

methods. As it is shown, our proposed DenseMultiOCM architecture with Online Class-

Weighting improved the segmentation results in terms of Dice, sensitivity, specificity,

Hausdorff distance. Moreover, DenseMultiOCM architecture + Online Class-Weighting

with/without post-processing step provide a better segmentation performance than [Axel

et al., 2014; Zhao et al., 2018; Kamnitsas et al., 2017] in terms of Dice score (more

than 3%) and Specificity (more than 12%). Also, DenseMultiOCM with Online Class-

Weighting obtained competitive results with [Pereira et al., 2015; Chang et al., 2016;

Havaei et al., 2017; Urban et al., 2014] in terms of Dice coefficient and Hausdorff distance.

According to the standard deviation std ∈ [±0.01,±0.004] in table 5.3, DenseMultiOCM

architecture with Online Class-Weighting could achieve 100% prediction on some patients

MRI images in terms of specificity, i.e. the prediction of DenseMultiOCM architecture

with Online Class-Weighting corresponds to the manual segmentation of radiologists.
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Table 5.3 – Segmentation results of our proposed DenseMultiOCM and Online Class-
Weighting (DOCW) method with state-of-the-art methods on Brats dataset. WT, TC,
ET denote Whole Tumor (complete), Tumor Core, Enhancing Tumor core respectively.
(±) is the standard deviation. Post 1 and Post 2 denote post-processing 1 and post-
processing 2 respectively. Fields with ( - ) are not mentioned in the published work.

Methods Dice score Sensitivity Specificity Hausdorff
WT TC ET WT TC ET WT TC ET WT TC ET

[Urban et al.,
2014]

0.88 0.83 0.72 - - - - - - - - -

[Axel et al., 2014] 0.79 0.68 0.57 - - - 0.79 0.67 0.63 - - -
[Pereira et al.,
2015]

0.87 0.73 0.68 - - - 0.86 0.77 0.70 - - -

[Chang et al.,
2016]

0.87 0.81 0.72 - - - - - - 9.1 10.1 6.0

[Havaei et al.,
2017]

0.88 0.79 0.73 0.89 0.79 0.68 0.87 0.79 0.80 - - -

[Kamnitsas et al.,
2017]

0.847 0.67 0.629 - - - 0.876 0.607 0.662 - - -

[Zhao et al., 2018] 0.84 0.73 0.62 - - - 0.82 0.76 0.67 - - -
DOCW 0.863

±0.1
0.752
±0.2

0.71
±0.3

0.863
±0.2

0.763
±0.3

0.774
±0.3

0.992
±0.01

0.996
±0.01

0.998
±0.003

23.37
±28.2

18.55
±23.7

11.97
±24.6

DOCW + Post 1 0.87
±0.1

0.753
±0.2

0.73
±0.3

0.86
±0.2

0.76
±0.3

0.776
±0.3

0.994
±0.01

0.996
±0.01

0.998
±0.004

14.71
±22.5

16.33
±21.8

9.83
±20.7

DOCW + Post 1
+ Post 2

0.864
±0.1

0.75
±0.2

0.72
±0.3

0.853
±0.2

0.76
±0.3

0.76
±0.3

0.994
±0.01

0.996
±0.01

0.998
±0.003

14.63
±22.4

16.37
±21.9

8.14
±20.04

[Havaei et al., 2017; Zhao et al., 2018] proposed a method based on an equal sampling

of training images patches to solve the problem of unbalanced data. However, this method

mitigates the impact of unbalanced data problem on the segmentation performance but it

does not solve it completely. In our experiments, we also trained the proposed DenseMul-

tiOCM architecture + Online Class-Weighting with the technique of equal sampling of

training images but we failed to obtain better results. Thus, in this case, methods-based

loss function are the best choice and more robust. Cross entropy-based median frequency

balancing [Badrinarayanan et al., 2017], cross entropy-based weight map [Ronneberger

et al., 2015] propose a modified cross-entropy loss function, but each of which adapts

this function to a specific application, which is not the case with our proposed Online

Class-Weighting loss function. Online Class-Weighting does not assume any distribution

or prior knowledge about the application fields before the training phase; all the updating

of the weighting factors wj from iteration to another is done based on the training results

of the 4 classes during the training phase. In addition, one of the important metrics for a

clinical decision support system [Hashemi et al., 2018] is sensitivity, where DenseMulti-

OCM with Online Class-Weighting achieved high accuracy on the sensitivity metric (See

table 5.3). As a summary, our proposed DenseMultiOCM with Online Class-Weighting

achieved high segmentation results, and so did with the Post-processing techniques, where
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the Post-processing 2 improved a lot the Hausdorff distance metric. The first conclusion

from these segmentation results is that Gioblastoma brain tumors contain in most cases

one connected region, i.e. we have demonstrated this hypothesis after applying the Post-

processing 1, where we have seen an improvement in the segmentation performance. The

second conclusion is that the class of Enhancing tumor does not have much border with

the healthy tissue, i.e. this is demonstrated after applying the Post-processing 2, where

we have seen a decrease in the surface of mis-classified Enhancing tumor region and an

improvement in the Hausdorff distance metric.

5.2.4 Discussion and Conclusion

In this section, we presented our proposed Online Class-Weighting algorithm for solv-

ing the issue of unbalanced data. The performance and efficiency of this algorithm are

demonstrated through a series of experiments and a comparison with state-of-the-art

methods. Moreover, the architecture of DenseMultiOCM + Online Class-Weighting +

post-processing step 1 (DOCW + Post 1) showed high performance in detecting Glioblas-

toma tumors compared to Cross-Entropy, Focal loss functions, and state-of-the-art meth-

ods.

The advantage of Online Class-Weighting is due to the fact that it optimizes the

weighting factors wj for each class during the training phase by searching for the best

hyperparameters using the training progress results with respect to each class. Online

Class-Weighting is a generic loss function and it can be applied to different input data

and different applications.

