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Abstract

The inclusion of fractional-order dynamics in the study of nonlinear systems has broadened

our understanding of complex behaviors, such as stability, chaos and bifurcations, and has

opened up new possibilities in control theory. These systems involve derivatives and integrals

of non-integer order, introducing a new level of flexibility and versatility in modeling real-

world phenomena. This thesis aims to study the stability and bifurcations in a fractional

order chaotic systems and the control of chaos. To achieve our goal we introduced in the first

tow chapters the necessary basic notions such as: fractional derivation, chaos theory, stability

of fractional systems and bifurcation theory. The main results of this thesis are presented

in the last tow chapters where we gave the necessary and suffi cient conditions for stability,

we showed the existence of Hopf bifurcations in both cases: integer and fractional also we

proved the effect of fractional order in the critical point location of Hopf’s bifurcation points,

stability and chaos control.

Key words: Fractional order, Dynamic system, Stability, Bifurcations, Hopf bifurcation,

Chaos, Control, Effect of fractional order, Jerk system, Localisation.
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Resumé

Les systèmes dynamiques d’ordre fractionnaire ont gagné en popularité dans divers domaines

en raison de leur capacité à modéliser des comportements complexes avec plus de précision

que les systèmes d’ordre entiers traditionnels. Ces systèmes impliquent des dérivées et des

intégrales d’ordre non entier, introduisant un nouveau niveau de flexibilité et de polyvalence

dans la modélisation des phénomènes du monde réel. Cette thèse a pour but d’étudier la

stabilité et la bifurcation dans un système chaotique d’ordre fractionnaire ainsi le contrôle

du chaos. Pour avoir notre but on a introduit dans les deux premiers chapitres les notions

de base nécessaires tels que: la dérivation fractionnaire, la théorie du chaos et la stabilité des

systèmes fractionnaires ainsi la théorie des bifurcations. Les principaux résultats de cette

thèse se présentent dans le troisième et le quatrième chapitre où on a donné les conditions

nécessaires et suffi santes pour la stabilité, on a montré l’existence des bifurcations de Hopf

dans les deux cas : entier et fractionnaire ainsi on a preuvé l’effet de l’ordre fractionnaire

dans l’emplacement de point critique des points de bifurcations de Hopf ainsi sur la stabilité

et le contrôle du chaos.

Mots clés : Ordre fractionnaire, Système dynamique, Stabilité, Bifurcations, Bifurcation de

Hopf, Chaos, Contrôle, Effet de l’ordre fractionnaire, Système Jerk, Localisation.
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 ملخص

نظرا  ،شعبية في مختلف المجالات كسريةب التالر تلقد اكتسبت الأنظمة الديناميكية ذا

 رتبلقدرتها على نمذجة السلوكيات المعقدة بشكل أكثر دقة من الأنظمة التقليدية ذات ال

مما يوفر  ،ةب غير صحيحتمشتقات وتكاملات ذات رتتضمن هذه الأنظمة  الصحيحة.

  .في نمذجة ظواهر العالم الحقيقي والتنوعرونة مستوى جديدا من الم

الكسري تهدف هذه الأطروحة إلى دراسة الاستقرار والتشعب في النظام الفوضوي  

المفاهيم الأساسية  ل الأول والثانيفي الفصوالسيطرة على الفوضى. ولتحقيق هدفنا قدمنا 

ري، ونظرية الفوضى واستقرار الأنظمة الكسرية، ونظرية اللازمة مثل: الاشتقاق الكس

الشروط حيث قدمنا  والرابعين الثالث تم عرضها في الفصل ا العملالتشعب. أهم نتائج هذ

 الأنظمة ذات الرتباللازمة والكافية للاستقرار، وبينا وجود تشعبات هوف في الحالتين: 

نقاط تشعب لفي موقع النقطة الحرجة  ةكسريب التكما أثبتنا تأثير الر يةالصحيحة والكسر

ضى.الاستقرار والسيطرة على الفو ،هوف  

، النظام ةالكسريالرتب الكلمات المفتاحية: 

، التشعبات، تشعبات هوبف، استقرارالديناميكي، 

 ،jerk ; ، نظامةالكسري رتبالفوضى، التحكم، تأثير ال

 .موقع
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Introduction

In recent years, several researchers have focused their attention on the study of fractional

calculus, it has been found that many systems in interdisciplinary fields can be described by

fractional differential equations. Indeed, there are many applications such as:

Physics and engineering: Fractional calculus provides a more accurate way for explaining

complex behaviours and phenomena numerous branches of physics and engineering, such

as viscoelasticity, diffusion and heat conduction, as well as electromagnetic, complex circuit

analysis and transmission line phenomena [45, 49, 66] .

Geological, atmospheric and oceanic investigations, the capacity of fractional calculus

to capture memory effects and non-local phenomena is extremely useful. These applications

help us comprehend Earth’s processes and events better, which helps us make more accurate

forecasts and wiser decisions [61].

Communication Fractional calculus offers techniques to account for intricate and memory-

reliant processes in communication that traditional calculus could miss. This may result in

communication systems that are more effective and dependable.

Biology, epidemiology and healthcare Fractional calculus is useful in biology, epidemi-

ology and healthcare because these programs help people understand diseases better, make

more precise forecasts and make better healthcare decisions [65, 82] .

Transportation Fractional calculus offers an invaluable foundation for comprehending and

improving transportation systems, resulting in more effi cient traffi c flow, safer vehicle dy-

namics and effective logistical operations [33]. So the effi ciency of these equations in the

modelling of many real-world problems motivated a lot of researchers to investigate their

1



Introduction

quantitative and qualitative aspects.

A wide range of phenomena in both living and nonliving systems that exhibit nonlinear

behavioral changes over time are referred to as "Dynamic Systems" behavioral change can

occur in clouds formations in the sky or in a chemical reaction; it can reflect a sudden

transition of gait pattern in a biological system, or a shift in flying pattern formation in a

flock of birds. Dynamic systems aim to study the complex processes driving those changes.

They are complex because whether occurring in a single system/organism, or a group of

individuals, change occurs as the product of multileveled interactions between the various

elements constituting these systems.

The stability analysis of fractional-order systems is a complex and intriguing area of study

that has gained significant attention due to its unique characteristics compared to integer-

order systems. Fractional-order systems exhibit behaviors that are not present in integer-

order systems, such as non-local memory effects and the ability to model complex physical

phenomena more accurately. Indeed, in the theory of stability linear systems, of integer

order, we know well that a system is stable, if and only if the roots of the characteristic

polynomial have negative real parts, that is to say located on the left half of the complex

plan. Furthermore, the notion of the stability of linear fractional systems is a little different

from that of classical systems. In fact, we have clearly observed that stable fractional sys-

tems may well have roots of the characteristic polynomial in the right half of the complex

plane, which shows that fractional systems are memory systems which are more stable (when

the fractional order is less than 1) compared to integer-order systems, and therefore, they

exhibit dynamic behavior much more sophisticated. Recently, stability analysis of fractional

differential equations has been studied and some basic analytical results are obtained, we can

refer to [20, 21, 46, 54, 55, 60] for the recent history of stability analysis of fractional systems.

With in the field of dynamical systems theory, bifurcation theory examines how a system’s

behavior changes qualitatively when one or more parameters are varied. These changes often

involve the emergence of new solutions, alterations in stability and the creation of complex

dynamical patterns. Bifurcations are critical points where the qualitative character of the

2



Introduction

system’s behavior undergoes a significant transformation.

The most active topics of interest under current study, investigated in the field of chaotic

fractional-order dynamical systems, are the study of Hopf bifurcation and chaos control,

therefore, when a fractional-order system undergoes a Hopf bifurcation, loses its stability

and becomes finally a chaotic fractional-order system, and how to control and synchronize

this chaos have been very important problems. Due to this fact, the Hopf bifurcation of

integer order has been thoroughly investigated during the past long time [1, 9, 30, 57, 85] .

However, there are a few results about fractional Hopf bifurcation. In [2, 4, 13, 16, 21, 25, 49]

the authors proposed some works about fractional Hopf bifurcation.

Currently, it has been discovered that a number of fractional-order differential systems, in-

cluding the Rossler system [47], Chua circuit [31], Duffi ng system [8], jerk model [6], Chen

system [51], the fractional-order Lü system [83] and Newton-Leipnik system [70], exhibit

chaotic behaviors.

These systems’control has been viewed as a diffi cult task because of their delicate and com-

plicated dynamics. However, due to its ability to improve control performance, enable correct

modeling, manage complex dynamics, provide robustness, regulate multi-physics systems, ac-

count for time delays and accommodate future technologies, fractional order system control

is crucial. Several methods have been proposed to control these systems and stabilize their

behavior. More information is available at [3, 14, 25, 26, 35, 62, 68, 81] .

Numerous emerging industries and technologies use fractional order control such as robotics,

mechatronics, biomedical systems, renewable energy systems, chemical processes and others

are included . Through the use of fractional order control techniques, these systems may be

better managed and optimized, improving performance, energy effi ciency and safety.

Motivated by the above considerations, the work presented in this thesis based on the study

of stability, bifurcations and control in fractional chaotic system, it is divided into two parts.

We start with preliminary chapters: 1 and 2, and the second part presents our main results.

The content of each chapter is outlined as follows:

The first chapter, is the introductory chapter which comprises basic notions concerning

3
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the calculus fractional and general notions of the theory of dynamical systems, along with

some findings about the stability of non-integer order systems.

In the second chapter, we briefly recall some characteristics of chaos and its applications,

also we introduce the preliminary notions and properties of bifurcations and their types with

basic examples.

In the third chapter, we explore the stability of a fractional-order chaotic "Jerk system "

by applying the Routh-Hurwitz criteria. The analysis involves conducting a Hopf bifurcation

study with respect to the fractional order and a specific parameter. Conditions for ensuring

the occurrence of Hopf bifurcation are proposed under the bifurcation parameter, both for

the fractional order and its corresponding integer order. We also carry out numerical in-

vestigations using both commensurate and incommensurate fractional chaotic systems. The

findings reveal that the critical Hopf bifurcation value undergoes a shift in location under

the influence of the fractional order.

Finally, the fourth chapter is mainly devoted to the principles of control of chaotic sys-

tems, tow control methods are summarized , as well as their applications . We propose

another version of "Jerk System" to apply the theories of stability and control using the

generalized Routh-Hurwitz criterion to fractional order.

The thesis is concluded with a conclusion and perspectives.

4
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Preliminaries
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Chapter 1

Stability of Fractional Dynamical

Systems

The general concepts of fractional dynamical system are presented in this chapter, along with

some findings about the stability of non-integer order systems.

1.1 Fractional Differentiation

The fractional derivative is a generalization of the concept of differentiation to non-integer

order. It is often used in various fields of science and engineering, especially in the study

of systems exhibiting complex and anomalous behaviors. The construction of fractional

derivatives involves several mathematical approaches, among which the most common meth-

ods are the Grünwald-Letnikov definition, the Riemann-Liouville definition and the Caputo

definition.[23, 41, 67].

1.1.1 Grunwald-Letnikov Fractional Derivative

The Grunwald-Letnikov definition of the fractional derivative is based on the idea of using a

discrete approximation to define the fractional derivative.

