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Symbols and Acronyms

1. R : Set of Real numbers.

2. N : Set of Natural numbers.

3. R+ : Set of Non-negative real numbers.

4. SDE : Stochastic di¤erential equation.

5. BSDE : Backward stochastic di¤erential equation.

6. FBSDEs : Forward-backward stochastic di¤erential equations.

7. FBSDEJs : Forward-Backward stochastic di¤erential equations with jumps.

8. PDE : Partial di¤erential equation.

9. ODE : Ordinary di¤erential equation.

10. a.e. almost every where

11. a.s. almost surely

12. càdlàg continu à droite, limite à gauche

13. càglàd continu à gauche, limite à droite

14. e.g. for example (abbreviation of Latin exempli gratia)

15. i.e,. that is (abbreviation of Latin id est)

16. HJB The Hamilton-Jacobi-Bellman equation

17.
@f

@x
; fx : The derivatives with respect to x:

18. P
dt : The product measure of P with the Lebesgue measure dt on [0; T ] :

19. E (�) ; E (� j G) Expectation ; conditional expectation

20. � (A) : ��algebra generated by A:

21. IA : Indicator function of the set A:

22. FY : The �ltration generated by the process Y:
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23. W (�); B(�) : Brownian motions

24. FB
t the natural �ltration generated by the brownian motion B(�),

25. F1 _ F2 denotes the �-�eld generated by F1 [ F2:

26. (
;F ;P) probability space

27. fFtgt�0 : �ltration

28.
�

;F ; fFtgt2[0;T ];P

�
�ltered probability space.

29. Lp(F) : the space of Rn-valued F�measurable random variables X such that

E( jXjp) <1:

30. LpG(
;Rn ) : the space of Rn-valued G�measurable random variables X such that

E( jXjp) <1:

31. LpF([0; T ] ;Rn) : the space of all (Ft)t�0-adapted Rn-valued processes X such that

E

Z T

0

jX(t)jp dt <1:

32. L1F ([0; T ] ;Rn) : the space of all (Ft)t�0-adapted Rn-valued processes X essentially

bounded processes.

33. (u(�); �(�)) : continous-singular control.

34. @�g : the derivatives with respect to measur �:

35. D�g(�0) : the Fréchet-derivative of g at �0 in the direction �:
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Résumé
Cette thèse de doctorat s�inscrit dans le cadre de la théorie de contrôle et l�optimisa-

tion stochastique. Le premier chapitre est de nature introductif, qui contient la formulation

d�un problème de contrôle optimal stochastique de type mean-�eld avec quelques concepts

et résultats de base qui permettent d�aborder notre travail ; tels que les processus stochas-

tiques, principe du maximum,. . . etc. On s�intéresse aussi dans ce chapitre par les deux

méthodes de résolutions.

Dans le deuxième chapitre, on a présenté la méthode de dérivation par rapport a une

mesure de probabilité qui a été introduit par LIONS « Lions P.L. Cours au Collège de

France : Théorie des jeu à champs moyens. http ://www. college- de-france.fr/ default/EN

/all/equ [1] der/ audiovideo. jsp. (2013) » . On s�intéresse aussi dans ce chapitre par les

di¤érentes classes de contrôle optimal stochastique.

Dans le troisième chapitre, on a présenté notre première contribution, où on a prouvé

les conditions nécessaires d�optimalité pour des classes de contrôle singulier (non regulier)

partiellement observés. Les systems sont gouvernés par des équations di¤erentielles sto-

chastique EDSs de type McKean-Vlasov avec un saut de Poisson. Théorème de Girsanov

et la dérivée par rapport à une mesure de probabilité au sense de Lions ont été utilisé pour

établir notre résultat. Nous appliquons nos résultats pour étudier le problème condition-

nelle de selection de portefeuille moyenne-variance avec interventions, où les interventions

de change sont destinées à contenir les �uctuations excessives des taux de change.

Dans le quatrième chapitre, on a étudié un problème de contrôle stochastique de second-

ordre pour systems de type mean-�eld. On a présenté notre première contribution, où on

a prouvé un principe du maximum de seconde-ordre. Les systems considérés sont gouver-

nés par des équations di¤erentielles stochastique EDSs de type McKean-Vlasov. Dans ce

travail, on a présenté notre deuxième contribution où nous prouvons un nouveau seconde-

order principe de maximum stochastique pour une classe de problèmes de contrôle optimal

de type Mckean-Vlasov. Le domaine de contrôle est supposé convexe. Les dérivées par rap-
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port à la mesure de probabilité et la formule d�Itô associée sont appliquées pour prouver nos

principaux résultats. Dans le cinquième chapitre, un principe de maximum stochastique

pour un modèle stochastique gouvernées par des équations di¤érentielles Itô-stochastiques

contrôlées non linéaires de type champ moyen est démontré. Nous étudions le problème

de contrôle optimal stochastique de type mean-�eld suivant : Minimiser une fonctionnelle

de coût de type champ moyen de la forme :

J (�(�)) = E

Z
Rd
�(y�(�); �

y�(�))�(dy�);

telle que y�(�) solution de t 2 [0; � ]8>>>>><>>>>>:
dy�(t) =

R
Rd '

�
t; y�(t); �

y�(t); �(t)
�
�(dy�)dt

+
R
Rd  

�
t; y�(t); �

y�(t); �(t)
�
�(dy�)dW (t);

y�(0) = y0:

où �(�) est la variable de contrôle donnée dans un sous-ensemble convexe borné, y�(�)

est la variable d�état contrôlée, W (�) est un mouvement brownien standard, �y�(t) est la

distribution de y�(t):
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Abstract
This thesis is concerned with stochastic optimal control problems of mean-�eld type.

The central theme is to establish a set of necessary conditions, in the form of stochastic

maximum for a di¤erent systems. This thesis is structured around �ve chapters :

The �rst chapter is essentially a reminder. We presents some concepts and results that

allow us to prove our results, such as stochastic processes, conditional expectation, mar-

tingales, Itô formulas, di¤erent methods of solving of optimal control (maximum principle,

which has been introduced by Pontryagin et al and dynamical programming principle, wich

has been introduced by Bellman) with some di¤erent class of stochastic control, (feedback,

singular, impulsional, relaxed, near-optimal, ...etc.

In the second chapter, we present the method of the derivative with respect to pro-

bability measure. This new approch of derivatives has been introduced by P.L Lions

"Cours au Collège de France : Théorie des jeu à champs moyens. http ://www. college-

de-france.fr/default/EN/all/equ[1]der/audiovideo.jsp. (2013) »

Recently, in the third chapter of this thesis, we study partially observed optimal sto-

chastic singular control problems of general mean-�eld with correlated noises between the

system and the observation. The control variable has two components, the �rst being ab-

solutely continuous and the second is a bounded variation, non decreasing continuous on

the right with left limits. The dynamic system is governed by Itô-type controlled stochastic

di¤erential equation with jumps. The coe¢ cients of the dynamic depend on the state pro-

cess as well as of its probability law and the continuous control variable.In this work, we

formulate this problem mathematically as a combined stochastic continuous control and

irregular control problem. We study partially observed optimal stochastic intervention

control problem for systems governed by mean-�eld SDEs with correlated noisy between

the system and the observation, allowing both classical and intervention control:

In the fourth chapter, we establish a second-order stochastic maximum principle for

optimal stochastic control of stochastic di¤erential equations of general mean-�eld type.
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The coe¢ cients of the system are nonlinear and depend on the state process as well as of its

probability law. The control variable is allowed to enter into both drift and di¤usion terms.

We establish a set of second-order necessary conditions for the optimal control in integral

form. The control domain is assumed to be convex. The proof of our main result is based on

the the �rst and second-order derivatives with respect to the probability law and by using

a convex perturbation with some appropriate estimates. In the �fth chapter, a maximum

principle for stochastic model governed by mean-�eld nonlinear controlled Itô-stochastic

di¤erential equations is proved. We study the following mean-�eld-type stochastic optimal

nonlinear control problem : Minimize a mean-�eld cost functional

J (�(�)) = E

Z
Rd
�(y�(�); �

y�(�))�(dy�);

subject to y�(�) solution of the (MF-SDE) : t 2 [0; � ]

8>>>>><>>>>>:
dy�(t) =

R
Rd '

�
t; y�(t); �

y�(t); �(t)
�
�(dy�)dt

+
R
Rd  

�
t; y�(t); �

y�(t); �(t)
�
�(dy�)dW (t);

y�(0) = y0:

where, �(�) is the control variable valued in a convex bounded subset U � Rk, y� (�) is the

controlled state variable, W (�) is a standard Brownian motion, �y�(t) is the distribution of

y�(t)
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General Introduction
The McKean-Vlasov type stochastic di¤erential equations are Itô stochastic di¤erential

equations, where the coe¢ cients of the state equation depend on the state process as well

as its probability law. This type of equations was studied by Kac (1959) as a stochastic

model for the plasma Vlasov equation and whose study was initiated by McKean (1966) to

provide a rigorous treatment of special nonlinear partial di¤erential equations. This thesis

is concerned with stochastic optimal control problems of mean-�eld type. The central

theme is to establish a set of necessary conditions, in the form of stochastic maximum for

a di¤erent systems.

This thesis is structured around �ve chapters :

The �rst chapter is essentially a reminder. We presents some concepts and results that

allow us to prove our results, such as stochastic processes, conditional expectation, mar-

tingales, Itô formulas, di¤erent methods of solving of optimal control (maximum principle,

which has been introduced by Pontryagin et al and dynamical programming principle, wich

has been introduced by Bellman) with some di¤erent class of stochastic control, (feedback,

singular, impulsional, relaxed, near-optimal, ...etc.

In the second chapter, we present the method of the derivative with respect to pro-

bability measure. This new approch of derivatives has been introduced by P.L Lions

"Cours au Collège de France : Théorie des jeu à champs moyens. http ://www. college-

de-france.fr/default/EN/all/equ[1]der/audiovideo.jsp. (2013) »

Recently, in the third chapter of this thesis, we study partially observed optimal sto-

chastic singular control problems of general mean-�eld with correlated noises between the

system and the observation. The control variable has two components, the �rst being ab-

solutely continuous and the second is a bounded variation, non decreasing continuous on

the right with left limits. The dynamic system is governed by Itô-type controlled stochastic

di¤erential equation with jumps. The coe¢ cients of the dynamic depend on the state pro-

13
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cess as well as of its probability law and the continuous control variable.In this work, we

formulate this problem mathematically as a combined stochastic continuous control and

irregular control problem. We study partially observed optimal stochastic intervention

control problem for systems governed by mean-�eld SDEs with correlated noisy between

the system and the observation, allowing both classical and intervention control of the

form : t 2 [0; T ]

8>>>>>>>>>><>>>>>>>>>>:

dxu;� (t) = f(t; xu;� (t) ;Pxu;�(t); u (t))dt+ �(t; xu;� (t) ;Pxu;�(t); u (t))dW (t)

+
R
�
g(t; xu;� (t�) ;Pxu;�(t�); u (t) ; �)e� (d�; dt)

+ c(t; xu;� (t) ;Pxu;�(t); u (t))dfW (t) +G(t)d�(t);

xu;� (0) = x0;

(1)

where Pxu;�(t) = P�
�
xu;�

��1
denotes the law of the random variable xu;�

We assume that the state process xv;� (�) cannot be observed directly, but the controllers

can observe a related noisy process Y (�); which is governed by the following equation :

8><>:
dY (t) = h(t; xv;� (t) ; v (t))dt+ dfW (t)

Y (0) = 0;

We de�ne the FY
t �martingale �v(t) which is the solution of the equation

8><>:
d�v(t) = �v(t)h (t; xv(t); v(t)) dY (t);

�v(0) = 1:

This martingale allowed to de�ne a new probability, denoted by Pv on the space (
;F) ; to

emphasize the fact that it depend on the control v (�) : It is given by the Radon-Nikodym

derivative :
dPv

dP

����
FYt

= �v(t).

14
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Hence, by Girsanov�s theorem and hypothesis (C1) and (C2), Pv is a new probability

measure of density �v(t). The process

fW (t) = Y (t)�
Z t

0

h(s; xv;� (s) ; v (s))ds;

is a standard Brownian motion independent of W (�) and x0 on the new probability space

(
;F ;Ft;Pv) :

By using Radon-Nikodym derivative, and the martingale property of �v(t), the cost func-

tional can be written as

J(v(�); �(�)) = E

�Z T

0

�v(t)l(t; xv;�(t);Pxu;�(t); v(t))dt+ �v(T ) (xv;�(T );Pxv;�(T ))

+

Z
[0;T ]

�v(t)M(t)d�(t)

�
:

In terms of a classical convex variational techniques, we establish a set of necessary conti-

ditions of optimal singular control in the form of maximum principle. Our main result is

proved by applying Girsanov�s theorem and the derivatives with respect to probability law

in P.L. Lions�sense. An example is given to illustrate our theoretical result. The results

obtained in Chapter §3 are all new and are the subject of a �rst article entitled :

Fatiha Korichi, Samira Boukaf, Mokhtar Hafayed, : Stochastic intervention control

of mean-�eld Poisson-jump-system with noisy observation via L-derivatives with respect

to probability law . Boletim da Sociedade Paranaense de Matemática Vol 42 , 2024

pp 1-25.

In the fourth chapter, we establish a second-order stochastic maximum principle for

optimal stochastic control of stochastic di¤erential equations of general mean-�eld type.

The coe¢ cients of the system are nonlinear and depend on the state process as well as of

its probability law. The control variable is allowed to enter into both drift and di¤usion

15
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terms. We establish a set of second-order necessary conditions for the optimal control in

integral form. The control domain is assumed to be convex. The proof of our main result

is based on the the �rst and second-order derivatives with respect to the probability law

and by using a convex perturbation with some appropriate estimates.

The systems is governed by nonlinear controlled Itô stochastic di¤erential systems.

8><>:
dxu(t) = f

�
t; xu(t); Pxu(t); u(t)

�
dt+ �

�
t; xu(t); Pxu(t); u(t)

�
dW (t);

xu(0) = x0:

The expected cost to be minimized over the class of admissible controls has the form

J (u(�)) = E

�
h(xu(T ); Pxu(t)) +

Z T

0

`(t; xu(t); Pxu(t); u(t))dt

�
:

Our control problem under studied provides also an interesting models in many ap-

plications such as economics and mathematical �nance. This result extends the results

obtained in �Zhang H., Zhang X. : Pointwise second-order necessary conditions for sto-

chastic optimal controls, Part I : The case of convex control constraint, SIAM J. Control

Optim. 53(4), 2267-2296 (2015)�to a class of continuous-singular stochastic control with

jumps under partial pbservation. The results obtained in Chapter §4 are all new and are

the subject of a second article entitled :

Samira Boukaf & Fatiha Korichi & Mokhtar Hafayed,& Muthukumar Palanisamy. On

pointwise second-order maximum principle for optimal stochastic controls of general mean-

�eld type. Asian Journal of Control, Doi : 10.1002/asjc.3271, Vol 26 (2) pp 790-802 (2024)

In the �fth chapter, a maximum principle for stochastic model governed by mean-�eld

nonlinear controlled Itô-stochastic di¤erential equations is proved. We study the following

mean-�eld-type stochastic optimal nonlinear control problem : Minimize a mean-�eld cost

functional

J (�(�)) = E

Z
Rd
�(y�(�); �

y�(�))�(dy�);

16
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subject to y�(�) solution of the (MF-SDE) : t 2 [0; � ]

8>>>>><>>>>>:
dy�(t) =

R
Rd '

�
t; y�(t); �

y�(t); �(t)
�
�(dy�)dt

+
R
Rd  

�
t; y�(t); �

y�(t); �(t)
�
�(dy�)dW (t);

y�(0) = y0:

In the above, �(�) is the control variable valued in a convex bounded subset U � Rk,

y� (�) is the controlled state variable, W (�) is a standard Brownian motion, �y�(t) is the

distribution of y�(t) and �, ' and  are a given maps. The coe¢ cients of our model are

nonlinear and depend explicitly on the control variable, the state process as well as of its

probability distribution. The control region is assumed to be bounded and convex. Our

main result is derived by applying the Lions�s partial-derivatives with respect to random

measures in Wasserstein space. The associated Itô-formula and convex-variation approach

are applied to establish the optimal control. The results obtained in Chapter §5 are all

new and are the subject of a third article entitled :

Fatiha Korichi &Mokhtar Hafayed, Lions�s partial derivatives with respect to probability

measures for general mean-�eld stochastic control problem.Doi 10.22124/jmm.2024.27136.2390.

Journal of Mathematical Modeling. (2024), Vol. 12, No. 3, pp. 517�532. (2024)
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Chapitre 1

Stochastic processes and preliminary

Optimal control theory can be described as the study of strategies to optimally in�uence

a system x with dynamics evolving over time according to a di¤erential equation. The

in�uence on the system is modeled as a vector of parameters, u, called the control. It is

allowed to take values in some set U , which is known as the action space. For a control to

be optimal, it should minimize a cost functional (or maximize a reward functional), which

depends on the whole trajectory of the system x and the control u over some time interval

[0; T ]. The in�mum of the cost functional is known as the value function (as a function of

the initial time and state). This minimization problem is in�nite dimensional, since we are

minimizing a functional over the space of functions u(t); t 2 [0; T ]. Optimal control theory

essentially consists of di¤erent methods of reducing the problem to a less transparent, but

more manageable problem.

1.1 Formulation of stochastic optimal control problem

It is well-known that control theory was founded by N. Wiener in 1948. After that, this

theory was greatly extended to various complicated settings and widely used in sciences

and technologies. Clearly, control means a suitable manner for people to change the dy-

namics of a system under consideration. Let
�

;F ; fFtgt2[0;T ];P

�
be a given �ltered pro-

18
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bability space.

1.1.1 Stochastic process

Let T be a nonempty index set and (
;F ;P) a probability space. A family fX(t) : t 2 Tg

of random variables from (
;F ;P) to Rn is called a stochastic process. For any w 2 
 the

map t 7! X (t; w) is called a sample path.

1.1.2 Natural �tration

Let X = (Xt; t � 0) a stochastic process de�ned on the probability space (
;F ;P).

The natural �ltration of X , denoted by FX
t , is de�ned by FX

t = � (Xs; 0 � s � t). Also,

we called the �ltaration generated by X.

1.1.3 Brownian motion

The stochastic process (W (t); t � 0) is a brownian motion (standard) i¤ :

1. P [W (0) = 0] = 1:

2. t! W (t; w) is continuous.P�p:s:

3. 8s � t,W (t)�W (s) is normally distributed ; center with variation (t� s) i.eW (t)�

W (s) � N (0; t� s).

4. 8n, 8 0 � t0 � t1 � ::: � tn, the variables
�
Wtn �Wtn�1 ; :::;Wt1�Wt0 ;Wt0

�
are

independents.The following result gives special case of the Itô formula for jump

di¤usions.
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1.1.4 Integration by parts formula

Suppose that the processes xi(t) are given by : for i = 1; 2; t 2 [0; T ] :

8><>:
dxi(t) = f (t; xi(t)) dt+ � (t; xi(t)) dW (t)

xi(0) = 0:

Then we get

E (x1(T )x2(T )) = E

�Z T

0

x1(t)dx2(t) +

Z T

0

x2(t)dx1(t)

�
+ E

Z T

0

�| (t; x1(t))� (t; x2(t)) dt:

In this section, we present two mathematical formulations (strong and weak formulations)

of stochastic optimal control problems in the following two subsections, respectively.

1.1.5 Strong formulation

Let
�

;F ; fFtgt2[0;T ];P

�
be a given �ltered probability space satisfying the usual condi-

tion, on which an d-dimensional standard Brownian motion W (�) is de�ned, consider the

following controlled stochastic di¤erential equation :

8><>:
dx(t) = f(t; x(t); u(t))dt+ �(t; x(t); u(t))dW (t);

x(0) = x0 2 Rn;
(1.1)

where

f : [0; T ]� Rn � A �! Rn;

� : [0; T ]� Rn � A �! Rn�d;

and x(�) is the variable of state.
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The function u(�) is called the control representing the action of the decision-makers

(controller). At any time instant the controller has some information (as speci�ed by the

information �eld fFtgt2[0;T ]) of what has happened up to that moment, but not able to

foretell what is going to happen afterwards due to the uncertainty of the system (as a

consequence, for any t the controller cannot exercise his/her decision u(t) before the time

t really comes), This nonanticipative restriction in mathematical terms can be expressed

as "u(�) is fFtgt2[0;T ]�adapted".

The control u (�) is an element of the set

U [0; T ] = fu (�) : [0; T ]� 
 �! A such that u (�) is fFtgt2[0;T ] � adaptedg:

We introduce the cost functional as follows

J(u(�)) :
= E

�Z T

0

l(t; x(t); u(t))dt+ g(x(T ))

�
; (1.2)

where

l : [0; T ]� Rn � A �! R;

g : Rn �! R:

De�nition 1.1. Let
�

;F ; fFtgt2[0;T ];P

�
be given satisfying the usual conditions and let

W (t) be a given d-dimensional standard fFtgt2[0;T ]-Brownian motion.

A control u(�) is called an admissible control, and (x(�); u(�)) an admissible pair, if

i) u(�) 2 U [0; T ]; x(�) is the unique solution of equation (1.1) ;

ii) l(�; x(�); u(�)) 2 L1F ([0; T ] ;R) and g(x(T )) 2 L1FT (
;R) :

The set of all admissible controls is denoted by U ([0; T ]). Our stochastic optimal control

problem under strong formulation can be stated as follows :

Problem 1.1 Minimize (1.2) over U ([0; T ]) : The goal is to �nd u�(�) 2 U ([0; T ]) ; such
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that

J(u�(�)) = inf
u(�)2U([0;T ])

J(u(�)): (1.3)

For any u�(�) 2 U s ([0; T ]) satisfying (1.3) is called an strong optimal control. The cor-

responding state process x�(�) and the state control pair (x�(�); u�(�)) are called an strong

optimal state process and an strong optimal pair, respectively.

1.1.6 Weak formulation

In stochastic control problems, there exists for the optimal control problem another for-

mulation of a more mathematical aspect, it is the weak formulation of the stochastic

optimal control problem. Unlike in the strong formulation the �ltered probability space�

;F ; fFtgt2[0;T ];P

�
on which we de�ne the Brownian motion W (�) are all �xed, but it is

not the case in the weak formulation, where we consider them as a parts of the control.

De�nition 1.1.2. A 6-tuple
�

;F ; fFtgt2[0;T ];P;W (�) ; u (�)

�
is called weak-admissible

control and (x(�); u(�)) an weak admissible pair, if

1.
�

;F ; fFtgt2[0;T ];P

�
is a �ltered probability space satisfying the usual conditions ;

2. W (�) is an d-dimensional standard Brownian motion de�ned on
�

;F ; fFtgt2[0;T ];P

�
;

3. u(�) is an fFtgt2[0;T ]�adapted process on (
;F ;P) taking values in U ;

4. x(�) is the unique solution of equation (1.1),

5. l(�; x(�); u(�)) 2 L1F ([0; T ] ;R) and g(x(T )) 2 L1F (
;R) :

The set of all weak admissible controls is denoted by Uw ([0; T ]). Sometimes, might write

u(�)) 2 Uw ([0; T ]) instead of

�

;F ; fFtgt2[0;T ];P;W (�) ; u (�)

�
2 Uw ([0; T ]) :

Our stochastic optimal control problem under weak formulation can be formulated as

follows :
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Problem 1.1.2. The objective is to minimize the cost functional given by equation (1.2)

over the of admissible controls Uw ([0; T ]) :

Namely, one seeks v�(�) =
�

;F ; fFtgt2[0;T ];P;W (�) ; u (�)

�
2 Uw ([0; T ]) such that

J(v�(�)) = inf
v(�)2Uw([0;T ])

J(v(�)):

1.2 Methods to solving optimal control problem

In optimal control problems, two major tools for studing optimal control are Pontryagin�s

maximum principle and Bellman�s dynamic programming method.

1.2.1 The Dynamic Programming (Bellman Principle)

We present an approach to solving optimal control problems, namely, the method of

dynamic programming. Dynamic programming, originated by R. Bellman (Bellman, R. :

Dynamic programming, Princeton Univ. Press., (1957 )) is a mathematical technique for

making a sequence of interrelated decisions, which can be applied to many optimization

problems (including optimal control problems). The basic idea of this method applied to

optimal controls is to consider a family of optimal control problems with di¤erent ini-

tial times and states, to establish relationships among these problems via the so-called

Hamilton-Jacobi-Bellman equation (HJB, for short), which is a nonlinear �rst-order (in

the deterministic case) or second-order (in the stochastic case) partial di¤erential equa-

tion. If the HJB equation is solvable (either analytically or numerically), then one can

obtain an optimal feedback control by taking the maximize/minimize of the Hamiltonian

or generalized Hamiltonian involved in the HJB equation. This is the so-called veri�cation

technique. Note that this approach actually gives solutions to the whole family of problems

(with di¤erent initial times and states).

Let (
;F ;P) be a probability space with �ltration fFtgt2[0;T ]; satisfying the usual
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conditions, T > 0 a �nite time, and W a d-dimensional Brownian motion de�ned on the

�ltered probability space
�

;F ;P; fFtgt2[0;T ]

�
:

The Bellman dynamic programming principle. We consider the following stochastic di¤e-

rential equation

dx(s) = f(s; x(s); u(s))ds+ �(s; x(s); u(s))dW (s); s 2 [0; T ] : (1.4)

The control u = u(s)0�s�T is a progressively measurable process valued in the control set

U , a subset of Rk, satis�es a square integrability condition. We denote by U ([t; T ]) the set

of control processes u.

Conditions. To ensure the existence of the solution to SDE-(1.4), the Borelian functions

f : [0; T ]� Rn � U �! Rn

� : [0; T ]� Rn � U �! Rn�d

satisfy the following conditions :

jf(t; x; u)� f(t; y; u)j+ j�(t; x; u)� �(t; y; u)j � C jx� yj ;

jf(t; x; u)j+ j�(t; x; u)j � C [1 + jxj] ;

for some constant C > 0. We de�ne the gain function as follows :

J(t; x; u) = E
hR T

t
l(s; x(s); u(s))ds+ g(x (T ))

i
; (1.5)

where

l : [0; T ]� Rn � U �! R;

g : Rn �! R;
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be given functions. We have to impose integrability conditions on f and g in order for

the above expectation to be well-de�ned, e.g. a lower boundedness or quadratic growth

condition. The objective is to maximize this gain function. We introduce the so-called

value function :

V (t; x) = sup
u2U([t;T ])

J(t; x; u); (1.6)

where x(t) = x is the initial state given at time t: For an initial state (t; x) ; we say that

u� 2 U ([t; T ]) is an optimal control if

V (t; x) = J(t; x; u�):

Theorem 1.1.1 Let (t; x) 2 [0; T ]� Rn be given. Then we have for t � t+ h � T

V (t; x) = sup
u2U([t;T ])

E

�Z t+h

t

l(s; x(s); u(s))dt+ V (t+ h; x(t+ h))

�
; : (1.7)

Proof. The proof of the dynamic programming principle is technical and has been studied

by di¤erent methods, we refer the reader to Yong and Zhou [120].

The Hamilton-Jacobi-Bellman equation. The HJB equation is the in�nitesimal

version of the dynamic programming principle. It is formally derived by assuming that the

value function is C1;2 ([0; T ]� Rn) ; applying Itô�s formula to V (s; xt;x(s)) between s = t

and s = t+h, and then sending h to zero into (1.6). The classical HJB equation associated

to the stochastic control problem (1.6) is

�Vt(t; x)� sup
u2U

[LuV (t; x) + l(t; x; u)] = 0; on [0; T ]� Rn; (1.8)

where Lu is the second-order in�nitesimal generator associated to the di¤usion x with

control u

LuV = f(x; u):DxV +
1

2
tr (� (x; u)�| (x; u)D2

xV ) :
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This partial di¤erential equation (PDE) is often written also as :

�Vt(t; x)�H(t; x;DxV (t; x); D
2
xV (t; x)) = 0; 8(t; x) 2 [0; T ]� Rn; (1.9)

where for (t; x;	; Q) 2 [0; T ]�Rn�Rn�Sn (Sn is the set of symmetric n�n matrices) :

H(t; x;	; Q) = sup
u2U

�
f(t; x; u):	+

1

2
tr (��| (t; x; u)Q) + l(t; x; u)

�
: (1.10)

The function H is sometimes called Hamiltonian of the associated control problem, and

the PDE (1.8) or (1.9) is the dynamic programming or HJB equation.

There is also an a priori terminal condition :

V (T; x) = g(x); 8x 2 Rn;

which results from the very de�nition of the value function V .

