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Malaria is one of the most widespread and fearsome parasitic disease in the world. Plasmodium 

falciparum is the parasite that causes the most severe type of malaria, this species transmits in the human body 

and attack the important organ; which is the human liver cells, will then reenter the blood stream and begin 

infecting the red blood cells. The major enzymes in this parasite is Plasmodium falciparum dihydrofolatereductase 

(PfDHFR), it is responsible for the biosynthesis of essential amino acids and nucleotide bases. The emergence of 

resistance of this kind of parasite to antimalarial agents had led for several years, still represents a threat, which 

draws our attention for the adoption of new guidelines for the treatment of malaria cases of P. falciparum species. 

For this reason, in this thesis we focus light on the discovery and development of Sym-triazine derivatives, which 

have provided a class of antimalarial drugs highly effective against PfDHFR. In this context, it is necessary to 

focus on Virtual Screening computational approaches in the fields of target identification and lead discovery. The 

aim of our study was to apply this type of in silico methodology, with the aim of modelling and evaluating for 

screening bioactive molecules derived from Sym-triazine. Our work combined between ligand-based VS methods; 

we based on the QSARs methods Two-dimensional (2D-QSAR(MLR/ANN)) and a three-dimensional stereo (3D-

QSAR(PLS)) which contains effective biological properties. The both of methods coupled with a Virtual 

Screening examination, by using a technique similarity search. Subsequently, we confirm the powerful and 

robustness of developed QSAR models by using various statistical OECD principles for the validation; internal 

and external validation (for training and test set), Y-randomization, and exploit of applicability domain. And 

structure-based VS methods; we concretized on the molecular docking analysis to determine the best interactions 

of the most active compound or the reference ligand which form stable complexes with the PfDHFR enzyme. The 

final results of our study, these different in silico methods allowed us to identify 9 new derivatives of Sym-triazine 

from both studies, show excellent inhibitory concentration activities against resistant P. falciparum bearing the 

mutant enzymes, making them good candidates for further development as antimalarial drugs. 

Keywords: Malaria, PfDHFR, Sym-triazine, 2D-QSAR(MLR/ANN), 3D-QSAR(PLS), Virtual Screening. 

ل اشكفي جميع أيتسبب هو الطفيلي الذي  Plasmodium falciparum حيث نجد ان أكثر الأمراض الطفيلية انتشارًا ورعباً في العالم. منالملاريا 

 عوديل، ديدعلى وجه التح كبد الإنسانهاجم العضو المهم؛ وهي خلايا ليهذا النوع في جسم الإنسان عن طريق انتقال وذلك الأكثر خطورة. لملاريا ا

 Plasmodium falciparumهي  يالإنزيمات الرئيسية في هذا الطفيلان بدأ في إصابة خلايا الدم الحمراء. يإلى مجرى الدم و بعدها

dihydrofolate reductase (PfDHFR)ظهور ف وعليهالحيوي للأحماض الأمينية الأساسية وقواعد النيوكليوتيدات.  تصنيععن ال ةمسؤول ي، وه

هية توجي اعتماد مبادئ نحو الانتباهالامر الذي لفت لا يزال يمثل تهديدا، و ،لعدة سنوات ضلمقاومة هذا النوع من الطفيليات للعوامل المضادة للملاريا 

، تريازين-سيمالأطروحة الضوء على اكتشاف وتطوير مشتقات  نسلط في هذهسو عليه . P. falciparumأنواع الخاصة بجديدة لعلاج حالات الملاريا 

من الضروري التركيز على الأساليب الحسابية للفحص  ،. وفي هذا السياقPfDHFRفئة من الأدوية المضادة للملاريا فعالة للغاية ضد كوالتي قدمت 

السعي نحو  هوالحالية دراستنا يصبح من اهداف  بحيث. بيولوجية عالية فعالية ذات جودة ومركبات الافتراضي في مجالات تحديد الأهداف واكتشاف 

لى عأولا  ناعملحيث المشتقة من سيم تريازين. والجزيئات النشطة بيولوجياً  نمذجة وتقييم من خلال، In silicoتطبيق هذا النوع من المنهجية في 

-3D( وثلاثية الأبعاد )2D-QSAR(MLR/ANN)ثنائية الأبعاد ) QSARsعلى طرق فيها اعتمدنا  ؛المركب القائمة على VSأساليب  تطبيق

QSAR(PLS) .عن التشابه.  حص الافتراضي باستخدام تقنية البحثبالفتقترن كلتا الطريقتين بحيث ( والتي تحتوي على خصائص بيولوجية فعالة

 internal and externalمختلفة للتحقق من صحتها؛ الحصائية الإOECD المطورة باستخدام مبادئ QSARوبعد ذلك، نؤكد قوة ومتانة نماذج 

validation  للمجموعتين( training و test   ،)Y-randomization و ، applicability domain. أساليب ثانيا طبقنا وVS لى البنية؛ القائمة ع

 كليش أيهماأو المركب المرجعي في السلسلة المدروسة  لتحديد أفضل التفاعلات للمركب الأكثر نشاطًا   molecular dockingتحليل لقد قمنا بال

-سيممشتقات جديدة لـ  9، سمحت لنا بتحديد In silicoهذه الأساليب المختلفة من . النتائج النهائية لدراستنا، PfDHFRمستقرة مع إنزيم  روابط

المقاومة التي تحمل الإنزيمات الطافرة، مما  Plasmodium falciparumمن كلتا الدراستين، وأظهرت أنشطة تركيز مثبطة ممتازة ضد  تريازين

 الأدوية المضادة للملاريا.لها مرشحة جيدة لمزيد من تطويريجع

 .الفحص الإفتراضي،2D-QSAR(MLR/ANN)،3D-QSAR(PLS)، تريازين-سيم،  PfDHFRالملاريا،  الكلمات المفتاحية: 
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General Introduction  
 
 

 
 
 

 

 

 

 

Drug discovery process is a wide scientific field; very complex and includes an inter-

disciplinary effort that faces many challenges these days for designing effective and 

commercially feasible drug. In the 20th century mankind has obtained the ability to discover 

highly active, yet small, organic molecules which are used for treatment purposes. However, 

medicinal   chemists   have   always   struggled   with   the selection of   which   compounds to  



  

2 
synthesize: a chemist has to choose the compounds to be synthesized from among millions of 

possible molecules.[1-3] Among them are extremely high development costs, long 

development times, as well as a low number of new drugs that are approved each year.  To 

solve these problems, new and innovate technologies are needed that make the drug discovery 

process of small molecules more time and cost-efficient, and which allow to target previously 

undruggable target classes [2]. The computational chemist is encouraged to develop some kind 

of computer program capable of automatically evaluating very large libraries of compounds 

and integrate it into the drug discovery process. This is called “virtual screening” (VS). [3]  

Virtual screenings (VS) have an enormous potential for the development of new small-

molecule drugs, and are already starting to transform the focal points of early stage drug 

discovery [2] which are represented in the identification of lead compounds showing 

pharmacological activity against a biological target and the progressive optimization of the 

pharmacological properties and potency of these compounds. [4] All of these approaches can 

be very fast and cost-effective. They can lead to highly potent initial hit compounds, and address 

even challenging target sites such as protein-protein interactions. VS are procedures, in which 

a collection of ligands is computationally screened for their ability to bind to a given receptor 

structure. Receptors are most often proteins in the biomedical sciences but can be any type of 

biological macromolecule, including RNA or DNA. [2]  

In this thesis, we will give an application of virtual screenings methods in order to 

identification and design of novel chemical entities specifically affecting these targets could 

lead to better drugs for the treatment of malaria. [5]  

Malaria was long considered to be the most common infectious disease caused by 

Plasmodium falciparum. It was the disease most feared by explorers who, lacking a drug to 

protect or treat them, were reluctant to venture deep into the African continent. It is difficult to 

know what was meant by the word "fever" until the end of the 19th century. Throughout history, 

malaria has been confused with fevers of all origins, in particular typhoid and yellow fever [6], 

which affects or threatens more than half the world's population [7]. It remains one of the 

world's major public health problems, although significant progress has been made by the 

World Health Organization[8]. 

By its impact on populations and the seriousness of its pathology, although effective 

antimalarial agents have been known for a long time, the alarming spread of drug resistant 

strains of Plasmodium falciparum, which is the most lethal parasite species, undergoes the 

urgency and continuous need for the discovery of new therapeutics. A major initiative in this 

direction is to “P. falciparum Dihydrofolate Reductase” (PfDHFR) enzyme targets that are 
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critical to the disease process or essential for the survival of the parasite. The widespread 

occurrence of malaria could be attributed to the development of resistance of the parasite to the 

available antimalarial drugs such as chloroquine, cycloguanil and pyrimethamine. These drugs 

have been used clinically in the treatment of malaria for longer period of time. But due to the 

emergence of drug-resistant parasite in many countries, there is need of new and effective drugs 

for treatment of malaria. [9] 

An effort to combat this disease is inspired by the priorities of studying series of 

antimalarial compounds based on the sym-triazines and especially on the 

diaminodihydrotriazines [10], which represent an inexhaustible source of active molecules, and 

its structural diversity can be the starting point for many advanced research projects in the 

pharmaceutical field, and developing new drugs.  

Our objective of the study is to exploit the different computational tools and methods 

based on virtual screening to score and filter a set of chemical structures in order to procure 

new bioactive molecules and to study their ability of interactions with the enzyme Plasmodium 

falciparum dihydrofolate reductase (PfDHFR). 

Our main contributions are summed in these essential points, namely: 

 Structural and electronic study of the basic nuclei of heterocyclic compounds of 1,3,5-

triazine. 

 Drug-likeness and pharmacokinetic study using several empirical rules such as 

Lipinski's rule and MPO methods. 

 Establish at the molecular level 2D-QSAR (MLR/ANN) models for some heterocyclic 

series of PfDHFR inhibitors. 

 3D-QSAR study was applied for modeling of the studied molecules. 

 Analysis by the molecular docking method of the most active chemical of the series 

and the reference ligand. 

In order to carry out this work properly and to achieve the main objectives, we have 

organized our thesis into four chapters: 

Chapter I- Background on malaria diseases & their inhibitors  

In the chapter I we will describe the malaria diseases, their pathogenesis and their treatment. In 

addition, it contains a description of some their inhibitors resistance. 
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Chapter II- Virtual Screening in Drug Design & Discovery  

The second chapter covers the literature review required for Virtual Screening, and is divided 

into two parts: Ligand-based (LBVS) and Structure-Based Virtual Screening (SBVS), which 

have become indispensable for the design of new drug substances. We focus briefly on the 

objective of its definition, its principle, and its techniques and methods. 

 Realized Works 

In this part will be devoted to the practical implementation and interpretation of the results 

obtained from our work throughout this project. 

Chapter III:  In silico-Based Identification of new anti-PfDHFR drug candidates via 1,3,5-

triazine derivatives 

- The 1st point, a 2 Dimension Quantitative structure-activity relationship (2D-QSAR) 

models were generated using MLR and ANN methods for series of 28 derivatives of 

1,3,5-triazine with the use of 20 molecular descriptors  

- In the 2nd point, we will present drug-likeness screening studies of the interest inhibitors 

of PDHFR enzyme.  

- At last, the obtained QSAR models were employed to define biological activities of 

potentially novel active compounds by means of in silico screening processes. 

Chapter IV: Combined 3D-QSAR, molecular docking, ADMET and drug likeness 

scoring of novel Diaminodihydrotriazines as potential antimalarial agents 

- The 1st point, consists 3D-QSAR study using the statically method PLS to determine 

the best CoMSIA model for a series of 42 diaminodihydrotriazine derivatives.  

- In the 2nd point, In silico pharmacokinetic/ADMET studies of the most active 

compound with the reference ligand derivatives of diaminodihydrotriazine. 

- Finally, a molecular docking analysis recognizes which molecule; the most active 

compound or the reference ligand are possible to interact toward the PfDHFR enzyme. 

Three new developed ligands can then form novel drugs. 

We conclude this thesis with a general conclusion with different perspectives. 
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Chapter I: 
Background on Malaria Diseases & 
Their Inhibitors 

 
  

 

 

 

 

 

I.1. Introduction  

 Malaria is one of the oldest diseases known to mankind [1]. The word malaria comes 

Rome the Latin paludis, meaning swamp. This word clearly reflects the relationship between 

the disease and the ecology of its vector, a mosquito. In Anglophone countries, the term malaria, 

which comes from the Italian mal'aria, meaning bad air, has been retained and has spread to 

many foreign countries, despite its inappropriate pathogenic connotations. The clinical
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manifestations  of  malaria  have  been  known  since  ancient times. Its  evolution  in  time and 

space follows the history of mankind. Physicians in Vedic and Brahmanic India were already 

distinguishing characteristic intermittent fevers as far back as 1000 BC (Before Chrsit). When 

humans began to settle as communities, favoring the transmission of infections [1,2]. 

In the middle Ages, a large part of Europe suffered from it. The disease was also rife on the 

new continent before it was discovered, since it was the Spaniards who learned from the Indians 

about the febrifuge properties of cinchona bark. It was in 1880 that Laveran, a French military 

doctor in Algeria, discovered the haematozoan of malaria. And it was in 1898 that Grassi 

demonstrated that the anopheles is the vector of human malaria. In the 1950s, the malaria 

"eradication" programme emerged, but this was soon replaced by control strategies (in the sense 

of combating or controlling) in the early 1970s.  

I.2. Malaria disease 

I.2.1. Epidemiology of malaria 

Malaria is endemic worldwide. It is one of the leading causes of infant mortality in 

developing countries. It is caused by a specific haematozoan, plasmodium, inoculated by the 

bite of female mosquitoes belonging to various varieties of Anopheles [3,4]. The distribution 

of malaria varies enormously from one geographical area to another, and even within the same 

village. The distribution of malaria is extremely variable from one geographical area to another, 

and even within the same village. This heterogeneity is influenced by numerous factors such as 

the vector, the host and the parasite. All these factors are in dynamic relationship with the 

environmental and socio-economic factors that condition the epidemiology of malaria [5].  

According to the WHO, Globally, an estimated 2 billion malaria cases and 11.7 million malaria 

deaths were averted in the period 2000-2021. Most of the cases (82%) and deaths (95%) averted 

were in the WHO African Region, followed by the WHO South-East Asia Region (cases 10% 

and deaths 3%) estimated deaths between 2019 and 2021, there were 63 000 deaths that were 

due to disruptions to essential malaria services during the COVID-19 pandemic [6]. 

The situation is currently worsening because Plasmodium has become resistant to quinine and 

synthetic antimalarial (Figure I.1), which were the basis of both treatment and 

chemoprophylaxis. Reversing this situation will depend on the creation of new drugs and, above 

all, the development of a vaccine [3,4].  
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Figure I.1: Incidence of Malaria in the world in 2023. 

I.2.1.1. Epidemiological facts  

The indices used to classify malaria transmission zones are based on the factors influencing 

the epidemiology of malaria. The stability index classifies malaria into two zones: 

Zones with stable or endemic malaria: malaria transmission is long and intense, resulting 

in a form of premunition that enables individuals to limit serious clinical manifestations in 

young children. 

Unstable or epidemic malaria zones: malaria transmission is very short-lived and occurs 

in epidemic form. This episodic nature of transmission does not allow for the development 

of premunition. All individuals are at risk of developing the disease [7].  

I.2.2. Pathogens and vectors agents 

I.2.2.1. The pathogen agent 

a. Taxonomy 

Table I.1. Taxonomic classification of Plasmodium 

Kingdom :  Protista 

Subregnum : Protozoa 

Phylum :  Apicomplexa 
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Class :  Sporozea 

Subclass : Eucoccidia 

Ordre :  Haemosporidae 

Family :  Plasmodidae 

Genre :  Plasmodium 

Species :  
falciparum, malariae, ovale, 

vivax, knowlesi 

 

The Plasmodium genus comprises 172 species that infect birds, reptiles and mammals. 

Other genera in the same group include Hepatocystis, Haemoproteus and Leucocytozoon, none 

of which are infectious to humans. Parasites of humans and primates all belong to either the 

subgenus Plasmodium or the subgenus Plasmodium (Laverania), while all other species 

infecting mammals belong to the subgenus Plasmodium (Vinckeia).  

 

Figure I.2: Taxonomic classification of some Plasmodium species. 

The various sub-genre (Figure I.2) are distinguished from one another by morphological 

features and life history characteristics that were used as taxonomic criteria in Garnham's classic 

classification.[8]  
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b. Species 

Malaria is transmitted by a protozoan of the genus Plasmodium. There are many species 

of Plasmodium affecting various animal species, but only five of these species are found in 

human pathology [9]. 

These are Plasmodium falciparum, P. vivax, P. ovale, P. malariae and P. knowlesi. The five 

species differ in terms of their biological and clinical characteristics, their geographical 

distribution and their ability to develop resistance to antimalarial drugs [10]. 

I.2.2.2. The vector agent   

The vector of malaria is the female Anopheles. It is a haematophagous insect of the 

order Diptera nematocera, family Culicidae and genus Anopheles. More than 500 species of 

Anopheles have been described, around fifty of which can act as vectors of Plasmodium in 

humans, and 20 of which are of real epidemiological importance. Numerous climatic and/or 

environmental factors, whether natural or due to human activity, can modify the distribution of 

Anopheles in a given region and therefore influence the transmission of Plasmodium. The 

female anopheles only bites after sunset, with peak activity between 11pm and 6am; this 

explains the use of mosquito nets for personal prevention [10]. 

I.2.3. The evolutionary cycle of Plasmodium  

    The cycle takes place successively in human body (asexual phase in the intermediate 

host) and in the female anopheles (sexual phase in the definitive host) [11] (Figure I.3). 

   I.2.3.1. In human body 

The cycle is divided into two phases: 

- The hepatic or pre-erythrocytic or exo-erythrocytic phase, which corresponds to the 

incubation phase, clinically asymptomatic; 

- The blood or erythrocyte phase, which corresponds to the clinical phase of the disease. 

a. The liver phase 

The sporozoites inoculated by the female Anopheles during its blood meal remain in the 

skin, lymph and blood for a maximum of thirty minutes. Many are destroyed by 

macrophages, but some manage to reach the hepatocytes[11]. They transform into pre-

erythrocytic schizontes or "blue bodies" (multinucleated forms) which, after a few days 

of maturation, burst and release thousands of merozoites into the blood (10,000 to 30,000 

depending on the species). 

Hepatic schizogony is unique in the cycle, as the liver cell can only be infected by 

sporozoites [11].  
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In P.vivax and P.ovale infections, delayed hepatic schizogony (hypnozoites) can lead to 

the release of merozoites into the blood several months after the mosquito bite, thus 

explaining the late relapses observed with these two species [11]. 

b. The erythrocyte phase 
This part of the cycle corresponds to the clinical phase. Merozoites released during the 

hepatic phase enter the red blood cells. The penetration of the merozoite into the 

erythrocyte and its maturation into a trophozoite and then a schizont depends on the 

species and leads to the destruction of the host red blood cell and the release of 8 to 32 

new merozoites[11]. 

I.2.3.2. In female Anopheles 

 Gametocytes ingested by the mosquito during a blood meal on an infected subject are 

transformed into male and female gametes, which fuse into a free, mobile egg called an ookinete 

[18]. This ookinete leaves the lumen of the digestive tract, attaches to the outer wall of the 

stomach and transforms into an oocyst. Parasitic cells multiply within this oocyst, producing 

hundreds of sporozoites which, once the oocyst has burst, migrate to the mosquito's salivary 

glands [11]. These sporozoites are the infectious forms ready to be inoculated with the 

mosquito's saliva during a blood meal on a vertebrate host.  

 

Figure I.3: The Plasmodium spp. life cycle. [12] 
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I.2.4. Pathophysiology [13] 

The pathophysiology of malaria is highly complex. For all plasmodial species, the 

clinical manifestations are observed during endo-erythrocytic multiplication and their severity 

depends on the plasmodial species, the parasite density and the degree of immunity of the host. 

In simple malaria attacks, the parasites are much diluted and cannot be detected under the 

microscope at the start of the blood infection. 

Their number increases and the clinical threshold is marked by the periodicity of febrile crises 

after several schizogonic cycles. 

The fever is triggered by the release of malar pigment or haemozoin when the parasitized red 

blood cells burst. Haemozoin, a pyrogenic substance, acts on the bulbar thermoregulatory 

centers. Initially, the fever is fairly continuous because the endo-erythrocytic cycle is still 

poorly synchronized. When the cycle becomes synchronized, the release of haemozoin is 

regularly repeated, giving the fever a periodic appearance characteristic of a malarial attack.  

Anaemia results from the bursting of parasitized red blood cells. Hepatomegaly and 

splenomegaly are due to hyperactivity of the monocyte-macrophage system responsible for 

clearing malarial pigment and erythrocyte debris. 

I.2.5. Symptoms  

The intra-erythrocytic phase of the parasite cycle is responsible for all the symptoms. 

Fever is the most frequent symptom of malaria, but there are no signs of malaria. 

Pathognomonic of the infection. Malaria attacks can therefore be confused with the following 

infections viruses such as influenza, particularly during epidemic periods for respiratory 

viruses. Medical staff need to be vigilant and made aware that any fever on returning from a 

malaria-endemic area is malaria until proven otherwise. The fever is then rhythmic, occurring 

every 48 to 72 hours depending on the parasite species and the length of its intra-erythrocytic 

development cycle (48 hours for Plasmodium ovale spp). In addition to fever, patients 

frequently present with headache, arthralgia/myalgia and general ill health. Digestive 

symptoms are less frequent, often combining nausea and vomiting with diarrhoea, anorexia and 

abdominal pain. This is known as febrile gastric embarrassment. Together, these symptoms 

define uncomplicated malaria, which accounts for around 85% of malaria attacks in France 

[14]. Splenomegaly and hepatomegaly may also be observed, mainly in cases of Plasmodium 

falciparum malaria. 

However, some patients may present with more severe symptoms, requiring treatment in 

intensive care units (ICUs) or continuous care units (CCUs). The World Health Organization 
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(WHO) has defined a set of clinicobiological criteria for defining severe malaria attacks [15], 

adapted by the Société de Pathologie Infectieuse de Langue Française (SPILF) [16].  