In the next section (Section 5.3), we present the issue of misclassified regions (i.e. false

positive and false negatives regions) and its impact on the segmentation performance, in

addition to our proposed solution to this issue (i.e. misclassified regions). Where the

proposed solution in the following section is independent of the issue of unbalanced data

presented in section 5.2.
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5.3 Boosting performance using deep transfer learn-

ing approach

5.3.1 Problem statement

Brain tumor segmentation through MRI images analysis is one of the most challenging

issues in the medical field. Among these issues, Glioblastoma (GBM) brain tumors invade

the surrounding tissue rather than displacing it, causing unclear boundaries, furthermore,

Glioblastoma tumors in patients MRI scans have the same appearance as Gliosis, Stroke,

Inflammation, and blood spots. Moreover, the second challenging issue is that automatic

brain tumor segmentation methods can predict tumoral regions, in addition to, it pro-

duces misclassified regions.

In this section, we focus on two major issues in misclassified regions: (1) false positive

regions – where the model predicts non-tumor regions as tumor regions but in fact they

are not-, and (2) false negative regions – where the model classifies some regions as

non-tumor regions but in fact they are. In chapter 4 we addressed the problem of false

positive regions by two steps: we used a global threshold for each slice to remove small

non-tumoral regions based on connected-components, then in the second step, to enhance

the post-processing step more we used a morphological opening operator. Despite the

success of these two post-processing steps, further steps are required to improve the

segmentation results. In addition, these steps are not patient-specific, i.e., they do not

apply to MRI images of all patients. The main reason of these two issues (i.e. false

positive regions and false negative regions) is the classifier of Deep CNNs, where in our

case the classifier is the Softmax function. Softmax function gives an estimated vector

at the end after each forward propagation of Deep CNNs, by normalizing the outputs

to stay between 0 and 1, i.e., the outputs become as probabilities. Then, we pick the

result of the forward pass based on the maximum probability among all probabilities.

And this maximum probability represents the most potential class and the closest to the

ground truth, in our case, one class out of the 4 predefined classes, i.e., Necrotic and Non-

Enhancing tumor, Peritumoral Edema, Enhancing tumor and healthy tissue. Softmax

function is a simple and suitable classifier for the training phase, but it is not adequate
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for the prediction phase and the problem of instance segmentation. To overcome this

issue, we investigate two Glioblastoma brain tumors segmentation pipelines, where we

extended the proposed Deep CNNs architectures in chapter 4 to the issue of misclassified

regions. The first step in this pipeline is feature maps extraction from the last layer of the

Deep CNNs architecture. Then, in the second step, the extracted features maps become

the dataset of training and testing to other machine learning algorithms. The third

step depends on the type of pipeline, where for the first pipeline we combine the results

of the Softmax classifier with two other algorithms Random forest (RF) and Logistic

regression (LR) using a voting function. For the second pipeline, the extracted features

maps are successively fed to two algorithms: principal component analysis and support

vector machine (PCA-SVM).

5.3.2 Methods

5.3.2.1 Fusion solution-based predictions aggregation

In this section, to overcome the issue of misclassified regions in particular false posi-

tives and false negatives. We used our proposed SparseMultiCOM architecture in chapter

4 (See section 4.3.2.2.2) to extract for each patient’s MRI images hierarchical features

from final convolutional layers before Softmax because the last hidden layer has the largest

receptive field and more representative higher-level features than the lower-level layers

in early layers. Then, we save these features in files for using them later in training and

testing different machine learning methods.

In 1962, Hubel and Wiesel [Hubel and Wiesel, 1962] discovered that each type of neu-

rons in the visual system, responds to one specific feature: vertical lines, horizontal lines,

shapes, ...etc. From this discovery, the algorithm of CNNs was developed [Fukushima,

1980; LeCun et al., 1989]. The algorithm of CNNs detects lower-level features such as

lines, edges,...etc in lower layers of the architecture. And higher-level features such as

shapes and objects in higher layers of the architecture. These hierarchical features help

CNNs algorithm to better locate the boundaries of the tumor regions with the boundaries

of healthy tissue. As it is shown in figure 5.3, SparseMultiCOM architecture is able to

detect a lot of features about Glioblastoma brain tumors, in particular, the boundaries
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Figure 5.3 – Feature maps visualization of layer 16 of SparseMultiCOM architecture.
Layer 16 has 32 features maps, where each image in this figure represents a feature map.
Feature maps in CNNs architectures have filters to detect specific features the most
representative in the patients’ MRI images.

of the tumor regions with healthy tissue and background. Moreover, we can see that

some neurons in figure 5.3 such as in the first line, the third, sixth, and eighth images

do not respond to any neurons, which can be used in futures to tune these neurons, and

consequently, improving the segmentation performance.

Our proposed approach is a hybrid approach between the deep learned features ex-

tracted from the last convolutional layer and machine learning methods. Moreover, our

proposed approach is based on 3 steps: first, we trained SparseMultiCOM architecture

from scratch, the second step is feature maps extraction, then these features are stored

in two files (for training and testing). The final step is training and testing two machine

138



Chapter 5 – Deep learning with unbalanced data and misclassified regions

learning methods and combining their segmentation results with the result of Softmax in

one MRI image for each patient. We use two machine learning methods to learn specific

features to each patient’s MRI image, in addition, these methods reduce significantly the

computational cost compared to using deep learning end-to-end architectures.

The flowchart of our proposed pipeline to detect Glioblastoma brain tumors (See fig-

ure 5.3) is composed of two parts: the first part is SparseMultiCOM architecture and

the second part is composed of machine learning methods such as Random forest (RF)

and Logistic regression (LR). To integrate the LR and RF methods in SparseMultiCOM

architecture, we first extracted the feature maps of the last hidden layer before the output

(without softmax normalization). Then, we store these extracted feature maps in two

files for training and testing. After that, we trained the two aforementioned algorithms

(i.e., LR and RF). Moreover, in the training phase, we used the technique of hybrid

Random-Grid search (See figure 5.8) to optimize the hyperparameters, for random forest,

the best hyperparameters are: number of trees=500, depth=70, purity criterion=Gini

index. After the training phase, we combined the segmentation results of these three

classifiers (LR, RF, and Softmax) into one result to diagnose the presence of tumor in

each extracted feature maps and to diagnose the class of this tumor in each pixel for each

patient’s MRI images.