6



Chapter 1.Stability of Fractional Dynamical Systems

For a function f(t) ∈ C [a, b], the first derivative of the function f(t) is defined by :

f ′(t) = D(1)f(t) =
df(t)

dt
= lim

h→0

f(t)− f(t− h)

h
. (1.1)

If we apply this formula again, we get the second-order derivative:

f ′′(t) = D(2)f(t) =
d(2)f(t)

dt
= lim

h→0

f ′(t)− f ′(t− h)

h
(1.2)

= lim
h→0

f(t)− 2f(t− h) + f(t− 2h)

h2
,

we can generalize this formula for the nth− derivative

D(n)f(t) = lim
h→0

1

hn

n∑
m=0

(−1)m
(
n

m

)
f(t−mh), (1.3)

where
(
n
m

)
= n(n−1)......(n−m+1)

m!
.

We pose h = t−a
n
, where a is a real number, the generalization in the sense of Grünwald-

Letnikov of this formula for the non-integer order α (n− 1 < α < n) is défined by:

GL
a Dα

t = lim
h→0

1

hn

n∑
m=0

Γ(m− α)

Γ(m+ 1)Γ(−α)
f(t−mh) , (1.4)

such as:

(−1)m
(
α

m

)
=
−α(1− α)(2− α)....(m− α− 1)

m!
=

Γ (m− α)

Γ(m+ 1)Γ(−α)
. (1.5)

7



Chapter 1.Stability of Fractional Dynamical Systems

Riemann-Liouville Integral

Cauchy’s formula for repeated integration

Inf(t) =

∫ t

a

ds1

∫ s1

a

ds2....

∫ sn−1

a

f(sn)dsn =
1

(n− 1)!

∫ t

0

(t− s)n−1 f(s)ds, n ε N∗ , (1.6)

holds for n ∈ N, a, t ∈ R, t > a. Replacing (n− 1)! by Γ (α) and the power n in the integrand

with some α ∈ R+, we have Riemann-Liouville fractional integral:

Definition 1.1.1 The Riemann-Liouville integral is defined by

Iαa+f(t) = 1
Γ(α)

∫ t
a

(t− s)α−1 f(s)ds , α > 0, t > a, (1.7)

where Γ (.) is the gamma function.

Proposition 1.1.1 for f ∈ C([a; b)) :

1. Iαa+[Iβa+f(t)] = Iα+β
a+ f(t) ,α, β > 0.

2. Iαa+[Iβa+f(t) = Iβa+I
α
a+f(t) , α, β > 0.

3. d
dx

[
Iαa+f(t)

]
= Iα−1

a+ f(t) ,α > 1.

1.1.2 Riemann-Liouville Fractional Derivative

Definition 1.1.2 For m ∈ N∗; and a ∈ R; the Riemann-Liouville derivative with fractional-

order α of function f ∈ C([a; +∞);R) is given by

RLDα
a f(t) =

 DmIm−αa f(t) = dm

dtm

(
1

Γ(m−α)

∫ t
a

(t− τ)m−α−1 f(τ)dτ
)

,m− 1 < α < m.

dm

dtm
f(t) , α = m.

.

(1.8)

8
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(1) The Riemann -Liouville fractional derivative is a linear operator.

(2) The Riemann-Liouville fractional differential operator is the left inverse operator of the

fractional integral Iαa e.i
(
RLDα

a

)
(Iαa f) (t) = f(t).

Example 1.1.1

f(t) Iαa+f(t) Dα
a+f(t) Specifications

(t− a)β Γ(β+1)
Γ(α+β+1)

(t− a)α+β Γ(β+1)
Γ(−α+β+1)

(t− a)β−α a ∈ R and α > 0, β > −1

C C
Γ(α+1)

(t− a)α C
Γ(1−α)

(t− a)−α a ∈ R and α ∈ R, C ∈ R

eλt λ−αeλt λ+αeλt a = −∞, α > 0, λ > 0

e−λt λ−αe−λt λαe−λt a = +∞, α > 0, λ > 0

1.1.3 Caputo Fractional Derivative

Definition 1.1.3 For m − 1 < α < m; m ∈ N∗; and f ∈ Cm([a; +∞)), the fractional

operator:

CDα
a f(t) =


1

Γ(m−α)

∫ t
a

(t− s)m−α−1 dm

dsm
f(s)ds = Im−αa Dmf(t) ,m− 1 < α < m

dm

dtm
f(t) , α = m

, (1.9)

is called the Caputo fractional derivative.

Proposition 1.1.2 For m − 1 < α < m; m ∈ N∗; et f ∈ Cm([a; +∞)), We have the

following properties:

1. (CDα
a ) is a linear operator.

2. (CDα
a )(Iαa f)(t) = f(t).

3. If CDα
a f(t) = 0, so f(t) =

∑m−1
j=0 cj (t− a)j , (c)j=0,...,m−1 ε R.

9
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4. Iαa (CDα
a f(t)) = f(t) +

∑m−1
j=0 cj (t− a)j , (c)j=0,...,m−1 ε R

Example 1.1.2 We consider the following function :f : t→ tβ.β ≥ 0

For 0 < m− 1 < α < m, we have :

CDα
a f(t) = Im−α (Dm) tβ,

where:

CDmtβ =
Γ (β + 1)

Γ (β + 1−m)
tβ−m,

so,

Im−α =

(
Γ (β + 1)

Γ (β + 1−m)
tβ−m

)
=

Γ (β + 1)

Γ (β + 1−m) Γ (m− α)

∫ t

0

(t− s)m−α sβ−mds,

assume that :s = yt ⇒ ds = tdy, we find ,

∫ t

0

(t− s)m−α sβ−mds =

∫ 1

0

(t− ty)m−α−1 (ty)β−m tdy

=

∫ 1

0

tm−α−1(1− y)m−α−1yβ−mtβ−m+1

= tβ−α
∫ 1

0

(1− y)m−α−1 yβ−mdy

= tβ−αβ (m− α, β −m+ 1)

= tβ−α
Γ (m− α) Γ (β −m+ 1)

Γ (β − α + 1)
,

therefore,

Im−α
(

Γ (β + 1)

Γ (β + 1−m)
tβ−m

)
=

Γ (β + 1)

Γ (β + 1−m) Γ (m− α)

Γ (m− α) Γ (β −m+ 1)

Γ (β − α + 1)
tβ−α.

10
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We have :

CDmtβ =
Γ (β + 1)

Γ (β + 1− α)
tβ−α,

for β = 0; one obtian :

CDmt0 = Dm1 = 0.

We can say that the fractional derivative of any constant function using Caputo definition is

consistent, since it is equal to zero.

1.1.4 Laplace Transforms of Fractional Derivatives

Basic Laplace Transform Tools

Definition 1.1.4 The Laplace transform of a function f(t) is define as follow :[78]

F (s) = L {f(t); s} =

∫ ∞
0

e−stf(t)dt, s ∈ C (1.10)

For this integral to exist we must have

e−αt |f(t)| ≤M for all T < t,

where M and T are positive constants. The original function f(t) can be recovered from the

Laplace transform.

11
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Definition 1.1.5 The inverse Laplace transform f(t) for , s ∈ C and F (s) is the Laplace

transform is defined as

f(t) = L−1(F (s))(t) =

∫ c+i∞

c−i∞
estf(s)ds. c = Re(s) > c0, (1.11)

where c0 is the convergence index of the integral (1.11).

Definition 1.1.6 The convolution of two functions is given by :

f(t) ∗ g(t) =

∫ t

0

f(t− τ)g(τ)dτ =

∫ t

0

g(t− τ)f(τ)dτ. (1.12)

The Laplace transform of the convolution of two functions f(t) and g(t) is defined as:

L {f(t) ∗ g(t); s} = F (s)G(s). (1.13)

The Laplace transform of the derivative of order n of the function f can be written:

L
{
f (n)(t); s

}
= snF (s)−

n−1∑
k=0

sn−k−1f (k)(0) = snF (s)−
n−1∑
k=0

s(k)f (n−k−1)(0). (1.14)

Laplace Transform of the Riemann-Liouville Fractional Derivative

The Laplace transform of Riemann-Liouville fractional derivative is defined by:

L
{
RL
0 Dαf(t); s

}
= sαF (s)−

m−1∑
k=0

sk
[

0D
(α−k−1)f(t)

]
t=0

,m− 1 ≤ α < m. (1.15)

Laplace Transform of Caputo Fractional Derivative

The Laplace transform of Caputo’s fractional derivative is defined by:

L
{
C
0 D

αf(t); s
}

= sαF (s)−
m−1∑
k=0

sα−k−1f (k)(0),m− 1 ≤ α < m.

12
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Laplace Transform of the Grunwald-Letnikov Fractional Derivative

• First we shall consider the case 0 < α < 1, the Laplace transform of Grunwald-Letnikov

fractional derivative is defined by:

L {GLDα
0+f(t); s} =

f(0)

s1−α +
1

s1−α (sF (s)− f(0)) = sαF (s). (1.16)

• If α > 1 the Laplace transform of the Grünwald-Letnikov fractional derivative does not

exist in the classical sense, because in such a case we have non-integrable functions in

the sum of the formula (1.14).

1.1.5 Comparison Between Caputo and Riemann-Liouville Deriv-

ative’s

• The relation linking the derivative in the sense of Riemann-Liouville to that of Caputo is

given by:

CDα
a f(t) =RL Dα

a f(t)−
m−1∑
k=0

f (k)(a)(t− a)k−α

Γ (k − α + 1)
, (1.17)

where f ∈ C([a; b)); and m− 1 < α < m, m ∈ N∗,

We note that if f (k)(a) = 0 for k = 0, 1, 2, ....., n− 1, we will have

CDα
a f(t) =RL Dα

a f(t).

• The derivative of a constant function in the sense of Caputo is zero, on the other hand by

Riemann-Lioville it is C
Γ(1−α)

(x− α)−α .

• The Laplace transform formula of the fractional derivative in the Riemann-Liouville sense

is given by:

L
{
RL
0 Dαf(t); s

}
= sαF (s)−

m−1∑
k=0

sk
[

0D
(α−k−1)f(t)

]
t=0

,m− 1 ≤ α < m.

13
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The Laplace transform formula of the fractional derivative in the Caputo sense is given by:

L
{
C
0 D

αf(t); s
}

= sαF (s)−
m−1∑
k=0

sα−k−1f (k)(0),m− 1 ≤ α < m.

• Caputo’s definition is well used since its Laplace transformation allows initial conditions

taking the same forms as those of integer-order derivatives, which have clear physical

interpretations and applications behavior in the actual modeling process.

• We have the derivative of Caputo is CDα
a f(x) = In−αa

[
dn

dxn
f(x)

]
on the other hand the

Riemann-Lioville derivative is RlDα
a f(x) = dm

dxm
[Im−αa f(x)] .

1.2 Dynamical Systems

Dynamical systems theory is a broad and interdisciplinary field that studies the behavior

of systems over time. It explores concepts like stability, bifurcations, attractors and chaos,

which are crucial in understanding the long-term behavior of dynamic systems. A dynamical

system described by a mathematical function presents two types of variables : dynamic and

static. Dynamic variables are fundamental quantities that change over time; static variables,

also called parameters of the system, are fixed.

We will consider two types of dynamical systems: those with continuous (real) time T = R

and those with discrete (integer) time T = Z.

1.2.1 Continuous Dynamical Systems

In the case where time is continuous, the fractional dynamical system, corresponding to a

vector field f ; is defined as :

CDαx = f(t, x, µ) , (1.18)

14
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where x ∈ Ω ⊆ Rn, µ ∈ D ⊆ Rp,α = [α1,α2, ..., αn]T , f : R × Ω × Rp −→ Rn and cDα

designates the derivation operator of Caputo.