The classical veri�cation approach The classical veri�cation approach consists in �nding

a smooth solution to the HJB equation, and to check that this candidate, under suitable

su¢ cient conditions, coincides with the value function. This result is usually called a

veri�cation theorem and provides as a byproduct an optimal control. It relies mainly on

Itô�s formula. The assertions of a veri�cation theorem may slightly vary from problem

to problem, depending on the required su¢ cient technical conditions. These conditions

should actually be adapted to the context of the considered problem. In the above context,

a veri�cation theorem is roughly stated as follows :

Theorem 1.1.2. Let W be a C1;2 function on [0; T ] � Rn and continuous in T , with

suitable growth condition. Suppose that for all (t; x) 2 [0; T ] � Rn, there exists u�(t; x)
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mesurable, valued in U such that W solves the HJB equation :

0 = �Wt(t; x)� sup
u2U

[LuW (t; x) + l(t; x; u)]

= �Wt(t; x)� Lu
�(t;x)W (t; x)� l(t; x; u�(t; x)); on [0; T ]� Rn;

together with the terminal condition W (T; �) = g on Rn; and the stochastic di¤erential

equation :

dx(s) = f(s; x(s); u�(s; x (s)))ds+ �(s; x(s); u�(s; x (s)))dW (t);

admits a unique solution x�, given an initial condition x(t) = x. Then, W = V and

u� (s; x�) is an optimal control for V (t; x).

A proof of this veri�cation theorem can be found in book, by Yong & Zhou [120].

1.2.2 The pontryagin type stochastic maximum principle

The pioneering works on the stochastic maximum principle were written by Kushner

[69, 70]. Since then there have been a lot of works on this subject, among them, in parti-

cular, those by Bensoussan [14], Peng [107], and so on. The stochastic maximum principle

gives some necessary conditions for optimality for a stochastic optimal control problem.

The original version of Pontryagin�s maximum principle was �rst introduced for determinis-

tic control problems in the 1960�s by Pontryagin et al. (Pontryagin,L.S., Boltyanski,V.G.,

Gamkrelidze, R.V., Mischenko, E.F. ) as in classical calculus of variation. The basic idea

is to perturbe an optimal control and to use some sort of Taylor expansion of the state

trajectory around the optimal control, by sending the perturbation to zero, one obtains

some inequality, and by duality.

The deterministic maximum principle. As an illustration, we present here how the

maximum principle for a deterministic control problem is derived. In this setting, the
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state of the system is given by the ordinary di¤erential equation (ODE) of the form

8><>:
dx(t) = f(t; x(t); u(t))dt; t 2 [0; T ] ;

x(0) = x0;

(1.11)

where

f : [0; T ]� R�A �! R;

and the action spaceA is some subset of R: The objective is to minimize some cost function

of the form :

J(u (�)) =
R T
0
l(t; x(t); u(t)) + g(x (T )); (1.12)

where

l : [0; T ]� R�A �! R;

g : R �! R:

That is, the function l in�icts a running cost and the function g in�icts a terminal cost.

We now assume that there exists a control u�(t) which is optimal, i.e.

J(u� (�)) = inf
u
J(u (�)):

We denote by x�(t) the solution to (1.11) with the optimal control u�(t). We are going

to derive necessary conditions for optimality, for this we make small perturbation of the

optimal control. Therefore we introduce a so-called spike variation, i.e. a control which is

equal to u� except on some small time interval :

u"(t) =

8><>:
v for � � " � t � �;

u�(t) otherwise.
(1.13)
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We denote by x"(t) the solution to (1.11) with the control u"(t). We set that x�(t) and

x"(t) are equal up to t = � � " and that

x"(�)� x�(�) = (f(�; x"(�); v)� f(�; x�(�); u� (�)))"+ o (")

= (f(�; x�(�); v)� f(�; x�(�); u� (�)))"+ o (") ;

(1.14)

where the second equality holds since x"(�) � x�(�) is of order ": We look at the Taylor

expansion of the state with respect to ": Let

z(t) =
@

@"
x"(t) j"=0;

i.e. the Taylor expansion of x"(t) is

x"(t) = x� (t) + z(t)"+ o("): (1.15)

Then, by (1.14)

z (�) = f(�; x�(�); v)� f(�; x�(�); u� (�)): (1.16)

Moreover, we can derive the following di¤erential equation for z(t):

dz(t) =
@

@"
dx"(t) j"=0

=
@

@"
f(t; x"(t); u"(t))dt j"=0

= fx(t; x
"(t); u"(t))

@

@"
x"(t)dt j"=0

= fx(t; x
�(t); u�(t))z(t)dt;

where fx denotes the derivative of f with respect to x. If we for the moment assume that
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l = 0, the optimality of u�(t) leads to the inequality

0 � @

@"
J(u")

����
"=0

=
@

@"
g (x"(T )) j"=0

= gx (x
"(T ))

@

@"
x"(T ) j"=0

= gx (x
�(T )) z(T ):

We shall use duality to obtain a more explicit necessary condition from this. To this end

we introduce the adjoint equation :

8><>:
d	(t) = �fx(t; x�(t); u�(t))	(t)dt; t 2 [0; T ] ;

	(T ) = gx(x
�(T )):

Then it follows that

d(	(t)z(t)) = 0;

i.e. 	(t)z(t)) = constant. By the terminal condition for the adjoint equation we have

	(t)z(t) = gx(x
�(T ))z(T ) � 0; for all 0 � t � T:

In particular, by (1.16)

	(�) (f(�; x�(�); v)� f(�; x�(�); u� (�))) � 0:

Since � was chosen arbitrarily, this is equivalent to

	(t)f(t; x�(t); u�(t)) = inf
v2U
	(t)f(t; x�(t); v); for all 0 � t � T:

By repeating the calculations above for this two-dimensional system, one can derive the
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necessary condition

H(t; x�(t); u�(t);	(t)) = inf
v2U

H(t; x�(t); v;	(t)) for all 0 � t � T; (1.17)

where H is the so-called Hamiltonian (sometimes de�ned with a minus sign which turns

the minimum condition above into a maximum condition) :

H(x; u;	) = l(x; u) + 	f(x; u);

and the adjoint equation is given by

8><>:
d	(t) = �(lx(t; x�(t); u�(t)) + fx(t; x�(t); u�(t))	(t))dt;

	(T ) = gx(x
�(T )):

(1.18)

The minimum condition (1.17) together with the adjoint equation (1.18) speci�es the

Hamiltonian system for our control problem.

The stochastic maximum principle. Stochastic control is the extension of optimal control

to problems where it is of importance to take into account some uncertainty in the system.

One possibility is then to replace the di¤erential equation by an SDE :

dx(t) = f(t; x(t); u(t))dt+ �(t; x(t))dW (t); t 2 [0; T ] ; (1.19)

where f and � are deterministic functions and the last term is an Itô integral with respect

to a Brownian motion W de�ned on a probability space
�

;F ; fFtgt2[0;T ];P

�
:

More generally, the di¤usion coe¢ cient � may has an explicit dependence on the control :

t 2 [0; T ] :

dx(t) = f(t; x(t); u(t))dt+ �(t; x(t); u(t))dW (t); (1.20)

The cost function for the stochastic case is the expected value of the cost function (1.12),
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i.e. we want to minimize

J(u (�)) = E

�Z T

0

l(t; x(t); u(t)) + g(x (T ))

�
:

For the case (1.19) the adjoint equation is given by the following Backward SDE :

8>>>>><>>>>>:
�d	(t) = ffx(t; x�(t); u�(t))	(t) + �x(t; x

�(t))Q(t)

+(lx(t; x
�(t); u�(t))gdt�Q(t)dW (t);

	(T ) = gx(x
�(T )):

(1.21)

A solution to this backward SDE is a pair (	(t); Q(t)) which ful�lls (1.21). The Hamilto-

nian is

H(x; u;	(t); Q(t)) = l(t; x; u) + 	(t)f(t; x; u) +Q(t)�(t; x);

and the maximum principle reads for all 0 � t � T;

H(t; x�(t); u�(t);	(t); Q(t)) = inf
u2U

H(t; x�(t); u;	(t); Q(t)) a.s. (1.22)

Noting that there is also third case : if the state is given by (1.20) but the action

space A is assumed to be convex, it is possible to derive the maximum principle in a local

form. This is accomplished by using a convex perturbation of the control instead of a spike

variation, see Bensoussan 1983 [14]. The necessary condition for optimality is then given

by the following : for all 0 � t � T

E

Z T

0

Hu(t; x
�(t); u�(t);	�(t); Q�(t)) (u� u�(t)) dt � 0:
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Chapitre 2

Derivatives on the Wasserstein space

and class of controls

2.1 Kantorovich Distance Between Probability Mea-

sures

The Monge-Kantorovich Distance is a metric between two probability measures on a

metric space. The Monge-Kantorovich distance has its origins in the mathematical theory

of mass transportation. In 1781, Monge �rst proposed the mathematical problem of op-

timizing the cost of moving a pile of soil from a given starting con�guration to a given

ending con�guration. In his original formulation the problem was highly nonlinear, thus

extremely di¢ cult. In 1942, Kantorovich introduced another simple and relaxed version

of this problem.

The Kantorovich metric arises in very di¤erent contexts and under di¤erent names.

In statistical applications it was known as the Wasserstein distance and more recently

it appeared with the development of fractal geometry and its applications to computer

graphics under the name of Hutchinson distance, see [22].

To be more precise, we assume that probability space (
;F ;Ft;P) is rich enough in
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the sense that for every � 2 X2
�
Rd
�
; there is a random variable # 2 L2

�
F ;Rd

�
such that

� = P#:

2.2 L-derivatives with respect to probability measures

Now, we recall brie�y the innovative notion of L-derivatives with respect to probability

distribution over Wasserstein spaces, which was studied by Lions [94], and Cardaliaguet

[27] and the pioneering work by Cardaliaguet et. al. [24] in their study of the so-called

master equation in mean �eld game systems.

The main idea is to identify a distribution � 2 X2
�
Rd
�
with a random variables

# 2 L2
�
F ;Rd

�
so that � = P#:

Let X2
�
Rd
�
be the space of all probability measures � on

�
Rd;B

�
Rd
��
with �nite

second moment, i.e,
R
Rd jxj

2 �(dx) < +1; endowed with the following Wasserstein metric

D2(�; �) ; for �; � 2 X2
�
Rd
�
;

D2(�; �) = inf
�(�;�)2X2(R2d)

(�Z
R2d
jx� yj2 � (dx; dy)

� 1
2

)
;

where � (�; �) 2 X2
�
R2d
�
; �
�
A;Rd

�
= � (A) ; �

�
Rd; B

�
= v (B) :

This distance is just the Monge-Kankorovich distance when p = 2: Moreover, it has

been shown that (X2(Rn);D (�; �)) is a complete metric space.

Example : For example, if �1 = �x1 and �2 = �x2 be two degenerate Dirac measures

located at points x1 and x2 (respect.,) in R, then we have

D2 (�1; �2) = jx1 � x2j :
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2.3 Lift function

De�nition 2.3.1 (Lift function) Let � be a given function such that � : X2
�
Rd
�
! R:

We de�ne the lift function e� : L2 �F ;Rd�! R such that

e� (Z) = � (PZ) ; Z 2 L2 �F ;Rd� :
Clearly, the lift function e� of �, depends only on the law of random variable Z 2

L2
�
F ;Rd

�
and is independent of the choice of the representative Z:

A function f : X2
�
Rd
�
! R is said to be di¤erentiable at �0 2 X2

�
Rd
�
if there exists Z0 2

L2
�
F ;Rd

�
with �0 = PZ0 2 X2

�
Rd
�
such that its lift function ef is Fréchet di¤erentiable

at Z0. More precisely, there exists a continuous linear functional D ef (�) : L2 �F ;Rd�! R

such that

ef (Z0 + �)� ef (Z0) = DD ef (Z0) ; �E+ o (k�k2) (2.1)

= D�f (�0) + o (k�k2) ;

where h�; �i is the dual product on L2
�
F ;Rd

�
; and we will refer to D�f (�0) as the Fréchet

derivative of f at �0 in the direction � .

In this case, we have

D�f (�0) =
D
D ef (Z0) ; �E

=
d

dt
ef (Z0 + t�)

����
t=0

; with �0 = PZ0 :

So,

D�f (PZ0) =
d

dt

h ef (Z0 + t�)
i����
t=0

: (2.2)
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From (2.2), then we obtain the following form of the Taylor expansion

f (PZ)� f (PZ0) = D�f (PZ) + E (�) ; (2.3)

where E (�) is of order o (k�k2) with o (k�k2)! 0 for � (�) 2 L2
�
F ;Rd

�
:

Riesz representation theorem Let H ba a Hilbert space Let f ba a continuous linear

functional f 2 H�; then there exists a unique y 2 H such that

f(x) = hy; xi ;

for any x 2 H; Moreover, kyk = kfk :

By using the Riesz�representation theorem, there is a unique random variable Z0 in the

Hilbert space L2
�
F ;Rd

�
such that

D
D ef (Z) ; �E = (Z0; �)2 = E [(Z0; �)2] ;

where � (�) 2 L2
�
F ;Rd

�
:

It was shown, see the works of Lions [94], see also Cardaliaguet [27], Buckdahn, Li,

and Ma [?], that there exists a Boral function  [�0] : Rd ! Rd; depending only on the

law �0 = PZ but not on the particular choice of the representative Z such that

Z0 =  [�0] (Z) :

Thus, we can write (2.1) as 8# 2 L2(F ;Rd):

f (P#)� f (PZ) = ( [�0] (Z) ; #� Z)2 + o (k#� Zk2) :

We denote @�f (PZ ; y) =  [�0] (y) ; y 2 Rd: We note that for each � 2 X2
�
Rd
�
;

@�f (PZ ; �) =  [PZ ] (�) is only de�ned in a PZ (dx)� a:e sense, where � = PZ :
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2.4 Space of di¤erentiable functions in X2
�
Rd
�

Space of di¤erentiable functions in X2
�
Rd
�
.

De�nition 2.4.1.We say that the function f 2 C1;1b
�
X2
�
Rd
��
if for all # 2 L2

�
F ;Rd

�
;

there exists a P#-modi�cation of @�f (P#; �) such that @�f : X2
�
Rd
�
�Rd ! Rd is bounded

and Lipchitz continuous. That is for some C > 0, it holds that

(i) j@�f (�; x)j � C; 8� 2 X2
�
Rd
�
; 8x 2 Rd;

(ii) j@�f (�1; x)� @�f (�2; y)j � C (D2(�1; �2) + jx� yj) ; 8 �1; �2 2 X2
�
Rd
�
; 8 x; y 2 Rd:

Second-order derivatives with respect to probability law : We present a second order

derivatives with respect to measure of probability.

Let g 2 C1;1b (�2(Rn)) and consider the mapping (@�g (�; �)1 ; @�g (�; �)2 ; :::; @�g (�; �)n)> :

�2(Rn)� Rn ! Rn:

De�nition 2.4.2.We say that the function g 2 C2;1b (X2(Rn)) if g 2 C
1;1
b (X2(Rn)) such

that @�g(�; x) : X2(Rn)! Rn

(1) @�g(�; y)i 2 C1;1b (X2(Rn)); 8y 2 Rn and i 2 f1; 2; :::; ng :

(2) @�g(�; �) : Rn ! Rn is di¤erentiable, for every � 2 X2(Rn):

(3) The maps

@x@�g(�; �) : X2(Rn)� Rn ! Rn 
 Rn

and

@2�g(Px0 ; y; z) : X2(Rn)� Rn � Rn ! Rn 
 Rn

are bounded and Lipschitz continuous, where

@2�g(Px0 ; y; z) = @� [@�g(�; y)] (Px0 ; z) :

2.5 Control classes

Let (
;F ;Ft�0; P ) be a complete �ltred probability space.
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1. Admissible control An admissible control is Ft-adapted process u(t) with values in

a borelian A � Rn

U := fu(�) : [0; T ]� 
! A : u(t) is Ft-adaptedg : (2.4)

2. Optimal control The optimal control problem consists to minimize a cost functional

J(u) over the set of admissible control U . We say that the control u�(�) is an optimal

control if

J(u�(t)) � J(u(t)), for all u(�) 2 U :

3. Near-optimal control Let " > 0, a control u"(�) is a near-optimal control (or "-

optimal) if for all control u(�) 2 U we have

J(u"(t)) � J(u(t)) + ": (2.5)

See for some applications.

4. Singular control. An admissible control is a pair (u(�); �(�)) of measurable A1 �

A2�valued, Ft�adapted processes, such that �(�) is of bounded variation, non-decreasing

continuous on the left with right limits and �(0�) = 0: Since d�(t) may be singular with

respect to Lebesgue measure dt; we call �(�) the singular part of the control and the process

u(�) its absolutely continuous part.

5. Feedback control : We say that u (�) is a feedback control if u (�) depends on the

state variable X(�).

If FX
t the natural �ltration generated by the process X, then u (�) is a feedback control

if u (�) is FX
t �adapted.

6. Robust control. In the problems formulated above, the dynamics of the control

system is assumed to be known and �xed. Robust control theory is a method to measure

the performance changes of a control system with changing system parameters. This is
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of course important in engineering systems, and it has recently been used in �nance in

relation with the theory of risk measure.

Indeed, it is proved that a coherent risk measure for an uncertain payo¤ x(T ) at time

T is represented by :

�(�X(t)) = sup
Q2M

EQ(X(T ));

whereM is a set of absolutly continuous probability measures with respect to the original

probability P:

7. Partial observation control problem It is assumed so far that the controller com-

pletely observes the state system. In many real applications, he is only able to observe

partially the state via other variables (called observed variable) and there is noise in the

observation system. For example in �nancial models, one may observe the asset price but

not completely its rate of return and/or its volatility, and the portfolio investment is based

only on the asset price information. This may be formulated in a general form as follows :

we have a controlled (unobserved) process governed by the following SDE :

dx (t) = f (t; x (t) ; y(t); u (t)) dt+ � (t; x (t) ; y (t) ; u (t)) dW (t) ;

and y (t) an observation process de�ned by

dy (t) = h (t; x (t) ; u (t)) dW (t) ;

where B (t) is another Brownian motion, eventually correlated with W (t) : The control

u(t) is adapted with respect to the �ltration generated by the observation F Y
t and the cost

functional to optimize is :

J (u (�)) = E

�
h (x (T ) ; y(T )) +

Z T

0

g (t; x (t) ; y(t); u (t)) dt

�
:
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8. Ergodic control Some stochastic systems may exhibit over a long period a stationary

behavior characterized by an invariant measure. This measure, if it does exists, is obtained

by the average of the states over a long time. An ergodic control problem consists in

optimizing over the long term some criterion taking into account this invariant measure.

(See Pham [106], Borkar [16]). The cost functional is given by

lim sup
T!+1

1

T
E

Z T

0

f(x(t); u(t))dt:

9. Random horizon In classicla problem, the time horizon is �xed until a deterministic

terminal time T . In some real applications, the time horizon may be random, the cost

functional is given by the following :

J (u (�)) = E

�
h (x (�)) +

Z �

0

g (t; x (t) ; y(t); u (t)) dt

�
;

where � s a �nite random time.

10. Relaxed control The idea is to compactify the space of controls U by extending the

de�nition of controls to include the space of probability measures on U . The set of relaxed

controls �t (du) dt, where �t is a probability measure, is the closure under weak* topology

of the measures �u(t)(du)dt corresponding to usual, or strict, controls. This notion of relaxed

control is introduced for deterministic optimal control problems in Young (Young, L.C.

Lectures on the calculus of variations and optimal control theory, W.B. Saunders Co.,

1969.) (See Borkar [16]).

11. Impulsive control. (Impulse control). Here one is allowed to reset the trajectory at

stopping times �i from X�i� (the value immediately before i) to a new (non-anticipative)

value X�i, resp., with an associated cost M
�
X�i� ; X�i

�
: The purpose of the controller is
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to minimizes the cost functional :

J (u (�)) = E

Z T

0

exp

�
�
Z t

0

C(X(s); u(s))ds

�
K(X(t); u(t))

+
X
�i<T

exp

�
�
Z �i

0

C(X(s); u(s))ds

�
M(X� ; X�i�)

+ exp

�
�
Z �i

0

C(X(s); u(s))ds

�
h(X(T )):

In this model, we should assume that M(X� ; X�i�) > � for some � > 0 to avoid in�nitely

many jumps in a �nite time interval.

Some recent examples and applications on control classes can be found in [16], [60],

[106] and [120].
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Chapitre 3

Stochastic intervention control of

mean-�eld jump system with noisy

observation via L-derivatives with

application to �nance

3.1 Introduction

In this chapter, we study stochastic optimal intervention control of mean-�eld jump system

with noisy observation via L-derivatives on Wasserstein space of probability measures We

derive the necessary conditions of optimality for partially observed optimal intervention

control problems of mean-�eld type. The coe¢ cients depend on the state of the solution

process as well as of its probability distribution and the control variable. The proof of

our main results are obtained by applying L-derivatives in the sense of Lions. In our

control problem, there are two models of jumps for the state process, the inaccessible

ones which come from the Poission process and the predictable ones which come from

the intervention control Finally, we apply our result to study conditional mean-variance
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portfolio selection problem with interventions, where the foreign exchange interventions

are intended to contain excessive �uctuations in foreign exchange rates and to stabilize

them.

Since the development of nonlinear �ltering theory, stochastic control problems under

partial observation have received much attention and became a powerful tool in many

�elds with important applications, such as �nance and economics, etc. In many situations,

the states of the systems cannot be completely observed ; however, some other processes

related to the unobservable states can be observed. Such subjects have been discussed by

many authors, such as Wang, Wu and Xiong [111], Wang, Zhang, and Zhang [115], Wang,

Wu and Xiong [113], Bensoussan and Yam [18], Wang, Shi and Meng [112], Lakhdari,

Miloudi and Hafayed [75], Miloudi et al [101], Abada, Hafayed and Meherrem [2].

General mean-�eld type stochastic di¤erential equations (SDEs) are Itô�s stochastic

di¤erential equations, where the coe¢ cients of the state equation depend on the time

variable, the state of the solution process as well as of its probability law. In his course

at Collége de France [94], (refer to Cardaliaguet [27] for the written version) P.L. Lions

introduced and studied the innovative notion of new derivatives with respect to measure

over Wasserstein spaces. Strongly motivated by these works, Buckdahn et al, [19] proved

the necessary conditions for general mean-�eld systems. Stochastic maximum principles

for general mean-�eld models were later studied in [101, 91, 38].

Stochastic irregular (singular or impulse) control problems have received considerable

attention in the literature. There are numerous papers by di¤erent authors investigating

the stochastic optimal singular or impulse control problems, e.g., Cadenillas and Hauss-

mann [25], Dufour and Miller [30], Hafayed and Abbas [42], Zhang [79], Jeanblanc-Piqué

[80], Korn [74], Wu and Zhang [?]. An extensive list of recent references to singular control

problem, with some applications in �nance and economics can be found in [42, 65, 78, 81].

Optimal control problems for SDEs with jump processes have been investigated by many

authors, see for instance, [21, 23, 83, 84]. A good account and an extensive list of refe-
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rences on jump processes can be founded in [82] for a comprehensive theoretical study of

the topic.

In the present chapter, we study a new mean-�eld type intervention control problem.

We establish a new set of necessary conditions of optimal intervention control for general

mean-�eld jump systems. Our mean-�eld dynamic is governed by SDEs with a random

measures and an independent Brownian motion, with noisy observation. The coe¢ cients of

our mean-�eld dynamic depend nonlinearly on both the state process as well as of its pro-

bability law. The control domain is assumed to be convex. The L-derivatives with respect

to probability measure and the associate Itô-formula are applied to prove our main results.

Noting that our general mean-�eld partially observed control problem occur naturally in

the probabilistic analysis of �nancial optimization problems. Our model of partially obser-

ved intervention control problem play an important role in di¤erent �elds of economics and

�nance, as conditional mean variance portfolio selection problem with discrete movement

in incomplete market. Also, optimal consumption and portfolio problem under proportio-

nal transaction costs. Moreover, the exchange rate under uncertainty, where government

has two means of in�uencing the foreign exchange rate of its own currency :

1. At all times t the government can choose the domestic interest rate.

2. At selected times �i the government, or bank can intervene in the foreign exchange

market by selling or buying large amounts of foreign currency.

In our model of mean-�eld control problem, there are two types of jumps for the state

processes, the inaccessible ones which come from the Poission process and the predictable

ones which come from the intervention control.

As an illustration, by applying our result, conditional mean-variance portfolio selection

problem with interventions with incomplete market is discussed. In �nancial markets three

important objectives of interventions : to in�uence the level of the exchange rate, to

dampen exchange rate volatility or supply liquidity to foreign exchange markets ; and to

in�uence the amount of foreign reserves. Banks intervene in foreign exchange markets in

44



Chapter 3, McKean-Vlasov system with jumps under noisy observation Korich F. 2024

order to achieve a variety of overall economic objectives, such as controlling in�ation,

maintaining competitiveness or maintaining �nancial stability.

The rest of this chapter is organized as follows. Sect. 2 begins with a formulation of

the partially observed control problem of general mean-�eld di¤erential equations with

Poisson jump processes. We give the notations and de�nitions of the L-derivatives on the

Wasserstein space via P.L. Lions sense and assumptions used throughout the work. In Sect.

3, we prove the necessary conditions of optimality which are our main results. Conditional

mean-variance portfolio selection problem with interventions is also given in Sect. 4. At

the end of this work, some discussions with concluding remarks and future developments

are presented in the last Section.

3.2 Formulation of the problem and preliminaries

Spaces and notations. Let T is a �xed terminal time and (
;F ;Ft;P) be a complete

�ltered probability space on which are de�ned two independent standard one-dimensional

Brownian motions W (�) and Y (�): Let Rn is a n-dimensional Euclidean space, Rn�d the

collection of n � d matrices. Let k(�) be a stationary Ft-Poisson point process with the

characteristic measure m (d�) : We denote by � (d�; dt) the counting measure or Poisson

measure de�ned on ��R+; where � is a �xed nonempty subset of R with its Borel �-�eld

B (�) and set e� (d�; dt) = � (d�; dt) � m (d�) dt satisfying
R
�
(1 ^ j�j2)m (d�) < 1 and

m (�) < +1.

Let FW
t ; FY

t and F�
t be the natural �ltration generated by W (�); Y (�) and �(�; �)

respectively. We assume that Ft = FW
t _ FY

t _ F
�
t _ N ; where N denotes the totality

of P-null sets. We denote by h�; �i (resp. j � j) the scalar product (resp., norm), E (�)

denotes the expectation on (
;F ;Ft;P) : Throughout this work, we denote by L2 (Ft;Rn)

the space of Rn-valued Ft-measurable random variable X; such that E( jXj2) < +1

and by M2 ([0; T ] ;R) : the space of R-valued Ft-adapted measurable process g(�); such
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that E
R T
0

R
�
jg(t; �)j2m (d�) dt < +1: Let L2

�
F ;Rd

�
be the Hilbert space with inner

product (X; Y )2 = E [X:Y ] ;where X; Y 2 L2
�
F ;Rd

�
and the norm kXk22 = (X;X)2 :

Let X2
�
Rd
�
be the space of all probability measures � on

�
Rd;B

�
Rd
��
with �nite second

moment, i.e,
R
Rd jxj

2 �(dx) < +1; endowed with the following Wasserstein metric D2(�; �) ;

for �; � 2 X2
�
Rd
�
;

D2(�; �) = inf
�(�;�)2X2(R2d)

(�Z
R2d
jx� yj2 � (dx; dy)

� 1
2

)
;

where � (�; �) 2 X2
�
R2d
�
; �
�
A;Rd

�
= � (A) ; �

�
Rd; B

�
= v (B) :

3.2.1 Derivatives on the Wasserstein space

We would like to point out that the version of @�f (P#; �) ; # 2 L2
�
F ;Rd

�
indicated in

the above de�nition is unique.