To develop a Deep CNNs architecture, there are either a pixel-wise approach or a

patch-wise approach. The first approach deals with pixels, while the second approach

deals with patches. In practice, the patch-wise classification approach provides good seg-

mentation results compared to pixel-wise classification [Long et al., 2015]. In addition,

it is less prone to overfitting, and these advantages are due to the parameters sharing

between neurons in the network. Patch-wise approach takes as input patches with limited

size, in our case, patches with size 64 x 64 x 4 (4 is the number of MRI modalities).

After training phase of SparseMultiCOM architecture (See section 4.3.2.2.2), we ex-

tracted feature maps of the last layer before applying the Softmax classifier to train two

other classifiers: LR, RF. The motivation behind the choice of these algorithms: RF uses

the technique of ensemble learning by creating many decision trees on a subset of the data,
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Figure 5.4 – Flowchart fusion solution for predicting Glioblastoma brain tumors. This
flowchart has two parts: the first part (two green boxes) represent the DCNNs architec-
ture, the second part (three blue boxes) represent the aggregation results of Softmax,
LR, and RF into a single prediction result for each patient’s MRI images.

then it combines the outputs of these trees to obtain the final prediction. Moreover, the

ensemble learning technique is less prone to overfitting because it reduces the variance, in

addition, it is less prone to outliers, and noise and one more important advantage of RF is

that it doesn’t require input features to be scaled. Consequently, aggregating the results

of many classifiers improves the segmentation performance. For the LR algorithm, it is

an efficient algorithm in terms of computational resources. Also, LR doesn’t require input

features to be scaled. Furthermore, it can deal with sparse and dense features since the

input features are the extracted feature maps of the last hidden layer of DCNNs before

the Softmax function, so due to using Relu as an activation function, we will get a lot

of sparse features. In addition, if we zoom inside a tumor region of glioblastoma, we can

see that it is possible to classify a small region as a binary classification problem. Thus,

by using a set of input features, LR is able to classify the boundary between each pair of

classes in MRI images of glioblastoma.

The motivation behind the aggregation of many classifiers’ outputs is that using many

classifiers in parallel helps to extract a lot of discriminative features from the training
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data [Hinton et al., 2015]. Moreover, using many classifiers as an ensemble learning

method assists to avoid the issue of overfitting [Srivastava et al., 2014] better than indi-

vidual classifiers. Where the objective of using the ensemble learning method is to make

the classifiers as different as possible, therefore, the diversity of the classifiers leads to

minimizing the correlations between their errors.

5.3.2.2 Semi automatic-based Support vector machine

Brain tumor segmentation is primarily used for diagnosis, treatment, and follow-

up. The developed pipeline is applied to Glioblastoma which are brain tumors and

life-threatening diseases. These tumors have four classes: Necrotic and Non-Enhancing

tumor, Edema, Enhancing tumor and healthy tissue. To interpret MRI images, a radiolo-

gist employs a manual segmentation. Furthermore, it is known that manual segmentation

in MRI images is a time-consuming and tedious procedure. In general, there are three

methods to obtain a brain tumor segmentation image: manual, semi-automatic and fully

automatic. In this section, we propose a second pipeline to solve the issue of misclassified

regions (i.e. false positives and false negatives).

In the first approach (See section 5.3.2.1), we proposed an approach based on a com-

bination of different classifiers. In this section, we investigate another approach (second

pipeline) to overcome the issue of misclassified regions. The second pipeline is based on

using other types of machine learning methods, here we used principal component analy-

sis (PCA) followed by support vector machine (SVM). We first trained SparseMultiOCM

architecture from scratch as in chapter 4 (See section 4.3.2.2.2). Second, we extract

feature maps from the last convolutional layer before softmax (without normalization).

Then, the quantity of extracted features maps is reduced using PCA before classifying

them using an SVM method. The goal of reducing the number of features is to reduce

computational costs.

In this approach, we followed the same first approach procedures (See section 5.3.2.1).

In the first step, we used the proposed SparseMultiOCM architecture in chapter 4 (See

section 4.3.2.2.2). For the second step, we extracted the feature maps from the last convo-

lutional layer before Softmax. Then, we store the extracted feature maps in two separate
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files for the training and testing phases. The final step is training PCA-SVM to reduce

the large dimensionality of feature maps for each patient MRI image and to classify each

pixel into 4 classes: edema class, non-enhancing core and necrotic core class, enhancing

core class, and healthy tissue class.

Figure 5.5 – Illustration of the flowchart of PCA-SVM solution for predicting Glioblas-
toma brain tumors. This flowchart starts by a SparseMultiOCM architecture (two green
boxes), then the extracted feature maps from this architecture will be reduced by applying
cumulative explained variance (CEV), then the reduced selected principal components
are fed into an SVM method to predict the class of each pixel in patient’s MRI images.

The flowchart of the second proposed pipeline to detect Glioblastoma brain tumors

(see figure 5.5) is composed of 3 parts: first part is using the SparseMultiOCM archi-

tecture with its used parameters in chapter 4 (See section 4.3.2.2.2). The second part

is extracting feature maps from the last convolutional layer before normalization using

Softmax function. The third part is for reducing the number of features, first, we used

cumulative explained variance 1 (CEV) technique to obtain the percentage of variance on

each principal component. The second step: based on of technique of CEV, we select the

first K components in order to maximize the variance of these K principal components.

Because, the first principal components cover most variance (so-called explained variance)

compared to the last components, i.e, most variance has the most useful information in
1. Cumulative explained variance calculates the variance on each principal components, then it adds

the variance of the first principal component to the second one and so on until we reach all principal
components. Thus, the whole variance is the sum of variances of all individual principal components.
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the extracted features. The technique of CEV helps to reduce the number of redundant

features in addition to reducing noise; in practice the last principal components corre-

spond to noise, in addition, noise in the BRATS dataset does not have a high variance

allow it to be extracted among the first principal components. After applying CEV tech-

nique on the extracted features, we observed that 99% of variances are concentrated on

only 139 components out of 3200 components; which means that 3061 of components

hold redundant features and noise (See figure 5.6).

