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Resumé

La méthode de décomposition d’Adomian (ADM) a reçu beaucoup d’attention dans Ces
dernières années en mathématiques appliquées en général et dans le domaine des solutions en série
en particulier. Il s’agit d’une technique efficace pour la résolution analytique d’une large classe de
systèmes dynamiques. L’équation de bilan de population (PBE) a été utilisée pour modéliser une
variété de processus particulaires. Cependant, seuls quelques cas où des solutions analytiques pour
le processus de rupture/coalescence existent, la plupart de ces solutions sont pour le système spa-
tialement homogène. L’objectif principal de cette thèse est de dériver des solutions analytiques de
PBE spatialement inhomogènes pour les processus de rupture/coalescence en utilisant la méthode
de décomposition d’Adomian qui utilise un type spécifique de polynômes appelés polynômes d’Ado-
mian pour décomposer la partie non linéaire d’une telle équation. Les résultats obtenus indiquent
que l’ADM évite les problèmes de stabilité numérique qui caractérisent souvent les techniques
numériques générales dans ce domaine.

Mots clés: Modèle de Bilan de population, Méthode decompositionnelle d’Adomian, Polynômes
d’Adomian, Convergence, Equation intégro-differentielle .



Abstract

The Adomian decomposition method has received much attention in recent years in applied
mathematics in general and in the area of series solutions in particular. It is an effective technique
for the analytical solution of a wide class of dynamical systems. The population balance equa-
tion (PBE) has been used to model a variety of particulate Process. However, only a few cases
where analytical solutions for the breakage/coalescence process exist, most of these solutions are
for the spatially homogeneous system. The main objective of this thesis is to derive analytical
solutions of spatially inhomogeneous PBE For breakage/ coalescence processes using the Adomian
decomposition method which uses a specific kind of polynomials named ”Adomian’s polynomials”
to decompose the nonlinear part of such equation. The results obtained indicate that the ADM
avoids numerical stability problems that often characterize general numerical techniques in this
area.

Key words: Population Balance Model, Adomian Decomposition Method, Adomian Polyno-
mials, Convergence, Integro-differential Equation.
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Introduction

Population Balances may be viewed as either an ancient subject with origins in the Boltz-
mann equation from more than a century ago or as a topic that is relatively contemporary
given the diversity of applications that engineers have lately used population balances.

The PBE determines the temporal and spatial evolution of particle distribution due to the inter-
actions within the population of particles on the one hand and the interaction of particles and the
continuous phase in which they are embedded on the other hand [69]. It is a hyperbolic integro-
partial differential equation characterized by a nonlinear source term. This source term accounts
for various mechanisms by which particles of a specific state can either form or disappear from the
system. These mechanisms are discrete and relatively instantaneous compared to the system scale,
such as particle breakage, aggregation, growth, and nucleation [69].

In the framework of PBEs, the state of each individual particle is characterized by a particle
state vector containing external coordinates, such as the position of a particle in physical space,
and internal coordinates representing the particle properties, such as particle size, volume, etc. If
xe represents the external and xi the internal coordinates, then the particle state vector x is given
by x = (xe, xi). A population of particles is characterized by its particle property distribution,
which is described mathematically by a number density function f(t, x) and is a function of time
t and the state vector x. This function represents the number of particles per volume of particle
state space. It is understood that this deterministic approach is only reasonable if large populations
are considered. It is further assumed that the number density function is sufficiently smooth to be
differentiated with respect to its arguments. The actual number of particles in a certain area of the
particle state space is determined by the integral of the number density function over this area.

Several numerical techniques, such as weighted residual method, moments’ method, orthogonal
collocation, finite element collocation and pivot techniques, have been proposed in the literature
and reviewed by [25, 53, 55–57, 71, 73]. In [71], a comprehensive review of the numerical methods
available for solving the PBE was discussed until the mid-1980s. In a series of papers, Kumar
and Ramkrishna [55–57]presented critical comments on previous numerical techniques for solving



ix

PBE until the mid-1990s. These authors discovered the internal consistency problem using direct
discretization methods based on finite difference schemes. In this regard, they presented the fixed
pivot and movable pivot methods to overcome this problem. Recently, Santos et al [73] used the
generalized double moment quadrature (MDQMG) method to solve the PBE with only moments
where the distribution was recovered using parallelized algorithms to reduce the computational
time. On the other hand, Attarakih [25] presented cumulative MDQM (MDQMC) to overcome the
distribution reconstruction which is lost using the application of MDQMG.

George Adomian, an American Applied Mathematician (1922-1996), introduced a potent decom-
position methodology for the practical solution of linear or nonlinear, deterministic or stochastic
operator equations, including ordinary differential equations, partial differential equations, inte-
gral equations, etc. The technique has since come to be known as the Adomian decomposition
method, or simply the ADM. It is a substantial, potent technique that offers an effective way to
solve differential equations analytically AND numerically, simulating real-world physical applica-
tions. Recently, a significant amount of study has been put into applying this approach to a variety
of partial differential equations, integral differential equations, and linear and nonlinear ordinary
differential equations.

Adomian [12–14, 16] and others have successfully applied the ADM to algebraic equations, or-
dinary, partial, delay, and non-integer order or fractional differential equations [23, 32, 74] for a
wide class of nonlinearities, including polynomial, exponential, trigonometric, hyperbolic, compos-
ite, negative power, radical, and even decimal power nonlinearities. The ADM solves nonlinear
differential equations for any analytic nonlinearity. The ADM allows one to solve nonlinear differ-
ential equations without having to appeal to the decidedly questionable practices of perturbation
or linearization.

The limitation of such an approach is its dependence on particle breakup and coalescence kernels,
and therefore each problem must be treated independently. However, this method still provides
analytical solutions in many cases, which are useful for simplified analytical systems and bench-type
problems for examining numerical techniques.

A notable contribution was made by Hasseine, Bellagoun, and H.J. Bart [45] those who applied
for the first time a semi-analytical technique the ADM to simulate the operation of a reactor in
continuous and batch mode using the resolution of the PBE. This method is exempt from crucial
problems of numerical discretization and stability which often characterize common numerical tech-
niques in this field. The proposed approach is widely used in applied sciences and engineering to
solve problems involving differential, integral, integro-differential, delay differential, and systems of
such equations [4, 33–36,45].



x 0. Introduction

Unlike prior publications which consider the spatially homogeneous case of PBE. The goal of
this study is to employ this novel methodology, the ADM to solve the population balance equations
in the spatially inhomogeneous case.

Thesis outline
This thesis is in the form of

The first chapter is devoted to some definitions and theorems, in addition to some important
spaces in the next chapters.

The second chapter the population balance equation model is presented. also included a review
concerning the existence and uniqueness of the PBE’s solution.

The third chapter describes the method of Adomain, and the study of its convergence is reviewed.

The fourth chapter presents the results obtained by using the ADM in continuous and batch
systems for different cases.

Finally, a general conclusion summarizes all the important results obtained in this work.
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1
Preliminary Concepts

The first chapter introduces briefly some basic concepts and fundamental theorems concerning
operators, Semigroup, and multilinear maps. Some definitions will also be discussed in this chapter
and are very important in the next chapters as Sobolev spaces W s,p[E] and Lp spaces. The main
references of this chapter are [5], [66], [8].
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4 1. Preliminary Concepts

1.1 Operators Notion

1.1.1 Linear operators

Definition 1.1.1
Let X,Y be K-vector spaces, an operator L : X −→ Y is said to be linear if

L(λ1u+ λ2v) = λ1L(u) + λ2L(v), ∀u, v ∈ X, ∀λ1, λ2 ∈ K(K = R,C)

For a linear operator L, we generally write L(u) as Lu.

Let X and Y be normed vector spaces and L : X → Y is a linear operator. The following
theorem characterized the continuity of a linear operator.

Theorem 1.1.2
The following properties are equivalent:

1. L is continuous.
2. L is continuous at 0.
3. There exist a constant c such that

‖Lx‖Y ≤ c‖x‖X , ∀x ∈ X (1.1.1)

Let X and Y be normed vector spaces.

Definition 1.1.3
A linear operator L : X → Y which is continuous is said to be bounded.

Proposition 1.1.4
If the operator L : X −→ Y is linear and continuous, we have

C = sup
u 6=0,u∈X

(
‖Lx‖Y
‖u‖X

)
= sup

‖u‖X ≤1
‖Lu‖Y = sup

‖u‖X =1
‖Lu‖Y < +∞

And
C = inf{α ≥ 0, ‖Lu‖Y ≤ α‖u‖X}

the number C is called the norm of the operator L.
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1.1.2 Integral operator

1.1.2.1 The Urysohn integral operator

The Urysohn operator and its continuity properties are defined in this section. This operator is, at
present, widely used in applications.

Definition 1.1.5
Let K(s, t, u), ( s, t ∈ Ω, −∞ < u < +∞, Ω a measurable subset of Rn) given function of
three variables. Then, the operator U defined as

U(u)(s) =
∫
Ω

K(s, t, u(t)) dt

is called the Urysohn operator.

The following theorems establish sufficient conditions for the Urysohn operator U to be contin-
uous and compact on the space C and Lp, respectively, using the fact that in a compact set, the
continuous functions are uniformly continuous.

Theorem 1.1.6 (Ladyzhenskii [54])

Suppose that the function

K(s, t, u), (s, t ∈ Ω,−∞ < u < +∞)

satisfies the following conditions.
1. K(s, t, u) is continuous with respect to u for almost all s, t ∈ Ω × Ω and measurable

with respect to t for all s ∈ Ω,−∞ < u < +∞.
2. for every positive number α ∫

Ω

sup
|u|≤α

|K(s, t, u)| dt <∞

lim
‖h‖→0

∫
Ω

sup
|u|≤α

|K(s+ h, t, u)−K(s, t, u)| dt = 0

Then, the Urysohn operator U acts on C and is continuous and compact.
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Theorem 1.1.7 (Krasnoselskii and Ladyzenskii )

Let the function K(s, t, u) (s, t ∈ Ω × Ω, −∞ < u < +∞ , Ω a bounded closed subset of
Rn) be continuous with respect to u and satisfy the inequality

|K(s, t, u)| ≤ R(s, t)(a+ b|u|
p
q )

for all s, t ∈ Ω× Ω, −∞ < u < +∞ with∫
Ω

∫
Ω

|R(s, t)|p ds dt < +∞, a, b > 0

Then, the Urysohn operator U is a compact and continuous operator on Lp.

1.1.2.2 The Nemytskii operator

Let S be a nonempty set, X and Y be Banach spaces over a field K = R or C, and a nonempty
open set U ⊂ E, let G, F, and H be vector spaces1 of functions acting from S into E, from U into
F , and from S into F , respectively.

Given the functions

ψ :
S × U −→ F

(s, u) 7−→ ψ(s, u)
, g :

S −→ U

s 7−→ g(s)

The Nemytskii operator or a superposition operator Nψ is defined by

Nψ(g)(s) := (Nψg)(s) := ψ(s, g(s)), s ∈ S

Definition 1.1.8
For a set V ⊂ G such that each g ∈ V has values in U , we say that Nψ acts from V into H
if Nψ ∈ H for each g ∈ V .

1Usually, but not always, G, F, and H will be normed spaces
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1.1.2.3 The Hammerstein integral operator

Theorem 1.1.9
Suppose that the function ψ(s, u) is continuous as a map from S × R to R. Then, the
Nemytskii operator Nψ acts on C and is continuous and bounded.

Definition 1.1.10
Let S be a compact subset of R, k(s, t) a kernel defined on S × S, and let ψ(s, u) be as
before. Then, the Hammerstein operator H is defined as

H(u)(s) =
∫
S

k(s, t)ψ(t, u(t)) dt

If K is the linear integral operator defined by:

K(u)(s) =
∫
S

k(s, t)u(t) dt

then H can be written in the form H = KNψ.

1.1.3 Differential operators

Let V be an open set of Rn. A differential operator on V is a finite linear combination of derivatives
of arbitrary order with coefficients in C∞(V ). It is said to be of order m if the derivations of higher
order do not appear there. In other words, a differential operator of order m on V if it is of the
form :

L =
∑

|β|≤m

aβ(u)Dβ (1.1.2)

Where aβ ∈ C∞(V ) are the coefficients of L. And

Dβ = Dβ1
1 Dβ2

2 . . . Dβn
n

Dj = −i ∂
∂xj

β = (β1, β2, . . . , βn) ∈ Nn is a multi-index and |β| = β1 + β2 · · ·+ βn is its modulus.
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Example : The spaces C[0, 1] and C1[0, 1] are associated with their standard norms

‖v‖C[0,1] = max
0≤x≤1

|v(x)|

And
‖v‖C1[0,1] = ‖v‖C[0,1] + ‖v′‖C[0,1] (1.1.3)

The operator
L1 = ∂

∂x
: C1[0, 1] ⊂ C[0, 1] −→ C[0, 1]

is a non-continuous differential operator using the infinite norm of C[0, 1]. However, it is continuous
using the norm (1.1.3).

1.1.4 Compact operators

Definition 1.1.11
Let E and F be two Banach spaces. A linear operator L from E to F is said to be compact
if and only if L(BE) is relatively compact, or L is compact if and only if for any bounded
subset M of E, L(M) is relatively compact

Definition 1.1.12
Let E and F be two normed spaces, the linear operator L from E into F is an operator of
finite rank if, the range of L of finite dimension.

Definition 1.1.13
Let E be an infinite-dimensional separable Hilbert space. If (en)n∈N is a Hilbert basis of
E. we say that an operator L ∈ L(E) is a Hilbert Schmidt operator if the numerical series
is
∑
n∈N
‖Len‖2 convergent.

Example :

1. Every continuous operator of finite rank is a compact operator.

2. Any Hilbert Schmidt operator is a compact operator.

3. The integral operator L : C[a, b] −→ C[a, b] with continuous kernel is a compact operator.

4. A linear combination L = αL1 + βL2 of compact operators is a compact operator.
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5. The product L1L2 of two bounded operators L1 and L2 is compact if one of the operators L1

or L2 is compact.

1.1.5 Invertible operators

Let E and F be two normed spaces, and let L ∈ L(E,F )

Definition 1.1.14
We say that L is invertible if there exists B ∈ L(F,E) such that LB = IdF (right invertible)
and BL = IdE ( left invertible), such an operator (when it exists) is unique. it is called the
inverse operator of L, and it is denoted by L−1.

Theorem 1.1.15 (Banach inverse theorem)

If L is a continuous linear operator from a Banach space E onto a Banach space F for which
the inverse operator L−1 exists, then L−1 is continuous.

Theorem 1.1.16 (Neumann Series)

Let L ∈ L(E) such that ‖L‖ < 1, then IdE − L invertible and

(
IdE − L

)−1
=

+∞∑
n=0
Ln (1.1.4)

Remark : If L ∈ L(E) such that ‖IdE − L‖ < 1, then L invertible and

(
L
)−1

=
+∞∑
n=0

(
IdE − L

)n

1.1.6 Contractive operators

Definition 1.1.17
Let (X, ‖.‖) be a normed space and T : X → X be a mapping such that x ∈ X is called a
fixed point of T if T (x) = x.
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Definition 1.1.18
T is called a contraction mapping on (X, ‖.‖) if there exists a real number k ∈ (0, 1), such
that

‖T (u)− T (v)‖ ≤ k‖u− v‖,∀u, v ∈ X (1.1.5)

1.2 Operators and Banach spaces

Definition 1.2.1
Let E be a normed space, a sequence {xn}n ⊆ E is called a Cauchy sequence if:

lim
n,m−→+∞

‖xn − xm‖ = 0

Obviously, any convergent sequence is a Cauchy sequence.

Definition 1.2.2
A normed space is said to be complete if any Cauchy sequence of E converges to an element
in E, a complete normed space is called Banach space.

Example : Let E be a normed space, and F be a Banach space. Then, L(E,F ) is a Banach
space.

Let E and F be Banach spaces.

Definition 1.2.3
Let D(A) be a vector subspace of E. The set {(x,Ax);x ∈ D(A)} ⊂ E × F is called the
graph of the operator A. It will be denoted Gr(A)

Proposition 1.2.4

1. If D(A) = E, one verifies that Gr(A) is a vector subspace of E × F .
2. If the operator A is continuous, then the vector subspace Gr(A) is closed.

Theorem 1.2.5 (Closed graph theorem)

If the graph of a linear operator L : E −→ F is closed in E × F then the operator L is
continuous.

Theorem 1.2.6 (Banach fixed-Point Theorem)

Let T : E → E be a contraction mapping on a complete normed space (E, ‖.‖). Then, T
has a unique fixed point.
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1.3 Semigroup and Exponential Functions

Definition 1.3.1

Let E be a Banach space, a map
(
R+ 3 t 7→ T (t)

)
∈ L(E) is called a one-parameter

operator semigroup (or an operator semigroup, or just a semigroup for short), if

T (0) = I, and T (t+ s) = T (t)T (s), for all t, s ≥ 0 (1.3.1)

Definition 1.3.2
Let E be a Banach space, and A ∈ L(E), for each t ≥ 0 define the operator etA by

etA :=
+∞∑
k=0

tkAk

k! (1.3.2)

Observe that the operator defined by (1.3.2) estimated by

∥∥etA∥∥ ≤ +∞∑
k=0

tk‖A‖k

k! = et‖A‖ (1.3.3)

For all t ≥ 0. Therefore, the series
+∞∑
k=0

tkAk

k! is absolutely convergent. Due to the Banach

space, it is convergent. Thus, the operator etA is well defined and bounded.

Proposition 1.3.3

For A ∈ L(E), the following properties hold for its exponential function T (t) := etA

1. The functional equation

T (0) = I, T (t+ s) = T (t)T (s) (1.3.4)

is valid for all t, s ≥ 0
2. The function R+ 3 t 7→ T (t) is continuous.
3. The function R+ 3 t 7→ T (t) is differentiable and satisfies the differential equation

Ṫ (t) = AT (t)

T (0) = I
(1.3.5)

Proof : Essentially, all the statements follow as in the scalar case, once we justify the appro-
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priate operations for the operators

1. By using the Cauchy formula for the product of infinite series, we have

+∞∑
k=0

(t+ s)kAk

k! =
+∞∑
k=0

Ak

k!

k∑
m=0

k!
(k −m)!m! t

k−msm (1.3.6)

=
+∞∑
k=0

k∑
m=0

Ak−mtk−m

(k −m)! · smAm

m! (1.3.7)

=
( +∞∑
k=0

tkAk

k!

)
·
( +∞∑
k=0

skAk

k!

)
(1.3.8)

2. Since equation (1.3.4) implies

e(t+h)A − etA = etA(ehA − I)

it suffices to prove continuity at 0, which follows from

∥∥ehA − I∥∥ =

∥∥∥∥∥
+∞∑
k=1

hkAk

k!

∥∥∥∥∥ ≤
+∞∑
k=1

|h|k‖A‖k

k! = e|h| · ‖A‖ − 1 (1.3.9)

3. By a similar argument as above, it suffices to see that

∥∥∥∥ehA − Ih
−A

∥∥∥∥ =

∥∥∥∥∥
+∞∑
k=2

hk−1Ak

k!

∥∥∥∥∥
≤

+∞∑
k=2

|h|k−1‖A‖k

k!

= e|h| · ‖A‖ − 1
|h|

− ‖A‖ −→ 0

as h −→ 0

�

The most important property of continuous semigroups is that they are nothing but exponential
functions.

Proposition 1.3.4

Let (T (t))t≥0 be a semigroup that is continuous. Then there is an operator A ∈ L(E) such
that T (t) = etA.
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Proof : Since the function t 7→ T (t) is continuous and T (0) = I, we see that∥∥∥∥∥∥I − 1
t0

t0∫
0

T (s) ds

∥∥∥∥∥∥ < 1

for sufficiently small t0 > 0. So, by the Neumann series (1.1.4), the operator 1
t0

t0∫
0
T (s) ds is invert-

ible, and hence

J(t0) :=
t0∫

0

T (s) ds

is invertible, too. It follows that

T (t) = J(t0)−1J(t0)T (t)

= J(t0)−1
t0∫

0

T (t+ s) ds

= J(t0)−1
t+t0∫
t

T (s) ds

= J(t0)−1
(
J(t+ t0)− J(t)

)
holds for all t ≥ 0.
Since J is the integral of a continuous function, it is differentiable and so is the function t 7→ T (t).
For simplicity, the notation Ṫ (0) := A is used. Then A ∈ L(E) and the functional equation implies
that

Ṫ (t) = lim
h−→0

T (t+ h)− T (t)
h

= lim
h−→0

T (h)− I
h

T (t) = AT (t)

for all t ≥ 0. Hence, T satisfies a linear differential equation of the form

Ṫ (t) = AT (t)

with T (0) = I. But S(t) = etA also satisfies the same differential equation. Fix t > 0 and consider
the function [0, t] 3 s 7→ T (s)S(t − s) =: u(s). Then u is differentiable and its derivative is given
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by the product rule

∂

∂s
u(s) =

(
∂

∂s
T (t− s)

)
S(s) + T (t− s)

(
∂

∂s
S(s)

)
= −AT (t− s)S(s) + T (t− s)AS(s)

= 0

and as a result, T (t) = u(t) = u(0) = S(t). �

1.4 The Class H(E1, E0)

Let E1 and E0 be Banach spaces. A densely injected Banach couple is a pair of Banach spaces
(E0, E1) such that

E1
d
↪−→ E0

We denote byH(E1, E0) the set of all A ∈ L(E1, E0) such that−A, considered as a linear operator in
E0 with domain E1, is the infinitesimal generator of a strongly continuous semigroup {e−tA, t ≥ 0}
on E0, that is, in L(E0).