Let (b
; bF ; bFt; bP) be a copy of the probability space (
;F ;Ft;P) : For any pair of random
variable (#1; #2) 2 L2

�
F ;Rd

�
� L2

�
F ;Rd

�
; we let ( b#1; b#2) be an independent copy of

(#1; #2) de�ned on (b
; bF ; bFt; bP): We consider the product probability space (
 � b
;F 
bF ;Ft 
 bFt;P
 bP) and setting ( b#1; b#2)(w; bw) = (#1( bw); #2( bw)) for any (w; bw) 2 
 � b
:
Let (bu (t) ; bx (t)) be an independent copy of (u (t) ; x (t)) so that Px(t)= bPbx(t):We denote bybE (�) = bE bP (�) the expectation under probability measure bP and PX = P�X�1 denotes

the law of the random variable X:

Let A1 be a closed convex subset of Rk and A2 := [0;+1)m :

De�nition 3.2.1. An admissible continuous control u (�) is an FY
t -adapted process

with values in A1 satis�es supt2[0;T ] (E ju(t)j
n) < 1; n = 2; 3; : : : : We denote by UY1 the

set of the admissible regular control variables:

De�nition 3.2.2. An intervention control is a stochastic irregular process �(�) of

measurableA2�valued, FY�adapted processes, such that the process �(�) : [0; T ]�
! A2

is non-decreasing continuous on the right with left-limits, with bounded variation and
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�(0) = 0: Moreover, E(j�(T )jp) < 1 for any p � 2: We denote by UY2 the set of the

admissible intervention control variables:

De�nition 3.2.3. An admissible combined control is a pair (u(�); �(�)) of measurable

A1 � A2�valued, FY�adapted processes, such that the process u(�) : [0; T ] � 
 ! A1 is

regular process and �(�) : [0; T ] � 
 ! A2 is an intervention control given by De�nition

2.2. We denote by UY1 � UY2 the set of the admissible combined control variables:

3.2.2 Partially observed optimal intervention control Model

In this work, we formulate this problem mathematically as a combined stochastic

continuous control and irregular control problem. We study partially observed optimal

stochastic intervention control problem for systems governed by mean-�eld SDEs with

correlated noisy between the system and the observation, allowing both classical and

intervention control of the form : t 2 [0; T ]

8>>>>>>>><>>>>>>>>:

dxu;� (t) = f(t; xu;� (t) ;Pxu;�(t); u (t))dt+ �(t; xu;� (t) ;Pxu;�(t); u (t))dW (t)

+
R
�
g(t; xu;� (t�) ;Pxu;�(t�); u (t) ; �)e� (d�; dt)

+ c(t; xu;� (t) ;Pxu;�(t); u (t))dfW (t) +G(t)d�(t);

xu;� (0) = x0;

(3.1)

where Pxu;�(t) = P�
�
xu;�

��1
denotes the law of the random variable xu;�. The mappings

f : [0; T ]� Rn � X2(Rd)� A1 ! Rn

� : [0; T ]� Rn � X2(Rd)� A1 !M(Rn�d)

c : [0; T ]� Rn � X2(Rd)� A1 !M(Rn�d)

g : [0; T ]� Rn � X2(Rd)� A1 ��!M(Rn�d)

G : [0; T ]! Rn
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are given deterministic functions.

Suppose that the state processes xu;� (�) cannot be observed directly, but the controllers

can observe a related noisy process Y (�); which is governed by the following equation

8><>:
dY (t) = h(t; xu;� (t) ; u (t))dt+ dfW (t)

Y (0) = 0;

(3.2)

where h : [0; T ]�Rn�A1 ! Rr; andfW (�) is a stochastic process depending on the control

u(�):

Consider the cost functional

J(u (�) ; �(�)) = Eu

�Z T

0

l(t; xu;�(t);Pxu;�(t); u(t))dt (3.3)

+ (xu;�(T );Pxu;�(t)) +
Z
[0;T ]

M(t)d�(t)

�
:

Where l : [0; T ] � Rn � X2 (R) � A1 ! R;  : Rn � X2 (R) ! R and Eu stands for the

mathematical expectation on (
;F ;Ft;Pu) de�ned by

Eu(X) = EPu(X) =

Z



X(w)dPu(w):

In this work, we shall make use of the following standing assumptions.

Assumption (H 3.1) The maps f; �; c; l : [0; T ] � R � X2 (R) � A1 ! R and  : R �

X2 (R) ! R are measurable in all variables. Moreover, f(t; �; �; u); �(t; �; �; u); c(t; �; �; u);

l(t; �; �; u); g(t; �; �; u; �) 2 C1;1b (R� X2 (R) ;R) and  (�; �) 2 C1;1b (R� X2 (R) ;R) for all

u 2 A1:

Assumption (H 3.2) Let ' (x; �) = f(t; x; �; u); �(t; x; �; u); c(t; x; �; u); l(t; x; �; u);

g(t; x; �; u; �);  (x; �); the function ' (�; �) satis�es the following properties :

(1) For �xed x 2 R and � 2 X2 (R) ; the function ' (�; �) 2 C1b (R) and ' (x; �) 2
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C1;1b (X2
�
Rd
�
;R): All the derivatives 'x and @�'; for ' = f; �; c; l;  are bounded and

Lipschitz continuous, with Lipschitz constants independent of u 2 A1: Moreover, there

exists a constants C (T;m(�)) > 0 such that

sup
�2�

jgx (t; x; �; u; �)j+ sup
�2�

j@�g (t; x; �; u; �)j � C:

sup
�2�

jgx (t; x; �; u; �)� gx (t; x
0; �0; u; �)j+ sup

�2�
j@�g (t; x; �; u; �)� @�g (t; x

0; �0; u; �)j

� C [jx� x0j+ D2(�; �0)] :

(2) The functions f; �; c; g and l are continuously di¤erentiable with respect to control

variable u (�), and all their derivatives are continuous and bounded. Moreover, there exists

a constants C = C (T;m(�)) > 0 such that

sup
�2�

jgu (t; x; �; u; �)j � C:

The function h is continuously di¤erentiable in x and continuous in v, its derivatives and

h are all uniformly bounded which satis�es the following Novikov�s condition :

E

�
exp

�
1

2

Z t

0

��h(s; xu;�(s); u(s))��2 ds�� <1: (3.4)

Assumption (H 3.3) The functions G (�) : [0; T ]� 
! R; and M (�) : [0; T ]� 
! R+

are continuous and bounded.

Clearly, assumption (H 3.3) allows us to de�ne integrals of the form
R
[0;T ]

G(t)d�(t) andR
[0;T ]

M(t)d�(t). Moreover, under assumptions (H1), (H2) and (H3), for any (u (�) ; �(�)) 2
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UY1 � UY2 the mean-�eld equation (3.1) admits a unique strong solution xu;� (t) given by

xu;� (t) = x0 +

Z t

0

f(s; xu;� (s) ;P [xu;� (s)]; u (s))ds+ �(s; xu;� (s) ;P [xu;� (s)]; u (s))dW (s)

+ c(s; xu;� (s) ;P [xu;� (s)]; u (s))dfW (s)

+

Z t

0

Z
�

g(s; xu;� (s�) ;P [xu;� (s�)]; u (s) ; �)e� (d�; ds)
+

Z
[0;T ]

G(s)d�(s):

We de�ne the FY
t �martingale �u(t) which is the solution of the equation

8><>:
d�u(t) = �u(t)h

�
t; xu;�(t); u(t)

�
dY (t);

�u(0) = 1:

(3.5)

This martingale allowed to de�ne a new probability Pu on the space (
;F) ; to emphasize

the fact that it depend on the control u (�) : It is given by the Radon-Nikodym derivative :

dPu

dP

����
FYt

= �u(t). (3.6)

From the linear equation (3.5), and by a simple computation, we can get

�u(t) = exp

�Z t

0

h(s; xu;�(s); u(s))dY (s)� 1
2

Z t

0

��h(s; xu;�(s); u(s))��2 ds� : (3.7)

This type of equations are called Doléan-Dade�s exponential. We note that Eu('(X))

refers to the expected value of 	(X) with respect to the probabilily law Pu. Moreover,
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since dPu = �u(t)dP, we have

Eu('(X)) = EPu('(X)) =

Z



'(X(w))dPu(w);

=

Z



'(X(w))�u(t)dP(w);

= EP(�
u(t)'(X)) = E [�u(t)'(X)] :

Applying Itô�s formula, we can prove that supt2[0;T ]E (j�u(t)j
n) < +1; n > 1. By Gir-

sanov�s theorem and assumptions (H 3.1), (H 3.2) and (H3.3), Pu is a new probability

measure of density �u(t). The process

fW (t) = Y (t)�
Z t

0

h(s; xu;� (s) ; u (s))ds;

is a standard Brownian motion independent of B (�) and x0 on the new probability space

(
;F ;Ft;Pu) :

By Radon-Nikodym derivative (3.6), with the martingale property of �u(t), the cost func-

tional (3.3) can be written as

J(u(�); �(�)) = E

�Z T

0

�u(t)l(t; xu;�(t);Pxu;�(t); u(t))dt+ �u(T ) (xu;�(T );P [xu;� (T )])

(3.8)

+

Z
[0;T ]

�u(t)M(t)d�(t)

�
:

The main purpose of this work is to prove stochastic maximum principle, also called

necessary optimality conditions for the partially observed optimal control of mean-�eld

Poisson jumps.

Notice that the jumps of a singular control �(�) at any time tj denote by ��(tj) = �(tj)�
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�(tj�) and we de�ne the continuous part of the intervention control by

j�j (t) = �(t)�
X
0�tj�t

��(tj):

Here j�j (t) the process obtained by removing the jumps of �(t):

Throughout this work, we distinguish between the jumps caused by the intervention

control �(�) and the jumps caused by the random Poisson measure at any jumping time

t:The jumps of xu;�(t) caused by the intervention control �(�) by

4�x
u;�(t) = G(t)4�(t) = G(t)(�(t)� �(t�)); (3.9)

and the jumps of xu;�(t) caused by the Poisson measure of e�(�; t) by
4�x

u;�(t) =

Z
�

g
�
t; xu;�(t�);P

�
xu;�(t�)

�
; u(t�); �

� e� (d�; ftg) (3.10)

=

8><>:
g
�
t; xu;�(t�);P [xu;�(t�)]; u(t�); �

�
: if � has a jump of size � at time t:

0 : otherwise,

where e� (d�; ftg) means the jump in the Poisson random measure, occurring at time t:

Finally, the general jump of the state processes xu;�(�) at any jumping time t is given

by

4xu;�(t) = xu;�(t)� xu;�(t�) = 4�x
u;�(t) +4�x

u;�(t): (3.11)

3.3 Necessary conditions for optimal intervention control

in Wasserstein space

In this section, we prove the necessary conditions of optimality for our partially ob-

served optimal intervention control problem of general mean-�eld stochstic di¤erential

equations with jumps. The proof is based on Girsanov�s theorem, the derivatives with
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respect to probability measure in Wasserstein space and by introducing the variational

equations with some estimates of their solutions.

3.3.1 Main results

Hamiltonian. We de�ne the Hamiltonian

H : [0; T ]� R� X2 (R)� A1 � R� R� R� R� R! R;

associated with our control problem by

H(t; x; �; u;� (t) ; Q (t) ; Q (t) ; K (t) ; R (t; �))

= l(t; x; �; u) + f(t; x; �; u)� (t) + �(t; x; �; u)Q (t)

+ c(t; x; �; u)Q (t) + h (t; x; u)K (t) +

Z
�

g (t; x; �; u; �)R (t; �)m (d�) : (3.12)

Adjoint equations. We are now ready to introduce two new adjoint equations that will be

the building blocks of the stochastic maximum principle and

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

�d� (t) =
h
fx (t) � (t) + bE h@� bf (t) b� (t)i+ �x (t)Q (t) + bE h@�b� (t) bQ (t)i

+cx (t)Q (t) + bE h@�bc (t) bQ (t)i+ lx (t) + bE h@�bl (t)i
+
R
�

h
gx (t; �)R (t; �) + bE h@�bg (t; �) bR (t; �)iim (d�) + hx (t)K(t)

i
dt

�Q(t)dW (t)�Q(t)dfW (t)� R
�
R (t; �) e� (d�; dt) ;

�(T ) =  x(x (T ) ;P [x(T )]) + bE [@� (bx (T ) ;P [x(T )] ; x(T ))] :
(3.13)

and 8><>:
�dy(t) = l(t)dt� z (t) dW (t)�K (t) dfW (t)�

R
�
R (t; �) e� (d�; dt) ;

y(T ) =  (x(T );P [x(t)]);
(3.14)
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Clearly, under assumptions (H 3.1) and (H 3.2), it is easy to prove that BSDEs (3.14) and

(3.13) admits a unique strong solutions, given by

y(t) =  (x(T );P [x(T )]) +
Z T

t

l(s)ds�
Z T

t

z (s) dW (s)�
Z T

t

K (s) dfW (s)

�
Z T

t

Z
�

R (s; �) e� (d�; ds) :
and

� (t) =  x(x (T ) ;P [x(t)]) + bE [@� (bx (T ) ;P [x(t)] ; x(T ))] :
+

Z T

t

h
fx (s) � (s) + bE h@� bf (s) b� (s)i+ �x (s)Q (s) + bE h@�b� (s) bQ (s)i

+ cx (s)Q (s) + bE h@�bc (s) bQ (s)i+ lx (s) + bE h@�bl (s)i
+

Z
�

h
gx (s; �)R (s; �) + bE h@�bg (s; �) bR (s; �)iim (d�) + hx (s)K(s)

�
ds

�
Z T

t

Q(s)dW (s)�
Z T

t

Q(s)dfW (s)� Z T

t

Z
�

R (s; �) e� (d�; ds) :
The main result of this chaptre is stated in the following theorem.

Theorem 3.3.1 Let assumptions (H 3.1) (H 3.2) and (H 3.3) hold. Let (u�(�); ��(t); x�(�))

be the optimal solution of the control problem (3.1)-(3.3).

Then there exists (� (�) ; Q (�) ; Q(�); K (�) ; R (�; �)) solution of (3.13)-(3.14) such that

for any (u; �) 2 A1 � A2, we have P�a:s:; a:e:t 2 [0; T ] ;

0 � Eu
�
Hu(t; x

�(t);P [x�(t)] ; u� (t) ;� (t) ; Q (t) ; Q (t) ; K (t) ; R (t; �)) (u (t)� u� (t)) j FY
t

�
(3.15)

+ Eu

�Z
[0;T ]

(M(t) +G(t)�(t))d (� � ��) (t) j FY
t

�
;

where the Hamiltonian function H is de�ned by (3.12):
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3.3.2 Proof of main results

Double convex perturbation. To prove our main result, the approach that we use is

based on a double perturbation of the optimal control. This perturbation is described as

follows :

Let (u(�); �(�)) 2 UY1 � UY2 ; be any given admissible control. Let " 2 (0; 1), and write

u"(�) = u�(�) + "v(�) where v(t) = u(t)� u�(t); (3.16)

and

�"(t) = ��(t) + "�(t) where �(t) = �(t)� ��(t); (3.17)

where " a su¢ ciently small " > 0. Here (u"(�); �"(�)) is the so called convex perturbation

of (u�(�); ��(�)) de�ned as follows : for any t 2 [0; T ]

(u"(t); �"(t)) = (u�(t); ��(t)) + " [(u(t); �(t))� (u�(t); ��(t))] ;

Denote by x"(�) = xu
";�"(�) the solution of (3.1) associated with (u"(�); �"(�)) and by �"(�)

the solution of (3.5) corresponding to u"(�):

We denote by x"(�); x(�); �"(�); �(�) the state trajectories of (3.1) and (3.5) correspon-

ding respectively to u"(�) and u(�).

Short-hand notation. For simpli�cation, we introduce the short-hand notation

' (t) = '
�
t; xu;�(t);Pxu;�(t); u(t)

�
;

'" (t) = '(t; x"(t);P [x"(t)] ; u"(t));

and

g (t; �) = g(t; xu;�(t�);P
�
xu;�(t�)

�
; u(t); �); h (t) = h

�
t; xu;�(t); u(t)

�
;

g" (t; �) = g(t; x"(t�);P [x"(t�)] ; u"(t); �); h" (t) = h (t; x"(t); u"(t)) ;
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where g; h and ' = f; �; c; l as well as their partial derivatives with respect to x and u.

Also, we will denote for ' = f; �; c; l and g :

@�' (t) = @�' (t; x(t);P [x(t)] ; u(t); bx(t)) ;
@�b' (t) = @�' (t; bx (t) ;P [bx(t)] ; bu (t) ; x(t)) ;

and

@�g (t; �) = @�g (t; x(t�);P [x(t�)] ; u(t); �; bx(t)) ;
@�bg (t; �) = @�g (t; bx (t) ;P [bx(t�)] ; bu (t) ; �;x (t)) :

In order to prove our main result in Theorem 3.3.1, we present some auxiliary results

Lemma 3.3.2 Suppose that assumptions (H 3.1), (H 3.2) and (H 3.3) hold. Then, we

have

lim
"!0

E

�
sup
0�t�T

jx"(t)� x�(t)j2
�
= 0: (3.18)

Proof Applying standard estimates, the Burkholder-Davis-Gundy inequality, and Propo-

sition 5.1 in Bouchard and Elie [21] we have

E

�
sup
0�t�T

jx"(t)� x�(t)j2
�

� E

Z t

0

jf " (s)� f � (s)j2 ds+ Eu

Z t

0

j�" (s)� �� (s)j2 ds

+ E

Z t

0

jc" (s)� c� (s)j2 ds+ E

Z t

0

Z
�

jg" (s; �)� g� (s; �)j2m (d�) ds

+ E

����Z
[0;t]

G(s)d (�" � ��) (s)

����2 ;
According to the Lipschitz conditions on the coe¢ cients f; �; c and g with respect to x; �
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and u, (assumptions (H 3.2)-(H 3.3)), we obtain the following estimation :

E

�
sup
0�t�T

jx"(t)� x�(t)j2
�
� CTE

Z t

0

�
jx"(s)� x�(s)j2 + jD2 (P [x"(s)] ;P [x�(s)])j2

�
ds

+ CT "
2E

Z t

0

ju"(s)� u�(s)j2 ds (3.19)

+ CT "
2E j�"(T )� ��(T )j2 :

Applying the de�nition of Wasserstein metric D2 (�; �), we have

D2 (P [x"(s)];P [x�(s)]) = inf
n�
E jex"(s)� ex�(s)j2� 12 ;

P [x"(s)] = P [ex"(s)] and P [x�(s)] = P [ex�(s)]g
�
�
E jx"(s)� x�(s)j2

� 1
2 : (3.20)

for ex"(�); ex�(�) 2 L2 �F ;Rd� ; P [x"(s)] = P [ex"(s)] and P [x�(s)] = P [ex�(s)] :
From (3.19) and (3.20), we get

E

�
sup
0�t�T

jx"(t)� x�(t)j2
�
� CTE

Z t

0

sup
r2[0;s]

jx"(r)� x�(r)j2 ds+MT "
2:

Finally, applying Gronwall�s inequality, the desired result (3.18) follows immediately by

letting " go to 0. This achieve the proof of Lemma 3.3.2. �

Variational equations. Now, we introduce the following variational equations involved
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in the stochastic maximum principle for our control problem

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

dZ(t) =
h
fx (t)Z(t) + bE h@�f (t) bZ (t)i+ fu(t)(u(t)� u�(t))

i
dt

+
h
�x(t)Z(t) + bE h@�� (t) bZ (t)i+ �u(t)(u(t)� u�(t))

i
dW (t)

+
h
cx(t)Z(t) + bE h@�c (t) bZ (t)i+ cu (t) (u(t)� u�(t))

i
dfW (t)

+
R
�

h
gx(t; �)Z(t) + bE h@�g (t; �) bZ (t)i+ gu(t; �)(u(t)� u�(t))

i e� (d�; dt) ;
+G(t)d (� � ��) (t);

Z(0) = 0;
(3.21)

and 8><>:
d�1(t) = [�1(t)h(t) + �(t)hx(t)Z(t) + �(t)hu(t)(u(t)� u�(t))] dY (t);

�1(0) = 0:

(3.22)

Under assumptions (H 3.1) and (H 3.2), equations (3.21) and (3.22) admits a unique

adapted solutions Z (�) and �1 (�), respectively.

Lemma 3.3.3 Suppose that assumptions (H 3.1), (H 3.2) and (H 3.3) hold. Then, we

have

lim
"!0

sup
0�t�T

E

����x"(t)� x(t)

"
�Z(t)

����2 = 0: (3.23)

Proof Let "(t) = x"(t)�x�(t)
"

� Z(t); t 2 [0; T ] : To simplify, we will use the following

notations, for ' = f; �; c; l and g :

'�;"x (t) = 'x
�
t; x�;" (t) ;P [x"(t)] ; u"(t)

�
;

g�;"x (t; �) = gx
�
t; x�;" (t) ;P [x"(t)] ; u"(t); �

�
;

@�;"� ' (t) = @�'(s; x
"(t);P

�bx�;" (t)� ; u"(t); bx(t));
@�;"� g (t; �) = @�g(t; x

"(t);P
�bx�;" (t)� ; u"(t); �; bx(t));
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and

x�;" (s) = x� (s) + �" (" (s) + Z (s)) ;

bx�;" (s) = x�(s) + �"(b"(s) + bZ (s));
u�;" (s) = u� (s) + �"v (s) :

By simple computations, we get

"(t) =
1

"

Z t

0

[f "(s)� f �(s)] ds+
1

"

Z t

0

[�"(s)� ��(s)] dW (s)

+
1

"

Z t

0

[c"(s)� c�(s)] dfW (s) +
1

"

Z t

0

Z
�

[g"(s; �)� g�(s; �)] e� (d�; ds)
+
1

"

Z
[0;t]

G(s)d (�" � ��) (s)

�
Z t

0

h
fx(s)Z (s) + bE h@�f(s) bZ(s)i+ fu(s) (u(s)� u�(s))

i
ds

�
Z t

0

h
�x(s)Z(s) + bE h@��(s) bZ(s)i+ �u(s) (u(s)� u�(s))

i
dW (s)

�
Z t

0

h
cx(s)Z(s) + bE h@�c(s) bZ(s)i+ cu(s) (u(s)� u�(s))

i
dfW (s)

�
Z t

0

Z
�

h
gx(s; �)Z(s) + bE h@�g (s; �) bZ (s)i+ gu(s; �) (u(s)� u�(s))

i e� (d�; ds)
�
Z
[0;t]

G(s)d (� � ��) (s):

Now, we decompose 1
"

R t
0
[f "(s)� f � (s)] ds into the following parts

1

"

Z t

0

[f "(s)� f � (s)] ds

=
1

"

Z t

0

[f(s; x"(s);P [x"(s)] ; u"(s))� f(s; x�(s);P [x�(s)] ; u�(s))] ds

=
1

"

Z t

0

[f(s; x"(s);P [x"(s)] ; u"(s))� f(s; x�(s);P [x"(s)] ; u"(s))] ds

+
1

"

Z t

0

[f(s; x�(s);P [x"(s)] ; u"(s))� f(s; x�(s);P [x�(s)] ; u"(s))] ds

+
1

"

Z t

0

[f(s; x�(s);P [x�(s)] ; u"(s))� f(s; x�(s);P [x�(s)] ; u�(s))] ds:
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We notice that

1

"

Z t

0

[f "(s)� f(s; x�(s);P [x"(s)] ; u"(s))] ds =
Z t

0

Z 1

0

�
f�;"x (s) ("(s) + Z(s))

�
d�ds;

1

"

Z t

0

[f "(s)� f(s; x" (s) ;P [x�(s)] ; u"(s)] ds =
Z t

0

Z 1

0

bE h@�;"� f (s) (b"(s) + bZ (s))i d�ds;
and

1

"

Z t

0

[f (s; x(s);P [x(s)] ; u"(s))� f(s; x�(s);P [x�(s)] ; u�(s))] ds

=

Z t

0

Z 1

0

�
fu
�
s; x(s);P [x(s)] ; u�;" (s)

�
(u(s)� u�(s))

�
d�ds:

By applying similar method developed above, the analogue approachs hold for the coe¢ -

cients �; c and g. Moreover, from (3.17), we obtain

1

"

Z
[0;t]

G(s)d (�" � ��) (s)�
Z
[0;t]

G(s)d (� � ��) (s) = 0:
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Now, we turn our attention to estimate "(s), then we get

E

"
sup
s2[0;t]

j"(s)j2
#
= C (t)E

�Z t

0

Z 1

0

��f�;"x (s) " (s)
��2 d�ds

+

Z t

0

Z 1

0

bE ��@�;"� f (s) b" (s)��2 d�ds
+

Z t

0

Z 1

0

����;"x (s) " (s)
��2 d�ds

+

Z t

0

Z 1

0

bE ��@�;"� �(s)b" (s)��2 d�ds
+

Z t

0

Z 1

0

��c�;"x (s) " (s)
��2 d�ds

+

Z t

0

Z 1

0

bE ��@�;"� c(s)b" (s))��2 d�ds
+

Z t

0

Z
�

Z 1

0

��g�;"x (s; �) " (s)
��2 d�m (d�) ds

+

Z t

0

Z
�

Z 1

0

bE ��@�;"� g (s; �) b" (s))��2 d�m (d�) ds�
+ C (t)E

"
sup
s2[0;t]

j�"(s)j2
#
;

where

�"(t) =

Z t

0

Z 1

0

�
f�;"x (s)� fx (s)

�
Z(s)d�ds

+

Z t

0

Z 1

0

bE h�@�;"� f (s)� @�f(s)
� bZ(s)i d�ds

+

Z t

0

Z 1

0

�
fu
�
s; x(s);P [x(s)] ; v�;" (s)

�
� fu (s)

�
(u(s)� u�(s)) d�ds

+

Z t

0

Z 1

0

�
��;"x (s)� �x (s)

�
Z(s)d�dW (s)

+

Z t

0

Z 1

0

bE h�@�;"� �(s)� @��(s)
� bZ(s)i d�dW (s)

+

Z t

0

Z 1

0

�
�u
�
s; x(s);P [x(s)] ; v�;" (s)

�
� �u (s)

�
(u(s)� u�(s)) d�dW (s)
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+

Z t

0

Z 1

0

�
c�;"x (s)� cx (s)

�
Z(s)d�dfW (s)

+

Z t

0

Z 1

0

bE h�@�;"� c(s)� @�c (s)
� bZ(s)i d�dfW (s)

+

Z t

0

Z 1

0

�
cu
�
s; x (s) ;P [x(s)] ; u�;" (s)

�
� cu (s)

�
(u(s)� u�(s)) d�dfW (s)

+

Z t

0

Z
�

Z 1

0

�
g�;"x (s; �)� gx (s; �)

�
Z(s�)d�e� (d�; ds)

+

Z t

0

Z
�

Z 1

0

bE h�@�;"� g (s; �)� @�g (s; �)
� bZ(s�)i d�e� (d�; ds)

+

Z t

0

Z
�

Z 1

0

�
gu
�
s; x(s);P [x(s)] ; u�;" (s) ; �

�
� gu (s; �)

�
(u(s)� u�(s)) d�e� (d�; ds) :

Now, the derivatives of f; �; c and g with respect to (x; �; u) are Lipschitz continuous in

(x; �; u), we get

lim
"!0

E

"
sup
s2[0;T ]

j�"(s)j2
#
= 0:

Note that since the derivatives of the coe¢ cients f; �; c and  are bounded with respect

to (x; �; u), we obtain

E

"
sup
s2[0;t]

j"(s)j2
#
� C (t)

(
E

Z t

0

j"(s)j2 ds+ E

"
sup
s2[0;t]

j�"(s)j2
#)

:

By applying Gronwall�s lemma, we obtain 8t 2 [0; T ]

E

"
sup
s2[0;t]

j"(s)j2
#
� C (t)

(
E

"
sup
s2[0;t]

j�"(s)j2
#
exp

�Z t

0

C (s) ds

�)
:

Finally, the proof of Lemma 3.3.3 is ful�lled by putting t = T and letting " go to zero. �

Now, we introduce the following lemma which play an important role in computing

the variational inequality.