(a) all components (all dimensions) (b) 139 components (139 dimensions)

Figure 5.6 – Cumulative explained variance curve of (a) all principal components and of
(b) 139 principal components. It can be seen that we only need 139 principal components
out of 3200 components to represent 99% of the features. The remaining components
represent redundant features and noise.

As it is shown in figure 5.6, the figure 5.6.(a) represents the dimension of all features,

in other words, the cumulative variance of all principal components, and figure 5.6.(b)

shows only 139 dimensions (components) of all components that have 3200 dimensions.

Thus, from these two figures we can conclude that 139 components represent 99% of vari-

ances. After computing CEV, we applied principal components analysis (PCA) to reduce

the dimensionality of features from 3200 to 139 principal components; for each patch,

we use only 139 principal components. Reducing the dimensionality of features using

CEV and PCA helps to get new features more representative without getting redundant

features and noise which need a lot of preprocessing to remove them.
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The last step in this flowchart (See figure 5.5) consists of applying an SVM method

that is one of the most powerful methods for classification problems as it can deal with

many forms of data and classification problems (binary, multi, linear, non-linear). To

develop an SVM method: first, we need a lot of data, here we use the computed principal

components through applying the method of PCA. Second, we need to specify the type

of problem, in our case, it is a multi-classification issue (4 classes). Usually, a multi-

classification problem is a non linearly separable issue, so to verify the type of problem

(linear, non-linear), we draw the first three components in 3D space (See figure 5.7).

Figure 5.7 – Scatter plot for the first three principal components in 3D space in (a)
training and (b) testing datasets. It can be seen that in the training and testing dataset,
the issue of brain tumor segmentation is a nonlinear multi-classification issue, i.e., we can
not draw a hyperplane in 3D space to separate the classes.

As it is shown in figure 5.7.(a) and figure 5.7.(b), we drew only 3 principal components

from 139 principal components, and as expected the issue of multi-classification in our

case is non linearly separable; we can not draw a line (or a hyperplane in 3D space) to

separate two classes. From figure 5.7, we conclude that the issue that we are dealing

with, is multi-classification and non-linearly separable issue. Thus, this conclusion helps

us to determine the hyperparameters of SVM method especially the kernel. In general,

SVM method has three types of kernels: linear, polynomial and radial basis function
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(RBF). First we can eliminate linear kernel because it is used for linearly separable is-

sues. Second, polynomial kernel is computionally expensive and needs a lot of memory

even with 139 principal components. Thus, the best choice for the SVM method is using

RBF kernel. Moreover, for the other hyperparameters that are used to optimize hinge

loss function [Rosasco et al., 2004] such as gamma γ and C slack-penalty. Because SVM

is sensitive to outliers and feature scaling and as we mentioned earlier the problem of

multi-classification of brain tumor segmentation is a non-linearly separable issue which

means, in this case, C slack-penality should be greater than zero to transform the is-

sue into soft-margin classification; some instances could be on the street of the decision

boundary (margin violations) between classes. Furthermore, the value of gamma γ con-

trols the influence of each training instance in its search space, in this case, and because

of outliers, gamma γ should be a little bit high. As there is no straightforward method

to determine gamma γ and C slack-penality, we used the technique of cross-validation

with 5 folds in addition to a hybrid of Random and Grid search (See figure 5.8) on a

small dataset of 30 brain images from the training set. And the result is as the following:

gamma γ = 0.001 and C slack-penality = 5.

Figure 5.8 – Left: At each fold, a separate partition of the dataset is used for testing
while the remaining partitions are used for training. Then, the results are averaged
over all folds. Right: An illustration of the hybrid Random-Grid search technique,
where we start by random search (red points) until we obtain potential combinations of
hyperparameters, then we use a grid search (black points) to more precise and refine the
combinations.
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Moreover, SVM method is sensitive to feature scaling, and since the kernel RBF is

used to compute the SVM’s loss function. In this case, the RBF kernel assumes that all

features are centered around zero and the magnitude of the variance of all features is the

same. So, to make the features have the same scaling, we standardized the computed

principal components of PCA to be centered with 0 mean and a standard deviation of 1

using the following equation (See equation 5.9):

Standardization(X) = X − U

σ
(5.9)

Where X is the sample instance, U is the Mean of the training set and σ is the Standard

Deviation. The reduced features are scaled into a limited range using Standardization

(X) technique; the variance of this range has a fixed value equals to 1 with Means equals

to 0.

After presenting different approaches in sections 5.2 and 5.3. In the next section, we

present the effectiveness of our proposed approaches with a series of experiences.

5.3.3 Experiments and Results

This section presents the results of our experiments and some discussions. Also, our

brain tumor segmentation method is evaluated using the BRATS dataset which has real

patient data with Glioblastoma brain tumors (both high- and low-grade). Finally, we

explain the libraries and frameworks that are used in our work. Then, we evaluate our

proposed architectures with a set of metrics that are used in state-of-the-art such as Dice

score, Sensitivity, Specificity, and Hausdorff Distance.

5.3.3.1 Data preprocessing and implementation

The applied preprocessing technique in this section is the same as in chapter 4 (See

section 4.3.5.1) with 3 steps: the first step is removing 1% highest and lowest intensities,

the second step is subtracting the mean and dividing by the standard deviation of non-

zero values in all channels, and the final step is isolating the background and healthy

tissue from the tumor regions. The optimization of SparseMultiOCM architecture is

achieved using stochastic gradient descent (SGD) with mini-batch size equals to 8 and
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learning rate computed as follows:

LERi = 10−3 × 0.99LERi−1 (5.10)

Where the initial learning rate (LER) was LER0 = 0.001, LERi (i ∈ N+) is the new

learning rate, LERi−1 is the learning rate of the last epoch, 0.99 is a decreasing factor.

