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Résumé

Dans cette thèse, nous explorons deux facettes distinctes, l’une théorique et l’autre pratique.
L’aspect théorique de notre recherche se concentre sur l’examen des équations différentielles
stochastiques rétrogrades pilotées à la fois par un processus de Poisson et un mouvement
brownien qui est indépendant, succinctement désignées comme EDSRSs. Le générateur
présente une croissance logarithmique à la fois dans la variable d’état et le processus z,
tout en conservant la continuité de Lipschitz en ce qui concerne la composante de saut.

Notre étude établit systématiquement la présence et la distinction des solutions dans
des espaces fonctionnels appropriés. De plus, nous relâchons la condition de Lipschitz
sur la composante de Poisson, permettant au générateur de manifester une croissance
logarithmique concernant toutes les variables. Faisant un pas supplémentaire, nous utilisons
une transformation exponentielle pour établir un parallèle entre les solutions d’une EDSRS
caractérisée par une croissance quadratique dans la variable z et une EDSRS présentant
une croissance logarithmique avec à la fois y et z. De plus, nous plongeons dans une
discussion sur le principe du maximum, spécifiquement dans des scénarios dépourvus de la
composante de saut.

Du côté pratique, notre attention se tourne vers la mise en œuvre des Partenariats Public-
Privé (PPPs), qui se sont révélés être une approche prometteuse pour gérer efficacement
les projets et services d’infrastructure publique. Cependant, le succès des contrats PPP est
souvent entravé par des défis tels que l’asymétrie de l’information et le risque moral. Pour
optimiser la prise de décision dans les PPPs, cette thèse se concentre sur l’application de
techniques de contrôle stochastique, en tenant compte de l’effet du facteur d’ambiguïté κ

dans le contrat entre le principal et l’agent.

En exploitant des cadres mathématiques rigoureux, comprenant des EDSRs en une di-
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RÉSUMÉ

mension, du contrôle stochastique, et des techniques d’arrêt optimal, cette recherche offre
des perspectives précieuses et des solutions pratiques pour atténuer les effets adverses de
l’asymétrie de l’information, de l’ambiguïté et de la dynamique en temps continu dans les
PPP.

Cette étude dérive l’inégalité variationnelle de Hamilton-Jacobi-Bellman (HJBVI) liée à
la fonction de valeur publique, offrant une base solide pour l’optimisation de la prise de
décision dans les PPP.

De plus, dans ce travail, une étude numérique est réalisée en utilisant des méthodes de
différences finies et l’algorithme de Howard pour approximer le loyer optimal et l’effort
sous l’impact de l’incertitude. L’analyse numérique démontre l’impact de l’incertitude sur
la prise de décision et les résultats des projets dans les contrats PPP.

Dans l’ensemble, cette thèse apporte d’importantes contributions aux domaines théorique
et appliqué. Tout d’abord, nous établissons l’existence et l’unicité des EDSRSs avec un
générateur permettant une croissance logarithmique. De plus, nous explorons le lien entre
ces EDSRSs et les EDSRSs quadratiques. Ensuite, nous plongeons dans le principe du
maximum de Pontryagin pour ces types de EDSRs, spécifiquement sans la composante de
saut. Enfin, nous faisons progresser le domaine des Partenariats Public-Privé (PPPs) en
optimisant la prise de décision.

vi



Abstract

In this thesis, we delve into two distinct facets, one theoretical and the other practical. The
theoretical aspect of our investigation centers on the examination of backward stochastic
differential equations driven by both a Poisson process and an independent Brownian
motion succinctly denoted as BSDEJs. The generator showcases logarithmic growth in
both the state variable and the process z while retaining Lipschitz continuity concerning
the jump component.

Our study systematically establishes the presence and distinctiveness of solutions within
appropriate functional spaces. Furthermore, we loosen the Lipschitz condition on the
Poisson component, allowing the generator to manifest logarithmic growth concerning all
variables. Taking an additional stride, we utilize an exponential transformation to draw a
parallel between solutions of a BSDEJ characterized by quadratic growth in the z-variable
and a BSDEJ exhibiting logarithmic growth with both y and z. Additionally, we delve
into a discussion on the maximum principle, specifically in scenarios devoid of the jump
component.

On the practical side, our focus shifts to the implementation of Public-Private Partnerships
(PPPs), which have emerged as a promising approach for efficiently managing public
infrastructure projects and services. However, the success of PPP contracts is often
hindered by challenges such as information asymmetry and moral hazard. To optimize
decision-making in PPPs, this thesis focuses on the application of stochastic control
techniques, taking into account the effect of the ambiguity factor κ in the contract between
the principal and the agent.

By leveraging rigorous mathematical frameworks, including one-dimensional BSDEs,
techniques in stochastic control, and optimizing stopping times, this research provides
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ABSTRACT

valuable insights and practical solutions to mitigate the adverse effects of information
asymmetry, ambiguity, and continuous-time dynamics in PPPs.

This study derives the HJB Variational Inequality (HJBVI) associated with the public
value function, offering a solid foundation for decision-making optimization in PPPs.

Additionally, this work conducts a numerical study using finite difference methods and
the Howard algorithm to approximate the optimal rent and effort under uncertainty. The
numerical analysis demonstrates the impact of uncertainty on decision-making and project
outcomes in PPP contracts.

Overall, this thesis significantly contributes to the theoretical and applied fields. Firstly, we
establish the existence and uniqueness of BSDEJs with a generator allowing for logarithmic
growth. Furthermore, we explore the connection of these BSDEJs with quadratic BSDEJs.
Secondly, we delve into the Pontryagin maximum principle for these types of BSDEs,
specifically without the jump component. Finally, we advance the field of Public-Private
Partnerships (PPPs) by optimizing decision-making.

Keywords : Public Private Partnership, Moral Hazard, Knightian Uncertainty, BSDEs,
stochastic control, Maximum principle, logarithmic growth, Poisson random measure,
Dynamic Programming Principle, optimal stopping, Hamilton Jacobi Bellman variational
inequality, Howard algorithm.
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Introduction

1Chapter

1.1 Backward Stochastic Differential Equations

Backward Stochastic Differential Equations (BSDEs) represent a vibrant and relatively recent
domain within stochastic analysis, gaining momentum since the early 1990s. Extensively explored
for their profound connections to various stochastic mathematical challenges, such as those
in mathematical finance, differential games, optimal control, and partial differential equations
(PDEs), BSDEs have garnered widespread interest. They are positioned squarely within the
realm of stochastic analysis.

Let’s present the form of a BSDE. Consider a time interval [0,T ], W a fixed Brownian motion
within a standard filtered probability space (Ω,F = (Ft)t∈[0,T ],P). The filtration F is assumed
to be the augmented filtration of W :

{
dYr =−f (r,Yr,Zr)dr+ZrdWr

YT = ζ

Or, in the same way :

Ys = ζ+

∫T

s
f(r,Yr,Zr)ds−

∫T

s
ZrdWr (1.1.1)

The parameters involved are :
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• ζ : FT -measurable random variable that signifies the terminal condition.
• f : A measurable function incorporating variables t,ω,y,z, with the ω dependence

typically implied rather than explicitly stated. This function is commonly referred to as
the generator or driver.

A sought-after solution to the BSDE is an adapted stochastic process (Yt,Zt)t∈[0,T ] to the filtration
F . The persistent question regarding the solution of (1.1.1) is focused on discerning the conditions
that lead to the solution’s existence, uniqueness, stability, and regularity. Researchers remain
actively engaged in the pursuit of minimizing assumptions that guarantee these properties.

Let’s offer a concise yet selective overview of the evolution of BSDE theory. The emergence
of Linear BSDEs in 1973 within stochastic control theory, as identified by Bismut [23] in the
equation governing the adjoint process, set the stage for a pivotal development. However, the
groundbreaking work of Pardoux and Peng in their influential paper [78] marked the systematic
commencement of the study of BSDEs. They demonstrated the existence and uniqueness of
BSDEs, establishing crucial results under the following classical Assumption :

▶ Integrability condition : For every y,z ∈ R, the function f(.,y,z) is a progressively mea-
surable process satisfying :

E [|ζ |2]<∞, E
[∫T

0
|f(s,0,0)|2ds

]
<∞.

▶ Lipschitz condition : There exists a constant Cf > 0 s.t. for any s, ω,

∀(y1,z1,y2,z2) |f(s,y1,z1)−f(s,y2,z2)| ≤ Cf (|y1 −y2|+ |z1 −z2|) ds⊗dP a.e.

Theorem 1.1.1. [Pardoux-Peng [78]] Under the above Assumption, the BSDE (1.1.1) has a
unique solution (Yt,Zt)t≤T , such that :

E
[

sup
0≤t≤T

|Yt|
2 +

∫T

0
|Zt|

2 dt

]
<∞.

This groundbreaking work gained widespread recognition across diverse fields, including mathe-
matical finance [45], finance and insurance [42], insurance reserve [40], optimal control theory
[81], as well as stochastic differential games and stochastic control [52–54]. These contributions
are closely linked to partial differential equations (PDEs) [17, 80, 82]. Conversely, subsequent
research was the first to showcase BSDEs with random terminal time.

Due to the diverse applications of BSDEs, considerable efforts have been made to relax assumptions
on the generator f and/or the final condition. Noteworthy outcomes have been achieved for
high-dimensional BSDEs with local Lipschitz assumptions on the driver, as evidenced in [6,
13, 28, 32, 58]. Despite extensive study of real-valued BSDEs, primarily relying on a specific
comparison theorem, most works concentrate on scenarios where the generator exhibits at most
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a linear growth concerning y and grows either linearly or quadratically in z. This facilitates the
establishment of solutions under conditions of square integrability (or even integrability) for the
terminal datum, as exemplified in [60, 63, 64]. For further literature on quadratic growth in z

(referred to as QBSDE), one can refer to [7, 9, 10, 18, 27, 48].

Another avenue of research in the theory of BSDEs explores equations driven by a combination
of a Poisson random measure and Brownian motion (in short BSDEJs), pioneered by Tang and
Li [90], where BSDEJ has the following form :

Yt = ζ+

∫T

t
f(s,Ys,Zs,Us(·))ds−

∫T

t
ZsdWs −

∫T

t

∫
R∗
Us(e)Ñ(ds,de) (1.1.2)

where,
• N(ds,de) is a Poisson random measure.
• Ñ(ds,de) =N(ds,de)−ν(de) is the compensated Poisson random measure.
• ν is a σ-finite measure on R∗.

Tang and Li [90] establish the existence and uniqueness of solutions under the classical Assumption,
where the solution is a triplet (Ys,Zs,Us)s∈[0,T ] of progressively measurable processes satisfy
(1.1.2) and,

E
[

sup
0≤t≤T

|Yt|
2 +

∫T

0

(
|Zt|

2 +

∫
Γ
|Ut(e)|

2 ν(de)

)
dt

]
<∞.

Various other studies have delved into this area, including [1, 2, 69, 84, 96].

1.2 Stochastic control

Stochastic control theory has emerged as a dynamic field of mathematics since its intensive
development in the late 1950s and early 1960s. Its applications to management and finance
problems gained momentum in the 1970s, notably with Merton’s seminal paper on portfolio
selection [71]. Subsequently, numerous authors extended Merton’s model and results, including
[39, 74, 98]. Two principal and widely used approaches in solving stochastic optimal control
problems are the Dynamic programming principle and Pontryagin’s maximum principle. The
first is abbreviated as DPP, which was introduced by Bellman in the 1950s [20, 21]. Bellman’s
contributions revolutionized the field by providing a powerful tool for optimizing sequential
decision-making under uncertainty. Dynamic programming has since become a cornerstone of
stochastic control, enabling the formulation and solution of complex optimization problems.
Stochastic control problems often involve the analysis of systems described by stochastic differen-
tial equations (SDEs) or stochastic partial differential equations (SPDEs) [73]. These equations
capture the stochastic dynamics of the systems and allow for the incorporation of random
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disturbances, providing a realistic representation of real-world phenomena affected by uncertain
factors.
Over the years, researchers have developed sophisticated mathematical techniques and computa-
tional tools to tackle the challenges posed by stochastic control problems. Approaches such as
optimal, adaptive, and robust control have been extensively explored [19]. Furthermore, machine
learning and reinforcement learning methodologies have opened up new avenues for addressing
stochastic control problems [89].
Stochastic control finds relevance in various domains, including finance for portfolio optimization,
option pricing, and risk management [66]. It also extends to energy management, robotics,
healthcare, and many other fields. For a comprehensive and in-depth exploration of the discussed
topics, I recommend referring to the following references, which provide detailed discussions and
further insights [19–21, 39, 66, 71, 73, 74, 89, 98].

The inception of the maximum principle, attributed to Pontryagin and his research team in the
1960s, marks a significant milestone in the realm of optimal control theory. This principle asserts
that the optimal control, in conjunction with the optimal state trajectory, necessitates addressing
the (extended) Hamiltonian system and adhering to a maximum condition associated with the
Hamiltonian function. Pontryagin initially formulated the maximum principle for deterministic
problems, drawing inspiration from classical calculus of variations.

The extension of the maximum principle to stochastic control problems was pioneered by Kushner
and Schweppe in their seminal work [62]. This extension presented a unique challenge, as the
adjoint equation transformed into a stochastic differential equation (SDE) with terminal conditions.
Unlike deterministic differential equations, reversing time is not a straightforward solution due
to the adaptation requirement of the control process and the solution to the SDE with respect to
the filtration. Bismut resolved this complication by introducing conditional expectations and
deriving the solution to the adjoint equation through the martingale representation theorem.

Several notable contributions in this area include [8, 15, 26, 33, 68], among others.

1.3 The Power of the Hamilton-Jacobi-Bellman Va-
riational Inequality and Verification Theorem in
Optimal Control

The HJB variational inequality (in short, HJBVI) and the associated verification theorem are
fundamental concepts in the field of stochastic control. They provide a powerful framework for
analyzing and solving optimal control problems under uncertainty.
The HJB variational inequality is a key mathematical equation that characterizes the value
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function associated with an optimal control problem. It arises in dynamic programming ap-
proaches and encapsulates the optimality conditions for the control policy. The HJB variational
inequality incorporates the system dynamics, the control actions, and the stochastic nature of
the environment.
The verification theorem, often called the HJB equation verification theorem, establishes the
connection between the solution of the HJB variational inequality and the optimal control policy.
It states that if a function satisfies the HJB variational inequality, then it is the value function of
the corresponding optimal control problem. The verification theorem provides a crucial theoretical
result that identifies and verifies optimal control policies.

Numerous researchers have made significant contributions to the study of the HJB variational
inequality and the verification theorem. Notably, the following references have played pivotal
roles in shaping the field :

- W. H. Fleming and H. M. Soner [49] provide a comprehensive introduction to the theory
of viscosity solutions and their applications to stochastic control problems.

- M. Bardi and I. Capuzzo-Dolcetta [16] offer a thorough treatment of the theory of viscosity
solutions and its use in solving Hamilton-Jacobi-Bellman equations.

- M. G. Crandall et al. [34] provide a comprehensive overview of viscosity solutions theory,
encompassing the HJB variational inequality.

- J. Yong and X. Y. Zhou [97] present a detailed exposition of stochastic control theory, with
a specific focus on Hamiltonian systems and the HJB equation.

These seminal works offer valuable insights and lay the mathematical foundations for the study
of the HJBVI and the verification theorem. In this thesis, we delve into the HJBVI, which
characterizes the public value function, and explore the associated verification theorem within
the context of stochastic control problems.

1.4 Principal-Agent Problem

In this section, we delve into the intriguing realm of the principal-agent problem and closely
examine the complexities surrounding the pursuit of an optimal contract between two distinct
parties. Within this dynamic, we have the principal, who plays a pivotal role, and the agent, who
assumes a complementary position. The principal extends a contractual proposal, granting the
agent the freedom to exercise their agency by accepting or rejecting the offer. It is worth noting
that once a decision is made, both parties are bound by their choice and have no recourse to
reverse it.
Once the agent willingly accepts the contract, they are obliged to put forth a specific effort,
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denoted as ’a,’ as a condition of the agreement. Meanwhile, the principal is driven by two primary
objectives in this scenario :

- The principal’s first objective is to ensure the agent’s acceptance of the contract. This is
commonly referred to as a reservation constraint, which establishes the minimum value ’x’
that must be met or exceeded for the agent to decline the contract. The principal strives
to set terms and conditions that entice the agent to willingly agree to the contractual
arrangement.

- Additionally, the principal aims to maximize the profits or benefits derived from the
contract. The principal seeks to extract the utmost advantage and financial gain from the
contractual relationship through careful strategizing and design. This entails optimizing
various aspects of the agreement to secure the most favorable outcomes and maximize the
principal’s returns.

Therefore, the objective is to construct a contract, denoted as ’Γ ’, that maximizes the principal’s
utility while ensuring a minimum value for the agent. The optimal contract for the principal
varies depending on whether or not they observe the agent’s efforts (known as the first-best and
second-best scenarios). The utility of the agent is denoted as U . Within the literature, three
contract types are commonly distinguished based on the level of information, a distinction we
will briefly summarize below for clarity.
First-best :
In the first-best scenario, also known as Risk Sharing, the principal and agent share the same
information and collaborate on risk allocation. The principal holds bargaining power, dictating
the contract and the agent’s actions. This transforms the issue into a stochastic control problem
for the principal, who simultaneously determines the contract and actions. Denoted by c for
the contract, a for the action, and using UP as the principal’s utility function, the problem
involves observing the agent’s effort. The goal is to collectively distribute the risk, making it a
single-individual problem, where the principal selects both the contract and effort, adhering to
the reservation constraint.

The principal’s problem can be delineated as follows : The contract, denoted as c, is contingent
upon Xa, which stands for the project’s social worth and is commonly referred to as the output
in the context of principal-agent literature. Xa, in turn, depends on the effort exerted by the
agent.

Vp = sup
c,a

Vp(a,c)

= sup
c,a

[Up(a,c)− c(X
a)].

Under the following reservation constraint :

E[UA(c,a)−h(a)] ≥ x,
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where h represents the cost of effort, a strictly convex function.

To further analyze the problem, we incorporate a Lagrange multiplier denoted as λ and shift our
focus to examining the unconstrained problem.

sup
{
E[Up(a,c)+λUA(a,c)−λh(a)−λx

}
.

Several notable works have contributed to this topic [4, 24, 29].

Second best :
In this situation, we encounter a scenario where the principal cannot observe the actions performed
by the agent. As a result, there is typically a loss in expected utility for the principal, and she
can only achieve the second-best reward or outcome. There are many real-world examples where
the principal cannot deduce the agent’s actions, either because the cost of monitoring the agent
is prohibitively high or simply impossible.
Due to the presence of actions that cannot be observed or contracted, the principal cannot directly
dictate the actions that align with their preferences. Instead, when offering a contract c, she
must be aware of the action a= a(c) that would be optimal for her to choose. Consequently, the
principal faces the challenge of designing incentives to indirectly influence the agent in selecting
certain actions by providing an appropriate contract. Since he can undertake actions that may
not be in the best interest of the principal, this situation is commonly referred to as a moral
hazard, where he may lack moral constraints or face conflicting interests.
For a given contrat c, we get the best answer a∗(c) of the agent :

sup
a

E[UA(c,a)−h(a)].

We solve the principal’s problem.

sup
c

E
[
Up(X

a)− c(Xa)
]
.

Subject to the specified reservation constraint

E
[
UA(c,a

∗(c))−h(a∗(c))
]

≥ x.

The phenomenon of moral hazard has received considerable attention in the context of discrete-
time models. However, Holmström and Milgrom [55] pioneered addressing this issue in a
continuous-time framework, considering a finite horizon and a terminal payment. This study
attracted considerable attention from authors, with notable contributions, as evidenced by re-
ferences [36, 56, 70, 86, 87, 93]. In a different context, the authors applied the principal-agent
problem framework to the energy sector (see [3, 46]).
In the literature, several studies have explored the concept of continuous payment with an
infinite or random horizon. One of the seminal works in this area [85, 92]. However, some works
consider the framework of Poisson processes, where the agent’s action influences the process’s
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jump intensity, exemplified by studies such as [22, 77]. Hu et al. [57] addressed a moral hazard
problem with multiple principals and a single agent. Since the agent is constrained to work for
only one principal at a time, they studied a switching problem from one principal to another,
where the switching time is modeled as a random time characterized by a Poisson process. The
agent influences the random switching time by controlling the intensity of the Poisson process.
In the case of an infinite number of principals, they used a mean-field formulation.

Third Best
Third-best is the case where the principal does not have perfect knowledge of the agent’s
characteristics (such as wealth, risk aversion, etc.). Important characteristics remain concealed.
This kind of problem has been explored in previous works by [30, 37, 88]. However, this thesis
will not extensively discuss this type of contract, as the primary focus is on tackling ’second-best’
problems.

1.5 Ambiguity

Principal-agent problems under moral hazard have been extensively studied in economics. The
common assumption is that the principal knows the probability distribution governing the agent’s
effort. However, in real-world scenarios, she often faces uncertainty and ambiguity regarding
this probability, introducing the need to consider multiple objective probability measures. The
literature has provided preliminary insights into uncertainty, particularly in the context of
dominated sets, utilizing objective reference probability measures such as drift uncertainty as
explored by Gilboa and Schmeidler [50]. Ambiguity, also known as Knightian uncertainty, holds
significant relevance in economic problems, a concept initially introduced by Knight [59]. This
notion plays a crucial role in economic contracts, reflecting the inherent inaccuracy of available
information and its impact on decision-making.
Building upon Knight’s work, subsequent researchers have further explored the relationship bet-
ween ambiguity and decision-making under uncertainty. Ellsberg [47] and Gilboa and Schmeidler
[50] contributed to this line of inquiry by examining the concept of multiple priors within a static
framework. Chen and Epstein [31] expanded on these ideas by extending the framework to an
intertemporal setting, introducing the concept of κ-ignorance to characterize Knightian uncer-
tainty, where κ represents the ignorance parameter. As the value of κ increases, decision-makers
find themselves in increasingly ambiguous situations.
Addressing the implications of ambiguity in specific scenarios, Dumav and Riedel [43] investigated
a moral hazard problem over a random horizon involving continuous payments. Within this
context, the principal and the agent establish a contractual relationship based on unobservable
effort, generating output under conditions of ambiguity. In contrast to Sannikov [85], Dumav
and Riedel [43] proposed a model that maps efforts to sets of probability distributions, enabling
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them to characterize the optimal contract under ambiguous information. Additionally, Mastrolia
and Possamaï [70] explored a scenario where both the agent and the principal faced uncertainty
regarding the volatility of the output. Their analysis specifically focused on the case with finite
maturity.
In our work, we aim to investigate the impact of the κ factor on the problem of the main agent
under moral hazard, specifically examining its effect on the drift. To analyze this effect. Through
this approach, we address the problem faced by the agent under the worst possible scenario.
Within this context, our objective is to determine the optimal response denoted as a∗, given a
specific contract c.

This thesis comprises four chapters. The content in Chapters 2, 3, and 4 presents distinct
self-contained research findings that can be perused independently. The initial chapter provided
a comprehensive introduction to the central themes of the thesis. The rest of the chapters are
outlined below :

Chapter 2 : "One-dimensional Backward Stochastic Differential Equations with
Jumps and Logarithmic Growth"

Motivation and Outline : Chapter 2 addresses fundamental questions about the existence
and uniqueness of a BSDE involving a Poisson random measure and an independent Brownian
motion, commonly abbreviated as BSDEJ. This work derived from the work of Bahllali et al.
[14], where they studied a BSDE without the Jump Part and proved its existence and uniqueness
under the logarithmic growth condition. This study is underscored by several pivotal factors that
command our attention :

• Will the existence and uniqueness be achieved in the presence of the Poisson random
measure ?

• What characterizes the auxiliary structure in this BSDEJ class, and to what extent can
we systematically formulate assumptions regarding this auxiliary BSDEJ ?

These qualities have been proven under two key assumptions. First, we present pivotal lemmas
that lay the foundation for our main result. In the first assumption, the generator exhibits
logarithmic growth in both the state variable and the Brownian component while maintaining
Lipschitz continuity with respect to the jump component. The first assumption’s robustness is
validated by including a concrete example. In the second assumption, we also relax the Lipschitz
condition on the Poisson component, allowing the generator to exhibit logarithmic growth
concerning all variables. Taking a step further, we employ an exponential transformation to
establish an equivalence between solutions of a BSDEJ exhibiting a quadratic growth in the
z-variable and a BSDEJ showing logarithmic growth for y and z.

Upcoming Challenges :
• Establishing a robust connection with PDEs, drawing upon the foundational insights
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provided by Bahlali et al. [14], particularly in their exploration of PDEs excluding the
"Jump" component and emphasizing its significance in theoretical physics. The Markovian
form of BSDE(1.1.1) is related to the following semilinear PDE,{

∂u
∂t −∆u+u ln(|u|) = 0 on (0,∞)×Rd,

u(0+) = φ > 0.

• Application of these findings in financial markets. This is particularly relevant for modeling
scenarios where asset price dynamics exhibit characteristics of proportional growth, such as
valuing growth options. Furthermore, a comprehensive numerical study will be conducted
to validate theoretical propositions and glean practical insights.

Chapter 3 : "Optimal Control of BSDEs with Logarithmic Growth Condition :
Exploring the Maximum Principle"
Motivation and Outline : In Chapter 3, we examine a stochastic control problem tied to
a BSDE that is locally Lipschitz continuous. This equation’s generator satisfies a logarithmic
growth condition.

This research spotlights the contributions of Azizi and Khelfallah [5]. Our attention is directed
towards critical aspects :

• Can we ensure the existence and uniqueness of the SDE, as defined later, in the presence
of a logarithmic growth condition to establish a well-posedness problem ?

• Is there flexibility in relaxing the assumptions presented in their work ?
Not constrained by the necessity of convexity within the control domain, we derive a necessary
and sufficient condition for optimality applicable across all optimal controls. A local Lipschitz
stochastic differential equation and a Hamiltonian subject to a maximum condition delineate
these criteria. Our initial focus involves proving, under specific conducive conditions, the existence
of a singular solution to the resultant adjoint equation. Employing an approximation methodology
on the coefficients, we introduce a class of control problems characterized by global Lipschitz
coefficients. This framework enables the derivation of a stochastic maximum principle, facilitating
the pursuit of near optimality within these approximated systems. Subsequently, we seamlessly
transition back to the initial control problem through a judicious limit-taking process.

Upcoming Challenges :
• Relax the boundedness assumption on the terminal condition and investigate the effects

on the solution and stability.
• Generalize the model to a mean-field approach and provide examples of applications such

as economics or game theory. This will demonstrate the flexibility of the framework.
Chapter 4 : "Public-Private Partnerships contract under moral hazard and Knightian

uncertainty with random horizons"

Motivation and Outline : The final chapter 4 delves into the complexities of the principal-
agent problem within the context of Public-Private Partnerships (PPPs) under moral hazard
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and Knightian uncertainty, all while considering the variable time horizons inherent in long-term
PPP contracts. In this chapter, we navigate the intricate interplay of stochastic control and
optimal stopping problems within the framework of ambiguous information. The key highlights
that have captured our attention in this work :

• When formulating this problem mathematically, it is imperative to establish the existence
and uniqueness of BSDE representing the agent’s objective function. Can we provide
proof or reference supporting this assertion ?

• What challenges are anticipated when formulating the principal’s objective function,
particularly in employing dynamic programming techniques ?

• To what extent does uncertainty impact the contract ? Is the effect predominantly positive
or negative ?

• Will this effectiveness be evident in the figures depicting the agent’s effort, rent, and
value ?

We adopt a Stackelberg model, wherein the public entity pays rent to the agent, and the latter’s
acceptance of the contract depends on exceeding a pre-specified reservation constraint. The agent,
in response, optimizes its effort under the worst-case scenario. Moreover, the public retains the
authority to halt the contract prematurely on a random date, providing compensation to the
agent in the process.

In this work, we adopt the ’weak approach’, we show that the dynamics of the consortium’s
objective function are intrinsically connected to a solution of a BSDE problem with a random
horizon.

Subsequently, we transform our problem into standard stochastic control and optimal stopping
problems, culminating in deriving the HJBVI associated with the public value function. This
endeavor leads us to a verification theorem and the eventual characterization of optimal contracts.

Upcoming Challenges :
• Expanding the scope of the contract involves considering contracts between a principal and

multiple agents, whether they entail employing all agents simultaneously or individually.
The latter scenario adds complexity due to the issue of switching between agents, which
impacts motivation.

• Allowing agents more autonomy, like the ability to exit contracts, could improve motiva-
tion. However, this could be detrimental and needs balancing through appropriate cost
functions.

• Addressing the aforementioned challenges through two main approaches :
- Creating inter-agent impacts : Exploring how interactions between agents, whether

positive or negative, introduce challenges and dynamics into the system.
- Isolating and comparing impacts : Examining the effects of isolating the interactions

between agents and comparing the outcomes with the first scenario where such
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interactions are present to determine the optimal decision-making strategy.

12



One-dimensional Backward Stochastic Dif-
ferential Equations with Jumps and Loga-
rithmic Growth

2Chapter

2.1 Introduction and Notations

Pardoux and Peng [78] initially introduced the concept of Backward Stochastic Differential
Equations without the jump component, denoted briefly as BSDEs. They established the existence
and uniqueness of BSDEs, assuming the Lipschitz continuity condition on the BSDE’s generator
w.r.t. both (y,z). Additionally, they assumed that the terminal value is square integrable. This
result gained widespread recognition across various fields, including mathematical finance [45],
finance and insurance [42], insurance reserve [40], optimal control theory [81] as well as stochastic
differential games and stochastic control [52–54]. These findings are strongly connected to partial
differential equations (PDEs) [17, 80, 82]. In contrast, the latter contributions were the first to
demonstrate BSDEs with random terminal time.
Given the diverse applications of BSDEs, there has been a concerted effort to relax assumptions
on the generator f and/or the final condition. Notably, limited results were established for high
dimensional BSDEs with local Lipschitz assumptions on the driver, as shown in [6, 13, 28, 32, 58].
While real-valued BSDEs have been extensively studied, predominantly relying on a comparison
theorem, most works focus on cases where the generator grows at most linearly w.r.t. y and
grows either linearly or quadratically in z. This enables the establishment of solutions under

13



Chapter 2: One-dimensional Backward Stochastic Differential Equations with Jumps
and Logarithmic Growth

conditions of square integrability (or even integrability) for the terminal datum, as illustrated in
[60, 63, 64].

