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Abstract 
 

 

In a world characterized by complex and interconnected challenges, effective decision-making is 
paramount for addressing issues spanning environmental sustainability, transportation 
infrastructure improvement, and medical innovation. However, the growing complexity of these 
problems often exceeds traditional reasoning capabilities. Decision support systems, leveraging 
artificial intelligence techniques, offer promising avenues for navigating these challenges. This 
thesis focuses on addressing one such complex problem, the Traveling Salesman Problem (TSP), 
which finds applications in logistics, network planning, and bioinformatics. Despite advancements 
in TSP-solving methods, scalability and adaptability to dynamic scenarios remain persistent 
challenges. This research proposes a parallel simulation via an interconnection network topology-
based optimization tool integrating advanced artificial intelligence techniques to tackle these 
issues. The methodology includes hierarchical clustering representations, graph embeddings, and 
hybrid parallel-solving strategies. Key contributions include novel clustering algorithms tailored 
for TSP optimization, integration with parallel computing architectures, and experimental 
validation showcasing superior performance compared to traditional methods. The thesis outlines 
theoretical foundations, explores parallel computing architectures and graph embedding 
techniques with the best quality, and presents a comprehensive evaluation of the proposed 
methodology. The findings contribute to enhancing decision-making processes and offer a robust 
framework for addressing complex optimization challenges in dynamic real-world settings. 

 

Keywords:  complex problems, modeling, embedding, parallel interconnection networks, discrete 
event systems, clustering, optimization. 

 

 

 

 

 

 

 



 

 

Resumé 
 

 
Dans un monde caractérisé par des défis complexes et interconnectés, la prise de décision efficace 
est primordiale pour aborder des problèmes touchant à la durabilité environnementale, à 
l'amélioration des infrastructures de transport et à l'innovation médicale. Cependant, la complexité 
croissante de ces problèmes dépasse souvent les capacités de raisonnement traditionnelles. Les 
systèmes d'aide à la décision, exploitant les techniques d'intelligence artificielle, offrent des 
perspectives prometteuses pour naviguer dans ces défis. Cette thèse se concentre sur l'adresse d'un 
tel problème complexe, le Problème du Voyageur de Commerce (TSP), qui trouve des applications 
dans la logistique, la planification de réseau et la bio-informatique. Malgré les avancées dans les 
méthodes de résolution du TSP, la scalabilité et l'adaptabilité aux scénarios dynamiques demeurent 
des défis persistants. Cette recherche propose une simulation parallèle via un outil d'optimisation 
basé sur une topologie de réseau d'interconnexion intégrant des techniques avancées d'intelligence 
artificielle pour aborder ces problèmes. La méthodologie inclut des représentations de 
regroupement hiérarchique, des plongements de graphes et des stratégies hybrides de résolution 
parallèle. Les contributions clés comprennent de nouveaux algorithmes de regroupement adaptés 
à l'optimisation du TSP, une intégration avec les architectures informatiques parallèles et une 
validation expérimentale démontrant des performances supérieures par rapport aux méthodes 
traditionnelles. La thèse décrit les fondements théoriques, explore les architectures informatiques 
parallèles et les techniques de plongement de graphes de la meilleure qualité, et présente une 
évaluation complète de la méthodologie proposée. Les résultats contribuent à améliorer les 
processus de prise de décision et offrent un cadre robuste pour aborder les défis d'optimisation 
complexes dans des environnements réels dynamiques. 

 

Mots clés :  Problèmes complexes, modélisation, plongement, réseau d’interconnexion parallèle, 
systèmes d’évènements discrets, clustering, optimisation. 

 



  

 ملخص: 

  
ــع  ــل مـ ا للتعامـ ــً ــرًا حيويـ ــة أمـ ــرار الفعّالـ ــاذ القـ ــات اتخـ ــون عمليـ ــة، تكـ ــدة والمترابطـ ــديات المعقـ ــز بالتحـ ــالم مميـ ــي عـ فـ
مســــائل تتعلــــق بالاســــتدامة البيئيــــة وتحســــين البنيــــة التحتيــــة للنقــــل، والابتكــــار الطبــــي. ومــــع ذلــــك، فــــإن تزايــــد 

قــــدرات التفكيــــر التقليديــــة. تقــــدم أنظمــــة دعــــم القــــرار، تعقيــــد هــــذه المشــــاكل فــــي كثيــــر مــــن الأحيــــان يتجــــاوز 
باســـتخدام تقنيـــات الــــذكاء الاصـــطناعي، مســــارات متحمســـة للتنقــــل فـــي هــــذه التحـــديات. تركــــز هـــذه الأطروحــــة 
ــدة مــــن هــــذا القبيــــل، وهــــي مشــــكلة بــــائع الجــــوال، التــــي تجــــد تطبيقــــات فــــي  علــــى التعامــــل مــــع مشــــكلة معقــ
ــل مشـــكلة  ــرق حـ ــي طـ ــدمات فـ ــن التقـ ــرغم مـ ــى الـ ــوبي. علـ ــاء الحاسـ ــم الأحيـ ــبكات وعلـ ــيط الشـ ــتيات وتخطـ اللوجسـ
ــرح  ــتمرة. تقتــ ــديات مســ ــل تحــ ــة تظــ ــيناريوهات الديناميكيــ ــع الســ ــف مــ ــع والتكيــ ــة التوســ ــوال، إلا أن قابليــ ــائع الجــ بــ
هـــذه البحـــث محاكـــاة متوازيـــة عبـــر أداة تحســـين اســـتنادية لتوبولوجيـــا الشـــبكة المترابطـــة تكامـــل تقنيـــات الـــذكاء 

تشـــــمل منهجيـــــة البحـــــث تمثـــــيلات التجميـــــع الهرميـــــة،  .المتقدمـــــة للتعامـــــل مـــــع هـــــذه المشـــــاكلالاصـــــطناعي 
ــي  ــية هــ ــاهمات الرئيســ ــين المســ ــن بــ ــة. مــ ــة المختلطــ ــل المتوازيــ ــتراتيجيات الحــ ــة، واســ ــوم البيانيــ ــمين الرســ وتضــ
ا لتحســــين هــــذه المشــــكلة ، والتكامــــل مــــع هندســــة الحواســــيب  خوارزميــــات التجميــــع الجديــــدة المصــــممة خصيصــــً
ــة  ــة. توضــــح الأطروحــ ــع الطــــرق التقليديــ ا بالمقارنــــة مــ ــً ــر أداءً متفوقــ ــي الــــذي يظهــ المتوازيــــة، والتحقــــق التجريبــ
الأســــس النظريــــة، وتستكشــــف هندســــة الحواســــيب المتوازيــــة وتقنيــــات تضــــمين الرســــوم البيانيــــة بــــأعلى جــــودة، 

ــات  ــز عمليـ ــي تعزيـ ــائج فـ ــاهم النتـ ــة. تسـ ــة المقترحـ ــاملاً للمنهجيـ ا شـ ــً ــدم تقييمـ ا وتقـ ــً ــارًا قويـ ــدم إطـ ــرار وتقـ ــاذ القـ اتخـ
  للتعامل مع التحديات الشديدة للتحسين في البيئات الحقيقية الديناميكية

ــات االفتتاحيــــة ــدة، النمذجــــة، : الكلمــ ــمينالمشــــكلات المعقــ ــة الأحــــداث تضــ ــة، أنظمــ ــبكة الاتصــــال المتوازيــ ، شــ
 .الأمثلةالمتقطعة، تجميع (كلوسترنج)،  
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Chapter 1

General Introduction

1.1 Context and Motivation

In a rapidly changing world, humanity faces increasingly complex and interconnected challenges.
Sustainable management of environmental resources, improving transportation infrastructure,
and seeking innovative medical solutions are just a few areas where decisions made today will
have a significant impact on the future. However, the growing complexity of these problems
often surpasses our traditional reasoning capabilities.

All these changes are based on decision-making. A decision relies on various elements.
The first is identifying what problem needs to be addressed. In other words, having a
good understanding and visibility of the problem to make the best decisions that need to
be made. The second is developing a valid reasoning process. Finally, the third is the
method of elaborating and structuring this reasoning. The decisions that current leaders are
required to make within tight deadlines involve numerous interdependent entities that are
difficult to analyze. However, the efficiency of the choices made must be maximized and
must simultaneously meet many interdependent criteria. Throughout history, the solution
humanity has found to compensate for its weaknesses is the development of tools to extend its
capabilities. In the context of complex decisions, one of the most commonly used tools is called
decision support systems. These often rely on various techniques and tools for developing
artificial intelligence. Currently, there are several decision support systems on the market, but
constraints typically limit them to a single application domain and they are often inaccessible
in terms of costs and training.

The Traveling Salesman Problem (TSP) stands out as a notoriously challenging optimization
puzzle, particularly in its Euclidean form, where the objective is to find the shortest route
visiting each city exactly once, represented as points in space [47]. This conundrum finds
widespread application in critical domains such as logistics [3, 7], network planning [92, 154],
and bioinformatics [111, 120], where efficient resource management and cost minimization are
paramount concerns.

Over the years, researchers have tackled the Euclidean TSP using a variety of approaches, rang-
ing from classical mathematical techniques to approximation algorithms like the Christofides
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algorithm [29]. Additionally, metaheuristic methods such as genetic algorithms [73] and
simulated annealing [88] have been employed to address this problem. Despite significant
progress, certain research gaps persist, notably in scalability and adaptability to dynamic
scenarios.

Scalability remains a significant hurdle, particularly concerning large datasets, which limits
the practical utility of existing solutions. Furthermore, dynamic TSP scenarios, characterized
by changing environments or variable point-to-point distances, present additional challenges
requiring systematic exploration. Incorporating real-time data, such as traffic conditions [137]
or delivery time windows [161, 20], into TSP models represents another avenue for further
investigation.

Moreover, the potential of hybrid approaches, which blend various algorithms and integrate
machine learning techniques, remains largely untapped in Euclidean TSP research. Bridging
these gaps is crucial for enhancing the scalability, adaptability, and real-time applicability of
TSP solutions, ensuring their efficacy in tackling intricate challenges in dynamic, practical
settings.

1.2 Objectives
The primary objective of this research is to propose a parallel simulation via an interconnection
network topology tool that integrates advanced artificial intelligence techniques. This system
aims to be open and scalable, capable of adapting to a variety of domains and problems.
The first part of this work will explore the theoretical foundations of modeling and parallel
simulating discrete event systems supported by interconnection network topology, as well as
existing developments in this field. The second part will focus on applying these concepts to
optimization, examining different methods and tools available for solving complex problems.
Finally, the third part will explore the possibilities of parallelizing simulation processes,
examining parallel simulation interconnection network technologies, to speed up process time
and obtain optimal solutions more quickly.

By integrating these different elements, this research aims to provide a robust framework
for addressing contemporary challenges holistically and effectively, harnessing the potential
of artificial intelligence to guide decisions toward outcomes beneficial for humanity and the
environment.

1.3 Thesis Contributions
Our work in this thesis consists of creating a platform that integrates: a set of optimization
tools that are open and extensible through simulation using parallel representation techniques
such as quadtree and octree topologies (interconnection networks). This framework facilitates
various decision-making stages, including data acquisition, selection, cleaning, and integration,
while enhancing our understanding of the data to provide deeper insights into decision-support
problems.

Furthermore, we aim to bolster the efficiency of our tool and concept development by employing
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embedding techniques into parallel machines, particularly those utilizing interconnection
networks with desirable properties such as crossed cubes. The effectiveness and validity of
our proposed components are rigorously assessed through theoretical validation, employing a
training-based approach, with a focus on addressing challenges akin to the TSP. Through
this integrated approach, we strive to offer a robust platform that not only enhances decision-
making processes but also fosters innovation and efficiency in tool development within complex
problem domains.

In another term, Our paper introduces a novel approach to solving the Euclidean Traveling
Salesman Problem (TSP) by implementing a hierarchical framework that utilizes compressed
quadtrees/octrees topology alongside recursive hybrid clustering amalgamating the strengths
of classic clustering algorithms including K-Means, Affinity Propagation, and Density Peaks
Clustering. Recognizing the need for adaptability to diverse problem domains, we aim to
enhance these methods tailored to our specific requirements. Hence, we introduce Enhanced
K-Means, K-Affinity Propagation, and K-Density Peaks Clustering. This innovative method
optimizes the clustering of cities into a compressed quadtree/octree, prioritizing intra-cluster
cohesion and inter-cluster separation while evaluating these aspects through robust metrics
such as the Davies-Bouldin index and Gini coefficient. By hierarchically representing the
TSP, either in 2D or 3D, we significantly enhance parallelizability, facilitating concurrent
optimization.

To further improve scalability, fault tolerance, and resource utilization, we integrate the
compressed quadtree/octree into crossed cubes, minimizing distance distortions through a
meticulous one-by-one dilation 2 embedding process. Our multi-tiered decomposition strategy
strategically abstracts complex optimization landscapes into localized clusters, which are
efficiently solved in parallel using heuristics like nearest neighbor and ant colony optimization.

Furthermore, we employ a genetic networking heuristic to interconnect independent intra-
cluster solutions, thereby constructing unified inter-cluster routes. This clustering-guided
initialization ensures a diverse population of initialized tours, effectively balancing global
exploration against localized exploitation.

To validate the efficacy of our approach, we conduct extensive experiments, utilizing the
generated solutions to seed a simulated annealing metaheuristic. Through this experimental
evaluation, we demonstrate our method’s superior ability to initialize metaheuristics for TSP
instances, bringing them closer to optimality compared to traditional methods.

1.4 Thesis Outline
This thesis explores the development of an advanced parallel simulation framework integrating
Artificial Intelligence techniques for optimizing complex problem-solving. Chapter 2 establishes
relevant concepts in complex systems, discrete event modeling, optimization problems, and
combinatorial algorithms. Topological classifications and quality metrics for graph embeddings
are also examined.

Chapter 3 delves into parallel computing architectures and graph embedding techniques.
Flynn’s model and topological classifications of interconnection networks are investigated.
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Embedding problems, types, and quality are defined.

Chapter 4 uses the Traveling Salesman Problem as a case study to introduce classical
and hybrid solving methods, focusing on exact, heuristic, and metaheuristic approaches.
Parallel formulations are also explored. This chapter finished by providing an overview
of the proposed model methodology, emphasizing the feature selection, optimization, and
visualization modules.

Chapter 5 details the proposed modeling paradigm for optimizing TSP solutions through
hierarchical clustering representations, graph embeddings, and hybrid parallel solving. Feature
selection, dimensionality reduction, clustering algorithms, and intra/inter-cluster optimizations
are described.

Chapter 6 evaluates the methodology through experimentation, analyzing clustering perfor-
mances on graphs, evaluating processing algorithms, and assessing runtimes.

Chapter 7 presents conclusions and discusses avenues for future work, such as dynamic
clustering adaptations and evaluating on broader problem domains. Overall, this research
introduces an innovative optimization toolkit through synergistic simulation, parallelization,
and machine learning.
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Chapter 2

General concepts

2.1 Introduction

The first chapter introduces fundamental principles in complex systems, discrete events systems,
and combinatorial optimization. It is a crucial exploration for effective problem-solving and
optimization. The chapter covers:

• Complex Systems and Discrete Event Systems: Discussing characteristics, speci-
fications, modeling techniques, and simulation methodologies.

• Problem Classification and Optimization: Addressing the concept of the problem,
its classification, and basics of combinatorial optimization using graph theory.

• Combinatorial Optimization and Meta-heuristic Methods: Focusing on key
aspects such as graph theory, landscape definition, and classification of optimization
methods.

• Parallel and Hybrid Meta-heuristic Approaches: Concluding with advanced
methodologies, including parallel meta-heuristics and the integration of machine learning
techniques.

2.2 Complex System

A complex system is a set of interconnected elements that interact in a way to form a coherent
whole. These systems can be found in various domains, such as physics, biology, computer
science, economics, and more [106].

Complex systems are studied across various scientific disciplines, and understanding them
is often crucial for solving real-world problems and improving decision-making in diverse
contexts. Tools such as mathematical modeling, computer simulation, and network analysis
are often employed to study these systems[106].
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2.2.1 Characteristics of complex systems
Complex systems, pervasive across a myriad of scientific disciplines, embody a rich tapestry
of interconnected elements whose interactions give rise to emergent properties and behav-
iors. Understanding these systems requires an exploration of their key characteristics, each
contributing to the complexity and adaptability observed[74, 58, 105]. There are some key
characteristics of complex systems:

1. Interconnection: The elements of a complex system are interconnected, meaning they
are linked to each other in a way that influences each other’s behavior [74].

2. Adaptability: Complex systems often have the ability to adapt to internal or external
changes. This may be due to feedback mechanisms that adjust the system in response
to disturbances [74].

3. Emergence: The properties of the system as a whole can emerge from the interactions
among its constituent parts. These emergent properties are not always predictable from
studying individual parts [74].

4. Nonlinear Dynamics: Complex systems can exhibit nonlinear behavior, meaning that
small changes can lead to disproportionate effects or abrupt changes in the system [58].

5. Self-organization: Some complex systems have the ability to self-organize, meaning
they can develop structures and patterns without external intervention [74].

6. Sensitivity to Initial Conditions: Some complex systems, particularly in the context
of chaos theory, are sensitive to initial conditions, meaning small initial variations can
lead to very different outcomes over time [105].

2.2.2 Specification [8]
Careful specification is essential in modeling complex systems computationally, involving
decisions on abstraction levels and representation. Explicitly capturing influential components,
interactions, and dynamics is key, while less critical elements may be aggregated. Interactions
must consider non-linear feedback effects across scales. Environmental factors are parameter-
ized, initial conditions specified, and uncertainties addressed through probabilities or multiple
scenarios. Formal modeling frameworks set standards and guide programming, algorithms,
and data structure choices. Validation against empirical observations refines specifications,
addressing simplifications and uncertainties. The goal is a useful approximation rather than
perfect precision. Rigorous yet pragmatic specifications enable computational models to distill
insights from complexity for testing hypotheses and generating knowledge about real-world
systems.

2.2.3 Modeling [21]
Modeling involves creating a simplified representation of a system, process, or phenomenon
to gain a better understanding of its dynamics. Models can take various forms, including
mathematical equations, diagrams, physical replicas, or computer simulations. The goal of
modeling is to capture the essential features of the system under study while abstracting
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Problem 
Definition

Problem 
Analysis

Concept 
Synthesis

Technology 
Selection

Implementation

Validation

Figure 2.1: Steps of the modeling process.

away unnecessary details. This abstraction enables researchers to analyze and manipulate the
model to observe how changes in input parameters impact the system’s output.

The modeling process unfolds through a series of distinct stages, as illustrated in Figure 2.1.
It commences with the crucial step of precisely defining the problem at hand. Subsequently,
a comprehensive analysis of the identified problem ensues, delving into its intricacies and
discerning influential factors. The synthesized concepts from this analysis are then organized
and integrated, forming the foundational elements of the model. The next stage involves
the strategic selection of technology for implementation, necessitating decisions on mod-
eling approaches, software tools, and hardware requirements. Implementation transforms
the synthesized concepts into a tangible model, often employing mathematical equations,
algorithms, or computer code. Rigorous validation follows, subjecting the model to thorough
testing to ensure its accuracy in representing the real-world system. Based on validation
results, adjustments may be made, prompting a redefinition of the original problem to align
with observed system behavior. This cyclical process of refinement and validation iterates,
progressively enhancing the model’s accuracy and reliability.

2.2.4 Simulation [21]
Simulation involves running a model over time to observe its behavior and outcomes. Computer
simulation, in particular, has become a powerful tool for studying complex systems that may
be impractical or impossible to analyze through other means. Through simulation, researchers
can explore different scenarios, test hypotheses, and assess the robustness of a system under
various conditions.

Simulations can provide insights into the emergent properties of a system and help stakeholders
make informed decisions without the need for real-world experimentation, which can be time-

7



consuming, costly, or ethically challenging. Industries such as aerospace, finance, healthcare,
and environmental science heavily rely on simulation techniques to optimize processes, predict
outcomes, and mitigate risks.

2.3 Discrete event system
Discrete Event Systems (DES) refer to systems in which events occur at distinct points in
time and cause the system to undergo changes in its state. These systems are characterized
by the occurrence of events that have a noticeable impact on the system’s behavior, and the
system’s response to these events is often modeled as a series of discrete, distinct steps [25].

Several approaches are employed to model and analyze Discrete Event Systems (DES), each
tailored to address specific characteristics and requirements of these systems see Table 2.1.

2.3.1 Petri nets approach
Petri nets are a powerful graphical modeling tool used to represent discrete event systems.
They model a system as a collection of places, transitions, and directed arcs connecting places
to transitions. Places graphically represent conditions or states and contain tokens to denote
the current marking (state) of the system. Transitions represent events that may occur,
firing when the appropriate input places contain tokens. When a transition fires, it removes
tokens from its input places and adds them to its output places, facilitating the modeling
of concurrency, synchronization, and resource allocation dynamics. Analysis techniques like
reachability graphs applied to Petri net models aid in system verification and exploring
optimization of performance metrics [110].

2.3.2 State-space models
State-space models take an alternative approach by explicitly enumerating all possible system
states as vertices in a graph, with transitions between states as edges. While suffering from
exponential growth limitations, state-space models effectively optimize properties for small,
discrete systems [25, 72].

2.3.3 Agent-based modeling
Agent-based modeling decomposes problems into autonomous software agents that interact
locally through message passing within an environment according to behavioral rules. This
decentralized approach supports simulation and optimization of complex adaptive systems
[17].

2.3.4 Discrete Event System Specification (DEVS)
DEVS provides a formal framework to hierarchically construct modular atomic and coupled
component models of large, complex discrete event systems through an interface enforcing
separation of model specification and simulation. At its core, DEVS introduces the concept
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Approach Key Characteristics Application
Petri Nets Graph-based model with to-

kens representing system
states. Transitions occur
based on rules.

Modeling concurrent pro-
cesses, workflow, communi-
cation protocols. Offers in-
sights into system dynamics.

State-space Mod-
els

System states repre-
sented as points in a
multi-dimensional space.
Transitions between states
are modeled.

Analyzing system behavior,
control theory, studying sta-
bility, and identifying reach-
able states. Common in for-
mal verification.

Agent-based
Modeling

Individuals (agents) with au-
tonomous behavior and in-
teractions. Agents adapt
and evolve based on local
rules.

Simulating complex systems
where individual entities in-
fluence the overall system be-
havior. Used in social sci-
ences, ecology, and traffic
simulations.

DEVS (Discrete
Event System
Specification)

Formalism for modeling dy-
namic systems with discrete
events. Hierarchical struc-
ture with atomic and com-
posite models. Offers alge-
braic formalism for model-
ing.

Modeling and simulation
of discrete-event systems.
Used in areas like com-
puter systems, communica-
tion networks, and manufac-
turing. Provides a standard-
ized framework for dynamic
system representation, incor-
porating algebraic formal-
ism.

Table 2.1: Discrete Event System Modeling Approaches.
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CompleteP

Figure 2.2: Problem complexity classes [31].

of Atomic Models, the fundamental building blocks that encapsulate the behavior of a
system at a specific level of abstraction. These models respond to input events, triggering
state transitions and producing output events. The hierarchical nature of DEVS is manifested
in the concept of Coupled Models, enabling the composition of atomic models into complex
systems, fostering modularity and scalability. Interaction between models occurs through
designated Ports, where input events drive the state changes within a model, and output
events reflect the system’s response. The system’s behavior is delineated by a set of States,
defining its possible conditions or configurations. DEVS facilitates simulation through various
techniques, allowing for the dynamic analysis of system performance over time. This formalism
finds application in diverse domains such as control systems, communication networks, and
manufacturing processes, providing a structured approach to understanding and designing
complex systems [158].

2.4 The problem concept
In computer science, a problem can be defined as a computational task that a computer
program is expected to solve [135]. More formally:

A problem P is a pair (I, Q) where:

• I is a set of instances or inputs to the problem.

• Q is a functional relation that associates each instance i ∈ I with a set of outputs Q(i).

The aim is to find an algorithm or computer program that implements Q, i.e., for each input
i ∈ I, the program should produce a valid output q ∈ Q(i).

2.5 Classification of problems
Problems can be categorized based on the certainty and predictability of their outcomes. This
classification often relies on two fundamental concepts: deterministic Turing machines and
non-deterministic Turing machines.

This classification is rooted in the computational complexity of problems and the resources
necessary to solve them effectively [95]. See Figure 2.2.

The main complexity classes used to categorize optimization problems based on computational
difficulty are P, NP, NP-hard, and NP-complete. P contains problems that can be solved in

10



CHAPTER 2. GENERAL CONCEPTS

Characteristic Opposite Characteristic
Single-objective Multi-objective

Linear Non-linear
Convex Non-convex
Static Dynamic

Continuous Discrete
One-dimensional Multidimensional
With constraints Without constraints

Homogeneous types Heterogeneous types
Deterministic Stochastic

Table 2.2: Characteristics of optimization problems

polynomial time by a deterministic algorithm. Problems in NP cannot necessarily be solved
in polynomial time but can be verified in polynomial time by a non-deterministic algorithm.
NP-hard problems are at least as hard as any problem in NP. Even if a polynomial time
solution is found for one NP-hard problem, it does not imply that all NP problems can be
solved in polynomial time. NP-complete comprises problems in NP that are also NP-hard
they are the hardest problems in NP in that every problem in NP can be reduced to an
NP-complete problem in polynomial time. Determining whether P = NP, meaning whether
every problem for which a solution can be verified quickly can also be solved quickly, remains
one of the most significant unsolved problems in computer science [31].

Optimization problems are not confined to a single type or nature. Instead, they often involve
a combination of different characteristics, making them heterogeneous in nature [89]. The
different natures of a problem are presented in Table 2.2.

2.5.1 Discrete problems
Discrete optimization problems comprise the class of optimization challenges where the
variables can only take on discrete, separate values rather than continuous ranges [30]. More
formally, discrete optimization involves finding optimal solutions where the decision variables
are restricted to be integer or categorical rather than real-valued. The key characteristics of
discrete problems include:

• Discrete search space: The set of possible solutions consists of distinct, separated options
rather than continuous values. This discrete nature restricts solutions to integer or
logical domains [48].

• Discrete variables: The decision variables that define candidate solutions can only take
on values from a finite set of discrete alternatives rather than continuous spectra [51].

• Non-differentiability: As solutions lie on a discrete lattice rather than a smooth space,
objective functions may lack differentiability properties. Traditional gradient-based
optimization is invalid [76].

• Combinatorial complexity: The discrete nature leads to immense search spaces growing
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exponentially with problem size. Even moderately sized instances can become intractable
to solve exactly [56].

Popular examples of discrete problems include the traveling salesman problem (TSP) [47],
knapsack problem [103], job shop scheduling [16], and vehicle routing [142].

2.6 The optimization concept
Optimization permeates our daily lives, driven by the interplay between predicting outcomes
and pursuing specific objectives. Success in any optimization endeavor hinges upon clearly
defining the problem and desired goals.

An optimization problem can be characterized as follows ([19], [113]):

Minimize (or Maximize):

f(x) = (f1(x), f2(x), . . . , fk(x))

Subject to:
gi(x), i = 1, 2, . . . , m

hj(x), j = 1, 2, . . . , p

Where:

• f(x) represents the vector of objective functions to be minimized or maximized. Each
objective function fi(x) depends on the decision variables x = (x1, x2, . . . , xn).

• gi(x) denotes the inequality constraints that limit the feasible solutions, ensuring the
solution space falls within specific bounds.

• hj(x) represents the equality constraints, further restricting the feasible solutions by
enforcing specific relationships among the decision variables.

• m and p indicate the number of inequality and equality constraints, respectively.

• k represents the number of objective functions, indicating that the optimization problem
aims to optimize multiple conflicting objectives simultaneously.

The objective of the optimization problem is to determine the values of the decision variables
x that minimize or maximize the objective functions f(x), all while adhering to the defined
constraints.

2.7 Combinatorial optimization [119, 124]
Combinatorial Optimization (CO) addresses problems of finding the best (or worst) element
in a finite, valued set. A combinatorial optimization problem is defined by a discrete space of
feasible solutions Ω and an objective function f : Ω→ Rn. The aim is to find s∗ ∈ Ω such
that s∗ = arg maxs∈Ω{f(s)}.
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For a minimization problem (or maximization), a global optimum is a solution s∗ ∈ Ω such
that ∀s ∈ Ω, f(s∗) ≤ f(s) or f(s∗) ≥ f(s). If Ω has a neighborhood relation V , a local
optimum is s∗ ∈ Ω such that ∀s ∈ V (s∗), f(s∗) ≤ f(s) or f(s∗) ≥ f(s).

CO finds applications in diverse fields such as transportation, management, energy, and
engineering. For example, optimizing delivery routes to minimize costs in a large-scale
distribution network is a combinatorial optimization challenge.

2.7.1 Graph theory notations
The definitions related to graph theory are taken from [139]. Combinatorial optimization
problems can be naturally modeled as graphs, with the solution space represented by the
constituents of a graph such as vertices and edges [56].

Graph Definition

• A graph G = (X, U) is considered complete if every pair of vertices in X is connected
by an edge in U .

• A directed graph or digraph G has nodes and arcs as ordered pairs of distinct nodes.

• Multigraph specifics: X(G) is the set of nodes n = |X(G)|, and U(G) is the set of arcs
m = |U(G)|.

• U(i) is the set of adjacent edges for node i, and arc costs are associated.

• An undirected graph is a digraph where arc (xi, xj) ∈ U implies (xj, xi) ∈ U .

• Subgraph relationship: G1 = (X1, U1) is a subgraph of G2 = (X2, U2) if X1 ⊆ X2 and
U1 ⊆ U2.

• A spanning subgraph G
′ of a graph G is denoted as G

′ = (X ′
, U

′), where X
′ is a subset

of the vertices of G, U
′ is a subset of the edges of G , and G

′ includes all vertices of G.

• A clique in G refers to a complete subgraph of G.

• A stable set in a graph is a collection of vertices that are pairwise non-adjacent.

• A graph is termed bipartite if its vertex set can be partitioned into two non-empty
sets, X1 and X2, in a way that no pair of vertices in X1 (or X2) are adjacent. It is
well-established that a graph is bipartite if and only if it lacks an odd cycle.

• A transversal T in G is a subset of vertices such that for every edge (u, v) ∈ U ,

∀(u, v) ∈ U, (u ∈ T ) ∨ (v ∈ T )

Paths, Strings and Cycles

• A path from x1 to xk in G is a simple list [x1, . . . , xk] with (xi, xi+1) as an arc for
i ∈ [1..k − 1].

• A path is called an elementary path (String) if it passes through each vertex at most
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once.

• The sequence x1, x2, . . . , xk+1 forms a cycle if k > 1 and k1 = xk + 1.

• A cycle is Hamiltonian if it forms an elementary path encompassing every node of X.

• An Eulerian path in a graph is a path that traverses every edge exactly once.

• The cost of a path p, denoted as w(p), is the sum of the costs of its constituent arcs.

Connectivity

A graph is connected if there is a path between every pair of nodes; otherwise, it is disconnected.

Trees, Spanning Trees and Components

• A tree is a connected graph without cycles.

• A tree T = (X ′, U ′) is a spanning tree of G if X ′ = X and U ′ ⊆ U . The non-tree edges
of T are those in U − U ′.

• A minimum spanning tree minimizes the cost of its tree edges.

• Connected components are the largest connected subgraphs within G.

Cuts and Cutsets

• A cut (S, T ) is a partition of nodes, where S ⊆ X and T = X − S.

• The cutset of a cut (S, T ) is the set of edges (xi, xj) ∈ U with xi ∈ S and xj ∈ T .

• A k-cutset is a cutset with a cardinality of k.

2.7.2 Landscape definition
The concept of fitness landscape was first introduced by Wright [149] in his studies on
the evolution of living beings, aiming to comprehend evolutionary drifts. This idea was
later extended to various domains, including combinatorial optimization. In the context of
combinatorial optimization, a landscape is defined by a triplet (W, V, f), comprising the search
space W, the neighborhood relation V associated with each feasible solution, and the objective
function f measuring the quality of solutions. This definition imparts a geometric structure to
the optimization problem, based on a neighborhood relation and an objective function.

2.7.3 Search space
The concept of a fitness landscape, as introduced by Wright in the context of evolutionary
biology and later extended to combinatorial optimization, emphasizes the importance of
understanding the structure of the search space in optimization problems. In combinatorial
optimization, the search space, denoted as W, constitutes the set of all feasible solutions to a
given problem. It is the landscape upon which the optimization process unfolds, encompassing
all potential solutions that can be explored. This search space is not arbitrary; rather, it is
intricately defined by the problem at hand. The geometric structure of this space is shaped by
the relationships between different solutions, as determined by the neighborhood relation, V.
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The neighborhood relation identifies the feasible solutions that are proximate to each other,
forming the basis for local exploration during the optimization journey.

2.7.4 Neighborhood relation
In combinatorial optimization, the search space grows with problem complexity, making
problems challenging and often impractical to solve exhaustively. The neighborhood relation
denoted V connects solutions, crucial for navigating the vast search space. Due to its size,
explicitly describing all neighbors becomes impractical. The relation is formalized with
operations denoted ∆, symmetric movements from one solution to another.

The relation between the initial solution s and a neighboring solution s′ is characterized by
the equivalence between membership in V (s) and the existence of an operation δ from ∆ such
that δ(s) = s′. This formally defined neighborhood relation describes the set of neighbors for
each solution.