The SparseMultiOCM architecture was implemented on Keras 2 which is a high-level

open source Deep Learning library, and Theano [Al-Rfou et al., 2016] as a Back-end,

where Theano exploits GPUs to optimize Deep Learning architectures. The proposed

machine learning methods: LR, RF, PCA, and SVM were implemented using Scikit-

learn [Pedregosa et al., 2011] package. In the training phase, we used the same amount

of data for each class; we used 10k learning points for each class in the phase of training.

All our results are obtained using Python environment on windows 64-bit, Intel Xeon

processor 2.10 GHz with 24 GB RAM, and the training is done on Nvidia Quadro GPU

K1200 with 4 GB memory.

One-vs-One versus One-vs-Rest: one-vs-one approach splits the multi-class clas-

sification problem into multiple binary classification problems, in other words, for each

pair of classes, we will have a binary classification model. In this case, the number of

models, and in turn, datasets, is: N (N-1)/2, where N is the number of classes. Moreover,

the problem of Glioblastoma brain tumors segmentation has 4 different classes, this gives

6 binary classification models. One-vs-rest approach splits the multi-class classification

problem into one binary classification problem per class. In this case, the number of

models, and in turn, datasets, is N, where N is the number of classes. Furthermore,

for the issue of Glioblastoma brain tumors segmentation, we need 4 binary classification

models. We have chosen the one-vs-one approach for two main reasons: first, in the SVM

algorithm, the training time scales are proportional to the number of dataset samples,

in this case, the performance of SVM’s kernel will be influenced by a large number of

samples. Consequently, using one-vs-one to train a SVM model would help to reduce

the runtime and memory consumption by using only a subset of the training dataset.

Second, using on-vs-rest to solve the problem of brain tumor segmentation as a binary

classification problem per class will create another issue that is unbalanced data, in this

2. https://keras.io/
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case, the model would give more importance to one class more than the other one, and

that is due to training a model on a dataset of one class against 3 classes regrouped in one

class. So, for the issue of segmentation of glioblastoma brain tumors and due to limited

resources, the best solution is the One-vs-One approach.

5.3.3.2 Results

In this section, we evaluate our proposed brain tumor segmentation pipelines on a pub-

lic BRATS 2019 dataset using 4 evaluation metrics: Dice score, Sensitivity, Specificity,

Hausdorff distance. Our proposed pipelines SparseMultiOCM + LR-RF and SparseMul-

tiOCM + PCA-SVM help to extract relevant features from each patient MRI image,

Where these features are used after that in the second stage to predict the class of each

pixel among the four classes: edema, non-enhancing core and necrotic core, enhancing

core, and healthy tissue. Moreover, The pipelines outputs are the valid pixel with high

rate from each machine learning method (e.g. LR and RF). This technique of combining

the results of several methods for the same subject increases the prediction of tumor

region in addition to decreasing the error and the misclassified regions.

In this section, we focus and give a more attention to two important evaluation metrics:

Sensitivity and Specificity. These two metrics are mostly used to measure the percentage

of misclassified regions, i.e. the percentage of false positives and false negatives regions.

Sensitivity attempts to measure the false negative regions, and specificity does the same

for false positive regions.

Table 5.4 – Evaluation results of fusion solution-based predictions aggregation pipeline
on BRATS 2019 validation set. WT, TC, ET denote whole tumor, tumor core, enhancing
tumor, respectively. Std denotes standard deviation.

Dice score Sensitivity Specificity Hausdorff
WT TC ET WT TC ET WT TC ET WT TC ET

Mean 0.84 0.70 0.61 0.84 0.71 0.69 0.99 0.99 1.0 22.64 20.40 13.76
Std 0.13 0.23 0.33 0.16 0.26 0.28 0.01 0.01 0.01 26.10 24.63 24.90
Median 0.88 0.77 0.77 0.89 0.80 0.81 0.99 1.0 1.0 8.37 10.68 3.16
25 quantile 0.84 0.58 0.43 0.82 0.61 0.60 0.99 0.99 1.0 3.61 6.40 2.0
75 quantile 0.91 0.87 0.86 0.94 0.92 0.89 1.0 1.0 1.0 37.29 22.20 11.0

Table 5.4 and Table 5.5 show the segmentation results of our proposed SparseMul-

148



Chapter 5 – Deep learning with unbalanced data and misclassified regions

Table 5.5 – Evaluation results of fusion solution-based predictions aggregation pipeline
on BRATS 2019 testing set. WT, TC, ET denote whole tumor, tumor core, enhancing
tumor, respectively. Std denotes standard deviation.

Dice score Hausdorff
WT TC ET WT TC ET

Mean 0.84709 0.75889 0.73703 12.99701 15.4957 6.03933
Std 0.15312 0.25993 0.23841 23.97851 25.62727 16.45033
Median 0.89588 0.85913 0.8148 4.30077 8.09315 2.23607
25 quantile 0.83621 0.74323 0.70943 3 4 1.41421
75 quantile 0.92368 0.9143 0.87902 7.95064 14.65374 3.74166

tiOCM with LR-RF pipeline. The prediction of tumor regions is performed using 2D

patches with size equals to 64 x 64 x 4 (4 corresponds to using different modalities such

as T1, post-contrast T1, T2, and FLAIR). Then, we extract the feature maps of the

last hidden layer before Softmax function, then we feed these features into different ma-

chine learning algorithms such as RF and LR. The last step, we combine the results of

SparseMultiOCM, RF, and LR into one 3D image using voting technique; where the most

predicted label among the predictions (e.g., 1, 1 and 0) of these classifiers becomes the

result (in this case the label becomes 1) of the pixel’s label. As it is shown in Table 5.4

and Table 5.5 on the validation and testing datasets, we are able to achieve segmentation

results comparable to the top-performing methods in state-of-the-art such as the work of

[Zhao et al., 2018]. Moreover, the achieved median score of the proposed pipelined is high:

0.88, 0.89 for whole tumor in terms of dice score for the validation and the testing sets,

respectively). The high values provided are due to obtaining segmentation performance

for most patient MRI images. The architecture of SparseMultiOCM with LR-RF pipeline

is also evaluated on Sensitivity metric: 0.84 for the whole tumor. On Specificity metric:

0.99 for the whole tumor. On the Hausdorff distance metric, as it can be observed that

our pipeline achieve a good segmentation performance: 11 mm to 37 mm on validation

set and 3 mm to 7 mm (for Hausdordd distance O is the best result) on the testing set.