1.2.2 Discrete Dynamical Systems

In the case where time is discrete, the dynamical system is presented by an application

(iterative function),

xn+1 = f(n, xn, µ), n ∈ N. (1.19)

For example discrete-time systems appear naturally in ecology and economics when the state

of a system at a certain moment of time t completely determines its state after a year, say

at t+ 1.

1.2.3 Autonomous and Non-autonomous Systems

When f depends explicitly on time, the system (1.18) is said non-autonomous system.

Otherwise, we say the system (1.18) is autonomous.

1.2.4 Poincaré Section

APoincaré section, named after the French mathematician Henri Poincaré, is a way to analyze

the long-term behavior of a dynamic system, particularly in the context of continuous-time

dynamical systems described by differential equations.

Making a Poincaré section amounts to cutting the trajectory in phase space, in order to

study the intersections of this trajectory with, for example in dimension three, a plan. We

then move from a continuous time dynamic system to a system discrete-time dynamics. It is

demonstrated that the properties of the system are preserved after completing a judiciously

chosen section of Poincare.

15
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Definition 1.2.1 Consider a dynamical system defined by :

 ẋ(t) = f(x(t))

x(0) = x0

, (1.20)

where f : Rn −→ Rn, n > 2, and Ω ⊂ Rn−1. The intersection of the plane Ω and the trajectory

of the system (1.20) allows us to define a function H as follows:

 H : U ⊂ Ω→ Ω

x(t) = ϕ (x(t), δ)
,

where δ designates the time, it takes for the trajectories x(t) and to start from U to arrive

Ω . The function H is called the first return application.

1.3 Fractional Differential Equations (FDE)

1.3.1 Cauchy Problem

Generally, a FDE admits an infinite number of solutions, to choose between the different

solutions the one which describes the problem, it is necessary to consider others data and

other conditions which depend on the value of the solution in one initial instant t0 denoted

y(t0): This condition is called the initial condition.

We start by providing a general definition of a differential equation of fractional order before

discussing the existence and uniqueness of a Cauchy problem for a fractional differential

equation.

Definition 1.3.1 A differential equation of fractional order caputo type is given by the equa-

tion:

CDαx = f(x),

where α > 0, α /∈ N , n = [α] + 1, f : A ⊂ R → R, and CDα designates the derivation

16
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operator of Caputo.

We consider the Cauchy problem for a fractional differential equation Caputo type :


CDαx = f(x), t ∈ [0, T ]

CDαxk(0) = bk, k = 0, 1, ....n− 1
, (1.21)

where T > 0, bk ∈ R.

1.3.2 Existence and Uniqueness Theorem

The following theorem allows us to affi rm the existence and uniqueness of the solution of

problem with initial values (1.21)

Theorem 1.3.1 Let K > 0, h∗ > 0, x(i)
0 ∈ R, i = 0, 1, ....., n−1, and f : G = [0, h∗]×R→ R,

a continuous function, satisfying the Lipschitz condition by contribution to x:

|f (t, x1)− f (t, x2)| < K |x1 − x2| ,

where in the case α ∈ (0, 1), the parameter h is given by the relation

h = min
{
h∗, (KΓ (α + 1) /M)

1
α

}
,

and

M = sup
t,zεR
|f(t, z)| ,

then, the problem (1.21), admits a single solution x ∈ C [0, h] .

Theorem 1.3.2 Under the assumptions of theorem, the problem with initial conditions (1.21)

is equivalent to the Volterra integral equation:

x(t) =

n−1∑
k=0

tk

k!
+

1

Γ (α)

t∫
0

(t− τ)α−1 f (τ, x(τ))dτ. (1.22)
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1.3.3 Numerical Solving Fractional Equations

In general, to solve nonlinear differential equations, we use numerical methods, so that analyt-

ical resolution in this case is generally impossible. There are several methods for the numer-

ical resolution of diferential equations of fractional order, namely: the method of diferences

Grünwald-Letnikov fractional methods, the Adomian decomposition method, the variational

iteration method and the Adams-Basheforth-Moulton method. In this part, we focus on the

numerical method : the Adams-Basheforth-Moulton method.

The Adams-Basheforth-Moulton Method

The Adams-Basheforth-Moulton method is a numerical method introduced by Diethelm and

Freed [22], based on the Volterra equation (1.22)

We assume that xk is the approximation of x (tj) for all j = 1, ...., k in the interval [0, T ]

In order to obtain xk+1, we use the quadrature product formula of trapezoids, where the nodes

tj for j = 0, ....k+ 1, and interpret the function (xk+1− .)α−1.We obtain the approximation:

∫ k+1

0

(tk+1 − τ)α−1g(τ)dτ '
k+1∑
j=0

aj,k+1g(tj),

where

aj,k+1 =

∫ k+1

0

(tk+1 − τ)α−1 ωj,k+1dτ,

and

ωj,k+1 =


τ−tj−1
tj−tj−1 , if tj−1 < τ < tj

tj+1−τ
tj+1−tj , if tj < τ < tj+1

0, else

,

18
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and like t = jh, for all j = 0, ....k + 1,we have

aj,k+1 =


hα

α(α+1)
(kα+1 − (k − α) (k + 1)α) , if j = 0

hα

α(α+1)
((k − j + 2)α+1 + (k − j)α+1 − 2 (k − j + 1)α+1), if 1 ≤ j ≤ k

hα

α(α+1)
, if j = k + 1

, (1.23)

then, we find the implicit equation of the Adams-Moulton one-step method:

xk+1 =
n−1∑
j=0

tjk+1

j!
y

(j)
0 +

1

Γ (α)

(
k∑
j=0

aj,k+1f(tj, yj) + ak+1,k+1f(tk+1, yk+1)

)
. (1.24)

For the preacher’s formula we adopt the same method explained above but this time we

replace the integral by a formula for the rectangle :

k+1∫
0

(tk+1 − τ)α−1 g (τ) dτ '
k∑
j=0

bj,k+1g(tj),

where

bj,k+1 =
hα

α
((k + 1− j)α − (k − j)α) , (1.25)

then we have:

xk+1 =
n−1∑
k=0

tjk+1

j!
y

(j)
0 +

1

Γ(α)

k∑
j=0

bj,k+1f(tj, yj). (1.26)

The algorithm of the Adams-Bashforth-Moulton method is well determined by the equations

(1.24 ) and (1.26 ) with the weights aj,k+1 and bj,k+1 being defined respectively according to

the equations (1.23) and (1.25).

1.4 Stability of Fractional Dynamical System

The problem of stability consists of studying the behavior of a given system after it has

suffered a disturbance from the move away from its equilibrium position. In all that follows,
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we consider the following fractional differential system:

CDαx = f(x), (1.27)

where α = [α1,α2, ..., αn]T , i = 1, 2, ..n , x = (x1, x2, ....., xn)T ∈ Rn, f : R × Rn → Rn a

continuous function and CDαx denotes the Caputo fractional derivative .

Remark 1.4.1 If all derivation orders αi, i = 1, 2, ..., n of the system (1.27) are equal, we

say that the system is commensurable. Otherwise, the system says unocommensurable

1.4.1 Equilibrium Point

Definition 1.4.1 A point xe ∈ Rn is called as an equilibrium point of Eq (1.27), if f(xe) = 0.

Definition 1.4.2 In the sense of Lyapunov the equilibrium point xe of the system (1.27) is:

1. Stable if

∀ε > 0, ∃ δ > 0 : ‖x(t0)− xe‖ < δ ⇒ ‖x(t, x(t0))− xe‖ < ε,∀ t ≥ t0. (1.28)

2. Asymptotically stable if stable and :

∃ δ > 0 : ‖x(t0)− xe‖ < δ ⇒ lim
t→∞
‖x(t, x(t0))− xe‖ = 0. (1.29)

3. Exponentially stable if:

∀ε > 0,∃ δ > 0 : ‖x(t0)− xe‖ < δ ⇒ ‖x(t, x(t0))− xe‖ < a ‖x(t0)− xe‖ exp(−bt), ∀ t > t0.

(1.30)

4. Unstable if equation (1.28) is not satisfied.
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1.4.2 Stability of Autonomous Linear Systems

In the theory of the stability of linear systems with invariant time, we know well that a

system is stable if the roots of the characteristic polynomial are negative or with negative

real parts if they are complex conjugates and therefore located on the left half of the complex

plane. Furthermore, in the case of linear fractional systems with invariant time, the definition

of stability is different from integer order systems. Indeed, the interesting notion is that

fractional systems can indeed have roots in the right half of the complex plane ([55] [64][54]).

Theorem 1.4.1 Consider the fractional order autonomous system


CDαx(t) = Ax(t)

x(t0) = x0,

, (1.31)

where CDα is the Caputo fractional derivative operator, x ∈ Rn, 0 < α < 1 and A ∈ Rn×Rn.

1. The system (1.31) is asymptotically stable, if and if only if, |arg(λ)| > απ
2
, for all λ:

eigenvalues of the matrix A, furthermore the state vector x(t) tends towards 0 and

verifies the following condition :‖x(t)‖ < Nt−α , t > 0, α > 0.
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2. The system (1.31) is stable, if and only if, the condition :|arg(λ)| ≥ απ
2
is verified for

any eigenvalue of the matrix A, and critical eigenvalues satisfy |arg(λ)| = απ
2
have a

geometric multiplicity which coincides with their algebraic multiplicity.

3. The system (1.31) is unstable, if there exists an eigenvalue of A verifying |arg(λ)| < απ
2
.

Remark 1.4.2 if 1 < α < 2, the system (1.31) is asymptotically stable, if and if only if,

|arg(λi)| > απ
2
, for all i = 1, 2, ..., n

The following figure shows stable and unstable regions

Figure 1.1: Stability Regions

Corollary 1.4.1 If α1 6= α2 6= ...... 6= αn and all αi are rational numbers between 0 and 1,

such that αi = vi
ui

;ui, vi ∈ Z+, let m the least common multiple of denomenators ui where

i = 1, n and putting ρ = 1
m
, then the system (1.31) is asymptotically stable if all the roots of

the equation

det [diag ([λmα1 , ......λmαn ])− A] = 0

Satisfy |arg(λ)| ≥ ρπ
2
.
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1.4.3 Stability of Nonlinear Systems (Linearization)

Now, consider a nonlinear fractional system given by:([78], [76])

CDαx(t) = f(x(t)), 0 < α < 1, x ∈ Rn. (1.32)

Suppose that xe is a equilibrium point of the system (1.32), f(xe) = 0.

To analyze the stability of this point, we linearize the system (1.32) (around the equilibrium

point),

We define ε = x− xe, so
CDαx(t) = f(xe + ε(t)), (1.33)

by expansion in Taylor series of the function in of the point xe we find:

f(xe + ε(t)) ≈ f(xe) +


∂f1
∂x1

∂f1
∂x2

... ∂f1
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

... ∂fn
∂xn


x=xe

ε(t),

where ε = [ε1, ε2, ..., εn] , we know that f(xe) = 0, then:

f(xe + ε(t)) ≈


∂f1
∂x1

∂f1
∂x2

... ∂f1
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

... ∂fn
∂xn


x=xe

ε(t),

and Eq (1.33) becomes,

CDαx(t) =C Dα(xe + ε (t)) =C Dαxe +C Dαε (t)

=C Dαε (t) ,
(
because CDαxe = 0

)
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we obtain;

CDαε (t) =


∂f1
∂x1

∂f1
∂x2

... ∂f1
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

... ∂fn
∂xn


x=xe

ε(t),

so,

CDαε (t) = Jf (xe)ε(t), (1.34)

where Jf (xe) is the Jacobian matrix associated with f at the point xe.