The majority of severe malaria attacks are associated with Plasmodium falciparum, notably due 

to its capacity for cytoadherence (i.e. the ability of infected red blood cells to adhere to vascular 

endothelia) and sequestration in deep organs, mediated by Variant Surface Antigen [17,18]. 

However, Plasmodium vivax is also an important agent of severe malaria [19-21]. More than 

twenty cases of severe malaria caused by Plasmodium ovale spp have been described in the 

literature [22-26]. 

I.3. The PfDHFR therapeutic target 

   I.3.1 Generality on folates  

Folates (pteroylglutamates), based on the structure of folic acid, belong to a family of B 

vitamins (Figure I.4) and are essential components of cell growth and proliferation. Members  

of this family differ from each other in several ways, namely the redox state of the pyrazine 

ring (X), substitution at the N5 and N10 positions (Y) and the presence of additional glutamate 

residues linked to the γ-carboxyl group of the only glutamate radical intrinsic to the folate 

structure (Z).[27, 28] 

 

Figure I.4: Chemical structures of the folate family. 

Folate cofactor plays a major role in the general synthesis of amino acids and nucleotide 

bases of DNA and RNA in the malaria parasite. Therefore, folate synthesis pathway has been 

regarded as an important target for antimalarial drugs, namely dihydrofolate reductase 

inhibitors.[29] 

     I.3.2. Plasmodum falciparum protein dihydrofolate reductase (PfDHFR)  

Among the members of the folate family is the Plasmodum falciparum dihydrofolate 

reductase DHFR (Figure I.5), which is one of the well-established therapeutic targets in 

malaria-affected P. falciparum. It is a bifunctional enzyme known as dihydrofolate reductase 

thymidylate synthase (DHFR-TS). [30] 
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It is an essential enzyme that is also ubiquitous in most living organisms[31], being a 

key enzyme responsible for the reproduction cycle of the Plasmodium parasite [33,33]. 

The first study of the bifunctional PfDHFR-TS enzyme was carried out in 1984. [34] 

This study demonstrated that the PfDHFR-TS protein is a bifunctional enzyme with a dimer 

composed of two subunits of identical size, DHFR and TS. Subsequently, Bzik [35], using 

cloning and isolation of the pfDHFR-TS gene, performed a sequence analysis of this protein. It 

was shown that the residual composition of each monomer was linked by a polypeptide junction 

chain. In which DHFR and TS exist in a single chain in p.falciparum whereas they are separated 

in humans [36].  

 

Figure I.5: Structure of the PfDHFR enzyme (PDB:1J3J). 

It catalyses the NADPH-dependent reduction of 7,8-dihydrofolate (DHF) to 5,6,7,8- 

tetrahydrofolate (THF) using NADPH as a cofactor, which plays a crucial role in many 

biochemical processes such as folate metabolism and DNA synthesis. Thus, inhibition of DHFR 

causes an interruption in DNA formation, which eventually leads to the death of parasitic cells. 

[30] 

DHF + NADPH + H+                                THF + NADP+ 
DHFR 
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I.4. Antimalarial drugs and resistance 

    I.4.1. Pharmacological classes and mechanisms of action 

Today, more than fifteen compounds are used against malaria. Their modes of action 

are shown in the table below (Table I.2), along with their half-life (not including metabolites) 

and the genes involved in resistance to P. falciparum[37]. 

Table I.2. Antimalarial drugs: pharmacological classes, modes of action, half-life and genes 

associated with resistance [37]. 

Chemical 

class 
Molecule 

Pharmacological 

class 
mode of action 

Half-life 

duration

* 

Resistanc

e genes 

** 

Natural or Hemisynthesised antibiotics 

amino-alcohol 

quinine 

 

 

sesquiterpene lactone 

artémisinine and 

derivatives 

Erythrocytic 

schizonticide 

inhibition of heme 

detoxification in the 

digestive vacuole 

5 to 6pm 
Pfnhe1 

Pfmrp 

Erythrocyte 

schizonticide + 

gametocyte action 

alkylation of 

haemoglobin 

metabolites, 

production of free 

radicals 

1 to  4 

hours 

dependin

g on 

derivative

s 

Pfk13 

Synthetic antimalarial drugs 

4-aminoquinoline 

amodiaquine 

chloroquine 

piperaquine 

Erythrocytic 

schizonticide 

inhibition of heme 

detoxification in 

the digestive 

vacuole 

 

1 to 6 

hours 

2 to 3 

days 

22 days 

Pfmdr1 

Pfmdr1 

 

Pfcrt 

Pfmrt 

8-amino-quinoline 

primaquine 

tafenoquine 

schizonticide 

érythocytaire + 

intrahépatique + 

gamétocydique 

interference with 

the functioning of 

plasmodial DNA 

undetermined 

3 to 6 

hours 

14 days 
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Amino alcohol 

Halofantrine 

lumefantrine 

mefloquine 

erythrocytic 

schizonticide 

 

inhibition of heme 

detoxification in the 

digestive vacuole 

2 to 3 

days 

3 to 6 

days 

15-22 

days  

Pfmdr1 

Pfmdr1 

antifolates and antifolinics 

Sulfadoxine 

Pyrimethamine 

Proguanil 

Erythrocyte 

schizonticides  

inhibition of nucleic 

acid biosynthesis 

7 to 9 

days 

2 to 4 

days 

8 to 24 

hours 

Pfdhfr  

Pfdhps 

Pfmrp 

Hydroxynaphtoquinone 

Atovaquone 

erythrocytic and 

intrahepatic 

schizonticides 

inhibits electron 

transport in the 

mitochondria and 

therefore ATP 

synthesis 

2 to 3 

days  
Pfcytb 

Antibiotics 

Cyclines 

Doxycycline 

erythrocytic and 

intrahepatic 

schizonticides 

binding to the 30S 

subunit of the 

ribosome 

6 to 10 

pm 
PftetQ 

* not including active metabolites 

** genes associated with resistance in Plasmodium falciparum 

     I.4.2. Focus on sym-triazine derivatives  

Heterocycles containing a nitrogen atom are among the most common elements in 

medicinal chemistry, and are found in biomolecules in the DNA chain in purine and pyrimidine 

bases, as well as in many natural products [38]. These compounds include sym-triazines, which 

are among the oldest nitrogen-containing organic heterocycles [39]. 
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Sophisticated derivatives of free sym-triazine can be easily prepared from the cheap and readily 

available 2,4,6-trichloro-1,3,5-triazine (cyanuric chloride) 1 [40- 42]. Replacement of chloride 

ions in cyanuric chloride give several variants of 1,3,5-triazine derivatives one of them is the 

amino-sym-triazines, which were investigated as biologically active small molecules [43- 47].  

I.4.2.1. Physiological and biochemical role of amino-sym-triazine derivatives 

The remarkable development of amino-sym-triazines for various diseases in a very short 

space of time proves their importance for chemical research. Amino-sym-triazine occupies a 

prominent position and possesses a wide range of biological activities (Figure I.4).amino-

symtriazine is presented in many potent biologically active molecules with promising biological 

potential, making it an attractive support for the design and development of new drugs. The 

broad spectrum of biological activities of this moiety has attracted attention in the field of 

chemistry and especially medicinal chemistry[48]. 

From a therapeutic point of view, there are a large number of active ingredients containing 

amino-sym-triazines with diverse therapeutic activities in a wide range of fields [49]. Since the 

1970s, several studies have been carried out on the antitumour activity of 2,4,6- tris(N,N-

dialkylamino)-1,3,5-triazines. One of these analogues, hexamethylmelamine (HMM) (Figure 

I.6), is effective against lung, breast and ovarian cancers. Some structural analogues of HMM 

have been prepared and tested [50]. 

 

Figure I.6: Chemical structures of "HMM" anticancer amino-sym-triazines 

Many other therapeutic agents have fused diamino-sym-triazines into their chemical structures. 

In the 1980s, 7-methyl-pyrazolo [1,5-a] -1,3,5-triazine-2,4-diamine was developed as a new 

bronchodilator and anti-allergy compound[51]. Research interests in pyrazolo [1,5-a] -1,3,5-

triazines (Figure II.7)have focused on corticotropin-releasing factor (CRF ) receptor blocking 

activity[52,53] 
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Figure I.7: Structure of pyrazolo [1,5-a] -1,3,5-triazines. 

I.4.2.2. Diamino-sym-triazines as antimalarial drugs 

Sustained efforts are being made to design and develop a potent PfDHFR inhibitor for 

malaria control. It is therefore of interest to screen PfDHFR with, 1,3,5-triazine derivatives[54]. 

Current therapeutic approaches for treating malaria infection include a number of different 

antimalarial drugs such as antifolates [55]: 4,6-diamino-2,2-dimethyl-1,2- dihydro-1,3,5-

triazine (Baker triazines) derived from diaminodihydrotriazines which is displayed in figure I.8.  

 

Figure I.8: Chemical structures of diaminodihydrotriazines derivatives. 

Its derivatives are becoming increasingly important as pharmaceutical products. Many of these 

compounds are inhibitors of P. falciprum dihydrofolate reductase. Baker triazineantifol was 

currently in clinical trials as a drug for cancer chemotherapy [56,57]. 

Resistance to DHFR inhibitors is conferred by single mutations in the gene encoding the 

respective enzyme, resulting in substitutions in the amino acid chain [58]. 

But new antimalarial treatments should have new mechanisms of action that are effective 

against existing multi-resistant strains. In addition, the interruption of parasite transmission, 

which could contribute to the eradication of malaria, should be exploited by the next generation 

of antimalarial drugs [59]. 

These PfDHFR inhibitors (Figure I.9) have been recognized for their therapeutic value as 

antiprotozoal agents.  
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Figure I.9: Structure of 4,6-diamino-2,2-dimethyl-1,2-dihydro-1,3,5-triazine derivatives. 
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Chapter II: 
Virtual Screening in Drug  
Design & Discovery 

 
 

  

 

 

 

 

 

 

 

II.1. Introduction  

Traditional Approach of Drug Design and Discovery  

In the field of therapeutics and medicine a drug discovery is an integrated process by which 

new drug candidate are discovered. Traditionally, new drug molecules were discovered through 

identifying the active ingredient from traditional remedies or by serendipitous discovery. As 

time went and a several number  of  therapeutically  applicable molecules were discovered and  
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a library of molecule with same or different activity. Later chemical libraries with identical or 

similar parent scaffold of synthetic small molecules, natural products (plants, marine, animals) 

or extracts were randomly or desirably screened against to specific cells or a whole organism 

to identify the desirable therapeutic activity/effect known as classical pharmacology. 

Synthesizing list/derivatives of compound and patenting them is an essential phenomenon to 

secure the pharmaceutical industry data in preventing the scientific and economical loss.[1] 

For an individual drug candidate a pharmaceutical industry synthesize >1000 structural 

derivative and depending on the initial screening results protection of such data is carried out, 

which significantly increases the cost of drug discovery procedure in its initial phases which is 

directly proportionate to the number of molecule you design, synthesize and test [1]. Les 

différentes étapes sont illustrées schématiquement dans la Figure II.1. Au cours des phases 

successives, des milliers de molécules doivent être triées et sélectionnées, afin d’obtenir un 

nombre très limité de candidats. 

 

Figure II.1:  Traditional drug research and development procedure [2].  

In general, it is estimated that the medication research and development process takes 

10-12 years and costs more than $1 billion in total. As a result, computer assisted drug design 

(CADD) is extensively employed as a novel drug design [2]. In recent times virtual 

experimentation in CADD has become known as an innovative way of testing high performance 

especially in terms of low cost and the chances of obtaining the most suitable novel beaten by 

a large filter of compound libraries[3,4].  

II.2. Virtual screening 

In biomedical arena, the process of drug development and discovery is very challenging, 

expensive and time consuming [5]. Regulatory agencies as well as pharmaceutical industry are 

actively involved in development of computational tools that will improve effectiveness and 
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efficiency of drug discovery and development process, decrease use of animals, and increase 

predictability. It is expected that the power of computer aided drug design also known as in 

silico screening will grow as the technology continues to evolve [1,6]. 

Virtual screening is a set of computational methods or in silico analogues of biological 

screening [7]. It has been used as the most useful tool now in the day to find the most interesting 

bioactive compounds [4]. The aim of VS is used to discover new drug candidates from 3-

dimensional chemical structure databases with the help of information about the target protein 

or known active myths.[4,5]  

It is intended to reduce the size of chemical space and thereby allow focus on more 

promising candidates for lead discovery and optimization. The goal is to enrich set of molecules 

with desirable properties (active, drug-like, leadlike) and eliminate compounds with 

undesirable properties (inactive, reactive, toxic…etc). The rapid growth of virtual screening is 

evidenced by increase in the number of citations matching keywords “virtual screening”.[5] 

Major types of approaches in Virtual Screening Drug Design (VSDD) [7]: 

There are types of approaches for drug design through VSDD is the following (Figure II.2): 

- Ligand-based virtual screening (LBVS),  

- Structure-based virtual screening (SBVS). 

 

Figure II.2:  Schematic illustration of ligand-based and structure-based approaches in 

VSDD. 
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II.2.1. Ligand-based virtual screening:  

When at least one ligand of the target under investigation is known, ligand-based virtual 

screening can be implemented. The basic principle common to all ligand-based methods is that 

similar molecules will tend to exhibit similar activity profiles [8]. The similarity of molecules 

can be measured by looking for common properties, which are used as similarity descriptors. 

Depending on the number of reference ligands for the target and the type of descriptors, 

different methods can be employed: similarity search, screening using QSAR and 

pharmacophore methods. 

II.2.1.1. Similarity-Based Virtual Screening 

 Similarity-based virtual screening and candidate ranking are considered to be one of the 

most powerful tools in medicinal chemistry[9,10] and have been successfully applied in a 

number of cases.[11] Similarity searching [7] is used for finding those compounds which   are 

most similar to a query compound in a database. This involves comparing the query compound 

with every compound in the database in turn and returns a ranked list of all the compounds that 

are judged to be similar to the query. Similarity searching in chemical databases was first 

introduced in the mid-1980s [12, 13]. The rationale for similarity searching is the “similar 

property principal” which states that structurally similar molecules will exhibit similar 

properties and biological activity [14]. 

Similarity searching programs can generally be categorized into 2D and 3D similarity 

according to whether 3D conformation information is considered:  

 The most commonly used similarity method is based on 2D fingerprints [7] and there 

are numerous studies and reviews of similarity coefficients [15, 16]. Similarity 

coefficients can be classified into three major classes namely: association coefficients, 

correlation coefficients, and distance coefficients [16].2D similarity methods are 

efficient for quickly profiling neighboring compounds. However, it may to some extent 

provide different hits for the same queries as different 2D similarity definitions target 

different aspects of the information. This method also tends to discover close structural 

analogues instead of novel scaffold hits[11,17]. 

Apart from 2D fingerprint-based methods, similarity matching using algorithm is also 

used for graphical descriptors that can compare objects represented as a graph. Recently 

algorithm is able to perform tens of thousands of comparisons in a very short time. [18] 

Evaluated both graph-based and fingerprint-based measures of structural similarity. The 

results show that, in VS, there is no statistically significant difference in the number of 

active molecules retrieved by graph-based and fingerprint-based approaches. Another 
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type of similarity search system is text-based molecular description. Recently, [19] 

introduced a new algorithm into QSAR model, LINGO, based on the fragmentation of 

SMILES strings into overlapping substrings of a defined size.[7] 

 However, 3D similarity methods [11] typically consider multiple aspects of the 3D 

conformation, including pharmacophores, molecular shapes, and molecular fields. 3D 

methods can be conveniently used to accomplish scaffold hopping to identify novel 

compounds. Based on the pharmacophore matching approach, which was used as the 

engine of the previously mentioned PharmMapper Server[20], a method named 

SHAFTS (SHApe-FeaTure Similarity) has been developed for rapid 3D molecular 

similarity calculation. This method adopts hybrid similarity metrics of molecular shape 

and colored (or labeled) chemistry groups annotated by pharmacophore features for 3D 

calculation and ranking in order to integrate the strength of both pharmacophore 

matching and volumetric similarity approaches. The triplet hashing method is used to 

enumerate fast molecular alignment poses. The hybrid similarity consists of shape-

densities overlaps and pharmacophore feature fit values and is used to score and rank 

alignment modes[17].  

II.2.1.2. Quantitative structure activity relationship  

 Among the virtual screening approaches, Quantitative structure activity relationship 

(QSAR) is the most powerful method due to its high and fast throughput [21]. The process by 

which a chemical structure is correlated with a specific effect such as biological activity or 

chemical reactivity, toxicity, or other kinds of activities on their molecular characteristics 

[22,23]. In 1868, A. Crum-Brown and T.R Fraser-formulated a suggestion that physiological 

activity of molecules depends on their constitution [21]:  

  Activity = F (Structure) Eq II.1 

The QSAR analysis includes all statistical methods by which biological activities (most often 

expressed as logarithms of equipotential molar activities) are linked with structural elements 

(Free Wilson analysis), physico-chemical properties (Hansch analysis) or various field-related 

parameters helping to describe the structure (3D QSAR). Different types of tools can be used: 

multi-linear regressions (MLR) [24], partial least squares (PLS) regressions [25], neural 

networks [26-28]. 

 QSAR methodologies based on dimensionality (Table II.1) [21] have the potential of 

decreasing substantially the time and effort required for the discovery of new medicines. A 

major step in constructing the QSAR models is to find a set of molecular descriptors that 

represents variations of the structural properties of the molecule. The QSAR analysis employs 
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statistical methods to derive quantitative mathematical relationship between chemical structure 

and biological activity. The process of QSAR modeling can be divided into three stages: 

development, model validation and application.[29]   

 

Table II.1. Classification of QSAR methodologies based on dimensionality. [21] 

1D-QSAR  Molecular representations and molecular fragments i.e., pKa, log P with biological activity. 

2D-QSAR  Contains topological information i.e., physicochemical properties with biological activity. 

3D-QSAR  Correlation of various 3D properties which surrounds the molecule. 

4D-QSAR  Ligand receptor interactions of the drug molecule with the 3D properties. 

5D-QSAR  Representing different induced-fit models in 4D-QSAR. 

6D-QSAR  Incorporating different salvation models in 5D-QSAR. 

 

 The objective  

 The aim of QSAR method is therefore to analyze the structural data in order to detect 

the determining factors for the measured property. 

The information extracted from QSAR study results can be used to obtain a better understanding 

of molecular structures and probably the mode of action at the molecular level. This information 

can then be used to predict the structural properties and biological activities of new compounds, 

as well as to design new structures (Figure II.3) [30]. 

 

Figure II.3: Layout of Quantitative Structure-Activity Relationship Analysis [21]. 
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II.2.1.2.1. General methodology of QSAR study   

A. Biological data collection  

 By its very construction, a QSAR model is highly dependent on experimental reference 

data. The choice of database is therefore a critical point in its development. In most cases, 

experimental data are taken from the literature. They are usually expressed on a logarithmic 

scale, due to the linear relationship between response and dose logarithm in the central region 

of the log dose-response curve. Inverse logarithms of activity (log 1/C) are also used to obtain 

higher mathematical values when structures are biologically highly effective. Examples of 

biochemical or biological data used in QSAR analysis are described in Table II.2 [31]. 

Table II.2. Types of biological data used in QSAR analysis. 

Source of activity Biological parameters 

1. Isolated receptors 

Speed constant 

Michaelis-Menten constant 

Inhibition constant 

 

2. Cellular systems 

Inhibition constant 

Cross-resistance 

In vitro biological data 

Gene mutation 

 

3. In vivo systems 

Bioconcentration factor 

In vivo reaction rates 

Pharmacodynamic rates 

 

Log k 

Log 1/Km 

Log 1/Ki 

 

 

Log 1/IC50 

Log CR 

Log 1/C 

Log TA98 

 

 

Log BCF 

Log I (induction) 

Log T (clairance totale) 

 

A database should come from the same analysis protocol, and care should be taken to avoid 

inter-laboratory variability, to be of high quality of data. Any bad data points will tend to corrupt 

the correct correlation of structure and activity. [32] Data should be composed of experimental 

data that are as reliable as possible, since error bars on them will propagate into the final model, 

as the latter's parameters are adjusted against them. It is therefore important to choose data with 

low uncertainties in order to limit experimental error bars. Indeed, a model cannot be 

statistically more robust than the theoretical data from which it was developed.  
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As far as possible, the database should also be characteristic of the range of values that 

biological activity may encounter, since it is partly on this criterion that the applicability domain 

of the final model will be determined. As a general rule, the larger the latter, the more predictive 

models over a wide range of values can be expected.  

The rules of thumb for a good QSAR data set are that the dose-response relationship and activity 

(or affinity) should be reproducible, the activity range should extend two or more orders of 

magnitude from the least active chemical to the most active in the series, the number of 

chemicals used to build the QSAR model should be large enough for stability, the activities of 

the chemicals should be evenly distributed throughout the activity range, and the 

chemicalschosen for the training set should possess sufficient structural diversity to cover the 

range of chemistry space associated with the biological activity under study.[33] 

B. Molecular descriptors  

 A descriptor is a numerical or textual value resulting from an operation performed on a 

certain representation of the molecule to be described. Many types of chemical structure 

descriptors are available from commercial software. Descriptors can be grouped according to 

the way they are encoded (textual, numerical or vector representation), the type of information 

they carry (physico-chemical, topological, pharmacophoric descriptor, etc.), or the 

dimensionality of the representation of the molecule from which they have been calculated. 

There are several thousand of them, and Todeschini attempts to draw up an exhaustive 

inventory in a leading book in the field [34].  

Obtaining a statistically robust model depends very much on the ability of the descriptors 

selected to encode the variation in activity with structure. The more that is known at the 

molecular level about the biological mechanism of action of chemicals, the better the chemist 

can choose from the wide variety and types of specific molecular descriptors in terms of their 

dimensions. [35] In view of this element, Table II.3 offers a valuable example of largely used 

molecular descriptors depending on dimensions [36]. Commercially available molecular 

modeling programs often include statistical tools to help assess which descriptors best encode 

structure-activity variation. [37] 

Table II.3. Popularly known molecular descriptors dependent on various dimensions [38]. 

Dimension of descriptors Parameters 

0D 
Constitutional indices, molecular property, atom, and bond 

count. 

