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Abstract

This thesis tackles the modeling, design, and control of a Quadrotor unmanned aerial
vehicle, with a focus on intelligent control and smart applications such as obstacle
avoidance, robust trajectory tracking, visual soft landing, and disturbance compensa-
tion. It details the mathematical modeling opted for the simulation and the control.
Furthermore, It describes the classic control methodology for both linear and nonlin-
ear control techniques with interpreted simulations; The methodology is subsequently
applied to develop an open-source autonomous quadrotor miniature model. In ad-
dition, advanced control theory has been applied using Adaptive Linear Quadratic
Gaussian, Model predictive control, and intelligent Radial basis functions neural net-
work for the robust tracking of generated trajectory for either obstacle avoidance or
bio-inspired soft landing on a specially designed landing pad. The thesis depicts as
well the adaptive optimal observation by an enhanced Kalman filter combined with
Madgwick sensor’s data fuse. Control laws were mainly either mathematically derived
or adaptively generated based on stability analysis using Lyapunov theory, The sim-
ulation incorporated several analytical comparisons to prove efficiency and compare
the performance.
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Chapter 1

Introduction

“Helicopters don’t fly, they vibrate

so badly the ground rejects them.”

Tom Clancy

1.1 Motivations and Objectives

In recent years, the focus has been directed to Unmanned Aerial vehicles (UAV)s, its

domain has received countless research and academic works. Their use has become a

sort of indispensable task in many sectors, which led to a massive investment of time,

money, and technology to develop algorithms and strategies for sophisticated sys-

tems of control. Essentially, UAVs had been made for Reconnaissance, Intelligence,

Surveillance, and Target Acquisition (RISTA), however, recent years had shown more

modalities of use especially in military and commercial sectors as in delivery appli-

cations. Quadrotors as one of the important UAV models show a big advantage by

stationary ability during the hovering mode although it is considered an inefficient

mechanism in matter of energy consumption relative to fixed wings platforms. The

techno-scientific challenge to design and control a quadrotor robustly by applying

intelligent approaches to achieve beyond-imagination applications was very motivat-

ing. Modeling techniques besides controlling approaches of multirotor with hardware
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development had all contributed to gaining better performance, endurance, and even

to executing acrobatic maneuvers and sophisticated trajectories [19], which opened

up more doors for new challenges and designs.

Advanced Microelectroeechanical Systems (MEMS) sensors, micro-ships, & Global

positioning system (GPS) receivers allowed an essential step toward mainstream ap-

plications [39][65]. Moreover, commercial and civilian use represent an interesting

domain where many applications were developed such as in agriculture, geology, cli-

mate & weather studies, mapping of open and confined environments, delivery, and

even for entertainment and tourism [93][32]. Yet, fixed wings UAVs are mechanically

more efficient mechanisms energy-wise, owning the heritage of classic aircraft design,

Quadrotors among the family of multirotor had received a huge contribution and

attention due to hovering mode, and the ability of Vertical Taking Off and Land-

ing (VTOL) [16]. Furthermore, indoor capabilities and agility in confined spaces are

more than to be matched by other types. Maneuverability and acrobatic abilities were

tackled also as a performance objective [12], it’s significant to state that quadrotors

commercial business topped a budget of 22 billion dollars [93].

A Quadrotor is a maneuverable highly nonlinear model of UAVs that falls into the

class of underactuated systems, with Six Degrees Of Freedom (DOF) and is energized

by four rotors with fixed-pitch propellers that rotate at different controlled speeds

[76]. In addition, the quadrotor presents tremendous uncertainties in modeling, iden-

tification, and design parameterization, despite neglecting the external disturbance

of environment and noise of actuators and sensors.

Here comes the challenge, where intentions were made to address a performant

control, robust tracking, and smart application and abilities applying intelligent meth-

ods. Diverse approaches have been considered in the literature and research about

the control philosophy of quadrotors [76]. Advanced control theory contributed sig-

nificantly to overcoming the difficulties in a variety of designs of autonomous vehicles

[65]. Adaptive designs and platforms were more developed for the aspects of specific

tasks and applications. Early works about quadrotor development focused just on a

reliable control [65][19]. Conversely, recent papers present a deeper sight of tasks and

22



Figure 1-1: Applications on quadrotors in different projects (A).[5], (B).[100] (C).[95]
and (D).[26]

control performance such as 3D mapping [48], Simultaneously Localization And Map-

ping (SLAM) [30] [26], trajectory generation, and tracking [113][81][107] [97], sparse

and swarm control [67][15], augmented and Hybrid systems, and autonomous landing

[10][41][21], etc. Fig.1-1 illustrates some interesting projects about quadrotors.

The essence of this work is to present an assessment of essential strategies of

quadrotors design and intelligent control, rising up from the mathematical modeling

of the quadrotor, by the validation of the nominal model, then clarifying the classic

techniques of control with detailed schemes, Algorithms, and simulations with build-

ing an open source model, to the derivation of intelligent and modern architecture

of control and tracking. Trajectory generation was well investigated, as the sophisti-

cated application such as soft landing and obstacle avoidance in addition to robust

compensation of disturbance.

1.2 State of the art

Quadrotors are classified as rotorcrafts typology, A widely known structure of a Quad-

copter is shown as crossed bars of the body, with several motor/propeller installed at

the arms ends, The four rotors are configured into clockwise and counter-clockwise
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rotating pairs; thereby canceling the horizontal spinning (Yawing). The rotation of

propellers generates enough thrust to lift and rotate the drone around the main three

axes of rotation.

Quadrotor UAVs are defined as aircraft with the approbation of communication

and control with no man on board [65], this latter opens the possibility of either an

autonomous control system or being remotely controlled, which can be managed by

a ground pilot with a communication post. Yet, all UAVs are equipped with a Flight

Control Unit (FCU) to ease the exploitation of the Inertial Measurement Unit (IMU)

[51] and other sensors.

Historically, quadrotors were attracting people since the earlier of 20th century,

named at that time by Breguet-Richet Gyroplane as in Fig.1-2 [106], In 1922, George

de Bothezat and Ivan Jerome made another attempt to develop the copter philosophy

for more applicability than what has been done previously [25]. In 1956, an approved

flight of quadrotor test showed the practicality of such a design even though it did not

get a successful commercialization. Later on, Curtiss Wright company constructed

the VZ-7 model for the US Army in 1958, which was considered the real ancestor of

nowadays design. Researches had a big push by the boom of electronics of control and

technology. Far from this ancient design, the quadrotor recently opted for a miniature

scale, Vijay proved that a small-scale UAV shows more stability and ease of control

than a larger one [93]. Resources have been set to develop and designs applications of

quadrotors industrialization, which exploded the budget of investment [31], especially,

with the commercial perspective that boosts Numerous universities and companies to

develop research centers to improve this sector and look for particular applicability,

especially after the Russian-Ukrainian war.

In literature, Control of quadrotors tackled many essential axes as detailed in

Fig.1-3, at the same time, from a control theory point of view, it was dispatched be-

tween linear, nonlinear, and intelligent methods, all applied to the quadrotor model

to achieve either high tracking performance, obstacle avoidance, navigation, and au-

tonomous exploration and tasks.
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Figure 1-2: Breguet-Richet Gyroplane [106]

Figure 1-3: Main axis of researches and applications

For the linear procedure, Proportional Integral Derivative (PID) Controller was

always the easiest & robust way to attribute quadrotor control [19][78] [22] [89],

Roger et al. presented a novel robust PID economic control [71]. Linear Quadratic

Regulator (LQR) for stability and tracking was proven robust in [68]. Linear H infinite

opted for robustness in [87]. Nonlinear techniques were approached in numerous

typologies, model inversion strategy was applied for quadrotor control in [6], and with
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a suspended load in [29], feedback linearization was opted for by many researchers as

its simplicity, however, it is prone to instability in many cases due to non-invertibility.

Backstepping method was highly investigated using a variety of architecture as it’s

not that complicated in implementation on hardware, a flip maneuver of a quadrotor

using Backstepping approach with a gain update was opted in [12], it was used too

to guarantee UAV’s trajectory tracking [55]. The Sliding mode was subjected by

many researchers and showed robust control and tracking as shown in [47][40][71].

Linear techniques can not ensure neither convergence not performance once we move

away from the operating envelope, nonlinear techniques rely extremely on dynamics

modeling, which opens the doors for instability due to unmodeled effects and external

forces, in addition, both of them present a limited ability to adapt to uncertainties in

matter of performance.

Intelligent control methods were considerably investigated as well, Fuzzy Logic

Controller (FLC) was designed for quadrotors hovering & tracking modes in [53].

Model Predictive Control (MPC) has been applied to ensure nontrivial maneuvers and

obstacle avoidance for quadrotor UAV under disturbances [62] and for autonomous

landing [20]. Neural Network (NN) methods were also contributing to quadrotor

development, as we may talk about direct nonlinear model identification, obstacle

avoidance via Convolution Neural Network (CNN)-based learning, Dai et al. per-

formed experimentation of SLAM & SFM algorithms on PARROT BEBOP 2 using

vision camera based on CNN prediction for depthwise [26]. Huan et al. used NN

Control based on Reinforcement learning optimized by Gradient algorithm, Imple-

mentation later of the trained model was directly implemented in Pixhawk flight

controller model [82]. Another approach was based on using Diagonal Recurrent

Neural Network (DRNN) for updating PID gains in [78]. Magdwick et all developed

a faster data fusion of sensor for attitude feed back based on mathematical optimiza-

tion of quaternion equations [66], in this thesis we will develop an enhance Extended

Kalman Filter (EKF) combined with Madgwick method.

The majority of quadrotors designs take advantage of EKF for optimal full state

vector estimation from measurements, which was concluded to be an effective method
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in autonomous navigation systems that showed robustness under disturbance [102]

[50], or in the presence of white Gaussian noise as shown in [102], SLAM algorithm

uses the advantage of the data driven by the IMU estimator for variety of applications,

such as bio-inspired autonomous landing [30]. Guo et al. experimented EKF observer

to enhance PID based H infinity control of multiple quadrotors [41], an evolutionary

algorithm with principles of KF to tune unknown noises was optimized in [50], other

researchers have used virtual sensing based on EKF observer to develop a quadrotor

controller [78].

A vast domain of applications is carried out about Quadrotors, far away from pro-

jecting control theory over attitude behavior, trajectory generation & path following

were engaged in many papers, Alcocer et al. considered model-based mathematical

optimization of trajectory with high performance compared with respect to three

different classical known trajectory tracking controllers [81]. Tracking of trajectory

subject to uncertain inertial & mass parameters was considered in [113]. It has been

proven that there are plenty of procedures to generate optimal trajectories far away

from the complexity and expensive time of optimal control model [20].

Obstacles avoidance was a major criterion in trajectory design & tracking, hence,

many philosophies were approached, FLC was proven to be a good tracking strat-

egy for quadrotors, with Lyapunov analysis to investigate the exponential stability

[53], Chang et al. designed tracking based on PID with Active Disturbance Rejec-

tion Control (ARDC). Obstacle detection was achieved by sensors whilst a proactive

generation of the ellipsoid potential field was avoided. Other Researchers opted for

a trajectory generation first using quadratic programming with Linear constraints,

then, The control of tracking was decided in a closed loop scheme with double inte-

grator Lyapunov control, following minimal SNAP (4th derivative ) and minimal of

JERK (3rd derivative) [107], results of the flip experiment are shown in Fig. 1-4 .

The Backstepping technique also opted for trajectory tracking with avoidance of

singularities by emphasizing the quaternion model [97]. It is mandatory to reveal

that path following problem is defined when implementing a controller that tracks

trajectory without time referencing. Those controllers discuss more the feasibility as
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Figure 1-4: Sequence of attitude snapshots of the quadrotor performing a 360 flip
[107]

the realization of stable following along the generated path, Löber, demonstrated the

realisability of Optimal Trajectory Tracking of Nonlinear Dynamical Systems [63].

Trajectory optimization had another research area where researchers worked on

the control of multiple and swarm of quadrotors, distributed finite time formation

tracking control problem with collision avoidance was investigated for multiple quadro-

tor UAVs subject to external disturbances by Huang et al. focus was on mounting a

challenge of Disturbance estimation with a Sliding Mode Control (SMC) to follow the

desired trajectory generated by Optimal Control Problem (OCP) as they proved Lya-

punov stability [47]. Borkar et al. exploited Lissajous curves for the pre-planning of

trajectories for Re-configurable formations of quadrotors for surveillance applications

[15], another group of researchers tackled the zone search optimization of a quadro-

tors flock by adhering to a bio-inspired methodology & considering the interaction

between Quadcopters to avoid obstacles and collision using PID control applied on

swarm algorithm, the authors proved the advantage of Multi Object Navigation Op-

timization of the dynamic model with other techniques [67], while others regarded

the multiple quadrotor cooperative control subject to aerodynamics drag & position

deviations, the paper written by Yue et al. suggested a leader drone to be followed

based on adaptive SMC [110]. Same leader-followers philosophy was maintained by

Liu et al. in [60] where they opted for visually servoing Formation Tracking Control
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for Quadrotor UAVs Team, the authors studied the following patterns, cooperative

work, a sudden change of leader process.

Navigation in an unknown environment for quadrotors was studied as well referred

as Guidance, Navigation and Control (GNC) algorithms, GNC got some researches

contributions, vision-based localization was used as well as an option for 3D posi-

tioning [92] [80], building a 3D maps using SLAM was also simulated by Jiang et

al. for a quadrotor in Gazebo data set combined by Robot Operating System (ROS)

[48], SLAM combined with state estimation through INS was researched also, for bio-

inspired autonomous landing using a Kinect camera [30]. Another study was about

the Stereo vision for a quadrotor to avoid single and multiple obstacles defined in the

ellipsoidal bounding box [80].

Recently, NN methods have been used in quadrotors for identification and obsta-

cle avoidance. Structure From Motion (SFM) with SLAM enabled by Reinforcement

learning-based approaches considering a CNN scheme for obstacle avoidance was stud-

ied [26]. DRNN for updating PID gains strategy was implemented successfully in [78].

Augmented and hybrid mechanical systems based on the quadrotor model were

also investigated in the literature. Nonlinear Lyapunov approach for hybrid dynamics

(Quadrotor + load) focused on slung load attached to quadrotor trajectory tracking is-

sue was performed reliably [21]. Dynamic inversion of the quadrotor with a Suspended

Load was modeled by applying Newton’s laws, then the author opted for control via

dynamic inversion [29]. Adding robot arms to the quadrotor model was one of the

interesting subjects, as a 2 DOF arm was a PID methodology controlled for manipula-

tive quadrotor [51]. Swing attenuation for quadrotor transporting a cable-suspended

payload problem was modeled and controlled via two approaches depending on swing

angle; the authors used Interconnection and Damping Assignment-Passivity Based

Control (IDA-PBC). OCP has opted in many papers to track generated trajectories

for quadrotors subject to time minimization or avoidance of contact [68] [47]. Divers

open source models of quadrotors were developed, either using Pixhawk FCU, a devel-

oped model based on Arduino Mega with data fusion of IMU sensors was investigated

and explained.
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1.3 Contribution of this Work

The thesis focuses essentially on the modeling, and intelligent control of an au-

tonomous quadrotor with smart applications based on optimal sensors data fusion

and robust trajectory tracking. The contribution of this work lies in numerous areas:

1. In a matter of modeling: mathematical modeling of quadrotors dynamics:

derivation of equations by Newton and Euler formalism to obtain a valid math-

ematical representation of flying dynamics. In addition to demonstrating step

by step of the development of classic methods of control with all schemes, Algo-

rithms, and simulations, where we have Carried out and provided a real depth

for the simulation by considering the wind disturbance that affects the general

position and high-frequency noise of actuators and sensors thru Gaussian white

noise. A 3D simulation environment to visualize the quadrotor flight results to

ease the perception of control effectiveness was built in Matlab Sim-Mechanic

environment.

2. In a matter of Conception and design: Implementation and realization

of an open source quadrotor model with detailed algorithms based on Arduino

Mega development card. Algorithms, material, and sensors were all detailed.

Codes, Simulink models, and programs are publicly available for researchers to

be exploited as a benchmark for their studies.1

3. In a matter of Optimal observer: A Novel faster robust Attitude and Head-

ing Reference system (AHRS) algorithm of asynchronous data fusion filter to

estimate orientation based on merging EKF and Madgwick approach enhanced

by compensation of bias and calibration of distortion with the integration of

GPS localization data. The use of the Adaptive EKF to mitigate sensing noise

destabilizing effect, with the demonstration of stability analysis by Lyapunov

theory.

1GitHub codes.
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4. In a matter of adaptive control: Design of an adaptive LQG tracker for

the UAV that exploits AHRS-EKF algorithm to track a 3D Spline trajectory

with disturbance rejection and cancellation of the Gaussian random noise, both

represented by the wind gust disturbance that affects the general position and

the high-frequency noise of actuators and sensors using various Gaussian white

noises. with the Comparison of adaptive LQG control with nested loop design

PID, Integral Backstepping, and FLC control performances.

5. In a matter of visual detection and control: Design a robust application of

the pose estimation based on a special landing pad by multiple ArUco markers

with different patterns at different sizes to ease the detection.

6. In a matter of optimal control: Derive the MPC for position tracking with

attenuation of external disturbance and performance comparison to PID, MPC

is Combined by an EKF & Magdwick Data fusion of asynchronous sensors for

state observation.

7. In a matter of Soft landing: Planning a mimic of natural decision making

as expert human processing for landing by incorporating the FLC for velocity

control.

8. In a matter of Intelligent Control: The Conception of a nested NN design

based on adaptive RBFNN to control position in the outer loop and a supervised

NN to control the attitude that carries out superior performance such as a

faster convergence and capable of disturbance rejection and stabilize attitude

at the initial phase, with higher precision in comparison to some nonlinear

and intelligent control approaches which are limited to robustness against the

assessed type of noise and perturbation.

9. In a matter of performance and robustness: Comparison of different

algorithms of control with the opted RBF strategy relative to the tracking error

and robustness to disturbance and unmodeled effects. a PID, an IBS based on

nonlinear dynamics, and a decentralized offline trained Multi Layer Perceptron
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Neural Network (MLPNN) have been all of them evaluated in comparison. In

Matlab simulation, motors dynamics and mechanical noise have been all added

to the model.

1.4 Developed Applications

Despite the realization of an open source model, Two main intelligent applications

have been built during the research period.

First the Visual Soft Landing Of An Autonomous Quadrotor On A Moving Pad

Using A Combined Fuzzy Velocity Control with MPC [20], where we demonstrated a

sophisticated solution for the soft landing application of a fully autonomous quadrotor

on a moving pad considering external disturbance, model uncertainties & actuators

noise. The specially designed landing pad was initially detected by an onboard vision

system with a robust Algorithm to estimate its coordinates precisely by a fusion of

the camera pose estimation with INS filters. The desired trajectory for waypoint

and landing is dynamically generated based on jerk optimization, integrating a bio-

inspired velocity profile by FLC with a position loop estimator to smoothen the

landing. MPC was chosen for tracking.

A second project was about the Optimal Control Of Quadrotor With a Novel

Madgwick/Extended Kalman Observer To Track A Spline Trajectory For Obstacle

Avoidance, where a demonstration of the adaptive Linear Quadratic Gaussian (LQG))

control of quadrotor using a novel faster full state observer based on an enhanced EKF

subjected to track a remotely generated Spline trajectory for obstacle avoidance.

Quaternion Orientations and Attitude and Heading Reference system (AHRS) were

validated by experimental tests at less than one degree of precision error, whereas the

proposed adaptive LQG control of the quadrotor was simulated for tracking control

and validated in Simulink environment in the presence of disturbance.

Furthermore, Intelligent proactive compensation of disturbance has been well

studied theoretically using Adaptive Radial Basis Function (RBF).
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Chapter 2

Modeling of dynamics

In this thesis, the mathematical model of quadrotor UAV is derived using Newton-

Euler formalism, no considerations will be taken for Hubb forces or ground effects,

due to the validation of the attributed model by many researchers. Most of the used

symbols are defined in Table 2.1. Moreover, most of the ignored effects are considered

disturbances and model uncertainties that we treat in the control aspect.

Table 2.1: Symbols definition
Symb Defintions Symb Defintions
𝜑 Roll angle 𝜃 Pitch angle
𝜓 Yaw angle Ω Rotor speed
𝐽𝑇𝑃 Total rotors inertia 𝑙 Lever
𝑏 Thrust coefficient 𝑔 Gravity
𝑑 Drag coefficient Ω Rotor speed
𝑚 Quadrotor mass 𝐼 Inertia matrix
𝐼3𝑋3 3 by 3 Identity matrix 03𝑋3 3x3 Zeros matrix
𝑇𝑖 Torque of motor "i" 𝑙 lever
𝑅Θ rotation matrix 𝑇Θ transformation matrix
𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧 inertia matrix diagonal in B-

frame
Γ̈𝐸 vector of linear acceleration

in E-frame
𝐹𝐸 Generalized forces in E-

frame
�̇� 𝐵 linear acceleration in B-

frame
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2.1 Design concept

A common structure of the quadrotor is based on mounting four throttle motors

on the four extremities of crossed barres frame, where every two adjacent propellers

rotate in opposite directions at controlled speeds to stabilize the 6 DOF of the UAV

as illustrated in Fig.2-1 . This propellers’ arrangement tends to give a general change

in the lift for the quadrotor when all propellers increase or decrease simultaneously

their rotation speed, this global thrust is known by 𝑈1. complementary change of two

opposite propellers speeds creates a torque around one of its 𝑋𝑏 or 𝑌𝑏 body frame

axes, this input is known by 𝑈2 or 𝑈3, a total summation of all rotation creates a

relative torque around the 𝑍𝑏 axe, referred by 𝑈4. Roll, pitch & yaw are the three

defined possible rotations around 𝑋𝑏, 𝑌𝑏 ,& 𝑍𝑏 respectively, where "b" notation is

referring to the drone’s body frame as shown in Fig. 2-1. Those rotations generate

two translations along 𝑋𝑒 & 𝑌𝑒 in the earth reference frame, vertical linear motion is

a result of lift produced by the four propellers. This ability to perform 6 DOF motion

by four actuators classifies the quadrotor into an under-actuated dynamic unstable

system, with four inputs and six outputs [54] -[18]. Thus, the linear translations in 𝑋𝑒

& 𝑌𝑒 directions are coupled. This fact would be trivial when observing the dynamics

of quadrotor where the angles and their time derivatives do not depend on translation

components. However, on the other hand, the translations do depend on the angles

[40].

To develop the six DOF spatial free body equations of motion, it’s common to

create two frames references where orientations are well demonstrated [19]. Earth

inertial frame (E frame), is defined by ground with gravity orientation to the direction

of negative Z, 3D quadrotor translations would be adequate in this reference frame.

E frame: earth related reference: 𝐸(𝑂𝑒, 𝑋𝑒, 𝑌𝑒, 𝑍𝑒).

The body fixed frame (B frame), is defined by the orientation of the quadrotor

with rotors axes parallel to the 𝑍𝑏 direction. 𝑋𝑏 & 𝑌𝑏 axes are directed within the

body arms, this frame is suitable for attitude study.

B frame: Body related reference: 𝐵(𝑂𝑏, 𝑋𝑏, 𝑌𝑏, 𝑍𝑏).
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Figure 2-1: Configuration of quadrotor frames

𝐹1, 𝐹2, 𝐹3 & 𝐹4 are the forces of thrusts generated by each motor respectively, it

is crucial to coincide the origin of the body frame on the body center of gravity to

simplify the equations of motions and inertial moments. In order to ease the modeling

work, within Newton Euler formalism, many assumptions have been taken:

• The structure is considered perfectly rigid with symmetrical properties to ease

the diagonal inertial matrix calculation.

• Propellers are considered identical and rigid without flapping.

• Motors are almost similar to match close electric modeling and behaviors.

• Thrust and drag are maintained in perfect gas conditions with laminar stream

velocity. In fact, some propellers are designed in ducted fans to optimize the

thrust, It is known that thrust is proportional to the square of the spinning

speed of the propeller.

2.2 Newton Euler formalism

Equations of motions are developed in the body frame to ensure ease of the study.
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Figure 2-2: Euler’s angles of rotations (𝜃, 𝜑, 𝑎𝑛𝑑𝜓 respectively)

2.2.1 Kinematics

For body kinematics, we don’t take into consideration forces or torques applied on

the quadrotor.

The linear and angular position in the E frame, and the linear and angular veloc-

ities in the B frame can be noted as:

Σ = [Γ𝐸,Θ𝐸]𝑇 = [𝑋 𝑌 𝑍 𝜑 𝜃 𝜓]𝑇 (2.1)

𝜈 = [𝑉 𝐵,𝑊𝐵]𝑇 = [𝑢 𝑣 𝑤 𝑝 𝑞 𝑟]𝑇 (2.2)

Using the rotation matrices of Euler between the two orthogonal references as in

Fig.2-2:
𝑅Θ = 𝑅(Ψ, 𝑧) 𝑅(𝜃, 𝑦) 𝑅(𝜑, 𝑥) =

𝑅Θ =

⎡⎢⎢⎢⎣
𝑐𝜓𝑐𝜃 𝑐𝜓𝑐𝜑+ 𝑐𝜓𝑠𝜃𝑠𝜓 𝑠𝜓𝑠𝜑+ 𝑐𝜓𝑠𝜃𝑐𝜑

𝑠𝜓𝑐𝜑 𝑐𝜓𝑐𝜑+ 𝑠𝜓𝑠𝜃𝑠𝜑 −𝑐𝜓𝑠𝜃 + 𝑠𝜓𝑠𝜃𝑐𝜑

−𝑠𝜃 𝑐𝜃𝑠𝜑 𝑐𝜃𝑐𝜑

⎤⎥⎥⎥⎦ (2.3)

𝑅Θ is a result of three consecutive rotations around linear independent axis. 𝜓, 𝜑

and 𝜃 represent the Yaw, Roll and Pitch angles respectively. Relation between linear

velocities in B frame 𝑉 𝐵 and in E frame Γ̇𝐸:
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𝑉 𝐸 = Γ̇𝐸 = 𝑅Θ 𝑉 𝐵 (2.4)

By the same analogy, we got the angular velocity in E frame Θ̇𝐸 by the following

relation derived from Euler Rates:

Θ̇𝐸 = 𝑇Θ 𝑊𝐵 (2.5)

where

𝑇Θ =

⎡⎢⎢⎢⎣
1 𝑠𝜑+ 𝑡𝜃 𝑐𝜑𝑡𝜃

0 𝑐𝜃 𝑠𝜑

0 𝑠𝜑/𝑐𝜃 𝑐𝜃𝑐𝜑

⎤⎥⎥⎥⎦ (2.6)

𝑇Θ is the inverse if 𝑇Θ−1 that is determined by resolving the Euler rates and

satisfies:⎡⎢⎢⎢⎣
𝑝

𝑞

𝑟

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
�̇�

0

0

⎤⎥⎥⎥⎦+𝑅(𝜑, 𝑥)−1

⎡⎢⎢⎢⎣
0

𝜃

0

⎤⎥⎥⎥⎦+𝑅(𝜑, 𝑥)−1𝑅(𝜃, 𝑦)−1

⎡⎢⎢⎢⎣
0

0

�̇�

⎤⎥⎥⎥⎦ = 𝑇Θ−1

⎡⎢⎢⎢⎣
�̇�

𝜃

�̇�

⎤⎥⎥⎥⎦ (2.7)

𝑇Θ is usually linearized to the 𝐼3*3 matrix because of instantaneous small angles

of attitude, So, derivation of generalized position in E frame could be written as :

Σ̇ = 𝐽Θ 𝜈 (2.8)

𝐽Θ =

⎡⎣𝑅Θ 03*3

03*3 𝑇Θ

⎤⎦ (2.9)

2.2.2 Dynamics

From a dynamics perspective, the effect of forces and torques on the motions should

be studied in the B frame, the reason behind that is due to the invariance of the

inertial matrix in time, as using the symmetry of the body to ease the equations,

despite the explicit nature of applied forces in the B frame. The origin 𝑂𝐵 of B-frame
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has been precisely chosen as the Center Of Mass (COM) to simplify the calculation of

the inertial moment’s matrix. In such a way, the quadrotor is symmetric with respect

to the 𝑋𝑏, 𝑌𝑏& 𝑍𝑏 axes. Then, the center of gravity coincides with the geometric

center of the quadrotor. The dynamics equations of the quadrotor model without

consideration of air drag can be derived as [52].