Lemma 3.3.4. Let assumption (H 3.1) hold. Then, we have

lim
"!0

sup
0�t�T

E

�����"(t)� ��(t)

"
� �1(t)

����2 = 0: (3.24)
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Proof. From the de�nition of �� (�) and �1 (�), we obtain

��(t) + "�1(t) = ��(0) +

Z t

0

��(s)h�(s)dY (s)

+ "

Z t

0

[�1 (s)h
� (s) + ��(s)hx (s)Z (s) + ��(s)hu (s) (u (s)� u�(s))] dY (s)

= ��(0) + "

Z t

0

�1(s)h
�(s)dY (s)

+

Z t

0

�� (s)h(s; x� (s) + "Z (s) ; u� (s) + "v (s))dY (s)

� "

Z t

0

��(s) [`"0(s)] dY (s);

where

`"0(s) =

Z 1

0

[hx(s; x
�(s) + �"Z(s); u�(s) + �"v(s))� hx(s)]Z(s)d�

+

Z 1

0

[hu(s; x
�(s) + �"Z(s); u�(s) + �"v(s))� hu(s)] (u (s)� u�(s))d�:
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Then, we have

�"(t)� ��(t)� "�1(t)

=

Z t

0

�" (s)h" (t) dY (s)� "

Z t

0

�1(s)h
�(s)dY (s)

�
Z t

0

��(s)h (s; x� (s) + "Z (s) ; u� (s) + "v (s)) dY (s) + "

Z t

0

��(s)`"0 (s) dY (s)

=

Z t

0

(�" (s)� �� (s)� "�1 (s))h
" (s) dY (s)

+

Z t

0

(�� (s) + "�1 (s)) [h
"(s)� h (s; x�(s) + "Z (s) ; u� (s) + "v (s))]dY (s)

+ "

Z t

0

�1 (s)h(s; x
� (s) + "Z (s) ; u� (s) + "v (s))dY (s)

� "

Z t

0

�1 (s)h
�(s)dY (s) + "

Z t

0

��(s)`"0 (s) dY (s)

=

Z t

0

(�" (s)� �� (s)� "�1 (s))h
" (s) dY (s)

+

Z t

0

(��(s) + "�1(s))`
"
1(s)dY (s) + "

Z t

0

�1(s)`
"
2(s)dY (s)

+ "

Z t

0

��(s)`"0(s)dY (s);

where

`"1(s) = h" (s)� h (s; x� (s) + "Z (s) ; u� (s) + "v (s)) ; (3.25)

`"2(s) = h(s; x� (s) + "Z (s) ; u� (s) + "v (s))� h�(s):

From (3.25), we have

`"1(s) =

Z 1

0

[hx(s; x
� (s) + "Z (s) + �(x" (s)� x� (s)� "Z (s)); v" (s))]

� (x" (s)� x� (s)� "Z (s))d�:
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By Lemma 3.3.3 , we know that

E

Z t

0

j(��(s) + "�1(s))`
"
1(s)j

2 ds � "2C("); (3.26)

here C(") denotes some nonnegative constant such that C(")! 0 as "! 0:

Moreover, it is easy to see that

sup
0�t�T

E

�
"

Z t

0

��(s)`"0(s)dY (s)

�2
� "2C("); (3.27)

and

sup
0�t�T

E

�
"

Z t

0

�1(s)`
"
2(s)dY (s)

�2
� "2C("): (3.28)

From (3.26); (3.27) and (3.28), we get

E j(�"(t)� ��(t))� "�1(t)j2

� C

�Z t

0

E j(�" (s)� �� (s))� "�1(s)j2 + E

Z t

0

j(�� (s) + "�1 (s))`
"
1(s)j

2 ds

+ sup
0�s�t

E

�
"

Z t

0

��(s)`"0(s)dY (s)

�2
+ sup
0�s�t

E

�
"

Z t

0

�1(s)`
"
2(s)dY (s)

�2#

� C

Z t

0

E j�"(s)� ��(s)� "�1(s)j2 ds+ C(")"2:

Finally, by using Gronwall�s inequality, the proof of Lemma 3.3.4 is complete. �
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Lemma 3.3.5. Let assumption (H 3.1), (H 3.2) and (H 3.3) hold. Then, we have

0 � E

Z T

0

h
�1 (t) l(t) + �� (t) lx(t)Z (t) + ��(t) bE [@�l(t)]Z(t)

+ ��(t)lu(t)(u (t)� u�(t))] dt

+ E [�1 (T ) (x (T ) ;P [x(T )])] + E [�� (T ) x(x (T ) ;P [x(T )])Z (T )]

+ E
h
�� (T ) bE [@� (x (T ) ;P [x(T )] ; bx (T ))]Z (T )i (3.29)

+ E

Z
[0;T ]

�� (t)M(t)d (� � ��) (t):

Proof. From (3.3), we have

0 � 1

"
[J (u" (t) ; �"(t))� J (u� (t) ; ��(t))]

=
1

"
[J (u" (t) ; �"(t))� J (u� (t) ; �"(t))] (3.30)

+
1

"
[J (u�; �"(t))� J (u� (t) ; ��(t))]

= J1 + J2:

From (3.8), we get

J1 =
1

"
[J (u" (t) ; �"(t))� J (u� (t) ; �"(t))]

=
1

"
E

Z T

0

[�"(t)l"(t)� ��(t)l(t)] dt (3.31)

+
1

"
E [�" (T ) (x" (T ) ;P [x"(T )])� �� (T ) (x� (T ) ;P [x�(T )])] ;

and by simple computation, the second term J2 being

J2 =
1

"
[J (u�(t); �"(t))� J (u� (t) ; ��(t))] (3.32)

=
1

"

�
E

Z
[0;T ]

��(t)M(t)d�"(t)�
Z
[0;T ]

��(t)M(t)d��(t)

�
:
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Using the Taylor expansion, Lemmas 3.3.3 and Lemma 3.3.4 , we get

lim
"!0

"�1E [�" (T ) (x" (T ) ;P [x"(T )])� �� (T ) (x� (T ) ;P [x�(T )])]

= E [�1(T ) (x(T );P [x(t)]) + ��(T ) x(x(T );P [x(T )])Z (T )] (3.33)

+ E
h
�� (T ) bE [@� (x(T );P [x(t)] ; bx(T ))]Z (T )i ;

and

lim
"!0

"�1E

Z T

0

[�"(t)l"(t)� ��(t)l(t)] dt

= E

Z T

0

h
�1(t)l(t) + ��(t)lx(t)Z(t) + ��(t) bE [@�l (t)] bZ(t) (3.34)

+ ��(t)lu(t)(u (t)� u�(t))] dt

From (3.17), and since �"(t)� ��(t) = "(�(t)� ��(t)); we get

J2 = lim
"!0

1

"

�
E

Z
[0;T ]

��(t)M(t)d�"(t)�
Z
[0;T ]

��(t)M(t)d��(t)

�
= lim

"!0

1

"

�
E

Z
[0;T ]

��(t)M(t)d(�" � ��)(t)

�
= lim
"!0

1

"

�
E

Z
[0;T ]

"��(t)M(t)d(� � ��)(t)

�
(3.35)

= E

Z
[0;T ]

��(t)M(t)d(� � ��)(t):

Substituting (3.33), (3.34) and (3.35) into (3.30), the desired result (3.29) ful�lled imme-

diately. This achieve the proof of Lemma 3.3.5. �

Let e�(t) = �1(t)
��(t) then we have

8><>:
de�(t) = fhx(t)Z(t) + hu(t)(u (t)� u�(t))g dfW (t);
e�(0) = 0; (3.36)
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Lemma 3.3.6 Let �(�) and Z (�) be the solutions of (3.13) and (3.21) respectively. Then

we have

Eu [� (T )Z (T )] = Eu

Z T

0

� (t) fu(t)(u (t)� u�(t))dt+ Eu

Z T

0

q(t)�u(t)(u (t)� u�(t))dt

+ Eu

Z T

0

q(t)cu(t)(u (t)� u�(t))dt� Eu

Z T

0

Z (t) (lx (t) + bE(@�bl (t)))dt
+ Eu

Z T

0

Z
�

R (t; �) gu(t; �)(u (t)� u�(t))m (d�) dt

+ Eu

Z T

0

�(t)G(t)d(� � ��)(t); (3.37)

and

Eu [y (T ) e� (T )] = Eu

Z T

0

k (t) [hx(t)Z(t) + hu(t)(u (t)� u�(t))] dt:

� Eu

Z T

0

e� (t) l(t)dt: (3.38)

Proof. By applying Itô�s formula to � (t)Z (t) ; y (t) e� (t) and taking expectation respec-
tively, where Z(0) = 0 and e�(0) = 0; we obtain
Eu [� (T )Z (T )]

= Eu

Z T

0

� (t) dZ (t) + Eu

Z T

0

Z (t) d� (t)

+ Eu

Z T

0

Q(t)
h
�x(t)Z(t) + bE h@��(t) bZ(t)i+ �u(t)(u (t)� u�(t))

i
dt (3.39)

+ Eu

Z T

0

Q(t)
h
cx(t)Z(t) + bE h@�c(t) bZ(t)i+ cu(t)(u (t)� u�(t))

i
dt

+ Eu

Z T

0

Z
�

R (t; �)
h
gx(t; �)Z(t) + bE h@�g (t; �) bZ (t)i+ gu(t; �)(u (t)� u�(t))

i
m (d�) dt

= I1 (T ) + I2 (T ) + I3 (T ) + I4 (T ) :
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First, note that

I1 (T ) = Eu

Z T

0

� (t) dZ (t)

= Eu

Z T

0

� (t)
h
fx(t)Z(t) + bE h@�f(t) bZ(t)i+ fu(t)(u (t)� u�(t))

i
dt

+ Eu

Z T

0

�(t)G(t)d(� � ��)(t); (3.40)

= Eu

Z T

0

� (t) fx(t)Z(t)dt+ Eu

Z T

0

� (t) bE h@�f(t) bZ(t)i dt
+ Eu

Z T

0

� (t) fu(t)(u (t)� u�(t))dt+ Eu

Z T

0

�(t)G(t)d(� � ��)(t):

We proceed to estimate I2 (T ) ; From equation (3.13), we have

I2 (T ) = Eu

Z T

0

Z (t) d� (t)

= �Eu

Z T

0

Z (t)
h
fx (t) � (t) + bE h@� bf (t) b� (t)i+ �x (t)Q(t) (3.41)

+ bE h@�b� (t) bQ(t)i+ cx (t)Q(t) + bE h@�bc (t) bQ(t)i+ lx (t) + bE h@�bl (t)i
+

Z
�

h
gx (t; �)R (t; �) + bE h@�bg (t; �) bR (t; �)iim (d�) + hx (t)K(t)

�
dt:
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By simple computation, we have

I2 (T ) = �Eu

Z T

0

Z (t) fx (t) � (t) dt� Eu

Z T

0

Z (t) bE h@� bf (t) b�(t)i dt
� Eu

Z T

0

Z (t)�x (t)Q(t)dt� Eu

Z T

0

Z (t) bE h@�b� (t) bQ(t)i dt
� Eu

Z T

0

Z (t) cx (t)Q(t)dt� Eu

Z T

0

Z (t) bE h@�bc (t) bQ(t)i dt (3.42)

� Eu

Z T

0

Z (t) lx (t) dt� Eu

Z T

0

Z (t) bE h@�bl (t)i dt
� Eu

Z T

0

Z
�

Z (t) gx (t; �)R (t; �)m (d�) dt

� Eu

Z T

0

Z
�

Z (t) bE h@�bg (t; �) bR (t; �)im (d�) dt
� Eu

Z T

0

Z (t)hx (t)K(t)dt:

Similarly, we can obtain

I3 (T ) = Eu

Z T

0

Q(t)
h
�x(t)Z(t) + bE h@��(t) bZ(t)i+ �u(t)(u (t)� u�(t))

i
dt (3.43)

+ Eu

Z T

0

Q(t)
h
cx(t)Z(t) + bE h@�c(t) bZ(t)i+ cu(t)(u (t)� u�(t))

i
dt;

and

I4 (T ) = Eu

Z T

0

Z
�

R (t; �)
h
gx(t; �)Z(t) + bE h@�g (t; �) bZ (t)i+ gu(t; �)(u (t)� u�(t))

i
m (d�) dt:

(3.44)

Now, by applying Fubini�s theorem, we obtain

Eu

Z T

0

� (t) bE h@� bf (t) bZ (t)i dt = Eu

Z T

0

Z (t) bE h@�f(t)b�(t)i dt; (3.45)

Eu

Z T

0

Q (t) bE h@�b� (t) bZ (t)i dt = Eu

Z T

0

Z (t) bE h@��(t) bQ(t)i dt; (3.46)
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Eu

Z T

0

Q (t) bE h@�bc (t) bZ (t)i dt = Eu

Z T

0

Z (t) bE h@�c(t)bQ(t)i dt; (3.47)

and

Eu

Z T

0

Z
�

R (t; �) bE h@�bg (t; �) bZ (t)im (d�) dt = Eu

Z T

0

Z
�

Z (t) bE h@�g(t; �) bR (t; �)im (d�) dt:
(3.48)

By substituting (3.40), (3.42), (3.43) and (3.44) into (3.39), with the helps of (3.45), (3.46),

(3.47) and (3.48) the desired result (3.37) follows immediately.

By applying Itô�s formula to y (t) e� (t) and taking expectation, we get
Eu [y (T ) e� (T )] = Eu

Z T

0

y (t) de� (t) + Eu

Z T

0

e� (t) dy (t)
+ Eu

Z T

0

K (t) fhx(t)Z (t) + hu(t)(u (t)� u�(t))g dt (3.49)

= J1(T ) + J2(T ) + J3(T );

where,

J1(T ) = Eu

Z T

0

y (t) de� (t) (3.50)

= Eu

Z T

0

y (t) (hx(t)Z(t) + hu(t)(u (t)� u�(t))) dfW (t);
is a martingale with zero expectation. Moreover, by a simple computations, we get

J2(T ) = Eu

Z T

0

e� (t) dy (t) = �Eu

Z T

0

e� (t) l(t)dt; (3.51)

and

J3(T ) = Eu

Z T

0

K (t) [hx(t)Z(t) + hu(t)(u (t)� u�(t))] dt: (3.52)

Substituting (3.50), (3.51), (3.52), into (3.49), the desired result (3.38) ful�lled.
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Proof of Theorem 3.3.1. From Lemma 3.3.5and based on the fact that

y (T ) =  (xu;� (T ) ;P [xu;� (T )]);

and

� (T ) =  x(x
u;� (T ) ;P [xu;� (T )]) + bE �@� (bx (T ) ;P [bx (T )];xu;�(T ))�

we have

0 � E

Z T

0

h
�1 (t) l(t) + �� (t) lx(t)Z (t) + ��(t) bE [@�l(t)]Z(t) + ��(t)lu(t)(u (t)� u�(t))

i
dt

+ E [�1 (T ) y(T )] + E [�� (T ) � (T )Z (T )]

+ E

Z
[0;T ]

�� (t)M(t)d (� � ��) (t): (3.53)

Since

E [�1 (T ) y(T )] = E [�� (T ) e� (T ) y(T )] = Eu [e� (T ) y (T )] ;
E [�� (T ) � (T )Z (T )] = Eu [� (T )Z (T )] ;

E

Z
[0;T ]

�� (t)M(t)d (� � ��) (t) = Eu

Z
[0;T ]

M(t)d (� � ��) (t):

Finally, by substituting (3.37) and (3.38) of Lemma 3.3.6 into (3.53), we get

0 � E

Z T

0

��(t)
�
� (t) fu(t) +Q (t)�u(t) +Q (t) cu(t)

+

Z
�

R (t; �) gu(t; �)m (d�) +K(t)hu (t) + lu(t)

�
(u (t)� u�(t))dt (3.54)

+ E

Z
[0;T ]

�� (t) (M(t) + �(t)G(t))d (� � ��) (t):

This completes the proof of Theorem 3.3.1. �
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3.4 Application : Conditional mean-variance portfo-

lio selection problem associated with interven-

tions

In this section, we study a conditional mean-variance portfolio selection problem in

incomplete market, where the system is governed by Lévy measure associated with some

Gamma process and an independent Brownian motion. The Gamma process is a Lévy

process (of bounded variation) (�(t))t�0 ; with Lévy measure given by

�(dx) =
e�x

x
�fx>0gdx: (3.55)

It is called Gamma process because the probability law of �(�) is a Gamma distribution

with mean t and scale parameter equal to one. The Lévy measure �(dx) dictates how the

jumps occur.

Let (�(t))t2[0;T ] be a R-valued Gamma process, independent of the Brownian motionW (�):

Assume that the Lévy measure �(dx) corresponding to the Gamma process �(�) has a

moments of all orders. This implies that
R
(��;�)c e

jxj�(dx) <1 for every � > 0 and
R
R(x

2^

1)�(dx) < 1: We assume that Ft is P� augmentation of the natural �ltration F (W;�)
t

de�ned as follows

F (W;�)
t = FW

t _ � f�(r) : 0 � r � tg _ F0;

where FW
t := � fW (s) : 0 � s � tg ; F0 denotes the totality of Pu�null sets and F1 _ F2

denotes the �-�eld generated by F1 [ F2: We denote by ��(�j) = �(�j) � �(�j�) the

jump size at time �j: We denote by �j(t) =
P

0�s�t (��(s))
j : j : 1; :::; n the power jump

processes of � (�). By using Exponential formula proved in Bertoin [20], we obtain

Eu
�
exp(i��j(t)

�
) = exp

�
t

Z +1

0

(exp(i�xj)� 1)e
�x

x
dx

�
:
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Let �0(n) Gamma function de�ned by �0(n) =
R +1
0

xn�1e�xdx; and '�j(t)(t) : the moment

generating function '�j(t)(t) = Eu(exp(t�j (t))). Now, based on '(k)
�j(t)

(0) = Eu
�
(�j(t))

k
�
;

we deduce

Eu
�
�j(t)

�
= '

0

�j(t)(0) = t�0(j) = (j � 1)!t : j : 1; :::; n

Now, we proceed to obtain Vuar (�j(t)) ; then we have

Vuar
�
�j(t)

�
= Eu

h�
�j(t)

�2i� �E ��j(t)��2
= '

00

�j(t)(0)�
h
'
0

�j(t)(0)
i2

= t

Z +1

0

x2j�1e�xdx

= t�0(2j); j : 1; :::; n;

Let

Lj(t) = �j(t)� Eu (�j(t))

Vuar (�j(t))
=

P
0�s�t (��(s))

j � (j � 1)!t
t�0(2j)

; j : 1; :::; n (3.56)

then we have Eu (Lj(t)) = 0 and Vuar (Lj(t)) = 1:

Derivatives with respect to measure in the sense of P.L. Lions. Let (�(t))t�0 be Gamma

process with Lévy measure �(�) given by (5.32). We give some examples.

1. If � (�) =
R
Rn '(x)�(dx) then the derivatives of � (�) with respect to measure at z

is given by

@�� (�) (z) =
@'

@x
(z) :

2. If � (�) =
R
Rn '(x; �)�(dx) then the derivatives of � (�) with respect to measure at

z is given by

@�� (�) (z) =
@'

@x
(z; �) +

Z
Rn

@'

@�
(x; �) (z)�(dx):

Conditional mean-variance portfolio selection problem with interventions. In this section,

we study a conditional mean-variance portfolio selection problem in incomplete market
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with interventions. As example, foreign exchange interventions are conducted by monetary

authorities (Bank or minister of �nance) to in�uence foreign exchange rates by buying and

selling currencies in the foreign exchange market.

Suppose that we are given a mathematical market consisting of two investment possi-

bilities :

A risk free security, (bond) where the price S0(t) evolves according to the ordinary di¤e-

rential equation : 8><>:
dS0 (t) = 0(It)S0 (t) dt; t 2 [0; T ] ;

S0 (0) > 0;

(3.57)

where It is a factor process with dynamics governed by a Brownian motion B(�), assumed

to be non correlated with the Brownian motion W (�): We shall assume that the natural

�ltration generated by the observable factor process It is equal to the �ltration FB
t ge-

nerated by B(�): Notice that the market is incomplete as the agent cannot trade in the

factor process. The map 0 (�) : [0; T ]! R+ is a locally bounded continuous deterministic

function.

A risky security (stock), where the price S1 (t) at time t is given by

8><>:
dS1 (t) = S1 (t) [(&(It) + 0(It)) dt+ �(It)dW (t)] + d�(t) +

Pn
j=1 Lj(t);

S1 (0) > 0;

(3.58)

where Lj(t) is the power jump processes of � (�) given by (3.56).

Now, in order to ensure that S1 (t) > 0 for all t 2 [0; T ] ; we assume the functions &(�) :

[0; T ]! R; and �(�) : [0; T ]! R are bounded continuous deterministic maps such that

&(It); �(It) 6= 0 and &(It)� 0(It) > 0; 8t 2 [0; T ]:

Let x(0) = x0 > 0 be an initial wealth process. By combining (3.57) and (3.58), we
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introduce the wealth dynamic

8>>>>><>>>>>:
dx(t) = 0(It)(x(t)� �(t))dt+ u(t) [&(It)dt+ �(It)dW (t)] + d�(t)

+
Pn

j=1 Lj(t);

x(0) = x0:

(3.59)

where 0(It) : is the interest rate, &(It) : is the excess rate of return, and �(It) : the volatility

(or the dispersion) of the stock price with � (It) � " for some " > 0.are measurable bounded

functions of It: The process u = u(t) (the regular control process) represents the amount

invested in the stock at time t, when the current wealth is x(t) and based on the past

partially observations FB
t of the factor process, �(t) is the intervention control.

The objective of the agent is to minimize over investment strategies a cost functional of

the form :

J (u(�); �(�)) = Eu

�
�

2
Vuar (x(T )� �(T ) j B(T ))� Eu(x(T )� �(T ) j B(T ))

�
; (3.60)

for some � > 0, with a dynamics for the wealth process x(t) controlled by the amount u(t):

If we denote z(t) = x(t)� �(t)�
P�

j=1 Lj(t); then the dynamic (3.59) has the form :

8><>:
dz(t) = 0(It)z(t)dt+ u(t) [&(It)dt+ �(It)dW (t)] ;

z(0) = x0:

(3.61)

and the cost functional J (u(�); �(�)) has the form

J (u(�); �(�)) = Eu

�
�

2
Vuar (z(T ) j B(T ))� Eu(z(T ) j B(T ))

�
; (3.62)

where Eu(z(t) j B(t)) is the conditional expectation and Vuar (z(t) j B(t)) is the conditional
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variance with rspect to Pu. We note that the law of total variance is given by

Vuar (z(t)) = Vuar (z(t) j B(t)) + Vuar [Eu(z(t) j B(t))] :

By applying similar arguments developed in Pham [91], Li and Zhou [77] the optimal

intervention control u�(t) of (3.61)-(3.62) is given in feedback form :

u�(t) =
&(It)

�2(It)
[Eu(z�(t) j B(t))� z�(t)] (3.63)

+
&(It)

�2(It)ct

�
1

2
bt � atE

u (z�(t) j B(t))
�
;

where z(t) is given by Eq-(3.61), and at; bt ct satisfy the linear BSDEs : t 2 [0; T ]8>>>>>><>>>>>>:

dat =
h
&2(It)a2t
�2(It)ct

� 20(It)at
i
dt+ Za

t dB(t); aT = 0:

dbt =
h
&2(It)at
�2(It)ct

� 0(It)
i
dt+ Zb

tdB(t); bT = �1:

dct =
h
&2(It)
�2(It)

� 20(It)
i
ctdt+ Zc

t dB(t); cT =
�
2
:

(3.64)

The explicit solutions of the above equations are given by

at � 0; 8t 2 [0; T ] ;

bt = Eu

�
� exp

Z T

t

0(Is)ds j FB
t

�
:

ct = Eu

�
�

2
exp

Z T

t

(20(Is)�
&2(Is)

�2(Is)
)ds j FB

t

�
; (3.65)

Hence, substituting (3.65) into (3.63) yields

u�(t) =
&(It)

�2(It)

�
x0 exp

�Z t

0

0(I� )d�

�
� z�(t) (3.66)

+
1

2

Z t

0

&2(It)

2�2(It)

jbsj
cs
exp

�Z t

0

0(I� )d�

�
ds+

jbtj
ct

�
:
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Finally, we deduce that the optimal control of the problem (3.59)-(3.60) is given in feedback

form

u�(t) =
&(It)

�2(It)

"
x0 exp

�Z t

0

0(Is)ds

�
� x�(t) + �(t) +

nX
j=1

Lj(t) (3.67)

+
1

2

Z t

0

&2(It)

2�2(It)

jbsj
cs
exp

�Z t

0

0(I� )d�

�
ds+

jbtj
ct

�
:

Now, let ��(t) be FY
t �adapted process satis�es Theorem 3.1, then for any �(�) 2 UY2 we

get

Eu

�Z
[0;T ]

(M(t) +G(t)�(t))d��(t) j FY
t

�
� Eu

�Z
[0;T ]

(M(t) +G(t)�(t))d�(t) j FY
t

�
:

We de�ne a subset E�
� [0; T ] such that

E = f(t; w) 2 [0; T ]� 
 :M(t) +G(t)�(t) > 0g ; (3.68)

and let �(�) 2 UY2 de�ned by

d�(t) =

8><>: 0 : if (t; w) 2 E ;

d��(t) : if (t; w) 2 E ;
(3.69)

where E is the complement of the set E . We denote by �E the indicator function of E . By
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a simple computations, we get

0 � Eu

�Z
[0;T ]

(M(t) +G(t)�(t))d (�(t)� ��(t)) j FY
t

�
= Eu

�Z
[0;T ]

(M(t) +G(t)�(t))�E(t; w)d (���) (t) j FY
t

�
+ Eu

�Z
[0;T ]

(M(t) +G(t)�(t))�E(t; w)d (�
� � ��) (t) j FY

t

�
= �Eu

�Z
[0;T ]

(M(t) +G(t)�(t))�E(t; w)d�
�(t) j FY

t

�
:

This implies that ��(�) satis�es for any t 2 [0; T ] :

Eu

�Z
[0;T ]

(M(t) +G(t)�(t))�E(t; w)d�
�(t)

�
= 0:

From (3.68) and (3.69), we can easy shows that the optimal intervention control has the

form :

��(t) = �(t) +

Z t

0

�E(s; w)ds; t 2 [0; T ] :

Finally, we give the explicit optimal portfolio section strategy for systems governed by

Lévy measure associated with some Gamma process in feedback form by :

u�(t; x�) =
&(It)

�2(It)

"
x0 exp

�Z t

0

0(I� )d�

�
� x�(t) + �(t) +

nX
j=1

Lj(t)

+
1

2

Z t

0

&2(It)

2�2(It)

jbsj
cs
exp

�Z t

0

0(I� )d�

�
ds+

jbtj
ct

�
:

��(t) =

Z t

0

�E(s; w)ds+ �(t); t 2 [0; T ] :

Lj(t) =
P

0�s�t (��(s))
j � (j � 1)!t

t�0(2j)
; j : 1; :::; n:

In this chapter, a new set of general mean-�eld type necessary conditions for a class

of optimal stochastic intervention control problem for partially observed random jumps

on Wasserstein space of probability measures has been established. Girsanov�s theorem

79



Chapter 3, McKean-Vlasov system with jumps under noisy observation Korich F. 2024

and the L-derivatives with respect to probability law are applied to prove our main result.

Conditional mean-variance portfolio selection problem with interventions is investiged. In

order to assess the e¤ectiveness of interventions, it is helpful to identify the motives of

the governement (or banks) activities in this area. Apparently, there are many problems

left unsolved, and one possible problem is to obtain some optimality conditions for partial

observed stochastic optimal intervention control for systems governed by general mean-

�eld backward stochastic di¤erential equations with Lévy process with moments of all orders

with some applications to �nance.
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Chapitre 4

The pointwise second-order

maximum principle for optimal

stochastic controls of general

mean-�eld type

4.1 Introduction

In this chapter, we establish a second-order stochastic maximum principle for optimal

stochastic control of stochastic di¤erential equations of general mean-�eld type. The co-

e¢ cients of the system are nonlinear and depend on the state process as well as of its

probability law. The control variable is allowed to enter into both drift and di¤usion

terms. We establish a set of second-order necessary conditions for the optimal control in

integral form. The control domain is assumed to be convex. The proof of our main result

is based on the the �rst and second-order derivatives with respect to the probability law
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and by using a convex perturbation with some appropriate estimates.

The mean-�eld stochastic system was introduced by Kac [85] as a stochastic model for

the Vlasov-Kinetic equation of plasma and the study of which was initiated by McKean

model [86]. Since then, the mean-�eld theory has found important applications and has

become a powerful tool in many �elds, such as mathematical �nance, economics, optimal

control and stochastic mean-�eld games ; see Huang, Caines, and Malhame [66, 67, 68] and

Lasry and Lions [76]. Stochastic di¤erential equations (SDEs) of the mean-�eld type are

Itô�s stochastic di¤erential equations, where the coe¢ cients of the state equation depend on

the state of the solution process as well as of its probability law. Under partial information,

mean-�eld type maximum principle of optimality for SDEs has been established in Wang

et al. [87]. Stochastic optimal control of mean-�eld jump-di¤usion systems with delay has

been studied by Meng and Shen [84]. The necessary and su¢ cient conditions for mean-�eld

SDEs governed by Teugels martingales associated to Lévy process have been studied in

[42, 61]. The local �rst-order maximum principle for optimal singular control for mean-

�eld SDEs has been investigated by Hafayed [48]. First-order necessary conditions for

mean-�eld FBSDEs have been studied by Hafayed et al. [62]. The mean-�eld maximum

principle for SDEs has been established in Buckdahn et al. [12]. Mean-�eld game has been

studied by Lions [88]. The �rst-order maximum principle for mean-�eld delay SDE have

been investigated in Shen et al. [89]. A general �rst-order maximum principle for optimal

stochastic control has been established in Peng [90]. A Peng�s type maximum principle

for SDEs of mean-�eld type was proved by Buckdahn et al., [19] by using second-order

derivatives with respect to measures. Forward-backward stochastic di¤erential equations

and controlled McKean-Vlasov dynamics have been investigated in Carmona and Delarue

[26]. Linear quadratic optimal control problem for conditional mean-�eld equation with

random coe¢ cients with applications has been investigated by Pham [91]. In�nite horizon

optimal control problems for mean-�eld delay system with semi-Markov modulated jump-

di¤usion processes have been investigated by Deepa and Muthukumar [34]. First-order
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necessary conditions for optimal singular control problem for general mean-�eld SDEs,

under convexity assumptions have been investigated by Hafayed et al. [41].