Table 5.6 – Evaluation results of semi-automatic-based support vector machine pipeline
on some subjects of BRATS 2019 training set. WT, TC, ET denote whole tumor, tumor
core, enhancing tumor, respectively.

Patient ID Dice score Sensitivity Specificity Hausdorff
WT TC ET WT TC ET WT TC ET WT TC ET

”2013 10 1” 1 0.58996 0.24228 1 0.74294 0.19889 1 0.96818 0.99043 0 29.03446 26.41969
”2013 11 1” 1 0.60334 0.14959 1 0.80945 0.25156 1 0.96026 0.97204 0 13 13
”2013 12 1” 1 0.46689 0.18173 1 0.79719 0.28464 1 0.89892 0.93791 0 27.09243 30.09983
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Table 5.6 shows the segmentation results of our proposed semi-automatic method

that is based on SparseMultiOCM with PCA-SVM. In this table, we show the segmen-

tation performance with different metrics (Dice score, Sensitivity, Specificity, Hausdorff

distance). As it is shown, our method provides good segmentation results especially on

tumor core and enhancing tumor regions and that is due to the representative extracted

features from the layer 16 of the SparseMultiOCM architecture and the selected princi-

pal components of PCA. The part of PCA-SVM is semi-automatic; after extracting the

feature maps from the architecture, the user needs to interact and to select the whole

tumor region. Then, PCA-SVM starts to predict the GBM brain subregions inside the

whole tumor: Healthy tissue, Necrotic and Non-Enhancing tumor, Peritumoral Edema,

and Enhancing core. As it is shown in Table 5.6, the proposed pipeline achieves good re-

sults with a performance comparable to state-of-the-art methods. Moreover, the achieved

mean score is high in terms of dice score: 1, 0.59, 0.24 for the whole tumor, tumor core,

and enhancing tumor. Our SparseMultiOCM with PCA-SVM pipeline is evaluated on

Sensitivity metric: 1, 0.74, 0.19 for the whole tumor, tumor core, and enhancing tumor.

On Specificity metric: 1, 0.97, 0.99 for the whole tumor, tumor core, and enhancing tu-

mor. On the Hausdorff distance metric, as it can be observed that our pipeline achieves

a good segmentation performance: 0 mm (0 distance value is the best), 29.03 mm, 26.42

for the whole tumor, tumor core, and enhancing tumor. These numbers translate the

large improvement of state-of-the-art performance in terms of the evaluation metrics:

Dice score, Sensitivity, Specificity, and Hausdorff distance.

5.3.4 Discussion and Conclusion

In this section, we developed two MRI image segmentation pipelines for Glioblastoma

brain tumors and dedicated to solving the issue of misclassified regions (i.e. false posi-

tive and false negative). These pipelines are composed of a Deep CNNs architecture and

learned features maps. To overcome the issues of false positive and false negative regions,

we extracted the feature maps from the last convolutional layer of the Deep CNNs ar-

chitecture before applying Softmax normalization to train another two machine learning

algorithms: random forest, logistic regression, and PCA-SVM. These algorithms showed

a high impact on the segmentation performance.

Our experimental results show that the proposed brain tumor segmentation pipelines im-
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proved the evaluation metrics: Dice score, Sensitivity, Specificity, Hausdorff. Moreover,

these pipelines are based on two approaches: the first pipeline SparseMultiOCM with

LR-RF is a fully automatic brain tumor segmentation, while the second pipeline is a

semi-automatic method based on SparseMultiOCM with PCA-SVM and learned feature

maps.

The proposed SparseMultiOCM architectue with LR-RF provides a high segmentation

performance especially in terms of Specificity (99%, 99%, 100%) and Sensitivity (84%,

71%, 69%) for the whole tumor, tumor core, and enhancing tumor, respectively.
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Conclusion and perspectives
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6.1 Summary of contributions

In this thesis, we proposed methods for the segmentation of brain tumors using MRI

images, where these methods are applied to segment Glioblastoma brain tumors with

both high- and low-grade. The proposed methods are based on Deep Convolutional Neu-

ral Networks and machine learning. In addition, through this thesis, we solved several

limitations that face current learning-based methods with medical images.

As a summary, Glioblastoma Multiform tumors are the grade IV of Glioma tumors

according to WHO organization and these tumors represent 46,6% of primary malignant

brain tumors. Glioblastoma tumors touch older adults more than children, and the inci-

dence of Glioblastoma tumors rises with age. Furthermore, the grade and the delineation

of the tumor region and its sub-regions, in addition to, obtaining clinical relevant infor-

mation such as target volume and tumor volume are very important on the selection of

therapies: radiotherapy or chemotherapy.
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In Chapter 2, we presented a survey of classical and modern state-of-the-art ap-

proaches in the field of MRI image segmentation, in particular, Glioblastoma brain tu-

mors segmentation. Moreover, we discussed some statistics about Glioblastoma tumors

with low- and high grade and different challenges and limitations of MRI images such as

noise, intensity inhomogeneity, patients motions, ...etc. From 2014 to the present, the

most effective methods for the segmentation and classification of Glioblastoma brain tu-

mors are based on Deep learning, in particular, different variants of Deep Convolutional

Neural Networks. To measure the segmentation performance and the computational

benefits of our proposed methods in an objective manner with radiologists’ performance

and state-of-the-art methods, we presented 6 evaluation metrics: Dice scores, Sensitivity,

Specificity, Hausdorff distance, Inference time, and Dice density.