The concept of a path between two solutions s and s′ is introduced, representing a finite
sequence of movements from one solution to another. The distance between two solutions s
and s′ is defined as the length of the shortest path. The neighborhood of order n, denoted Vn,
comprises solutions at an exact distance of n from the initial solution s.

2.7.5 Objective space
The objective space in combinatorial optimization is a crucial facet of the fitness landscape.
Represented by the objective function, f, it serves as the metric for evaluating the quality
of solutions within the search space. The objective function assigns a numerical value
to each feasible solution, indicating its fitness or desirability concerning the optimization
goals. The optimization process seeks to navigate this objective space, aiming to locate
solutions that optimize the objective function. The landscape of the objective space is
defined by the distribution of these fitness values across the set of feasible solutions. The
interplay between the search space, neighborhood relations, and the objective function
constructs a comprehensive framework for understanding and navigating the fitness landscape
in combinatorial optimization.

In combinatorial optimization, the objective space, defined by the objective function, comes
in three main types: mono-objective, multi-objective, and many-objective.

Mono-objective optimization involves a single criterion, simplifying the search for the global
optimum. Multi-objective optimization deals with conflicting criteria, creating a multi-
dimensional objective space. In multi-objective optimization, two common approaches are
Pareto optimization, which seeks solutions not improvable in one objective without worsening
another, and aggregation, where multiple objectives are combined into a single function for
optimization.

Many-objective optimization extends this to handling a large number of conflicting objectives,
demanding strategies like diversity preservation for exploring the intricate objective space. In
summary, the nature of the objective function shapes the landscape, influencing the complexity
of finding optimal solutions in combinatorial optimization.
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2.7.6 Landscape analysis
The analysis of adaptive landscapes in combinatorial optimization problems focuses on three
complementary axes of study: interconnected search space (Ω, V ), fitness value space (Ω, f),
and the complete landscape (Ω, V, f). The approach distinguishes characteristics induced by
the neighborhood relation or the evaluation function. Various statistical tools are proposed
to analyze each axis:

1. Interconnected Search Space (Ω, V ):

• Distance in a population: Calculating distances between solutions in a population to
understand interconnections.

• Diameter: Measuring the maximum distance between solutions in a population.

2. Fitness Value Space (Ω, f):

• Amplitude: Quantifying the relative difference between the fitness values of the best
and worst solutions in a population.

• Gap: Providing the average relative difference between the fitness values of local optima
and the best-known solution.

3. Complete Landscape (Ω, V, f):

• Fitness distance correlation coefficient: Determining the correlation between fitness
values and distances to the nearest optimum.

• Autocorrelation: Assessing the correlation between fitness values of neighboring solutions.

• Length of correlation: Describing the roughness of the landscape in terms of neighbors.

• Escape rate: Representing the probability of leaving the attraction basin of a local
optimum.

• Point of quality: Evaluating the ability of a solution to lead to the best solutions in the
search space.

These indicators provide insights into the characteristics of the landscape, including its
smoothness, ruggedness, and the effectiveness of optimization. The analysis covers aspects
such as solution distribution, landscape ruggedness, and the relationship between fitness
values and solution distances.

2.8 Classification of combinatorial optimization meth-
ods

Combinatorial optimization techniques are systematically classified based on their methodolo-
gies into two primary categories as shown in Figure 2.3: exact (deterministic) methods, and
approximate (probabilistic) methods (heuristics and meta-heuristics)[147].

Exact methods, also called deterministic algorithms, including linear, constraint, and dynamic

16



CHAPTER 2. GENERAL CONCEPTS

Optimization

    Dynamic 
Programming

    Heuristics

    S-Metha-heuristics     P-Metha-heuristics

    Metha-heuristics
  Constraint   
Programming

     Linear   
Programming

     Branch &      
       Bound      

Exact methods 
(deterministic)

Approximate methods                            
(probabilistic)

Figure 2.3: Methods classification [147].

programming, are designed to find the globally optimal solution within a finite amount of
time [11]. These methods guarantee optimal solutions but are computationally intensive, and
suitable for precision-critical problems without significant computational constraints. Thus,
exact methods face limitations in handling problems with stochastic, discrete, dynamic, or
diverse variable aspects. Additionally, their execution time for large-scale NP-complete prob-
lems grows exponentially. Moreover, adapting them to specific problems can be cumbersome
and time-consuming.

Approximate optimization methods, also known as probabilistic algorithms, which are partially
based on random reasoning, do not guarantee reaching the optimum during the optimization
process. However, they efficiently optimize complex problems within reasonable timeframes,
especially those belonging to the NP-complete class. These methods are well-suited for
discrete, dynamic, stochastic, or nonlinear problems. Additionally, due to their natural
inspiration, they are easily understandable and adaptable to various problem types. Some
of the most widely employed techniques in this category include Genetic Algorithms [73],
Simulated Annealing [88], and Particle Swarms [84].

2.9 Metha-heuristic for combinatorial optimization [153]
There are two categories of metaheuristics: single-solution methods also known as local
searches, and methods employing a population of solutions. Local searches tend to intensify
exploration by exploiting a portion of the search space, while population-based methods lean
towards diversification, exploring different regions of the search space. In the following, we
specifically introduce some metaheuristics utilized in this thesis.

2.9.1 Solution Representation
Creating an effective iterative metaheuristic involves a crucial step: designing a suitable
solution encoding. The efficiency and effectiveness of the metaheuristic heavily depend on this
choice. The encoding must align with the optimization problem and significantly influence the
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performance of search operators. Four prevalent encodings in the literature are binary (e.g.,
knapsack), discrete value vectors (e.g., location, assignment problems), permutations (e.g.,
traveling salesman, scheduling problems), and real value vectors (e.g., continuous functions).

2.9.2 S-solution methods

The search space for combinatorial optimization problems is often too vast to enumerate
within a reasonable time. To address this, connections between solutions are established,
allowing the exploration of one solution to lead to another. A crucial aspect is defining a
neighborhood relation, mapping each solution to its neighboring set (excluding itself). Local
searches hinge on this relation, employing a procedure to exploit the neighborhood. Different
local searches vary in how they exploit the neighborhood, with the neighborhood serving as a
parameter in this process.

Simulated annealing (SA)

Simulated annealing is an S-solution optimization technique inspired by the physical annealing
process (statistical mechanics). This approach incorporates a temperature parameter, which
undergoes dynamic adjustments throughout the search process.

The simulated annealing procedure applied to optimization problems considers a neighbor-
hood exploration that allows moving to a less-quality neighboring solution with a non-zero
probability. This helps escape local optima.

Initially, a temperature T is set and decreases throughout the algorithm tending towards 0.
The probability p of accepting deteriorating solutions decreases as T decreases.

Simulated annealing provides asymptotic convergence proof, so under certain temperature
reduction schemes, it guarantees finding the optimal solution. However, the theoretical
parameter settings are impractical, requiring parameter tuning.

Acceptance Criterion

The acceptance of a new state depends on whether the change in cost, denoted as ∆C,
is negative. In cases where ∆C ≥ 0, the new state may be accepted with a probability
determined by the expression e−∆C/T , where T is the temperature.

This probabilistic acceptance strategy allows for occasional exploration of suboptimal solutions,
particularly in the early stages. The temperature, T , gradually decreases in incremental steps,
focusing the search on regions associated with better solutions.

The acceptance criterion strikes a balance between intensifying the exploration of favorable
solutions and promoting diversification through occasional acceptance of worse solutions,
controlled by the temperature parameter. This approach facilitates escaping local optima and
directs the search towards converging on high-quality solution regions.
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2.9.3 Population solution methods

Unlike local searches, population-based methods improve a population of solutions over
iterations. The advantage of these methods is to use the population as a diversity factor.
There are several evolution strategies for this population, leading to methods such as ant
colonies [33] and genetic algorithms [73].

In this research, we exclusively explore the use of genetic algorithms. Genetic algorithms
simulate the process of evolution within a population. Starting from an initial set of N
solutions representing individuals of the problem, we apply operators such as crossover or
mutation to simulate genomic interventions. This process leads to obtaining a population of
solutions increasingly adapted to the problem, with adaptation being evaluated through the
objective function associated with the optimization problem.

A classical genetic algorithm unfolds in several successive steps:

1. creation of a random population,

2. evaluation of each individual in the population using the objective function,

3. selection of individuals through a selection strategy to form a parent population,

4. application of the crossover operator with a probability Pc to individuals in the parent
population to obtain a child population,

5. application of the mutation operator with a probability Pm to individuals in the child
population,

6. use of a replacement strategy to form the new population,

7. return to step 2 if the termination criterion is not met.

Concurrently, other aspects of our research focus on exploring simulated annealing and ant
colony optimization (ACO) algorithms. As demonstrated in section 2.6.1, simulated annealing
draws inspiration from the cooling process of molten metals to attain a stable crystalline
configuration. Similarly, solutions are adjusted over time to seek optimal configurations.
ACO, on the other hand, is inspired by the collective behavior of ants in solving optimization
problems. Ants communicate by depositing pheromones, thereby influencing the selection of
optimal paths in their quest for food.

A classical ant colony optimization method unfolds in several successive steps:

1. initialization of ant colony positions, pheromone levels, and configuring parameters that
control the dynamics of pheromone deposition and evaporation (α, β, ρ, and Q).

2. iteration through each ant’s movement:

(a) probabilistic selection of the next move based on pheromone levels and heuristic
information,

(b) updating pheromone levels on the paths taken by the ants,

3. evaluation of the solutions constructed by the ants using the objective function,
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4. global updating of pheromone levels based on the quality of solutions,

5. return to step 2 for additional iterations if the termination criterion is not met.

2.10 Choice of Metha-heuristic
Metaheuristics constitute a category of algorithmic techniques aimed at solving or approximat-
ing the best solution for optimization problems. The choice of an appropriate metaheuristic
depends on the specific nature of the problem and the objectives pursued. The definition
of the landscape is intricately tied to the dynamics of metaheuristics. Indeed, within the
scope of a metaheuristic, the objective function plays a pivotal role in making choices among
encountered solutions, and the neighborhood relation is a crucial element in local search.
Therefore, the study of three key questions arise:

• How should the problem be modeled? This includes the representation of solutions, the
definition of the objective function, the establishment of neighborhood relations, and
the consideration of problem constraints.

• Which metaheuristic is most suitable? This involves determining the most favorable
method in terms of local search, neighborhood exploration, or the use of methods based
on a population of solutions.

• What is the optimal parameterization? This question concerns the appropriate configu-
ration of metaheuristic parameters to achieve optimal performance.

Table 2.3 provides a detailed comparison of Simulated Annealing, Ant Colony Optimization
(ACO), and Genetic Algorithm (GA) with a focus on their application to combinatorial
problems. Each criterion provides insights into the unique characteristics of these algorithms,
allowing for a nuanced evaluation of their strengths and weaknesses.

In problem modeling, Simulated Annealing represents states in state space, ACO utilizes
pheromone trails, and GA employs a population of solutions. This reflects their distinct
approaches to representing and exploring the solution space. Simulated Annealing employs a
temperature-guided objective function, ACO relies on pheromone level-based mechanisms,
and GA employs a fitness function, illustrating the diverse optimization strategies employed
by each algorithm.

The neighborhood relations criterion highlights the methods through which solutions are
explored. Simulated Annealing transitions through temperature, ACO defines relations
through pheromone updates, and GA utilizes crossover and mutation operations. These
differences underscore the unique exploration strategies employed by each metaheuristic.

Constraints are handled differently as well. Simulated Annealing controls acceptance through
temperature adjustments, ACO adapts pheromone levels, and GA utilizes selection operators.
This reflects their diverse approaches to handling constraints within combinatorial problems.

The table also addresses metaheuristic selection, optimal parameterization, strengths, chal-
lenges, applications, local search strategy, neighborhood exploration technique, convergence,
exploration vs. exploitation balance, robustness, and sensitivity to parameters. Each criterion
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contributes to a holistic understanding of the algorithms’ behaviors and capabilities.

Choosing the best metaheuristic for a combinatorial problem involves a careful consideration
of these criteria. The nature of the problem, such as its complexity, size, and specific
constraints, plays a crucial role. If the problem exhibits a rugged landscape and requires
effective exploration to escape local optima, Simulated Annealing might be a suitable choice.
For combinatorial optimization tasks with a focus on efficient exploration, ACO could be
preferred. If a global search is essential, and the problem involves optimization, scheduling,
or machine learning, GA might be the most versatile option.

Parameter tuning is critical, as the performance of these algorithms is sensitive to various
parameters. Therefore, an iterative approach involving experimentation and fine-tuning is
often necessary to identify the optimal set of parameters for a specific problem.

2.11 Parallel Metha-heuristic [4]

Efficiently addressing complex optimization problems with metaheuristics remains challenging
due to the time-intensive nature of evaluating objective functions and constraints, espe-
cially in resource-intensive scenarios with vast search spaces. The computational demands
increase significantly when employing S-metaheuristics on large neighborhoods or executing
P-metaheuristic reproductive cycles on extended individuals or populations. To tackle these
challenges, researchers focus on algorithmic enhancements, such as devising new move opera-
tors, hybrid algorithms, and parallel models. The parallel and distributed computing paradigm
emerges as a valuable strategy to enhance metaheuristic performance. Leveraging parallelism
accelerates the search process, enabling real-time and interactive optimization methods.
Additionally, it enhances solution quality by facilitating information exchange between
cooperative metaheuristics. The robustness of parallel metaheuristics is evident in
their effective resolution of various optimization problems and instances, along with improved
sensitivity to parameters. Furthermore, parallelism facilitates solving large-scale problems
and more accurate mathematical models that surpass the capabilities of sequential machines.

In this goal, three primary parallel models stand out: solution-level, iteration-level, and
algorithmic-level. The solution-level parallel model centers on concurrently evaluating indi-
vidual solutions, particularly advantageous when the evaluation function is computationally
intensive or IO-demanding. This model parallelizes problem-dependent operations on solutions
and views the function as an aggregation of partial functions. The iteration-level parallel
model, operating as a low-level Master-Worker model, maintains the heuristic’s behavior
while parallelizing solution evaluations within each iteration. At the outset of every iteration,
the master duplicates solutions for parallel nodes, facilitating efficient execution, especially
when evaluating each solution is resource-intensive. Finally, the algorithmic-level parallel
model involves simultaneously launching multiple metaheuristics, whether heterogeneous or
homogeneous, independent or cooperative. These metaheuristics may commence from the
same or different solutions, configured with similar or distinct parameters, with the overarching
goal of collectively computing improved and robust solutions through concurrent execution.
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2.11.1 Decomposition for Parallel Metha-heuristic
Parallel metaheuristics harness the computational capabilities of multiple processors or units to
significantly improve optimization processes. One prevalent and effective strategy employed in
parallelization is decomposition. This approach entails breaking down the original optimization
problem into smaller, more manageable subproblems that can be solved concurrently.

The rationale behind decomposition lies in the principle of dividing and conquering the
optimization challenge. By subdividing the problem into independent components, each
computational unit can focus on solving its assigned subproblem simultaneously with others.
This concurrent processing enables a more efficient exploration of the solution space and
accelerates the overall optimization process.

In the decomposition process, careful consideration is given to how the problem can be
partitioned into smaller, logically separated tasks. This may involve dividing the solution
space spatially, allocating specific regions to different processors. Alternatively, it might
include partitioning the search space, where each processor handles a distinct subset of the
optimization problem.

Decomposition in parallel metaheuristics is not only about dividing the workload but also
about facilitating effective communication and coordination between the parallel processes.
Information exchange mechanisms are implemented to share relevant data, such as solutions,
fitness values, or intermediate results, ensuring that the parallel search remains coherent and
globally informed.

Moreover, the decomposition strategy allows for dynamic load balancing, where the workload
distribution among processors is adjusted dynamically based on the evolving computational
load. This adaptability ensures that each processor remains optimally utilized, preventing
bottlenecks and optimizing overall computational efficiency.

2.11.2 Decomposition methods
Decomposition methods break large optimization problems down into smaller subproblems
that can be solved in parallel, allowing metaheuristics to take advantage of distributed
computing architectures. One popular approach is problem space decomposition, where the
variable space is partitioned among processors. Each processor then runs a metaheuristic
independently on its subset of variables while communicating intermediate solutions.

Clustering-based decomposition involves partitioning candidate solutions into coherent groups
using unsupervised machine-learning algorithms like k-means, affinity propagation, density
peaks clustering, and others. Local metaheuristics are then run simultaneously within the
clusters’ search spaces. Reassembly techniques like genetic recombination merges high-quality
cluster results into improved global solutions.

Decomposition can also happen spatially by dividing a physical problem domain like a
traveling salesman into distinct geographical regions. Heuristics search within sub-tours
that are dynamically joined across boundaries. Parallelization occurs naturally from smaller
independent subproblems.
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For problems modeled as graphs, partitioning algorithms split nodes among sets to minimize
edge cut sizes.

K-means [67]

The initialization phase of the K-means algorithm begins by randomly selecting K initial
centers. To compute the distance between a sample, denoted as xj, and a center, denoted as
ci, the algorithm employs the Euclidean distance formula:

dist(i, j) =
d∑

k=1
(xjk − cik)2 (2.1)

In this context, d represents the dimensionality of the samples. Subsequently, each sample is
assigned to the cluster center with the minimum distance. The next step involves updating
the cluster centers by computing the mean of the samples assigned to each cluster:

c′
i = 1

mi

∑
xj∈cluster ci

xj (2.2)

Here, mi denotes the total count of samples belonging to the cluster associated with the
center ci. The process iterates, recalculating distances between samples and cluster centers
until the algorithm converges.

Affinity Propagation [52]

Affinity Propagation (AP) begins by constructing a similarity matrix s. The similarity s(i, j)
between data points i and j is defined as:

s(i, j) = −∥xi − xj∥2 (2.3)

Additionally, the diagonal preference s(i, i) is typically set to a value, often the median of the
off-diagonal similarities, controlling the number of exemplars (clusters) yielded.

Responsibility r(i, j) reflects the suitability of point j as the exemplar for point i compared
to other candidate exemplars for i:

r(i, j) = s(i, j)−max
k ̸=j
{s(i, k) + a(i, k)} (2.4)

where a(i, j) is the availability of point j for point i.

Availability a(i, j) indicates how suitable it is for point i to choose point j as its exemplar,
considering support from other points for j as an exemplar:

a(i, j) = min
0, r(j, j) +

∑
k ̸=i,j

max {0, r(k, j)}
 (2.5)

a(i, i) =
∑
k ̸=i

max {0, r(k, i)} (2.6)
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Both responsibility and availability matrices are typically initialized to zero and then updated
iteratively using the above formulas. After several iterations (either a set number or until a
convergence criterion is met), exemplars are identified.

For each data point i, an exemplar is chosen based on the combined responsibility and
availability:

exemplari = arg max
j
{r(i, j) + a(i, j)} (2.7)

If i is its exemplar, it represents the center of a cluster. Other points selecting i as their
exemplar belong to the cluster represented by i.

Density peaks clustering [125]

The density peaks clustering (DPC) algorithm typically follows three main steps:

1. Compute Local Density for Each Point:
The local density ρ(i) of a data point i is determined based on the distance between
point i and other points in the dataset. A common method for computing local density
is given by:

ρ(i) =
∑

j

χ(dij − dc) (2.8)

where dij represents the distance between point i and point j, dc is a cutoff distance,
and χ is the characteristic function, equal to 1 if the condition inside is true and 0
otherwise.

2. Compute the Distance from Higher Density Points:
For each point, the distance δ(i) from points with higher density is calculated. Specifically,
it is defined as:

δ(i) = min
j:ρ(j)>ρ(i)

dij (2.9)

For the point with the highest density, δ(i) is defined as the maximum distance to any
other point.

3. Select Cluster Centers:
By plotting each point with ρ(i) on the x-axis and δ(i) on the y-axis, cluster centers
can be identified as points with both high ρ and high δ values, typically situated in the
top right corner of the plot.

4. Assign Points to Clusters:
Starting from points with the highest density, each point is assigned to the same cluster
as its nearest neighbor with higher density.

2.11.3 Evaluating decomposition methods
Evaluating decomposition methods, including clustering-based decomposition, spatial decom-
position, and graph partitioning, necessitates a multifaceted analysis using tailored criteria for
each approach. For clustering-based decomposition, metrics such as intra-cluster cohesion,
inter-cluster separation, and cluster homogeneity gauge the quality of formed clusters,
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assessing their tightness, distinctiveness, and internal consistency. Scalability and cluster
stability measures are crucial to ensure the method’s adaptability to varying data sizes
and its robustness across multiple runs. In the context of spatial decomposition, attention
turns to spatial coherence, load balancing, and communication overhead. Effective
spatial decomposition methods exhibit alignment with the inherent spatial structure of the
problem, ensure balanced workloads among spatial regions, and minimize communication
costs. Adaptability to irregular geometries is an additional criterion, emphasizing
the importance of versatility. Meanwhile, graph partitioning evaluation relies on cut size,
balance, and connectivity metrics to appraise the efficiency of partitioning in reducing
communication costs, achieving load balance, and maintaining desired connectivity levels
within and between partitions. Scalability, adaptability to graph characteristics, and
computational complexity further contribute to a comprehensive assessment, addressing
the method’s ability to handle varying graph sizes, structures, and computational demands.
The combination of these criteria provides a nuanced understanding of the strengths and
limitations of each decomposition method, aiding in their application to diverse optimization
challenges.

2.11.4 Index measures

In evaluating the efficacy of decomposition methods for parallel metaheuristics, a suite
of key index measures is employed to assess various aspects of the partitioning outcomes.
These measures offer a comprehensive perspective on the quality, separation, balance, and
structural characteristics of the decomposed components. Each index provides unique insights,
collectively guiding the analysis and refinement of parallel metaheuristic approaches for diverse
optimization challenges Here are some popular evaluation indices based on the considerations
mentioned in 2.11.3:

Calinski-Harabasz index (C-index) [22]: Measures the ratio of between-cluster dispersion
to within-cluster dispersion. Higher values are better, indicating clear separation between
clusters.

Davies-Bouldin index (DBI) [32]: Computes the average similarity between each cluster
and its most similar cluster. Lower values are better, indicating high intra-cluster similarity
and low inter-cluster similarity.

Gini coefficient [26]: Measures the statistical dispersion of data within clusters. Ranges
from 0 to 1, with lower values indicating more equal cluster sizes. Favors balanced partitioning.

Silhouette coefficient [126]: Compares within-cluster distances to distances to other
clusters. Ranges from -1 to 1, with higher values indicating denser clusters that are well
separated.

Dunn index [36]: Represents the ratio of the minimum inter-cluster distance to the maximum
intra-cluster distance. Higher values are better, indicating separated and tightly-knit clusters.

Connectivity: Measures the density of connections between solutions within a cluster.
Higher connectivity signifies a more relevant grouping.
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Modularity [112]: Evaluates partitioning quality by comparing the edge density within
clusters to the expected density. Higher modularity values indicate a better community
structure.

Evaluating variance: Compares objective variance before and after decomposition to assess
the simplification effect.

2.12 Hybrid Methaheuristic [4]
Hybrid metaheuristics have emerged as powerful optimization techniques that combine mul-
tiple metaheuristic algorithms to address complex problems more efficiently by providing
robustness, adaptability to various problems, and efficient constraint handling. They compen-
sate for individual algorithmic limitations, accelerating convergence and delivering effective
solutions. There exists a dual categorization that underscores the innovative amalgamation of
optimization techniques. The first category involves the intricacies of crafting solvers wherein
components from one metaheuristic are seamlessly integrated into another. This symbiotic
fusion of metaheuristic elements harnesses the strengths of diverse optimization approaches,
culminating in a solver that exhibits enhanced performance and adaptability. The second
category delves into the synergy between metaheuristics and other methodologies derived from
disciplines like operations research and artificial intelligence. This collaborative integration
propels the hybrid approach beyond the confines of traditional metaheuristics, extending its
reach into a broader spectrum of problem-solving domains. The cross-pollination of techniques
from distinct fields yields a powerful and versatile toolkit for addressing complex optimization
challenges, fostering a new frontier in the pursuit of efficient and effective solutions.

2.12.1 Reasons for Hybridization
Hybrid metaheuristic methods offer several compelling advantages:

• Broader exploration of the solution space than with single techniques.

• Synergistic effects from leveraging complementary search mechanisms.

• Ability to escape local optima is enhanced through strategically alternating different
neighborhood structures.

• Machine learning augmentation improves the effectiveness of heuristics on large-scale
problem instances.

2.12.2 Relation between Parallel models and Hybrid Metha-heuristic
In the dynamic landscape of parallel models with heterogeneous computing, the strategic
integration of metaheuristics is pivotal for achieving optimal performance. This section
navigates the intricacies of when and where to deploy metaheuristics in such models, addressing
the crucial considerations of who selects the method and when this selection should occur.

Determining the optimal position to deploy a metaheuristic within a parallel model with
heterogeneous computing requires a nuanced understanding of the problem at hand. who, in
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this context, refers to the decision-maker the entity responsible for selecting and placing the
metaheuristic within the model. Are there specific layers, stages, or components in the model
where metaheuristics are most effective? Understanding the architectural nuances is essential
for informed decision-making.

The temporal dimension in the integration of metaheuristics is equally critical. Identifying the
right instant (t) for introducing metaheuristics can significantly impact the overall performance
of the parallel model. Who decides when to invoke the metaheuristic, and are there specific
criteria or triggers that govern this decision? Delving into the temporal considerations provides
insights into the strategic timing of metaheuristic utilization for optimal results.

The term who refers to the tools and algorithms employed for decision-making. The selection
of the appropriate metaheuristic and the determination of the ideal timing for its application
are automated processes guided by algorithmic strategies. The focus on the who shifts to
the development and implementation of these automated decision-making tools, ensuring a
seamless and efficient integration of metaheuristics in response to dynamic computational
requirements. This automated approach not only streamlines the decision-making process
but also maximizes the potential of metaheuristic techniques for superior performance and
efficiency in the complex landscape of parallel heterogeneous computing.

Optimization of a problem

The problem

Solution

Inputs
Outputs

Evaluation

The System

Simulation of a system

Figure 2.4: Methodologies of OvS [54].

2.12.3 Integration of machine learning techniques with Metha-
heuristic

The integration of machine learning (ML) techniques into metaheuristics for solving combina-
torial optimization problems represents a cutting-edge frontier in research, offering substantial
potential for enhancing algorithmic efficiency. The comprehensive classification proposed by
Karimi-Mamaghan [83] delineates various purposes for incorporating ML within metaheuris-
tics, including algorithm selection, fitness evaluation, initialization, parameter setting, and

28



CHAPTER 2. GENERAL CONCEPTS

cooperation.

At a high level, ML allows for algorithm selection by predicting the performance of different
metaheuristics on a given problem. It can also speed up fitness evaluation, a key component of
any metaheuristic, by approximating computationally expensive objective functions. ML aids
the initialization process as well, generating high-quality starting solutions or decomposing
large problems into smaller sub-problems. During the search evolution, ML can intelligently
select variation operators, guide the generation of neighbors based on search history, and
develop learnable models to evolve solution populations more effectively. ML also facilitates
automated parameter control, whether setting parameters before a search or adaptively
regulating them during the process. Finally, when multiple metaheuristics cooperate in solving
an optimization problem sequentially or in parallel, ML helps improve their collaborative
performance by dynamically adjusting their behaviors. In all of these ways, the integration of
ML and metaheuristics has great potential to further enhance optimization capabilities.

2.13 Modeling, Simulation, and Optimisation
The extensive research efforts conducted have led to the emergence of a specialized research
field termed Optimization via Simulation (OvS) as identified by Fu et al [54]. OvS primarily
aims to ascertain optimal solutions through the simulation of the specific problem under
consideration. It operates as a connecting link between two distinct research domains:
optimization and modeling and simulation Such that, a myriad of concepts exists within each
of these domains, presenting opportunities for integration. Prior research, notably the work of
Fu et al [55], has categorized six specific methods at the intersection of these domains. The
first involves ranking and selection suitable for applications with alternatives simulatable in a
reasonable time. The second uses response surface methodology based on statistical tools to
approximate the optimal relationship between inputs and outputs. The third exploits the
concept of gradient and stochastic approximation using perturbation analyses and various
gradient estimation procedures. The fourth group focuses on random search using notions
of neighborhood and probabilistic traversal of the search space. The fifth gathers sample
path optimization methods, generating a sample of results through simulations. Finally, the
sixth group covers metaheuristics for optimizing NP-complete and NP-hard problems with a
considerable number of variable combinations, avoiding lengthy execution times associated
with other methods.

as shown in Figure 2.4, the connection emphasizes the intricate interplay between optimization
methodologies and the modeling and simulation field. OvS establishes a nuanced connection
between the optimization process and the dynamic representations furnished by modeling and
simulation approaches, enabling a thorough exploration of optimal solutions within complex
systems. This collaborative synergy amplifies the effectiveness of optimization methodologies
by drawing on insights gleaned from the nuanced behaviors of systems as modeled through
simulation.

Several studies in the field of complex systems have utilized the DEVS formalism along with
various optimization methods. In 1996, B. Zeigler pioneered the use of metaheuristics to
optimize the representation of fuzzy sets in the modeling of infiltration systems [157]. By 2008,
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Lee et al [93] integrated branch and bound techniques with DEVS to optimize parameters
for a Link-11 network gateway, determining optimal frame sizes through parallel simulation.
The same year, Ntaimo et al [114] introduced DEVS-FIRE, optimizing firefighting strategies
using the Vost Plus Net Value Change method. In 2009, Mittal et al [107] proposed P-DEVS
and DEVS/SOA for decentralized execution of NSGA-II and SPEA2 optimization algorithms,
targeting mobile devices’ memory efficiency. In 2011, Bisgambiglia et al [14] employed genetic
algorithms to optimize fuzzy sets conforming to DEVSFIS. Two years later, Capocchi and
Santucci [23] used DEVS to optimize a hydraulic network, selecting optimal dates to maximize
a micro-power plant’s production and minimize operational costs. In recent years, Heinzl [69]
employs a hybrid DEVS model and a multi-objective Variable Neighborhood Search (VNS)
to optimize energy-efficient Production Planning and Control (PPC) in industrial plants,
facilitated by a domain-specific model abstraction using Model-driven Engineering (MDE).
Cárdenas et al [24] propose Mercury, a Modeling, Simulation, and Optimization framework,
addresses fog computing’s dimensioning and dynamic operation. Using the DEVS formalism,
it offers a location-aware solution for data stream analytics, exemplified in a driver assistance
case study with comparisons to other simulators. Introducing a Cloud-deployable DEVS-
based framework, Bordón-Ruiz et al [18] optimizes UAV trajectories and sensor strategies in
target-search missions using a multi-objective Genetic Algorithm.

2.14 Conclusion
This chapter establishes a robust foundation by elucidating global concepts in complex systems
and optimization. It provides a comprehensive guide for readers to navigate complex systems,
discrete events, and combinatorial optimization. The integration of parallel and hybrid
meta-heuristic approaches, coupled with machine learning techniques, showcases the evolving
landscape of optimization for real-world problems. This serves as a springboard for subsequent
chapters to delve deeper into specific methodologies and applications.
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Chapter 3

Parallel architecture and embedding

3.1 Introduction
Optimization is a critical field in operations research and artificial intelligence, aimed at solving
complex problems often constrained by hardware capabilities in terms of computational power
and memory. In the quest for efficient solutions, parallel computers emerge as powerful tools,
utilizing various architectures such as multiprocessors and interconnection networks. Within
these parallel architectures, the hypercube network stands out as one of the most renowned
topologies, offering remarkable performance.

This chapter delves into optimization in the context of parallel architectures, with a focus on the
hypercube interconnection network. It begins by exploring Flynn and topological classifications,
detailing the different categories of parallel architectures and connection networks. The section
on hypercube networks highlights their properties, advantages, disadvantages, and variations.

Crossed cubes are then introduced as a variant of the hypercube network. Finally, the concept
of embedding, or graph embedding, is addressed, emphasizing associated problems, categories,
the quality of graph embedding, and the embedding process.

3.2 Flynn classification
In the future, computers of all sizes will leverage parallelism more extensively, unlocking
extraordinary possibilities in the coming decade. Understanding applications, algorithms,
and architecture will be crucial to seize these opportunities. In 1966, Flynn [49] introduced a
model for classifying computers based on parallelism (Figure 3.1), which remains relevant
today. This model categorizes computers based on the number of parallel instruction and data
streams. The categories include Single Instruction Stream, Single Data Streams (SISD) for
monoprocessors, Single Instruction Stream, Multiple Data Streams (SIMD) for processors with
one instruction stream and multiple data streams, Multiple Instructions Streams, Single Data
Stream (MISD) for processors with multiple instruction streams and one data stream, and
Multiple Instructions Streams, Multiple Data Streams (MIMD) for processors with multiple
instruction and data streams [2].
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Figure 3.1: Flynn Taxonomy [49].

the SISD model, representing von Neumann architecture, is characterized by a singular memory
and processor with a control unit and processing unit. This lacks parallelism, as the control
unit reads program instructions from memory and directs the processing unit to operate on
data stored in memory. On the other hand, the SIMD architecture involves multiple processing
units supervised by a shared control unit, executing identical instructions simultaneously on
distinct data sets for synchronous processor operation. The MISD architecture, theoretically
capable of concurrently executing multiple instructions on the same data, has not been
commercially realized. In the MIMD paradigm, a machine with N processors simultaneously
executes diverse instruction sequences on separate data sets, distinguishing between shared
and distributed memory models. The shared memory model allows independent processor
operation with communication through shared memory. In contrast, the distributed memory
model associates each processor with local memory modules interconnected by a network for
message transmission, optimizing interaction among processors.

3.3 Topological classification
This categorization comprises three types of connection networks:

• Simple networks.