In situations where the generator exhibits a quadratic growth in z (referred to as QBSDE),
the existence of solutions hinges upon the requirement for either boundedness or, minimally,
exponential integrability of the terminal value. This requirement is demonstrated in various
works, such as [18, 27, 48]. It is noteworthy, however, that recent advancements, highlighted in
[7, 9, 10], have identified a substantial class of QBSDEs for which solutions exist under the sole
condition of a square-integrable terminal datum.
Given a filtered probability space (Ω,F ,F,P) where F = (Ft)t∈[0,T ] stands for the σ -algebra
generated by two key processes : a real-valued Wiener process Wt and a real-valued Poisson
random measure N(ds,de) defined on [0,T ]×Γ , where Γ = R∗. Furthermore, we introduce
Ñ(ds,de) as the compensator of N , defined by :

Ñ(ds,de) =N(ds,de)−ν(de)ds,

Here, ν is a σ-finite measure on Γ , equipped with its Borel field B(Γ ). Notably, Ñ serves as a
martingale with a zero mean, referred to as the compensated Poisson random measure.
We now direct our attention to the central focus of this research endeavor. Specifically, we inves-
tigate solutions denoted as (Y,Z,U) := (Yt,Zt,Ut(e))0≤t≤T,e∈Γ for a BSDEJ(ζ,f). The following
dynamics govern the evolution of these solutions

Yt = ζ+

∫T

t
f(s,Ys,Zs,Us)ds−

∫T

t
ZsdWs −

∫T

t

∫
Γ
Us(e)Ñ(ds,de) (2.1.1)

The investigation initiated by Tang and Li [90] marked a pioneering achievement in the study
of BSDEJ of type (2.1.1). They showed in this work the existence and uniqueness of solutions
for such equations subject to Lipschitz conditions. In a closely related context, [96] studied a
class of real-valued BSDEs featuring Poisson jumps and random time horizons. They proved the
existence of at least one solution for BSDEs characterized by a driver exhibiting linear growth.

Subsequently, [84] extended these discoveries by proving the existence but not the uniqueness of
solutions for BSDEs with jumps. They considered continuous coefficients that satisfy an extended
linear growth condition in their extension. They also generalized this result to situations where
the generators are either left- or right-continuous.

In recent developments, [1, 69] have presented examples that strengthen the relationship between
a certain class of quadratic BSDEJs and conventional BSDEJs featuring continuous drivers.
Moreover, [2] made an important contribution by proving the well-posedness of solutions under
local Lipschitz conditions, with special emphasis on the Brownian motion component. They
also showed the existence of one and only one solution for a class of nonlinear variants of the
backward Kolmogorov equation.
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It is important to note that all of the above results were formulated for one-dimensional BSDEs. In
another paper, [44] dealt with the study of a multidimensional Markovian BSDEJ and showed that
the adapted solution of the BSDEJ can be expressed by a given Poisson process and deterministic
functions. Furthermore, they established the existence of solutions for these equations, assuming
that their generators are either continuous w.r.t. y and z and Lipschitz in u or continuous in
all their variables and adhere to standard linear growth assumptions. Bahlali and El Asri [11]
investigated situations where the generator of the BSDEs is bounded by (|z|

√
| ln |z||). They also

considered the terminal value, assuming it to be merely Lp-integrable, with p > 2. However,
the extension of this condition was recently explored by [14], who supposed that the drift is
dominated (|y|| ln |y||+ |z|

√
| ln |z||). Additionally, [2, 76] studied BSDEs associated with jump

Markov processes, with the latter presenting a proof under assumptions different from those
considered in the present study.

In this work, we proceed according to the following methodology. We establish the existence and
uniqueness of the solution for BSDEJs whose generators show a growth described by a logarithmic
function of the type (|y|| ln |y||+ |z|

√
| ln |z||) but keeping the linear growth condition in u. Initially,

we present a priori estimates for solutions of BSDEs, followed by presenting the main result.
This makes the content of Section 2.2. Section 2.3 extends the logarithmic growth condition for
BSDEJs by relaxing the Lipschitz condition on the jump coefficient. Section 2.4 demonstrates
the equivalence of previously obtained solutions through an exponential transformation. Finally,
Section 2.5 provides the conclusion of our work.

2.1.1 Notation and Preliminaries

For a specified T ≥ 0, the following notation is employed :

— P : represents the predictable σ-field on [0,T ]×Ω.
— Ω̃ : is defined as [0,T ]×Ω×Γ .
— E := B(Γ ).
— P̃ := P ⊗E denotes the predictable σ-algebra on Ω̃

In the subsequent sections of this work, we shall introduce useful functional spaces : For m≥ 1 :

— Sm([s, t];R) : the space of R-valued adapted càdlàg processes Y such that

∥Y ∥m
S = E

[
sup

s≤r≤t
|Yr |

m ] < ∞.

— S∞([s, t];R) : the space of R-valued adapted càdlàg processes Y such that

∥Y ∥S∞ = ess sup
s≤r≤t

|Yr |< ∞.
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— Hm([s, t];R) : the space of R-valued predictable processes satisfying

E
[∫ t

s
|Zr |

m dr
]
< ∞.

— L2(Γ,E ,ν;R) : the space of Borelian functions ℓ : Γ → R such that

∥ℓ∥ν =
(∫

Γ
|ℓ(e)|2 ν(de)

)1/2
< ∞.

— Lm([s, t],ν;R) : the set of the processes U : Ω̃→ R is P̃-measurable and

E
[∫ t

s
∥Ur∥m

ν dr
]
< ∞.

2.2 Existence and Uniqueness of Solutions

In this section, we establish the foundational assumption that forms the basis of our analysis,
providing a framework for subsequent developments. This assumption is pivotal for exploring
solutions to the BSDEJ Equation (2.1.1). We then introduce preliminary estimates of the solution
and delineate key lemmas crucial for establishing both the existence and uniqueness of solutions.

Assumption 2.2.1.

(A.1) Assume that E[|ζ |µT +1] is finite, where µt := eθt for all t ∈ [0,T ] and θ is a sufficiently
large positive constant.

(A.2) (i) f is continuous in (y,z) and Lipschitz with respect to u (t,ω)-a.e.
(ii) There exist constants c0, c1, c2, CLip, and a positive process ϑ such that∫T

0
E
[
ϑµs+1

s

]
ds <+∞.

Additionally, for every t,ω,y,z,u,u1,u2 :

| f(t,ω,y,z,u) | ≤ ϑt +g1,c2(y)+g2,c0(z)+ c1∥u∥ν ,

and

|f(t,ω,y,z,u1)−f(t,ω,y,z,u2)| ≤ CLip∥u1 −u2∥ν ,

where g1,c2(y) = c2|y|| ln |y|| and g2,c0(z) = c0|z|
√
| ln |z||.

(A.3) There exists a sequence of real numbers (AN )N>1 along with constants M2 ∈ R+, r > 0,
satisfying :
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(i) For every integer N > 1, we have 1 < AN ≤N r.

(ii) limN→∞AN =∞.

(iii) For any natural number N ∈ N, and every y1, y2, z1, z2, u such that :
|y1|, |y2|, |z1|, |z2|, ∥u∥ν ≤N , the following holds :

(
y1 −y2

)(
f(t,ω,y1,z1,u)−f(t,ω,y2,z2,u)

)
≤M2

(
| y1 −y2 |

2 ln(AN )+ | y1 −y2 | |z1 −z2|
√

ln(AN )+
ln(AN )

AN

)
.

Definition 2.2.2. A solution to the BSDEJ(ζ,f) is a triplet

(Y,Z,U) ∈ SµT +1([0,T ];R)×H2([0,T ];R)×L2([0,T ],ν;R)

that satisfies Equation (2.1.1).

2.2.1 Technical Lemmas

This subsection introduces four technical lemmas needed in the sequel. More precisely, the first
three are crucial in proving the results of the next subsection.

Lemma 2.2.3. Let y, z ∈ R such that |y|> e. For any positive constant C1, there exists another
positive constant C2 such that the following inequality holds :

C1|y||z|
√
| ln |z|| ≤ |z|2

2
+C2|y|

2 ln |y|. (2.2.1)

Proof: We consider two cases based on the relationship between |y| and |z|.

Case 1 : |z| ≤ |y|

In this case, we have 1 < |y| ln |y| and ln |z| 1{|z|>1} ≤ ln |y| 1{|z|>1}, thus :

C1|z||y|
√
− ln |z| 1{|z|≤1} ≤ e−

1
2
C1√
2
|y|

≤ e−
1
2
C1√
2
|y|2 ln |y|

≤ |z|2

2
+e−

1
2
C1√
2
|y|2 ln |y|,

and

C1|z||y|
√

ln |z| 1{|z|>1} ≤ |z|2

2
+2C2

1 |y|
2 ln |z| 1{|z|>1}

≤ |z|2

2
+2C2

1 |y|
2 ln |y|.
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The inequality (2.2.1) becomes

C1|y||z|
√
| ln |z|| ≤ |z|2

2
+C2|y|

2 ln |y|,

where C2 = 2C2
1 ∨e

− 1
2

C1√
2
. Therefore, the inequality holds in this case.

Case 2 : |z|> |y|

Let us set a= |z|
|y| > 1. Since |y| ≥ e, we have |z|= a|y|> e. Using this substitution, the inequality

becomes

C1|y||z|
√

ln |z| ≤ C1a|y|
2(√ln(a)+

√
ln |y|

)
≤ |y|2

(
a2

4
+C2

1 ln |y|+C1a
√

ln(a)
)
;

the latter inequality was derived from Young’s inequality. Moreover, we have

|z|2

2
+C2|y|

2 ln |y|=
(a2

2
+C2 ln |y|

)
|y|2.

We obtain the desired result by showing that

a2

4
+C1a

√
ln(a)+C2

1 ln |y| ≤ a2

2
+C2 ln |y|.

Let r = max{z ≥ 1 : 4C1

√
ln(z)− z = 0}, and let us introduce the function h, defined as h : t ∈

R+ −→ h(t) := 4C1

√
ln(t)− t. We denote by r0 = argmaxt>0h(t) ; it follows that r0

√
ln(r0) = 2C1

There are two sub-cases to consider :

Sub-Case 1 : If C1 ≥ r0

4
√

ln(r0)
, then r is well defined. If a ≥ r, then C1a

√
ln(a) ≤ a2

4 , and if
1 < a < r, then since |y| ≥ e, we have

C1a
√

ln(a) ≤ C1r
√

ln(r) = C1
r2

4
≤ C2 ≤ C2 ln |y|.

Sub-Case 2 : If C1 <
r0

4
√

ln(r0)
, since 2C1 = r0

√
ln(r0), then r0 <e

1
2 , which implies that C1 <

√
2e

1
2 .

Therefore,

C1a
√

ln(a)<
√
2e

1
2a
√

ln(a) <
a2

4
+11 <

a2

4
+11 ln |y|, since |y|> e.

Therefore, the inequality holds true in all cases, which completes the proof. □

Lemma 2.2.4. For p ∈ (0,∞) and x,y ∈ R, the following inequality holds :∫1

0
(1−a)|x+ay|pda≥ 3−(1+p)|x|p.
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Proof: Let y = 0. In this case, the integral simplifies to
∫1

0(1−a)|x|
pda= 1

2 |x|
p. Thus, we consider

the scenario where y ̸= 0 and define a0 :=
2|x|
3|y| . For any a ∈ [0,a0]∪ [2a0,∞), it holds that

1

3
|x| ≤ ||x|−a|y|| ≤ |x+ay|.

We proceed by analyzing three distinct cases :

(1) Case 1 : 1≤ a0. In this case, we have∫1

0
(1−a)|x+ay|pda≥

(1
3
|x|
)p

∫1

0
(1−a)da=

1

2

(1
3
|x|
)p
.

(2) Case 2 : 1
2 ≤ a0 < 1. Here, we observe∫1

0
(1−a)|x+ay|pda≥

∫ 1
2

0
(1−a)|x+ay|pda≥

(1
3
|x|
)p

∫ 1
2

0
(1−a)da

=
3

8

(1
3
|x|
)p
.

(3) Case 3 : a0 <
1
2 . In this scenario, we have∫1

0
(1−a)|x+ay|pda≥

(1
3
|x|
)p(∫a0

0
(1−a)da+

∫1

2a0

(1−a)da
)

=
(1
3
|x|
)p(3

2
a2

0 −a0 +
1

2

)
≥ 1

3

(1
3
|x|
)p
.

□

Lemma 2.2.5. Let (Y,Z,U) be a solution to the BSDEJ (2.1.1). Under ( A.1) and (A.2), there
exists a positive constant C such that

E
[
|Yt|

µt+1+

∫T

t
µs(µs +1)|Ys|

µs−1(|Zs|
2 + ||Us||

2
ν)ds

]
≤ C

(
1+E[|ζ |µT +1]+ (µT +1)µT

∫T

0
E[ϑµs+1

s ]ds
)
.

Proof: Set u(t,x) := |x|µt+1 and sgn(x) := − 1{x≤0} + 1{x>0}, then ut(t,x) = θµt ln |x||x|µt+1,
ux(t,x) = (µt +1)|x|

µtsgn(x) and uxx(t,x) = µt(µt+1)|x|
µt−1. By utilizing Itô’s formula to u(t,Yt)
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u(T,YT ) =u(t,Yt)+

∫T

t
us(s,Ys)ds+

∫T

t
ux(s,Ys−)dYs +

∫T

t
uxx(s,Ys−)d⟨Y ⟩s

+
∑

t≤s≤T

(u(s,Ys)−u(s,Ys−)−ux(s,Ys−)∆Ys)

=u(t,Yt)+

∫T

t
us(s,Ys)ds+

∫T

t
ux(s,Ys−)dYs +

∫T

t
uxx(s,Ys)|Zs|

2ds

+

∫T

t

∫
Γ
(u(s,Ys−+Us(e))−u(s,Ys−)−ux(s,Ys−)Us(e))N(ds,de)

=u(t,Yt)+

∫T

t
us(s,Ys)ds+

∫T

t
uxx(s,Ys)|Zs|

2ds

−

∫T

t
ux(s,Ys−)f(s,Ys,Zs,Us)ds

+

∫T

t
ux(s,Ys)ZsdWs +

∫T

t

∫
Γ
(u(s,Ys−+Us(e))−u(s,Ys−))Ñ(ds,de)

+

∫T

t

∫
Γ
(u(s,Ys−+Us(e))−u(s,Ys−)−ux(s,Ys−)Us(e))ν(de)ds. (2.2.2)

Setting

Ξt =

∫ t

0
ux(s,Ys)ZsdWs +

∫ t

0

∫
Γ
(u(s,Ys−+Us(e))−u(s,Ys−))Ñ(ds,de)

=

∫ t

0
(µs +1)|Ys|

µssgn(Ys)ZsdWs +

∫ t

0

∫
Γ

(
|Ys−+Us(e)|

µs+1 − |Ys−|
µs+1)Ñ(ds,de)

For n≥ 0, define the stopping time τn as follows :

τn : = inf
{
0≤ t≤ T :

∫ t

0

(
(µs +1)|Ys|

µsZs

)2
ds ∨

∫ t

0

∫
Γ

(
|Ys−+Us(e)|

µs+1 − |Ys−|
µs+1)2 ν(de)ds ≥ n

}
.

Taking t= t∧ τn and T = T ∧ τn in the equality (2.2.2), we obtain

|Yt∧τn |
µt∧τn+1 +

1

2

∫T∧τn

t∧τn

(µs +1)µs|Ys|
µs−1|Zs|

2ds+

∫T∧τn

t∧τn

θµs|Ys|
µs+1 ln |Ys|ds

=|YT∧τn |
µT∧τn+1 +

∫T∧τn

t∧τn

(µs +1)|Ys|
µsf(s,Ys,Zs,Us)ds

−

∫T∧τn

t∧τn

∫
Γ

(
|Ys−+Us(e)|

µs+1 − |Ys−|
µs+1 −(µs +1) |Ys−|

µs sgn(Ys−)Us(e)
)
ν(de)ds

+Ξt∧τn −ΞT∧τn (2.2.3)

By Assumption (A.2)-(ii)∫T∧τn

t∧τn

(µs +1)|Ys|
µsf(s,Ys,Zs,Us)ds≤ I1 + I2 + I3 + I4,
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where

I1 : =

∫T∧τn

t∧τn

(µs +1)ϑs|Ys|
µsds,

I2 : = c2

∫T∧τn

t∧τn

(µs +1)|Ys|
µs+1| ln |Ys||ds,

I3 : = c0

∫T∧τn

t∧τn

(µs +1)|Ys|
µs |Zs|

√
| ln |Zs||ds,

I4 : = c1

∫T∧τn

t∧τn

(µs +1)|Ys|
µs∥Us∥νds.

Estimation of I1 : Young’s inequality yields (|ab| ≤ 1
p |a|

p + 1
q |b|

q, for p := µs + 1 and q := µs+1
µs

)
leads to

(µs +1)ϑs|Ys|
µs ≤ (µs +1)

µsϑµs+1
s +

µs

µs +1
|Ys|

µs+1

Hence,

I1 ≤
∫T∧τn

t∧τn

(µs +1)
µsϑµs+1

s ds+

∫T∧τn

t∧τn

µs

µs +1
|Ys|

µs+1ds

≤
∫T∧τn

t∧τn

(µs +1)
µsϑµs+1

s ds+

∫T∧τn

t∧τn

|Ys|
µs+1ds

≤ (µT +1)µT

∫T

0
ϑµs+1

s ds+

∫T

0
|Ys|

µs+1 ln |Ys| 1{|Ys|>e}ds+Te
µT +1

≤ (µT +1)µT

∫T

0
ϑµs+1

s ds+

∫T

0
|Ys|

µs+1 ln |Ys| 1{|Ys|>1}ds+Te
µT +1.

Estimation of I2 : Due to the presence of | ln |y||, we split the integral of I2 into two parts :

I2 ≤ c2

∫T∧τn

t∧τn

(µs +1)|Ys|
µs(−|Ys| ln |Ys|) 1{|Ys|≤1}ds

+c2

∫T∧τn

t∧τn

(µs +1)|Ys|
µs+1 ln |Ys| 1{|Ys|>1}ds

≤ c2e
−1

∫T

0
(µs +1)ds+ c2

∫T∧τn

t∧τn

(µs +1)|Ys|
µs+1 ln |Ys| 1{|Ys|>1}ds.

Estimation of I3 : Using Lemma 2.2.3, there exists a constant c3 > 0 such that

c0|y||z|
√
| ln |z|| 1{|y|>e} ≤ 1

4
|z|2 1{|y|>e}+ c3|y|

2 ln |y| 1{|y|>e}.

We have

|z|
√
| ln |z|| ≤ e−

1
2
1√
2
+ |z|

3
2 1{|z|>1} (2.2.4)
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Thus,

c0|y||z|
√
| ln |z|| 1{|y|≤e} ≤ c0e

1
2
1√
2
+ c0e|z|

3
2 1{|z|>1} 1{|y|≤e}

≤ 1

4
|z|2 1{|y|≤e}+ c̃0,

where the last inequality is obtained by Young’s inequality (for p = 4
3 and q = 4) and c̃0 =

c0e
1
2

1√
2
+33 (c0e)4

4 . Therefore,

I3 ≤ Ĉ1 +
1

4

∫T∧τn

t∧τn

(µs +1)|Zs|
2|Ys|

µs−1ds+ c3

∫T∧τn

t∧τn

(µs +1)|Ys|
µs+1 ln |Ys| 1{|Ys|>e}ds

≤ Ĉ1 +
1

4

∫T∧τn

t∧τn

(µs +1)|Zs|
2|Ys|

µs−1ds+ c3

∫T∧τn

t∧τn

(µs +1)|Ys|
µs+1 ln |Ys| 1{|Ys|>1}ds,

where Ĉ1 = c̃0(
µT −1

θ +T )eµT −1.

Estimation of I4 : We observe that we can derive for any small ρ ∈ (0, 2
3µT ]

c1|y|∥u∥ν ≤ c2
1

1

ρ
|y|2 +

ρ

4
∥u∥2

ν

≤ c2
1

1

ρ
e2 + c2

1

1

ρ
|y|2 ln |y| 1{|y|>e}+

ρ

4
∥u∥2

ν ;

therefore,

I4 ≤ Ĉ2 +
c2

1

ρ

∫T∧τn

t∧τn

(µs +1)|Ys|
µs+1ln |Ys| 1{|Ys|>e}ds+

ρ

4

∫T∧τn

t∧τn

(µs +1)|Ys|
µs−1∥Us∥2

νds

≤ Ĉ2 +
c2

1

ρ

∫T∧τn

t∧τn

(µs +1)|Ys|
µs+1ln |Ys| 1{|Ys|>1}ds+

ρ

4

∫T∧τn

t∧τn

(µs +1)|Ys|
µs−1∥Us∥2

νds,

where Ĉ2 =
c2

1
ρ (

µT −1
θ +T )eµT +1. It remains to estimate

I5 := −

∫T∧τn

t∧τn

∫
Γ

(
|Ys +Us(e)|

µs+1 − |Ys|
µs+1 −(µs +1) |Ys|

µs sgn(Ys)Us(e)
)
ν(de)ds.

By Taylor’s formula and Lemma 2.2.4, we have

|y+u|µs+1 − |y|µs+1 −(µs +1)|y|
µssgn(y)u

= µs(µs +1)u
2

∫1

0
(1−a) |y+au|µs−1 da≥ µs(µs +1)u

23−µs |y|µs−1.

Therefore,

I5 ≤ −

∫T∧τn

t∧τn

µs(µs +1)3
−µs |Ys|

µs−1

∫
Γ
|Us(e)|

2ν(de)ds

= −

∫T∧τn

t∧τn

µs(µs +1)3
−µs |Ys|

µs−1||Us||
2
νds.
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Since 3−µs ≥ 3−µT and µs ≥ 1, then ρ
2 ≤ µs3

−µs , which implies that

I4 + I5 ≤Ĉ2 +
c2

1

ρ

∫T∧τn

t∧τn

(µs +1)|Ys|
µs+1ln |Ys| 1{|Ys|>1}ds

−
1

2

∫T∧τn

t∧τn

µs(µs +1)3
−µs |Ys|

µs−1||Us||
2
νds.

and
1

4

∫T∧τn

t∧τn

(µs +1)(1−µs)|Ys|
µs−1|Zs|

2ds≤ 0.

Moreover, for θ ≥ 2( c2
1
ρ + c2 + c3)+1, we have 1+(µs +1)(

c2
1
ρ + c2 + c3 −θµs) ≤ 0, which yields to

−θ

∫T∧τn

t∧τn

µs|Ys|
µs+1 ln |Ys|ds+

∫T∧τn

t∧τn

(
1+(µs +1)

(c2
1

ρ
+ c2 + c3

))
|Ys|

µs+1 ln |Ys| 1{|Ys|>1}ds

=

∫T∧τn

t∧τn

(
1+(µs +1)(

c2
1

ρ
+ c2 + c3 −θµs)

)
|Ys|

µs+1 ln |Ys| 1{|Ys|>1}ds

+θ

∫T∧τn

t∧τn

µs|Ys|
µs+1(− ln |Ys|) 1{|Ys|≤1}ds

≤ θ sup
0<a≤1

a(− ln(a))
∫T∧τn

t∧τn

µsds = θe−1

∫T

0
µsds.

By Equation (2.2.3) and the preceding result, and noting that for any 0≤ s≤ T , 3−µT ≤ 3−µs , it
becomes evident that

|Yt∧τn |
µt∧τn+1

∫T∧τn

t∧τn

µs(µs +1)|Ys|
µs−1(1

4
|Zs|

2 +
3−µT

2
∥Us∥2

ν

)
ds

≤|YT∧τn |
µT∧τn+1 +(µT +1)µT

∫T

0
ϑµs+1

s ds−ΞT∧τn +Ξt∧τn + Ĉ+C1. (2.2.5)

where C1 = 2e−1(µT −1)+ c2Te
−1 and Ĉ = Ĉ1 + Ĉ2 +Te

µT +1. Thus, we obtain

E
[
|Yt∧τn |

µt∧τn+1 +

∫T∧τn

t∧τn

µs(µs +1)|Ys|
µs−1(|Zs|

2 + ||Us||
2
ν)ds

]
≤ CE

[
1+ |YT∧τn |

µT∧τn+1 +(µT +1)µT

∫T

0
ϑµs+1

s ds
]
.

By Fatou’s lemma, we can pass to the limit as n→∞. Consequently, the desired result follows.
□

Lemma 2.2.6. Let (A.1), (A.2)-(ii) be satisfied. Then, there exists a positive constant
C(T,α,c0, c1, c2) such that ∫T

0
E
[
|f(s,Ys,Zs,Us)|

2
α
]
ds≤ K̃1,
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where 1 < α < 2, and

K̃1 := C(T,α,c0, c1, c2)

(
1+

∫T

0
E
[
ϑ2

s + |Ys|
µs+1 + |Zs|

2 +∥Us∥2
ν

]
ds

)
.

Proof: Letting α ∈ (1,2), we have

|y|| ln |y|| ≤ e−1 + |y| ln |y| 1{|y|>1}

= e−1 +
1

α−1
|y| ln |y|α−1 1{|y|>1}

≤ e−1 +
1

α−1
|y|α 1{|y|>1},

|z|
√
| ln |z|| ≤ e−

1
2

√
2
+ |z|

√
| ln |z|| 1{|z|>1}

=
e−

1
2

√
2
+

1√
2(α−1)

|z|
√

ln |z|2(α−1) 1{|z|>1}

≤ e−
1
2

√
2
+

1√
2(α−1)

|z|α 1{|z|>1},

and
ϑt + c1∥u∥ν ≤ 1+ c1 +ϑ

α
t + c1∥u∥α

ν .

Therefore, by (A.2)-(ii),

|f(s,ω,y,z,u)| ≤ ϑs + c2|y|| ln |y||+ c0|z|
√
| ln |z||+ c1∥u∥ν

≤ c̃(1+ϑα
s + |y|α + |z|α +∥u∥α

ν ),

where c̃ is a positive constant depending on c0, c1, c2, and α. For any p ≥ 1, n ∈ N with n ≥ 2

and (bi)i∈N ∈ R+, we have

(
n∑

i=1

bi)
p ≤ np−1

n∑
i=1

bp
i .

Thus,

|f(s,ω,y,z,u)|
2
α ≤ c̃

2
α (1+ϑα

s + |y|α + |z|α +∥u∥α
ν )

2
α

≤ c̃
2
α 5

2−α
α (1+ϑ2

s + |y|2 + |z|2 +∥u∥2
ν).

Since |y|2 ≤ 1+ |y|µs+1, we can derive a positive constant C(T,α,c0, c1, c2), such that

∫T

0
E
[
|f(s,Ys,Zs,Us)|

2
α
]
ds≤ C(T,α,c0, c1, c2)

(
1+

∫T

0
E
[
ϑ2

s + |Ys|
µs+1 + |Zs|

2 +∥Us∥2
ν

]
ds

)
.

□
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2.2.2 A Priori Estimates

This subsection aims to give some prior estimates for the solutions of BSDEJ (2.1.1). These
estimates establish bounds on the solutions, ensuring that if the solutions exist, they will belong
to some appropriate spaces.

Lemma 2.2.7. Consider a solution (Y,Z,U) to the BSDEJ (2.1.1). Additionally, assume that
the pair (ζ,f) satisfies conditions (A.1) and (A.2). In this context, we establish the existence of
a universal constant C(T,c0, c1, c2), as follows :

(i) E
[
supt∈[0,T ] |Yt|

µt+1
]

≤ K̃2.

(ii)
∫T

0 E
[
|Zs|

2 +∥Us∥2
ν

]
ds ≤ K̃3,

where

K̃2 := C (T,c0, c1, c2)
(
1+E[|ζ |µT +1]+

∫T
0 E[ϑµs+1

s ]ds
)
,

K̃3 := C (T,c0, c1, c2)
(
1+TK̃2 +E

[
|ζ |2
]
+
∫T

0 E
[
ϑ2

s

]
ds
)
.

Proof:

We begin by proving assertion (i), which relies on Lemma 2.2.5.

For n≥ 0, define the stopping time τ̃n as follows :

τ̃n := inf{s≥ 0 : |Ys|
µs+1 > n}.