From Euler’s First axiom of Newton’s Second Law: deriving the linear velocity

vector in the E-frame:

𝑚 Γ̈𝐸 = 𝐹𝐸 (2.10)

𝑚 (�̇� 𝐵 +𝑊𝐵 * 𝑉 𝐵) = 𝐹𝐵 (2.11)

With 𝑊𝐵 = 𝑅Θ−1�̇�Θ.

Similarly, deriving the angular component of motions of Euler axiom of Newton’s

second law

𝐼 Θ̈𝐸 = 𝜏𝐸 (2.12)

𝑇Θ−1 * 𝐼 ( ˙𝑇Θ 𝑊𝐵) = 𝑇Θ−1𝜏𝐸 (2.13)

𝐼 �̇�𝐵 +𝑊𝐵 * (𝐼 𝑊𝐵) = 𝜏𝐵 (2.14)

From both Eqs. (2.11) & (2.14), we can write:

⎡⎣𝑚 𝐼3*3 03*3

03*3 𝐼

⎤⎦ ⎡⎣ �̇� 𝐵

�̇�𝐵

⎤⎦+

⎡⎣𝑊𝐵 * (𝑚 𝑉 𝐵)

𝑊𝐵 * (𝐼 𝑊𝐵)

⎤⎦ =

⎡⎣𝐹𝐵

𝜏𝐵

⎤⎦ (2.15)

A generalized vector of forces and torques Λ could be represented by:

Λ = [𝐹𝐵 𝜏𝐵]𝑇 = [𝐹𝑥 𝐹𝑦 𝐹𝑧 𝜏𝑥 𝜏𝑦 𝜏𝑧]
𝑇 (2.16)

So , Eq. (2.15) can be written as:

𝑀𝐵 �̇� + 𝐶𝐵 𝜈 = Λ (2.17)

�̇� = −𝑀−1
𝐵 𝐶𝐵 𝜈 +𝑀−1

𝐵 Λ (2.18)
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Where 𝑀𝐵 is diagonal, because of the considered assumptions.

𝑀𝐵 =

⎡⎣𝑚 𝐼3*3 03*3

𝐼3*3 𝐼

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑚 0 0 0 0 0

0 𝑚 0 0 0 0

0 0 𝑚 0 0 0

0 0 0 𝐼𝑥𝑥 0 0

0 0 0 0 𝐼𝑦𝑦 0

0 0 0 0 0 𝐼𝑧𝑧

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.19)

𝐶𝐵 called the Coriolis centripetal matrix and its represented as follows:

𝐶𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 𝑚 𝑤 −𝑚 𝑣

0 0 0 −𝑚 𝑤 0 𝑚 𝑢

0 0 0 𝑚 𝑣 −𝑚 𝑢 0

0 0 0 0 𝐼𝑧𝑧 𝑟 −𝐼𝑦𝑦 𝑞

0 0 0 −𝐼𝑧𝑧 𝑟 0 𝐼𝑥𝑥 𝑝

0 0 0 𝐼𝑦𝑦 𝑞 −𝐼𝑥𝑥 𝑝 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.20)

Eq.(2.18) is generic and it is valid for any rigid body motion with the considered

assumptions that have been made previously. The dynamics of the quadrotor are

under three contributions, Gravitational forces in the B-frame:

𝐺𝐵 = 𝑅Θ−1 𝐹𝐸 = 𝑅Θ−1 𝐺𝐸 (2.21)

Using the orthogonal normalized property

𝑅Θ−1 *𝑅Θ𝑇 = 𝐼 (2.22)
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𝐺𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑚 𝑔 𝑠𝜃

−𝑚 𝑔 𝑐𝜃 𝑠𝜑

−𝑚 𝑔 𝑐𝜃 𝑠𝜑

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.23)

The second effect is due to the rotations of propellers that create thrusts along all

the motors’ axis, the thrust of each motor is proportional to the square of propeller

speed. From the understanding of the nature of motions of quadcopter, as previously

explained, we can define the vector 𝑈𝐵:

𝑈𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

𝑈1

𝑈2

𝑈3

𝑈4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

𝑏
∑︀4

𝑖=1Ω
2
𝑖

𝑏 𝑙 (Ω2
4 − Ω2

2)

𝑏 𝑙 (Ω2
3 − Ω2

1)

𝑑 (Ω2
4 + Ω2

2 − Ω2
3 − Ω2

1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.24)

Where we define 𝑈1 as the resultant thrust generated by all the motors and it

is oriented within 𝑍𝑏 axes. 𝑈2 is the moment of torque generated around the 𝑋𝑏

axes involving the motor number (4) & (2). 𝑈3 is the moment of torque generated

around the 𝑌𝑏 axes involving the motor number (3) & (1). 𝑈4 is the moment of torque

generated around the 𝑍𝑏 axes involving all motors.

The third effect to be considered is the Gyroscopic effect, which happens because

the velocity unbalances of the four propellers relative to body motions:
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𝑁𝐵 = 𝐽𝑇𝑃

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

𝑞 −𝑞 𝑞 −𝑞

−𝑝 𝑝 −𝑝 𝑝

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ω (2.25)

Where Ω = −Ω1 + Ω2 − Ω3 + Ω4. By applying the forces and torques model to the

generic equation of motion, Eq.(2.18), we find:

�̇� =𝑀−1
𝐵 [−𝐶𝐵 𝜈 + 𝑈𝐵 + 𝑁𝐵 + 𝐺𝐵] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̇�

�̇�

�̇�

�̇�

𝑞

�̇�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.26)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̇�

�̇�

�̇�

�̇�

𝑞

�̇�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/𝑚 0 0 0 0 0

0 1/𝑚 0 0 0 0

0 0 1/𝑚 0 0 0

0 0 0 1/𝐼𝑥𝑥 0 0

0 0 0 0 1/𝐼𝑦𝑦 0

0 0 0 0 0 1/𝐼𝑧𝑧

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[︃
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −𝑚𝑣 𝑚𝑣

0 0 0 −𝑚𝑤 0 −𝑚𝑢

0 0 0 −𝑚𝑣 𝑚𝑢 0

0 0 0 0 −𝐼𝑧𝑧𝑟 𝐼𝑦𝑦𝑞

0 0 0 𝐼𝑧𝑧𝑟 0 −𝐼𝑥𝑥𝑞

0 0 0 −𝐼𝑦𝑦𝑞 𝐼𝑥𝑥𝑝 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢

𝑣

𝑤

𝑝

𝑞

𝑟

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

𝑈1

𝑈2

𝑈3

𝑈4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝐽𝑇𝑃

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

𝑞 −𝑞 𝑞 −𝑞

−𝑝 𝑝 −𝑝 𝑝

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ω+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑚 𝑔 𝑠𝜃

−𝑚 𝑔 𝑐𝜃 𝑠𝜑

−𝑚 𝑔 𝑐𝜃 𝑠𝜑

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

]︃

(2.27)
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By development of last expression, we find:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̇� = (𝑣𝑟 − 𝑤𝑞) + 𝑔𝑠𝜃

�̇� = (𝑤𝑝− 𝑢𝑟)− 𝑔𝑐𝜃𝑠𝜑

�̇� = (𝑢𝑞 − 𝑣𝑝)− 𝑔𝑐𝜃𝑠𝜑+ 𝑈1/𝑚

�̇� = 1/𝐼𝑥𝑥 ((𝐼𝑦𝑦 − 𝐼𝑧𝑧)𝑞𝑟 + 𝐽𝑇𝑃 𝑞Ω+ 𝑈2)

𝑞 = 1/𝐼𝑦𝑦 ((𝐼𝑧𝑧 − 𝐼𝑥𝑥)𝑝𝑟 + 𝐽𝑇𝑃 𝑝Ω+ 𝑈3)

�̇� = 1/𝐼𝑧𝑧 ((𝐼𝑥𝑥 − 𝐼𝑦𝑦)𝑝𝑞 + 𝑈4)

(2.28)

The dynamics of the quadrotor are represented by the system of differential equations

in (2.28)which is referenced in the B-frame, however considering the hovering mode, where

minimal angle variation in B-frame, a hybrid frame reference could be defined as follows:

Σ = [Γ𝐸 ,𝑊𝐵]𝑇 = [𝑋 𝑌 𝑍 𝑝 𝑞 𝑟]𝑇 (2.29)

Dynamics of the system in the new hybrid reference will be written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̈� = (𝑠𝜓𝑠𝜑+ 𝑐𝜓𝑠𝜃𝑐𝜑) 𝑈1/𝑚

𝑌 = (−𝑐𝜓𝑠𝜑+ 𝑠𝜓𝑠𝜃𝑐𝜑) 𝑈1/𝑚

𝑍 = −𝑔 + 𝑐𝜃𝑐𝜑 𝑈1/𝑚

𝜑 = 1/𝐼𝑥𝑥 ((𝐼𝑦𝑦 − 𝐼𝑧𝑧) �̇��̇� + 𝐽𝑇𝑃 �̇�Ω+ 𝑈2)

𝜃 = 1/𝐼𝑦𝑦 ((𝐼𝑧𝑧 − 𝐼𝑥𝑥)𝜃�̇� + 𝐽𝑇𝑃 𝜃Ω+ 𝑈3)

𝜓 = 1/𝐼𝑧𝑧 ((𝐼𝑥𝑥 − 𝐼𝑦𝑦)𝜃�̇�+ 𝑈4)

(2.30)

2.3 State representation

The dynamic of quadrotor might be writing in state space representation:

�̇� = 𝐹 (𝑋,𝑈) (2.31)
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Figure 2-3: states correlation

By introducing 𝑋 = (𝑥1 𝑥2 ... 𝑥12)
𝑇 in 𝑅12 space of state vector of the system:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1 = 𝑥

𝑥2 = �̇�1

𝑥3 = 𝑦

𝑥4 = �̇�3

𝑥5 = 𝑧

𝑥6 = �̇�5

𝑥7 = 𝜑

𝑥8 = �̇�7

𝑥9 = 𝜃

𝑥10 = �̇�9

𝑥11 = 𝜓

𝑥12 = �̇�11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐹 (𝑋,𝑈) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥2

(cos𝑥7 sin𝑥9 cos𝑥11 + sin𝑥7 sin𝑥11) 𝑈1/𝑚

𝑥4

(cos𝑥7 sin𝑥9 sin𝑥11 − sin𝑥7 cos𝑥11) 𝑈1/𝑚

𝑥6

−𝑔 + (cos𝑥7 cos𝑥9) 𝑈1/𝑚

𝑥8

1/𝐼𝑥𝑥 ((𝐼𝑦𝑦 − 𝐼𝑧𝑧) 𝑥12𝑥10 + 𝐽𝑇𝑃𝑥10Ω+ 𝑈2)

𝑥10

1/𝐼𝑦𝑦 ((𝐼𝑧𝑧 − 𝐼𝑥𝑥)𝑥12𝑥8 + 𝐽𝑇𝑃𝑥8Ω+ 𝑈3)

𝑥12

1/𝐼𝑧𝑧 ((𝐼𝑥𝑥 − 𝐼𝑦𝑦)𝑥10𝑥8 + 𝑈4)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.32)

The dynamics representation in the state-space gives a special characteristic to ease the

quadrotor control. Two loops can be formed as shown in Fig.2-4, where one is completely

independent of the other one, Cartesian position vector depends on attitude states, how-

ever, the attitude of the quadrotor is independent of the translations. Nested looping by

outer/inner loops will facilitate adaptive control [102][11].

This philosophy of subsystems dependency is generally famous in under actuated systems

and widely used to manipulate states in an easier format, moreover, many applications use

the philosophy of nested loops when subsystems are ideally isolated [1], for closed loops
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Figure 2-4: The nested control subsystems diagram. The inner loop for attitude and
the translation position outer control loop are shown.

control based on processing units, we can run those nested loops at different calculation

rates. For this reason, a well-known strategy of feedback control is based on this design.

2.4 Rotor Dynamics

The quadrotor is outfitted with four fixed pitch propellers, brushless motors are commonly

used for their easiness of control using Electronic Speed Controller (ESC), and for their

quick response, ESCs are controlled via Pulse Width Modulation (PWM) at 250 hz. The

ESC is operated at a frequency of 250 hertz to enable precise control. The dynamics of the

rotor speed can be satisfactorily represented using a first-order model.

2.5 Conclusion

This chapter presented dynamics modeling using Newton-Euler formalism. Euler-Lagrange

optimization would result in the same representation being derived. The nominal model

would be used in simulation and in the Kalman filter linearization. Thrust forces were con-

sidered proportional to the square of the propellers’ speed, and Hub horizontal forces acting

on all the blade elements were neglected and considered only as a bounded perturbation,

furthermore, the mass of the miniature quadrotor, and the size of its propellers limit the

Hub forces effect. Drag moments and translational drag are both found so small compared

to other forces and moments’ contributions. The attributed model in Eq.2.32 is a faithful

44



model, moreover, it has been considered and validated by numerous papers.1

1GitHub codes - The Simulink Model.
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Chapter 3

Classic Control Techniques

Concept of Simulation

This chapter focuses on simulating several classic control methods from different classes

of control theory on a quadrotor model in Simulink. The goal is to achieve trajectory

tracking while accounting for noise and disturbances. Different control architectures were

analyzed, including both nestled loops and decentralized strategies. The primary focus was

on evaluating tracking performance, robustness, response time, and attitude stabilization.

3.1 Design of the challenge

A 3D-developed quadrotor model on PTC Creo Parametric CAD software was used for

the real-time visualization as shown in Fig.3-1. The known validated mathematical model

was exploited. Disturbance and noise were added as Gaussian white noises to the model.

Therefore, a low feeding rate Gaussian signal was added as a perturbation to reproduce gust

wind effects on Cartesian positions, and from the other side, to emulate the noise of sensors

readings and to simulate the un-modeled dynamics, a very high feeding rate Gaussian noise

was added.
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Figure 3-1: 3D Simulation of quadrotor in Matlab simmechanics environment

The 3D visualization model uses a multi-bodies configuration developed in Matlab Sim-

mecanics, with all parts attached in the same environment with 6 DOF, the drawings are

imported from Creo Parametric to constitute the complete quadrotor. The 3D visualization

is controlled online by the control part of Simulink which executes a mathematical simulation

of each control theory. A synthesis of the Simmechanics model is shown in Fig. (3-2).1

Figure 3-2: Environment of Simmechanic for 3D visualisation

To better understand the performance of each control method, a path-tracking challenge

has been raised. Instead of a simple simulation on hovering mode control, Lissajous curves

which describe s complex harmonic motion were chosen as a base trajectory to be followed

with variable altitude, those quasi-periodic orbital trajectory curves have been used previ-

ously in several missions by many researchers. The aim was to propose a trajectory that

can be used for surveillance by a single or several UAVs.

1GitHub codes-3D Model visualization.
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𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑀𝑎𝑡𝑙𝑎𝑏

𝑡 = 0 : 0.2 : 30 * 𝑝𝑖;

𝐴 = 5; 𝑎 = 5;𝐵 = 10; 𝑏 = 4;𝐶 = 8; 𝑐 = 5; 𝑐𝑜𝑒𝑓 = 0.07;

𝑥 = 𝐴 * 𝑐𝑜𝑠(𝑎 * 𝑐𝑜𝑒𝑓 * 𝑡);

𝑦 = 𝐵 * 𝑠𝑖𝑛(𝑏 * 𝑐𝑜𝑒𝑓 * 𝑡);

𝑧 = 𝐶 * (1− 𝑒𝑥𝑝(−5 * 𝑐𝑜𝑒𝑓 * 𝑡));

𝑝𝑙𝑜𝑡3(𝑥, 𝑦, 𝑧,′ 𝑏′)

𝑔𝑟𝑖𝑑 𝑜𝑛

(a) 3D desired trajectory (b) Altitude variation (c) Trajectory top view

Figure 3-3: Desired trajectory to be tracked by quadrotor for surveillance aim

Fig.3-3 illustrates the 3D desired trajectory to be followed in time reference2, the hor-

izontal motion of the quadrotor was designed to cover a large surface of the surveillance

mission, and the altitude was planned to follow an exponential convergence to the desired

height.

Another depth of challenge to the trajectory tracking was given by assigning different

initial positions for the quadrotor and the desired trajectory at time zero. Generally,the

trajectory tracking is more complicated than the path following challenge, as the tracking

is a time-referenced problem.

The system developed in the modeling section in Eq.(2.32) represents valid dynamics of

the quadrotor UAV system. Un-modeled dynamics will be covered by generated noise and

disturbance during the simulation process. The motors model will be considered as well

as a fast-reacting first-order system based on the fact of brushless motors’ quick response,

brushless motors are widely used recently in projects of realization and experimentation.

Effectively, the nested loops architecture was found to be one of the best design strategies

to execute control approaches. Translation positions are depending on angles that force us
2GitHub codes-Lissajou curves.
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to put them in outer control, rotation angles, and their derivatives control known as attitude

are free from translation positions and this subsystem can be controlled in the inner loop,

refer to Fig.3-4.

Figure 3-4: Control loops for quadrotor

3.1.1 Calculation of desired roll and pitch angles

Generation of desired angles 𝜑𝑑 & 𝜃𝑑 during the simulation was done by one of three equiv-

alent methods:

First Method

The first method is based on the calculation of those desired angles 𝜑𝑑 & 𝜃𝑑 from the desired

position while considering instantaneous small 𝜓 angle, the angles are resulting from simple

resolution of the system of equations mentioned in Eq.(3.1). However, this small function

generates desired angles with more discontinuities than tolerated for the needed derivative

contributions, this latter can affect the calculation of angles derivatives even with the use of

firm value saturation, which adds more non-linearities to the simulated system.

⎧⎪⎨⎪⎩
𝑢𝑥 = cos𝜑 sin 𝜃 cos𝜓 + sin𝜑𝑠𝑖𝑛𝜓

𝑢𝑦 = cos𝜑 sin 𝜃 sin𝜓 − sin𝜑 cos𝜓

(3.1)
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A simple first solution can be written as:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜓 << 1

𝜑 = arcsin(−𝑢𝑦)

𝜃 = arcsin (𝑢𝑥/ cos(𝜑))

(3.2)

Second Method

A second solution which is widely used came by solving the equations analytically:

⎧⎪⎪⎨⎪⎪⎩
𝜑𝑑(𝑡) = arcsin

(︂(︁
sin𝜓(𝑡)𝑢𝑥 − cos𝜓𝑑(𝑡)))

)︁
/(𝑢2𝑥(𝑡) + 𝑢2𝑦(𝑡))

)︂
𝜃𝑑(𝑡) = arcsin

(︂(︁
𝑢𝑥(𝑡)− sin𝜓𝑑(𝑡) sin𝜑𝑑(𝑡))

)︁
/(cos(𝜓𝑑(𝑡)) cos(𝜑𝑑(𝑡))

)︂ (3.3)

Nonetheless, this method is related just to the dynamics considered and limited toward

more added consideration of unmodeled dynamics.

Third Method

A third smoother method that comes with a more expensive calculation cost is based on di-

rect nonlinear solving of the angles system, smoother profiles are more likely to be generated

using this method based on results obtained from simulation.

The benefits of this third method can be hidden behind the simplification and assump-

tions made while modeling, in complicated cases where we consider more accurate modeling

with no neglect of minimal nonlinear contribution, this method is more reliable and precise.

A faster run of this non-linear solution can be resulted in limiting the maximum number

of resolution iterations or minimizing the tolerated error. Matlab function 𝑓𝑠𝑜𝑙𝑣𝑒 has been

used in Simulink as interpreted function since 𝑓𝑠𝑜𝑙𝑣𝑒 is not among the functions supported

for code-generation in Embedded MATLAB Function blocks.

Another depth of performance of this method comes when we deal with other types of

multirotor and other copters designs.
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Figure 3-5: PID control of quadrotor design

3.2 Quadrotor PID Control

A design of multiple PID controllers was approached for each position’s state. A tuning of

a decentralized architecture of six PIDs’ parameters was performed in the Matlab-Simulink

environment.

3.2.1 Synthesis of the PID

The objective of this PIDs strategy is to stabilize the attitude based on inner looping that

controls angles (orientations) and their derivatives and then to minimize linear position

errors as second-order stable dynamics that are applied in the outer loop to ensure path

following. From a trivial perspective, the PID correction made for attitude should be much

quicker to the outer loops PID corrections attributed to translation positions As shown in

Fig.(3-5), the simulation used several blocks, PIDs are used for each linear and rotational

position, a manual tuning was proceeded to get desired responses, parameters for each PID

can be done separately. To track a trajectory, a tracking error vector 𝑒 of six components

𝑒𝑖 is formulated with the objective to converge them exponentially to zero. each of these

tracking errors is assigned for one of the six-position states. For each control, we want the

state 𝑥𝑖 to follow the desired 𝑥𝑖𝑑, we define:

𝑒𝑖 = 𝑥𝑖𝑑 − 𝑥𝑖 (3.4)
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Derivation of this error 𝑒𝑖 gives:

�̇�𝑖 = �̇�𝑖𝑑 − �̇� (3.5)

In order to formulate an exponential stable error that converges to zero, we may consider

this stable dynamic as follows:

�̈�𝑖𝑑 − �̈�𝑖 +𝐾𝑑�̇�𝑖 +𝐾𝑝𝑒𝑖 +𝐾𝑖

∫︁ 𝑡

0
𝑒𝑖(𝜏)𝑑𝜏 = 0 (3.6)

so

�̈�𝑖 = �̈�𝑖𝑑 +𝐾𝑑�̇�𝑖 +𝐾𝑝𝑒𝑖 +𝐾𝑖

∫︁ 𝑡

0
𝑒𝑖(𝜏)𝑑𝜏 (3.7)

This methodology will be followed to generate all control inputs for each PID loop with

𝐾𝑝 > 0, 𝐾𝑑 > 0, and 𝐾𝑖 > 0.

A simple Lyapunov candidate function such as 𝑉 = 1
2𝑋

𝑇𝑋 can prove the stability of

the PID control if we satisfy the error exponential convergence.

3.2.2 Results

PID control has been applied for all linear and angular position states. The simulation

demonstrated satisfying tracking dynamics as shown in Fig.3-6, the quadrotor trajectory in

red, following the blue desired reference while starting initially from different spots. Fig.3-6

shows the result of the simulation using the validated quadrotor model with PID control

strategy to follow the Lissajous desired trajectory with an acceptable error considering the

different initial positions.

Linear position tracking showed minimal error, wind gust simulation effect via the low-

rate Gaussian noise is clear on the quadrotor position, with a quick correction to track.

The angles’ tracking was also very efficient, observing the noise introduced on the sensor by

the high rate of white Gaussian noise. Obtained results of the simulation were satisfactory

regarding the simple synthesis approach of PID control. 3

3GitHub codes-PID control.
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(a) X tracking (b) Y tracking (c) Altitude tracking

(d) 3D tracking

(e) Roll tracking (f) Yaw tracking (g) Pitch tracking

Figure 3-6: PID trajectory tracking
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3.2.3 Practical depth of PID implementation

Implementation of such a method on microcontrollers is the easiest compared to other ap-

proaches, criteria of running speed of the control loop and input saturation should be con-

sidered, this latter justifies the use of saturation over the control “𝑈𝑖” used for simulation. A

control loop frequency at less than 50 Hz, may induce enough delay to destabilize the system

and may create too much oscillation that deteriorates even IMU measurement quality.

Although the high rate frequency of IMU readings, an appropriate loop of execution

should be wisely chosen to not waste data from motion measurement.

An integral action should be considered to kill the steady state error, nevertheless, a reset

of integral contribution should be integrated with the process to not diverge the summation

of errors. The fast response actuation of the ESC over the brushless motors is a key factor of

stabilization, a delay from the execution loop or from the ESC response will tremendously

break down the attitude performance. In case of implementation, accelerometer data should

be used to stabilize the quadrotor horizontally and define the zero level (Auto-leveling), due

to the electronic drift of the Gyro.

3.3 Quadrotor control by Integrator Backstepping

IBS is a nonlinear approach that contributes the integral benefits in the backstepping design,

this approach can ensure asymptotic stability with attenuation of steady-state errors with

the help of the integral effect. Its robustness was simulated as we added to the model an

external disturbance and internal noise. The Control design is based on four IBS controllers.

Four controllers are resulting from the underactuated nature of the quadrotor, which is

based on just four controllers’ capability. The derivation of those controllers is similar for

both attitude angles & altitude. The linear positions controllers for 𝑋 and 𝑌 will be done

systematically as we ensure validated tracking of desired 𝜑𝑑 and 𝜃𝑑 angles. Thus, only one

control for attitude will be derived in this thesis. Once we calculate 𝑈𝑖, we apply them to

the next block to calculate the voltages and control rotation of each motor.

55



3.3.1 Attitude Control

Essentially, Quadrotor control is founded on Attitude control, so, care will be focused on

the stabilization of angles at the first level and then on the general position correction at a

deeper stage, the attitude will result in the regulation of the inner loop, which adopts the

3D orientation of the quad to the desired values.