1D Fragment counts, fingerprints. 
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2D 
Topological, structural, physicochemical parameters including 

thermodynamic descriptors. 

3D 
Electronic, spatial parameters, MSA parameters, MFA 

parameters, RSA parameters. 

4D Volsurf, GRID, Raptor, etc. derived descriptors. 

5D 

These descriptors consider induced-fit parameters and aim to 

establish a ligand-based virtual or pseudoreceptor model. These 

can be explained as 4D-QSAR 1 explicit representation of 

different induced-fit models. Example: flexible-protein 

docking. 

6D 

These are derived using the representation of various solvation 

circumstances along with the information obtained from 5D 

descriptors. They can be explained as 5D-QSAR 1 simultaneous 

consideration of different solvation models. Example: Quasar. 

7D 
They comprise real receptor or target-based receptor model 

data. 

C. Development of statistical models 

 After collecting and identifying signal-producing descriptors that correlate with the target 

variable (biological activity), and noise-producing descriptors that don't, the next step is to pick 

the descriptors to be used in the created model. Statistical analysis is also used to identify which 

descriptors are correlated with each other, so that only the most important ones are retained, 

thereby reducing redundancy of information. In general, methods for designing the QSAR 

model could be divided into two groups: (i) Classical variable selection and (ii) Variable 

selection by artificial intelligence algorithms [39]. The choice of method depends mainly on 

the question being asked and the nature of the data to be processed.  

 Statistical Methods in QSAR 

(i). Multiple linear regression (MLR)  

Multilinear regression is of fairly restrictive use in QSAR [40], and is the simplest and 

most widely used method for developing predictive models [41]. It requires a very complete 

dataset in which all substituent combinations have been tested. In other words, it requires as 

many experiments as possible variations, which is rarely the case in practice. 

A regression analysis based on the assumption that there is a linear relationship between a 

dependent variable Y that depends linearly on several independent variables X1, X2, . . . , Xj is 
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called multiple linear regression. The multiple linear regression equation is of the form: Y = f 

(X1, X2, . . . , Xj) where f (X1, X2, . . . , Xj) is a linear function of X1, X2, . . . , X j [42]. The aim 

is to obtain a mathematical equation that can take the following form:  

                         𝒀𝒊 = 𝒂 + ∑ 𝑿𝒋
𝒊𝒋=𝒑

𝒋=𝒂                                              Eq II.2 

Where (bj) are the regression coefficients and (a) the regression constant. 

(ii). Partial least squares (PLS) 

Partial least squares (PLS) regression, a generalization of multiple linear regression, can 

be used when the number of descriptors is high and they are highly correlated [43, 44]. It uses 

a linear transformation to find the axes that best represent the data in space. One of the 

advantages of this regression method lies in its ability to handle large databases with many 

correlated variables [45]. 

PLS gives a statistically robust solution even when the independent variables are highly 

interrelated, or when the independent variables exceed the number of observations. PLS is an 

iterative regression method that produces its solutions based on the linear transformation of a 

large number of original descriptors into a small number of new orthogonal terms called latent 

variables. As such, this method is counted as a standard statistic [46]. The latent variables T 

(known as X-score) and U (Y-score) are derived from the large collection of descriptors and 

the responses (biological activity). The obtained latent variable T (X-score) is used to predict 

the U (Y-score) and, then, the U (Y-score) is used to predict the response (biological activity) 

[47].  

       (iii). Artificial neural networks (ANN) 

 ANNs are useful methods in QSAR studies, and particularly in cases where it is difficult 

to specify an exact mathematical model to describe a given structure property relationship. [48] 

The method of artificial neural networks originates from the real neurons found in an animal 

brain. ANNs are parallel computing systems made up of groups of highly interconnected 

processing elements called neurons, arranged in a series of layers. Each layer can perform its 

calculations independently, and can transmit the results to another layer. In this way, the result 

of the transfer function is communicated to the neurons in the output layer. This is the point at 

which the results are finally interpreted and presented. [48]  Figure 3 shows an example of 

neural network architecture. 
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Figure II.4: Neural network architecture. 

D. Validation of QSAR model: 

         In order to assess the importance of QSAR models and, consequently, their ability to 

predict the activities/properties of other (new) compounds, the validation of QSAR models 

remains a very sensitive stage in statistical studies. Since a model is the result of a statistical 

analysis, it must be interpreted and applied within the very precise framework of the domain 

covered in the analysis [49]. 

The requisite condition for the validity of the regression model is that the multiple correlation 

coefficients R2 and cross validated determination coefficient Q2 is as close as possible to one 

and the standard error of the estimation is small; although the former is not essentially a very 

good predictor of fitness. Apart from the use of fitness parameters to judge the statistical quality 

of the model, validation of QSAR models is carried out using two major strategies [50]: (i) 

internal validation using the training set molecules, and (ii) external validation based on the test 

set compounds by splitting the whole data set into training and test sets.  

Table II.4. Statistical parameters for fitting and cross-validation [51]. 

statistic Definition Equations and terms Threshold 
 

𝑅2 

Coffecient of 

multiple 

determination 

(or 

correlation) 

𝑅2 = 1 −
∑(𝑦

𝑜𝑏𝑠
− 𝑦

𝑐𝑎𝑙
)2

∑(𝑦
𝑜𝑏𝑠

− 𝑦
𝑡𝑟𝑎𝑛

̅̅ ̅̅ ̅)2
 

𝑦
𝑡𝑟𝑎𝑖𝑛

 = mean value of the observed activity of the training 

set compounds. 

𝑅2 > 0.6 

𝑅adj
2  Adjusted R2 

𝑅𝑎𝑑𝑗
2 ==

{(𝑛 − 1) − 𝑅}

𝑛 − 𝑝 − 1
  

n est le nombre des observations (les molécules) ; p est le 

nombre de variables indépendantes (les descripteurs) ; R 

est le coefficient de détermination du modèle. 

𝑅adj
2 > 0.6 
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SE 
Standard 

error of 

estimate 

𝑆𝐸 = √
∑(𝑦𝑜𝑏𝑠 − 𝑦𝑐𝑎𝑙)

2

(𝑛 − 𝑝 − 1)
 

Yobs and Ycal are the observed (experimental) and 

estimated scores respectively, while n is the number of 

compounds and p is the number of descriptors 

SE should be 

low for a good 

model 

F F-value 

𝐹 =
∑(𝑦𝑐𝑎𝑙 − 𝑦 ̅)2 /(𝑝)

∑(𝑦𝑜𝑏𝑠 − 𝑦𝑐𝑎𝑙)
2 /(𝑛 − 𝑝 − 1)

 

Yobs is the observed response, Ycalc is the calculated 

response, n defines the total number of compounds and 

predictor variables is denoted as p. 

F > F of fisher 

table 

𝑃𝑅𝐸𝑆𝑆𝐶𝑉  
Predictive 

residual sum 

of squares 

(cross-

validation) 

𝑃𝑅𝐸𝑆𝑆 = ∑(𝑦𝑜𝑏𝑠 − 𝑦𝑐𝑎𝑙)
2 

𝑃𝑅𝐸𝑆𝑆𝐶𝑉should 

be low for a 

good model 

𝑄2
𝐿𝑂𝑂

 Explained 

variance in 

prediction 
𝑄2

𝐿𝑂𝑂
= 1 −

∑(𝑦
𝑜𝑏𝑠

− 𝑦
𝑝𝑟𝑒𝑑

)2

∑(𝑦
𝑜𝑏𝑠

− 𝑦
𝑡𝑟𝑎𝑖𝑛

̅̅ ̅̅ ̅̅ )2
 𝑄2 > 0.5 

MAECALC 

Mean 

absolute error 

in fitting 

(calculated 

on training 

set) 

𝑀𝐴𝐸𝐶𝐴𝐿𝐶 =
∑|𝑦

𝑜𝑏𝑠
− 𝑦

𝑝𝑟𝑒𝑑
|

𝑛
 

 Good 

predictions:MAE 

 0.1 training 

set range, AND 

MAE 3   

0.2 training set 

range. 

 Bad prediction: 

MAE  0.15 

training set 

range; OR MAE 

training set rang 

MAE 3  

>0.25 training 

set range e. 

CCC 

Concordance 

correlation 

coefficient 

𝐶𝐶𝐶 =
2 ∑ (𝑥𝑖 − �̅�)𝑛

𝑖=1 (𝑦
𝑖
− �̅�)

∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1 + ∑ (𝑦

𝑖
− �̅�)2𝑛

𝑖=1 + 𝑛(�̅� − �̅�)
 CCC<1 

 

Besides these techniques, randomization or Y-scrambling and determination of the applicability 

domain (AD) of the model and selection of outliers are other vital aspects in the course of 

developing a reliable QSAR model with the spirit of OECD principles. 

 

Table II.5. Statistical parameters for external validation [51]. 

statistic Definition Equations and terms Threshold 
 

𝑅pred
2  R2 prediction 𝑅𝑎𝑑𝑗

2 = 1 −
∑(𝑦

𝑜𝑏𝑠
− 𝑦

𝑐𝑎𝑙
)2

∑(𝑦
𝑜𝑏𝑠

− 𝑦
𝑡𝑟𝑎𝑛

̅̅ ̅̅ ̅)2
 𝑅prd

2 > 0.6 

𝑄
𝐹1
2  

Variance 

explained in 

external 

prediction 

𝑄
𝐹1

2 = 1 −
∑(𝑦

𝑜𝑏𝑠(𝑡𝑒𝑠𝑡)
− 𝑦

𝑐𝑎𝑙(𝑡𝑒𝑠𝑡)
)2

∑(𝑦
𝑜𝑏𝑠(𝑡𝑒𝑠𝑡)

− 𝑦
𝑡𝑟𝑎𝑛

̅̅ ̅̅ ̅)2
 𝑄

𝐹1
2 > 0.5 

𝑄
𝐹2
2  

Variance 

explained in 
𝑄

𝐹2
2 = 1 −

∑(𝑦
𝑜𝑏𝑠(𝑡𝑒𝑠𝑡)

− 𝑦
𝑐𝑎𝑙(𝑡𝑒𝑠𝑡)

)2

∑(𝑦
𝑜𝑏𝑠(𝑡𝑒𝑠𝑡)

− 𝑦
𝑡𝑒𝑠𝑡

̅̅ ̅̅ ̅)2
 𝑄

𝐹2
2 > 0.5 
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external 

prediction 

𝑄
𝐹3
2  

Variance 

explained in 

external 

prediction 

𝑄
𝐹3
2 = 1 −

[∑(𝑦
𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) − 𝑦

𝑐𝑎𝑙(𝑡𝑒𝑠𝑡))
2] /𝑛𝑡𝑒𝑠𝑡

[∑(𝑦
𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) − 𝑦

𝑡𝑒𝑠𝑡
̅̅ ̅̅ ̅)2]/𝑛𝑡𝑟𝑎𝑖𝑛

 𝑄
𝐹3
2 > 0.5 

𝑟𝑚(𝑟𝑎𝑛𝑘)
2  

Closeness 

between the 

R2 and R02 

determination 

coefficients 

𝑟𝑚(𝑟𝑎𝑛𝑘)
2 = 𝑟(𝑟𝑎𝑛𝑘)

2 × (1 − √𝑟(𝑟𝑎𝑛𝑘)
2 − 𝑟0 (𝑟𝑎𝑛𝑘)

2 )  

𝑅�̅� An average of the correlation coefficient for randomized data 𝑅�̅� < 0.5 

𝑅𝑟
2̅ An average of the correlation coefficient for randomized data 𝑅𝑟

2̅ < 0.5 

𝑄
𝑟
2̅ 

An average of leave one out cross for randomized data -validated determination 

coefficient 
𝑄

𝑟
2 < 0.5̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

cRp
2 

cRp2 = 𝑅2 × (1 − √|𝑅2 − 𝑅𝑟
2̅̅̅̅ ) 

cRp
2> 0.6 

CCC 

Concordance 

correlation 

coefficient 

𝐶𝐶𝐶 =
2 ∑ (𝑥𝑖 − �̅�)𝑛

𝑖=1 (𝑦
𝑖
− �̅�)

∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1 + ∑ (𝑦

𝑖
− �̅�)2𝑛

𝑖=1 + 𝑛(�̅� − �̅�)
 CCC<1 

 

E. Applicability domain (AD): 

            To evaluate the reliability of any QSAR model and its power to predict new compounds, 

the domain of applicability must be essentially defined. The applicability domain plays a crucial 

role for estimating the uncertainty in the prediction of a particular compound based on how 

similar it is to the compounds employed to construct the QSAR model. The AD is defined as a 

theoretical region in the chemical space constructed by both the model descriptors and modeled 

response. Therefore, the prediction of a modeled response using QSAR is applicable only if the 

compound being predicted falls within the AD of the model as it is unfeasible to predict the 

whole universe of compounds using a single QSAR model [52,53]. 

Various methods are in place to assess the AD of QSAR models. From the QSAR publications 

of the last decade, the most widely used method for estimating interpolation regions is the 

leverage approach (Williams plot) [54], in which the standardized residuals and the leverage 

values (hi) are plotted. It is based on the calculation of the leverage hi for each compound, for 

which QSAR model is used to predict its activity: 

                            𝒉𝒊 = 𝒙𝒊(𝑿
𝑻𝑿)−𝟏𝒙𝒊

𝑻                                Eq II.3 

Where xi is the row vector of the descriptors of compound i and X is the variable matrix deduced 

from the training set variable values. The index T refers to the matrix/vector transposed. The 

critical leverage h* is, generally, fixed at 3(k + 1)/N, where N is the number of training 

compounds, and k is the number of model parameters. If the leverage value h of a compound is 

higher than the critical value (h*) i.e., h > h*, the prediction of the compound can be considered 

as not reliable. [55] 
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II.2.1.2.2. 2D and 3D QSAR analysis 

A. 2D QSAR 

 Classical 2D QSAR analysis (Hansch and Free Wilson analyses) consider only two 

dimensional (2D) structures. The principle of QSAR methods is, as the name suggests, to 

establish a mathematical relationship between molecular properties, both electronic and 

geometric, called descriptors, and a macroscopic observable (e.g. biological activity), for a 

series of similar chemical compounds, using data analysis methods. 

The data used to form the 2D-QSAR equation is represented by a matrix of numbers, with each 

row representing a compound and each column representing physicochemical properties 

(descriptors). In 2D-QSAR, there are numerous descriptors. Those most often used are 

constants logP, MW, RM ...etc. A large number of constant values are collected and a statistical 

analysis process exploits them to find the relationship between biological data and molecular 

descriptors [56]  

The basic formalism of the QSAR method will result from statistical analyses. The simple 

mathematical relationship is defined as follows (Eq II.4) [57]: 

                      Function = f (structural molecular or fragment properties)            Eq II.4 

To prevent these relationships from being statistically insignificant, or in the event of a one-off 

error, apply the following approach: 

- The ratio of compounds to descriptors must be greater than 5, 

- Descriptors must be uncorrelated. The degree of inter-correlation is assessed by the correlation 

coefficient r. [58] 

In addition, the multi-linear regression (MLR) method can be used to solve these problems [24]. 

B. 3D QSAR 

 Three-dimensional quantitative structure activity relationships (3D-QSAR) models are 

useful in the process of new drug design and development as their application helps to reduce 

the cost and time of the synthesis of medicinally active compounds [59–61].  

3D-QSAR are models that establish a relationship between biological activity and structural 

parameters (molecular descriptors) calculated in three-dimensional space for a group of 

molecules. 3D QSAR allows the prognosis of activity of structurally varied molecules and also 

assist in identification of new molecules with enhanced activity [62-67]. The different colored 

squares generated in 3D QSAR studies provide an idea about essential structural features for 

better biological activities [68- 70].  
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The CoMFA (Comparative Molecular Field Analysis) and CoMSIA (Comparative Molecular 

Similarity Indices Analysis) models are commonly used to study the quantitative structure-

activity relationship at the three-dimensional level [71,72].  

In these methods, molecule properties are described by different fields. For example: 

- The molecular surface accessible to the solvent, connolly or contact surface, 

- Electrostatic potential (position of charged groups), 

- Participation in hydrogen bonds, 

- Molecular lipophilicity potential, 

- Molecular orbitals, 

- The shape of the molecule. 

The principles of these models are based on the use of mesh networks (figure II 

5).  

 

Figure II.5: Flowchart to construct 3D-QSAR model. 

➢ Comparative Molecular field Analysis (CoMFA) 

 The CoMFA is a molecular field-based, alignment-dependent, ligand-based 3D QSAR 

method which generates a quantitative relationship of molecular structures of a ligand can be 

predicted from its three dimensions and its biological response [71, 73].  

To date, CoMFA is probably the most widely used 3D-QSAR method. A CoMFA study 

normally begins with traditional pharmacophore modeling to suggest a bioactive conformation 

for each molecule and ways of superimposing the molecules under study. [71]  

The idea behind CoMFA is that differences in a target property, for example, biological activity, 

are often closely related to equivalent changes in the shapes and strengths of the non-covalent 
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interaction fields surrounding the molecules employing linear regression methods such as 

partial least squares (PLS) [25].  

Or stated differently, steric and electrostatic fields provide all the information needed to 

understand the biological properties of a set of compounds [74]. Accordingly, molecules are 

placed in a cubic grid and the interaction energies between the molecule and a defined probe 

are calculated for each grid point. [71] Figure II.6 shows the steric and electronic field in a 

COMFA grid.  

 

Figure II.6: The steric and electrostatic field in a CoMFA grid [73] 

In a CoMFA study, correct alignment of the molecules is essential but often problematic. 

Optimal alignment can be defined as achieving maximum superposition of the steric and 

electrostatic fields of a set of molecules. Alignment varies from molecule to molecule, 

depending on structural similarity or diversity. Consequently, alignment significantly 

influences model results, and meaningful and relevant results should only be expected for valid 

alignments. [75]  

The CoMFA has the ability to design of new ligands in the structure–activity correlation 

problems. Along with a good physicochemical property or response.[76] 

 Display and Interpretation of CoMFA-Results [76] 

The results are displayed for a CoMFA model by two ways: 

(a) Coefficient contour plots: It portrays vital regions in space around the 

compounds where specific structural modifications appreciably vary with the response. In 

CoMFA, two types of contours are shown for each interaction energy field: (i) the positive and 

(ii) negative contours which are depicted by some specific colors. 

(b) Plots from PLS models: Two types of plots are generally created: (i) score plots and (ii) 

loading/weight plots. The score plots between biological response (Y-scores) and latent 

variables (X-scores) show relationships between the activity and the structures, whereas plots 
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of latent variables (X-scores) display the similarity/dissimilarity between the molecules, and 

their clustering predispositions. 

➢ Comparative Molecular Similarity Indices Analysis (CoMSIA) 

     Because of the problems associated with the functional form of the Lennard-Jones potential 

used in most CoMFA methods, Klebe et al. have developed a CoMFA method based on 

similarity indices called CoMSIA (comparative analysis of molecular similarity indices). 

Instead of grid-based fields, CoMSIA is based on similarity indices obtained using a functional 

form adapted from the SEAL algorithm [77]. 

Three different indices related to steric, electrostatic and hydrophobic potentials were used in 

their study of the classical steroidal reference dataset. In CoMSIA, five different similarity 

fields are calculated at regularly spaced grid points for the aligned molecules [76]. 

- Steric, 

- Electrostatic, 

- Hydrophobic, 

- Hydrogen bond donor, and 

- Hydrogen  

Models of comparable statistical quality with regard to the cross-validation of the training set, 

as well as the predictivities of a test set, were derived using CoMSIA [78]. 

 Advantages of CoMSIA [76] 

The CoMSIA technique provides following unique advantages: 

• The ‘Gaussian distribution of similarity indices’ overcomes the unanticipated changes in 

grid-based probe–atom interactions. 

• The choice of similarity probe includes steric and electrostatic potential fields as well as 

hydrogen bonding and hydrophobic fields. 

• The effect of the solvent entropic provisions can also be included by employing a 

hydrophobic probe. 

• The CoMSIA contours indicate those areas within the region occupied by the ligands that 

‘favor’ or ‘oppose’ the occurrence of a group with a particular physicochemical property or 

response. 
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Figure II.7: Contour maps and molecular alignment in a CoMSIA grid. 

II.2.1.3. Ligand-based pharmacophore approaches 

          Pharmacophore approaches have now become one of the main tools used in VSDD [7]. 

The pharmacophore concept was developed by Ehrlich at the end of the 19th century [79]. At 

this time, although the term pharmacophore was not used, Ehrlich developed the idea that 

certain chemical groups in a molecule are responsible for biological or pharmacological action 

[80]. 

According to the official 1998 IUPAC (International Union of Pure and Applied Chemistry) 

definition, a pharmacophore model is "a set of steric and electronic characteristics necessary to 

ensure optimal supramolecular interactions between drugs, and a specific biological target to 

trigger (or block) its biological response" [81].  

According to this definition, molecules sharing the same pharmacophore for a given target 

should therefore bind identically to this receptor and present similar activity profiles. One of 

the major features of this type of method is that a pharmacophore is defined by mutually 

complementary pharmacophoric points, which are functional groups rather than groups of 

atoms. The various pharmacophoric points sought ( figure II.8) are hydrogen bond donors and 

acceptors, positively charged groups which form electrostatic interactions with negatively 

charged ones and vice versa, and aromatic groups, considered distinctly from the broader class 

of hydrophobic groups from which they are derived, and both of which are complementary to 

other hydrophobic groups. [82] 
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Figure II.8: Overview of pharmacophore mapping. 

A pharmacophore is considered to be ligand-based when it is determined from the structure of 

active reference compounds without knowing or taking into consideration the structure of the 

receptor. Once the pharmacophore has been obtained, it is used to screen the chemical library 

for potentially active molecules [83]. Furthermore, it gives good knowledge about molecular 

interactions of various compounds to their target structure and these features are complimentary 

to each other in 3-D space. Pharmacophore could be more better though combination with shape 

and volumes for proper fitting into the site of the receptor because wrong shape prevents fitting 

of compound into the receptor [84].  

II.2.1.3.1. Elucidation of the pharmacophore 

The elucidation of a pharmacophore is a complex process divided into several steps [85]. 