The maximum principle is one of the fundamental approaches for the study of optimal

stochastic control problems. A pointwise second-order maximum principle for stochastic

optimal controls was established by Zhang and Zhang [124] where both drift and di¤usion

terms may contain the control variable, and the control domain is assumed to be convex.

The method was further developed in Zhang and Zhang [125] to derive a general pointwise

second-order maximum principle, where the control domain is not assumed to be convex.

First and second-order necessary conditions for stochastic optimal controls have been

studied by [93] and [15]. A second-order maximum principle for singular optimal control

for SDEs with uncontrolled di¤usion coe¢ cient has been obtained by Tang [92]. Second-

order maximum principle for optimal control with recursive utilities has been obtained

by Dong and Meng [33]. A second-order necessary conditions for singular optimal controls

with recursive utilities of stochastic delay systems have been proved by Huo and Meng [63].

Singular optimal control problems with recursive utilities of mean-�eld type, where the

second-order adjoint system was not a single mean-�eld backward stochastic di¤erential

equation, but a matrix-valued system have been studied in Hao and Meng [64].

Motivated by the recent works above, in this work we established a pointwise second-

order necessary conditions for general mean-�eld optimal control problem. The �rst and

second-order derivatives with respect to measure in Wasserstein space and the associa-

ted Itô formula with some appropriate estimates are applied to derive our result. The

mean-�eld systems (4.15) occur naturally in the probabilistic analysis of �nancial optimi-

zation problems. Our problem is strongly motivated by the recent study of the mean-�eld

games and the related mean-�eld stochastic control problem. This work extends the results

obtained in Zhang and Zhang [124] to the general mean-�eld case.

The rest of this chapter is organized as follows. The formulation of the �rst and second-

order derivatives with respect to probability measure, and basic notations are given in Sec-
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tion 2 . The formulation of the optimal control problem is given in Section 3 . In Sections

4 and 5 , we prove our mean-�eld type pointwise second-order maximum principle. The

�nal section concludes the work and outlines some of the possible future developments.

4.2 First and second-order derivatives with respect

to measure

We now recall brie�y an important notion in mean-�eld control problems : the di¤eren-

tiability with respect to probability measures, inWasserstein space which was introduced

by P.Lions [88].

Let �2 (Rn) be Wasserstein space of probability measures on (Rn;B(Rn)) with �nite

second-moment, i.e ;
R
Rn jxj

2 � (dx) <1; endowed with the following 2�Wasserstein me-

tric : for �1; �2 2 �2 (Rn) ;

T (�1; �2) = inf
�(�;�)2�2(R2n)

(�Z
R2n
jx� yj2 � (dx; dy)

� 1
2

)
; (4.1)

where �(�;Rn) = �1; and �(Rn; �) = �2: Moreover, it has been shown that (�2(Rn);T (�; �))

is a complete metric space.

The main idea is to identify a distribution � 2 �2 (Rn) with a random variable x 2

L2(F ;Rn) so that � = Px is the law of x: We assume that probability space (
;F ; P )

is rich-enough in the sense that for every � 2 �2 (Rn) ; there is a random variable x 2

L2(F ;Rn) such that � = Px:We suppose that there is a sub-���eld F0 � F such that F0

is rich-enough i.e,

�2 (Rn) :=
�
Px : x 2 L2(F0;Rn)

	
: (4.2)

By F = (Ft)t2[0;T ], we denote the �ltration generated by W (�), completed and augmented

by F0: Next, for any function g : �2 (Rn) ! R we de�ne a function eg : L2 (F ;Rn) ! R
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such that

eg (x) = g (Px) ; x 2 L2 (F ;Rn) : (4.3)

Clearly, the function eg; called the lift of g; depends only on the law of x 2 L2(F ;Rn) and
is independent of the choice of the representative x; (see [19])

Let g : �2 (Rn) ! R. The function g is di¤erentiable at a distribution �0 2 �2 (Rn)

if there exists x0 2 L2(F ;Rn); with �0 = Px0 such that its lift eg is Fréchet-di¤erentiable
at x0: More precisely, there exists a continuous linear functional Deg(x0) : L2(F ;Rn)! R

such that

eg (x0 + �)� eg (x0) = hDeg(x0) � �i+ o (k�k2) = D�g(�0) + o (k�k2) ; (4.4)

where h: � :i is the dual product on L2(F ;Rn):We called D�g(�0) the Fréchet-derivative of

g at �0 in the direction �: In this case we have

D�g(�0) = hDeg(x0) � �i = d

dt
eg (x0 + t�)

����
t=0

; with �0 = Px0 : (4.5)

By applyingRiesz representation theorem, there is a unique random variable�0 2 L2(F ;Rn)

such that hDeg(x0) � �i = (�0 � �)2 = E [(�0 � �)2] where � 2 L2(F ;Rn): It was shown, (see

[19]) that there exists a Borel function � [�0] (�) : Rn ! Rn; depending only on the law

�0 = Px0 but not on the particular choice of the representative x0 such that

�0 = � [�0] (x0) : (4.6)

Thus we can write

g (Px)� g (Px0) = (� [�0] (x0) � x� x0)2 + o (kx� x0k2) ; 8x 2 L2 (F ;Rn) :
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We denote

@�g (Px0 ; x) = � [�0] (x); x 2 Rn:

Moreover, we have the following identities

Deg(x0) = �0 = � [�0] (x0) = @�g (Px0 ; x0) ; (4.7)

and

D�g(Px0) = h@�g (Px0 ; x0) � �i ; (4.8)

where � = x� x0:For each � 2 �2 (Rn) ; @�g (Px; �) = � [Px] (�) is only de�ned in Px(dx)�

a:e: sense where � = Px:

Among the di¤erent notions of di¤erentiability of a function g de�ned over �2 (Rn), we

apply the di¤erentiability with respect to probability measures. We shall follow the ap-

proach introduced in P. Lions [88] and later detailed in Cardaliaguet [27]. We refer the

reader to Buckdahn et al., [19] for more discussions.

We say that the function g 2 C1;1b (�2(Rn)) if for all x 2 L2(F ;Rn) there exists a

Px�modi�cation of @�g (Px; �) (denoted by @�g) such that @�g : �2 (Rn) � Rn ! Rn is

bounded and Lipschitz continuous. That is for some C > 0; it holds that

(1) j@�g(�; x)j � C; 8� 2 �2(Rn); 8x 2 Rn:

(2) j@�g(�; x)� @�g(�
0; x0)j � C [T (�; �0) + jx� x0j] ; 8�; �0 2 �2(Rn); 8x; x0 2 Rn:

We should note that if g 2 C1;1b (�2(Rn)); the version of @�g (Px; �) ; x 2 L2(F ;Rn); is

unique (see [19, Remark 2.2], and [27]). We shall denote by @�g (t; x; �0) the derivative

with respect to � computed at �0 whenever all the other variables (t; x) are held �xed,

@�g (t; x; �0) = @�g (t; x; �)j�=�0.

Second-order derivatives with respect to probability law : We present a second order

derivatives with respect to measure of probability.

Let g 2 C1;1b (�2(Rn)) and consider the mapping (@�g (�; �)1 ; @�g (�; �)2 ; :::; @�g (�; �)n)> :
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�2(Rn)� Rn ! Rn:

We say that the function g 2 C2;1b (�2(Rn)) if g 2 C
1;1
b (�2(Rn)) such that @�g(�; x) :

�2(Rn)! Rn

(1) @�g(�; y)i 2 C1;1b (�2(Rn)); 8y 2 Rn and i 2 f1; 2; :::; ng :

(2) @�g(�; �) : Rn ! Rn is di¤erentiable, for every � 2 �2(Rn):

(3) The maps @x@�g(�; �) : �2(Rn)�Rn ! Rn
Rn and @2�g(Px0 ; y; z) : �2(Rn)�Rn�Rn !

Rn 
 Rn are bounded and Lipschitz continuous, where

@2�g(Px0 ; y; z) = @� [@�g(�; y)] (Px0 ; z) :

Similarly, we de�ne @u@�g(�; �) : �2(Rn)� Rn ! Rn 
 Rn by

@u@�g(Px0 ; y; u; z) = @u [@�g(�; y; u)] (Px0 ; z) :

Second-order Taylor expansion : Now, we give a second-order Taylor expansion that

plays an essential role to establish our maximum principle. Let g 2 C2;1b (�2(Rn)); for

j 2 f1; 2; :::; ng.

D egj(x0 + �)�D egj(x0) = [@�g]j (Px0+�; x0 + �))� [@�g]j (Px0 ; x0))

=
h
[@�g]j (Px0+�; z))� [@�g]j (Px0 ; z))

i���
z=x0+�

+ [@�g]j (Px0 ; z)
���
z=x0+�

� [@�g]j (Px0 ; z)
���
z=x0

(4.9)

=

Z 1

0

D
D[̂@�g]j (x0 + ��; z) ��

E
d�

����
z=x0

+ (@z [@�g]j (Px0 ; x0) ; �) + o (k�k2) :
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Then, we obtain

D[̂@�g]j (x0; y) = @�

h
[@�g]j (�; y)

i
(Px0 ; x0)

=
�
@2�g
�
j
(Px0 ; y; z)

���
z=x0

:

Second-order derivatives of f at a measure �0. Let (b
; bF ; bP ) be a copy of the probabi-
lity space (
;F ; P ). For any pair of random variable (Z; �) 2 L2(F ;Rd)�L2(F ;Rd); we let

( bZ; b�) be an independent copy of (Z; �) de�ned on (b
; bF ; bP ): On the product probability
space (
� b
;F
 bF ; P
 bP ); we de�ne ( bZ; b�)(w; bw) = (Z( bw); �( bw)) for any (w; bw) 2 
� b
:
Let ( bu�(t); bx�(t)) be an independent copy of (u�(t); x�(t)), so that Px�(t) = bPcx�(t):We denote
by bE the expectation under probability measure bP , where bE (X) = Rb
X( bw)d bP ( bw):
Now, for any �0 2 �2(Rn); in the direction �; we de�ne the second-order derivatives of

a function g at �0 with �0 = Px0

D2�g (�0) =
DD
D[̂@�g]j (�; y) (Px0 ; z) jz=cx0 � b�E jy=cx0 ; �E

+ h(@y@�g) (Px0 ; x0) � � �i

= E
h bE htr �@2�g(Px0 ; x0; bx0)b� 
 �

�ii
(4.10)

+ E [tr (@y@�g(Px0 ; x0)� 
 �)] ;

where

bE htr �@2�g(Px0 ; x0; bx0)b� 
 �
�i

(4.11)

=

Z
b
 tr

h
@2�g(Px0 ; x0 (w) ; bx0( bw))b� 
 �(w; bw)i d bP ( bw):
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Furthermore, we have

E
h bE htr h@2�g(Px0 ; x0; bx0)b� 
 �

iii
=

Z



Z
b
 tr

h
@2�g(Px0 ; x0 (w) ; bx0( bw))b� 
 �(w; bw)i d(P 
 bP )(w; bw): (4.12)

For convenience, we will use the following notations throughout the work, for  = f; �; `; h :

� (t) =  (t; x�(t); Px�(t); u
�(t))�  (t; x"(t); Px"(t); u

"(t));

 x(t) =
@ 

@x
(t; x�(t); Px�(t); u

�(t));

 u(t) =
@ 

@u
(t; x�(t); Px�(t); u

�(t));

b �(t) = @� (t; x
�(t); Px�(t); u

�(t); bx�(t)); (4.13)

b ��(t) = @� (t; bx�(t); Px�(t); bu�(t);x�(t)):
Furthermore, we denote

 xx(t) =
@2 

@x2
(t; x�(t); Px�(t); u

�(t));

 uu(t) =
@2 

@u2
(t; x�(t); Px�(t); u

�(t));

b ��(t) = @2� (t; x
�(t); Px�(t); u

�(t);x�(t); bx�(t)); (4.14)

 x�(t) = @x@� (t; x
�(t); Px�(t); u

�(t);x�(t));

b �x�(t) = @x@� (t; bx�(t); Px�(t); bu�(t); bx�(t)):

4.3 Formulation of the control problem

Let us formulate the optimal mean-�eld type control problem. Let T be a �xed positive

real number and (
;F ; fFtgt2[0;T ] ; P ) be a �xed �ltered probability space satisfying the

usual conditions in which one�dimensional Brownian motion W (t) = fW (t) : 0 � t � Tg

andW (0) = 0 is de�ned. We study optimal solutions of general stochastic control problem
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driven by mean-�eld stochastic di¤erential equation of the form :

8><>:
dxu(t) = f

�
t; xu(t); Pxu(t); u(t)

�
dt+ �

�
t; xu(t); Pxu(t); u(t)

�
dW (t);

xu(0) = x0:

(4.15)

The goal of our optimal control problem is to minimize the following cost functional

J (u(�)) = E

�
h(xu(T ); Pxu(t)) +

Z T

0

`(t; xu(t); Pxu(t); u(t))dt

�
: (4.16)

An admissible control u(t) is an Ft�predictable process with values in some non-empty

convex subset U of Rk such that E
R T
0
ju(t)j2 dt < +1. We called U the control domain.

We denote U ([0; T ]) the set of all admissible controls. That is,

U ([0; T ]) =
�
u (t)t2[0;T ] : is anFt � predictable process, and E

Z T

0

ju(t)j2 dt <1
�
:

We suppose that an optimal control exists. Any admissible control u�(�) 2 U ([0; T ]) satis-

fying

J (u�(�)) = inf
u(�)2U([0;T ])

J (u(�)) ; (4.17)

is called an optimal control. The maps

f : [0; T ]� Rn � �2 (Rn)�U! Rn;

� : [0; T ]� Rn � �2 (Rn)�U! Rn;

` : [0; T ]� Rn � �2 (Rn)� U! R;

h : Rn � �2 (Rn)! R;

are given deterministic functions.

To avoid excessive complexity in the notation of this work, we will make the simplifying

assumption that all processes are one-dimensional (i.e., n = m = 1) in the subsequent
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sections.

We de�ne a metric d (�; �) on the space of admissible controls U ([0; T ]) such that (U ([0; T ]) ; d)

becomes a complete metric space. For any u(�) and v(�) 2 U ([0; T ]) we set

d (u(�); v(�)) =
�
E

Z T

0

ju (t)� v (t)j2 dt
� 1
2

: (4.18)

Moreover, it has been shown that (U ([0; T ]) ; d) is a complete metric space.

Assumptions. The following assumptions will be in force throughout this work, where x

denotes the state variable, and u the control variable.

�Assumption (H 4.1) For �xed � 2 �2(R); for any (x; u) 2 Rd�U; the coe¢ cients

f; �; ` are measurable in all variables and continuously di¤erentiable up to order-2

with respect to x; u ; and al their partial derivatives are uniformly bounded. The

function h is continuously di¤erentiable up to order-2 with respect to x and u:

Moreover the second-order derivatives  xx;  uu;  xu; for  = f; �; ` are bounded and

Lipschitz in (x; u). The derivative hxx is bounded and Lipschitz in x:

j` (t; x; �; u)j � C(1 + jxj2 + juj2);

jh (x; u)j � C(1 + jxj2);

j`x (t; x; �; u)j+ j`u (t; x; �; u)j � C (1 + jxj+ juj) ;

jhx (x; u)j � C (1 + jxj) ;

where C > 0 is a generic positive constant, which may vary from line to line.

�Assumption (H 4.2) (1) For �xed x 2 R; for all u(t) 2 U : f; �; ` 2 C1;1b (�2(Rd);R)

and h 2 C1;1b (�2(R);R):

(2) All the derivatives with respect to measure f�; ��; `�; h� are bounded and

Lipschitz continuous, with Lipschitz constants independent of u.Assumption (H

4.3) (1) For all u(t) 2 U; f; �; ` 2 C2;1b (�2(R);R); and h 2 C2;1b (�2(R);R). (2)
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All the second-order derivatives of  ��;  x�  u� for  = f; �; ` are bounded and

Lipschitz continuous in (x; �; u) with Lipschitz constants independent of u. (3) The

second-order derivative h��; hx� is bounded and Lipschitz in x and �:

From assumption (H 4.3), Item 3, since the second-order derivatives are Lipschitz

continuous, we have

8>>>>><>>>>>:
8�; �0 2 �2(Rn);8x; x0 2 Rn;8u; u0 2 U :

j( ��;  x�;  u�) (t; x; �; u)� ( ��;  x�;  u�) (t; x0; �0; u0)j

� C [T (�; �0) + jx� x0j+ ju� u0j] :

(4.19)

Similarly for Item 4, we deduce 8�; �0 2 �2(Rn); and 8x; x0 2 Rn :

j(h��; hx�) (x; �)� (h��; hx�) (x0; �0)j � C [T (�; �0) + jx� x0j] : (4.20)

Under the assumptions (H1) and (H2), for each u(�) 2 U ([0; T ]) ; Eq-(4.15) has a

unique strong solution xu (�) given by

xu(t) = x0 +

Z t

0

f(r; xu(r); Pxu(r); u(r))dr +

Z t

0

�(r; xu(r); Pxu(r); u(r))dW (r);

such that E
�
supt2[0;T ] jxu(t)j

2� < +1; and the functional J (�) is well de�ned.

Let u�(�) 2 U ([0; T ]) be an optimal control for the problem (4.15)-(4.16), the corres-

ponding state process x�(�) = xu
�
(�), solution of mean-�eld dynamic (4.15).

Finally, from assumption (H3) we de�ne for t 2 [0; T ] :

Lxx(t; '; z) =
1

2
@xx'(t; x

�(t); Px�(t); u
�(t))z2; (4.21)

L�y(t; b'; z) = 1

2
@y@�'(t; x

�(t); Px�(t); u
�(t); bx�)z2:

The Hamiltonian. Let us de�ne the Hamiltonian associated to our control problem.
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For any (t; x; �; u; p1; q1) 2 [0; T ]� R� �2(R)� R� R� R

H(t; x; �; u; p1; q1) = f(t; x; �; u)p1 + �(t; x; �; u)q1 � `(t; x; �; u); (4.22)

where (p1 (�) ; q1 (�)) is a pair of adapted processes, solution of the �rst-order adjoint equa-

tion (4.26).

We denote

H(t) = H(t; x�; Px� ; u
�; p1; q1): (4.23)

We de�ne

�H(t) = �f(t)p1(t) + ��(t)q1(t)� �`(t);

Hx(t) = fx(t)p1(t) + �x(t)q1(t)� `x(t); (4.24)

Hu(t) = fu(t)p1(t) + �u(t)q1(t)� `u(t);

H�(t) = f�(t)p1(t) + ��(t)q1(t)� `�(t);

Hxx(t) = fxx(t)p1(t) + �xx(t)
 q1(t)� `xx(t);

Huu(t) = fuu(t)p1(t) + �uu(t)
 q1(t)� `uu(t);

Hx�(t) = fx�(t)p1(t) + �x�(t)
 q1(t)� `x�(t):

To establish our integral-type second-order necessary condition for stochastic optimal

control, we introduce the following notion.

Singular control in the classical sense : We call an admissible control u(�) a singular

control in the classical sense if u(�) satis�es :

8>>>>><>>>>>:
Hu(t; x(t); Px(t); u(t); p1(t); q1(t)) = 0; a:s: a:e: t 2 [0; T ] ;

Huu(t; x(t); Px(t); u(t); p1(t); q1(t)) + p2(t)�u
�
t; x(t); Px(t); u(t)

�2
] = 0;

a:s: a:e: t 2 [0; T ] :

(4.25)
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We introduce the adjoint equations involved in the stochastic maximum principle for our

control problem.

First-order adjoint equation. We consider the �rst-order adjoint equation, which is the

following mean-�eld linear BSDE :

8>>>><>>>>:
�dp1(t) =

h
fx(t)p1(t) + bE( bf ��(t)bp1(t)) + �x(t)q1(t) + bE(b���(t)bq1(t))
� `x(t) � bE(b̀��(t))i dt� q1(t)dW (t);

p1(T ) = �hx(T )� bE[bh��(T )]:
(4.26)

Here, from (4.13), t 2 [0; T ] ; for ' = f; �; `

bE [@�b'�(t)] = bE �@�'(t; bx�(t); Px�(t); bu�(t); z)� ����z=x�(t) (4.27)

=

Z
b
 @�'(t; bx�(t; bw); Px�(t;w); bu�(t; bw);x�(t; w))d bP ( bw);

and the same argument allows to show that

bE h@�bh�(T )i = bE �@�h(bx�(T ); Px�(T ); z)� ����z=x�(t) (4.28)

=

Z
b
 @�h(bx�(T; bw); Px(T;w);x�(T;w))d bP ( bw):

Second-order adjoint equation. Consider the following linear BSDE :

8>>>>><>>>>>:
dp2(t) = �

n
2(fx(t) + bE[ bf ��(t)])p2(t) + [�x(t) + bE(b���(t))]2p2(t)

+ 2(�x(t) + bE[b��(t)])q2(t) + (Hxx (t) + bE[ bH�
x�(t)] + bE[ bH�

��(t)])
o
dt+ q2(t)dW (t);

p2(T ) = �(hxx(T ) + bE[bh�x�(T )]):
(4.29)
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Similar to (5.13) and (5.15), we have

bE[ bH�
�y(t)]) =

bE �@�@yH(t; bx�(t); Px�(t); bu�(t); bp1(t); bq1(t); y)� ����y=x�(t)
=

Z
b
 @�@yH(t; bx�(t; bw); Px�(t); bu�(t; bw); bp1(t); bq1(t);x�(t))d bP ( bw):

Since the derivatives fx; f�; �x; ��; `x; `�; hx; h� are bounded, (from assumptions (H 4.1)

and (H 4.2)), the mean-�eld BSDE (4.26) admits a unique Ft-adapted strong solution

(p1 (�) ; q1 (�)) such that

p1(t) = �(hx(T ) + bE[bh��(T )]) + Z T

t

h
fx(s)p1(s) + bE h bf ��(s)bp1(s)i

+ �x(s)q1(s) + bE(b���(s)bq1(s))� `x(s)� bE(b̀��(s))i ds
�
Z T

t

q1(s)dW (s);

which satis�es the following estimate

E

"
sup
t2[0;T ]

jp1(t)j2 +
Z T

0

jq1(t)j2 dt
#
<1: (4.30)

Also, from the boundedness of the �rst and second-order derivatives of the coe¢ cients

f; �; `; h with respect to (x; �), (assumptions (H3)), Eq-(4.29) has a unique Ft�adapted

strong solution (p2 (�) ; q2 (�)) such that

p2(t) = �(hxx(T ) + bE[bh�x�(T )])
+

Z T

t

n
2(fx(s) + bE[ bf ��(s)]p2(s) + [�x(s) + bE(b���(s))]2p2(s)

+ 2(�x(s) + bE[b���(s)])q2(s) + (Hxx (s) + bE[ bH�
x�(s)] +

bE[ bH�
��(s)])

o
ds

�
Z T

t

q2(s)dW (s);
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which satis�es the following estimate

E

"
sup
t2[0;T ]

jp2 (t)j2 +
Z T

0

jq2 (t)j2 dt
#
<1: (4.31)

If the coe¢ cients f; �; `; h do not explicitly depend on law of the solution, the mean-�eld

BSDE-(4.26) and (4.29) reduce to a standard BSDE (see Zhang and Zhang [124]. Peng

[90, Equation 19, page 974]), or Buckdahn et al., ([19]).

4.4 Mean-�eld second-order stochastic maximum prin-

ciple in integral form

The purpose of the stochastic maximum principle is to establish a set of necessary

conditions for optimality satis�ed by an optimal control. In our work, the goal is to derive a

set of second-order necessary conditions for the optimal control, where the system evolves

according to controlled mean-�eld SDEs. To derive our main result, the approach that

we use is based on the convex perturbation of the optimal control. This perturbation is

described as follows : Let u�(�) is an optimal control and u(�) is an arbitrary element of

Ft�measurable random variable with values in U which we consider as �xed from now on.

We de�ne a perturbed control u"(�) as follows. Let

u"(t) = u�(t) + " (u(t)� u�(t)) ; (4.32)

where " > 0 is su¢ ciently small. Since U is convex, u"(�) 2 U ([0; T ]) : We denote by x"(�)

the solution of Eq-(4.15) associated with u"(�):

Under assumptions (H 4.1), (H 4.2) and (H 4.3), we introduce the following new va-

riational equations for our control problem.
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First-order variational equation : let t 2 [0; T ]

8>>>>><>>>>>:
dy1(t) =

h
fx(t)y1(t) + bE[ bf�(t)by1(t)] + fu(t)v(t)

i
dt

+
h
�x(t)y1(t) + bE[b��(t)by1(t)] + �u(t)v(t)

i
dW (t)

y1(0) = 0:

(4.33)

Here the process y1 (�) is called the �rst-order variational process, associated to u(�): Since

the coe¢ cients fx; f�; fu; �x; ��; �u in (4.33) are bounded, it follows that there exists a

unique solution y1(�) such that

E

"
sup
t2[0;T ]

jy1 (t)jk
#
< Ck; for k � 2: (4.34)

We note that unless speci�ed, for each k 2 R+, we denote by Ck > 0 a generic positive

constant depending only on k, which may vary from line to line.

Second-order variational equation :

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

dy2 (t) =
h
fx(t)y2(t) + bE[ bf�(t)by2(t)] + fxx(t)y

2
1(t) +

bE[ bfx�(t)by1(t)]y1(t)
+ 2fxu(t)y1(t)v(t) + 2 bE[ bfu�(t)by1(t)]v(t) + fuu(t)v

2(t)
i
dt

+
h
�x(t)y2(t) + bE[b��(t)by2(t)] + �xx(t)y21(t) + bE[b�x�(t)by1(t)]y1(t)

+ 2�xu(t)y1(t)v(t) + 2 bE[b�u�(t)by1(t)]v(t) + �uu(t)v
2(t)

i
dW (t) ;

y2(0) = 0:

(4.35)

Here the process y2 (�) is called the second-order variational process. Moreover, under

assumptions (H 4.1), (H 4.2) and (H 4.3), equation (4.35) admits a unique F-adapted

strong solution such that : for any k � 1 we have

E( sup
t2[0;T ]

jy2(t)jk) � Ck: (4.36)
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We shall establish some fundamental estimates that will play the crucial roles for the proof

of our stochastic maximum principle.

Proposition 4.4.1. Let x" (�) and x� (�) be the states of (4.37) associated to u"(�) and

u�(�) respectively. Let y1(�) be the solution of (4.33). Then the following estimates hold :

E

"
sup
t2[0;T ]

jx"(t)� x�(t)j2k
#
� Ck"

k; (4.37)

lim
"!0

E

"
sup
0�t�T

����x"(t)� x�(t)

"
� y1(t)

����2
#
= 0: (4.38)

Proof.The proof of estimate (4.37) follows immediately from [19, Proposition 4.2,

estimate (4.8)].