In order to derive uniform estimates for these semigroups and related operators, it is important
to possess quantitative descriptions of H(E1, E0). For this purpose, given κ ≥ 1 and % > 0, and
write

A ∈ H(E1, E0,κ, %)

if and only if A ∈ L(E1, E0) with %+A being an isomorphism from E1 onto E0 and

κ−1 ≤
‖(λ+A)f‖0
|λ|‖f‖0 + ‖f‖1

≤ κ, Reλ ≥ %, f ∈ Ė1

Where ‖· ‖j is the norm in Ej , j = 1, 2. Furthermore,

H(E1, E0) :=
⋃

κ≥1,%>0
H(E1, E0,κ, %)

Then H(E1, E0) is an open in L(E1, E0).



1.5. Interpolation functor 15

1.5 Interpolation functor

The pair (E0, E1) is said to be an interpolation couple if there exists a locally convex space X
such that Ej ↪→ X, j = 0, 1. In the case E0 ∩ E1 and E0 + E1 are well-defined Banach spaces.
Observe that E0 ∩ E1=̇E1 and E0 + E1=̇E0 if E1 ↪→ E0 so X can be chosen to be E0.

If (E0, E1) is an interpolation couple and

E0 ∩ E1 ↪→ E ↪→ E0 + E1

then E is said to be an intermediate space with respect to (E0, E1).

Let B be the category of (K-)Banach spaces. Thus the objects of B are the K-Banach spaces,
the morphisms of B are the bounded linear operators and the composition is the usual composition
of maps. Denoting by B1 the category of interpolation couples, that is, the objects of B1 are the
interpolation couples, the morphisms of B1 are the elements A ∈ L(E0 + E1, F0 + F1) satisfying
A ∈ L(Ej , Fj), j = 0, 1. where (E0, E1) and (F0, F1) are interpolation couples, and the composition
is the natural composition of maps. We write A : (E0, E1) −→ (F0, F1) if (E0, E1) and (F0, F1) are
interpolation couples and A is a morphism of B1.

Let (E0, E1) and (F0, F1) be interpolation couples. Then E and F are said to be interpolation
spaces with respect to (E0, E1) and (F0, F1) if E and F are intermediate spaces with respect to
(E0, E1) and (F0, F1) , respectively, and A ∈ L(E,F ) wheneverA : (E0, E1) −→ (F0, F1). Moreover,
E and F are said to be interpolation spaces of exponent θ, where 0 < θ < 1, with respect to (E0, E1)
and (F0, F1) if there exists c(θ) ≥ 0 such that

‖A‖L(E,E) ≤ c(θ)‖A‖
1−θ
L(E0,F0)‖A‖

θ
L(E1,F1)

for A : (E0, E1) −→ (F0, F1). If c(θ) = 1 then E and F are exact interpolation spaces of exponent
θ with respect to (E0, E1) and (F0, F1).

A covariant functor B from B1 into B is said to be an [exact] interpolation functor [of exponentθ]
if, given interpolation couples (E0, E1) and (F0, F1), it follows that B(E0, E1) and B(F0, F1) are
[exact] interpolation spaces [of exponent θ] with respect to (E0, E1) and (F0, F1) and if

B(A) = A ∈ L(B(E0, E1),B(F0, F1)), A : (E0, E1) −→ (F0, F1)
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Example : Real Interpolation Functors
Let (E0, E1) be an interpolation couple. Given x ∈ E0 + E1 , define the K-functional by

K(t, x) := K(t, x, E0, E1) := inf{‖x0‖E0
+ t‖x1‖E1

; x = x0 + x1}

for t > 0. Put

‖x‖θ,q :=
∥∥t−θK(t, x)

∥∥
Lq(Ṙ+,dt\t), 0 < θ < 1, 1 ≤ q ≤ ∞

and
(E0, E1)θ,q :=

(
{xE0 + E1 ∈; ‖x‖θ,q <∞}, ‖· ‖θ,q

)
for 0 < θ < 1, 1 ≤ a ≤ ∞. Let

Bθ,q(E0, E1) := (E0, E1)θ,q, Bθ,q(A) := A

for A : (E0, E1) −→ (F0, F1). Then given any q ∈ [1,∞] and θ ∈ (0, 1), it follows that Bθ,q is an
exact interpolation functor of exponent θ. Henceforth, we denote it by

( · , · )θ,q

and call it the real interpolation functor of exponent θ and parameter q.

Definition 1.5.1 (Admissible Interpolation Functors)

Let 0 < θ < 1. An admissible interpolation functor, denoted by ( · , · )θ, is an interpolation
functor of exponent θ for the category of densely injected Banach couples such that

E1 is dense in (E0, E1)θ

whenever (E0, E1) is such a couple.

Observe that the real interpolation functors ( · , · )θ,p, 1 ≤ p < ∞ is admissible. As an
abbreviation

Eθ := (E0, E1)θ

and denote the norm in Eθ by ‖· ‖θ.
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1.6 Some useful spaces

In this section, we review the definitions and properties of some useful spaces that will appear
in the next chapter. These spaces are necessary for the study of the existence and uniqueness of
PBE solutions.

1.6.1 Lebesgue spaces

Let Ω be a domain in Rn, n ∈ N and let p be a positive real number. Lp(Ω;E) (or simply Lp[E])
is the class of all measurable E−valued functions u defined on Ω for which(∫

Ω

|u(x)|p dx
) 1

p

<∞ (1.6.1)

The elements of Lp[E] are thus equivalence classes of measurable functions satisfying 1.6.1. The
functional ‖.‖p defined by

‖u‖p =
(∫

Ω

|u(x)|p dx
) 1

p

(1.6.2)

is a norm in Lp[E].

A function f measurable on Ω is said to essentially bounded on Ω if there is a constant K such
that

|f(x)| ≤ K, a.e. x ∈ Ω

The greatest lower bound of such constants K is called the essential supremum of |f | on Ω, and is
denoted by ess sup

x∈Ω
|f(x)|.

The vector space of all functions f that are essentially bounded on Ω ( functions being once
again identified if they are equal a.e. on Ω) is denoted by L∞(Ω, E) and it is endowed with the
norm

‖f‖∞ = ess sup
x∈Ω
|f(x)|
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1.6.2 Spaces of Continuous Functions

Let Ω be a domain in Rn, E be a Banach space, and m be a nonnegative integer. Let Cm(Ω, E)
denote the vector space consisting of all functions f : Ω −→ E which, together with all their partial
derivatives ∂mf of orders |α| ≤ m, are continuous on Ω.
As an abbreviation C0(Ω, E) = C(Ω, E) and C∞(Ω, E) =

⋂∞
m=0 C

m(Ω, E). The subspaces
C0(Ω, E) and C∞

0 (Ω, E) consist of all those functions in C(Ω, E) and C∞(Ω, E), respectively, that
have compact support in Ω.

1.6.3 Spaces of Bounded, (Uniformly) Continuous functions

The space that consists of functions f ∈ Cm(Ω, E) for which ∂mf is bounded on Ω for |α| ≤ m, is
denoted by BCm(Ω, E). It is a Banach space endowed with the norm

f 7→ ‖f‖m,∞ := max
|α|≤m

‖∂mf‖∞ (1.6.3)

If f ∈ C(Ω, E) is bounded and uniformly continuous on Ω, then it possesses a unique, bounded,
continuous extension to the closure Ω̄ of Ω. The vector space BUCm(Ω, E) consists of all those
functions f ∈ BCm(Ω, E) for which ∂mf is bounded and uniformly continuous on Ω. It is a closed
subspace of BCm(Ω, E), and therefore also a Banach space with the same norm (1.6.3).

1.6.4 Spaces of Hölder continuous functions

Let 0 < σ < 1, we define the space BUCm,σ(Ω, E) (or simply BUCm,σ[E]) to be the subspace of
BUCm(Ω, E) consisting of all those functions f for which, for |α| ≤ m, ∂mf satisfies in Ω a Hölder
condition of exponent σ, that is, there exists a constant K such that

|∂mf(x)− ∂mf(y)| ≤ |x− y|σ, x, y ∈ Ω

It is a Banach space endowed with the norm

‖f‖σ,∞ := ‖f‖m,∞ + max
|α|≤m

[∂mf ]σ,∞
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where [ · ]σ,∞ is the Hölder seminorm defined by

[f ]σ,∞ := sup
x,y∈Rn,x 6=y

|f(x)− f(y)|
|x− y|σ

, 0 < σ < 1

1.6.5 The space of uniformly Lipschitz continuous functions

The set of all maps from E1 into E0, which are uniformly Lipschitz continuous on bounded
subsets of E1 is denoted by C1−

b (E1, E0) . It is a locally convex space endowed with the family of
seminorms

f 7→ sup
x∈B
‖f(x)‖0 + sup

x,x∈B,x 6=y

‖f(x)− f(y)‖0
‖x− y‖1

(1.6.4)

where B runs through the family of all bounded subsets of E1. As an easy consequence of the mean
value theorem

C1
b (E1, E0) ↪→ C1−

b (E1, E0) (1.6.5)

where C1
b (E1, E0) and C1(E1, E0) endowed with the topology of uniform convergence of the func-

tions and their first derivatives on bounded subsets of E1.

1.6.6 Sobolev spaces

The Sobolev space Wm,p[E] consists of functions f ∈ Lp[E] such that for every multi-index α with
|α| ≤ m,m ∈ N, the weak (or distributional) derivative Dαf exists and Dαf ∈ Lp[E]. Thus

Wm,p[E] =
{
f ∈ Lp[E] : Dαf ∈ Lp[E], |α| ≤ m

}
If f ∈Wm,p[E], we define its norm

‖f‖Wm,p =



( ∑
|α|≤m

∫
Ω
|Dαf |p dx

)1/p

, 1≤p< +∞

∑
|α|≤m

ess supΩ |Dαf |, p=+∞
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1.6.7 Sobolev-Slobodeckij spaces

The Sobolev spaces of fractional order (also called Sobolev–Slobodeckij spaces) and some properties
are reviewed in this section. Let Ω be an open set of Rn, and let s ∈]0, 1[ and p ∈ [1,+∞[ we define
the fractional Sobolev space W s,p[E] by :

W s,p[E] =
{
f ∈ Lp[E]; |f(x)− f(y)|

|x− y|
n
p +s ∈ Lp(Ω× Ω)

}
It is a Banach space endowed by the norm:

f 7→ ‖f‖s,p :=
(
‖f‖pm,p +

∑
|α|=m

[∂αf ]ps,p
) 1

p

with

[f ]s,p =
(∫

Ω

∫
Ω

|f(x)− f(y)|p

|x− y|n+sp dx dy

) 1
p

Remark :

1. W−s,1[E] is the space consists of all E-valued distributions f on Rn such that there exist
fα ∈Wm−s,1[E] for |α| ≤ m, satisfying

f =
∑

|m|≤m

∂αfα (1.6.6)

2. It is a Banach space with the norm

f 7→ ‖f‖−s,1 := inf
( ∑

|m|≤m

‖fα‖m−s,1

)
(1.6.7)

where the infimum is taken over all representation (1.6.6).

3. It follows that
W s,1[E] d

↪−→W t,1[E], −∞ < t < s <∞ (1.6.8)

where ↪→ denotes ”continuous injection” and ”d” stands for ”dense”.
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4. Moreover,
∂α ∈ L

(
W s+|α|,1[E],W s,1[E]

)
, α ∈ Nn, s ∈ R (1.6.9)

1.7 Multilinear Maps

Let E,E1, E2, . . . , Em be Banach spaces. A map M

M : E1 × E2 × · · · × Em −→ E0

is called Multilinear 2 if it is linear in each variable, that is, if all maps

M(e1, e2, . . . , ei−1, ., ei+1, . . . , em) : Ei −→ E0

are linear.
The Banach space L(E1, E2, . . . , Em;E0) is the space of all continuous m−linear maps from E1 ×
E2 × · · · × Em into E0, And

Lm(E;E0) := L(E1, E2, . . . , Em;E0) if E1 = E2 = · · · = Em = E

Moreover, L(E;E0) := L1(E;E0) and L(E) := L(E;E). Elements of L(E1, E2, . . . , Em;E0) are
sometimes simply denoted by

(e1, e2, . . . , em) 7→ e1 • e2 • · · · • em (1.7.1)

which are referred to as multiplications. For ui ∈ ERn

i , the point-wise product induced by (1.7.1)
is defined by

u1 • u2 • · · · • um(z) := u1(z) • u2(z) • · · · • um(z), z ∈ Rn (1.7.2)

Let Bi[Ej ] be Banach spaces of Ej-valued functions on Rn for 0 ≤ i ≤ m. Then we write

B1[E1] • · · · •Bm[Em] ↪→ B0[E0]

if the point-wise product (1.7.2) defines a continuous m-linear map

B1[E1]× · · · ×Bm[Em] ↪→ B0[E0], (u1, . . . , um) 7→ u1 • u2 • · · · • um
2Also called m−linear
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The point-wise multiplication induced by (1.7.1).

Some properties of point-wise multiplication are mentioned in The following lemma:

Lemma 1.7.1
(i) Suppose E1 × E2 → E0, (e1, e2) 7→ e1 • e2 is a multiplication.

Then

BUCs[E] •W t,p[E2] ↪→W t,p[E0], 0 ≤ t < s <∞, 1 ≤ p <∞

(ii) Suppose E1 × E2 × E3 → E0, (e1, e2, e3) 7→ e1 • e2 • e3 is a multiplication.
Then

BUCr[E] •W s,p[E2] •W s,p[E3] ↪→W t,p[E0]

provided n ≤ t+ n < 2s < 2n and t < r, and

BUCr[E] •W s,p[E2] •W s,p[E3] ↪→W s,p[E0]

if n < s < r.

Proof : See [18]. �
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Modelling of Population

Balances
This chapter is devoted to the formulation of the population balance equation model. Also, included
a review concerning the existence and uniqueness of the PBE’s solution. In addition, a study of the
convergence of ADM applied to PBE for fragmentation and Aggregation is presented.
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2.1 Introduction

Population balance models (PBMs) are similar to the well-known mass and energy balance
models. They are encountered in numerous scientific and engineering disciplines. They
can be used to describe the time evolution of one or more property distributions of an

individual’s population. In 1964, Hulburt and Katz [50] introduced them to the field of chemical
engineering as well as Randolph and Larson [72]. In the late seventies, Ramkrishna [70] reviewed
them.

Population balance equations (PBEs) describe a balance law for the number of individuals in a
population, such as crystals, droplets, bacteria,... etc. The diversity of phenomena responsible for
the change in the population of individuals is what makes PBEs more interesting than mass balance
equations. Fluid flow induces the inflow and outflow of particles from a given control volume. In
addition to them, there are several other mechanisms that are responsible for the change in particle
population in the same control volume.

Due to the aforementioned phenomena, the description of the dynamic behavior of the partic-
ulate processes essentially involves specifying the temporal change of the particle property distri-
bution. This distribution is a part of the system state. Hence, particulate processes are inherently
distributed parameter systems. PBMs are usually used to model this class of systems.

Apart from particle-particle interactions, the dispersed phase usually also interacts with its
environment, e.g., the continuous phase in crystallization. The state of the continuous phase may
influence the rate of growth, birth and death processes and thus affects the particle population.
In the other direction, the dispersed particle phase generally affects the continuous phase, e.g., by
mass transfer from liquid to solid due to growth in crystallization or by heat transfer due to the
heat transfer of crystallization. Therefore, in general, a model for a particulate system consists
of a population balance equation, which describes the dispersed phase, coupled with a mass (or
mole) balance, and an energy balance, which represents the continuous phase. A typical dispersed
two-phase system is shown in Figure 2.1 Motz et al. [64].

Historically, In 1917, Smoluchowski introduced under the basic assumption that binary col-
lisions occur simultaneously an infinite set of nonlinear ordinary differential equations known the
discrete Smoluchowski equation [76, 77]

∂fi(t)
∂t

= 1
2

i−1∑
j=1

ωi−j,jfi−j(t)fj(t)− fi(t)
+∞∑
j=1

ωi,jfj(t), i = 1, 2, . . . (2.1.1)
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Figure 2.1: An illustration of a dispersed two-phase system

With initial conditions

fi(0) = f
(0)
i ≥ 0 (2.1.2)

Where ωi,j are to be non-negative and symmetric, i.e.
ωi,j ≥ 0 and ωi,j = ωj,i, ∀i, j ≥ 1, these functions
ωi,j are called coagulation kernel, it describes the inten-
sity interaction between particles of mass i and j and
is assumed to be known function. The unknown func-
tion fi(t) is the concentration of particles with mass i,
i ≥ 1 at time t.
A number of modifications have been made to the
discret Smoluchowski model. In 1928, Müller [65]
rewrote equation (2.1.1) as an integro-differential equa-
tion to represent coagulation. As a result, it is called
the continuous Smoluchowski equation because
the size

Figure 2.2: Marian Smoluchowski (1872
-1917) was a Polish physicist.

variable is allowed to be any positive real number. Then, the original model (2.1.1) becomes

∂f(t, v)
∂t

= 1
2

∫ v

0
ω(v − v′, v′)f(t, v − v′)f(t, v′) dv′

−f(t, v)
∫ +∞

0
ω(v, v′)f(t, v′) dv′, (t, v) ∈ (0,+∞)2

(2.1.3)

f(0, v) = f0(v), v ∈ (0,+∞) (2.1.4)
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3 f(t, v) : is the particle mass density function.

3 f(t, v)dv : represents the average number of particles per unit volume at time t whose masses
lie between v and v + dv.

3 ω(v, v′) : is the coagulation kernel.

3 ω(v, v′)f(t, v′)f(t, v) dv dv′ dt: the number of coalescences between particles of mass v to v+dv
and those of mass v′ to v′ + dv′ during the time interval (t, t+ dt).

In 1957, Melzak developed an extension of the continuous Smoluchowski model when parti-
cles breakdown. By Combining binary coagulation with multiple fragmentation, he proposed the
following equation [62]:

∂f(t, v)
∂t

= 1
2

∫ v

0
ω(v − v′, v′)f(t, v − v′)f(t, v′) dv′ − f(t, v)

∫ +∞

0
ω(v, v′)f(t, v′) dv′

+
∫ +∞

v

ϕ(v′, v)f(t, v′) dv′ − f(t, v)
v

∫ v

0
v′ϕ(v, v′) dv′, (t, v) ∈ (0,+∞)2

(2.1.5)

3 ϕ(v, v′) ≥ 0 : is the multiple breakage kernel

3 f(t, v)ϕ(v, v′) dv dv′ dt : is the average number of particles of mass v′ to v′ + dv′ created from
the breakdown of particles of mass v to v + dv, during the time interval (t, t+ dt)

3 If v′ > v, then ϕ(v, v′) = 0.

3 The third integral describes the formation of particles of mass v from the breakdown of
particles of mass v′ (v ≤ v′ < +∞).

3 The fourth integral indicates the disappearance of particles of mass v as a result of their
breakdown into particles of mass v′ (0 ≤ v′ ≤ v).

In 1960, The case of binary fragmentation was considered by Friedlander [43]. Therefore, the
coagulation-fragmentation equation was given by:

∂f(t, v)
∂t

= 1
2

∫ v

0
ω(v − v′, v′)f(t, v − v′)f(t, v′) dv′ − f(t, v)

∫ +∞

0
ω(v, v′)f(t, v′) dv′

+
∫ +∞

0
F (v, v′)f(t, v + v′) dv′ − f(t, v)

2

∫ v

0
F (v − v′, v′) dv′, (t, v) ∈ (0,+∞)2

(2.1.6)

The above equation can be found from Melzak’s Model (2.1.5) by taking into consideration
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that each particle can only break into two new particles, then ϕ(v, v′) = ϕ(v, v − v′) and equation
(2.1.5) may be rewritten as (2.1.6) in which the fragmentation kernel F becomes F (v − v′, v′) =
ϕ(v, v′). It is important to mention that F is a symmetric function, i.e.

F (v, v′) = ϕ(v + v′, v′) = ϕ(v + v′, v) = F (v′, v)

in contrast with the breakdown function ϕ. All functions concerned are non-negative.

In 1991, Ziff [82] gave another form of the multiple breakage equation by taking

ϕ(v′, v) = β(v, v′)Γ(v′), and Γ(v) =
v∫

0

v′

v
ϕ(v, v′) dv′ (2.1.7)

where β and Γ are described in the next section.

Due to the importance of solving the PBEs, several techniques have been proposed to solve
them. Attarakih et al. [24], Kopriwa et al. [52], and Su et al. [79] reviewed several solution
methods for solving PBE. Numerical techniques can be classified into the following categories:
moment method, stochastic, high-order, zero-order methods, and analytical methods. To facilitate
their classification, they are schematically represented in Figure 2.3.
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Figure 2.3: Analytical and numerical methods for solving the population balance equation.
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2.2 Particulate Processes

In the following, we give a brief description of different particulate processes and their corre-
sponding population balance models.

2.2.1 Nucleation and Growth processes

Nucleation process is the process of new particle formation in a supersaturated solution.
During this process, the population of small particles increases. The nuclei are usually
considered the smallest possible particles in the system. In practical applications, such

as crystallization, nucleation is assumed to take place at the minimum particle size due to problems
in particle size measurement in this range. Furthermore, in this size range, it is not possible to
distinguish between nuclei of different sizes due to the insufficient resolution of measuring devices.
Through growth and agglomeration, these particles become visible.

The particles grow when molecular matter is added to the surface of a particle. During the
growth process, the total number of particles remains the same, but the total volume (mass) of
particles increases. The size of a particle increases continuously in this process.

Growth and nucleation processes are very common in a wide range of particulate processes.
The crystallization process is one example of such a process. The population balance equation in
this case has the form

∂f(t, v)
∂t

= −
∂
[
G(t, v)f(t, v)

]
∂v

+ Rnuc(t, v), (t, v) ∈ (0,+∞)2 (2.2.1)

Where G represents the growth velocity and the nucleation term is defined as

Rnuc(t, v) = fnuc(t, v)Γnuc(t) (2.2.2)

In the reaction term due to the nucleation process Rnuc, fnuc : R≥0 × R+ −→ R≥0 represents the
number density of nuclei while Γnuc(t) ∈ R≥0 is the nucleation rate.