By taking the same steps as in the previous proof of Lemma 2.2.5, we obtain the inequality
(2.2.5) for τ̃n

|Yt∧τ̃n
|
µ

t∧τ̃n
+1
+

∫T∧τ̃n

t∧τ̃n

µs(µs +1)|Ys|
µs−1(1

4
|Zs|

2 +
3−µT

2
∥Us∥2

ν

)
ds

≤ |YT∧τ̃n
|
µ

T∧τ̃n
+1

+(µT +1)µT

∫T

0
ϑµs+1

s ds−ΞT∧τ̃n
+Ξt∧τ̃n

+C,

where C is a generic positive constant that may vary. Thus, we have

E
[

sup
0≤t≤T∧τ̃n

|Yt|
µt+1

]
≤C

(
1+E

[
|YT∧τ̃n

|µT +1 +(µT +1)µT

∫T

0
ϑµs+1

s ds
])

+E
[

sup
0≤t≤T∧τ̃n

∣∣∣∣∣
∫T∧τ̃n

t∧τ̃n

dΞs

∣∣∣∣∣ ]. (2.2.6)

Consider the following inequality, which holds for any non-negative a, b≥ 0 and p > 1,

|ap − bp| ≤ p(a∨ b)p−1|a− b|.
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Therefore,

||Ys−+Us(e)|
µs+1 − |Ys−|

µs+1| ≤ (µs +1)(|Ys−+Us(e)|∨ |Ys−|)
µs |Us(e)|,

clearly, sup0≤t≤T∧τ̃n
|Yt−|

µt+1 ≤ sup0≤t≤T∧τ̃n
|Yt|

µt+1 and since Ys = Ys−+Us(e), then,

||Ys−+Us(e)|
µs+1 − |Ys−|

µs+1|2

≤ (µs +1)
2(|Ys−+Us(e)|∨ |Ys−|)

2µs |Us(e)|
2

≤ (µs +1)
2 sup

0≤t≤T∧τ̃n

|Yt|
µt+1(|Ys−+Us(e)|∨ |Ys−|)

µs−1|Us(e)|
2,

Moreover, we have (µs + 1)
2 < 3µs(µs + 1). Applying Burkholder–Davis–Gundy inequality to∫T∧τ̃n

t∧τ̃n
dΞs, we obtain

E
[

sup
0≤t≤T∧τ̃n

∣∣∣∫T∧τ̃n

t∧τ̃n

dΞs

∣∣∣]

≤ CE
[(∫T∧τ̃n

0
(µs +1)

2|Ys|
2µs |Zs|

2ds
) 1

2
]

+CE
[(∫T∧τ̃n

0

∫
Γ

(
|Ys−+Us(e)|

µs+1 − |Ys−|
µs+1

)2
N(ds,de)

) 1
2
]

≤ CE
[

sup
0≤t≤T∧τ̃n

|Yt|
µt+1

2

(∫T∧τ̃n

0
(µs +1)

2|Ys|
µs−1|Zs|

2ds
) 1

2
]

+CE
[

sup
0≤t≤T∧τ̃n

|Yt|
µt+1

2

(∫T∧τ̃n

0

∫
Γ
(µs +1)

2(|Ys−+Us(e)|∨ |Ys−|)
µs−1|Us(e)|

2N(ds,de)
) 1

2
]

≤ E
[1
2

sup
0≤t≤T∧τ̃n

|Yt|
µt+1 +C

∫T

0
(µs +1)

2|Ys|
µs−1|Zs|

2ds
]

+CE
[∫T

0

∫
Γ
(µs +1)

2(|Ys−+Us(e)|∨ |Ys−|)
µs−1|Us(e)|

2N(ds,de)
]

The last inequality is derived from Young’s inequality (ab≤ 1
2a

2 + 1
2b

2), and the terms can be
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controlled as follows :

= E
[1
2

sup
0≤t≤T∧τ̃n

|Yt|
µt+1 +C

∫T

0
(µs +1)

2|Ys|
µs−1|Zs|

2ds
]

+CE
[∫T

0

∫
Γ
(µs +1)

2|Ys|
µs−1|Us(e)|

2ν(de)ds
]

= E
[1
2

sup
0≤t≤T∧τ̃n

|Yt|
µt+1 +C

∫T

0
(µs +1)

2|Ys|
µs−1|Zs|

2ds
]

+CE
[∫T

0
(µs +1)

2|Ys|
µs−1∥Us∥2

νds
]

≤ E
[1
2

sup
0≤t≤T∧τ̃n

|Yt|
µt+1 +3C

∫T

0
µs(µs +1)|Ys|

µs−1|Zs|
2ds
]

+3CE
[∫T

0
µs(µs +1)|Ys|

µs−1∥Us∥2
νds

]
≤ 1

2
E
[

sup
0≤t≤T∧τ̃n

|Yt|
µt+1

]
+CE

[
1+ |ζ |µT +1 +(µT +1)µT

∫T

0
ϑµs+1

s ds
]
,

the last inequality is derived from Lemma 2.2.5. Observing that for any n≥ 0 we have τ̃n ≤ τ̃n+1,
then sup0≤t≤T∧τ̃n

|Yt|
µt+1 ≤ sup0≤t≤T∧τ̃n+1

|Yt|
µt+1. Consequently, by (2.2.6) and by using the

monotone convergence theorem, we obtain

E[ sup
0≤t≤T

|Yt|
µt+1] ≤ C

(
1+E[|ζ |µT +1]+ (µT +1)µT

∫T

0
E[ϑµs+1

s ]ds
)
.

This ends the proof of assertion (i).

We now advance to establish assertion (ii). The application of Itô’s formula reveals that

|Y0|
2 +

∫T

0
(|Zs|

2 +∥Us∥2
ν)ds+ΞT = |ζ |2 +2

∫T

0
Ysf(s,Ys,Zs,Us)ds

≤ |ζ |2 +2

∫T

0
|Ys|(ϑs +g1,c2(Ys))ds

+2

∫T

0
|Ys|
(
g2,c0(Zs)+ c1 ∥Us∥ν

)
ds,

where Ξt = 2
∫t

0YsZsdWs +
∫t

0

∫
Γ

(
2Ys−Us(e)+ |Us(e)|

2
)
Ñ(ds,de)

For any given ε > 0, we have

|y|2| ln |y|| ≤ −|y| ln |y| 1{|y≤1}+ |y|2+ε 1{|y|>1}

≤ e−1 + |y|2+ε,

and
|y|2 ≤ |y|2+ε 1{|y|>1}+1.
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Furthermore, by Lemma 2.2.3 and employing Young’s inequality, we can derive a positive constant
c̃, such that

2c0|y||z|
√
| ln |z|| 1{|y|>e} ≤

( |z|2
2

+ c̃|y|2+ε
)
1{|y|>e}.

On the other hand, according to (2.2.4)

2c0|y||z|
√
| ln |z|| 1{|y|≤e} ≤ 2c0e

1
2
1√
2
+2c0e|z|

3
2 1{|z|>1} 1{|y|≤e}

≤ 1

2
|z|2 1{|y|≤e}+ c̃0,

where c̃0 = c0
√
2e

1
2 +4(c0e)

4
(3

2

)3. By Young’s inequality, we have

2c1|y|∥u∥ν 1{|y|>1} ≤
(∥u∥2

ν

2
+2c2

1|y|
2+ε
)
1{|y|>1},

2c1|y|∥u∥ν 1{|y|≤1} ≤ ∥u∥2
ν

2
1{|y|≤1}+2c

2
1.

and

2|y|ϑ≤ ϑ2 + |y|2+ε 1{|y|>1}+1.

Therefore,∫T

0
E
[
|Zs|

2 +∥Us∥2
ν

]
ds ≤ C̃(T,c0, c1, c2)

(
Ĉ+E

[
|ζ |2 +

∫T

0
ϑ2

sds+

∫T

0
|Ys|

2+εds
])

≤ C̃(T,c0, c1, c2)
(
Ĉ+E

[
|ζ |2 +

∫T

0
ϑ2

sds+T sup
0≤t≤T

|Yt|
2+ε
])
.

By selecting ε as µs − 1, setting t = 0, and defining C(T,c0, c1, c2) = C̃(T,c0, c1, c2)(Ĉ∨ 1), we
obtain the desired result.

□

The first lemma that follows allows for a localization procedure introduced to establish solutions’
existence and uniqueness. The second one provides a prior estimate for the approximating
solutions and guarantees that these solutions do not diverge. The proofs for these lemmas can be
performed and adapted to our setting similarly as outlined in [14].

Lemma 2.2.8. There exists (fn), a sequence of functions, satisfying :

(i) For every n, the functions fn are bounded and exhibit global Lipschitz continuity with
respect to (y,z,u) for a.e. t and P -a.s.

(ii) supn |fn(t,ω,y,z,u)| ≤ ϑt +g1,c2(y)+g2,c0(z)+ c1∥u∥ν .
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(iii) For each N , ρN (fn −f)−→ 0 as n−→∞, where

ρN (f) = E
[∫T

0
sup

|y|,|z|,∥u∥ν≤N
|f(s,y,z,u)|ds

]
.

Lemma 2.2.9. Consider f and ζ as defined in Lemma 2.2.7. Let (fn) denote the sequence
of functions associated with f by Lemma 2.2.8. Let (Y n,Zn,Un) represent the solution to the
BSDEJ(ζ,fn). Consequently, we have :

(a) supnE[
∫T

0 ∥Un
s ∥2

νds] ≤K1.

(b) supnE[sup0≤t≤T |Y n
t |µT +1] ≤K2.

(c) supnE[
∫T

0 |Zn
s |

2ds] ≤K3.

(d) supnE[
∫T

0 |fn(s,Y
n

s ,Z
n
s ,U

n
s )|

2
αds] ≤K4.

where K1, K2, K3, and K4 are constants independent of n.

2.2.3 Some Convergence Results

This subsection establishes estimates between two potential solutions. This analysis is essential
for demonstrating the existence of solutions and understanding the properties of these solutions
in the context of the study on one-dimensional BSDEs with logarithmic growth. Moving forward,
we use the notation ĥn,m

s to represent the difference between hn
s and hm

s for any given quantities.

Proposition 2.2.10. For every R ∈ N, β ∈ (1,3−α), 0 <δ < β−1
2M2

2+C2
Lip

min(1
2 ,

κ
rβ ) and ε > 0,

there exists N0 >R such that for all N >N0 and S ≤ T :

limsup
n,m→+∞E

[
sup

(S−δ)+≤t≤S
|Ŷ n,m

t |β +

∫S

(S−δ)+

(|Ẑn,m
s |2 +∥Ûn,m

s ∥2
ν)

(|Ŷ n,m
s |2 +ΛR)

2−β
2

ds
]

≤ ε+
ℓ

β−1
eCN δ limsup

n,m→+∞E
[
|Ŷ n,m

S |β
]
.

Here , ΛR = sup{(AN )−1,N ≥ R}, CN := β
β−1(2M

2
2 +C2

Lip) ln(AN ), and ℓ is a positive constant.
The definition of κ can be found below.

Lemma 2.2.11. Assuming that the conditions of Proposition 2.2.10 are met, and defining φt as
|Ŷ n,m

t |2 +(AN )−1, and κ := 3−α−β, we can establish the following result for any C > 0 :

eCtφ
β
2
t +C

∫S

t
eCsφ

β
2
s ds+M̃t ≤ eCSφ

β
2
S −

β

2

∫S

t
eCsφ

β
2
−1

s |Ẑn,m
s |2ds

−β
(β−1)

2

∫S

t
eCsφ

β
2
−1

s ∥Ûn,m
s ∥2

νds

+β
(2−β)

2

∫S

t
eCsφ

β
2
−2

s |Ŷ n,m
s |2|Ẑn,m

s |2ds

+Mt +J1,t +J2,t +J3,t +J4,t,
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where

M̃t:=

∫S

t

∫
Γ
eCs(φβ

2
s −φ

β
2
s−

)
Ñ(ds,de),

Mt:=−β

∫S

t
eCsφ

β
2
−1

s Ŷ n,m
s Ẑn,m

s dWs,

J1,t:=βe
CS 1

Nκ

∫S

t
φ

β−1
2

s Φκ(s)|fn(s,Y
n

s ,Z
n
s ,U

n
s )−fm(s,Y m

s ,Zm
s ,U

n
s )|ds,

J2,t:=βe
CS [4N2 +Λ1]

β−1
2

[∫S

t
sup

|y|,|z|,∥u∥ν≤N
|(fn −f)(s,y,z,u)|ds

+

∫S

t
sup

|y|,|z|,∥u∥ν≤N
|(fm −f)(s,y,z,u)|ds

]
,

J3,t:=βM2

∫S

t
eCsφ

β
2
−1

s

(
φs ln(AN )+

√
ln(AN )|Ŷ n,m

s ||Ẑn,m
s |

)
ds,

J4,t:=βCLip

∫S

t
eCsφ

β
2
−1

s |Ŷ n,m
s |∥Ûn,m

s ∥νds,

and Φ(s) = |Y n
s |+ |Y m

s |+ |Zn
s |+ |Zm

s |+∥Un
s ∥ν +∥Um

s ∥ν .

Proof: Let C > 0. For any positive integer N , we define the function u(s,y) as

u(s,y) = eCs (θ(y))
β
2 ,

where θ(y) := y2 +(AN )−1 ; this yields the following partial derivatives :

us(s,y) = Cu(s,y); uy(s,y) = βeCsy (θ(y))
β
2
−1 ,

uyy(s,y) = βeCs (θ(y))
β
2
−1 +β(β−2)eCsy2 (θ(y))

β
2
−2 .

Since 1 < β < 2, we can establish that

uyy(s,y) ≥ β(β−1)eCs (θ(y))
β
2
−1 .

Consequently, for all s ∈ [0,T ], we obtain, by Taylor expansion, that

u(s, Ŷ n,m
s )−u(s, Ŷ n,m

s− )− Ûn,m
s (e)uy(s, Ŷ

n,m
s− )

= |Ûn,m
s (e)|2

∫1

0
(1−a)uyy(s,aÛ

n,m
s (e)+ Ŷ n,m

s− )da

≥ β(β−1)eCs|Ûn,m
s (e)|2

∫1

0
(1−a)

(
θ(aÛn,m

s (e)+ Ŷ n,m
s− )

)β
2
−1
da.

Since 0≤ a≤ 1, we have

θ(aÛn,m
s (e)+ Ŷs−) = |aÛn,m

s (e)+ Ŷ n,m
s− |2 +(AN )−1

= |a(Ŷ n,m
s− + Ûn,m

s (e))+(1−a)Ŷ n,m
s− |2 +(AN )−1

≤ (|Ŷ n,m
s− |∨ |Ŷ n,m

s |)2 +(AN )−1.
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Given that β
2 −1 is negative, hence(

θ(aÛn,m
s (e)+ Ŷ n,m

s− )
)β

2
−1

≥
(
(|Ŷ n,m

s− |∨ |Ŷ n,m
s |)2 +(AN )−1

)β
2
−1
.

Therefore,

u(s, Ŷ n,m
s )−u(s, Ŷ n,m

s− )− Ûn,m
s (e)uy(s, Ŷ

n,m
s− ) (2.2.7)

≥β(β−1)eCs|Ûn,m
s (e)|2

∫1

0
(1−a)

(
θ(aÛn,m

s (e)+ Ŷ n,m
s− )

)β
2
−1
da

≥β (β−1)
2

eCs|Ûn,m
s (e)|2

(
(|Ŷ n,m

s− |∨ |Ŷ n,m
s |)2 +(AN )−1

)β
2
−1
.

Applying Itô’s formula to u(t,Yt) reveals that

eCtφ
β
2
t +C

∫S

t
eCsφ

β
2
s ds

= eCSφ
β
2
S +β

∫S

t
eCsφ

β
2
−1

s Ŷ n,m
s (fn(s,Y

n
s ,Z

n
s ,U

n
s )−fm(s,Y m

s ,Zm
s ,U

m
s ))ds

−
β

2

∫S

t
eCsφ

β
2
−1

s |Ẑn,m
s |2ds+β

(2−β)

2

∫S

t
eCsφ

β
2
−2

s |Ŷ n,m
s |2|Ẑn,m

s |2ds

−β

∫S

t
eCsφ

β
2
−1

s Ŷ n,m
s Ẑn,m

s dWs

−

∫S

t
eCs

∫
Γ

((
|Ŷ n,m

s− + Ûn,m
s (e)|2 +(AN )−1

)β
2 −φ

β
2
s−−βφ

β
2
−1

s− Ŷ n,m
s− Ûn,m

s (e)
)
N(ds,de)

−β

∫S

t
eCs

∫
Γ
φ

β
2
−1

s− Ŷ n,m
s− Ûn,m

s (e)Ñ(ds,de).

By (2.2.7), we can reformulate the jump components as follows :

−β

∫S

t

∫
Γ
eCsφ

β
2
−1

s− Ŷ n,m
s− Ûn,m

s (e)Ñ(ds,de)

−

∫S

t

∫
Γ
eCs

(
φ

β
2
s −φ

β
2
s−−βφ

β
2
−1

s− Ŷ n,m
s− Ûn,m

s (e)
)
N(ds,de)

= −

∫S

t

∫
Γ
eCs

(
φ

β
2
s −φ

β
2
s−−βφ

β
2
−1

s− Ŷ n,m
s− Ûn,m

s (e)
)
ν(de)ds

−

∫S

t

∫
Γ
eCs(φ

β
2
s −φ

β
2
s−)Ñ(ds,de)

≤ −β
(β−1)

2

∫S

t
eCs∥Ûn,m

s ∥2
ν

(
(|Ŷ n,m

s− |∨ |Ŷ n,m
s |)2 +(AN )−1

)β
2
−1
ds

−

∫S

t

∫
Γ
eCs(φ

β
2
s −φ

β
2
s−)Ñ(ds,de)

≤ −β
(β−1)

2

∫S

t
eCsφ

β
2
−1

s ∥Ûn,m
s ∥2

νds−

∫S

t

∫
Γ
eCs(φ

β
2
s −φ

β
2
s−)Ñ(ds,de).
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Therefore,

eCtφ
β
2
t +C

∫S

t
eCsφ

β
2
s ds+M̃t ≤ eCSφ

β
2
S −

β

2

∫S

t
eCsφ

β
2
−1

s |Ẑn,m
s |2ds

−β
(β−1)

2

∫S

t
eCsφ

β
2
−1

s ∥Ûn,m
s ∥2

νds

+β
(2−β)

2

∫S

t
eCsφ

β
2
−2

s |Ŷ n,m
s |2|Ẑn,m

s |2ds

+Mt + J́1,t + J́2,t + J́3,t + J́4,t + J́5,t,

where

M̃t :=

∫S

t

∫
Γ
eCs(φ

β
2
s −φ

β
2
s−)Ñ(ds,de),

and

Mt :=−β

∫S

t
eCsφ

β
2
−1

s Ŷ n,m
s Ẑn,m

s dWs,

are F-martingales, and

J́1,t :=β

∫S

t
eCsφ

β
2
−1

s Ŷ n,m
s (fn(s,Y

n
s ,Z

n
s ,U

n
s )−fm(s,Y m

s ,Zm
s ,U

n
s )) 1{Φ(s)>N }ds,

J́2,t :=β

∫S

t
eCsφ

β
2
−1

s Ŷ n,m
s (fn(s,Y

n
s ,Z

n
s ,U

n
s )−f(s,Y

n
s ,Z

n
s ,U

n
s )) 1{Φ(s)≤N }ds,

J́3,t :=β

∫S

t
eCsφ

β
2
−1

s Ŷ n,m
s (f(s,Y n

s ,Z
n
s ,U

n
s )−f(s,Y

m
s ,Zm

s ,U
n
s )) 1{Φ(s)≤N }ds,

J́4,t :=β

∫S

t
eCsφ

β
2
−1

s Ŷ n,m
s (f(s,Y m

s ,Zm
s ,U

n
s )−fm(s,Y m

s ,Zm
s ,U

n
s )) 1{Φ(s)≤N }ds,

J́5,t :=β

∫S

t
eCsφ

β
2
−1

s |Ŷ n,m
s ||fm(s,Y m

s ,Zm
s ,U

n
s )−fm(s,Y m

s ,Zm
s ,U

m
s )|ds,

with the shorthand Φ(s) = |Y n
s |+ |Y m

s |+ |Zn
s |+ |Zm

s |+ ∥Un
s ∥ν + ∥Um

s ∥ν . By using the fact that
|Ŷ n,m

s | ≤ φ
1
2
s and Φ(s) > N, a simple computation shows that J́1,t ≤ J1,t and J́2,t + J́4,t ≤ J2,t.

Finally, the inequalities J́3,t ≤ J3,t and J́5,t ≤ J4,t can be directly derived from Assumption
(A.3)-(iii) and the Lipschitz condition with respect to u. □

Lemma 2.2.12. Under Assumption of Proposition 2.2.10, we have

−CN,1

∫S

t
eCsφ

β
2
s ds+β

(2−β)

2

∫S

t
eCsφ

β
2
−2

s |Ŷ n,m
s |2|Ẑn,m

s |2ds

−
β

2

∫S

t
eCsφ

β
2
−1

s |Ẑn,m
s |2ds+J3,t

≤ −β
(β−1)

4

∫S

t
eCsφ

β
2
−1

s |Ẑn,m
s |2ds.
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Proof: The expression involving the process (Ẑn,m
s ) in Proposition 2.2.10

−
CN,1

2

∫S

t
eCsφ

β
2
s ds+β

(2−β)

2

∫S

t
eCsφ

β
2
−2

s |Ŷ n,m
s |2|Ẑn,m

s |2ds

−
β

2

∫S

t
eCsφ

β
2
−1

s |Ẑn,m
s |2ds+βM2

∫S

t
eCsφ

β
2
−1

s |Ŷ n,m
s ||Ẑn,m

s |
√

ln(AN )ds.

We have |Ŷ n,m
s |2 ≤ φs := |Ŷ n,m

s |2 +(AN )−1 , since β (2−β)
2 > 0, therefore

−
CN,1

2

∫S

t
eCsφ

β
2
s ds+β

(2−β)

2

∫S

t
eCsφ

β
2
−2

s |Ŷ n,m
s |2|Ẑn,m

s |2ds

−
β

2

∫S

t
eCsφ

β
2
−1

s |Ẑn,m
s |2ds+βM2

∫S

t
eCsφ

β
2
−1

s |Ŷ n,m
s ||Ẑn,m

s |
√

ln(AN )ds

≤ −
CN,1

2

∫S

t
eCsφ

β
2
−1

s φsds−
β

2

∫S

t
eCsφ

β
2
−1

s |Ẑn,m
s |2ds

+β
(2−β)

2

∫S

t
eCsφ

β
2
−1

s |Ẑn,m
s |2ds+βM2

∫S

t
eCsφ

β
2
−1

s |Ŷ n,m
s ||Ẑn,m

s |
√

ln(AN )ds

=

∫S

t
eCsφ

β
2
−1

s

(
−
CN,1

2
φs −β

(β−1)

2
|Ẑn,m

s |2 +βM2|Ŷ
n,m

s ||Ẑn,m
s |

√
ln(AN )

)
ds.

If we choose CN,1 := β 2M2
2

β−1 ln(AN ), then

−
CN,1

2

∫S

t
eCsφ

β
2
s ds+β

(2−β)

2

∫S

t
eCsφ

β
2
−2

s |Ŷ n,m
s |2|Ẑn,m

s |2ds

−
β

2

∫S

t
eCsφ

β
2
−1

s |Ẑn,m
s |2ds+βM2

∫S

t
eCsφ

β
2
−1

s |Ŷ n,m
s ||Ẑn,m

s |
√

ln(AN )ds

≤ β

∫S

t
eCsφ

β
2
−1

s

(
−

M2
2

β−1
φs ln(AN )−

(β−1)

2
|Ẑn,m

s |2 +M2|Ŷ
n,m

s ||Ẑn,m
s |

√
ln(AN )

)
ds

≤ β

∫S

t
eCsφ

β
2
−1

s

(
−

M2
2

β−1
φs ln(AN )−

(β−1)

2
|Ẑn,m

s |2 +M2
√
φs|Ẑ

n,m
s |

√
ln(AN )

)
ds.

The final inequality is derived from the fact that |Ŷ n,m
s | ≤ √

φs. We utilize Young’s inequality
(ab≤ a2

2ε +
εb2

2 ) by selecting a=A|y|, b= z, and ε= β−1
2 .

A|y||z|−
1

β−1
A2|y|2 −

(β−1)

2
|z|2 ≤ −

β−1

4
|z|2.

For A :=M2

√
ln(AN ), y := √

φs and z := |Ẑn,m
s |, therefore

−
CN,1

2

∫S

t
eCsφ

β
2
s ds+β

(2−β)

2

∫S

t
eCsφ

β
2
−2

s |Ŷ n,m
s |2|Ẑn,m

s |2ds (2.2.8)

−
β

2

∫S

t
eCsφ

β
2
−1

s |Ẑn,m
s |2ds+βM2

∫S

t
eCsφ

β
2
−1

s |Ŷ n,m
s ||Ẑn,m

s |
√

ln(AN )ds

≤−β
(β−1)

4

∫S

t
eCsφ

β
2
−1

s |Ẑn,m
s |2ds.

□
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Proof: of Proposition 2.2.10. We define the constant C in Lemma 2.2.11 as CN := CN,1 +CN,2,
where CN,1 :=

2M2
2 β

β−1 ln(AN ) and CN,2 :=
C2

Lipβ

β−1 ln(AN ). Additionally, let γ := δCN (ln(AN ))−1. We
will examine the following quantity :

−CN

∫S

t
eCsφ

β
2
s ds+β

(2−β)

2

∫S

t
eCsφ

β
2
−2

s |Ŷ n,m
s |2|Ẑn,m

s |2ds

−
β

2

∫S

t
eCsφ

β
2
−1

s |Ẑn,m
s |2ds−β

(β−1)

2

∫S

t
eCsφ

β
2
−1

s ∥Ûn,m
s ∥2

νds

+J3,t +J4,t.

The control of the expression involving the process (Ẑn,m
s ) has been postponed in Lemma 2.2.12.

We direct our attention to the expression encompassing the norm ∥Ûn,m
s ∥ν .

By applying Young’s inequality and setting CN,2 = β
C2

Lip

β−1 ln(AN ) for sufficiently large AN (i.e.,
AN ≥ e), we obtain the following result :

−CN,2

∫S

t
eCsφ

β
2
s ds+βCLip

∫S

t
eCsφ

β
2
−1

s |Ŷ n,m
s | ∥Ûn,m

s ∥νds

−β
(β−1)

2

∫S

t
eCsφ

β
2
−1

s ∥Ûn,m
s ∥2

νds

≤−β
β−1

4

∫S

t
eCsφ

β
2
−1

s ∥Ûn,m
s ∥2

νds. (2.2.9)

Based on Lemma 2.2.5 and employing Burkholder–Davis–Gundy’s inequality and Hölder’s
inequality, while taking into account the relationship β−1

2 + κ
2 +

α
2 = 1 as well as the inequalities

(2.2.8) and (2.2.9), we obtain a positive universal constant ℓ such that, for all δ > 0, the following
inequality universally holds :

E
[

sup
(S−δ)+≤t≤S

[
eCN tφ

β
2
t

]]
+E

[∫S

(S−δ)+
eCN sφ

β
2
−1

s (|Ẑn,m
s |2 +∥Ûn,m

s ∥2
ν)ds

]
≤ ℓ

β−1
eCN δ

{
E
[
φ

β
2
S

]
+

β

Nκ

[
E
∫T

0
φsds

]β−1
2
[
E
∫T

0
Φ2(s)ds

]κ
2

×
[
E
∫T

0
|fn(s,Y

n
s ,Z

n
s ,U

n
s )−fm(s,Y m

s ,Zm
s ,U

n
s )|

2
αds

]α
2

+β[4N2 +Λ1]
β−1

2 E
[∫T

0
sup

|y|,|z|,∥u∥ν≤N
|fn(s,y,z,u)−f(s,y,z,u)|ds

+

∫T

0
sup

|y|,|z|,∥u∥ν≤N
|fm(s,y,z,u)−f(s,y,z,u)|ds

]}
.
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Utilizing Lemmas 2.2.8 and 2.2.9, for any N >R :

E
[

sup
(S−δ)+≤t≤S

|Ŷ n,m
t |β +E

∫S

(S−δ)+

(
|Ẑn,m

s |2 +∥Ûn,m
s ∥2

ν

)
(
|Ŷ n,m

s |2 +ΛR

) 2−β
2

ds
]

≤ ℓ

β−1
eCN δE

[
|Ŷ n,m

S |β
]
+

ℓ

β−1

Aγ
N

(AN )
β
2

+
4ℓ

β−1
βK

α
2

4 (4TK2 +TΛR)
β−1

2 (8TK2 +16K1 +16K3)
κ
2

Aγ
N

(AN )
κ
r

+
2ℓ

β−1
eCN δβ[2N2 +Λ1]

β−1
2 [ρN (fn −f)+ρN (fm −f)] .

Given δ < β−1
2M2

2+C2
Lip

min
(

1
2 ,

κ
rβ

)
, we can derive

lim
N→∞

(
Aγ

N

(AN )
β
2

+
Aγ

N

(AN )
κ
r

)
= 0.

To complete the proof of Proposition 2.2.10, we commence by taking the limits as n, m approach
their respective limits +∞, +∞ followed by a subsequent limit as N tends to infinity, in accordance
with assertion (iii) of Lemma 2.2.8. □

2.2.4 The Main Result

The primary focus of this work is to investigate the existence and the uniqueness results of
solutions for BSDEJ (2.1.1) under Assumption 2.2.1.

Theorem 2.2.13. Under Assumption 2.2.1, Equation (2.1.1) admits one and only one solution
(Y,Z,U) in SµT +1([0,T ];R)×H2([0,T ];R)×L2([0,T ],ν;R).

Proof: Existence. By applying Proposition 2.2.10 successively with S = T , S = (T − δ)+,
S = (T −2δ)+ . . . and utilizing the Lebesgue dominated convergence theorem, we can show that
for any β ∈ (1,3−α), the following holds :

limsup
n,m→+∞E

[
sup

0≤t≤T
|Ŷ n,m

t |β +

∫T

0

(|Ẑn,m
s |2 +∥Ûn,m

s ∥2
ν)

(|Ŷ n,m
s |2 +ΛR)

2−β
2

ds
]
= 0.

Through the application of the Cauchy–Schwarz inequality, we derive

E
[∫T

0
(|Ẑn,m

s |+∥Ûn,m
s ∥ν)ds

]
≤

√
2
(
E
[∫T

0

(|Ẑn,m
s |2 +∥Ûn,m

s ∥2
ν)

(|Ŷ n,m
s |2 +ΛR)

2−β
2

ds
]) 1

2

×
(
E
[∫T

0

(
|Ŷ n,m

s |2 +ΛR

) 2−β
2 ds

]) 1
2
.
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It is evident from Lemma 2.2.9 that(
E
[∫T

0

(
|Ŷ n,m

s |2 +ΛR

) 2−β
2 ds

]) 1
2

< ∞.

Consequently,

lim
n,m→+∞E

[
sup

0≤t≤T
|Ŷ n,m

t |β +

∫T

0

(
|Ẑn,m

s |+∥Ûn,m
s ∥ν

)
ds
]
= 0.

Thus, there exists (Y,Z,U) that satisfies

E
[

sup
0≤t≤T

|Yt|
β +

∫T

0

(
|Zs|+∥Us∥ν

)
ds
]
<∞,

and

lim
n→+∞E

[
sup

0≤t≤T
|Y n

t −Yt|
β +

∫T

0

(
|Zn

s −Zs|+∥Un
s −Us∥ν

)
ds
]
= 0.

Specifically, a sub-sequence denoted as (Y n,Zn,Un) exists, such that

lim
n→+∞(|Y n

t −Yt|+ |Zn
t −Zt|+∥Un

t −Ut∥ν) = 0 a.e. (t,ω). (2.2.10)

We still need to establish the convergence in probability of the following term :∫T

0
(fn(s,Y

n
s ,Z

n
s ,U

n
s )−f(s,Ys,Zs,Us))ds,

as n approaches ∞. The initial step is applying the triangular inequality, which yields

E
[∫T

0
|fn(s,Y

n
s ,Z

n
s ,U

n
s )−f(s,Ys,Zs,Us)|ds

]
≤ E

[∫T

0
|fn(s,Y

n
s ,Z

n
s ,U

n
s )−f(s,Y

n
s ,Z

n
s ,U

n
s )|ds

]
+E
[∫T

0
|f(s,Y n

s ,Z
n
s ,U

n
s )−f(s,Ys,Zs,Us)|ds

]
.