Let us turn to estimate (4.38). We put

"(t) =
x"(t)� x�(t)

"
� y1(t); t 2 [0; T ] : (4.39)

Since D�f(PZ0) =
D
D ef(Z0) � �E = d

dt
ef (Z0 + t�)

���
t=0

; we have the following simple form of

the Taylor expansion

f(PZ0+�)� f(PZ0) = D�f(PZ0) +R(�);
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where R(�) is of order O (k�k2) with O (k�k2)! 0 for � 2 L2
�
F ;Rd

�
:

"(t) =
1

"

Z t

0

�
f
�
s; x"(s); Px"(s); u

"(s)
�
� f

�
s; x�(s); Px�(s); u

�(s)
��
ds

+
1

"

Z t

0

�
�
�
s; x"(s); Px"(s); u

"(s)
�
� �

�
s; x�(s); Px�(s); u

�(s)
��
dW (s)

�
Z t

0

n
fx
�
s; x�(s); Px�(s); u

�(s)
�
y1(s) + bE �f�(s; x�(s); Px�(s); u�(s); bx�(s))by1(s)�

+ fu(s; x
�(s); Px�(s); u

�(s))v(s)
	
ds

�
Z t

0

n
�x
�
s; x�(s); Px�(s); u

�(s)
�
y1(s) + bE ���(s; x�(s); Px�(s); u�(s); bx�(s))by1(s)�

+ �u(s; x
�(s); Px�(s); u

�(s))v(s)
	
dW (s):

We decompose the integral 1
"

R t
0
[f(s; x"(s); Px"(s); u

"(s)) � f(s; x�(s); Px�(s); u
�(s))]ds into

the following parts

1

"

Z t

0

(f(s; x"(s); Px"(s); u
"(s))� f(s; x�(s); Px�(s); u

�(s)))ds

=
1

"

Z t

0

(f(s; x"(s); Px"(s); u
"(s))� f(s; x�(s); Px"(s); u

"(s)))ds

+
1

"

Z t

0

(f(s; x�(s); Px"(s); u
"(s))� f(s; x�(s); Px�(s); u

"(s)))ds

+
1

"

Z t

0

(f(s; x�(s); Px�(s); u
"(s))� f(s; x�(s); Px�(s); u

�(s)))ds:

We notice that

1

"

Z t

0

(f(s; x"(s); Px"(s); u
"(s))� f(s; x�(s); Px"(s); u

"(s)))ds

=

Z t

0

Z 1

0

�
fx
�
s; x�(s) + �"("(s) + y1(s)); Px"(s); u

"(s)
�
("(s) + y1(s))

�
d�ds;
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1

"

Z t

0

(f(s; x"(s); Px"(s); u
"(s))� f(s; x"(s); Px�(s); u

"(s)))ds

=

Z t

0

Z 1

0

bE �@�f(s; x"(s); Px�(s)+�"((s)+y1(s)); u"(s); bx�(s))(b(s) + by1(s))� d�ds;
and

1

"

Z t

0

(f(s; x�(s); Px�(s); u
"(s))� f(s; x�(s); Px�(s); u

�(s)))ds

=

Z t

0

Z 1

0

�
fu
�
s; x�(s); Px�(s); u

�(s) + �"(v(s)� u�(s)
�
v(s)

�
d�ds:

The analogue relations hold for �: Therefore, we get

E

"
sup
s2[0;t]

j"(s)j2
#

� C(t)

�
E

Z t

0

Z 1

0

��fx �s; x�(s) + �"((s) + y1(s)); Px�(s); u
"(s)

�
"(s)

��2 d�ds
+ E

Z t

0

Z 1

0

bE ��f�(s; x"(s); Px�(s)+�"(b(s)+by1(s)); u"(s); bx�(s))b"(s)��2 d�ds
+ E

Z t

0

Z 1

0

���x �s; x�(s) + �"((s) + y1(s)); Px"(s); u
"(s)

�
"(s)

��2 d�ds
+ E

Z t

0

Z 1

0

bE ����(s; x"(s); Px�(s)+�"(b(s)+by1(s)); u"(s); bx�(s))b"(s)��2 d�ds
+E

"
sup
s2[0;t]

j�"(s)j2
##

;
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where

�"(t) =

Z t

0

Z 1

0

[fx
�
s; x�(s) + �"("(s) + y1(s)); Px�(s); u

"(s)
�

� fx
�
s; x�(s); Px�(s); u

�(s)
�
]y1(s)d�ds

+

Z t

0

Z 1

0

bE �f�(s; x"(s); Px�(s)+�"(b"(s)+by1(s)); u"(s); bx�(s))
� f�(s; x

�(s); Px�(s); u
�(s); bx�(s))]by1(s)d�ds

+

Z t

0

Z 1

0

[fu
�
s; x�(s); Px�(s); u

�(s) + �"v(t)
�

� fu(s; x
�(s); Px�(s); u

�(s)]v(t)d�ds

+

Z t

0

Z 1

0

[�x
�
s; x�(s) + �"("(s) + y1(s)); Px�(s); u

"(s)
�

� �x
�
s; x�(s); Px�(s); u

�(s)
�
]y1(s)d�dW (s)

+

Z t

0

Z 1

0

bE ���(s; x"(s); Px�(s)+�"(b"(s)+by1(s)); u"(s); bx�(s))
� ��(s; x

�(s); Px�(s); u
�(s); bx�(s))]by1(s)d�dW (s)

+

Z t

0

Z 1

0

�u
�
s; x�(s); Px�(s); u

�(s) + �"v(t)
�

� �u(s; x
�(s); Px�(s); u

�(s))]v(t)d�dW (s):

Now, since the derivatives of f and � with respect to x; �; u are Lipschitz continuous in

(x; �; u) ; we get

lim
"!0

E

"
sup
s2[0;T ]

j�"(s)j2
#
= 0:

Since the derivatives of f and � with respect to variables x; �; and u are bounded, we

obtain 8t 2 [0; T ] :

E

"
sup
s2[0;t]

j"(s)j2
#
� C(t)

(
E

Z t

0

j"(s)j2 ds+ E

"
sup
s2[0;t]

j�"(s)j2
#)

:
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From Gronwall�s Lemma, we have : for any t 2 [0; T ],

E

"
sup
s2[0;t]

j"(s)j2
#
� C(t)E

"
sup
s2[0;t]

j�"(s)j2
#
exp

�Z t

0

C(s)ds

�
:

Finally, by putting t = T and letting " go to zero, the proof of Propositions 4.1 is complete.

�

Proposition 4.4.2 Let y1(�) and y2(�) be the solutions of (4.33), (4.35), respectively.

Let assumptions (H 4.1), (H 4.2) and (H 4.3) hold. Then, for any k � 1, and " > 0, we

have

E

"
sup
t2[0;T ]

����x"(t)� x�(t)� "y1(t)�
"2

2
y2(t)

����2k
#
� Ck"

6k: (4.40)

Proof. The proof is based on the �rst and second order expansions. We put

�"(t) = x"(t)� x�(t)� "y1(t)�
"2

2
y2(t):

From (4.15), (4.33) and (4.35), we obtain

�"(t) =

Z t

0

�
f
�
s; x"(s); Px"(s); u

"(s)
�
� f

�
s; x�(s); Px�(s); u

�(s)
�

� "
h
fx(s)y1(s) + bE[ bf�(t)by1(t)] + fu(s)v(s)

i
� "2

2

h
fx(s)y2(s) + bE[ bf�(s)by2(s)] + fxx(s)y

2
1(s) + 2fxu(s)y1(s)v(s)

+ bE[ bfx�(t)by1(t)]y1(t) + 2 bE[ bfu�(s)by1(s)]v(s) + fuu(s)v
2(s)

io
ds

+

Z t

0

�
�
�
s; x"(s); Px"(s); u

"(s)
�
� �

�
s; x�(s); Px�(s); u

�(s)
�

(4.41)

� "
h
�x(s)y1(s) + bE[b��(t)by1(t)] + �u(s)v(s)i

� "2

2

h
�x(s)y2(s) + bE[b��(s)by2(s)] + �xx(s)y

2
1(s) + 2�xu(s)y1(s)v(s)

+ bE[b�x�(t)by1(t)]y1(t) + 2 bE[b�u�(s)by1(s)]v(s) + �uu(s)v
2(s)

io
dW (s):

We decompose the integral
R t
0
[f(s; x"(s); Px"(s); u

"(s))�f(s; x�(s); Px�(s); x�(s))]ds into the
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following parts : for 	 = f; �

Z t

0

(	(s; x"(s); Px"(s); u
"(s))�	(s; x�(s); Px�(s); x�(s)))ds

=

Z t

0

(	(s; x"(s); Px"(s); u
"(s))�	(s; x�(s); Px"(s); u"(s)))ds

+

Z t

0

(	(s; x�(s); Px"(s); u
"(s))�	(s; x�(s); Px�(s); u"(s)))ds (4.42)

+

Z t

0

(	(s; x�(s); Px�(s); u
"(s))�	(s; x�(s); Px�(s); u�(s)))ds:

Let us denote �x"(t) = (x"(t)� x�(t)). We have for 	 = f; � :

Z t

0

(	(s; x"(s); Px"(s); u
"(s))�	(s; x�(s); Px"(s); u"(s)))ds (4.43)

=

Z t

0

Z 1

0

�
	x
�
s; x�(s) + ��x"); Px"(s); u

"(s)
�
�x"(s)

�
d�ds;

Z t

0

(	(s; x"(s); Px"(s); u
"(s))�	(s; x"(s); Px�(s); u"(s)))ds (4.44)

=

Z t

0

Z 1

0

bE �@�	(s; x"(s); Px�(s)+��x" ; u"(s); bx�(s))�bx"(s)� d�ds;
and

Z t

0

(	(s; x�(s); Px�(s); u
"(s))�	(s; x�(s); Px�(s); u�(s)))ds (4.45)

=

Z t

0

Z 1

0

�
	u(s; x

�(s); Px�(s); u
�(s) + �"v(s))"v(s)

�
d�ds:
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By substituting (4.43), (4.44), and (4.45) into (4.42), we get

Z t

0

(	
�
t; x"(s); Px"(s); u

"(s)
�
�	

�
s; x�(s); Px�(s); u

�(s)
�
)ds

=

Z t

0

Z 1

0

�
	x
�
s; x�(s) + ��x"; Px�(s)+��x" ; u

�(t)
�
�x"

+ bE hb	� �s; bx�(s) + ��bx"(s); Pbx�(s)+��bx"(s); u�(s); bx�(s) + ���bx"(s)��bx"(s)i (4.46)

+
�
	u
�
s; x�(s); Px�(s); u

�(s) + �"(v(s)� u�(s)
�
"v(s)

��
d�ds:

By �rst-order expansion for 	x
�
t; x"(s); Px"(s); u

"(s)
�
�	x

�
s; x�(s); Px�(s); u

�(s)
�
, we have

Z t

0

(	x
�
s; x"(s); Px"(s); u

"(s)
�
�	x

�
s; x�(s); Px�(s); u

�(s)
�
)ds

= �

Z t

0

Z 1

0

�
	xx

�
s; x�(s) + ���x"; Px�(s)+���x" ; u

�(s) + ��u"
�
�x" (4.47)

+ bE hb	x� �s; bx�(s) + ���bx"(s); Pbx�(s)+���bx"(s); u�(s) + ��u"; bx�(s) + ���bx"(s)��bx"(s)i d�ds:
By applying similar method to bE �	� �t; x"(t); Px"(t); u"(t)��	� �t; x�(t); Px�(t); u�(t)�� ;
we get

Z t

0

bE(	� �s; x"(s); Px"(s); u"(s)��	� �s; x�(s); Px�(s); u�(s); bx�(s) + ���bx"(s)�)ds
= �

Z t

0

Z 1

0

bE �	x� �s; x�(s) + ���x"; Px�(s)+���x" ; u
�(s) + ��u"; bx�(s) + ���bx"(s)��x"

(4.48)

+ bE hb	�� �s; bx�(s) + ���bx"(s); Pbx�(s)+���bx"(s); u�(s) + ��u"; bx�(s) + ���bx"(s)��bx"(s)i d�ds:
Now, since f; � 2 C2;1b (�2(Rn)), then, by applying second-order expansion and the fact
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that �u" (s) = u"(s)� u�(s) = "(u(s)� u�(s)) = "v(s), we have for each t 2 [0; T ] ;

Z t

0

�
	
�
s; x"(s); Px"(s); u

"(s)
�
�	

�
s; x�(s); Px"(s); u

�(s)
��
ds

=

Z t

0

Z 1

0

E
�
@�	

�
s; x�(s) + ��x"; Px�(s)+��x" ; u

�(s)
�
�x" (s)

�
d�ds

+
1

2

Z t

0

Z 1

0

E
h bE �@2�	(s; x�(s) + ��x"; Px�(s)+��x" ; u

�(s); bx�(s) + ��x")�bx"(s)�x"(s)�i d�ds
+
1

2

Z t

0

Z 1

0

E
�
@y@�	(s; x

�(s) + ��x"; Px�(s)+��x" ; u
�(s)) (�x"(s))2

�
d�ds

+

Z t

0

Z 1

0

	x(s; x
�(s) + ��x"; Px�(s)+��x" ; u

�(s))�x" (t) d�ds (4.49)

+
1

2

Z t

0

Z 1

0

	xx(s; x
�(s) + ��x"; Px�(s)+��x" ; u

�(s)) (�x"(s))2 d�ds

+

Z t

0

Z 1

0

	u(s; x
�(s); Px�(s); u

�(s) + �"v(s))"v(s)d�ds

+
1

2

Z t

0

Z 1

0

	uu(s; x
�(s); Px�(s); u

�(s) + �"v(s)) ("v(s))2 d�ds

+

Z t

0

Z 1

0

	xu(s; x
�(s) + ��x"; Px�(s)+��x" ; u

�(s) + �"v(s))�x" (s) "v(s)d�ds

+

Z t

0

Z 1

0

bE �	�u(s; x�(s) + ��x"; Px�(s)+��x" ; u
�(s) + �"v(s))�bx"(s)"v(s)� d�ds

+

Z t

0

Z 1

0

bE �	x�(s; x�(s) + ��x"; Px�(s)+��x" ; u
�(s))�bx"(s)�x"(s)� d�ds

From (5.16), �u" (s) = u"(s)� u�(s) = "(u(s)� u�(s)) = "v(s):
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Substituting (5.25), (4.47), (4.48) and (4.49) into (4.41), we get

�"(t)

=

Z t

0

�
fx(s)y2(s) +

1

2
fxx(s)(�x

")2 � 1
2
fxx(s)(y1(s))

2 + fxu(s)�x
"(s)v(s)

� fxu(s)y1(s)v(s) + bE (f�(s)by2(s)) + 1
2
bE �f��(s)(�bx")2�� 1

2
bE �f��(s)(by1(s))2�

+ bE (f�u(s)�bx"(s)) v(s) � bE (f�u(s)by1(s)) v(s) + 'f (s)
i
ds

+

Z t

0

�
�x(s)y2(s) +

1

2
�xx(s)(�x

")2 � 1
2
�xx(s)(y1(s))

2 + �xu(s)�x
"(s)v(s)

� �xu(s)y1(s)v(s) + bE (��(s)by2(s)) + 1
2
bE ����(s)(�bx")2�� 1

2
bE ����(s)(by1(s))2�

+ bE (��u(s)�bx"(s)) v(s) � bE (��u(s)by1(s)) v(s) + '�(s)
i
dW (s);

where

'f (s)

=

Z 1

0

(1� �)
�
fxx
�
s; x�(s) + ��x"; Px�(s)+��x" ; u

�(s) + �"v(s)
�
� fxx

�
s; x�(s); Px�(s); u

�(s)
�

+ bE �fx� �s; x�(s) + ���x"; Px�(s)+���x" ; u
�(s) + �"v(s)

�
� fx�

�
s; x�(s); Px�(s); u

�(s)
�

+ bE(f�� �s; bx�(s) + ��bx"(s); Pbx�(s)+��bx"(s); u�(s) + �"v(s)
�
)� bE(f�� �s; x�(s); Px�(s); u�(s)�)i d�;

and

'�(s)

=

Z 1

0

(1� �)
�
�xx

�
s; x�(s) + ��x"; Px�(s)+��x" ; u

�(s) + �"v(s)
�
� �xx

�
s; x�(s); Px�(s); u

�(s)
�

+ bE ��x� �s; x�(s) + ���x"; Px�(s)+���x" ; u
�(s) + �"v(s)

�
� �x�

�
s; x�(s); Px�(s); u

�(s)
�

+ bE(��� �s; bx�(s) + ��bx"(s); Pbx�(s)+��bx"(s); u�(s) + �"v(s)
�
)� bE(��� �s; x�(s); Px�(s); u�(s)�)i d�:

Finally, applying similar arguments proved in Lemma 3.11 in Bonnans and Silva [15,
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Annex, Proof of (3.19)], we get

E

"
sup
t2[0;T ]

j�"(t)j2k
#
� Ck"

6k; (4.50)

then the desired result (4.40) is ful�lled, which completes the proof of Proposition 4.4.2�

As expected, the adjoint processes (p1 (�) ; q1 (�)), (p2 (�) ; q2 (�)) and the variational pro-

cesses (y1 (�), y2 (�)) are related by the following duality relationship, which is essential for

the proof of our main result.

Lemma 4.4.1 Let (p1 (�) ; q1 (�)) and (p2 (�) ; q2 (�)) be the solution to the adjoint equation

(4.26) and (4.29) respectively. Let y1 (�) and y2 (�) be the solutions to the �rst and second-

order variational equations (4.33) and (4.35), respectively associated to u�(�). Then the

following duality relations hold

E
h
hx(x

� (T ) y1 (T ) + bE[bh��(T )by1 (T )]i (4.51)

= �E
Z T

0

h
p1 (t) fu (t) v (t) + q1(t)�u (t) v (t) + y1 (t) (`x(t) + bE[b̀��(t)])i dt;

E
h
hx(x

�T )y2 (T ) + bE[bh��(T )]y2 (T )i
= �E

Z T

0

n
p1(t)

h
[fxx(t)y1(t) + bE[ bf �x�(t)by1(t)] + 2fxu(t)v(t)]y1(t)

+ bE[ bf �u�(t)by1(t)]v(t) + fuu(t)v
2(t)

i
+ q1(t)

h
�xx(t)y

2
1(t) + bE[b��x�(t)by1(t)]y1(t) (4.52)

+ 2�xu(t)y1(t)v(t) + bE[b��u�(t)by1(t)]v(t) + �uu(t)v
2(t)

i
+`x(t)y2(t) + bE(b̀��(t))y2(t)o dt;
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and

E
h
hxx (x

� (T )) y21 (T ) +
bE[bh��y (T ) by21 (T )]i

= �E
Z T

0

f[2y1 (t) [p2 (t) (fu (t) + �x (t)�u (t)) + q2 (t)�u (t)]

+ p2 (t)
h
2�u (t) bE[b���(t)by1(t)] + �2u (t) v(t)

ii
v(t) (4.53)

�y21(t)(Hxx (t) + bE[ bH�
x�(t)] + bE[ bH�

��(t)])
o
dt:

Proof.

Proof of (4.51). Applying Itô�s formula to p1 (t) y1 (t) ; we have

E [p1 (T ) y1 (T )]� E [p1 (0) y1 (0)]

= E

Z T

0

p1(t)dy1(t) + E

Z T

0

y1(t)dp1(t)

+ E

Z T

0

q1(t)[�x(t)y1(t) + bE[b���(t)by1(t)] + �u(t)v(t)]dt (4.54)

= I1(T ) + I2(T ) + I3(T ):

From (5.17), we get

I1(T ) = E

Z T

0

p1(t)dy1(t) (4.55)

= E

Z T

0

p1(t)
h
fx(t)y1(t) + bE[ bf ��(t)by1(t)] + fu(t)v(t)

i
dt;

and from (4.26), we get

I2(T ) = E

Z T

0

y1(t)dp1(t);

= �E
Z T

0

y1(t)
h
p1(t)fx(t) + bE[ bf ��(t)bp1(t)] + q1(t)�x(t) (4.56)

+ bE �b���(t)bq1(t)�� `x(t)� bE(b̀��(t))i dt:
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Similarly, we can further write

I3(T ) = E

Z T

0

q1(t)
h
�x(t)y1(t) + bE[b���(t)by1(t)] + �u(t)v(t)i dt: (4.57)

Substituting (4.55), (4.56), and (4.57) into (4.54), with the fact that y1(0) = 0; we get

E [p1 (T ) y1 (T )]

= E

Z T

0

h
p1 (t) fu (t) v (t) + q1(t)�u (t) v (t) + y1 (t) (`x(t) + bE[b̀��(t)])i dt:

Since p1(T ) = �hx(T )� bE[bh��(T )]; we obtain
E
h
hx(T )y1 (T ) + bE[bh��(T )]y1 (T )i

= �E [p1 (T ) y1 (T )]

= �E
Z T

0

h
p1 (t) fu (t) v (t) + q1(t)�u (t) v (t) + y1 (t) (`x(t) + bE[b̀��(t)])i dt;

then the desired result (4.51) is ful�lled.

Proof of (4.52). Applying Itô�s formula to p1 (T ) y2 (T ) ; we have

E [p1 (T ) y2 (T )]� E [p1 (0) y2 (0)]

= E

Z T

0

p1(t)dy2(t) + E

Z T

0

y2(t)dp1(t)

+ E

Z T

0

q1(t)
h
�x(t)y2(t) + bE[b���(t)by2(t)] + �xx(t)y

2
1(t) + bE[b��x�(t)by1(t)]y1(t) (4.58)

+ 2�xu(t)y1(t)v(t) + 2 bE[b��u�(t)by1(t)]v(t) + �uu(t)v
2(t)

�
dt

= J1(T ) + J2(T ) + J3(T ):
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From (4.35), we have

J1(T ) = E

Z T

0

p1(t)dy2(t)

= E

Z T

0

p1(t)
h
fx(t)y2(t) + bE[ bf�(t)by2(t)] + fxx(t)y

2
1(t) +

bE[ bf �x�(t)by1(t)]y1(t) (4.59)
+ 2fxu(t)y1(t)v(t) + 2 bE[ bfu�(t)by1(t)]v(t) + fuu(t)v

2(t)
i
dt:

From (4.26), it is easy to show that

J2(T ) = E

Z T

0

y2(t)dp1(t)

= �E
Z T

0

y2(t)
h
fx(t)p1(t) + bE h bf�(t)bp1(t)i+ �x(t)q1(t) + bE �b���(t)bq1(t)� (4.60)

�`x(t)� bE �b̀�(t)�i dt;
and similarly, we get

J3(T ) = E

Z T

0

q1(t)
h
�x(t)y2(t) + bE[b���(t)by2(t)] + �xx(t)y

2
1(t) +

bE[b��x�(t)by1(t)]y1(t)
(4.61)

+ 2�xu(t)y1(t)v(t) + 2 bE[b��u�(t)by1(t)]v(t) + �uu(t)v
2(t)

�
dt:
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Combining (4.59), (4.60), and (4.61) into (4.58), with the fact that y2(0) = 0; we get

E [p1 (T ) y2 (T )]

= E

Z T

0

n
p1(t)

h
fxx(t)y

2
1(t) +

bE[ bf �x�(t)by1(t)]y1(t) + 2fxu(t)v(t)y1(t)
+2 bE[ bf �u�(t)by1(t)]v(t) + fuu(t)v

2(t)
i

+ q1(t)
h
�xx(t)y

2
1(t) +

bE[b��x�(t)by1(t)]y1(t)
+ 2�xu(t)y1(t)v(t) + 2 bE[b��u�(t)by1(t)]v(t) + �uu(t)v

2(t)
i

+`x(t)y2(t) + bE(b̀��(t))y2(t)o dt:
Since p1(T ) = �hx(T )� bE[bh��(T )]; we obtain

E
h
hx(T )y2 (T ) + bE[bh��(T )]y2 (T )i

= �E
Z T

0

n
p1(t)

h
fxx(t)y

2
1(t) +

bE[ bf �x�(t)by1(t)]y1(t) + 2fxu(t)v(t)y1(t)
+2 bE[ bf �u�(t)by1(t)]v(t) + fuu(t)v

2(t)
i

+ q1(t)
h
�xx(t)y

2
1(t) +

bE[b��x�(t)by1(t)]y1(t)
+ 2�xu(t)y1(t)v(t) + 2 bE[b��u�(t)by1(t)]v(t) + �uu(t)v

2(t)
i

+`x(t)y2(t) + bE(b̀��(t))y2(t)o dt;
then the desired result (4.52) is ful�lled.
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Proof of (4.53). Applying Itô�s formula to p2 (t) y21 (t) ; we have

E
�
p2 (T ) y

2
1 (T )

�
� E

�
p2 (0) y

2
1 (0)

�
= E

Z T

0

[p2(t)y1(t)] dy1(t) + E

Z T

0

y1(t)d(p2(t)y1(t)) (4.62)

+ E

Z T

0

h
p2(t)

�
�x(t)y1(t) + bE[b���(t)by1(t)] + �u(t)v(t)

�
+ y1(t)q2(t)

i
�
h
�x(t)y1(t) + bE[b���(t)by1(t)] + �u(t)v(t)

i
dt

= K1(T ) +K2(T ) +K3(T );

where K1(T ) is given by

K1(T ) = E

Z T

0

[p2(t)y1(t)] dy1(t)

= E

Z T

0

[p2(t)y1(t)]
h
fx(t)y1(t) + bE[ bf ��(t)by1(t)] + fu(t)v(t)

i
dt: (4.63)

We again applying Itô�s formula, to p2(t)y1(t); we obtain

K2(T ) = E

Z T

0

y1(t)d [p2(t)y1(t)]

= E

Z T

0

y1(t)p2(t)dy1(t) + E

Z T

0

y21(t)dp2(t)

+ E

Z T

0

y1(t)q2(t)(�x(t)y1(t) + bE[b���(t)by1(t)] + �u(t)v(t))dt;

which implies that

K2(T ) = E

Z T

0

y1(t)p2(t)
�
fx(t)y1(t) + bE[ bf ��(t)by1(t)] + fu(t)v(t)

�
dt

� E

Z T

0

y21(t)
n
2(fx(t) + bE[ bf ��(t)])p2(t) + [�x(t) + bE(b���(t))]2p2(t)

+ 2(�x(t) + bE[b���(t)])q2(t) + (Hxx (t) + bE[ bHx�(t)]) + bE[ bH��(t)])
o
dt

+ E

Z T

0

y1(t)q2(t)(�x(t)y1(t) + bE[b���(t)by1(t)] + �u(t)v(t))dt:
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Analogously, by simple computations, we get

K2(T ) = E

Z T

0

y1(t) (p2(t)fu(t) + q2(t)�u(t)) v(t)dt

� E

Z T

0

y21(t)
n
(fx(t) + bE[ bf ��(t)])p2(t) + [�x(t) + bE(b���(t))]2p2(t) (4.64)

+ (�x(t) + bE[b���(t)])q2(t) + (Hxx (t) + bE[ bH�
x�(t)] +

bE[ bH��(t)]))
o
dt:

The same argument allows to show that

K3(T ) = E

Z T

0

h
p2(t)

�
�x(t)y1(t) + bE[b���(t)by1(t)] + �u(t)v(t)

�
+ y1(t)q2(t)

i
(4.65)

�
h
�x(t)y1(t) + bE[b���(t)by1(t)] + �u(t)v(t)

i
dt:

By substituting (4.63), (4.64), and (4.65) into (4.62), with the fact that y1(0) = 0; we

conclude that

E
�
p2 (T ) y

2
1 (T )

�
= E

Z T

0

f[2y1 (t) [p2 (t) (fu (t) + �x (t)�u (t)) + q2 (t)�u (t)]

+ p2 (t)
�
2�u (t) bE[b���(t)by1(t)] + �2u (t) v(t)

�i
v(t) (4.66)

�y21(t)(Hxx (t) + bE[ bH�
x�(t)] +

bE[ bH�
��(t)])

o
dt:

Finally, since p2 (T ) = �hxx(x (T ))� bE[bh�x�(x(T ))]; then the desired result (4.53) follows,
which completes the proof of Lemma 4.4.1 �

Proposition 4.4.3 Let assumptions (H 4.1), (H 4.2) and (H 4.3) hold. Then the following
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variational equality holds. For any control u (�) 2 U ([0; T ]) ;

J (u" (�))� J (u�(�))

= �E
Z T

0

�
"Hu(t)v(t) +

"2

2

�
Huu(t) + p2(t)�

2
u(t)

�
v2(t)

+"2H(t)y1 (t) v(t)
�
dt+ o

�
"2
� �

" �! 0+
�
: (4.67)

where v(t) = u(t)� u�(t) and

H(t) = H(t; x; u; �; p1; q1; p2; q2)

= Hxu(t) + bE[ bH�u(t)] + fu(t; x; �; u)p2(t) + �u(t; x; �; u)q2(t) (4.68)

+ p2(t)�u(t; x; �; u)(�x(t; x; �; u) + bE[b��(t; x; �; u)]):
Proof. From (4.16), we have

J (u"(�))� J (u�(�))

= E

Z T

0

�` (t) dt+ E[h(x"(T ); Px"(T ))� h(x�(T ); Px�(T ))]:
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Applying Taylor-Young�s formula, we get

J (u" (�))� J (u�(�))

= E

�Z T

0

n
`x (t) (x

" (t)� x� (t)) + bE hb̀�� (t) (bx" (t)� bx� (t))i+ `u (t) (u
" (t)� u� (t))

+
1

2
`xx (t) (x

" (t)� x� (t))2 +
1

2
bE[b̀��� (t) (bx" (t)� bx� (t))2] + 12`uu (t) (u" (t)� u� (t))2

+ `xu (t) (x
" (t)� x� (t)) (u" (t)� u� (t)) + bE[b̀��u (t) (bx" (t)� bx� (t)) (u" (t)� u� (t))]