This is a hyperbolic equation with a source term. If the nucleation term on the right-hand
side is zero, then the above equation is a homogenous hyperbolic equation for modeling a pure
growth.
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2.2.2 Aggregation process

Aggregation is a nonlinear phenomenon that appears in a large class of applications,
e.g., in physics (aggregation of colloidal particles), meteorology (merging of drops in
atmospheric clouds, aerosol transport, minerals), chemistry (reacting polymers, soot

formation, pharmaceutical industries, fertilizers).

In an aggregation process, two or more particles combine to form a large particle. The total
number of particles decreases in an aggregation process while mass remains conserved.

The PBE for the aggregation process is stated in its general form as

∂f(t, v)
∂t

= c(t, v, f), (t, v) ∈ (0,+∞)2 (2.2.3)

Where

c(t, v, f) = 1
2

∫ v

0
ω(v − v′, v′)f(t, v − v′)f(t, v′) dv′︸ ︷︷ ︸

Birth due
to Aggregation

− f(t, v)
∫ +∞

0
ω(v, v′)f(t, v′) dv′︸ ︷︷ ︸

Death due
to Aggregation

(2.2.4)

The aggregation kernel ω(v, v′) ≥ 0 gives the rate at which particles of size v aggregate with particles
of size v′. If binary aggregation is the case, then the kernel ω is symmetric, i.e.,

ω(v, v′) = ω(v′, v), (v′, v) ∈ (0,+∞)2 (2.2.5)

Birth term: expresses the fact that a particle of size v can only come into existence if two particles
of volumes v−v′ and v′ aggregate. The factor 1

2 guarantees that each combination is counted
only once.

Death term: This term says that a particle of size v disappears from ”level v” if it aggregates with
a cluster of any volume.

Remark : Set V and Kcoag as

V := L1(V, (1 + v)dv) = L1(V, dv) ∩ L1(V, vdv)

Kcoag : the closed linear subspace of L∞(V2, d2v) consisting of all ω satisfying

ω(v, v′) = ω(v′, v), a.e. v, v′ ∈ V
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Given ω ∈ Kcoag and for f, g ∈ V, we put

cω(f, g)(v) = 1
2

v∫
0

ω(v − v′, v′)f(v − v′)g(v′) dv′

−f(v)
+∞∫
0

ω(v, v′)g(v′) dv′, a.e. v ∈ V

where V represents the support of dv.

1. It is easily verified that (
(ω, f, g) 7→ cω(f, g)

)
∈ L(Kcoag,V,V;V) (2.2.6)

2. Also cω(f, g) satisfying ∫
V

cω(f, f) dv = −1
2

∫
V2

ωf ⊗ f d2v (2.2.7)

∫
V

cω(f, f)v dv = 0 (2.2.8)

for f ∈ V.

3. If (ω, f, g) maps Rn into Kcoag × V× V, then

cω(f, g)(z) := cω(z)(f(z), g(z)), z ∈ Rn (2.2.9)

2.2.3 Breakage process

Breakage is the process by which particles of larger sizes break into two or more fragments.
Unlike the aforementioned aggregation process, The total number of particles in a
breakage process increases while the total volume (mass) remains conserved.

Population balances for breakage are widely known in high shear granulation, crystallization,
atmospheric science and many other particle related engineering problems. The general form of
population balance equation for breakage process is given as

∂f(t, v)
∂t

= b(t, v, f), (t, v) ∈ (0,+∞)2 (2.2.10)
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Where

b(t, v, f) = −Γ(v)f(t, v)︸ ︷︷ ︸
Death due
to Breakage

+
+∞∫
v

β(v, v′)Γ(v)f(t, v′) dv′

︸ ︷︷ ︸
Birth due

to Breakage

(2.2.11)

It is assumed that only a single size variable, such as particle mass, is required to differentiate
between the reacting particles, with f(t, v) regarded as a density function, denoting the density of
particles of size v > 0 at time t.

In the Eq (2.2.11) Γ(v) represents the overall rate of fragmentation of a v-sized particle. The
coefficient β(v, v′), often called the fragmentation kernel or daughter distribution function, plays a
key role in the model. More precisely, it is the distribution function of the sizes of the daughter
particles. Roughly speaking, β(v, v′) gives the number of v-size particles produced by the fragmen-
tation of a v′-size particle. In most investigations into (2.2.11), this daughter distribution function β
is assumed to be non-negative and measurable, with β(v, v′) = 0 for v > v′ and it has the following
important properties:

v∫
0

β(v, v′) dv′ = N(v),
v∫

0

v′β(v, v′) dv′ = v (2.2.12)

For each v > 0, N(v) represents the number of fragments obtained from the breakage of a particle
of size v. While the second integral ensures the property that the total mass created from the
breakage of a particle of size v is again v.

Birth term: accounts for the production of particles of size v by the breakup of particles of larger
volumes.

Death term: takes care of the disappearance of v-particles by their fragmentation into smaller
ones.

Remark : Set V2
∆ := {(v, v′) ∈ V2; 0 ≤ v′ ≤ v} and define

(ϕ 7→ Φϕ) ∈ L
(
L∞(V2

∆, d
2v), L1,loc(V, dv)

)
by

Φϕ(v) := 1
v

v∫
0

ϕ(v, v′)v′ dv′, a.e. v ∈ V
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Then
Kfrag := {ϕ ∈ L∞(V2

∆, d
2v); Φϕ ∈ L∞(V, dv)}

is a Banach space with the norm ϕ 7→ ‖ϕ‖∞ + ‖Φϕ‖∞. For each ϕ ∈ Kfrag

fϕ(g)(v) :=
∞∫
v

ϕ(v′, v)g(v′) dv′ − Φϕ(v)g(v), g ∈ V, a.e. v ∈ V

1. It is obvious that (
(ϕ, g) 7→ fϕ(g)

)
∈ L(Kfrag,V;V) (2.2.13)

2. It is also easy to see that

∫
V

fϕ(g) dv =
∫
V

v∫
0

(1− v′/v)ϕ(v, v′) dv′g(v) dv (2.2.14)

and ∫
V

fϕ(g)v dv = 0 (2.2.15)

for ϕ ∈ Kfrag and g ∈ V.

3. If (ϕ, g) maps Rn into Kfrag × V, then

fϕ(g)(z) := fϕ(z)(g(z)), z ∈ Rn (2.2.16)

The aforementioned particulate processes are schematically represented in Figure 2.4.

2.3 Formulation of PBEs

This section deals with the mathematical foundation of coagulation-fragmentation pro-
cesses, taking into account the movement of the particles due to diffusion and superim-
posed transport processes. Formally, the equations under consideration take the form

of an initial value problem of the reaction-diffusion type:
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+

(a) Aggregation (b) Breakage

+

(c) Growth (d) Nucleation

Non-Particulate Matter

Particle

Figure 2.4: Different particle formation mechanisms

∂tf +A(t, v, z)f = r(t, v, z, f), z ∈ Rn, t > 0 (2.3.1)

f(0, v, z) = f0(v, z), z ∈ Rn (2.3.2)

The PBE uses a density function defined in phase space in order to balance a population of
particles that may evolve through the influence of particle-particle and particle-continuous phase
interactions. The particle phase space constitutes the internal and external particle coordinates.

• External coordinates z: refer to the spatial distribution of the particles (z ∈ Rn, here
n = 1, 2 or 3).

• Internal coordinates v: is one or more property of the particles in the population, such ex-
ample is particle size (i.e., volume, diameter, and mass). Other examples of particle properties
are chemical composition, energy content, age, chemical activity, etc.

In (2.3.1) A are diffusion-convection operators, r is the reaction term that describes kinetic behavior
of the process, and f is the particle-size distribution function

f(t, v, z) ≥ 0 (2.3.3)
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And ∫
Z

v1∫
v0

f(t, v, z) dv dz (2.3.4)

is the total number of particles with volumes belonging to the interval [v0, v1] ⊂ R+ and being at
time t contained in the space region Z ⊂ Rn. The measure dv is either Lebesgue’s measure on R+

or the counting measure on N∗={1,2,3,…}. The reaction term consists of three terms:

r(t, v, z, f) = c(t, v, z, f) + b(t, v, z, f) + h(t, v, z) (2.3.5)

accounting for coagulation, fragmentation, and particle input, respectively, where the terms ex-
pressing coagulation and fragmentation were defined in the previous section.

c(t, v, z, f) = 1
2

∫ v

0
ω(t, v − v′, v′, z)f(t, v − v′, z)f(t, v′, z) dv′

−f(t, v, z)
∫ +∞

0
ω(t, v, v′, z)f(t, v′, z) dv′

(2.3.6)

And

b(t, v, z, f) =
∫ +∞

v

ϕ(t, v′, v, z)f(t, v′, z) dv′ − Φϕ(t, v, z)f(t, v, z) (2.3.7)

where the fragmentation kernel satisfies

0 ≤ ϕ(t, v′, v, z), 0 < v′ ≤ v <∞, v, v′ ∈ V (2.3.8)

and
Φϕ(t, v, z) := 1

v

∫ v

0
v′ϕ(t, v, v′, z) dv′, v ∈ V (2.3.9)

Lastly, the source term satisfies
h(t, v, z) ≥ 0, v ∈ V (2.3.10)

and accounts for creation of particles of size v at time t and position z due to particle input, as
example.

The operator A defined as

A(t, v, z)f := −divz
(
d(t, v, z)gradzf + ~a(t, v, z)f

)
+~b(t, v, z)gradzf + a0(t, v, z)f

(2.3.11)
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Here,

• d(t, v, z) : is the diffusion matrix.

• ~a, ~b : are drift vectors. the first describes the particle transport due to external forces such
as gravitational, electrical or thermal fields. While the second is produced by temperature
gradients in the gas or fluid in which the particles are being suspended.

• a0 : is the absorption rate.

are sufficiently smooth functions of (t, z) and measurable with respect to v
The following lemma establishes the continuity properties of the maps (2.2.9), (2.2.16).

Lemma 2.3.1
(i) If 0 ≤ τ < r < n and τ + n < 2σ < 2n, then(

(ω, f, g) 7→ cω(f, g)
)
∈ L(BUCr[Kcoag],W σ,1[V],W σ,1[V];W τ,1[V])

If n < τ < r <∞, then(
(ω, f, g) 7→ cω(f, g)

)
∈ L(BUCr[Kcoag],W τ,1[V],W τ,1[V];W τ,1[V])

(ii) If 0 ≤ τ < r <∞. Then(
(ϕ, g) 7→ fϕ(g)

)
∈ L(BUCr[Kfrag],W τ,1[V];W τ,1[V])

Proof : Using (2.2.9) and (2.2.16) the maps

(ω, f, g) 7→ cω(f, g), and (ϕ, g) 7→ fϕ(g)

are point-wise multiplication induced by (2.2.6) and (2.2.13) respectively. Hence the assertion is a
consequence of Lemma 1.7.1. �

Throughout the rest of this chapter I denotes a closed subinterval of R+ containing 0 and more
than one point. For each subinterval I ′ of I we put İ ′ := I ′\{0}. Moreover, τ+ := τ ∨ 0 for τ ∈ R.

Corollary 2.3.2

Suppose that τ ∈ (−1, r)\N with r > 0 and that

τ+ + n < 2σ < 2n, if τ < n
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Whearas
σ := τ, if τ > n

Also suppose that(
t 7→

(
ω(t), ϕ(t)

))
∈ Cρ

(
I,BUCr[Kcoag ×Kfrag]

)
, for some ρ ∈ R+

Then, (
t 7→

(
cω(t), fϕ(t)

))
∈ Cρ

(
I,L2(Wσ,1[V],W τ,1[V])× L(Wσ,1[V],W τ,1[V])

)

In the following, setting

χ(t, z) := χ(t)(z) and χ(t, v, v′, z) := χ(t, z)(v, v′)

for χ ∈ {ω, ϕ}, (t, z) ∈ I × Rn, and (v, v′) ∈ V × V. we also put

c(t, v, z, f) := cω(t,z)(f, f)(v), b(t, v, z, f) := fϕ(t,z)(f)(v)

for (t, z) ∈ I×Rn, v ∈ V, and f ∈ V. Finally, C(t, · ) and B(t, · ) denote the Nemyteskii operators
induced by c(t, · , · , · ) and b( · , · , · ) respectively, That is,

C(t, f)(z) := c(t, · , z, f(z)), B(t, f)(z) := b(t, · , z, f(z))

for f : Rn → V and (t, z) ∈ I × Rn. Then it follows that, given the hypotheses of Corollary 2.3.2,(
t 7→ C(t, · ) +B(t, · )

)
∈ Cρ

(
I, C∞

b (Wσ,1[V],W τ,1[V])
)

(2.3.12)

where C∞
b (E1, E0) is the vector space C∞(E1, E0) endowed with the topology of uniform conver-

gence of all derivatives on bounded subsets of E1.

2.4 The Diffusion-Convection Semigroup

Set for k ∈ Ṅ
Lk∞ := L∞(V, dv;Rk)
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And
Ln×n

∞,sym := L∞(V, dv;Rn×n
sym )

Where Rn×n
sym is the space of all symmetric (n× n)-matrices. then,

A[e]f := −∇ · (d∇ · f + ~af) +~b.∇ · f + a0f, e := (d,~a,~b, a0) ∈ Eσ

where for a given σ ∈ R+,

Eσ := BUCσ[Ln×n
∞,sym]×BUCσ[Ln∞]×BUCσ[Ln∞]×BUC(σ−1)+

[L1
∞]

In the following, we write e(z, v) for e(z)(v) for z ∈ Rn and v ∈ V

Lemma 2.4.1
If −1 ≤ s < σ − 1 <∞. Then(

e 7→ A[e]
)
∈ L

(
Eσ,L(W s+2,1[V],W s,1[V])

)

Proof : First observe that

L∞(V, dv)× V −→ V, (a, f) 7→ af

with af(v) := a(v)f(v) for a.e. v ∈ V, is a multiplication. Now the assertion is an easy consequence
of (1.6.8), (1.6.9), and Lemma 1.7.1. �

Now after these preparations, we can formulate the following basic generation result:

Theorem 2.4.2
Suppose that s ∈ (−1,∞)\N with σ > s + 1, and α,M > 0. Then there exist κ ≥ 1 and
% > 0 such that

A[e] ∈ H
(
W s+2,1[V],W s,1[V];κ, %

)
whenever e = (d,~a,~b, a0) ∈ Eσ satisfies ‖e‖Eσ ≤M and

d(v, z)ζ · ζ ≥ α|ζ|2, z ∈ Rn, a.e. v ∈ V, ζ ∈ Rn (2.4.1)

Proof : See [18]. �

Suppose that t 7→ e(t) : I → Eσ. The putting

(d,~a,~b, a0)(t, z) := e(t)(z), z ∈ Rn, t ∈ I
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and
A(t) := A[e(t)], t ∈ I

Using this notation the proof of the following theorem is an easy consequence of Lemma 2.4.1
and Theorem 2.4.2.

Theorem 2.4.3
Suppose that s ∈ (−1, r)\N with r > 0 and(

t 7→ e(t)
)
∈ Cρ(I,E1+r), for some ρ ∈ R+ (2.4.2)

Also suppose that there exists α > 0 such that

d(t, v, z)ζ · ζ ≥ α|ζ|2, (t, z) ∈ I × Rn, a.e. v ∈ V, ζ ∈ Rn (2.4.3)

Then (
t 7→ A(t)

)
∈ Cρ

(
I,H

(
W s+2,1[V],W s,1[V]

))
(2.4.4)

2.5 Existence and Uniqueness of PBEs’ solutions

Melzak was the first to study kinetic equations [62,63] under the assumptions

Only binary coagulation occurs 1: which means that the coagulation kernel is symmetric with
respect to the second and third arguments, i.e.

0 ≤ ω(t, v, v′) = ω(t, v′, v), v′, v ∈ V (2.5.1)

Multiple fragmentation occurs :

0 ≤ ϕ(t, v, v′), 0 < v′ ≤ v <∞, v′, v ∈ V (2.5.2)

Boundedness of coagulation and fragmentation rates : there exists a positive constant M such
that

ω(t, v, v′) ≤M, ϕ(t, v, v′) ≤M (2.5.3)

1triple and higher collisions assumed to be rare.
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for all possible arguments (t, v, v′) of ω and ϕ, respectively.

Boundedness of Φϕ : which means that the volume rate of change in the fragmentation process is
bounded as well

Φϕ(t, v) ≤M, (t, v) ∈ R+ × V (2.5.4)

No source term : i.e.
h(t, v) = 0, (t, v) ∈ R+ × V (2.5.5)

He proved the existence of a unique positive global solution by means of series expansions.
Melzak ’s ideas have been extended by Marcus [37] to include a transport term in one space
dimension, which depends on v only, that is,

A(t, v, z) := b(v)∂zf

Aizenman and Bak [17] have initiated a different approach. They consider the autonomous
kinetic coagulation-fragmentation equations with bounded coagulation and fragmentation rates
without the assumption about Φϕ. They establish the existence of a unique nonnegative volume-
preserving solution using semigroup techniques.

McLaughlin, Lamb, and McBride [58–61] have extended this semigroup approach to cover
certain kinds of unbounded kernels. Further results can be found in the papers by Dubovski and
Stewart [41].

A completely different approach was given by Amann [18] where he viewed problem (2.3.1)-
(2.3.2) as a single semilinear evolution equation

f +A(t)f = R(t, f), t > 0 (2.5.6)

f(0) = f0 (2.5.7)

in the Banach spaceW s,1[E], where f is a Banach-space-valued function of (t, z) ∈ R+×Rn. In other
words, he interpreted (2.3.1) as a vector-valued evolution equation which is easily handleable using
Fourier multiplier theorems for operator-valued symbols and Banach space-valued distributions [19].
Besides the physical conditions (2.5.1)-(2.5.5) he proposed the following mild regularity hypotheses.

H1 : Assuming that ω(t, · , · , z), ϕ(t, · , · , z), and Φϕ(t, · , z) are measurable for (t, z) ∈
R+ × Rn and sufficiently smooth with respect to (t, z).

H2 : Assuming that the diffusion matrix d(t, v, z) symmetric and positive definite, uniformly with
respect to (t, v, z) ∈ R+ × V × Rn.
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H3 : Assuming that the diffusion matrix d(t, v, z), the drift vectors ~a and ~b and the absorption rate
a0 are sufficiently smooth functions of (t, z) and measurable with respect to v.

In problem (2.5.6), the operator A satisfies (2.4.4) and R(t, f) := C(t, f) +B(t, f) + h(t) with(
t 7→ R(t, · )

)
∈ Cρ

(
I, C∞

b (Wσ,1[V],W τ,1[V])
)

(2.5.8)

by supposing that (
t 7→ h(t)

)
∈ Cρ

(
I,W τ,1[V]

)
(2.5.9)

for some τ ∈ (s, r).
The following theorem establishes the well-posedness of system (2.3.1)-(2.3.2)

Theorem 2.5.1
Suppose that r, ρ > 0 and

(−2 + n

2 ) ∨ (−1) < s < r, s /∈ N (2.5.10)

Also suppose that(
t 7→ (e, (ω, ϕ), h)(t)

)
∈ Cρ

(
I,Er+1 ×BUCr[Kcoag ×Kfrag]×W τ [V]

)
for some τ > s, such that (2.4.3) is satisfied for some α > 0. Finally, assume that

(s+ + n)/2 < σ < n ∧ (s+ 2), s < n, (2.5.11)

and
s < σ < s+ 2, s > n (2.5.12)

with σ /∈ N.
Then, given any f0 ∈ Wσ,1[V], the coagulation-fragmentation system (2.3.1)-(2.3.2), that
is, problem (2.5.6)-(2.5.7), has a unique maximal solution

f( · , f0) ∈ C
(
I(f0),W σ,1[V]

)
∩ C

(
İ(f0),W s+2,1[V]

)
∩ C1

(
İ(f0),W s,1[V]

)
(2.5.13)

where the maximal interval of existence, I(f0), is open in I.
The solution, f( · , f0, e, ω, ϕ, h) := f( · , f0) depends continuously on the data in the
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following sense: given T ∈ I(f0), there exists a neihborhood U of (f0, (e, (ω, ϕ), h)) in

Wσ,1[V]×BUCρ
(
I,Er+1 ×BUCρ[Kcoag ×Kfrag]×W τ,1[V]

)
such that f( · , f̃0, ẽ, ω̃, ϕ̃, h̃) exists on [0, T ] and

f( · , f̃0, ẽ, ω̃, ϕ̃, h̃)→ f( · , f0, e, ω, ϕ, h) in C([0, T ],W σ,1[V])

as (f̃0, ẽ, ω̃, ϕ̃, h̃)→ (f0, e, ω, ϕ, h) in U .

Proof : First note that (2.5.10) implies s > −1 if n = 1, 2 and s > −1\2 if n = 3. Moreover,
(2.5.10) guarantees that the condition (2.5.11) is not void.

By making τ smaller , if necessary, we can assume that

(τ+ + n)/2 < σ < n ∧ (s+ 2), if s < n,

and that τ < σ if s > n. Then fixing σ1 such that

τ ∨ (τ+ + n)/2 < σ1 < σ < n ∧ (s+ 2), if s < n,

and
s < τ < σ1 < σ, s > n

Also, we can assume that τ, σ1 /∈ Z. Setting E1 := W s+2,1[V] and E0 := W s,1[V]. Also setting
Eθ := (E0, E1)θ,1 for 0 < θ < 1. Then it follows from (2.5.11) and ( [19], formula (5.7)) that

Eθ=̇W s+2θ,1[V], s+ 2θ /∈ Z (2.5.14)

Put α := (σ − s)\2, β := (σ1 − s)\2, γ := (τ − s)\2. Then Theorem 2.4.3 and assertions (2.5.8)
and (1.6.5) imply that the problem (2.5.6)-(2.5.7) satisfies the hypotheses of Theorem B.0.1 (see
Appendix B, with g replaced by R). This completes the proof. �

The following proposition shows that f(t, f0) is independent of the choice of s and σ, provided
t > 0, and that problem (2.5.6)-(2.5.7) enjoys a smoothing property.