In Chapter 3, we presented Deep learning, in particular Deep Convolutional Neural

Networks (Deep CNNs). Deep CNNs have evolved for many years since its first intro-

duction in the works of [Fukushima, 1980; LeCun et al., 1989]. From 2012 until the

present, many variants of Deep CNNs architectures appeared with newly added tech-

niques such as ReLU activation function, Dropout regularization technique, Upsampling,

weights initialization, and GPU implementation to take advantage of parallel processing.

The research on lesion segmentation, in particular, Glioblastoma brain tumors segmenta-

tion and classification with Deep Learning started in 2014. Moreover, the success of Deep

CNNs architectures is due to the availability of large public datasets, learning methods,

and frameworks that benefit from massive parallel architectures such as GPUs to paral-

lelize Deep CNNs operations.

In Chapter 4, we focused on the segmentation of patients’ MRI images with Glioblas-

toma high- and low grade using two approaches of Deep CNNs. The main contributions of

the first approach address 3 issues: (i) developing an efficient Deep CNNs architecture and

optimizing hyperparameters, (ii) computational costs of training large and Deep CNNs

architectures, (iii) vanishing grading and speeding up the training phase. To overcome

these issues, we proposed two algorithms: Incremental XCNet algorithm and ELOBA λ

algorithm. Incremental XCNet is based on the idea of developing a generic algorithm that

can be used to develop different Deep CNNs architecture. This algorithm has 3 steps:
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firstly, adding a limited block of Convolution, Pooling, and fully connected layers (FC),

secondly evaluating the added blocks, thirdly removing FC, and freezing all Convolution

layers. Then, we repeat these steps until the stopping criteria are achieved. ELOBA λ

algorithm is developed specifically to unify the training methods and to optimize the

hyperparameters of Deep CNN architectures such as epochs, batch sizes, learning rate,

optimizers, number of layers. ELOBA λ algorithm is a graph with 4 different search

spaces: root node is the Deep CNNs architecture, second level is for the optimizers, third

level is for the learning rate, and leaf node is for the batch size. ELOBA λ algorithm

starts the training of Deep CNNs architecture from the first block at the root node, then

it explores the graph using depth-first search, and each time it succeeds to get a good

combination of hyperparameters, it stores them for the next block. If the combination

doesn’t work for some blocks, ELOBA λ algorithm continues the process of parsing the

graph using depth-first search until it explores all the nodes of the graph. Our proposed

approach is evaluated on BRATS dataset, where it provided good segmentation results

compared to the state-of-the-art methods, with mean Dice scores: 89 % (Whole tumor),

76 % (Tumor core), and 81 % (Enhancing tumor), in addition, in terms on Haussdorff

distance: 14.62 (Whole tumor), 17.40 (Tumor core), 12.94 (Enhancing tumor). Further-

more, the first approach obtained good results on mean Inference time: 19 on GPU.

For the second part of this chapter, the main contributions of the second approach relate

to 2 issues: (i) modeling context and spatial relationship, (ii) and developing an efficient

Deep CNNs architecture in terms of segmentation performance and computational costs

(GPU and CPU). To overcome these issues, we proposed a Deep CNNs architecture in-

spired by the visual cortex, in particular, Occipito-Temporal Pathway (OTP). OTP uses

different receptive fields in successive regions to extract more relevant features and to

figure out the important regions or objects in the input images, this technique in the

human visual system called selective attention. The second proposed approach in this

chapter is based on two elements: firstly, selective attention to maximize the extraction of

relevant features from MRI images. Secondly, it based on some techniques learned from

the first approach (Incremental XCNet) such as the use of two or three convolutional

layers with 3 × 3 filter in successive layers provides good results and less prone to the

issue of overfitting. To address the issue of modeling context and spatial relationship,

we proposed Overlapping Patches instead of conventional Adjacent Patches. The limit
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of Deep CNNs architectures with Adjacent Patches is that Deep CNNs do not take into

account the fact that these Adjacent Patches together make up the entire image. Thus,

to overcome this issue, we extracted Overlapping Patches such as the local and the larger

context by using small Patches and without adding more additional Networks for each

input image resolution. The second approach obtained good segmentation performance

results in terms of Specificity: 99.5 % (Whole tumor), 99.8 % (Tumor core), 99.8 %

(Enhancing tumor), and in terms of Hausdorff distance: 8.521 (Whole tumor), 13.324

(Tumor core), 4.406 (Enhancing tumor). In addition, the second approach is the fastest

approach among the cited state-of-the-art methods in terms of average inference time:

12 seconds on GPU and 20 seconds on CPU. Furthermore, we measured the effectivness

of the second approach per parameter: 6.73 Dice density.

In Chapter 5, we focused on the challenges and limitations of Deep learning with

two issues: unbalanced data and misclassified regions. The issue of unbalanced data

makes Deep CNNs bias toward the more frequent label (i.e. class with the majority of

data). Training a Deep CNNs architecture with highly unbalanced data such as BRATS

dataset that has 98% healthy tissue (i.e. non-tumorous), will provide predictions with

low sensitivity. Moreover, the most important part of tumor segmentation applications

is how to make Deep CNNs more sensitive toward the tumoral regions. To overcome

this issue, we proposed the Online Class-Weighing loss function, first we added weighting

factors W ∈ [0,1] to the conventional Cross-entropy loss function to balance between the

data examples for each class, hence, we can mitigate the bias issue. For these reasons,

we proposed Online Class-Weighting algorithm as an adaptive algorithm for each batch

of images. After S epochs of training, the algorithm computes the Dice scores of each

class. And based on the latter (Dice scores), the algorithm computes the dominant class

and the dominated class among the predefined classes. For the first class, the algorithm

reduces the weighting factors corresponding to this class, and for the second class, the

algorithm increases the weighting factors corresponding to this class also, and so on until

the stopping criteria or the end of epochs are achieved. Moreover, Online Class-Weighting

loss function is evaluated against focal loss and cross-entropy loss and it obtained very

promising results in terms of Dice scores: 88% (Whole tumor), 83% (Core tumor), 75%