We can now apply the previous theorem to study the local stability of the equilibrium solu-

tions of the system of non-linear autonomous fractional equations (1.32).

1.4.4 Hartman-Grobman Theorem

In the study of dynamic systems, the Hartman-Grobman theorem often known as the linear-

ization theorem is an important theorem concerning the local behavior of dynamic systems

around a equilibrium point.

Consider the dynamical system (1.32), let xe be an equilibrium point of the system (1.32)

and Jf (xe) is the Jacobian matrix associated with f at the point xe.

Definition 1.4.3 Tow flows ϕt and ψt are said to be topologically equivalent in neighborhoods

of equilibrium points, if there exists a homeomorphism h which sends the equilibrium point

of the first flow at the equilibrium point of the second flow cand which combines the points

(h ◦ ϕt = ψt ◦ h).

Theorem 1.4.2 (Hartman−Grobman )

If Jf (xe) admits pure non-zero or imaginary eigenvalues, then there exists a homeomorph-

ism which transforms the orbits of the nonlinear flow into those of the flow linear in some

neighborhood of xe.

This theorem will allow us to link the dynamics of the nonlinear (1.32) system to the dynamics

of the linearized system (1.34) .
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1.4.5 Fractional Order Routh-Hurwitz Criterion

The Routh—Hurwitz stability criterion is a useful tool for investigating the stability property

of linear and nonlinear dynamical systems by analyzing the coeffi cients of the corresponding

characteristic polynomial without calculating the eigenvalues of its Jacobian matrix. Recently

some of these conditions have been generalized to fractional systems of order α ∈ [0, 1).[5]

Consider the fractional system:

CDαx(t) = f(x, t),

where 0 < α ≤ 1, f : R× Rn → R.

We have seen in the previous sections the necessary and suffi cient condition for the system

is asymptotically stable (local) for all eigenvalues λi of the Jacobian matrix of f

|arg (λi)|i=1,n > α
π

2
.

This condition poses an interesting question namely what are the conditions that all the roots

of the polynomial equation

p(λ) = 0, p(λ) = λn + a1λ
n−1 + a2λ

n−2 + ..........+ an,

satisfy

|arg (λi)|i=1,n > α
π

2
, (1.35)

where all the coeffi cients in (1.35) are real.

For α = 1 the solution is Routh—Hurwitz conditions, so we need a new version of this criterion.

a1 > 0,

∣∣∣∣∣∣∣
a1 1

a3 a2

∣∣∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣∣∣∣
a1 1 0

a3 a2 a1

a5 a4 a3

∣∣∣∣∣∣∣∣∣∣
> 0, .......

For α ∈ [0, 1) these conditions are suffi cient but not necessary,so we need a new version of
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Chapter 1.Stability of Fractional Dynamical Systems

this criterion.

The discriminant D(p) of a polynomial

p(λ) = λn + a1λ
n−1 + a2λ

n−2 + ..........+ an,

is defined by

D(p) = (−1)n(n−1)/2R(p, p̀),

where p̀ is the derivative of p and R(p, p̀) is the result of (2n− l) (2n− l) of p(λ) and its

derivative p̀(λ) is given by

R(P, P̀ ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 a1 ... an 0 ... 0

0 1 a1 ... an 0 0

. . . . . . .

0 ... 0 1 a1 ... an

n (n− 1)a1 .... an−1 0 ... 0

0 n (n− 1)a1 ... an−1 0 0

.

0

.

..

.

0

.

n

.

(n− 1)a1

.

..

.

an−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

For n = 3 we have

D(p) = 18a1a2a3 + (a1a2)2 − 4a3 (a1)3 − 4 (a2)3 − 27 (a3)2 .

Remark 1.4.3 Notice that if D(p) > 0(< 0) there is an even (odd) number of pairs of

complex roots for the equation P (λ) = 0,

For n = 3, D(p) > 0 implies that all the roots are real and D(p) < 0 implies that there is

only one real root and one complex root and its complex conjugate.

1. For n = 1 the condition for (1.35) is a1 > 0.
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2. For n = 2 the conditions for (1.35) are either Routh-Hurwitz or

a1 < 0, 4a2 > (a1)2 ,

∣∣∣∣tan−1

(√
4a2 − (a1)2 /a1

)∣∣∣∣ > απ/2.

3. For n = 3, Using the results of [5], we have the following fractional-order Routh-Hurwitz

conditions:

• If D(p) > 0, then the necessary and suffi cient condition for the equilibrium point xe to

be locally asymptotically stable is a1 > 0, a3 > 0, a1a2 > a3.

• If D(p) < 0, a1 ≥ 0, a2 ≥ 0, a3 > 0, then xe is locally asymptotically stable for α < 2/3.

However, if D(p) < 0, a1 < 0, a2 < 0, α > 2/3, then xe is unstable.

• If D(p) < 0, a1 > 0, a2 > 0, a1a2 − a3 = 0, then xe is locally asymptotically stable for

all α ∈ (0.1) .

• The necessary condition for the equilibrium point xe to be locally asymptotically stable

is a3 > 0.

1.4.6 Fractional-Order Extension of Lyapunov Direct Method

Lyapunov stability provides an important tool for the analysis of stability in nonlinear sys-

tems; the method consists of finding a candidate Lyapunov function for a given nonlinear

system. If such a function exists, the system is stable, this method is diffi cult to implement,

but it is much more general in scope. Note that the direct Lyapunov method gives us a

suffi cient condition of stability, that is to say that the system can be stable even in the face

of the impossibility of finding a Lyapunov function because there is no general rule for finding

such a function, however, in mechanics problems, energy is often a good candidate. Let’s

start by defining stability in the Mittag-Leffl e sense :

Definition 1.4.4 [50]The solution of the system (1.27) is said to be Mittag-Leffl er stable
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if there exist, λ ≥ 0 and b > 0 such that

‖x(t)‖ ≤ {m [x(t0)]Eα(−λ(t− t0)α)}b , (1.36)

where 0 < α < 1,m(0) = 0,m(x) ≥ 0 and m(x) locally the Lipschitz on x ∈ B ⊂ Rn with

the Lipschitz constant m0 .

Definition 1.4.5 The solution of the system (1.27) is said to be stable in the generalized

sense of Mittag-Leffl er if

‖x(t)‖ ≤
{
m [x(t0)] (t− t0)−γ Eα,1−γ(−λ(t− t0)α)

}b
, (1.37)

where 0 < α < 1,−α < γ < 1 − γ, λ ≥ 0, b > 0,m(0) = 0,m(x) ≥ 0 and m(x) locally the

Lipschitz on x ∈ B ⊂ Rn with the Lipschitz constant m0 .

• Mittag-Leffl er stability implies asymptotic stability.

• Let λ = 0, we find from (1.37),

‖x(t)‖ ≤
[
m [x(t0)]

Γ (1− γ)

]b
(t− t0)−γb,

which implies that the asymptotically stable is a special case of the Mittag-Leffl er stability.

In the following, we extend the Lyapunov direct method to the case of fractional order

systems, which leads to the Mittag-Leffl er stability.

Theorem 1.4.3 [84] Let xe = 0 be an equilibrium point for the system (1.27) and D ⊂

Rnbe a domain containing the origin. Let V (t, x(t)) :[0,∞) × D → R be a continuously

differentiable function and locally Lipschitz with respect to x, such that

α1 ‖x‖a ≤ V (t, x(t)) ≤ −α2 ‖x‖ab ,
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CDβV (t, x(t)) ≤ −α3 ‖x‖ab ,

where t ≥ 0, x ∈ D, β ∈ (0, 1) , αi (i = 1.2.3), a and b are positive constants .Then xe = 0

is Mittag-Leffl er stable. If the assumptions hold globally on Rn, Then xe = 0 is globally

Mittag-Leffl er stable.

Example 1.4.1 Consider the following fractional system:

C
0 D

α |x(t)| = − |x(t)| , α ∈ (0, 1) ,

let the Lipschitzienn function V (t, x) = |x| , we have,

C
0 D

αV =C
0 Dα |x| ≤0 D

α |x| ≤ − |x| ,

so it is enough to take α1 = α2 = 1, α3 = −1, and the application of the theorem gives us

|x(t)| ≤ |x(0)|Eα (−tα) .
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Chapter 2

Chaos and Bifurcations Theory

Chaos and bifurcations theory are two intertwined concepts within the field of nonlinear dy-

namics, offering insights into the behavior of complex systems. In this chapter we present

basic tools of chaos, its characteristics and some well-known types of bifurcations of codi-

mension one.

2.1 Basic tools

2.1.1 Lyapunov Exponents

The idea of lyapunov exponents is utilized in the study of dynamic systems, especially in the

context of chaos theory. In a dynamical system, they offer a numerical representation of the

exponential divergence or convergence of neighboring trajectories.

The Lyapunov exponents are the average rates of exponential divergence or convergence of

neighboring trajectories in a system given a set of differential equations describing the sys-

tem.We note the exponent Lyapunov by λi. We present below the principle of Lyapounov

exponents to evaluate the behavior of dynamic systems with discrete, continuous and frac-

tional [27].
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Discreet case:

Let’s consider a discreet dynamic system of dimension 1 defined in the interval [0, 1]

xn+1 = f(xn) n ∈ N.

Let x0 an initial condition, we add a very small error ε to disrupt the condition initial x0

Let W1 and W2 two orbits initialized by x0 and x0 + ε respectively.

We need to evaluate the exponential distance between the two orbits W1 and W2 after n

iterations such that the distance is defined by

D(xn) = |fn(x0 + ε)− fn(x0)| ,

for very large n, we have

D(xn) ' ε exp (nλ) , (2.1)

we have x0, x1 = f(x0), x2 = f(x1) = f(f(x0))........xn = f(xn−1) = fn(x0),

When ε→ 0, we obtain

ε exp (nλ) ' dnf(x)

dx
,

and

ln
d(xn)

d(x0)
' ln

dnf(x)

dx

= ln
n−1∏
k=0

∣∣∣f̀ (xk)
∣∣∣

=

n−1∑
k=0

ln
∣∣∣f̀ (xk)

∣∣∣ .
According to equation (2.1), we can define the Lyapounov exponent as follows

λ = lim
n→∞

1

n

n−1∑
k=0

ln
∣∣∣f̀ (xk)

∣∣∣ . (2.2)
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Continuous Case

Consider a continuous dynamic system of dimension n defined by the following differential

equations
dxi (t)

dt
= fi (x(t)) i = (1, ...., n), (2.3)

where xi are the coordinates of the system.

Using the Taylor expansion of equation (2.3) to evaluate a small disturbance Dx(t) around

a trajectory x(t)

d

dt
(xi (t) +Dxi(t)) = fi(x(t) +Dx(t))

= fi(xi(t)) +
∑
j

∂fix(t)

∂xj
Dxj + 0(Dx(t))

' fi (xi(t)) +
∑
j

∂fix(t)

∂xj
Dxj,

according to (2.3), we have
dDxi(t)

dt
'
∑
j

∂fix(t)

∂xj
Dxj. (2.4)

If we write equation (2.4) in matrix form, we find

Dxi(t)̇ = −V Dxi(t), (2.5)

where Vi,j = −∂fix(t)
∂xj

.