Proposition 2.5.2

Presuppose the hypotheses of Theorem 2.5.1 and fix σ̄ in (n/2, n ∧ 2). Then, given f0 ∈
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W σ̄,1[V]), problem (2.3.1)-(2.3.2) has a unique maximal solution

f( · , f0) ∈ C
(
I(f0),W σ̄,1[V]

)
∩ C

(
İ(f0),W s+2,1[V]

)
∩ C1

(
İ(f0),W s,1[V]

)
and I(f0) is independant of s satisfying (2.5.10).

Proof : See [18]. �

As a notation Cm0 [E] := Cm0 (Rn, E) is the closed subspace of BUCm[E] consisting of all f such
that ∂α vanishes at infinity for |α| ≤ m. Furthermore,

C∞
0 [E] :=

⋂
m≥0

Cm0 [E]

equipped with the natural projective limit toplogy. Similar definitions apply to B∞ for B ∈
{BUC,W 1} and to E∞.

Corollary 2.5.3
Suppose that ρ > 0 and(

t 7→ (e, (ω, ϕ), h)(t)
)
∈ Cρ

(
I,E∞ ×BUC∞[Kcoag ×Kfrag]×W∞,1[V]

)
such that (2.4.3) is satisfied. Then, if f0 ∈ Wσ,1[V] for some σ ∈ (n/2, n ∧ 2), the unique
maximal solution of (2.5.6)-(2.5.7) belongs to C1(İ(f0), C∞

0 [V]).

Proof : This follows from the preceding proposition and the Sobolev embedding

W s,1[E] d
↪−→ Cm0 [E], s > m+ n, m ∈ N (2.5.15)

which is also valid in the case of an arbitrary Banach space E.

�

Remark :

1. It should be observed that this corollary applies, in particular, if all data are independant of
z ∈ Rn.

2. It can also be shown that the solution is more regular in the time variable than stated here,
Roughly speaking, ḟ is ρ-Hölder continuous with respect to t > 0.
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2.6 Positivity

Each one of the spaces Lp(M,µ;E), 1 ≤ p ≤ ∞, BUCs[E], W s,1[E], s ∈ R+, is an ordered
Banach space, provided E is an ordered Banach space. In particular, V is an ordered Banach space
with respect to the natural order induced by the positive cone V+ = L+

1 (V, (1 + v)dv), and all
function spaces considered below are given their natural orders.

An approximation result for positive cones is shown by the next Lemma.

Lemma 2.6.1
D+(Rn)⊗ C+

c (V) is dense in W s,1[V]+ for s ∈ R+.

A bounded linear operator A on an ordered Banach space E is positive (in symbols: A ≥ 0) if
A(E+) ⊂ E+. A closed linear operator B in E is resolvent positive if there exists λ0 ≥ 0 such that
[λ0,∞) belongs to the resolvent set ρ(−B) of −B and (λ+B)−1 ≥ 0 for λ ≥ λ0.

Proposition 2.6.2

Suppose that s ∈ (0, r)\N, and let e ∈ E1+r satisfy (2.4.1). Then A[e] is resolvent positive
on W s,1[V].

Proof : Theorem 2.4.2 implies that A := A[e] is a closed linear operator in W s,1[V] with
[η,∞) ⊂ ρ(−A) for some η > 0.

(i) Suppose that s > n and put V∞ := L∞(V, dv). Then the proof of the Theorem 2.4.2 applies to
give

A ∈ H
(
W s+2,1[V∞],W s,1[V∞]

)
Hence there exists η∞ > 0 such that [η∞,∞) ⊂ ρ(−A∞), whereA∞ denotesA, but considered
as a linear operator in W s,1[V∞]. Put

λ0 := η ∨ η∞ ∨
(
‖a0‖BUC[L1

loc
] + ‖∇·~a‖BUC[L1

loc
]

)
Fix λ ≥ λ0 and g ∈ D+(Rn)⊗C+

c (V), and put f = (λ+A∞)−1g. Then f ∈W s+2,1[V∞] and

(λ+A)f(v, z) = g(v, z), z ∈ Rn, a.e. v ∈ V

Note that (2.5.14) implies f ∈ C2
0 [V∞]. Thus it follows that, for a.e. v ∈ V, the function
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f(v, · ) belongs to C2
0 [Rn] and satisfies the elliptic differential inequality

−d(v, · ) : ∇2f(v, · ) + ~c(v, · ) ·∇f(v, · ) + d1(v, · )f(v, · ) ≥ 0 (2.6.1)

on Rn where

• d1 := λ+ a0 −∇·~a ≥ 0.

• ∇2f : denotes the Hessian of f .

• A : B is the trace of the matrix product AB>

The coefficients of (2.6.1) are uniformely bounded on Rn. Since f(v, · ) vanishes at infinity,
the classical maximum principle implies that f(v, · ) is nonnegative. This being true for
a.e. v ∈ V, so f ∈W s+2,1[V∞]+.

Since D+(Rn)⊗C+
c (V) ⊂W s,1[V]+ and λ > η, Theorem 2.4.2 guarantees that f ∈W s+2,1[V]

as well. Consequently,

(λ+A)−1(D+(Rn)⊗ C+
c (V)) ⊂W s,1[V]+, λ ≥ λ0

the continuity of (λ+A)−1 on W s,1[V]+ is deduced from Lemma 2.6.1, and the closedness of
the positive cone that A is resolvent positive on W s,1[V].

( ii) Suppose that s < n. Fix n < t < r1 < ∞ with t /∈ N and suppose that e ∈ E1+r1 . It follows
from (i) that A is resolvent positive on W t,1[V]. Also Lemma 2.6.1 implies that W t,1[V]+ is
dense in W s,1[V]+. Thus, since (λ+A)−1 exists and is continuous on W s,1[V] for sufficiently
large λ, once more by approximation, A is resolvent positive on W s,1[V].

( iii) Finally, if r < r1, fix r0 ∈ (s, r) and suppose that e ∈ E1+r. Then it is well-known that there
exists a sequence (ej) in E1+r1 converging in E1+r0 towards e. hence from Lemma 2.6.1 and
the continuity of the inversion map B → B−1, we deduce that

(λ+A[ej ])−1 → (λ+A)−1, (j → +∞)

in L(W s,1[V]) for sufficiently large λ, if ej assumed to be satisfied (2.4.1) for all j ∈ N with α
replaced by some smaller positive number. Thus, the resolvent positivity follows in this case
also.

�

After these preparations, we can prove the main result of this section, namely that the solution
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f( · , f0) of (2.5.6)-(2.5.7) is positive whenever f0 ≥ 0 and (ω, ϕ) and h are positive 2.

Theorem 2.6.3
Let the assumptions of the Theorem 2.5.1 be satisfied and suppose that (ω, ϕ) ≥ 0 and
h ≥ 0. Then, f0 ≥ 0 implies f( · , f0) ≥ 0.

Proof :

(i) Suppose that s > n. Then Theorem 2.5.1 and (2.5.15) imply

f := f( · , f0) ∈ C(I(f0), C0(V))

Fix T ∈ İ(f0) and put η0 := ‖ω‖∞ max
0≤t≤T

‖f(t)‖C0(V). Then

∣∣∣∣∣∣
+∞∫
0

ω(t, v, v′, z)f(t, v′, z) dv′

∣∣∣∣∣∣ ≤ η0 (2.6.2)

for (t, z) ∈ [0, T ]× Rn and a.e. v ∈ V. Set

pω(g, w)(v) := 1
2

v∫
0

ω(v − v′, v′)g(v − v′)w(v′) dv′

and

qω(g, w)(v) := g(v)
+∞∫
0

ω(v, v′)w(v′) dv′ (2.6.3)

for v ∈ V and g, w ∈ V. Also put η := η0 + ‖Φϕ‖∞ and

G(t, g) := pω(t)(g, g)− qω(t)(g, g) + ηg +B(t, g) + h(t)

for 0 ≤ t ≤ T and g ∈ V. Then

G(t, f(t)) = R(t, f(t)) + ηf(t), 0 ≤ t ≤ T

and (2.6.2) and the structure of B imply

G(t, g(t)) ≥ 0, g ∈ C([0, T ], C+[V]), 0 ≤ t ≤ T (2.6.4)

2An element x of an ordered vector space is positive if and only if x ≥ 0.
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Lastly, set Aη := η +A. Then f is the unique solution of the IVP

ġ +Aη(t)g = G(t, g), 0 ≤ t ≤ T, g(0) = f0 (2.6.5)

in W s,1[V]. Denote by U the parabolic evolution operator for Aη, whose existence is guaran-
teed by ( [20], Corollary 4.4.2). Put

V (g)(t) :=
t∫

0

U(t, τ)G(τ, g(τ)) dτ, g ∈Wσ,1[V], 0 ≤ t ≤ T

Then (2.6.5) implies that f solves the nonlinear Volterra integral equation

f = U( · , 0)f0 + V (f) (2.6.6)

in Wσ,1[V]. If T is sufficiently small then equation (2.6.6) can be solved by the method of
successive approximations, that is, the sequence (fn), determined by f0 := f0 and

fn+1 = U( · , 0)f0 + V (fn), n ∈ N

converges in C([0, T ],W σ,1[V]) towards f . Since Aη is resolvent positive by Proposition 2.6.2,
it follows from ( [20], Theorem 6.4.1 and 6.4.2) that U is positive. Thus (2.5.14) and (2.6.4)
require that fn ≥ 0 for n ∈ N. consequently, f ≥ 0.

These considerations show that there exists T ∈ İ(f0) such that f0 ≥ 0 implies f(t, f0) ≥ 0
for 0 ≤ t ≤ T . Set

T ∗ := max
{
T ∈ İ(f0); f(t, f0) ≥ 0

}
If T ∗ < sup I(f0) then apply the above reasoning to the IVP

ġ +A(t+ T ∗)g = R(t+ T ∗, g), t ∈ I(f0)− T ∗, g(0) = f(T ∗, f0)

to find that f(t, f0) ≥ 0 on [0, T ∗ + T ∗∗] for some T ∗∗ > 0. Since this contradicts the choice
of T ∗, we see that T ∗ = sup I(f0), that is, f( · , f0) ≥ 0.

(ii) Suppose that s < n and r =∞. Fix s1, σ1 /∈ N with

n < s1 < σ1 < s1 + 2

and suppose that f0 ∈ Wσ1,1[V]+. Then, it follows from (i) that f( · , f0) ≥ 0 in Wσ1,1[V],
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hence in Wσ,1[V] by (1.6.8). Since Wσ1,1[V]+ is dense in Wσ,1[V]+, the continuous dependence
of f( · , f0) on f0 ∈Wσ,1[V], is guaranteed by Theorem 2.5.1 implies f( · , f0) ≥ 0 in Wσ,1[V]
for f0 ∈Wσ,1[V]+.

(iii) Lastly, suppose that s < n and r > s. Then, as in step (ii) of the proof of Proposition 2.6.2,

we approximate
(
f0, e, (ω, ϕ), h

)
by smooth functions and derive the positivity of f( · , f0)

from its continuous dependence on the data and from (ii).

�

2.7 Conservation of Volume

The following assumptions are made throughout this section

r, ρ, τ > 0,(
t 7→ (e, (ω, ϕ), h)(t)

)
∈ Cρ

(
I,Er+1 ×BUCr[K+

coag ×K+
frag]×W τ,1[V]+

)
with (2.4.3) being satisfied. Moreover, ~b = 0, n/2 < σ < n, f0 ∈Wσ[V]+

 (2.7.1)

Fixing s ∈ (0, τ ∧ (2σ − n) ∧ r) and denoting by f( · , f0) the unique maximal solution of the
coagulation-fragmentation system (2.3.1)-(2.3.2). Theorem (2.5.1) implies that f is well-defined
and satisfies (2.5.13). Thus

f ∈ C(İ(f0),W 2,1[V]) ∩ C1(İ(f0), L1[V]) (2.7.2)

and the Theorem (2.6.3) guarantees that f ≥ 0.

Lemma 2.7.1
If g ∈W 2,1[V] then ∫

Rn

∫
V

A(t)gvi dv dz =
∫
Rn

∫
V

a0gv
i dv dz, i = 0, 1

for t ∈ I

Proof : See [18]. �

For t ∈ I(f0), denoting

V (t) : is the total particle volume time t.
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A0(t) : is the total absorbed particle volume at time t.

H(t) : is the total particle input at time t.

which are defined as,

V (t) :=
∫
Rn

∫
V

f(t)v dv dz, A0(t) :=
∫
Rn

∫
V

a0(t)f(t)v dv dz,

and
H(t) :=

∫
Rn

∫
V

h(t)v dv dz,

The following theorem shows that if neither absorption nor particle input takes place, then the
total particle volume is conserved.

Theorem 2.7.2

V (t) = V (0) +
t∫

0

(H(τ)−A0(τ)) dτ, t ∈ I(f0)

Proof : By integrating
ḟ(t) +A(t)f(t) = R(t, f(t)) (2.7.3)

over Rn × V with respect to the measure dz ⊗ vdv and taking (2.2.8) and (2.2.15) into account

V̇ (t) = H(t)−A0(t) (2.7.4)

using (2.7.2) and Lemma 2.7.1. Now the assertion follows by integrating (2.7.4) from t0 to t, where
0 < t0 < t, and letting t0 tend to 0. �

Corollary 2.7.3

Put β± :=
∥∥a±

0
∥∥

∞. Then

e−β+tV (0) +
t∫

0

e−β+(t−τ)H(τ) dτ ≤ V (t) ≤ eβ
−tV (0) +

t∫
0

eβ
−(t−τ)H(τ) dτ

for t ∈ I(f0).

Proof : Note that

−β−V (t) ≤ A0(t) ≤ β+V (t), t ∈ I(f0)
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Thus (2.7.3) entails the differential inequalities

H(t)− β+V (t) ≤ V̇ (t) ≤ H(t) + β−V (t), t ∈ I(f0)

which implies the assertion. �

Finally, in the next section the problem of global existence is discussed, that is, whether or not
I(f0) = I.

2.8 Global Existence

Theorem 2.8.1
Let assumption (2.7.1) be satisfied. If one of the following assumptions is satisfied:
(i) There is no coagulation, that is, ω = 0;
(ii) n = 1;
(iii) A is independent of v ∈ V.
Then f := f( · , f0) exists globally.

Proof :

(i) is obvious since in this case (2.5.6)-(2.5.7) is a linear evolution equation.

(ii) Set Vi := L1(V, vidv) for 0,1 i = 0, 1 . Then, by integrating (2.7.3), deducing from Lemma
(2.7.1), the positivity of f , and (2.2.7) and (2.2.14) that

‖f(t)‖.L1[V0] =
∫
Rn

∫
V

ḟ(t) dv dz

≤ ‖a0‖∞‖f(t)‖L1[V0] +
‖ϕ‖∞

2 V (t) + ‖h(t)‖L1[V0]

for t ∈ İ(f0). Also, deduce from Corollary (2.7.3) that there exist $ > 0 and ς ∈ C+(I) such
that ϑ := ‖f( · )‖L1[V0] satisfies the differential inequality

ϑ̇ ≤ $ϑ+ ς(t), t ∈ İ(f0)

Since ϑ ∈ C(I(f0)) ∩ C1(İ(f0)), it follows that

‖f(t)‖L1[V0] ≤ c(T ), t ∈ I(f0) ∩ [0, T ], T ∈ I
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Thus, by taking V (t) = ‖f(t)‖L1[V0] into account and applying Corollary 2.7.3 once more.
Then

‖f(t)‖L1[V] ≤ c(T ), t ∈ I(f0) ∩ [0, T ], T ∈ I (2.8.1)

Deducing from (2.2.6) and (2.2.13) that

‖C(t, f(t))‖1 ≤ c‖f(t)‖∞‖f(t)‖1

and
‖B(t, f(t))‖1 ≤ c‖f(t)‖∞

for t ∈ I(f0) (where ‖· ‖λ,q is the norm in Wλ,q[V] and ‖· ‖q := ‖· ‖0,q). Hence we infer
from (2.8.1) that

‖R(t, f(t))‖1 ≤ c(T )(‖f(t)‖∞ + 1), t ∈ I(f0) ∩ [0, T ], T > 0 (2.8.2)

Fix s̄ ∈ (−1, 0) and σ̄ ∈ R+\N with 1 < σ̄ < s̄ + 2. Then (2.5.15), the injection L1[V] ↪−→
W s̄,1[V], and (2.8.2) imply

‖R(t, f(t))‖s̄,1 ≤ c(T )(‖f(t)‖σ̄,1 + 1), t ∈ I(f0) ∩ [0, T ], T ∈ I (2.8.3)

Theorem 2.5.1 guarantees that f is a solution on I(f0) of the linear IVP

ġ +A(t)g = R(t, g(t)), t ∈ İ(f0), g(0) = f0

where R( · , g( · )) ∈ C(I(f0),W τ̄ ,1[V]) with s̄ < τ̄ < 0. Consequently, f satisfies in W s̄,1[V]
the integral equation

f(t) = U(t, 0)f0 +
t∫

0

U(t, τ)R(τ, f(τ)) dτ, t ∈ I(f0) (2.8.4)

Hence it follows from ( [20], Lemma 5.1.3) and

‖f(t)‖σ̄,1 ≤ c(T )
(
tσ−σ̄∥∥f0∥∥

σ,1 +
t∫

0

(t− τ)
s̄−σ̄

2 (‖f(t)‖σ̄,1 + 1) dτ
)

for t ∈ I(f0)∩ [0, T ] and T ∈ I. Thus the singular gronwall inequality ( [20], Corollary 3.3.2)
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requires that, given t0 ∈ İ(f0)

‖f(t)‖σ,1 ≤ c‖f(t)‖σ̄,1 ≤ c(T ), t ∈ I(f0) ∩ [t0, T ] (2.8.5)

for every T ∈ I with T > t0. Now the assertion is a consequence of the last part of Theorem
B.0.1, since Eα = Wσ,1[V] by the proof of Theorem 2.5.1.

(iii) By integrating (2.7.3) over V with respect to the measure dv and using (2.2.7), (2.2.14), and
the positivity of f it follows that f̄ :=

∫
V
f dv satisfies the parabolic differential inequality

∂tf̄ +A(t)f̄ ≤ h̄(t), t ∈ İ(f0), f̄(0) =
∫
V

f0 dv

on Rn, where h̄(t) :=
∫
V
h(t) dv. If f̄ ∈ C2

0 (Rn) then the maximum principle implies

‖f(t)‖L∞(Rn,V0) =
∥∥f̄(t)

∥∥
L∞(Rn) ≤ c(T ), t ∈ I(f0) ∩ [0, T ]

In the general case this estimate obtained by an approximation argument similar to the one
used in the proof of Theorem 2.6.3. Hence Corollary 2.7.3 and (2.8.2) imply

‖R(t, f(t))‖s̄,1 ≤ c(T ), t ∈ I(f0) ∩ [0, T ], T ∈ I

Thus (2.8.4) and ( [20], Corollary II.3.2.2) guarantee that (2.8.5) is true in this case also.

�

2.9 Convergence Analysis of ADM

R. Singh, J. Saha and J. Kumar [75] discussed the convergence of the series solution for the
fragmentation and aggregation population balance equation separately in a spatially homogeneous
physical system. They followed the approach discussed in [42]
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2.9.1 For Fragmentation equation

Consider the PBE for fragmentation

∂f(t, v)
∂t

= −Γ(v)f(t, v) +
+∞∫
v

β(v, v′)Γ(v′)f(t, v′) dv′ (2.9.1)

supplemented by the initial condition

f(0, v) = f0(v) (2.9.2)

Let X = ([0, T ]× L1[0,∞), ‖.‖) be a Banach space with the norm defined as

‖f‖ = sup
t∈[0,t0]

+∞∫
0

eλv|f(t, v)| dv, λ > 0 (2.9.3)

Operating with L−1 3 on both sides of (2.9.1), and using the initial condition

f(t, v) = f0(v) + L−1
(
− Γ(v)f(t, v) +

+∞∫
v

β(v, v′)Γ(v′)f(t, v′) dv′
)

(2.9.4)

Eq. (2.9.4) written in operator form as
f = T f (2.9.5)

With T : X −→ X is a linear operator given by

T f(t, v) = f0(v) + L−1
(
− Γ(v)f(t, v) +

+∞∫
v

β(v, v′)Γ(v′)f(t, v′) dv′
)

(2.9.6)

The idea here is to show that T is contractive; for this reason, rewrite (2.9.6) in the following
equivalent form:

∂

∂t

(
f(t, v)eF(t,v)

)
= eF(t,v)

( +∞∫
v

β(v, v′)Γ(v′)f(t, v′) dv′
)

(2.9.7)

3In (2.9.1), L = ∂
∂t

is linear partial differential operator, The operator L−1 regarded as the inverse operator of L,

is defined by L−1[.] :=
t∫

0
[.] dt
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By setting eF(t,v) = tΓ(v). Thus,

T̃ f(t, v) = f0(v)e−F(t,v) +
t∫

0

[
e−F(s,v)−F(t,v)

( +∞∫
v

β(v, v′)Γ(v′)f(s, v′) dv′
)]

ds (2.9.8)

It is sufficient to show that T̃ is contractive since T̃ and T are equivalent.