The first step in the IBS control strategy is to define the tracking error for each rotation.

Let’s consider the error for 𝜑 angle around 𝑋𝑏 axes:

𝑒1 = 𝜑𝑑 − 𝜑 (3.8)

By the derivation of error 𝑒1:

�̇�1 = �̇�𝑑 − 𝑝 (3.9)

𝑝 is the angular rate around 𝑋𝑏 as mentioned in Fig.2-1. We need to control the dynamics

of 𝑝 to converge to �̇�𝑑. For that, we initiate the desired tracking dynamics by

𝑝𝑑 = 𝑐1𝑒1 + �̇�𝑑 + 𝛼1

∫︁ 𝑡

0
𝑒1(𝜏)𝑑𝜏 (3.10)

with 𝑐1 & 𝛼1 > 0 .

Hence, 𝛼1

∫︀ 𝑡
0 𝑒1(𝜏)𝑑𝜏 represents the integral contribution to cancel the steady error.

let’s consider:

𝑒2 = 𝑝𝑑 − 𝑝 (3.11)

By derivation of Eq.(3.11) & using of Eqs.(3.9)-(3.10)- and 𝜑 dynamics in Eq.(2.32), we can

get:

�̇�2 = 𝑐1(�̇�𝑑 − 𝑝) + 𝜑𝑑 + 𝛼1𝑒1 − 𝜃�̇�𝑎1 − �̇�𝑎2Ω𝑟 − 𝑏1𝑈2 (3.12)

Where an appearance of a control input 𝑈2 is shown in this latter. By assuming a stable

dynamic for 𝑒2:

�̇�2 + 𝑐2𝑒2 + 𝑒1 = 0 (3.13)

with 𝑐2 > 0
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A control input that satisfies this assumption can be calculated as follows:

𝑈2 = 1/𝐼𝑥𝑥

(︃
(1−𝑐21+𝛼1)𝑒1+(𝑐1+𝑐2)𝑒2−𝑐1𝛼1

∫︁ 𝑡

0
𝑒1(𝜏)𝑑𝜏+𝜑𝑑−�̇��̇�(𝐼𝑦𝑦−𝐼𝑧𝑧)/𝐼𝑥𝑥−𝜃Ω𝑟𝐽𝑇𝑃 /𝐼𝑥𝑥

)︃
(3.14)

Systematically. The other control inputs derived from 𝜃 and 𝜓 errors are given by:

𝑈3 = 1/𝐼𝑦𝑦

(︃
(1−𝑐23+𝛼2)𝑒3+(𝑐3+𝑐4)𝑒4−𝑐3𝛼2

∫︁ 𝑡

0
𝑒3(𝜏)𝑑𝜏+𝜃𝑑−�̇��̇�(𝐼𝑧𝑧−𝐼𝑥𝑥)/𝐼𝑦𝑦−�̇�𝐽𝑇𝑃 /𝐼𝑦𝑦Ω𝑟

)︃
(3.15)

𝑈4 = 1/𝐼𝑧𝑧

(︃
(1− 𝑐25 + 𝛼3)𝑒5 + (𝑐5 + 𝑐6)𝑒6 − 𝑐5𝛼3

∫︁ 𝑡

0
𝑒5(𝜏)𝑑𝜏

)︃
(3.16)

With (𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝛼2, 𝛼3) > 0

3.3.2 Altitude and planar positions Control

Similarly, to the derivation technique applied for 𝜑 angle, an altitude tracking error is defined

as:

𝑒7 = 𝑧𝑑 − 𝑧 (3.17)

𝑒8 = 𝑐7𝑒7 + �̇�𝑑 + 𝛼4

∫︁ 𝑡

0
𝑒4(𝜏)𝑑𝜏 (3.18)

Its errors dynamics can be tracked as>

𝑒8 = 𝑐7𝑒7 + �̇�𝑑 + 𝛼4

∫︁ 𝑡

0
𝑒4(𝜏)𝑑𝜏 − �̇� (3.19)

By derivation of this error, a control input is appearing, assuming a stable first-order dy-

namics for this error, we can find:

𝑈1 = (𝑚/ cos𝜑 cos 𝜃)
(︁
𝑔 + (1− 𝑐27 + 𝛼4)𝑒7 + (𝑐7 + 𝑐8)− 𝑐7𝛼4

∫︁ 𝑡

0
𝑒4(𝜏)𝑑𝜏

)︁
(3.20)

For both X & Y control, simple stable second-order tracking dynamics were defined by

a PID, then desired angles were generated by direct calculation continuously to energize the

IBS block in order to calculate the 𝑈𝑖 control inputs using Eqs.(3.14) to (3.16) & (3.20).
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Figure 3-7: IBS control design of quadrotor

3.3.3 Integrator backstepping algorithm

During the simulation process, we defined twelve coefficients of IBS to the eight errors’

dynamics and their integral actions (𝜑, 𝜃, 𝜓 & 𝑧 ). Errors should be calculated first at

each step of the simulation based on desired states and the measured outputs and their

derivatives. Then Ui control inputs should be calculated to excite the other blocks prior

quadrotor nonlinear model block.

An algorithm that can summarize the IBS method is illustrated as:
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(a) X tracking (b) Y tracking (c) Altitude tracking

(d) 3D tracking

(e) Roll tracking (f) Pitch tracking (g) Yaw tracking

Figure 3-8: IBS trajectory tracking
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Algorithm 1: 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑜𝑟 𝐵𝑎𝑐𝑘𝑠𝑡𝑒𝑝𝑝𝑖𝑛𝑔 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚
Result: Apply the control 𝑈𝑖 on actuators

Require coefficients of correction ;

Read trajectory states;

while 𝑇 ≤ 𝐿𝑜𝑜𝑝𝑡𝑖𝑚𝑒 do

Read /call for the sensors reading / state estimations;

Calculate errors, their derivatives & their summations;

Calculate 𝑈𝑖 by Eqs.(3.14) to (3.16) & Eq.(3.20). ;

Calculate each rotor input;

Generate the right control of each motor;

Apply the control on actuators ;

Wait for loop time to finish and execute the next loop;

end

In case of adaptive parameterization, update correction parameters block and execute

loop from step 1.

Linear position tracking showed minimal tracking error, the wind gust effect by low-rate

Gaussian noise is observable on the quadrotor position, with the quick correction to track.

angles tracking was also excellent and better than PID attitude results, all observing the

noise effect introduced on the sensor by the high-frequency Gaussian noise. IBS control

method simulation link4.

3.4 Optimal Control using Hamiltonian optimiza-

tion

The optimal Control is designed based on the validated mathematical model of the quadrotor

previously derived, The simulated model is a continuous model, state vector values are either

measured or obtained via a Kalman filter. The optimization and the linearized model of

control as mentioned in Eq.2.32 around the hovering equilibrium state can be written as

follow: ⎧⎨⎩ 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒 𝐽 = 1
2

∫︀ 𝑡𝑓
𝑡0
𝑋𝑇𝑄𝑋𝑑𝑡+ 1

2

∫︀ 𝑡𝑓
𝑡0
𝑈𝑇𝑅𝑈𝑑𝑡+ 1

2𝑋
𝑇
𝑓 𝑆𝑓𝑋𝑓

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 �̇� = 𝐴𝑋 +𝐵𝑈
(3.21)

4GitHub codes.
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The Pair {𝐴,𝐵 } is controllable, The system dynamics is known as the path constraint, 𝐽

is the performance index or the cost function to be optimized, 𝑄 ≥ 0, 𝑅 > 0, and 𝑆𝑓 ≥ 0

are positive definite pondering matrices[14]. By taking Φ𝑓 = 1
2𝑋

𝑇
𝑓 𝑆𝑓𝑋𝑓 , and using the

Hamiltonian on last performance index 𝐽 , An optimal Control 𝑈 can be designed as follows:

𝐽𝑒𝑥𝑡 =
1

2

∫︁ 𝑡𝑓

𝑡0

(𝑋𝑇𝑄𝑋 + 𝑈𝑇𝑅𝑈 +
𝑑

𝑑𝑡
Φ𝑓 + 𝜆𝑇 (𝐴𝑋 +𝐵𝑈 − �̇�))𝑑𝑡 (3.22)

𝐻 = 𝑋𝑇𝑄𝑋 + 𝑈𝑇𝑅𝑈 + 𝜆𝑇 (𝐴𝑋 +𝐵𝑈) (3.23)

• The state equation:

�̇� =
𝜕𝐻

𝜕𝜆
= 𝐴𝑋 +𝐵𝑈 (3.24)

• The Co-state equation:

�̇� = −𝜕𝐻
𝜕𝑋

= −(𝑄𝑋 +𝐴𝑇𝜆) (3.25)

• The Optimality:
𝜕𝐻

𝜕𝑈
= 0 => 𝑈 = −𝑅−1𝐵𝑇𝜆 (3.26)

• Boundary condition:

𝜆𝑓 =
𝜕Φ

𝜕𝑋𝑓
= 𝑆𝑓𝑋𝑓 (3.27)

By taking 𝜆 = 𝑃𝑋 in Eq 3.25, we can develop as follows:

�̇� + 𝑃𝐴+𝐴𝑇𝑃 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 +𝑄 = 0 (3.28)

Which is the Riccati equation, with 𝑃𝑓 = 𝑆𝑓 (from the boundary condition), the Control 𝑈

can be defined by:

𝑈 = −𝑅−1𝐵𝑇𝑃𝑋 = −𝐾𝑋 (3.29)

𝐴 and 𝐵 are the trivial linearized nonlinear model around the equilibrium. Applying the

Kalman’s theory for infinite time regulator (Permanant regime), �̇� = 0, Eq.3.28 is equivalent

to an Algebraic Riccati equation (ARE) which is efficient numerically:

𝑃𝐴+𝐴𝑇𝑃 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 +𝑄 = 0 (3.30)
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Figure 3-10: Design of optimal control architecture of Quadrotor

3.4.1 Optimal Control design

The Optimal control design shown in Fig.3-10 is structured as follows:

• Calculate A, B.

• Define the performance index Matrices Q, R

• Solve the Riccati equation such as in Eq.3.30.

• Apply the feedback control using Eq.3.29

3.4.2 Stability of closed loop using Optimal control

Choosing a Lyapunov positive definite candidate function 𝑉 = 𝑋𝑇𝑃𝑋.

�̇� = �̇�𝑇𝑃𝑋 +𝑋𝑇𝑃�̇�

Considering the feedback control

�̇� = ((𝐴−𝐵𝐾)𝑋)𝑇𝑃𝑋 +𝑋𝑇𝑃 ((𝐴−𝐵𝐾)𝑋)
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�̇� = 𝑋𝑇 ((𝐴−𝐵𝑅−1𝐵𝑇𝑃 )𝑇𝑃 + 𝑃 (𝐴−𝐵𝑅−1𝐵𝑇𝑃 ))𝑋

�̇� = 𝑋𝑇 ((𝑃𝐴+𝐴𝑇𝑃 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 +𝑄−𝑄− 𝑃 𝑇𝐵𝑅−𝑇𝐵𝑃 )𝑋

�̇� = 𝑋𝑇 (−𝑄− 𝑃 𝑇𝐵𝑅−𝑇𝐵𝑃 )𝑋 (3.31)

We have, 𝑅 > 0, 𝑅−1 > 0, and 𝑃 > 0), Hence,

−𝑄− 𝑃 𝑇𝐵𝑅−𝑇𝐵𝑃 < 0 (3.32)

�̇� < 0, The optimal feedback control is asymptotically stable

3.4.3 Optimal tracking

The optimization process for tracking is based on minimizing the performance index 𝐽

subject to system dynamics and states constraints.

𝐽 = (𝑋𝑅𝑒𝑓 −𝑋)𝑇𝑄(𝑋𝑅𝑒𝑓 −𝑋) + 𝑈𝑇𝑅𝑈 (3.33)

Where 𝑋𝑅𝑒𝑓 (𝑡) is the reference vector in time.

An adaptive sort of the optimal tracking can consider using Variable 𝐴, and 𝐵, such as

𝐴𝑖, and 𝐵𝑖 are the linearization of of the model in Eq.2.32 around the estimated state.

3.4.4 Results

Despite the complexity and expensive computational time, the optimal controller remains

an effective approach for autonomous quadrotor tracking control. Regardless of the noise

and disturbance, this control approach handled excellent tracking performance as shown in

Fig.3-11.

Linear position tracking was excellent with quick recovery from initial error, the wind

gust effect by low-rate white Gaussian noise is barely observable but with quick correction.

angles tracking was also excellent and better than PID and IBS attitude results, the high-

frequency noise effect introduced on the sensor is observable. MPC method simulation file

can be found on link5 Although the shown stability by the optimal control, the performance

5GitHub codes-Matlab MPC.
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(a) X tracking (b) Y tracking (c) Altitude tracking

(d) 3D tracking

(e) Roll tracking (f) Yaw tracking (g) Pitch tracking

Figure 3-11: Optimal control trajectory tracking
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can be heavily affected and deteriorated far away from the equilibrium point. The lineariza-

tion around the hovering point limits the adaptability of this control law far away from

it, The classical optimal control should be adaptive to enlarge the optimality envelope, a

solution based on considering the Jacobian linearization is detailed in the next chapters.
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Chapter 4

Conception and realization of an

open source quadrotor model

In this Chapter, the focus is made on building a quadrotor model. The hardware/software

architecture for the quadrotor UAV will be detailed. The developed platform was oriented

toward research and educational purposes.

4.1 Hardware listing

A basic design for a low-cost quadrotor solution is based on:

• Mechanical frame Q450. It is used to mount all components, A smaller and lighter

body frame ensures better stability.

• Four Brush-less motors (1000-2000 KV).

• Electronic Speed Controller (ESC) 25-35 amp. They exploit the energy from the

battery to supply the motors with variate voltages to control the motors’ speed via

PWM generated from the CPU/RC receiver ( it is important to use fast reacting ESCs

within the max current possible)(to energize the fast reacting ESC, it is recommended

to look for batteries with high C factor)

• Propellers 8045: the chosen propellers should generate enough thrust at a relatively

low RPM, to give more envelope of control. The "80" in "8045" represents the length
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of the propeller. The "45" in "8045" indicates the pitch of the propeller which means

4.5-inch forward movement.

• Processing unit: an Arduino mega 2560 was chosen, it is a microcontroller board based

on the ATmega2560 at 16 MHz crystal oscillator. It has 54 digital input/output

pins on which we essentially use 15 of them as PWM connections in parallel with

UART (Asy-serial communication ports Tx and Rx) and I2C protocol for master

slave communication with sensors (SDK, CLK). It has as a mission to execute the

flight control program and manage the communication between electronic parts.

• IMU: MPU 6050 which is a 3-axis gyroscope and a 3-axis accelerometer. The tracking

precision for the gyro at a full-scale range can be ±250, ±500, ±1000, and ±2000

°/sec (dps), for the accelerometer, a full-scale range of ±2g, ±4g, ±8g, and ±16g is

possible.

• The Battery: as an energy source, a LiPo battery of 2000 to 5000 mAh with a high C

factor of 30+ (𝑑𝑖/𝑑𝑡 ≥ 30 𝑎𝑚𝑝/𝑠𝑒𝑐) to ensure the endurance of more than ten minutes

and the good reaction of motors.

• Transmitter with receiver to be used by Pin Change Interrupt (PCI) mode. a need of

at least four channels to control (height, pitch, yaw, and roll).

The complete drone is approximately 1.2 kg. an extra power distribution card is added

for a better setup.

4.2 Architecture design of the hardware

The connection between the electronics parts is shown in Fig.4-1 It is important to mount

the Gyro sensor with orientation as mentioned in the sensor data sheet. For the Micro-

controller, it should be set in a way it makes it easy to access to periphery and sensors.

The Battery should be Fixed but never connected till confirmed use. A voltage divider is

crucial to watch the battery level from being discharged during the flight, once batteries are

discharged, rotations of motors are directly affected and stability may be altered as well. For

the ESC, it is sufficient to switch two cables to change the rotation direction of the propeller,

it is crucial to mount every two adjacent propellers in opposite rotations for Yaw stability.
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Figure 4-1: Hardware architecture

The receiver channels outputs are connected to Digital pins to read the PWM generated by

the receiver with PCI mode.

4.3 Software architecture

The control code is developed in an Integrated Development Environment (IDE) in C lan-

guage. The program ensures initially the calibration of the sensors, then, addresses a routine

of a refresh rate of 250 Hz loop of the control, which makes a 4 ms time for each loop, based

on the fact that the ESCs are 1000 to 2000 microsecond controllable, only 2 ms available

time to read the sensor data and calculate the control outputs.

The Refresh rate is limited by the max refresh rate of the RC controller, and by the min

laps of time of a full execution and processing time. that includes reading, corrections, and

sending PWM.

The PCI routine is the way we interrupt the running program to execute a special task

such as reading the new 2.4 GHz receiver signal on the PWM ports.

It is always judicious to make a gyro calibration in the static state to have a good

reference, for the magnetometer, a calibration for the soft and hard iron distortion is crucial.

the GYRO is connected just by CLK & SDA, where care should be made about getting two

correct bytes from the same time sample and for the correct axis. for both the accelerometer

and gyroscope, we use a complementary filter to smooth the reading data via the I2C
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protocol.

The Gyro and the accelerometer each provide two bytes of data for each axe in every

iteration.

A PID correction should be set for possible rotation. The values of the PID command

are calculated based on the length of the square signals of ESCs.

It is trivial that the PID of the roll and Pitch is similar, however, the Yaw angle & height

PID’s may be chosen as a slow response for better attitude control. The PID outputs should

always keep motors running as they don’t exceed a max of 2000 microsecond (1800 ms was

chosen). The proportional action is used to rapidly answer the error, the derivative as a

dumper, and the integral to kill the static error. The battery voltage drop-down should be

considered and compensated.

4.4 Algorithm

The algorithm of control is illustrated as follows: 1

1GitHub codes-Arduino IDE Code.
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𝑃𝐼𝐷 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

1. Include needed libraries

2. Define PID coefficients values for Roll, Yaw & Pitch

3. Declaration of variables:

* Channels

* Counters

* Control 𝑈𝑖

* Battery level

* Calibration of gyro readings

* PID intermediate variables,. . .

4. Setup of the program:

* Define microcontroller as I2C master for communication

* Define inputs & outputs with readiness led signs.

* Communicate w/ GYRO and calibrate readings with a Function.

( During calibration, silence the ESC by zero Ui )

* Enable "PCICR" & define mask register for pins.

* Keep zero Ui command while waiting.

* Define the state of the launch

5. The loop:

* Call FCT of Gyro reading.

* Filter the noise of reading and transfer to deg/sec.

* Define STRT/STP sequence by joystick, use Moor machine.

* Reset all PID for a new cycle for Roll Yaw Pitch.

* Recalculate the set point from channels.

* Calculate the PID FCT.

* Define led warning and state-dependent.

* Limit max throttle (Ui).

* Calculate signals of ESCs.

* Compensate the control by battery discharge.

* Keep motors always with zero Ui in case of a waiting state.

* Wait to complete 4 ms, (250 hz).
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𝑃𝐼𝐷 𝑐𝑎𝑙𝑙𝑖𝑛𝑔𝐹𝐶𝑇

* Calculate the error between gyro reading & set point.

* Calculate Integration contribution for RYP w/ max value.

* Calculate limited PID = PIDi + p*Error + d*(Error- exError ) for RYP.

* Update ex-error.

Send back values.

𝐼𝑆𝑅 : 𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡 𝑠𝑢𝑏𝑟𝑜𝑢𝑡𝑖𝑛𝑒

Once PCI is called by pin voltage change .

if (Last value = 0) then

if (New reading is 1) then

* Last value =1

* Start timer

else

if (New reading is 0) then

* Last value =0

* Receiver = time - timer

Send back the time of the pulse

4.5 Flight Experiments of the quadrotor model

Experimental results with the designed platform are presented below. The hovering mode

was stable but we observed a little drift from the position due to gyro drift and level correc-

tion by the accelerometer. No GPS was mounted to correct the global position. The hovering

mode experiment aimed to prove the stability of the design without pilot control and under

normal conditions. Fig.4-2 shows the quadrotor on ground and then during hovering flight.

Fig.4-3 demonstrates the control of the quadrotor during flight with limited tilt angles.

The quadrotor is agile and responsive to the transmitted control inputs.

4.6 Conclusion and Future work

An open-source quadrotor miniature model has been developed and built, the control was

based on running a decentralized PID technique applied in an Arduino Mega development
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Figure 4-2: Open source developed drone in hovering mode

Figure 4-3: The designed quadrotor during flight
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card that runs at 16 mega Hz processing microcontroller, Initially, a calibration is necessary

to minimize the static error of gyro’s measurement, that tends to drift after a while. The

drone hardware listing was detailed, and the algorithm is explained, the main code of IDE

in C language is available in the Appendix.

Future works may concern the development of a better program including self-leveling

using a combination of the accelerometer with the magnetometer and precise heading exploit-

ing the AHRS. It was proven that exploiting the quaternion is more precise than using Euler

angles. A deeper challenge will be to build an optimal platform for quadrotors to execute

intelligent tasks such as the developed ones in the next chapters, besides the autonomous

control in either individual or swarm mission scenarios. Artificial intelligence methods could

be investigated on the built quadrotor model for more autonomous applications.
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Chapter 5

Intelligent Control

Random and unknown disturbances present reliability and a safety defy for quadrotor robust

control, This chapter demonstrates various intelligent and adaptive techniques of control of

quadrotors, exploiting a novel faster full-state observer based on an EKF enhanced by the

Madgwick method, using data fusion of multiple asynchronous sensors, subjected to robust

tracking of a pre-designed trajectories for different applications. The dynamics model of

the quadrotor was derived using Newton Euler formalism as detailed in Eq.2.32, further-

more, its linearization was processed by the Jacobian matrix at every estimated state. The

enhanced state Observer is essentially based on a Continuous-Discrete nonlinear Kalman

filter Combined with the optimization of Madgwick method for quaternion orientation. The

approach relies on flight dynamics predictions and gets updated by the onboard measure-

ment of sensors at different feeding rates. Three intelligent methods were investigated, A

discrete linear-quadratic Gaussian tracker was developed for best tracking performance and

robustness while avoiding collision with predefined static obstacles. Model Predictive Con-

trol MPC has opted for quadrotor control to track the generated trajectory intelligently with

the rejection of disturbance in a project of a smooth descent for a soft landing. Finally, a

novel nested control strategy based on Adaptive RBFNN and NN supervised control em-

bedded with IBS for a robust position and attitude trajectory tracking of quadrotor aerial

robot in the presence of modeling uncertainties, sensing noise, and external bounded distur-

bance. Quaternion Orientations and AHRS were validated by experimental tests at less than

one degree of precision error. The proposed adaptive and intelligent approaches of control

of the quadrotor were all simulated for tracking control and validated in Matlab Simulink
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environment in the presence of Gaussian random perturbations and bounded unknown non-

parametric disturbance, LQG performance has been compared to the linear inner-outer

looping PID, to IBS, and decentralized Fuzzy logic control FLC strategies resulting in a

validation and effectiveness of the LQG. Furthermore, Performance comparison between

MPC and PID control validate the effectiveness and reliability of the proposed landing task

solution. In addition, Simulation of adaptive RBFNN control philosophy proved robustness

and effectiveness compared to PID, IBS, and offline decentralized CNN algorithms as it

generates the control law by guarantying a fast convergence of parameters, better external

disturbance compensation, and noise attenuation.

5.1 Stepping toward intelligent methods

UAVs intelligent control is considered one of the most discussed topics, especially with em-

bedded sensors technology advances that allowed plenty of intelligent applications ensuring

higher performance and robustness especially in commercial, agriculture, industrial, and

even military sectors [103].

A reliable measurement is crucial for a state observer and performant control, due to the

model and measurement noise and disturbance, a stochastic approach should be considered

for the state observer, numerous researches opted for KF state observer and for adaptive

multi models-based KF [102] [104]. In [66], Madgwick et al. developed a direct optimal

estimation of quaternion orientation based on data fuse Newton Gradient descent algorithm

for optimization [99] [66], the approach compensates for the Gyro drift, and it is much

quicker than EKF method, however, it incorporates neither the dynamics of the model (it

lacks dynamics prediction) nor the GPS position data which makes the filter limited in

matter of full state observation.

Generally, EKF uses the Jacobian linearization rather than a Linear Time Invariant

(LTI) as a system model besides the Navigation sensors for data update. EKF can improve

SLAM, as simulated by Jiang et al. for quadrotor in The Gazebo data set combined by

ROS [48], SLAM combined with state estimation through INS was researched also, for bio-

inspired autonomous landing using a Kinect camera [30]. Multiple obstacle avoidance for

a quadrotor was studied by [80]. In [109], researchers incorporated an EKF combined with

Rauch Tung Striebel (RTS) smoother to generate accurate flight data.
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Figure 5-1: Elaborated architecture for optimal state estimation and Adaptive control
for tracking: IMU, Mag, and GPS provide enough data to the Madgwick filter that
feeds quaternion orientation to the EKF, which calculates the best estimate of the
augmented state of the system. Adaptive LQT controls the Quadrotor for optimal
tracking of the generated Spline trajectory.

Robust autonomous trajectory tracking with obstacle avoidance in presence of the model

uncertainties and strong random disturbances has been always an objective to fulfill within

the underacted quadrotor designs, especially, when considering a full state estimation during

the flight [23] [90].

For optimal tracking, diverse control approaches of quadrotor were considered in the lit-

erature. Linear, Nonlinear and Intelligent methods were elaborated on the highly nonlinear

underactuated model of the quadrotor system. Linear control approaches were elaborated

between classic PID [19] [74] [17][61], and LQR Control, as it was considered with high-

performance and robustness for quadrotor with a solution of steady Riccati equation has

given the optimal gains of state feedback for the nested loops such In [68] [8],[4]. Nonlinear

class of control has been addressed by many works, sibling various typologies, for robust

trajectory control, Backstepping [111], [12], [55][97]. Nevertheless, internal and external

random disturbances were not completely considered in those approaches although the huge

perturbation to state vectors. Random disturbance comes primarily from model uncertain-

ties and non-modeled exterior inputs, as it also results from sensing noise and actuators’

ignored dynamics. Therefore comes a necessity to incorporate Gaussian noise in the control

philosophy. Many researchers coped with control law subjected to Random disturbances

such as LQG design, in [56], Lee et Al. developed an adaptive model-based LQG Control
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for path tracking with efficient noise attenuation. Adaptive control was applied in numerous

papers, such in [59], a combination of Double Loop Integral Sliding Mode Control (IntSMC)

and RBFNN to generate a control with perturbation compensation was successfully orig-

inated. Duori et al. adopted tracking error optimization via stochastic wind disturbance

and solved the problem in efficient computational load. reinforcement learning has opted

to optimize the stochastic control of the speed of the quadrotor [45]. Where in [23], a new

Active Disturbance Rejection Control (ARDC) with a swarm intelligent method is studied

for quadrotors control for trajectory tracking and obstacle avoidance. Researchers developed

an extended state observer to enhance the ARDC performance.