Suppose V solution of the matrix equation:

V̇ = −V DVi,

then, equation (2.5) integrates:

Dx(t) = V (t)Dx(0).
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The norm of Dx(t) is given by

|Dx(t)|2 = DxT (t)V T (t)V (t)Dx(0).

We define the finite-time Lyapounov exponents as the eigenvalues of 1
2t

log
(
V T (t)V (t)

)
λi(t) =

{
spect(log(V T (t)V (t)

1
2t )
}
, λi < ... < λn.

If the matrix check the general conditions of article [63]. then it converges when t → ∞.

Which allows us to define the Lyapounov exponents as follows:

λi = lim
t→∞

λi(t)

Fractional case:

To calculate the Lyapounov exponents in fractional -order system case, We propose algorithm

developed by T. Rosenstein et al.[69] and the Benettin—Wolf algorithm [19].

First of all, to define the Lyapunov exponents we need the following results

Theorem 2.1.1 Consider fractional differential equations


CDαx = f(x) 0 < α < 1

x(0) = 0
, (2.6)

where f : Rn → Rn and CDαis the Caputo fractional derivative.

The variation equation for the system (2.6) is as follows:


CDαΨ(t) = Dxf(x)Ψ(t)

Ψ(0) = I
, (2.7)

where Ψ is the matrix solution of the system (2.7), Dx is the Jacobian of f and I is the
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matrix identity.

Let λi(t) i = 1, 2, ..., n the eigenvalues of Ψ(t) of the system ( 2.7), which satisfy,

|λ1(t)| < |λ2(t)| < .......... < |λn(t)| .

Then, the exponents of Lyapunov λi of trajectories x(t) solving equation (2.7) are defined by

λi = lim
t→∞

1

t
sup ln |λi(t)| i = 1, 2, ...., n

2.1.2 Attractors and Basin of Attraction

Attractors

In mathematics, particularly in the field of dynamical systems and chaos theory, attractors

refer to sets of values or states toward which a system evolves over time. These attractors

play a crucial role in understanding the long-term behavior of dynamic systems.

Definition 2.1.1 A is an attractor if:

1. For every neighborhood U of A, there exists a neighborhood V of A such that every

solution x(x0, t) = ϕt(x0) will stay in U if x0 ∈ V.

2. ∩ϕt(V ) = A, t ≥ 0.

3. There exists a dense orbit in A.

There are different types of attractors, and they are often associated with the solutions of

differential equations or iterative processes.

Regular Attractor

A regular attractor is a specific type of attractor that exhibits some form of regularity or

pattern in its behavior. There are several types of regular attractors, including:
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The fixed point: A fixed point attractor is a single point in the state space toward which

a system tends to evolve. Once the system reaches this point, it stays there.

Limit Cycle: A limit cycle is a closed trajectory in the state space to which the system

repeatedly converges. The system oscillates around this cycle indefinitely.

A torus: which corresponds to the attractor obtained by the movements resulting from two

independent oscillations, for example: electric oscillators

Strange Attractors

A strange attractor is a more complex and chaotic form of attractor. Unlike regular attract-

ors, strange attractors have a fractal structure and exhibit sensitive dependence on initial

conditions.
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Fixed point

limit cycle

A limit cycle in natural space Invariant tori

Lorenz Strange Attractor Rosler Strange Attractor
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Definition 2.1.2 (Basin of attraction) The basin of attraction B(A) of an attractor A

is the set of initial conditions (the set of all initial states of the orbits) is for a long time a

behavior approach towards. Different attractors may have distinct basins of attraction and

the boundaries between these basins can be important in understanding the global behavior of

a system.

2.2 Chaos Theory

Chaos theory is a branch of mathematics and science that deals with complex systems char-

acterized by sensitive dependence on initial conditions. It emerged as a field of study in the

late 20th century. As it is widely known, the chaotic attractor has been found throughout

the world in many research and has powerful applications in various fields including physics,

biology, economics, engineering and even the social sciences. it has been used to study such

as weather forecasting, the study of turbulent fluid dynamics, the behavior of financial mar-

kets, and the modeling of biological systems. It has also inspired a philosophical and scientific

exploration of the limits of predictability in complex systems. Researchers use mathematical

techniques, computer simulations and experimentation to study chaotic systems and gain

insights into their behavior.

2.2.1 Characteristics of Chaos

Chaos: Mathematically, this term is used to describe dynamical systems in which small

changes in initial conditions lead to large changes in the solution after some period of time.

It can be characterized by the following point:

Nonlinear Dynamics

The focus of chaos theory is on systems that exhibit nonlinear dynamics, meaning that their

behavior is not easily predictable from linear relationships between their components. It is

possible for nonlinear systems to exhibit intricate and frequently unexpected behavior.
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Sensitive Dependence on Initial Conditions

Sensitivity to initial conditions is a phenomenon discovered for the first time, from the end

of the 19th century by Poincarè, then was rediscovered in 1963 by Lorenz during his work in

meteorology. which suggests that a small change in the initial conditions of a system can lead

to vastly different outcomes. In other words, tiny variations in the starting state of a system

can result in significant and unpredictable differences in its future behavior.Figure (2.1)

illustrates the temporal evolution of a trajectory of the system of Lu with three conditions

diferent initials close .

Figure 2.1: The temporal evolution of a trajectory u of the system of Lu with three conditions
diferent initials .

Non-periodicity

Typically, chaotic systems don’t display regular, recurring cycles or patterns. Instead, they

exhibit an aperiodic, seemingly irregular activity that may be characterized as a complicated,

nuanced, and unexpected series of occurrences.
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Strange Attractors

Chaotic systems tend to exhibit strange attractors, which are geometric patterns in phase

space that the system’s trajectory approaches over time. These attractors can have a fractal

structure and represent the underlying order within the seemingly random behavior of the

system.

Figure 2.2: Chen’s Chaotic Attractor

Determinism

Determinism means that the system is non-random and has no parameters or stochastic

entry. This property is specific to all systems whose evolution is defined by a set of differential

equations or difference equations. In the random phenomena, it is impossible to predict the

trajectory of any particle. On the contrary and although they appear, at first glance, random,

dynamic systems chaotic are governed by certain equations accounting for the phenomenon,

but whose solutions sensitive to initial conditions.
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2.2.2 Some Applications of Chaos

Weather forecasting

By taking into consideration how sensitive atmospheric conditions are to preliminary obser-

vations, chaos theory has been applied to enhance weather prediction models. Meteorologists

have found it useful in comprehending the boundaries of predictability in intricate systems

such as the Earth’s atmosphere.

Physics

Complex physical systems including fluid dynamics, turbulence, and nonlinear optics have

been studied using chaos theory. It has aided in the comprehension of the behavior of chaotic

complex systems, offering new perspectives on events that were previously hard to explain.

Engineering

Chaos theory has been used to a number of engineering fields, such as signal processing, tele-

communications and control theory. It has aided in the analysis of complicated engineering

systems’behavior and stability as well as the creation of reliable control systems.

Biology and Medicine

Chaos theory has been used to examine biological systems, including brain networks, genetic

regulatory networks, and the human pulse. This may result in an enhanced comprehension

of disease dynamics and physiological systems.

For exemple, in biology, makes it possible to explain cerebral oscillations (electroencephalo-

gram, that is to say a graphic recording of the electrical activity of the brain by means of

Electro placed on the scalp of a Strange Attractor. Thus, the arrhythmias typical of many

heart diseases can be explained Also by chaos theory.
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Art and Creative Expression

A number of musicians and artists have used chaos theory as a source of inspiration to

produce original and dynamic literary, musical and artistic creations.

In Computer Science

Chaos theory concepts and methods can be applied in computer science in various ways.

For secure communication, chaos-based encryption approaches take use of chaotic systems’

unexpected characteristics. To improve the security of data transmission, keys for encryption

techniques can be generated by chaotic systems.

2.3 Bifurcation Theory

Definition of Bifurcation

A bifurcation is a change in the topological type of the system (qualitative and quantitative

change) when modifying the control parameter, that is to say the disappearance or change

of stability (from stable to unstable or the reverse) and the emergence of new solutions.

Bifurcation Diagram

A bifurcation diagram is a graphical representation used in the study of dynamical systems,

particularly in the field of chaos theory and nonlinear dynamics. It provides insights into

how the behavior of a dynamic system changes as a control parameter is varied. Bifurcation

diagrams are commonly used to analyze and visualize the emergence of complex and chaotic

behavior in such systems. Note that the bifurcation diagram dependsin general on the region

of phase space considered.

Types of Bifurcations

There are various types of bifurcations, each associated with different changes in system

behavior. We are only talking here about the bifurcation of codimension one (k = 1), Some

well-known types of bifurcations of codimension one include [43], [44]:
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2.3.1 Saddle-Node Bifurcation

In this bifurcation, a pair of equilibrium points, one stable and one unstable, collide and

annihilate each other as a parameter is varied. This leads to the creation or destruction of

an equilibrium point. This bifurcation has a lot of other names, including limit point, fold

bifurcation and turning point.

Consider the following equation

ẋ = f(x, r).

Where f : R × R → R is a suffi ciently regular function with f(0, 0) = 0, ∂f
∂x

(0, 0) = 0 ( that

is to say (0.0)is a non-hyperbolic equilibrium point) et ∂f
∂r

(0, 0) 6= 0

By a development limited to the vicinity of the equilibrium point we find:

ẋ = f(0, 0) + x
∂f

∂x
(0, 0) + r

∂f

∂r
(0, 0) +

x2

2

∂2f

∂x2
(0, 0) + ....

= Ar +Bx2,

where

A =
∂f

∂r
(0, 0) et B =

1

2

∂2f

∂x2
(0, 0).

Assume that,

U =
B

A
x, µ =

B

A
r, T = At

U̇ =
B

A
ẋ

U̇ ' B

A
(Ar +Bx2)

U̇ = Br +
B2

A
x2

U̇ = A(
B

A
r +

B2

A2
x2)

U̇ = A
(
µ+ U2

)
,
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we have ∂U
∂t

= ∂U
∂T

∂T
∂t
' A(µ+ U)

⇒ ∂U

∂T
= µ+ U2.

So, the last equation called the normal form of the saddle-node bifurcation.

Example 2.3.1 Consider the following equation:

ẋ(t) = µ− αx2,

where µ is the control parameters.

For α > 0 we are speaking about subcritical bifurcation. Lets α = 1, the equilibrium points

are easy to determine and they are immediately obtained : xe = ±√µ, we can summarize

the result in the following table :

Equilibrium point µ < 0 µ > 0

xe =
√
µ doesn’t exist stable

xe = −√µ doesn’t exist unstable

The visualization can be done in the bifurcation diagram:

Figure 2.3: Saddle-Node Bifurcation
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2.3.2 Transcritical Bifurcation

Here, two equilibrium points (one stable and one unstable) exchange stability as a parameter

is changed. This results in the creation or destruction of an equilibrium point.

Let us still consider the equation:

ẋ(t) = f(x, r).