Theorem 2.9.1
Let the linear operator T̃ defined by (2.9.8) be contractive, that is,

∥∥T̃ f − T̃ f∗∥∥ ≤ δ‖f − f∗‖, ∀f, f∗ ∈ X

With
1. β(v, v′) = c v

r−1

(v′)r , r = 1, 2, . . . and c > 0 is a constant satisfying

v∫
0

v′β(v, v′) dv′ = v (2.9.9)

2. Γ(v) ≤ vk, where k = 1, 2, . . .
3. λ is chosen in such a way that (eλv − 1) < 1
4. δ := (k!)t0

λk+1 c < 1 for some suitable t0.

Proof : See [75]. �

Theorem 2.9.2 (Theorem of convergence)

1. Assume that all the conditions of Theorem 2.9.1 hold.
2. Let f0, f1, f2, . . . be the components of the solution f by the recursive scheme

f0(t, v) = f0(v)

fi(t, v) = L−1
(+∞∫

v

β(v, v′)Γ(v′)fi−1(t, v′) dv′ −Γ(v)fi−1(t, v)) , i ≥ 1
(2.9.10)

3. Let ψn =
n∑
i=0

fi be the n-terms series solution defined by f =
+∞∑
i=0

fi

Then, the series solution ψn converges whenever δ := (k!)t0
λk+1 c < 1 and ‖f1‖ <∞
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Proof : From (2.9.10), we have

ψn(t, v) =
n∑
i=0

fi(t, v)

= f0(v) +
n∑
i=0
L−1

 +∞∫
v

β(v, v′)Γ(v′)fi−1(t, v′) dv′ − Γ(v)fi−1(t, v)


= f0(v) + L−1

 +∞∫
v

β(v, v′)Γ(v′)
( n−1∑
i=0

fi(t, v′)
)
dv′

−Γ(v)
( n−1∑
i=0

fi(t, v)
)]

= f0(v) + L−1

 +∞∫
v

β(v, v′)Γ(v′)ψn−1(t, v′) dv′ − Γ(v)ψn−1(t, v)


which is equivalent to the following operator equation form as

ψn = T ψn−1 (2.9.11)

By following the steps of Theorem 2.9.1, we obtain

‖ψm+1 − ψm‖ ≤ δ‖ψm − ψm−1‖

≤ δ2‖ψm−1 − ψm−2‖
...

≤ δm‖ψ1 − ψ0‖

Using the triangle inequality with n > m we have

‖ψn − ψm‖ ≤ ‖ψn − ψn−1‖+ ‖ψn−1 − ψn−2‖+ · · ·+ ‖ψm+1 − ψm‖

≤
(
δn−1 + δn−2 + · · ·+ δm

)
‖ψ1 − ψ0‖

...

≤ δm
(
δn−m−1 + δn−m−2 + · · ·+ δ2 + δ + 1)‖ψ1 − ψ0‖

= δm
(

1− δn−m

1− δ

)
‖f1‖
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Since 0 < δ < 1 so, 1− δn−m < 1, and ‖f1‖ <∞. It follows that

‖ψn − ψm‖ ≤
(

δm

1− δ

)
‖f1‖ (2.9.12)

which converges to zero as m −→ +∞. This implies that there exits a ψ such that

lim
n−→+∞

ψn = ψ (2.9.13)

Since, we have

f =
+∞∑
i=0

fj = lim
n−→+∞

ψn = ψ (2.9.14)

which is the exact solution of (2.9.5). �

Theorem 2.9.3 (Estimation of Error)

Let f be the exact solution of (2.9.5) and ψm be the series solution. Then there holds

‖f − ψm‖ ≤
(

δm

1− δ

)
‖f1‖ (2.9.15)

Where ‖f1‖ = sup
t∈[0,t0]

+∞∫
0
eλv|f1(t, v)| dv

Proof : From the estimate (2.9.12), for n ≥ m, n,m ∈ N.

‖ψn − ψm‖ ≤
(

δm

1− δ

)
‖f1‖ (2.9.16)

Fixing m and letting n −→ +∞, and using lim
n−→+∞

ψn = f , we obtain the desired result of theorem.

�

2.9.2 For Aggregation equation

Consider PBE for pure Aggregation

∂f(t, v)
∂t

= 1
2

∫ v

0
ω(v − u, u)f(t, v − u)f(t, u) du−

∫ +∞

0
ω(v, u)f(t, v)f(t, u) du (2.9.17)

Subjected to the initial condition
f(0, v) = f0(v) (2.9.18)
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Rewrite (2.9.17) in operator form as follows:

Lf(t, v) = 1
2

∫ v

0
ω(v − u, u)N1(f)(t, v − u, u) du−

∫ +∞

0
ω(v, u)N2(f)(t, v, u) du (2.9.19)

The nonlinear functions are denoted by

N1(f)(t, v − u, u) = f(t, v − u)f(t, u)

N2(f)(t, v, u) = f(t, v)f(t, u)

Operating with L−1 defined previously on both sides of (2.9.19) yields

f(t, v) = f0(v) + L−1
[

1
2

∫ v

0
ω(v − u, u)N1(f)(s, v − u, u) du−

∫ +∞

0
ω(v, u)N2(f)(s, v, u) du

]
(2.9.20)

The ADM introduces the solution f(t, v) and the nonlinear functions N1(f) and N2(f) as

f(t, v) =
+∞∑
m=0

fm(t, v) (2.9.21)

N1(f) =
+∞∑
m=0
Am (2.9.22)

N2(f) =
+∞∑
m=0
Bm (2.9.23)

where Am and Bm are the Adomian polynomials and defined by

Am(f0, f1, ..., fm) = 1
m!

t
dm

dξm
N1

(+∞∑
i=0

ξifi

)|

ξ=0

,m ≥ 0 (2.9.24)

Bm(f0, f1, ..., fm) = 1
m!

t
dm

dξm
N2

(+∞∑
i=0

ξifi

)|

ξ=0

,m ≥ 0 (2.9.25)

Thus, the Adomian recursion scheme is
f0(t, v) = f0(v)

fi(t, v) = L−1
(

1
2

v∫
0
ω(v − u, u)Ai−1 du−

+∞∫
0
ω(v, u)Bi−1 du

)
, i ≥ 1

(2.9.26)
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To discuss the convergence of the previous recursive scheme (2.9.26), Let X =
(
C
(
[0, T ] :

L1[0,+∞)
)
, ‖.‖

)
be a Banach space with the norm defined as

‖f‖ = sup
t∈[0,t0]

+∞∫
0

|f(t, v)| dv <∞ (2.9.27)

Rewriting (2.9.20) in the form of an operator equation

f = N (f) (2.9.28)

where N : X −→ X is a nonlinear operator given by

N (f)(t, v) = f0(v) + L−1
[

1
2

∫ v

0
ω(v − u, u)N1(f)(t, v − u, u) du−

∫ +∞

0
ω(v, u)N2(f)(t, v, u) du

]
(2.9.29)

With the same approach, rewrite equation (2.9.29) in an equivalent form to show that N is con-
tractive.

∂

∂t

(
f(t, v)eF(t,v,f)

)
= eF(t,v,f)

( v∫
0

ω(v − u, u)f(t, v − u)f(t, u) du
)

(2.9.30)

where F(t, v, f) =
t∫

0

+∞∫
0
ω(v, u)f(s, u) du ds. Thus, we have

Ñ (f)(t, v) = f0(v)e−F(t,v,f) + 1
2

t∫
0

eF(s,v,f)−F(t,v,f)
( v∫

0

ω(v − u, u)f(s, v − u)f(s, u) du
)
ds

(2.9.31)

Since N and Ñ are equivalent, it is enough to show Ñ is contractive.

Theorem 2.9.4
Let the nonlinear operator Ñ defined by (2.9.28) be contractive, that is,

∥∥Ñ (f)− Ñ (f∗)
∥∥ ≤ δ‖f − f∗‖, ∀f, f∗ ∈ X

With
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1. ω(v, u) = 1, ∀v, u ∈ (0,+∞).

2. δ := t0e
2t0L

(
‖f0‖+ 2t0L2 + 2t0L

)
< 1, where L = ‖f0‖(T + 1).

Proof : Let f, f∗ ∈ X, consider

Ñ (f)− Ñ (f∗) = f0(v)K(t, 0, v) + 1
2

t∫
0

K(t, s, v)
v∫

0

f(s, v − u)f(s, u) du ds

−1
2

t∫
0

eF(s,v,f∗)−F(t,v,f∗)

( v∫
0

f∗(s, v − u)
(
f(s, u)− f∗(s, u)

)
du

+
v∫

0

f(s, u)
(
f(s, v − u)− f∗(s, v − u)

)
du

)
ds

(2.9.32)

Where K(t, s, v) = eF(s,v,f)−F(t,v,f) − eF(s,v,f∗)−F(t,v,f∗). It can be shown that,

|K(t, s, v)| ≤ e
−

t∫
s

+∞∫
0

f∗(τ,u) du dτ
(t− s)‖f − f∗‖ (2.9.33)

≤ (t− s)e(t−s)B‖f − f∗‖ (2.9.34)

≤ L1‖f − f∗‖ (2.9.35)

where L1 = tetB and B = max(‖f‖, ‖f∗‖). In order to show that the operator Ñ is contractive,
let us define the set D = {f ∈ X : ‖f‖ ≤ 2L}. It can be shown that the operator Ñ maps D into
itself.
For f, f∗ ∈ D we have B ≤ 2L. Taking norm on both sides of (2.9.32), we get

∥∥Ñ (f)− Ñ (f∗)
∥∥ ≤ L1‖f0‖‖f − f∗‖+ ‖f − f∗‖L1

t∫
0

(
1
2‖f0‖2

)
ds

+
t∫

0

L1

(
1
2(‖f‖+ ‖f∗‖)‖f − f∗‖

)
ds

≤ L1

(
‖f0‖+ 1

2 t‖f‖
2 + 1

2 t(‖f‖+ ‖f∗‖)
)
‖f − f∗‖

≤ δ‖f − f∗‖

if δ = t0e
2t0L

(
‖f0‖+ 2t0L2 + 2t0L

)
< 1 under suitably chosen t0 the operator Ñ is a contraction

map. �
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Theorem 2.9.5 (Convergence theorem)

1. Assume that all the conditions of Theorem 2.9.4 hold.
2. Let f0, f1, f2, . . . be the components of the solution f by the recursive scheme (2.9.26)

3. Let ψn =
n∑
i=0

fi be the n-terms series solution defined by f =
+∞∑
i=0

fi

Then, the series solution ψn converges whenever δ := t0e
2t0L

(
‖f0‖ + 2t0L2 + 2t0L

)
< 1

and ‖f1‖ <∞

Proof : Using (2.9.26), we have

ψn(t, v) =
n∑
i=0

fi(t, v) (2.9.36)

= f0(v) +
n∑
i=1
L−1

(
1
2

v∫
0

ω(v − u, u)Ai−1 du−
+∞∫
0

ω(v, u)Bi−1 du

)
(2.9.37)

= f0(v) + L−1

(
1
2

v∫
0

ω(v − u, u)
( n−1∑
i=0
Ai
)
du−

+∞∫
0

ω(v, u)
( n−1∑
i=0
Bi
)
du

)
(2.9.38)

As given in ( [68] pp. 945)
n∑
i=0
Ai ≤ N1(ψn) (2.9.39)

n∑
i=0
Bi ≤ N2(ψn) (2.9.40)

and use it in (2.9.38), we get

ψn ≤ f0(v) + L−1

(
1
2

v∫
0

ω(v − u, u)N1(ψn−1) du−
+∞∫
0

ω(v, u)N2(ψn−1) du
)

(2.9.41)

This corresponds to the following operator form

ψn ≤ N (ψn−1) (2.9.42)

Following the steps of Theorem 2.9.4, we obtain

‖ψn+1 − ψn‖ ≤ δ‖ψn − ψn−1‖ (2.9.43)
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Thus, we have

‖ψn+1 − ψn‖ ≤ δ‖ψn − ψn−1‖ ≤ δ2‖ψn−1 − ψn−2‖ ≤ . . . ≤ δn‖ψ1 − ψ0‖

Using the triangle inequality for all n,m ∈ N with n > m, we have

‖ψn − ψm‖ ≤ ‖ψn − ψn−1‖+ ‖ψn−1 − ψn−2‖+ · · ·+ ‖ψm+1 − ψm‖

≤
(
δn−1 + δn−2 + · · ·+ δm

)
‖ψ1 − ψ0‖

= δm
(

1− δn−m

1− δ

)
‖f1‖

Since 0 < δ < 1 so, 1− δn−m < 1, and ‖f1‖ <∞. It follows that

‖ψn − ψm‖ ≤
(

δm

1− δ

)
‖f1‖ (2.9.44)

which converges to zero as m −→ +∞. This implies that there exits a ψ such that

lim
n−→+∞

ψn = ψ (2.9.45)

Since, we have

f =
+∞∑
i=0

fj = lim
n−→+∞

ψn = ψ (2.9.46)

which is the exact solution of (2.9.28). �

Theorem 2.9.6 (Estimation of Error)

Let u be the exact solution of (2.9.28) and ψm be the series solution. Then there holds

‖f − ψm‖ ≤
(

δm

1− δ

)
‖f1‖ (2.9.47)

Where ‖f1‖ = sup
t∈[0,t0]

+∞∫
0
|f1(t, v)| dv <∞

Proof : The proof is similar to that of Theorem 2.9.3. �



3
Mathematical Background of

Adomian Decomposition Method
The Adomian Decomposition Method (ADM), including its presentation and convergence, is thor-
oughly reviewed in this chapter.
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3.1 Introduction

The Adomian’s decomposition method or sim-
ply the ADM was initiated by the Amer-
ican mathematician George Adomian in

the early eighties, this powerful methodology was pre-
sented for a practical solution of both linear or nonlinear
and deterministic or even stochastic operator equations.
It is worth mentioning that he introduced his method em-
pirically and without theoretical foundations [11,12]. Pro-
fessor Y. Cherruault was the first to establish rigorous
foundations for this method, to justify its convergence,
and to generalize it [30,31].
Many phenomena in diverse fields such as engineering,
physics, chemistry, biology ...etc, can be very successfully
described by models using mathematical tools.

Figure 3.1: G. ADOMIAN (1922-1996) an
American mathematician

The majority of these models illustrate nonlinear problems and nonlinear phenomena play a
crucial role in the aforementioned fields. Consequently, explicit solutions of nonlinear equations
are of fundamental importance to maintain the actual physical character of the problem and to
understand deeply the described process.

Adomian [10,12–14] and others have successfully applied the ADM to algebraic, ordinary, partial,
delay, and non-integer order or fractional differential equations for a wide range of nonlinearities,
including polynomial, exponential, trigonometric, hyperbolic, composite, negative power, radical,
and even decimal power nonlinearities.

The ADM solves nonlinear differential equations for any analytic nonlinearities. It permits one
to solve nonlinear differential equations without having to appeal to the decidedly questionable
practices of perturbation or linearization.

The ADM can be applied directly for all types of differential and integral equations, linear or
nonlinear, homogeneous or inhomogeneous, with constant coefficients or with variable coefficients. It
does not require discretization of the variables. Hence, the solution is not affected by computation
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round-off errors and the necessity of large computer memory. It is capable of greatly reducing
the size of computation work while still maintaining the high accuracy of the numerical solution.
Another advantage of this method is the avoidance of simplifications and restrictions, which change
the nonlinear problem to a mathematically tractable one, whose solution is not consistent with the
physical solution.

PDE

Exacte
solution

Numerical
solution

Discret
solution

Discretized
equation

Consistency

Convergence Stability

Figure 3.2: Exact, numerical, and discrete solution.

3.2 Presentation of the Method

Let us introduce this methodology by considering the nonlinear differential equation

Gf = g (3.2.1)

The operator G is generally composed of linear and nonlinear parts. Therefore, 3.2.1 rewritten as

Lf +Rf +N (f) = g (3.2.2)

Here,

• G : is a general nonlinear operator.

• L : is a linear operator to be inverted, which usually is just the highest-order differential
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operator.

• R : is a linear remainder operator .

• N : is the nonlinear operator, which is assumed to be analytic.

• g : is the given function .

• f : is the unknown function satisfying (3.2.2).

The ADM decomposes both the solution and the nonlinear term into infinite series [9]

f =
+∞∑
m=0

fm (3.2.3)

N (f) =
+∞∑
m=0
Am(f0, f1, ..., fm) (3.2.4)

Where the Am are known as Adomian polynomials. In the first approach given by Adomian [11]
the Am are obtained using the analytic parametrization with ξ of f and N (f)

f =
+∞∑
m=0

fmξ
m (3.2.5)

N (f) = N (
+∞∑
m=0

fmξ
m) =

+∞∑
i=0
Ai(f0, f1, ..., fi)ξi (3.2.6)

Am’s are formally defined by the classical formula1 [16]

Am(f0, f1, ..., fm) = 1
m!

t
dm

dξm
N
(+∞∑
i=0

ξifi

)|

ξ=0

,m ≥ 0 (3.2.7)

The analytic parameter ξ In (3.2.7) was a convenient parameter useful for the development of the
definitions for Am, and is convenient for grouping terms. For instance, if N (f) = ef

A0 = N (f0 + ξf1 + ξ2f2 + . . . )
∣∣∣
ξ=0

= N (f0)

= ef0

1the relationship 3.2.7 are only formal and are not at all practical for computation
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A1 = d

dξ
N (f0 + ξf1 + ξ2f2 + . . . )

∣∣∣
ξ=0

= d

dξ

(
e(f0+ξf1+ξ2f2+... )

)∣∣∣
ξ=0

=
(

(f1 + ξf2 + . . . )e(f0+ξf1+ξ2f2+... )
)∣∣∣

ξ=0

= f1e
f0

...

Transform Eq. (3.2.2) to the integral Adomian equation (the canonical form) by applying the
inverse linear operator L−1 on both sides

f = γ − L−1(Rf +N (f)
)

(3.2.8)

Where γ = Φ + L−1(g) , and Φ satisfies the homogeneous equation LΦ = 0, and it is identified
in terms of initial and/or boundary conditions.

The substitution of the Adomian decomposition series for the solution f and the series of
Adomian polynomials tailored to the nonlinearity N (f) Eq. (3.2.3) and (3.2.4) into Eq. (3.2.8),
leads to

+∞∑
m=0

fm = γ − L−1
(
R
( +∞∑
m=0

fm
)

+
+∞∑
m=0
Am(f0, f1, . . . , fm)

)
(3.2.9)

Or equivalently,

f0 + f1 + f2 + · · ·+ fm + · · · = γ − L−1
(
R(f0) +A0(f0)

)
− L−1

(
R(f1)

+A1(f0, f1)
)
− · · · − L−1

(
R(fm−1) +Am−1(f0, f1, . . . , fm−1)

)
+ . . .

(3.2.10)

The series solution components fm are then identified using the classical Adomian recursion
scheme


f0 = γ

fm = −L−1
(
R(fm−1) +Am−1(f0, f1, . . . , fm−1)

)
,m ≥ 1

(3.2.11)

Although the schema is not unique (3.2.11), it is the only scheme that permits an explicit definition
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of fm. Practically, It is almost always impossible to calculate the sum of the series
+∞∑
i=0

fi. Therefore,

through the relations from (3.2.11), the m-term approximation 2 of the series solution is defined as

ϕm =
m−1∑
i=0

fi (3.2.12)

In summary, after determining the {Am}m≥0, a summation gives the approximate solution of
the equation. However, the question that can already be asked is how to determine the {Am}m≥0

and under what conditions the method converges.

Now, two important observations can be stated.

Remark :

• A0 depends only on f0, A1 depends only on f0 and f1, A2 depends only on f0, f1, f2 and so
on.

• The substitution of the first four Adomian polynomials into Eq. (3.2.4), see the list of the
first 10 Adomian polynomials in Appendix A. gives

N (f) = A0 +A1 +A2 +A3 + . . .

= N (f0) +
(
f1 + f2 + f3 + . . .

)
N ′(f0)

+ 1
2!

(
f2

1 + 2f1f2 + 2f1f3 + f2
2 + . . .

)
N ′′(f0)

+ 1
3!

(
f3

1 + 3f2
1 f2 + 3f2

1 f3 + 6f1f2f3 + . . .

)
N ′′′(f0)

= N (f0) +
(
f − f0

)
N ′(f0) + 1

2!

(
f − f0

)2
N ′′(f0)

+ 1
3!

(
f − f0

)3
N ′′′(f0) + . . .

=
+∞∑
m=0

N (m)(f0)
m!

(
f − f0

)m
The above expansion confirms that the series of Adomian polynomials

∑
Am is a Taylor series

expansion about a function f0 and not about a point, as is usually used.

2For concrete problems, the m-term approximation can be used for numerical approximations.
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3.3 Adomian’s polynomials

Adomian’s polynomials, a concept credited to Adomian [15], which are essential in solv-
ing nonlinear equations, were termed as such by Rach [67] in clear recognition of
Adomian’s groundbreaking contribution to mathematics. In the literature, Several

schemes have been introduced by researchers to calculate the Adomian polynomials. Adomian in-
troduced a scheme for calculating the Adomian polynomials that were formally and widely regarded
as straightforward and practical.

In the sequel, the general Adomian algorithm for calculating the Adomian polynomials was
presented in addition to a summary of the necessary steps to calculate the first few Adomian
polynomials.

3.3.1 Implicit formula of Adomian’s Polynomials

Let F be a Banach space.

Theorem 3.3.1 (Adomian’s polynomials)

Let M be an analytical function and
∑
fm a convergent series in F . The Adomian’s

Polynomials are defined by

Am(f0, f1, ..., fm) = 1
m!

t
dm

dξm
M
(+∞∑
i=0

ξifi

)|

ξ=0

,m ≥ 0 (3.3.1)

Remark :

• It is clear from (3.3.1) that Am are polynomials of f1,f2,. . . ,fm.

• The dependence of Am on the independent variables and f0 may be non-polynomial.

• The Am are not unique there are other version of Adomian polynomials.(the accelerated
Adomian polynomials Ām, the modified Adomian polynomials Ãm).