+ bE[b̀�x� (t) (bx" (t)� bx� (t))] (x" (t)� x� (t))
o
dt

+ E

�
hx(T ) (x

" (T )� x� (T )) +
1

2
hxx (T ) (x

" (T )� x� (T ))2
�
:

+ E

� bE[h��(T ) (bx" (T )� bx� (T ))] + 12 bE[bh��� (T ) (bx" (T )� bx� (T ))2]
+ bE[bh�x� (T ) (x" (T )� x� (T )) (bx" (T )� bx� (T ))]i+ o

�
"2
�
:

Applying Proposition 4.4.1 and Proposition 4.4.2and the fact that u"(t)�u�(t) = " (u(t)� u�(t)) =

"v, we obtain

J (u" (�))� J (u� (�))

= E

�Z T

0

�
"`x (t) y1 (t) + " bE hb̀� (t) by1 (t)i+ "2

2
`x (t) y2 (t) +

"2

2
bE hb̀�� (t) by2 (t)i

+ "`u (t) v (t) +
"2

2

�
`xx (t) y1 (t)

2 + bE(b̀��� (t) by1 (t)2) + `uu (t) v (t)
2

+2`xu(t)y1 (t) v(t) + 2 bE(b̀��u(t)by1 (t))v (t) + 2 bE(b̀�x�(t)by1 (t))y1(t)�o dt
+ E

�
"[hx (T ))y1 (T ) + bE(bh��(T )by1 (T ))] + "2

2
[hx (T ) y2 (T ) + bE(bh�� (T ) by2 (T ))] (4.69)

+
"2

2

h
hxx (T ) y

2
1 (T ) + 2

bE[bhx� (T ) by1 (T ) y1 (T )] + bE[bh�� (T ) by21 (T )]i+ o
�
"2
�
;�

" �! 0+
�
:
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Further, from Lemma 4.4.1 , we have

J (u" (�))� J (u� (�))

= E

Z T

0

�
"`x (t) y1 (t) + " bE(b̀�� (t) by1 (t)) + "2

2
`x (t) y2 (t) +

"2

2
bE(b̀�� (t) by2 (t)) + "`u (t) v (t)

+
"2

2

�
`xx (t) y1 (t)

2 + bE(b̀��� (t) by1 (t)2) + `uu (t) v (t)
2

+ 2`xu(t)y1 (t) v(t) + 2 bE(b̀��u(t)by1 (t))v (t) + 2 bE(b̀�x�(t)by1 (t))y1(t)�o dt
� "E

Z T

0

h
p1 (t) fu (t) v (t) + q1(t)�u (t) v (t) + y1 (t) (`x(t) + bE(b̀��(t)))i dt

� "2

2
E

Z T

0

n
p1(t)

h
fxx(t)y

2
1(t) + 2

bE[ bf �x�(t)by1(t)]y1(t) + bE[ bf ���(t)by1(t)2] + 2fxu(t)v(t)y1(t)
+2 bE[ bf �u�(t)by1(t)]v(t) + fuu(t)v

2(t)
i

+ q1(t)
h
�xx(t)y

2
1(t) +

bE[b��x�(t)by1(t)]y1(t) + 2�xu(t)y1(t)v(t)
+ 2 bE[b��u�(t)by1(t)]v(t) + �uu(t)v

2(t)
i
+`x(t)y2(t) + bE(b̀��(t))y2(t)o dt

� "2

2
E

Z T

0

f2fu (t) p2 (t) y1 (t) v(t) + 2�x (t)�u (t) p2 (t) y1 (t) v(t) + 2q2 (t)�u (t) y1 (t) v(t)

+ 2�u (t) bE[b��(t)by1(t)]p2 (t) v(t) + �2u (t) p2 (t) v
2(t)

� y21(t)(Hxx (t) + bE[ bH�
x�(t)] + bE[ bH�

��(t)])
o
dt

+ o
�
"2
�
;
�
" �! 0+

�
:

Since bE[ bH�
x�(t)] = bE( bf �x�(t)p1(t)) + bE(b��x�(t)q1(t))� bE(b̀�x�(t)); then we get

J (u" (�))� J (u� (�))

= �E
Z T

0

f" [fu (t) p1(t) + �u (t) q1(t)� `u (t)] v(t)

+
"2

2
[fuu (t) p1(t) + �uu (t) q1(t)� `uu (t)] v

2(t)

+ "2 [H(t)y1 (t) v(t)] +
"2

2
p2(t)�

2
u (t) v

2(t)

�
dt+ o

�
"2
�
;
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where H(t) is given by (4.68). From (4.22) and (4.24), we get

J (u" (�))� J (u�(�))

= �E
Z T

0

�
"Hu(t)v(t) +

"2

2
Huu(t)v

2(t) + "2H(t)y1 (t) v(t)

+
"2

2
p2(t)�

2
u(t)v

2(t)

�
dt+ o

�
"2
� �

" �! 0+
�
: (4.70)

This completes the proof of Proposition 4.4.3 �

Applying Proposition 4.4.3 , we can derive the following second order necessary condi-

tion in integral form for our stochastic optimal control (4.15)-(4.16).

Theorem 4.4.1 (Maximum principle in integral form) Let assumption (H1), (H2)

and (H3) hold. If u� (�) is a singular optimal control in the classical sense for the control

problem (4.15)-(4.16). Then we have

E

Z T

0

H(t)y1(t)(u (t)� u� (t))dt � 0; (4.71)

for any u (�) 2 U ([0; T ]), where H (t) is de�ned by the formula (4.68) and y1 (�) is the

solution of �rst-order variational equation given by

y1(t) =

Z t

0

h
fx(s)y1(s) + bE[ bf ��(s)by1(s)] + fu(s)v(s)

i
ds

+

Z t

0

h
�x(s)y1(s) + bE[b���(s)by1(s)] + �u(s)v(s)

i
dW (s):

Proof. From the optimality of u�(�), and Proposition 4.4.3 , for v(t) = u (t) � u� (t)
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we have

0 � J (u" (�))� J (u�(�))
"2

= �E
Z T

0

�
1

"
Hu(t)v(t) +

1

2
Huu(t)v

2(t)

+H(t)y1 (t) v(t) +
1

2
p2(t)�

2
u(t)v

2(t)

�
dt

+
1

"2
o
�
"2
� �

" �! 0+
�
;

by applying (4.25), we deduce
1

"
Hu(t)v(t) = 0;

and
1

2
Huu(t)v

2(t) +
1

2
p2(t)�

2
u(t)v

2(t) =
1

2

�
Huu(t) + p2(t)�

2
u(t)

�
v2(t) = 0;

the desired result (4.71) follows immediately. This completes the proof of Theorem 4.4.1

�

4.5 Pointwise mean-�eld second order maximum prin-

ciple

In this section, by using the property of Itô�s integrals and the martingale represen-

tation theorem, we establish the second order necessary condition for singular optimal

controls, which is pointwise mean-�eld maximum principle in terms of the martingale with

respect to the time variable t. The following lemma plays an important role to establish

our result.

Lemma 4.5.1 Under assumptions (H 4.1), (H4.2) and (H 4.3),.the �rst variational

equation (5.17) admits a unique strong solution y1 (�), which is represented by the follo-
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wing :

y1 (t) = � (t)

�Z t

0

	(s)
�
fu(s)� (�x(s) + bE[b���(s)])�u(s)� v(s)ds

+

Z t

0

	(s)�u(s)v(s)dW (s)

�
; (4.72)

where � (t) is a de�ned by the following linear stochastic di¤erential equation :

8><>:
d� (t) =

h
fx(t) + bE( bf ��(t))i�(t)dt+ h�x(t) + bE[b���(t)]i�(t)dW (t);

� (0) = 1;

(4.73)

and 	(t) its inverse.

Proof. Equation (4.73) is linear with bounded coe¢ cients, then it admits a unique

strong solution. Moreover, this solution is invertible and its inverse 	(t) = ��1 (t) given

by the following equation

8>>>>><>>>>>:
d	(t) =

��
�x(t) + bE(b���(t))�2	(t)� fx(t)	(t)� bE( bf ��(t))	(t)� dt

�
�
�x(t) + bE[b���(t)]�	(t)dW (t);

	(0) = 1:

(4.74)

Applying Itô�s formula to 	(t)y1 (t) ; we deduce

d [	(t)y1 (t)]

= y1 (t) d	(t) + 	(t)dy1 (t) (4.75)

�
h
(�x(t) + bE[b���(t)])	(t)i h�x(t)y1(t) + bE[b���(t)by1(t)] + �u(t)v(t)

i
dt

= I1 (t) + I2 (t) + I3 (t) ; (4.76)
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where

I1 (t) = y1 (t) d	(t) (4.77)

=

�
y1(t)

�
�x(t) + bE[b���(t)]�2	(t)� y1(t)fx(t)	(t)� y1(t) bE( bf ��(t))	(t)� dt

� y1 (t)
�
�x(t) + bE[b���(t)]�	(t)dW (t):

By simple computations, we obtain

I2 (t) = 	(t)dy1 (t)

=
h
	(t)fx(t)y1(t) + 	(t) bE[ bf ��(t)by1(t)] + 	(t)fu(t)v(t)i dt (4.78)

+
h
	(t)�x(t)y1(t) + 	(t) bE[b���(t)by1(t)] + 	(t)�u(t)v(t)i dW (t);

and

I3 (t) = �
h
(�x(t) + bE[b���(t)])	(t)i h�x(t)y1(t) + bE[b���(t)by1(t)] + �u(t)v(t)

i
dt: (4.79)

Substituting (4.77), (4.78) and (4.79) into (4.76), we get

	(t)y1 (t)�	(0)y1 (0)

=

�Z t

0

	(s)
h
fu(s)�

�
�x(s) + bE[b���(s)]��u(s)i v(s)ds

+

Z t

0

	(s)�u(s)v(s)dW (s): (4.80)

Since y1(0) = 0 and 	�1(t) = � (t) ; then from (4.80) the desired result (4.73) is ful�lled.

This completes the proof of Lemma 4.5.1 �

To prove the main theorem we need the following technical Lemma.

Lemma 4.5.2 Let assumptions (H 4.1), (H 4.2) and (H 4.3) hold. Then we have

(1) H (�) 2 L2F ([0; T ] ;R) :
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(2) For any v 2 U , there exists a unique stochastic process �v (�; t) 2 L2F ([0; T ] ;R) ; with

E

�hR T
0
j�v (s; t)j2 ds

i2�
<1 such that

H(t)(v � �u(t)) = E [H(t)(v � u(t))] +

Z t

0

�v (s; t) dW (s) (4.81)

a:e: t 2 [0; T ]; P � a:s:

Proof. Since the derivatives fxu; f�u; �xu; ��u; `xu; `�u; fu; �u; �x; and ��, are bounded, (see

assumptions (H 4.2) and (H 4.3)), we have E
�hR T

0
jH (t)j2 dt

i2�
<1; the desired result in

(4.81) follows immediately. The second item follows by applyingMartingale Representation

Theorem, (see also Lemma 3.9 in [124].). �

Now, in order to derive a pointwise second order necessary condition from the integral

form in (4.71), we need to choose the following spike variation (needle variation) for the

optimal control u(�) :

u(t) =

8><>:
v; t 2 G�;

u(t); t 2 [0; T ] j G�;
(4.82)

where � 2 [0; T ); v 2 U , G� is a Borel subset, G� = [�; � + �) � [0; T ] so that � > 0 and

� + � � T . Denote by IG�(�) the characteristic function of the set G�. Then we have

v(�) = u(�)� u(�) = (v � u(�)) IG� :

The following theorem constitutes the main contribution of this work.

Theorem 4.5.1 Let assumptions (H 4.1), (H 4.2) and (H 4.3) hold. If u(�) is a singular

optimal control in the classical sense for the stochastic control (4.15)-(4.16), then for any

v 2 U , it holds that

E
�
H(�)fu(�)(v � u(�))2

�
+ @+�

�
H(�)�u(�)(v � u(�))2

�
� 0; a:e: � 2 [0; T ] ; (4.83)
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where H(�) given by (4.68) at �

H(�) = Hxu(�) + bE[ bH�
�u(�)] + p2(�)

h
fu(�) + �u(�)

�
�x(�) + bE[b���(�)]�i

+ �u(�)q2(�);

and

@+�
�
H(�)�u(�)(v � u(�))2

�
(4.84)

:= 2 lim
�!0+

sup
1

�2
E

Z �+�

�

Z t

�

[�v(s; t)� (�)	 (s)�u(s)(v � u(s))] dsdt;

where �v(�; t) is given by (4.81), and 	(�) is determined by (4.74).

Proof. From (4.82), we have v(�) = u(�)�u(�) = (v�u(�))IG�(�) and the corresponding

solution y1(�) to (4.72) is given by the following mean-�eld equation :

y1(t) = � (t)

Z t

0

	(s)
�
fu(s)� (�x(s) + bE[b���(s)])�u(s)� (v � u(s))IG�(s)ds (4.85)

+ �(t)

Z t

0

	(s)�u(s)(v � u(s))IG�(s)dW (s):

Substituting v(�) = (v � u(�))IG�(�) and (4.85) into (4.71), we have

0 � 1

�2
E

Z �+�

�

[H (t) y1(t) (v � u(t))] dt

=
1

�2
E

Z �+�

�

�
H (t) � (t)

Z t

�

	(s)
�
fu(s)� (�x(s) + bE[b���(s)])�u(s)�

� (v � u(s))ds (v � u(t))] dt

+
1

�2
E

Z �+�

�

�
H (t) � (t)

Z t

�

	(s)�u(s)(v � u(s))dW (s) (v � u(t))

�
dt

= J �1 (�) + J �2 (�) ; (4.86)
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where

J �1 (�) =
1

�2
E

Z �+�

�

�
H (t) � (t)

Z t

�

	(s)
�
fu(s)� (�x(s) + bE[b���(s)])�u(s)�

� (v � u(s))ds (v � u(t))] dt;

and

J �2 (�) =
1

�2
E

Z �+�

�

�
H (t) � (t)

Z t

�

	(s)�u(s)(v � u(s))dW (s) (v � u(t))

�
dt:

Applying similar arguments developed in [124], we obtain

lim
�!0+

J �1 (�) =
1

2
E
h
H (�)

�
fu(�)� (�x(�) + bE[b���(�)])�u(�)� (v � u(�))2

i
: (4.87)

Let us turn to estimate the second term J �2 (�) : From (4.73), and since

� (t) = � (�) +

Z t

�

(fx(s) + bE( bf ��(s)))�(s)ds
+

Z t

�

(�x(s) + bE[b���(s)])�(s)dW (s);
it follows that

J �2 (�) =
1

�2
E

Z �+�

�

�
H (t) � (�)

Z t

�

	(s)�u(s)(v � u(s))dW (s) (v � u(t))

�
dt

+
1

�2
E

Z �+�

�

�
H (t)

Z t

�

(fx(s) + bE( bf ��(s)))�(s)ds
�
Z t

�

	(s)�u(s)(v � u(s))dW (s) (v � u(t))

�
dt

+
1

�2
E

Z �+�

�

�
H (t)

Z t

�

(�x(s) + bE[b���(s)])�(s)dW (s) (4.88)

�
Z t

�

	(s)�u(s)(v � u(s))dW (s) (v � u(t))

�
dt

= J �2;1 (�) + J �2;2 (�) + J �2;3 (�) :
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Now, we proceed to derive estimates for the terms J �2;1 (�) ; J
�
2;2 (�) ; and J

�
2;3 (�) :

Arguing as in [124, Eq-(4.8)], with the help of Lemma 4.5.2 , we get

lim
�!0+

sup J �2;1 (�) = lim
�!0+

sup
1

�2
E

Z �+�

�

�
H (t) � (�)

Z t

�

	(s)�u(s)(v � u(s))dW (s)

� (v � u(t))] dt

=
1

2
@+�
�
H (�) (v � u(�))2�u(�)

�
; 8� 2 [0; T ] : (4.89)

Let us turn to second term J �2;2 (�) in the right-hand side of (??). Since fx; f� are bounded,

then by applying similar arguments developed in [124, Eq-(4.9)], we have

lim
�!0+

sup J �2;2 (�) = lim
�!0+

sup
1

�2
E

Z �+�

�

�
H (t)

Z t

�

(fx(s) + bE( bf ��(s)))�(s)ds
�
Z t

�

	(s)�u(s)(v � u(s))dW (s) (v � u(t))

�
dt (4.90)

= 0; a:e: � 2 [0; T ] :

Let us turn to third term J �2;3 (�) in the right-hand side of (4.88). SinceE
���R t� j�x(s)� (s)j2 ds���2

and E

����R t� ��� bE[b���(s)])� (s)���2 ds����2 are bounded, then by applying similar arguments develo-
ped in [124, Eq-(4.10)], we have

lim
�!0+

sup J �2;3 (�)

= lim
�!0+

sup
1

�2
E

Z �+�

�

�
H (t)

Z t

�

(�x(s) + bE[b���(s)])�(s)dW (s)
�
Z t

�

	(s)�u(s)(v � u(s))dW (s) (v � u(t))

�
dt (4.91)

=
1

2
E
h
H (�) (�x(�) + bE[b���(�)])�u(�)(v � u(�))2

i
: a:e: � 2 [0; T ] :
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Substituting (4.89), (4.90), (4.91) in (4.88), we obtain

lim
�!0+

sup J �2 (�) =
1

2
E
h
H (�) (�x(�) + bE[b���(�)])�u(�)(v � u(�))2

i
+
1

2
@+�
�
H (�) (v � u(�))2�u(�)

�
; a:e: � 2 [0; T ] : (4.92)

Finally, by substituting (4.92), (4.87) in (??), we get

0 � 1

2
E
h
H (�)

�
fu(�)� (�x(�) + bE[b���(�)])�u(�)� (v � u(�))2

i
+
1

2
E
h
H (�) (�x(�) + bE[b���(�)])�u(�)(v � u(�))2

i
+
1

2
@+�
�
H (�)�u(�)(v � u(�))2

�
; a:e: � 2 [0; T ] ;

then the desired result (4.83) is ful�lled. This completes the proof of Theorem 4.5.1. �
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Chapitre 5

Lions�s partial derivatives with

respect to probability measures for

general mean-�eld stochastic control

problem

5.1 Introduction

In this chapter,we establish a necessary stochastic maximum principle for stochastic mo-

del governed by mean-�eld nonlinear controlled Itô-stochastic di¤erential equations. The

coe¢ cients of our model are nonlinear and depend explicitly on the control variable, the

state process as well as of its probability distribution. The control region is assumed to be

bounded and convex. Our main result is derived by applying the Lions�s partial-derivatives

with respect to random measures in Wasserstein space. The associated Itô-formula and

convex-variation approach are applied to establish the optimal control.

Let (
;F ; fFtgt2[0;� ] ; P ) be a �xed �ltered probability space and � be a �xed positive

real number. In this chapter, we study the following mean-�eld-type stochastic optimal
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nonlinear control problem : We denote by :

Problem A. Minimize a mean-�eld cost functional

J (�(�)) = E

Z
Rd
�(y�(�); �

y�(�))�(dy�);

subject to y�(�) solution of the (MF-SDE) : t 2 [0; � ]

8><>:
dy�(t) =

R
Rd '

�
t; y�(t); �

y�(t); �(t)
�
�(dy�)dt+

R
Rd  

�
t; y�(t); �

y�(t); �(t)
�
�(dy�)dW (t);

y�(0) = y0:

In the above, �(�) is the control variable valued in a convex bounded subset U � Rk,

y� (�) is the controlled state variable, W (�) is a standard Brownian motion, �y�(t) is the

distribution of y�(t) and �, ' and  are a given maps.

The mean-�eld control theory has found important applications and has become a

powerful tool in many �elds, such as mathematical �nance, economics, and stochastic

mean-�eld games, see Lasry and Lions [76], Buckdahn et al. [19]. Under partial information,

necessary maximum principle of optimality for MF-SDEs has been proved in Wang et al.

[87]. Stochastic optimal control of mean-�eld jump-di¤usion systems with delay has been

studied by Meng and Shen [84]. Under partial information, the necessary and su¢ cient

conditions for optimal continous and singular controls for mean-�eld SDEs with Teugels

martingales have been studied in Hafayed et al. [42, 61]. Necessary conditions for mean-

�eld FBSDEs have been studied by Hafayed et al. [62]. The general maximum principle

for MF-SDEs has been established in Buckdahn et al. [12]. Mean-�eld game has been

studied by Lions [88]. The convex maximum principle for mean-�eld delay SDE have been

investigated in Shen et al. [89]. General maximum principle for optimal stochastic control

has been established in Peng [90]. A Peng�s type maximum principle for SDEs of mean-

�eld type was proved by Buckdahn et al., [19]. Forward-backward stochastic di¤erential

equations (FBSDs) and controlled McKean-Vlasov dynamics have been investigated in
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Carmona and Delarue [26]. Linear quadratic optimal control problem for conditional mean-

�eld equation with random coe¢ cients with applications has been investigated by Pham

[91]. Necessary maximum principle for optimal continuous-singular control problem for

general MF-SDEs, under convexity assumptions have been investigated by Hafayed et al.

[41]. Second-order necessary maximum principle for MF-SDEs has been proved in Boukaf

et al. [17].

In this chapter, we apply the Lions�s partial-derivatives with respect to probability

measure to establish our maximum principle. This approach introduced by Lions [88] and

later detailed in Buckdahn et al. [19], Cardaliaguet [27] and Guo et al. [39]. Motivated by

the recent works above, in this chapter, we derive the necessary maximum principle for

our mean-�eld optimal control problem (5.6) -(5.7) The Lions�s partial-derivatives with

respect to probability measure in Wasserstein space and the associated Itô-formula with

some appropriate estimates are applied to prove our result. This approach of derivatives

over Wasserstein space has turned out to be crucial in the study of our maximum principle.

Our stochastic mean-�eld model occur naturally in the probabilistic models of �nancial

optimization problems.

Our control problem is strongly motivated by the recent study of the McKean-Vlasov

games and the related McKean-Vlasov control problem.

The rest of the chapter is organized as follows. The formulation of the partial deriva-

tives with respect to probability measures, and basic notations are given in Sect. 2 . The

formulation of the control problem is given in Sect. 3 . In Sect. 4 , we prove our main

results. Finally, to illustrate our theoretical result, we give an example in the last section.
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5.2 Lions�s partial-derivatives with respect to proba-

bility measure

We now recall brie�y an important notion in mean-�eld control problems : the Lions�s

partial derivatives with respect to probability measures, over Wasserstein space which

was introduced by P.Lions [88], see also Cardaliaguet [27], and Guo et al. [39] and the

recent references therein.

Throughout this chapter, we let K2 (Rn) be Wasserstein space of probability measures

on (Rn;B(Rn)) with �nite second-moment, i.e ;
R
Rn jyj

2 � (dy) < 1; endowed with the

following Wasserstein metric : for �1; �2 2 K2 (Rn) ;

T (�1; �2) = inf
�(�;�)2K2(R2n)

�Z
R2n
jx� yj2 � (dx; dy)

� 1
2

; (5.1)

where �(�;Rn) = �1; and �(Rn; �) = �2:

The main idea in Lions�s partial-derivatives is to identify a distribution (measure of

probability) � 2 K2 (Rn) with a random variable y (�) 2 L2(F ;Rn) so that � = Py is the

law of y (�) : We assume that probability space (
;F ; P ) is rich-enough in the sense that

for every � 2 K2 (Rn) ; there is a random variable y (�) 2 L2(F ;Rn) such that � = Py: We

suppose that there is a sub-���eld G0 � F such that G0 is rich-enough i.e,

K2 (Rn) :=
�
�y = Py : y (�) 2 L2(G0;Rn)

	
: (5.2)

By F = (Ft)t2[0;� ], we denote the �ltration generated by W (�), completed and augmented

by G0: Next, for any function f : K2 (Rn) ! R we de�ne a function ef : L2 (F ;Rn) ! R

such that ef (y) = f (�y) = f (Py) ; y (�) 2 L2 (F ;Rn) : (5.3)

Clearly, the function ef; called the lift-function of f; depends only on the law of y 2
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L2(F ;Rn) and is independent of the choice of the representative y:

Let g : K2 (Rn) ! R. The function g is di¤erentiable at a distribution �0 2 K2 (Rn)

if there exists y0 2 L2(F ;Rn); with �y0 = Py0 such that its lift eg is Fréchet-di¤erentiable
at y0: More precisely, there exists a continuous linear functional Deg(y0) : L2(F ;Rn)! R

such that

eg (y0 + �)� eg (y0) = hDeg(y0) � �i+ o (k�k2) = D�g(�
y0) + o (k�k2) ; (5.4)

where h: � :i is the dual product on L2(F ;Rn): We called D�g(�
y0) the Fréchet-derivative

of g at �0 in the direction �: In this case we have

D�g(�
y0) = hDeg(y0) � �i = d

dt
eg (y0 + t�)

����
t=0

; with �y0 = Py0 : (5.5)

Now, from Riesz representation theorem, there exists a unique random variable  0 2

L2(F ;Rn) such that hDeg(y0) � �i = ( 0 0 � �)2 = E [( 0 � �)2] where � 2 L2(F ;Rn): It was

shown, (see [19]) that there exists a Borel function	 [�y0 ] (�) : Rn ! Rn; depending only on

the law �y0 = Py0 but not on the choice of the representative y0 such that  0 = 	 [�
y0 ] (y0) :

Thus we can write (5.4) as :for any y 2 L2 (F ;Rn), we have

g (�y)� g (�y0) = (	 [�y0 ] (y0) � y � y0)2 + o (ky � y0k2) :

We denote @�g (�y0 ; y) = 	 [�y0 ] (y); y 2 Rn: Moreover, we have the following identities

Deg(y0) =  0 = 	 [�
y0 ] (y0) = @�g (�

y0 ; y0) ;

and D�g(�y0) = h@�g (�y0 ; y0) � �i ; where � = (y � y0):

Remark 5.1.1 (1) For each � 2 K2 (Rn) ; the partial derivatives @�g (�y; �) = 	 [�y] (�)

are only de�ned in �(dy)� a:e: sense.
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(2) A function f is said to be di¤erentiable at �0 2 K2(Rn) if there exists a random variable

y0 with law �0 such that the lift function ef is Fréchet di¤erentiable at y0:
De�nition 5.1.2 We say that the function g 2 C1;1b (K2(Rn)) if for all y 2 L2(F ;Rn)

there exists a Py�modi�cation of @�g (�y; �) (denoted by @�g) such that @�g : K2 (Rn) �

Rn ! Rn is bounded and Lipschitz continuous. That is for some C > 0; it holds that

(1) j@�g(�; y)j � C; 8� 2 K2(Rn); 8y 2 Rn:

(2) j@�g(�; y)� @�g(�
0; y0)j � C [T (�; �0) + jy � y0j] ; 8�; �0 2 K2(Rn); 8y; y0 2 Rn:

We should note that if the function g 2 C1;1b (K2(Rn)); the version of @�g (�y; �) ; y 2

L2(F ;Rn); presented in De�nition 5.2 is unique (see [19, Remark 2.2], and [27]). We shall

denote by @�g (t; y; �0) the derivative with respect to � computed at �0 whenever all the

other variables (t; y) are held �xed, @�g (t; y; �0) = @�g (t; y; �)j�=�0 �(dy)� a:e:.

Throughout this work, we will use the following notations, for  = f; h :  y(t) =

@ 
@y
(t; y�(t); ��; ��(t));  �(t) =

@ 
@�
(t; y�(t); ��; ��(t)); and b �(t) = @� (t; y(t); �; �(t);by(t));

�(dy)� a:e::

5.3 Formulation of the mean-�eld control problem

Let � > 0 be a �xed positive real number and (
;F ; fFtgt2[0;� ] ; P ) be a �xed �ltered

probability space satisfying the usual conditions in which one�dimensional Brownian mo-

tion W (t) = fW (t) : 0 � t � �g and W (0) = 0 is de�ned. We study optimal solutions of

stochastic control problem driven by controlled mean-�eld model :

8><>:
dy(t) =

R
Rd '

�
t; y(t); �y(t); �(t)

�
�(dy)dt+

R
Rd  

�
t; y(t); �y(t); �(t)

�
�(dy)dW (t);

y(0) = y0;

(5.6)
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where �y(t) = Py(t) is the probability distribution of y(t). The goal of our mean-�eld optimal

control problem is to minimize the following cost functional

J (�(�)) = E

Z
Rd
�(y(�); �y(�))�(dy); (5.7)

where

' : [0; � ]� Rn �K2 (Rn)�U! Rn;

 : [0; � ]� Rn �K2 (Rn)�U! Rn;

� : Rn �K2 (Rn)! R;

are a given deterministic functions.