Where f : R × R → R, f(0, 0) = 0, ∂f
∂x

(0, 0) = 0 and we add a third condition ∂f
∂r

(0, 0) = 0,

with ∂2f
∂x2

(0, 0) 6= 0 and ∂2f
∂x∂r

(0, 0) 6= 0. By a development limited to the vicinity of the

equilibrium point (0.0), we find:

f(x, r) = f(0, 0) + x
∂f

∂x
(0, 0) + r

∂f

∂r
(0, 0) +

x2

2

∂2f

∂x2
(0, 0) + xr

∂f

∂x∂r
(0, 0) + ....

We suppose that :

A =
1

2

∂2f

∂x2
(0, 0) 6= 0,

and

B =
∂f

∂x∂r
(0, 0) 6= 0.

Then, the equation becomes

f(x, r) ' Ax2 +Bxr,

let’s make the changes

U =
x

A
, T = A2t and µ =

Br

A2
,
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so,

U̇ =
ẋ

A

' x2 +
Br

A
x

= A2U2 +BUr

⇒ ∂u

∂t
=
∂U

∂T

∂T

∂t
' A2U2 +BUr

⇒ ∂T

∂t
= U2 + µU.

The last equation called the normal form of the Transcritical bifurcation.

Example 2.3.2 Consider the following equation:

f(x, µ) = µx− x2. (2.8)

The usual analysis gives :

f(x, µ) = 0⇐⇒ µx− x2 = 0⇐⇒ x(µ− x) = 0

 x1 = 0

x2 = µ
.

The equation f(x, µ) = 0 admits two equilibrium points

df(x, µ)

dx
= µ− 2x so

df(x, µ)

dx
|x1= µ and

df(x, µ)

dx
|x2= −µ,

so: the equilibrium point x1 = 0 stable for µ < 0, unstable forµ > 0, x2 = µ, stable for

µ > 0 and unstable for µ < 0.
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Figure 2.4: Transcritical bifurcation:

2.3.3 Pitchfork Bifurcation

In this case, a single stable equilibrium point splits into three equilibrium points, where one

is stable and the other two are unstable, or vice versa. This occurs as a parameter is varied.

It is the bifurcation associated with the differential equation

ẋ = f (x, µ) , x ∈ R and µ ∈ R,

taking in this part f(0, 0) = 0, ∂f
∂r

(0, 0) = 0, ∂2f
∂x2

(0, 0) = 0 , ∂f
∂c2

(0, 0) = 0, ∂2f
∂x∂r

(0, 0) 6=

0, ∂
3f
∂x3

(0, 0) 6= 0 .

By a development limited to the vicinity of the equilibrium point we find:

f(x, r) = f(0, 0) + x
∂f

∂x
(0, 0) + r

∂f

∂r
(0, 0) +

x2

2

∂2f

∂x2
(0, 0) + xr

∂f

∂x∂r
(0, 0) +

r2

2

∂2f

∂r2
(0, 0)

+
x3

6

∂3f

∂x3
(0, 0) + ....

= xr
∂f

∂x∂r
(0, 0) +

x3

6

∂3f

∂x3
(0, 0) + ......

Assume that :

A =
1

6

∂3f

∂x3
(0, 0) 6= 0,
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and

B =
∂2f

∂x∂r
(0, 0) 6= 0.

Then, the equation becomes

f(x, r) ' Ax3 +Bxr

Let’s make the changes

U =
x

A
, T = A3t and µ =

Br

A3
,

so,

U̇ =
ẋ

A

' x3 +
Br

A
x

= A3U3 +BUr

By following:

∂u

∂t
=
∂U

∂T

∂T

∂t
' A3U3 +BUr

⇒ ∂T

∂t
= U3 + µU.

The last equation called the normal form of the Pitchfork bifurcation.

Example 2.3.3 There are two kinds of this bifurcation :

Supercritical, having a normal form:

f(x, µ) = µx− x3, (2.9)

and subcritical, having a normal form :

f(x, µ) = µx+ x3.
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Let’s start with supercritical pitchfork bifurcation, we calculate the equilibrium points.

f(x, µ) = 0

µx− x3 = 0⇔ x(µ− x2) = 0

⇐⇒


x = 0

or

µ− x2 = 0

⇐⇒


x = 0,

or

x2 = µ.

So, if µ < 0, we have a single point of equilibrium at x = 0.

If µ > 0, we have three equilibrium points

 x1 = 0

x2,3 = ±√µ
.

We study the stability of these equilibrium points:

df(x, µ)

dx
= µ− 3x2 so


df(x,µ)
dx
|x1= µ,

df(x,µ)
dx
|x2,3= −2µ.

,

as a result :

• If µ < 0 we have the only equilibrium point where x = 0 is stable.

• If µ > 0 we have the equilibrium point:

 x = 0 is unstable,

x = ±√µ is stable.
.

• if µ = 0 we have a single point of equilibrium where x = 0 is stable.

In the case of a subcritical pitchfork bifurcation, the same calculation yields
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f(x, µ) = 0,

µx+ x3 = 0⇔ x(µ+ x2) = 0

⇐⇒


x = 0

or

µ+ x2 = 0

⇐⇒


x = 0,

or

x2 = −µ.

,

so, if µ > 0, we have a single point of equilibrium x = 0.

If µ < 0, we have three equilibrium points

 x1 = 0

x2,3 = ±√−µ
,

we study the stability of these equilibrium points :

df(x, µ)

dx
= µ+ 3x2 so


df(x,µ)
dx
|x1= µ,

df(x,µ)
dx
|x2,3= −2µ.

,

as a result :

• If µ > 0 we have the only equilibrium point where x = 0 is unstable.

• If µ < 0 we have the equilibrium point:

 x = 0 is stable,

x = ±√µ is unstable.
.

Remark 2.3.1 In the fractional order case, the conditions of the saddle-node bifurcation,

transcritical bifurcation and pitchfork bifurcation do not exchange.
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Figure 2.5: Pitchfork bifurcation:

2.3.4 Hopf Bifurcation

The term Hopf bifurcation (also sometimes called Poincare-Andronov-Hopf bifurcation) refers

to the local birth or death of a periodic solution (self-excited oscillation) from an equilibrium

as a parameter crosses a critical value, This occurs when a stable periodic solution of a system

changes its stability as a parameter is varied, giving rise to the creation of a limit cycle. The

Hopf bifurcation theorem makes the above precise.

We can also distinguish two types of Hopf bifurcation:

• Super-critical Hopf bifurcation where the equilibrium undergoes a change in stability

towards instability.

• Sub-critical Hopf bifurcation or the equilibrium undergoes a change in instability to-

wards stability.

Figure (2.6) gives a representation:

Example 2.3.4 Consider the following system of two differential equations depending on

one parameter:  ẋ1 = µx1 − x2 − x1 (x2
1 + x2

2) .

ẋ2 = x1 + µx2 − x2(x2
1 + x2

2)
, (2.10)

for all µ, the system has the one equilibrium x1 = x2 = 0 and its eigenvalues λ1,2 = µ± i.

By asking the complex variable z = x1 + ix2, z̄ = x1 − ix2, |z|2 = zz̄ − x2
1 + x2

2.
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Figure 2.6: Hopf bifurcation in a phase plane

And

ż = ẋ1 + iẋ2 = µ (x1 + ix2) + i (x1 + ix2)− (x1 + ix2)
(
x2

1 + x2
2

)
,

therefore, we can rewrite system (2.10) in the following complex form:

ż = (µ+ i)z − z |z|2 .

To study this equation, using the representation z = reiθ we get

ż = ṙeiθ + riθ̇eiθ,

the polar form of the system (2.10) is provided by

 ṙ = r (µ− r2)

θ̇ = 1
,

the first equation is nothing more than a pitchfork bifurcation of control parameter µ

If µ < 0, The system has a point of stable equilibrium which corresponds here to a focus

point: the trajectories spiral towards the origin. when µ = 0, it remains stable . And when
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µ > 0 a stable periodic trajectory is then formed or limited cycle

The hopf bifurcation corresponds to an oscillatory instability.

Figure 2.7: Hopf Bifurcation

Consider the Fractional order system

Dαx = f(x, β), 0 < α ≤ 1, x ∈ R3, β ∈ R. (2.11)

In order to obtain the Hopf bifurcation conditions in fractional order commensurate system

(3.2), we first recall the integer order case:.

Integer Order Case

Theorem 2.3.1 [1], [2]The conditions of system (2.11), with α = 1, to undergo a Hopf

bifurcation at the equilibrium point xe when β = β∗, are:

• The Jacobian matrix has two complex-conjugate eigenvalues λ1.2 = θ (β)± iw (β) and

one real λ3(β).

• θ (β∗) = 0, w (β∗) > 0 and λ3(β∗) 6= 0.

• dθ
dβ
|β=β∗ 6= 0.

Fractional Order Case

In the fractional case, the stability of xe is related to the sign ofmi (α, β) = απ
2
−min1≤i≤3 |arg(λi (β))| , i =

1, 2, 3. If there is i such that mi (α, β) > 0, then xe is unstable. If mi (α, β) < 0 for all
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i = 1, 2, 3, then xe is locally asymptotically stable. So, the function mi (α, β) has the same

effect as the real part of eigenvalues in integer-order systems. That’s why, one extends the

Hopf bifurcation conditions to the fractional systems by replacing Re(λi) with mi (α, β) as

follows :

Theorem 2.3.2 [49]The system (2.11) undergoes fractional Hopf bifurcation at the equilib-

rium point xe, if there exists a Hopf critical value β = β∗ such that the following conditions

are satisfy:

(i) The Jacobian matrix has two complex-conjugate eigenvalues λ1.2 = θ (β) ± iw (β) and

one real λ3(β).

(ii) m(β∗) = απ
2
−min1≤i≤3 |arg (λi(β))| = 0.

(iii) dm(β)
dβ
|β=β∗ 6= 0.
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Fractional order effect on the

localisation of Hopf bifurcation point

Among the most important chaotic systems that have been studied, are the jerk systems.

Jerk in physics, refers to the rate of change of acceleration. It is the third derivative of

position with respect to time. It can be written in the form ODE as the third-order dynamics

[73, 74, 75].
d3x

dt3
= ϕ(x,

dx

dt
,
d2x

dt
), (3.1)

in (3.1), x, dx
dt
, d

2x
dt
and d3x

dt3
stands for the displacement, the velocity, the acceleration and the

jerk, respectively. Therefore, we identify Eq (3.1) of the third order as the jerk differential

equation.

The applications of jerk have many instances and one of the examples one can shoot is simply

that the jerk is all about the rate at which any object’s acceleration changes with time or

with respect to time, here are a few examples: Transportation, vehicle dynamics, robotics,

automation medical imaging, radiology, virtual reality and video games [33]. In technical

applications the jerk information can be used to control bodies in motion for accurate and

precise control, to improve the control response and to avoid excessive input of acceleration.
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However, in the field, some flaws appeared when applying the Jerk systems, beyond the direct

influence of the forces themselves, rapid shifts in the forces can also modify acceleration, jerk,

and higher-order derivatives, which can have undesirable impacts. In addition to inducing

fatigue cracks in metals and other materials, jerk can inflict harm on humans and racing

animals.

Through this study, we believe that to overcome some of these obstacles and solve some of

these problems can be used the fractional derivatives. The changes in acceleration jerk can

be quieter when the order of the derivatives is reduced, which allows expanding the region of

stability and the narrowing of the chaotic region. For this, we proposed the fractional version

of Jerk systems.