• TheAm can be calculated for a wide class of nonlinearities such as polynomial, negative power,
composite, and even decimal power nonlinearities, among other classes of strong nonlinearities.

Example : Here are some examples of the computation of Adomian polynomials for certain
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nonlinear functions.

1. Consider the nonlinear function N (f) = f2, the first few Adomian polynomials are

A0(f0) = f2
0

A1(f0, f1) = 2f1f0

A2(f0, f1, f2) = f2
1 + 2f0f2

A3(f0, f1, f2, f3) = 2f1f2 + 2f0f3

A4(f0, f1, f2, f3, f4) = f2
2 + 2f1f3 + 2f0f4

...

2. For the nonlinear function N (f) = ef

A0(f0) = ef0

A1(f0, f1) = f1e
f0

A2(f0, f1, f2) =
(
f2 + 1

2f
2
1

)
ef0

A3(f0, f1, f2, f3) =
(
f3 + f1f2 + 1

6f
3
1

)
ef0

A4(f0, f1, f2, f3, f4) =
(
f4 + 1

2f
2
2 + f1f3 + 1

2f
2
1 f2 + 1

24f
4
1

)
ef0

...

3. For the nonlinear function N (f) = cos(f)

A0(f0) = cos(f0)

A1(f0, f1) = −f1sin(f0)

A2(f0, f1, f2) = −f2sin(f0)− 1
2f

2
1 cos(f0)

A3(f0, f1, f2, f3) = −f3sin(f0)− f1f2cos(f0)− 1
3!f

3
1 sin(f0)

A4(f0, f1, f2, f3, f4) = −f4sin(f0)−
(

1
2f

2
2 + f1f2

)
cos(f0) + 1

2f
2
1 f2sin(f0) + 1

4!f
4
1 cos(f0)

...
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3.3.2 Explicit formulae of Adomian polynomials

In 1994, Abbaoui and Cherruault [1, 2] proved that the Adomian polynomials Am are defined
by an explicit formula

Definition 3.3.2
The Adomian’s polynomials are given byA0 = N (f0)

Am =
∑m
i=1N (i)(f0)Pim(f1, ..., fm) , ∀m ≥ 1

(3.3.2)

With

Pim(f1, ..., fm) =
∑

n1+n2+···+ni=m

(∏i
l=1 fnl

)
(∏p

j=1(kj)!
) (3.3.3)

Where Pim are homogeneous polynomials of m variables whose degree is i, p is the number
of distinct nj and kj is their frequency.

In [1], a simpler formula for calculating Adomian’s polynomials in function of the first term only
(which is always known). Let us recall this formula:
For every sequence Um(ξ) =

m∑
i=0

ξifi, define N (Um(ξ)) by [28]:

N (Um(ξ)) =
m∑
i=0

ξiAi (3.3.4)

Theorem 3.3.3
Suppose that N (f) is differentiable up to the mth order, Am are given by

A0 = N (f0)

Am =
∑

|mk|=m
N (|k|)(f0) f

k1
1
k1!

f
k2
2
k2! . . .

fkm
m

km! , m ≥ 1
(3.3.5)

Where |k| = k1 + · · ·+ km, and |mk| = k1 + 2k2 + · · ·+mkm.

Proof : Applying the classical formula [44] given the mth derivative of composed function
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A(ξ) = (N ◦ Um)(ξ), we obtain

Am(f0, f1, . . . , fm) =
t
dm(N ◦ Um)

dξm
(ξ)

|

= 1
m!

∑
|mk|=m

N (|k|)(f0) m!fk1
1 (2!f2)k2 . . . (m!fm)km

(1!)k1(2!)k2 . . . (m!)kmk1! . . . km!

=
∑

|mk|=m

N (|k|)(f0)f
k1
1
k1!

fk2
2
k2! . . .

fkm
m

km!

�

Corollary 3.3.4
A0 = N (f0)

Am =
∑

α1+α2+···+αm=m
N (α1)(f0) f

(α1−α2)
1

(α1−α2)!
f

(α2−α3)
2

(α2−α3)! . . .
f

(αm−1−αm)
m−1

(αm−1−αm)!
f(αm)

m

αm! , m ≥ 1

(3.3.6)
Where (αi)i=1,2,...,m is a decreasing sequence.

Proof : It is sufficient to choose

k1 = α1 − α2

k2 = α2 − α3

k3 = α3 − α4

...

km−1 = αm−1 − αm

km = αm

Which leads to

k1 + 2k2 + 3k3 + · · ·+mkm = α1 + α2 + α3 + · · ·+ αm = m

And
k1 + k2 + k3 + · · ·+ km = α1

�

Remark :
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• The sum in 3.3.6 has to be done on all the solutions of the equation

α1 + α2 + α3 + · · ·+ αm = m, α1 ≥ α2 ≥ α3 ≥ · · · ≥ αm (3.3.7)

• The formula (3.3.6) allows us to calculate quickly Am. The number of all possible nonnegative
solutions of equation (3.3.7) P(m) is easily obtained using Number theory [27].

Theorem 3.3.5

P(m) < eπ
√

2m
3 , for m ∈ N∗ (3.3.8)

Proof : See [3]. �

The following theorem gives some properties of the Am.

Theorem 3.3.6
1.

∂

∂f0
Am−k = ∂

∂fk
Am, ∀m, k, m ≥ k (3.3.9)

2.

Am+1 = 1
m+ 1

m∑
k=0

(k + 1)fk+1
∂

∂fk
Am (3.3.10)

Proof : See [3]. �

Definition 3.3.7
Am =

∑
α1+···+αm=m

cα1,...,αm
(N (f0))(m+1−α1)(N (1)(f0))(α1−α2) . . .

(N (m−1)(f0))(αm−1−αm)(N (m)(f0))(αm)
(3.3.11)

Where

cα1,...,αm = m!
(α1 − α2)! . . . (αm−1 − αm)!(αm)!(1!)(α1−α2) . . . ((m − 1)!)(αm−1−αm)(m + 1 − α1)!

(3.3.12)

Proof : We first remark that

Am = 1
(m+ 1)!

dm

dξm
[N (f0)m+1]

which can be proved easily by induction. Then, using a classical formula [44] for calculating the n
th derivative of a function, it leads to (3.3.11), with parameters cα1,...,αm . given by (3.3.12). �
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3.4 Convergence of the Method

Yves Cherruault and his research team at the Medimat laboratory proved the con-
vergence of ADM in the context of abstract functional equations; he introduced a new
formulation of the method and used an important theorem, which is Fixed point

theorem involving sufficient conditions in his proof [28]. All these conditions relate to the nonlinear
operator N .

Among the substantial questions that arise about the Adomian method, the following ones

• Under which conditions do the series
∑
fi and

∑
Ai converge?

• is
∑
fi a solution to the original equation?

Figure 3.3: Yves Cherruault (1937-2010) was a French mathematician

3.4.1 For Functional Equations

Consider the general functional equation.

f −N (f) = g, f ∈ H (3.4.1)

Where
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• H is a Hilbert space.

• The nonlinear operator N is defined from H into itself.

3.4.1.1 Convergence based on the fixed point theorem

For every sequence {Φm}m≥0 defined as the partial sum of the series
∑
fi

Φm =
m∑
i=0

fi (3.4.2)

Also, N (f) is approximated by

Nm(f) =
m∑
i=0
Ai (3.4.3)

The Adomian method is equivalent to find the Sequence {Sm}m≥0 defined by

Sm =
m∑
i=1

fi (3.4.4)

Using the following iterative scheme:S0 = 0

Sm+1 = Nm(f0 + Sm), m ≥ 0
(3.4.5)

Theorem 3.4.1 ( Classical theorem of convergence)

If the following conditions are satisfied:
3 The nonlinear operator N be a contraction ( i.e: δ < 1 )
3
∥∥∥Nm −N∥∥∥ = µm −→ 0 as n→ +∞

Then, the sequence {Sm}m≥0 defined by the previous iterative scheme (3.4.5) converges
towards to the solution of Fixed Point Equation

S = N (f0 + S) (3.4.6)
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Proof : We have the following equalities and inequalities:∥∥∥Sm+1 − S
∥∥∥ =

∥∥∥Nm(f0 + Sm)−N (f0 + S)
∥∥∥

=
∥∥∥Nm(f0 + Sm)−N (f0 + Sm) +N (f0 + Sm)−N (f0 + S)

∥∥∥
≤
∥∥∥(Nm −N)(f0 + Sm)

∥∥∥+
∥∥∥N(Sm − S)∥∥∥

≤
∥∥∥Nm −N∥∥∥∥∥∥f0 + Sm

∥∥∥+ δ
∥∥∥Sm − S∥∥∥

≤ µm
(∥∥∥f0

∥∥∥+
∥∥∥Sm∥∥∥)+ δ

∥∥∥Sm − S∥∥∥
Let us make the hypothesis ∥∥∥S∥∥∥ ≤ N0

2 , and
∥∥∥f0

∥∥∥ ≤ N0

And the recurrent hypothesis∥∥∥Sm − S∥∥∥ ≤ N0

2 , which involves
∥∥∥Sm∥∥∥ ≤ N0 (3.4.7)

This leads to the inequality ∥∥∥Sm+1 − S
∥∥∥ ≤ N0

2
(
1 + 4µm

)
If we need to have

∥∥∥Sm+1 − S
∥∥∥ ≤ N0

2
(
δ + µ

)
where δ + µ is such that (δ + µ) < 1. It suffices to

choose m ≥ Nµ such that
∥∥∥Nm −N∥∥∥ = µm ≤ µ

4 . The recurrent hypothesis is thus satisfied, and
the theorem is proved. �

As a remark, it is clear that the second condition in Theorem 3.4.1 implies the convergence of
the series

∑
Ai.

3.4.1.2 Convergence based on properties of entire series

Another proof of convergence was given in [29] by using properties of the entire series substituted
in another series.

Theorem 3.4.2
Consider an entire series

∞∑
m=0

amx
m (3.4.8)
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with a convergence radius R. Suppose that

x =
∞∑
m=0

bmξ
m (3.4.9)

If we replace x in (3.4.8) by the expression in (3.4.9), we have an entire series

x =
∞∑
m=0

cmξ
m (3.4.10)

where the cm are given by

c0 = a0 + a1b0 + a2b
2
0 + · · ·+ amb

m
0 + . . .

c1 = a1b1 + 2a2b1b0 + · · ·+mamb
m−1
0 b1 + . . .

c2 = a1b2 + a2(b2
1 + 2b0b2) + . . .

...

(3.4.11)

If we have 
|bm| ≤ M

1+ε , m ≥ 0, ε > 0

M < R

ε ≥ M
R−M

(3.4.12)

Then, the series in (3.4.10) has a radius of convergence (R ≥ 1).

Proof : It is sufficient to prove that

∞∑
m=0
|bm||ξ|m < R, for |ξ| < 1 (3.4.13)

From (3.4.9) we have
∞∑
m=0
|bm||ξ|m ≤

∞∑
m=0

M

(
|ξ|

1 + ε

)m
(3.4.14)

Suppose we let |ξ| < 1 + ε, then from (3.4.14) it follows that

∞∑
m=0
|bm||ξ|m ≤

M

1− |ξ|
1+ε

(3.4.15)
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1
1− |ξ|

1+ε

< R←→ |ξ| < (1 + ε)(1− M

R
) (3.4.16)

From (3.4.15) we have

(1 + ε)(1− M

R
) ≥

(
1 + M

R−M

)
(1− M

R
) = 1 (3.4.17)

so that the result is proved. �

Lemma 3.4.3
If ∑

|i|=n

i0 =
∑

|i|=n

1 (3.4.18)

Then ∑
|i|=n

1 = (m+ n)!
n!m! (3.4.19)

where i = (i1, . . . , im) ∈ Nm.

Lemma 3.4.4
Suppose that N is an analytic function in ]x0R;x0 +R[, and furthermore

‖Nn(x0)‖ ≤ n!Mαn (3.4.20)

Then the Adomian polynomials satisfy the following expression:

‖An‖ ≤
(2n)!

(n+ 1)!n!M
n+1αn, (n ≥ 0) (3.4.21)

The above lemmas lead to the following theorem.

Theorem 3.4.5
Suppose that N satisfies the following condition

‖Nn(x0)‖ ≤ n!Mαn (3.4.22)

Then the sufficient conditions for the convergence of the method are
1. 4Mα ≤ 1 if R is infinite.
2. 5Mα ≤ 1 if R is finite.

Proof :



78 3. Mathematical Background of Adomian Decomposition Method

Case 1: It is sufficient to prove that
∞∑
n=0
‖An‖ <∞ (3.4.23)

∞∑
n=0
‖An‖ ≤

∞∑
n=0

(2n)!
(n+ 1)!n!M

n+1αn (3.4.24)

Using the Stirling [49] formula we obtain

(2n)!
(n+ 1)!n!M

n+1αn ∼
(4Mα)nM
√
π(n+ 1) 3

2
, n→ +∞ (3.4.25)

Case 2:
‖An‖ ≤

(2n)!
(n+ 1)!n!M

n+1αn = (2n)!M
4n(n+ 1)!n! (4Mα)n (3.4.26)

If
Xn = (2n)!

4n(n+ 1)!n! (3.4.27)

Then we have
Xn+1

Xn
= 2n+ 1

2n+ 4 < 1 =⇒ Xn < X0 = 1 (3.4.28)

Consequently,

‖An‖ ≤
(2n)!

(n+ 1)!n!M
n+1αn = M(4Mα)n = M

(1 + ε)n (3.4.29)

where
ε = 1

4Mα− 1 , (4Mα < 1) (3.4.30)

It follows that
ε ≥ M

R−M
⇐⇒ 5Mα < 1 (3.4.31)

where R is a convergence radius.

�

3.4.2 For Initial Value Problems

In 2009, Abdelrazec and Pelinovsky [6] prove the convergence of ADM for an abstract initial
value problem for differential equations with analytic vector fields using Cauchy-Kowalevskaya
theorem.
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Consider the abstract initial value problem:
∂f
∂t = Lf +N (f), t > 0

f(0) = g
(3.4.32)

Where

• L : X −→ Y : is a linear operator from Banach space X to a Banach space Y (X ⊆ Y ).

• N (f) : X −→ X: is a nonlinear function on the Banach space X .

• g ∈ X: is an initial data.

Assumption 3.4.6

1. Let L : X −→ Y form a continuous semigroup E(t) = etL : X −→ X for t ∈ R+, and
there is a constant C > 0 such that

‖E(t)f‖X ≤ C‖f‖X , ∀f ∈ X, ∀t ∈ R+ (3.4.33)

2. Let N (f) : X −→ X be an analytic near f = g

3. X be a Banach algebra with the property

‖fg‖X ≤ ‖f‖X‖g‖X , ∀f, g ∈ X (3.4.34)

Remark :

1. The IVP (3.4.32) can be reformulated Using Duhamel’s principle as an integral equation

f(t) = E(t)g +
∫ t

0
E(t− s)N (f(s)) ds (3.4.35)

2. If N (f) is analytic near g, it satisfies a local Lipschitz condition in the ball Bδ(g) of radius
δ > 0 centered at g. i.e., there is a constant Kδ such that

∥∥N (f)−N (f̃)
∥∥
X
≤ Kδ

∥∥f − f̃∥∥
X
, ∀f, f̃ ∈ Bδ(g) (3.4.36)

The local well-posedness of solutions of the IVP (3.4.32) with Lipschitz vector field N (f) can be
proved for small time intervals Using Picard’s method of successive iterations adopted for partial
differential equations by Kato [51].
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Theorem 3.4.7 (Picard kato)

1. If L and N (f) satisfy Assumption 3.4.6 and g ∈ X.
Then, there exists a T > 0 and a unique solution f(t) of the IVP on [0, T ] such that

f(t) ∈ C([0, T ], X) ∩ C1([0, T ], Y ) (3.4.37)

Moreover, the solution f(t) depends continuously on the initial data g

Proof : Basically, In this proof successive iterations are used
Starting with the free solution

f (0) = E(t)g (3.4.38)

The sequence of Picard’s approximations defined from
{
f (m)(t)

}
m∈N

is defined from f (0)(t) on a
small interval [0, T ] according to the following recurrence relation

f (m+1)(t) = f (0)(t) +
∫ t

0
E(t− s)N (f (m)(s)) ds, m ≥ 0 (3.4.39)

For any δ > 0, there exists a T > 0 such that∥∥∥f (0) − g
∥∥∥
X
≤ 1

2δ, ∀t ∈ [0, T ] (3.4.40)

By the induction method, we obtain for any m ≥ 0

sup
t∈[0,T ]

∥∥∥f (m+1)(t)− g
∥∥∥
X
≤ sup
t∈[0,T ]

∥∥∥f (m+1)(t)− f (0)
∥∥∥
X

+ sup
t∈[0,T ]

∥∥∥f (0)(t)− g
∥∥∥
X

≤ CT sup
t∈[0,T ]

∥∥∥N (f (m)(t))
∥∥∥
X

+ δ

2

≤ δ

2 + δ

2 = δ

provided that T satisfies the bound

CT sup
t∈[0,T ]

∥∥∥N (f (m)(t))
∥∥∥
X
≤ δ

2 (3.4.41)

Therefore, the iteration operator (3.4.39) maps C([0, T ], Bδ(g)) to C([0, T ], Bδ(g)) for small T > 0.
Furthermore, if CTKδ < 1 the map iteration is lipschitz and contraction. using the Banach fixed
point theorem, there exists a unique solution f(t) of the integral equation (3.4.35) in a complete
metric space C([0, T ], Bδ(g)). If f ∈ C([0, T ], X), then Lf + N (f) ∈ C([0, T ], Y ) so that f ∈
C1([0, T ], Y ). �
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Theorem 3.4.8 (Cauchy-Kovalevskaya Theorem)

1. Let the assumptions 3.4.6 be satisfied.
2. Let f(t) be the unique solution of the IVP (3.4.32) in C([0, T ], X), where T is the

maximal existence time.
Then, there exists τ ∈ (0, T ) such that f : [0, τ ] −→ X is also a real analytic function.

Proof : By Cauchy estimates as N (f) analytic near g, there exist constants a, b > 0 such
that3

1
m!
∥∥∂mf N (g)

∥∥
X
≤ b

am
, ∀m ≥ 0 (3.4.42)

The Taylor series for N (f) at g converges for any ‖f − g‖X ≤ a. Furthemore

‖N (f)‖X ≤
∞∑
k=0

1
k!
∥∥∂mf N (g)

∥∥
X

∥∥(f − g)k
∥∥
X

≤ b
∞∑
k=0

‖(f − g)‖kX
k!

= ab

a− ρ
=: h(ρ)

Where 0 ≤ ρ = ‖(f − g)‖X < a. From the majorant function h(ρ), it is clear that

1
m!
∥∥∂mf N (g)

∥∥
X
≤ 1
m!∂

m
ρ h(0), m ≥ 0 (3.4.43)

Let us consider the majorant problem
dρ
dt = h(ρ), t > 0

ρ(0) = 0
(3.4.44)

It has an explicit solution ρ(t) = a−
√
a2 − 2abt which is an analytic function of t on (−∞, a2b ). If

f(t) solves the integral equation

f(t) = g +
∫ t

0
N (f(s)) ds (3.4.45)

3∂m
f N (f) denote operators in the sense of Fréchet derivative.
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Then

‖f(t)− g‖X ≤
∫ t

0
‖N (f(s))‖X ds

≤
∫ t

0
h(ρ(s)) ds

= ρ(t)

=
∞∑
k=1

tk

k!∂
k
t ρ(0)

The majorant Taylor series is absolutely convergent for any |t| < a
2b . To achieve to the main result

which is that f(t) is analytic function in t on [0, a2b ), it remains to prove that

‖∂mt f(0)‖X ≤ ∂
m
t ρ(0), m ≥ 1 (3.4.46)

To prove the bound above for m = 1, 2, 3, we compute

∂tf(t) = N (f(t))

∂2
t f(t) = N ′(f(t))N (f(t))

∂3
t f(t) = N ′′(f(t))N (f(t))N (f(t)) +N ′(f(t))N ′(f(t))N (f(t))

As a result

‖∂tf(0)‖X ≤ ‖N (f(0))‖X ≤ h(ρ(0)) = ∂tρ(0)∥∥∂2
t f(0)

∥∥
X
≤ ‖N ′(f(0))‖X‖N (f(0))‖X ≤ h

′(ρ(0))h(ρ(0)) = ∂2
t ρ(0)∥∥∂3

t f(0)
∥∥
X
≤ ‖N ′′(f(0))‖X‖N (f(0))‖X‖N (f(0))‖X + ‖N ′(f(0))‖X‖N

′(f(0))‖X‖N (f(0))‖X
≤ h′′(ρ(0))h(ρ(0))h(ρ(0)) + h′(ρ(0))h′(ρ(0))h(ρ(0)) = ∂3

t ρ(0)

Genereally,
fm+1(t) = Pm(N (f(t))), ∀m ≥ 0

Where Pm(N ) is a polynomial of N and its Fréchet derivatives up to the mth order with positive
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coefficients. As a result

∥∥∂m+1
t f(0)

∥∥
X

= ‖Pm(N (f(0)))‖X
≤ Pm(‖N (f(0))‖X)

≤ Pm(h(ρ(0)))

= ∂m+1
t ρ(0)

If this is the case, then the Taylor series for f(t) has the majorant series and hence it converges, by
the Weierstrass M-test. �

Remark :

1. Existence and uniqueness of the solution f(t) of the IVP (3.4.32) in C1([0, T ), X) is proved
in Theorem 3.4.7 for Y = X.