• Hybrid networks.

• Hypercube networks.

3.3.1 Simple connection networks
In this segment, we aim to elucidate the concept of the simple parallel architecture, delineating
its two variants: the simple parallel architecture featuring a linear vector interconnection net-
work and the one with a complete binary tree interconnection network. The fixed connections
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Figure 3.2: Example of vector interconnection networks.

distinguish these architectures between various pairs of processors, which remain unchanged
over time. The specific types include the Vector architecture and the Complete Binary Tree
architecture.

Vector architecture

Vectors exhibit a structured arrangement where a set of processors is aligned. Each processor
has a bidirectional connection with its right neighbor (predecessor) and left neighbor (succes-
sor), except for those at the ends that have a single connection and serve as I/O in the network.
This configuration is convenient as processors only require two ports for connections to the
rest of the network, allowing for flexible expansion without being constrained by the number
of ports. Linear and ring network topologies have been widely utilized in early distributed
memory multiprocessors. In a linear network, nodes are ordered from 0 to (p− 1), with each
node having two neighbors except the first and last. The diameter of a linear network is
(p−1). In a ring, each node has exactly two neighbors, with the first and last nodes connected.
The diameter of a ring is p/2. Example of vector interconnection network is shown in Figure
3.2 [94].

Mesh (Vector Composition)

By combining N linear vectors of k-cells, we create a k ∗ N vector (or mesh) by applying
the mirror effect. Applying this mirror effect to a k-cell vector yields a similar copy. By
prefixing node labels of the first copy with 0 and the other copy with 1 connections between
the two copies are established only between k nodes of each copy, under the condition that
node labels differ by a single bit. Three cases are to be studied: The first case (Figure 3.3)
uses a horizontal generator to obtain a horizontal rectangular k ∗N mesh. The second case
(Figure 3.4) uses a vertical generator to obtain a vertical rectangular k ∗N mesh. Finally, the
third case (Figure 3.4) uses a hybrid generator (vertical and horizontal) to obtain a square
N ∗N mesh [94].

A grid of size (N ∗M) consists of N rows of M processors. Each processor has four neighbors,
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Figure 3.4: Vertical generator for generating vertical rectangular of 2*2 mesh (second case).

except for those located on the first and last rows, as well as the first and last columns. Using
the index pair notation (i, j) to represent the jth processor of the ith row (starting from
(0, 0)), the connections for different vertices are as follows:

• For the interior vertices, i = 1, 2, . . . , N − 2 and j = 1, 2, . . . , M − 2:

V (i, j) = {(i− 1, j), (i + 1, j), (i, j − 1), (i, j + 1)}

• For the vertices of the first row:

V (0, 0) = {(1, 0), (0, 1)}
V (0, M − 1) = {(1, M − 1), (0, M − 2)}

For 1 ≤ j ≤M − 2 : V (0, j) = {(1, j), (0, j − 1), (0, j + 1)}.

• For the vertices of the last row:

V (N − 1, 0) = {(N − 1, 1), (N − 2, 0)}
V (N − 1, M − 1) = {(N − 2, M − 1), (N − 1, M − 2)}

For 1 ≤ j ≤M − 2 : V (N − 1, j) = {(N − 2, j), (N − 1, j − 1), (N − 1, j + 1)}.

• For the interior vertices of the first column:

For 1 ≤ i ≤ N − 2 : V (i, 0) = {(i, 1), (i− 1, 0), (i + 1, 0)}.
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• For the interior vertices of the last column:

For 1 ≤ i ≤ N − 2 : V (i, M − 1) = {(i, M − 2), (i− 1, M − 1), (i + 1, M − 1)}.

Communication between two opposite vertices of the grid requires traversing N + M − 2 links.

In mesh networks, certain properties characterize their structural features. Firstly, the large
diameter is defined as the maximum distance between any pair of processors within the
network. The distance between two processors is the smallest number of links that must be
traversed to move from one processor to another. For a vector N*M mesh, the diameter is
specifically determined to be (N + M − 2) according to [94]. Secondly, the small bisection
width is another property denoting the minimum number of links that need to be removed to
disconnect the network into two identical parts. In the case of a mesh of dimensions (N ∗M),
the bisection width is expressed as the minimum of N and M if the maximum of N and M is
even. However, if the maximum of N and M is odd, the bisection width is the minimum of
N and M plus one. These properties provide insights into the connectivity and partitioning
characteristics of mesh networks. Additionally, mesh networks exhibit a recursive construction
methodology. The creation of a mesh (N ∗M) involves the connection of two copies resulting
from the application of the mirror effect, where one is prefixed by 0 and the other by 1. This
recursive approach contributes to the scalability and self-replicating nature of mesh networks
[94].

Trees

A tree is defined as a connected graph without cycles, where the notion of orientation is not
considered. Various theorems define the characteristic properties of trees. The first theorem
states that for a tree G = (X, U) with |X| = n ≥ 2, the following properties are equivalent: 1)
G is connected and acyclic, 2) G is acyclic and has n−1 edges, 3) G is acyclic and maximal in
this property (adding an edge creates a unique cycle), 4) G is connected and has n− 1 edges,
5) G is connected and minimal for this property (removing any edge makes it disconnected),
and 6) There exists a unique chain in G that connects all pairs of vertices. The second
theorem states that if G is a connected graph with at least one edge, the following conditions
are equivalent: 1) G is strongly connected, 2) every edge in G belongs to a circuit, and 3) G
does not contain a co-circuit. These theorems establish fundamental relationships between
connectivity, absence of cycles, and other structural properties in the context of trees [94].

Root

Internal node

Leaf node

Figure 3.6: Complete Binary tree of n=3 .
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Binary trees and Complet binary trees
Analogous to representing hierarchical structures, trees, particularly binary trees, offer a
natural way to depict hierarchical machines. In a binary tree, each node can have at most
two children, distinguished as a left child and a right child (Figure 3.6). The concept of
completeness in a binary tree, denoted as a Complete Binary Tree (CBT), involves a connected
graph without cycles containing (2n − 1) vertices, where non-terminal vertices have a depth
less than n, each possessing exactly two children (left child and right child). The average
degree of a node is 3, with the root having a degree of 2, and the leaf nodes having a degree
of 1. The tree’s diameter is 2 log2(N), where N is the number of vertices, ensuring that
all nodes are at a distance less than log2(N) from the root. Various convenient numbering
schemes exist for processors in a complete binary tree, with popular representations being
binary and integer-based. These numbering principles maintain a left-to-right increasing
order within the same level. The advantages of a complete binary tree include its application
in divide-and-conquer algorithms. However, drawbacks include a large diameter 2 log2(N)
and a narrow bisection width of 1, meaning that removing a single edge results in network
failure [94]. The tree lacks symmetry in nodes and arcs due to the unique characteristics of
the root and leaves, posing challenges in simultaneous communication between processors
[63]. These factors make it crucial to consider alternatives to address potential bottlenecks in
communication flow within the tree structure.

The Complete Binary Tree with a Double Root (CBDRT) graph closely resembles the CBT.
The CBDRT, specifically designed with N nodes, is essentially a complete binary tree where
the root is replaced by a path of length two, connecting two nodes [94]. See Figure 3.7.

Quadtrees [130, 132] and Octrees [128]
Quadtrees and octrees are hierarchical data structures that extend the concepts of binary trees
into 2D and 3D space. In a quadtree, each node can have up to four children, representing
quadrants, while an octree allows up to eight children for octants. The number of vertices in
these structures grows exponentially with depth, providing a hierarchical spatial organization.
The diameter of quadtrees and octrees exhibits logarithmic growth, ensuring efficient spatial
indexing with a bound on the distance between points. The degree, representing the number
of children per node, is four for quadtrees and eight for octrees, influencing spatial granularity.
Bisection width, indicating the minimum edges to split a structure into identical halves, is
proportional to the square root and cube root of the total nodes for quadtrees and octrees,
respectively. These structures offer efficient spatial representation and manipulation in 2D
and 3D, with characteristics that make them valuable for various applications.
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Figure 3.7: Complete Binary tree of double root.

3.3.2 Hybrid connection networks
The two-dimensional tree mesh (n ∗ n) is formed by a grid of n × n processors with the
addition of complete binary trees in each row and column. The tree leaves are the nodes
of the grid, and the internal nodes of the trees are additional nodes. Processors at leaves
and roots have a degree of 2, while other internal processors have a degree of 3, totaling
3N2− 2N processors. This structure has a small diameter of 4 log2 N , a large bisection width,
and a recursive decomposition into 4 copies of tree meshes (N

2 ×
N
2 ) when removing the

roots of the 2N row and column. The two-dimensional tree mesh provides a derivation of
KN,N , the complete graph, by replacing each N -degree node with a complete binary tree [94].
The N -dimensional tree meshes are formed by adding trees to an N -face and r-dimensional

grid. The grid’s leaves become the tree leaves, and the r-dimensional tree mesh contains
|v| = (r + 1)N r − rN r−1 nodes and |E| = 2rN r − rN r−1 edges distributed among rN r−1

complete binary trees of N leaves. The network’s diameter is 2r log2 N , and the bisection
width is N r−1 = |v|

rN
. These structures exhibit important characteristics for parallel computing,

including a small diameter and a large bisection width, particularly useful when r is large
and N = 2, enabling the construction of hypercubes of dimension −r [94].

3.3.3 Hypercube connection networks
The hypercube denoted Qd, a network with N = 2d nodes and d · 2(d−1) edges, is characterized
by nodes labeled with d-bit binary numbers. Connectivity is established between nodes
differing in exactly one bit. See Figure 3.9. In a three-dimensional setting (d = 3, N = 8),
three families of connections (C0, C1, and C2) exist based on variations in the least significant,
intermediate, and most significant bits, respectively. For instance, in the C0 family, node 0
(binary 000) connects to node 1 (binary 001), forming connections with a Hamming distance of
1. Gray codes provide a practical numbering scheme, allowing each node to be encoded with d
binary bits. Nodes in the 3-cube, for example, are connected if their Gray code representations
differ in one bit. This systematic approach ensures a structured network where edges can be
classified based on the dimensions they traverse, with a K-dimensional edge connecting nodes
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4*4 grid of nodes

4*4  mesh of trees
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Figure 3.8: construct a two-dimensional tree mesh.

39



00 10

1101

00 10

1101

00 10

1101

000
100

101

110

111001

010

011

0

0 1

1

Construction  Q2 from 2 copies of Q1

Construction  Q3 from 2 copies of Q2

Figure 3.9: Construction hypercube of dimension 2 and 3.

differing in the K-th bit position [94].

Properties of the Hypercube

The hypercube possesses crucial properties that make it a favored topology in modern computer
architectures, endowing it with power, flexibility, and efficiency. Firstly, the hypercube is
strongly connected, ensuring that there is a path between any two nodes in the graph.
Additionally, the hypercube exhibits a small degree compared to other architectures, with
the degree being equal to the dimension of the hypercube. The regular topology of the
hypercube ensures that all nodes have the same degree. Notably, the hypercube demonstrates
various symmetries, being node and edge symmetric. It can be mapped such that any node
corresponds to another node, and any edge corresponds to another edge. Furthermore, the
hypercube is a Cayley graph, making it Hamiltonian. In addition to its simple and recursive
structure, the hypercube possesses other important properties, such as a small diameter
(log2 N) when N is small(Figure 3.11) and a large bisection width (N/2) as shown in Figure
3.10. The connectivity of nodes concerning diameter is easily demonstrated by observing
that any two nodes U = U1U2...Ulog N and V = V1V2...Vlog N are connected by a specific path.
Finally, the construction of a hypercube is recursive, as a hypercube of N nodes can be
constructed from two hypercubes of N/2 nodes by connecting corresponding nodes between
them [94, 9, 156, 1, 117, 155].
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The Networks Within a Hypercube

The hypercube with N nodes encompasses various subnetworks, each possessing distinct
properties and applications. Notably, it contains a linear vector of N nodes, representing a
compelling feature of the N -node hypercube. This is supported by the lemma stating that
the hypercube of N nodes includes a linear vector of N cells as a subgraph, a property valid
for N ≥ 4. Additionally, the hypercube easily gives rise to rings, where an N -power-of-2-sized
ring is a partial graph of the corresponding hypercube. Another valuable result involves
toroidal grids, as square toroidal grids with a power-of-2 number of processors are shown to
be partial graphs of the hypercube. Emphasizing the significance of tree meshes, considered
the most powerful for parallel processing, they are highlighted as essential networks within
the hypercube. Lastly, an interesting inclusion is the complete binary tree with a double
root, recognized as a partial graph of the N -node hypercube. These diverse networks within
the hypercube play crucial roles in parallel computing and contribute to its versatility and
computational power[94].

Advantages and disadvantages

The hypercube stands out as an excellent choice for parallel computing interconnection
networks due to its numerous advantages. It features a small number of connections per
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processor, a high vertex count allowing for massive hardware parallelism, a small diameter,
and a substantial bisection width (bisection width = N/2). Additionally, it exhibits fault
tolerance, making it resilient to processor failures as replacements can be seamlessly integrated.
The hypercube adapts well to various architectures such as vectors, trees, rings, grids, and tree
meshes, facilitating a broad range of computations. Despite its computational prowess, there
are notable drawbacks, including the node degree increasing with size, hindering backward
compatibility, and challenges in hardware construction when dealing with networks of different
sizes and link lengths. While the hypercube dominated the market for distributed memory
MIMD machines in the 1980s, its design constraints and potential scalability issues warrant
consideration when choosing an architecture for parallel computing [94].

Importance of the hypercube

Extensive research has focused on the hypercube, highlighting its rich interconnection structure,
logarithmic degree, straightforward routing, fault tolerance, and ability to simulate other
networks with a low load factor [109, 87, 152, 45, 160]. Various studies have demonstrated
its computational power, showcasing its capability to simulate networks such as the mesh,
tree, and star with minimal load [12, 90, 13]. The hypercube is recognized as a robust and
fault-tolerant machine, capable of reconfiguring itself in the presence of faults in links or
nodes [151, 44, 121]. Research has also explored modifications to its structure to enhance its
computational capabilities [109, 87].

Variations of the hypercube

Despite the considerable computing power of the hypercube, it has drawbacks, notably the
increase in node degree and diameter as it scales in size. To address these limitations, computer
scientists have proposed variations of the hypercube aimed at mitigating these challenges
associated with node degree and diameter. Several variations have been developed, among
which the most significant include the Butterfly network, the Cube-Connected Cycle, the
Benes network, and the Crossed cubes [94].

The Butterfly network of dimension d has (d + 1)2d nodes and d2d+1 edges. Nodes are pairs
(w, i), where i is the level (0 ≤ i ≤ d) and w is a d-bit binary number denoting the row. Nodes
(w, i) and (w′, i′) are connected if i′ = i + 1 and w and w′ satisfy specific conditions. The
Butterfly network can simulate N -node hypercube computations in log2 N steps, resembling
the hypercube’s structure. It exhibits a simple recursive nature, comprising two copies of a
d− 1-dimensional Butterfly network, and a unique path of length d between level 0 in any
row w and level d in any row w′. Like the hypercube, it has a substantial bisection width of
θ = (N/ log2 N) [94].

The Benes network, obtained by concatenating Butterfly networks, comprises 2d + 1 levels,
each with 2d nodes. The first and last (d + 1) levels constitute the Butterfly network of
dimension d, sharing the central level. Similar to the Butterfly network, each node in level 0
can have two inputs, and each node in level 2d can have two outputs. The network facilitates
connections to ensure every input permutation is linked to outputs through disjoint edge
paths [94].
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The Cube-Connected Cycles (CCC) is an N -dimensional hypercube variant where each vertex
is replaced by a cycle of N Processor Elements (PEs). CCC maintains a fixed degree of three,
two in the cycle and one in the hypercube, offering an advantage over Hypercubes as its
degree doesn’t grow with the dimension or the number of processors. Represented by pairs
(w, i), nodes connect in CCC based on conditions: 1) w = ŵ and i = î = ±1 mod N , or 2)
i = î and w differs from ŵ in the i-th bit position. CCC has N · 2N vertices and a diameter
of dCCC = 2N − 2 + N

2 for N > 3 [94].

3.4 Crossed Cubes
The n-dimensional hypercube, denoted as Qn, and its counterpart, the crossed cube CQn, both
share a set of vertices, each associated with a binary string of length n. In Qn, vertices are
considered adjacent if their binary labels differ in precisely one-bit position. On the contrary,
CQn defines adjacency differently. For binary strings of length two, x = x1x0 and y = y1y0, x
and y are deemed pair-related only if they belong to the set {(00, 00), (10, 10), (01, 11), (11, 01)}
[37].

The properties of the Crossed cubes (CQn) play a crucial role in understanding its topological
characteristics. To facilitate the discussion of these properties, a mechanism for identifying
subgraphs is introduced. Specifically, ΓA, B(G) represents a subgraph of G in which each
node is prefixed by either A or B. Similarly, ΓA(G) is a subgraph of G with nodes prefixed
by A [37].

In terms of composition and decomposition, the construction of CQn is recursive. For n ≥ 2,
the isomorphism rules for the Crossed Cube network CQn can be summarized as follows:
Γ0(CQn) = CQn−1 and Γ1(CQn) = CQn−1. The isomorphism involves removing the prefix
0 for nodes belonging to Γ0(CQn) and the prefix 1 for those in Γ1(CQn); see Figure 3.12.
Additionally, for any K ≥ 1, the specific rules Γ00,10(CQ2K) = CQ2K−1 and Γ01,11(CQ2K) =
CQ2K−1 are defined, with the isomorphism achieved by removing the bit at position (2K−2) for
each node label (Figure 3.12). Furthermore, for any K ≥ 1, the rule ΓA,B(CQ2K+1) = CQ2K−1
is established for each pair A, B belonging to {(001, 111), (011, 101), (000, 100), (010, 110)}.
The isomorphism is performed by removing the bits at positions (2K − 1) and (2K − 2) for
each node label in ΓA,B(CQ2K+1); see Figure 3.14 [37].

Moving on to composition as shown in /Figure 3.13, CQn with N nodes can be constructed
from two copies of CQn−1, each containing N/2 nodes, interconnected according to a defined
pattern. The graph exhibits a small diameter (Figure 3.15), specifically ⌈(n + 1)/2⌉, and
maintains the same diameter for CQn and CQn−1 for K ≥ 1 [37]. CQn demonstrates high
connectivity (Figure 3.17), effectively preventing congestion, with a connectivity function
K(CQn) = n for n ≥ 1. The graph also possesses a wide bisection width (N/2) (Figure 3.16)
and regular topology, where all nodes have the same degree equal to n. Additionally, CQn

features Hamiltonian cycles for n ≥ 2 (Figure 3.18) and exhibits symmetry up to n = 4, while
nodes in larger graphs become dissimilar [37, 28, 42, 163, 91, 143].

In general, CQn with 2n nodes contains multiple classes of nodes, each class exhibiting
similarities among its members. The graph is strongly connected, ensuring the existence of a
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000 100

101

110

111001

010

011

000
100

101

110

111001

010

011

00 00

01

10

1101

10

11
copy 1 copy 2

Mirror

Composition  of 2 copies of

 CQ2 prefixing by 0 and 1

Creation connections between 

          the 2 copies 
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Figure 3.14: An example illustrating the operation of decomposition (rule 3).
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Figure 3.15: Diameter of CQ2 and CQ3.
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Figure 3.16: Bisection width of CQ3.

path connecting all nodes.

The in-depth study of the crossed cubes, introduced in [38], reveals its ability to preserve
many attractive properties of the hypercube. The most significant is the reduction of the
diameter by a factor of two. This reduction has a positive impact on the communication
time between processors and the number of parallel computing steps, respectively halving
the data transmission time and the number of steps in addition and prefixing operations
used in scientific calculations [162]. The study also demonstrates that the crossed cubes is
fault-tolerant due to its regular topology, high degree of connectivity, and node symmetry
organized into five classes where nodes are all similar. Finally, the study shows that the
crossed cubes has a significant capability to simulate other architectures such as the complete
binary tree, the double-rooted tree, the hypercube, the quadtree, and the octree.

45



00 10

1101

For CQ2; The Hamiltonian cycle is: 00-01-11-01-00    
Figure 3.18: Hamiltonian cycle in CQ2.

For CQ2; eliminating two edges 

disconnecting the network   

00 10

1101

Figure 3.17: An example illustrating the connectivity of CQ2.

3.5 Embedding
The implementation of parallel algorithms on distributed memory multiprocessor architectures
has led to the development of the concept of embedding a source graph G into a host graph
H. Frequently, a distributed algorithm A is described assuming the existence of a logical
topology S on which A is defined, with commonly used logical topologies including trees and
meshes. The method used to deploy an algorithm A and its associated logical structure S
onto a network R is the simulation of S in R. This involves embedding only the structure of
the source graph S into the host graph R, facilitating an effective adaptation of algorithm A
to the topology of R.

3.5.1 Embedding problems
Graph embedding encompasses a spectrum of challenges, including the organization of pro-
cesses on processor networks, and the simulation of one network architecture on another. For
process organization, the efficient embedding of a graph representing the network of original
processes into the graph representing the processor network leads to effective process coordi-
nation. This involves nodes representing processes and edges symbolizing communications
between sub-processes. Similarly, in simulating one architecture on another, both architectures
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are represented by graphs. This versatility extends to various parallel computing applications,
from sorting and matrix computation to image processing. The power lies in deploying
efficient algorithms across diverse architectures, ensuring portability and adaptability in
parallel computing [40].

3.5.2 Definitions
Definition 1: An embedding of graph G into graph H, denoted as (P, R), consists of an
injective mapping P from the vertices of G to the vertices of H, and an injective mapping R
associating each edge [u, v] of G with a path R(u, v) connecting P (u) and P (v).

Definition 2: Alternatively, an embedding of graph G into graph H can be defined by an
injective mapping Qq or σ from the set of vertices of G to the set of vertices of H, and a
mapping PQq from the set of edges of G to the set of edges of H. PQq associates each edge
(x, y) of G with a path connecting the vertices Qq(x) and Qq(y) in H [40].

3.5.3 Embedding types
There are three types of embeddings for a source graph G into a host graph H:

Many by One: This type is defined by mapping several nodes of G to a single node in H.
It is typically employed when the cardinality of G is strictly greater than that of H:

|V (G)| > |V (H)|

Consider graphs G = (V (G), E(G)) and H = (V (H), E(H)). Example shown in Figure 3.19

One by Many: This type is defined when the cardinality of G is strictly less than that of H:
|V (G)| < |V (H)|. In this embedding, the concept of adjacency plays a crucial role. Example
shown in Figure 3.20

One by One: This embedding type is often used when the cardinality of the set of nodes is
equal or nearly equal to that of H. It establishes a correspondence between one node in G
and one node in H. Example shown in Figure 3.21

3.5.4 Quality of graph embedding
Evaluating the quality of graph embeddings involves various measures tailored to different
optimization goals [75]. Key metrics include dilation, which gauges the spread of images
in the destination graph for neighboring vertices in the source graph [75, 46]. Congestion
assesses how many chains in the destination graph contain a specific edge, while expansion
quantifies the ratio of vertices in the destination graph to the source graph. The node load
factor characterizes the distribution of processes from the source to the destination, defining
the maximum nodes in the source corresponding to a single node in the destination. These
measures collectively provide insights into the efficiency and characteristics of diverse graph
embeddings in network-based architectures [75].

Dilation: dil(Qq) = max{dist(Qq(x), Qq(y))} represents the dilation of the embedding Qq,
where dil(Qq) is the maximum length of distances between the images of vertices x and y
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Figure 3.21: Example of the one by one embedding .

in the host graph H. In simpler terms, it measures the maximum stretch or elongation of
edges in the embedding, indicating how much the distances between connected vertices in the
source graph G are expanded when embedded into the host graph H. See the example in
Figure 3.22.

Congestion: The congestion of a host edge is defined as the maximum number of images of
source edges passing through a single edge in the host graph. See the example in Figure 3.22.

Expansion: The expansion exp(Qq) is defined as the ratio of the number of vertices in the
embedding graph H to the number of vertices in the guest graph G. Mathematically, it is
expressed as exp(Qq) = |X(H)|

|X(G)| . See the example in Figure 3.23.

Load Factor: The load factor Fg is defined as the maximum number of guest graph nodes
assigned to a single vertex in the host graph. It is represented by (Fg = max(Qq(x)),∀x ∈
V (G)), where Qq is an injective application of the embedding. See the example in Figure
3.24.

3.5.5 Process of embedding
The process of embedding a source graph G into a host graph H involves several essential
steps. Firstly, the cardinality of the source graph is calculated to determine the size of the
graph to be embedded. Next, the choice of the embedding method comes into play, with two
distinct options. The first method, embedding by excess, involves selecting a destination graph
whose cardinality is equal to or slightly greater than that of the source graph. Conversely,
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the second method, embedding by default, selects a destination graph with a slightly lower
cardinality than that of the source graph. The process of embedding nodes follows, ensuring
the integration of nodes from the source graph into the destination graph while preserving
neighborhood relationships. Finally, the embedding of edges relies on the prior embedding of
nodes, where a source edge can correspond to an edge or a path in the host graph. These
detailed steps contribute to the creation of an effective and structured embedding of the
source graph into the host graph.

3.5.6 The need for embedding
The significance of embedding techniques becomes pronounced with the emergence of new
architectures. Researchers often leverage embedding methodologies to integrate established
architectures into these novel architectures. This approach not only streamlines the transition
to new platforms but also leverages the collective knowledge and optimizations embedded
within the existing architectures. By embracing embedding techniques, we economize time
and resources, bypassing the need to create representations from scratch and instead focusing
on embedding solutions into host architectures. In essence, embedding techniques serve as
a bridge between legacy architectures and the next generation of computing, facilitating
seamless integration and innovation in computational paradigms.

Recent research exemplifies this trend, with scholars such as H. Zhang pioneering the parallel
construction of independent spanning trees on Folded Crossed Cubes [159]. Similarly, Wang’s
work focuses on constructing completely independent spanning trees within a family of line-
graph-based data center networks [144]. Yang’s contributions include the construction of
multiple independent spanning trees on burnt pancake networks. Additionally, H. Liu proposes
innovative modifications to l-embedded edge-connectivity within enhanced hypercubes [99],
while Kao introduces a parallel algorithm for constructing multiple independent spanning
trees in bubble-sort networks [82]. This collective body of research underscores the vital role of
embedding techniques in advancing the capabilities and versatility of computing architectures,
driving forward progress in computational science and engineering.

3.6 Conclusion
In conclusion, this chapter has delved into the critical domain of optimization within parallel
architectures, with a specific focus on the hypercube interconnection network. By exploring
classifications, properties, and variations of the hypercube, as well as introducing crossed
cubes and the concept of embedding, we have gained valuable insights into the powerful tools
and challenges within this field. The hypercube’s remarkable performance positions it as a
standout solution for complex problems in parallel computing. This chapter sets the stage for
further advancements and applications at the intersection of optimization, parallel computing,
and interconnection networks.
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Chapter 4

Case of study: The Traveling Salesman
Problem (TSP)

4.1 Introduction

In this chapter, we embark on a detailed examination of solving combinatorial problems,
focusing on a prominent case study: the Traveling Salesman Problem (TSP). Combinatorial
problems, characterized by the need to find an optimal arrangement or selection from a
finite set of elements, pose significant challenges across various domains, including logistics,
scheduling, and network optimization.

The TSP, a quintessential combinatorial optimization problem, involves determining the
shortest possible route that visits a set of cities exactly once and returns to the origin city.
This problem encapsulates the complexities inherent in combinatorial optimization, requiring
efficient algorithms and strategies to find optimal or near-optimal solutions.

This chapter begins with an overview of the TSP, including its definition, formal model, and
datasets utilized for experimentation. It then proceeds to examine classical methods for solving
the TSP, encompassing exact solving techniques, heuristic approaches, and metaheuristic
strategies such as tour construction and improvement algorithms.

Furthermore, the chapter explores hybrid TSP-solving methods, which integrate optimization
techniques such as metaheuristics and machine learning. Additionally, parallel TSP solving is
discussed, focusing on problem formalization for parallelization, decomposition, and alternative
representations.

The chapter provides a detailed overview of the proposed model methodology, emphasizing
the feature selection, processing, and visualization modules. Each module is essential to the
comprehensive solution framework developed for addressing the TSP. Various methodologies
and techniques are explored throughout the chapter, laying the groundwork for a thorough
investigation into solving the TSP.
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4.2 The problem

4.2.1 Introduction

The Traveling Salesman Problem (TSP), whose origins remain uncertain, emerged from the
practical need to optimize routes for 19th-century salesmen traveling between cities. Over
time, it evolved into a fundamental problem in combinatorial optimization. In the 1950s,
researchers recognized its mathematical significance, applying it to diverse fields such as
school bus routing, genome sequencing, industry, astronomy, and scheduling problems. The
TSP represents the challenge of finding the shortest tour that visits a set of cities exactly
once, reflecting real-world problems faced by salesmen and modern applications alike, where
efficient routes are crucial.

4.2.2 Definition

The Traveling Salesman Problem (TSP) involves finding a Hamiltonian cycle HC ∈ G that
minimizes the total weight w(HC) in a given undirected graph G. It is assumed, for simplicity,
that each edge in the graph appears at most once, and there are no self-loops (i.e., arcs of the
form (u, v) where u = v).

4.2.3 Formal Model

The Traveling Salesman Problem (TSP) can be formulated in a graph as the task of finding the
minimum-cost cycle that traverses all nodes exactly once. A standard integer programming
model captures this objective as follows:

Minimize
∑
e∈U

w(e) · xe (2.1)

Subject to the degree constraint:
∑

e∈U(i)
xe = 2 (2.2)

Subtour constraint:
∑

i∈S,j∈S,i<j

x(i,j) ≤ |S| − 1 (2.3)

Decision variables: xe ∈ {0, 1} (2.4)

(4.1)

In this formulation, a solution with xe = 1 indicates that edge e belongs to the minimum-cost
cycle, while xe = 0 implies exclusion. The degree constraint (2.2) enforces that each node
participates in exactly two edges, ensuring the formation of a cycle. The subtour constraint
(2.3) prevents the existence of cycles within node subsets, except for the complete set of nodes.
The objective function (2.1) seeks to minimize the overall cost of the solution. Solving this
integer programming problem provides an optimal solution comprising a unique cycle that
visits all nodes in the graph.
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4.2.4 The euclidean TSP
In the Euclidean version of the TSP, the cities are positioned in a Euclidean space such as on a
map. The distance between each city pair is the Euclidean distance between their coordinates.
This adds geometric constraints compared to more abstract TSP problem formulations where
distances are not based on physical locations in a space. This makes the Euclidean TSP
applicable to routing problems where terrain or physical infrastructure must be navigated
efficiently.

The ability to represent distances as exact Euclidean calculations makes the problem simpler
to define computationally compared to more abstract TSP problems. However, it retains
the NP-hard optimization challenge, making the Euclidean TSP a standard benchmark for
developing new heuristics approaches that can exploit geometric properties. The regular
problem structure also facilitates the theoretical analysis of approximation algorithms.

4.2.5 Datasets
In the context of experiments on TSP landscapes, it is recommended to leverage the benchmark
TSP instances available in the comprehensive TSPLIB library. This repository encompasses a
wide range of TSP instances, varying in size from small to large problem instances.

4.2.6 The Classic Modeling of the problem
Representation

The solutions of the TSP belong to the space 1, 2, ..., N. They are represented using a vector
of N integers, where each integer corresponds to a city.

Evaluation

The evaluation of a solution involves calculating the total distance or cost of the TSP tour. It
is the sum of the distances between consecutive cities in the order specified by the solution
vector.

Neighborhood

The neighborhood relation chosen for the TSP is based on the concept of swapping two cities.
For any solution in 1, 2, ..., N, the neighboring solutions are those obtained by swapping the
positions of two cities. The size of the neighborhood for a solution is equal to N choose 2, as
there are N(N-1)/2 possible swaps.

Initialization

We create a random permutation of cities to initialize a solution for the TSP. This involves
randomly shuffling the order of cities in the solution vector.

54



CHAPTER 4. CASE OF STUDY: THE TRAVELING SALESMAN PROBLEM (TSP)

4.3 The Classic TSP solving methods

4.3.1 Exact solving
Exact solving methods for the TSP aim to find the optimal solution, that is, the shortest
possible tour that visits each city exactly once. These methods guarantee an optimal solution.

Brute force is the most straightforward method for solving the TSP. It involves examining all
possible permutations of cities and calculating the total distance for each permutation, which
means O(n!) combinations. Dynamic programming techniques, such as Held-Karp algorithm
[70], exploit the inherent substructure and overlapping subproblems in the TSP.

In the early exploration of the Traveling Salesman Problem (TSP) during the 1950s-60s,
Branch-and-Bound emerged as one of the pioneering exact approaches [98]. Its enduring
significance lies in its simplicity, providing a foundational methodology for tackling the TSP.

A major leap in the late 1980s brought forth the Branch-and-Cut technique, a potent
combination of Linear Programming (LP) relaxation bounds and dynamically generated
cutting planes derived from problem-specific inequalities [116]. This innovation significantly
improved the traversal of search trees, marking a crucial advancement in exact TSP solving
methods.

Concorde, introduced in 2006-2007 by Applegate et al [6], stands as the contemporary state-
of-the-art exact TSP solver. Its prowess lies in incorporating problem-tailored dynamic cut
generation schemes within an advanced Branch-and-Cut algorithm. Remarkably, Concorde
has demonstrated optimality in solving TSP instances approaching 10,000 cities.