A Gaussian noise is firstly considered during the state estimation approach which is

based on the Combined EKF and Madgwick method to determine quaternion orientation,

A discrete linearized model of the quadcopter is derived by the Jacobian method to ease the

implementation of the observer and exploits various asynchronous sensors data. To elaborate

on the control challenge as demonstrated in Fig.5-1, the Adaptive LQR approach subject

to tracking was opted and demonstrated to ensure a performant tracking of a 3D generated

trajectory avoiding obstacles and compensating the internal and external Gaussian white

noises.

Initially, This chapter aims to rise the challenge of intelligent control such as an adaptive

LQG tracking scheme for the control of quadrotor, based on an improved EKF strategy to

estimate the state vector and consider sensors biases and magnetic distortion. We devel-

oped a Novel faster robust AHRS algorithm of asynchronous data fusion filter to estimate

orientation based on merging EKF and Madgwick approach enhanced by compensation of

bias and calibration of distortion with the integration of GPS localization data. After that,

we designed an adaptive LQG tracker for the UAV that exploits AHRS-EKF algorithm to

track a 3D Spline trajectory with disturbance rejection and cancellation of the Gaussian

random noise ( which represent the wind gust disturbance that affects the general position

and the high-frequency noise of actuators and sensors using various Gaussian white noises).

A Comparison of adaptive LQG control with nested loop design PID, Integral Backstepping,

and FLC control performances was conducted.

Note:

We considered a noise at a high sampling rate to model the uncertainty and actuators’

performance due mechanical fatigue, friction, & vibration, and at low rates for wind gust
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disturbance and unmodeled dynamics.

For the landing task, MPC was chosen for the tracking performance instead of PID,

MPC is adaptive and can handle the considered disturbance and Gaussian noise.

As the proposed soft landing approach separates the process into two interconnected

parts: First, the trajectory optimal generation. Then, the MPC is responsible for tracking

iteratively the desired trajectory to land. The smooth velocity profile is controlled by the

FLC decision-maker.

Once a feed back observer is established, several techniques were proposed to deal with

quadrotor trajectory tracking perturbed by internal and external uncertainties and random

disturbances, linear techniques can not ensure convergence once we move away from the

operating envelop, nonlinear techniques rely extremely on dynamics modeling, which opens

the doors for instability due to unmodeled effects and external forces, in addition, both of

them present a limited ability to adapt to uncertainties in a matter of performance.

Thus the need for intelligent methods, which demonstrate higher performance in the

matter of all recited challenges. Adaptive NN based control design based on dynamic in-

version was intensively investigated for quadrotors, the optimal compensation of inversion

error subsequently improves robustness to parametric uncertainty and non-linear unmodeled

dynamics [88]. The Adaptive NN efficiency is due to the capabilities of nonlinear approxi-

mation and adaptive adjustment. Our NN strategy introduces an adaptive control approach

that ensures robust trajectory tracking for quadrotors. It effectively handles disturbance

rejection, noise reduction, and adaptation to uncertainties in system dynamics.

Understanding the strong non-linear coupling of the four rotors in the dynamics of a

quadrotor is essential; This understanding leads to the development of a valuable decen-

tralized control scheme, which involves two nested subsystems. The outer loop focuses on

tracking the translational positions, while the inner loop stabilizes and tracks the desired

attitude by utilizing inverse compensated dynamics.
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Figure 5-2: Elaborated architecture for the adaptive RBFNN control of the trans-
lational position and the attitude supervised control, in combination with an EKF
observer combined with an asynchronous filter IMU, Mag, and GPS provide asyn-
chornous data to EKF, the strategy set to track the desired trajectory.

5.2 Optimal observer: Enhanced Extender Kalman

Filter

To develop the AHRS, An IMU was used to provide data from the gyroscope, the magne-

tometer, and the accelerometer to track the motions of the quadrotor, the IMU consists of

three angular rate gyroscopes and three accelerometers arranged in orthogonal orientations.

These sensors measure angular velocity and linear acceleration, including the influence of

the earth’s gravity. However, it’s important to note that these measurements inherently

contain relative errors, bias, and noise.[66].

In this section, the main objective is to develop an improved Continuous Discrete EKF

method for the estimation of the state vector and bias data of a miniature quadrotor UAV

via asynchronous sensors data fusion for more consistency and accuracy in the presence of

external disturbances including the Gaussian noises of the plant and measurement noises

[102] [11].

The developed state estimator considers asynchronous feeding rates, rejects wrong data,

and detects the absence of communication with sensors. During the processing of the

continuous-discrete EKF, the quaternion orientation, angular velocity, linear position, ve-
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Figure 5-3: Quaternion representation, Any rotation can be expressed by a vector and
a rotation around it.

locity and acceleration, sensor biases, and the geomagnetic vectors are all stochastically

estimated.

A quaternion represented in Fig.5-3 is a four-dimensional complex number that rep-

resents the orientation of a body in motion in three-dimensional space. The Quaternion

orientations were chosen to avoid the gimbal lock that may occur while using the Euler

rotation angles.

In this thesis, the North East Down (NED) reference was also chosen to define the

orientation, generally, Accelerometer and magnetometer are susceptible to cancel gyro inte-

grative bias drift. Nevertheless, it is important to state that the strategy is not completely

free neither of errors nor of sensors measurement noise, which affects the estimation accuracy

[96].

5.2.1 Quaternion representation

The orientation of a body frame relative to the earth frame can be achieved via a rotation of

an angle 𝜃 around the vector 𝑟 in the earth referential. A quaternion is a four-dimensional

complex number that represents the mentioned orientation of a body in motion in three-

dimensional space.

𝑞𝐸𝐵 = [𝑞1 𝑞2 𝑞3 𝑞4] = [cos 𝜃/2 − 𝑟𝑥 sin 𝜃/2 − 𝑟𝑦 sin 𝜃/2 − 𝑟𝑧 sin 𝜃/2]
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A three-dimensional vector can be rotated by a quaternion using the relationship de-

scribed as:

𝑉𝐵 = 𝑞𝐸𝐵 ⊗ 𝑉𝐸 ⊗ 𝑞𝐵𝐸 (5.1)

Where 𝑞𝐸𝐵 is the conjugate of 𝑞𝐵𝐸 and the symbol ⊗ indicates the quaternion multiplication,

The quaternion product of two vectors 𝑉1(𝑥1, 𝑦1, 𝑧1) and 𝑉2(𝑥2, 𝑦2, 𝑧2) is the product of

𝑞1 = 𝑥1𝑖+ 𝑦1𝑗+ 𝑧1𝑘 and 𝑞2 = 𝑥2𝑖+ 𝑦2𝑗+ 𝑧2𝑘 as quaternions. The quaternion product 𝑞1 𝑞2

works out to be:

𝑞1 * 𝑞2 = −(𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2) + (𝑦1𝑧2 − 𝑧1𝑦2)𝑖+ (𝑧1𝑥2 − 𝑥1𝑧2)𝑗 + (𝑥1𝑦2 − 𝑦1𝑥2)𝑘 (5.2)

Euler angles to quaternion conversion

For the quaternion representation, it is intuitive to define the quaternion of each basic

rotation around every axe in Euler referential, then apply a quaternion multiplication:

𝑞𝐸𝐵 = 𝑞𝐸𝐵𝜓 ⊗ 𝑞𝐸𝐵𝜑 ⊗ 𝑞𝐸𝐵𝜃

𝑞𝐸𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑐(𝜑/2)𝑐(𝜃/2)𝑐(𝜓/2) + 𝑠(𝜑/2)𝑠(𝜃/2)𝑠(𝜓/2)

𝑠(𝜑/2)𝑐(𝜃/2)𝑐(𝜓/2) + 𝑐(𝜑/2)𝑠(𝜃/2)𝑠(𝜓/2)

𝑐(𝜑/2)𝑠(𝜃/2)𝑐(𝜓/2) + 𝑠(𝜑/2)𝑐(𝜃/2)𝑠(𝜓/2)

𝑐(𝜑/2)𝑐(𝜃/2)𝑠(𝜓/2) + 𝑠(𝜑/2)𝑠(𝜃/2)𝑐(𝜓/2)

⎤⎥⎥⎥⎥⎥⎥⎦ (5.3)

Quaternion to Euler angles conversion

To go back to Euler angles formalism, we can use:

⎡⎢⎢⎢⎣
𝜓

𝜃

𝜑

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
atan2(2𝑞2𝑞3 − 2𝑞1𝑞4, 2𝑞

2
1 + 2𝑞22 − 1)

− arcsin(2𝑞2𝑞4 + 2𝑞1𝑞3)

atan2(2𝑞3𝑞4 − 2𝑞1𝑞2, 2𝑞
2
1 + 2𝑞24 − 1)

⎤⎥⎥⎥⎦ (5.4)

It is always convenient to normalize all quaternion orientations. the Fig.5-3 represents

a quaternion rotation around an axe 𝑟𝐸 by an angle 𝜃.
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Figure 5-4: Gyroscopic angular rate quaternion filter, Normalized quaternion output.

5.2.2 Angular rate Orientation filter

Quaternion derivative can be expressed in a function of sensor angular rate 𝑤𝑠 as follows:

𝑤𝑠 = [0 𝑤𝑥 𝑤𝑦 𝑤𝑧]
𝑇 (5.5)

𝑞𝐸 = 1/2 𝑞𝐸 ⊗ 𝑤𝑠 (5.6)

𝑤𝑥, 𝑤𝑦, and 𝑤𝑧 are the Gyroscope reading, Eq.(5.6) represents an integrative dynamic

nature at a known feeding rate of the Quaternion angle in earth frame 𝑞𝐸 . Nevertheless,

the integral will not automatically produce a unit quaternion, thus, the normalization is

added as shown in Fig.5-4. Integrating Gyroscope raw readings is known as dead-reckoning

of angles relative to the earth frame. Still, it’s too sensitive to noise and bias drift. rotations

are calculated In discrete quaternion as:

𝑞𝐸𝑤−𝑒𝑠𝑡,𝑖 = 1/2 𝑞𝑒𝑠𝑡,𝑖 * 𝑤𝑠 (5.7)

𝑞𝐸𝑤−𝑒𝑠𝑡,𝑖+1 = 𝑞𝑒𝑠𝑡,𝑖 + 𝑞𝐸𝑤−𝑒𝑠𝑡,𝑖Δ𝑡 (5.8)

𝑞𝑒𝑠𝑡,𝑖 is the quaternion best estimate from the EKF at instant "𝑖". 𝑞𝐸𝑤−𝑒𝑠𝑡,𝑖 is the angular

rate estimate, relatively to the earth frame. The limitation of this approach is that it is

prone to drift because of sensor bias. A Gyro bias vector is added to the augmented state

estimation.
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Figure 5-5: calibration of hard and soft iron magnetic distortion simulation: Distorted
Raw readings are in red, calibrated values in blue.

5.2.3 Magnetometer and accelerations orientation filter

The accelerometer measures the magnitude and direction of the gravity field and linear

acceleration of motion in the body frame, the magnetometer measures the magnitude and

direction of the earth’s magnetic field. The data fusion between those two sensors can lead

to an orientation filter.

Magnetic distortion compensation

Magnetometers should be calibrated from both hard and soft iron distortions. Hard iron bias

represents the offset of the center of the measurement sphere. Whereas Soft iron distortions

deform the sphere to an ellipsoid as shown in Fig.5-5. The blue sphere shows the nominal

magnetic field, and the red ellipsoid proves the distortion.

Eq. 5.9 represents a system of equations to solve by finding "𝐶𝑖" coefficients for the

elimination of both hard and soft iron distortion, 𝐻𝑖 are known field values. 1

𝑀𝑎𝑔 =

⎡⎢⎢⎢⎣
𝑐1 𝑐2 𝑐3

𝑐4 𝑐5 𝑐6

𝑐7 𝑐8 𝑐9

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝐻𝑥

𝐻𝑦

𝐻𝑧

⎤⎥⎥⎥⎦−

⎡⎢⎢⎢⎣
𝑐10

𝑐11

𝑐12

⎤⎥⎥⎥⎦ (5.9)

The accelerometer/magnetometer combination can determine the orientation of the body

by measuring the gravitational acceleration in static conditions, while the magnetometer will

1GitHub codes- Calibration of Magnetometer.
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Figure 5-6: True orientation of magnetic field

indicate the direction of the geomagnetic north, the NED will be determined by the cross

product of a gravitational vector and the magnetic north, and then by the cross product of

a resultant vector with gravitational vector as demonstrated in Fig.5-6, in the last step, it

is important to subtract the offset between the magnetic north and true north.

Still, the magnetometer is too sensitive to magnetic disturbance of the environment, and

as a consequence, the whole determination of orientation is too noisy, thus, obtained attitude

data won’t be enough accurate for guidance. Besides that, the accelerometer detects and

introduces all motion dynamic accelerations in readings 𝐴𝑐𝑐𝑟, especially if the sensor is off

the rotation center.

𝐴𝑐𝑐𝑟 = 𝑔 +𝐴𝑐𝑐𝑏 + 𝜂 (5.10)

𝑔 represents the gravitational acceleration, 𝐴𝑐𝑐𝑏 is the body acceleration in the body frame,

and the 𝜂 is sensing noise. A well-known method to determine orientation is to use the

following equations system:

𝜃 = arcsin(𝐴𝑐𝑐𝑥/𝑔)

𝜑 = arctan(−𝐴𝑐𝑐𝑦/𝑎𝑐𝑐𝑧)

𝜓 = arctan(𝑚𝑎𝑔𝑧/𝑚𝑎𝑔𝑥) +𝐷

(5.11)

Where 𝐷 is the declination between the true north and magnetic north. This value depends
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on the location on earth.2

Except, using this orientation for the quaternion estimation by Accelerometer/magnetometer

is not that accurate, and for that, the intention is to calculate only the quaternion rotation

between instant "𝑖" and "𝑖+ 1" and then consider it to be the best estimate of instant "𝑖"

noted as 𝑞𝐸𝑎−𝑒𝑠𝑡,𝑖. The motion of the quadrotor moves the body frame from initial orientation

to the instant "𝑖" and is noted by 𝑆𝑖:

𝑆𝑖 = 𝑞𝑒𝑠𝑡,𝑖 ⊗𝑁𝑒𝑠𝑡 ⊗ 𝑞*𝑒𝑠𝑡,𝑖 (5.12)

Where 𝑁𝑒𝑠𝑡 is the true north initial estimate. At the instant 𝑡𝑖−1:

𝑞𝑒𝑠𝑡,𝑖+1 = 𝑞𝑒𝑠𝑡,𝑖 ⊗Δ𝑞𝑖+1 (5.13)

Δ𝑞𝑖+1 represents the quatornian rotation during [𝑡𝑖, 𝑡𝑖+1], which is equivalent to the

rotation [𝛿𝜑, 𝛿𝜃, 𝛿𝜓], based on last best filter estimate 𝑞𝑒𝑠𝑡,𝑖, we can write:

𝑆𝑖+1 = Δ𝑞𝑖+1 ⊗ 𝑆𝑖 ⊗Δ𝑞*𝑖+1 (5.14)

Madgwick formulated an optimization function to solve the quaternion orientation from

an equivalent formula, where a direct geometric resolution can be done using the normalized

cross product of 𝑆𝑖+1 and 𝑆𝑖 to determine the rotation vector 𝑅 and calculate the 3D angle

between the vectors as following:

𝑅 = 𝑆𝑖 * 𝑆𝑖+1

𝑅 = 𝑅/𝑛𝑜𝑟𝑚(𝑅)

𝛽 = (
√︀
(𝑆𝑖(1)2 + 𝑆𝑖(2)2 + 𝑆𝑖(3)2) * 𝑆𝑖+1(1)2 + 𝑆𝑖+1(2)2 + 𝑆𝑖+1(3)2)

𝛼 = arccos((𝑆𝑖(1) * 𝑆𝑖+1(1) + 𝑆𝑖(2) * 𝑆𝑖+1(2) + 𝑆𝑖(3) * 𝑆𝑖+1(3))/𝛽

Δ𝑞𝑖+1 = [cos(𝛼/2) 𝑅(1) sin(𝛼/2) 𝑅(2) sin(𝛼/2) 𝑅(3) sin(𝛼/2)]

(5.15)

Finally, Apply a saturation for the value if does exceed the calculated threshold and call

for Eq.5.13 to find the accelerometer/magnetometer best orientation estimate.

2GitHub codes-Orientation filter.
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5.2.4 Data fusion for Orientation

Quatornian estimations of the quadrotor using the angular rate quaternion 𝑞𝑤−𝑒𝑠𝑡,𝑖 and

by accelerometer/magnetometer method 𝑞𝑎−𝑒𝑠𝑡,𝑖, are data fused using an adaptive optimal

complementary filter.

𝑞𝑒𝑠𝑡,𝑖 = 𝛾𝑖 𝑞𝑎−𝑒𝑠𝑡,𝑖 + (1− 𝛾𝑖) 𝑞𝑤−𝑒𝑠𝑡,𝑖 , 0 < 𝛾 < 1 (5.16)

𝛾𝑖 is an iterative variable that finds optimality when the weight of angular rate divergence

of 𝑞𝑤−𝑒𝑠𝑡,𝑖 equals weight convergence of 𝑞𝑎−𝑒𝑠𝑡,𝑖.

𝛾𝑖 𝑒𝑟𝑟𝑎,𝑚 = (1− 𝛾𝑖)𝑒𝑟𝑟𝑤 (5.17)

𝑒𝑟𝑟𝑤 is the magnitude of the derivative corresponding to the gyroscope measurement error

and 𝑒𝑟𝑟𝑎,𝑚 is the magnitude of the quaternion error of the accelerometer/magnetometer

method. the 𝛾 value is processed as a penalty for the bad estimation method.

𝛾 = 𝑒𝑟𝑟𝑤/(𝑒𝑟𝑟𝑤 + 𝑒𝑟𝑟𝑎,𝑚) (5.18)

A "NEO -6M" GPS sensor is used to provide position at a 5 Hz rate, and a standard

National Marine Electronics Association (NMEA) messaging was exploited to extract data

on longitude, latitude, and altitude [1]. The transformation between GPS waypoint and

general Cartesian position [𝑥 𝑦 𝑧]𝑇 coordinates is based on the following equations:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥 = 𝑅 * cos(𝑙𝑎𝑡) * cos(𝑙𝑜𝑛)− 𝑥0

𝑦 = 𝑅 * cos(𝑙𝑎𝑡) * sin(𝑙𝑜𝑛)− 𝑦0

𝑧 = 𝑅 * sin(𝑙𝑎𝑡)− 𝑧0

(5.19)

Where R is the approximate earth radius(6371 km) at the running region, "lon" and "lat" are

the longitude and latitude converted to radians respectively. Data on altitude is referenced

to World Geodetic System (WGS 84) which is almost equivalent to sea level.
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5.2.5 Design of enhanced Kalman Filter gains

The EKF is a stochastic optimal filter that estimates the states with sensors’ noise based

on the spectral content of the measured and previously estimated data. [75]. Designing a

continuous Kalman Filter on the direct non-linear model will be extremely challenging and

will limit the ability of analysis and implementation besides the expensive computational

of the Riccati differential equation. Therefore, we opted for the discrete LTV model via

the Jacobian linearization method applied at the estimated operating point. The Madgwick

filter method for data fusion is a very efficient way that doesn’t incorporate the dynamics of

the drone which makes the filter blind to prediction data, but it is less time expensive than

EKF and shows good convergence results and stability at low velocities. [66].

In our solution, we used partial Estimation from Madgwick filters as a first stage to

provide measurements and best estimations to the EKF.

After got linearized the dynamics model, an augmented model including disturbance

model and sensors data is obtained, then discretized on the sampling time of 𝑇𝑠 = 0.01

sec [7]. Based on The update rate of the IMU at 100 Hz and 5 Hz for the GPS. because

of the asynchronous rating, a small verification program initiates the filter to verify the

availability of data and confirms the validation of measurement iteration, Therefore, a multi-

rate extended Kalman filter was considered.

The AHRS fused with GPS data will represent the measurement data, and predic-

tions will be based on the Jacobian linearized model. An augmented state vector 𝑋𝑎𝑢𝑔 =

[𝑥 𝑏𝑖𝑎𝑠𝑣𝑒𝑐𝑡𝑜𝑟]
𝑇 of 31 elements is tracked by the proposed filter. All states are described in

Table.5.1

Table 5.1: State vector elements
States Units Index
Orientation (quaternion ) 1:4
Orientation (Euler angles) rad 5:7
Angular Velocity (𝑤𝑥, 𝑤𝑦, 𝑤𝑧) rad/s 8:10
Position (NED) m 11:13
Velocity (NED) m/s 14:16
Acceleration (NED) m/s2 17:19
Accelerometer Bias (XYZ) m/s 2 20:22
Gyroscope Bias (XYZ) m/s 2 23:25
Geomagnetic Field Vector (NED) uT 26:28
Magnetometer Bias (XYZ) uT 29:31
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Figure 5-7: Enhanced Madgwick/EKF Design with pre-filtering and data fusion

Quaternion orientation are resulting from EKF 3 combined with AHRS / GPS sensors

filtering, The Euler angles are transformed from Quaternion orientation instantaneously, and

The angular velocities are generated from quaternion dynamics instead of the raw data of

the Gyroscope. Accelerations to earth reference and accelerometer bias are from dynamics

and error calculated between accelerometers and final estimation. The Gyroscope biases are

resulting from errors between gyroscope readings and estimation of angular rates. The same

analogy for the magnetometer.

After the calibration of the magnetometer, The filter is initialized in a static condition

at the origin. with pre-definition of sensors’ noise covariance based on data sheets [34]. The

flow chart 5.2.7 details the algorithm of the enhanced observer.

𝑅.𝑄𝑢𝑎𝑡𝑒𝑟 = 1𝑒− 2 * 𝐼(4, 4)

𝑅.𝐺𝑦𝑟𝑜 = 100 * 𝐼(3 * 3)

𝑅.𝐴𝑐𝑐 = 100 * 𝐼(3 * 3)

𝑅.𝑀𝑎𝑔 = 1𝑒− 7 * 𝐼(3 * 3)

𝑄.𝑠𝑦𝑠𝑡𝑒𝑚 = 1𝑒− 3 * 𝐼(12 * 12)

(5.20)

3GitHub codes-Kalman Filter.
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The iterative equations of EKF will be as follow4:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐴𝑖 = 𝜕𝐹/𝜕𝑥|𝑥𝑖,𝑢𝑖
𝐵𝑖 = 𝜕𝐹/𝜕𝑢|𝑥𝑖,𝑢𝑖
𝑥0

− = �̂�−(0)

𝑃−
0 = 𝐸[𝑥0

−𝑥0
−]

𝐾𝑖 = 𝑃−
𝑖 𝐶

𝑇
𝑖 [𝐶𝑖𝑃

−
𝑖 𝐶

𝑇
𝑖 +𝑅𝑖]

−1

𝑥𝑖
+ = 𝑥𝑖

− +𝐾𝑖[𝑦𝑖 − 𝐶𝑖𝑥𝑖]

𝑃+
𝑖 = (𝐼 −𝐾𝑖𝐶𝑖)𝑃

−
𝑖 (𝐼 −𝐾𝑖𝐶𝑖)

𝑇 +𝐾𝑖𝑅𝑖𝐾
𝑇
𝑖

^𝑥𝑖+1
− = 𝐴𝑖𝑥𝑖

+ +𝐵𝑖𝑢𝑖

^𝑃−
𝑖+1 = 𝐴𝑖𝑃

+
𝑖 𝐴

𝑇
𝑖 +𝐺𝑖𝑄𝑖𝐺

𝑇
𝑖

(5.21)

5.2.6 Demonstration of Faster convergence than EKF

For a system dynamics written as:

�̇� = 𝐴𝑋 +𝐵𝑈 +𝐺𝑊

𝑌 = 𝐶𝑋 + 𝑉
(5.22)

Where 𝑊 (𝑡) and 𝑉 (𝑡) are uncorrelated Gaussian process disturbance and sensing noise

respectively. Let’s consider �̂�(𝑡) the state vector estimate and �̂�𝑀 (𝑡) the best estimate of

state from Madgwick method.

�̃�(𝑡) = 𝑋(𝑡)− �̂�(𝑡) (5.23)

An optimal Kalman observer dynamics can be illustrated as follows:

˙̂
𝑋 = 𝐴�̂� +𝐵𝑈 +𝐾𝑒(𝑌 − 𝑌 ) (5.24)

𝐾𝑒 is the optimal Kalman Gain. The Error dynamics ˙̃𝑋(𝑡) can be developed as follows:

˙̃𝑋(𝑡) = �̇�(𝑡)− ˙̂
𝑋(𝑡) (5.25)

˙̃𝑋(𝑡) = �̇�(𝑡)− ˙̂
𝑋𝑀 (𝑡) +

˙̂
𝑋𝑀 (𝑡)− ˙̂

𝑋(𝑡) (5.26)

4GitHub codes-Adaptive Kalman Filter.
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Based on the mathematical exponential convergence of Madgwick formulation that uses

Newton method [66], the estimation error �̃�𝑀 (𝑡) is a descending function and can be written

as:
˙̂
𝑋𝑀 (𝑡)− ˙̂

𝑋(𝑡) = 𝜂 ˙̃𝑋(𝑡) (5.27)

𝜂 ∈ 𝑅𝑛, a diagonal matrix of 𝜂𝑖 elements such as 𝜂𝑖 ∈ [0, 1], the matrix 𝜂 is trivially positive

definite; by substitution,
˙̃𝑋(𝑡) = �̇�(𝑡)− ˙̂

𝑋𝑀 (𝑡) + 𝜂 ˙̃𝑋(𝑡) (5.28)

As the Madgwick method error is part of the combined filter, we can write:

˙̃𝑋(𝑡) = �̇�(𝑡)− ˙̂
𝑋𝑀 (𝑡) + 𝜂 ˙̃𝑋(𝑡) (5.29)

Therefor,
˙̃𝑋(𝑡) = (𝐼 − 𝜂)−1(�̇�(𝑡)− ˙̂

𝑋𝑀 (𝑡)) (5.30)

˙̃𝑋(𝑡) = (𝐼 − 𝜂)−1(𝐴𝑋 +𝐵𝑈 +𝐺𝑊 −𝐴�̂� +𝐵𝑈 +𝐾𝑒(𝑌 − 𝑌 )) (5.31)

˙̃𝑋(𝑡) = (𝐼 − 𝜂)−1((𝐴−𝐾𝑒𝐶)�̃� +𝐺𝑊 −𝐾𝑒𝑉 ) (5.32)

˙̃𝑋(𝑡) = (𝐼 − 𝜂)−1𝐴0�̃� + (𝐼 − 𝜂)−1(𝐺𝑊 −𝐾𝑒𝑉 ) (5.33)

Both disturbance and noise drive the dynamics of error, however, If we can ensure the

convergence of EKF alone, we can ensure the convergence with a bounded noisy input too.