An admissible control �(�) is an Ft�predictable process with values in some non-empty

convex subset U of Rk such that E
R �
0
j�(t)j2 dt <1. We called U the control domain. We

denote by U ([0; � ]) the set of all admissible controls. We suppose that an optimal control

exists. Any admissible control ��(�) 2 U ([0; � ]) satisfying

J (��(�)) = inf
�(�)2U([0;� ])

J (�(�)) ; (5.8)

is called an optimal control. The maps

f (t; �; �) =

Z
Rd
'
�
t; y(t); �y(t); �(t)

�
�(dx);

� (t; �; �) =

Z
Rd
 
�
t; y(t); �y(t); �(t)

�
�(dx);

h (�) =

Z
Rd
�
�
y(�); �y(�)

�
�(dx);
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are a given deterministic functions such that

f : [0; � ]�K2 (Rn)�U! Rn;

� : [0; � ]�K2 (Rn)�U! Rn�d;

h : K2 (Rn)! R:

To avoid excessive complexity in the notation, we will make the simplifying assumption

that all processes are 1-dimensional (i.e., n = m = 1) in the subsequent sections.

We de�ne a metric d (�; �) on the space of admissible controls U ([0; � ]) such that (U ([0; � ]) ; d)

becomes a complete metric space. For any �(�) and �0(�) 2 U ([0; � ]) we set

d (�(�); �0(�)) =
�
E

Z �

0

j� (t)� �0 (t)j2 dt
� 1
2

: (5.9)

Assumptions. The following assumptions will be in force throughout this work, where y

denotes the state variable, and � the control variable.

��Assumption (H 5.1) The control region is assumed to be bounded and convex.

�Assumption (H 5.2) For �xed measure � 2 K2(R); for any (y; �) 2 Rd�U; the

functions ';  are measurable in all variables and continuously di¤erentiable with

respect to y; � ; and al their partial derivatives are uniformly bounded.

The function � is continuously di¤erentiable with respect to y and Moreover

j� (y)j � C(1 + jyj2); and j�y (y)j � C (1 + jyj) ; where C > 0 is a generic posi-

tive constant, which may vary from line to line.

�Assumption (H 5.3) (1) For �xed y 2 R; for all �(t) 2 U : ';  2 C1;1b (K2(Rd);R)

and � 2 C1;1b (K2(R);R):

(2) All the derivatives with respect to measure '�;  � are bounded and Lipschitz

continuous, with Lipschitz constants independent of �.

Under the assumptions (H 5.2) and (H 5.3), for each �(�) 2 U ([0; � ]) ; Eq-(5.6) has a
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unique strong solution y (�) given by

y(t) = y0+

Z t

0

Z
Rd
'
�
s; y(s); �y(s); �(s)

�
�(dy)ds+

Z t

0

Z
Rd
 
�
s; y(s); �y(s); �(s)

�
�(dy)dW (s);

such that E
�
supt2[0;� ] jy(t)j

2� <1; and the functional J (�) is well de�ned.

Let ��(�) 2 U ([0; � ]) be an optimal control for the problem A, and y�(�) = y��(�) the

corresponding optimal state process.

Hamiltonian. Let us de�ne the Hamiltonian associated to our control problem. For any

(t; y; �; �; p; q) 2 [0; � ]� R�K2(R)� R� R� R

H(t; y; �; �; p(t); q(t)) = p(t)

Z
Rd
'(t; y; �y(t); �)�(dy) + q(t)

Z
Rd
 (t; y; �y(t); �)�(dy);

(5.10)

where (p (�) ; q (�)) is a pair of adapted processes, solution of the adjoint equation (5.12).

The derivatives of H with respect to control variable �(�) has the form

@H

@�
(t; y�(t); �y(t); ��(t); p(t); q(t))

=

Z
Rd
'�
�
t; y; �y(t); �

�
p(t)�(dy) +

Z
Rd
 �
�
t; y; �y(t); �

�
q(t)�(dy): (5.11)

Adjoint equation : we consider the new adjoint equation, which is the following MF-

BSDE : 8>>>>>>>>>><>>>>>>>>>>:

dp(t) = � bE �@y b' (t; y; �; �) bp(t) + RRd @�b' (t; y; �; �) bp(t)�(dy)
+ @y b (t; y; �; �) bq(t) + RRd @� b (t; y; �; �) bq(t)�(dy)� dt
+ q(t)dW (t);

p(�) = � bE h@yb� (y; �; �) + RRd @�b� (y; �; �)�(dy)i :
(5.12)
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Here, for t 2 [0; � ] ; we have

bE(b'�(t)) = bE �@�b'(t;by�(t); �y�(t); b��(t); z)� ����z=y�(t) (5.13)

=

Z
b
 @�'(t;by�(t; bw); Py�(t;w); b��(t; bw); y�(t; w))d bP ( bw);

bE( b �(t)) = E bP ( b �(t)) = E bP
h
@� b (t;by�(t); �y�(t); b��(t); z)i ����z=y�(t) (5.14)

=

Z
b
 @� (t;by�(t; bw); Py�(t;w); b��(t; bw); y�(t; w))d bP ( bw):

Similarly, we get

bE(b��(�)) = E bP (b��(�)) = E bP �@��(by�(�); Py�(�); z)� ����z=y�(t) (5.15)

=

Z
b
 @��(by�(�; bw); Py(�;w); y�(�; w))d bP ( bw):

Under the assumptions (H5.2) and (H5.3), the mean-�eld BSDE (5.12) admits a unique

Ft-adapted strong solution (p (�) ; q (�)) such that E( sup
t2[0;� ]

jp(t)j2 +
R �
0
jq(t)j2 dt) < 1: See

Guo et al. [39] for some examples and di¤erent models of derivatives with respect to

probability measures.

5.4 Main results

5.4.1 Maximum principle

In this work, our purpose is to derive mean-�eld-type necessary maximum principle for

the optimal control, where the dynamic driven by controlled mean-�eld model (5.6). To

establish our necessary optimality conditions, we apply the convex perturbation method

of the optimal control. This perturbation method is described as follows : Let ��(�) be

an optimal control and �(�) is an arbitrary element of Ft�measurable random variable
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with values in convex bounded set U which we consider as �xed from now on. We de�ne

a perturbed control ��(�) as follows. Let

��(t) = ��(t) + � (�(t)� ��(t)) ; (5.16)

where � > 0 is su¢ ciently small. Since the control region U is convex, then ��(�) 2

U ([0; � ]) : We denote by y�(�) the solution of Eq-(5.6) associated with ��(�):

Under assumptions (H 5.1), (H 5.2) and (H 5.3), we introduce the following new va-

riational equation for our control problem.

Variational equation : let t 2 [0; � ] ; and v(t) = �(t)� ��(t):

8>>>>>>>>>>>><>>>>>>>>>>>>:

dZ(t) =
h bE �@y b' (t; y; �; �) bZ(t) + RRd @�b' (t; y; �; �) bZ(t)�(dy)�
+'� (t; y; �; �) v(t) +

R
Rd '� (t; y; �; �) v(t)�(dy)

�
dt

+
h bE �@y b' (t; y; �; �) bZ(t) + RRd @�b' (t; y; �; �) bZ(t)�(dy)�

+ � (t; y; �; �) v(t) +
R
Rd  � (t; y; �; �) v(t)�(dy)

�
dW (t)

Z(0) = 0:

(5.17)

Here the process Z (�) is called the �rst-order variational process, associated to �(�): Since

the derivatives in (5.17) are bounded, it follows that there exists a unique solution Z(�)

such that

E

"
sup
t2[0;� ]

jZ (t)jk
#
< Ck; for k � 2: (5.18)

We note that unless speci�ed, for each k 2 R+, we denote by Ck > 0 a generic positive

constant depending only on k, which may vary from line to line.

We shall establish some fundamental estimates that will play the crucial roles for the proof

of our stochastic maximum principle.

Our aim in this section is to establish a stochastic maximum principle for optimal stochastic

control for systems driven by nonlinear controlled SDEs. Since the control domain is
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assumed to be convex, the proof of our result based on convex perturbation. Now, the

main result of this chapter is stated in the following theorem.

Theorem 5.4.1. (Maximum principle in integral form via Lions�s derivative). Let assump-

tions (H 5.1), (H 5.2) and (H 5.3) hold. Then there exists a unique pair of Ft�adapted

processes (p(�); q(�)) solution of the mean-�eld BSDE (5.12) such that for all � 2 U

E

Z �

0

@H

@�
(t; y�(t); �y

�(t); ��(t); p(t); q(t)) (�(t)� ��(t)) dt � 0: (5.19)

Corollary 5.4.1. Under assumptions of Theorem 5.4.1, Then there exists a unique pair

of Ft�adapted processes (p(�); q(�)) solution of mean-�eld BSDE-(5.12) such that for all

� 2 U

@H

@�
(t; y�(t); �y(t); ��(t); p(t); q(t)) (�(t)� ��(t)) dt � 0:

P�a:s:; a:e: t 2 [0; � ] :

To prove Theorem 5.4.1 we need the following results

5.4.2 Proof of main result

Let (��(�); y�(�)) be the optimal solution of the control problem (5.6)-(5.7).We derive the

variational inequality from :

J
�
��(�)

�
� J (��(�)) ; (5.20)

where ��(�) is the so called convex-perturbation of ��(�) de�ned as follows : 8s 2 [0; � ]

��(s) = ��(s) + �(�(s)� ��(s)); (5.21)

where � > 0 is su¢ ciently small and �(s) 2 U is an element of U ([0; � ]).

Proposition 5.4.1. Let y� (�) and y� (�) be the states of (5.22) corresponding to ��(�)
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and ��(�) respectively. Let Z(�) be the solution of (5.17). Then we have

lim
�!0

E

"
sup
s2[0;� ]

��y�(s)� y�(s)��2k# = 0; (5.22)

lim
�!0

E

�
sup
s��

����1 �y�(s)� y�(s)�� Z(s)��2� = 0: (5.23)

Proof. By using Proposition 5.4.2, estimate (4.8) in [19], we have

E

"
sup
s2[0;� ]

��y�(s)� y�(s)��2k# � Ck�
k;

then the proof of estimate (5.22) follows immediately by letting � ! 0: Let us turn to

prove estimate (5.23). We consider

�(s) = ��1
�
y�(s)� y�(s)

�
� Z(s); s 2 [0; � ] : (5.24)

Since D�f(�
Z0(t)) =

D
D ef(Z0) � �E = d

dt
ef (Z0 + t�)

���
t=0

; then we have the following simple

form of the �rst order Taylor expansion

f(�Z0(t)+�)� f(�Z0(t)) = D�f(�
Z0(t)) + E(�);

where E(�) is of order O (k�k2) with O (k�k2) ! 0 for � 2 L2
�
F ;Rd

�
: From (5.24), we

have

�(t) =
1

�

Z t

0

Z
Rd

h
'
�
s; y�(s); �y

�(s); ��(s)
�
� '

�
s; y�(s); �y

�(s); ��(s)
�i
�(dy)ds

+
1

�

Z t

0

Z
Rd

h
 
�
s; y�(s); �y

�(s); ��(s)
�
�  

�
s; y�(s); �y

�(s); ��(s)
�i
�(dy)dW (s)

(5.25)

� Z(t):
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We put

f (t; �; �) =

Z
Rd
'
�
t; y(t); �y(t); �(t)

�
�(dy);

� (t; �; �) =

Z
Rd
 
�
t; y(t); �y(t); �(t)

�
�(dy); (5.26)

h (�) =

Z
Rd
�
�
y(�); �y(�)

�
�(dy):

By applying (5.25), we get

�(t) =
1

�

Z t

0

h
f
�
s; �y

�(s); ��(s)
�
� f

�
s; �y

�(s); ��(s)
�i
ds

+
1

�

Z t

0

h
�
�
s; �y

�(s); ��(s)
�
� �

�
s; �y

�(s); ��(s)
�i
dW (s)

�
Z t

0

n bE hf�(s; �y�(s); ��(s);by�(s))bZ(s)i + f�(s; �
y�(s); ��(s))v(s)

	
ds

�
Z t

0

n bE h��(s; �y�(s); ��(s);by�(s))bZ(s)i + ��(s; �
y�(s); ��(s))v(s)

	
dW (s):

By simple computations, we have

Z t

0

[f(s; �y
�(s); ��(s))� f(s; �y

�(s); ��(s))]ds

=

Z t

0

(f(s; �y
�(s); ��(s))� f(s; �y

�(s); ��(s)))ds

+

Z t

0

(f(s; �y
�(s); ��(s))� f(s; �y

�(s); ��(s)))ds:

Applying �rst-order expansion, we get

1

�

Z t

0

(f(s; �y
�(s); ��(s))� f(s; �y

�(s); ��(s)))ds

=

Z t

0

Z 1

0

bE h@�f(s; �y�(s)+�"((s)+Z(s)); ��(s);by�(s))(b(s) + bZ(s))i d�ds:
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Using similar arguments developed above, we can easily prove that

1

�

Z t

0

(f(s; �y
�(s); ��(s))� f(s; �y

�(s); ��(s)))ds

=

Z t

0

Z 1

0

h
f�

�
s; �y

�(s); ��(s) + �"(�(s)� ��(s))
�
v(s)

i
d�ds:

The analogue arguments hold for �; then we get

1

�

Z t

0

[�(s; �y
�(s); ��(s))� �(s; �y

�(s); ��(s))]ds

=

Z t

0

Z 1

0

bE h@��(s; �y�(s)+�"((s)+Z(s)); ��(s);by�(s))(b(s) + bZ(s))i d�ds
+

Z t

0

Z 1

0

h
��

�
s; �y

�(s); ��(s) + �"(�(s)� ��(s)
�
v(s)

i
d�ds:

Therefore, we get

E

"
sup
s2[0;t]

���(s)��2#

� Ct

�
E

Z t

0

Z 1

0

bE ���f�(s; �y�(s)+�"(b(s)+bZ(s)); ��(s);by�(s))b�(s)���2 d�ds
+ E

Z t

0

Z 1

0

bE �����(s; �y�(s)+�"(b(s)+bZ(s)); ��(s);by�(s))b�(s)���2 d�ds
+E

"
sup
s2[0;t]

��A�(s)��2## ;
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where

A�(t) =

Z t

0

Z 1

0

bE hf�(s; �y�(s)+�"(b(s)+bZ(s)); ��(s);by�(s))
� f�(s; �

y�(s); ��(s);by�(s))] bZ(s)d�ds
+

Z t

0

Z 1

0

[f�
�
s; �y

�(s); ��(s) + �"v(t)
�

� f�(s; �
y�(s); ��(s)]v(t)d�ds

+

Z t

0

Z 1

0

bE h��(s; �y�(s)+�"(b(s)+bZ(s)); ��(s);by�(s))
� ��(s; �

y�(s); ��(s);by�(s))]bZ(s)d�dW (s)
+

Z t

0

Z 1

0

[��
�
s; �y

�(s); ��(s) + �"v(t)
�

� ��(s; �
y�(s); ��(s)]v(t)d�dW (s):

Now, since the partial derivatives of f and � with respect to �; � are Lipschitz continuous

in �; �; then we get

lim
�!0

E

"
sup
s2[0;� ]

��A�(s)��2# = 0:
Moreover, since the partial-derivatives of f and � with respect to variables �; and � are

bounded, we obtain 8t 2 [0; � ] :

E

"
sup
s2[0;t]

���(s)��2# � C(t)

(
E

Z t

0

���(s)��2 ds+ E

"
sup
s2[0;t]

��A�(s)��2#) :
By using Gronwall�s theorem, we get

E

"
sup
s2[0;t]

���(s)��2# � CsE

"
sup
s2[0;t]

��A�(s)��2# exp�Z t

0

Csds

�
:

Finally, putting t = � the proof of Proposition 5.4.1 is ful�lled by sending � to zero. �
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Proposition 5.4.2. For any �(�) 2 U ([0; � ]) ; we have

0 � E

�
@y�

�
y�(�); �y

�(�)
�
+

Z
Rd
bE(@�� �y�(�); �y�(�);by�(�)��(dy)�Z(�): (5.27)

Proof. From (5.7) and (5.20), we have

0 � J
�
��(�)

�
� J (��(�))

= E
h
h(y�(�); �y

�(�))� h(y�; �y
�(�))

i
:

By applying �rst-order expansion, we get

h(y�(�); �y
�(�))� h(y�; �y

�(�))

=

Z 1

0

h
hy

�
y�(�) + ��x� (�)); �y

�(�)+��x�
�
�x�(�)

i
d�

+

Z 1

0

bE hh�(y�(�) + ��x� (�) ; �y
�(�)+��x�(�);by�(�))�by�(�)i d�

=

Z 1

0

�
@y�

�
y�(�) + ��x� (�) ; �y

�(�)+��x�(�);by�(�)���by�(�)d�
+

Z 1

0

Z
Rd
bE(@���y�(�) + ��x� (�) ; �y

�(�)+��x�(�);by�(�)��(dy)�by�(�)d�;
where �x�(t) = y�(t)� y�(t): Finally, by using Proposition 5.4.1, the desired result (5.27)

is ful�lled. This completes the proof of Propositionn 5.4.2. �

Proof of Theorem 5.4.1. Itô�s formula is one of the most fundamental building blocks

in stochastic calculus and maximum principle, see Guo et al. [39]. By applying Itô�s for-

mula to stochastic process p(t)Z(t) and take expectation, where Z(0) = 0; then a simple
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computations shows that

E(p(�)Z(�))� E(p(0)Z(0))

= E

Z �

0

p(t)dZ(t) + E

Z �

0

Z(t)dp(t)

+ E

Z �

0

q(t)

� bE �@y b' (t; y; �; �) bZ(t) + Z
Rd
@�b' (t; y; �; �) bZ(t)�(dy)� (5.28)

+ � (t; y; �; �) v(t) +

Z
Rd
 � (t; y; �; �) v(t)�(dy)

�
dt

= I1 + I2 + I3;

where

I1 = E

Z �

0

p(t)dZ(t)

= E

Z �

0

p(t)
h bE �@y b' (t; y; �; �) bZ(t) + RRd @�b' (t; y; �; �) bZ(t)�(dy)�i dt

+ E

Z �

0

p(t)
�
'� (t; y; �; �) v(t) +

R
Rd '� (t; y; �; �) v(t)�(dy)

�
dt:

(5.29)

Let us turn to estimate the second term I2: From (5.12), we have

I2 = E

Z �

0

Z(t)dp(t)

= �E
Z �

0

Z(t) bE �@y b' (t; y; �; �) bp(t) + RRd @�b' (t; y; �; �) bp(t)�(dy)� dt
� E

Z �

0

Z(t) bE �@y b (t; y; �; �) bq(t) + RRd @� b (t; y; �; �) bq(t)�(dy)� dt;
(5.30)

From (5.17), we have

I3 = E

Z �

0

q(t)

� bE �@y b' (t; y; �; �) bZ(t) + Z
Rd
@�b' (t; y; �; �) bZ(t)�(dy)� (5.31)

+ � (t; y; �; �) v(t) +

Z
Rd
 � (t; y; �; �) v(t)�(dy)

�
dt:
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Substituting (5.29), (5.30) and (5.31) into (5.28), with the fact that

p(�) = bE �@yb� �y(�); �y(�)�+ Z
Rd
@�b� �y(�); �y(�)��(dy)� ;

we get

E

� bE �@yb� �y(�); �y(�)�+ Z
Rd
@�b� �y(�); �y(�)��(dy)�Z(�)�

= E

Z �

0

p(t)

�
'� (t; y; �; �) (�(t)� ��(t)) +

Z
Rd
'� (t; y; �; �) (�(t)� ��(t))�(dy)

�
dt

+ E

Z �

0

q(t)

�
 � (t; y; �; �) (�(t)� ��(t)) +

Z
Rd
 � (t; y; �; �) (�(t)� ��(t))�(dy)

�
dt:

Applying Proposition 5.4.1, we obtain

0 � E

Z �

0

p(t)

�
'� (t; y; �; �) (�(t)� ��(t)) +

Z
Rd
'� (t; y; �; �) (�(t)� ��(t))�(dy)

�
dt

+ E

Z �

0

q(t)

�
 � (t; y; �; �) (�(t)� ��(t)) +

Z
Rd
 � (t; y; �; �) (�(t)� ��(t))�(dy)

�
dt:

Finally, by simple computations, with the helps of (5.11), we get

E

Z �

0

p(t)

�
'� (t; y; �; �) (�(t)� ��(t)) +

Z
Rd
'� (t; y; �; �) (�(t)� ��(t))�(dy)

�
dt

+ E

Z �

0

q(t)

�
 � (t; y; �; �) (�(t)� ��(t)) +

Z
Rd
 � (t; y; �; �) (�(t)� ��(t))�(dy)

�
dt

= E

Z �

0

�
p(t)

�
'� (t; y; �; �) (�(t)� ��(t)) +

Z
Rd
'� (t; y; �; �)�(dy)

�
+ q(t)

�
 � (t; y; �; �) (�(t)� ��(t)) +

Z
Rd
 � (t; y; �; �)�(dy)

��
(�(t)� ��(t))dt

= E

Z �

0

@H

@�
(t; y�(t); �y

�(t); ��(t); p(t); q(t)) (�(t)� ��(t)) dt;

then (5.19) is ful�lled. This completes the proof of Theorem 4.1 �
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5.5 Examples : Gamma process via Lévy measure

The Gamma process is a Lévy process (of bounded variation) (G(t))t�0 ; with Lévy

measure given by

�(dy) =
e�y

y
Ify>0gdy: (5.32)

It is called Gamma process because the probability law of G(�) is a Gamma distribution

with mean t and scale-parameter equal to one.

5.5.1 Examples (Derivatives with respect to measure)

Let (G(t))t�0 be Gamma process with Lévy measure �(�) given by (5.32). We give some

examples.

1) If � (�) =
R
R '(y)�(dy); then the Lions�s derivatives of � (�) with respect to measure

at z is given by

@�� (�) (z) =
@'

@y
(z) :

2) If � (�) =
R
R '(y; �)�(dy); then the Lions�s derivatives of � (�) with respect to measure

at z is given by

@�� (�) (z) =
@'

@y
(z; �) +

Z
R

@'

@�
(y; �) (z)�(dy)

=
@'

@y
(z; �) +

Z
R

e�y

y

@'

@�
(y; �) (z) Ify>0gdy:

5.5.2 Maximum principle

We consider ' (t; y(t); �; �(t)) = y(t)�(t);  (t; y(t); �; �(t)) = y(t)�(t): Our purpose is

to minimize V ar(y(�))� �y(�):

From (5.26), then a simple computations shows that

f (t; �; �) =

Z
R
'(t; y(t); �y(t); �(t))�(dy) = �(t); (5.33)
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� (t; �; �) =

Z
R
 (t; y(t); �y(t); �(t))�(dy) = �(t): (5.34)

From (5.10) we get

H(t; y; �; �; p(t); q(t)) = �(t)p(t) + �(t)q(t); (5.35)

Since, the Hamiltonian H is linear in the control variable �(�), then by considering the

�rst-order condition for minimizing the Hamiltonian that yields

H�(t; y; �; �; p(t); q(t)) = p(t) + q(t) = 0; (5.36)

From (5.12) and (5.32), with simple computations, we have

8><>:
dp(t) = q(t)dW (t)

p(�) = 2
�
y(t)� �y(�)

�
� 1:

(5.37)

Conjecture of the adjoint process. Looking at the terminal condition p(�) , it is reaso-

nable to try a solution of the form :

p(t) = U1(t)
�
y(t)� �y(�)

�
+ U2(t); (5.38)

where U1 (�) ; and U2 (�) are deterministic di¤erentiable functions, and U1(�) = 2; and

U2(�) = �1:

On the other hand, by applying Itô�s formula to U1(t)
�
y(t)� �y(t)

�
in (5.38), we get

dp(t) = d(U1(t)(y(t)� �y(t))) + dU2 (t)

= U1 (t) d(y(t)� �) + (y(t)� �)U 01 (t) dt+ U 02 (t) dt

= U1 (t)�(t)dt� U1 (t) d�+ (y(t)� �)U 01 (t) dt+ U 02 (t) dt (5.39)

+ U1 (t)�(t)dW (t):
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From (5.39) and (5.37), we conclude

(y(t)� �)U 01 (t) + U1 (t)�(t) + U1 (t)�+ U 02 (t) = 0: (5.40)

and

q(t) = U1 (t)�(t): (5.41)

Substituting (5.41) into (5.36), we obtain a candidate optimal control in feedback form

�(t) =
q(t)

U1 (t)
=
�p(t)
U1 (t)

=
�U1(t)(y(t)� �) + U2(t)

U1 (t)
(5.42)

= �y(t) + �� U2(t)

U1 (t)
;

By comparing the coe¢ cient of y(t) and �; in (5.40), we obtain

U1 (t)� U 01 (t) = 0; U1(�) = 2; (5.43)

and

U 02 (t) = 0; U2(�) = �1: (5.44)

By solving the ordinary di¤erential equations (5.43)-(5.44), we obtain for t 2 [0; � ]

U1 (t) = 2 exp [t� � ] ; (5.45)

U2(t) = �1:

Finally, by substituting (5.42) into (5.45), the optimal control is given in the feedback

form by

��(t; y�(t); �y
�(t)) = �y�(t) + �y

�(t) +
1

2
exp [� � t] : (5.46)
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Conclusion, perspectives and future
Developments

In this thesis, we establish a set of necessary conditions of optimal stochastic for dif-

ferent stochastic models. More precisely, in the second chapter, we have developed a neces-

sary conditions for partially observed singular stochastic optimal control problem, where

the controlled state dynamics is in�uenced by unobserved uncertainties. The system is

governed by general McKean-Vlasov di¤erential equations. By transforming the partial

observation problem to a related problem with full information, a stochastic maximum

principle for optimal singular control has been established via the derivative with respect

to probability measure in P.Lions�sense. The main feature of these results is to explicitly

solve some new mathematical �nance problems such as general conditional mean-variance

portfolio selection problem in incomplete market.

Apparently, there are many problems left unsolved :

1. One possible problem is to establish some optimality conditions (or near-optimality)

for partially observed singular stochastic optimal control for systems governed forward-

backward stochastic di¤erential equations of general McKean-Vlasov type with some

recent applications.

2. The partially observed singular control in the case when the control domain is not

necessarily convex.

3. It would be quite interesting to derive a general maximum principle for partially

observed optimal control for fully coupled forward-backward stochastic di¤erential

equations FBSEDs following Yong�s maximum principle.

In the fourth chapter, pointwise second-order necessary conditions, in the form of Pon-

tryagin maximum principal for optimal stochastic singular control have been established.

The control dynamic system was governed by nonlinear controlled stochastic di¤erential
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equation. In our class of control problem, we have studied two types of singularity, the

predictable ones which come from the singular control part and the second ones which

come from the irregularity in some senses.

We note that if the coe¢ cients G(t) = M(t) = 0 our results coincides with second-

order maximum principle developed in [124, Theorem 3.5]. Apparently, there are many

problems left unsolved such as :

1. The case when the control domain is not assumed to be convex (general action

space).

2. One possible problem is to study the second-order maximum principle for optimal

singular control for McKean-Vlasov stochastic di¤erential equations.

3. Another challenging problem left unsolved is to derive a various second-order maxi-

mum principles in the case where the coe¢ cients G and M depend on the state of

the solution process xu;� (�) :

4. It would be quite interesting to establish second order maximum principle for systems

governed by forward-backward stochastic di¤erential equations with some applica-

tions.

We plane to study these interesting problems in forthcoming works.
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 ملخص الاطروحة 

 

 

يندرج موضوع هذه الاطروحة  في مجال الاحتمالات وتطبيقاتها.  وقد تطرقنا فيها الى موضوع 

 العشوائية من الصنف الحقل المتوسط. للمعادلات التفاضلية لمختلف الامثلية التوافقية 

 ولقد قدمنا في هذه الاطروحة خمسة فصول على النحو الاتي

الفصل الاول  على مجموعة من التعاريف  و المفاهيم العامة  و طرق الحلول الممكنة في  احتوى

للطريقة الاشتقاق  مسائل المراقبة الاحتمالية . كما احتوي الفصل الثاني على عرض خاص

استخدامها في اعمالنا البحثية للقياسات الاحتمالية. وقد الجديدة بالنسبة للقياسات  والتى تم 

لنتائجنا  . اما الفصول الثالث و الرابع و الخامس فكانت عرضا دقيقا -نظرية رايز -ساعدنا في ذلك

لاعمالنا البحثية الجديدة مع بعض التطبيقات  ونظريات مبدا الاعظمية لمختلف الانظمة التفاضلية و

 في المالية.
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