Utilizing Hölder’s inequality and the following inequality,

1{|Y n
s |+|Zn

s |+∥Un
s ∥ν≥N } ≤ (|Y n

s |+ |Zn
s |+∥Un

s ∥ν)
2−α

N2−α
,

we obtain

E
[∫T

0
|(fn −f)(s,Y

n
s ,Z

n
s ,U

n
s )|ds

]
≤ E

[∫T

0
|(fn −f)(s,Y

n
s ,Z

n
s ,U

n
s )| 1{|Y n

s |+|Zn
s |+∥Un

s ∥ν<N }ds
]

+E
[∫T

0
|(fn −f)(s,Y

n
s ,Z

n
s ,U

n
s )|

(|Y n
s |+ |Zn

s |+∥Un
s ∥ν)

2−α

N2−α
1{|Y n

s |+|Zn
s |+∥Un

s ∥ν≥N }ds
]

≤ ρN (fn −f)+
4K

α
2

4 (TK2 +K1 +K3)
1−α

2

N2−α
.
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The last inequality is obtained from Lemmas 2.2.8 and 2.2.9. Taking the limit successively first
with respect to n and then to N in the preceding inequality, we arrive at

lim
n

E
[∫T

0
|fn(s,Y

n
s ,Z

n
s ,U

n
s )−f(s,Y

n
s ,Z

n
s ,U

n
s )|ds

]
= 0.

Considering the limit (2.2.10) and the continuity of the function f with respect to (y,z,u) for all
t ∈ [0,T ], we obtain

lim
n

|f(s,Y n
s ,Z

n
s ,U

n
s )−f(s,Ys,Zs,Us)|= 0. a.e. (t,ω).

Furthermore, Lemma 2.2.6 and the conditions (a-c) outlined in Lemma 2.2.9 affirm the uniform
integrability of the sequence

|f(s,Y n
s ,Z

n
s ,U

n
s )−f(s,Ys,Zs,Us)|.

As a result :

lim
n→∞

∫T

0
E|f(s,Y n

s ,Z
n
s ,U

n
s )−f(s,Ys,Zs,Us)|ds= 0.

Consequently, the BSDE (2.1.1) has a solution in Sβ([0,T ];R)×H1([0,T ];R)×L1([0,T ],ν;R).
Taking account of Lemma 2.2.7, we conclude that it belongs to SµT +1([0,T ];R)×H2([0,T ];R)×
L2([0,T ],ν;R). This achieves the proof of the existence part. □

Proof: Uniqueness. Consider two solutions (Y,Z,U) and (Y ′,Z ′,U ′) to the BSDEJ (2.1.1).
Drawing from the proof of Proposition 2.2.10, it can be demonstrated that for every R> 2,

β ∈
(
1,3−α

)
, δ <

β−1

2M2
2 +C2

Lip
min

(1
2
,
κ

rβ

)
and ε > 0,

there is an N0 >R, for all subsequent N >N0 and each S ≤ T :

E
[
|Yt −Y

′
t |

β
]
+E

[∫S

(S−δ)+

(
|Zs −Z

′
s|

2 +∥Us −U
′
s∥2

ν

)(
|Ys −Y

′
s |

2 +ΛR

)β−2
2 ds

]
≤ ε+

ℓ

β−1
eCN δE

[
|YS −Y

′
S |

β
]
.

We successively set S = T , followed by updating S as S = (T − δ)+, and so on. Thus, the
BSDEJ (2.1.1) has a unique solution (Y,Z,U) ∈ SµT +1([0,T ];R)×H2([0,T ];R)×L2([0,T ],ν;R).
□

Example 2.2.1. Let g(t,ω,y,z) := ϑt + c2|y|| ln |y||+ c0|z|
√
| ln(|z|)|+ ∥u∥ν. Clearly, g satisfies

(A.2), so we will now verify that (A.3) holds true :
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Indeed, letting g1,c2(y) := c2|y|| ln |y||; g2,c0(z) := c0|z|
√
| ln |z||, we have

g(t,ω,y1,z1,u)−g(t,ω,y2,z2,u) = g1,c2(y1)−g1,c2(y2)

+g2,c0(z1)−g2,c0(z2).

We shall examine the function g1,c2 under the following conditions :

0≤ |y1|, |y2| ≤
1

N
and 1

N
≤ |y1|, |y2| ≤ N.

Additionally, we will analyze g2,c0 across various cases :{
0 ≤ |z1|, |z2| ≤ 1

N ,
1
N ≤ |z1|, |z2| ≤ 1− ϵ̃,

1− ϵ̃ ≤ |z1|, |z2| ≤ 1+ ϵ̃, 1+ ϵ̃ ≤ |z1|, |z2| ≤ N,

where ϵ̃ ∈ (0,1) is small enough, and N is sufficiently large.

Clearly, in the first case (|y|, |z| ≤ 1
N ), the two functions satisfy (A.3),

|g1,c2(y1)−g1,c2(y2)+g2,c0(z1)−g2,c0(z2)| ≤ |g1,c2(y1)|+ |g1,c2(y2)|+ |g2,c0(z1)|+ |g2,c0(z2)|

≤ max(c0, c2)
4

N
ln(N).

The mean value theorem, applied in the second term, implies the following :
|g1,c2(y1)−g1,c2(y2)+g2,c0(z1)−g2,c0(z2)| ≤ |g1,c2(y1)−g1,c2(y2)|+ |g2,c0(z1)−g2,c0(z2)|

≤ max(c0, c2)
(
|y1 −y2| ln(N)+ |z1 −z2|

√
ln(N)

)
.

Applying the mean value theorem again, we can prove the remaining cases for the function g2,c0 .
Therefore, (A.3) holds for AN =N .

Further examples can be found in [12].

2.3 Generalized Logarithmic Growth Condition for
BSDEs with Jumps

Now, we examine a distinct BSDE with jumps from the one in (2.1.1), introducing different
assumptions for the generator of the next BSDEJ :

Yt = ζ+

∫T

t
f
(
s,Ys,Zs,

∫
ΓUs(e)ν(de)

)
ds−

∫T

t
ZsdWs −

∫T

t

∫
Γ
Us(e)Ñ(ds,de). (2.3.1)

Assumption 2.3.1.

(A.1)′ Assume that E[|ζ |µT +1] is finite, where µt := eθt for all t ∈ [0,T ] and θ is a sufficiently
large positive constant.
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(A.2)′ (i) For almost all (t,ω), the function f is continuous with respect to (y,z,u).
(ii) There exists a positive process ϑ such that∫T

0
E
[
ϑµs+1

s

]
ds <+∞.

Additionally, for every t, y, z, and u,∣∣f(t,y,z,∫Γu(e)ν(de)
)∣∣≤ ϑt +g1,c2(y)+g2,c0(z)+g3,c1(u),

where g3,c1(u) = c1∥u∥ν

√
| ln∥u∥ν |, c0, c1 and c2 are positive constants.

(A.3)′ There exists a real-valued sequence (AN )N>1 and constants M2 ∈ R+, r > 0 such that

(i) For every integer N > 1, we have 1 < AN ≤N r.

(ii) limN→∞AN =∞.

(iii) For every N ∈ N, and every y1, y2, z1, z2, u1, u2 such that
|y1|, |y2|, |z1|, |z2|, ∥u1∥ν , ∥u2∥ν ≤N , we have

(
y1 −y2

)(
f
(
t,ω,y1,z1,

∫
Γu1(e)ν(de)

)
−f

(
t,ω,y2,z2,

∫
Γu2(e)ν(de)

))
≤M2

(
| y1 −y2 |

2 ln(AN )+ | y1 −y2 |
√

ln(AN )
(
| z1 −z2 |+∥u1 −u2∥ν

)
+

ln(AN )

AN

)
.

By following the steps outlined in the previous proofs, we can obtain a unique solution for BSDEJ
(2.3.1) in which the transaction with u becomes proportionally identical to the transaction with
z.

The previous lemmas maintain their validity while adhering to (2.3.1) and Assumption 2.3.1.
Therefore, we will provide concise proofs, building upon the earlier derivations.

Proof: of Lemma 2.2.7 under Assumption 2.3.1. Consider a solution (Y,Z,U) to (2.3.1), and
assume that conditions (A.1)′ and (A.2)′ are satisfied. We define the sign function sgn(x) as
follows : sgn(x) = −1 for x≤ 0 and sgn(x) = +1 for x > 0. We can apply Itô’s formula to obtain
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∣∣∣Yt∧τ̃n

∣∣∣µt∧τ̃n
+1

≤
∣∣∣YT∧τ̃n

∣∣∣µT∧τ̃n
+1

+

∫T∧τ̃n

t∧τ̃n

(µs +1)
µsϑµs+1

s ds+C2

−

∫T∧τ̃n

t∧τ̃n

θµs |Ys|
µs+1 ln |Ys| 1{|Ys|>1}ds

+

∫T∧τ̃n

t∧τ̃n

|Ys|
µs+1ln |Ys| 1{|Ys|>e}ds

+

∫T∧τ̃n

t∧τ̃n

(µs +1) |Ys|
µs
(1
2
g1,c2(Ys) 1{|Ys|>1}+g2,c0(Zs)

)
ds

+

∫T∧τ̃n

t∧τ̃n

(µs +1) |Ys|
µs
(1
2
g1,c2(Ys) 1{|Ys|>1}+g3,c1(Us)

)
ds

−
1

2

∫T∧τ̃n

t∧τ̃n

(µs +1)µs|Zs|
2 | Ys |

µs−1 ds

−

∫T∧τ̃n

t∧τ̃n

µs(µs +1)3
−µs |Ys|

µs−1||Us||
2
νds+Ξt∧τ̃n

−ΞT∧τ̃n
.

By Lemma 2.2.3, we have

c0|y||z|
√
| ln |z|| 1{|y|>e} ≤ |z|2

4
1{|y|>e}+ c3|y|

2 ln |y| 1{y>e},

and
c1|y|∥u∥ν

√
| ln∥u∥ν | 1{|y|>e} ≤ ρ

4
∥u∥2

ν 1{|y|>e}+ c4|y|
2 ln |y| 1{|y|>e}.

Utilizing Young’s inequality, we obtain

c0|y||z|
√
| ln |z|| 1{|y|≤e} ≤ |z|2

4
1{|y|≤e}+ c̃0,

and
c1|y|∥u∥ν

√
| ln∥u∥ν | 1{|y|≤e} ≤ ρ

4
∥u∥2

ν 1{|y|≤e}+ c̃1.

where c̃0 = c0e
1
2

1√
2
+33 (c0e)4

4 , c̃1 = c1e
1
2

1√
2
+33 (c1e)4

4 . For θ ≥ 2(c2 + c3 + c4)+1 we have −θµs +

(c2 + c3 + c4)(µs +1)+1≤ 0, thus,∫T∧τ̃n

t∧τ̃n

(−θµs +(µs +1)(c2 + c3 + c4)+1) |Ys|
µs+1 ln |Ys| 1{|Ys|>1}ds≤ 0.

Thus, employing the same steps as outlined above, we can determine a general constant C such
that

E
[

sup
0≤t≤T∧τ̃n

|Yt∧τ̃n
|
µ

t∧τ̃n
+1]≤ CE

[
1+ |YT∧τ̃n

|
µ

T∧τ̃n
+1

+(µT +1)µT

∫T∧τ̃n

t∧τ̃n

ϑµs+1
s ds

]
,

The monotone convergence theorem enables us to obtain the assertion (i).
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Since
2c1|y| ∥u∥ν

√
| ln∥u∥ν | 1{|y|>e} ≤ ∥u∥2

ν

2
1{|y|>e}+ c̃|y|

2+ε,

and
2c1|y| ∥u∥ν

√
| ln∥u∥ν | 1{|y|≤e} ≤ ∥u∥2

ν

2
1{|y|≤e}+ c̃1,

where c̃1 = c1
√
2e

1
2 +4(c1e)

4
(3

2

)3, we easily verify the validity of (ii). □

In what follows, we state a lemma concerning the stability result for the solution of BSDEJ
(2.3.1). The proof follows the same steps as Lemma 3.5 in [14].

Lemma 2.3.2. There exists a sequence of functions (fn) with the following properties :

(i) For each n, fn is bounded and globally Lipschitz in (y,z,u) a.e. t and P-a.s.ω.
(ii) Moreover, for all n, we have P-a.s., a.e. t ∈ [0,T ] :

sup
n

∣∣fn
(
t,ω,y,z,

∫
Γu(e)ν(de)

)∣∣≤ ϑt +g1,c2(y)+g2,c0(z)+g3,c1(u).

(iii) Additionally, for every N , as n tends to infinity, the quantity ρN (fn −f) converges to
0, where

ρN (f) = E
[∫T

0
sup

|y|,|z|,∥u∥ν≤N

∣∣fn
(
s,ω,y,z,

∫
Γu(e)ν(de)

)∣∣ds].
Proposition 2.3.3. Proposition 2.2.10, which establishes the estimate between two solutions,
maintains its validity within this section despite variations in the values of δ and C, as presented in
the
subsequent lemma.

Lemma 2.3.4. Assuming that C :=CN := 3β M2
2

β−1 ln(AN ) and δ < β−1
3M2

2
min(1

2 ,
κ
rβ ), for any S ≤ T

we have

eCtφ
β
2
t +C

∫S

t
eCsφ

β
2
s ds+M̃t ≤ eCSφ

β
2
S −

β

2

∫S

t
eCsφ

β
2
−1

s |Ẑn,m
s |2ds

−β
(β−1)

2

∫S

t
eCsφ

β
2
−1

s ∥Ûn,m
s ∥2

νds

+β
(2−β)

2

∫S

t
eCsφ

β
2
−2

s |Ŷ n,m
s |2|Ẑn,m

s |2ds

+Mt + J̃1,t + J̃2,t + J̃3,t,

where

J̃1,t:=βe
CS 1

Nκ

∫S

t
φ

β−1
2

s Φκ(s)
∣∣∣fn
(
s,Y n

s ,Z
n
s ,
∫

ΓU
n
s (e)ν(de)

)
−fm

(
s,Y m

s ,Zm
s ,

∫
ΓU

m
s (e)ν(de)

)∣∣∣ds,
J̃2,t:=J2,t; J̃3,t := J3,t +βM2

√
ln(AN )

∫S

t
eCsφ

β
2
−1

s |Ŷ n,m
s |∥Ûn,m

s ∥νds,

and Φ(s) = |Y n
s |+ |Y m

s |+ |Zn
s |+ |Zm

s |+∥Un
s ∥ν +∥Um

s ∥ν .
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Proof: of Proposition 2.3.3. The proof closely aligns with the methodology employed in establi-
shing Lemma 2.2.11. Let C := CN := 3β M2

2
β−1 ln(AN ) and γ := 3δβ M2

2
β−1 .

As presented in Lemma 2.3.4, it is obvious that

−
CN

3

∫S

t
eCsφ

β
2
s ds+β

(2−β)

2

∫S

t
eCsφ

β
2
−2

s |Ŷ n,m
s |2|Ẑn,m

s |2ds

−
β

2

∫S

t
eCsφ

β
2
−1

s |Ẑn,m
s |2ds+βM2

∫S

t
eCsφ

β
2
−1

s |Ŷ n,m
s ||Ẑn,m

s |
√

ln(AN )ds

≤ β

∫S

t
eCsφ

β
2
−1

s

(
−

M2
2

β−1
φs ln(AN )−

(β−1)

2
|Ẑn,m

s |2 +M2
√
φs|Ẑ

n,m
s |

√
ln(AN )

)
ds,

and

−
CN

3

∫S

t
eCsφ

β
2
s ds−β

(β−1)

2

∫S

t
eCsφ

β
2
−1

s ∥Ûn,m
s ∥2

νds

+βM2

∫S

t
eCsφ

β
2
−1

s |Ŷ n,m
s |∥Ûn,m

s ∥ν

√
ln(AN )ds

≤ β

∫S

t
eCsφ

β
2
−1

s

(
−

M2
2

β−1
φs ln(AN )−

(β−1)

2
∥Ûn,m

s ∥2
ν

+M2
√
φs∥Ûn,m

s ∥ν

√
ln(AN )

)
ds.

Using Young’s inequality, it follows that

−
1

β−1
M2

2 ln(AN )a2 −
(β−1)

2
|b|2 +M2 ab

√
ln(AN ) ≤ −

β−1

4
b2;

therefore,

−CN

∫S

t
eCsφ

β
2
s ds+β

(2−β)

2

∫S

t
eCsφ

β
2
−2

s |Ŷ n,m
s |2|Ẑn,m

s |2ds

−
β

2

∫S

t
eCsφ

β
2
−1

s |Ẑn,m
s |2ds−β

(β−1)

2

∫S

t
eCsφ

β
2
−1

s ∥Ûn,m
s ∥2

νds+J3,t

≤ −β
(β−1)

4

∫S

t
eCsφ

β
2
−1

s (|Ẑn,m
s |2 +∥Ûn,m

s ∥2
ν)ds.

Based on the preceding lemmas, for any N >R we have

E
[

sup
(S−δ)+≤t≤S

|Ŷ n,m
t |β +E

∫S

(S−δ)+

(
|Ẑn,m

s |2 +∥Ûn,m
s ∥2

ν

)
(
|Ŷ n,m

s |2 +ΛR

) 2−β
2

ds
]

≤ ℓ

β−1
eCN δE

[
|Ŷ n,m

S |β
]
+

ℓ

β−1

Aγ
N

(AN )
β
2

+
4ℓ

β−1
βK

α
2

4 (4TK2 +TΛR)
β−1

2 (8TK2 +16K1 +16K3)
κ
2

Aγ
N

(AN )
κ
r

+
2ℓ

β−1
eCN δβ(2N2 +Λ1)

β−1
2 [ρN (fn −f)+ρN (fm −f)] .
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Since δ < β−1
3M2

2
min(1

2 ,
κ
rβ ), we proceed by taking limits for n and m, followed by a limit as N

approaches infinity, in accordance with the statement (iii) of Lemma 2.3.2, and we obtain the
desired result. □

Theorem 2.3.5. Under Assumption 2.3.1 Equation (2.3.1) has a unique solution (Y,Z,U) in
SµT +1([0,T ];R)×H2([0,T ];R)×L2([0,T ],ν;R).

To prove the above theorem, we utilize Proposition 2.3.3 and follow similar steps in the proof of
the existence and uniqueness parts of Theorem 2.2.13.

2.4 The Relationship Between BSDEJs and QBSDEJs

We present a supplementary BSDEJ, explicitly formulated through the exponential transformation
of the initial problem. This formulation facilitates establishing a connection between the solution
of the auxiliary BSDEJ and that of the original BSDEJ (ζ,g). Subsequently, we will demonstrate
an application to quadratic BSDEJs.

Lemma 2.4.1 (General exponential transformation). We assume that either (ζ,g) or (ζ̃, g̃)

satisfies the first Assumption 2.2.1. Let h ∈ L1(R) a measurable function and [u]h(y), Jh
u (y)

two operators, defined as

[u]h(y):=

∫
Γ

Ψ(y+u(e))−Ψ(y)−Ψ ′(y)u(e)

Ψ ′(y)
ν(de),

Jh
u (y):=

∫
Γ
(Ψ−1(y+u(e))−Ψ−1(y)−(Ψ−1)′(y)u(e))ν(de),

where Ψ is defined for every x ∈ R as

Ψ(x) =

∫x

0
exp

(
2

∫y

0
h(t)dt

)
dy.

The triplet (Y,Z,U) is a solution to the BSDEJ (ζ,g) if and only if the triplet (Ỹ , Z̃, Ũ) is a
solution to the BSDEJ (ζ̃, g̃), where

Ỹt = Ψ(Yt), ζ̃ = Ψ(ζ), Z̃t = Ψ ′(Yt)Zt, Ũt(e) = Ψ(Yt−+Ut(e))−Ψ(Yt−),

and

(Ψ−1)′(ỹ)g̃(t, ỹ, z̃, ũ) = g
(
t,Ψ−1(ỹ), z̃(Ψ−1)′(ỹ),Ψ−1(ỹ+ ũ)−Ψ−1(ỹ)

)
−z̃2h(Ψ−1(ỹ))

(
(Ψ−1)′(ỹ)

)2
+Jh

ũ
(ỹ).
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Clearly, Ψ is bi-Lipschitz with Ψ(0) = 0, guaranteeing the preservation of the same spaces for
primary BSDEJs and their auxiliary counterparts, i.e., (Y,Z,U) and (Ỹ , Z̃, Ũ) in SµT +1([0,T ];R)×
H2([0,T ];R)×L2([0,T ],ν;R). The proof proceeds through a series of steps analogous to those
outlined in Lemma 2.4.4.

Example 2.4.1. Consider ζ satisfying condition (A.1), and let g(t,y,z,u) be a continuous
function with respect to (y,z,u). The function is defined as follows :

g(t,y,z,u) =
1

Ψ ′(y)

[
Ψ(y)| ln |Ψ(y)||+zΨ ′(y)

√
| ln |zΨ ′(y)||

+∥Ψ(y+u(e))−Ψ(y)∥ν

]
+h(y)|z|2 +[u]h(y),

where Ψ is defined as in the previous Lemma 2.4.1. Using its result, it becomes evident that
the BSDEJ (ζ,g) is equivalent to the BSDEJ (eζ , ỹ| ln |ỹ||+ z̃

√
| ln |z̃||+ ∥ũ∥ν), whose generator

satisfies Assumption 2.2.1, and ensures the existence and uniqueness of the solution for both
BSDEJ. Furthermore, (Y,Z,U), (Ỹ , Z̃, Ũ) in SµT +1([0,T ];R)×H2([0,T ];R)×L2([0,T ],ν;R).

Proposition 2.4.2. Assuming that Assumption 2.2.1 holds and further supposing that ζ and
(ϑt)0≤t≤T are bounded, then there exists CT such that

— supt∈[0,T ] |Yt| ≤ CT .

— E[
∫T

0 (|Zs|
2 +∥Us∥2

ν)ds] ≤ CT .

Proof: By utilizing Itô’s formula and employing the same step as in the proof of Lemma 2.2.7,
we obtain

|Yt|
µt+1 ≤ C+ |ζ |µT +1 +

∫T

0
(µs +1)

µs+1ϑµs+1
s ds+Mt,

where

Mt :=−

∫T

t
(µs +1)|Ys|

µssgn(Ys)ZsdWs −

∫T

t

∫
Γ

(
|Ys|

µs+1 − |Ys−|
µs+1

)
Ñ(ds,de).

We obtain the first result by taking the conditional expectation. We attain the desired outcome
by building upon the first result and condition (ii) in Lemma 2.2.7. □

Let λ > 0 and t ∈ [0,T ]. Consider the following BSDEJ :

Yt =ζ+

∫T

t

(
g(s,Ys,Zs,Us)+

λ

2
|Zs|

2 +[Us]λ
)
ds (2.4.1)

−

∫T

t
ZsdWs −

∫T

t

∫
Γ
Us(e)Ñ(ds,de),

where

[u]λ =
1

λ

∫
Γ
(eλu(e)−λu(e)−1)ν(de).
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Assumption 2.4.3.

(A.4) (i) The function g is continuous in (y,z) and Lipschitz with respect to u for almost all
(t,ω).

(ii) There exist constants c0, c1, c2, and CLip, as well as a bounded positive process (ϑt)t≥0,
such that for every t, ω, y, z, u, u1, u2 :

|g(t,y,z,u)| ≤ ϑt + c2|y|+ c0|z|
√
| ln |λz|+λy|+ c1

λ

∫
Γ
(eλu(e)−1)ν(de),

and

|g(t,ω,y,z,u1)−g(t,ω,y,z,u2)| ≤ CLip∥u1 −u2∥ν .

(A.5) There exists a real-valued sequence (AN )N>1 and constants M2 ∈ R+, r > 0 such that

(i) ∀ N > 1, 1 < AN ≤N r.

(ii) limN→∞AN =∞.

(iii) For every N ∈ N, and every y1, y2, z1, z2, u such that for all |y1|, |y2| ≤ ln(N)

|z1|, |z2| ≤ 1, u≤ ln(2), we have

(eλy1 −eλy2)(eλy1g(t,ω,y1,z1,u)−e
λy2g(t,ω,y2,z2,u))

≤M2

(
| eλy1 −eλy2 |2 ln(AN )

+|eλy1 −eλy2 ||z1e
λy1 −z2e

λy2 |
√

ln(AN )+
ln(AN )

AN

)
.

In the following lemma, we utilize the exponential transformation while relaxing the Lipschitz
condition through the utilization of Ψ(x) = eλx.

Lemma 2.4.4. If ζ and (ϑt)0≤t≤T are bounded and Assumption 2.4.3 holds, then, for any
λ > 0, the following equivalence holds : there exists a unique solution

(Y,Z,U) ∈ S∞([0,T ];R)×H2([0,T ];R)×L2([0,T ],ν;R)

to the BSDEJ (2.4.1) if and only if the triplet

(Ỹ , Z̃, Ũ) ∈ S∞([0,T ];R)×H2([0,T ];R)×L2([0,T ],ν;R)

is the unique solution to the BSDEJ(ζ̃, g̃), where

Ỹt = eλYt , ζ̃ = eλζ , Z̃t = λeλYtZt, Ũt = eλYt−(eλUt −1),

and

g̃(t, ỹ, z̃, ũ) = λỹg
(
t,
1

λ
ln(ỹ), z̃

λỹ
,
1

λ
ln
(
1+

ũ

ỹ

))
.
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Proof: By employing Itô’s formula on Ỹt = eλYt , we derive the following result for all t ∈ [0,T ],
P-a.s.

Ỹt = ζ̃+

∫T

t
λeλYsg(s,Ys,Zs,Us)ds

−

∫T

t
λeλYsZsdWs −

∫T

t

∫
Γ
eλYs−(eλUs(e)−1)Ñ(de,ds).

With the quantities provided above, we can deduce the following :

Ỹt = ζ̃+

∫T

t
g̃(s, Ỹs, Z̃s, Ũs)ds−

∫T

t
Z̃sdWs −

∫T

t

∫
Γ
Ũs(e)Ñ(de,ds). (2.4.2)

Since the generator g satisfies Assumption 2.4.3, then the generator g̃ fulfills Assumption 2.2.1 ;
therefore, Theorem 2.2.13 shows that Equation (2.4.2) has a unique solution in SµT +1([0,T ];R)×
H2([0,T ];R)×L2([0,T ],ν;R). Thus, taking account of Proposition 2.4.2, the necessary condition
is proved.

Conversely, Itô’s formula applied to ln(Ỹt)/λ along with Proposition 2.4.2 lead to the sufficient
condition.

It is worth mentioning that the functional spaces are conserved due to Proposition 2.4.2. □

Example 2.4.2. Assume ζ is bounded, and let

g(t,y,z,u) = c2|y|+ c0|z|
√
| ln |λz|+λy|+ c1

λ
∥eλu −1∥ν ,

where c0, c1, and c2 are positive constants. Therefore,

g̃(t, ỹ, z̃, ũ) = c2|ỹ|| ln |ỹ||+ c0|z̃|
√
| ln |z̃||+ c1∥ũ∥ν .

Clearly, the generator g̃ satisfies Assumption 2.2.1. Consequently, according to the preceding
Lemma 2.4.4, the BSDEJ(ζ,g) has a unique solution and the BSDEJ(ζ̃, g̃) has a unique solution.

Remark 2.4.5 (Quadratic–exponential BSDEJs). Let g1(t,y) = g(t,y,0,0), where g is defined
as in the previous example. Then, the BSDEJ (2.4.1) transforms into a quadratic–exponential
BSDEJ, which has a unique solution.

For a more extensive examination of quadratic BSDEJs, we refer to [69].

Remark 2.4.6. The primary BSDEJs discussed in the previous section share the same auxiliary
counterpart, consistent with the discussions in this section regarding the suitable space for the jump.
In other words, the previously established lemmas hold for the generators g(s,y,z,

∫
Γu(e)ν(de))

and g̃(s, ỹ, z̃,
∫

Γ ũ(e)ν(de)).

46



Chapter 2: One-dimensional Backward Stochastic Differential Equations with Jumps
and Logarithmic Growth

2.5 Conclusion

Our study addresses fundamental questions concerning the existence and uniqueness of BSDEs
whose driving processes are a compensated Poisson random measure and an independent Wiener
process. Through rigorous proofs under two sets of assumptions, we first emphasize the significance
of a generator by the logarithmic growth in both
(y,z)-variables and the Lipschitz continuity with respect to the third variable u. We also included
a concrete example that strengthens the validity of our first assumption.

Under Assumption 2, we take a step further by relaxing the Lipschitz condition on u. Here, the
generator exhibits logarithmic growth in all variables, adding nuance to our understanding of
the problem. Moreover, the introduction of the exponential transformation proves to be a key
tool that demonstrates the equivalence between the solutions of the auxiliary BSDEJ and our
primary BSDEJ.
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Optimal Control of BSDEs with Logarith-
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3Chapter

3.1 Introduction

The domain of stochastic optimal control problems is commonly traversed through two primary
avenues : Pontryagin’s maximum principle and Bellman’s dynamic programming. These metho-
dologies necessitate distinct mathematical treatments. Dynamic programming, for instance, aims
to derive a second-order partial differential equation known as the Hamilton-Jacobi-Bellman
equation, serving as a characterization of the value function.

However, a significant drawback arises when employing this approach : the classical solutions to
the Hamilton-Jacobi-Bellman equation are only guaranteed for sufficiently smooth value functions,
a condition often unmeet in practical scenarios. Crandall and Lions [35] addressed this limitation
by introducing viscosity solutions, wherein (set-valued) sub-derivatives replace conventional
derivatives. This innovation empowers dynamic programming with enhanced applicability in
real-world situations.

While the maximum principle is extensively employed for solving optimal control problems in
deterministic systems, translating theoretical results into practical solutions encounters numerous
obstacles. The inherent difficulty lies in explicitly solving the resultant adjoint systems. Some
scholars (e.g., [67], [72]) have proposed numerical methods to address such challenges, expanding
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the applicability of Pontryagin’s maximum principle into fields like mathematical finance and
economics. Several attempts have been made to relax assumptions on coefficients, facilitating the
extension of the stochastic maximum principle to irregular cases.