(i) Selection of reference ligands: The reference ligands used to build a pharmacophore 

are active compounds whose activity on the biological target under study is known and 

comparable for all. 

(ii) Conformational research: The ligands used to create the pharmacophore must be in 

their bioactive conformations, i.e. the conformation in which they bind to the receptor. 

However, when this has not been identified, a conformational search must be carried out 

to include all ligand conformations in the study. 

(iii) Determination and representation of pharmacophore points for each ligand: 

Pharmacophoric points can be of three types: based on atoms, based on topological groups 

and based on the chemical properties of groups of atoms. 
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The choice of the type of pharmacophore point is not trivial. Indeed, if the 

pharmacophoric points of a model are based on atoms or topological groups (for example, 

an oxygen or a carbonyl), only molecules possessing exactly these atoms or topological 

groups can be identified as "hits" during screening. Conversely, if the pharmacophore 

points describe chemical properties, the number of molecules that can satisfy the 

pharmacophore criteria increases, since different elements can represent the same 

chemical function (e.g. a nitrogen and an oxygen can both be hydrogen bond acceptors). 

(iv) Determining pharmacophore models: Once the pharmacophore points have been 

defined for each ligand, it is necessary to search for those that are common to the different 

reference ligands in order to obtain one or more pharmacophore models. To do this, the 

ligands must be aligned, and algorithms for finding the maximum common substructure 

(MCS) are generally employed. 

(v) Assigning scores to different models and selecting the best pharmacophore(s): In 

the final step, a score is assigned to the different pharmacophore models, enabling them 

to be ranked. The various scoring functions used are based on the number and quality of 

pharmacophore points superimposed between the reference ligands, conformational 

energy, overlap volume between the different ligands [86], but also the rarity of the 

pharmacophore. 

II.2.2. Structure-Based Virtual Screening 

 The performance of biochemical processes and cell mechanisms are dependent upon 

complex and multiple non-covalent intermolecular interactions between proteins and small-

molecule modulators. The understanding of the structural and chemical binding properties of 

important drug targets in biologically relevant pathways allows the design of small molecules 

capable of regulating or modulating specific target functions in the body that are closely linked 

to human diseases and disorders, through multiple intermolecular interactions within a well-

defined binding pocket [87-90]. It contains important methods which can be used in VS, which 

are the following: 

II.2.2.1. Molecular Docking  

 Interactions between a protein receptor and its ligand are the basis of most biological 

mechanisms, so the details of these interactions, at the molecular level, are of great interest and 

can be studied by docking. [91]  

The use of docking methods in the drug design process began over 30 years ago[92]. The main 

role of this technique is to predict the ability or otherwise of a ligand (substrate, activator or 
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inhibitor) to bind to the amino acids making up the active site structure of a receptor protein 

(protein), based on prediction of the conformation and orientation of the molecule on binding 

to the receptor [93].  

Molecular docking takes place in two distinct stages: 

The first step is to position the ligand in the chosen site on the protein.  

The second stage of this method allows the evaluation of energy interactions between 

ligand and protein. These two steps are different from docking program used [94]. 

To this end, docking methods combine the use of a search algorithm to generate putative ligand 

binding modes in the receptor, or "poses", and a scoring function to rank the different poses 

according to a predicted affinity score [95].  

II.2.2.1.1. Docking process 

 The action of a molecule in a protein is governed by principles of mutual recognition 

between the molecule and its target. The general characteristics of ligand-protein interactions 

lie in steric, hydrophobic and polar complementarily between the two structures, and a 

favorable energy conformation of the ligand that favors good binding affinity [96].  

Docking methods seek to assemble proteins to build a complex [97]. The docking process 

involves the interaction of a small organic molecule with the receptor, usually a protein [98] 

(figure II.9). The aim is to determine how these molecules will fit together. The problem is 

therefore to determine the structure of the molecular complex resulting from the association of 

two molecules of known structure [99]. 

 

Figure II.9: Outline of process involved in Molecular Docking. 
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In molecular biology, there are two main docking problems: ligand-protein docking and 

protein-protein docking. 

a. Ligand-protein docking: 

         This technique requires a large molecule (the protein is also called "the receptor") and a 

small molecule (the ligand), and is very useful in drug development. The problem to be solved 

resembles the "key in the lock" situation, when the ligand is docked in the cavity of the protein.  

b. Protein-protein docking: 

Protein-protein interactions are also extremely important, since they are responsible for 

many necessary biological functions. Prediction of such interactions is extremely important to 

the complete understanding of human physiology. Association of two biological 

macromolecules is a fundamental biological phenomenon and an unsolved theoretical problem. 

In recent years, several groups have developed a variety of tools in an attempt to solve the so 

called protein-protein docking problem, that is, the prediction of the geometry of a complex 

from the atom coordinates of its uncomplexed constituents.[100] 

II.2.2.1.2. Search algorithms 

Search algorithms for dealing with ligand flexibility can be classified into three broad 

categories: systematic search algorithms, random or stochastic search algorithms and 

deterministic or simulation search algorithms[101].  

a. Systematic search: 

     The general principle is to cut the ligand into rigid and flexible fragments. First, one 

or more fragments that are to be rigid are placed within the active site and thus brought 

into interaction with the target, then the ligand is reconstructed by placing the flexible 

fragments in succession while exploiting the angles of twist. [102] 

Systematic search algorithms aim to explore all ligand degrees of freedom by rotating all 

rotatable bonds from 0 to 360° using a chosen incremental step. As a result, the number 

of conformations generated can be very large. (Equation II.5). This is known as the 

combinatorial explosion.  

                                         Eq II.5 

Equation II.5. Calculation of the number of possible conformations (Nconformations) for 

a ligand with N the number of rotational bonds, ninc the number of increments and θi,j 

the value of the rotational incremental angle j for bond i. [103] 
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Two types of methods can be used: exhaustive search methods and incremental 

reconstruction methods. 

b. Random or stochastic search: 

    Random search or stochastic algorithms make random changes in terms of translations, 

rotations and torsions to generate new ligand conformations. Changes are accepted or 

rejected using of a probability function [93]. Four main types of algorithm fall into this 

category class: Monte-Carlo methods, genetic algorithms, algorithms of the taboo search 

and swarm optimization algorithms [104].   

In the most widely used "Monte Carlo" method, the ligand is considered as a whole, and 

changes are made in translations, rotations and torsions. For each movement, the 

molecule is minimized and its energy calculated. The conformation obtained by this 

transformation is tested with a selection criterion based on energy. If this criterion is 

validated, it will be saved and the program will then generate the next conformation. 

Iterations continue until the predefined number of conformations has been collected. The 

main advantage of the Monte Carlo method is that the change can be large enough to 

allow the ligand to cross energy barriers on the potential energy surface. This is a point 

not easily reached by simulation methods based on molecular dynamics [105]. 

c. Deterministic or simulation research: 

      Simulation methods are based on the solution of Newton's equations of motion. They 

include molecular dynamics techniques and minimization algorithms. The former are 

never used to generate ligand flexibility, as they require a computation time that is 

incompatible with the management of molecule databases. The latter, on the other hand, 

are sometimes used in docking programs, as a complement to another search algorithm, 

in order to achieve a low-energy conformation. [106] 

II.2.2.1.3. Score functions 

 The score function is a useful numerical datum for quantifying the degree to which a 

ligand complexes with a receptor. Overall, it is an approximation of the free energy resulting 

from the transition from the free form of the protein and ligand to the association in complex 

form. The thermodynamic principle is as follows (Eq. II.6): [107]  

∆G=∆G complexe-∆G ligand-∆G proteine                             Eq.II.6 

Establishing a good score function is a major problem in docking. It often happens that the 

solution evaluated as the most probable is not the expected native form. This may be due to the 

fact that the native complex is not necessarily the one with the largest access surface, or the 
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greatest number of available hydrogen bonds. For this reason, there are different types of score 

functions, depending on the criteria on which they are based[108]. Chemical affinity can be 

calculated by the Gibbs free energy ∆Gl for a temperature T[109,110]: 

a. Score functions based on force fields: 

     Force-field-based score functions use molecular mechanics to calculate the 

interaction energy of the complex and the internal energy of the ligand. G-Score [111]. 

In molecular mechanics (MM), a force field corresponds to a set of parameters and 

functions used to define a system and describe its potential energy landscape. 

Parameters classically include atomic mass, charge, van der Waals radius and various 

reference values corresponding to inter-atomic bond lengths and plane and dihedral 

angles. These parameters are generally derived from experiments or quantum 

simulations usually performed on small organic molecules. Force field functions 

correspond to mathematical formalisms that integrate these parameters and are used to 

calculate various types of potential energy [112]. 

The main limitations of force-field-based score functions stem from the fact that they 

were written for gas-phase models and therefore do not contain a solvation effect or  

entropy term. Extensions including an entropy term for the ligand (in G-Score) and protein-

ligand hydrogen bonds (in Gold and Autodock) have recently been added[113]. 

b. Empirical score functions: 

     Empirical score functions are used to interpret the interaction energy of a receptor-ligand 

complex from a summation equation of localized chemical interactions. [111]. This type of 

function is based on multiple regression to adjust the function coefficients according to 

the physics of the system. Fitting from a dataset of receptor-ligand complexes with 

measured affinities[114].  

Empirical score functions usually contain terms describing ionic interactions, hydrophobic 

interactions, hydrogen bridges or bonds and interactions generated by entropy change (entropy 

penalty). However, these score functions sum up these different terms, weighting them with 

terms describing the different types of molecular interactions[115]. Most docking software uses 

this type of function because of its efficiency in terms of speed and precision. However, their 

main drawback is their strong dependence on calibration parameter data. 

c. Knowledge-based scoring functions: 

       These functions are derived from the analysis of the three-dimensional structures of 

experimentally determined ligand-protein complexes. Rules defining the preferred 

geometry of interactions are deduced from these structures by statistical means. [116] 
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These statistical functions make it possible to establish a correlation between the 

thermodynamic state of the protein-ligand complex that forms a system and the 

probability of finding this complex in a given microscopic state. Frequencies are 

converted into free enthalpy (energy) using a Boltzmann distribution, and the potentials 

are therefore called Potential of Mean Force (PMF)[116].  

d. Consensus score functions: 

      Numerous scoring functions have been developed, but none is universally 

applicable. Some will perform well on a set of proteins related to those in the training 

set used to calibrate their parameters, but will be less suitable for proteins with different 

physico-chemical properties. In addition, each score function has its own advantages 

and disadvantages with regard to the model formulated to describe the process of 

association of a ligand with its receptor. These characteristics nevertheless suggest that 

several score functions should capture different information. It was on the basis of this 

idea that the application of consensus scoring was introduced by combining the 

predictions of multiple score functions [118]. Several strategies varying in the way they 

combine each score have been undertaken and have shown improvement in the 

prediction of binding mode, affinity or even the identification of ligands that can 

effectively bind a receptor in virtual screens [119]. 

II.2.2.1.4.   Analysis of results 

Two commonly used criteria were utilized for assessment of docking software accuracy. 

(i) Root-mean square deviation (RMSD): 

        The first way to evaluate quality of a docked pose is to compare its geometry relative to 

the original experimental structure. 

Difference between two conformations (or any three-dimensional structures) is often measured 

by computing root-mean square deviation (RMSD) [120]. RMSD can be calculated using 

formula (Equation II.7): 

                               𝑹𝑴𝑺𝑫 = √
𝟏

𝑵
∑ 𝜹𝒊

𝟐𝑵
𝒊=𝟏                                          Eq II.7 

Where N is the total number of atoms in the molecule and δ is a distance between each pair of 

corresponding atoms. 

Concerning current docking software accuracy, the RMSD value of 2 Å is commonly used as 

a cutoff value. Poses closer to the experimentally determined structure (i.e. with RMSD lower 

than 2 Å) are generally considered sound. 
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RMSD for heavy atoms was calculated using RMSD Tool plugin implemented in an interactive 

graphics software VMD [121]. 

(ii) Binding score: 

       Accuracy of a scoring function was measured by a comparison of predicted binding score 

of a ligand with experimental value of free energy of binding. 

While scoring functions employed in docking software tend to use various approximations to 

enhance their speed, their accuracy is not on a level of more computationally expensive 

methods. To provide a context, standard error was estimated to be around 2.5 kcal/mol [122]. 

In comparing binding energies predicted by docking software with experimentally determined 

values, two criteria are commonly considered. 

First one is comparison of absolute values of energy, therefore accuracy of binding energy 

prediction. On the other hand, in the field of drug design, researchers are often more interested 

in comparing inhibitor potency relative to each other. For this purpose, docking software should 

ideally be able to rank the ligands from the most to the least potent (predict the correct binding 

trend), even if the absolute values of binding energy are not accurate. Two correlation 

coefficients are commonly used [123] to quantify relationship between actual and predicted 

biding trend. 

II.2.2.1.5. Different types of docking 

a- Rigid docking: The ligand is rigid and the search for the optimum position is limited to 

positioning. We speak of key-locks, considering only rigid bodies capable of interacting 

when they present perfect geometric compatibility. This concept was introduced by Emile 

Fisher in 1894 [124]. 

b- Semi-flexible docking: the ligand is flexible in order to explore all possible 

conformations, while the target is kept rigid during assembly. Although this type of 

docking has the advantage of requiring a relatively short computation time, it does not 

take into account conformational changes required by the target. Numerous studies using 

this semi-flexible strategy have led to conclusive results [125,126]. However, proteins 

remain in constant motion and the major challenge today is to introduce the deformations 

of the receptor (protein).  

c- Docking flexible : When docking methods take ligand flexibility into account, two steps 

are performed successively throughout the docking process: 

- The first step is to explore the conformational space in order to find the bioactive 

conformations among the proposed conformations. 
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- In the second stage, a score function evaluates these conformations [127]. There are 

several types of conformational search algorithms.  

II.2.2.2. Molecular dynamics 

 Molecular dynamics (MD) is a computer simulation technique in which the time 

evolution of a set of interacting atoms can be followed by integrating their equations of 

motion.[128,129] The first steps in molecular dynamics were only possible with the arrival of 

the first computers (1957). But the first real simulations were carried out by Rahman, thanks to 

his work on the simulation of liquid argon in 1964, with a simulation time of 10-11 s, followed 

by liquid water [130] in 1971.  

Molecular mechanics calculates the position of atoms and molecules in their minimum energy 

states, at 0°K, i.e. without the slightest vibration or movement. Molecular dynamics attempts 

to simulate the movement of atoms and molecules over time at temperatures above 0°K. 

II.2.2.2.1. General Principle 

Molecular dynamics (DM) is a technique for simulating the evolution of several molecules 

over time [131] (figure II.10). It consists in studying the trajectory of a molecule by applying 

the laws of classical Newtonian mechanics (Equation II.8), to describe the motion of a molecule 

as a function of time.[129] In this way, the molecule's trajectory can be described as a function 

of time.  

                                        𝑭𝒊
⃗⃗  ⃗= 𝒎𝒊𝒂𝒊⃗⃗  ⃗ = 𝒎𝒊

𝒅𝟐𝒓𝒊(𝒕)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝒅𝒕𝟐
                                           Eq II.8 

Where: 

𝑭𝒊
⃗⃗  ⃗  : Vector force acting on atom i. 

𝒎𝒊 : Masse of atom i. 

𝒂𝒊⃗⃗  ⃗ : Acceleration Vector of atom i. 

𝒓𝒊⃗⃗  ⃗ : Position of atom i. 

The velocities and positions of individual atoms over time can be used to evaluate macroscopic 

data such as kinetic energy and temperature. It can be used to simulate intramolecular 

movements, which can then be visualized in real time. These movements correspond to 

vibrations around a minimum, or to the passage from one minimum to another minimum in 

energy [130]. 



  

 

51 

 

Figure II.10: Outline of process involved in Molecular Dynamic. 

However, not all properties and quantities can be directly calculated in an MD simulation and 

vice versa certain quantities that can be directly estimated in a simulation cannot be tracked in 

an experiment. A representative example is a simulation of liquid water in which we can 

measure the coordinates and velocities of each molecule (microscopic properties) at any 

instance of time. However, there is no experimental method that can produce this kind of 

information, but rather it will provide us with the averaged properties across a large number of 

molecules (macroscopic properties). [132]  

II.2.2.2.2. Key components of molecular dynamics  

There are several key components involved in molecular dynamics [131]: 

- System topology: defining the set of atoms and their bonds 
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- Coordinates and initial velocities of the atoms in the system: coordinates are usually 

derived from experimentally determined structures, while initial velocities are often 

automatically generated.  

- Thermostats/barostats: to control the temperature and/or pressure of the environment, 

depending on the thermodynamic set chosen. 

-  The force field: which defines all the forces applied to the system's atoms in the form 

of potentials. Atoms are usually represented in point form, symbolizing the position of 

the nucleus. The name "force field" also denotes the parameters associated with the 

various atoms, bonds and forces (mass, charge, potential constants, etc.). 

- The integrator: this is the algorithm that generates a new conformation from the 

coordinates of previous conformations and/or velocities, the force field and any 

thermostats, barostats and other forces that may have been applied.  

II.2.2.2.3. Issues and Limitations of Molecular Dynamics 

 Molecular dynamics has several issues, some caused by the characteristics of simulated 

chemical processes, most of them caused by the nature of the method itself. 

 In models of computational chemistry, the energy surface maps coordinates of atoms to 

the energy. This function has many local minima that correspond to more or less stable 

states of the system. In the interesting processes the system usually crosses the energy 

barrier and transforms from one state to another. However, crossing the barrier occurs 

with probability that exponentially relates to its height, i.e. the higher barrier, the less 

probable crossing. Therefore, classical MD simulations sometimes have to simulate for 

long simulation time for crossing of the energy barrier to happen. As it can be rather 

difficult and lengthy to cover and sample whole energy surface, the issue is called the 

sampling problem [133]. 

 Needed long simulation times directly lead to long wallclock times as MD solves the 

initial value problem in a sequence of steps and, moreover, the integration scheme has 

small time step due to high oscillations of bonds that contain the hydrogen. The 

evaluation of the potential between atoms in each step remains computationally 

demanding despite many approximations of long-range interactions. Moreover, 

evaluation of long-range interactions requires communication between all processors 

calculating spatially decomposed parts. Many decomposition techniques rather compute 

the same values on two different processors than send a message which stresses the high 

temporal cost of communication [134]. 



  

 

53 
References 

1. Kapetanovic IM. (2008) Computer-aided drug discovery and development (CADDD): in 

silico-chemicobiological approach. Chem Biol Interact 171: 165- 176.  

2. Padole SS, Asnani AJ, Chaple DR, Katre SG (2022) A review of approaches in computer-

aided drug design in drug discovery. GSC Biol Pharma Sci 19(2), 075-083. 

3. López-Vallejo F, Caulfield T, Martínez-Mayorga K, Giulianotti MA, Houghten RA, Nefzi 

A, Medina-Franco JL (2011) Integrating virtual screening and combinatorial chemistry for 

accelerated drug discovery. Comb. Chem. High Throughput Screen 14,475–487.  

4. Gautam RK, Kamal MA and Mittal P (2023) Computational Approaches in Drug 

Discovery, Development and Systems Pharmacology , Academic Press, Elsevier Inc. 

5. Begum S, Shahidulla SM (2019) Role of Computer Aided Drug Design in Drug 

Development and Discovery: An Overview. Int J Res Eng Sci Manag 2(2): 445-450. 

6. Kapetanovic IM (2008) Computer-aided drug discovery and development (CADDD): in 

silico-chemico-biological approach. Chem Biol Interact 171:165-176. 

7. Pasupa, K. (2012). The Review of Virtual Screening Techniques. KMITL Inf Tech J 1(1). 

8. Johnson MA, Maggiora GM (1990) Concepts and Applications of Molecular Similarity. 

Wiley edition. 

9. Muchmore SW, Edmunds JJ, Stewart KD, Hajduk PJ (2010) Cheminformatic tools for 

medicinal chemists. J Med Chem 53:4830–41. 

10. Maldonado AG, Doucet JP, Petitjean M, Fan BT (2006) Molecular similarity and diversity 

in chemoinformatics: from theory to applications. Mol Divers 10: 39–79. 

11. Ou-Yang SS, Lu JY, Kong X Q, Liang ZJ, Luo C, Jiang H (2012) Computational drug 

discovery. Acta Pharmacologica Sinica 33(9):1131-1140. 

12. Carhart R, Smith D, and Venkataraghavan R (1985) “Atom pairs as molecular features in 

structureactivity studies: definition and applications,” J Chem Inf Comp Sci 25(2):64–73. 

13. Willett P, Winterman V, Bawden D (1986) “Implementation of nearest-neighbor searching 

in an online chemical structure search system,” J Chem Inf Comp Sci 26(1): 36–41. 

14. Johnson MA, Maggiora G. M (1990) Eds., Concepts and Applications of Molecular 

Similarity. New York: John Wiley & Sons. 

15. Gower JC (1985) “Measures of similarity, dissimilarity and distance,” Encyclopedia of 

statistical sciences 5:397–405.  

16. Ellis D, Furner-Hines J, Willett P (1993) “Measuring the degree of similarity between 

objects in text retrieval systems,” Perspec Inf Manag 3(2):128–149. 



  

 

54 
17. Liu XF, Jiang HL, Li HL. (2011) SHAFTS: a hybrid approach for 3D molecular similarity 

calculation. 1. Method and assessment of virtual screening. J Chem Inf Model 51:2372–85. 

18. Raymond J, Willett P (2002) “Effectiveness of graph-based and fingerprint-based similarity 

measures for virtual screening of 2D chemical structure databases,” J Comp Aided Mol 

Design 16(1):59– 71. 

19. Vidal D, Thormann M, Pons M, (2005) “LINGO – an efficient holographic text based 

method to calculate biophysical properties and intermolecular similarities,” J Chem Inf 

Model 45(2):386–393. 

20. Liu XF, Ouyang SS, Yu BA, Liu YB, Huang K, Gong JY, et al. (2010) PharmMapper 

server: a web server for potential drug target identification using pharmacophore mapping 

approach. Nucleic Acids Res 38:W609–14. 

21. Sree Mahalakshmi P, Jahnavi  Y (2020) A Review on QSAR Studies. Int J Adv Pharm 

Biotech 6(2):19–22. 