The error dynamic is mainly decided by the all left half plane eigenvalues of the matrix

(𝐼 − 𝜂)−1𝐴0 noted by 𝜆𝑖((𝐼 − 𝜂)−1𝐴0).

𝜆𝑖(𝐴0) ≥ 𝜆𝑖((𝐼 − 𝜂)−1𝐴0) (5.34)

Thus, a Faster exponential convergence of the combined filter between Madgwick and EKF.

5.2.7 Flow chart of the Optimal Observer

5.2.8 Magnetometer calibration

Fig. 5-8 shows the hard and soft distortion calibration of the MPU 9250 magnetometer

readings. the kit was communicated to Matlab Via Arduino, Readings were taken first and
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Figure 5-8: Online Calibration of Magnetometer by Matlab and the MPU 9250/Ar-
duino.

set into a system of equations as shown in Eq.5.9. Results, showed noisy heading orientation

by the Magnetometer alone which leads to the necessity of the developed filter.

5.2.9 Sensors fusion and EKF

Extensive simulation and implementation results in static to low-velocity conditions, showed

that the proposed strategy has an excellent performance in terms of bias and states estima-

tion.

The experimentation of Data fusion and EKF was performed using MPU 9250 and GPS

at a low angular velocity, the algorithm was implemented in Matlab using Arduino Card to

import data from a sensor via I2C ports. Fig.5-10 shows the orientation filter results.

Obtained estimations of angles indicated that the designed filter can achieve an accuracy

in the order of less than 1 degree. Full state estimation in both indoor/outdoor environments

is achieved via a new approach of EKF estimator exploiting multi-sensor data fusion. the

GPS and the MPU9250 10 DOF sensor were used for angles and translation observation.

5.2.10 Gyroscope bias drift

Another depth of estimation algorithm performance is illustrated in the real-time gyro drift

estimation, Figure.5-9 shows an estimation of angular rate with bias estimation. The gyro-
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Figure 5-9: Drift of angles of Gyro by dead reckoning vs actual estimation by AHRS

Table 5.2: Mean orientation tracking errors
Angles of orientation Roll 𝜑 Pitch 𝜃 Yaw 𝜓

Error (deg) 0.43 0.34 0.65

based estimation is divergent because of that bias and dead reckoning will drift away after

a while.

5.2.11 Results of sensor fusion and EKF of the quadrotor

The Data fusion filter combined with the EKF exploits the MPU 9250 and the GPS with

a calibrated magnetometer. AHRS algorithm calculates the quaternion orientation. Fig.5-

10 presents the AHRS filter’s real-time performance by interfacing Matlab with the sensor

via Arduino. AHRS filter showed a responsive tracking of real motion orientation. Mean

tracking errors are detailed in the table.5.2.

A Matlab simulation of the EKF observer of linear position is shown in Fig.5-11, the

Observer can reject noise and uncertainty of dynamics. The EKF is crucial to ensure loop

stability during tracking, in the presence of white noise applied as sensor noise and wind

gusts. The wind gust was simulated as a Gaussian noise at a low feeding rate, whereas, a

high feeding rate white noise was simulated and applied on actuators and sensor reading.
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Figure 5-10: AHRS observer for the general position of the quadrotor, Real-time
reading by interfacing Matlab and MPU-9250.

Figure 5-11: EKF observer for the general position of the quadrotor with Gaussian
noise attenuation

5.3 Tracking by Adaptive Linear quadratic Gaussian

Control

LQG is a fundamental optimal control problem. It has been chosen because of the quadrotor

disturbed nature, it is suitable for dynamic models perturbed by a white Gaussian noise and

disturbance, the control optimization has the objective to determine a state feedback control

minimizing a quadratic cost criterion [50].
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Figure 5-12: Scheme of adaptive LQG control structure ( LQT: Linear quadratic
tracker)

LQG is unique and it is optimized by combining a LQE with a LQR under the separation

principle of states, which leads to designing the control and the observer independently.

The Adaptive LQG will be applied on a LTV model, Classical LQG implementation

may be problematic at higher state dimension. Reduced model order for LQG affects the

separation principle and the solution is no longer unique. LQG control may also have a

robustness problem which is not guaranteed [98], The robustness of stability of the closed-

loop system must be checked separately within the LQG design. To promote robustness

some of the system parameters may be assumed stochastic instead of deterministic [38].

The considered LQG design is shown in Fig.5-12. where a combination between an LQT

and an enhanced Kalman LQE was assembled.

5.3.1 Linear Quadratic Gaussian Tracker

The LQR is a full-state feedback optimal controller, which is derived from an optimiza-

tion process of the control problem applied on an LTV (rather linearized) plant. Discrete

linearized dynamics of quadrotor at instant indexed by ”𝑖” can be represented as:

�̇�𝑖+1 = 𝐴𝑖𝑥𝑖 +𝐵𝑖𝑢𝑖 + 𝑤𝑖

𝑦𝑖 = 𝐶𝑖𝑥𝑖 + 𝑣𝑖
(5.35)
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Where 𝑣𝑖,𝑤𝑖 represent discrete-time Gaussian white noise processes with covariance ma-

trices 𝑄 and 𝑅 respectively.

The quadratic cost function ”𝐽” for tracking the desired reference is noted by 𝑍𝑖[14].

𝐽 = 1/2(𝐶𝑁𝑥𝑁 − 𝑍𝑁 )
𝑇𝑆𝑁 (𝐶𝑁𝑥𝑁 − 𝑍𝑁 )+

1/2
∑︀𝑁−1

𝑖=1

(︀
(𝐶𝑖𝑥𝑖 − 𝑍𝑖)

𝑇𝑄𝑖(𝐶𝑖𝑥𝑖 − 𝑍𝑖) + 𝑢𝑇𝑖 𝑅𝑖𝑢𝑖
)︀ (5.36)

Such,

• Pairs {𝐴𝑖, 𝐵𝑖 }, controllable

• 𝑆𝑁 ≥ 0 ; 𝑄 ≥ 0 (𝑝𝑠𝑑𝑓) & 𝑅 > 0 (𝑝𝑑𝑓)

The aim is to find an affine optimal control of the quadrotor to track the desired Spline

trajectory generated noted by 𝑍𝑖. Control will be expressed in a state-feedback term for

nominal correction and a feed-forward term that anticipates our desired reference position

[14].

The control will be such:

𝑢𝑖 = −𝐾𝑖�̂�𝑖 + 𝐿𝑖𝑔𝑖+1 (5.37)

Using the Hamiltonian on last performance index 𝐽 :

𝐻 = 1/2
𝑁−1∑︁
𝑖=1

(︀
(𝐶𝑖𝑥𝑖 − 𝑍𝑖)

𝑇𝑄𝑖(𝐶𝑖𝑥𝑖 − 𝑍𝑖) + 𝑢𝑇𝑖 𝑅𝑖𝑢𝑖
)︀
+

+𝜆𝑇𝑖+1(𝐴𝑖𝑥𝑖 +𝐵𝑖𝑢𝑖) (5.38)

• The state equation:

𝑥𝑖+1 = 𝐴𝑖𝑥𝑖 +𝐵𝑖𝑢𝑖 (5.39)

• The Co-state equation:

𝜆𝑖 = 𝐶𝑇𝑖 𝑄𝑖𝐶𝑖𝑥𝑖 − 𝐶𝑇𝑖 𝑄𝑍𝑖 +𝐴𝑇𝑖 𝜆𝑖+1 (5.40)

• The Optimality:

𝑢𝑖 = −𝑅−1
𝑖 𝐵𝑇

𝑖 𝜆𝑖+1 (5.41)

• Boundary condition:

𝜆𝑁 = 𝐶𝑇𝑁𝑆𝑁𝐶𝑁𝑥𝑁 − 𝐶𝑇𝑁𝑆𝑁𝑍𝑁 (5.42)
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Assuming,

𝜆𝑖 = 𝑃𝑖𝑥𝑖 − 𝑔𝑖 (5.43)

Substitute 𝜆𝑖+1 in control equation and inject the result in state equation:

�̇�𝑖+1 =
(︁
𝐼 +𝐵𝑖𝑅

−1
𝑖 𝐵𝑇

𝑖 𝑃𝑖+1

)︁−1(︁
𝐴𝑖𝑥𝑖 +𝐵𝑖𝑅

−1
𝑖 𝐵𝑇

𝑖 𝑔𝑖+1

)︁
(5.44)

Let’s put 𝑉𝑖 = 𝐶𝑇𝑖 𝑄𝑖𝐶𝑖 and 𝑊𝑖 = 𝐶𝑇𝑖 𝑄𝑖,

From the costate equation we can get:

𝜆𝑖 = 𝑉𝑖𝑥𝑖 −𝑊𝑖𝑍𝑖 +𝐴𝑇𝑖 (𝑃𝑖+1

(︁
𝐼 +𝐵𝑖𝑅

−1
𝑖 𝐵𝑇

𝑖 𝑃𝑖+1

)︁−1

(𝐴𝑖𝑥𝑖 +𝐵𝑖𝑅
−1
𝑖 𝐵𝑖𝑔𝑖+1)− 𝑔𝑖+1)

(5.45)

Substitute the costate by the assumption:

𝑃𝑖𝑥𝑖 − 𝑔𝑖 = 𝑉𝑖𝑥𝑖 −𝑊𝑖𝑍𝑖 −𝐴𝑇𝑖 𝑔𝑖+1 +𝐴𝑇𝑖 𝑃𝑖+1(︁
𝐼 +𝐵𝑖𝑅

−1
𝑖 𝐵𝑇

𝑖 𝑃𝑖+1

)︁−1
(𝐴𝑖𝑥𝑖 +𝐵𝑖𝑅

−1
𝑖 𝐵𝑖𝑔𝑖+1)

(5.46)

This later represents a polynomial equation of first order that holds good for all 𝑥𝑖, so:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑃𝑖 = 𝑉𝑖 +𝐴𝑇𝑖 𝑃𝑖+1

(︁
𝐼 +𝐵𝑖𝑅

−1
𝑖 𝐵𝑇

𝑖 𝑃𝑖+1

)︁−1
𝐴𝑖

𝑔𝑖 =𝑊𝑖𝑍𝑖 +𝐴𝑇𝑖

(︁
𝐼 − 𝑃𝑖+1(𝐼 +𝐵𝑖𝑅

−1
𝑖 𝐵𝑇

𝑖 𝑃𝑖+1)
−1

𝐵𝑖𝑅
−1
𝑖 𝐵𝑇

𝑖

)︁
𝑔𝑖+1

(5.47)

The system of equations represented in Eq.5.47 is recursive, and its solvable for the

whole horizon if 𝐼 + 𝐵𝑖𝑅
−1
𝑖 𝐵𝑇

𝑖 𝑃𝑖+1 is invertible and final values 𝑃𝑁 and 𝑔𝑁 are known. as

𝜆𝑁 satisfies the boundary condition and the assumption at time 𝑁 :

𝜆𝑁 = 𝑃 𝑇𝑁𝑥𝑁 − 𝑔𝑁 = 𝐶𝑇𝑁𝑆𝑁𝐶𝑁𝑥𝑁 − 𝐶𝑇𝑁𝑆𝑁𝑍𝑁 (5.48)

Therefor: ⎧⎨⎩ 𝑃𝑁 = 𝐶𝑇𝑁𝑆𝑁𝐶𝑁

𝑔𝑁 = 𝐶𝑇𝑁𝑆𝑁𝑍𝑁
(5.49)

Finally a control solution maybe written by
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𝑢𝑖 = −
[︀
(𝑅𝑖 +𝐵𝑇

𝑖 𝑃𝑖+1𝐵𝑖)
−1𝐵𝑇

𝑖 𝑃𝑖+1𝐴𝑖
]︀
𝑥𝑖

+
[︀
(𝑅𝑖 +𝐵𝑇

𝑖 𝑃𝑖+1𝐵𝑖)
−1𝐵𝑇

𝑖

]︀
𝑔𝑖+1

(5.50)

The control strategy for optimal tracking is implemented iteratively, incorporating two

distinct components. The first component is a state-feedback control, which utilizes the

current state of the system to determine the control input. The second component is a

predictive tracking control input, which considers trajectory data to optimize the tracking

performance.

5.3.2 Control simulation

Besides the adaptive LQG control, three other approaches have been searched to validate

the performance of the opted method. The Linear PID, the non-linear IBS, and the intelli-

gent FLC were developed to track the Spline trajectory. The PID approach was based on

converting the MIMO coupled model to multi-SISO systems by decoupling the subsystems

as developed by [73], The inner outer nested loops strategy was considered for that. The

IBS is a nonlinear approach that contributes the integral benefits in the backstepping de-

sign, Four controllers resulting from the under-actuation nature of quadrotor which is based

on just four controllers capability. Lyapunov theory was used to derive the attitude and

altitude controllers. In the FLC strategy, Model inversion was first used, then four FLC

controllers for essential quadrotor control. Each inference unit used the error and the error

rate of change as inputs5.

All control approaches were simulated for the same tracking task to avoid the obstacles.

The simulation of the adaptive LQG control showed excellent stabilization and tracking

of desired Spline trajectory as demonstrated in Fig.5-14, a comparison to the three other

control approaches was established for validation, The error of the tracking of the Adaptive

LQG method was minimal compared to other methods performance. Adaptive LQG was

validated as an approach for quadrotor control to track the desired Spline curves to avoid

obstacles, the rejection of perturbation was assured relative to added noises.

The comparison to PID, IBS, and FLC control, showed that the adaptive LQG demon-

strates better performance although the expensive time of calculation and algorithmic com-

5GitHub codes-Obstacles avoidance simulation.
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(a) Panoramic Tracking with Obstacles avoidance (b) Top view of tracking

Figure 5-13: Top view of the tracking of the Spline trajectory, the green trajectory is
based on PID control, the sky blue colored trajectory is for the FLC method, where
the blue and red are the desired Spline and A-LQG control trajectories respectively,
the IBS control approach is in magenta.

plexity.

Linear position tracking showed minimal tracking error, the wind gust effect by low-rate

Gaussian noise is observable on the quadrotor position, with the quick correction to track.

Angles tracking was also excellent and better than PID attitude results, all observing the

noise effect introduced on the sensor by the high-rate Gaussian noise.

The IBS control loses tracking narrow turns and showed a weak rejection of perturba-

tions, on the other hand the PID, showed better tracking with less overshooting in turns,

FLC comes close in a matter of performance of tracking to the optimal adaptive LQG.

5.4 Model Predictive Control

5.4.1 Control and Tracking of designed trajectory

MPC is an optimal control that satisfies a set of constraints. MPC is chosen based on the

quadrotor nature, the multiple manipulative variables with constraints to meet, and the

disturbance which has been considered as model uncertainties, and as white Gaussian noise

during the simulation. Jacobian of quadrotor dynamics is used to linearize the model, the

Adaptive design will be based on linearization at every operating points [38]-[91].
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Figure 5-14: 3D Spline trajectory tracking performance by PID, IBS, and FLC vs
Adaptive LGQ, the Desired trajectory is in blue which is Spline designed, Green
trajectory represents the PID control results, and IBS and FLC are in magenta and
sky blue color, where we can see tracking errors affected by the introduced noise and
perturbation, However, Adaptive LQG control trajectory in Red demonstrates better
robustness and performant tracking

5.4.2 Tracking Control strategy

The MPC is a finite-horizon optimization based on the dynamics model. Fig. 5-1 shows

the control strategy with MPC to track the generated min Jerk trajectory with the fuzzy

velocity control. The system can be written as follows:

�̇�𝑖+1 = 𝐴𝑖𝑥𝑖 +𝐵𝑖𝑢𝑖 + 𝑤𝑖 (5.51)

𝑦𝑖 = 𝐶𝑖𝑥𝑖 + 𝑣𝑖 (5.52)

𝑣𝑖,𝑤𝑖 are discrete-time Gaussian white noises with the respective covariance matrices 𝑄

and 𝑅. To ensure optimal tracking [14], a quadratic cost function "J" is defined as:

𝐽 = 1/2 (𝐶𝑁𝑥𝑁 − 𝑍𝑁 )
𝑇 𝑆𝑁 (𝐶𝑁𝑥𝑁 − 𝑍𝑁 )+

+1/2
∑︀𝑁−1

𝑖=1

(︀
(𝐶𝑖𝑥𝑖 − 𝑍𝑖)

𝑇𝑄𝑖(𝐶𝑖𝑥𝑖 − 𝑍𝑖) + 𝑢𝑇𝑖 𝑅𝑖𝑢𝑖
)︀ (5.53)

𝑍𝑖 represent the Minimal Jerk trajectory along the horizon 𝑁 . The optimal Control can
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Figure 5-15: Complete Scheme of MPC control with Fuzzy min Jerk trajectory

be demonstrated to be [14]:

𝑢𝑖 = −
[︀
(𝑅𝑖 +𝐵𝑇

𝑖 𝑃𝑖+1𝐵𝑖)
−1𝐵𝑇

𝑖 𝑃𝑖+1𝐴𝑖
]︀
𝑥𝑖 +

[︀
(𝑅𝑖 +𝐵𝑇

𝑖 𝑃𝑖+1𝐵𝑖)
−1𝐵𝑇

𝑖

]︀
𝑔𝑖+1 (5.54)

𝑃𝑖 and 𝐺𝑖 are recursively calculated as follows:

⎧⎨⎩ 𝑃𝑖 = 𝑉𝑖 +𝐴𝑇𝑖 𝑃𝑖+1

(︁
𝐼 +𝐵𝑖𝑅

−1
𝑖 𝐵𝑇

𝑖 𝑃𝑖+1

)︁−1
𝐴𝑖

𝑔𝑖 =𝑊𝑖𝑍𝑖 +𝐴𝑇𝑖

(︁
𝐼 − 𝑃𝑖+1(𝐼 +𝐵𝑖𝑅

−1
𝑖 𝐵𝑇

𝑖 𝑃𝑖+1)
−1𝐵𝑖𝑅

−1
𝑖 𝐵𝑇

𝑖

)︁
𝑔𝑖+1

(5.55)

With 𝑉𝑖 = 𝐶𝑇𝑖 𝑄𝑖𝐶𝑖 and 𝑊𝑖 = 𝐶𝑇𝑖 𝑄𝑖,⎧⎨⎩ 𝑃𝑁 = 𝐶𝑇𝑁𝑆𝑁𝐶𝑁

𝑔𝑁 = 𝐶𝑇𝑁𝑆𝑁𝑍𝑁
(5.56)

The control solution is calculated on the Horizon of 𝑁 points to the landing on the pad, at

every iteration the control is calculated repeatedly and applied just for the current iteration.

The complete FLC/MPC control-based architecture is shown in Fig.5-2.

Stability of the control is ensured by the separation principle, essentially, Adaptive LQG

is a combination of the KF and LQR. Thus, the design of optimal control can be derived

independently of the observer.
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Figure 5-16: 3D Minimum Jerk trajectory tracking of a quadrotor performance con-
trolled by PID vs MPC (Landing pad trajectory in Green, The optimal Min-Jerk
trajectory in blue, the Quadrotor position controlled by MPC in red, and the ma-
genta path is the quadrotor position by PID control).

The Control Algorithm of MPC can be designed as6:

Algorithm 2: MPC control Algorithm
Result: Control input 𝑈𝑖

Recall the last estimation of 𝑥𝑖, or initial conditions;

Verify initialization procedure;

while Control verification is Ok do
Consider the appropriate 𝐴𝑖, 𝐵𝑖 and 𝐶𝑖 from best estimate of EKF and sensor

available data;

Calculate 𝑉𝑖 and 𝑊𝑖.;

N=100 (number of points can be adaptive );

Calculate 𝑃𝑁 and 𝑔𝑁 thru Eq.5.56 ;

for k=N:i do

Calculate 𝑃𝑘 and 𝑔𝑘 with Eq.5.55 ;

end

Calculate 𝑢𝑖 by 𝑃𝑖 and 𝑔𝑖 as in Eq.5.54 ;

Apply control ;

end

6GitHub codes-Soft Landing simulation.
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5.4.3 Control simulation results

MPC tracking of the Min Jerk trajectory to land was simulated in a Matlab environment

by following a landing pad in motion considering only the EKF as an observer. The moving

pad position was simulated to be a forward sinusoidal motion, as shown in the green path

in Fig.5-16, During the simulation, the Optimal trajectory is calculated dynamically and

updated in every iteration, based on optimization dynamics in Eq.6.23, furthermore, the T

value is estimated by the FLC. The MPC tracker calculates iteratively the optimal command

to apply by the set of equations Eqs.5.54-5.56. The blue path shows the optimal calculated

trajectory. The Red trajectory is the MPC simulated position of the quadrotor compared to

the PID one in magenta. The simulation of MPC shows excellent stabilization and very good

tracking of the desired trajectory even in the presence of simulated wind gusts and model

uncertainties with Gaussian noise as demonstrated in Fig.5-16, PID control shows more

deviation and less robustness to the sudden noise and wind perturbation. A comparison

with PID control illustrates that the MPC is more performant and more robust to the

added disturbance.

5.5 Radial Basis Functions Neural Network based

compensation control

NN methods have become increasingly efficient and applicable in control. In this section, we

investigate a novel nested control strategy based on Adaptive RBFNN and NN supervised

control embedded with IBS for a robust trucking of quadrotors aerial robot in the presence of

modeling uncertainties, sensing noise, and external bounded disturbance. The decentralized

inverse dynamics were considered in the design, the outer loop is controlled by an adaptive

RBFNN that approximates the unknown external disturbance and adaptively compensates

for them, differently to the IBS supervised control that stabilizes the attitude in the inner

loop that adaptively corrects and compensates the disturbance, in addition to avoiding

initial instability of attitude during NN convergence. An adaptive EKF was exploited, and

the stability analysis was elaborated using Lyapunov stability theory. Simulation of adaptive

RBFNN control philosophy proved robustness and effectiveness compared to PID, IBS, and

offline decentralized CNN algorithms as it generates the control law by guarantying a fast
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convergence of parameters, better external disturbance compensation, and noise attenuation.

5.5.1 Toward Adaptive RBF Neural Network-Based Control

Modern control tasks demand a high level of complexity from control theory. Various ad-

vanced systems and applications, such as avionics and navigation systems, flight controllers,

adaptive trajectory trackers, autonomous robots, and high-energy processes, require sophis-

ticated control approaches within distributed systems of supervision and control. Meeting

these demands involves developing intricate control philosophies. Those control systems fall

typically into a class of highly disturbed and uncertain dynamics control; due to mechanical

fatigue, faults of components, environmental conditions like gust winds and abnormal atmo-

spheric pressure, severe model non-linearities, and measurement uncertainties. In addition

to the noise of sensors and unmodeled effects[103] [79] [27].

In recent times, a multitude of effective control methods have been introduced to address

these challenges, each employing distinct philosophies and approaches, such as robust control

[64] [12], adaptive control [113] [55], and Neural network-based control [49] [59] [35] [112].

Incorporating an in-flight full-state observer in the presence of uncertainties and noise may

establish a reliable feedback to the control block [23] [90] [22]. [104]. For the challenges

of the disturbed trajectory tracking for quadrotors, Linear techniques are insufficient to

guarantee convergence when functioning outside the operating envelope, while nonlinear

techniques require a full knowledge of dynamics, which is not always guaranteed to meet as

an assumption, which prone them to instability due to unmodeled effects and external forces.

Furthermore, both approaches have limitations in their capacity to adapt to uncertainties.

Thus, the need for intelligent methods, which demonstrate higher performance in the matter

of all recited challenges. Adaptive Neural Network (NN) based control design based on

dynamic inversion was intensively investigated for quadrotors, the optimal compensation of

inversion error subsequently improves robustness to parametric uncertainty and non-linear

unmodeled dynamics [88]. The Adaptive Neural Network (NN) efficiency is due to the

capabilities of nonlinear approximation and adaptive adjustment.

The universal Approximation Theorem for RBFNN proved that the Gaussian functions

network can approximate any bounded integrable, continuous function [88], especially in

presence of discontinuities and dynamics change in time, which drive harm to the robust
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control methods [60] [111]. This section presents an adaptive control scheme for robust

tracking of trajectory for the quadrotor, with disturbance rejection, noise attenuation, and

dynamics uncertainty adaptation. Adaptive RBFNNs control was introduced for position

tracking in [108], an Adaptive RBFNNs/integral sliding mode control for a quadrotor aircraft

was opted in [59], in [49] a Robust adaptive RBFNN based compensation control of quadro-

tor was simulated. The adaptive technique can adjust parameters automatically based on

dynamic changes for an agriculture drone [112]. where in [35], an Adaptive NN fault-tolerant

control was investigated via fast terminal sliding mode. However, those researchers did not

consider either the initial attitude instability during the network parameters convergence or

optimal feedback due to the noisy disturbed nature of measurement.

It is essential to understand the quadrotor strong non-linear coupling of the four-rotors in

the aircraft dynamics; This understanding paves the way for the development of a valuable

decentralized control scheme that can be achieved by designing two nested subsystems. An

outer loop controls the translational positions tracking, meanwhile, the inner loop stabilizes

and tracks the desired attitude generated by the inverse compensated dynamics.

Consequently, an Adaptive RBFNN control scheme was opted for the outer loop of a

disturbed quadrotor aircraft to achieve robust trajectory tracking objectives of the aircraft.

The RBFNN is trained online via an adaptive law derived based on Lyapunov theory, of-

fering an adaptation to any change that may occur during flight [34]. Moreover, RBFNN

supervised control of the Integrator Backstepping for the control of attitude was designed,

guarantying a fast convergence, and better initial attitude stability, contrary to other papers

where initial severe swings have been observed during network convergence [45] [49], it is

mandatory to establish a reasonable initial oscillation of attitude otherwise, the quadrotor

may fall in a non-recoverable unstable envelope, furthermore, the integral action contributes

to the cancellation of the static error. The stability analysis of each control loop com-

bined with optimal observer was examined. The RBFNNs usually train much faster than

back-propagation networks, which makes them a better solution than Convolution Neural

Network (CNN)s7 for the adaptive control of unknown or uncertain models.