Further diversification in algorithmic paradigms is evident in CP-based approaches [15] and
ongoing refinements in Integer Linear Programming formulations. These methods hold the
potential to extend the reach of exact solving methods for the TSP, offering new avenues for
tackling larger instances.

In recent years, Isoart [78] makes notable strides in solving the Traveling Salesman Problem
through constraint programming with Lagrangian relaxation, introducing novel structured
constraints and other techniques for optimizing TSP.

Despite their exponential time complexity, well-engineered exact algorithms remain indispens-
able tools for benchmarking heuristics and establishing optimally proven solutions, particularly
on problems of practical relevance and size. The continuous evolution of exact solving methods
showcases the resilience and adaptability of these approaches in addressing the challenges
posed by the TSP over the decades.

4.3.2 Heuristic solving
In contrast to deterministic algorithms that ensure optimal solutions, heuristics offer a more
expedient but non-guaranteed approach to computing TSP tours. While lacking a certainty
of optimality, heuristics boast significantly faster computation times. Consequently, when an
acceptable solution suffices, heuristics prove to be a more fitting choice. TSP heuristics are
categorized into three types: tour construction algorithms, which progressively incorporate

55



nodes into the current tour; tour improvement algorithms, which refine a tour through
exchanging city orders; and composite algorithms, which seamlessly blend both approaches.
In this section, we introduce widely adopted heuristics employed in addressing the Traveling
Salesman Problem (TSP). Further elaboration on additional heuristics can be found in [65].

Tour Construction Algorithms

One category of TSP heuristics comprises tour construction algorithms. These methods
progressively build a tour by iteratively adding nodes to the current solution. Prominent
examples include the Nearest Neighbor Algorithm (NN), among the earliest heuristics for
solving the TSP, which constructs a tour by iteratively visiting the nearest unexplored node
from the current location. Although its time complexity is O(n2), and it can be deemed
somewhat greedy, Rosenkrantz et al. demonstrated that under the triangular inequality, the
tour is at most O(log(V )) longer than the optimal one.

Expanding upon the NN approach, Christofides’ algorithm, an early approximation algorithm,
takes the tour construction process a step further. This algorithm ensures that the resulting
TSP tour is at most 3/2 times longer than the optimal one for metric graphs satisfying the
triangular inequality.

Tour improvement algorithms

Complementing the tour construction algorithms in solving the Traveling Salesman Problem
(TSP), tour improvement algorithms focus on refining existing solutions to approach optimality.
Unlike tour construction methods that progressively build a solution from scratch, tour
improvement algorithms enhance the quality of an initial tour. These iterative techniques
iteratively modify the sequence of nodes in the tour to reduce its length and improve efficiency.
Local search methods, particularly 2-opt and 3-opt, stand out as the prevailing approaches
for the improvement of TSP solutions.

The 2-opt heuristic operates by systematically examining pairs of edges (e1, e2) within the
given tour T . Should the replacement of this pair with another set of edges (e3, e4) result in
a more compact and connected tour, the algorithm executes the replacement, defining this
procedure as a move. It is noteworthy that certain heuristics adopt an approach where they
identify the optimal improving move before executing the replacement. Importantly, for each
pair of edges, only one move is available to reconnect the graph, eliminating the possibility
of a null move. The iterative process of considering pairs gives rise to a time complexity of
O(n2). Illustrated in Figure 2.5 is an example where e1 = (x1, x2), e2 = (y1, y2), and the
corresponding move involves e3 = (x1, y1) and e4 = (x2, y2).
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Figure 4.2: Visualizing 3-Opt Heuristic: Tour Configuration with Proposed Moves for the
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Figure 4.1: Visualization of 2-Opt Heuristic: A Tour Representation with Proposed Moves
for the Edge Pair ((x1, x2), (y1, y2)).

In 3-opt algorithm, the methodology diverges from selecting pairs of edges, instead opting
for triplets of edges within the given tour. Similar to the 2-opt approach, the algorithm
systematically explores moves that decrease the overall cost of the tour. Notably, in this
scenario, there are seven possible ways to reconnect the graph. Intriguingly, three of these
options boil down to simple 2-opt moves, involving a combination with one edge of the
triplet remaining stationary. Consequently, the 3-opt algorithm delves into more intricate
combinations than its 2-opt counterpart, potentially uncovering superior moves. However,
this increased complexity results in an algorithm with a time complexity of O(n3). Figure 2.6
visually represents an instance showcasing all 3-opt moves distinct from the 2-opt variations.

As a natural extension, the 2-opt and 3-opt algorithms find generalization in the form of
the k-opt algorithm, where k represents the number of edges involved in each move. The
time complexity of this generalized approach is O(nk). Empirical investigations have revealed
that augmenting the value of k enhances the tour quality but concurrently hampers solving
times. Consequently, certain methodologies, as proposed by researchers such as [115] and [10],
adopt a pragmatic approach by incorporating selective 3-opt and/or 4-opt moves rather than
considering all possibilities. This strategic choice aims to mitigate time complexity, thereby
expediting the solving times without compromising on the overall quality of the generated
tours.
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Lin-Kernighan

Lin and Kernighan [97] introduced a variable k to their TSP algorithm, enhancing tour quality
and solving times. Their strategic rules focused on promising permutations and allowed for
refining k-opt moves constructed from sequences of 2-opt moves. Helsgaun later refined these
rules, creating the Lin-Kernighan-Helsgaun (LKH) algorithm [71]. LKH is recognized as a
highly efficient TSP heuristic, often integrated into exact methods for its ability to produce
tours close to optimality, especially in multiple runs.

4.3.3 Metha-heuristic solving
Metaheuristics provides general algorithmic frameworks to solve combinatorial optimization
problems like the TSP. These methods offer a more flexible, expedient but non-guaranteed
approach to solving the TSP optimistically. While lacking the certainty of optimality,
metaheuristics excel at providing substantially faster computation times. When the primary
objective is to obtain an acceptable solution within a reasonable time frame, metaheuristics
prove to be a more fitting choice.

In the chronological evolution of solving the Traveling Salesman Problem (TSP) with single-
solution-based metaheuristic methods, Simulated Annealing (SA) emerged prominently in the
early 1980s. The foundational work of Kirkpatrick, Gelatt, and Vecchi (1983)[88] introduced SA
as a versatile optimization algorithm, with subsequent contributions by Cerny [27] showcasing
its adaptability to the TSP. The late 1980s saw Glover [59] extend SA to combinatorial
optimization problems, emphasizing temperature schedules and neighborhood structures
(Glover, 1986). Tabu Search (TS), introduced by Glover in 1986, marked a significant milestone,
incorporating memory structures to escape local optima. TS gained widespread recognition
in the 1990s, as demonstrated in Glover’s "TS Paradise" and the comprehensive book "Tabu
Search" by Glover and Laguna [60]. Variable Neighborhood Search (VNS), conceptualized
by Mladenović and Hansen in the late 1990s, expanded the horizon by dynamically altering
neighborhood structures. Its application to the TSP by Mladenović et al. [108] showcased
the method’s ability to explore diverse solution spaces.

As highlighted in Chapter 1, the application of population-based metaheuristic methods to
solve combinatorial problems, such as the Traveling Salesman Problem (TSP) has yielded
significant advancements over the years. Genetic Algorithms (GA) entered the scene in
the 1980s, with Holland’s pioneering work [73] laying the foundation. Genetic algorithms
have since become a cornerstone in TSP research, with applications ranging from traditional
GAs to advanced variants. The advent of Ant Colony Optimization (ACO) in the early
1990s, proposed by Dorigo [33], introduced the concept of decentralized agents mimicking
ant foraging behavior. ACO’s application to the TSP, particularly through the Max-Min Ant
System [84], marked a significant breakthrough. Another notable population-based approach
is Particle Swarm Optimization (PSO), which Kennedy and Eberhart introduced in 1995
[84]. The TSP has successfully incorporated PSO’s cooperative behavior, which is social
interaction-inspired.

The comparison between single-solution-based metaheuristics on the one hand and population-
based metaheuristics on the other reveals distinctive characteristics in terms of neighborhood
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relations, convergence, complexity, problem modeling, constraint handling, and sensitivity to
parameters.

Simulated Annealing and Tabu Search exhibit a strategy of explicitly searching neighborhoods
through local changes. These methods require a well-defined neighborhood structure, often
tied to alterations in the tour sequence. The theoretical convergence of SA and TS to optimal
solutions is guaranteed given infinite time, but their practical convergence is notably slower.
Additionally, the complexity of SA and TS increases for large-scale TSP instances due to the
intricacies of defining an effective neighborhood.

On the other hand, Genetic algorithms and Ant Colony Optimization adopt a different
approach for TSP. These methods explore solution spaces through probabilistic operators
without explicit reliance on a neighborhood concept. Although lacking theoretical guarantees,
GA and ACO have proven effective in practice when properly parameterized for the TSP.
Their inherent population-based nature allows for parallelization, mitigating the complexity
associated with larger TSP instances.

When modeling the TSP problem, SA and TS need to encode solutions as states and set
distance-based acceptance criteria, which usually involve changing the order of city sequences.
GA and ACO, on the other hand, use genetically inspired mechanisms and pheromone
communication to model solutions in a more natural way, without the need for problem-
specific encoding.

Constraint handling in the TSP presents distinctions. SA and TS require the introduction of
repair or rejection mechanisms for infeasible moves or states, addressing constraints such as
capacity limitations or time constraints in the tour. Conversely, GA and ACO apply operators
that inherently preserve feasibility, drawing inspiration from genetics and decentralized
pheromone communication to navigate constraint space more effectively.

Sensitivity to parameters is nuanced in the TSP context. SA and TS are heavily reliant on
schedule, acceptance thresholds, and initial states, making them sensitive to perturbations.
On the other hand, GA and ACO are less affected by changes, but they need to be carefully
tuned in terms of population size and operators to work best, especially when solving the
TSP.

4.4 Hybrid TSP solving methods
The complexity of the Traveling Salesman Problem has fueled the exploration of innovative
approaches, leading to the emergence of hybrid solving methods. As shown in Chapter 1,
hybridization combines multiple optimization techniques, harnessing their complementary
strengths to enhance solution quality, convergence speed, and overall algorithmic performance.
The rationale behind employing hybrid methods lies in leveraging the diverse strategies of
different algorithms to address specific challenges posed by the TSP. Hybrid approaches aim
to strike a balance between exploration and exploitation, harnessing the benefits of various
methods to achieve superior performance compared to standalone algorithms.

In Chapter 1, we delved into the intricate challenges of combinatorial problems. Hybridization,
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the strategic combination of optimization methods, is a key method that is becoming more
popular for improving problem-solving abilities. Two primary types emerge: hybridization
between Optimization Methods and Integration of Machine Learning Methods with Meta-
heuristics. The former combines diverse optimization algorithms, each contributing unique
strengths. The latter harnesses the synergy between metaheuristics and machine learning,
creating a harmonious alliance. This chapter explores these hybridization types, delving
into their methodologies, significance, and remarkable advancements in TSP problem-solving.
Through an examination of related works, we unveil the evolutionary trajectory and contribu-
tions of hybrid TSP-solving methods, shedding light on the nuanced strategies propelling the
field forward.

4.4.1 Hybridization between Optimization methods
Combining Metaheuristics

Hybrid algorithms for solving the TSP encompass both route construction and route im-
provement phases, utilizing a combination of population-based heuristics. One of the earliest
forms of hybridization, combining metaheuristics has remained prevalent. Or-opt and k-opt
local search were integrated within genetic algorithms in the 1990s to refine solutions [148].
Notable algorithms include Artificial Bee Colony (ABC), Ant Colony Optimization, Genetic
Algorithm, Simulated Annealing, Tabu Search, and Particle Swarm Optimization. ACO-based
hybrid approaches, like PACO-3Opt[64], use ACO for building the initial population and
3-Opt to optimize each individual, which improves the quality and reliability of the solutions.
The PSO-ACO-3Opt algorithm [102] uses PSO to optimize ACO parameters and 3-Opt to
improve solutions, giving better performance in terms of being accurate and stable. The
Adaptive Simulated Annealing algorithm with Greedy Search (ASA-GS) [57] integrates three
mutation-based operations, coupled with greedy search, demonstrating a commendable balance
between running time and accuracy. Ant Colony Extended (ACE) [39], a new ACO-based
algorithm, uses dual-task ants and a regulation policy to solve TSPs more efficiently. The
C-PSO-ACO-kOpt algorithm [85] combines ACO and PSO, utilizing ACO to generate initial
solutions and enhancing them with k-Opt, showcasing competitive performance in accuracy
and running time. The Fruit Fly Optimization Algorithm (FOA) [118] is enhanced through
the Improved FOA (IFOA) [77], addressing convergence and precision issues. The Discrete
Symbiotic Organisms Search (DSOS) hybrid algorithm [41] uses three mutation-based local
search operators to find the best possible routes. It quickly finds the best solutions and has
been shown to work on TSPLIB datasets.

Integrating exact methods with heuristics

since exact algorithms become intractable even for moderately sized instances. Heuristics can
find good solutions efficiently, but they provide no quality guarantees. Research has explored
hybrid approaches leveraging both.

Early work combined traveling salesman heuristics with branch-and-bound (BB) search to
iteratively improve solutions [34]. A study introduces a hybrid approach for solving TSP,
combining Constraint Programming propagation algorithms for path feasibility with Opera-
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tions Research techniques for optimization [50]. Another study assesses the BB algorithm’s
efficacy for TSP and the benefits of hybridizing it with local search algorithms [80]. Isoart
presents novel constraint programming models for solving the Traveling Salesman Problem
(TSP), incorporating three new constraints and filtering algorithms based on graph structure.
Additionally, it adds the SSSA algorithm to make computing more efficient and parallelizes
the search process using Embarrassingly Parallel Search (EPS). This cuts down on solving
times and makes the system more scalable [78]. Several studies have studied the hybridization
of dynamic programming with local search algorithms [141] such as Yongliang Lu et al [101],
this research introduces a hybrid approach combining dynamic programming and memetic
algorithm for solving a variant of TSP with Hotel Selection (TSPHS), addressing real-life
constraints on maximum travel time.

4.4.2 Machine learning methods with Meta-heuristics for solving
TSP

In Chapter 1, we talked about the integration of machine learning techniques into meta-
heuristics for solving combinatorial optimization problems and he comprehensive classification
proposed by Karimi-Mamaghan [83] including algorithm selection, fitness evaluation, ini-
tialization, parameter setting, and cooperation. In this section, we go deeper into related
works that study the integration of ML methods in metaheuristics for solving TSP. Notable
studies exemplify the efficacy of ML-in-metaheuristics, such as Kanda’s [81] utilization of label
ranking algorithms for algorithm selection in solving the Traveling Salesman Problem (TSP).
To address the computational cost associated with assessing candidate tours, researchers
like Fan and Li [43] employ surrogate models within genetic algorithms, while Golabi et al
[61] introduce an extreme learning machine approach hybridized with a genetic algorithm.
Moreover, recent advancements explore ML-driven evolution in algorithms, as seen in Drori
et al’s [35] reinforcement learning-based method for customized TSP heuristics. The integra-
tion of ML spans parameter tuning, algorithm selection, and initialization strategies, with
innovative approaches such as Wang et al’s [146] symbiotic organisms search (SOS) and ACO
for ACO parameter optimization. Notably, ML-aided initialization, encompassing complete
and partial tour generation, problem decomposition, and clustering, emerges as a pivotal
aspect in optimizing large-scale problem instances. Approaches like Alipoor et al’s [5] use
of Multiagent Reinforcement Learning (MARL) and Miki et al’s [104] convolutional neural
network-based partial generation showcase the versatility of ML in guiding metaheuristics
through vast and complex search spaces, contributing to their efficacy in tackling real-world
optimization challenges.

4.5 Parallel TSP solving
The scale of real-world TSP instances encountered in various applications can be staggering,
often involving millions or even billions of nodes representing cities or locations. As a result,
traditional sequential solving approaches face formidable challenges due to the immense time
and space requirements associated with exploring such vast solution spaces. Consequently,
parallelization emerges as a compelling strategy to address these limitations by harnessing the
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computational power of multiple processors or computing nodes concurrently. By distributing
the computational workload across multiple processing units, parallel solving of the TSP offers
a promising avenue to overcome the scalability barriers inherent in sequential approaches.

Parallelizing TSP solving involves problem decomposition, assigning subproblems to separate
processors for independent solving. Asynchronous search allows metaheuristics to explore
subproblems concurrently, periodically merging partial solutions. Cooperative search fosters
synergy among processors by sharing information and solutions. Exact solvers employ
synchronous branching on different parts of the partitioning tree. Hybrid approaches combine
heuristic and exact methods, leveraging a parallel architecture for efficient solution construction.
Overall, these strategies distribute computational workload effectively, facilitating an efficient
exploration of large TSP solution spaces.

4.5.1 Formalization of TSP for Parallelization
TSP Instance:

I = (V, E, c)

Where:

V = set of nodes {v1, v2, ..., vn}
E = set of edges between nodes in V

c = cost function c(vi, vj) that returns the distance between nodes

Partitioning:
P = {P1, P2, ..., Pk}

Where:

P = partitioning of I into k subsets (subproblems)
Pi = (Vi, Ei, ci) is a sub-TSP containing:
Vi = subset of nodes from V

Ei = subset of edges from E connecting nodes in Vi

ci = restriction of c to edges in Ei

Properties:

Vi ∩ Vj = ∅ for all i ̸= j⋃
i

Vi = V⋃
i

Ei ⊆ E

This represents decomposing the original TSP instance into distinct sub-TSPs that cover all
nodes/edges and can be solved independently in parallel.
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4.5.2 TSP problem decomposition

Decomposing the variable decision space of the TSP for parallelization involves partitioning
the set of cities or decision variables into smaller subsets. that can be solved independently
or concurrently.

Clustering is an indispensable methodology in the field of data analytics, especially when
tackling complex problems like the TSP. By effectively grouping similar data points, clustering
reveals hidden patterns that can greatly enhance our understanding of the underlying problem
landscape in TSP scenarios.

In the context of TSP, clustering empowers analysts to customize optimization strategies
tailored to the specific characteristics of different clusters of cities. This segmentation of
cities into clusters not only simplifies the overall problem but also reduces its dimensionality,
making it more manageable for further analysis and solution development.

Moreover, clustering plays a pivotal role in quickly generating initial solutions for the TSP,
thereby expediting the convergence process towards finding an optimal route. By efficiently
organizing cities into clusters, clustering algorithms can provide valuable insights into potential
routes and help refine the search for the shortest path.

The versatility of clustering techniques extends to their ability to optimize various aspects of the
TSP solution, such as minimizing travel distance or time, maximizing resource utilization, or
balancing workload distribution. These diverse applications of clustering in TSP optimization
have far-reaching consequences, impacting industries ranging from logistics and transportation
to manufacturing and supply chain management.

There are a lot of algorithms that allow the partitioning of the TSP points. The clustering
approach, e.g., k-means [67], affinity propagation algorithm [52], and density peaks clustering
[125].

Table 4.1 presents a comparative analysis of three prominent clustering techniques K-means,
Affinity Propagation, and Density Peaks Clustering in the context of partitioning TSP points.
Each technique is evaluated based on its distinct advantages and disadvantages.

k-means is highlighted for its simplicity, scalability, and ease of implementation, making it
suitable for convex-shaped clusters. However, it requires a predefined number of clusters (k)
and is sensitive to initial centroids, potentially leading to convergence issues.

Affinity Propagation stands out for its ability to automatically determine cluster centroids
and identify exemplar points, while being robust to noise and outliers. Yet, it may consume
high memory and pose challenges in tuning parameters like damping factor.

Density Peaks Clustering offers the advantage of discovering clusters of arbitrary shapes
without requiring a predefined number of clusters. It is robust to varying cluster densities
and effective in identifying clusters with different sizes. However, it necessitates parameter
tuning and can be computationally expensive, particularly for large datasets and those with
high dimensionality.

Hierarchical clustering [68, 138] stands out as a versatile algorithm that introduces a hierar-
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chical structure into the clustering process, making it a robust preprocessing technique with
significant potential for optimizing complex problems. This hierarchical clustering method
offers several advantages in the context of TSP. Firstly, it provides a systematic means of
structuring the TSP problem, allowing for a clearer understanding of its complexities. Addi-
tionally, the hierarchical nature of the clustering process enables the application of tailored
optimization strategies to finer-grained clusters, thus enhancing the efficiency and effectiveness
of the overall solution approach.

Through the utilization of hierarchical clustering, analysts can gain deeper insights into the
underlying structure of TSP instances, uncovering patterns and relationships that may not be
immediately apparent. This, in turn, enables the development of more nuanced and targeted
optimization techniques, ultimately leading to improved solutions for the TSP.

Many studies have studied hierarchical clustering for solving TSP problem. Jiang et al. [79]
suggest a hierarchical method for dealing with large-scale TSP. It starts by using k-means
and affinity propagation to group cities into smaller groups. Another work by Liao et al. [96]
came up with a hierarchical hybrid algorithm for the TSP that uses density peaks clustering
for decomposition and ant colony optimization for local resolution. In a real-world application,
Jadhav et al. propose an automated travel itinerary generation system utilizing K-Means
clustering and the TSP.

4.5.3 The need for alternative problem representations

To enhance the exploration of solution spaces, it is advantageous to broaden our perspective
beyond conventional node-based methods. Techniques such as cluster-based abstractions
[86, 140], hierarchical organizations [53, 62], and graph embeddings [130] offer novel approaches
to understanding the intricacies of complex combinatorial problems. By adopting these
alternative problem representations, researchers can potentially unlock new avenues for
developing more effective optimization strategies.

For TSP, hierarchical representations offer a structured approach but struggle with large
instances due to their inherent parallel limitations. As problem size grows, hierarchical trees
experience difficulties efficiently processing vast computations and data for optimal solutions.

Moreover, although hierarchical representations offer efficient capture of clustering hierarchy
and localized optimization, they exhibit limitations in fault tolerance and hierarchical depth
variation across different problem scales. This topology relies heavily on well-defined clustering
of cities, making it vulnerable to disruption by noise or outliers in the data, which can distort
neighborhood relationships. Moreover, the hierarchical structure is sensitive to perturbations
in cluster organization during initialization, often requiring complete restructuring. To miti-
gate these challenges, incremental update strategies could be adopted, selectively reoptimizing
affected regions rather than restructuring the entire hierarchy. While hierarchical representa-
tions provide valuable insights, hybrid approaches integrating flexible graph-based elements
may offer greater resilience in handling real-world TSP problems with varying complexity
over extended optimization periods.

Interconnection network representations provide an alternative parallel architecture to more
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Algorithm Advantages Disadvantages

k-means

- Simple and com-
putationally effi-
cient
- Scales well with
large datasets
- Easy to imple-
ment and inter-
pret
- Suitable for
convex-shaped
clusters

- Requires a pre-
defined number
of clusters (k)
- Sensitive to ini-
tial cluster cen-
troids
- May converge
to local optima

Affinity Propa-
gation

- Does not re-
quire a prede-
fined number of
clusters
- Automatically
determines clus-
ter centroids
- Can identify
exemplar points
representing clus-
ters
- Robust to noise
and outliers

- High memory
consumption, es-
pecially for large
datasets
- Complexity in
tuning the damp-
ing factor
- May converge
to suboptimal so-
lutions in some
cases

Density Peaks
Clustering

- Can discover
clusters of arbi-
trary shapes
- Does not re-
quire a prede-
fined number of
clusters
- Robust to differ-
ent cluster densi-
ties
- Effective in
identifying clus-
ters with varying
sizes

- Requires tun-
ing of parame-
ters like density
threshold
- Sensitive to
noise and param-
eter settings
- Computation-
ally expensive,
especially for
large datasets
- May struggle
with datasets of
high dimension-
ality

Table 4.1: Comparison of Clustering Techniques for TSP Partitioning
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effectively tackle large-scale TSP. Interconnection networks depict processors and routers as
nodes, connected via links in a topology like a mesh or hypercubes. This framework distributes
computational tasks across multiple processing units in a more flexible and scalable manner.

Interconnection networks offer several key advantages for parallel TSP solutions. One sig-
nificant advantage lies in their small network diameters, which remain constant even as
the number of nodes increases. This ensures efficient communication between processors,
allowing for constant-time message routing as the problem size scales. Additionally, inter-
connection networks boast high bisection widths in topologies like meshes or hypercubes.
This characteristic facilitates balanced partitioning of workloads across halves of the network,
optimizing parallelism, and load balancing among processors. Another crucial benefit is the
fault tolerance provided by distributed, redundant paths between nodes. In the event of link
or processor failures, the network can continue operating without partitioning, ensuring that
computations proceed uninterrupted. Moreover, interconnection networks offer scalability
by allowing elastic expansion of nodes and links on demand to accommodate growing TSP
instances. This flexibility contrasts with hierarchical trees, which may struggle to adjust
their structure efficiently at large scales. Overall, these advantages make interconnection
networks a powerful framework for parallel TSP solutions, enabling efficient communication,
load balancing, fault tolerance, and scalability as problem sizes increase.

4.6 Proposed model methodology
Previous chapters and sections highlighted the state of the art for solving combinatorial
problems, especially TSP as a case study with a focus on metaheuristics and exact algorithms.
While both families of methods demonstrate successes, limitations also exist in terms of
runtimes, scalability and suboptimality of solutions. To further optimize TSP solving,
more advanced approaches integrating hybridization, parallelism, and machine learning have
emerged.

Hybridization aims to leverage the respective strengths of heuristics and exact methods within
a unified, parallel framework. The benefits of combining intensification and diversification
strategies have motivated the incorporation of machine learning to autonomously control
algorithms. Parallelization distributes computational work aligned with hierarchical network
topologies. However, existing parallel implementations face challenges in mapping dynamically
evolving combinatorial problems. Therefore, we scrutinize the limitations of these topologies,
particularly concerning their adaptability in dynamic environments.

To address such issues, this section introduces a dynamic, hybrid parallel solving framework
for the Euclidean TSP. The framework integrates heterogeneous algorithms, architectures and
dataflows to flexibly scale across diverse hardware. Representing the problem hierarchically
facilitates decomposition into parallelizable sub-units explored cooperatively. Advanced
partitioning enables workload balancing amid ongoing network adaptations. Machine learning
optimizes partitioning, guides cooperative search, and tunes algorithms in real-time.

At the heart of our discussion lies the investigation of interconnection network systems and how
they play a crucial role in making combinatorial optimization more efficient. By explaining
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Figure 4.3: Global Proposed Model.
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why using these networks is advantageous, we set the stage for coming up with new and
creative ways to solve problems.

This system design aims to overcome the limitations of static approaches for large-scale,
time-varying TSP instances. By exploiting parallelism through hybridization and machine
intelligence, the framework pursues an optimal balance of solution quality, generality, and
computational efficiency. The components are described in detail, outlining goals for exploring
new frontiers in dynamic optimization through cooperative parallelism.

In Figure 4.3, we present the methodology we’ve developed for solving the Euclidean Traveling
Salesman Problem (TSP). Our approach consists of three primary modules: the Feature
Selection module, the Optimization module, and the Visualization and Interpretation mod-
ule. In the upcoming sections, we’ll delve into each module’s process, providing a detailed
explanation of its functionality and contributions to our overall solution framework.

4.6.1 Feature selection module
The feature selection module is pivotal in identifying relevant spatial, geometric, and topolog-
ical attributes of the problem. It adapts to the dynamic and hierarchical nature of the input
graph, extracting salient features while ensuring dimensionality reduction to retain only those
influencing solution quality. This iterative process streamlines problem representation and
enhances subsequent optimization, facilitating the discovery of high-quality solutions to the
TSP.

In this context, this module is composed of 2 steps: the transformation of Euclidean TSP
to a hierarchical representation, and the embedding of The hierarchical representation into
crossed cubes interconnexion network steps.

Transformation of Euclidean TSP to a Hierarchical Representation

We introduce an innovative hierarchical representation to revolutionize conventional methods
for addressing the TSP. Our approach integrates recursive hybrid clustering techniques within
a multi-layered structure. Each clustering layer undergoes thorough evaluation using distinct
metrics to gauge both intra-cluster and inter-cluster dissimilarity, as well as the equitability
of point distribution within clusters. Through iterative refinement at each hierarchical layer,
our method dynamically optimizes for cluster homogeneity and separation. This results in a
highly adaptable solution to the TSP, capable of navigating complex data landscapes. Our
hybrid hierarchical representation enhances optimization transparency and facilitates parallel
computing.

Embedding the Hierarchical Representation into Crossed cubes interconnection
network

Utilizing the inherent hierarchical characteristics of the datasets, we aim to leverage a
hierarchical representation for the solution of the TSP. Specifically, we intend to employ a
compressed hierarchical structure tailored for parallel computational tasks. This strategic
approach seeks to enhance optimization outcomes while effectively managing computational
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resources, particularly for handling large-scale datasets. However, it’s essential to note
that hierarchical structures have inherent limitations, such as fault tolerance constraints
characterized by a bisection width and connectivity of 1 [94], as well as limitations related to
diameter.

Due to these limits, embedding the hierarchical organization of optimization problems into
interconnection networks offers numerous advantages, particularly in scalability, fault tolerance,
and resource management. This strategic embedding not only enables handling larger-scale
problems but also enhances system resilience against faults while optimizing resource allocation
effectively.

Addressing the previously identified challenge, we introduce a notable contribution: the
dilation 2 one-by-one embedding of hierarchical-based recursive hybrid clustering (in both
2D and 3D representations) into m-dimensional crossed cubes. The primary goal of this
embedding is to facilitate efficient resource coordination and distribution within the guest
topology. This deliberate integration aims to ensure seamless compatibility between the host
and guest architectures, thereby optimizing resource utilization and effectively organizing the
operational environment.

4.6.2 Processing module
Initial solutions construction

Upon establishing the parallel environment, our approach constructs a hybrid hierarchical
representation included in the crossed cubes interconnexion network for the TSP. This
technique strategically decomposes the TSP into manageable subproblems by clustering cities
into coherent groups across multiple granularities. This multi-tiered abstraction partitions
the optimization landscape into localized clusters. Next, we quickly solve the TSP in each
cluster at the same time using efficient construction heuristics like nearest neighbor and ant
colony optimization. Our goal is to make a large group of different, high-quality paths for
each cluster.

To integrate these intra-cluster solutions and form unified inter-cluster routes, we employ a
genetic networking heuristic. This bio-inspired technique selects the fittest individuals from
each cluster population to establish judicious inter-cluster connections. By concurrently solving
decomposed subproblems and combining the solutions, our approach adeptly scales to large
problem sizes. The clustering-based decomposition, coupled with the parallel construction of
local solutions, facilitates rapid exploration compared to conventional monolithic methods.

Optimization

To assess the effectiveness of our proposed clustering-driven initialization method, we conducted
experiments by employing the generated solutions to seed a simulated annealing metaheuristic
for solving the TSP. The hierarchical hybrid clustering approach yields a diverse set of tours
that accurately capture the intricacies of the problem structure. From this population, we
select the top-performing individuals based on tour length to serve as initial solutions for the
simulated annealing optimization.
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The localized clusters facilitate rapid feasibility-preserving adjustments during the annealing
process, allowing for refinement of the tours. We compared our approach against random
restarts and alternative construction heuristics like farthest insertion and k-opt on TSPLIB
instances. By striking a careful balance between global exploration through clustering and
local intensification within clusters, we can generate high-quality starting solutions.

Our technique significantly accelerates the simulated annealing process across various problem
instances, demonstrating its efficacy as a well-informed initialization mechanism.

4.6.3 Visualisation and interpretation module
After obtaining optimal or near-optimal TSP solutions, visualizing and interpreting the results
is crucial for assessing algorithm effectiveness. Hierarchical clustering yields meaningful city
partitions at each tree level, validated by maps showcasing tight local groupings. Visualizing
graph embeddings illustrates how the hierarchical TSP representation aligns with crossed cube
topology. The representation of solution paths on Euclidean planes allows direct comparison of
lengths and patterns. Analyzing cluster connections aids in understanding problem interfaces
and guides further preprocessing. Rigorous statistical analysis validates observed differences
in mean, standard deviation, and relative error, supplemented by runtime analyses with
graphical visualizations for nuanced interpretation.

4.7 Conclusion
In conclusion, this chapter has provided a comprehensive exploration of solving the TSP,
establishing a foundation for comprehending the complexities inherent in tackling this combi-
natorial optimization challenge. The subsequent chapter will delve deeper into our proposed
methodology, where we will detail our contributions and innovations in feature selection,
optimization, and visualization modules. Our focus will particularly be on our contribution
to feature selection, aimed at enhancing the efficacy and efficiency of TSP-solving techniques.
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Chapter 5

Proposed Modeling Paradigm for
Solving TSP

5.1 Introduction
In this chapter, we present our proposed modeling paradigm aimed at enhancing the efficiency
and effectiveness of solving the Traveling Salesman Problem (TSP). Building upon the
comprehensive exploration of TSP-solving techniques in the previous chapter, we detail our
contributions and innovations in feature selection, optimization, and visualization modules.
Our focus is particularly on our novel approach to feature selection, which is designed to
address the inherent complexities of the TSP and improve solution quality.

We explore feature selection, including enhancements to the clustering techniques. We then
delve into representation, detailing the TSP-Compressed Quadtree/Octree-based recursive hy-
brid clustering. Next, we discuss optimization, highlighting hybrid parallel-solving techniques.
Finally, we focus on visualization and interpretation.