22. Sippl W, Holtje HD (2000) Structure-based 3D-QSAR—merging the accuracy of structure-

based alignments with the computational efficiency of ligand-based methods. J Mol Struct 

(Theochem) 503: 31–50. Doi:10.1016/S0166-1280(99)00361-9. 

23. Dermeche K, Tchouar N, Belaidi S (2015) J. Bionanosci 9:395-400.   

24. Ghasemi J, Saaidpour S, Brown SD (2007) J Mol Struct (Theochem) 805:27-32. 

25. Geladi P, Kowalski BR (1986) Anal Chim Acta 185:1-17. 

26. Duprat AF, Huynh T, Dreyfus G (1998) J Chem Inf Comput Sci 38:586-594. 

27. Tetko IV, Villa AEP, Livingstone DJ (1996) J Chem Inf Comput Sci 36:794-803. 

28. Gasteiger J, Zupan J, (1993) Angew Chem Int Ed Engl 32:503-527. 

29. Muhammad U, Uzairu A, Ebuka Arthur D (2018) Review on: quantitative structure activity 

relationship (QSAR) modeling. J Anal Pharm Res 7(2):240-242.  

30. Waterbeemd H, Rose S (2003)"Quantitative approaches to structure-activity relationships", 

in Book "Quantitative approaches to structure-activity relationships". Elsevier. 351-367. 

31. Almi Z, Belaidi S, Segueni L (2015) Rev Theor Sci 3 : 264-272. 

32. Blaney JM, Martin EJ (1997) Computational approaches for combinatorial library design 

and molecular diversity analysis. Curr opin chem biol 1(1):54-9. 

33. Hopfinger AJ, Duca JS (2000) Extraction of pharmacophore information from high-

throughput screens. Curr opin in biotechno 11(1):97-103. 

34. Todeschini R, Consonni V (2008) Handbook of Molecular Descriptors. John Wiley & Sons.  

35. Kerassa A, Belaidi S, Harkati D, Lanez T, Prasad O, Sinha L (2016) Rev Theor Sci 4:85-

96. 



  

 

55 
36. Belaidi S, Mazri R, Belaidi H, Lanez T, Bouzidi D (2013) Asian J Chem  25 : 9241-9245. 

37. Todeschini R, Consonni V. (2009) Molecular descriptors for chemoinformatics: volume I: 

alphabetical listing/volume II: appendices, references: John Wiley & Sons. 

38. Khan AU (2016) “Descriptors and their selection methods in QSAR analysis : paradigm for 

drug design,” Drug Discov Today 21(8):1291–1302. doi: 10.1016/j.drudis.2016.06.013. 

39. Guest S, Section E 2012 “Feature Selection Methods in QSAR Studies,” J. AOAC Int., vol. 

95(3):636–651.  

40. Rivail JL (1999) Eléments de chimie quantique à l’usage des chimistes, 2ième éd., CNRS 

Edition. 

41. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:864-871. 

42. Thomas LH (1927) The calculation of atomic fields. Proc. Camb Phil Soc 23:542- 548. 

43. Puzyn T, Leszczynski J, Cronin MT (2010) Recent Advances in QSAR Studies: Methods 

and Applications: Part I Theory of QSAR, Challenges and Advances in Computational 

Chemistry and Physics, 8. 

44. Tobias RD (2002) An Introduction to Partial Least Squares Regression, Statistical Analysis 

System Institute Inc., Cary, USA. 

45. Gauchi JP (1995) Rev Stat Appl 43:65-89.  

46. Patel HM, Noolvi MN, Sharma P, Jaiswal V, Bansal S, Lohan S, et al. (2014) Quantitative 

structure–activity relationship (QSAR) studies as strategic approach in drug discovery. Med 

Chem Res 23(12):4991-5007. 

47. Abdi H (2010) Partial least squares regression and projection on latent structure regression 

( PLS Regression ), Wiley interdisciplinary reviews: computational statistics, 2(1):97-106. 

48. Hoffman BT, Kopajtic T, Katz JL, Newman AH. (2000) 2D QSAR modeling and 

preliminary database searching for dopamine transporter inhibitors using genetic algorithm 

variable selection of Molconn Z descriptors. J med chem 43(22):4151-9. 

49. Tropsha A, Gramatica P, Gombar VK (2003) the importance of Being Earnest: Validation 

is the Absolute Essential for Successful Application and interpretation of QSPR Models‖, 

QSAR and Combinatorial Sciences 22(1):69–77. 

50. Basak SC, Mills D (2010) “Quantitative structure-activity relationships for cycloguanil 

analogs as PfDHFR inhibitors using mathematical molecular descriptors,” SAR QSAR 

Environ Res 21:215–229. 

51. Luque FJ (2018) Frontiers in computational chemistry for drug discovery 23(11): 2872. 

52. Tetko IV, Sushko I, Pandey AK, Zhu H, Tropsha A, Papa E, Oberg T, Todeschini R, 

Fourches D, Varnek A (2008) J Chem Inf Model 48:1733. 



  

 

56 
53. Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR  

Comb Sci 26:694–701 

54. Gadaleta D, Mangiatordi GF, Catto M, Carotti A, Nicolotti O (2016) “Applicability Domain 

for QSAR Models,” Int. J Quant Struct Relationships 1:5–63,  

55. Ghamali M, Chtita S, Ousaa A, Elidrissi B, Bouachrine M, Lakhlifi T (2017) Review Article 

on QSAR analysis of the toxicity of phenols and thiophenolsusing MLR and ANN. J Taib 

Univ Sci 11:1–10 

56. Silverman RB (2004)"The Organic Chemistry of Drug Design and Drug Action." 2nd ed, 

USA: Elsevier. 

57. Patel HM, Noolvi MN, Sharma P (2014) “CHEMISTRY Quantitative structure – activity 

relationship ( QSAR ) studies as strategic approach in drug discovery,” 4991–5007. 

58. Trinajstiæ N, Nikoliæ S, Basak SC, Lukovits I, (2001) "Distances indices and their 

hypercounterparts: Intercorrelation and use in the structure-property modeling." SAR 

QSAR Environ Res 12:31-54. 

59.  Bhadoriya KS, Sharma MC, Jain SV, Raut GS, Rananaware JR (2013) Three-dimensional 

quantitative structure–activity relationship (3D-QSAR) analysis and molecular docking-

based combined in silico rational approach to design potent and novel TRPV1 antagonists. 

Med Chem Res 22(5):2312–27. 

60. Amnerkar ND, Bhusari Synthesis KP (2010) Anticonvulsant activity and 3D-QSAR study 

of some prop-2-eneamido and 1-acetyl-pyrazolin derivatives of aminobenzothiazole. Eur J 

Med Chem. 45(1):149–59. 

61. Bhadoriya KS, Sharma MC, Jain SV (2015) Pharmacophore modeling and atom-based 

3DQSAR studies on amino derivatives of indole as potent isoprenylcysteine carboxyl 

methyltransferase (Icmt) inhibitors. J Mol Struct 1081:466–76. 

62. Mali SN, Chaudhari HK (2018) Computational studies on imidazo [1, 2-a] pyridine-3-

carboxamide analogues as antimycobacterial agents: common pharmacophore generation, 

atom-based 3D-QSAR, molecular dynamics simulation, QikProp, molecular docking and 

prime MMGBSA approaches. Open Pharm Sci J 5(1): 12–23. 

63. Bhongade BA, Amnerkar ND, Gadad AK (2020) 3D-QSAR studies on 4, 5-dihydro-1H-

pyrazolo [4, 3-h] quinazolines as plk-1, CDK2/A and aur-A serine/threonine kinase 

inhibitors. Lett Drug Des 17(4):388–95. 

64. Kesar S, Paliwal S, Sharma S, Mishra P, Chauhan M, Arya R, Madan K, Khan S (2019) in-

silico QSAR modelling of predicted rho kinase inhibitors against cardio vascular diseases. 

Curr Comput Aided Drug Des 15(5):421–32. 



  

 

57 
65. Arya R, Gupta SP, Paliwal S, Sharma S, Madan K, Chauhan M (2019) pharmacophore 

modeling and docking studies to investigate potential leads for the development of β-

secretase APP cleavage enzyme-1 (BACE-1) inhibitors. Lett Drug Des 16(7):775–84. 

66. Arya R, Gupta SP, Paliwal S, Kesar S, Mishra A, Prabhakar YS (2019) QSAR and 

molecular modeling studies on a series of pyrrolidine analogs acting as BACE-1 inhibitors. 

Lett Drug Des 16(7):746–60. 

67. Asati V, Ghode P, Bajaj S, KJain S, Bharti SK (2019) 3D-QSAR and molecular docking 

studies on oxadiazole substituted benzimidazole derivatives: validation of experimental 

inhibitory potencies towards COX-2. Curr. Comput. Aided Drug Des 15(4): 277–93. 

68. Rajathei DM, Parthasarathy S, Selvaraj S (2019)  QSAR analysis of multimodal 

antidepressants vortioxetine analogs using physicochemical descriptors and MLR 

modeling. Curr. Comput. Aided Drug Des 15(4):294–307. 

69. Shirbhate E, Patel P, Patel VK, Veerasamy R, Sharma PC, Rajak H (2020) Searching for 

potential HDAC2 inhibitors: structure-activity relationship studies on indole-based 

hydroxamic acids as an anticancer agent. Lett Drug Des 17(7):905–17. 

70. Ravichandran V, Rohini K, Harish R, Parasuraman SK (2019) Sureshkumar Insights into 

the key structural features of triazolothienopyrimidines as anti-HIV agents using QSAR, 

molecular docking, and pharmacophore modeling. Struct Chem 30(4): 1471–84. 

71. Cramer RD, Patterson DE, Bunce JD (1988) "Comparative molecular field analysis 

(CoMFA). 1. Effect of shape on binding of steroids to carrier proteins." J Am Chem Soc 

110: 5959-5967.  

72. Xue CB, Zhang L, Luo WC, Xie XY, Jiang L, Xiao T (2007) "3D-QSAR and molecular 

docking studies of benzaldehyde thiosemicarbazone, benzaldehyde, benzoic acid, and their 

derivatives as phenoloxidase inhibitors." Bioorg Med Chem 15: 2006-2015. 

73. Norinder U (1998) Recent progress in CoMFA methodology and related techniques. In: 

Kubinyi H, Folkers G, Martin YC (eds) 3D QSAR in drug design—recent advances, Kluwer 

Academic Publishers, New York 3:24–39. 

74.  Kim KH, Greco G, Novellino E (1998) A critical review of recent CoMFA applications. 

Perspectives in drug discovery and design 12:257-315. 

75. Norinder U (1998) Recent progress in CoMFA methodology and related techniques. 

Perspectives in drug discovery and design 12:25-39. 

76. Roy K, Kar S, Das RN (2015). A primer on QSAR/QSPR modeling: fundamental concepts. 

Springer. 



  

 

58 
77. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative 

analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J 

med chem 37(24):4130-46. 

78. Polanski J, Walczak B (2000) The  comparative molecular surface analysis (COMSA): a 

novel tool for molecular design. Comp & chem 24(5):615-25. 

79. Ehrlich P (1898) Über die Constitution des Diphtheriegiftes. Deut Med Wochschr 24:597-

600. 

80. Guner OF, Bowen JP (2014) Setting the record straight: the origin of the pharmacophore 

concept. J Chem Inf Model 54(5):1269-83. 

81. Selassie C, Verma RP (2003) History of quantitative structure–activity relationships. 

Burger's Medicinal Chemistry and Drug Discovery. 

82. Horvath D (2008) Topological Pharmacophores, in Chemoinformatics Approaches to 

Virtual Screening, A.T. Varnek, A., Editor. p. 338. 

83. Finn, P. W.(1996). Computer-based screening of compound databases for the identification 

of novel leads. Drug Disc Today 1(9):363-370. 

84. Kapetanovic IM (2008) Computer-aided drug discovery and development (CADDD): In 

silico – chemico - biological approach. Chemico-Bio Inter171:165-176. 

85. Dror O, Shulman-Peleg A, Nussinov R, et al. (2004) Predicting molecular interactions in 

silico: I. A guide to pharmacophore identification and its applications to drug design. Curr 

Med Chem 11(1):71-90. 

86. Gillet VJ (2012) Pharmacophore Models in Drug Design, in Physico-Chemical and 

Computational Approaches to Drug Discovery, J.B. Luque, X., Editor.p. 418. 

87. Hopkins AL, Groom CR (2002) The Druggable Genome. Nat Rev Drug Discov 1:727-730. 

88. Hajduk PJ, Huth JR, Tse C (2005) Predicting Protein Druggability. Drug Discov Today 

10:1675-1682. 

89. Cavasotto CN, Orry AJ (2007) Ligand Docking and Structure-Based Virtual Screening in 

Drug Discovery. Curr Top Med Chem 7:1006-1014. 

90. Cardoso CL, Lima VV, Zottis A, Oliva G, Andricopulo AD, Wainer IW, Moaddel R, Cass 

QB (2006) Development and characterization of an immobilized enzyme reactor (IMER) 

based on human glyceraldehyde-3-phosphate dehydrogenase for on-line enzymatic studies. 

J Chromatogr A 1120:151-157. 

91. Pastor M, Cruciani G, McLay I, Pickett S, Clementi S (2000) GRid-IN dependent 

descriptors (GRIND): a novel class of alignment-independent three-dimensional molecular 

descriptors. J med chem 43(17):3233-43. 



  

 

59 
92. Kuntz ID, Blaney JM, Oatley SJ et al. (1982) A geometric approach to 

macromoleculeligand interactions. J Mol Biol 161(2):269-88. 

93. Kitchen DB, Decornez H, Furr JR et al. 2004. Docking and scoring in virtual screening for 

drug discovery: methods and applications. Nat Rev Drug Discov 3(11):935-949. 

94. Martz F (2007) Développement d’une nouvelle méthode de docking basée sur les 

mécanismes enzymatiques et guidée par des groupes prosthétiques, thèse de doctorat de 

l’université paris. 

95. Barril X,  Soliva R (2006) Molecular modelling. Mol Biosyst 2(12):660-681. 

96. Sotriffer C, Klebe G, Stahl M, Böhm H-J (2003). Docking and Scoring Functions/Virtual 

Screening. In Burger’s Medicinal Chemistry and Drug Discovery (pp. 281–331). Hoboken, 

NJ, USA: John Wiley & Sons, Inc.  

97. Bastard K (2005). Assemblage flexible de macromolécules : la théorie du champ moyen 

appliquée au remodelage des boucles protéiques. Thèse Doctorat. Université de paris 7. 

98. May A, Eisenhardt S, Schmidt-Ehrenberg J, Cordes F (2003). Rigid body docking for 

Virtual Screening. Konrad-Zuse-Zentrum für Informationstechnik Berlin. Berlin-Dahlem.  

Retrieved from https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/769  

99. Dréo J, Pétrowsky A, Siarry P, Taillard E (2003). Métaheuristiques pour l’optimisation 

difficile [recuit simulé, recherche avec tabous, algorithmes évolutionnaires et algorithmes 

génétiques, colonies de fourmis ...]. Eyrolles. Retrieved from https://hal.archives-

ouvertes.fr/hal-0084302 

100. Vyas V, Jain A, Jain A, Gupta A (2008). Virtual screening: a fast tool for drug 

design. Scientia Pharmaceutica 76(3), 333-360.  

101. Brooijmans N, Kuntz ID (2003) Molecular recognition and docking algorithms. Annu Rev 

Biophys Biomol Struct 32:335-73. 

102. Bouchrit H (2012) Thèse de magister université Mentouri. Algérie. 70. 

103. Kitchen DB, Decornez H, Furr J.R et al. (2004) Docking and scoring in virtual screening 

for drug discovery: methods and applications. Nat Rev Drug Discov 3(11):935-49. 

104. Huang, SY, Zou X (2010) Advances and challenges in protein-ligand docking. Int J Mol 

Sci 11(8):3016-34. 

105. Xuan YM, Hong XZ, Mihaly M, Meng C (2011) Molecular Docking: A powerful approach 

for structure-based drug discovery. Current Computer-Aided Drug 7(2): 146–157. 

106. Vieth M, Hirst JD, Kolinski A, Brooks CL (1998) J Comput Chem 19:1612. 

107. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang 

W, Domini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Calculating 

https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/769
https://hal.archives-ouvertes.fr/hal-0084302
https://hal.archives-ouvertes.fr/hal-0084302


  

 

60 
structures and free energies of complex molecules: combining molecular mechanics and 

continuum models. Acc Chem Res 33: 889-897. 

108. Brut M (2009) Nouvelle approche méthodologique pour la prise en compte de la flexibilité 

dans les interactions entre molécules biologiques : Les Modes Statiques Université 

Toulouse III - Paul Sabatier.  

109. Kollman PA (1993) Free energy calculations: applications to chemical and biochemical 

phenomena. Chem Rev 93: 2395-2417. 

110. Simonson T, Archontis G, Karplus M (2002) Free energy simulations come of age: protein-

ligand recognition. Acc Chem Res 35: 430-437. 

111. Ignarro LJ, Fukuto JM , Griscavage JM , Rogers NE , Byrns RE (1993) Oxidation of nitric 

oxide in aqueous solution to nitrite but not nitrate: Comparison with enzymatically formed 

nitric oxide from L-arginine. Proceedings of the National Academy of Sciences USA 

90:8103-8107. 

112. Chevrollier N (2019) Doctoral thesis. Développent et application d’une approche de 

docking par fragments pour modéliser mes interactions entre protéines et ARN simple-brin. 

University of Paris-saclay. Paris.  

113. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW Taylor(2003) Improved protein–ligand 

docking using GOLD. Proteins: Structure, Function, and Bioinformatics 52(4): 609– 623. 

114. Lafond M (2015) Docking et scoring. Schrödinger. 

115. Holloway MK (1995) A priori Prediction of Activity for HIV-1 Protease Inhibitors 

Employing Energy Minimization in the Active Site. J Med Chem 38: 305-317. 

116. Alban A (2007) Stratégies de docking-scoring assistées par analyse de données. Application 

au criblage virtuel des cibles thérapeutiques COX-2 et PPAR gamma. Other. Universités 

d'Orléans. France 191. 

117. Charifson PS, Corkery JJ, Murcko MA, Walters WP (1999) Consensus scoring: A method 

for obtaining improved hit rates from docking databases of three-dimensional structures 

into proteins. J Med Chem 42(25):5100–5109.  

118. Bissantz C, Folkers G, Rognan D (2000) Protein-based virtual screening of chemical 

databases. 1. Evaluation of different docking/scoring combinations. J Med Chem 43(25): 

4759–4767.  

119. Weisstein EW (2011) Root-mean-square. http://mathworld. wolfram.com/Root-Mean-

Square.html. 

120. Humphrey W, Dalke A, Schulten K (1996)VMD – Visual Molecular Dynamics. J Mol 

Graph 14:33–38. 



  

 

61 
121. The Scripps Research Institute (2011) AutoDock - AutoDock. http: //autodock.scripps.edu/.  

122. Plewczynski D, Łazniewski M, von Grotthuss M, Rych lewski L, Ginalski K (2011) 

Votedock: Consensus docking method for prediction of protein-ligand interactions. J Comp 

Chem 32(4):568–581. 

123. Fischer E. (1984) Einfluss. Ber 27:2985-2993.  

124. Alvarez JC (2004) Curr Opin Chem Biol 8(4):365-370. 

125. Ghozh S et al. (2006) Current Opinion in chemical Biology 10(3):194-202. 

126. Kollman PA, Massova I, Reyes C, Kuhn B, Hou S, Chong L, Lee T, Duan Y, Wang W, 

Domini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Calculating structures 

and free energies of complex molecules: combining molecular mechanics and continuum, 

models. Acc Chem Res 33: 889-897. 

127. Heermann DW (1986) 'Computer Simulation Methods in Theoretical Physics', Springer, 

Berlin.  

128. Alder BJ, Wainwright TE (1957) 'Molecular Dynamics by Electronic Computers, Proc. 

Intern. Symposium on Transport Processes in Statistical Mechanics', Wiley Interscience 97. 

129. Weiner SJ, Kollman PA, Nguyent T, Cas DA (1986) An all atom force field for simulations 

of proteins and nucleic acids. J Comput Chem 7:230-252. 

130. Leach Andrew R. (2001) Molecular Modelling: principles and applications. Harrlow , UK 

: Prentice Hall ; 2nd ed. 

131. Ganesan A, Coote ML, Barakat K (2017) “Molecular dynamics-driven drug discovery: 

leaping forward with confidence,” Drug Discov Today 22:249–269. 

132. Daan F, Berend S. (2001) Understanding Molecular Simulation. Academic Press, Inc. 6277 

Sea Harbor Drive Orlando, FL, United States. 

133. Jensen F (2007) Introduction to computational chemistry. John Wiley & Sons Ltd, Great 

Britain, 2 edition. 

134. Bowers KJ, Dror RO, Shaw DE (2005) Overview of neutral territory methods for the 

parallel evaluation of pairwise particle interactions. J Phys: Conference Series 16:300–304. 



  
62 

 

 

 

 

 

 

 

 

 

Realized Works 

 

 

 

 

 

 

 

 

 

 

 

 

 



  
63 

 

 

 

 

 

 

 

 

 
 
Chapter III: 
In silico-Based Identification of new 
anti-PfDHFR drug candidates via 
1,3,5-triazine derivatives 

 
 

 
 
 

 

 

 

 

 



  

64 

III.1. Introduction 

The in-silico prediction (figure III.1) of antimalarial activity has been highlighted as a 

critical stage in the development of drugs with targeted biological activity. The computer-aided 

drug discovery (CADD)  has proven to be a beneficial method for discovering prospective lead 

compounds and assisting in the development of new medications for a number of ailments[1]. 

In medicinal chemistry, computational analyses based on structure-based approaches, such as 

QSAR(Quantitative Structure Activity Relationship)method and ADME (Absorption, 

Distribution, Metabolism, and Excretion) proprieties are now commonly employed to assist 

speed up the drug design process[2-7]. 