3.1 Description and Stability Analysis of the Model

In mathematics, Eq (3.1) can be recast into a system form as follow:


ẋ(t) = y

ẏ(t) = z

ż(t) = ϕ (x, y, z)

,

when we assume that x(t) = x(t), y(t) = ẋ(t) and z(t) = ẍ(t).

The fractional jerk system is defined as follow:


dα1x
dtα1

= y

dα2y
dtα2

= z

dα3z
dtα3

= −βz − y + Ψ (x)

, (3.2)

where Ψ (x) is nonlinear function, in this study is given as Ψ (x) = (|x|−1), β is the parameter

(β > 0) and α = (α1, α2, α3) is the fractional order of system (3.2), it is also supposed that

αi lies in (0, 1], i = 1, 2, 3. The proposed system has two equilibrium points : E1(1, 0, 0) and
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E2(−1, 0, 0).

Stability of the Equilibrium Points

In this subsection we proceed with commensurate order α = α1 = α2 = α3.

The Jacobian matrix J(x∗, y∗, z∗) associated with the equilibrium point (x∗, y∗, z∗) is given

by :

J(x∗, y∗, z∗) =


0 1 0

0 0 1

x∗

|x∗| −1 −β

 .

To study the equilibrium point stability conditions, we apply the Routh-Hurwitz criteria ??.

Stability Conditions of E1(1, 0, 0)

The characteristic polynomial associated with the equilibrium point E1 is given by :

p(λ) = λ3 + βλ2 + λ− 1,

according to the fourth condition of Routh-Hurwitz criteria, we find that E1 is unstable

(a3 = −1 < 0).

Stability Conditions of E2(−1, 0, 0)

The characteristic polynomial associated with the equilibrium point E2 is given by :

p(λ) = λ3 + βλ2 + λ+ 1, (3.3)

its discriminant is given by D(p) = −4β3 + β2 + 18β − 31, we note that D(p) is negative for

all β positive (see Fig. 3.1).

According the second condition of Routh-Hurwitz criteria, E2 is locally asymptotically stable

when α < 2/3. E2 is a saddle point of index 2, thus the necessary condition for the fractional
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order system (3.2) to remain chaotic is α > 2
π

arctan( |λ1.2|
R(λ1.2)

); Consequently, for β = 0.6, the

lowest fractional order α, for which the fractional-order system (3.2) demonstrates chaos at

the above-mentioned parameters is given by the inequality α > 0.931.

4 3 2 1 0 1 2 3 4
200

150

100

50

0

50

100

150

200

β

D(
p)

Figure 3.1: Representation of D(pE2) as function of β.

The following figures show that the system (3.2) is stable for α = 0.85 (Fig.3.2), and chaotic

for α = 0.95 (Fig.3.3).
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Figure 3.2: Phase portrait of system (3.2) for α = 0.85.
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Figure 3.3: Phase portrait of system (3.2) for α = 0.98

3.2 Hopf Bifurcation

Hopf Bifurcation Versus the Parameter β

The system is said to undergo a Hopf bifurcation when an equilibrium point switches the

stability along- with creation or destruction of certain periodic orbits. In order to obtain the

Hopf bifurcation conditions in fractional order commensurate system (3.2), we first recall the

integer order case:

3.2.1 Integer Order Case

Theorem 3.2.1 The conditions of system (3.2), with α = 1, to undergo a Hopf bifurcation

at the equilibrium point E2 when β = β∗, are:

• The Jacobian matrix has two complex-conjugate eigenvalues λ1.2 = θ (β)± iw (β) and

one real λ3(β).

• θ (β∗) = 0, w (β∗) > 0 and λ3(β∗) 6= 0.

• dθ
dβ
|β=β∗ 6= 0.
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Proof. The Jacobian matrix at equilibrium E2 of system (3.2) is :

JE2 =


0 1 0

0 0 1

−1 −1 −β

 ,

we want to determine the suffi cient conditions for JE2 has real eigenvalue negative λ0(β)

and two complex-conjugate eigenvalues

λ±(β) = θ (β)± iw(β), with the real part θ (β) satisfies the conditions :

θ (β∗) = 0 and
dθ

dβ
|β=β∗ 6= 0 ,

we can write the characteristic polynomial (3.3) as follows:

(λ− λ0) (λ− λ+) (λ− λ−) = 0, (3.4)

then,

λ3 − (2θ + λ0)λ2 +
(
|λ+|2 + 2θλ0

)
λ− |λ+|2 λ0 = 0, (3.5)

from (3.4) and (3.5) , one obtains :


2θ + λ0 = −β

|λ+|2 + 2θλ0 = 1

|λ+|2 λ0 = −1

, (3.6)

then, λ0 = − (2θ + β) < 0, β > 0, the Jacobian matrix JE2 has two pure imaginary

eigenvalues, if and only if, a1a2 = a3, So, β = 1, (in this case, we have λ0 = −1, λ+ = i,

and λ− = −i).

Hence, the critical Hopf bifurcation value is β∗ = 1 and from (3.6), thus, one can get
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the following :

− 2θ − β − 2θ
(
4θ2 + β2 + 4θβ

)
+ 1 = 0, (3.7)

the differentiation of (3.7) with respect to β, we get :

dθ

dβ
=

8θ2 + 20θβ + 1

−24θ2 − 2β2 − 16θβ − 2
,

so,
dθ

dβ

∣∣∣∣β=β∗ = −1

4
6= 0.

It follows that the system (3.2) satisfies the Hopf bifurcation conditions at E2. The

corresponding bifurcation diagram and phase portrait are presented in (Figs. 3.4 and

3.5)

Figure 3.4: Bifurcation diagram of system (3.2) versus β, when α = 1.

3.2.2 Fractional Order Case

In the fractional case, the stability ofE is related to the sign ofmi (α, β) = απ
2
−|arg(λi (β))| , i =

1, 2, 3. If there is i such that mi (α, β) > 0, then E is unstable. If mi (α, β) < 0 for all

i = 1, 2, 3, then E2 is locally asymptotically stable. So, the function mi (α, β) has the same

effect as the real part of eigenvalues in integer-order systems. That’s why, one extends the
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Figure 3.5: Phase portrait of system (3.2) for β = 1 and α = 1.

Hopf bifurcation conditions to the fractional systems by replacing Re(λi) with mi (α, β) as

follows :

Hopf Bifurcation Versus the Fractional Order α

It is clear that the fractional-order α can also act as a bifurcation parameter in fractional-

order systems. So the parameter β is fixed and the fractional order α is considered as a

control parameter for the critical Hopf bifurcation, using the proposed conditions in this

theorem :

Theorem 3.2.2 The system (3.2) undergoes fractional Hopf bifurcation at the equilibrium

point E2 , if there exists a Hopf critical value α= α∗ such that the following conditions are

satisfy:

(i) The Jacobian matrix has two complex-conjugate eigenvalues λ1.2 = θ ± iw and one real

negative root λ3(β).

(ii) m(α∗) = α∗ π
2
−min1≤i≤3 |arg (λi)| = 0.

(iii) dm(α)
dα
|α=α∗ 6= 0.
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The first and second conditions are sometimes called singularity conditions while the third

is transversality condition.

Proof. For proving (i) :

Firstly, we Suppose that the characteristic polynomial (3.3) has a pair purely imaginary

conjugate roots, so, λ1.2 = ±iw .

By remplacing λ1.2 in Eq (3.3 ), one get

(iw)3 + β (iw)2 + iw + 1 = 0.

thus,  1− βw2 = 0

w − w3 = 0
⇒

 1− βw2 = 0

w(1− w2) = 0
. (3.8)

From (3.8), w = 0 or w = ±1.

Hence, β = 1.

Secondly, we suppose that β = 1, therefore, in this case, we have, λ1 = i, λ2 = −i, λ0 =

−1;So, Eq (3.3) has a pair purely imaginary conjugate roots.

On other side, we have

(λ− λ1) (λ− λ2) (λ− λ3) = λ3 + βλ2 + λ+ 1,

then,

(−1)λ1λ2λ3 = a3 = 1,

we have a3 = 1 > 0; and λ1λ2 are a pair complex-conjugate eigenvalues (λ1λ2 > 0).Hence,

λ3 < 0.
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In addition, according to Routh-Hurwitz theorem, the roots of (3.3) have negative real

parts if and only if D(p) > 0, a1 = β > 0, a3 = 1 > 0, a1a2 − a3 = β − 1 > 0.

In our study D(p) < 0 Eq(3.2)

Therefore, under conditions given below, condition (i) will be guaranteed if:

 β 6= 1

β − 1 ≤ 0
. (3.9)

To prove (ii) notice that min1≤i≤3≤ |arg(λi)| = arctan
∣∣w
θ

∣∣ , then m(α∗) = α∗ π
2
−

min1≤i≤3 |arg (λi)| = m(α∗) = α∗ π
2
− arctan

∣∣w
θ

∣∣ = 0. So α∗ = 2
π

arctan
∣∣w
θ

∣∣ . It is clear
that α∗ ∈ (0.1) . Moreover, condition (iii) that the sign of m(α) can change when the

bifurcation parameter α passes through the critical value α∗.

Hopf Bifurcation Versus the Parameter β

In this subsection, the parameter α is fixed and the parameter β is considered a control

parameter, to analyse the occurrence of Hopf bifurcation in the system (3.2), one follows the

same method of therom (3.2.2) with

m(β) = α
π

2
− min

1≤i≤3
|arg (λi(β))| .

Theorem 3.2.3 The system (3.2) undergoes fractional Hopf bifurcation at the equilibrium

point E2, if there exists a Hopf critical value β = β∗ such that the following conditions are

satisfy:

• The Jacobian matrix has two complex-conjugate eigenvalues λ1.2 = θ (β)± iw (β) and

one real λ3(β).

• θ (β∗) = 0, w (β∗) > 0 and λ3(β∗) 6= 0.

• dθ
dβ
|β=β∗ 6= 0.
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Proof.

• Observing that condition (i) can be verified using conditions (3.9) in theorem

(3.2.2).

• We can also find the critical value β∗ according to the conditions in Theorem

(3.2.3), it is given by the constraints bellow :

 απ/2− arctan
∣∣∣w(β∗)
θ(β∗)

∣∣∣ = 0

ẁ(β∗)θ(β∗)−w(β∗)θ̀(β∗)
θ2(β∗)+w2(β∗)

6= 0
.

3.3 Numerical Results

3.3.1 Numerical explorations Versus the Parameter α

In this case, the parameter β is fixed at β = 0.6, and the fractional order α is considered as

a bifurcation parameter, using the proposed conditions in theorem 3.2.2, one finds :

The discriminant : D(p) = −20.704 < 0, β = 0.6 6= 1 and β − 1 = 0.6 − 1 = −0.4 < 0,

therefore the condition (3.9) is checked.

The eigenvalues of the characteristic equation (3.3) of system (3.2) are given by :λ1.2 =

0.117 78± 1.087 6i, λ3 = −0.835 55 (θ = 0.117 78 > 0)

Now one can use the condition (ii) to find the critical value of bifurcation parameter:

α∗ =
2

π
arctan

∣∣∣∣ 1.087 6

0.117 78

∣∣∣∣ = 0.931 31.

Finally, one can get dm(α)
dα
|α=α∗ = π

2
6= 0. So the proposed fractional-order Hopf bifurcation

conditions are verified.