In addition, the model uncertainties, noise, and disturbances are considered and formu-

lated as unknown state dependent and independent inputs or Gaussian signals. The control

technique for the translational position considers the known part of the model and adaptively

7GitHub codes - CNN control.
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estimates the unknown part with the disturbance based on combining the RBF neural net-

work approximation capabilities with the adaptive control technique. In consequence, this

design of a robust tracking controller of quadrotor aircraft positions ensures the rejection of

the external bounded disturbance. As well, the strategy guarantees a performant attitude

subsystem tracking and stabilization with the supervised NN control.

Besides the implementation of the adaptive EKF to mitigate sensing noise and the

destabilizing effect, which its stability analysis is demonstrated by Lyapunov theorem and

separation principle while integrating it in the control nested loops . This section highlights

the following keys:

1. Conception of a nested NN design based on adaptive RBFNN to control position in

the outer loop and a supervised NN to control the attitude that carries out superior

performance such as a faster convergence and capable of disturbance rejection and

stabilize attitude at the initial phase, with higher precision in comparison to some

nonlinear and intelligent control approaches which are limited to robustness against

the assessed type of noise and perturbation, as demonstrated in Fig.5-2.

2. Comparison of different algorithms of control with the opted RBF strategy relative

to the tracking error and robustness to disturbance and unmodeled effects. a PID,

an IBS based on nonlinear dynamics, and a decentralized offline trained Multi Layer

Perceptron Neural Network (MLPNN) have been evaluated in comparison. In Matlab

simulation, motors dynamics and mechanical noise have been all added to the model.

5.5.2 RBF Network and Compensation control

Our goal is to develop an adaptive control system that effectively addresses the impact of

bounded disturbances and internal uncertainties caused by various factors such as modeling

errors, wear and tear, mechanical fatigue, estimation uncertainties, and environmental effects

like wind gusts and drag variations. To achieve this, we construct a disturbance functional

vector that encompasses all noise and perturbations, enabling us to effectively compensate

for these disruptive dynamics.

In [13], turbulence on the quadrotor was studied in unstructured dynamics with consid-

eration of the aerodynamic model as a disturbance on the quadrotor. Nevertheless, in [49],
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the disturbance was considered in structured dynamics, in this this section, disturbance and

uncertainties are considered as unknown unmodeled bounded functions.

The RBF network adaptation can ultimately ensure the control performance for un-

certain systems models [46] [24] [2]. Essentially, the adaptation law is derived using the

Lyapunov theory so that the stability of the control loop is guaranteed with fast conver-

gence of adaptation weights.

The philosophy of the RBFNN adaptive control laws are mainly derived from Lyapunov

theory for either the adaptive compensation control in the linear position, or Attitude Su-

pervisory control law embedded with IBS Control.

RBFNNs are widely addressed because of their nonlinear universal approximation for any

nonlinear function over a compact set with arbitrary accuracy by optimizing a performance

index, and because of the simple network structure that converges faster and minimizes

the extensive calculations compared to conventional Multi Layer Perceptron (MLP)s. A

Nonlinear function 𝑓(𝑥) can be developed as:

𝑓(𝑥) = 𝑤𝑇ℎ(𝑥) + 𝜖 (5.57)

Where 𝑤 is the weights matrix, ℎ is a vector of functions, and 𝜖 is the error of approxi-

mation. To use RBFNN to approximate the function 𝑓 in control systems, it is fitter either

to choose the system states as the inputs of the neural network, or the tracking error and

its derivative as the input vector. An approximation of 𝑓 , noted as 𝑓 , can be written as

follows:

𝑓(𝑥) = �̂�*𝑇ℎ(𝑥) (5.58)

Where �̂�* is the best estimate of the weights matrix. The outputs of MIMO adaptive

RBFNN can be illustrated as:

𝑦𝑖(𝑡) =

𝑚∑︁
𝑗=1

𝑤𝑗𝑖ℎ𝑗(𝑡), 𝑖 = 1, ..., 𝑛 (5.59)

With,

ℎ𝑗(𝑡) = exp(−|𝑥(𝑡)− 𝑐𝑗(𝑡)|2

2 * 𝑏2𝑗
),𝑚 = 1, ...,𝑚 (5.60)

Where, 𝑥 = [𝑥𝑖]
𝑇 is the input vector; |𝑥(𝑡) − 𝑐𝑗(𝑡)| is the Euclidean distance between the
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center 𝑐𝑗 and the network inputs, 𝑏𝑗 notes a positive scalar called a width. ℎ𝑗(𝑡) is the

nonlinear output of 𝑚 hidden nodes in the hidden layer.

NOTE:

It is critical to bear in mind that Designing the RBFNN for approximation based on

the gradient descent method to adjust weights, can guarantee only local optimization, and

not closed-loop system stability, therefore, the online adaptive RBFNN compensation control

method is better designed based on the Lyapunov stability theory, thus, the stability of the

closed-loop system can be achieved in the separation of the observer.

5.5.3 RBFNN Position Adaptive compensation Control Based

on disturbance Approximation

In practice, the perfect quadrotor model could be hard to obtain, as external disturbances are

always present, let’s Consider the translational positions dynamics model of the quadrotor

as mentioned in system of Eqs.5-2 in the presence of disturbance, we can write:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�̈� = (𝑠𝜓𝑠𝜑+ 𝑐𝜓𝑠𝜃𝑐𝜑) 𝑈1/𝑚+ 𝑑𝑥

𝑦 = (−𝑐𝜓𝑠𝜑+ 𝑠𝜓𝑠𝜃𝑐𝜑) 𝑈1/𝑚+ 𝑑𝑦

𝑧 = 𝑐𝜃𝑐𝜑 𝑈1/𝑚− 𝑔 + 𝑑𝑧

(5.61)

Where, 𝑑 = [𝑑𝑥(𝑡), 𝑑𝑦(𝑡), 𝑑𝑧(𝑡)]
𝑇 is the vector that represents the dynamics of disturbance

and uncertainties.

Assumption 1. 𝑑 = [𝑑𝑥, 𝑑𝑦, 𝑑𝑧]
𝑇 are continuously differentiable bounded functions. For

the nominal model, We use:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑢𝑥 = (𝑠𝜓𝑠𝜑+ 𝑐𝜓𝑠𝜃𝑐𝜑) 𝑈1/𝑚

𝑢𝑦 = (−𝑐𝜓𝑠𝜑+ 𝑠𝜓𝑠𝜃𝑐𝜑) 𝑈1/𝑚

𝑢𝑧 = 𝑐𝜃𝑐𝜑 𝑈1/𝑚− 𝑔

(5.62)

However, 𝑑 is an unknown nonlinear vector of functions. 𝑔, 𝑢𝑥, 𝑢𝑧, and 𝑢𝑦 are known

nonlinear functions from the nominal model.

Assuming that the ideal continuous bounded translational position of the quadrotor is
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[𝑥𝑑, 𝑦𝑑, 𝑧𝑑]
𝑇 , we define a real time differentiable error.

𝑒 =

⎡⎢⎢⎢⎣
𝑒𝑥

𝑒𝑦

𝑒𝑧

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝑥

𝑦

𝑧

⎤⎥⎥⎥⎦−

⎡⎢⎢⎢⎣
𝑥𝑑

𝑦𝑑

𝑧𝑑

⎤⎥⎥⎥⎦ (5.63)

The control maybe designed as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑢𝑥 = (�̈�𝑑 − 𝑘𝑣𝑥�̇�𝑥 − 𝑘𝑝𝑥𝑒𝑥)− 𝑑𝑥

𝑢𝑦 = (𝑦𝑑 − 𝑘𝑣𝑦 �̇�𝑦 − 𝑘𝑝𝑦𝑒𝑥)− 𝑑𝑦

𝑢𝑧 = (𝑧𝑑 − 𝑘𝑣𝑧 �̇�𝑧 − 𝑘𝑝𝑧𝑒𝑧)− 𝑑𝑧

(5.64)

Where, 𝑘𝑣𝑥, 𝑘𝑣𝑦, 𝑘𝑣𝑧, 𝑘𝑝𝑥, 𝑘𝑝𝑦, 𝑘𝑝𝑧 are well chosen positive parameters, The closed loop

systems in Eq.5.64 will follow the error dynamics 𝑒 such as:

𝑒+ 𝑘𝑣 �̇�+ 𝑘𝑝𝑒 = 0 (5.65)

Using three RBFNNs to design an approximation 𝑑 to the vector 𝑑 with bounded ap-

proximation error 𝜖.

𝑑 =

⎡⎢⎢⎢⎣
𝑤*𝑇
𝑥 ℎ𝑥 + 𝜖𝑥

𝑤*𝑇
𝑦 ℎ𝑦 + 𝜖𝑦

𝑤*𝑇
𝑧 ℎ𝑧 + 𝜖𝑧

⎤⎥⎥⎥⎦ (5.66)

𝑤*
𝑖 such 𝑖 ∈ {𝑥, 𝑦, 𝑧} denotes the optimal weights estimation. For every disturbance

component 𝑑𝑖 of the vector 𝑑, we use inputs from the respective error [𝑒𝑖, �̇�𝑖]; 𝑑𝑥 can be

written as:

𝑑𝑥 = �̂�𝑇𝑥 ℎ𝑥 (5.67)

Where �̂�𝑥 is the estimated weight matrix of 𝑤𝑥 , By analogy we develop the 𝑑𝑦 and 𝑑𝑧.

Fig. 5-17 illustrates the RBF neural-based closed-loop adaptive control scheme.

As 𝑑 = [𝑑𝑥, 𝑑𝑦, 𝑑𝑧]
𝑇 is unknown, the RBF design should approximate it by best estimation

𝑑*, and compensate it. Taking 𝜖 as a very small positive constant, we may converge to 𝑤*

such as:

𝑚𝑎𝑥 ‖ 𝑑− 𝑑* ‖≤ 𝜖 (5.68)
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Figure 5-17: Control strategy to adaptively Compensate the disturbance based on
RBFNN

Define 𝜂 and 𝜂0 as the approximation error and its bounded value:

𝜂 = 𝑑− 𝑑* ; 𝜂0 = 𝑠𝑢𝑝 ‖ 𝑑− 𝑑* ‖ (5.69)

Injecting the disturbance approximation 𝑑 into Eq.5.64, the closed loop dynamics of

error gives:

𝑒+ 𝑘𝑣 �̇�+ 𝑘𝑝𝑒 = 𝑑− 𝑑* (5.70)

Where, 𝑘𝑣 = 𝑑𝑖𝑎𝑔[𝑘𝑣𝑥, 𝑘𝑣𝑦, 𝑘𝑣𝑧] and, 𝑘𝑝 = 𝑑𝑖𝑎𝑔[𝑘𝑝𝑥, 𝑘𝑝𝑦, 𝑘𝑝𝑧] both positive definite. By

taking, 𝐸 = [𝑒𝑥, �̇�𝑥, 𝑒𝑦, �̇�𝑦, 𝑒𝑧, �̇�𝑧]
𝑇 , Eq.5.70 can be represented in state space as follows:

�̇� = 𝐴𝐸 +𝐵(𝑑− 𝑑*) (5.71)

where,
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𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

−𝑘𝑝𝑥 −𝑘𝑣𝑥 0 0 0 0

0 0 0 1 0 0

0 0 −𝑘𝑝𝑦 −𝑘𝑣𝑦 0 0

0 0 0 0 0 1

0 0 0 0 −𝑘𝑝𝑧 −𝑘𝑣𝑧

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; 𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

1 0 0

0 0 0

0 1 0

0 0 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.72)

𝑑− 𝑑 = 𝑑− 𝑑* + 𝑑* − 𝑑 = 𝜂 − �̃�𝑇ℎ (5.73)

where, �̃� = �̂� − 𝑤*

�̇� = 𝐴𝐸 +𝐵(𝜂 − �̃�𝑇ℎ) (5.74)

The Eq.5.74 illustrates a closed loop dynamics for the error.

5.5.4 Stability Analysis of the RBFNN compensation control

loops

For the stability of the linear position error dynamics in Eq.5.74, if we design an adaptive

compensation control to approximate the disturbance, the bounded trajectory tracking of

the position in outer loop should satisfy: 𝑙𝑖𝑚𝑡→+∞|𝐸(𝑡)| ≤ 𝜖

Choosing a Lyapunov candidate function as:

𝑉 =
1

2
𝐸𝑇𝑃𝐸 +

1

2𝛾
‖ �̃� ‖2 (5.75)

With 𝛾 > 0, 𝑄 > 0, and The matrix P is symmetric, positive definite, and satisfies the

following Lyapunov equation.

𝐴𝑇𝑃 + 𝑃𝐴 = −𝑄 (5.76)

By defining,

‖ 𝑅 ‖2=
∑︁
𝑖,𝑗

|𝑟𝑖𝑗 |2 = 𝑡𝑟(𝑅𝑅𝑇 ) = 𝑡𝑟(𝑅𝑇𝑅) (5.77)
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Where 𝑡𝑟(.) is the trace of matrix.

‖ �̃� ‖2= 𝑡𝑟(�̃�𝑇 �̃�) (5.78)

By the derivation of V is:

�̇� =
1

2
(𝐸𝑇𝑃�̇� + �̇�𝑇𝑃𝐸) +

1

𝛾
𝑡𝑟( ˙̃𝑤𝑇 �̃�) (5.79)

�̇� =
1

2
(𝐸𝑇𝑃 (𝐴𝐸 +𝐵(𝜂 − �̃�𝑇ℎ)) + (𝐸𝑇𝐴𝑇 +𝐵𝑇 (𝜂 − �̃�𝑇ℎ)𝑇 )𝑃𝐸) +

1

𝛾
𝑡𝑟( ˙̃𝑤𝑇 �̃�) (5.80)

�̇� =
1

2
(𝐸𝑇 (𝑃𝐴+𝐴𝑇𝑃 )𝐸 + (𝐸𝑇𝑃𝐵𝜂−𝐸𝑇𝑃𝐵�̃�𝑇ℎ+ 𝜂𝑇𝐵𝑇𝑃𝐸 − ℎ𝑇 �̃�𝐵𝑇𝑃𝐸) +

1

𝛾
𝑡𝑟( ˙̃𝑤𝑇 �̃�)

(5.81)

�̇� = −1

2
𝐸𝑇𝑄𝐸 + 𝜂𝑇𝐵𝑇𝑃𝐸 − ℎ𝑇 �̃�𝐵𝑇𝑃𝐸) +

1

𝛾
𝑡𝑟( ˙̃𝑤𝑇 �̃�) (5.82)

We have,

𝐸𝑇𝑃𝐵�̃�𝑇ℎ = ℎ𝑇 �̃�𝐵𝑇𝑃𝐸 (5.83)

𝐸𝑇𝑃𝐵𝜂 = 𝜂𝑇𝐵𝑇𝑃𝐸 (5.84)

Due to the diagonal nature of 𝑃 , 𝐵, and 𝐸 So we may have;

ℎ𝑇 �̃�𝐵𝑇𝑃𝐸 = 𝑡𝑟(𝐵𝑇𝑃𝐸ℎ𝑇 �̃�) (5.85)

Then,

�̇� = −1

2
𝐸𝑇𝑄𝐸 +

1

𝛾
𝑡𝑟(−𝛾𝐵𝑇𝑃𝐸ℎ𝑇 �̃� + ˙̃𝑤𝑇 �̃�) + 𝜂𝑇𝐵𝑇𝑃𝐸 (5.86)

Designing an adaptive law as:

˙̂𝑤𝑇 = 𝛾𝐵𝑇𝑃𝐸ℎ𝑇 (5.87)

So,

˙̂𝑤 = 𝛾ℎ𝐸𝑇𝑃𝐵 (5.88)

Since ˙̂𝑤 = ˙̃𝑤; Injecting Eq.5.88 into Eq.5.86
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�̇� = −1

2
𝐸𝑇𝑄𝐸 + 𝜂𝑇𝐵𝑇𝑃𝐸 (5.89)

We know that,

‖ 𝜂𝑇 ‖≤‖ 𝜂0 ‖ ; ‖ 𝐵 ‖= 𝛽 (5.90)

�̇� ≤ −1

2
𝜆𝑚𝑖𝑛(𝑄) ‖ 𝐸 ‖2 + ‖ 𝜂0 ‖ 𝛽𝜆𝑚𝑎𝑥(𝑃 ) ‖ 𝐸 ‖ (5.91)

�̇� ≤ −1

2
‖ 𝐸 ‖

(︁
𝜆𝑚𝑖𝑛(𝑄) ‖ 𝐸 ‖ −2 ‖ 𝜂0 ‖ 𝛽𝜆𝑚𝑎𝑥(𝑃 )

)︁
(5.92)

𝜆𝑚𝑎𝑥(𝑃 ) , 𝜆𝑚𝑖𝑛(𝑄) denote the maximum eigenvalue of matrix 𝑃 and the minimum

eigenvalue of matrix 𝑄 respectively. to Satisfy the condition of stability, �̇� ≤ 0 we should

have:

𝜆𝑚𝑖𝑛(𝑄) ≥ 2
𝛽𝜆𝑚𝑎𝑥(𝑃 )

‖ 𝐸 ‖
‖ 𝜂0 ‖ (5.93)

We may observe that Eq.5.94 shows that the radius of convergence of the error vector

𝐸 is smaller as the max eigenvalue of 𝑄 is bigger, or the min value of the eigenvalue of 𝑃 is

smaller, or by a smaller value of 𝜂0.

‖ 𝐸 ‖= 2
𝛽𝜆𝑚𝑎𝑥(𝑃 )

𝜆𝑚𝑖𝑛(𝑄)
‖ 𝜂0 ‖ (5.94)

5.5.5 Stability Analysis of the adaptive RBFNN control with

the optimal observer

The adaptive RBFNN compensation control is combined with an adaptive Extended Kalman

Filter, the stability analysis of the linearized models can rely on the separation principle of

states, however, this will ensure only local stability of the linearized system in the closed loop.

Therefore, we opted for signal dynamics stability analysis to justify the fact of designing the

control and the observer independently.

proof The EKF as detailed in Subsection.5.21 is based on the Jacobian linearization at

every estimated state, estimated states and outputs of the optimal filter are used to feed

back the direct controller (Inverse dynamics controller) and the RBF network as detailed in
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Fig.5-17. Considering the closed-loop dynamics of the translational positions in Eq.5.70:

𝑒+ 𝑘𝑣 �̇�+ 𝑘𝑝𝑒 = 𝑑− 𝑑* (5.95)

Taking 𝜒 = [𝑥, 𝑦, 𝑧]𝑇 as translation coordinates, 𝜒𝑑 = [𝑥𝑑, 𝑦𝑑, 𝑧𝑑]
𝑇 as the desired ones, and

�̂� = [�̂�, 𝑦, 𝑧]𝑇 as partial estimation output of the Optimal observer:

𝑒 = 𝜒− �̂�+ �̂�− 𝜒𝑑 = �̃�+ 𝑒 (5.96)

(�̈�− ¨̂𝜒) + ( ¨̂𝜒− �̈�𝑑) + 𝑘𝑣(�̇�− ˙̂𝜒) + 𝑘𝑣( ˙̂𝜒− �̇�𝑑) + 𝑘𝑝(𝜒− �̂�) + 𝑘𝑝(�̂�− 𝜒𝑑) = 𝑑− 𝑑* (5.97)

¨̂𝑒+ 𝑘𝑣 ˙̂𝑒+ 𝑘𝑝𝑒+ ¨̃𝜒+ 𝑘𝑣 ˙̃𝜒++𝑘𝑝�̃� = 𝑑− 𝑑* (5.98)

From Eqt.5.21 an optimal observer error’s dynamics can be designed as follows:

˙̃𝜒 = (𝐴𝑖 −𝐾𝑖𝐶𝑖)�̃�+ 𝑣(𝑖) +𝐾𝑖𝑛(𝑖) (5.99)

Where 𝑣(𝑖) and 𝑛(𝑖) are orthogonal process noise and measurement noise respectively, and

𝐾𝑖 is the optimal gain matrix that ensures that eigenvalues of 𝐴𝑖 − 𝐾𝑖𝐶𝑖 in the left half

of the plane if (𝐴𝑖, 𝐶𝑖) is observable. Therefore, the dynamics of the error of the observer

dictated by ¨̃𝜒 + 𝑘𝑣 ˙̃𝜒 + 𝑘𝑝�̃� are exponentially stable and converging to a null vector. By

taking �̃�1 = �̃�, and �̃�2 = ˙̃𝜒 , we can develop:

⎡⎣ ˙̃𝜒1

˙̃𝜒2

⎤⎦ =

⎡⎣ 0 1

−𝑘𝑝 −𝑘𝑣

⎤⎦⎡⎣�̃�1

�̃�2

⎤⎦ (5.100)

The system in Eq.5.100, shows stable dynamics for the estimation error �̃�.

In addition, the dynamics dictated by ¨̂𝑒 + 𝑘𝑣 ˙̂𝑒 + 𝑘𝑝𝑒 = 𝑑 − 𝑑* have been proven stable

by Lyapunov candidate function in Eq.5.75, and the weight update mentionned in Eq.

5.88. Therefore, the combination between the EKF and the RBFNN compensation control

presents stable dynamics. Furthermore, the dynamics of the observer are independent of

the dynamics of the controller, which makes it possible to design them separately.
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Figure 5-18: Scheme of the Attitude RBFNN supervisory Control

5.5.6 Attitude RBFNN supervisory Control

In this subsection, a supervisory attitude control based on RBFNN embedded with IBS is

proposed. A supervised control has been designed to stabilize the attitude angles in the

rotational inner loop in the nested design to avoid the initial instability that may occur

during the parametric convergence NN.

Contrary to the adaptive control opted for the translational positions, the attitude angles

present a strong coupling, thus an interlinked network scheme was designed, and the yaw

angle rate �̇� was considered in the input mapping as it affects directly both 𝜃 and 𝜑. The

mapping of �̇� improves the fast convergence of the network parameters. An Integral action

has been added in the embedded controller to eliminate the static error. The control scheme

is given in Fig.5-18.

The supervised RBFNN is combined with a nonlinear Integrator Back Stepping (IBS)

that contributes the integral benefits in the backstepping design, the attitude design of

Control is based on three IBS controllers, and each one is optimized by its RBF network.

The derivation of those IBS controllers is similar for all angles; thus, only one control will

be derived in this paper.
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Attitude Control

Considering the following subsystem for the roll angle 𝜑 :⎧⎨⎩ �̇�7 = 𝑥8

�̇�8 = 1/𝐼𝑥𝑥 ((𝐼𝑦𝑦 − 𝐼𝑧𝑧) 𝑥12𝑥10 + 𝐽𝑇𝑃𝑥10Ω+ 𝑈2)
(5.101)

Let’s consider the error between the desired and actual roll angle:

𝑒1 = 𝜑𝑑 − 𝜑 = 𝑥7𝑑 − 𝑥7 (5.102)

Considering the Lyapunov candidate function, 𝑉1 = 1
2𝑒

2
1, Deriving 𝑉1 as follows:

�̇�1 = 𝑒1�̇�1 = 𝑒1(�̇�7𝑑 − 𝑥8) (5.103)

Choosing, 𝑥8 = �̇�7𝑑 + 𝑘1𝑒1, with 𝑘1 > 0 will ensure that �̇�1 is a negative definite function,

and the desired trajectory of 𝑥8 is defined by 𝑥8𝑑 = �̇�7𝑑 + 𝑘1𝑒1 .

Denoting 𝑒2 the error between the actual and desired roll angle rates.

𝑒2 = �̇�𝑑 − �̇� = 𝑥8𝑑 − 𝑥8 (5.104)

defining 𝑉2 as a positive Lyapunov candidate function, 𝑉2 = 𝑉1 +
1
2𝑒

2
2, deriving 𝑉2:

�̇�2 = �̇�1 + 𝑒2�̇�2 = �̇�1 + 𝑒2(�̇�8𝑑 − �̇�8) (5.105)

�̇�2 = �̇�1 + 𝑒2(�̇�8𝑑 − 1/𝐼𝑥𝑥 ((𝐼𝑦𝑦 − 𝐼𝑧𝑧) 𝑥12𝑥10 + 𝐽𝑇𝑃𝑥10Ω+ 𝑈2)) (5.106)

However, 𝑈2 in Eq.5.106, is the sum of nonlinear backstepping control and the RBFNN

output.

𝑈2 = 𝑈𝑅𝐵𝐹 + 𝑈𝐼𝐵𝑆 (5.107)

Where, 𝑈𝐼𝐵𝑆 is the Backstepping control of nominal model, and 𝑈𝑅𝐵𝐹 =𝑊 𝑇ℎ(𝑥7), Injecting

𝑈2 into Eq.5.106.

�̇�2 = �̇�1 + 𝑒2(�̇�8𝑑 − 1/𝐼𝑥𝑥 ((𝐼𝑦𝑦 − 𝐼𝑧𝑧) 𝑥12𝑥10 + 𝐽𝑇𝑃𝑥10Ω+ 𝑈𝑅𝐵𝐹 + 𝑈𝐼𝐵𝑆)) (5.108)
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By taking 𝑈𝐼𝐵𝑆 = 𝑘2𝑒2𝐼𝑥𝑥 − 𝐼𝑥𝑥�̇�8𝑑 − ((𝐼𝑦𝑦 − 𝐼𝑧𝑧) 𝑥12𝑥10 − 𝐽𝑇𝑃𝑥10Ω), with 𝑘2 > 0, we

find:

�̇�2 = �̇�1 + 𝑒2(−𝑘2𝑒2 + 𝑈𝑅𝐵𝐹 ) (5.109)

Assuming that the RBFNN of approximation of the control loop is a bounded function

with bounded weights.

𝑈𝑚𝑎𝑥 = 𝑠𝑢𝑝|𝑈𝑅𝐵𝐹 |. (5.110)

Analysing Eq.5.109: If (𝑈𝑅𝐵𝐹 𝑒2) < 0, �̇�2 will be negative definite, otherwise:

�̇�2 < �̇�1 + 𝑒2(−𝑘2𝑒2 + 𝑈𝑚𝑎𝑥𝑠𝑖𝑔𝑛(𝑒2)) (5.111)

An appropriate choice of 𝑘2 with consideration to �̇�1 will ensure that �̇�2 is negative.

Fig.5-19 demonstrates the negative sign of �̇�2 with an appropriate 𝑘2 and a bounded error

𝑒2. Thus the stability of the closed loop of the design in assumption of bounded RBF

approximation input.

𝑈𝐼𝐵𝑆,𝜑 = 𝑘2𝑒2𝐼𝑥𝑥 − 𝐼𝑥𝑥 (̇̇𝑥7𝑑 − 𝑘1𝑒1)− ((𝐼𝑦𝑦 − 𝐼𝑧𝑧) 𝑥12𝑥10 − 𝐽𝑇𝑃𝑥10Ω) (5.112)

It is well known that adding 𝛼𝜑
∫︀ 𝑡
0 𝑒1(𝜏)𝑑𝜏 with 𝛼𝜑 > 0 to the control law 𝑈𝐼𝐵𝑆,𝜑 will

help to cancel the steady error.