5.2 Feature Selection: TSP-Compressed Quadtree/Octree-
based recursive hybrid clustering representation

In this section, we describe our contributions, which allow the representation of the Euclidean
space of the TSP problem in 2D/3D hierarchical representation. Given the intrinsic 2D/3D
spatial nature of the TSP datasets, we propose leveraging a hierarchical tree-based repre-
sentation for solving the problem in a parallel fashion. Specifically, we intend to utilize a
compressed quadtree/octree structure that is well-suited for distributed optimization tasks.

This quadtree/octree layout [130, 128], referred to as a fragmented design, provides a novel
approach where each node’s child elements are dispersed within the overall tree structure.
This kind of topological organization tries to find a balance between making solutions better
and carefully managing the amount of work that needs to be done, which is very important
for massive problem instances.
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By modeling the input space in a decomposed quadtree/octree format, the dataset can be
stratified into disjoint sub-regions processed simultaneously across compute resources. This
partitioning scheme offers benefits such as workload distribution, reduced communication
overhead, and flexible granularity of problem decomposition.

When integrated with cooperative parallel algorithms operating at different tree levels, it can
efficiently solve large-scale TSP instances while exploiting the intrinsic dimensionality of the
inputs. The tree framework is thus a promising representation to unleash the full potential of
distributed optimization for Euclidean TSP solutions.

To do this operation, we use a hybridization of clustering algorithms such as K-means, Affinity
propagation, and Density peaks clustering. In this context, we aim to adapt these methods
to our specific problem. As such, we introduce several contributions outlined in the following
sections.

5.2.1 Enhancing k-means with post-redistribution [129]
K-means is a popular choice for clustering tasks because of its simplicity and computational
efficiency. However, one drawback is its tendency to converge to local optima, potentially
resulting in suboptimal solutions. The algorithm aims to minimize the sum of squared
distances between data points and cluster centroids (inertia or sum of squares errors). Despite
its effectiveness, K-means may not always find the best overall solution due to its susceptibility
to getting stuck in local optima, impacting cluster balance and compactness. It’s important
to be mindful of this characteristic when utilizing K-means for clustering purposes.

To overcome this limitation, we propose an enhanced version of the K-means clustering
algorithm by introducing a novel post-processing redistribution step. This step is designed
to address the issue of cluster imbalance and improve the overall quality and compactness
of the clusters. By adding the postprocessing redistribution technique-based diameter, we
were able to greatly lower the evaluation metrics that were used to judge the performance of
clustering. This enhancement significantly impacted the balance within the clusters, leading
to more well-organized and tightly grouped data points within each cluster.

To address this limitation, we introduce an improved version of the K-means clustering
algorithm, which incorporates a novel post-processing redistribution step. This step aims to
mitigate cluster imbalance issues and enhance the quality and compactness of clusters. The
proposed enhancement is described as follows:

The proposed algorithm, depicted in Figure 5.1, is a modified iteration of the K-means
algorithm with iterative refinement. In standard K-means, the objective is to partition a
dataset into K clusters, with each data point assigned to the cluster with the nearest mean.
Initially, we set the value of K and apply the standard K-means algorithm to the dataset.
Subsequently, we refine the cluster formation through two variants.

In the first variant, called SSE-Based Cluster Splitting (SSE-SPLITTING_KMEANS), we
compute the sum of squared errors (SSE) for each cluster to identify the one with the highest
SSE. We then select a subset of points closest to the center of this cluster to define the first
cluster, while the remaining points become residual points.
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For the second variant, known as Iterative Diameter-Based K-Means (DIAMETER_KMEANS),
we focus on the diameter of each cluster. After sorting the points within each cluster by
their distance from the center, we select a subset of points nearest to the center to calculate
the new center for each cluster. We then identify the point with the maximum distance to
the new center for each cluster and select the cluster that minimizes the distances between
these maximum distances. We repeat the process for this selected cluster, aiming to refine its
structure.

Next, we merge the residual points from the selected cluster with other clusters, strategically
assigning each residual point to the cluster that minimizes the increase in SSE and diameter.
This merging process aims to optimize both SSE and diameter, resulting in enhanced com-
pactness and spatial spread within clusters. Consequently, the number of clusters is reduced
by setting K = K − 1, and the K-means algorithm is applied again to the combined points
from residual clusters and merged points.

This iterative process continues until K becomes 0, indicating that all clusters have been
merged. By iteratively merging data points exhibiting the highest distance within clusters, the
algorithm aims to refine the clustering solution for the dataset. The choice of the parameter
r significantly influences the clustering outcomes.

Rationale for SSE and diameter criteria in redistribution

The adoption of SSE (Sum of Squared Errors) and diameter as criteria for redistribution
in clustering algorithms stems from their distinct strengths and complementary functions
in evaluating cluster quality. SSE, which gauges the compactness of clusters, promotes the
formation of tightly-knit groups, ensuring close alignment between data points and their
respective centroids. This metric provides an intuitive and straightforward assessment of
intra-cluster cohesion. Conversely, Diameter, used as a redistribution criterion in clustering
algorithms, evaluates the spatial dispersion within clusters. It measures the maximum distance
between data points, offering insights into the overall spread. This metric is particularly
useful for accommodating clusters with irregular shapes and contributes to the creation of
well-rounded, spatially balanced clusters.

The complexity of enhanced K-means algorithm

We conduct a thorough examination of the computational costs incurred at each step of the
standard and enhanced K-means clustering approaches.

For the basic K-means algorithm, the initialization phase scales as O(n ·K · d · I) - where n,
K, d, and I denote the number of data points, initial clusters, dimensionality, and iterations
respectively.

The SSE-SPLITTING_KMEANS variant introduces an additional O(n ·K · I) complexity
for calculating SSE values and selecting points per cluster.

DIAMETER_KMEANS incurs O(n ·K · log(n) · I) due to sorting distances within clusters.

Merging residual clusters takes O(n · I) to update memberships and K.
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Considering the iterative execution until K = 0 over T iterations, the total asymptotic runtime
is:

O(T · (n ·K ·D · d · I + n ·K · I + n · I)) for SSE-SPLITTING_KMEANS

O(T · (n ·K · d · I + n ·K · I + n ·K · log(n) · I + n · I)) for DIAMETER_KMEANS.

Figure 5.1: The process of the proposed algorithm: Variant 1 (SSE-SPLITTING_KMEANS),
Variant 2 (DIAMETER_KMEANS) [129].

5.2.2 K-Affinity Propagation and K-Density Peaks Clustering

Since we used 2D/3D hierarchical representation the number of cluster K for a clustering
algorithm is determined. While algorithms like Affinity Propagation (AP), and Density Peaks
clustering (DPC) do not have a predefined number of clusters, we propose a hybridization
between k-means and AP as well as a variant of DPC that allows the determination of K.
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K-Affinity Propagation (AP)

K-affinity propagation (K-AP) represents a fusion of K-means and Affinity Propagation
clustering algorithms, aiming to harness the benefits of both approaches. Initially, the data
undergoes traditional K-means clustering, dividing it into K initial clusters. Subsequently,
a phase inspired by the Affinity Propagation algorithm ensues, where cluster centers are
iteratively refined using a pre-calculated similarity matrix. Each cluster center is updated
to reflect the most representative point within the cluster, as dictated by the similarity
relationships among data points. This iterative refinement process continues until the cluster
centers stabilize. The final clusters are then determined based on their proximity to these
refined cluster centers, resulting in a solution that capitalizes on the initial organization
provided by K-means while benefiting from the adaptive refinement capabilities inherent in
Affinity propagation.

K-Density Peaks Clustering (K-DPC)

The K-DPC modifies the Density Peaks clustering algorithm, focusing on the identification
of K clusters with high density. Similar to Density Peaks clustering, it prioritizes density
as a criterion for determining cluster centers and assigns points to clusters based on their
proximity to these centers. The key distinction lies in its emphasis on selecting K clusters
with the highest density, while the remaining clusters are distributed among these K clusters
based on their nearest neighbors. This adaptation allows for the extraction of K clusters that
exhibit significant density, enhancing the clustering process’s effectiveness and providing a
more refined clustering solution.

5.2.3 Evaluation clustering methods
The assessment of these clustering techniques is grounded on two fundamental metrics: the
Davies-Bouldin Index (DBI) and the Gini coefficient. Below, we outline the rationale behind
opting for these metrics, offering a detailed explanation for their inclusion in evaluating the
proposed algorithmic improvements.

The rationale behind selecting the Davies-Bouldin Index (DBI) as our clustering metric is
rooted in its superior performance compared to external validation metrics, particularly in
real-world scenarios where prior knowledge may be unavailable. Unlike external indexes,
which necessitate prior data information, DBI operates as an internal validation metric,
offering adaptability across diverse contexts [123]. Previous studies [100, 66] have underscored
DBI’s robust discriminatory ability and its suitability for practical applications, especially in
scenarios with multiple clusters. DBI consistently scores higher than other internal validation
metrics in studies [100]. This shows that it is more reliable and works better, especially when
compared to metrics like the Dunn Index [36], which may be affected by boundary points.
Additionally, DBI’s consistent performance across various clustering experiments highlights
its effectiveness as a comprehensive evaluation metric.

On the other hand, the Gini coefficient is a widely adopted metric in clustering evaluations
due to its capacity to quantify diversity or inequality within a dataset [26]. When utilized
in clustering analyses, the Gini coefficient serves as a measure of clustering quality and the
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uniformity of clusters [136]. Its sensitivity to cluster compactness enables the assessment of
data point distribution and cohesion within clusters [136]. Additionally, its adaptability to
clusters of varying shapes and sizes renders it versatile for evaluating clustering outcomes
across diverse datasets. The single-scalar output of the Gini coefficient ensures straightforward
interpretation and enables comparisons across different clustering experiments [26].

5.2.4 TSP-Compressed Quadtree/Octree-based recursive hybrid
clustering representation process

We present our innovative algorithm tailored to intricately address the specified problem using
a hierarchical framework. We use a methodical combination of recursive hybrid clustering
methods, such as Enhanced k-means, k-affinity propagation, and k-density peaks clustering.
This orchestrated strategy results in a series of progressive recursive partitions tailored to
the TSP instance. Within this hierarchical structure, intermediary nodes represent distinct
clusters at varying levels of recursion or granularity. At the lower levels of this hierarchy,
leaf nodes correspond to individual cities or smaller clusters, marking the culmination of the
recursive partitioning process.

The proposed hierarchical clustering algorithm for solving the Euclidean TSP problem is
outlined in Algorithm 1 and functions as follows:

Input Set of TSP points.

Initialization: The algorithm begins by considering the entire dataset as a unified partition.
Key parameters such as k, min, and max are initialized alongside the collection of TSP cities.
The value of k, set to represent 3, or 7 clusters, aligns with the three branches within each
internal node of the compact quadtree layout. By defining the parameters min and max,
thresholds are established to regulate the permissible range of city counts within sub-partitions.
Notably, the depth (d) of the compressed quadtree/octree structure is determined by the
number of recursive partitioning iterations. These values assigned to min, max, and d act as
termination criteria, effectively guiding the execution of the algorithm.

Initial Clustering: Utilize k-means, affinity propagation, and density peaks clustering
algorithms to generate an initial segmentation of the TSP points into k clusters.

Evaluation, Select Best Clustering:

1. Compute the Davies-Bouldin Index and Gini Coefficient for the clusters obtained from
each clustering method.

2. Determine a composite score for each clustering method using a weighted approach:
MethodScore = wDBI × ScoreDBI + wGini × ScoreGini.

3. Compare the scores of each method to identify the best-performing one.

4. Select the clustering results from the method with the highest score.

Recursive Partitioning and repeat:

1. Verify whether the current partition meets the specified stopping criteria (minimum,
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maximum, or depth). If not, proceed to the subsequent step.

2. Iterate through the aforementioned steps until the stopping criteria are met.

Output: Cease the recursive process upon reaching the specified stopping criteria. The
resulting optimized clustering solution denoted as C∗, is then produced as the output.

By assigning weights to individual clustering methods and aggregating evaluation metrics into
an overall score, you can tailor the influence of each method in the decision-making process.
This method enables you to harness the unique strengths of each approach and make a more
well-rounded and informed selection of the optimal clustering method.

Algorithm 1: TSP-compressed quadtree/octree-based recursive hybrid clustering algo-
rithm
Data: Set of TSP points
Result: Final clustering solution
Parameters : k, min, max, d
Initialization:;
Set the values of k;
Set the values of min and max;
Initialize the set of TSP points;
Set the value of d;
Initial Clustering:;
Apply K-means, affinity propagation, and density peaks clustering to the set of TSP
points, creating initial clusters C;

while stopping criteria not achieved do
Evaluation, Select Best Clustering: Calculate Davies-Bouldin Index and Gini
Coefficient for each method.

Calculate a global score for each method:
MethodScore = w_DBI × Score_DBI + w_Gini× Score_Gini.

Choose the cluster results of the best method Ci.
Apply K-means, affinity propagation, and density peaks clustering to the
set of sub-clusters.

end
Output the final clustering solution C∗ ;

5.3 Feature Selection: Enhancing optimization via the
embedding TSP-Compressed Quadtree/Octree into
Crossed Cubes Interconnection Network

The TSP-Compressed Quadtree/Octree (TSP-CQT n/TSP-COT n) partitions the space into
sub-regions, efficiently capturing the geometric distribution of points. The m-Dimensional
Crossed Cubes topology is commonly used in parallel computing systems for interconnection.
In the context of embedding TSP-CQT n/TSP-COT n into the m-Dimensional Crossed Cubes
(CQm) network, a systematic procedure emerges.
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Initially, the dimensionality m of CQm is determined. Then, a sequential one-by-one vertex
embedding of TSP-CQT n/TSP-COT n onto CQm takes place. This careful embedding strategy
ensures a seamless integration while preserving intrinsic geometric properties.

Next, the dilation-two embedding technique is applied by systematically mapping each
TSP-CQT n/TSP-COT n edge onto corresponding paths within CQm, realizing a dilation-two
embedding.

This results in a cohesive structure, fusing the spatial efficiency of the TSP-Compressed
Quadtree/Octree with the organization of the m-dimensional Crossed Cubes. The output
structure, termed TSP-CQm, capitalizes on advantageous traits of both components to enable
efficient data distribution and communication within the interconnected system.

5.3.1 Definition
In the crossed cubes Qm, vertices are considered adjacent if their labels differ in only one-bit
position. Conversely, in the crossed cube CQm, adjacency is defined differently for pairs of
2-bit strings x = x1x0 and y = y1y0, where adjacency holds if (x, y) is one of the specified
pairs: {(00, 00), (10, 10), (01, 11), (11, 01)} [37].

The m-dimensional crossed cube CQm is recursively defined as follows: CQ1 forms a complete
graph with 2 vertices. For m > 1, CQm comprises subcubes 0CQm−1 and 1CQm−1. Vertices
u = 0um−2...u0 ∈ 0CQm−1 and v = 1vm−2...v0 ∈ 1CQm−1 are considered adjacent under
specific conditions: um−2 = vm−2 when m is even, and for odd m, u2i+1u2i and v2i+1v2i are
pair-related.

5.3.2 Notations
A TSP-CQT n structure is constructed by combining three instances of TSP-CQT n−1, each
prefixed by 01, 02, and 03 respectively, along with a root prefixed by 0. This composition
forms a hierarchical tree-like structure.

A TSP-COT n structure is constructed by combining seven instances of TSP-COT n−1, each
prefixed by 01, 02, 03, 04, 05, 06 and 07 respectively, along with a root prefixed by 0. This
composition forms a hierarchical tree-like structure.

For each instance, denoted as TSP(name of the instance)-CQT n/-COT n, the TSP-CQT n/-
COT n can be represented as follows:

Consider a graph structure represented as either TSP-CQT n or TSP-COT n, where:

• Each vertex is a string of length p denoted as AV, where AV = Aap−1suffi.

• In TSP-CQT n, the format of the string Ap−1 is a1a2 . . . aj . . . ap−1, where aj, and suffi

ranges from 1 to 3.

• In TSP-COT n, the format of the string Ap−1 is a1a2 . . . aj . . . ap−1, where aj, and suffi

ranges from 1 to 7.

• The root is represented by the address a1 = 0.
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• An edge between a parent vertex and one of its children is represented as Ap−1−Ap−1suffi.

TSP-CQTn = 01TSP-CQTn−1 ∥ 02TSP-CQTn−1 ∥

03TSP-CQTn−1 ∥ 0TSP-CQTn

TSP-COTn = 01TSP-COTn−1 ∥ 02TSP-COTn−1 ∥

03TSP-COTn−1 ∥ 04TSP-COTn−1 ∥ 05TSP-COTn−1

06TSP-COTn−1 ∥ 07TSP-COTn−1 ∥ 0TSP-COTn

Here, C∗ = C00, C10 . . . Ck
0j denotes the set of clusters, where:

0 represents the root. j indicates the path from the root to the target cluster. k ranges from
1 to 3 or 1, 7.

Crossed Cubes

Let CQm = (O, E) where O represents the set of vertices and E represents the set of edges.

Case TSP-CQT:

Given an edge B ∈ E where B = CprefjX3X2X1X0:

• C = br−1, b̄r − 1, ϕ represents the set of possible values for the control bit.

• Address (adrr) components: X, Y, Z

• The adrr has a length of two and consists of X1X0.

• Either (X, Y ) or (Y, Z) must be pair-related.

• Prefj is defined as bk . . . bm−4, where j ranges from 0 to 3 respectively if brbr+1, brb̄r+1,
b̄rbr+1, b̄rb̄r+1..

Construction of CQm

Case 1: When C = ϕ, CQm is constructed by four instances of CQm−2 each prefixed by 00,
01, 10, and 11 respectively.

CQm = 00CQm−2 ∥ 01CQm−2 ∥ 10CQm−2 ∥ 11CQm−2

Case 2: When C ≠ ϕ, CQm is constructed by two instances of CQm−1 each prefixed by 0
and 1 respectively.

CQm = 0CQm−1 ∥ 1CQm−1

Case TSP-COT:
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Let B ∈ E such that: B = pref jX2X1X0 where pref j = br . . . bm−3 / j = 0, 7 respectively if
brbr+1br+2, brbr+1b̄r+2, brb̄r+1br+2, brb̄r+1b̄r+2, b̄rbr+1br+2, b̄rbr+1b̄r+2, b̄rb̄r+1br+2, b̄0b̄1b̄2.

The number of super node CQ3 is equal to 2m−3.

CQm is produced by eight copies of CQm−3 prefixed respectively by 000, 001, 010, 011, 100,
101, 110, and 111.

CQm = 000CQm−3 ∥ 001CQm−3 ∥ 010CQm−3 ∥ 011CQm−3 ∥

100CQm−3 ∥ 101CQm−3 ∥ 110CQm−3 ∥ 111CQm−3

The symbol ∥ signifies the simultaneous construction of multiple copies of TSP-CQT n and
CQm.

The column denoted as ’Dil’ in the tables refers to dilation.

5.3.3 Dimension of CQm

The dimension of the crossed cubes m related to the height of a compressed quadtree/octree.
In the case of TSP-CQTn, we can calculate m as follows:

• Where n ≤ 8: m ≃ log2((3n − 1)/2))

• Where n > 8: m = (n− 8) ∗ 2 + 12

While in the case of TSP-COTn:

m = (n− 1) ∗ 3

5.3.4 One-by-one vertex embedding [130, 128]
One-by-one vertex embedding of TSP-CQTn

The process of the one-by-one vertex embedding of TSP-CQTn into CQm occurs in the
following way:
For n = 3: The basic one-by-one vertex embedding function f is defined as follows:

• Prem(0) := pref000

• f(Ap−1suff1) := Pref1X

• f(Ap−1suff2) := Pref2Y

• f(Ap−1suff3) := Pref3Z

For n > 3, the one-by-one vertex embedding occurs in two scenarios. The first scenario arises
when C = ϕ, where we employ the basic function f (see Figure 5.2).

The second scenario arises when C ̸= ϕ, where a function f1 is employed for this one-by-one
vertex embedding. In this situation, there are three cases. The rules of Case 1, as depicted in
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Figure 5.2: Vertex embedding Situation 1 [130]

Figure 5.3, define f1.

• f1(Ap−1suff1) := 0Pref100X

• f1(Ap−1suff2) := 1Pref100Y

• f1(Ap−1suff3) := 1Pref000Z

OR

• f1(Ap−1suff1) := 0̄Pref100X

• f1(Ap−1suff2) := 1̄Pref100Y

• f1(Ap−1suff3) := 1Pref000Z

parent

parentparent

        a

        b

Figure 5.3: Vertex embedding situation 2, case 1 [130].
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Parent

Figure 5.4: Vertex embedding situation 2, case 2 [130].

The guidelines outlined in Case 2, depicted in Figure 5.4, generate the function f1 for this
vertex embedding:

• f1(Ap−1suff1) := 0̄Pref000X

• f1(Ap−1suff2) := 1̄Pref000Y

• f1(Ap−1suff3) := 1Pref000Z

The regulations presented in Case 3, as illustrated in Figure 5.5, yield the function f1 for this
vertex embedding when t = 2 or t = 3.

Parent

Parent

Parent

Figure 5.5: Vertex embedding situation 2, case 3 [130].

• f1(Ap−1suff1) := 0̄Pref100X

• f1(Ap−1suff2) := 1̄Pref100Y

• f1(Ap−1suff3) := 1̄Pref100Z

OR

• f1(Ap−1suff1) := 0̄Preft00X

• f1(Ap−1suff2) := 1Preft00Y

• f1(Ap−1suff3) := 1̄Preft00Z
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One-by-one vertex embedding of TSP-COTn

The procedure for one-by-one vertex embedding TSP-COTn into CQm involves two scenarios.
The first occurs when all nodes Ap−1suff i are internal nodes.

For the case where n = 3, the one-by-one vertex embedding process is depicted in Figure 5.6.
Here, the basic function f is defined as follows:

Figure 5.6: Situation 1, rules of the basic function for n ≥ 3 [128].

• Prem(0) := Pref0000

• f(Ap−1suff1) := Pref0001

• f(Ap−1suff2) := Pref1000

• f(Ap−1suff3) := Pref2000

• f(Ap−1suff4) := Pref3000

• f(Ap−1suff5) := Pref4000

• f(Ap−1suff6) := Pref5000

• f(Ap−1suff7) := Pref6000

For n > 3, the one-by-one vertex embedding process is illustrated in Figures 5.6 and 5.7. The
following set of rules (g = 1, 3) generates the function f :

Figure 5.7: Situation 1, rules of the basic function for n > 3 [128].

• f(Ap−1suff1) := brbr+1br+2br+3br+4b̄r+5 . . . bm−3000
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• f(Ap−1suff2) := Pref1000

• f(Ap−1suff3) := Pref2000

• f(Ap−1suff4) := Pref3000

• f(Ap−1suff5) := Pref4000

• f(Ap−1suff6) := Pref5000

• f(Ap−1suff7) := Pref6000

OR

• f(Ap−1suff1) := brbr+1br+2br+3br+4b̄r+5 . . . bm−3000

• f(Ap−1suff2) := brbr+1b̄r+2br+3br+4b̄r+5 . . . bm−3000

• f(Ap−1suff3) := Pref2000

• f(Ap−1suff4) := Pref3000

• f(Ap−1suff5) := Pref4000

• f(Ap−1suff6) := Pref5000

• f(Ap−1suff7) := Pref7000

OR

• f(Ap−1suff1) := Pref0001

• f(Ap−1suff2) := Pref1001

• f(Ap−1suff3) := Pref2000

• f(Ap−1suff4) := Pref3000

• f(Ap−1suff5) := Pref4000

• f(Ap−1suff6) := Pref5000

• f(Ap−1suff7) := Pref7000

In the second scenario, where all nodes Asuff i are leaf nodes, there are two potential cases
to consider. In the first case, all nodes of any sub-TSP-COT2 are embedded into the same
component of dimension m = 3. The function f for this case is derived as follows:

• f(Ap−1suff1) := Prefj001

• f(Ap−1suff2) := Prefj010

• f(Ap−1suff3) := Prefj011

• f(Ap−1suff4) := Prefj100

• f(Ap−1suff5) := Prefj101

• f(Ap−1suff6) := Prefj110
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Figure 5.8: Situation 2, case 2 [128].

• f(Ap−1suff7) := Prefj111

In Case 2, when all nodes Ap−1suff 1 are embedded into separate components of dimension
m = 3, we derive the rules for f as illustrated in Figure 5.8.

• f(Ap−1suff1) := Pref6001

OR

• f(Ap−1suff1) := Pref7000

OR

• f(Ap−1suff1) := Pref7000

OR

• f(Ap−1suff1) := Pref6000

5.3.5 Dilation two one-by-one edges embedding [130, 128]

Dilation two one-by-one edges embedding of TSP-CQTn

Dilation-two embedding of one-by-one edges from TSP-CQT n onto CQm is performed as
described below: For the case when n = 3, the basic function R governing this dilation two
embedding of edges is outlined as follows:

• R(Ap−1-Ap−1suff1) := Pref000-Pref100

• R(Ap−1-Ap−1suff2) := Pref000-Pref200

• R(Ap−1-Ap−1suff3) := Pref000-Pref200-Pref300

For n > 3, the dilation two embedding of one-by-one edges is executed in two scenarios. In
the first scenario, there are two cases to consider. The first case arises when C = ϕ, in which
case we employ the basic function R. An illustrative example can be observed in Figure 5.9.

85



Figure 5.9: Edges embedding situation 1, case 1 [130].

In the second case as shown in Figure 5.10, when C ̸= ϕ, and we utilize only one copy b0CQm−1
or b̄0CQm−1, the embedding follows a similar approach to situation 1, case 1. Alternatively,
R can be generated as follows:

Figure 5.10: Edges embedding situation 1, case 2 [130].

• R(ap−1-Ap−1suff1) := Pref100X-Pref100Y

• R(Ap−1-Ap−1suff2) := Pref100X-Pref300Y -Pref200Z

• R(Ap−1-Ap−1suff3) := Pref100X-Pref300Y

In the second scenario where C ̸= ϕ, both copies b0CQm−1 and b̄0CQm−1 are employed. This
leads to the derivation of a function R1 for the dilation two one-by-one edges embedding.
Within this context, three distinct cases arise, with the first illustrated in figure 5.11. The
rules governing case 1 for generating R1 are as follows:

• R1(Ap−1-Ap−1suff1) := 0Pref000X-0Pref100Y

• R1(Ap−1-Ap−1suff2) := 0Pref000X-0Pref100Y -1Pref100Z

• R1(Ap−1-Ap−1suff3) := 0Pref000X-1Pref000Y

OR

• R1(Ap−1-Ap−1suff1) := 0̄Pref000X-0̄Pref100Y

• R1(Ap−1-Ap−1suff2) := 0̄Pref000X-0̄Pref100Y -1̄Pref100Z

• R1(Ap−1-Ap−1suff3) := 0̄Pref000X-1Pref000Y

Case 2, illustrated in figure 5.12, outlines the rules that generate R1.
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              a

             b 

Figure 5.11: Edges embedding situation 2, case 1 [130].

• R1(Ap−1-Ap−1suff1) := 0̄Pref000X-0̄Pref000Y

• R1(Ap−1-Ap−1suff2) := 0̄Pref000X-0̄Pref000Y -1̄Pref000Z

• R1(Ap−1-Ap−1suff3) := 0̄Pref000X-1Pref000Y

OR

• R1(Ap−1-Ap−1suff1) := 0̄Pref000X-0̄Pref000Y

• R1(Ap−1-Ap−1suff2) := 0̄Pref000X-1̄Pref000Y

• R1(Ap−1-Ap−1suff3) := 0̄Pref000X-1Pref000Y -1Pref000Z

The rules depicted in figure 5.13 outline the generation of R1 for the last case, specifically
when t equals 2 or 3:

• R1(Ap−1-Ap−1suff1) := 0̄Pref100X-0̄Pref100Y

• R1(Ap−1-Ap−1suff2) := 0̄Pref100X-1̄Pref100Y

• R1(Ap−1-Ap−1suff3) := 0̄Pref100X-0Pref100Y -1̄Pref100Z

OR

• R1(Ap−1-Ap−1suff1) := 0̄Preft00X-0̄Preft00Y

• R1(Ap−1-Ap−1suff2) := 0̄Preft00X-0̄Preft00Y -1Pref100Z

• R1(Ap−1-Ap−1suff3) := 0̄Preft00X-1̄Preft00Y

OR
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• R1(Ap−1-Ap−1suff1) := 0̄Pref200X-0̄Pref200Y

• R1(Ap−1-Ap−1suff2) := 0̄Pref200X-1Pref200Y

• R1(Ap−1-Ap−1suff3) := 0̄Pref200X-1̄Pref200Y

a

b

Figure 5.12: Edges embedding situation 2, case 2 [130].

Dilation two one-by-one edges embedding of TSP-COTn

The procedure for embedding TSP-COT n onto CQm via dilation of two one-by-one edges
involves two scenarios:

When the edge connects two internal nodes. For the case where n = 3, the basic function R
for this dilation process, illustrated in Figure 5.14, is formulated as follows:

• R(Ap−1-Ap−1suff1) := Pref0000-Pref0001

• R(Ap−1-Ap−1suff2) := Pref0000-Pref1000

• R(Ap−1-Ap−1suff3) := Pref0000-Pref2000

• R(Ap−1-Ap−1suff4) := Pref0000-Pref2000-Pref3000

• R(Ap−1-Ap−1suff5) := Pref0000-Pref4000

• R(Ap−1-Ap−1suff6) := Pref0000-Pref4000-Pref5000

• R(Ap−1-Ap−1suff7) := Pref0000-Pref4000-Pref6000
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a

b

Figure 5.13: Edges embedding situation 2, case 3 [130].

Figure 5.14: Edges embedding situation 1 for n ≥ 3 [128].

For n > 3, the formulation of R for the dilation two one-by-one edges embedding, depicted
in Figures 5.14 and 5.15, is achieved through the application of the following group rules
(g = 1, 3):
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Figure 5.15: Edges embedding situation 1 for n > 3 [128].

• R(Ap−1-Asuff1) := Pref0000
-brbr+1br+2br+3br+4b̄r+5 . . . bm−3000

• R(Ap−1-Ap−1suff2) := Pref0000-Pref1000

• R(Ap−1-Ap−1suff3) := Pref0000-Pref2000

• R(Ap−1-Ap−1suff4) := Pref0000-Pref2000-Pref3000

• R(Ap−1-Ap−1suff5) := Pref0000-Pref4000

• R(Ap−1-Ap−1suff6) := Pref0000-Pref4000-Pref5000

• R(Ap−1-Ap−1suff7) := Pref0000-Pref4000-Pref6000

OR

• R(Ap−1-Asuff1) := Pref1000-
Pref0000-brbr+1br+2br+3br+4b̄r+5 . . . bm−3000

• R(Ap−1-Ap−1suff2) := Pref1000-brbr+1b̄r+2br+3br+4b̄r+5 . . . bm−3000

• R(Ap−1-Ap−1suff3) := Pref1000-Pref3000-Pref2000

• R(Ap−1-Ap−1suff4) := Pref1000-Pref3000

• R(Ap−1-Ap−1suff5) := Pref1000-Pref5000-Pref4000

• R(Ap−1-Ap−1suff6) := Pref1000-Pref5000

• R(Ap−1-Ap−1suff7) := Pref1000-Pref5000-Pref7000

OR

• R(Ap−1-Ap−1suff1) := Pref1000-Pref0000-Pref0001

• R(Ap−1-Ap−1suff2) := Pref1000-Pref1001

• R(Ap−1-Ap−1suff3) := Pref1000-Pref3000-Pref2000
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• R(Ap−1-Ap−1suff4) := Pref1000-Pref3000

• R(Ap−1-Ap−1suff5) := Pref1000-Pref5000-Pref4000

• R(Ap−1-Ap−1suff6) := Pref1000-Pref5000

• R(Ap−1-Ap−1suff7) := Pref1000-Pref5000-Pref7000

The second scenario arises when the edge is between an internal node and a leaf node. In
this situation, there are two cases to consider. In case 1, all edges of any sub-TSP-COT2 are
embedded in the same component of dimension m = 3 (Figure 5.16). The basic function R
for this case is derived from the following group rules:

(a)

(b)

Figure 5.16: Edges embedding situation 2 case 1 [128].

• R(Ap−1-Ap−1suff1) := Prefj000-Prefj001

• R(Ap−1-Ap−1suff2) := Prefj000-Prefj010

• R(Ap−1-Ap−1suff3) := Prefj000-Prefj010-Prefj011

• R(Ap−1-Ap−1suff4) := Prefj000-Prefj100

• R(Ap−1-Ap−1suff5) := Prefj000-Prefj100-Prefj101

• R(Ap−1-Ap−1suff6) := Prefj000-Prefj100-Prefj110
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(a)

(b)

Figure 5.17: Edges embedding situation 2 case 2 [128].

• R(Ap−1-Ap−1suff7) := Prefj000-Prefj001-Prefj111

OR

• R(Ap−1-Ap−1suff2) := Prefj001-Prefj011-Prefj010

• R(Ap−1-Ap−1suff3) := Prefj001-Prefj011

• R(Ap−1-Ap−1suff4) := Prefj001-Prefj000-Prefj100

• R(Ap−1-Ap−1suff5) := Prefj001-Prefj111-Prefj101

• R(Ap−1-Ap−1suff6) := Prefj001-Prefj111-Prefj110

• R(Ap−1-Ap−1suff7) := Prefj001-Prefj111

In Case 2, all edges Ap−1-Ap−1suff 1 are embedded between different components of dimension
m = 3 (Figure 5.17). The first rule for R is formulated as follows:

• R(Ap−1-Ap−1suff1) := Pref0001-Pref4011-Pref6001

OR

• R(Ap−1-Ap−1suff1) := Pref1001-Pref5011-Pref7001

OR

• R(Ap−1-Ap−1suff1) := Pref6000-Pref7000

OR
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• R(Ap−1-Ap−1suff1) := Pref7000-Pref6000

5.3.6 Theoretical Validation of Embeddings [131]

Lemma 1. For n < 5, TSP-CQTn is one-by-one vertex embedded into m-dimensional crossed
cubes CQm.
Proof. We will prove this by mathematical induction on n.
Base Case (n = 2) and (n = 3, 4). See tables 6.5, Table 6.6.