According to ADM the solution f and the analytic function N (f) near f = g are written in the
series form.

f(t) =
∞∑
m=0

fm(t) (3.4.47)

N (f) =
∞∑
m=0
Am(f0, f1, . . . , fm) (3.4.48)

With the Adomian recursion scheme
f0(t) = E(t)g

fm+1(t) =
t∫

0
E(t− s)Am

(
f0(s), f1(s), . . . , fm(s)

)
ds, m ≥ 0

(3.4.49)

Theorem 3.4.9
• Let Assumption 3.4.6 be satisfied
• Let f(t) be a unique solution of the integral equation (3.4.35) in C([0, T ), X), where
T is the maximal existence time.

• Let fn(t) be defined by the recursion scheme (3.4.49).
Then, There exists a τ ∈ (0, T ) such that the nth partial sum Um(t) =

m∑
i=0

fi(t) of the

Adomian series (3.4.47) converges to the solution f(t) in C([0, τ ], X).

Proof : from the Theorem 3.4.7, for any given δ > 0, there exist a t0 ∈ (0, T ) such that

sup
t∈[0,t0]

‖f0(t)− g‖X ≤
δ

2 (3.4.50)
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By choosing δ
2 < a, where a is the radius of analyticity of N (f) near g. The Cauchy estimates

(3.4.42), (3.4.43) are generalized as

1
m!
∥∥∂mf N (f0)

∥∥
X
≤
∑
j≥m

j(j − 1) . . . (j −m+ 1)
j!m!

∥∥∥∂jfN (g)
∥∥∥
X
‖f0 − g‖j−mX (3.4.51)

≤ b
∑
j≥m

j(j − 1) . . . (j −m+ 1)
m!

‖f0 − g‖j−mX

aj
(3.4.52)

= 1
m!∂

m
ρ h(ρ), m ≥ 0 (3.4.53)

Where ρ = ‖f0 − g‖X < a and h(ρ) = ab
a−ρ . Given h(ρ), and let ρ(t) satisfy the majorant problem

3.4.44) for t ∈ [0, a2b ). Using of the new Cauchy estimates (3.4.53) and the semigroup property
(3.4.33) gives for any t ∈ [0, a2b )

‖f1(t)‖X ≤
t∫

0

‖E(t− s)A0(f0(s))‖X ds

≤ C
t∫

0

‖N (f0(s))‖X ds

≤ C
t∫

0

h(ρ(s)) ds

≤ (Ct)h(ρ(t)) = Ctρ′(t)

And

‖f2(t)‖X ≤
t∫

0

‖E(t− s)A1(f0(s), f1(s))‖X ds

≤ C
t∫

0

‖N ′(f0(s))f1(s)‖X ds

≤ C2
t∫

0

h′(ρ(s))h(ρ(s))s ds

≤ t2C2

2 h′(ρ(t))h(ρ(t)) = t2C2

2 ρ′′(t)



3.4. Convergence of the Method 85

By induction, Assuming that

‖fi(t)‖X ≤
tiCi

i! ∂itρ(t), t ∈
[
0, a2b

)
, ∀i ∈ {1, 2, . . . ,m} (3.4.54)

and demonstrate that the same relation remains true at i = m+ 1

‖fm+1(t)‖X ≤
tm+1Cm+1

(m+ 1)! ∂m+1
t ρ(t), t ∈

[
0, a2b

)
(3.4.55)

As ρ(t) analytic in t for all t ∈
[
0, a2b

)
, for any small ξ > 0, there exists a C∞-function ρ̃ξ(t) on[

0, a2b
)

ρ
(

(1 + ξC)t
)

=
m∑
i=0

ξiCiti

i! ∂itρ(t) + ξm+1Cm+1tm+1

(m+ 1)! ρ̃ξ(t)

for any ξ > 0, let

Uξm(t) =
m∑
i=0

ξifi(t)

then

∥∥Uξm(t)
∥∥
X
≤

m∑
i=0

ξi‖fi(t)‖X

≤
m∑
i=0

ξiCiti

i! ∂itρ(t)

= ρ
(

(1 + ξC)t
)
− ξm+1Cm+1tm+1

(m+ 1))! ρ̃ξ(t)

By definition of Adomian polynomials (3.2.7), we obtain

Am = 1
m!

t
dm

dξm
N
(+∞∑
i=0

ξifi

)|

ξ=0

= 1
m!

t
dm

dξm
N
(
Uξm

)|

ξ=0

So that

‖Am(t)‖X ≤
1
m!

t∥∥∥∥ dmdξmN
(
Uξm(t)

)∥∥∥∥
X

|

ξ=0

≤ 1
m!

t
dm

dξm
h

(
ρ
(

(1 + ξC)t
))|

ξ=0

≤ Cmtm

m!

t
dm

dµm
h

(
ρ(µ)

)|

µ=t

= Cmtm

m!

t

Pm

(
h
(
ρ(µ)

))|

= Cmtm

m! ∂m+1
t ρ(t)
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Where Pm
(
h
)4 is a polynomial of h and its derivatives up to the mth order with positive coefficients.

Using the iterative formula (3.4.49)

‖fm+1(t)‖X ≤
t∫

0

‖E(t− s)Am(s)‖X ds (3.4.56)

≤ Cm+1tm+1

(m+ 1)! ∂m+1
t ρ(t) (3.4.57)

As a result, the series solution (3.4.47) is majorant in X by the power series

ρ
(

(1 + C)t
)

=
+∞∑
i=0

Citi

i! ∂itρ(t) (3.4.58)

= a−
√
a2 − 2ab(1 + C)t (3.4.59)

which converges for all |t| < a
2b(1+C) . Recall the constraint t0 ∈ (0, T ) in bound (3.4.50). By the

Weierstrass M-test, the series solution (3.4.47) converges to the unique solution f(t) of (3.4.35) in
C([0, τ ], X) for any τ ∈ (0, τ0), where τ0 = min{t0, a

2b(1+C)}. �

3.5 Order of convergence.

In [26], Babolian and Biazar discussed the order of convergence of the ADM.

Definition 3.5.1
Let {Sm}m∈N be a sequence converges to S. If there exist two constants C ≥ 0, p ∈ N such
that

lim
m−→+∞

∣∣∣∣ Sm+1 − S
(Sm − S)p

∣∣∣∣ = C (3.5.1)

Then the order of convergence of {Sm}m∈N is p.

Theorem 3.5.2
Suppose that N ∈ Cp([a, b]), if N (i)(f0+S) = 0, ∀i ∈ {1, 2, . . . , p−1}, and N (p)(f0+S) 6=
0, then the sequence {Sm}m∈N is of order p.

4the same as in the proof of Theorem 3.4.8.
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Proof : For determining the order of convergence of {Sm}m∈N consider the Taylor expansion
of N (f0 + Sm)

N (f0 + Sm) = N (f0 + S) + N
(1)(f0 + S)

1! (Sm − S) + N
(2)(f0 + S)

2! (Sm − S)2

+ · · ·+ N
(i)(f0 + S)

i! (Sm − S)i + . . .

Using (3.4.5), (3.4.6) we have

Sm+1 − S = N
(1)(f0 + S)

1! (Sm − S) + N
(2)(f0 + S)

2! (Sm − S)2

+ · · ·+ N
(i)(f0 + S)

i! (Sm − S)i + . . .

(3.5.2)

By the hypothesis of the theorem, (3.5.2) becomes

Sm+1 − S = N
(p)(f0 + S)

p! (Sm − S)p + N
(p+1)(f0 + S)

(p+ 1)! (Sm − S)p+1 + . . . (3.5.3)

Which leads to

Sm+1 − S
(Sm − S)p = N

(p)(f0 + S)
p! + N

(p+1)(f0 + S)
(p+ 1)! (Sm − S) + . . . (3.5.4)

By taking the limit when m→ +∞, and since lim
m→+∞

Sm = S

lim
m→+∞

∣∣∣∣ Sm+1 − S
(Sm − S)p

∣∣∣∣ =
∣∣∣∣N (p)(f0 + S)

p!

∣∣∣∣ = C (3.5.5)

Then, from the definition 3.5.1 the order of convergence of {Sm}m∈N is p. �
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illustrative test examples

The results of this chapter have been the subject of a publication:

+ I. Achour, A. Bellagoun, Adomian Decomposition Method For Solving Spatially Inho-
mogenuous Population Balance Equation. Advances in Mathematics: Scientific Journal 12
(2023), no.1, 115-136.

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Linear case: Pure breakage . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.1 PBE in batch system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.2 PBE in continuous systems . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Nonlinear case: Pure Coalescence . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.1 PBE with convection term . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



4.1. Introduction 91

4.1 Introduction

ADM has been applied to solve PBEs for pure breakage for both batch and continuous systems
[45], and for coalescence but only for the batch system [46]. In [47], the Adomian and the variational
iteration methods have been applied to particle breakage equation for both batch and continuous
flow systems. Furthermore, the variational iteration and projection methods have been used to
solve certain spatially distributed population balance equations [48].

The results of this chapter have been published in Advances in Mathematics: Scientific Jour-
nal [7]. Our objective is to derive analytical solutions of spatially inhomogeneous PBEs that incor-
porate breakage, and coalescence in batch and continuous systems. Spatially inhomogeneous PBEs
describe the time-space evolution of the particle number distribution function f(t, v, z) under the
simultaneous effect of breakage and coalescence processes in a continuous flow system [69,78]. The
PBE reads

∂ (f(t, v, z))
∂t︸ ︷︷ ︸

the accumulation
term

+ ∂(Udf(t, v, z))
∂z︸ ︷︷ ︸

convection in
physical space

− ∂2(Ddf(t, v, z))
∂z2︸ ︷︷ ︸

diffusion in
physical space

= 1
θ

(
ffeed(v)− f(t, v, z)

)
+ φ(f, t, v, z)︸ ︷︷ ︸

the source
term

(4.1.1)

Where ρ(f, t, v, z) represents the contribution to f(t, v, z) of the change in the number of particles.
due to particle breakage and coalescence [80,81]:

ρ(f, t, v, z) = −Γ(v)f(t, v, z) +
∫ +∞

v

β(v, v′)Γ(v′)f(t, v′, z) dv′ −
∫ +∞

0
ω(v, v′)f(t, v′, z)f(t, v, z) dv′

+1
2

∫ v

0
ω(v − v′, v′)f(t, v − v′, z)f(t, v′, z) dv′

(4.1.2)

The following is the list of relevant combinations of processes for which the continuous PBE has
been solved analytically.

Case study I

∂f(t, v, z)
∂t

+ Ud
∂f(t, v, z)

∂z
= −Γ(v)f(t, v, z) +

∫ +∞

v

β(v, v′)Γ(v′)f(t, v′, z) dv′ (4.1.3)
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Case study II

∂f(t, v, z)
∂t

= Dd
∂2(f(t, v, z))

∂z2 − Γ(v)f(t, v, z) +
∫ +∞

v

β(v, v′)Γ(v′)f(t, v′, z) dv′ (4.1.4)

Case study III

∂f(t, v, z)
∂t

+ Ud
∂f(t, v, z)

∂z
= 1
θ

(
ffeed(v)− f(t, v, z)

)
− Γ(v)f(t, v, z)

+
∫ +∞

v

β(v, v′)Γ(v′)f(t, v′, z) dv′
(4.1.5)

Case study IV

∂f(t, v, z)
∂t

+ Ud
∂(f(t, v, z))

∂z
= 1

2

∫ v

0
ω(v − v′, v′)f(t, v − v′, z)f(t, v′, z) dv′

−
∫ +∞

0
ω(v, v′)f(t, v′, z)f(t, v, z) dv′

(4.1.6)

In all case studies, the population balance equations are solved by the ADM, and all symbolic
calculations are done using the MATHEMATICA SOFTWARE.

4.2 Linear case: Pure breakage

In a breakage process, particles break into two or many fragments. The total number of particles
in this process increases while the total mass remains constant. Therefore, breakage has a significant
effect on the number of particles.

In this section, we present three case studies for pure breakage in batch and continuous systems
to illustrate how to use this technique. In all these cases, we have a linear breakage frequency
Γ(v) = v and a uniform daughter droplet distribution β(v, v′) = 2

v′ .
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4.2.1 PBE in batch system

4.2.1.1 Case study I: PBE with convection term

Consider the PBE

∂f(t, v, z)
∂t

+ Ud
∂f(t, v, z)

∂z
= −Γ(v)f(t, v, z) +

∫ +∞

v

β(v, v′)Γ(v′)f(t, v′, z) dv′ (4.2.1)

Subjected to the boundary condition f(t, v, 0) = te−v. And assuming that Ud = 1. The equation
(4.2.1) becomes

∂f(t, v, z)
∂t

+ ∂f(t, v, z)
∂z

= −vf(t, v, z) +
∫ +∞

v

2f(t, v′, z) dv′ (4.2.2)

Transforming equation (4.2.2) to the canonical form and operating both sides by L−1
z (.) =

∫ z
0 (.) dz,

we obtain

f(t, v, z)− f(t, v, 0) =
z∫

0

(
−∂f(t, v, z)

∂t
− vf(t, v, z)

∫ +∞

v

2f(t, v′, z) dv′
)
dz

Recall that the solution by ADM is written as:

f(t, v, z) =
+∞∑
m=0

fm(t, v, z)

where the solution components fm(t, v, z) are obtained by the Adomian recursion scheme. The first
few terms of the series solution are

f0(t, v, z) = te−v

f1(t, v, z) =
∫ z

0

(
−∂f0(t, v, z)

∂t
− vf0(t, v, z) +

∫ +∞

v

2f0(t, v′, z) dv′
)
dz

= − (1 + t(−2 + v))z
ev
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f2(t, v, z) =
∫ z

0

(
−∂f1(t, v, z)

∂t
− vf1(t, v, z) +

∫ +∞

v

2f1(t, v′, z) dv′
)
dz

= (2(−2 + v) + t(2− 4v + v2))z2

2ev

f3(t, v, z) =
∫ z

0

(
−∂f2(t, v, z)

∂t
− vf2(t, v, z) +

∫ +∞

v

2f2(t, v′, z) dv′
)
dz

= − ((6 + v(3(−4 + v) + t(6 + (−6 + v)v)))z3)
6ev

...

Generally, fm(t, v, z) is the solution of

fm(t, v, z) =
∫ z

0

(
−∂fm−1(t, v, z)

∂t
− vfm−1(t, v, z) +

∫ +∞

v

2fm−1(t, v′, z) dv′
)
dz (4.2.3)

Then we calculate the general term as :

fm(t, v, z) = (−vz)m
(
vt
(
v(v − 2m) + (m− 1)m

)
+mv

(
v − 2(m− 1)

)
v3evm!

+ (m− 2)(m− 1)m
v3evm!

)

So

f(t, v, z) =
+∞∑
m=0

(−vz)m
(
vt
(
v(v − 2m) + (m− 1)m

)
+mv

(
v − 2(m− 1)

)
v3evm!

+ (m− 2)(m− 1)m
v3evm!

)

Which converges to

f(t, v, z) = (z + 1)2(t− z)
ev(z+1)
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Figure 4.1: The effect of the truncation solution on the density number distribution for droplet breakage
in a batch system with the boundary condition to be equal to n(v, t, 0) = te−v at z = 1 and t = 50.

4.2.1.2 Case study II: PBE with diffusion term

Consider the PBE

∂f(t, v, z)
∂t

= Dd
∂2(f(t, v, z))

∂z2 − Γ(v)f(t, v, z) +
∫ +∞

v

β(v, v′)Γ(v′)f(t, v′, z) dv′ (4.2.4)

Subjected to the boundary conditions f(t, v, 0) = te−v and ∂f(t,v,0)
∂z = e−v, and assuming that

Dd = 1. Then, equation (4.2.4) becomes

∂2(f(t, v, z))
∂z2 = ∂f(t, v, z)

∂t
+ vf(t, v, z)−

∫ +∞

v

2f(t, v′, z) dv′ (4.2.5)

In this case Lzz(.) = ∂2

∂z2 (.) and its inverse is L−1
zz (.) =

∫ z
0
∫ z

0 (.) dz dz. Applying the inverse operator
to (4.2.5) gives

f(t, v, z) = f(t, v, 0) + ∂f(t, v, 0)
∂z

z +
∫ z

0

∫ z

0

(
∂f(t, v, z)

∂t
+ vf(t, v, z)−

∫ +∞

v

2f(t, v′, z) dv′
)
dz dz
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The solution by the ADM is determined by the following Adomian recursion scheme:f0(t, v, z) = te−v + e−vz

fm+1(t, v, z) =
∫ z

0
∫ z

0

(
∂fm(t,v,z)

∂t + vfm(t, v, z)−
∫ +∞
v

2fm(t, v′, z) dv′
)
dz dz, m ≥ 0

From which, we calculate the solution components

f1(t, v, z) = z2
(

3 + 3t(−2 + v) + (−2 + v)z
6ev

)

f2(t, v, z) = z4 5t((v − 4)v + 2)((v − 4)v + 2)z + 10(v − 2)
120ev

f3(t, v, z) = z6 (7v(t((v − 6)v + 6) + 3(v − 4)) + v((v − 6)v + 6)z + 42)
5040ev

Then, the general term is

fm(t, v, z) = e−vvm−3z2m

4m(1)m
( 3

2
)
m

((
v(v − 2m) + (m− 1)m

)(
(2m+ 1)tv + vz

)

+m(2m+ 1)
(
v(v − 2(m− 1)) + (m− 2)(m− 1)

))

So

f(t, v, z) =
+∞∑
m=0

e−vvm−3z2m

4m(1)m
( 3

2
)
m

((
v(v − 2m) + (m− 1)m

)(
(2m+ 1)tv + vz

)

+m(2m+ 1)
(
v(v − 2(m− 1)) + (m− 2)(m− 1)

))

f(t, v, z) =
z2

3F4

(
2, 2, 2; 1, 1, 1, 5

2 ; vz
2

4

)
3evv2 + cosh (

√
vz)

8evv3

(
2tv2 (4v + z2)

− vz
(

4v(z + 2) + 5z + 6
)

+ 1
)

+ sinh (
√
vz)

8evv7/2z

(
2vz
(
v
(

2v(−2tz

+ z + 2) + z(−t+ z + 2) + 4
)

+ z + 3
)
− 1
)
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Figure 4.2: The effect of the truncation solution on the density number distribution for droplet breakage
in batch system with the boundary condition to be equal to f(t, v, 0) = te−v, ∂f(t,v,0)

∂z
= e−v at z = 1 and

t = 50.

4.2.2 PBE in continuous systems

4.2.2.1 Case study III: PBE with convection term

In this case, the boundary condition is f(t, v, 0) = te−v, the feed distribution is exponential
and assuming that Ud = 1. We consider the following PBE:

∂f(t, v, z)
∂t

+ Ud
∂f(t, v, z)

∂z
= 1
θ

(
ffeed(v)− f(t, v, z)

)
− Γ(v)f(t, v, z) +

+∞∫
v

β(v, v′)Γ(v′)f(t, v′, z) dv′

Rewrite the above equation to the following form

∂f(t, v, z)
∂z

= −∂f(t, v, z)
∂t

+ 1
θ
ffeed(v)−

(
v + 1

θ

)
f(t, v, z) +

∫ +∞

v

2f(t, v′, z) dv′ (4.2.6)
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Integrating the equation (4.2.6) with respect to z

f(t, v, z) = f(t, v, 0) + 1
θ
ffeed(v)z +

∫ z

0

(
−∂f(t, v, z)

∂t
−
(
v + 1

θ

)
f(t, v, z) +

∫ +∞

v

2f(t, v′, z) dv′
)
dz

Then the Adomian recursion scheme is
f0(t, v, z) = te−v + ze−v

θ

fm+1(t, v, z) =
z∫
0

(
−∂fm(t,v,z)

∂t − (v + 1
θ )fm(t, v, z) +

+∞∫
v

2fm(t, v′, z) dv′
)
dz, m ≥ 0

The second term is
f1(t, v, z) = z

(2 + (−2 + 1
θ + v)(2t+ z

θ )
ev

)
The general term is

fm(t, v, z) =
(−1)m( 1

θ + v)m−3zm

(1)1+mev

(
(1 +m)

(
m(m− 1)(m− 2) + 1

θ3 t+ 1
θ2

(
m+ t(−2m+ 3v)

)
+v
(
m(−2(m− 1) + v) + t

(
m(m− 1) + (−2m+ v)v

))
+ 1
θ

(
2m((1−m) + v) + t

(
m(m− 1)

+ v(−4m+ 3v)
))

+ 1
θ

(
1
θ

+ v

)(
m(m− 1) + (1

θ
)2 + 2

θ
(−m+ v) + (−2m+ v)v

)
z

)

Then

f(t, v, z) =
+∞∑
m=0

(−1)m( 1
θ + v)m−3zm

(1)1+mev

(
(1 +m)

(
m(m− 1)(m− 2) + 1

θ3 t+ 1
θ2

(
m+ t(−2m+ 3v)

)
+v
(
m(−2(m− 1) + v) + t

(
m(m− 1) + (−2m+ v)v

))
+ 1
θ

(
2m((1−m) + v) + t

(
m(m− 1)

+ v(−4m+ 3v)
))

+ 1
θ

(
1
θ

+ v

)(
m(m− 1) + (1

θ
)2 + 2

θ
(−m+ v) + (−2m+ v)v

)
z

)

So

f(t, v, z) = 1
( 1
θ + v)3evez( 1

θ +v)

(
1
θ3

(
ez( 1

θ +v) + (z + 1)2(t− z − 1)
)

+ 1
θ2

(
2(v + 1)ez( 1

θ +v)

− (z + 1)
(

2− v(z + 1)(3t− 3z − 2)
))

+ 1
θ

((
v(v + 2) + 2

)
ez( 1

θ +v)

− v(z + 1)
(

2− v(z + 1)(3t− 3z − 1)
)
− 2
)

+ v3(z + 1)2(t− z)
)
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Figure 4.3: The effect of the truncation solution on the density number distribution for droplet breakage
in continuous system with the boundary condition to be equal to f(t, v, 0) = te−v with exponential feed
distribution at z = 1 and t = 50.