(Enhancing tumor).
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For the second part of this chapter, the main contributions address the issues of misclassi-

fied regions. The reason behind this issue is due to the fact that Deep CNNs architectures

predict tumor regions, in addition, these architectures produce misclassified regions: false

positives regions and false negatives regions. To overcome this issue, we proposed two

efficient pipelines trained on two-stages. The first pipeline is based on a combination

of 3 machine learning algorithms: Random Forest, Logistic regression, and the results

of SparseMultiOCM architecture. In the second pipeline, we reduced the dimensionality

of the extracted features using cumulative explained variance and principal component

analysis, after that, we fed the reduced 139 principal components to a support vector ma-

chine classifier. Experimental testing demonstrated that our methodology of two-stages

of training yields good results than a single-stage training approach. Our best approach

SparseMultiOCM architecture with LR-RF achieved a good performance in terms of Dice

scores: 84.71 % (Whole tumor), 75.89 % (Tumor core), and 73.70 %(Enhancing tumor),

and in terms of Hausdorff distance: 12.99 (Whole tumor), 15.50 %(Tumor core), and 6.03

(Enhancing tumor) and the best segmentation results in terms of Specificity (99%, 99%,

100%) and Sensitivity (84%, 71%, 69%) for the whole tumor, tumor core, and enhancing

tumor, respectively.

6.2 Perspectives

In this thesis, we addressed several issues: Glioblastoma brain tumors segmentation,

unbalanced data, modeling context and spatial relationship, misclassified regions (false

positives and false negatives), in addition to, how to develop an efficient Deep CNNs archi-

tecture, vanishing gradient issue, and automatic hyper-parameters optimization. More-

over, we used in this thesis the data of the BRATS challenge which is a limited MRI

images dataset. We intend in the future work to use and combine the BRATS dataset

with other public and clinical source of MRI data for improving the segmentation results

of the proposed methods. To combine two or more MRI images datasets, we need first to

solve the issue of image registration that attempts to match several MRI images acquired

using different scanners to one template. In last years, appeared many methods, where

they solved this issue using Deep neural networks, such as the one proposed in [Dalca

et al., 2019], are of particular interest in the future works.
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Moreover, another important aspect is fusing the decisions of many classifiers, such as

the case of the voting function that is developed in this thesis to combine the results of

Deep Neural networks architectures and machine learning methods. Fusing many deci-

sions of many classifiers needs also to estimate the confidence and the uncertainty of the

segmentation. The proposed voting function is a simple function that combines the seg-

mentation results pixel-per-pixel and based on the majority of votes of many classifiers.

The technique of voting does not provide accurate segmentation results and without the

estimation of segmentation uncertainty, it could elect the wrong majority of votes. For

these reasons, several approaches have been proposed in the literature to solve this issue

using Kalman Filter, such as the one suggested in [Glodek et al., 2013], are of particular

interest.

Another important direction of the future work would be to propose an extension to

the proposed method of Online class-weighting for the issue of unbalanced data. The

limits of the Online class-weighting loss function is that it adjusts only two classes at one

time until the end of the training phase, where in our case, we have 4 classes. In future

work, we intend to extend the Online class-weighting function by proposing proportional

updating of all classes according to their contributions at one time using Robin Hood

index (See figure 6.1). In addition to incorporating the constraints of the weighting

factors with the loss function using Lagrange function L(α) (See equation 6.1):

L(α) = − 1
n

(
n∑
j

Wj × qj × log(pj))−
n∑

j=1
αj(Wj − 1) s.t. Wj ∈ [0, 1], j = 1, 2, ..., n

= − 1
n

(
n∑
j

Wj × qj × log(pj))−
n∑

j=1
αjWj +

n∑
j=1
αj s.t. Wj ∈ [0, 1], j = 1, 2, ..., n

(6.1)

Where α = (α1, ..., αn) ≥ 0 is the Lagrange multiplier corresponding to each class.

We intend to model the problem of unbalanced data as a distribution of ’wealth’

inequalities. We calculate the ’total wealth’ that should be transferred from the ’rich’

class to the ’poor’ class to achieve a state of perfect equality in the distribution of wealth.
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In our case, the rich class is the dominant class and the poor class is the dominated class.

The ’total wealth transfer’ and the redistribution of weights are computed as follows:

— Computing the average of the total ’individuals wealth’, in our case, we compute

the Dice score of each class, then we take the average.

— Selecting the individuals (i.e. classes) that are above and below the average.

— Computing Robin Hood (RH) index as follows:

RH =

n∑
i
|xi − x̄|

2
n∑
i
xi

(6.2)

Where xi represents the Dice score of the ith class, x̄ is the average of the n

classes. RH represents a percentage (%) of wealth (in our case weighting factors)

that should be transferred from classes above (i.e. dominant classes) the average

to those below (i.e. dominated classes) the average. After many iterations, RH

achieves 0, at this point we achieve the state of perfect equality in the distribution

of weights among the predefined classes. Robin Hood index is also defined as the

difference between the Lorenz curve and the line of perfect equality (See figure

6.1).

Figure 6.1 – Illustration of weighting factors cumulative distribution using Robin Hood
index.
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The last perspective of this thesis involves the issue of modeling context and spatial

relationships. To develop a Deep CNNs architecture for the issue of MRI image segmen-

tation, we have either a pixel-wise approach or a patch-wise approach. Moreover, these

two approaches are based on dividing the MRI image into many patches. Then, the Deep

CNNs architecture predicts the pixel’s class which is the center of the patch (See left

figure 6.2). As it is known in BRATS dataset, MRI image patches have much healthy

regions than tumor regions, so even dividing a MRI image into patches, we could not

model patches with equal pixels distribution over all classes. For these reasons, we intend

in the future to model the 4 types of intra-tumoral structures: edema, non-enhancing

core, and necrotic core, enhancing core, and healthy tissue, and the relation among them

using Graph Neural Networks (See right figure 6.2). The image pixels become the vertices

and the distances among the N-neighbor pixels become the edges.

Figure 6.2 – Illustration of (left) 2D Convolutional Neural Networks and (right) Graph
Neural Networks.
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