Mezerdi [26] pioneered this direction by deriving a stochastic maximum principle for a controlled
stochastic differential equation (SDE) with a non-smooth drift, leveraging Clarke’s generalized
gradients and stable convergence of probability measures. Building on this, Bahlali et al. [15]
extended the principle to SDEs with Lipschitz coefficients and a non-degenerate diffusion matrix
employing Krylov’s inequality with uniform ellipticity. In a broader context, Bahlali et al. [8]
established a stochastic maximum principle for optimal control over a general class of degenerate
diffusion processes, assuming only Lipschitz continuity in state equation coefficients and continuous
differentiability in cost functional coefficients. Chighoub et al. [33] further expanded these results
to cases where both state equation and cost functional coefficients lack differentiability.

Recent advancements include Xu and Wu’s [94] work, where they obtained the existence and
uniqueness of mild solutions to mean-field backward stochastic evolution equations in Hilbert
spaces under conditions weaker than Lipschitz. They subsequently proved a maximum principle
for optimal control problems governed by backward stochastic partial differential equations of
mean-field type. Additionally, Orrieri [75] introduced a version of the maximum principle for
optimal control in stochastic differential equations driven by multidimensional Wiener processes.
Dokuchaev and Zhou [41] derived both necessary and sufficient conditions for optimality in cases
where the control domain lacks convexity.

Consider T > 0 and let (Ω,F ,(Ft)0≤t≤T ,P) be a probability space with completeness, equipped
with a filtration that satisfies the usual conditions. On this probability space, we define a one-
dimensional Brownian motion W = (Wt)0≤t≤T . We make the assumption that F= (Ft)0≤t≤T is
the P-augmentation of the natural filtration generated by (Wt)0≤t≤T . For subsequent discussions,
we introduce the following spaces for p≥ 1 :

— Sp ([0,T ],R) : denotes the set of continuous and F-adapted stochastic processes {Yt : t ∈ [0,T ]},
such that E[sup0≤t≤T |Yt|

p]<∞.
— M2 ([0,T ],R) : denotes the set of F-predictable and R-valued processes {Zt : t ∈ [0,T ]},

such that E
∫T

0 |Zr |
2 dr <∞.

— Lp
loc (R+,R) : the set of F-adapted processes taking values in R, denoted by {Xt : t≥ 0},

such that
∫T

0 |Xr |
p dr <∞ P-a.s for every T .

We consider the following controlled backward stochastic differential equation (BSDE for short) :{
dYt = f(t,Yt,Zt,vt)dt+ZtdWt,

YT = ζ.
(3.1.1)

Here, f is a function defined on f : [0,T ]×R×R×U −→R. The terminal data ζ is a FT -adapted
random variable. The control variable (vt)t≥0 is represented by the process vt, assumed to be an
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F-adapted process taking values in a non-empty subset U of R. The set of all admissible controls
is denoted by Uad.

For a given function g : R→ R, we define the cost functional of our stochastic control problem as

J (v·) = E [g(Y v
0 )] (3.1.2)

For ease of notation we denote hθ =
∂h
∂θ for a given function h and parameter θ.

The objective is to minimize the cost functional (3.1.2) among all admissible controls. Now, the
control problem can be formulated as follows :

Problem (A) : Given the cost functional (3.1.2) and the constraint (3.1.1), the objective is
to identify an optimal control, denoted as u from the set Uad, that minimizes the specified cost
functional.

There exists an extensive body of literature addressing stochastic optimal control problems
for BSDEs and Forward-BSDEs (FBSDEs) within the global Lipschitz framework. Azizi and
Khelfallah [5] were the first to investigate a stochastic control problem for BSDEs with generators
which are local Lipschitz in y and globally Lipschitz in z under the first assumption. In their
study, they demonstrated that the generator satisfies specific conditions, which include :

— There exist a constant, M > 0 such that for all y and z,

⟨y,f(t,y,z,v)⟩ ≤M(1+ |y|2 + |y| |z|), a.e. t ∈ [0,T ].

— There exist two constants, M > 0 , κ ∈ (0,1) and a positive function φ : R+ → R+, such
that

|f(t,y,z,v)| ≤M(1+φ(|y|)+ |z|κ a.e. t ∈ [0,T ].

Moreover, they present results under another assumption where the generator is locally Lipschitz
with respect to both (y,z) and exhibits linear growth. They establish necessary and sufficient
optimality conditions for non-convex control domains, described by a linear local Lipschitz SDE
and a maximum condition on the Hamiltonian.

In our context, we relax the Lipschitz condition on the generator of the BSDEs, imposing a
logarithmic growth condition in y and linear growth in z in the first assumption. In the second
assumption, we require the generator to satisfy the logarithmic growth condition for both y and
z, and we employ the Malliavin approach.

The primary challenge we face is with the coefficients in the resulting local Lipschitz linear
adjoint equation, {

−dxt = fy(t,Yt,Zt,ut)xtdt+fz(t,Yt,Zt,ut)xtdWt,

x0 = gy(Y0),
(3.1.3)
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which are only locally bounded. Consequently, they are locally Lipschitz on x but do not satisfy
the linear growth condition. Given the existing results in the literature, confirmation regarding
whether the adjoint equation (3.1.3) admits a unique solution remains elusive.

3.2 Foundational Concepts and Existence Findings

In this section, we will state some basic results related to the BSDEs theory and prove the
existence and uniqueness results for one kind of linear SDEs with local Lipschitz coefficients.

Assumption 3.2.1.

(A.1.1) f and g are continuously differentiable with respect to (y,z) and there exists a positive
constant L such that : |g(y)| ≤ L(1+ |y|).

(A.1.2) We posit the existence of a positive constant λ, large enough such that the expected value of
|ζ |e

λT +1 is finite.
(A.1.3) (i) The function f is continuous in (y,z).

(ii) There exist constants η, c0, c1 such that : for every t≥ 0, y, z,u ∈ U :

|f(t,y,z,u)| ≤ η+ c0|y|| ln |y||+ c1|z|.

(A.1.4) There exist a real-valued sequence (AN )N>1 and constants M0 ∈ R+, r > 0 such
that :

(i) ∀ N > 1, 1 < AN ≤N r.
(ii) limN→∞AN =∞.

(iii) For every N ∈ N, u ∈ U and every y, y′, z, z′ such that |y|, |y′|, |z|, |z′| ≤N , we have :(
y−y′)(f(t,y,z,u)−f(t,y′,z′,u)

)
≤M0

(
| y−y′ |2 ln(AN )+ |y−y′||z−z′|

√
ln(AN )

)
.

Remark 3.2.2. If f satisfies (A.1.1), then it satisfies a local Lipschitz condition, i.e., for
all N ∈ N, there exist two constants L1,N , L2,N > 0 such that for any u ∈ U and for those
y,y′,z,z′ ∈ R with max{|y|, |y′|, |z|, |z′|} ≤N , the following condition holds :

|f(t,y,z,u)−f(t,y′,z,u)| ≤ L1,N |y−y′|

|f(t,y,z,u)−f(t,y,z′,u)| ≤ L2,N |z−z′|

Remark 3.2.3. Assume that f satisfies (A.1.1) and (A.1.4). Consequently, L1,N =M0 ln(AN ), L2,N =

M0

√
ln(AN ).
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Remark 3.2.4. If f satisfies (A.1.3), then for every t,y,z and u ∈ U :

|f(t,y,z,u)| ≤ η̃+ c0|y|| ln |y||+ c1|z|
√
| ln(|z|)|,

where η̃ = η+ c1e.

The following lemmas establish estimates, guaranteeing the boundedness of both the generator
and the solutions. The first two lemmas are thoroughly detailed and proven in [14], with further
details provided in [25].

Lemma 3.2.5. Let (A.1.2) and (A.1.3) be satisfied. Then, there exists a positive constant
C(T,α,η,c0, c1) such that,∫T

0
E [|f(s,Ys,Zs,us)|

α] ds≤ C(T,α,η,c0, c1)

(
1+

∫T

0
E
[
|Ys|

µs+1 + |Zs|
2 ]ds) ,

where 1 < α < 2.

Lemma 3.2.6. Let (Yt,Zt)t≥0 be the unique solutions of the BSDE (3.1.1). Then, there are two
positive constants CT,η, C(T,c0, c1) such that, under Assumption 3.2.1 we have :

E
[

sup
0≤t≤T

|Yt|
eλt+1

]
≤ CT,ηE

[
1+ |ζ |e

λT +1
]
.∫T

0
E[|Zs|

2]ds≤ C(T,η,c0, c1)E
[
1+ |ζ |2 + sup

0≤t≤T
|Yt|

eλT +1
]
.

Lemma 3.2.7. If the assumption of the previous Lemma 3.2.6 holds and if ζ is bounded, we can
find constants C1,T , C2,T and C3,T , which depend on η, such that :

(i) sup0≤t≤T |Yt|
eλt+1 ≤ C1,T ,

∫T
0 E[|Zs|

2]ds≤ C2,T .
(ii)

∫T
0 E[|f(s,Ys,Zs,us)|

2]ds≤ C3,T .

Proof: We derive the following insight from the work of Bahlali et al. [14].

| Yt |
eλT +1 ≤ ℓ(η)

(
1+ | ζ |e

λT +1 −

∫T

t
(eλs +1) | Ys |

eλs
sgn(Ys)ZsdWs

)
,

and ∫T

t
|Zs|

2 ds≤ ℓ(η)

(
1+ |ζ |2 + sup

s∈[0,T ]
|Ys|

eλT +1 +

∫T

t
YsZs dWs

)
,

where ℓ(η) is a universal positive constant. We get the assertion (i) by taking the conditional
expectation for Y and the expectation for the rest.
By (A.1.3) and assertion (i), and since |Yt| ≤ 1+ |Yt|

eλt+1 ≤ 1+C1,T , we have

•
∫T

0
E[|f(s,Ys,Zs,us)|

2]ds≤ ℓ(η)

(
1+

∫T

0
E
[
|Ys|

µs+1 + |Zs|
2] ds) ≤ C3,T .

□
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Theorem 3.2.8. Let Assumptions (A.1.2)–(A.1.4) hold, then the BSDE (3.1.1) has a unique
solution (Y,Z) in SeλT +1 ([0,T ],R)×M2 ([0,T ],R) .

Under Assumptions (A.1.2)–(A.1.4), the conditions in [14] that guarantee the existence and
uniqueness of the BSDE solution are satisfied. Therefore, the preceding theorem is applicable.

It is important to observe that, for any v ∈ Uad, the functions fy(t, ·, ·,vt) and fz(t, ·, ·,vt) are
generally unbounded.

In the subsequent theorem, we establish the existence and uniqueness outcomes for the Stochastic
Differential Equation (SDE) given by (3.1.3) up to a potential explosion time.

Theorem 3.2.9. Assuming that Assumption 3.2.1 is satisfied, we can assert that for any v ∈ Uad,
the SDE (3.1.3) possesses a unique solution.

Remark 3.2.10. The previous theorem cannot guarantee the existence of a global solution but
rather only up to an ‘explosion time’ denoted as

τ ex
N := inf{t ∈ [0,T ]; |fy(t,y,z,u)|∧ |fz(t,y,z,u)| ≥N }.

To ensure the existence of a global solution, we incorporate the subsequent additional assumptions.

— Hloc : fy ∈ L1
loc (R+,R) , fz ∈ L2

loc (R+,R).

— Hlin : There exists a positive constant L > 0, such that ∀ (y,z,u) ∈ R×R×U :

|fy(t,y,z,u)| ≤ L(1+ |y|)+ ϵ ln (|z|+1), a.e. t ∈ [0,T ],

|fz(t,y,z,u)| ≤ L(1+ |y|)+ ϵ
√

ln (|z|+1) a.e. t ∈ [0,T ],

where ϵ is a sufficiently small positive constant.

Remark 3.2.11. The assumption Hloc ensures that for any (Yt,Zt)t≥0 F-adapted stochastic
processes, the SDE (3.1.3) has a global solution, while the assumption Hlin guarantees the global
solution under square-integrable F-adapted stochastic processes (i.e., (Yt,Zt)t≥0 ∈ L2

loc([0,T ],R)).

3.2.1 Statement of the Control Problem

The purpose of this paper is to deal with the control Problem (A) described by the equation
(3.1.1) and the cost functional (3.1.2). The controller object is to derive a necessary condition
as well as a sufficient condition of optimality. Notice that because the derivatives of f are not
bounded, the standard duality technique can not be directly applicable in our setup.

For any p≥ 1 and v ∈ Uad, let us first define a family of semi-norms (ρv
N,p(f))N∈N by

ρv
N,p(f) =

(
E
∫T

0
sup

|y|,|z|≤N
|f(r,y,z,vs)|

p dr

) 1
p

.
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Lemma 3.2.12. Let f be a function which satisfies Assumption 3.2.1 and Hloc or Hlin. Then,
there exists a sequence of functions fn such that :

(i) For each n, fn is globally Lipschitz in (y,z) -a.e. t ∈ [0,T ].
(ii) For each n, fn satisfies Assumption 3.2.1.

(iii) For every n, ρv
n,p(f

n −f)→ 0 as n→∞.
(iv) For every n, |fn

y | ≤ |fy |+
c
n |f |, |f

n
z | ≤ |fz |+

c
n |f | and lim

n→+∞gn (resp. gn
y )→ g (resp. gy).

The following paragraphs are dedicated to transforming the initial control Problem (A) into a
series of control problems characterized by global Lipschitz coefficients. For this purpose, consider
any fixed n ∈ N∗ and v ∈ Uad. Let

(
Ȳ n

t , Z̄
n
t

)
t≥0

represent the solution to the controlled BSDE :

{
dȲ n

t = fn(t, Ȳ n
t , Z̄

n
t ,vt)dt+ Z̄

n
t dWt,

Ȳ n
T = ζ.

(3.2.1)

Furthermore, define

J n(v·) = E
[
gn(Ȳ n

0 )
]
. (3.2.2)

The subsequent lemma provides estimates that will be employed to establish a relationship
between the control problem (3.2.1), (3.2.2) and Problem (A).

Lemma 3.2.13. Let (Yt)t≥0 and (Ȳ n
t )t≥0 be the solutions of BSDE (3.1.1) and (3.2.1), respecti-

vely, corresponding to the control v ∈ Uad. Then, for any α∈ (1,2), q ∈ (0,2) and any β ∈ (1,3− 2
α),

the following estimates hold :

(i) E[|Ȳ n
t −Yt|

β] ≤Kn,N , and E[
∫T

t |Z̄n
r −Zr |

qdr] ≤Kn,N .
(ii) |J n(v)−J (v)| ≤ Cεn,N ,

where Kn,N and εn,N converge to 0 as n and N tend successively to +∞, here N stands for the
radius of the ball B(0,N).

The proof of assertion (i) follows a similar methodology to that of Theorem 2.1 in [14], while
assertion (ii) is derived using the approach outlined in [5].

Consider an optimal control u defined as the solution to :

J (u·) = inf
v∈Uad

J (v·),

subject to the constraint (3.1.1). It is crucial to note that u may not be optimal for the perturbed
control problem. As Lemma 3.2.13 suggests, there exists a sequence (δn) of positive real numbers
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converging to 0 such that :

J n(u·) ≤ inf
v∈Uad

J n(v·)+ δn,N , δn,N = 2Cεn,N .

To facilitate the application of Ekeland’s lemma, let us introduce a metric d on Uad. For any two
controls u,v ∈ Uad, the metric d is given by :

d̂(u·,v·) = P⊗dt {(ω,t) ∈Ω× [0,T ] : u(ω,t) ̸= v(ω,t)} ,

where P⊗ dt is the product measure of P with the Lebesgue measure on [0,T ]. By applying
Ekeland’s lemma to the continuous cost functional J n(u·), we obtain an admissible control un

satisfying :

d̂(un
· ,u·) ≤ (δn,N )

1
2

and

J̃ n(un
· ) ≤ J̃ n(v·) for any v ∈ Uad,

where

J̃ n(v·) = J n(v·)+(δn,N )
1
2 · d̂(v·,u

n
· ).

From the preceding arguments, we can deduce that un solves the optimal control problem given
by equations (3.2.1) and (3.2.2), but with the modified cost function J̃ n. For every n ∈ N∗,
consider the pair (Y n

t ,Z
n
t )t≥0, representing the distinctive solution to the subsequent BSDE

under the influence of un :{
dY n

t = fn(t,Y n
t ,Z

n
t ,u

n
t )dt+Z

n
t dWt,

Y n
T = ζ.

(3.2.3)

Associated with this control problem is the following cost function :

J n(un
· ) = E [gn(Y n

0 )] . (3.2.4)

Now, we pose the following optimal control problem, denoted as Problem (B) : For each integer
n, find un ∈ Uad such that un minimizes the cost function (3.2.4) subject to (3.2.3).

In concluding this subsection, we introduce a set of controlled SDEs called adjoint equations. For
each integer n, consider the following SDE :{

−dxn
t = fn

y (t,Y
n

t ,Z
n
t ,u

n
t )x

n
t dt+f

n
z (t,Y

n
t ,Z

n
t ,u

n
t )x

n
t dWt,

xn
0 = gn

y (Y
n

0 ).
(3.2.5)
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Given that fn is a globally Lipschitz function, its derivatives fn
y and fn

z are bounded. Consequently,
the coefficients of SDE (3.2.5) are globally Lipschitz and exhibit linear growth. This implies that,
for each integer n, equation (3.2.5) possesses a unique solution.

Furthermore, we define a family of Hamiltonian functions Hn : [0,T ]×R×R×R×U → R as
follows :

Hn(t,y,z,x,u) = xfn(t,y,z,u) for each n ∈ N.

3.2.2 Preliminary Lemmas

In the following part of this subsection, we aim to consolidate and establish several helpful lemmas.
These lemmas are pivotal as they will be utilized in the subsequent section to demonstrate the
main results.

Lemma 3.2.14. Let (fn) be the sequence of functions associated to f by Lemma 3.2.12 and
(Y n

t ,Z
n
t )t≥0 stands for the solution of equation (3.2.3). Then, there exist constants K̄1, K̄2 and

K̄3 such that :

(i) supnE[sup0≤t≤T |Y n
t |e

λT +1] ≤ K̄1.
(ii) supnE[

∫T
0 |Zn

s |
2ds] ≤ K̄2.

(iii) supnE[
∫T

0 |fn(s,Y n
s ,Z

n
s ,u

n
s )|

αds] ≤ K̄3,

where α ∈ (1,2).

The proof of the following Lemma is outlined in [14].

Lemma 3.2.15. Under Assumption 3.2.1, we have :

lim
n→∞E

[
sup

t∈[0,T ]
|Y n

t −Yt|
β
]
= 0. (3.2.6)

lim
n→∞E

∫T

0
|Zn

t −Zt|
q dt= 0. (3.2.7)

Lemma 3.2.16. Under Assumption 3.2.1 and Hlin the following estimates hold

lim
n→∞E

∫T

0
|fn(r,Y n

r ,Z
n
r ,u

n
r )−f(r,Yr,Zr,ur)|

ᾱ dr = 0. (3.2.8)

lim
n→∞E

∫T

0

∣∣∣fn
y (r,Y

n
r ,Z

n
r ,u

n
r )−fy(r,Yr,Zr,ur)

∣∣∣q dr = 0. (3.2.9)
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lim
n→∞E

∫T

0
|fn

z (r,Y
n

r ,Z
n
r ,u

n
r )−fz(r,Yr,Zr,ur)|

q dr = 0, (3.2.10)

where q ∈ (0,2) and ᾱ ∈ (1,α). □

Remark 3.2.17. To demonstrate the convergence of a sequence Xn of random variables in Lp,
where p≥ 1, it suffices to establish convergence in probability and ensure that {|Xn|

p, n ∈ N∗} is
uniformly integrable.

Proof: [Proof of Lemma 3.2.16 :] Assuming Assumption 3.2.1 and Hlin hold. Drawing from our
knowledge and the preceding remark, it is essential to demonstrate the convergence in L1.

E
∫T

0
|fn(r,Y n

r ,Z
n
r ,u

n
r )−f(r,Yr,Zr,ur)|dr

≤ E
∫T

0
|fn(r,Y n

r ,Z
n
r ,ur)−f(r,Yr,Zr,ur)|dr

+E
∫T

0
|fn(r,Y n

r ,Z
n
r ,u

n
r )−f

n(r,Y n
r ,Z

n
r ,ur)|1{un

r ̸=ur}dr

Considering the previous derivation in [14], we have :

lim
n→∞E

∫T

0
|fn(r,Y n

r ,Z
n
r ,ur)−f(r,Yr,Zr,ur)|dr = 0.

Holder’s inequality yields to

E
∫T

0
|fn(r,Y n

r ,Z
n
r ,u

n
r )−f

n(r,Y n
r ,Z

n
r ,ur)|1{un

r ̸=ur}dr

≤
(
E
∫T

0
|fn(r,Y n

r ,Z
n
r ,u

n
r )−f

n(r,Y n
r ,Z

n
r ,ur)|

αdr

) 1
α
(
E
∫T

0
1{un

r ̸=ur}dr

)1− 1
α

≤
(
4K̄3

) 1
α
(
d̂(un

· ,u·)
)1− 1

α .

d̂(un
· ,u·) approaches 0 as n tends to infinity, thus (3.2.8) is satisfied.

We give the proof of (3.2.9). The proof of (3.2.10) can be performed similarly. Since |y|| ln |y|| ≤
e−1 + |y|2 and for any n ∈ N∗, t ∈ [0,T ], we have |Y n

t |, |Zn
t | ≤ n. Thus by (H.3), we have for any

v ∈ Uad that,

1

n2
|fn(r,Y n

r ,Z
n
r ,vr)|

2 ≤ C

n2
(1+η2 + |Y n

r |4 + |Zn
r |

2)

≤ C(1+
1

n2
+
η2

n2
+ |Y n

r |2).

By (i) of Lemma 3.2.14, we get :

sup
n

E
∫T

0

1

n2
|fn(r,Y n

r ,Z
n
r ,vr)|

2dr ≤ C, (3.2.11)
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where C is a universal constant. Using assertion (iv) of Lemma 3.2.12, along with Hlin and
(3.2.11), we obtain :

sup
n

E
∫T

0
(|fn

y (r,Y
n

r ,Z
n
r ,vr)|

2 + |fn
z (r,Y

n
r ,Z

n
r ,vr)|

2)dr ≤ K̄4. (3.2.12)

Let N > 1, we put ΛN
n := {(r,ω), |Y n

r |+ |Zn
r |>N } and Λ̄N

n =Ω\ΛN
n , then we have

E
∫T

0

∣∣∣fn
y (r,Y

n
r ,Z

n
r ,u

n
r )−fy(r,Yr,Zr,ur)

∣∣∣dr
≤ E

∫T

0

∣∣∣fn
y (r,Y

n
r ,Z

n
r ,u

n
r )−f

n
y (r,Y

n
r ,Z

n
r ,ur)

∣∣∣1{un
r ̸=ur}dr

+E
∫T

0

∣∣∣fn
y (r,Y

n
r ,Z

n
r ,ur)−fy(r,Y

n
r ,Z

n
r ,ur)

∣∣∣dr
+E

∫T

0
|fy(r,Y

n
r ,Z

n
r ,ur)−fy(r,Yr,Zr,ur)|dr,

By Schwarz’s inequality and Hlin, we have :

E
∫T

0
|fn

y (r,Y
n

r ,Z
n
r ,u

n
r )−f

n
y (r,Y

n
r ,Z

n
r ,ur)|1{un

r ̸=ur}dr

≤ 2E
∫T

0
(L(1+ |Y n

r |)+ ϵ ln (|Zn
r |+1))1{un

r ̸=ur}dr

≤ 2LE
∫T

0
(2+ |Y n

r |+ |Zn
r |)1{un

r ̸=ur}dr

≤ 2L

(
8T +4E

∫T

0
(|Y n

r |2 + |Zn
r |

2)dr

) 1
2
(
E
∫T

0
1{un

r ̸=ur}dr

) 1
2

≤ 4L
(
2T +TK̄1 + K̄2

) 1
2
(
d̂(un

· ,u·)
) 1

2 .

Therefore,

lim
n→∞E

∫T

0
|fn

y (r,Y
n

r ,Z
n
r ,u

n
r )−f

n
y (r,Y

n
r ,Z

n
r ,ur)|1{un

r ̸=ur}dr = 0.

Due to the fact that 1AN < |Y n
r |+|Zn

r |
N 1AN , and by using Schwarz’s inequality we obtain :

E
∫T

0

∣∣∣(fn
y −fy)(r,Y

n
r ,Z

n
r ,ur)

∣∣∣dr ≤ ρu
N,1(f

n
y −fy)

+
2(TK̄1 + K̄2)

1
2

N

(
E
∫T

0

∣∣∣(fn
y −fy)(r,Y

n
r ,Z

n
r ,ur)

∣∣∣2 dr) 1
2

By (3.2.12), we can assert the existence of a positive constant ℓ, such that :

E
∫T

0

∣∣∣(fn
y −fy)(r,Y

n
r ,Z

n
r ,ur)

∣∣∣dr ≤ ρu
N,1(f

n
y −fy)+ ℓ

(2(TK̄1 + K̄2)

N
(K̄4)

1
2

)
.
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Taking the limit first with respect to n and then for N , we obtain,

lim
n→∞E

∫T

0

∣∣∣(fn
y −fy)(r,Y

n
r ,Z

n
r ,ur)

∣∣∣dr = 0.

Assumption Hlin and Lemma 3.2.14 enable the use of the Lebesgue Dominated Convergence
Theorem, which facilitates the demonstration that :

lim
n→∞E

∫T

0
|fy(r,Y

n
r ,Z

n
r ,ur)−fy(r,Yr,Zr,ur)|dr = 0.

Hence, (3.2.9) is established. □

Assumption 3.2.18. The validity of Assumption 3.2.1 in conjunction with Hlin, along with the
constraint that ζ is bounded.

Lemma 3.2.19. Assume that Assumption 3.2.18 holds. Let (Yt,Zt)t≥0 (resp. (Y n
t ,Z

n
t )t≥0) denote

the unique solutions of the BSDE (3.1.1) (resp. (3.2.3)). Then, for any v ∈ Uad and p≥ 2 there
exists a universal constant C, such that,

E
∫T

0
(|f |2 + |fy |

p + |fz |
p)(r,Yr,Zr,vr)dr ≤ C,

sup
n

E
∫T

0
(|fn|2 + |fn

y |
p + |fn

z |
p)(r,Y n

r ,Z
n
r ,vr)dr ≤ C.

Proof: By assertion (i) of Lemma 3.2.7, we have Y is bounded. Moreover,

ln (|z|+1) = p

2
ln (|z|+1)

2
p ≤ p

2
(|z|+1)

2
p .

Thus (ln (|z|+1))p ≤ C(|z|2 +1). By Hlin and Lemma 3.2.7 we get :

E
∫T

0
(|f |2 + |fy |

p + |fz |
p)(r,Yr,Zr,vr)dr ≤ C.

For any n ∈ N∗ and t ∈ [0,T ], we have |Y n
t | ≤ C1,T . Since |Zn

t | ≤ n, Assumption (A.1.3) yields,

1

np
|fn(r,Y n

r ,Z
n
r ,vr)|

p ≤ C and |fn(r,Y n
r ,Z

n
r ,vr)|

2 ≤ C(1+ |Zn
r |

2).

Thus, by assertion (iv) of Lemma 3.2.12, assertion (ii) of Lemma 3.2.14 and the previous result,
we have :

sup
n

E
∫T

0
(|fn|2 + |fn

y |
p + |fn

z |
p)(r,Y n

r ,Z
n
r ,vr)dr ≤ C.

□
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Remark 3.2.20. If Assumption 3.2.18 holds, then for any α ∈ (1,2) and p≥ 2, Lemma 3.2.16
and Lemma 3.2.19 guarantee the following convergence :

lim
n→∞E

∫T

0
|fn(r,Y n

r ,Z
n
r ,u

n
r )−f(r,Yr,Zr,ur)|

α dr = 0. (3.2.13)

lim
n→∞E

∫T

0

∣∣∣fn
y (r,Y

n
r ,Z

n
r ,u

n
r )−fy(r,Yr,Zr,ur)

∣∣∣p dr = 0. (3.2.14)

lim
n→∞E

∫T

0
|fn

z (r,Y
n

r ,Z
n
r ,u

n
r )−fz(r,Yr,Zr,ur)|

p dr = 0. (3.2.15)

Lemma 3.2.21. Under the fulfillment of Assumptions 3.2.18, the solutions x and xn to equations
(3.1.3) and (3.2.5), respectively, are bounded in the space Sp ([0,T ],R) for all p ≥ 2. In other
words, there exist two positive constants ℓT and ℓT such that :

E
[

sup
0≤t≤T

|xt|
p

]
≤ ℓT ,

E
[

sup
0≤t≤T

|xn
t |

p

]
≤ ℓT ∀n ∈ N.

Proof: Let p≥ 2 By Itô’s formula, we have (sgn(xt)xt = |xt|) :

|xt|
p ≤ |gy(Y0)|

p +p

∫T

0
|xs|

p(|fy |+
p−1

2
|fz |

2)(s,Ys,Zs,us)ds

+
∣∣∣∫ t

0
|xs|

pfz(s,Ys,Zs,us)dWs

∣∣∣
≤ |gy(Y0)|

p +p

∫T

0
sup

0≤r≤s
{|xr |

p}
(
|fy |+

p−1

2
|fz |

2)(s,Ys,Zs,us)ds

+
∣∣∣∫ t

0
|xs|

pfz(s,Ys,Zs,us)dWs

∣∣∣
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By BDG’s inequality

E
[

sup
0≤t≤T

∣∣∣∫ t

0
|xs|

pfz(s,Ys,Zs,us)dWs

∣∣∣]

≤ 3E

(∫T

0
|xs|

2p|fz(s,Ys,Zs,us)|
2ds

) 1
2


≤ 3E

(∫T

0
sup

0≤r≤s
{|xr |

2p}|fz(s,Ys,Zs,us)|
2ds

) 1
2


≤ 3E

 sup
0≤t≤T

{|xt|}
p
2

(∫T

0
sup

0≤r≤s
{|xr |

p}|fz(s,Ys,Zs,us)|
2ds

) 1
2


≤ 3E

 sup
0≤t≤T

{|xt|
p
2 }

(∫T

0
sup

0≤r≤s
{|xr |

p}|fz(s,Ys,Zs,us)|
2ds

) 1
2


≤ E

[
1

2
sup

0≤t≤T
{|xt|

p}+
9

2

∫T

0
sup

0≤r≤s
{|xr |

p}|fz(s,Ys,Zs,us)|
2ds

]
,

the last inequality is obtained by using Young’s (ab≤ 1
6a

2 + 3
2b

2), therefore

E
[

sup
0≤t≤T

|xt|
p
]

≤ E
[
2|gy(Y0)|

p +

∫T

0
sup

0≤r≤s
{|xr |

p}
(
2p|fy(s,Ys,Zs,us)|

+(p(p−1)+9)|fz(s,Ys,Zs,us)|
2)ds].