Considering, 𝑒3 = 𝑥9𝑑 + 𝑥9 and 𝑒5 = 𝑥11𝑑 + 𝑥11. Systematically. The control inputs

derived for 𝜃 and 𝜓 errors are given by:

𝑈𝐼𝐵𝑆,𝜃 = 𝑘4𝑒4𝐼𝑦𝑦− 𝐼𝑦𝑦 (̇̇𝑥9𝑑−𝑘3𝑒3)− ((𝐼𝑧𝑧− 𝐼𝑥𝑥) 𝑥12𝑥8−𝐽𝑇𝑃𝑥8Ω)+𝛼𝜃
∫︁ 𝑡

0
𝑒3(𝜏)𝑑𝜏 (5.113)

𝑈𝐼𝐵𝑆,𝜓 = 𝑘6𝑒6𝐼𝑧𝑧 − 𝐼𝑧𝑧 (̇̇𝑥11𝑑 − 𝑘5𝑒5)− ((𝐼𝑥𝑥 − 𝐼𝑦𝑦) 𝑥10𝑥8) + 𝛼𝜓

∫︁ 𝑡

0
𝑒5(𝜏)𝑑𝜏 (5.114)

With (𝑘3, 𝑘4, 𝑘5, 𝑘6, 𝛼𝜃, 𝛼𝜓) > 0

The desired trajectory contains only information about the desired linear position [𝑥𝑑, 𝑦𝑑, 𝑧𝑑]
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Figure 5-19: 3D plot of the derivative of 𝑉2 in function of 𝑒2 and 𝑈𝑅𝐵𝐹

and the yaw angle 𝜓𝑑. the desired attitude trajectory is derived from the virtual control

inputs of the inner attitude loop, Using Eq.5.62 we can analytically develop the following:

𝜑𝑑(𝑡) = arcsin
(︀ (︀

sin𝜓(𝑡)𝑢𝑥 − cos𝜓𝑑(𝑡)))
)︀
/(𝑢2𝑥(𝑡) + 𝑢2𝑦(𝑡))

)︀
𝜃𝑑(𝑡) = arcsin

(︀ (︀
𝑢𝑥(𝑡)− sin𝜓𝑑(𝑡) sin𝜑𝑑(𝑡))

)︀
/(cos(𝜓𝑑(𝑡)) cos(𝜑𝑑(𝑡))

)︀ (5.115)

The RBF network uses the radial basis matrix [ℎ𝜃, ℎ𝜑, ℎ𝜓] defined by Gaussian functions

as mentioned in Eq.5.60. Three control outputs from the adaptive network stabilize the

quadrotor and compensate for the unmodeled uncertainty and disturbance.

The criterion of optimization for each angle control can be defined as follows:

𝐸(𝑖) =
1

2
(𝑢𝑅𝐵𝐹 (𝑖)

2 − 𝑢(𝑖)2) (5.116)

𝑢𝑅𝐵𝐹 is the network control output, and 𝑢(𝑖) is the quadrotor control inputs. A steeped

descent design can contribute to a fast convergence:

Δ𝑤𝑗(𝑖) = −𝜇 𝜕𝐸(𝑖)

𝜕𝑤𝑗(𝑖)
= 𝜇(𝑢𝑅𝐵𝐹 (𝑖)− 𝑢(𝑖))ℎ𝑗(𝑖) (5.117)

Using the learning rate 𝜇 and the momentum weight 𝜉 that works the same as damper in

PID control,

𝑤𝑗(𝑖) = 𝑤𝑗(𝑖− 1) + 𝜇(𝑢𝑅𝐵𝐹 (𝑖)− 𝑢(𝑖))ℎ𝑗 + 𝜉(𝑤𝑗(𝑖− 1)− 𝑤𝑗(𝑖− 2)) (5.118)
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By an analogy of variation we find:

𝑏𝑗(𝑖) = 𝑏𝑗(𝑖− 1) + 𝜇(𝑢𝑅𝐵𝐹 (𝑖)− 𝑢(𝑖))𝑤𝑗ℎ𝑗
|𝑥(𝑖)− 𝑐𝑗(𝑖)|3

𝑏3𝑗
+ 𝜉(𝑏𝑗(𝑖− 1)− 𝑏𝑗(𝑖− 2)) (5.119)

𝐶𝑗𝑖(𝑖) = 𝐶𝑗𝑖(𝑖− 1)+𝜇(𝑢𝑅𝐵𝐹 (𝑖)− 𝑢(𝑖))𝑤𝑗
𝑥𝑗(𝑖)− 𝑐𝑗𝑖(𝑖)

2𝑏𝑗
+ 𝜉(𝐶𝑗𝑖(𝑖− 1)−𝐶𝑗𝑖(𝑖− 2)) (5.120)

𝜇 ∈]0.1[ is the learning rate and 𝜉 ∈]0.1[is the momentum factor. It is important to

choose initially appropriate values for 𝑐𝑗 and 𝑏𝑗 to cover all space of inputs validating the

fast valid mapping of the model.

Parameters equations are iterative, and once the convergence is achieved, the quadrotor

attitude dynamics are controlled for tracking by the RBFNN.

5.5.7 RBFNN Simulation results and interpretations

Several simulations had been carried out in this section to demonstrate the effectiveness

and performance of the proposed control strategy for robust trajectory tracking challenges.

The path has been generated arbitrarily as a helical trajectory, the table.5.3 gives the used

quadrotor parameters during the simulation.

Table 5.3: The quadrotor parameters used for the simulation
Symbol Value Unit
𝑚 1 𝑘𝑔
𝑔 9.81 𝑚/𝑠2

𝑙 0.2 𝑚
𝑑 0.00002 −

𝐼𝑥𝑥, 𝐼𝑦𝑦 0.008 𝑘𝑔𝑚2

𝐼𝑧𝑧 0.015 𝑘𝑔𝑚2

Besides the adaptive RBFNN-based control, other strategies have been simulated in

parallel to validate the performance of the opted approach. The Linear PID, the non-linear

IBS, and the intelligent MLP were all simulated to track the same trajectory in the sight of

the added 6 DOF noise and perturbation to demonstrate the effect of disturbance and the

ability of rejection and compensation. The PID design was based on the decentralization

of the coupled Multiple Inputs Multiple Outputs (MIMO) dynamics to uncoupled Single

Input Single Output (SISO) systems as studied in [73], IBS control was simulated using a

similar nested looping strategy with four uncoupled controllers derived by the Lyapunov
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Figure 5-20: EKF results for one of the observed states

theorem to stabilize the altitude and the attitude. The MLP was based on model inversion

decentralized controllers via an offline data training set for trajectory tracking.

Sensing noise and uncertainties were added to the simulation model as added Gaus-

sian signals that affect the sensor’s feedback and actuators, gust wind was simulated with

aerodynamic drag by disturbing the translational positions by different rate Gaussian low-

frequency signals. EKF presented a valid solution to ensure reliable feedback in the noisy

environment, Fig.5-20 displays excellent stable observation of one of the quadrotor states.

The trajectory is defined in the 𝑅3 Cartesian by:

𝑥𝑑 = 5𝑐𝑜𝑠(𝜋𝑡/9)(𝑚) 𝑦𝑑 = 5𝑠𝑖𝑛(𝜋𝑡/9)(𝑚)

𝑧𝑑 = 𝑡(𝑚) 𝑤𝑖𝑡ℎ 𝑠𝑡𝑎𝑡𝑖𝑐 𝜓𝑑 (𝑟𝑎𝑑)
(5.121)

Desired attitude angles 𝜑𝑑 and 𝜓𝑑 are obtained utilizing Eq.5.115. The simulated initial

conditions of the quadrotor are such as 𝑋(:, 0) = 0 with 𝑋 ∈ 𝑅12.

The used initial parameters for control as mentioned in Eq.5.120 are given relative to

the input signal mapping of the network extracted from the PID simulation, thus we used

as initial parameters and weights for the Network of control of angle 𝑇ℎ𝑒𝑡𝑎 as one of the

RBFNN blocks:

𝑤𝑡ℎ𝑒𝑡𝑎 = 𝑜𝑛𝑒𝑠(5, 1);

𝑏𝑡ℎ𝑒𝑡𝑎 = [0.6; 0.6; 0.6; 0.6; 0.6];
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Figure 5-21: Quadrotor Position tracking of desired trajectory using the Proposed
Adaptive RBFNN based compensation control

𝑐𝑡ℎ𝑒𝑡𝑎 = [−1.2;−0.5; 0; 0.5; 1.2];

𝜉 = 1.79;𝛼 = 0.7; 𝜂 = 0.0005; 𝛾 = 0.0001

𝑃𝑥 =

⎡⎣8.0778 0.7000

0.7000 0.3556

⎤⎦ ; Λ𝑥 =

⎡⎣ 0 1

−5 −9

⎤⎦ ;𝑄𝑥 =

⎡⎣7 0

0 5

⎤⎦
Response curves of the linear position with [𝑥, 𝑦, 𝑧] and angular position pitch, yaw, and

roll angles [𝜃, 𝜑, 𝜓] of the quadrotor are illustrated in Fig.5-21 and Fig.5-22 respectively.

The simulation of the adaptive RBFNN control nested with the supervised NN attitude-

based control demonstrates excellent stabilization and tracking of the desired trajectory with

robustness and compensation of the disturbance as shown in Fig.5-21 for the translational

positions and in Fig.5-22 for the attitude stabilization.

The Adaptive RBFNN strategy was validated for quadrotor aircraft trajectory tracking,

and the rejection of perturbation, and the disturbance compensation were both assured with

noise attenuation. In addition, it demonstrated better performance although the expensive

calculation and algorithm complexity relative to other direct approaches.

The trajectory tracking errors of linear and angular positions are shown in Fig. 5-23. The

initial position tracking error is due to the launch of the tracking from a different initial spot

to examine the correction response. Angular errors were at the range of [−0.02, 0.02]𝑅𝑎𝑑.

The disturbance approximation 𝑑𝑖(𝑡) that affects every translational dimension is il-
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Figure 5-22: Quadrotor Attitude tracking using the Proposed Adaptive RBFNN
supervisory control combined with Integrator Back stepping

Figure 5-23: Linear and angular positions Tracking error
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Figure 5-24: Disturbance vector estimation during simulation 𝑑(𝑡)

lustrated in Fig.5-24. the disturbance is considered an unknown function that has been

estimated and compensated by the proposed controller. Fig.5-25, shows that the adap-

tive estimation networks outputs are bounded, with bounded small time-varying errors of

estimation of disturbance, which justifies the possibility of adaptive compensation.

NN parameters convergence of a chosen hidden layer are shown in Fig.5-25. As a con-

sequence, the proposed RBFNN-based adaptive scheme for disturbance compensation and

robust tracking control has a strong potential to deal with uncertain models in a disturbed

environment.

The upper view of linear position tracking comparison is demonstrated in Fig. 5-26,

the wind gust effect by low-rate Gaussian noise is observable on the quadrotor position,

contrary to the hidden attitude noise which is introduced to the angular feedback sensors

by a high-rate Gaussian noise.

Comparison with other control strategies was conducted for validation, and The error of

the tracking by the Adaptive RBFNN approach was minimal in the shadow of the tracking

performances of other methods with the quickest corrective response to disturbance. PID,

IBS, and MLP showed limited trajectory tracking performance in the presence of severe

disturbance and noise. contrary to the proposed adaptive RBFNN strategy, as demonstrated

in Fig.5-27.

The IBS control lost the trajectory tracking at the start and during the narrow curves,

in addition, it showed a modest compensation of perturbations and tracking, on the other
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Figure 5-25: Weights �̂� , widths �̂� , and centers 𝑐 convergence in one of the blocks

Figure 5-26: Top view of tracking comparison; the desired helical trajectory in red, the
green trajectory is IBS-based control, the blue colored trajectory is for the proposed
adaptive RBFNN control, where the yellow and magenta are the PID and MLP control
trajectories respectively
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Figure 5-27: 3D trajectory tracking performance by PID, IBS, and CNN vs Adaptive
RBFNN, the Desired trajectory is in red which is a helical design, the Green trajectory
represents the IBS control results, PID and MLP are in magenta and sky blue color,
where we can see tracking errors affected by the introduced noise and perturbation,
Adaptive RBFNN control trajectory in Blue demonstrates the most robust tracking
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hand, the PID, showed relatively better tracking with less overshooting in turns, and CNN

control proved better performance than previous control methods in a matter of tracking of

the desired trajectory as shown in Fig.5-27, The proposed adaptive RBFNN combined with

supervisory control demonstrates clearly superior performance for tracking as it rejects all

added disturbances.

It is noteworthy to state that the choice of supervised NN control for the disturbed

attitude was crucial, several papers used the adaptive NN disturbance compensation for the

attitude, however, the initial error at the start of the tracking sequence is significant (over

𝑒(𝜃,𝜑,𝜓) > 𝜋𝑅𝑎𝑑) which is unrealistic and can’t be applied in real life scenarios as it is beyond

the recovery envelope of the quadrotor. 8

8GitHub codes - RBFNN control.
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Chapter 6

Intelligent Applications

In this chapter, several developed applications are discussed, and the trajectory generation

either dynamically or statically is shown, a trajectory as a time reference path has been

calculated to avoid static obstacles, and was generated for bio-inspired landing, where the

velocity was decided by a fuzzy logic controller, the optimal trajectory was discussed but

never used as it is much expensive in matter of computational time. Besides that, the soft

landing process on a special design landing pad was studied, starting from the design of

the pad to its detection, identification to its markers, and then their localization in the 3D

domain to attributes and calculate the dynamic trajectory for landing. Obstacle avoidance

is considered as well as a vital task for quadrotor control, however generating the correct

dynamic trajectory and ensuring the right control will ensure satisfactory avoidance.

6.1 Trajectory generation

6.1.1 Dynamic optimal Trajectory generation

Optimal trajectory generation considering the dynamic model is the process of designing

a trajectory that optimizes an index of performance while satisfying a set of constraints

and following the dynamical path of the process model. In other words, it is a technique

for computing an open-loop solution to an optimal control problem. There are numerous

methods to obtain the dynamics-based optimal trajectory, there is no best method, how-

ever, a technique maybe more adequate for a precise problem than others. For quadrotor
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control, the optimal trajectory is nonlinear programming, which is time expensive method

considering adding more constraints for obstacle avoidance which complicates exponentially

the size of the problem.

Optimality problem

Let’s cosider a dynamical system such 𝑥 ∈ 𝑅𝑛:

�̇� = 𝑓(𝑥, 𝑢) (6.1)

Finding a trajectory that follows the path of 6.1, and that minimizes the performance index

functional:

𝐽 =

∫︁ 𝑡𝑓

𝑡𝑜

𝐿(𝑥, 𝑥, 𝑡)𝑑𝑡+ 𝜑(𝑥𝑓, 𝑢𝑓, 𝑡𝑓) (6.2)

With respect to the following trajectory constraints:

0 ≤ 𝜓0(𝑥0, 𝑢0) ≤ 𝑢0,

𝑙𝑓 ≤ 𝜓𝑓 (𝑥𝑓 , 𝑢𝑓 ) ≤ 𝑢𝑓

𝑙𝑡 ≤ 𝑆(𝑥, 𝑢, 𝑡) ≤ 𝑢𝑡

(6.3)

The functions 𝜓0 ∈ 𝑅𝑁0 ,𝜓𝑓 ∈ 𝑅𝑁𝑓 ,𝑆 ∈ 𝑅𝑁𝑡 are assumed to be as least 𝐶2 functions

(function has both a continuous first derivative and a continuous second derivative). The

final time 𝑡𝑓 could be either fixed or free. It is important to examine the Necessary Con-

ditions of Optimality for Constrained Systems in advance, as an optimization problem may

not have a solution. The solution to such a mathematical problem entails satisfying the

Necessary Conditions of Optimality for Constrained Systems. These conditions necessitate

the utilization of the Hamiltonian 𝐻, as well as the auxiliary functions Γ and Φ, to refor-

mulate the performance index by incorporating the dynamics and transforming inequalities

into equations based on unknown parameters.

Such methodology is expansive in a matter of calculation time, and incorporating it in

a closed-loop control is almost beyond the objectives of miniature quadrotor control.
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6.1.2 3D SPLINE Trajectory generation

The desired trajectory aims to avoid static obstacles, the UAV has to follow a time referenced

path between the initial and the terminal position. The generation of the desired trajectory

is performed separately from the control, this trajectory design challenge is to prove the

autonomous ability of the quadrotor for navigation.

Dynamic optimal trajectory planning for obstacles avoidance is out of the scope of this

study, so, we will be limited just to consider the way-points planning generation of smooth

3D Spline trajectory. One way to do it, is by defining the Cartesian coordinates of critical

points in a remote supervision mode with constraints to avoid the obstacles, then generate

a third-degree Cartesian polynomial between every two waypoints ensuring the smoothness

between every two adjacent trajectories polynomials.

Design of the way point trajectory

By considering a motion from initial state: 𝐴𝑖 = [𝑥𝑖, 𝑦𝑖, 𝑧𝑖] with 𝑉𝑖 = [𝑣𝑥𝑖, 𝑣𝑦𝑖, 𝑣𝑧𝑖] to

an intermediate state of vector space, denoted: 𝐴𝑖+1 = [𝑥𝑖+1, 𝑦𝑖+1, 𝑧𝑖+1] with 𝑉𝑖+1 =

[𝑣𝑥𝑖+1, 𝑣𝑦𝑖+1, 𝑣𝑧𝑖+1].

Spline Trajectory interpolated by piece-wise third degree polynomials for every sub-

interval, avoiding the ’Runges phenomenon’ for higher degrees can be expressed as :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑃𝑥,𝑖(𝑡) = 𝑎𝑥,𝑖 * 𝑡3 + 𝑏𝑥,𝑖 * 𝑡2 + 𝑐𝑥,𝑖 * 𝑡+ 𝑑𝑥,𝑖

𝑃𝑦,𝑖(𝑡) = 𝑎𝑦,𝑖 * 𝑡3 + 𝑏𝑦,𝑖 * 𝑡2 + 𝑐𝑦,𝑖 * 𝑡+ 𝑑𝑦,𝑖

𝑃𝑧,𝑖(𝑡) = 𝑎𝑧,𝑖 * 𝑡3 + 𝑏𝑧,𝑖 * 𝑡2 + 𝑐𝑧,𝑖 * 𝑡+ 𝑑𝑧,𝑖

(6.4)

Besides, the determined initial moving and final stopping states, every polynomial satis-

fies the intermediate initial state at "𝑡𝑖" and intermediate final state at "𝑡𝑖+1" with smooth-

ness verified by: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑃𝑥,𝑖(𝑡𝑖+1) = 𝑃𝑥,𝑖+1(𝑡𝑖)

𝑃𝑦,𝑖(𝑡𝑖+1) = 𝑃𝑦,𝑖+1(𝑡𝑖)

𝑃𝑧,𝑖(𝑡𝑖+1) = 𝑃𝑧,𝑖+1(𝑡𝑖)

(6.5)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�̇�𝑥,𝑖(𝑡𝑖+1) = �̇�𝑥,𝑖+1(𝑡𝑖)

�̇�𝑦,𝑖(𝑡𝑖+1) = �̇�𝑦,𝑖+1(𝑡𝑖)

�̇�𝑧,𝑖(𝑡𝑖+1) = �̇�𝑧,𝑖+1(𝑡𝑖)

(6.6)
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Figure 6-1: 3D Spline generated trajectory to avoid obtacles.

By solving those systems of equations, all parameters of polynomials are defined. An

execution example is mentioned in Fig.6-1, where the UAV avoids collision with pre-defined

blocks ensuring smoothness by Spline trajectory1.

6.1.3 Trajectory generation by Minimum Jerk

Trajectory generation from optimization of time or effort is not within the scope of this

Section. The geometric treatment of the problem simplifies both the modeling and control

law for the system [77], min Jerk was considered in this work, Vijay et al proved that a min

snap is equivalent to a min effort for quadrotor trajectory generation [69].

Minimum Jerk trajectory

Neville Hogan developed the notion of jerk optimization by minimizing the position third-

time derivative denoted by three dotted 𝑋, aiming for the smoothness of the 3D position

𝑋(𝑡), the optimization of jerk can be written as:

𝐽 =

∫︁ 𝑡𝑓

𝑡0

...
𝑋 (𝑡)2𝑑𝑡 = 𝜕3𝑋(𝑡)/𝜕𝑡3 (6.7)

Euler Lagrange Equation is used to solve the optimization considering 𝐿 =
...
𝑋 (𝑡)2, the

Necessary condition satisfied by the “optimal” function.

1GitHub codes - SPLINE trajectory.
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𝜕𝐿/𝜕𝑋 − 𝑑/𝑑𝑡(𝜕𝐿/𝜕�̇�) + 𝑑2/𝑑𝑡2(𝜕𝐿/𝜕�̈�)− 𝑑3/𝑑𝑡3(𝜕𝐿/𝜕
...
𝑋 ) = 0 (6.8)

The solution of such an optimization is: 𝑋(6)(𝑡) = 0 Hence

𝑋(𝑡) = 𝑐5𝑡
5 + 𝑐4𝑡

4 + 𝑐3𝑡
3 + 𝑐2𝑡

2 + 𝑐1𝑡+ 𝑐0 (6.9)

Where 𝑐𝑖 are found by satisfying the boundary conditions of initial and final states. As we

aim to land on a moving landing pad, a control loop of the vision and estimation updates

the target position, thus, the final state changes such the optimization as well.

For every iteration of the estimation, the optimization process calculates the parameters

online using the initial dynamic state and the final pose estimate.

For 3D jerk optimization in our quadrotor landing case, we can write:

𝐽 =

∫︁ 𝑡𝑓

𝑡0

...
𝑥 (𝑡)2 +

...
𝑦 (𝑡)2 +

...
𝑧 (𝑡)2𝑑𝑡 (6.10)

Which define a minimum jerk 3D trajectory:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑥(𝑡) = 𝑐𝑥5𝑡

5 + 𝑐𝑥4𝑡
4 + 𝑐𝑥3𝑡

3 + 𝑐𝑥2𝑡
2 + 𝑐𝑥1𝑡+ 𝑐𝑥0

𝑦(𝑡) = 𝑐𝑦5𝑡
5 + 𝑐𝑦4𝑡

4 + 𝑐𝑦3𝑡
3 + 𝑐𝑦2𝑡

2 + 𝑐𝑦1𝑡+ 𝑐𝑦0

𝑧(𝑡) = 𝑐𝑧5𝑡
5 + 𝑐𝑧4𝑡

4 + 𝑐𝑧3𝑡
3 + 𝑐𝑧2𝑡

2 + 𝑐𝑧1𝑡+ 𝑐𝑧0

(6.11)

where 𝑐𝑖𝑗 (𝑖 ∈ {𝑥, 𝑦, 𝑧} and 𝑗 ∈ {1, 2, 3, 4, 5, 0}) are found by satisfying the boundary con-

ditions of initial and final states. During landing, a control loop of the vision and estimation

updates the target position, thus, the final state changes such as the optimization as well.

For every iteration of the estimation, the optimization process calculates the parameters

online using the initial dynamic state and the final pose estimate.

To find 𝑐𝑖𝑗 , it is necessary to solve the three systems of six algebraic equations each,

between the initial and final states for every dimension. The problem of the solution is that

dynamic resolution, requires a good estimate of quadrotor position, velocity, and accelera-

tion, where the need for the KF with sensors data fusion which is detailed in section 5.2.

Additionally, the final time of each iteration should be calculated based on the required

speed for that position. This latter is decided by a fuzzy logic controller.

The minimum jerk 3D trajectory mentioned by Eqs.(6.11) describes system smoothness
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between initial and final times. For the aimed case, the final time is unknown, so the problem

is referred to be a feed forward control. Based on this approach, the optimization will be

divided into segments, for each,we look to find a new smooth trajectory depending on the

quadrotor estimated states and the relative pose to the landing pad in motion.