The implementation of these three studies was the subject of this current research. The first 

section focuses on the development of the best QSAR models using the statically approach 

Multiple Linear Regression (MLR) and Artificial Neural Networks(ANN), on a set of different 

molecular characteristics of 1,3,5-triazine derivatives as potential antimalarials. It would reveal 

fresh knowledge that might be used to design new antimalarials inhibitors with increased 

potency. 

A predictive QSAR model was constructed to be utilized for lead optimization and testing of 

novel compounds, and an in-silico evaluation of drug-likeness features was examined, which 

gives useful information about the activity of substances in the body that are expected to serve 

as inhibitors.  

 

Figure III.1: In-silico studies involved in testing of 1,3,5-triazine derivatives. 
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III.2. Materials and methods 

III.2.1. Computational details  

Initial calculations were optimized using HyperChem 8.03 software[8]. The geometry of 1,3,5-

triazine and its derivatives; were pre-optimized using the MM+ force-field (rms=0,01 Kcal/) in 

molecular mechanics[9]. The PM3 approach was used to completely re-optimize geometry[10]. 

In the next step, a parallel study has been made using Gaussian 09 program package,at various 

computational levels, HF/6-31++G(d,p), HF/6-311++G(d,p), B3LYP/6-31++G(d,p) and 

B3LYP/6-311++G(d,p)[11]. 

After that, the different properties of 1,3,5-triazine derivatives were calculated by 

usingMarvinSketch 17.13.0 [12] software, ACD/Chemsketch12.0 [13] and HyperChem 

software(version 8.0.6) [8]. By means of these software, twenty descriptors are computed and 

reduced using the stepwise strategy in XLSTAT software[14] to build several QSAR models, 

just five descriptors of the best QSAR model have been reported in the present work. 

III.2.2. Dataset selection 

All in-vitro IC50 (µM) antimalarial activity data of twenty-eight molecules having similar 

structures were selected from a series of 1,3,5-triazine-based derivatives expeditiously 

synthesized and biologically evaluated by Gravestock et al.[15]. The negative logarithm (pIC50 

=-log10 (IC50)) was used to convert all of the experimental activity IC50 values for the purpose 

of providing numerically greater data values, listed in Table III.1, after then, it was employed 

as the dependent variable in the creation of the QSAR models. 
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Table III.1. Optimized structures of the molecules under study[15]. 

N° Structures  

pIC50 
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(*): Test set compounds. pIC50 = -log 10 (IC50). 

III.2.3. QSAR modeling studies  

In an attempt to determine the role of structural features of compounds, which appears to 

have an effect on antimalarial activity, a QSAR models were generated. The field of quantitative 

structure-activity relationships deals with the development of a predictive models correlating 

biological activity (pIC50) with the physicochemical properties. Once these are available, by 

using statistical methods, It is possible to establish this predictive MLR-QSAR and ANN-
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QSAR models for a series of biologically active molecules which have shown inhibitory 

activity against the PfDHFR enzyme[16]. 

III.2.3.1. Statistical analysis and model validation  

To predict the QSAR models, multiple linear regression (MLR) analysis of molecular 

descriptors was carried out in the present work using the stepwise strategy in XLSTAT 

software[17].The MLR method was compared to the artificial neural network (ANN) method, 

which is another reliable and predictive QSAR model that is ideally suited for treating non-

linear correlations between descriptors and activity[18-20]. All the ANN analyses were carried 

out using JMP 8.0.2.software[21]. 

Two basic methodologies are used to undertake external and internal validation of models[22]: 

internal validation utilizing the training set molecules, and external using the test set molecules 

by partitioning the entire data set into training and test sets;at 80% and 20%, respectively, 

utilizing the so-called 'Balanced Subset Method' (BSM)[23]. 

Apart from the use of fitness of several parameters, the statistical qualitative analysis of the 

QSAR model was validated by using the leave-one-out cross validationmethod 

(LOOCV)[24,25]. The best model was chosen in this study using the determination coefficient 

(𝑅2)and adjusted determination coefficients (𝑅𝑎𝑑𝑗
2 ), Fisher’s value(F-value) should have high 

values and p-value (including the critical probability : p-value<0.0001 for descriptors and for 

the model), predicted residual sum of squares (PRESS) and standard deviation of error of 

prediction (SDEP), root-mean-squar-error of prediction of training set (RMSEc)and if the 

following conditions are satisfied, determination coefficient(Rtest
2 )of external validation, cross 

validated determination coefficient (𝑄𝑐𝑣
2 ),root-mean-squar-error of prediction (RMSEP) low 

mean squared error (MSE), and Y-randomization statistical parameters (R(𝑅𝑎𝑛𝑑)
2 , Q(𝑅𝑎𝑛𝑑)

2  and 

𝑐𝑅𝑝
2). 

III.2.3.2. Applicability domain approach 

 Another pivotal issue is the definition of a locale in the compound space containing the 

structural, physicochemical, or natural properties data set where upon the training set of the 

created model is through the applicability domain (AD) and for which it is applicable to make 

predictions for new compounds[26,27]. Even the most comprehensive, significant and validated 

models cannot reliably predict properties for all existing compounds.  

Therefore, the AD of the models must be defined and only predictions for molecules falling in 

the training set in this domain can be considered acceptable. The method of leverage value hi 

for each compound i has a calculated of the QSAR model was represented (Figure III.4) 
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Therefore, the AD of the models must be defined and only predictions for molecules falling in 

the training set in this domain can be considered acceptable. The method of leverage value hi 

for  each compound i has a calculated of the QSAR model was represented (Figure III.4) hi =

xi
T(XTX)−1xi(i = 1,2,3, … . . , n),  where xi is the query compound's descriptor row-vector while 

X is the n*(k-1) matrix of k descriptor values of model for n training set compounds, and the 

superscript T is the matrix/transpose vector's[28]. And there exists a warning leverage value 

(h*), in general, the critical value of the leverage h* =3*(k + 1)/N [29],  where xi is the query 

compound's descriptor row-vector while X is the n*(k-1) matrix of k descriptor values of model 

for n training set compounds, and the superscript T is the matrix/transpose vector's[28]. And 

there exists a warning leverage value (h*), in general, the critical value of the leverage h* =3*(k 

+ 1)/N [29]. 

III.2.4. Drug likeness parameter and lipophilicity indices 

A drug’s physicochemical properties of chemical compounds of series have a substantial 

impact on its in vivo pharmacokinetic characteristics under research with PFDHFR enzyme. 

The detailed analysis of drug likeness characteristics and lipophilicity indices were carried out 

by applying the different rules, by Lipinski’s rules[30,31], veber’s rules[32], lipophilicity 

indices[33,34], and Golden Triangle tool[35]. 

III.3. Results and discussion 

III.3.1. Validation method 

III.3.1.1. Equilibrium geometries of 1,3,5-triazine 

The main geometrical parameters of the optimal equilibrium geometry to be employed are 

the most efficient theoretical strategy for the larger of 1,3,5-triazine (Figure III.1) of interest in 

the current study perhaps selected by comparison with experimental results.  

Our investigations started by performing benchmark studies on 1,3,5-triazine using different 

theoretical methods (PM3, Ab-initio, DFT) in order to select the most reliable predictive 

method comparatively to experiment and with reduced computational cost.  

Table 1 lists the main geometrical parameters of the optimized equilibrium geometry of 1,3,5-

triazine are in accordance with the numbering scheme given in (Figure III.1). Table 1 lists also 

the corresponding experimental geometrical parameters that have been obtained by X-ray 

diffraction, which revealed that the molecule had D3h symmetry[36]. Since 1,3,5-triazine are 

planar, the calculated dihedral angle values are either 0° or 180°.  

From the obtained values (Table 1), we can also find that the appropriate method to compute 

the spectroscopic parameters of the 1,3,5-triazine is the density functional theory (DFT with 



  

70 
B3LYP/6-31++G(d,p) ) which will be used to compute the quantum properties of our series of 

the 1,3,5-triazine derivatives. 

 

Table III.2. Bond lengths (in Å) and valence angles (in degree, °) of 1,3,5-triazine. Experimental data for 1,3,5-triazine are 

collected from Ref.[37] 
 

Parameters EXP PM3 
Ab initio/HF DFT/B3LYP 

6-31G++(d,p ) 6-311G++(d,p ) 6-31G++(d,p ) 6-311G++(d,p ) 

B
o

n
d

 l
en

g
th

 (
A

n
g

st
ro

m
) N1-C2 1.338 1.357 1.318 1.317 1.337 1.334 

N1-C6 1.338 1.357 1.318 1.317 1.337 1.334 

C2-N3 1.338 1.357 1.318 1.317 1.337 1.334 

C2-H7 1.084 1.098 1.074 1.075 1.087 1.086 

N3-C4 1.338 1.357 1.318 1.317 1.337 1.334 

C4-N5 1.338 1.357 1.318 1.317 1.337 1.334 

C4-H8 1.084 1.098 1.074 1.075 1.087 1.086 

N5-C6 1.338 1.357 1.318 1.317 1.337 1.334 

C6-H9 1.084 1.098 1.074 1.075 1.087 1.086 

V
a

le
n

ce
 a

n
g

le
 

(°
) 

C2-N1-C6 113 118.433 114.536 114.475 114.245 114.278 

N1-C2-N3 127 121.567 125.463 125.524 125.755 125.723 

C2-N3-C4 113 118.433 114.536 114.475 114.242 114.275 

N3-C4-N5 127 121.567 125.463 125.524 125.756 125.723 

C4-N5-C6 113 118.433 114.536 114.475 114.245 114.278 

N1-C6-N5 127 121.567 125.463 125.524 125.753 125.721 

C2-N1-C6 113 118.433 114.536 114.475 114.245 114.278 

 

III.3.1.2. 3D molecular electrostatic potential surface maps (3D MESP) of 1,3,5-triazine 

The electrostatic potential that is created by a molecule's electron charge density in space 

expands in the entire space (nuclei considered as point charges).MESP entails comprehending 

a variety of physical and chemical phenomena, for instance molecular reactivity, molecular 

recognition,  intermolecular contacts, substituent effects, electrophilic reactions, and reagent-

induced interactions, such as those between a drug and its cellular receptor[38]. Figure III.2 

shows the 3D molecular electrostatic potential surface maps (3DMESP) of 1,3,5-triazine. 

As can be seen in Figure III.2, due to its strong electronegativity, 1,3,5-triazine exhibits negative 

electrostatic potentials (red zone) surrounding the nitrogen atoms (N1, N3, and N5). 

Additionally, we can observe positive electrostatic potentials (the blue zone) everywhere 

around the hydrogen and carbon atoms, which explain why these atomic sites are exposed to 

nucleophilic attack. Carbon atoms attached hydrogen atoms have the most positive charge per 

atom of hydrogen (dark blue). 
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Figure III.2. 3D MESP of 1,3,5-triazine. The results are color-coded, from red (most negative) to blue 

(most positive). 

In sum, 1,3,5-triazine derivatives exhibit a number of properties that may help us better 

understand the electrostatic interactions that may occur between the 1,3,5-triazine derivatives 

under study and reagents or enzyme active sites. 

III.3.2. Quantitative structure-activity relationship studies 

III.3.2.1. Multiple linear regression (MLR) 

In the present study we tried to develop the statistical correlation of the best QSAR model 

that was derived from multi linear regression model generation (MLR). 

That the physicochemical descriptors, NRB (number of rotatable bond on the molecule), 

𝐄𝐇𝐎𝐌𝐎(energy of highest occupied molecular orbital),𝐄𝐋𝐔𝐌𝐎 (energy of lowest unoccupied molecular 

orbital), n (refractive index) and µ (dipolar moment) of the series of twenty-eight of 1,3,5-triazine 

derivatives were used as independent variables and were correlated with antimalarial activity 

(pIC50). Additional validation was performed on a data set consisting of 1,3,5-triazine 

derivatives was randomly divided into two subsets; 23 training and 5 test sets. The values of 

the descriptors used in MLR analysis are presented in Tables 3.Pearson’s correlation matrix has 

been performed on all descriptors. 

Among several MLR equations the best model isexpressed by the following relation: 

𝒑𝑰𝑪𝟓𝟎 =  −24.602 + 0.265 ∗ 𝐍𝐑𝐁 − 20.841 ∗ 𝐄𝐇𝐎𝐌𝐎 + 14.892 ∗ 𝐄𝐋𝐔𝐌𝐎 

+15.464 ∗ 𝒏 − 0.224 ∗µ (Eq III.1) 

In Figure III.3, We display the experimental activity versus the predicted activity values to 

further created MLR model's prediction ability.  
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Figure III.3. Correlations of experimental versus predicted pIC50 values using MLR. 

 

Once developed, the model must be interpreted by analyzing all the statistical parameters. In 

the model obtained in equation (1), we note that NRB,𝐄𝐋𝐔𝐌𝐎 and n with positive coefficients 

suggest that biological activity increases with the increase in the values of these descriptors. On 

the other hand, the negative coefficients of 𝐄𝐇𝐎𝐌𝐎and µsuggest the opposite. Thereafter, the 

molecular descriptors and the values of calculated activities of MLR and ANN are reported in 

Table III.3. 

 

Table III.3. Chemical descriptors used in the regression analysis. They correspond to 

number of rotatable bond on the molecule (NRB), energy of highest occupied 

molecular orbital (𝐄𝐇𝐎𝐌𝐎(𝐞𝐕)), energy of lowest unoccupied molecular orbital 

(𝐄𝐋𝐔𝐌𝐎(𝐞𝐕)), refractive index (n) anddipolar moment (µ(𝐃)). 

N° NBR EHOMO ELUMO n µ pIC50 MLR Residues ANN Residues 
1 2 -0.209 -0.026 1.63 3.67 4.303 4.304 -0.001 4.853 -0.549 

2 2 -0.208 -0.026 1.67 3.22 5.005 5.039 -0.034 5.219 -0.214 

3 3 -0.214 -0.034 1.63 2.32 4.781 4.881 -0.100 5.031 -0.250 

4 5 -0.229 -0.105 1.72 6.87 4.954 4.915 0.039 5.170 -0.216 

5 4 -0.220 -0.045 1.67 5.53 5.075 4.967 0.109 5.270 -0.195 

6* 5 -0.210 -0.029 1.61 5.11 4.947 4.455 0.492 4.889 0.058 

7 6 -0.213 -0.029 1.65 5.75 5.148 5.244 -0.096 5.319 -0.171 

8 6 -0.203 -0.024 1.66 7.37 5.172 4.904 0.268 5.314 -0.142 

9 6 -0.212 -0.050 1.67 4.56 5.365 5.476 -0.112 5.472 -0.107 

10 6 -0.218 -0.028 1.67 5.49 6.004 5.697 0.307 5.771 0.234 

11 7 -0.227 -0.103 1.72 7.22 5.131 5.348 -0.216 5.277 -0.146 

12* 6 -0.218 -0.031 1.66 5.08 5.177 5.618 -0.442 5.420 -0.243 

13 6 -0.211 -0.029 1.65 5.10 5.338 5.349 -0.011 5.343 -0.005 

14* 5 -0.210 -0.028 1.65 5.07 5.100 5.031 0.069 5.314 -0.214 

15 7 -0.211 -0.028 1.64 5.59 5.177 5.275 -0.098 5.212 -0.035 

16 7 -0.181 -0.010 1.64 7.14 4.349 4.555 -0.206 4.860 -0.511 

17* 6 -0.217 -0.032 1.64 5.22 5.207 5.250 -0.043 5.121 0.086 

18 7 -0.248 -0.047 1.61 5.19 5.257 5.383 -0.126 5.260 -0.003 
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19 6 -0.214 -0.032 1.68 5.02 5.886 5.818 0.068 5.826 0.061 

20* 5 -0.208 -0.040 1.65 4.69 5.106 4.869 0.237 5.159 -0.053 

21 6 -0.210 -0.027 1.65 5.26 5.344 5.314 0.029 5.416 -0.072 

22 6 -0.221 -0.033 1.66 5.51 5.345 5.555 -0.211 5.314 0.031 

23 6 -0.210 -0.027 1.63 5.12 4.965 5.028 -0.063 4.972 -0.007 

24 7 -0.225 -0.100 1.67 4.85 5.412 5.231 0.181 5.320 0.092 

25 7 -0.206 -0.025 1.62 5.16 4.910 5.131 -0.221 5.096 -0.186 

26 6 -0.209 -0.031 1.61 3.91 5.143 4.812 0.331 5.052 0.090 

27 7 -0.212 -0.031 1.64 3.76 5.567 5.741 -0.174 5.437 0.130 

28 8 -0.212 -0.030 1.63 5.27 5.867 5.529 0.337 5.596 0.270 

 

From the observed and predicted biological activity data of the molecules given in Table III.3, 

we can notice that there is a strong similarity between the observed and predicted pIC50 values. 

This can be explained by the low values of the residuals. This means that the QSAR models 

developed via the MLR and ANN techniques have a strong predictive capacity of the biological 

activity of the studied molecules according to the selected molecular descriptors (NBR, EHOMO, 

ELUMO, n and µ). 

In order to detect the absence of the multi-collinearity for the selected descriptors the variance 

inflation factors (VIF) were calculated [39]. All five descriptors in the MLR-QSAR model have 

VIF values less than 5 (VIF = 1.716, 1.800, 3.023, 2.572, and 1.855, for NRB, 𝐄𝐇𝐎𝐌𝐎,𝐄𝐋𝐔𝐌𝐎 , 

n and µ respectively), indicating that the multi-collinearity is not present in the MLR model, 

which is the unique explanation for this condition. 

Moreover, the predictive power of the equation of the model is confirmed by metrics of 

Golbraikh and Tropsha’s criteria are listed in Table III.4.The MLR model having R2> 0.6 for 

both training and test sets will only be considered for validation[40]. Equation (1) exhibited 

high values of 𝑅2and 𝑅adj
2 , these are essential criteria are confirmed a strong association   

between the observed activities (pIC50) and the predicted activities (pIC50Pred), Our results for 

these two indices are 0.811 and 0.756, respectively, as shown in Table 4. The small PRESS 

(0.717) and SDEP (0.176) values indicate the model predictability and lack of over fitting. 

Value of  F-value (14.635) (Table III.4) of MLR model with p-value less than 0.0001 show that 

the model is statistically significant [41]. 

This is on the other hand confirmed by metrics for external validation that has also used 

Golbraikh and Tropsha’s criteria to judge the predicted model from a calculation the larger  

Rtest
2 (0.628) for the test set,𝑄𝑐𝑣

2 (0.578), RMSEp (0.258) and MSE (0.011)values indicate good 

predictive ability of the MLR model[42]. 
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Table III.4. MLR statistics of predicted model. 

Parameter Parameter MLR Threshold 

𝑅2 

𝑅adj
2  

RMSEc 

PRESS 

SDEP 

 F-value 

Rtest
2  

𝑄𝑐𝑣
2  

RMSEp 

MSE 

0.811 

0.756 

0.195 

0.717 

0.176 

14.635 

0.628 

0.578 

0.258 

0.011 

>0.6 

>0.6 

A low value 

A low value 

A low value 

A high value 

>0.6 

>0.5 

A low value 

A low value 

Furthermore, the robustness of the MLR model was ensuring by applying the Y-randomization 

test. Mostly, the Y-randomization test is used to test the stability of the predictive power of 

statistical models. Therefore, in the present study, this test was used to check the stability of the 

statistically modeled structure-activity relationship. This is to eliminate the probability of 

generating a QSAR model at random. We performed many Y vector random shuffles. After 

100 random tests we have obtained small average values of 0.217for R(𝑅𝑎𝑛𝑑)
2  and−0.573 for 

Q(𝑅𝑎𝑛𝑑)
2 , also the smaller 𝑐𝑅𝑝

2(0.706>0.5) values indicate good predictive ability of the model 

and demonstrate its high robustness[43]. 

III.3.2.1.1. QSAR model's applicability domain 

A William's plot is used to show the AD of models (Figure 4). According to the "three-

sigma rule"[51], the AD is established using Excel 2013 software[44], in this plot inside a 

square region within the standard deviation x (in this study, x = 3). Outliers are molecules with 

standardized residuals three times higher than the model's standard deviation.  
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Figure III.4.  MLR model's applicability domain plot. The vertical dashed line represents the warning 

leverage (h*=0.782), whereas the horizontal lines denote ±3. 

All substances in the dataset fall within the applicability range of the suggested MLR model, as 

can be seen by carefully examining Figure III.4. The leverage values of the inhibitors are all 

less than the warning h* value (0.782), and none of them exhibit standardized residuals that are 

more than the threshold. As a consequence, the model exhibits the best statistical parameters 

and strong predictive capabilities, and it can be used in this AD with a high level of confidence. 

III.3.2.2. Artificial Neural Networks (ANN) 

The existence of a non-linear relationship between pIC50 and the five selected descriptors 

by the MLR model as inputs was studied in the second stage. The number of hidden layers was 

determined using the value 2n+1, where n denotes the number of input layers, which plays an 

important role in establishing the optimum ANN architecture[45]. 

For pIC50 data, the architecture of the chosen ANN model was 5-3-1, with 5 descriptors in the 

first layer, three neurons in the hidden layer, and one neuron in the output layer after 

optimization. In thiswork, the intermediate (hidden) layer is made up of three neurons that form 

a deep internal pattern that identifies the strongest correlations between expected and 

experimental data. The output layer is made up of one neuron that returns the value of pIC50 

(Figure III.5). 
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Figure III.5. Architecture of ANN. 

The Gauss Newton method was then used to train the ANN[46].The experimental and predicted 

pIC50 using ANN are found to be highly correlated. This is indicated in Fig. 6 with 

0.987and0.841value of R2and𝑄𝑐𝑣
2 , respectively. We are also obtained 0.968 a high value of 

R2
testand a low value of MSE (-0.073) for the external validation. 

We could infer that the ANN model with (5-3-1) architecture is capable of establishing a 

suitable link between the five descriptors and antimalrial activity based on both training and 

test set outcomes (Figure III.5).  

 
Figure III.6. Correlations of experimental versus predicted pIC50 values using ANN. 

A simple comparison of the values of the important statistics of ANN model in Table III.5 with 

those obtained using the MLR method confirms that ANN outperforms MLR, demonstrating 

the existence of a non-linear relationship between the pIC50 and the five selected descriptors of 

the investigated compounds. 
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Table III.5. ANN and MLR statistics of predicted models. 