Gronwall’s lemma, yields

E
[

sup
0≤t≤T

|xt|
p
]

≤ 2E
[
|gy(Y0)|

p exp
(∫T

0

(
2p|fy |+(p(p−1)+9)|fz |

2)(s,Ys,Zs,us)ds

)]
.

Since gy is locally bounded and Y0,Y
n

0 ≤ C1,T (where C1,T does not depend on n), gy(Y0) and
gy(Y

n
0 ) are bounded. Moreover, by Hlin, we have :

E
[

sup
0≤t≤T

|xt|
p
]

≤ CE
[
exp

(∫T

0

(
2pϵ ln (|Zs|+1)+(p(p−1)+9)ϵ2 ln (|Zs|+1)

)
ds

)]
,

where C is a constant that may vary. Since ϵ is sufficiently small therefore 2pϵ+(p(p−1)+9)ϵ2 ≤ 2.
Thus, by Jensen’s inequality, we get :

E
[

sup
0≤t≤T

|xt|
p
]

≤ CE
[
exp

(∫T

0
ln (|Zs|+1)

2ds

)]

≤ C
(
1+

∫T

0
E[|Zs|

2]ds
)

=: ℓT .

Following the same arguments as previously, and since 1
np |fn(r,Y n

r ,Z
n
r ,vr)|

p ≤ C, we have

sup
n

E
[

sup
0≤t≤T

|xn
t |

p
]

≤ ℓT .

□
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Lemma 3.2.22. Let (xt)t≥0 and (xn
t )t≥0 be respectively the solution of (3.1.3) and (3.2.5), then

under Assumption 3.2.18, we have

lim
n→∞ sup

t∈[0,T ]
E [|xn

t −xt|
p] = 0, ∀ p≥ 2. (3.2.16)

Proof: Lemma 3.2.21 implies that {|xn
t |

p, t ∈ [0,T ], n ∈ N∗, p≥ 2} is uniformly integrable. Based
on equations (3.1.3) and (3.2.5), applying Itô’s formula, we get :

|xn
t −xt|

2 ≤ |gn
y (Y

n
0 )−gy(Y0)|

2

+2

∫T

0
|xn

r −xr ||x
n
r f

n
y (r,Y

n
r ,Z

n
r ,u

n
r )−xrfy(r,Yr,Zr,ur)|dr

+

∫T

0
|xn

r f
n
z (r,Y

n
r ,Z

n
r ,u

n
r )−xrfz(r,Yr,Zr,ur)|

2dr

−2

∫ t

0
(xn

r −xr)(x
n
r f

n
z (r,Y

n
r ,Z

n
r ,u

n
r )−xrfz(r,Yr,Zr,ur))dWr.

By using Young’s inequality and taking the expectation, we obtain,

E
[
|xn

t −xt|
2]≤ E

[
|gn

y (Y
n

0 )−gy(Y0)|
2
]

+2E
[∫T

0
|xn

r −xr |
2(|fn

y |+ |fn
z |(r,Y

n
r ,Z

n
r ,u

n
r )dr

]

+2E
[∫T

0
|xn

r −xr ||xr ||f
n
y (r,Y

n
r ,Z

n
r ,u

n
r )−fy(r,Yr,Zr,ur)|dr

]

+2E
[∫T

0
|xr |

2|fn
z (r,Y

n
r ,Z

n
r ,u

n
r )−fz(r,Yr,Zr,ur)|

2dr

]
.

Since for any n ∈ N∗ and p≥ 2, E[sup0≤t≤T (|xt|
p + |xn

t |
p)] ≤ ℓT + ℓT . By Hölder’s inequality, we

get a universal constant C, such that :

E
[
|xn

t −xt|
2
]

≤ E
[
|gn

y (Y
n

0 )−gy(Y0)|
2
]
+Cγn

+2E
[∫T

0
|xn

r −xr |
2(|fn

y |+ |fn
z |

2)(r,Y n
r ,Z

n
r ,u

n
r )dr

]
,

where,

γn := E
[∫T

0
(|fn

y (r,Y
n

r ,Z
n
r ,u

n
r )−fy(r,Yr,Zr,ur)|

2

+|fn
z (r,Y

n
r ,Z

n
r ,u

n
r )−fz(r,Yr,Zr,ur)|

4)dr
]
.

γn tend to zero as n approaches infinity, as indicated by (3.2.14) and (3.2.15). Moreover, with
the same steps as the proof of Lemma 3.2.21, we can obtain the following :

sup
n

E
[
exp

(
2

∫T

0
(|fn

y |+ |fn
z |

2)(r,Y n
r ,Z

n
r ,u

n
r )dr

)]
≤ C.
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Establishing the desired result is facilitated by demonstrating the convergence of the initial terms
to zero and applying Gronwall’s lemma. Since gy(Y0), gn

y (Y0) and gy(Y
n

0 ) are bounded, allowing
us to use the Dominated Convergence Theorem. Furthermore, by (iv) of Lemma 3.2.12 and
equation (3.2.6), we obtain :

lim
n→∞E

∣∣∣gn
y (Y

n
0 )−gy(Y0)

∣∣∣2 ≤ 2 lim
n→∞E

[
|gn

y (Y
n

0 )−gy(Y
n

0 )|2 + |gy(Y
n

0 )−gy(Y0)|
2
]

= 0.

□

3.3 Optimality : The Maximum Principle

This section aims to derive the necessary optimality conditions for the control problem denoted
as (A).

3.3.1 Necessary Condition for Optimality

We rely on the following lemma to establish the necessary conditions for optimality, which forms
the foundation for our further investigation.

Lemma 3.3.1. Under the fulfillment of Assumption 3.2.18, we can establish the following :

lim
n→∞E

∫T

0
|Φn (r)−Φ(r)|dr = 0,

where

Φn (r) = [Hn(r,Y n
r ,Z

n
r ,x

n
r ,u

n
r )−Hn(r,Y n

r ,Z
n
r ,x

n
r ,vr)] ,

and

Φ(r) = [H(r,Yr,Zr,xr,ur)−H(r,Yr,Zr,xr,vr)] .

Proof: A straightforward computation demonstrates that :

E
∫T

0
|Φn(r)−Φ(r)|dr ≤ E

∫T

0
|fn(r,Y n

r ,Z
n
r ,u

n
r )x

n
r −f(r,Yr,Zr,ur)xr |dr

+E
∫T

0
|fn(r,Y n

r ,Z
n
r ,vr)x

n
r −f(r,Yr,Zr,vr)xr |dr

For the sake of simplicity, we denote the first and the second integrals by In
1 and In

2 , respectively,
and demonstrate their convergence to 0 as n goes to ∞.
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By applying Hölder’s inequality (for ᾱ∈ (1, α), α= ᾱ
ᾱ−1) and utilizing both (3.2.21) and property

(iii) from Lemma 3.2.14, we obtain :

In
1 ≤

[
E
∫T

0
|fn(r,Y n

r ,Z
n
r ,u

n
r )|

ᾱ dr

] 1
ᾱ
[
E
∫T

0
|xn

r −xr |
α dr

] 1
α

+

[
E
∫T

0
|xr |

α dr

] 1
α
[
E
∫T

0
|fn(r,Y n

r ,Z
n
r ,u

n
r )−f

n(r,Yr,Zr,ur)|
ᾱ dr

] 1
ᾱ

≤ K̄
1
ᾱ
3

[
E
∫T

0
|xn

r −xr |
α dr

] 1
α

+TℓT

[
E
∫T

0
|fn(r,Y n

r ,Z
n
r ,u

n
r )−f(r,Yr,Zr,ur)|

ᾱ dr

] 1
ᾱ

By (3.2.8) and (3.2.16), In
1 converges to 0 as n→∞. On the flip side, utilizing similar arguments

as presented earlier, it becomes apparent that the limit of In
2 tends to 0 as n approaches +∞.

This concludes the proof. □

The primary result in this paper.

Theorem 3.3.2. Consider the optimal solution (Yt,Zt,ut)t≥0 for the initial stochastic control
problem. There exists a unique adapted process (xt)t≥0 in S2([0,T ],R), which is the solution to
the associated forward stochastic differential equation (3.1.3). This process (xt)t≥0 is uniquely
characterized by ensuring that the Hamiltonian H is minimized at the control (ut)t≥0, such that

H(t,Yt,Zt,xt,ut) = min
v∈Uad

H(t,Yt,Zt,xt,vt) dt-a.e., P-a.s. (3.3.1)

Proof: To elucidate the key steps in our proof, we begin by transforming Problem (A) into
a more manageable Problem (B). Next, we employ the spike variation method to derive the
necessary condition for near-optimality while addressing Problem (B). Finally, leveraging Lemma
3.3.1 and taking appropriate limits, we culminate the desired optimality condition (3.3.1).

For each integer n, let un ∈ Uad be an optimal control for Problem (B), satisfying J n(un
· ) ≤

infv∈Uad
J n(v·). Denote the solution of BSDE (3.2.3) as (Y n

t ,Z
n
t )t≥0 corresponding to un. Intro-

duce the spike variation :

un,θ
t =

{
v if t ∈ [t0, t0 +θ] ,

un
t otherwise.

where 0≤ t0 ≤ T is fixed, θ > 0 is sufficiently small, and v is an arbitrary Ft0-measurable random
variable.

The inequalities

J̃ n(un
· ) ≤ J̃ n(un,θ

· )
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and

d̂(un,θ
· ,un

· ) ≤ θ

imply

J n(un,θ
· )−J n(un

· ) ≥ −(δn,N )
1
2 θ. (3.3.2)

Utilizing standard arguments (see, for instance, [95]), we can show that the left-hand side of the
inequality (3.3.2) is equal to

E
∫ t0+θ

t0

[Hn(r,Y n
r ,Z

n
r ,x

n
r ,vr)−Hn(r,Y n

r ,Z
n
r ,x

n
r ,u

n
r )]dr+o(θ) .

Dividing both sides of the inequality (3.3.2) by θ, we obtain

−(δn,N )
1
2 ≤ 1

θ
E
∫ t0+θ

t0

[Hn(r,Y n
r ,Z

n
r ,x

n
r ,vr)−Hn(r,Y n

r ,Z
n
r ,x

n
r ,u

n
r )]dr+

o(θ)

θ
.

Applying Lemma 3.3.1 and successively taking limits on n, N , and θ, while considering the
arbitrary nature of t0 in [0,T ], yields

E [H(t,Yt,Zt,xt,v)−H(t,Yt,Zt,xt,ut)] ≥ 0.

Now, let a ∈ U be a deterministic element, and B be an arbitrary element of the σ−algebra Ft.
Define

wt = a1B +ut1Ω|B.

The control w satisfies the admissibility criteria. Utilizing the aforementioned inequality with w,
we infer

E [1B (H(t,Yt,Zt,xt,a)−H(t,Yt,Zt,xt,ut))] ≥ 0, ∀ B ∈ Ft,

which leads to

EFt [H(t,Yt,Zt,xt,a)−H(t,Yt,Zt,xt,ut)] ≥ 0

The quantity within the conditional expectation is Ft-measurable, and consequently, the result is
immediately established. This concludes the proof of the theorem. □
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3.3.2 Sufficient Condition of Optimality

This section investigates the extension of a previously established necessary optimality condition
(3.3.1) to serve as a sufficient condition under additional assumptions.

Theorem 3.3.3. Let the mapping (y,z,u) 7→ H(t,y,z,x,u) is convex almost everywhere for
t ∈ [0,T ], and f satisfies the Lipschitz condition with respect to u. Additionally, assume g is
convex. If the previously established necessary optimality condition (3.3.1) is met, then (ut)t≥0 is
optimal for the Problem (A).

Proof: Let u satisfy the condition in Equation (3.3.1). Note that u does not necessarily satisfy
the necessary condition for optimality for the perturbed control problem (3.2.3) and (3.2.4).

Let B be an arbitrary element of the σ−algebra Ft. Furthermore, define In(u) as :

In(u) = E[Hn(t,Y n
t ,Z

n
t ,x

n
t ,ut)1B].

Using convergence results, a simple computation shows that :

In(u) = min
v∈Uad

In(v)+ δn,

where δn is a sequence of positive real numbers converging to 0.

Applying Ekeland’s variational principle to In, there exists an admissible control un such that :

In,δ(v) = In(v)+
√
δnd̂(v·,u

n
· ),

We want to show that u is an optimal control for the original cost function J .

(i) un minimizes In,δ :

In,δ (u
n) ≤ In,δ(v), for any v ∈ Uad.

(ii) The distance between un and u is bounded by :

d̂(un
· ,u·) ≤

√
δn.

(iii) Following the results from [41] (since fn is globally Lipschitz and xn is bounded, Hn is also
globally Lipschitz), we obtain :

J n
δ (un

· ) = min
v∈Uad

J n
δ (v·),

This definition of the modified cost-functional

J n
δ (v·) := J n(v·)+

√
δnd̂(v·,u

n
· ) ,
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allows us to conclude that for each admissible control v ∈ Uad,

J n (un
· ) ≤ J n(v·)+O (δn) ,

where O (δn) represents terms that vanish as δn approaches zero.

According to assertion (ii) in Lemma 3.2.13, J n(v·) converges to J (v·) as n tends to infinity.
Moreover, we have

|J n (un
· )−J (u·) | ≤ E[|gn(Y n

0 )−g(Y0)|]

≤ E[|gn(Y n
0 )−gn(Y0)|]+E[|gn(Y0)−g(Y0)|]

≤ CE[|Y n
0 −Y0|]+E[|gn(Y0)−g(Y0)|]

Since g (respectively, gn) has linear growth and Y0 (respectively, Y n
0 ) is bounded, this allows us

to use the Dominated Convergence Theorem. By assertion (iv) of Lemma 3.2.12 and Lemma
3.2.15, we obtain : limn→+∞J n (un

· )→ J (u·). Thus,

J (u·) = min
u∈Uad

J (v·),

which implies that u is an optimal control for the cost function J . □

Assumption 3.3.4.
(A.3.1) f and g are continuously differentiable with respect to (y,z) and f is globally Lipschitz

with respect to v.
(A.3.2) Assume that ζ is bounded and an element of D1,2, and there exist two constants M1 and

M2 such that, for all v ∈ Uad, we have :∫T

0
|Drvs|ds≤M1, and |Drζ | ≤M2, ∀ r ≤ T.

(A.3.3) There exists a positive constants c such that, for every t, y, z, v ∈ U :

|f(t,y,z,v)| ≤ c(1+ |y|| ln |y||+ |z|
√
| ln(|z|)|).

(A.3.4) There exists a positive constant L > 0, such that ∀ (y,z,v) ∈ R×R×U :

|fy(t,y,z,v)| ≤ L(1+ |y|)+ ln (|z|+1), -a.e. t ∈ [0,T ].

Theorem 3.3.5. Assuming conditions (A.3.2) and (A.3.3) hold, the BSDE (3.1.1) possesses at
least one solution (Y,Z) in SeλT +1 ([0,T ],R)×M2 ([0,T ],R).

The proof follows directly from Theorem 2.2 in [14], as Assumptions (A.3.2) and (A.3.3) imply
the conditions (H1) and (H2) in [14]. Therefore, the BSDE (3.1.1) has at least one solution.
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Lemma 3.3.6. If Assumption 3.3.4 holds, we can get constants C1,T , C2,T and C3,T such that :

(i) sup0≤t≤T |Yt| ≤ C1,T .
(ii) sup0≤t≤T |Zt| ≤ C2,T .
(iii) sup0≤t≤T |f(t,Yt,Zt,vt)| ≤ C3,T .

Proof: Following the same steps used in the proof of Lemma 3.2.7, we can show that assertion
(i) also holds.
We aim to substantiate assertion (ii). Let N ∈ N∗ and fN (t,y,z,v) = f(t,y,z,v)ψ( z

N ), where
ψ(x) = 1 if |x| ≤ 1 and ψ(x) = 0 if |x| ≥ 2. Clearly that fN satisfies Assumption 3.3.4, thus{

dYt = fN (t,Yt,Zt,vt)dt+ZtdWt,

YT = ζ,

has at least one solution (Y,Z)∈ SeλT +1 ([0,T ],R)×M2 ([0,T ],R). Moreover, sup0≤t≤T |Yt|≤C1,T .
According to Proposition 2.2 in [79], we have for all t≤ T, Yt and Zt are the elements of D1,2.
Furthermore, for all r ∈ [0,T ] the pair (DrYt,DrZt)t≤T satisfies,

DrYt =Drζ−

∫T

t
(fN

y (s,Ys,Zs,vs)DrYs +f
N
z (s,Ys,Zs,vs)DrZs)ds

−

∫T

t
AsDrvsds−

∫T

t
DrZsdWs

DtYt = Zt,

where As is a bounded process, with the bound denoted by a constant M3 [65]. We define a
process γfz = (γfz

t )0≤t≤T as,

γfz
t := E

(
−

∫ t

0
fN

z (s,Ys,Zs,vs)dWs

)
, t ∈ [0,T ], P a.s.,

where E denotes the stochastic exponential. Since fN
z is uniformly bounded it follows that,

the process (γfz
t )0≤t≤T is a martingale process. Moreover, E[|γfz

t |2]<∞. Let γfz
t := dPfz

dP |Ft , this
implies absolute continuity of Pfz with respect to P under Girsanov’s theorem.

Girsanov’s theorem further establishes that :

W fz
t = Wt +

∫ t

0
fN

z (s,Ys,Zs,vs)ds, for t ∈ [0,T ]

is a Brownian motion under Pfz . Therefore, under Pfz we have

DrYt =Drζ−

∫T

t

(
fN

y (s,Ys,Zs,vs)DrYs +AsDrvs

)
ds−

∫T

t
DrZsdW

fz
s t≤ T, (3.3.3)

DrYt =0 r > t.
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Moreover,

EPfz

(∫T

0
|DrZs|

2ds

) 1
2

 = E

γfz

T

(∫T

0
|DrZs|

2ds

) 1
2


≤ E[|γfz

T |2]+E
[∫T

0
|DrZs|

2ds

]
<∞.

By taking the conditional expectation of (3.3.3) and applying Jensen’s inequality, we obtain :

|DrYt|

≤M2 +EPfz
[∫T

0
|AsDrvs|ds+

∫T

t
|fN

y (s,Ys,Zs,vs)DrYs|ds
∣∣∣Ft

]
≤M2 +M1M3 +EPfz

[∫T

t
|fN

y (s,Ys,Zs,vs)DrYs|ds
∣∣∣Ft

]
. (3.3.4)

Since supt∈[0,T ] |Yt| ≤C1,T and ψ guarantees that |Zt| ≤N , there exists a constant CT,N such that
|fN

y (s,Ys,Zs,vs)| ≤ CT,N . For any ι≤ t, we have :

EPfz
[
|DrYt|

∣∣∣Fι

]
≤M2 +M1M3 +CT,N

∫T

t
EPfz

[
|DrYs|

∣∣∣Fι

]
ds.

Gronwall’s Lemma yields to,

EPfz
[
|DrYt|

∣∣∣Fι

]
≤ (M2 +M1M3)e

T CT,N .

For ι= t, we get |DrYt| ≤ (M2+M1M3)e
T CT,N ; thus, (DrYt)t≥0 is uniformly bounded. Therefore,

we can apply Gronwall’s Lemma to (3.3.4) (Theorem 1 in [91]), and we obtain :

|DrYt| ≤ (M2 +M1M3)EPfz
[
exp

(∫T

t
|fN

y (s,Ys,Zs,vs)|ds
)∣∣∣Ft

]
.

Using (A.3.4) and the boundedness of Y and for r = t,

|Zt| ≤ (M2 +M1M3)exp(L(1+C1,T ))EPfz

[
exp

(∫T

t
ln (|Zs|+1)ds

)∣∣∣Ft

]

≤ (M2 +M1M3)exp(L(1+C1,T ))EPfz

[∫T

t
(|Zs|+1)ds|Ft

]

≤ (M2 +M1M3)exp(L(1+C1,T ))

(
T +EPfz

[∫T

t
|Zs|ds|Ft

])
.

By taking the conditional expectation with respect to Fι, where ι≤ t, we obtain :

EPfz
[|Zt||Fι] ≤ (M2 +M1M3)exp(L(1+C1,T ))

(
T +EPfz

[∫T

t
|Zs|ds|Fι

])
.
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By applying Gronwall’s Lemma and then setting ι= t, we obtain

sup
0≤t≤T

|Zt| ≤ (M2 +M1M3)T exp
(
L(1+C1,T )

)
exp

(
(M2 +M1M3)T exp

(
L(1+C1,T )

))
= (M2 +M1M3)T exp

(
L(1+C1,T )+(M2 +M1M3)T exp(L(1+C1,T ))

)
.

Alternatively, we can use Theorem 1 from [91], as Zt =DtYt, and thus it is uniformly bounded.

Thus, for any N ≥ C2,T := (M2 +M1M3)T exp
(
L(1+C1,T )+(M2 +M1M3)T exp(L(1+C1,T ))

)
,

fN = f and sup0≤t≤T |Zt| ≤ C2,T . The assertion (iii) follows directly from (A.3.3) and the
preceding assertions. □

Theorem 3.3.7. Under Assumption 3.3.4, the BSDE (3.1.1) has one solution.

Proof: Regarding Theorem 3.3.5, the BSDE (3.1.1) has a solution. To prove uniqueness, let
(Y,Z), (Y ′,Z ′) be two solutions of (3.1.1), then we have :

Yt −Y
′

t =−

∫T

t

(
f (s,Ys,Zs,vs)−f

(
s,Y ′

s ,Z
′
s,vs

))
ds−

∫T

t

(
Zs −Z

′
s

)
dWs

=−

∫T

t

(
f (s,Ys,Zs,vs)−f

(
s,Y ′

s ,Zs,vs
))
ds

−

∫T

t

(
f
(
s,Y ′

s ,Zs,vs
)
−f

(
s,Y ′

s ,Z
′
s,vs

))
ds−

∫T

t

(
Zs −Z

′
s

)
dWs.

Since f is locally Lipschitz and according to Lemma 3.3.6, the solutions are bounded, thus there
exists a positive constant CT depends on C1,T and C2,T , such that ∀s ∈ [0,T ] :

|f(s,Ys,Zs,vs)−f(s,Y
′

s ,Z
′
s,vs)| ≤ CT (|Ys −Y

′
s |+ |Zs −Z

′
s|).

By taking similar steps as the proof of Lemma 3.3.6, we get

Yt −Y
′

t =−

∫T

t

(
f (s,Ys,Zs,vs)−f

(
s,Y ′

s ,Zs,vs
))
ds

−

∫T

t

(
Zs −Z

′
s

)
dW̃s,

where

W̃s =Ws +

∫ t

0

(
f
(
s,Y ′

s ,Zs,vs
)
−f

(
s,Y ′

s ,Z
′
s,vs

))(
Zs −Z

′
s

)−1
1{Zs ̸=Z′

s}
ds.

Moreover, the same arguments yield that for all t ∈ [0,T ] : |Yt −Y
′

t |= 0. This implies Y and Y ′

coincide. Intuitively, this should also imply, Zt = Z ′
t for all t. Thus the uniqueness is satisfied. □

These results ensure that the control problem is well-posed. Additionally, the boundedness of f
and fy allows us to leverage the previous control result under Assumption 3.3.4.

70



Chapter 3: Optimal Control of BSDEs with Logarithmic Growth Condition : Exploring
the Maximum Principle

Conclusion

This study explored a stochastic optimal control problem for a specific type of controlled BSDE
characterized by a local Lipschitz coefficient and a generator with logarithmic growth. The main
challenges stemmed from the local Lipschitz nature of the BSDE generator and the adjoint
equation, described by a linear SDE, complicating the application of standard duality techniques
for solving the control problem. To address these challenges, we introduced certain assumptions
to ensure the existence and uniqueness of the associated adjoint process. By employing Ekeland’s
variational principle, combined with methods of approximation and taking limits, we derived
both necessary and sufficient conditions for optimality.
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4.1 Introduction

Public-private partnerships (PPPs) entail long-term contracts between private entities and public
agencies to construct or manage assets or services. In these collaborations, the private consortium
assumes significant risks and responsibilities, aiming to enhance the project’s societal impact
while receiving compensation from the public sector.

PPPs aim to optimize the quality-price ratio of public spending, yet they often face challenges
due to information disparities between the parties. This information asymmetry complicates
both negotiation and project oversight, particularly as the public may struggle to evaluate the
consortium’s efforts—a classic Principal-Agent problem compounded by moral hazard.

The seminal work on Principal-Agent problems in continuous time was pioneered by Holmstrom
and Milgrom (1987). Their study delved into a Brownian framework where the Agent’s exertion
solely influences the output process’s drift. Moreover, the Agent receives a lump sum payment
upon the contract’s conclusion, operating within a finite time horizon. Within this context, the
Principal is depicted as risk-neutral, while the Agent exhibits risk aversion, characterized by a
Constant Absolute Risk Aversion (CARA) utility function. Holmstrom and Milgrom examined a
Stackelberg leadership model in their research [55], which involves a sequential decision-making
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process between the Principal and the Agent. This model is approached in two steps : initially,
the Principal devises an optimal contract given a fixed set of terms, considering the anticipated
response from the Agent. Subsequently, armed with the Agent’s best response, the Principal
fine-tunes the contract to optimize her own. This approach is particularly suited for situations
characterized by short contract durations, offering insights into the dynamics of Principal-Agent
relationships within finite time horizons. To address our PPP-related challenges, adopting a
randomized contract horizon, as proposed by Sannikov [85], proves advantageous. Sannikov’s
extension of the HM model introduces a random time horizon wherein the Principal pays
continuous rent to the Agent, deviating from the traditional end-of-contract payment scheme.
Employing dynamic programming principles, Sannikov derives the Hamilton-Jacobi-Bellman
equation governing the principal value function, enabling the determination of the optimal
contract through a verification theorem. This methodology offers a robust solution framework
that facilitates the computation of optimal rent and effort levels in a feedback loop and is
amenable to numerical approximation by solving the HJB equation. An alternative methodology,
as explored by Williams [93] and extensively discussed in the monograph by Cvitanić and
Zhang [37], along with various other authors, diverges from the continuous rent framework for
finite horizons. This approach leverages the Pontryagin stochastic maximum principle within
Brownian Motion-driven models to establish necessary conditions for optimal efforts and contracts,
articulated through a fully coupled Forward-Backward Stochastic Differential Equations system.
In instances where authors assume Markovian models, sufficient conditions are discerned through
the conventional route of employing HJB equations. In Principal-Agent scenarios involving moral
hazard, it’s commonly assumed that the Principal possesses perfect knowledge of the probability
distribution governing the Agent’s effort. However, in reality, the Principal often faces uncertainty
or ambiguity regarding this probability distribution, necessitating consideration of multiple
objective probability measures. Initial inquiries into uncertainty within this context have focused
on dominated sets, particularly with respect to an objective reference probability measure, such
as drift uncertainty, as explored by Gilboa and Schmeidler [50].

Ambiguity, also known as Knightian uncertainty, has significant economic implications. Coined by
Knight [59], this notion plays a pivotal role in economic contracts due to the inherent inaccuracies
in available information.

The concepts of risk and ambiguity are distinct. Risk pertains to situations where the probability
distribution for each action is known, while ambiguity involves economic decision-making under
uncertainty, where multiple probability distributions arise due to imperfect information and
cannot be consolidated into a single distribution. Knight [59] initially delineated this difference,
which was further explored by Ellsberg [47] and elaborated upon by Gilboa and Schmeidler [50].
They linked ambiguity to the notion of multiple priors in a static framework. Chen and Epstein
[31] extended this concept to an intertemporal setting, introducing the concept of ’κ-ignorance’
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to characterize Knightian uncertainty, where κ represents the level of ignorance. Decision-makers
face greater ambiguity when κ is higher.

Dumav and Riedel [43] investigated a moral hazard scenario involving continuous payments and
a random horizon, wherein the Principal and the Agent interact under a contractual agreement
concerning unobservable effort levels that yield output subject to ambiguity. Unlike Sannikov [85],
they developed a model where efforts correspond to sets of probability distributions, ultimately
delineating the optimal contract under ambiguous information.

In a related vein, Mastrolia and Possamaï [70] examined a scenario where both the Agent and the
Principal face uncertainty regarding the volatility of the output, particularly in finite maturity
contexts.

This paper considers a contract between a public entity and a consortium in a continuous time
setting. The consortium is trying to improve the project’s social value, driven by a one-dimensional
Brownian motion. The effort is not observable by the public and is ambiguous. The public must
choose a continuous rent to pay the consortium as compensation for its effort. We assume that the
effort only affects the drift and not the volatility of the social value. Indeed in a one-dimensional
setting, controlling the volatility would imply that the effort is observable, through the quadratic
variation of the social value. Our approach is inspired by the seminal paper of Sannikov [85].

In the first step, we establish the Agent’s value function under the most possible scenario,
demonstrating its satisfaction with a BSDE with a random horizon. Subsequently, we determine
the Agent’s optimal response. Then, we formulate the public value function as a conventional
stochastic control problem, utilizing the Agent’s value function as a state variable and the contract
alongside the Agent’s optimal response as control processes. We derive the HJBVI governing the
public value function by leveraging the dynamic programming principle.

We employ the Howard algorithm and finite difference methods to approximate the optimal rent
and effort numerically. We obtain the optimal effort and rent through a feedback form. Our
numerical results indicate that each increase in the degree of Knightian uncertainty leads to an
increase in effort and a decrease in the value function.

In contrast to Dumav and Riedel [43], we suppose that at time t, the social value of the project
X is not distributed constant but rather depends on time, which augments the state variable in
the HJBVI. We establish a rigorous mathematical framework incorporating BSDEs, stochastic
control, and optimal stopping techniques and elucidate the computational procedure for obtaining
numerical solutions.