Induction hypothesis

Suppose that for k ≤ n− 1, TSP-CQT k is one-by-one vertex embedding into CQl with l < m
is true.
Let us now prove that it is true for k = n.

The root 0 is embedded into b0b1CQl−2 by using Prem(root). Nodes Ak−1suff 1, Ak−1suff 2,
Ak−1suff 3 are respectively embedded into b0b̄1CQl−2, b̄0b1CQl−2, b̄0b̄1CQl−2 using the basic
function f (induction hypothesis, shown in figure 5.2).

Lemma 2. For n = 5, TSP-CQTn is one-by-one vertex embedding into m-dimensional
crossed cubes CQm.
Proof. We prove lemma 2 by induction on n.
Base (n=5). See Table 6.8.

Induction hypothesis

Suppose that for k ≤ n− 1, TSP-CQT k is one-by-one vertex embedding into CQl with l < m
is true.
Let us now prove that it is true for k=n.

The root 0 is embedded into b0b1CQl−2 by using the basic function Prem(root). Nodes of
01TSP-CQT k−1 are embedded into b0CQl−1 such that: 0suff 1 is embedded into 0pref 10000
of b0b1CQl−2 using f 1 of situation 2, case 1 (figure 5.3, induction hypothesis). Other nodes
of 011TSP-CQT k−2, 012TSP-CQT k−2, 013TSP-CQT k−2 are respectively embedded into the
root embedded component, b0b̄1CQl−2 of b0CQl−1, and b0b̄1CQl−2 of b0CQl−1 using f (figure
5.2, induction hypothesis).

Nodes of 02TSP-CQT k−1 are embedded into b̄0CQl−1 such that: 0suff 2 is embedded into
1pref 10000 of b̄0b1CQl−2 by Definition using f 1 of situation 2, case 1 (figure 5.3). Other
nodes of 021TSP-CQT k−2, 022TSP-CQT k−2, 023TSP-CQT k−2 are respectively embedded
into the same parent component (b̄0b1CQl−2), b̄0b̄1CQl−2 of b̄0CQl−1, and b̄0b̄1CQl−2 of b̄0CQl−1
using f (figure 5.2, induction hypothesis).

Nodes of 03TSP-CQT k−1 are embedded into CQl such that: 0suff 3 is embedded into
1pref 00000 of b̄0b1CQl−2 by Definition using f 1 of situation 2, case 1 (figure 5.3); and
03suff 1 is embedded into this same component b̄0b1CQl−2 using f 1 of situation 2, case 2
(figure 5.4, induction hypothesis). Node 03suff 2 is embedded into b0b1CQl−2 by Definition
using f 1 of situation 2, case 2 (figure 5.4). Nodes of 031TSP-CQT k−2, 032TSP-CQT k−2 are
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embedded into the same parent component, respectively b̄0b1CQl−2, b0b1CQl−2 using f (figure
5.2, induction hypothesis).

Nodes of 033TSP-CQT k−2 are embedded into CQl such that: 03suff 3 is embedded into the
same parent component (b̄0b1CQl−2) using f 1 of situation 2, case 2 (figure 5.4, induction
hypothesis). For nodes of 0331TSP-CQT k−3 are embedded into b̄0b1CQl−2 and b0b1CQl−2
such that:

• 033suff 1 is embedded into the same parent component (b̄0b1CQl−2) using f (figure 5.2,
induction hypothesis);

• 0331suff 1 is embedded into the same parent component (b̄0b1CQl−2) using f 1 of situation
2, case 3 (figure 5.5, induction hypothesis);

• nodes 0331suff 2 or 0331suff 3 are embedded into b0b1CQl−2 by Definition using f 1 of
situation 2, case 3 (figure 5.5).

For nodes of 0332TSP-CQT k−3 are embedded into b̄0b̄1CQl−2 and b0b̄1CQl−2 such that:

• 033suff 2 is embedded into b̄0b̄1CQl−2 of b̄0CQl−1 using f (figure 5.2, induction hypothe-
sis);

• nodes 0332suff 1 or 0332suff 2 are embedded into the same parent component (b̄0b̄1CQl−2)
using f 1 of situation 2, case 3 (figure 5.5, induction hypothesis);

• node 0332suff 3 is embedded into b0b̄1CQl−2 of b0CQl−1 by Definition using f 1 situation
2, case 3 (figure 5.5).

For nodes of 0333TSP-CQT k−3 are embedded into b̄0b̄1CQl−2 and b0b̄1CQl−2 such that:

• 033suff 3 is embedded into b̄0b̄1CQl−2 of b̄0CQl−1 using f (figure 5.2, induction hypothe-
sis);

• nodes 0333suff 1 or 0333suff 2 are embedded into the same parent component (b̄0b̄1CQl−2)
using f 1 of situation 2, case 3 (figure 5.5, induction hypothesis);

• node 0333suff 3 is embedded b0b̄1CQl−2 of b0CQl−1 by Definition using f 1 of situation
2, case 3 (figure 5.5).

Theorem 1. For n > 5, a compressed quadtree TSP-CQTn is one-by-one vertex embedding
into m-dimensional crossed cubes CQm.
Proof. We prove theorem 1 by induction on n.
Base (n=6,8). See Tables 6.7, and 6.9.

Induction hypothesis

Suppose that for k ≤ n− 1, TSP-CQT k is one-by-one vertex embedding into CQl with l < m
is true.
Let us now prove that it is true for k = n.
There are two cases:
Case a: C = ϕ

One-by-one vertex embedding of 01TSP-CQT k−1, 02TSP-CQT k−1, 03TSP-CQT k−1, and
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0TSP-CQT k respectively into b0b̄1CQl−2, b̄0b1CQl−2, b̄0b̄1CQl−2, and b0b1CQl−2; in this case,
we use the same actions as lemma 1.
Case b: C ̸= ϕ

One-by-one vertex embedding of 01TSP-CQT k−1, 02TSP-CQT k−1, 03TSP-CQT k−1, and
0TSP-CQT k respectively into b0CQl−1, b̄0CQl−1, b0CQl−1 and b̄0CQl−1, and the root 0 into
b0b1CQl−2; in this case, we use the same actions as lemma 2 except the TSP-CQT : 0111TSP-
CQT k−3, 0311TSP-CQT k−3, and 0321TSP-CQT k−3 are embedded as situation 2, case 1, b as
shown in figure 5.3.

lemma 3. For any n ≥ 2, nodes in the same sub-TSP-COT2 of any TSP-COTn are one-by-one
vertex embedding into the same sub-CQ3 of any supernode of CQm.
Proof. We prove lemma 3 by induction on n.
Base.
For n = 2: as shown in Figure 6.13.

Induction hypothesis
Suppose that for k ≤ n−1, any sub-TSP-COT2 of TSP-COTk is one-by-one vertex embedding
into any sub-CQ3 of CQl with l < m is true.
Is it true for k = n ?.
For any sub-TSP-COT k′ , sub-CQl′ with k

′ = 2, l
′ = 3; the root Ap−1 of sub-TSP-COT k′ are

embedded into pref j000; one-by-one embedding vertex of Ap−1suff 1, Ap−1suff 2, Ap−1suff 3,
Ap−1suff 4, Ap−1suff 5, Ap−1suff 6, and Ap−1suff 7 are respectively embedded using rules of
situation 2, case 1 (figure 6.13) into:

• The same parent component pref j0CQl′ −1 (induction hypothesis): pref j001, pref j010,
pref j011

• The component pref j1CQl′ −1 by Definition : pref j100, pref j101, pref j110, pref j111.

lemma 4. For any n ≥ 3, nodes in the same sub-TSP-COT3 of any TSP-COTn is one-by-one
vertex embedding into the same sub-CQ6 of any supernode of CQm.
Proof. We prove lemma 4 by induction on n.
Base (n=3). See Tables 6.14 and 6.15.

Induction hypothesis
Suppose that for k ≤ n−1, any sub-TSP-COT3 of TSP-COTk is one-by-one vertex embedding
into any sub-CQ6 of CQl with l < m is true.
Is it true for k = n ?.
For any sub-TSP-COT k′ , sub-CQl′ with k

′ = 3, l
′ = 6. The root 0 is embedded into 000CQl′ −3

by using the basic function, Prem(root). Nodes 0suff 1, 0suff 2, 0suff 3, 0suff 4, 0suff 5, 0suff 6,
and 0suff 7 are respectively embedded using the basic function f (figure 5.6) into:

• The same parent component 0CQl′ −1 (induction hypothesis): pref 0001, pref 1000,
pref 2000, and pref 3000.

• The component 1CQl′ −1 by Definition : pref 4000, pref 5000, and pref 6000.

All nodes of 01TSP-COT k′ −1, 02TSP-COT k′ −1, 03TSP-COT k′ −1, 04TSP-COT k′ −1, 05TSP-
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COT k′ −1, 06TSP-COT k′ −1, 07TSP-COT k′ −1, and 0TSP-COT k′ are embedded as lemma 5;
except the nodes 01suff 1 and 07suff 1 are respectively embedded using rules of situation 2,
case 2 (figure 5.18) into the component 1CQl′ −1 by Definition : pref 6001 , and the same
parent component 1CQl′ −1 (induction hypothesis): pref 7000.

Theorem 2. A TSP-compressed octree of dimension n TSP-COTn is one-by-one vertex
embedding into m-dimensional crossed cubes CQm for any n > 3.
Proof. We prove Theorem 2 by induction on n.
Base (n=4). See Tables 6.16, and 6.17.

Induction hypothesis
Suppose that for k ≤ n− 1, TSP-COT k one-by-one vertex embedding into CQl with l < m is
true.
Let us now prove that it is true for k = n, l = m.
The root 0 is embedded into 000CQl−3 by using the basic function, Prem(root). Then, nodes
Ap−1suff 1, Ap−1suff 2, Ap−1suff 3, Ap−1suff 4, Ap−1suff 5, Ap−1suff 6, Ap−1suff 7 are respectively
embedded using rules of situation 1, group 1 (figure 5.6) into:

• The same parent component 0CQl′ −1 (induction hypothesis): brbr+1br+2br+3br+4b̄r+5 . . . bk−3000,
pref 1000, pref 2000, and pref 3000.

• The component 1CQl′ −1 by Definition : pref 4000, pref 5000, and pref 6000.

Except for all nodes Ap−21suff 2, Ap−21suff 7 are respectively embedded using rules of situation
1, group 2 (figure 5.19) into the same parent component 0CQl′ −1 (induction hypothesis):
brbr+1b̄r+2br+3br+4b̄r+5 . . . bk−3000 and the component 1CQl′ −1 by Definition : pref 7000.
Nodes of TSP-COT k−t where k − t = 3 are embedded as lemma 6; except nodes Ap−21suff 2,
Ap−21suff 7 of Ap−21TSP-COT k−t are embedded using rules of situation 1, group 3 into
the same parent component 0CQl′ −1 (induction hypothesis): pref 1001, and the component
1CQl′ −1 by Definition : pref 7000; and Ap−312suff 1, Ap−317suff 1 of Ap−21TSP-COT k−t are
embedded using rules of situation 2, case 2 (figure 5.18) into the component 1CQl′ −1 by
Definition : pref 7001, and the same parent component 1CQl′ −1 (induction hypothesis):
pref 6000.

Lemma 5. For any n < 5, a compressed quadtree TSP-CQTn of dimension n is dilation two
one-by-one edges embedding onto m-dimensional crossed cubes CQm.
Proof. We prove lemma 5 by induction on n.
Base (n=2,4). See Tables 6.10, and 6.11.

Induction hypothesis

Suppose that for k ≤ n − 1, TSP-CQT k is dilation two one-by-one edges embedding onto
CQl with l < m is true.
Is it true for k = n ?.

Edges between the root 0 and 01TSP-CQT k−1, 02TSP-CQT k−1, and 03TSP-CQT k−1 are em-
bedded respectively onto paths between b0b1CQl−2 and b0b̄1CQl−2, b0b1CQl−2 and b̄0b1CQl−2,
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and b0b1CQl−2 and b̄0b1CQl−2 and b̄0b̄1CQl−2. Edges in this lemma are embedded using R
(induction hypothesis, situation 1, case 1, as shown in figure 5.9).

Lemma 6. For any n ≥ 5, all edges in the same TSP-CQT5 of any TSP-CQTn is dilation
two one-by-one edges embedding onto paths in the same CQ7 of any supernode of CQm.
Proof. We prove lemma 6 by induction on n.
Base (n=5). See Tables 6.12, 6.13.

Induction hypothesis

Suppose that for k ≤ n− 1, any TSP-CQT5 of TSP-CQTk is dilation two one-by-one edges
embedding onto any CQ7 of CQl with l < m is true.
Is it true for k = n ?.

For any TSP-CQT k′ , CQl′ with k
′ = 5, l

′ = 7; the edge between 0TSP-CQT k′ , 01TSP-
CQT k′ −1 is embedded onto a path in the same component b0b1CQl′ −2 using R1 of situation
2, case 1 (figure 5.11, induction hypothesis). For edges of 01TSP-CQT k′ −1 are embedded
onto paths between b0b1CQl′ −2, b0b̄1CQl′ −2, and the same b0b1CQl′ −2, b0b̄1CQl′ −2 of b0CQl′ −1
using R (figures 5.9, 5.10, induction hypothesis).

The edge between 0TSP-CQT k′ , 02TSP-CQT k′ −1 is embedded onto a path in the same com-
ponent b0b1CQl′ −2 (induction hypothesis), and between b0b1CQl′ −2, b̄0b1CQl′ −2 by Definition
using R1 of situation 2, case 1 (figure 5.11). For edges of 02TSP-CQT k′ −1 are embedded
onto paths between b̄0b1CQl′ −2, b̄0b̄1CQl′ −2, and the same b̄0b1CQl′ −2, b̄0b̄1CQl′ −2 of b̄0CQl′ −1
using R (figures 5.9, 5.10, induction hypothesis).

The edge between 0TSP-CQT k′ , 03TSP-CQT k′ −1 is embedded onto a path between b0b1CQl′ −2,
b̄0b1CQl′ −2 by Definition using R1 of situation 2, case 1 (figure 5.11). For edges of 03TSP-
CQT k′ −1 are embedded as follows: the edge between 03TSP-CQT k′ −1, 031TSP-CQT k′ −2 is
embedded onto a path in the same component b̄0b1CQl′ −2 using R1 of situation 2, case 2
(figure 5.12, induction hypothesis); the edge between 03TSP-CQT k′ −1, 032TSP-CQT k′ −2 is
embedded onto a path in the same component b̄0b1CQl′ −2 (induction hypothesis), and between
b̄0b1CQl′ −2, b0b1CQl′ −2 by Definition using R1 of situation 2, case 2 (figure 5.12). Edges
of 031TSP-CQT k′ −2, 032TSP-CQT k′ −2 are embedded onto paths in the same b0b1CQl′ −2,
b̄0b1CQl′ −2 using R of situation 1, case 1(figure 5.9, induction hypothesis).

The edge between 03TSP-CQT k′ −1, 033TSP-CQT k′ −2 is embedded onto a path in the same
component b̄0b1CQl′ −2 using R1 of situation 2, case 2 (figure 5.12, induction hypothesis). For
edges of 033TSP-CQT k

′ −2 are embedded as follows: the edge between 033TSP-CQT k
′ −2,

0331TSP-CQT k′ −3 is embedded onto a path in the same component b̄0b1CQl′ −2 using R
of situation 1, case 1 (figure 5.9, induction hypothesis). Edges of 0331TSP-CQT k′ −3 are
embedded onto paths in the same component b̄0b1CQl′ −2 (induction hypothesis), between
b̄0b1CQl′ −2, b0b1CQl′ −2 by Definition , and in the same component b0b1CQl′ −2 (induction
hypothesis) using R1 of situation 2, case 3 (figure 5.13).

Edges between 033TSP-CQT k′ −2, 0332TSP-CQT k′ −3 or 0333TSP-CQT k′ −3 are embedded
onto paths between b̄0b1CQl′ −2, b̄0b̄1CQl′ −2 of b̄0CQl′ −1 using R of situation 1, case 1 (figure
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5.9, induction hypothesis).

Edges of 0332TSP-CQT k′ −3 or 0333TSP-CQT k′ −3 are embedded onto paths in the same
component b̄0b̄1CQl′ −2 (induction hypothesis), and between b̄0b̄1CQl′ −2, b0b̄1CQl′ −2 by Defi-
nition using R1 of situation 2, case 3 (figure 5.13).

Theorem 3. For any n > 5, a compressed quadtree TSP-CQTn is dilation two one-by-one
edges embedding onto m-dimensional crossed cubes CQm.
Proof. We prove theorem 3 by induction on n.
Base. See Tables 6.11, and 6.13.

Induction hypothesis

Suppose that for k ≤ n − 1, TSP-CQT k is dilation two one-by-one edges embedding onto
CQl with l < m is true.
Is it true for k = n ?.
There are two cases:
Case a: C = ϕ

Dilation two one-by-one edges embedding between the root 0 and respectively 01TSP-
CQT k−1, 02TSP-CQT k−1, and 03TSP-CQT k−1 onto paths respectively between b0b1CQl−2
and b0b̄1CQl−2, b0b1CQl−2 and b̄0b1CQl−2, b0b1CQl−2 and b̄0b̄1CQl−2. In this case, we use the
same actions as lemma 5.
Case b: C ̸= ϕ

Dilation two one-by-one edges embedding between the root 0 and respectively 01TSP-CQT k−1,
02TSP-CQT k−1, and 03TSP-CQT k−1 onto paths in the same supernode b0b1CQl−2, and
between b0b1CQl−2, b̄0b1CQl−2 (situation 2, case 1, a figure 5.11). Dilation two one-by-one
edges of 01TSP-CQT k−1, 02TSP-CQT k−1, and 03TSP-CQT k−1 respectively onto paths in
b0CQl−1, b̄0CQl−1, and both b0CQl−1, b̄0CQl−1.

In this case, we use the same actions as lemma 6 except the edges of TSP-CQT : 0111TSP-
CQT k−3, 0311TSP-CQT k−3, and 0321TSP-CQT k−3 are embedded like situation 2, case 1, b
(figure 5.11). Moreover, edges of TSP-CQT : 01113TSP-CQT k−4, 03113TSP-CQT k−4, and
03213TSP-CQT k−4 are embedded as situation 2, case 2, b (figure 5.12).

lemma 7. For any n ≥ 2, all edges in the same sub-TSP-COT2 of any TSP-COTn is dilation
two one-by-one edges embedding onto the same sub-CQ3 of any supernode of CQm.
Proof. We prove lemma 7 by induction on n.
Base . See Table 6.18.

Induction hypothesis
Suppose that for k ≤ n − 1, any sub-TSP-COT2 of TSP-COTk is dilation two one-by-one
edges embedding onto any sub-CQ3 of CQl with l < m is true.
Let us now prove that it is true for k = n.
For any sub-TSP-COT k′ , sub-CQl′ with k

′ = 2, l
′ = 3. All edges between the root Ap−1 and

Ap−1suff1, Ap−1suff2, Ap−1suff3, Ap−1suff4, Ap−1suff5, Ap−1suff6, and Ap−1suff7 are embedded
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using R (rules of situation 2, case 1, group 1, figure 5.16, (a)) respectively onto paths:

• In the same component 0CQl′ −1 (induction hypothesis): pref j000-pref j001, pref j000-
pref j010, and pref j000-pref j010-pref j011.

• By Definition : pref j000-pref j100.

• By Definition and in the same component 1CQl′ −1 (induction hypothesis): pref j000-
pref j100-pref j101, and pref j000-pref j100-pref j110.

• In the same component 0CQl′ −1 (induction hypothesis) and by Definition : pref j000-
pref j001-pref j111.

lemma 8. For any n ≥ 3, all edges in the same sub-TSP-COT3 of any TSP-COTn are
dilation two one-by-one edges embedding onto the same sub-CQ6 of any supernode of CQm.
Proof. We prove lemma 8 by induction on n.
Base (n ≤ 4). Tables 6.20, Table 6.19

Induction hypothesis
Suppose that for k ≤ n − 1, any sub-TSP-COT2 of TSP-COTk is dilation two one-by-one
edges embedding onto any sub-CQ3 of CQl with l < m is true.
Let us now prove that it is true for k = n.
For any sub-TSP-COT k′ , sub-CQl′ with k

′ = 3, l
′ = 6. All edges between the root 0

and 01TSP-COT k′ −1, 02TSP-COT k′ −1, 03TSP-COT k′ −1, 04TSP-COT k′ −1, 05TSP-COT k′ −1,
06TSP-COT k′ −1, and 07TSP-COT k′ −1 are respectively embedded using R (figure 5.14) onto
paths:

• In the same component 0CQl′ −1 (induction hypothesis): in the same component
000CQl

′ −3, between 000CQl
′ −3 and 001CQl

′ −3, between 000CQl
′ −3 and 010CQl

′ −3,
and between 000CQl′ −3 and 010CQl′ −3 and 011CQl′ −3.

• By Definition : between 000CQl′ −3 and 100CQl′ −3.

• By Definition and in the same component 1CQl′ −1 (induction hypothesis): between
000CQl

′ −3 and 100CQl
′ −3 and 101CQl

′ −3, and between 000CQl
′ −3 and 100CQl

′ −3 and
110CQl′ −3.

Edges of 02TSP-COT k′ −1, 03TSP-COT k′ −1, 04TSP-COT k′ −1, 05TSP-COT k′ −1, and 06TSP-
COT k′ −1 are embedded as lemma 7. Edges of 01TSP-COT k′ −1, and 01TSP-COT k′ −7 are
embedded using R (rules of situation 2, case 1, figure 5.16, (b)) onto paths:

• In the same component pref j0CQ2 (induction hypothesis): pref j001-pref j011-pref j010,
and pref j001-pref j011.

• In the same component pref j0CQ2 (induction hypothesis) and by Definition : pref j001-
pref j000-pref j100.

• By Definition and in the same component pref j1CQ2 (induction hypothesis): pref j001-
pref j111-pref j101, and pref j001-pref j111-pref j110.

• By Definition : pref j001-pref j111.
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Except for 0suff 1-01suff 1, 0suff 7-07suff 1 are embedded using R (rules of situation 2, case 2,
figure 5.17, (a)) onto paths:

• By Definition and in the same component 1CQl′ −1 (induction hypothesis): between
000CQl′ −3 and 100CQl′ −3 and 110CQl′ −3.

• In the same component 1CQl′ −1 (induction hypothesis): 110CQl′ −3 and 111CQl′ −3.

Theorem 4. A TSP-compressed octree TSP-COTn of dimension n is one-by-one dilation
two embedding into m-dimensional crossed hypercube CQm for any n > 3.
Proof. We prove Theorem 4 by induction on n.
Base. See Table 6.22, and 6.21.

Induction hypothesis
Suppose that for k ≤ n− 1, TSP-COT k one-by-one dilation two embedding into CQl with
l < m is true.
Let us now prove that it is true for k = n.
All edges between Ap−1-Ap−1suff 1, Ap−1-Ap−1suff 2, Ap−1-Ap−1suff 3, Ap−1-Ap−1suff 4, Ap−1-
Ap−1suff 5, Ap−1-Ap−1suff 6, and Ap−1-Ap−1suff 7 are respectively embedded using R (rules of
situation 1, group 1, figure 5.14) onto paths between:

• In the same component 0CQl−1 (induction hypothesis): in the same component
000CQl−3, between 000CQl−3 and 001CQl−3, between 000CQl−3 and 010CQl−3, and
between 000CQl−3 and 010CQl−3 and 011CQl−3.

• By Definition : between 000CQl−3 and 100CQl−3.

• By Definition and in the same component 1CQl−1 (induction hypothesis): between
000CQl−3 and 100CQl−3 and 101CQl−3, and between 000CQl−3 and 100CQl−3 and
110CQl−3.

Except for edges between Ap−1suff1-Ap−21suff1, Ap−1suff1-Ap−21suff2, Ap−1suff1-Ap−21suff3,
Ap−1suff1-Ap−21suff4, Ap−1suff1-Ap−21suff5, Ap−1suff1-Ap−21suff7, and Ap−1suff1-Ap−21suff6
are respectively embedded using R (rules of situation 1, group 2, figure 5.15) onto paths:

• In the same component 0CQl−1 (induction hypothesis): between 001CQl−3 and 000CQl−3
and in the same component 000CQl−3, in the same component 001CQl−3, between
001CQl−3 and 011CQl−3 and 010CQl−3, between 001CQl−3 and 011CQl−3.

• By Definition and in the same component 1CQl′ −1 (induction hypothesis): between
001CQl−3 and 101CQl−3 and 100CQl−3, and between 001CQl−3 and 101CQl−3 and
111CQl−3.

• By Definition : 001CQl−3 and 101CQl−3.

For edges of any Ap−11TSP-COT k−t where k − t = 3; edges between level’s 1, 2 nodes are
embedded using R (rules of situation 1, group 3, figure 5.15); all edges Ap−21suff 2-Ap−312suff 1,
Ap−21suff 7-Ap−317suff 1 are embedded using R (rules of situation 2, case 2, figure 5.17, (b)).
All edges of Ap−112TSP-COT 2 are embedded using R (rules of situation 2, case 1, figure 5.16,
(b)).
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Figure 5.18: Process of generating the Initial Population [133].

5.4 Processing: Hybrid Parallel solving [133]
Following the preprocessing stage, where we strategically decompose the TSP into manageable
subproblems through clustering, we proceed to the processing step. In this phase, we employ
optimization algorithms tailored to handle the localized clusters generated earlier. These
algorithms are designed to efficiently solve the smaller subproblems, taking advantage of the
partitioning introduced during preprocessing.

The process functions within a crossed cubes interconnection network, as outlined in Algorithm
2. This framework consists of leaf nodes (basic nodes), internal nodes (leader nodes), and
a root node, as depicted in Figure 5.18. Each leaf node autonomously generates an initial
population of concise open Hamiltonian paths for small-scale TSP. This generation is facilitated
by employing effective heuristics such as nearest neighbor and ant colony optimization, which
construct individual solutions efficiently.

Next, at the internal nodes, the process combines subpath solutions using a genetic represen-
tation coding approach. The individuals at these nodes are composed of two key components:
firstly, an arrangement of the subpaths from the child nodes, where each subpath’s position is
determined (e.g., left child first, middle child second, right child third); secondly, a binary
string that signifies the connection points between these subpaths (0 indicating the starting
point and 1 indicating the ending point). For a visual example illustrating the encoding and
decoding of an individual at internal nodes, refer to Figure 5.19.

Figure 5.19: Encoding/decoding an individual in internal nodes [133].

At the root node, the process conducts an evaluation and downward forwarding selection of
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Algorithm 2: Generate Initial Population
Data: Hierarchical topology, Maximum iterations
Result: Initial population of solutions
Parameters : hierarchicalTopology, maxIterations
Initialization:; Set the values of hierarchicalTopology; Set the value of maxIterations;
Generate Initial Population:;
for each leafNode in hierarchicalTopology do

▷ Leaf Node Operation
paths← generateHeuristicPaths() ▷ e.g., nearest neighbor or ant colony optimization
addPathsToPopulation(leafNode, paths)

end
for each internalNode in hierarchicalTopology do

▷ Internal Node Operation
childPaths← getPathsFromChildren(internalNode)
individual← encodeIndividual(internalNode, childPaths)
addIndividualToPopulation(internalNode, individual)

end
for each node in hierarchicalTopology do

▷ Up Forwarding Selection, Crossover, and Mutation
if node isNotRootNode then

if node isLeafNode then
upForwardingSelection(node)
mutateSubpaths(node)
addPathsToPopulation(leafNode, paths)

end
else

upForwardingSelection(node)
crossoverAndMutate(node)
paths← decodeIndividuals(internalNode, childPaths)
addPathsToPopulation(InternalNode, paths)

end
end
else

▷ Root Node Operation
evaluateAndDownSelect(hierarchicalTopology)

end
end

▷ Stopping Criteria
if iterations < maxIterations then

GenerateInitialPopulation(hierarchicalTopology, maxIterations) ▷ Recursive call for
the next iteration

end
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solutions, focusing on minimizing the TSP tour distance objective. This selection process is
carried out using a tournament selection method. Subsequently, the root node shares the
indices of the selected solutions with all other nodes through broadcasting. For a detailed
procedure, refer to Algorithm 3.

Algorithm 3: Evaluate and Down Forwarding Selection
Data: Hierarchical topology
Result: Indices of selected solutions
Evaluation and Down Forwarding Selection:;
for each rootChild in rootChildren do

▷ Calculate and store tour distances
tourDistance← calculateTourDistance(rootChild.solution)

storeTourDistance(rootChild, tourDistance)
end
selectedIndices← tournamentSelection(rootChildren)
broadcastSelection(hierarchicalTopology, selectedIndices)

Crossover and mutation operations are executed in a distributed manner at each node, starting
from the leaf nodes and progressing upwards to the internal nodes. Initially, leaf nodes handle
these operations on their respective subpaths, and the results are subsequently propagated to
the internal nodes, where recombination of subpath orderings and connections occurs.

Before transmitting updated solutions to parent nodes, a process called Up forwarding selection
takes place to refine the population and enhance diversity. Each node selects one of three
methods randomly: best-fit (favoring minimum distance tours), worst-fit (favoring maximum
distance tours), or tournament selection. The iteration count serves as the stopping criterion.
Refer to Algorithm 4 for a detailed explanation.

Algorithm 4: Up Forwarding Selection
Data: Node
Result: Selected individuals
Up Forwarding Selection:;
Procedure upForwardingSelection(node) ▷ Randomly choose one of three methods:
best-fit, worst-fit, or tournament selection method← randomlyChooseMethod()

if method == "best-fit" then
bestFitSelection(node)

end
if method == "worst-fit" then

worstFitSelection(node)
end
if method == "tournament-selection" then

tournamentSelection(node)
end

The primary objective of generating the initial population is to explore the search space
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comprehensively, aiming to identify a diverse array of candidate solutions covering a broad
spectrum of objective functions. This approach provides a solid foundation for the subsequent
local search algorithm in the second stage.

5.5 Processing: Optimization for refinement initial so-
lutions [133]

After obtaining the initial population through the hybrid parallel algorithm, a simulated
annealing metaheuristic is employed to refine and optimize the solutions further. The localized
clusters created during the initial population generation process play a crucial role in this
refinement phase by facilitating efficient perturbation moves, which enhance exploration
capabilities.

Various neighborhood search structures, such as k-opt, insertion, relocate, inverse, and swap
operators, are utilized to generate new solutions.

The temperature schedule for the simulated annealing process is meticulously designed to
ensure effective convergence. It decreases linearly according to the following formula:

T = T0

1 + λ
(

iteration
tot_iter

)β (5.1)

Here, T0 represents the initial temperature, serving as a scaling factor that determines
the overall rate of decrease for T . λ controls the rate of decrease as iterations progress,
while β governs the overall behavior of the temperature schedule. The parameters iteration
and tot_iter denote the current iteration number and the total number of iterations to be
performed, respectively.

5.6 Visualisation and Interpritation
Once optimal or near-optimal solutions to the TSP instances have been acquired, it becomes
essential to visualize and interpret the outcomes. This step offers valuable insights into how
effectively the proposed algorithm leverages problem structures across various scales.

5.6.1 Illustrating the structures of clusters through visualization

Mapping the hierarchical clustering process highlights the significant divisions of cities at
every level of the tree. By visualizing these clusters on instance maps, we uncover closely-knit
local groupings that accurately represent geometric similarities. This process serves to confirm
the effectiveness of the quadtree construction approach.
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5.6.2 Illustrating the graph embedding
Through visual representations, we aim to offer a comprehensive understanding of how the
hierarchical TSP representation aligns with the interconnected nodes within the crossed cube
topology. Our goal is to create visual narratives that effectively convey the synergy between
the hierarchical representation approach and the distinctive characteristics of the crossed
cubes network.

5.6.3 Illustrating the solution paths
Visualizing the optimized TSP routes produced by each algorithm provides a straightforward
understanding of their effectiveness and arrangement. By employing advanced visualization
methods, we illustrate these paths on Euclidean planes, facilitating a direct assessment of
their lengths, patterns, and overall performance.

5.6.4 Interpreting the boundary interactions
Examining the connections established between clusters helps to comprehend the interfaces
and interaction hubs within the problem. This insight directs additional preprocessing efforts,
such as considering merging boundary cities, to optimize the problem further.

5.6.5 Evaluating of solutions, and runtime: Statistical examination
Thorough statistical analyses, encompassing measures such as mean, standard deviation,
and relative error, are undertaken to validate the significance of observed disparities. These
evaluations enable us to draw confident conclusions regarding algorithmic superiority across
varying conditions. Moreover, to enhance the depth of understanding regarding the influence of
parallelization versus congestion levels, we complemented statistical analyses of runtimes with
insightful visual representations. By integrating graphical visualization with statistical analysis,
we enrich the interpretation of experiments, providing nuanced and visual confirmation of our
findings.