Parameter Parameter ANN MLR 

𝑅2 

Rtest
2  

𝑄𝑐𝑣
2  

MSE 

0.987 

0.986 

0.841 

-0.073 

0.811 

0.628 

0.578 

0.011 

 

Thus, therefore, our QSAR models can be successfully applied to predict the anti-PFDHFR 

activity of this class of molecules.  

III.3.3. Design of Novel antimalarials 

Using the foregoing results as a guide, we made appropriate substitutions and then 

proceeded to calculate their activities using the proposed model Eq (III.1). As a result, the 

proposed model will help us to speed up the time when it comes to synthesizing and assessing 

the antimalarials activity of 1,3,5-triazine derivatives. 

According to the preceding discussions, our MLR model might be used to calculate pIC50pred 

of various 1,3,5-triazine derivatives as shown in Table III.6 and could contribute to the 

development of new antimalarials druglike. If we create a new compound with higher values 

than existing compounds, we may be able to create more active compounds than those now in 

use. In this manner, we performed structural alteration using compounds with the greatest pIC50 

values as a template comp.10 (Figure III.7).  

N

HN

N

NH2

HN

O

O

Cl

 
Figure III.7. Compound 10. 

Table 6 lists the structures of the designed compounds, as well as their parameter values 

computed using the same procedures and the pIC50 values  predicted by the MLR model. 
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Table III.6. Values of descriptors and pIC50 for the new designed compounds (derivatives of 

comp.10) of the Figure III.7. 

N° Comp NBR 𝐄𝐇𝐎𝐌𝐎 𝐄𝐋𝐔𝐌𝐎 n µ pIC50pred 

 C1 N

HN

N

NH2

HN

O

O

Cl

 

7 -0.215 -0.033 1.70 5.99 6.251 

C2 N

HN

N

NH2

HN

O

O

Cl

 

7 -0.201 -0.008 1.70 6.18 6.291 

C3 N

HN

N

NH2

HN

O

S

Cl

 

7 -0.218 -0.029 1.75 5.35 7.191 

C4 N

HN

N

NH2

HN

O

S

 

7 -0.202 -0.008 1.72 3.73 7.097 

C5 N

HN

N

NH2

HN

O

S

Cl

F  

7 -0.226 -0.046 1.76 4.91 7.385 

C6 N

HN

N

NH2

HN

HN

S

 

7 -0.199 -0.017 1.75 2.85 7.574 

Ref  N

HN

N

NH2

HN

O

O

Cl

 

6 -0.218 -0.028 1.67 5.49 6.004 

III.3.4. Drug likeness screening of 1,3,5-triazine derivatives 

Chemicals' drug-likeness is a qualitative feature [46], beneficial for early-stage drug 

development. From the standpoint of this concept, it would be ideal to encode the equilibrium 

between a compound's molecular characteristics that effects its pharmacokinetics and 

eventually optimizes their absorption, distribution, metabolism and excretion (ADME) in the 

human body like a medicine. 

At present, we should evaluate the oral bioavailability of the twenty-eight 1,3,5-triazine 

derivatives under study. Continuous, the quickest strategy for appreciating the drug-likeness of 

a set is to apply “rules”, they have been applied. As first, the most commonly Lipinski's rules 

are used[30,31]. 

Continuous, our parameters determined that good absorption or permeation is more likely to 

occur when: the molecular weight (MW<500da), number of hydrogen bond donors (HBDs <5) 

(counting the sum of all NH and OH groups), to estimate hydrophobicity of molecules used 

thepartition coefficient octanol/water (Log p< 5), and the number of hydrogen bond acceptors 

(HBA<10) are all within a certain range (counting all N and O atoms). In this rule of five-score, 

there are a total of four violations of Lipinski's rules. 
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Veber et al. identified the other two descriptors.[32]: number of rotatable bonds (NBR<10) and 

topological polar surface area (PSA <140 Å2). The TPSA is an important measure for predicting 

molecular transport properties, especially in the areas of blood-brain barrier (BBB) penetration 

and intestinal absorption [47,48]. It is well known that molecules with a TPSA of 140 Å2 have 

a great ability to penetrate in an environment that is hydrophobic, like biological membranes. 

However, this could explain their quick penetration in hydrophilic settings, for instance, the 

core of transporter proteins[49]. The TPSA values were discovered to be in the range of (74,8 

Å²-127,17Å²); these chemicals may be able to penetrate the BBB, resulting in increased 

bioavailability. TPSA was used to compute the percentage of absorption ((% ABS ) in 

accordance with the equation the equation %ABS = 109 ± 0.345×TPSA[50].All of the 

compounds had a high %ABS, ranging from 65.126 to 83.194 %, implying that the permeability 

of their cellular plasmatic membrane is good. 

The results obtained are shown in Table III.7, they were calculated using HyperChem 8.0.8 (for 

MW, Log p and NH) and MarvinSketch 6.2.1 software (forHBD, HBA, NBRand TPSA). As 

Table III.7. Drug-likeness parameters and Lipophilicityindices of 1,3,5-triazine derivatives. 

N° 

  Lipinski’s rules 

 

Veber’s rules  Lipophilicity indices 

MW≤ 

500 Da 

Log p   

≤ 5 

HBD   

≤ 5 

HBA 

≤10 

Lipin-

ski 

score 

NBR     

≤10 

TPSA       

≤ 140 Å² 

Veber 

score 
%ABS 

 

LE LLE pIC50 NH 

1 231.30 2.18 3 5 4 2 74.80 2 83.194 0.354 2.123 4.303 17 

2 271.37 3.21 3 5 4 2 74.80 2 83.194 0.350 1.795 5.005 20 

3 279.77 2.21 3 6 4 3 74.80 2 83.194 0.352 2.571 4.781 19 

4 407.26 1.52 3 9 4 5 117.94 2 68.311 0.257 3.431 4.954 27 

5 380.25 1.74 3 8 4 4 74.80 2 83.194 0.284 3.335 5.075 25 

6* 309.80 1.42 3 7 4 5 84.03 2 80.01 0.330 3.526 4.947 21 

7 357.84 1.77 3 7 4 6 84.03 2 80.01 0.288 3.378 5.148 25 

8 392.29 1.55 3 8 4 6 84.03 2 80.01 0.278 3.622 5.172 26 

9 426.73 1.33 3 9 4 6 84.03 2 80.01 0.278 4.034 5.364 27 

10 347.80 0.04 3 7 4 6 97.17 2 75.476 0.350 5.964 6.004 24 

11 402.84 0.96 3 9 4 5 117.94 2 68.311 0.257 4.171 5.131 28 

12* 392.29 1.55 3 8 4 6 84.03 2 80.01 0.279 3.626 5.176 26 

13 363.89 2.56 3 7 4 6 84.03 2 80.01 0.299 2.778 5.338 25 

14* 349.86 2.45 3 7 4 5 84.03 2 80.01 0.297 2.650 5.100 24 

15 387.87 0.78 3 8 4 7 93.26 2 76.825 0.268 4.396 5.176 27 

16 400.91 0.82 3 8 4 7 87.27 2 78.892 0.217 3.529 4.349 28 

17* 375.83 1.17 3 8 4 6 84.03 2 80.01 0.280 4.037 5.207 26 

18 425.84 2.34 3 6 4 7 84.03 2 80.01 0.254 2.916 5.256 29 

19 373.90 2.12 3 5 4 6 100.1 2 74.465 0.330 3.766 5.886 25 

20* 325.86 1.77 3 6 4 5 100.1 2 74.465 0.340 3.336 5.106 21 

21 357.84 1.77 3 7 4 6 84.03 2 80.01 0.299 3.574 5.344 25 

22 392.29 1.55 3 8 4 6 84.03 2 80.01 0.288 3.795 5.345 26 

23 341.39 1.39 3 7 4 6 84.03 2 80.01 0.278 3.575 4.965 25 

24 368.40 1.18 3 8 4 7 127.17 2 65.126 0.281 4.232 5.412 27 

25 353.42 1 3 7 4 7 93.26 2 76.825 0.264 3.910 4.910 26 

26 323.83 1.87 3 7 4 6 84.03 2 80.01 0.327 3.273 5.143 22 

27 371.87 2.22 3 7 4 7 84.03 2 80.01 0.300 3.347 5.567 26 

28 385.90 2.62 3 7 4 8 84.03 2 80.01 0.304 3.246 5.866 27 
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can be seen there, The Lipinski and Veber criteria are satisfied by all substances, indicating that 

their theoretical oral bioavailability is optimal. The association between appropriate aqueous 

solubility and intestinal permeability, as well as these physicochemical molecular properties 

that represent the first steps in oral bioavailability. 

Therefore, for the series of interest, table III.7 shows that the rule of five is 4 and 2 for Veber’s 

score. Indeed, to be marginal for further developments the compounds with Rule of five-scores 

> 1 are taken into consideration[51]. Overall, our findings show that most compounds defy 

Lipinski and Veber rules, indicating that all chemical compounds would have no issues with 

oral bioavailability 

We have also defined ligand efficiency (LE),lipophilic ligand efficiency (LLE)  and the golden 

triangle as LE= 1.4pIC50/NH, and LLE = pIC50–LogP; where NH is the number of heavy atoms 

[52]. They are described as crucial parameters for drug discovery, furthermore as a means of 

determining a compound's potency in relation to its molecular weight. LE is influenced by 

ligand size, with smaller ligands having higher biological efficiency than bigger ligands on 

average[53,54]. 

Further, we used LLE to facilitate a deeper comprehension of the affinity of structural 

alterations in the series, with respect to lipophilia. As a rough guide, LLE values  have been 

stranded  in the range 5–7 in drug-like space for medicinal compounds[55]. That compounds 

with high LE and LLE tries to improve a potency interact with biological targets[56]. In the 

studied series, the change of LE and LLE during optimization (Table III.7). 

Other characteristics that affect ADME and drug-likeness attributes such as molecular weight 

(MW) and distribution coefficients (logD) were used to illustrate the simultaneous absorption 

and clearance of optimal medicines using Warring rules and the Golden Triangle tool[35]. The 

Golden Triangle is a visualization tool developed from in vitro permeability, in vitro clearance 

and computational data designed to aid medicinal chemists in achieving metabolically stable, 

permeable and potent drug candidates[35]. Plotting MW vs. logD on estimated octanol: buffer 

(pH 7.4) and classifying compounds of a series as permeable and stable (pH 7.4). 
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Figure III.8. Permeability and clearance patterns in vitro for MW and logD. 

 

A triangular shape known as the "golden triangle" is formed when the design properties are 

moved into an area with a baseline of log D7.4=-2.0 to log D7.4= 5.0 at MW = 200 Da and a peak 

at log D7.4= 1.0 to 2.0 and MW = 450 Da, this increases the chance of success in maximizing 

potency, stability, and permeability. According to the fighting rule, with MW=414 Da and 

logD7.4> 1.3 have a 74% chance of 74% chance of becoming highly permeable. Golden 

triangle’s rules apply to the majority of our substances. These findings should aid in the 

development of permeability-enhancing chemicals. The metabolic stability and good 

membrane permeability of compounds found inside the Golden Triangle are more likely to be 

present than others outside. 

According to the Golden Triangle (Figure III.8), the most of compounds under study are located 

within of it, indicating that these 1,3,5-triazine derivatives have good permeability and 

clearance [57]. The other compounds are the reverse, consisting of six compounds: 1,3,5,9, 20 

and 22. 

III.3.4.1. ADME study of new designed compounds 

Table III.8 lists the physicochemical parameters of novel designed compounds. All of the 

proposed compounds' LogP and HBA values which indicate that they have a fair absorbency 

and resulting in an increase in the electrostatic interactions of the 1,3,5-triazine derivatives with 

the amino acid residues in the active sites. They were in great accord with the most important 

rules of drug similarity e.g.  Lipinski, Veber and Lipophilicity indices.  

Table III.8. Drug-likeness of the new designed compounds and reference compounds. 

Lipinski’s rules Veber’s rules Lipophilicity indices 



  

82 

Comp 

MW 

≤ 

500Da 

Log 

p   ≤ 

5 

HBD   

≤ 5 

HBA 

≤10 

Lipinski 

score 

NBR     

≤10 

TPSA       

≤ 140 

Å2 

Veber 

score 
LE LLE NH 

C 1 
361.83 0.19 

3 6 4 7 87.94 2 0.350 6.061 25 

C 2 
361.83 0.19 

3 6 4 7 87.94 2 0.352 6.101 25 

C 3 
363.86 0.38 

3 6 4 7 87.94 2 0.419 6.811 24 

C 4 
343.45 0.76 

3 6 4 7 87.94 2 0.414 6.337 24 

C 5 382.84 -0.13 3 7 4 7 87.94 2 0.414 7.515 25 

C 6 342.46 0.44 3 6 4 7 87.94 2 0.442 7.134 24 

Cpd 10 347.80 0.04 3 7 4 6 97.17 2 0.350 5.964 24 

The number of rotatable bonds 7(NBR <10), hydrogen bond acceptor 6 or 7 (HBA<10)  and 

octanol/water partition coefficients (Log p<5) are used to forecast a compound's lead-likeness. 

When compared to the reference compound 10, these compounds showed no discomfort, 

indicating that they have good drug likeness properties. 
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Combined 3D-QSAR, molecular docking, 
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IV.1. Introduction 

In particular, chemoinformatic investigations are in silico techniques with a wide range of 

uses, including the discovery of new lead chemicals and the improvement of pharmacological 

activity features of a series of chemical compounds with known pIC50 (biological activity) 

[1,2].In this work, we aim biologically evaluate, using in silico approaches, the anti-PfDHFR 

activity of a series of diaminodihydrotriazine-based PFDHFR inhibitors, which were recently 

identified by Kamchonwongpaisan et al [3]. 

 

Figure IV.1: Chemical structures of diaminodihydrotriazines. 

Table IV.1. Chemical structures of the diaminodihydrotriazines under investigation and 

those of pyrimethamine (Pyr) and of cycloguanil (Cyc). 
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In order to design a series of more efficient potential antimalarial agents, we investigate in-

depth these compounds as specified in Table IV.1 and Figure IV.1. We use thus a number of 



     
91 computational modeling techniques (figure IV.2) such as 3D-QSAR, in silico ADMET 

(Absorption, Distribution, Metabolism, Excretion and Toxicity) modeling profiles and 

molecular docking methods.  

 

Figure IV.2: Computational modeling techniques involved in our study. 

IV.2. Methodologies 

IV.2.1. Dataset 

The dataset compiled for this study includes 42 diaminodihydrotriazine derivatives as identified 

by Kamchonwongpaisan et al. [3]. Their chemical structures are shown in Table IV.1.            

Table IV.2 gives their biological activity values in μM units. The database is randomly divided 

into two ensembles for the purpose of creating a 3D-QSAR model: a learning set for building 

the quantitative model (80%) and a test set for assessing the performance of the suggested 

model (20%). 



     
92 

Table IV.2. pIC50 experimental activities, pIC50 predicted activities and residues of the series 

of diaminodihydrotriazines under study. * denotes test set compounds. 

Comp. pIC50exp CoMSIA 

pIC50pred 

Residues Comp. pIC50exp CoMSIA 

pIC50pred 

Residues 

1 6.52 6.16 0.36 22 6.59 6.97 -0.38 

2 6.32 6.36 -0.04 23 7.36 7.39 -0.03 

3 7.64 7.80 -0.16 24 7.11 7.39 -0.28 

4 6.09 6.25 -0.16 25 7.19 7.05 0.14 

5 5.64 5.44 0.20 26 5.46 5.54 -0.08 

6 8.28 8.04 0.24 27* 5.64 6.79 -1.15 

7 6.68 6.88 -0.20 28 6.13 6.29 -0.16 

8 8.52 8.45 0.07 29 6.46 6.52 -0.05 

9 6.54 6.61 -0.07 30 6.38 6.60 -0.22 

10 4.94 5.13 -0.19 31 6.54 6.44 0.10 

11 5.59 5.71 -0.12 32* 5.54 7.28 -1.74 

12 7.28 7.25 0.03 33 6.10 5.89 0.21 

13* 6.66 5.78 0.88 34 4.78 4.75 0.03 

14* 6.14 6.86 -0.72 35 4.74 4.82 -0.08 

15* 4.61 5.81 -1.20 36* 4.96 5.08 -0.12 

16 7.05 6.89 0.16 37* 5.27 6.55 -1.28 

17 5.32 5.44 -0.12 38 4.11 6.20 -2.09 

18 6.23 6.06 0.17 39* 4.21 4.25 -0.04 

19 5.92 5.86 0.06 40* 5.46 5.40 0.06 

20 4.68 4.57 0.11 41 4.21 4.16 0.05 

21* 6.27 6.19 0.08 42 4.63 4.67 -0.04 

 

IV.2.2. 3D-QSAR, In silico pharmacokinetics, ADMET study and Molecular docking 

analysis  

In this work we started with the 3 Dimension of Quantitative Structure-Activity Relationship 

study using the Sybyl-X 2.1.1 software [4, 5] to carry out the 3D-QSAR procedures based on 

CoMSIA (Tripos Inc., St. Louis, MS, USA). To validate the model, a variety of internal and 

external validation approaches were used. Cross-validation was utilized to estimate the 

predictive ability of the CoMSIA model power using the Leave-one-out (LOO) approach.  

Figure IV.3 resumes all of steps involved in development of our (3D-QSAR) Model: 
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Figure IV.3: 3-D QSAR Model building flowchart. 

After that, to predict the ADMET and pharmacokinetics features of the most biologically active 

compound and the reference ligand, we utilized the web tools at the pkCSM platform [6] and 

SwissADME server [7]. Finally, we applied molecular docking in the selected compounds to 

find the binding mode of the active compounds in the active binding region of the Plasmodium 

falciparum DHFR protein (PDB :1j3k)(figure IV.4). PyRx software was used to simulate the 

docking of molecules [8]. In order to assess the outcomes, BIOVIA discovery Studio 2019 

client visualizer was used [9]. 
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IV.3.1. Validation of the developed CoMSIA model 

We performed 3D-QSAR investigations to further explore the antimalarial activity of 

diaminodihydrotriazine derivatives against Plasmodium falciparum DHFR. Thus, we 

developed a CoMSIA model where we evaluated the electrostatic (E), steric (S), hydrophobic 

(H), hydrogen bond acceptor (A) and hydrogen bond donor (D) fields [10, 11]. The respective 

data are given in Table IV.3.  

Table IV.3. PLS statistics results and fields contributions of CoMSIA model. E, S, H, A and D stand 

for electrostatic field, steric field, hydrophobic field, H-bond acceptor field and H-bonds donor field, 

respectively. 

Model 𝑄2 𝑅2 SEE F ONC 𝑅pred
2

 
Fields contribution 

S E H D A 

CoMSIA 0.553 0.981 0.163 118.913 5 0.787 0.175 0.212 0.044 0.164 0.405 

 

The table shows that the CoMSIA model based on biological activity (pIC50) values 

demonstrated strong predictive ability with 𝑸𝟐 of 0.553 (>0.5), an ONC of 5, a F-value of 

282.251, 𝑹𝟐 of 0.981 (>0.9) and SEE of 0.163 (<0.95). For external validation, a set of 9 

compounds was used. The corresponding 𝑹𝒑𝒓𝒆𝒅
𝟐 statistical parameter is 0.787. For the training 

and test set compounds, pIC50
’s were predicted. These values are listed in Table IV.2, where 

they are also compared to the experimental pIC50. Both sets of pIC50 agree quite well, which 

validates the presently established CoMSIA model. Indeed, this model has residual values that 

range from -2.09 to 0.88. 

The experimental and predicted values of pIC50 for the test and training sets of the compounds 

are plotted using linear regression in Figure IV.5. This figure shows that the plot of the 

experimental pIC50 data relate linearly with the predictedpIC50 data for the chemicals of both 

test and training sets. Indeed, a good linear dependence is noticeable which confirms that the 

proposed model has good predictive power. 
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Figure IV.5: Experimental pIC50vs. Plot of the predicted pIC50 according to the CoMSIA 

model. 

IV.3.2. Contour Plot Analysis 

Contour plot analysis was carried out for the most active compound (i.e. compound 8) at 

specific spatial areas of the system in order to understand the essential molecular criteria. The 

map includes descriptions of both positive and negative activity properties, such as (a) steric 

(b) electrostatic (c) hydrophobic/non-polar, and (c) donor and acceptor hydrogen bonds. Their 

individual good contributions are shown in Figure IV.6. 

(a) 

 

(b) 

 

                           (c) 
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(e) 

 

Figure IV.6. Fields contributions of CoMSIA model with the most active chemical (compound 

8). (a): Steric field. (b): Electronegative (red, negative) and electropositive (blue, positive) 

contour maps. (c): CoMSIA hydrophobic contour maps (yellow, favored area; green, 

unfavored area). (d): H-bond acceptor and (e): H-bond donor. 

 

IV.3.2.1. Steric contour map 

The green contour maps showed in Figure IV.6 (a) of the CoMSIA steric contour map indicate 

that the bulky groups are advantageous for enhancing activity, whereas the bulky groups are 

not as preferred in the yellow contour maps. For instance, the phenyl ring of the R group is 

highlighted by a large green contour map, which implies that inhibitors with large substituents 

compared to those with no groups or smaller ones, should be more active at this position. This 

agrees with relatively large pIC50 values for compound 2 (pIC50 = 6.319) and compound 6 

(pIC50 = 8.284), which chemical structures include relatively large steric groups such as O-

1,2,4-trichlorobenzene and O-1,2-dichlorobenzene substituted of pyridine, respectively. 

Whereas compound 15 is lacking such bulky substituents and this results in a drop in its 

biological activity. Indeed, its pIC50 of 4.607 is relatively low. Moreover, Figure IV.6 (a) shows 

that the O and N atoms of R group have a yellow contour, which indicates that adding bulkier 

substituents there will greatly reduce the biological activity of the corresponding 

diaminodihydrotriazine derivatives. This agrees with the small pIC50 value (of 4.11) measured 

for compound 38. Indeed, this compound is less potent than the other compounds of the series 

that do not have substitutes attached to these O and N atoms. 

IV.3.2.2. Electrostatic contour map 

Figure IV.6 (b) displays the electrostatic contour maps as evaluated for compound 8. The blue 

and red contours correspond to the electropositive and electronegative charges, respectively. 