This work is formatted as follows : We outline the difficulties faced by the public and the
consortium in Section 4.2, where we also explain the issue formulation process utilizing the weak
method. In Section 4.3, the dynamics of the consortium goal function are explained using the
BSDE with a random horizon approach, and the incentive-compatible contract under worst-case
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conditions is determined. We obtain the HJBVI linked to the public value function in 4.4,
augmented by a verification theorem. The main focus of Section 4.5 is the numerical analysis of
the HJBVI using the Howard method. Finally, Section 4.6 presents the conclusion of our study.

4.2 Problem Statement and Framework

Consider a probability space denoted by (Ω,F ,P), where a one-dimensional Brownian motion
W = (Wt)t≥0 is defined. Let F= (Ft)t≥0 represent the completed natural filtration of W . Both
the Agent and the Principal observe the project’s societal significance Xt, which is expressed as,

dXx
t := σ(Xx

t )dWt, X
x
0 = x, t≥ 0 ,P a.s., (4.2.1)

where

• x > 0 is the project’s starting value.
• σ(.) represents the operational cost volatility for infrastructure maintenance. Given σmax

and σmin as positive constants, the function σ(.) is Lipschitz and adheres to the condition
σmax > σ(.)> σmin.

The project’s performance is influenced by the Agent’s effort At, which alters the distribution of
the process W . The following is our definition of the martingale process γA = (γA

t )t≥0 :

γA
t := E

(∫ t

0

ϑ(As)

σ(Xx
s )
dWs

)
, t≥ 0, P a.s.,

here, E represents the Doléans-Dade exponential, and ϑ is a function that will be defined later.
Assuming that PA is comparable to P, which can be recognized by its density, let us consider
it as a probability measure on (Ω,F). The formula is γA

t = dPA

dP |Ft . Next, we get the following
PA-Brownian motion based on Girsanov’s theorem.

WA
t =Wt −

∫ t

0

ϑ(As)

σ(Xx
s )
ds, for t≥ 0.

Consequently, we have under PA

Xx
t = x+

∫ t

0
ϑ(As)ds+

∫ t

0
σ(Xx

s )dW
A
s , t≥ 0, P a.s. (4.2.2)

In the context of this study, we employ the notation F-Pr to refer to F-progressively measurable
processes for the sake of brevity and clarity.
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In the framework proposed by Sannikov, the assumption is that when the effort A is determined,
the probability measure PA remains constant. This implies that the Agent possesses full knowledge
regarding the probability distribution governing the evolution of the state process (Xt)t≥0.
However, in practical scenarios, the Agent may encounter uncertainty regarding this probability
distribution, prompting the consideration of multiple objective probability measures denoted
by Pθ. To address this uncertainty rigorously, we introduce the parameter θ, which is a process
taking values in R and is responsible for generating a probability measure Pθ that is equivalent
to PA. Consequently, we define by γθ := dPθ

dPA the density of Pθ with respect to PA, expressed as,

γθ
t := E

(∫ t

0

θs

σ(Xx
s )
dWA

s

)
, t≥ 0, P a.s.,

Here, θ ∈Θ := {(θs)s≥0F−Pr process, θs ∈ [−κ,κ] ds⊗dP a.e.}, where κ is a positive constant.

The set of different scenarios, referred to as priors, is denoted by Pθ,θ ∈Θ. According to Girsanov’s
theorem, we have the following Pθ-Brownian motion,

W θ
t =WA

t −

∫ t

0

θs

σ(Xx
s )
ds, for t≥ 0. (4.2.3)

Thus, the project’s social value under Pθ satisfies

Xx
t = x+

∫ t

0
(ϑ(As)+θs)ds+

∫ t

0
σ(Xx

s )dW
θ
s , t≥ 0, P a.s. (4.2.4)

We represent the collection of all F-stopping times as T . Fixing p̂ ∈ (2,∞), we examine the
collection of admissible actions.

Ap̂ :=
{
(As)s≥0, F−Pr processes, As ≥ 0, ds⊗dP a.e. and sup

ι∈T
sup
θ∈Θ

EP
[
(γA,θ

ι )p̂
]
<∞}

.

The principal observes the project’s social value X, but she cannot distinguish between
∫.

0ϑ(As)ds

and
∫.

0σ(X
x
s )dW

A
s , suggesting that she is not directly observing the consortium’s work. This

presents a moral hazard scenario. We infer that W θ is not observable by the Principal from
equality (4.2.3). She decides how much rent she will provide to the agent in exchange for him
supporting the operating expenses and his efforts. At date ι, where ι is a stopping time in T , the
public may terminate the contract.
Γ = ((Rt)t, ι, ξ) is a triplet that represents a contract. R≥ 0 is a F−Pr, ι is in the set T , and ξ ≥ 0

is a Fι-measurable random variable. This random variable encapsulates the financial implication
associated with the cessation of the contract.
We proceed by delineating the optimization tasks for both the consortium and the public. Initially,
we define the functions integral to formulating these optimization problems.
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Assumption 4.2.1. • ϑ : [0,∞) → [0,∞) characterizes the incremental impact of the
consortium’s efforts on the social value. It satisfies the properties of being C2, strictly
concave, and increasing. Additionally, ϑ(0) = 0 and ϑ ′(0)> 0. The supremum norm of ϑ

σ ,
denoted as ∥ϑ

σ ∥∞ := supa≥0,x∈R
|ϑ(a)|
|σ(x)| and is bounded.

• The consortium’s utility function, U : [0,∞)→ [0,∞), is limited, strictly concave, growing,
and satisfies U(0) = 0 as well as Inada’s constraints U ′(∞) = 0, U ′(0) =∞.

• h : [0,∞)→ [0,∞) represents the cost associated with the effort of the consortium. It is
characterized by being C2, h(0) = 0, strictly convex, and monotonically growing.

• The consortium’s time preference parameter λ is greater than the public’s, or δ (λ≥ δ),
suggesting that the consortium exhibits a higher degree of impatience compared to the
public.

We operate under the assumption that when presented with a contract Γ by the Principal,
the consortium responds optimally by determining an effort process A. This setup reflects a
Stackelberg leadership model, wherein the Principal acts as the leader by proposing a contract,
and the consortium, acting as a follower, responds sequentially.

The consortium’s acceptance of the contract is contingent upon the condition that the expected
benefits outweigh its reservation value, denoted as x.
Three actions are taken to solve the public and consortium’s concerns. Firstly, we determine
θ∗ = θ∗(A,Γ ), as a function of contractual parameters Γ and effort allocation A delineates
the most probable scenario for the consortium. We remove (A,Γ ) to reduce notations. Next,
we ascertain the Agent’s optimal reaction given (θ∗(A,Γ ),Γ ). The notation A∗(θ∗(A,Γ ),Γ )

represents the answer. We remove (θ∗(A,Γ ),Γ ) to reduce notations.

(1) In the initial step, and with the parameters (A,Γ ) at hand, we proceed to determine the
worst-case scenario by addressing the following equation :

θ∗ ∈ argmin
θ∈Θ

Eθ
[∫ ι

0
e−λs(U(Rs)−h(As))ds+e

−λιU(ξ)

]
.

The objective function for the Agent, beginning from time t, is defined as follows,

Jamb
t (Γ,A,θ) := Eθ

[∫ ι

t
e−λ(s−t)(U(Rs)−h(As))ds+e

−λ(ι−t)U(ξ)|Ft

]
, ∀t ∈ [[0,ι[[ P a.s.

(2) In the subsequent step, we ascertain the consortium’s optimal response given the worst-case
scenario by resolving :

A∗ ∈ arg max
A∈AC

ν

EA
[∫ ι

0
γθ∗

s e−λs(U(Rs)−h(As))ds+γ
θ∗
ι e−λιU(ξ)

]
,
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here, ν > 0,

AC
ν−2λ := {(As)s≥0 ∈ Ap̂, s.t. EP[

∫∞
0
e(ν−2λ)s|h(As)|

2ds]<∞
and EP[

∫∞
0
e(ν−2λ)s|ϑ(As)|

2ds]<∞}.

The objective function representing the scenario of utmost adversity commencing at time
t for the Agent is,

JC
t (Γ,A) :=

1

γθ∗
t

EA
[∫ ι

t
γθ∗

s e−λ(s−t)(U(Rs)−h(As))ds+γ
θ∗
ι e−λ(ι−t)U(ξ)|Ft

]
, ∀t∈ [[0,ι[[ P a.s.

(3) In the best-case scenario and with the consortium’s optimal answer, the public problem is
defined by :

sup
Γ ∈AP

ν

sup
PA∗ ∈P

EA∗
[∫ ι

0
γθ∗

s e−δs(ϑ(A∗
s)+θ

∗
s −Rs)ds−γ

θ∗
ι e−διξ

]
, (4.2.5)

subject to the restriction on reservations

EA∗
[∫ ι

0
γθ∗

s e−λs(U(Rs)−h(A
∗
s))ds+γ

θ∗
ι e−λιU(ξ)

]
≥ x,

where

AP
ν−2λ :=

{
((Rs)s≥0, ι, ξ) s.t. (Rs)s≥0 is a F−Pr process, Rs ≥ 0 ds⊗dP a.e.,

EP
[∫ ι

0
e(ν−2λ)s(U(Rs)

2 ∨R2
s)ds

]
<∞, ι ∈ T , ξ non negative Fι-measurable,

and EP
[
e(ν−2λ)ι(|U(ξ)|2 ∨ ξ2)1{ι<+∞}

]
<∞}

,

and
P = {PA∗

∼ P, A∗ ∈ AC
ν }.

The function representing the objective, initiated from time t, for the Principal, is :

JP
t (Γ,A∗) :=

1

γθ∗
t

EA∗
[∫ ι

t
γθ∗

s e−δ(s−t)(ϑ(A∗
s)+θ

∗
s −Rs)ds−γ

θ∗
ι e−δ(ι−t)ξ|Ft

]
,

∀t ∈ [[0,ι[[ P a.s.
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4.3 Incentive compatible contracts

This section presents the dynamics guiding the consortium’s goal function JC and attempts to
develop contracts that align incentives in the best possible way. The solution to a particular
kind of BSDE with a random horizon has the following structure, which we will use to prove the
uniqueness of JC ,

Yt = ζ1{ι<+∞}+

∫ ι

t
g(s,ω,Xs,Ys,Zs)ds−

∫ ι

t
ZsdWs, (4.3.1)

Previous literature has explored the study of BSDEs with random horizons, as evidenced by
Darling and Pardoux [38].

For a predetermined stopping time ι and for some positive constant η, we present the following
spaces :

— Mη (0,ι;R) the set of F−Pr, R- valued processes on Ω× [[0,ι[].

— H2
η (0,ι;R) =

{
Z ∈ Mη (0,ι;R) s.t. E

[∫ ι

0
eηt |Zt|

2 dt

]
<+∞}

.

— S2
η (0,ι;R) =

{
Y ∈ Mη (0,ι;R) s.t. E

[
sup

0≤t≤ι
eηt |Yt|

2

]
<+∞}

.

In this work, we make the following assumption :

▶(H1) For any x,y,z ∈ R, the function g(., .,x,y,z) belongs to the space Mη (0,ι;R) and
satisfying the following condition :

E
[
eηι|ζ |21{ι<+∞}+

∫ ι

0
eηs|g(s,ω,Xs,0,0)|

2ds

]
<∞.

▶(H2) The generator g exhibits Lipschitz continuity with respect to both y and z, denoted
by positive constants C1 and C2, ensuring that for any s, ω, x,

|g(s,ω,x,y1,z1)−g(s,ω,x,y2,z2)| ≤ C1|y1 −y2|+C2|z1 −z2| ds⊗dP a.e.

Theorem 4.3.1 (Theorem 3.4 and Corollary 4.4.2 in [38]). Under the fulfillment of conditions
(H1) and (H2) and the constraint η ≥ C2

2 −2C1, we have :
Existence and Uniqueness : The existence of a unique solution (Y,Z) to the BSDE (4.3.1)

in the space H2
η (0,ι;R)× H2

η (0,ι;R) is guaranteed. Furthermore, it is established that
Y ∈ S2

η (0,ι;R).

Comparison : Consider two solutions (Y 1,Z1) and (Y 2,Z2) of the BSDEs associated
with parameters (g1, ξ, ι) and (g2, ξ, ι), respectively. Assuming that g1(t,ω,Xt,Y

1,Z1) ≤
g2(t,ω,Xt,Y

1,Z1) dt⊗dP holds almost everywhere, we establish the inequality Y 1
t ≤ Y 2

t

for all t ∈ [0,ι[[ almost surely under P.
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Theorem 4.3.1 is a foundational tool in identifying the worst-case scenario for the Agent,
establishing incentive-compatible contracts, and elucidating the dynamics of the consortium
objective function. Central to the resolution of these initial steps is the application of the
comparison theorem.

Proposition 4.3.2. Suppose Γ ∈ Ap
ν−2λ, A ∈ AC

ν−2λ and θ ∈Θ. We establish the existence of
ZA,θ ∈ H2

ν−2λ (0,ι;R), such that the dynamics governing the Agent’s objective function follow the
BSDE with a random horizon, given by the following equation : −dJamb

t (Γ,A,θ) =

(
−λJamb

t (Γ,A,θ)+U(Rt)+φ(At,X
x
t ,Z

A,θ
t )+

θt

σ(Xx
t )
ZA,θ

t

)
dt−ZA,θ

t dWt,

Jamb
ι (Γ,A,θ) = U(ξ)1{ι<+∞},

(4.3.2)
and

Jamb
t (Γ,A,θ) ≥ JC

t (Γ,A) := Jamb
t (Γ,A,θ∗(ZA,θ)) ∀t ∈ [[0,ι[[ P a.s., (4.3.3)

where 
φ(At,X

x
t ,Z

A,θ
t ) := −h(At)+

ϑ(At)

σ(Xx
t )
ZA,θ

t ,

θ∗(ZA,θ
t ) := arg min

α∈[−κ,κ]

(
αZA,θ

t

)
=−κsgn(ZA,θ

t ).

Proof: For any admissible contract Γ ∈ AP
ν−2λ, effort allocation A ∈ AC

ν−2λ, ambiguity process
θ ∈Θ, and for any t ∈ [[0,ι[[, we introduce the following process

Mt(Γ,A,θ) := J̃amb
t (Γ,A,θ)+

∫ t

0
(Ũ(Rs)−e

−λsh(As))ds,

Where J̃amb and Ũ(Rt) represent the discounted quantities, defined respectively as J̃amb
t (Γ,A,θ) =

e−λtJamb
t (Γ,A,θ) and Ũ(Rt) := e−λtU(Rt),dt⊗ dP. By leveraging the definition of Jamb

t and
employing Bayes’ formula, we derive :

Mt(Γ,A,θ) = Eθ
[∫ ι

0
(Ũ(Rs)−e

−λsh(As))ds+e
−λιξ1{ι<+∞}|Ft

]
=

1

γθ
t

EA
[
γθ

ι

(∫ ι

0
(Ũ(Rs)−e

−λsh(As))ds+e
−λιξ1{ι<+∞}

)
|Ft

]
=

1

γθ
t γ

A
t

EP
[
γθ

ι γ
A
ι

(∫ ι

0
(Ũ(Rs)−e

−λsh(As))ds+e
−λιξ1{ι<+∞}

)
|Ft

]
.

A straightforward calculus shows that

γA,θ
t := γθ

t γ
A
t := E

(∫ .

0

(
ϑ(As)+θs

σ(Xx
s )

)
dWs

)
t
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This establishes that the process γA,θ
t Mt(Γ,A,θ) is a (P,F)-local martingale. Hence, by the

martingale representation theorem, there exists a singular progressively measurable process
denoted as χ, s.t.

dγA,θ
t Mt(Γ,A,θ) = χtdWt.

By applying Itô’s formula to γA,θ
t Mt(Γ,A,θ), we derive,

dMt(Γ,A,θ) =
1

γA,θ
t

(
d(γA,θ

t Mt(Γ,A,θ))−Mt(Γ,A,θ)dγ
A,θ
t −d

〈
M(Γ,A,θ),γA,θ

〉
t

)
=

1

γA,θ
t

((
χt −Mt(Γ,A,θ)γ

A,θ
t

ϑ(At)+θt

σ(Xx
t )

)
dWt −d

〈
M(Γ,A,θ),γA,θ

〉
t

)

=

(
χt

γA,θ
t

−Mt(Γ,A,θ)
ϑ(At)+θt

σ(Xx
t )

)
dWt −

1

γA,θ
t

d
〈
M(Γ,A,θ),γA,θ

〉
t
. (4.3.4)

We proceed to establish the process Z̃A,θ
. as outlined below :

Z̃A,θ
t :=

χt

γA,θ
t

−Mt(Γ,A,θ)
ϑ(At)+θt

σ(Xx
t )

dt⊗dP a.e., (4.3.5)

Subsequently, the quadratic variation of M(Γ,A,θ) and γA,θ fulfills,

d
〈
M(Γ,A,θ),γA,θ

〉
t
= Z̃A,θ

t γA,θ
t

ϑ(At)+θt

σ(Xx
t )

dt

Utilizing equations (4.3.4)-(4.3.5), it follows that,

dMt(Γ,A,θ) = −Z̃A,θ
t

ϑ(At)+θt

σ(Xx
t )

dt+ Z̃A,θ
t dWt.

Based on the definition of J̃amb, we derive the following : −dJ̃amb
t (Γ,A,θ) =

(
Ũ(Rt)+ φ̃(At,X

x
t , Z̃

A,θ
t )+ Z̃A,θ

t

θt

σ(Xx
t )

)
dt− Z̃A,θ

t dWt

J̃amb
ι (Γ,A,θ) = e−λιU(ξ)1{ι<+∞},

where φ̃(At,X
x
t , Z̃

A,θ
t ) := −e−λιh(At)+

ϑ(At)

σ(Xx
t )
Z̃A,θ

t dt⊗dP a.e. Through the application of Itô’s

formula, we establish that the pair (Jamb,ZA,θ) satisfies the BSDE (4.3.2), where the generator is
specified as follows : g(t,ω,Xx

t ,y,z) = −λy+U(Rt)+φ(At,X
x
t ,z)+z

θt

σ(Xx
t )

. Given the integra-

bility assumptions on A and Γ , Assumption (H1) is fulfilled. With ϑ
σ bounded, as stipulated in

Assumption 4.2.1, and θ bounded, while σ is assumed to be bounded from below, the existence
of a positive constant K is guaranteed, yielding,∣∣∣∣∣ϑ(At)+θt

σ(Xx
t )

∣∣∣∣∣≤K dt⊗dP a.e .
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Consequently, the generator g associated with the BSDE (4.3.2) exhibits uniform Lipschitz
continuity with respect to the variables (y,z), thereby satisfying Assumption (H2). This
ensures the existence of a unique solution

(
Y,ZA,θ

)
∈ S2

ν−2λ (0,ι;R)× H2
ν−2λ (0,ι;R) for the

BSDE (4.3.2). Given any θ ∈Θ,

ZA,θ
t θt ≥ −

∣∣∣ZA,θ
t

∣∣∣κ= ZA,θ
t θ∗(ZA,θ

t ) dt⊗dP a.e .

Utilizing Theorem 4.3.1, we deduce,

Jamb
t (Γ,A,θ) ≥ Jamb

t (Γ,A,θ∗(ZA,θ
t )) ∀t ∈ [[0,ι[[ P a.s. (4.3.6)

Hence, inequality (4.3.3) is established. □

The subsequent proposition elucidates the derivation of the BSDE that governs the Agent
objective function under the worst-case scenario

Proposition 4.3.3. Consider Γ ∈ AP
ν−2λ, A ∈ AC

ν−2λ. Then, the BSDE that satisfies JC(Γ,A),
is given by −dJC

t (Γ,A) =

(
−λJC

t (Γ,A)+U(Rt)+φ(At,X
x
t ,Z

A
t )−

∣∣∣ZA
t

∣∣∣ κ

σ(Xx
t )

)
dt−ZA

t dWt,

JC
ι (Γ,A) = U(ξ)1{ι<+∞},

where φ is specified as per Lemma 4.3.2.

Proof: For Γ ∈ AP
ν−2λ and A ∈ AC

ν−2λ, we consider the BSDE{
−dYt =

(
−λYt +U(Rt)+φ(At,X

x
t ,Z

A
t )−

∣∣∣ZA
t

∣∣∣ κ
σ(Xx

t )

)
dt−ZA

t dWt,

Yι = U(ξ)1{ι<+∞},
(4.3.7)

Under the fulfillment of Assumptions (H1) and (H2), Theorem (4.3.1) guarantees the exis-
tence of a unique solution (Y,ZA) ∈ S2

ν−2λ (0,ι;R)×H2
ν−2λ (0,ι;R) which resolves BSDE (4.3.7).

Concurrently, Jamb(Γ,A,θ∗) satisfies,

− dJamb
t (Γ,A,θ∗)

=

(
−λJamb

t (Γ,A,θ∗)+U(Rt)+φ(At,X
x
t ,Z

A,θ∗

t )+
θ∗

t

σ(Xx
t )
ZA,θ∗

t

)
dt−ZA,θ∗

t dWt

=

(
−λJamb

t (Γ,A,θ∗)+U(Rt)+φ(At,X
x
t ,Z

A,θ∗

t )− |ZA,θ∗

t |
κ

σ(Xx
t )

)
dt−ZA,θ∗

t dWt.

The terminal condition is specified by Jamb
ι (Γ,A,θ) = U(ξ)1ι<+∞. The uniqueness of the so-

lution to the BSDE (4.3.7) entails that
(
JC(Γ,A) = Jamb(Γ,A,θ),ZA

)
solves (4.3.7), thereby

establishing the proposition. □
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Remark 4.3.4. Hajjej et al. [51] demonstrated that for any Γ ∈ AP
ν−2λ, the optimal response of

the consortium, denoted as A∗ ∈ AC
ν−2λ, can be represented as a deterministic function contingent

upon the project’s social value and the process Z. This functional relationship is expressed as
follows :

A∗
t =A∗(Xx

t ,Z
A,θ∗

t ) = (
h′

ϑ′ )
−1(

ZA,θ∗

t

σ(Xx
t )

)1
{ZA,θ∗

t >0}
(4.3.8)

The subsequent proposition elucidates the dynamics of JC concerning any incentive-compatible
contract.

Proposition 4.3.5. We propose that the generator function, denoted by g(t,ω,x,y,z) := −λy+

U(Rt)−h(A
∗(z))+z ϑ(A∗(z))

σ(x) − |z| κ
σ(x) fulfills Assumptions (H1) and (H2), featuring a Lipschitz

coefficient C2 with C2
2 <ν. Consequently, the evolution of JC for any incentive-compatible contract

(Γ,A∗(Xx,Z)) is delineated by the BSDE with a random terminal condition,
dJC

t (Γ,A∗(Xx,Z)) = −
(
−λJC

t (Γ,A∗(Xx,Z))+U(Rt)+φ(A
∗(Xx

t ,Zt),X
x
t ,Zt)

− |Zt|
κ

σ(Xx
t )

)
dt +ZtdWt,

JC
ι (Γ,A∗(Xx,Z)) = U(ξ)1{ι<+∞}.

where A∗(Xx,Z) is explicitly defined by equation (4.3.8).

Proof: Let Γ ∈ AP
ν−2λ and A∗(Xx,Z) ∈ AC

ν−2λ, we examine the BSDE,{
dYt =−

(
−λYt +U(Rt)+φ(A

∗(Xx
t ,Zt),X

x
t ,Zt)− |Zt|

κ
σ(Xx

t )

)
dt+ZtdWt

Yι = U(ξ)1{ι<+∞}.
(4.3.9)

Under the prescribed conditions outlined in the Proposition, specifically the fulfillment of (H1)
and (H2), Theorem 4.3.1 ensures the existence of a unique solution (Y,Z) ∈ S2

ν−2λ (0,ι;R)×
H2

ν−2λ (0,ι;R) to the BSDE (4.3.9). Simultaneously, by applying the martingale representation
theorem to (JC

t (Γ,A∗(Xx,Z))t≥0, as elucidated in Lemma 4.3.2, we deduce the existence of a
progressively measurable process (Z

A∗(Xx,Z)
t )t such that :

dJC
t (Γ,A∗(Xx,Z)) = −

(
−λJC

t (Γ,A∗(Xx,Z))+U(Rt)+φ(A
∗(Xx

t ,Zt),X
x
t ,Z

A∗(Xx,Z)
t )

−
∣∣∣ZA∗(Xx,Z)

t

∣∣∣ κ
σ(Xx

t )

)
dt +Z

A∗(Xx,Z)
t dWt,

JC
ι (Γ,A∗(Xx,Z)) = U(ξ)1{ι<+∞}.

The uniqueness property of the solution entails that

Zt = Z
A∗(Xx,Z)
t ∀t ∈ [[0,ι[[ P a.s.

Furthermore, given that φ(At,X
x
t ,Zt) ≤ φ(A∗(Xx

t ,Zt),X
x
t ,Zt) ∀t ∈ [[0,ι[[ P a.s ∀A ∈ AC

ν , as per
the comparison part in Theorem 4.3.1), it follows that for all A ∈ AC

ν−2λ

JC
t (Γ,A) ≤ JC

t (Γ,A∗(Xx,Z)), ∀t ∈ [[0,ι[[ P a.s.

□
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Remark 4.3.6. Hajjej et al. [51] established that the process (JC
t (Γ,A∗(Xx,Z)))t≥0 is a solution

to the BSDE characterized by :{
dJC

t (Γ,A∗(Xx,Z)) = −
(
−λJC

t (Γ,A∗(Xx,Z))+U(Rt)+φ(A
∗(Xx

t ,Zt),X
x
t ,Zt)

)
dt+ZtdWt,

JC
ι (Γ,A∗(Xx,Z)) = U(ξ)1{ι<+∞},

differs from the one outlined in Proposition 4.3.5. This observation underscores the distinction
between the optimal efforts A∗(Xx,Z), as defined in (4.3.8), under conditions with and without
ambiguity. The discrepancy arises from the non-identity between the processes Z in the two
scenarios.

Example 4.3.1. Consider fixed parameters α > 0 and β > 0. Define ϑ and h as follows :

ϑ(x) := 1− exp(−αx) and h(x) := exp(βx)−1.

Upon straightforward calculation, we obtain :

A∗(x,z) =
1

α+β
log
( αz

βσ(x)

)
1
{z>σ(x) β

α
}
.

Consequently, the generator of the BSDE (4.3.9) takes the form :

g(t,ω,x,y,z)

=

 −λy+U(Rt)+1−
(

αz
βσ(x)

) β
α+β + z

σ(x) −
(

α
β

) −α
α+β

(
z

σ(x)

) β
α+β − κ

σ(x) |z| if z > σ(x)β
α ,

−λy+U(Rt)−
κ

σ(x) |z| if z ≤ σ(x)β
α ,

it satisfies the Lipschitz condition with respect to both y and z, and the following integrability
condition holds :

E
[∫ ι

0
e(ν−2λ)s|g(s,ω,Xs,0,0)|

2ds

]
= E

[∫ ι

0
e(ν−2λ)s|U(Rs)|

2ds

]
<∞,

Thus, we can conclude that the generator g fulfills the requirements stated in (H1) and (H2).

4.4 Solving the Principal problem

The preceding section provides a comprehensive delineation of incentive-compatible contracts.
The objective function governing the consortium’s actions under any such contract conforms
to a well-defined BSDE with a random termination point. The public’s objective is to devise
contracts that effectively disclose the consortium’s actions, namely, incentive-compatible contracts.
Consequently, the Principal’s stochastic control problem is reframed as a standard stochastic
control scenario, where JC serves as a state variable, and the contract Γ and the optimal effort
A∗(X,Z) serve as control processes. The Principal’s value function can be expressed as follows :

υ(x,y) = sup
(R,ι,A∗(Xx,Z))∈AP

A

EA∗(Xx,Z)

[∫ ι

0
e−δs(ϑ(A∗(Xx

s ,Zs))−κ1{A∗(Xx
s ,Zs)>0}−Rs)ds−e

−διU−1(JC,y
ι )

]
,

(4.4.1)
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where y represents the initial value of the process (JC,y
t )t≥0, which follows the dynamics described

by the following SDE : dJC,y
t =

(
λJC,y

t −U(Rt)−φ(A
∗(Xx

t ,Zt),X
x
t ,Zt)+ |Zt|

κ

σ(Xx
t )

)
dt−ZtdWt,

JC,y
0 = y ≥ x,

(4.4.2)

the set AP
A is defined as follows :

AP
A :=

{
(R,ι,A∗(Xx,Z)) s.t. (Rs)s≥0 is F−Pr nonnegative process,

EP
[∫ ι

0
e(ν−2λ)s(U(Rs)

2 ∨R2
s)ds

]
<∞, ι ∈ T , A∗(Xx,Z) ∈ AC

ν−2λ

}
.

Due to the condition JC,y
0 = y≥ x, the reservation constraint of the Agent is fulfilled. We introduce

the DPP, a cornerstone in stochastic control theory. Specifically, we state : For any stopping time
ζ ∈ T ,

v(x,y) = sup
(R,ι,A∗(Xx,Z))∈AP

A

EA∗(Xx,Z)

[∫ ι∧ζ

0
e−δs(ϑ(A∗(Xx

s ,Zs))−κ1{A∗(Xx
s ,Zs)>0}−Rs)ds

−e−διU−1(JC,y
ι )1ι<ζ +e

−δζv(Xx
ζ ,J

C,y
ζ )1ζ≤ι

]
. (4.4.3)

The HJBVI governing the public value function represents an infinitesimal counterpart of the
DPP. It elucidates the local dynamics of the value function, elucidating the evolution as the
stopping time ζ in (4.4.3) transitions to the initial time.

min
{
δw(x,y)− sup

(r,a)∈R+×R+

[
La,rw(x,y)+ϑ(a)−κ1{a>0}− r

]
,w(x,y)+U−1(y)

}
= 0, (x,y)∈R×(0,∞),

(4.4.4)
where La,r is the generator associated with the SDE(4.4.2). It is given by :

La,rw(x,y) :=
1

2
σ2(x)

∂w2(x,y)

∂x2
+
1

2
(σ(x)

h′(a)

ϑ′(a)
)21{a>0}

∂w2(x,y)

∂y2

+σ2(x)
h′(a)

ϑ′(a)
1{a>0}

∂w2(x,y)

∂x∂y
+(ϑ(a)−κ1{a>0})

∂w(x,y)

∂x

+[λy−U(r)+h(a)]
∂w(x,y)

∂y
.

In the subsequent lemma, we present the boundary condition corresponding to the case where
y = 0.