A simple reformulation of this problem lies in normalizing the time between [𝑡0, 𝑡𝑓 ]:

𝜏 = (𝑡− 𝑡0)/𝑇 (6.12)

𝑇 = 𝑡𝑓 − 𝑡0. (6.13)

The 3D minimum jerk Trajectory will be generated by:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑥(𝑡) = 𝑐𝑥5𝜏

5 + 𝑐𝑥4𝜏
4 + 𝑐𝑥3𝜏

3 + 𝑐𝑥2𝜏
2 + 𝑐𝑥1𝜏 + 𝑐𝑥0

𝑦(𝑡) = 𝑐𝑦5𝜏
5 + 𝑐𝑦4𝜏

4 + 𝑐𝑦3𝜏
3 + 𝑐𝑦2𝜏

2 + 𝑐𝑦1𝜏 + 𝑐𝑦0

𝑧(𝑡) = 𝑐𝑧5𝜏
5 + 𝑐𝑧4𝜏

4 + 𝑐𝑧3𝜏
3 + 𝑐𝑧2𝜏

2 + 𝑐𝑧1𝜏 + 𝑐𝑧0

(6.14)

where,

𝑑𝜏/𝑑𝑡 = 1/𝑇. (6.15)

Hence, the velocity in time reference is:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�̇�(𝑡) = 5𝑐𝑥5𝜏

4/𝑇 + 4𝑐𝑥4𝜏
3/𝑇 + 3𝑐𝑥3𝜏

2/𝑇 + 2𝑐𝑥2𝜏/𝑇 + 𝑐𝑥1/𝑇

�̇�(𝑡) = 5𝑐𝑦5𝜏
4/𝑇 + 4𝑐𝑦4𝜏

3/𝑇 + 3𝑐𝑦3𝜏
2/𝑇 + 2𝑐𝑦2𝜏/𝑇 + 𝑐𝑦1/𝑇

�̇�(𝑡) = 5𝑐𝑧5𝜏
4/𝑇 + 4𝑐𝑧4𝜏

3/𝑇 + 3𝑐𝑧3𝜏
2/𝑇 + 2𝑐𝑧2𝜏/𝑇 + 𝑐𝑧1/𝑇

(6.16)

And,the Acceleration:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�̈�(𝑡) = 20𝑐𝑥5𝜏

3/𝑇 2 + 12𝑐𝑥4𝜏
2/𝑇 2 + 6𝑐𝑥3𝜏/𝑇

2 + 2𝑐𝑥2/𝑇
2

𝑦(𝑡) = 20𝑐𝑦5𝜏
3/𝑇 2 + 12𝑐𝑦4𝜏

2/𝑇 2 + 6𝑐𝑦3𝜏/𝑇
2 + 2𝑐𝑦2/𝑇

2

𝑧(𝑡) = 20𝑐𝑧5𝜏
3/𝑇 2 + 12𝑐𝑧4𝜏

2/𝑇 2 + 6𝑐𝑧3𝜏/𝑇
2 + 2𝑐𝑧2/𝑇

2

(6.17)

The last system of Equations is used to form the algebraic equations between an initial

state given by the enhanced EKF estimation at the initial instant of the current iteration

and the final time state defined by the desired landing on pose estimate of the pad. The

resolution of the system should be in function of 𝑇 .
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Initial state:
𝑥(𝑡0) = 𝑥0 𝑣𝑥(𝑡0) = 𝑣𝑥0 𝑎𝑥(𝑡0) = 𝑎𝑥0

𝑦(𝑡0) = 𝑦0 𝑣𝑦(𝑡0) = 𝑣𝑦0 𝑎𝑦(𝑡0) = 𝑎𝑦0

𝑧(𝑡0) = 𝑧0 𝑣𝑧(𝑡0) = 𝑣𝑧0 𝑎𝑧(𝑡0) = 𝑎𝑧0

Where final state is trivial described by:

𝑥(𝑡𝑓 ) = 𝑥𝑝𝑎𝑑 𝑣𝑥(𝑡𝑓 ) = 0 𝑎𝑥(𝑡𝑓 ) = 0

𝑦(𝑡𝑓 ) = 𝑦𝑝𝑎𝑑 𝑣𝑦(𝑡𝑓 ) = 0 𝑎𝑦(𝑡𝑓 ) = 0

𝑧(𝑡𝑓 ) = 𝑧𝑝𝑎𝑑 𝑣𝑧(𝑡𝑓 ) = 0 𝑎𝑧(𝑡𝑓 ) = 0

Resolution of the system should be in function of 𝑇 :

At 𝑡 = 𝑡0

𝑐𝑥0 = 𝑥0 𝑐𝑥1 = 𝑇𝑣𝑥0 𝑐𝑥2 = 𝑇 2𝑎𝑥0/2

𝑐𝑦0 = 𝑦0 𝑐𝑦1 = 𝑇𝑣𝑦0 𝑐𝑦2 = 𝑇 2𝑎𝑦0/2

𝑐𝑧0 = 𝑧0 𝑐𝑧1 = 𝑇𝑣𝑧0 𝑐𝑧2 = 𝑇 2𝑎𝑧0/2

(6.18)

at 𝑡 = 𝑡𝑓 , normalized time 𝜏 will be 𝜏 =1, thus:

𝑐𝑥3 = 10(𝑥𝑓 − 𝑥0)− 6𝑇𝑣𝑥0 − 3𝑇 2𝑎𝑥0/2

𝑐𝑥4 = −15(𝑥𝑓 − 𝑥0) + 8𝑇𝑣𝑥0 + 3𝑇 2𝑎𝑥0/2

𝑐𝑥5 = 6(𝑥𝑓 − 𝑥0)− 3𝑇𝑣𝑥0 − 𝑇 2𝑎𝑥0/2

𝑐𝑦3 = 10(𝑦𝑓 − 𝑦0)− 6𝑇𝑣𝑦0 − 3𝑇 2𝑎𝑦0/2

𝑐𝑦4 = −15(𝑦𝑓 − 𝑦0) + 8𝑇𝑣𝑦0 + 3𝑇 2𝑎𝑦0/2

𝑐𝑦5 = 6(𝑦𝑓 − 𝑦0)− 3𝑇𝑣𝑦0 − 𝑇 2𝑎𝑦0/2

𝑐𝑧3 = 10(𝑧𝑓 − 𝑧0)− 6𝑇𝑣𝑦0 − 3𝑇 2𝑎𝑧0/2

𝑐𝑧4 = −15(𝑧𝑓 − 𝑧0) + 8𝑇𝑣𝑧0 + 3𝑇 2𝑎𝑧0/2

𝑐𝑧5 = 6(𝑧𝑓 − 𝑧0)− 3𝑇𝑣𝑧0 − 𝑇 2𝑎𝑧0/2

(6.19)

Where all initial states are resulting from the estimation of Kalman filter, and the final

ones result from the pose estimation of the moving pad.
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Feedback controlled trajectory

The described trajectory by 𝑃 (𝑡) :
(︀
𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)

)︀
is known and it is 𝑇 dependent. So at

every instant labeled by 𝑡0, we define:

𝑃𝑥(𝑡) = [𝑥(𝑡) �̇�(𝑡) �̈�(𝑡)]𝑇 (6.20)

𝑃𝑥0 = [𝑥0 𝑣𝑥0 𝑎𝑥0]
𝑇 (6.21)

Deriving the jerk equations in Eqs.6.14, we find:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
...
𝑥 (𝑡0) = 6𝑐𝑥3/𝑇

3 = 60/𝑇 3(𝑥𝑓 − 𝑥0)− 36/𝑇 2𝑣𝑥0 − 9/𝑇𝑎𝑥0

...
𝑦 (𝑡0) = 6𝑐𝑦3/𝑇

3 = 60/𝑇 3(𝑦𝑓 − 𝑦0)− 36/𝑇 2𝑣𝑦0 − 9/𝑇𝑎𝑦0

...
𝑧 (𝑡0) = 6𝑐𝑧3/𝑇

3 = 60/𝑇 3(𝑧𝑓 − 𝑧0)− 36/𝑇 2𝑣𝑧0 − 9/𝑇𝑎𝑧0

(6.22)

Eqs.(6.22) present three kinematics for the variables 𝑥(𝑡0), 𝑦(𝑡0) & 𝑧(𝑡0) between initial

time of each iteration 𝑡0, and the estimated landing time 𝑡𝑓 .

⎡⎢⎢⎢⎣
�̇�

�̈�

...
𝑥

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0 1 0

0 0 1

−60/𝑇 3 −36/𝑇 2 −9/𝑇

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑥

�̇�

�̈�

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
0

0

60/𝑇 3

⎤⎥⎥⎥⎦𝑥𝑓 (6.23)

Dynamics described in Eq.(6.23) will provide a smooth trajectory that minimizes the

jerk. The unknown 𝑇 value will be defined by an expert FLC, that considers many inputs

to validate the right velocity to target and the estimated time for the landing. By analogy,

we find dynamics for 𝑦(𝑡) and 𝑧(𝑡).

Jerk, Snap, crackle, and pop are the third, fourth, fifth, and sixth derivatives of position

respectively. In [93] Vijay et al used snap optimization to generate trajectory with minimal

effort for the quadrotor, Nevertheless, Richardson et al analyzed how X(t) would change as

a function of ’n’ in the optimization functional.

𝐽 =

∫︁ 𝑡𝑓

𝑡0

(︀
𝑥(𝑡)(𝑛)

)︀2
𝑑𝑡 (6.24)

They demonstrated that at higher derivative order the more solution tends to prove a higher

change of speed at the trajectory inflection point, change becomes narrower as we minimize
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jerk, snap and crackle [85]. in our project, we aimed essentially for smooth control and

landing which justifies the minimization of the Jerk.

6.2 Fuzzy Velocity control

In [37], Alvika et al processed the velocity control by a log polynomial to smooth the tra-

jectory. However, to bio-inspire the human piloting, a FLC was designed as a velocity

controller, other FLC approaches for adaptive intelligent control were discussed in [72].

System of Eqs.(6.23) represents the time position of the quadrotor in the normalized time

that depends on 𝑇 , the total descent time. Using expert piloting data, we aimed to generate

the 𝑇 via fuzzy logic processing to emulate the human piloting grasp. For that, the FLC

was conceptualized to generate the total time 𝑇 based on instantaneous speed and distance

to the target. The classical approach to determine the fuzzy rules base was processed,

the antecedent and consequent partitions will be designed by human expert knowledge for

quadrotor landing. Due to the complexity of time estimation, the average speed is based on

the processing of quadrotor dynamics, the initial state, and relative pose and velocity.

The velocity FLC basically, consists of:

a) Fuzzification: Both of the estimation of localization from the EKF and the relative

estimated pose from the camera, in addition to the relative velocity are transformed to

functions of memberships defined by the linguistic variables. These fuzzy sets will be used

by the inference mechanism to validate the next stage rules as demonstrated in Fig.6-2.

Figure 6-2: FLC model for velocity control

b) Inference mechanism: it is the processing stage that evaluates in every execution cycle
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each one of a set of "if ... then ... statements" already stored in the rules base as mentioned

in Fig.6-4 6-3, which are a combination of valid rules filled by Experienced agent.

Figure 6-3: Fuzzy decision maker: Rules used in the Inference mechanism

Figure 6-4: Fuzzy decision maker: Defuzzification and surface of control

c) Defuzzification: The output stage gives the average speed that converts the combined

appropriate rules from the inference stage to a decision velocity of the quadrotor.

FLC is opted for velocity control, as it is more linguistic and to inspires the expert human

pilot approach to land with enough robustness and softness. FLC inputs are described by

the instantaneous relative position, velocity, and acceleration states of the quadrotor, output

is the average speed to the target. Landing time 𝑇 is then calculated. This method presents

a soft landing because of the use of expert rules. The block diagram of the fuzzy logic

velocity controller is illustrated in Fig. 6-5.
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Figure 6-5: Velocity control and time to land estimation by Fuzzy logic control scheme

Figure 6-6: Estimation of velocity of landing and Time to land by the FLC decision

maker

The total Time of landing 𝑇 is based on the average velocity and distance to the landing

pad and can be calculated as follows:

𝑇 =
√︁
Δ𝑥2𝑝,𝑞 +Δ𝑦2𝑝,𝑞 +Δ𝑧2𝑝,𝑞/𝑉 + 𝑇𝑚𝑖𝑛 (6.25)

Δ(𝑥, 𝑦, 𝑧)𝑝,𝑞, represents the Cartesian distances between the quadrotor and pad, 𝑉 is the

average velocity estimated by the FLC, 𝑇𝑚𝑖𝑛 is a safety margin2.

2GitHub codes - Soft landing Trajectory.
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6.2.1 Trajectory generation algorithm for the soft landing

Algorithm 3: Min Jerk Trajectory generation with Fuzzy velocity control
Result: Estimation of time for landing ’T’ and Cartesian coordinates

Initialization and load data file;

Import state data from EKF;

Import data from the relative pose estimator ;

while ’Auto-landing is ON’ & ’ArUco marker detected’ do

if All Data are Available then

- Fuzzification of inputs to membership functions;

- Process Inference mechanism ;

- Defuzzification of outputs and decision making on Average velocity ’V’;

end

Calculate the estimated time for landing ’T’ from the average speed and

instantaneous distance Eq.6.25;

Calculate trajectory coefficients by Eq.6.19;

Calculate 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) based on Eq.6.14;

Send desired Trajectory coordinates to tracking control;

end

if ’Auto-landing is OFF’ OR ’ArUco Markers NOT detected’ then

- Hold quadrotor position;

- Send flag to control station ;

- Request new GPS position;

end

6.3 Vision based Soft Landing

6.3.1 Introduction

The quadrotor is a highly captivating type of UAV that has garnered significant attention in

research and literature. This is primarily due to its remarkable flexibility, maneuverability,

and the unique capability to hover. The quadrotor has found diverse applications in various

fields, including detection, civil and military surveillance, commercial and medical services,

and even industrial settings. Its versatility and functionality make it a compelling subject
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of study and exploration. [84]-[70]. Quadrotors have become able to perform complicated

maneuvers and autonomous tasks even in harsh conditions or hazardous environments, thus

comes the option of autonomous landing as a vital task for many missions and as a fail-safe

in case of some technical issue during the flight such as GPS denial or low power.

Diverse papers tackled the quadrotor landing, Zhe et al. [105] developed a vision-based

autonomous landing on a moving surface vessel with PID tracking by visual detection and

estimation of the landing area, relative localization for UAV-based image was addressed

[101]. In [28] Vertical Taking Off and Landing (VTOL) landing with a robust PID control

was addressed. An efficient 3-D time-optimal trajectory tracking by a quadrotor model on

a moving pad [44]. Yuhua et al. proposed an autonomous landing processing on a mov-

ing with Lyapunov stability demonstration [83]. However, those previous papers opted for

PID control which unfortunately doesn’t consider either disturbance or model uncertainty,

In addition, it affects slightly the tracking performance. Some researchers considered the

introduction of KF as uncertain control smooth lanfing processing [42] [43] [3].

To comply with the autonomous landing of the quadrotor, computer vision processing is

crucial to determine the relative pose to dynamically generate the trajectory for the landing.

Many algorithms of vision subject to detection and estimation for autonomous landing have

been developed. ArUco markers were widely used because of the easiness of detection and

the efficiency of the identification [43]-[83]-[105]- [70]. Whereas the pose estimation varies

from direct methods that use the PnP algorithm [86]-[83]-[9], or sophisticated and intelligent

methods based on neural networking [58]. The visual processing is so sensitive in the matter

of data extraction (size, pattern, and pose) to camera type and its calibration, to the shutter

effect, to the velocity of the drone’s landing, and to the external light and mirror effect [86].

It is critical to consider the noise and disturbance model in the control and estimation

during the robust landing process, especially in outdoor applications, thus the estimation of

quadrotor state vector was enhanced by Madgwick data fusion of asynchronous sensors filter

[99] combined with an Extended KF, another filter was set for best estimation of markers

visual localization [33].

Based on the literature, some researchers used pursuit guidance while simultaneously

descending with the UAV in altitude [37], wherein [30], a fusion of monocular Simultaneously

Localization And Mapping (SLAM) and INS was utilized in the landing of the quadrotor

in bio-inspired guidance method which is based on Tau theory. In [57], complex maneuvers
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were illustrated by a robust trucking control that can be constrained for landing. To enhance

the bio-inspired soft landing, a novel Fuzzy decision maker process as detailed in last section

is used to estimate the landing time via the average possible speed, the Fuzzy sets use the

observed state vectors of both the quadrotor and moving pad to decide the velocity of the

landing. This method controls the velocity limits to design the optimal trajectory to track

for the landing as an expert guidance control. MPC is chosen for the tracking performance

instead of classic PID, MPC is adaptive and can handle the considered disturbance and

Gaussian noise.

The proposed soft landing approach separates the process into two interconnected parts:

First, the detection of markers, identification of at least one visible marker depending on

the height, and then determining the relative pose of the pad center with consideration to

the motion of both the quadrotor and the landing pad. Then, the generation of minimal

Jerk trajectory to ensure smoothness during landing, where MPC is responsible for tracking

iteratively the desired trajectory to land. The smooth velocity profile is controlled by the

FLC decision-maker. The opted philosophy is demonstrated in Fig.6-7.

Figure 6-7: Autonomous Landing control processing

The landing application aimes to develop a complete process for the smooth autonomous

landing of a quadrotor on a moving pad based on a vision algorithm using a monocular

camera with robust position control. The iterative and adaptive Generation of trajectory

was based on the optimal jerk. The process valued the following points:

• The design of a robust application of the pose estimation based on a special landing
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pad by multiple ArUco markers with different patterns at different sizes to ease the

detection.

• The MPC based Tracking for better attenuation of external disturbance with a high

performance comparison to PID control.

• Planning a mimic of natural decision making as expert human processing for landing

by adding FLC for velocity control.

• Combine EKF with Magdwick data fusion of asynchronous sensors for state observa-

tion.

.

6.3.2 The detection of the relative pose estimation

Before engaging the landing control, the detection and the estimation of the relative pose

of the moving landing pad are first processed. This subsection investigates this challenge,

aiming to maximize the detection probability and to avoid miss-estimation samples and the

limitation of the Field Of View (FOV).

Concept of detection of the landing pad

Many techniques for pad detection were investigated, such as color-based, or shape-based,

other research was based on employing a complementary modular approach that uses data-

driven methods for auto-docking such in [94]. In this thesis, we opted for the ArUco markers.

The use of binary square fiducial markers provides enough data for the detection by the four

corners, the identification from the binary codification, and the relative pose from projection

processing. All those features are easy to be acquired by different types of cameras and from

relatively higher altitudes. In addition, choosing different markers’ designs at different sizes

will ease the task of close detection at the same time as far ones, which ensures a robust

detection all along the trajectory of landing. As the quadrotor got close to the landing pad,

some markers leave slowly the Field Of View (FOV), at this level, the detection will be

based only on the relatively smaller markers, contrary to larger markers that will be used

at higher altitudes. Yuhua Qi et al. proposed a similar aspect of detection for a low-cost
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camera in [83]. The redundancy of markers will enhance the total probability of detection

and recall, and precision augments by the use of small patterns at low altitudes.

Figure 6-8: An Aruco marker used for detection

Figure 6-9: Landing philosophy references of motion

Robustness of the pose estimation

The ArUco library was used as a base for markers design [36]. At every iteration image, the

pose estimation process is initially based on the markers detection algorithm that recognizes

the detected markers and identifies them by a binary codification. Recognition is performed

by analyzing the inner codification and attributing the marker in a canonical form by differ-

entiating between black and white surfaces using a simple Otsu thresholding technique, and

excluding the wrong detection, besides identifying markers from the predefined list. Then,
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Figure 6-10: Detection and estimation of the relative pose )

the algorithm ran an estimation process for the relative pose of the landing pad based on

the OpenCV library. A specially designed filter decides which markers to be considered

based on the average of actual relative distance estimations between the quadrotor and the

landing pad, the filter extracts out the bad estimation based on the normalized variance to

the mean. The marker estimate is considered if and only if:

|( ^𝐸𝑠𝑡(𝑖)
2
− (

𝑁∑︁
𝑗=1

^𝐸𝑠𝑡(𝑗)/𝑁)2)/V(𝐸𝑠𝑡)| > 0.2 (6.26)

^𝐸𝑠𝑡(𝑖) represents the Cartesian distance estimate from the Marker 𝑖, V(𝐸𝑠𝑡) is the variance

of all detected distances estimates. The inner codification choice of ArUco markers was

based on simple detection and reading from a far distance and denser for smaller ones to

improve close estimation. For better pose estimation performance, it is judicious to calibrate

the camera, A special calibration code that uses OpenCV for camera calibration tools and

Charuco image was used to extract the camera matrix and the distortion vector needed for

the pose estimator3.

6.3.3 Vision processing results

Tables 6.1. 6.2, and 6.3. were made considering the hovering mode of the quadrotor to

optimize the pad design emulating the real aspect of vibration, flight disturbance, and high-

3GitHub codes - Camera calibration.
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Table 6.1: Multiple markers vs single marker detectability and precision of the pose
estimation

Markers Detectability (recall) Estimate precision

Single Marker 97.1 4.89 cm
Multiple markers 99.3 2.55 cm

Table 6.3: Precision of pose estimation at different sizes of markers from different
heights. ((NA): Non Applicable values: are cases of no detection)

0.3 m 0.6 m 1 m 3 m 7 m
5 cm 3.3 cm 5.1 cm 9.4 cm (NA) (NA)
10 cm 2.7 cm 3.4 cm 6.9 cm 19.6 cm (NA)
18 cm (NA) (NA) 4.9 cm 12.9 cm 28.9 cm

frequency noise. For that many real-time images were taken and analyzed. Based on using

one vs multiple markers and varying their sizes, experimental tests of detection probability

and precision are explicit in the tables. 6.1. 6.2 and 6.3.

Besides the detection recall, the precision of the pose significantly increases by enabling

multi measurement which attenuates the noise of calculation to a tolerated error margin of

the general position determination.

Table 6.2: Detection rate for different sizes of markers from different heights.
0.3 m 0.6 m 1 m 3 m 7 m

5 cm 100 % 99.2 % 91.1 % 8.1 % 0 %

10 cm 95.2% 99.2 % 97.4 % 88.9 % 31 %

18 cm 0 % 87.7 % 97.9 % 99.8 % 88.6 %

Multiple markers increase the detection probability of the pad, and the estimation pre-

cision of the relative pose got better. In addition, the different sizes of markers play an

important role in pose estimation and detection from different heights, low altitudes exploit

small markers when larger ones are out of the FOV. Contrary to the high altitude detection,

where we rely completely on larger markers as the smaller ones are less detectable with

insufficient precision.

The designed landing pad was detected easily from different heights, and different angles

of heading orientation, Fig.6-11 shows the detection and estimation from different positions.

Fig.6-11 shows different scenarios, Sub-Figure (A) shows the designed landing pad that
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contains multiple designs of different sizes, Sub-Figure (B) demonstrates the detection pro-

cess and the pose estimation from a far pose, Cartesian coordinates are calculated and

printed in red, the filter uses only larger markers even with the possible detection of closer

ones, in Sub-Figure (C), The filter considers only medium size markers, estimation of the

Cartesian pose coordinates is printed. In Sub-Figure (D), the pose estimation is based only

on smaller markers as larger ones are out of FOV. The 𝐹,𝑀 , and 𝐶 denotations show the

filter choice of markers based on the relative distance4.

Figure 6-11: Detection and estimation of the relative pose from different positions
(Sub-fig.A: shows the designed landing pad, Sub-fig.B: demonstrates a detection from
2.8 m away, Sub-fig.C demonstrates the pose estimation from 0.9 m, Sub-fig.D: shows
a close pose estimation at the final stage of landing at 0.5 m )

Once the Pas is detected and the pose is estimated, the trajectory got generated and

then tracked as explained in minimal Jerk trajectory tracking with MPC.

4GitHub codes - Pose estimation.
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Chapter 7

Conclusion and future works

7.1 Conclusion

This thesis Initially presented a state of the art as a panoramic view of what researchers

were developing recently as applications on quadrotors, then, dynamics modeling derivation

was detailed based on Newton-Euler formalism to ease the perception of how the simulation

model was obtained. Subsequently, Simulations of the synthesis of robust control laws for

nonlinear multivariable uncertain systems based on three approaches PID, LQR & IBS vali-

dated the applicability of those control theories on autonomous quadrotors in order to track

a surveillance Lissajous trajectory. Obtained results were satisfactory in a matter of perfor-

mance and robustness despite adding noise and disturbance to the simulation model and the

fact that the position of the quadrotor initially is far away from the targeted trajectory. Yet

the drawbacks of those methods are relative to the desired robustness and the validation of

the control model which remains so sensitive to the linearization process and the considered

operation envelope. Hereafter, chapter IV discussed the application of building a quadrotor

model with detailed hardware and software architectures.

Based on the fact that not all the states are measurable, and for the aim to attribute all

states with high confidence. An optimal observer that was demonstrated quicker than stan-

dard EKF was developed based on a mathematical combination between Madgwick / EKF

observer of the quadrotor which was enhanced by an asynchronous sensors fusion (MPU9250

and NEO-6M) to observe the quadrotor states vector and sensors bias for orientation preci-

sion of less than 1 deg. The full-state observer uses the quaternion AHRS filter of Madgwick
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data fusion of asynchronous sensors and EKF. The method showed quick convergence and

very high performance as it is superior because of considering the model dynamics, in ad-

dition, the developed observer corrects the magnetic distortion, compensates for gyroscope

bias drift, and cancels Gaussian noise. The observer can track all sensors’ drifts and biases.

The adaptive model was based on Jacobian linearization of the dynamical model to expand

the operating space.

Intelligent control theory was investigated for robust control in the presence of uncer-

tainties and perturbation. First, An adaptive LQG to track a generated Spline trajectory by

remote supervision in order to avoid the known static obstacles. The adaptive LQG showed

excellent tracking of the desired trajectory and was superior to the classic nested loop de-

sign based on PID control. Robustness to the added noise and disturbance was verified.

This optimal method is highly computationally loaded, but It is showed high accuracy, It

is possible to alleviate the computation cost by opting for a static linearized model but this

will reduce performance, especially at higher control angles.

An optimal minimal Jerk trajectory tracking by MPC controller successfully opted sub-

ject to parametric uncertainties and external disturbance. Trajectory generation was adap-

tive based on both observers’ results with fuzzy velocity control to estimate the landing time

to bio-inspired an experienced human pilot. Subsequently, the trajectory is fed to the MPC

for tracking, which considers the uncertainty of the model and disturbance. Comparison

with PID proved the robustness and performance of the MPC tracking.

Robust position and attitude trajectory tracking challenge within disturbance and un-

certainties for a quadrotor drone was investigated by exploiting the strong adaptive approx-

imation capabilities of the RBFNN with an EKF observer, an outer loop adaptive NN com-

pensated the external bounded disturbance where a supervised NN based control combined

with IBS stabilizes the attitude in the inner loop compensating the unmodeled uncertainties

and canceling the static error, the Supervised NN-based control avoids the initial attitude

instability that may occur during parameters convergence of direct RBFNN control. Param-

eters update and convergence were analyzed and optimized using Lyapunov theory for the

compensation control and via the optimized gradient descent algorithm for the Supervised

control. A main feature of the proposed scheme is that the resulting closed-loop control

system with the observer is guaranteed to be stable, similarly, the stability analyses of both

NN control loops in presence of bounded disturbance and uncertainty were conducted and
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demonstrated using Lyapunov theory. Another major property of the proposed compensat-

ing controller is that this RBFNN-based controller is an add-on device that can be added

directly to many other quadrotor control models.

The effectiveness of the proposed RBFNN compensation control scheme for robust track-

ing of trajectory has been validated for the quadrotor class of UAVs. A comparison with

three other algorithms including an offline MLP showed better disturbance rejection and

superior uncertainty compensation with faster correction.

Several applications of the quadrotor’s autonomous control were developed, Autonomous

soft landing on a moving platform that is detected and localized by an onboard camera was

realized. The relative pose to the landing pad was based on the detection of the spe-

cially designed pad by the combined ArUco markers for best detection at different altitudes

and angles. Identification of each marker and estimation of the pose was performed via

Open-CV/python algorithm enhanced by stabilization filters. Relative pose estimation was

satisfactory within 4 cm of accuracy.

The spline path for way points was first calculated then time referenced considering the

velocity of the drone. obstacle avoidance has been investigated, static obstacles were avoided

by a generated 3D Spline trajectory. A generation of trajectory can be done adaptively in

case of dynamic obstacles, the direct optimal trajectory generation can be very expensive in

a matter of computational time.

All simulations and codes are available in the GitHub links.

——————————-

7.2 Future works

Future works will rely on actual results to develop an online-autonomous trajectory planner

based on a vision system. A Triple Module Redundancy (TMR) architecture could be used

via a voting system to enhance the accuracy of sensors and ignore faulty readings.

Alternatively, intelligent control with completely model-free control is suggested, where

no prior knowledge of the system’s parameters or dynamics is required.

The challenge will be to build an optimal platform for quadrotors to execute intelligent

tasks besides autonomous control in either individual or swarm mission scenarios. Artifi-

cial intelligence methods will be soon investigated on the built quadrotor model for more
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autonomous applications.
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