5.7 Conclusion
In this chapter, we have presented a comprehensive framework for addressing the Traveling
Salesman Problem (TSP) through advanced modeling techniques. We explored feature
selection, highlighting enhancements to clustering algorithms like Enhanced k-means, K-
Affinity Propagation (AP), and K-Density Peaks Clustering (K-DPC). Additionally, we detailed
the process of TSP-Compressed Quadtree/Octree-based recursive hybrid clustering, as well as
the embedding of the TSP-Compressed Quadtree/Octree into a Crossed Cubes Interconnection
Network. This embedding aspect is crucial for optimizing the TSP representation and
exploiting the unique properties of the crossed cubes network for efficient traversal. Emphasis
was placed on hybrid parallel solving techniques to refine initial solutions and enhance
optimization efficacy. Visualization and interpretation provided insights into cluster structures,
graph embedding, and solution paths. This framework sets the stage for subsequent chapters
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containing simulations, results, and discussions, aiming to contribute to the advancement of
optimization methodologies for the TSP.
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Chapter 6

Experimental Results of
Implementation of Proposed Paradigm
and Evaluation

6.1 Introduction
In this chapter, we delve into the simulation of our proposed modeling paradigm, aimed at
enhancing the efficiency and effectiveness of solving the Traveling Salesman Problem (TSP).
Building upon the comprehensive exploration of TSP-solving techniques in the previous
chapter, we detail our contributions and innovations in feature selection, optimization, and
visualization modules. Our focus is particularly on our novel approach to feature selection,
which is designed to address the inherent complexities of the TSP and improve solution quality.
This chapter serves as a practical demonstration of our proposed paradigm, where we apply
our techniques to simulated TSP instances to evaluate their performance and effectiveness
in TSPLIB instances. Through rigorous simulations, we aim to validate the efficacy of
our approach and provide insights into its potential applications in solving real-world TSP
instances.

6.2 Environment
For our implementation and experimental evaluation, we utilized high-performance computing
resources equipped with an Intel Xeon processor and 64 GB of RAM. Our custom Python-
based algorithm made extensive use of widely-used open-source packages, including Anaconda
for data science tasks and Scikit-learn for its efficient machine learning tools such as clustering.
To adapt Scikit-learn’s implementations to our approach, we customized certain functionalities.
Additionally, we harnessed the mpi4py library for parallel and distributed simulations. While
the MPI framework inherently supports Cartesian topologies using functions like Create_cart,
our proposed crossed cubes topology posed a challenge as existing MPI functions didn’t
directly support it. To overcome this, we developed a new custom function within our mpi4py
implementation, enabling the establishment of the crossed cube interconnection between
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processing elements as required by our algorithm.

6.3 Datasets
To evaluate the efficiency and scalability of our intelligent algorithm, we conducted tests using
benchmark TSP instances sourced from the TSPLIB library [122]. This library offers a wide
range of problem sizes, spanning from small to large instances, enabling us to validate our
method across a spectrum of complexities. Our selection of instances encompassed a diverse
sample, including variations in size (small, medium, and large) and structural properties,
ensuring comprehensive validation of our approach.

6.4 Analyzing the performance of enhanced K-means
We conducted experiments on five distinct instances in assessing the proposed enhancement
and its two variants (Eil51, Berlin52, Eil76, KroA100, and Eil101). Furthermore, we compared
the performance of enhanced K-means with standard K-means. To evaluate clustering quality
and compactness, we employed the Davies-Bouldin Index (DBI), while the Gini coefficient was
used to gauge the distribution of results among clusters. The parameter r in our proposition
holds significant importance as it directly influences both the clustering quality and the
distribution of points across clusters.

6.4.1 Comparative performance analysis (standard K-means Vs
Enhanced variants)

The comparative analysis of clustering techniques, as depicted in Table 6.1, involved evaluat-
ing standard K-means and its enhanced variants (1 and 2) across multiple TSP instances.
The findings consistently show that the enhanced variants outperformed standard K-means
regarding the DBI metric, with DIAMETER_KMEANS exhibiting superior cluster separation
and compactness. Although Gini values remained relatively consistent across all methods,
the enhanced variants displayed promise in achieving a more balanced distribution of data
among clusters.

Solely focusing on DBI values, our enhanced K-means variants (1 and 2) exhibit slightly
better performance than the standard K-means algorithm in terms of clustering quality and
cluster compactness. Specifically, DIAMETER_KMEANS consistently achieves the most
favorable results in terms of DBI, as illustrated in Table 6.2. For example, in the Eil51
instance, DIAMETER_KMEANS achieves the lowest DBI of 1.16, compared to 1.20 for
K-means and 1.17 for SSE-SPLITTING_KMEANS. Similar trends are observed across other
instances such as Berlin52, Eil76, and KroA100, where DIAMETER_KMEANS consistently
produces the lowest DBI values, underscoring its superior clustering performance. Refer to
Figure 6.1 for visualization.

According to the Gini values, both SSE-SPLITTING_KMEANS and DIAMETER_KMEANS
demonstrate a slightly more balanced distribution of data points among clusters compared
to the standard K-means algorithm. Notably, DIAMETER_KMEANS consistently achieves
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Instance Method DBI Gini
Eil51 K-means 1.20 0.23

SSE-SPLITTING_KMEANS 1.19 0.21
DIAMETER_KMEANS 1.17 0.22

Berlin52 K-means 1.38 0.26
SSE-SPLITTING_KMEANS 1.27 0.23

DIAMETER_KMEANS 1.36 0.24
Eil76 K-means 1.17 0.24

SSE-SPLITTING_KMEANS 1.16 0.23
DIAMETER_KMEANS 1.16 0.24

kroA100 K-means 1.30 0.30
SSE-SPLITTING_KMEANS 1.30 0.26

DIAMETER_KMEANS 1.26 0.29
Eil101 K-means 1.19 0.24

SSE-SPLITTING_KMEANS 1.18 0.23
DIAMETER_KMEANS 1.17 0.24

Table 6.1: DBI and Gini Values for Different Instances and Methods in K-means and Enhanced
K-means Variants.

optimal results in terms of Gini values, as outlined in Table 6.3. For instances such as KroA100,
Eil76, and Eil101, DIAMETER_KMEANS achieves the lowest Ginis, with values of 0.26, 0.22,
and 2.21, respectively, indicating its superior performance compared to both KMEANS and
SSE-SPLITTING_KMEANS. However, it’s worth noting that KroA100 exhibits higher Gini
indices across all methods, suggesting that clustering performance may be more challenging
for this particular instance. Refer to Figure 6.2 for visualization.

6.4.2 Influence of Parameter r to enhanced K-means
Our thorough experimental investigations shed light on how two crucial parameters, labeled
r1 and r2, impact the optimization effectiveness of our proposed enhanced K-means variants
across a range of problem instances. By fixing K at 3 clusters, we meticulously analyze
the effects of varying r1 and r2 values on the performance of SSE-SPLITTING_KMEANS
and DIAMETER_KMEANS using key evaluation metrics. The optimal parameter settings
depend on the specific optimization objectives, as summarized in Table 6.4.

For maximizing cluster separation and compactness measured by the DBI, optimal r1 and r2 val-
ues for DIAMETER_KMEANS typically range between 3.5-6, while SSE-SPLITTING_KMEANS
performs best at approximately 1.5-8. These carefully chosen parameters enable our enhanced
K-means variants to form distinct, tightly-knit clusters, overcoming the limitations of tradi-
tional K-means. Conversely, if creating clusters with balanced data distributions is paramount,
as measured by the Gini coefficient, both variants excel when r1 and r2 are tuned between
1.25-4. This parameterization facilitates the creation of evenly populated clusters, addressing
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Figure 6.1: Ilustration of DBI values of K-means and enhanced K-means for Different Instances
[129].

Instance Method DBI
Eil51 K-means 1.20

SSE-SPLITTING_KMEANS 1.17
DIAMETER_KMEANS 1.16

Berlin52 K-means 1.38
SSE-SPLITTING_KMEANS 1.26

DIAMETER_KMEANS 1.35
Eil76 K-means 1.17

SSE-SPLITTING_KMEANS 1.16
DIAMETER_KMEANS 1.16

kroA100 K-means 1.30
SSE-SPLITTING_KMEANS 1.29

DIAMETER_KMEANS 1.26
Eil101 K-means 1.19

SSE-SPLITTING_KMEANS 1.16
DIAMETER_KMEANS 1.17

Table 6.2: DBI values of K-means and Enhanced K-means Variants for Different Instances.
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Instance Method Gini
Eil51 K-means 0.23

SSE-SPLITTING_KMEANS 0.18
DIAMETER_KMEANS 0.20

Berlin52 K-means 0.26
SSE-SPLITTING_KMEANS 0.21

DIAMETER_KMEANS 0.23
Eil76 K-means 0.24

SSE-SPLITTING_KMEANS 0.23
DIAMETER_KMEANS 0.22

kroA100 K-means 0.30
SSE-SPLITTING_KMEANS 0.26

DIAMETER_KMEANS 0.26
Eil101 K-means 0.24

SSE-SPLITTING_KMEANS 0.22
DIAMETER_KMEANS 0.21

Table 6.3: Gini values of K-means and Enhanced K-means Variants for Different Instances.

Figure 6.2: Ilustration of DBI values of K-means and enhanced K-means for Different Instances
[129].
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Figure 6.3: Result of the proposed top-down hybrid clustering for the instance Eil51 [133]

any imbalances. Considering the composite metric that combines Gini and DBI, our vari-
ants demonstrate robust performance across various instances. In situations where reducing
DBI through enhanced cluster cohesion is prioritized, optimal r1 and r2 values for DIAME-
TER_KMEANS and SSE-SPLITTING_KMEANS typically range around 3.5-6 and 1.5-8,
respectively.

6.5 Constructing the Compressed Quadtree/Octree
In detailing our experimental setup and methodology for constructing a compressed quadtree/octree
(with a primary focus on the compressed quadtree), we outline the procedural steps for our
experiments. This critical phase in our research involves defining the intricate process of
constructing the compressed quadtree, wherein we carefully specify the algorithmic steps and
parameters chosen to ensure accurate and meaningful experimentation.

Our innovative approach to hierarchical clustering operates in a top-down manner, iteratively
dividing cities into a compressed quadtree structure that captures multi-scale groupings. By
employing techniques such as K-means, affinity propagation, and density peaks clustering at
each split, we optimize the decomposition process to create cohesive clusters across different
levels of granularity. This methodology is effectively demonstrated on various TSP instances
of varying scales, selected from the TSPLIB dataset, as depicted in Figures 6.3, 6.4, and 6.5.

Our method involves constructing compressed quadtrees for TSP instances including Eil51,
Berlin52, KroA200, and Pr1002. Figures 6.8, 6.7, and 6.6 provide visual representations
of sample quadtrees for Eil51, Berlin52, and KroA200, respectively. Initially, all cities are
grouped within the root node, forming a single cluster. Through recursive partitioning,
internal nodes are split into child subgroups, eventually resulting in leaf nodes containing
tightly clustered cities. The depth of the tree is indicated by the length of the address strings,
with leaf nodes typically having the longest addresses. These trees demonstrate optimal spans
and compact representation, facilitated by compression techniques.
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Instance Method Metric r1 r2
Eil51 SSE-SPLITTING_KMEANS DBI 6 2.5

Gini 2 1.75
Gini+ DBI 5 2

DIAMETER_KMEANS DBI 5.25 2.25
Gini 6 2

Gini+ DBI 5 2
Berlin52 SSE-SPLITTING_KMEANS DBI 8 4

Gini 4 1.5
Gini+ DBI 4 4

DIAMETER_KMEANS DBI 3 1.5
Gini 4 1.5

Gini+ DBI 3 1.75
Eil76 SSE-SPLITTING_KMEANS DBI 1.75 3

Gini 1.75 3
Gini+ DBI 1.75 3

DIAMETER_KMEANS DBI 3.5 6
Gini 4 1.5

Gini+ DBI 3.5 6
KroA100 SSE-SPLITTING_KMEANS DBI 2.75 1.75

Gini 3 1.5
Gini+ DBI 3 1.5

DIAMETER_KMEANS DBI 1.5 4
Gini 1.25 4

Gini+ DBI 1.5 4
Eil101 SSE-SPLITTING_KMEANS DBI 1.75 5

Gini 1.75 1.75
Gini+ DBI 1.75 3

DIAMETER_KMEANS DBI 2.5 3.5
Gini 2.5 1.25

Gini+ DBI 2.5 3.5

Table 6.4: Ideal r values to Optimize Performance of Enhanced K-means Variants for Different
Instances.
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The TSP-compressed quadtree takes on the form of a spanning tree, where cities or clusters
serve as vertices interconnected by edges representing parent-child relationships within the
tree structure. This connectivity, combined with the multi-resolution clustering approach,
facilitates swift extraction of localized neighborhoods for parallel optimization. The trees
also exhibit resilience to faults, as demonstrated by their ability to bypass failed nodes. This
resilience is illustrated in the sample figures (Figures 6.8, 6.7, and 6.6), which depict scenarios
of one, two, or three-node failures, respectively.

Figure 6.4: Result of the proposed top-down hybrid clustering for the instance Berlin52 [133].

Figure 6.5: Result of the proposed top-down hybrid clustering for the instance KroA200 [133].

Our study presents a comprehensive analysis of three prominent clustering methods: Enhanced
k-means, k-affinity propagation (K-AP), and k-density peaks clustering (K-DPC), applied to
various TSP instances including Eil51 (small-scale), Berlin52 (small-scale), KroA200 (medium-
scale), and Pr1002 (large-scale). We focus on evaluating the clustering quality using metrics
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Figure 6.6: Hierarchical representation of KroA200 TSP instance based on our proposed
algorithm [133].

Figure 6.7: Hierarchical representation of Berlin52 TSP instance based on our proposed
algorithm [133].

Figure 6.8: Hierarchical representation of Eil51 TSP instance based on our proposed algorithm
[133].
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such as the Davies-Bouldin Index (DBI) and Gini coefficients. By examining the trends and
insights derived from these metrics, we gain valuable insights into the effectiveness of each
clustering approach in constructing TSP-compressed quadtree representations.

6.6 Construct the graph one-by-one embedding of TSP-
Compressed Quadtree/Octree representations into
Crossed Cubes interconnection network

Our objective is to establish a direct mapping of hierarchical clusters, formed through quadtree
decomposition of the TSP instance, onto the processing elements of a crossed cubes topology.
This mapping process consists of two main steps: one-by-one vertex embedding and one-by-one
edges embedding. Initially, the vertex embedding involves creating a mapping function that
assigns each node in the compressed quadtree to a unique vertex in the crossed cube. This
prioritizes linking connected nodes in the quadtree to nearby vertices in the crossed cube,
based on their binary string labels. Subsequently, we refine the edges embedding function to
ensure that every edge of the compressed quadtree corresponds to a path in crossed cubes
with dilation 2. In the following sections, we provide examples of simulations based on the
rules defined in the previous chapter, followed by simulations demonstrating the embedding
of hierarchical TSP instances.

6.6.1 Simulation rules of embedding 2D/3D representation into
Crossed Cubes

Embedding 2D representations into Crossed Cubes: Simulation rules

There are examples of the implementation of the basic function f for the one-by-one vertex
embedding:

Embedding for Base Cases with Dimensions (n = 2). As depicted in Fig. 6.9.
Embedding for Base Cases with Dimensions (n = 3, 4, 6).

In this scenario, we extend the embedding process to include nodes at levels 1 and 2 of
the hierarchical compressed quadtree structures TSP-CQT 3, TSP-CQT 4 and TSP-CQT 6,
respectively. These nodes are mapped into corresponding crossed cubes topologies (CQ4,
CQ6 and CQ9) following the guidelines outlined in Table 6.5, Table 6.6, and Table 6.7. This
mapping process is visually represented in Fig. 6.10 and Fig. 6.11.

There are examples of the implementation of the basic function f1 for the one-by-one vertex
embedding:

Embedding for Base Case with Dimension (n = 5, 8).

In this context, we extend the embedding process to encompass nodes at levels 1 and 2 of
the hierarchical compressed quadtree structure TSP-CQT 5, and TSP-CQT 8. These nodes
are integrated into the corresponding crossed cube topology CQ7 following the guidelines
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Figure 6.9: Nodes embedding graph of TSP-CQT 2 into CQ2.

Root Prem(root) 0suff 1 01CQ2

0 0000 01 0100
0suff 2 10CQ2 0suff 3 11CQ2

0 1000 03 1100

Table 6.5: Level’s 1, 2 nodes embedding of TSP-CQT 3 into CQ4.

1000 020000 0 0010

0001 0011

0100 01

0101 011

0110 012

0111 013

1100 03

1101 031 1111 033

1110 032

1001 021 1011 023

1010 022

Figure 6.10: Nodes embedding graph of TSP-CQT 3 into CQ4.

Root Prem(root) 0suff 1 01CQ4

0 000000 01 010000
0suff 2 10CQ4 0suff 3 11CQ4

02 100000 03 110000

Table 6.6: Level’s 1, 2 nodes embedding of TSP-CQT 4 into CQ6.

Root Prem(root) 0suff 1 pref1CQ4

0 000000000 01 010000000
0suff 2 pref2CQ4 0suff 3 pref3CQ4

02 100000000 03 110000000

Table 6.7: Level’s 1, 2 nodes embedding of TSP-CQT 6 into CQ9.
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Figure 6.11: Nodes embedding graph of TSP-CQT 4 into CQ6.

Root Prem(root) 0suff 1 0pref1CQ4

0 0000000 01 0010000
0suff 2 1pref1CQ4 0suff 3 1pref0CQ4

02 1010000 03 1000000

Table 6.8: Level’s 1, 2 nodes embedding of TSP-CQT 5 into CQ7.

delineated in Table 6.8, and Table 6.9. The visual representation of this embedding process is
depicted in Fig. 6.12.

There are examples of the implementation of the basic function R for the Dilation two
one-by-one edges embedding:

Embedding for Base Cases (n = 2-4), (n=6).

In this context, edges connecting vertices at level 1 and level 2 of the hierarchical quadtree
structure TSP-CQT n are integrated using the guidelines outlined in Tables 6.10, and 6.11.

There are examples of the implementation of the basic function R1 for the Dilation two
one-by-one edges embedding:

Embedding for Base Case (n = 5,8).

In this scenario, edges within the hierarchical quadtree structure TSP-CQT 5, and TSP-CQT 8
are integrated using the guidelines outlined in Tables 6.12, 6.13.
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Figure 6.12: Nodes embedding graph of TSP-CQT 5 into CQ7.

Root Prem(root) 0suff 1 0pref1CQ4

0 000000000000 01 001000000000
0suff 2 1pref1CQ4 0suff 3 1pref0CQ4

02 101000000000 03 100000000000

Table 6.9: Level’s 1, 2 nodes embedding of TSP-CQT 8 into CQ12.

TSP-CQT CQ paths Dil

n = 2
0-01 00-01 1
0-02 00-10 1
0-03 00-10-11 2

n = 3
0-01 0000-0100 1
0-02 0000-1000 1
0-03 0000-1000-1100 2

n = 4
0-01 000000-010000 1
0-02 000000-100000 1
0-03 000000-100000-110000 2

Table 6.10: Edges embedding between the vertex of level 1 and level 2 of TSP-CQT 2, TSP-
CQT 3, TSP-CQT 4.

TSP-CQT CQ paths Dil

0-01 000000000-010000000 1
0-02 000000000-100000000 1
0-03 000000000-100000000-110000000 2

Table 6.11: Edges embedding of TSP-CQT 6 into CQ9.
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TSP-CQT CQ paths Dil

A
0-01 0000000-0010000 1
0-02 0000000-0010000-1010000 2
0-03 0000000-1000000 1

B
01-011 0010000-0010001 1
01-012 0010000-0110000-0100000 2
01-013 0010010-0110000 1

C
03-031 1000000-1000001 1
03-032 1000000-1000001-0000011 2
03-033 1000000-1000010 1

D
0331-03311 1010010-1010011 1
0331-03312 1010010-0010010 1
0331-03313 1010010-0010010-0010011 2

Table 6.12: Edges embedding of TSP-CQT 5 into CQ7, A: example of situation 2, case 1; B:
example of situation 1, case 2; C: example of situation 2, case 2; D: example of situation 2,
case 3.

Embedding 3D representations into Crossed Cubes: Simulation rules

There are examples of the implementation of the basic function f for the one-by-one vertex
embedding:

Base Case (n = 2).

For n = 2, the embedding process is illustrated in Figure 6.13.

0
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011
03 

001
 01 
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000 
0

100 
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111
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101 
05

110
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Figure 6.13: Nodes embedding graph of TSP-COT 2 into CQ3.

Base Case (n = 3).

For n = 3, the embedding process involves nodes at levels 1 and 2 of TSP-COT 3, as well as
the nodes with suffixes 01 and 07, utilizing the rules specified in Table 6.14 and Table 6.15
respectively. This process is depicted in Figure 6.14.
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TSP-CQT CQ paths Dil

A
0-01 000000000000

-001000000000 1

0-02 000000000000-001000000000
-101000000000 2

0-03 000000000000
-100000000000 1

B
03-031 100000000000

-100010000000 1

03-032 100000000000-
100010000000-000010000000 2

03-033 100000000000
-100000000001 1

C
01-011 001000000000

-001010000000 1

01-012 001000000000-
011000000000-010000000000 2

01-013 001000000000
-011000000000 1

D
011-0111 001010000000

-001011000000 1

011-0112 001010000000-
001110000000-001100000000 2

011-0113 001010000000
-001110000000 1

E
0111-01111 001011000000

-001011010000 1

0111-01112 001011000000-
001011010000-001010010000 2

0111-01113 001011000000
-001011000001 1

Table 6.13: Edges embedding of TSP-CQT 8 into CQ12, A: example of situation 2, case 1; B:
example of situation 2, case 2; C, D: example of situation 1, case 2; E: example of situation 2,
case 1.

Root Prem(root) 0suff 1 000CQ3
0 000000 01 000001

0suff 2 001CQ3 0suff 3 010CQ3
02 001000 03 010000

0suff 4 011CQ3 0suff 5 100CQ3
04 011000 05 100000

0suff 6 101CQ3 0suff 7 110CQ3
06 101000 07 110000

Table 6.14: Level’s 1, 2 nodes embedding of TSP-COT 3 into CQ6.
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01suff 1 110CQ3 07suff 1 111CQ3
011 110001 071 111000

Table 6.15: Embedding of 01suff 1, 07suff 1 into 110CQ3, 111CQ3.

Root Prem(root) 0suff 1 pref 0CQ3
0 000000000 01 000001000
0suff 2 pref 1CQ3 0suff 3 pref 2CQ3
02 001000000 03 010000000
0suff 4 pref 3CQ3 0suff 5 pref 4CQ3
04 011000000 05 100000000
0suff 6 pref 5CQ3 0suff 7 pref 6CQ3
06 101000000 07 110000000

Table 6.16: Level’s 1, 2 nodes embedding of TSP-COT 4 into CQ9.

0000

000011
013
 

000001
01

000010
012 

000000 
0 000100

014

000111
 017

000101
015 

000110
016

 

010000
03

010011
033 

010001
 031 

010010 
032

010100 
034

010111
037 

010101 
035

010110
036
 

011000
04

011011
043 

011001
 041 

011010 
042

011100 
044

011111
047 

011101 
045

011110
046
 

001000
02

001011
023 

001001
 021 

001010
022 

001100 
024

001111
027 

001101 
025

001110
026
 

100000
05

100011
053
 

100001
051

100010 
052 100100

054

100111
 057

100101 
055

100110
056

 

110000
 07

110011
073 

110001
 011 

110010 
072

110100 
074

110111
077 

110101 
075

110110
076
 

111000
071

111011
 

111001

111010 111100 

111111
 

111101 

111110

 

101000
06

101011
063 

101001
 061 

101010 
062

101100 
064

101111
067 

101101 
065

101110
066
 

Figure 6.14: Nodes embedding graph of TSP-COT 3 into CQ6.

Base Case (n = 4).

For n = 4, the embedding process involves nodes at levels 1 and 2 of TSP-COT 4, utilizing
the rules specified in Table 6.16. Furthermore, nodes with suffixes 011suff1, 01suff2, 012suff1,
and 017suff1 are embedded using the rules specified in Table 6.17.

There are examples of the implementation of the basic function R for the Dilation two
one-by-one edges embedding:

Base Case (n ≤ 4). For n ≤ 4, edges of any sub-TSP-COT 2 are embedded using the rules
specified in Table 6.18.
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01suff 2 pref 1CQ3 012suff 1 pref 7CQ3
012 000001001 0121 000111001
01suff 7 pref 7CQ3 017suff 1 pref 6CQ3
017 000111000 0171 000110000

Table 6.17: Embedding of 01suff 2, 012suff 1, 01suff 7, 017suff 1 into pref 1CQ3, pref 7CQ3,
pref 7CQ3, pref 6CQ3.

TSP-COT CQ paths Dil
0− 01 000− 001 1
0− 01 000− 001 1
0− 02 000− 010 1
0− 03 000− 010− 011 2
0− 04 000− 100 1
0− 05 000− 100− 101 2
0− 06 000− 100− 110 2
0− 07 000− 001− 111 2

Table 6.18: Example of edges embedding of sub-TSP-COT 2 onto sub-CQ3 for n ≤ 4.

For n ≤ 4, edges between level 1 and level 2 nodes of any sub-TSP-COT 3 are embedded as
specified in Table 6.20. Additionally, edges such as Ap−1suff1 − Ap−21suff1 and Ap−1suff7 −
Ap−27suff1 of TSP-COT 3 are embedded as specified in Table 6.19.

Base Case (n = 4).

For n = 4, edges of TSP-COT n are embedded as Table 6.22. Edges: Ap−21suff2−Ap−312suff1
and Ap−21suff7 − Ap−317suff1 of sub-TSP-COT 3 are embedded as Table 6.21.

6.6.2 Graph embedding of 2D Euclidean TSP(instance)-CQTn

into CQm

A visualization was created to illustrate how a sample compressed quadtree structure is
transformed into a crossed cubes network. Each node within the crossed cubes network is
depicted as a circle containing a unique binary address string. Larger circles encompass groups
of four adjacent vertices, representing higher-level supernodes. To highlight the significance
of the prefix portion of the address, it’s displayed in red. Additionally, the position of each

TSP-COT CQ path Dil

01− 011 000001− 100011
−110001 2

07− 071 110000− 111000 1

Table 6.19: Example of embedding edges Ap−1suff 1-Ap−21suff 1, Ap−1suff 7-Ap−27suff 1 of
sub-TSP-COT 3.
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TSP-COT CQ paths Dil
0− 01 000000− 000001 1
0− 02 000000− 001000 1
0− 03 000000− 010000 1

0− 04 000000− 010000
−011000 2

0− 05 000000− 100000 1

0− 06 000000− 100000
−101000 2

0− 07 000000− 100000
−110000 2

Table 6.20: Example of embedding edges between level’s 1, 2 nodes of sub-TSP-COT 3 onto
sub-CQ6 for n ≤ 4.

TSP-COT CQ paths Dil
01− 012 000001000− 000001001 1

012− 0121 000001001− 000101011
−000111001 2

01− 017 000001000− 000101000
−000111000 2

017− 0171 000111000− 000110000 1

Table 6.21: Edges embedding of Ap−21suff 2-Ap−312suff 1 Ap−21suff 7-Ap−317suff 1 of Ap−21TSP-
COT 3 (example of embedding using rules of situation 2, case 2).

TSP-COT CQ paths Dil
0− 01 000000000− 000001000 1
0− 02 000000000− 001000000 1
0− 03 000000000− 010000000 1

0− 04 000000000− 010000000
−011000000 2

0− 05 000000000− 100000000 1

0− 06 000000000− 100000000
−101000000 2

0− 07 000000000− 100000000
−110000000 2

Table 6.22: Embedding edges between level’s 1, 2 nodes of TSP-COT 4 onto CQ9 using rules
of situation 1, group 1.
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node within the supernodes is encoded using the two least significant bits.

Nodes belonging to the compressed quadtree are marked in blue, with arrows indicating their
positions within the crossed cubes. Straight lines represent edges, while dilation 2 paths are
emphasized in red.

The graph embedding representing the TSP(KroA200)-CQT 4 into a 6-dimensional crossed
cubes (CQ6) is visually illustrated in the subsequent figures (6.15, 6.16, 6.18, and 6.17).

For instance, the connection between node 01 and node 013 in the compressed quadtree
(represented as 01-013) corresponds to the path between node 010000, node 011000, and node
011100 in the crossed cubes topology, depicted as 010000-011000-011100.
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 000000
 001000

 000100  001100 000110  001110

 000111  001111 000101  001101

 000010
 001010

 000011  001011 000001  001001

Root

Figure 6.15: The graph embedding of the TSP(KroA200)-CQT 4 into CQ6 (First copy 00CQ4).
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Figure 6.16: The graph embedding of the TSP(KroA200)-CQT 4 into CQ6 (Second copy
01CQ4).
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Figure 6.17: The graph embedding of the TSP(KroA200)-CQT 4 into CQ6 (Third copy
10CQ4).
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Figure 6.18: The graph embedding of the TSP(KroA200)-CQT 4 into CQ6 (Last copy 11CQ4).

6.7 Processing: Construct intra-cluster solutions and
inter-connection between clusters

6.7.1 Scale of each cluster and the selection of methods for local
optimization

The size of clusters at the leaf nodes significantly affects the computational complexity of
solving the Traveling Salesman Problem (TSP) within each cluster. When dealing with
smaller clusters, typically containing around 20 or fewer cities after hierarchical decomposition,
simpler and faster construction heuristics like nearest neighbor are effective. Nearest neighbor
operates by sequentially connecting the closest unvisited city, resulting in a locally optimal
tour. Its straightforward approach and linear time complexity of O(n2) make it well-suited
for smaller clusters.
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Figure 6.19: Global Path with Boundary Cities of Eil51 instance [133].

However, as the problem size increases and hierarchical partitioning leads to larger leaf node
clusters, typically comprising 40-50 cities, the efficacy of nearest neighbor diminishes. In such
cases, more advanced metaheuristics like Ant Colony Optimization (ACO) become necessary.
ACO employs probabilistic construction guided by virtual pheromone trails to efficiently
explore the solution space. Despite the increase in complexity, ACO maintains a manageable
time complexity of O(n2) for these cluster sizes, while also offering the flexibility of parameter
tuning to enhance search performance.

6.7.2 Determining the boundaries’ cities
In this phase, we concentrate on creating a diverse initial population of TSP tours following
the construction of the hierarchical decomposition. Initially, we generate open Hamiltonian
paths within each leaf node cluster using both nearest neighbor and ACO metaheuristics.
These paths offer a range of high-quality intra-cluster options, and they also identify candidate
boundary cities located at the interfaces between clusters. By examining the endpoints of
these paths and their intersections with neighboring paths, we pinpoint boundary nodes that
link adjacent clusters. For instance, in the illustration of the global paths for instances Eil51,
Berlin52, and KroA200, boundary cities are highlighted in Figures 6.19, 6.20, and 6.21. These
boundary cities serve as promising points for potential inter-cluster routes.

Subsequently, the internal nodes combine the subpath solutions from the child nodes to
generate complete global tours. To achieve this, we develop a genetic network heuristic that
evolves orderings and connections between the subpath solutions through selection, crossover,
and mutation operations. This process plays a crucial role in determining the key boundary
cities at each level of the hierarchy.
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Figure 6.20: Global Path with Boundary Cities of Berlin52 instance [133].

Figure 6.21: Global Path with Boundary Cities of KroA200 instance [133].
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An essential aspect of this stage involves effectively selecting the boundary cities to optimize
the division and recombination of subproblems. We utilize features such as graph centrality
metrics to identify cities that minimize distances between subpaths when integrated globally.
This approach ensures the construction of tours that are locally optimal within clusters while
also maintaining good global optimality.

6.7.3 Parameters settings
To tailor the algorithm to the characteristics of each cluster, we adjust the parameters of
the ACO algorithm based on the city distribution within the cluster. Table 6.23 presents
the parameter values used. This customization ensures that the algorithm can generate
diverse and high-quality initial solutions, effectively exploring the search space and increasing
the likelihood of finding an optimal solution. Additionally, in implementing the nearest
neighborhood approach, we consider tours starting from various cities within each cluster. By
exploring multiple starting city options, the algorithm diversifies initial solutions and prevents
convergence to local optima. For determining the parameters of the genetic network, we

α β ρ Q Ant Iteration
0.9-1.1 1-5 0.1 1 number of cities 80-300

Table 6.23: Parameter values of ACO metaheuristic.

consider both solution quality and runtime, adapting them based on the scale of the TSP
instances. The population size (n) and number of generations (g) are set according to the
instance size. Typically, the population size is twice the number of cities (m), while the
number of generations is calculated using a formula that considers the number of iterations
(k), the height of the compressed quadtree (h), and a factor (t) related to the total number
of cities. Different genetic operators are applied to leaf and internal nodes, with inversion
and insertion used for leaf nodes and a combination of crossover, flip mutation, inversion,
and insertion for internal nodes. These strategies leverage the hierarchical structure for an
efficient search process.

The up forwarding selection phase is critical, as it identifies and preserves the best local
solutions contributing to the overall global solution. This phase employs a hybrid selection
strategy that balances selecting top performers with maintaining diversity. By combining
exploitation of the best tours with exploration of alternative options, this technique fosters a
balanced exploration-exploitation tradeoff for the TSP. It ensures that the initial population
nurtures both high-performing building blocks and divergent individuals, thus avoiding
entrapment in local optima.

6.8 Initial solutions refinement
Choosing the right temperature is crucial for the success of the simulated annealing phase in
our algorithm. Since the initial solution obtained from the genetic network is often close to
the optimal solution, it’s advisable to use a low temperature during simulated annealing. This
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allows for thorough exploitation of the local search space. For larger instances, fine-tuning
the algorithm’s exploration-exploitation balance can lead to improved performance and more
accurate TSP solutions.