Lemma 4.4.1. The value function v is subject to the boundary condition :

v(x,0) = 0 for all x ∈ R. (4.4.5)
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Proof: We begin by considering a fixed x ∈ R. Initially, the consortium’s value function at time
0 is 0. Given that the consortium can achieve non-negative utility without exerting any effort,
it follows that JC,y

t ≥ 0 for all t ∈ [[0,ι∗[[ P a.s. Since JC,y
t adheres the SDE (4.4.2), ensuring a

non-negative solution requires Zt = 0 for all t ∈ [[0,ι∗[[ P a.s. By the mapping between Z and
A∗(X,Z), it implies A∗(Xt,Zt) = 0 for all t ∈ [[0,ι∗[[ P a.s. From the perspective of the public, it
becomes highly advantageous to select R∗

t = 0 for all t ∈ [[0,ι∗[[ P a.s. Given that the drift of the
SDE (4.4.2) equals 0, it is optimal for the public to terminate the contract at ι∗ = 0 P a.s. This
demonstrates that v(x,0) = 0 for all x ∈ R. This completes the proof.

□

The forthcoming lemma establishes both upper and lower bounds for the value function v.

Lemma 4.4.2. For all (R,0,A∗(Z)) ∈ AP
A, the value function v(x,y) satisfies the following

inequalities :
−U−1(y) ≤ v(x,y) ≤ L, (4.4.6)

where L= σmax||ϑ/σ||∞
δ .

Proof:

1. Lower Bound : By definition of the value function from Equation (4.4.1), we have :

v(x,y) ≥ −U−1(y)

2. Upper Bound : Since the continuation cost JC,y
ι is non-negative almost surely under any

probability measure P and the rent is also non-negative, we can write :

v(x,y) ≤ sup
(R,ι,A∗(Xx,Z))∈AP

A

EA∗(Xx,Z)

[∫ ι∧ζ

0
γθ∗(Z)

s e−δsϑ(A∗(Xx
s ,Zs))ds

]

3. Applying Assumption and Bounding : By Assumption 4.2.1 and the boundedness of
σ(Xx

. ), we can further bound the expression :

v(x,y) ≤ σmax||ϑ/σ||∞ sup
(R,ι,A∗(Xx,Z))∈AP

A

EA∗(Xx,Z)
[∫∞

0
γθ∗(Z)

s e−δsds

]

≤ σmax||ϑ/σ||∞ sup
(R,ι,A∗(Xx,Z))∈AP

A

Eθ∗(Z)
[∫∞

0
e−δsds

]

≤ σmax||ϑ/σ||∞
δ

= L

Therefore, we have established the desired bounds for the value function v(x,y). □
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The subsequent theorem serves as a verification theorem, pivotal in demonstrating that a smooth
solution to the HJBVI equation (4.4.4) indeed corresponds to the value function. This theorem
facilitates the determination of optimal control in a feedback form.

Theorem 4.4.3. Suppose there exist a constant b̂ > 0 and a continuously differentiable function
w : R×R+ −→ R satisfying the following properties :

(i) Initial Condition : w(x,0) = 0 and w ∈C2(R× [0, b̂)) satisfying a growth condition (denoted
by Eq. (4.4.6)).

(ii) Comparison with Utility : w >−U−1 on R× (0, b̂) and w =−U−1 on R× [b̂,∞).

(iii) HJB Equation : For all (x,y) ∈ R× (0, b̂),

δw(x,y) = sup
(r,a)∈R+×R+

{
La,rw(x,y)+ϑ(a)−κ1{a>0}− r

}
.

(iv) Exit Condition : For all (x,y) ∈ R× [b̂,∞),

δ(−U−1(y)) ≥ sup
(r,a)∈R+×R+

{
La,r(−U−1(y))+ϑ(a)−κ1{a>0}− r

}
,

We also assume that Eq. (4.4.7) holds,

sup
(R,ι,A∗(Z))∈Y

E[|e−διU−1(JC,y
ι )|2]<∞. (4.4.7)

Then, we have :

1. Comparison with value function : For all (x,y) ∈ R×R+, w(x,y) ≥ v(x,y). 2. Verification
with Optimal Control : Suppose there exist measurable, non-negative functions (a∗, r∗) defined on
R+ ×R+ such that for all y ∈ (0, b̂), the following verification condition holds :

sup
(r,a)∈R+×R+

{
La,rw(x,y)−κ1{a>0}+ϑ(a)− r

}
= La∗(x,y),r∗(x,y)w(x,y)+ϑ(a∗(x,y))−κ1{a∗(x,y)>0}− r

∗(x,y)

Furthermore, consider the following SDE :

dJC
t = [λJC

t −U(r∗(Xx
t ,J

C
t ))−φ(a∗(Xx

t ,J
C
t ),Xx

t ,Zt)+ |Zt|κ]dt+ZtdWt

JC
0 = y

If this SDE admits a unique solution ĴC
t , we define the stopping time ι∗ as :
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ι∗ := inf{t≥ 0 : w(X,ĴC
t ) ≤ −U−1(ĴC

t )}. (4.4.8)

We further assume that (r∗(X,ĴC), ι∗,a∗(X,ĴC)) lies in the set of admissible controls AP
A and

EP[e(ρ−2λ)ι∗
ĴC

ι∗
2
1{ι∗<∞}]<∞.

Then, if w is a solution of (4.4.4) with boundary condition given by (4.4.5), we have :

w = v, meaning w coincides with the value function v. ι∗ is an optimal stopping time for the
problem (4.4.3).

Proof:

1. Let (x,y) ∈ R×R+ and an admissible control (R,ι,A∗(Xx,Z)) ∈ AP
A. If y = 0, then from

assumption(i), we have v(x,0) = w(x,0) = 0. We assume that 0 < y. From (iii) and (iv),
we have

δw(x,y) ≥ sup
(r,a)∈R+×R+

{La,rw(x,y)+ϑ(a)−κ1{a>0}− r}, (4.4.9)

For n ∈ N, We introduce the stopping time ιn :

ιn := ι∧ inf{t≥ 0,σ(Xx
t )|
∂w(Xx

t ,J
C,y
t )

∂x
+
∂w(Xx

t ,J
C,y
t )

∂y

h′(A∗(Xx
t ,Zt))

ϑ′(A∗(Xx
t ,Zt))

1{A∗(Xx
t ,Zt)>0}| ≥ n}.

From (i)-(ii), we have w is continuous on R×R+, w ∈ C2(R× [0, b̂)) and w = −U−1 ∈
C2([b̂,∞)), then w is continuous and piece-wise C2 on R×R+. Applying the generalized
Itô’s formula (see Krylov [61], Theorem 2, p. 124) to the process e−δtγ

θ∗(Z)
t w(Xx

t ,J
C,y
t )

between 0 and ιn, using inequality (4.4.9) and Bayes formula, we obtain :

w(x,y)

≥ EA∗(Xx,Z)[γθ∗(Z)
ιn

∫ ιn

0
e−δs(ϑ(A∗(Xx

s ,Zs))−κ1{A∗(Xx
s ,Zs)>0}−Rs)ds+e

−διnγθ∗(Z)
ιn

w(Xx
ιn
,JC,y

ιn
)]

= E[γA∗,θ∗
ιn

∫ ιn

0
e−δs(ϑ(A∗(Xx

s ,Zs))−κ1{A∗(Xx
s ,Zs)>0}−Rs)ds+e

−διnγA∗,θ∗
ιn

w(Xx
ιn
,JC,y

ιn
)]

(4.4.10)

where γA∗,θ∗
ιn

= γ
A∗(Xx,Z)
ιn γ

θ∗(Z)
ιn . In the next step, we show that the sequence

(
γA∗,θ∗

ιn

∫ ιn

0
e−δs(ϑ(A∗(Xx

s ,Zs))−κ1{A∗(Xx
s ,Zs)>0}−Rs)ds+e

−διnγA∗,θ∗
ιn

w(Xx
ιn
,JC,y

ιn
)
)

n

is uniformly integrable under P. Let p ∈ (1,2), we define p1 :=
2

2−p , p2 :=
2
p the conjugate

of p1. We denote by p̂ := pp1 ∈ (2,∞). Using Hölder’s inequality, and the growth condition
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of w, we obtain :

E[
∣∣∣e−διnγA∗,θ∗

ιn
w(Xx

ιn
,JC,y

ιn
)
∣∣∣p] ≤ E[

∣∣∣Le−διnγA∗,θ∗
ιn

+e−διnγA∗,θ∗
ιn

U−1(JC,y
ιn

)
∣∣∣p]

≤ CE[
∣∣∣γA∗,θ∗

ιn

∣∣∣p + ∣∣∣e−διnγA∗,θ∗
ιn

U−1(JC,y
ιn

)
∣∣∣p]

≤ C

(
E[
∣∣∣γA∗,θ∗

ιn

∣∣∣p]+E[
∣∣∣γA∗,θ∗

ιn

∣∣∣p̂] 1
p1 E[

∣∣∣e−διnU−1(JC,y
ιn

)
∣∣∣pp2

]
1

p2

)
≤ C

(
E[
∣∣∣γA∗,θ∗

ι

∣∣∣p]+E[
∣∣∣γA∗,θ∗

ι

∣∣∣p̂] 1
p1 E[

∣∣∣e−διnU−1(JC,y
ιn

)
∣∣∣2] 1

p2

)
,

where C is a generic positive constant that could change from line to line.

From Jensen’s inequality, we have E[
∣∣∣γA∗,θ∗

ι

∣∣∣p] ≤
(
E[
∣∣∣γA∗,θ∗

ι

∣∣∣p̂]) 1
p1 . Additionally, Assumption

(4.4.7) substantiates this conclusion :

sup
n∈N

E[
∣∣∣e−διnγA∗,θ∗

ιn
w(Xx

ιn
,JC,y

ιn
)
∣∣∣p]<∞

Using the same arguments as above, we get

E[
∣∣∣∣γA∗,θ∗

ιn

∫ ιn

0
e−δs(ϑ(A∗(Xx

s ,Zs))−κ1{A∗(Xx
s ,Zs)>0}−Rs)ds

∣∣∣∣p]
≤ E[

∣∣∣γA∗,θ∗
ιn

∣∣∣pp1

]
1

p1 E[
∣∣∣∣∫ ιn

0
e−δs(ϑ(A∗(Xx

s ,Zs))−κ1{A∗(Xx
s ,Zs)>0}−Rs)ds

∣∣∣∣pp2

]
1

p2

≤ CE[
∣∣∣γA∗,θ∗

ι

∣∣∣p̂] 1
p1 E[

∫∞
0
e−δsds

∫ ι

0
e−δs(ϑ(A∗(Xx

s ,Zs))−κ1{A∗(Xx
s ,Zs)>0}−Rs)

2ds]
1

p2

≤ CE[
∣∣∣γA∗,θ∗

ι

∣∣∣p̂] 1
p1 E[

∫ ι

0
e−δs(ϑ(A∗(Xx

s ,Zs))
2 +κ21{A∗(Xx

s ,Zs)>0}+R
2
s)ds]

1
p2 ,

where the second inequality is obtained by using Hölder’s inequality and since
∫ιn

0 e−δsds≤∫∞
0 e−δsds a.s. As (R,ι,A∗(Xx,Z)) ∈ AP

A, we have

sup
n∈N

E[
∣∣∣∣γA∗,θ∗

ιn

∫ ιn

0
e−δs(ϑ(A∗(Xx

s ,Zs))−κ1{A∗(Xx
s ,Zs)>0}−Rs)ds

∣∣∣∣p]<∞
According to the Theorems A.1.2 and A.1.1 in Pham [83], we have the convergence of the
previous sequences in L1 (P). By passing to the limit in (4.4.10), we obtain

w(x,y)

≥ EA∗(Xx,Z)[γθ∗(Z)
ι

∫ ι

0
e−δs(ϑ(A∗(Xx

s ,Zs))−κ1{A∗(Xx
s ,Zs)>0}−Rs)ds−e

−διγθ∗(Z)
ι U−1(JC,y

ι )],

and so for all (x,y)∈R×(0,∞), we obtain w(x,y)≥ v(x,y) and then for all (x,y)∈R×R+

we have :

w(x,y) ≥ v(x,y). (4.4.11)

89



Chapter 4: Public Private Partnerships contract under moral hazard and ambiguous
information

2. We fix (x,y) ∈ R× (0,∞). Let ιn be the stopping time given by

ιn = ι∗∧ inf{t≥ 0,σ(Xx
t )|
∂w(Xx

t , Ĵ
C,y
t )

∂x
+
∂w(Xx

t , Ĵ
C,y
t )

∂y

h′(a∗(Xx
t , Ĵ

C,y
t ))

ϑ′(a∗(Xx
t , Ĵ

C,y
t ))

1
{a∗(Xx

t ,ĴC,y
t )>0}

|≥n}.

Since [[0,ιn[[ ⊂ [[0,ι∗[[, then by (ii), w(Xx
t , Ĵ

C,y
t ) > −U−1(ĴC,y

t ) on [[0,ιn[[, and so by (iii),
we have :

δw(Xx
t , Ĵ

C,y
t )−La∗(Xx

t ,ĴC,y
t ),r∗(Xx

t ,ĴC,y
t )w(Xx

t , Ĵ
C,y
t )

−
(
ϑ(a∗(Xx

t , Ĵ
C,y
t ))−κ1

{a∗(Xx
t ,ĴC,y

t )>0}
− r∗(Xx

t , Ĵ
C,y
t )

)
= 0 on [[0,ιn[[.

Therefore

w(x,y) = Ea∗(Xx,ĴC,y)[γθ∗(Z)
ιn

∫ ιn

0
e−δs(ϑ(a∗(Xx

s , Ĵ
C,y
s ))−κ1

{a∗(Xx
s ,ĴC,y

s )>0}
−a∗(Xx

s , Ĵ
C,y
s ))ds]

+Ea∗(Xx,ĴC,y)[e−διnγθ∗(Z)
ιn

w(Xx
ιn
, ĴC,y

ιn
)]

Using the same previous steps, we can pass to the limit. From the definition of ι∗ and since
ιn −→ ι∗ when n goes to infinity we obtain :

w(x,y)

= Ea∗(Xx,ĴC,y)[γ
θ∗(Z)
ι∗

∫ ι∗

0
e−δs(ϑ(a∗(Xx

s , Ĵ
C,y
s ))−κ1

{a∗(Xx
s ,ĴC,y

s )>0}
−a∗(Xx

s , Ĵ
C,y
s ))ds]

−Ea∗(Xx,ĴC,y)[e−δι∗
γ

θ∗(Z)
ι∗ U−1(ĴC,y

ι∗ )]

≤ v(x,y).

As w(x,0) = v(x,0) for all x ∈ R, we deduce that for all (x,y) ∈ R×R+, we have w(x,y) ≤
v(x,y). Combining with inequality (4.4.11), we deduce that w = v.

□

Remark 4.4.4. The optimal rent r∗(x,y) depends on U ′, and the marginal value, ∂v(x,y)
∂y , of the

value function v(x,y). Specifically, it is given by :

r∗(x,y) = (U ′)−1(−
1

∂υ(x,y)
∂y

)1 ∂υ(x,y)
∂y

<0

.

The indicator function 1 ∂v(x,y)
∂y

<0
ensures that the optimal rent is only positive when the marginal

value of wealth is negative.
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4.5 Numerical study

In this section, we undertake the numerical solution of the HJBVI presented in equation (4.4.4).
Initially, we confine the domain to the intervals [−x̄, x̄] and [0, ȳ], where x̄ and ȳ denote empirically
determined boundaries. Subsequently, employing finite difference approximations, we discretize
equation (4.4.4). Finally, the resulting discrete variational inequality is solved utilizing the Howard
algorithm.

4.5.1 Numerical scheme

We utilize the finite difference method to discretize the HJBVI (4.4.4). This method involves
replacing the domain with a bounded interval, specifically [−x̄, x̄], [0, ȳ]. Let ∆x (resp. ∆y) be
the finite difference step on the state coordinate. The grid points are defined as x∆ = (xi)i=1,N ,
where xi = −x̄+ i∆x, and y∆ = (yi)i=1,N , where yi = i∆y. These points form the grid Ω∆ :=

{−x̄+ i∆x, i= 1, ...,N }× {j∆y, j = 1, ...,N }. Next, we approximate the derivatives of the value
function υ using the following expressions :

∂υ(x,y)

∂x
≃

{
υ(x+∆x,y)−υ(x,y)

∆x
if -ϑ(a)+κ1{a>0} ≥ 0,

υ(x,y)−υ(x−∆x,y)
∆x

if not,

∂υ(x,y)

∂y
≃

{
υ(x,y+∆y)−υ(x,y)

∆y
if -λy+U(r)−h(a) ≥ 0,

υ(x,y)−υ(x,y−∆y)
∆y

if not,
∂υ2(x,y)

∂x2
≃ υ(x+∆x,y)−2υ(x,y)+υ(x−∆x,y)

∆2
x

,

∂υ2(x,y)

∂y2
≃ υ(x,y+∆y)−2υ(x,y)+υ(x,y−∆y)

∆2
y

,

∂υ2(x,y)

∂x∂y
≃ υ(x+∆x,y+∆y)−υ(x+∆x,y)−υ(x,y+∆y)+2υ(x,y)

2∆x∆y
,

−
υ(x−∆x,y)+υ(x,y−∆y)−υ(x−∆x,y−∆y)

2∆x∆y
,

υ(x,0) = 0, υ(x, ȳ) = −U−1(ȳ),
∂υ(−x̄,y)

∂x
= 0,

∂υ(x̄,y)

∂x
= 0.

We represent the linear operator by the symbol L∆,a,r. This operator takes the form of a block
tridiagonal matrix with dimension (N −1)2 × (N −1)2

[L∆,(a,r)]k,k−1 = T̄∆,(a,r)
k ; [L∆,(a,r)]k,k =D

∆,(a,r)
k ; [L∆,(a,r)]k,k+1 = T∆,(a,r)

k , k = 1, ...,N −1;

T̄∆,(a,r)
k , D∆,(a,r)

k , T∆,(a,r)
k are tridiagonal matrices (N −1)× (N −1) defined by

[T̄∆,(a,r)
k ]i,i−1 =

γk,i

2∆x∆y
; [T̄∆,(a,r)

k ]i,i =
β1,−

k,i

∆x
+

α1
k,i

∆2
x
−

γk,i

2∆x∆y
; [T̄∆,(a,r)

k ]i,i+1 = 0;
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[D
∆,(a,r)
k ]i,i−1 =

β2,−
k,i

∆y
+

α2
k,i

∆2
y
−

γk,i

2∆x∆y
; [D

∆,(a,r)
k ]i,i = δ−

∣∣β1
k,i

∣∣
∆x

−

∣∣β2
k,i

∣∣
∆y

−2

(
α1

k,i

∆2
x
+

α2
k,i

∆2
y
−

γk,i

2∆x∆y

)
;

[D
∆,(a,r)
k ]i,i+1 =

β2,+
k,i

∆y
+

α2
k,i

∆2
y
−

γk,i

2∆x∆y
; [T∆,(a,r)

k ]i,i−1 = 0; [T∆,(a,r)
k ]i,i =

β1,+
k,i

∆x
+

α1
k,i

∆2
x
−

γk,i

2∆x∆y
;

[T∆,(a,r)
k ]i,i+1 =

γk,i

2∆x∆y
, i= 1, ...,N −1;

where βl,+
i,j (x,y) = max(βl

i,j ,0), β
l,−
i,j = max(−βl

i,j ,0), l = 1,2, and the parameters γ, β1, β2, α1,
α2 are given as :
β1

i,j =−ϑ(a)+κ1{a>0}, β2
i,j =−λy−h(a)+U(r), α1

i,j =−1
2σ

2(xi)1a>0, α2
i,j =−1

2(σ(xi)
h′(a)
ϑ′(a))

21a>0,
γi,j =−σ2(xi)

h′(a)
ϑ′(a)1a>0.

Through this process, we arrive at a system of (N −1)2 linear approximation equations. The
vector V ∆ = (v∆

1 , ...,v
∆
N−1) represents the collection of unknowns associated with this system.

Each sub-vector within V ∆, denoted as v∆
i = (v∆

i,1, ...,v
∆
i,N−1), has dimension (N −1).

min
[

inf
(r,a)∈R+×R+

[L∆,(a,r)V ∆ +B∆,(a,r)],V ∆ +U−1(y∆)

]
= 0 (4.5.1)

where U−1(y∆) := (U−1(y∆
i ))i=1..N−1. Each element U−1(y∆

i ) is an R(N−1) vector given by
(U−1(yi), ....,U

−1(yi)). Furthermore, we define the vector B∆,(a,r) as :

B∆,(a,r) = (B∆,(a,r)
1 + T̄∆,(a,r)

1 v∆
1 ,B

∆,(a,r)
2 , ...,B

∆,(a,r)
N−2 ,B

∆,(a,r)
N−1 +A

∆,(a,r)
N−1 v∆

N−1),

such that :

B
∆,κ,(a,r)
k =



−ϑ(a)+κ+ r+
[
T̄∆,(a,r)

k

]
1,0
v∆

k−1,0 +
[
D

∆,(a,r)
k

]
1,0
v∆

k,0

−ϑ(a)+κ+ r
...

−ϑ(a)+κ+ r

−ϑ(a)+κ+ r+
[
D

∆,(a,r)
k

]
N−1,N

v∆
k,N +

[
T∆,(a,r)

k

]
N−1,N

v∆
k+1,N


.

Here, we address the solution of the discrete variational inequality (4.5.1) by employing Howard’s
algorithm. We detail the application of this algorithm as follows :
The Howard algorithm : It consists in computing iteratively two sequences ((an

i,j , r
n
i,j)i,j=1,...N−1)n≥1

and (V ∆,n)n≥1, as follows :
• Step 2n−1. To the vector V ∆,n, we associate the strategy

(an, rn) ∈ argmin
a,r

{L∆,(a,r)V ∆,n +B∆,(a,r)}.
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• Step 2n. From the strategy (an, rn), we compute a partition (Dn
1 ∪Dn

2 ) of R2
+ defined by

L∆,(an,rn)V ∆,n +B∆,(an,rn) ≤ V ∆,n +U−1(y∆), onDn
1 ,

L∆,(an,rn)V ∆,n +B∆,(an,rn) > V ∆,n +U−1(y∆), onDn
2 .

The solutions V ∆,n+1 is obtained by solving two linear systems

L∆,(an,rn)V ∆,n+1 +B∆,(an,rn) = 0, onDn
1 ,

and
V ∆,n+1 +U−1(y∆) = 0, onDn

2 .

• If |V ∆,n+1 −V ∆,n| ≤ ε, stop, otherwise, go to step 2n+1.
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The Howard Algorithm involves an iterative procedure aimed at computing two sequences :

A sequence of pairs, denoted as ((an
i,j , r

n
i,j)i,j=1,...,N−1)n≥1.

A sequence of value functions, denoted as (V ∆,n)n≥1.

The algorithm proceeds through the following steps at each iteration n :

1. Minimization Step (Step 2n−1) : At this stage, we associate the vector V ∆,n with the
strategy

(an, rn) ∈ argmin
a,r

{L∆,(a,r)V ∆n +B∆,(a,r)}.

2. Partitioning Step (Step 2n) : Based on the strategy (an, rn), we establish a partition
(Dn

1 ∪Dn
2 ) of R2

+ defined by

L∆,(an,rn)V ∆,n +B∆,(an,rn) ≤ V ∆,n +U−1(y∆), onDn
1 ,

L∆,(an,rn)V ∆,n +B∆,(an,rn) > V ∆,n +U−1(y∆), onDn
2 .

3. Update Step : Two linear systems are solved : The first system ensures the updated value
function V ∆,n+1 equals zero within region Dn

1 , i.e.

L∆,(an,rn)V ∆,n+1 +B∆,(an,rn) = 0, onDn
1 .

The second system ensures the updated value function V ∆,n+1 plus a specific threshold (U−1(y∆))
equals zero within region Dn

2 ,

V ∆,n+1 +U−1(y∆) = 0, onDn
2 .

4. Convergence Check : Should the condition |V ∆,n+1−V ∆,n| ≤ ε be met, the algorithm halts ;
otherwise, it proceeds to step 2n+1.

4.5.2 Numerical results

In this subsection, we present a numerical analysis to investigate the impact of ambiguity on the
optimal effort level and rent within the consortium formation model. We define the key functions
involved in the model :
• Impact of effort on social welfare : ϑ(x) = 3(1−e−αx)

• Cost of effort : h(x) = eβx −1

• Consortium’s utility : U(x) = xp

The corresponding parameters are chosen as α= 0.1, β = 0.1, p= 1
3 and σ = 2. Additionally, the

preference parameters for the public and consortium are set at δ = λ= 0.085.
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We numerically explore how varying the ambiguity level (κ) affects the optimal solution. The
analysis considers four cases : κ= 0, 0.25, 0.5, and 1. The initial value for the value function is
set to v(0) = 0, and the threshold value is y = 0.5.

Figure 4.1 depicts the value function across the range [0,y] for the specific case of κ= 0.5. Figures
4.2, 4.3, and 4.4 will subsequently present the value function, optimal effort level, and optimal
rent, respectively, for different values of κ. Figure 4.5 will illustrate the relationship between the
optimal rent and the optimal effort level.
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Figure 4.1 – Value function across the interval [0, ȳ].

We observe in Figure 4.1 that the value function is concave, in accordance with Sannikov [85],
Dumav and Riedel [43], and Hajjej, Hillairet and Mnif [51].
Figure 4.2 plots the value function for different values of κ. We observe that the ambiguity
influences the continuation region. The higher of κ, the smaller the continuation region. In
particular, the value function of the public without ambiguity is higher than the one with
ambiguity. Figure 4.3 and 4.4, respectively, plot the optimal effort and the optimal rent on the
continuation region for different values of κ. When κ is higher, the consortium makes more effort
to compensate the ambiguity and to increase the social welfare. However, at a high level of the
consortium’s value function, the public pays a higher rent when the ambiguity decreases.
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Figure 4.2 – Value function for σ = 2 and different κ
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Figure 4.4 – Optimal rent for σ = 2 and different κ

Figure 4.5 shows the relationship between the optimal effort and the optimal rent.
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Figure 4.5 – Optimal rent versus optimal effort with ambiguity
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Figure 4.6 – Optimal rent versus optimal effort without ambiguity

The optimal rent versus the optimal effort is a decreasing function, which is by the results of
Sannikov [85] and Dumav and Riedel [43]. It is more costly for the public to incentivize the
consortium to start to work. In fact, for a low level of effort, the Principal pays more to the
Agent to make an effort. Figure 4.5 shows that, in the presence of ambiguity, the public stops
to pay rent when the level of effort exceeds 7.3. On the other hand, from figure 4.6, we remark
that in the absence of ambiguity, the public stops paying rent from level 2.25. From figures 4.5
and 4.6, when the consortium receives a rent, we notice that its level is higher when there is no
ambiguity.

4.6 Conlusion

This work investigates the optimal Public Private Partnership (PPP) contract between a public
entity and a consortium under the possibility of contract termination by the public. The study
addresses a Principal-Agent problem with moral hazard and Knightian uncertainty, characterized
by κ-ignorance, and formulates the interaction as a Stackelberg leadership model. Through a
series of steps, including worst-case scenario analysis, the agent’s best response is derived, and
the public’s problem is solved by maximizing the social value minus the rent paid. Numerical
methods, specifically the Howard algorithm, are employed to compute the public value function,
optimal effort, and rent. The results indicate that increased Knightian uncertainty leads to higher
optimal effort from the consortium and a reduction in the public’s value function. While the
model and methods provide valuable insights, future research could benefit from calibration with
real-world PPP data to better assist public authorities in contract design.
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Conclusion

In summary, this comprehensive study substantially contributes to both the theoretical and
applied realms. The theoretical exploration begins by delving into fundamental questions regarding
the well-posedness of BSDEs. This includes a driving process involving a Poisson random measure
subject to compensation alongside an independent Wiener process. Through rigorous proofs under
key assumptions, the study underscores the importance of a generator with logarithmic growth
in both (y,z) variables and Lipschitz continuity concerning u. Relaxing Lipschitz conditions in
Assumption 2 adds nuance to our understanding, allowing the generator to exhibit logarithmic
growth in all variables.

The introduction of the exponential transformation proves instrumental in demonstrating the
equivalence between solutions of the auxiliary BSDEJ and the primary BSDEJ. Additionally, a
comprehensive discussion on the maximum principle, specifically in scenarios devoid of the jump
component, enriches the theoretical landscape.

Simultaneously, the practical front of this research focuses on Public-Private Partnerships (PPPs).
Using stochastic control techniques and the HJB Variational Inequality leads to developing a
robust solution methodology. This methodology targets enhancing contract design, risk mana-
gement, and value creation in public infrastructure projects and services. The inclusion of a
numerical study employing finite difference methods and the Howard algorithm sheds light on
the optimal rent and effort under real-world uncertainty. This emphasizes the importance of
addressing Knightian uncertainty in PPP contracts.

This dual-pronged approach, addressing theoretical intricacies before delving into practical
challenges, positions this research to have a lasting impact on both the theoretical foundations of
BSDEs and stochastic control problems and the implementation of PPPs.
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Perspectives

As this research journey unfolds, several promising avenues beckon for further investigation. One
crucial aspect deserving of future attention involves venturing into a multidimensional framework
by incorporating multiple agents. This extension would include considering scenarios where the
efforts of these agents exert influence on both the drift and volatility of social value.

Expanding the scope of this study could entail exploring contracts executed among numerous
agents and principals operating under the umbrella of a single company. In this intricate setup,
each agent operates under the stewardship of a principal, fostering complex interactions, whether
positive or negative. Additionally, each agent retains the prerogative to terminate their contract,
albeit subject to an associated penalty.

Upon formulating these problems mathematically, we are bound to encounter theoretical chal-
lenges, which add an extra layer of excitement to the research. Among the critical hurdles we
may face are the existence and uniqueness of certain types of multidimensional BSDEs and the
comparison theorem in the presence of a stochastic control problem. The latter may represent va-
rious elements, including agents’ actions and compensations. While challenging, these theoretical
obstacles contribute to the research’s depth and significance.

In conclusion, this thesis lays the foundation for future research pursuits examining dynamic
interactions among multiple principals and agents. These potential directions not only promise to
enrich our understanding of complex economic interactions but also present theoretical challenges
that are central to advancing the field. By connecting these perspectives with the current research
on Public-Private Partnerships, the proposed avenues hold the potential for both theoretical
insights and practical applications in real-world decision-making scenarios.
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