4.3 Nonlinear case: Pure Coalescence

In PBE the mechanism of coalescence poses the greatest numerical difficulty occurred by the
non-linearity of this phenomena. We will consider the solution of equation (4.1.1) in the presence
of only two terms, which are the convection and coalescence terms in a batch flow system in order
to show the great accuracy of this technique.

4.3.1 PBE with convection term

In this section, we present only one case study for pure coalescence in batch systems.

∂f(t, v, z)
∂t

+ Ud
∂(f(t, v, z))

∂z
= 1

2

∫ v

0
ω(v − v′, v′)f(t, v − v′, z)f(t, v′, z) dv′

−
∫ +∞

0
ω(v, v′)f(t, v′, z)f(t, v, z) dv′

(4.3.1)
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Here we take ω(v, v′) = 1, Ud = 1 and the boundary condition f(t, v, 0) = te−v.
By considering Lt = ∂

∂t and Lz = ∂
∂z , and operating both sides of equation (4.3.1) by L−1

z ( defined
as L−1

z (.) =
∫ z

0 (.) dz), then we obtain the canonical form

f(t, v, z) = f(t, v, 0) +
∫ z

0

(
−∂f(t, v, z)

∂t
+ 1

2

∫ v

0
f(t, v − v′, z)f(t, v′, z) dv′

−
∫ +∞

0
f(t, v′, z)f(t, v, z) dv′

)
dz

(4.3.2)

And the nonlinear terms have the Adomian polynomial representation:

1
2

∫ v

0
f(t, v − v′, z)f(t, v′, z) dv′ = 1

2

∫ v

0

+∞∑
m=0

Am(v − v′, v′, t, x) dv′

−
∫ +∞

0
f(t, v′, z)f(t, v, z) dv′ = −

∫ +∞

0

+∞∑
m=0

Bm(v, v′, t, x) dv′

(4.3.3)

The polynomials Am and Bm are obtained by the definitional formula (3.3.1). The solution by the
ADM is calculated by the following Adomian recursion scheme:
f0(t, v, z) = te−v

fm+1(t, v, z) =
z∫
0

(
∂fm(t,v,z)

∂t + 1
2

v∫
0
Am(t, v − v′, v′, z) dv′ −

+∞∫
0
Bm(t, v, v′, z) dv′

)
dz, m ≥ 0

The first few terms are
f1(t, v, z) =

(
−2− 2t2 + t2v

ev

)
z

f2(t, v, z) = t

(
−8(−2 + v) + t2(6− 6v + v2)

8ev

)
z2

...

By rearrangement of terms, we can obtain the general term (See the Appendix C for more details)

f∗
m(t, v, z) = 4vmzm(t− z)m+1

m!ev(z(t− z) + 2)m+2 (4.3.4)

Then

f(t, v, z) =
+∞∑
m=0

4vmzm(t− z)m+1

m!ev(z(t− z) + 2)m+2 (4.3.5)
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So the exact solution is

f(t, v, z) = 4(t− z)e
vz(t−z)

tz−z2+2

ev(z(t− z) + 2)2 (4.3.6)
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Figure 4.4: The effect of the truncation solution on the density number for droplet Coalescence with the
boundary condition to be equal to f(t, v, 0) = te−v at z = 0.1 and t = 5.

For nonlinear models, more efficient algorithms and programs in MATHEMATICA for fast
generation of Adomian polynomials to high orders have been provided by Duan in [38–40].

The Figure 4.2 and 4.4 shows that from the second iteration the m term approximant solutions
were nearly identical to the analytical solutions. A rapid convergence was observed in these figures
which shows the efficiency of the method. The Figure 4.1 and 4.3 represent the effect of the
truncation on the density number for droplet breakage in batch and continuous flow particulate
processes, respectively.



Conclusion

In this work, we are interested in the implementation of the ADM for the resolution of the pop-
ulation balance equation for continuous and discontinuous systems. The Adomian decomposition
method has been successfully used to solve particle population balance equations in continuous and
discontinuous flow systems with hypothetical functional forms of breakage/coalescence frequencies
and daughter particle distributions. The solutions obtained by the ADM were infinite power series
with appropriate boundary conditions. The method gave good approximations to the exact solu-
tions with their series, which converge quickly for all the cases studied in this work. It is concluded
that the ADM is robust and efficient and has a remarkable capacity to solve the population balance
equation from an analytical or numerical point of view.

Some problems are still open until now. For instance, the practical convergence of the Adomian
decomposition series may be ensured even if the hypotheses of the known method are not satisfied.
which means that there still exist opportunities for further theoretical studies of convergence for
more general situations. In addition, it is not always easy to take into account the boundary
conditions for complex domains.
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A
The Foundation of the Adomian

Decomposition Method

The goal of the ADM is to solve an equation u = G(u), in a Banach space E, where G is an
operator which can be nonlinear. The Banach space E is not necessarily a finite-dimensional space,
it can be a functional space. The ADM is an original approach to this kind of problem.

A.1 The basic concepts of the Decomposition Theory

Definition A.1.1 (Decomposition series of finite-order r )

A Decomposition series of finite-order r is a series
∑
Dk, Where each Dk is an E-valued

function of r(k + 1) variables U (1)
0 , . . . , U

(1)
k , . . . , U

(r)
0 , . . . , U

(r)
k .

Decomposition series are decomposition series of first-order.

Definition A.1.2 (Weak convergence of the decomposition series of finite-order r )

A Decomposition series of finite-order r is weakly convergent. If for each collection of r

convergent series
∑
u

(1)
i , . . . ,

∑
u

(r)
i in E , the series

∑
Dk

(
u

(1)
0 , . . . , u

(1)
k , . . . , u

(r)
0 , . . . , u

(r)
k

)
in E converge.

Definition A.1.3 (Sum of convergent decomposition series of finite-order r)

The sum of a decomposition series of finite-order r is function of r variables mapping the
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set of convergent series (in E) into E

S

(∑
u

(1)
i , . . . ,

∑
u

(r)
i

)
=

+∞∑
k=0
Dk

(
u

(1)
0 , . . . , u

(1)
k , . . . , u

(r)
0 , . . . , u

(r)
k

)

Definition A.1.4 (Strong convergence of the decomposition series of finite-order r )

A decomposition series of finite-order r is strongly convergent. If it is weakly convergent
and if its sum depends only on the sum of the series in E , i.e:

+∞∑
k=0

u
(i)
k =

+∞∑
k=0

v
(i)
k

=⇒ S

(∑
u

(1)
k , . . . ,

∑
u

(r)
k

)
= S

(∑
v

(1)
k , . . . ,

∑
v

(r)
k

)
, ∀i ∈ [1, r]

Definition A.1.5 (Degenerated sum of the decomposition series of finite-order r )

Using the previously defined sum S of a convergent decomposition series of finite-order r,
a new operator S∗, mapping Er into E can be created when the convergence is strong. S
and S∗ can be identified.

Let S be the sum of a strongly convergent decomposition series of finite-order r. Then for each
collection (u(1), . . . , u(r)) of elements of E, S∗(u(1), . . . , u(r)) can be defined (because of the strong
convergence) by S(

∑
u(1), . . . ,

∑
u(r)), where each

∑
u

(i)
n is any convergent series in E the sum of

which is u(i). As a series of this kind, the one which is reduced to one term equal to u(i) can be
chosen. So, it can be written

S∗(u(1), . . . , u(r)) = S(u(1), . . . , u(r))

Definition A.1.6 (Decomposition scheme)

Let
∑
Dk

(
U0, . . . , Uk

)
be a strongly convergent decomposition series. The decomposition

scheme associated with
∑
Dk is the recurrent schemeu0 = 0

un+1 = Dk
(
u0, . . . , un

)
Which constructs a series

∑
un in E . Such a series can be constructed because each Dn is
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a function of u0, . . . , un but not of the following terms.

Definition A.1.7 (Decomposition method )

The decomposition method is the method consisting of constructing the solution of an
equation with a decomposition scheme

A.2 The basic Decomposition Series

Definition A.2.1 (Basic decomposition series)

The basic decomposition series associated with the operator G is the series
∑
Bn, whereB0 = 0

Bn = G(
∑n
i=0 Xi)−G(

∑n−1
i=0 Xi)

Each Bn is mapping En+1 into E.

Theorem A.2.2 (Convergence of the basic decomposition series)

The basic decomposition series
∑
Bn associated with a continuous operator G is a decom-

position series (of first order) that strongly converges and the degenerated sum of which is
G.

Proof : If
∑
un converges, then the series in E,

∑
Bn(u0, . . . , un) converges and its sum∑

BnG(
∑∞
n=0 un) only depends on the sum of

∑
un. �

If G is a nonlinear operator, the basic decomposition series is useless because the Adomian
decomposition method needs much more calculus than the successive approximations method to
solve the equation u = G(u). However, if G is a linear operator, the Adomian decomposition scheme
becomes simpler as shown below.

Definition A.2.3 (Basic decomposition series associated with a linear operator)

The basic decomposition series
∑
Bn associated with the linear operator L isB0 = L(X0)

Bn = L(Xn)
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A.3 The Adomian Decomposition Series

Definition A.3.1 (Adomian’s polynomials)

Let G be an analytical function and
∑
um a convergent series in a Banach space F . The

Adomian’s Polynomials are defined by

Am(f0, f1, ..., fm) = 1
m!

t
dm

dξm
G

(+∞∑
i=0

ξifi

)|

ξ=0

,m ≥ 0 (A.3.1)

Define U =
∑
n=0

un and u+ =
∑
n=0

unξ
n. This power series converges when ξ = 1. But it is known

that the sum of a power series, whose converge radius is ρ, is analytical over OD(O, ρ) (open disk
whose center is O and whose radius is ρ), then u+ is analytical over OD(O, ρ), i.e. there are Am
so that G ◦ u+(ξ) =

∑∞
m=0Amξm and these Am verify

Am(f0, f1, ..., fm) = 1
m!

t
dm

dξm
G

(+∞∑
i=0

ξifi

)|

ξ=0

,m ≥ 0 (A.3.2)

Note. We do not need to assume that the convergence radius is greater than 1. If ρ = 1, as
u+ converges and its sum is U , then Abel’s theorem leads to limξ−→1 u

+(ξ) = U (ξ being a real
number) and so limξ−→1 G ◦ u+(ξ) = G(U).

Theorem A.3.2 (Convergence of the Adomian decomposition series)

The Adomian decomposition series
∑
Dm associated with the analytical function G defines

a decomposition series (of the first order) that strongly converges and the degeneration sum
of which is G.

Proof : To verify that each Am depends only on u0, . . . , um, we express Am as a function
of the coefficients of the two series that are composed using a classical theorem of power series
composition [29]. We note that the expression obtained is only used to prove this dependence. We
have just proved that the

∑
Am is a decomposition series. If

∑
um is a convergent series, we have

seen that
∑
Am(u0, . . . , um) converges and that its sum is G ◦ u+(1) = G(U), that is to say, that

the decomposition series
∑
Am weakly converges, and its sum is G. If

∑
um and

∑
vm are two

series having the same sum U , and if their Adomian’s polynomials are Aum and Avm respectively,
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then we write

∞∑
m=0
Aum = G ◦ u+(ξ = 1)

= G ◦ v+(ξ = 1)

=
∞∑
m=0
Avm

So, the sum of the Adomian decomposition series depends only on the sum of the considered
series the convergence is strong. �

A.4 Reference table of Am

A reference table for computing 10 first Adomian polynomials is provided below [10]

A0 = N (f0)

A1 = f1N (1)(f0)

A2 = f2N (1)(f0) + 1
2f

2
1N (2)(f0)

A3 = f3N (1)(f0) + f1f2N (2)(f0) + 1
3f

3
1N (3)(f0)

A4 = f4N (1)(f0) +
(
f1f3 + 1

2f
2
0

)
N (2)(f0) + 1

2

(
f2

1 f2

)
N (3)(f0) + 1

24f
4
1N (4)(f0)

A5 = f5N (1)(f0) +
(
f1f4 + f2f3

)
N (2)(f0) + 1

2

(
f2

1 f3 + f1f
2
2

)
N (3)(f0)

+ 1
2f

3
1 f2N (4)(f0) + 1

120f
5
1N (5)(f0)

A6 = f6N (1)(f0) +
(
f1f5 + f2f4 + 1

2f
2
3

)
N (2)(f0) +

(
1
2f

2
1 f2f3 + 1

6f
3
2

)
N (3)(f0)

+
(

1
6f

3
1 f3 + 1

4f
2
1 f

2
2

)
N (4)(f0) + 1

24f
4
1 f2N (5)(f0) + 1

120f
6
1N (6)(f0)
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A7 = f7N (1)(f0) +
(
f1f6 + f2f5 + f3f4

)
N (2)(f0) +

(
1
2f

2
1 f5 + f1f2f4 + 1

2f1f
2
3

)
N (3)(f0)

+
(

1
6f

3
1 f4 + 1

2f
2
1 f2f3 + 1

6f1f
3
2

)
N (4)(f0) + 1

24

(
f4

1 f3 + f3
1 f

2
2

)
N (5)(f0)

+ 1
120f

5
1 f

2N (6)(f0) + 1
504f

7
1N (7)(f0)

A8 = f8N (1)(f0) +
(
f1f7 + f2f6 + f3f5 + 1

2f
2
4

)
N (2)(f0) +

(
1
2f

2
1 f6 + f1f2f5 + f1f3f5

+ 1
2f2f

2
3 + 1

2f
2
2 f4

)
N (3)(f0) +

(
1
6f

3
1 f5 + 1

2f
2
1 f2f4 + 1

4f
2
1 f

2
3 + 1

2f1f
2
2 f3 + 1

24f
4
2

)
N (4)(f0)

+
(

1
24f

4
1 f4 + 1

6f
3
1 f2f3 + 1

12f
2
1 f

3
2

)
N (5)(f0) +

(
1

120f
5
1 f

3 + 1
48f

4
1 f

2
2

)
N (6)(f0)

+ 1
720f

6
1 f2N (7)(f0) + 1

40320f
8
1N (8)(f0)

A9 = f9N (1)(f0) +
(
f1f8 + f2f7 + f3f6 + f4f5

)
N (2)(f0) +

(
1
2f

2
1 f7 + f1f2f6 + f1f3f5

+ 1
2f1f

2
4 + 1

2f
2
2 f5 + f2f3f5 + 1

6f
3
3

)
N (3)(f0) +

(
1
6f

3
1 f6 + 1

2f
2
1 f2f5 + 1

2f
2
1 f3f4

+ 1
2f1f

2
2 f4 + 1

2f1f2f
2
3 + 1

6f
3
2 f3

)
N (4)(f0) +

(
1
24f

4
1 f5 + 1

6f
3
1 f2f4 + 1

12f
3
1 f

3
3 + 1

4f
2
1 f

2
2 f3

+ 1
4f1f

4
2

)
N (5)(f0) +

(
1

120f
5
1 f

4 + 1
24f

4
1 f2f3 + 1

36f
3
1 f

3
2

)
N (6)(f0) +

(
1

720f
6
1 f3

+ 1
240f

5
1 f

2
2

)
N (7)(f0) + 1

5040f
7
1 f2N (8)(f0) + 1

362880f
9
1N (9)(f0)

...



B
Semilinear parabolic evolution

equations: Existence and
uniqueness

The following theorem proves the existence, uniqueness, and continuity for semilinear parabolic
evolution equations.

Theorem B.0.1

Suppose that E1
d
↪−→ E0, and 0 < γ ≤ β < α < 1, and ( · , · )θ are admissible interpolation

functors for θ ∈ {γ, β, α}. Put
Eθ := (E0, E1)θ

and suppose that(
t 7→

(
A(t), g(t, · )

))
∈ Cρ

(
I,H(E1, E0)× C1−

b (Eβ , Eγ)
)

for some ρ ∈ (0, 1). Then, given f0 ∈ Eα, the IVP

ḟ +A(t)f = g(t, f), t ∈ İ , f(0) = f0 (B.0.1)

has a unique solution

f( · , f0) := f( · , f0, A, g) ∈ C(I(f0), Eα) ∩ C(İ(f0), E1) ∩ C1(I(f0), E0)
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The maximal interval of existence, I(f0) := I(f0, A, g), is open in I. If

sup
t∈I(f0)∩[0,T ]

∥∥f(t, f0)
∥∥
α
<∞ (B.0.2)

for each T ∈ I, then f( · , f0) is a global solution, that is, I(f0) = I.
For each T ∈ İ(f0) there exists a neighborhood U of (f0, A, g) in

Eα × Cρ(I,H(E1, E0))× Cρ(I, C1−
b (Eβ , Eγ))

such that [0, T ] ⊂ I(f̃0, Ã, g̃) for (f̃0, Ã, g̃) ∈ U and such that

f( · , f̃0, Ã, g̃) =⇒ f( · , f0, A, g)

in C([0, T ], Eα), as (f̃0, Ã, g̃) =⇒ (f0, A, g) in U

Proof : Put δ := ρ ∧ (α− β). Fix T ∈ İ and set

gu(t) := g(t, u(t)), 0 ≤ t ≤ T

for u ∈ Cδ([0, T ], Eβ). Then gu ∈ Cδ([0, T ], Eγ) and ( [20], Theorem II.1.2.1 and II.5.3.1) guarantee
the existence of a unique solution

f( · ;u) ∈ C(I(f0), Eα) ∩ C(İ(f0), E1) ∩ C1(I(f0), E0) (B.0.3)

of the linear Cauchy problem

ḟ +A(t)f = gf (t), 0 ≤ t ≤ T, f(0) = f0 (B.0.4)

If w ∈ Cδ([0, T ], Eβ) then ( [20], Theorem II.5.2.1) implies

‖f(t;u)− f(t;w)‖β ≤ cT
1−β‖f − u‖C([0,T ],Eβ), 0 ≤ t ≤ T

where c is independent of u and w if u([0, T ]) and w([0, T ])remain in a given bounded subset of Eβ .
Thus, by making T smaller, if necessary, the contraction mapping principle implies the existence of
a fixed point f̄ ∈ C([0, T ], Eβ) of u 7→ f( · ;u). Next deducing from ( [20], Theorem II.5.3.1) that
f̄ ∈ C([0, T ], Eα)∩ ∈ Cδ([0, T ], Eβ). Hence f̄ = f( · ; f̄) and (B.0.3) imply that f̄ is a solution of
(B.0.1) on [0, T ]. Now a standard continuation argument shows that f̄ has an extension f( · , f0)
to a maximal solution of (B.0.1), and the corresponding maximal interval of existence is open in I.
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The uniqueness assertion is obvious.

Suppose that (B.0.2) is satisfied for each T ∈ I and I(f0) 6= I. Then the extension argument
can be applied to the initial value f(t∗, f0), where t∗ is sufficiently close to the right end point of
I(f0), to obtain an extension of f( · , f0) over an interval which is strictly larger than I(f0). Since
this contradicts the maximality of I(f0) it follows that (B.0.2) implies I(f0) = I.

Lastly, it is not difficult to deduce the stated continuity assertion from ( [20], Theorem II.5.2.1).
�



C
Mathematical functions

Here we summarize only all different cases symbols and functions defined as

• Pochhammer Symbol:
Given a ∈ R \ Z− and n ∈ N the Pochhammer symbol is defined by

(a)n := Γ(a+ n)
Γ(a)

Where Γ is the Gamma function which is given by

Γ(a) =
∫ +∞

0
e−tta−1 dt

• The generalized Hypergeometric function:
The generalized hypergeometric function, denoted pFq(α1, ..., αp; γ1, ..., γq; z) and defined by

pFq(α1, ..., αp; γ1, ..., γq; z) =
∞∑
k=0

∏p
i=1(αi)k∏q
j=1(γj)k

zk

k!

In the last example, by rearrangement of the terms according to the powers tivjzm, the series
solution could be written as

f(t, v, z) =
+∞∑
k=0

fk(t, v, z) =
+∞∑
k=0

f∗
k (t, v, z) =

+∞∑
j=0

+∞∑
i=0

+∞∑
m=0

(
ai,j,mt

ivjzm
)

(C.0.1)

=
+∞∑
j=0

vj

(+∞∑
i=0

ti

(+∞∑
m=0

(ai,j,mzm)
))

(C.0.2)

=
+∞∑
j=0

vj

(+∞∑
i=0

tibi,j(z)
)

(C.0.3)
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Examples of ai,j,m

• for i = 0

– for j = 0

a0,0,0 = 0

a0,0,1 = −1

a0,0,2 = 0

...

– for j = 1
a0,1,0 = 0

a0,1,1 = 0

a0,1,2 = 0

a0,1,3 = 1
2

...

...

• for i = 1

– for j = 0

a1,0,0 = 1

a1,0,1 = 0

a1,0,2 = 2

...

– for j = 1
a1,1,0 = 0
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a1,1,1 = 0

a1,1,2 = −1

a1,1,3 = 0

a1,1,4 = −9
4

...

...

...

Examples of bi,j(z)

• for i = 0
b0,0(z) = −4z

ev(−2 + z2)2

b0,1(z) = −4vz3

ev(−2 + z2)3

b0,2(z) = −2v2z5

ev(−2 + z2)4

...

• for i = 1
b1,0(z) = −4t(2 + z2)

ev(−2 + z2)3

b1,1(z) = −4vtz2(4 + z2)
ev(−2 + z2)4

b1,2(z) = −2v2tz4(6 + z2)
ev(−2 + z2)5

...

...
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Therefore

f(t, v, z) =
+∞∑
j=0

vj

(+∞∑
i=0

tibi,j(z)
)

(C.0.4)

=
+∞∑
j=0

vjcj(t, z) (C.0.5)

=
+∞∑
j=0

vj
4zj(t− z)j+1

j!ev(z(t− z) + 2)j+2 (C.0.6)

= 4(t− z)e
vz(t−z)

tz−z2+2

ev(z(t− z) + 2)2 (C.0.7)
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