Understanding the neighborhood search structures is key to selecting the most effective
operator for the simulated annealing phase. By combining targeted simulated annealing with
specialized local search operators, our approach consistently optimizes the initial population
to discover superior TSP tours. While the genetic network facilitates global exploration
and quality initialization, simulated annealing and tailored operators enable in-depth local
exploitation.

6.9 Results and Discussion

6.9.1 Effectiveness of clustering methods for hierarchical TSP rep-
resentation

Detailed performance insights are provided in Tables 6.27, 6.26, 6.28, 6.25, and 6.24, which
offer a comprehensive analysis of three clustering methods employed: Enhanced k-means,
k-affinity propagation (K-AP), and k-density peaks clustering (K-DPC). These results are
evaluated across various scales of TSP instances, including small-scale instances like Eil51
and Berlin52, middle-scale instance such as KroA200, and larger-scale instances like rd400
and Pr1002. Through these analyses, the effectiveness of our approach in terms of DBI and
Gini metrics is thoroughly examined and highlighted.

Examining the performance of clustering methods across different levels of the compressed
quadtree reveals intriguing variations. For small instances like Eil51 and Berlin52, K-DPC
consistently achieves lower DBI scores and Gini coefficients compared to Enhanced k-means and
K-AP. This suggests K-DPC’s proficiency in creating well-separated and internally cohesive
clusters across various compression levels. Such consistent performance prompts further
investigation into K-DPC’s robustness and suitability for datasets with similar complexities.

Conversely, for middle-scale and large-scale instances such as KroA200, rd400, and Pr1002,
K-DPC’s performance fluctuates across nodes and levels. Unlike smaller instances, K-DPC
doesn’t consistently attain the lowest DBI scores and Gini coefficients across all levels,
indicating its sensitivity to underlying data characteristics.

A notable finding is the discernible performance disparities among different nodes within the
same compressed quadtree level. This suggests that certain parts of the dataset may favor
specific clustering methods due to unique data distributions. This variation underscores the
importance of considering local data traits in clustering outcomes and raises the prospect of
hybrid methods leveraging this locality for enhanced results.

The Gini coefficient, reflecting within-cluster inequality, offers additional insight into clustering
outcomes. Lower Gini coefficients signify a more balanced distribution of data points within
clusters. While K-DPC consistently maintains lower Gini coefficients across levels for all
instances, Enhanced k-means and K-AP also demonstrate competitive performance. This
suggests that Enhanced k-means and K-AP effectively manage data point distributions within
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DBI Gini

Level Enhanced K-means K-AP K-DPC Enhanced K-means K-AP K-DPC

Level 0 (root 0) 1.24 1.25 1.31 0.21 0.22 0.22
Level 1 (Node 01) 1.36 1.38 1.59 0.11 0.11 0.11
Level 1 (Node 02) 1.18 1.23 1.34 0.14 0.14 0.15
Level 1 (Node 03) 1.37 1.33 1.31 0.26 0.26 0.29
Level 2 (Node 011) 1.41 1.35 1.48 0.09 0.09 0.10
Level 2 (Node 012) 1.28 1.25 1.28 0.15 0.14 0.15
Level 2 (Node 013) 1.19 1.24 1.19 0.05 0.07 0.06
Level 2 (Node 021) 1.20 1.20 1.17 0.11 0.11 0.13
Level 2 (Node 022) 1.31 1.25 1.25 0.13 0.12 0.13
Level 2 (Node 023) 1.64 1.47 1.19 0.19 0.19 0.13
Level 2 (Node 031) 1.46 1.28 1.28 0.26 0.30 0.31
Level 2 (Node 033) 1.52 1.56 1.43 0.25 0.26 0.27
Level 3 (Node 0222) 1.26 1.27 1.29 0.05 0.05 0.05
Level 3 (Node 0231) 1.60 1.58 1.38 0.19 0.19 0.16
Level 3 (Node 0232) 1.47 1.75 1.42 0.13 0.12 0.09
Level 3 (Node 0311) 1.23 1.25 1.17 0.30 0.29 0.30
Level 3 (Node 0312) 1.37 1.49 1.29 0.23 0.21 0.23
Level 3 (Node 0313) 1.31 1.27 1.34 0.36 0.37 0.36
Level 3 (Node 0332) 1.34 1.89 1.82 0.29 0.30 0.32
Level 4 (Node 02313) 1.54 1.55 1.45 0.16 0.16 0.11
Level 4 (Node 03322) 1.24 1.22 1.18 0.30 0.31 0.31

Table 6.24: DBI and Gini values for different clustering algorithms across levels of the Pr1002
TSP instance hierarchical representation.

DBI Gini

Level Enhanced K-means K-AP K-DPC Enhanced K-means K-AP K-DPC

Level 0 (root 0) 1.17 1.16 1.17 0.29 0.29 0.34
Level 1 (Node 01) 1.30 1.28 1.49 0.18 0.19 0.27
Level 1 (Node 02) 1.21 1.21 1.16 0.32 0.32 0.34
Level 1 (Node 03) 1.21 1.24 1.43 0.26 0.27 0.22
Level 2 (Node 012) 1.34 1.27 1.30 0.11 0.11 0.11
Level 2 (Node 013) 1.42 1.71 1.19 0.30 0.24 0.35
Level 2 (Node 021) 1.24 1.19 1.26 0.24 0.25 0.31
Level 2 (Node 023) 1.28 1.22 1.40 0.34 0.33 0.36

Table 6.25: DBI and Gini values for different clustering algorithms across levels of the Rd400
TSP instance hierarchical representation.

DBI Gini

Level Enhanced K-means K-AP K-DPC Enhanced K-means K-AP K-DPC

Level 0 (root 0) 1.38 1.38 1.33 0.26 0.25 0.21
Level 1 (Node 01) 1.24 1.24 1.35 0.23 0.23 0.22
Level 1 (Node 03) 1.28 1.28 1.28 0.23 0.24 0.16
Level 2 (Node 032) 1.39 1.39 1.32 0.23 0.23 0.15

Table 6.26: DBI and Gini values for different clustering algorithms across levels of the Berlin52
TSP instance hierarchical representation.
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DBI Gini

Level Enhanced K-means K-AP K-DPC Enhanced K-means K-AP K-DPC

Level 0 (root 0) 1.20 1.17 1.25 0.23 0.23 0.22
Level 1 (Node 01) 1.36 1.36 1.22 0.11 0.12 0.12
Level 1 (Node 02) 1.23 1.23 1.23 0.23 0.23 0.22
Level 1 (Node 03) 1.27 1.27 1.21 0.26 0.26 0.21

Table 6.27: DBI and Gini values for different clustering algorithms across levels of the Eil51
TSP instance hierarchical representation.

DBI Gini

Level Enhanced K-means K-AP K-DPC Enhanced K-means K-AP K-DPC

Level 0 (root 0) 1.31 1.32 1.46 0.30 0.30 0.31
Level 1 (Node 01) 1.19 1.20 1.29 0.17 0.18 0.15
Level 1 (Node 02) 1.21 1.24 1.35 0.33 0.32 0.25
Level 1 (Node 03) 1.22 1.22 1.15 0.33 0.33 0.39
Level 2 (Node 013) 1.20 1.20 1.32 0.11 0.11 0.11
Level 2 (Node 021) 1.45 1.45 1.28 0.37 0.37 0.34
Level 2 (Node 022) 1.28 1.26 1.37 0.19 0.19 0.20
Level 2 (Node 023) 1.17 1.18 1.39 0.40 0.39 0.41
Level 2 (Node 031) 1.23 1.24 1.29 0.24 0.25 0.24
Level 2 (Node 032) 1.29 1.29 1.31 0.38 0.38 0.39
Level 2 (Node 033) 1.25 1.25 1.41 0.25 0.25 0.19

Table 6.28: DBI and Gini values for different clustering algorithms across levels of the KroA200
TSP instance hierarchical representation.

Eil51 Berlin52 Eil76 KroA100 Eil101 Ch150 KroA200 Rd400
BKS 426 7542 538 21282 629 6528 29368 15281
Best 426 7542 538 21282 629 6528 29382 15284
Mean 426.75 7542 540.1 21339.25 630.5 6540 29434.45 15364.16
Std 0.82 0.0 2.24 99.15 2.13 12 62.91 95.08

Error(%) 0.17 0.0 0.39 0.27 0.24 0.18 0.23 0.54
PE(%) 0.17 0.0 0.39 0.27 0.24 0.18 0.18 0.52

D493 Pr1002
BKS 35001 259045
Best 35170 267284
Mean 35253.14 268533.4
Std 93.95 1452.12

Error(%) 0.72 3.6
PE(%) 0.24 0.47

Table 6.29: Experimental Results of The Proposed Algorithm For Solving Euclidean TSP
problem.
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clusters.

These findings provide a nuanced understanding of clustering methods within TSP-compressed
quadtree representations. Firstly, clustering algorithms significantly influence quality across
hierarchical levels. Secondly, while quality varies across levels and nodes, Enhanced k-means
showcases consistent versatility across instances. Lastly, the hierarchical structure captures
varying cluster granularity, emphasizing the importance of hierarchical clustering in analyzing
large, complex datasets.

These insights underscore the importance of tailoring clustering methods to data characteristics
and pave the way for exploring hybrid approaches that combine the strengths of different
methods.

6.9.2 Evaluation performance of processing algorithm
Table 6.29 displays the performance of our proposed approach across various benchmark
TSP instances sourced from TSPLIB. For each case, the table reports the best, average, and
standard deviation values obtained from 10 independent runs. Additionally, the table includes
the lengths of the best-known solutions (BKS) for reference.

To facilitate comparison, we compute the relative error of the average tour length compared
to the BKS, as defined in Equation 6.1. Lower relative errors indicate superior performance
in terms of solution quality. Furthermore, we calculate the relative error between the average
and best tour lengths among the 10 runs, as specified in Equation 6.2. This metric assesses the
robustness of the approach, quantifying the variation between the averaged performance and
the best individual performance across runs. Smaller values signify more consistent behavior
across the different runs.

Error (%) =
(

Average− BKS
BKS

)
× 100% (6.1)

PE (%) =
(

Average− Best
Best

)
× 100% (6.2)

In smaller instances like eil51, berlin52, and eil76, our algorithm consistently discovers optimal
or near-optimal solutions that closely match the best-known solution (BKS) lengths. The
average tour lengths deviate by less than 0.4% from the BKS, showcasing the algorithm’s
effectiveness in handling small-scale cases. As we transition to medium-sized instances such
as kroA100 and eil101, the average error remains below 0.3%, indicating the algorithm’s
scalability. Moreover, the standard deviations are minimal, indicating stable convergence.

For larger instances, the average error relative to the BKS is below 1%. Even for the pr1002
graph with over 1000 cities, the error is reasonable at 3.6%, underscoring the approach’s
viability for large-scale Euclidean problems. While the peak individual solutions in smaller
graphs match or exceed the BKS, the best tours in larger graphs closely approximate the
BKS.
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Algorithm Eil51 Berlin52 Eil76 KroA100 Eil101 Ch150 KroA200

ACO
Best 437 7547.0 562 22562.0 691.0 6771.0 31388.0
Mean 445.5 7684.53 567.3 22884.8 694.9 6817.4 31734.2
Std 5.85 60.56 3.1 158.55 2.34 19.03 205.01

Error(%) 4.57 1.89 5.5 7.53 10.48 3.72 8.05
PE(%) 1.95 1.82 0.94 1.43 0.56 0.69 1.10

GA Best 429 7542.0 558.0 22780.0 672.0 8621.0 48296.0
Mean 440.0 7833.43 574.836 23428.19 688.22 9113.03 53607.73
Std 6.23 149.94 9.12 519.03 8.20 239.49 2743.08

Error(%) 3.29 3.86 6.85 10.08 9.41 39.59 82.53
PE(%) 2.56 1.89 5.5 7.53 10.48 3.72 8.05

SA-K-opt Best 426 7542.0 543 21575.0 638.0 6702.0 30580.0
Mean 432 7805.8 551.4 22227.7 651.7 6984.3 31774.4
Std 4.40 136.34 5.57 496.88 47.81 135.17 460.93

Error(%) 1.41 3.5 2.5 4.44 3.6 6.99 8.19
PE(%) 4.57 1.89 1.55 3.03 2.15 4.21 3.91

Table 6.30: Experimental Results of the three metaheuristics: ACO, Genetic Algorithm(GA),
hybrid simulated annealing with K-opt (SA-K-opt) For Solving Euclidean TSP problem.

Throughout the experiments, the performance error between the best and average tours
consistently remains under 0.6%, demonstrating a high level of consistency and maintaining
high-quality performance across runs.

Our experiments involved testing the proposed algorithm alongside three individual methods
ACO, standard Genetic Algorithm (GA), and hybrid Simulated Annealing with K-opt (SA-
K-opt) across several TSP instances: Eil51, Berlin52, Eil76, KroA100, Eil101, Ch150, and
KroA200. The results are presented in Table 6.30 and compared with those of the proposed
algorithm shown in Table 6.29.

In smaller instances like eil51 and berlin52, the proposed algorithm either matches or surpasses
the best solutions found by the individual methods. Notably, the average error of 0.17-0.39%
is lower than the minimum errors of 1.41-4.57% observed from ACO, GA, and SA-K-opt.
As the instance size increases, our algorithm consistently delivers better average solution
quality compared to the individual techniques. For instance, in kroA100, the hybrid error is
0.27% compared to the best error of 4.44% achieved among individual methods. Similarly,
for kroA200, the error improves from a minimum of 8.05% (ACO) to 0.23% for the proposed
algorithm.

Furthermore, the standard deviation of the proposed algorithm remains remarkably low across
all instances, underscoring the stability and robustness of the solutions it produces. In contrast,
the individual methods exhibit higher variances, indicating less reliability. Additionally, the
performance error between the best and average solutions is the lowest for the proposed
algorithm, reaffirming its consistency. By integrating multiple techniques, our approach
effectively mitigates the limitations inherent in individual methods, leading to improved
solution quality and reliability.
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Instance Eil51 Berlin52 Eil76 KroA100 Eil101 Ch150 KroA200
BKS 426 7542 538 21282 629 6528 29368

Proposed algorithm

Best 426 7542 538 21282 629 6528 29382
Mean 426.75 7542 540.1 21339.25 630.5 6540 29434.45
Std 0.82 0.0 2.24 99.15 2.13 12 62.91

Error(%) 0.17 0.0 0.39 0.27 0.24 0.18 0.23
PE(%) 0.17 0.0 0.39 0.27 0.24 0.18 0.18

DPC-ACO-KOpt (2018)

best 426 7542 538 21282 629 6528 29368
Mean 426.25 7542.00 538.30 21283.65 630.35 6536.5 29368.40
Std 0.44 0.00 0.80 5.50 2.01 14.36 39.08

Error(%) 0.06 0.0 0.06 0.01 0.21 0.13 0.10
Pe(%) 0.06 0.00 0.06 0.01 0.21 0.13 0.10

PACO-3opt (2016)

Mean 426.35 7542.00 539.85 21326.80 630.55 6601.40 29644.50
Std 0.49 0.00 1.09 33.72 2.63 15.01 53.43

Error(%) 0.08 0.0 0.34 0.21 0.25 1.12 0.94

C-PSO-ACO-Kopt (2017)

Mean 426.29 7543.29 538.15 21319.50 631.20 - 29642.00
Std 0.46 3.90 0.65 47.79 1.5 - 154

Error(%) 0.07 0.01 0.02 0.17 0.17 - 0.46

SA-ACO-PSO (2011)

Mean 427.27 7542.00 540.20 21370.30 635.23 6563.70 29738.73
Std 0.45 0.00 2.94 123.36 3.59 22.45 356.04

Error(%) 0.30 0.0 0.41 0.41 0.99 0.55 1.27

Table 6.31: Experimental results of different algorithms on small-medium scale Euclidean
TSP instances.

Table 6.31 presents a comparative analysis of the proposed algorithm’s performance against
other algorithms when applied to small and medium-scale Traveling Salesman Problem (TSP)
instances. The goal is to assess the reliability and consistency of our algorithm in delivering
exceptional results, particularly for instances with a smaller number of vertices. We consider
four algorithms for comparison: DPC-ACO-KOpt (2018) [96], PACO-3opt (2016) [64], C-
PSO-ACO-Kopt (2017) [102], and SA-ACO-PSO (2011) [57]. It’s important to note that
these algorithms were not implemented in our study; instead, we reference the outcomes and
results achieved by these algorithms when applied to the same instances.

In Table 6.32, we extend our evaluation to include three large-scale instances sourced from
TSPLIB, each containing between 400 and 1002 points. Here, we compare the experimental
results of our proposed algorithm with those of other algorithms, namely DPC-ACO-KOpt
(2018) [96], PACO-3opt (2016) [64], HGA (2014) [145], CBA-NNM (2022) [127], and GGSC-
SSA (2021) [150]. Again, it’s essential to clarify that these algorithms were not implemented
in our article; instead, we extract their experimental results from the original papers to
facilitate comparative analysis.

For small instances, our algorithm achieves the optimal or near-optimal solutions matching
the best-known solutions. This is comparable to the top techniques like DPC-ACO-KOpt.
This shows its ability to solve small problems effectively. As the size increases to medium-scale
instances, our approach attains lower means, and average errors than most other methods.
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Instance Rd400 D493 Pr1002
BKS 15281 35002 259045

Proposed algorithm

Best 15284 35170 267284
Mean 15364.16 35253.14 268533.4
Std 95.08 93.95 1452.12

Error(%) 0.54 0.72 3.6
PE(%) 0.52 0.24 0.47

DPC-ACO-KOpt(2018)

best 15333.00 35237.00 -
Mean 15387.25 35347.5 -

Error(%) 0.70 0.99 -
Pe(%) 0.35 0.31 -

PACO-3opt (2016)

best 15578.00 35735.00 -
Mean 15613.90 35841.00 -

Error(%) 2.18 2.40 -
Pe(%) 0.23 0.3 -

HGA(2014)

best - - -
Mean 15853.74 - -

Error(%) 3.74 - -
Pe(%) - - -

CBA-NNM(2022)

best - 35583 273825
Mean - 35864 277525

Error(%) - 2.46 7.13
Pe(%) - 0.78 1.35

GGSC-SSA(2021)

best - 36470.63 271894.56
Mean - - -

Error(%) - - -
Pe(%) - - -

Table 6.32: Experimental results of different algorithms on large scale Euclidean TSP instances.
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Figure 6.22: Errors between the proposed algorithm, DPC-ACO-KOpt, and PACO-3opt [133].

The performance evaluation of our algorithm was conducted by comparing its results on each
small, medium-scale TSP instance with those obtained from four other algorithms. For each
instance, our algorithm received a score based on its ranking concerning the quality of the
solution achieved. Notably, it secured the second position among the five algorithms evaluated,
indicating its competitive performance in solving these challenging small and medium-scale
Euclidean TSP problems, see Fig. 6.22.

The thorough evaluation and comparison with five other state-of-the-art algorithms highlight
the effectiveness of the proposed hybrid method in optimizing large-scale Euclidean Traveling
Salesman Problem (TSP) instances. Our algorithm consistently achieves the best or near-best
solutions, with errors ranging from 0.54% to 3.6% compared to the best-known solutions
(BKS). It outperforms all other algorithms by consistently maintaining the lowest error
percentages across instances.

While DPC-ACO-KOpt also performs well, it exhibits slightly higher errors ranging from
0.70% to 0.99% compared to our proposed algorithm. On the other hand, solutions generated
by PACO-3opt have significantly higher errors, ranging from 2.18% to 2.4%, indicating
limitations in handling complexity. Notably, our algorithm comes closest to the known optima
for the largest instance (Pr1002) with a 3.6% error.

Overall, the experimental results demonstrate that our hybrid algorithm achieves the most
effective solutions across all benchmark instances, irrespective of size or scale. It consistently
outperforms five peer metaheuristics, as illustrated in Figure 6.22, by leveraging a synergistic
integration of clustering-based decomposition with parallelized multi-strategy search. This
underscores its superior ability to navigate complex and dense search landscapes. Moreover,
with the lowest errors and tightest solution variances among the evaluated algorithms, our
proposed hybrid optimization algorithm has established itself as a leading solver for the
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Figure 6.23: Time Efficiency Comparison Across Scenarios (Pr1002 instance) [134].

Euclidean TSP, systematically and reliably solving these nonlinear problems.

Nevertheless, challenges remain, including potential computational complexity and sensitivity
to clustering parameters. Future research directions may explore additional combinations of
metaheuristics, assess scalability to larger instances, and conduct further sensitivity analysis
for parameter tuning. In summary, our proposed hybrid optimization algorithm represents a
significant advancement in solving Euclidean TSP problems, demonstrating its efficacy and
competitiveness against state-of-the-art approaches.

6.9.3 Runtime Evaluation [134]
A comprehensive evaluation was conducted to assess the computational effectiveness of our
proposed approach using a benchmark set of Euclidean TSP instances spanning various sizes.
We compared the runtime performance of parallel execution against sequential execution under
different levels of network congestion (2, 3, and 4). Specifically, we analyzed the algorithm’s
execution across cores in parallel and sequentially with incremental communication contention.

In the first experiment, we selected the Pr1002 instance from the TSPLIB benchmark library
as the initial test problem. This instance provided a suitable large-scale TSP formulation
for evaluating runtime behavior under different execution scenarios. We aimed to discern
differences in computational efficacy between leveraging full parallelism and operating under
incremental channel congestion with constrained parallelism. Table 6.33 presents the runtime
comparisons of our proposed hierarchical metaheuristic for the Euclidean TSP under four
scenarios: parallel execution and sequential execution with congestions of 2, 3, and 4. Lower
runtimes indicate better performance. Across all iterations, parallel execution consistently
achieves the lowest runtimes, outperforming sequential execution by up to 2x-3x for larger
iterations (see Figure 6.23). This highlights the significant benefits of parallelization in
improving computational efficiency. Increasing congestion for sequential execution generally
degrades performance due to higher communication costs. However, congestion 3 exhibits
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Iteration 100 200 400 600 800 1000 1200 1400 1600 1800 2000 2250 2500 3000 3500
Parallel 3 5.91 11.58 17.15 21.83 28.11 34.14 40.52 44.77 50.36 56.65 64.98 68.40 86.15 94.57

Sequential (Cong. 2) 5.37 9.04 17.44 29.75 41.46 41.68 60.96 61.02 69.86 78.89 88.53 110.50 128.85 - -
Sequential (Cong. 3) 4.15 8.01 15.1 23.02 27.89 37.6 48.71 48.71 58.00 76.73 82.97 91.34 94.52 115.61 116.92
Sequential (Cong. 4) 5.12 23.23 34.17 39.1 43.11 53.59 61.3 77.98 116.28 117.1 118.97 135.96 146.05 - -

Table 6.33: Performance Comparison of Different Scenarios.

Scale 100 200 493 1002
Parallel 0.0048 0.032 0.20 13.03

Sequential (Cong. 2) 0.0049 0.054 0.33 24.3

Table 6.34: Performance Comparison at Different Scales.

better runtimes than congestion 2 for some mid-range iterations, possibly due to greater path
diversity overcoming higher messaging overhead. The performance gap between parallel and
sequential execution widens with more iterations as the scale increases.

Table 6.34 reports the runtimes for our proposed algorithm under parallel versus sequential
execution with congestion 2 across four different TSP instance sizes (with 500 iterations).
Runtimes scale sublinearly with problem size for both parallel and sequential executions (see
Figure 6.24). However, parallelism provides significant speedup over sequential execution for
all scales. For smaller instances (100 and 200 cities), runtimes are low and similar between
parallel and sequential execution, suggesting computation is the dominant factor for these
sizes. As the size increases, parallel runtime increases modestly while sequential runtime more
than doubles, highlighting parallelism’s ability to efficiently distribute computation load.

6.10 Conclusion
This chapter presents the evaluation of the proposed modeling paradigm for solving the
Traveling Salesman Problem. Through a strategic blend of machine learning techniques,
hybrid metaheuristics, hierarchical clustering, enhanced K-means clustering, and parallel
computing paradigms, the research endeavors to unlock new avenues for efficient solution
discovery across varying scales of problem instances.

The environment setup, detailed in Section 6.1, provides the foundation for conducting the
experiments, ensuring consistency and reproducibility. Section 6.2 outlines the datasets
employed for evaluation, essential for assessing the performance of the proposed paradigm
across diverse scenarios.

The introduction of enhanced K-means clustering and its subsequent evaluation showcases
promising advancements in achieving balanced cluster sizes and improving clustering quality.
Such enhancements hold significant implications, particularly in domains where balanced and
high-quality clustering outputs are paramount for meaningful analysis and decision-making.

Furthermore, The integration of machine learning techniques, as highlighted in the previous
chapters, underscores the importance of adapting optimization strategies to the characteristics
of the problem instance. By leveraging hierarchical clustering, the decomposition of the
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Figure 6.24: Scalability Analysis: Comparative performance across varied scales [134].

problem space into compressed 2D/3D hierarchical structures enables localized optimization
and parallel exploration of subregions. However, the evaluation reveals scale-dependent
differences in clustering technique performance, indicating the need for nuanced approaches
across different scales.

The strategic embedding of TSP-compressed 2D/3D hierarchical structure into a crossed
cubes topology with a dilation of 2. This integration serves to enhance resource allocation
during parallel optimization efforts. Notably, our embedding achieves an optimal dilation of 2
and a load factor of 1, optimizing the efficiency and effectiveness of the parallel optimization
process.

The hierarchical mapping presented in this chapter offers a novel perspective on distributing
computational work to mitigate network congestion in TSP metaheuristics. By embedding
natural city clusters into a parallel structure, the approach circumvents congestion hotspots,
thereby accelerating the discovery of optimal Euclidean paths.
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Chapter 7

General Conclusion and Perspectives

In conclusion, our thesis introduces a versatile platform integrating optimization tools with
open and extensible capabilities, facilitated by simulation techniques like quadtree and octree
topologies. This framework enhances decision-making processes from data acquisition to
integration, offering deeper insights into complex problems.

In our research, we present a novel hierarchical hybrid approach designed to optimize solutions
for the Euclidean Traveling Salesman Problem. A key innovation lies in our development of a
hierarchical clustering-based representation, achieved through the fusion of classic clustering
algorithms such as K-Means, Affinity Propagation (AP), and Density Peaks Clustering
(DPC). This amalgamation, termed recursive hybrid clustering, leverages the strengths of
each algorithm to create a robust framework adaptable to diverse problem domains.

We introduce Enhanced K-Means, K-Affinity Propagation, and K-Density Peaks Clustering
to further tailor these methods to our specific requirements.

An enhanced K-means clustering algorithm with a post-processing step aimed at achieving
balanced cluster sizes. Using SSE and a diameter-based criterion during redistribution, our
algorithm consistently outperforms standard K-means, showcasing a reduction of 2.6-4%
in the Davies-Bouldin Index and superior performance in achieving balanced cluster size
distribution.

Balanced clusters are vital for applications such as market segmentation and fraud detection,
ensuring fair representation of all subgroups and fostering more insightful analysis. This
approach addresses the common challenge of imbalanced clusters, particularly crucial in
domains involving predictive risk analysis like healthcare and sustainability.

Our use of 2D/3D hierarchical representation inherently determines the number of clusters
(K). However, traditional algorithms like AP and DPC lack predefined cluster counts. To
address this, we propose hybridizing K-means with AP and modifying DPC to allow for K
determination.

The hierarchical representation we’ve developed offers a powerful tool for navigating and
exploring the optimization landscape at multiple levels. By structuring the TSP-Compressed
quadtree/octree as a spanning tree, we enable rapid identification and isolation of localized
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neighborhoods, facilitating parallel optimization.

At any level within the tree structure, users can efficiently access information about sub-
clusters and individual cities, along with their hierarchical relationships. This capability
streamlines the partitioning of the problem into independent sub-clusters, which are ideal for
simultaneous optimization.

The clusters closer to the leaves of the tree represent tightly-knit local neighborhoods, perfect
for construction heuristics focused on exploiting local opportunities quickly. Meanwhile, the
higher levels of the tree encompass broader spatial regions, allowing metaheuristics to explore
global interactions across nearby clusters in parallel.

In essence, our hierarchical approach offers a flexible and efficient means of exploring both
local and global optimization strategies within the TSP landscape.

The evaluation highlighted significant variations in clustering technique performance based
on instance scale. Specifically, for smaller scales, K-DPC consistently outperformed other
methods across evaluation metrics. However, as the scale increased, the effectiveness of K-DPC
became more erratic, suggesting its performance is influenced by complex data characteristics.
Conversely, Enhanced k-means faced challenges with large graphs. Interestingly, even at
the same levels of quadtree/octree compression, distinct performances were observed among
techniques, indicating that local data properties within a dataset play a crucial role in
clustering outcomes, regardless of size.

Although the compressed quadtree/octree architecture efficiently captures clustering hierarchy
and allows for parallel optimization of localized neighborhoods, it does have limitations,
particularly concerning fault tolerance and tree depth variation across different scales, especially
in medium and large instances. This architecture relies on clear and well-separated clustering
of cities into cohesive groups, making it vulnerable to noise or outliers in the data, which
can disrupt hierarchical partitioning and distort neighborhood relationships encoded in the
tree structure. Moreover, the spanning tree is sensitive to changes in cluster structure during
refinement iterations, often resulting in subtree rearrangement and the invalidation of prior
optimizations.

To mitigate these issues, incremental update approaches could be implemented, selectively re-
optimizing affected regions after localized changes, rather than rebuilding the entire tree from
scratch. While the compressed quadtree/octree offers valuable insights, hybrid representations
incorporating graph-based flexibility may enhance resilience to real-world variability in TSP
problems during prolonged optimization runs.

In response to the limitations of the TSP-compressed quadtree/octree, we propose a dilation 2
one-by-one embedding of the structure into a crossed cubes topology. This strategic integration
aims to optimize resource allocation during parallel optimization. Our embedding method
achieves an optimal dilation of 2 and a load factor of 1.

Intra-cluster solutions were rapidly generated using efficient construction heuristics tailored to
cluster sizes. These local solutions were then intelligently combined using a genetic networking
heuristic, which explored connectivity across partitions. This two-phase approach capitalized
on hierarchical abstraction and guided recombination to produce diverse and high-quality
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initial populations.

Extensive experimentation on benchmark TSPLIB instances validated the effectiveness of our
clustering-driven initialization. These solutions served as the starting point for a simulated
annealing metaheuristic, ensuring a well-balanced foundation for further refinement. Our
approach consistently surpassed traditional methods like the farthest insertion across graphs
of varying sizes.

Comparative analysis against four and five state-of-the-art algorithms demonstrated the
superior performance of our hybrid TSP optimizer across different instance scales. For
instances with 200 or fewer cities, our algorithm secured the second position, closely behind
the DPC-ACO-KOpt algorithm, with an impressive average error rate of 0.21%. As instance
scales increased beyond 200 cities, our algorithm consistently outperformed competitors,
achieving solutions closest to proven optima with error rates at least half as low. Specifically,
for instances ranging from 300 to 500 cities, our algorithm exhibited an average error rate of
0.6%. Remarkably, its robust scalability was evident in solving instances containing over 1000
cities, delivering results within 3-4% of the best-known solutions.

The hierarchical mapping introduced in this research effectively manages computational work-
load distribution, addressing network congestion, a significant challenge faced by sequential
TSP metaheuristics operating on Euclidean path structures. In the Euclidean TSP, cities are
represented as points in a geometric space, and determining the optimal tour involves finding
the shortest possible path connecting all cities, a task known to be NP-hard.

Metaheuristics tackle this problem by evaluating numerous candidate paths in a distributed,
stochastic manner. However, executing these algorithms sequentially can lead to contention
issues, particularly when dealing with long paths spanning disparate cities. As iterations
accumulate, problem scales increase, and outdoor connections proliferate, the risk of excessive
contention rises due to geographic dispersion of points, resulting in latency that impedes
progress.

In contrast, our proposed hierarchical mapping embeds natural city clusters inherent in the
Euclidean topology into a parallel structure. This approach organizes optimization to focus
on geographically localized partial paths, minimizing routing conflicts (with a dilation of
2 in our model). By strategically avoiding congestion hotspots that can hinder sequential
evaluations of globally dispersed candidate solutions, our method ensures smoother progress.

Through well-balanced partitioning and localized parallelism, we efficiently mitigate contention
effects. This is particularly advantageous for large-scale industrial TSP formulations with tens
of thousands of points spread across wide regions. By aligning algorithmic and architectural
decomposition, our approach accelerates the discovery of optimal Euclidean paths.

7.1 Perspectives
This study makes the case for using machine learning, parallel computing, and understanding
problem structures together to make metaheuristic optimization techniques better at solv-
ing TSP. It suggests avenues for future research such as dynamic clustering adjustments,
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blending different local search methods, and developing versatile frameworks applicable to
various complex problems. Although the research primarily targets the TSP, its methodology
introduces an encouraging clustering-based strategy for breaking down challenging problems
hierarchically. Subsequent research will continue to harness parallel computing and enhance
embedding techniques within this framework.

Moreover, future research directions include investigating dynamic load balancing methods to
address variations in runtime and differences in subproblem complexity. Additionally, there is
a need to explore the integration of this methodology into heterogeneous High-Performance
Computing (HPC) architectures, incorporating GPU and FPGA accelerators. In summary,
this study paves the way for leveraging high-performance distributed computing to tackle
previously insurmountable combinatorial optimization problems.
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