The large red contours in the N, O, and S atoms of the chain of the R group imply that the 

inhibitory activity of electronegative groups will rise at these positions. This could explain why 
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the activity might be increased by the compound's electropositive group, as indicated by a blue 

contour area near the C atoms in the chain of the R group. This is in line of the higher activity 

of compound 14 with O(CH2)2group (pIC50 = 6.14) than that of compound 39 with a 

sulfonamide group (pIC50 = 4.21). It may also help to explain why these compounds exhibit 

less potent PfDHFR inhibiting activity and have electronegative substituents those fall into the 

unfavorable red area. Indeed, the electronegative groups decrease the activity of the 

compounds. 

IV.3.2.3. Hydrophobic contour map 

Figure IV.6 (c) displays the hydrophobic field's contour maps. According to the CoMSIA 

hydrophobic contour plot, the hydrophobic substituent will increase in the yellow zone the 

inhibitory activity of the compound. Yellow contours around white contours in the region of 

the benzene rings suggest that the addition of a modest hydrophobic substituent increases the 

biological activity. 

IV.3.2.4. H-Bonds 

As shown in Figure IV.7 (d), there are cyan color around positions R. Thus, substitutions at 

these positions by groups with properties of higher hydrogen bond donor are disadvantageous 

to the PfDHFR inhibition. This is the case, for instance, of compounds 22 and 27, which have 

smaller pIC50 than compound 8. Also, the purple maps of the H-bond acceptors field 

surrounding the R group in Figure IV.7 (e) imply that the presence of a donor substitution (for 

example, N, O, or S) at this position may encourage the development of H bond interaction. 

IV.3.3. In silico pharmacokinetic/ADMET 

The pharmacokinetic properties of the most active compound of the series (i.e. compound 8) 

and the co-crystallized compound (denoted hereafters as reference compound, cf. Scheme 

IV.1), were estimated with the aid of pkCSM. Also, the properties of drug likeness of these 

compounds were predicted with the aid of SWISS/ADME. The outcomes are shown in Table 

IV.4, which presents the ADMET predictions and the physiochemical properties and the Drug 

Likeness rules of these compounds. 

  

Scheme IV.1. Chemical structures of most potent compound (i.e. compound 8, left) and of the 

reference ligand (right). 
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Table IV.4. Absorption, distribution, metabolism, excretion and toxicity predictions for 

compound 8 and for the reference compound (Ref) using pkCSM. We give their physiochemical 

properties as evaluated calculated using SWISS/ADME and their Drug Likeness rules. 

Absorption and distribution 

Cp. Water 

solubility 

(log mol/L) 

Caco2 

permeability 

(log Papp in 

10-6cm/s) 

Intestinal 

absorption 

(human) 

(% 

Absorbed) 

VDss (human) 

(log L/kg) 

Fraction 

unbound 

(human) 

(Fu) 

BBB 

permeability 

(log BB) 

CNS 

permeability 

(log PS) 

8 -2.886 0.902 80.815 -0.054 0.473 -1.6 -3.19 

Ref -2.820 0.731 79.852 -0.008 0.412 -1.401 -3.103 

Metabolism and excretion 

Cp. 
CYP2D6 

substrate 

CYP3A4 

substrate 

CYP1A2 

inhibitior 

CYP2C19 

inhibitior 

CYP2C9 

inhibitior 

CYP2D6 

inhibitior 

CYP3A4 

inhibitior 

Total 

Clearance 

(log 

ml/min/kg) 

8 No No Yes Yes No No No 0.231 

Ref No No Yes Yes No No No 0.389 

Toxicity 

Cp. 
AMES 

toxicity 

hERG I 

inhibitor 

hERG II 

inhibitor 
Hepatotoxicity 

Skin 

permeation 

Max. tolerated dose (human); log 

(mg/kg/day) 

8 Yes No Yes No No 0.717 

Ref No No No Yes No 0.779 

Physiochemical properties 

Cp. MW XlogP HBA HBD TPSA log S 
Fraction 

Csp3 
NRB 

8 343.78 1.61 5 2 98.46 -2.78 0.43 6 

Ref 394.68 2.76 4 2 98.46 -3.81 0.43 6 

Drug Likeness rules 

Cp. 
Lipinski 

rule 

Ghose 

rule 

Veber 

rule 

Egan 

rule 

Muegge 

rule 

Bio availability 

score 

Alerts 

PAINS 

Alerts 
Brenk 

Lead 

likeness 

Synthetic 
Accessibility 

8 Yes Yes Yes Yes Yes 0.55 0 0 0 3.93 

Ref Yes Yes Yes Yes Yes 0.55 0 1 1 3.98 

 

Absorption and distribution were predicted from many properties. For the absorption, the log S 

parameter was used to evaluate water solubility of compound 8 and of the reference ligand 

(Scheme IV.1). We obtained values of −2.820 to –2.886 log mol/L for reference ligand and for 

compound 8, respectively. These values indicate that both compounds are soluble in aqueous 

solutions due to their long R group’s chain. For the Caco2 permeability, we have 0.731 to 0.902 

log Papp in 10-6 cm/s for reference ligand and for compound 8. For the intestinal absorption (% 

absorbed) (HIA), we found that compound 8 (= 80.815) is slightly better absorbed than 

reference ligand (= 79.852). 

For the evaluation of the distribution of the two compounds, we used the following factors: 

distribution’s volume for human (log L/kg), fraction unbound (Fu), factor of blood-brain barrier 

permeability (log BB), and CNS permeability (log PS). The volume of distribution of 

compound 8 as well as its log BB value are larger, in absolute value, than those of the reference 



     
99 compound. The distribution of medication reserves from the plasma are transferred to the tissue 

[12]. According to compound 8 analyses, this compound has a log VDss value of 0.054, 

whereas the reference ligand has a smaller log VDss value (of 0.008). Thus, the reference ligand 

is less advantageous than compound 8 in terms of what constitutes an acceptable VDss value 

according to Refs. [13-15]. Whereas the fractions unbound of each compound and their CNS 

permeability values are close to each other (cf. Table IV.4).  

The majority of medications in plasma alternate between being unbound and being bound to 

serum proteins in an equilibrium state. The proportion of drugs in plasma referred to as "fraction 

unbound" that are not bound to proteins impacts hepatic metabolism and renal glomerular 

filtration, which in turn influences the distribution volume, total clearance, and effectiveness of 

medicines [16]. The more tightly a medicine binds to blood proteins, the more difficult it is for 

it to disperse across cell membranes [17]. In the current study, low values, more particularly 

ranges between 0.412 and 0.473, were expected for the two chemicals. The BBB is an intricate 

barrier that isolates the peripheral tissue from the central nervous system (CNS). The BBB 

regulates the movement of substances, cells, and nutrients from the blood to the brain and from 

the brain to the blood in order to keep the CNS in a state of homeostasis. Additionally, it helps 

removing cellular metabolites and toxins from the brain and transports them to the blood [18]. 

Our compounds are expected to have BBB permeability values between -1.401 and -1.600. 

The metabolism was approximated based on the inhibition of the primary cytochromes (CYP) 

of the P450 super family. The primary mechanism for the interactions of drug-drug based on 

metabolism, CYP enzyme inhibition, typically entails rivalry between drugs for the same 

binding site of the enzyme. To metabolizing a number of medications, CYP2C19 is also 

engaged in the detoxification of possible carcinogens or the bioactivation of various 

environmental procarcinogens [19]. This is consistent with the outcomes of the metabolism 

section that these substances are both CYP1A2 and CYP 2C19 inhibitors.  

Besides, bioavailability is connected to excretion, which typically occurs as a combination of 

hepatic and renal clearance. Excretion is crucial for establishing dosage rates to reach steady-

state concentrations [18]. The total clearance values of compound 8 and of the reference ligand 

are 0.231 and 0.389, respectively.  

IV.3.3.1. Toxicity 

The toxicity of the potent compounds was determined using pkCSM web tool. This allowed to 

predict mutagenicity and carcinogenicity, AMES toxicity, hepato toxicity, skin permeation and 

oral rat acute toxicity lethal dosage (LD50) values. In order to create transdermal drug 



     
100 administration, skin permeability (log Kp) is evaluated. Indeed, skin permeability is an 

important element in boosting medication effectiveness [20]. Table IV.4 shows that both 

compounds do not exhibit skin permeability. The hepatotoxicity descriptor implied that the 

reference chemical might cause hepatotoxicity, whereas compound 8 might not. In the 

biotransformation and energy exchanges of medicines, xenobiotics, depend heavily on the liver. 

Damage to the liver constantly interferes with normal metabolism and may even result in liver 

failure [29]. Compounds 8 and Ref have maximum tolerated doses of 0.717 and 0.779 

correspondingly (measured in logarithm value of mg/kg/day for humans). 

IV.3.3.2. Drug-Likeness screening using SWISS/ADME 

We applied the following filters of dug-likeness: Lipinski, Veber, Ghose, Muegge and Egan 

rules using the screening with Swiss ADME. The outcomes are given in Table IV.4. This table 

shows that compound 8 and the reference ligand do not violate any of these rules. Indeed, the 

physiochemical properties listed in Table IV.4 show that these properties fall within these 

accepted ranges i.e. 150 Da  molecular weight (MW)  500 Da; -0.7  lipophilicity (XlogP) 

 5; H-bond acceptor (HBA) <10; H-bond donor (HBD) < 5; 20  topology polar surface area 

(TPSA)  130; -6  molecular solubility (log S)  0); 0.25  fraction Csp3 saturation 1; and 

molecular flexibility (NBR) <10. In sum, these substances have a bioavailability score of 0.55, 

indicating good bioavailability. 

Similarly, compound 8 exhibits no PAINS and no Brenk alerts, indicating that this compound 

has good medicinal chemistry property, compared to the reference compound which shows one 

Brenk alerts. Besides, both compounds have synthetic accessibility scores of~3.9. Therefore, 

they could be easily synthesizable. 

IV.3.4. Docking analysis result 

To investigate the interactions of compound 8 and of co-crystalized ligand (i.e. reference 

ligand) with the active pocket of the PfDHFR protein (PDB ID: 1J3k), we conducted a 

molecular docking analysis with PyRx software. The compounds' binding locations were 

visualized using Discovery Studio as displayed in Figure IV.8. This figure shows that there are 

multiple contact types between compound 8 and the protein 1J3k. For instance, compound 8 

was found to have different bond interactions, the important bonds are of hydrogen bonding 

nature (four conventional interactions between the NH of diaminodihydrotriazine ring and Ile 

14, Tyr 170, 2 bonds with ASP 54 amino acid residues) and alkyl and pi-alkyl bonds (with 

Leu46, Leu40, Val45 and Gly44). Reference compound has however just one H-bond between 

the O atom of the R group and Val 168, amino acid residue. Besides, it forms alkyl and pi-alkyl 



     
101 bonds with Gly166, Leu40, Val 195. Besides, we compute a larger binding energy of the best 

dock score (of -8.4 kcal/mol), in absolute value, for compound 8 compared to the reference 

ligand (-7.2 kcal/mol). Thus compound 8 binds better than this reference ligand to this enzyme. 

Accordingly, the reference ligand is less stable than compound 8. This may justify the relatively 

large inhibitory activity of this compound against PfDHFR. 

 

 

 

 

 

 

Figure IV.7: Various interactions formed between the compound 8 (upper trace) and co-

ligand (lower trace) with the active site of PfDHFR. 

IV.3.5. Design of new inhibitors 

Based on the present CoMSIA model maps and the impact of the various groups on the 

inhibitory activity of substituted diaminodihydrotriazine derivatives, we designed new 

inhibitors. These compounds were determined from different contour maps results, where we 

tried to change the active groups (R, R1 and R2) with other substituents that are more effective 

and less electronegative than the substituents of compound 8. Then, their biological activities 

were evaluated using Sybyl-X 2.1.1 software. Therefore, we designed three novel compounds, 

which are denotes as compounds 8a, 8b and 8c as shown in Table IV.5. This table gives also 

the predicted pIC50 of these new designed potent compounds. 



     
102 Table IV.5. Chemical structures of compound 8 and of the 

newly designed potent compounds. 

Cp. R1 R2 R pIC50 pred 

8 Me Me 
O

Cl

OF  

8.45 

8a H Me 

 

8.69 

8b Me Me 

 

10.01 

8c H Me 
 

10.69 

 

In comparison to compound 8, the most active compound in the sequence, compounds 8a, 8b 

and 8c exhibit large inhibitory activity. Indeed, we evaluate their pIC50 as 8.69, 10.01 and 10.69, 

which are larger than pIC50 of compound 8 (of 8.45). In particular, compounds 8b and 8c are 

predicted to be highly efficient.  
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General Conclusion & 
Perspectives 
 
 

 

 

 

 

The work brought together in this manuscript has made it possible to highlight the 

various virtual screening approaches for evaluating the biological activity and structural 

characteristics of 1,3,5-triazine and its derivatives for inhibiting P. falciparum dihydrofolate 

reductase (PfDHFR), with the aim of developing new bioactive molecules that are more 

effective against the disease Malaria. In this thesis, we discussed a number of important studies. 
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In the first part, we focused our attention on studying the structural and electronic 

properties of the basic nucleus, 1,3,5-triazine. The results demonstrate the effectiveness of the 

(DFT) method for performing quantum calculations and for furthering our quantum study of 

the 1,3,5-triazine nucleus and its derivatives. 

In addition, the quantitative structure-activity relationship study (2D-QSAR) was carried out to 

quantitatively determine the effect of the 2D structural descriptors of the twenty-eight 

compounds studied on their biological activities. Mathematical models containing five 

descriptors were developed using the two important statistical methods MLR and ANN, to 

predict the specific activity of PfDHFR inhibition of new 1,3,5-triazine derivatives. The various 

main validation techniques (internal validation, external validation, Y-Randomization, 

applicability domains) demonstrated that the descriptors selected are relevant and that these 

QSAR models developed have strong potential, are robust and can be very useful for predicting 

the inhibitory activity of the PfDHFR enzyme in all the studies we carried out. 

Drug likeness properties were then studied for the series of 1,3,5-triazine derivatives as well as 

for the new compounds. The molecules used in this study have pharmacological activities. The 

diversity of groups that bind to the base nucleus, i.e. the structural diversity studied, influences 

the physicochemical properties of the s-triazine derivatives and consequently their 

pharmacological properties. The computational results show that all compounds are in 

agreement with the druglikeness rules, suggesting that these compounds theoretically have high 

ADME properties and will not have problems with oral bioavailability.  

In the second part, the quantitative 3D structure-activity relationship (QSAR-3D) has 

aroused the interest of medicinal chemists, leading to the discovery of several major 

diaminodihydrotriazine-derived molecules. For this reason we devoted our attention to the 

design of the best model obtained using the CoMSIA comparative molecular similarity index 

analysis method, we used the statistical method Partial Least Squares (PLS) to develop the 3D-

QSAR model, displayed a good statistical parameter of internal and external validation. With 

the aid of obtained model we could evaluated the Fields contributions of CoMSIA model with 

the most active chemical (compound 8) (the electrostatic (E), steric (S), hydrophobic (H), 

hydrogen bond acceptor (A) and hydrogen bond donor (D) fields )where we allowed to 

understand the essential molecular criteria and from these fields we can designed new PfDHFR 

inhibitors. 

Subsequently, an in silico pharmacokinetics and ADMET study was performed for the selected 

more active compound (no. 8) and the reference ligand to assess their pharmacokinetic 

properties and toxicities. Analysis of the results obtained shows that the most active compound 
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is non-toxic and has pharmacokinetic parameter values within the acceptable range for human 

use, better than the reference ligand. 

Finally, to study and visualize the predominant interactions and affinity energies of these two 

molecules with the PfDHFR enzyme, applying Molecular docking investigations. These two 

selected molecules were docked into the active site of PfDHFR (PDB ID: 1J3K) in order to 

assess and gain an in-depth insight into their ability to bind into the active site of the target 

enzyme. The docking analysis revealed that the compounds identified (no. 8) associated with 

the active site residues better than the reference inhibitor.   

In the future, to remedy the inadequacy of our results and further our investigations, we 

intend to continue this work by using other VS techniques on the molecular structure of our 

study series in order to develop our own pharmacophore model. We will also carry out a 

molecular dynamics study to gain an insight into the biological environment using more 

effective tools, to confirm the stability of our developed compounds; then we may examine 

their biological activity at the other stage (in vitro and in vivo). 
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Appendix A: Table of calculated descriptors of 2D-QSAR model. 

 

Appendix B: Computational software using in virtual screening drug design & discovery. 
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Appendix C: Computational servers using to pharmacockenitic & drug-likeness properties. 

 http://biosig. unimelb.edu.au/pkcsm/prediction. 

 https://www. swissadme.ch. 

Appendix D: Table of Y-randomization test (chapter III). 

Model R R^2 Q^2 Model R R^2 Q^2 

Original 0.900819 0.811475 0.578526 Original 0.900819 0.811475 0.578526 

Random 1 0.617257 0.381006 -0.02843 Random 51 0.346931 0.120361 -0.57225 

Random 2 0.77679 0.603402 0.323255 Random 52 0.464752 0.215994 -0.22802 

Random 3 0.42713 0.18244 -0.52865 Random 53 0.554302 0.307251 -0.07466 

Random 4 0.234666 0.055068 -0.65744 Random 54 0.522282 0.272778 -0.37024 

Random 5 0.233215 0.054389 -0.41374 Random 55 0.524479 0.275079 -0.83486 

Random 6 0.3493 0.12201 -1.65824 Random 56 0.508119 0.258185 -0.69826 

Random 7 0.340565 0.115984 -0.78713 Random 57 0.515293 0.265527 -0.23084 

Random 8 0.320447 0.102686 -0.74846 Random 58 0.495707 0.245725 -0.34212 

Random 9 0.361597 0.130752 -0.78091 Random 59 0.321234 0.103191 -0.6664 

Random 10 0.583126 0.340036 -0.24084 Random 60 0.288373 0.083159 -0.55529 

Random 11 0.405991 0.164828 -0.75545 Random 61 0.427141 0.18245 -0.56825 

Random 12 0.22291 0.049689 -0.63856 Random 62 0.525296 0.275935 -0.6413 

Random 13 0.444058 0.197188 -0.57031 Random 63 0.460026 0.211624 -0.25021 

Random 14 0.339929 0.115552 -0.63148 Random 64 0.393568 0.154896 -0.73274 

Random 15 0.246054 0.060543 -0.61934 Random 65 0.616157 0.379649 -0.20779 

Random 16 0.323343 0.10455 -0.50165 Random 66 0.432564 0.187111 -0.27518 

Random 17 0.522765 0.273283 -0.17442 Random 67 0.602638 0.363173 -0.20981 

Random 18 0.592669 0.351256 -0.36364 Random 68 0.591421 0.349779 -0.35715 

Random 19 0.738147 0.54486 -0.32618 Random 69 0.59783 0.357401 -1.09344 

Random 20 0.404043 0.163251 -0.95317 Random 70 0.180864 0.032712 -0.98801 

Random 21 0.488713 0.238841 -0.52674 Random 71 0.707515 0.500578 0.02752 

Random 22 0.419124 0.175665 -0.80826 Random 72 0.292741 0.085697 -1.86562 

Random 23 0.497638 0.247644 -0.59841 Random 73 0.621268 0.385974 -0.10699 

Random 24 0.385613 0.148697 -0.66182 Random 74 0.402456 0.161971 -0.55345 

Random 25 0.499614 0.249614 -0.69918 Random 75 0.42794 0.183133 -1.17911 

Random 26 0.411151 0.169045 -0.59274 Random 76 0.501694 0.251696 -0.16322 

Random 27 0.229169 0.052518 -0.41813 Random 77 0.511167 0.261292 -0.80432 

Random 28 0.540232 0.29185 -0.72733 Random 78 0.456522 0.208412 -0.92419 

Random 29 0.781857 0.6113 0.209298 Random 79 0.488548 0.238679 -0.55169 

Random 30 0.428501 0.183613 -0.53444 Random 80 0.669117 0.447717 -0.22213 

Random 31 0.221082 0.048877 -1.37835 Random 81 0.200553 0.040221 -0.70711 

Random 32 0.384212 0.147619 -0.57722 Random 82 0.48849 0.238622 -0.3919 

Random 33 0.504544 0.254565 -0.21691 Random 83 0.663582 0.440342 -0.0074 

Random 34 0.270896 0.073384 -0.48148 Random 84 0.382505 0.14631 -0.72194 
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Random 35 0.352039 0.123932 -1.16022 Random 85 0.677534 0.459052 
-

0.16915 
Random 36 0.559946 0.31354 -0.49041 Random 86 0.475431 0.226035 -0.59752 

Random 37 0.55168 0.304351 -0.91549 Random 87 0.460155 0.211742 -0.30341 

Random 38 0.643765 0.414433 -0.1615 Random 88 0.354559 0.125712 -0.26973 

Random 39 0.266378 0.070957 -0.6093 Random 89 0.240598 0.057887 -0.49398 

Random 40 0.301611 0.090969 -0.38155 Random 90 0.410288 0.168336 -0.58431 

Random 41 0.254418 0.064728 -1.29233 Random 91 0.610211 0.372358 -0.26122 

Random 42 0.504036 0.254052 -0.26302 Random 92 0.536479 0.287809 -0.59456 

Random 43 0.264827 0.070133 -0.63649 Random 93 0.551948 0.304647 -0.17704 

Random 44 0.327991 0.107578 -0.77359 Random 94 0.251424 0.063214 -0.767 

Random 45 0.361148 0.130428 -0.87839 Random 95 0.567729 0.322316 -0.39188 

Random 46 0.513164 0.263337 -0.91081 Random 96 0.534569 0.285764 -0.66548 

Random 47 0.334278 0.111742 -0.69702 Random 97 0.439052 0.192766 -1.45673 

Random 48 0.501247 0.251248 -0.31005 Random 98 0.240507 0.057844 -0.94552 

Random 49 0.483714 0.233979 -1.22811 Random 99 0.315873 0.099776 -0.40235 

Random 50 0.482727 0.233025 -0.81549 Random 100 0.379495 0.144016 -0.51855 

 

 

 

 

 

 

 

 

 