When α < 0.931 31 the equilibrium points E2 is stable , when α = α∗ = 0.931 31 system (3.2)

under-goes a Hopf bifurcation as mentioned above, and the equilibrium point E2 becomes
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unstable.The resulting bifurcation diagram is shown in (Fig.3.6).
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Figure 3.6: Bifurcation diagram of system (3.2) versus α, when β = 0.6.
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3.3.2 Numerical explorations Versus the Parameter β

In this case, the fractional order α is fixed and the parameter β is considered as a bifurcation

parameter, using the proposed conditions in previous theorem and through (Figs.3.7-3.8-3.9-

3.10)

Case 1: For α = 0.98, we find that the critical Hopf bifurcation value is localized at β∗ =

0.88, dm(β)
dβ
|β=β∗ = 0.35458 6= 0.

When β < 0.88 the equilibrium point E2 is chaotic , when β = β∗ = 0.88, system (3.2 )

undergoes a Hopf bifurcation as mentioned above and the fixed points E2 becomes stable.

The bifurcation diagram and phase portrait is shown in (Figs. 3.7 and 3.8)
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Figure 3.7: Phase portrait with α = 0.98 and β∗ = 0.88.

Figure 3.8: Bifurcation diagram of system (3.2) versus β,when α = 0.98.

Case 2 For α = 0.95, we find that the critical Hopf bifurcation value is localized at β∗ =

0.72, dm(β)
dβ
|β=β∗ = 0.24734 6= 0.

When β < 0.72 the equilibrium points E2 is chaotic, when β = β∗ = 0.72 system (3.2)

under-goes a Hopf bifurcation as mentioned above, and the fixed points E2 becomes stable.

The bifurcation diagram is shown in (Figs. 3.9and 3.10).

68



Chapter 3. Fractional order effect on the localisation of Hopf bifurcation point

0.2 0.15 0.1 0.05 0 0.05 0.1 0.15
0.2

0.15

0.1

0.05

0

0.05

0.1

0.15

x

y

Figure 3.9: Phase portrait with α = 0.95 and β∗ = 0.72.

Figure 3.10: Bifurcation diagram of system (3.2) virsus β,when α = 0.95.

3.3.3 Fractional order effect on the localisation of Hopf bifurcation

point

In this part, to present the effectiveness of the fractional order derivative α on the localization

of the Hopf bifurcation point β∗. We give some numerical results by varying the fractional

order α in two cases: commensurate and incomerttmensurate.

The first table shows the change in the location of the bifurcation with the change of the

critical Hopf bifurcation point β∗ according to the variation fractional order α in the case
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commensurate system (i.e α = α1 = α2 = α3).

Tables 2, 3, and 4 present the change of location of β∗ according to the variation of one

of the orders α1, α2 or α3 in the incommensurate system. It observes that by decreasing

the fractional order α, β∗ decreases, the location of the critical Hopf bifurcation point in a

dynamical system can be influenced by the fractional order of the system. consequently, the

stability region can be enlarged and the instability region reduces. Therefore, the appropriate

fractional order can be chosen in order to maximise the stability region and minimise the

instability region, and vice versa, as needed. In general, we can say that the flexibility that

characterizes fractional order derivatives, makes it possible to control the region of stability,

the latter can be widened or narrowed according to the needs. For example, it is useful to

expand the stability region when we are dealing with cancerous diseases, and vice versa, it is

useful to exploit it in the case of encryption when the instability field is the most so that the

encryption is more secure. The effect of fractional order on the location of the critical Hopf

bifurcation point can be summarized as follows:

• Changing the fractional order of the system can lead to a shift in the location of the

critical Hopf bifurcation point. However, in integer-order systems, the Hopf bifurcation

point is typically associated with a specific set of system parameters. in fractional order

systems.

• Fractional order systems can exhibit increased sensitivity to changes in the fractional

order near the critical Hopf bifurcation point. Small variations in the fractional

order can have a significant impact on the system’s behavior, leading to changes

in the bifurcation characteristics.

• The introduction of non-integer order dynamics in the system equations can alter

the stability properties near the critical Hopf bifurcation point.

• The fractional order terms introduce memory effects and additional degrees of

freedom, which can affect the stability and emergence of limit cycles.
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• Fractional order systems can exhibit more complex dynamics near the critical Hopf

bifurcation point compared to integer-order systems.

Overall, the fractional order of a system can influence the location and characteristics of

the critical Hopf bifurcation point, introducing new dynamical behaviors and increasing or

decreasing the complexity of the system’s dynamics.

Table 3.1: Location of critical Hopf bifurcation points of β∗ according to the variation of
fractional order α (α = α1 = α2 = α3)
Fractional derivative order α 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Hopf bifurcation critical value β∗ 0.61 0.66 0.72 0.77 0.83 0.88 0.94 1

Table 3.2: Location of critical Hopf bifurcation points of β∗ according to the variation of
fractional order α1(α2 = α3 = 1)
fractional derivative order α1 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Hopf bifurcation critical value β∗ 0.88 0.9 0.91 0.92 0.93 0.94 0.96 0.97 0.99 1

Table 3.3: Location of critical Hopf bifurcation points of β∗ according to the variation of
fractional order α2(α1 = α3 = 1)
Fractional derivative order α2 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
Hopf bifurcation critical value β∗ 0.76 0.78 0.81 0.83 0.86 0.89 0.91 0.94 0.97 1
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Table 3.4: Location of critical Hopf bifurcation points of β∗ according to the variation of
fractional order α3(α1 = α2 = 1)
Fractional derivative order α3 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
Hopf bifurcation critical value β∗ 0.86 0.87 0.89 0.91 0.92 0.94 0.96 0.97 0.99 1

Figure 3.11: Bifurcation diagram of incommensurate system (3.2) versus β with α1 = 0.98
and α2 = α3 = 1.

72



Chapter 3. Fractional order effect on the localisation of Hopf bifurcation point

Figure 3.12: Bifurcation diagram of incommensurate system (3.2) versus β with α2 = 0.98
and α1 = α3 = 1.

Figure 3.13: Bifurcation diagram of incommensurate system (3.2) versus β with α3 = 0.98
and α1 = α2 = 1.
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Chapter 4

Chaos Control of the fractional order

systems

With the advent of the concept of chaos in scientific literature, the behavior chaotic was

seen as a phenomenon that interests many researchers and it can be useful or dangerous in

nature. With this fact, the question of control has become a central problem, therefore is

several work concerning this aspect began to emerge in the early 1990s; so according to the

control class chaos chosen, several techniques were adapted and developed according to the

need.

4.1 Control Strategies

In this section, we proposed tow control methods, as well as their applications.

4.1.1 Ott-Grebogi-Yorke (OGY) Method

This method was proposed by Ott, Grebogi and Yorke in the early 90s, relies on the fact

that a Chaos often contains embedded unstable periodic orbits. The OGY method begins

by:
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• Identifying these periodic orbits within the chaotic system, examine them, then choose

one which represents the performance of the system chaotic .

• We adjust the parameters of small disturbances in order to stabilize the unstable orbit.

The principle: Consider the following discrete dynamic system :

Xn+1 = F (Xn, r) ,

where Xn ε Rnand r ε R represents the control parameter.

Suppose that for a some values r∗ from r the system admits a chaotic attractor.

Let x̄(r∗) a fixed point in the attractor, for r suffi ciently close to r∗ and in a neighborhood

of x̄(r∗), we have the following approximation:

Xn+1 − x̄(r∗) = A [Xn+1 − x̄(r∗)] +B (r − r∗) ,

where A = ∂F
∂x
and B = ∂F

∂r
.

The matrix A is broken down as follows:

A = λueuf
T
u + λsesf

T
s ,

where λs and λu are the stable and unstable eigenvalues (|λs| < 1, |λu| > 1) in the own dir-

ections es and eu respectively. fTu and f
T
s are the covariance vectors such that:

fTu eu = fTs es = 1

fTu es = fTs eu = 0

The strategy of the OGY method consists of adjusting the control parameter r, in order to

75
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stabilize the system on point x̄(r∗). It is therefore necessary that

fTu (Xn+1 − x̄(r∗)) = 0,

by using linearization around the fixed point and the decomposition of A we will have

r − r∗ = −KT (Xn+1 − x̄(r∗)),

where KT = λu
fTu B

, fTu B 6= 0.

The aim of the control is to satisfy the following condition:

|r − r∗| < δ,

we can also write ∣∣KT (Xn+1 − x̄(r∗))
∣∣ < δ,

therefore, the control is determined by:

∂r =

 −K
T (Xn+1 − x̄(r∗)), if

∣∣KT (Xn+1 − x̄(r∗))
∣∣ < δ

0 else
.

Remark 4.1.1 If the system is continuous then we discretize it using the Poincare section.

Application of the method to the Hénon system Consider the following Hénon sys-

tem:  xn+1 = a− x2
n + byn

yn = xn

, (4.1)

where a and b represents the control parameters.
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The system has two fixed points :

(x1, y1) = (
1

2
(b+

√
4a− 2b+ b2 + 1− 1),

1

2
(b+

√
4a− 2b+ b2 + 1− 1)).

(x2, y2) = (
1

2
(b−

√
4a− 2b+ b2 + 1− 1),

1

2
(b−

√
4a− 2b+ b2 + 1− 1)).

We pose b = 0.3, the system (4.1) represents a chaotic attractor for the value a∗ = 1.4 of the

parameter a.

The figure (4.1) represents the attractor with the evolution of time coordinates.

Figure 4.1: The attractor of Hénon and the evolution of time coordinates fora = 1.4, b = 0.3
and (x0, y0) = (0.01, 0.01) .

The fixed points for these parameter values are:

(x1, y1) = (0.88390, 0.88390) ,

(x2, y2) = (−1.5839,−1.5839) ,

in our case we choose the point (x1, y1)
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We have

A =

 −1.7678 0.3

1 0

 and B =

 1

0

 .
The eigenvalues are: λu = −1.9237 and λs = 0.15595

The eigenvectors are given by:

[eu, es] =

 0.88728 0.15408

−0.46123 0.98806

 .
We know that

fTu eu = fTs es = 1 and fTu es = fTs eu = 0,

we obtain:  fu

fs

 =

 1.0425 −0.16257

0.48666 0.93619


Calculation of k:

K =
−1.9237

1.0425
[1.0425 − 0.16257] =

K = [−1.9237 0.29999] ,

We choose δ = 0.01

then,

δa = [1.9237 − 0.29999] δXn with δXn =

 xn − x∗

yn − y∗

 .
The control region is defined by:

(xn − x∗)2 + (yn − y∗)2 < 0.01
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Figure 4.2: Control resut for the application of Heno by applying the method OGY

4.1.2 Feedback control

Feedback control is a process used in various fields to regulate or manage systems by con-

tinuously monitoring their performance and adjusting the system’s behavior based on the

observed output. It is a crucial concept in engineering, electronics, biology, economics and

other disciplines. This method consists of disturbing the system state variables to reach the

target orbit, it has the advantage of guaranteeing robust stability.

This method is very simple, it was applied successfully to different systems [7], [15].

The principle

Consider a continuous dynamic system :

CDαx(t) = f(x, u, t),

where x state vector, F : Rn → Rn continuous function, u(t) the control vector and CDα

Caputo fractional order α ∈ ]0, 1] .
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The principle is to find a control law u(t) = w(x, t) ,w is a nonlinear vector (including the

linear case) in such a way that the controlled system

CDαx(t) = f(x,w(x, t), t).

Can be driven by feedback control w(x, t) to reach the target orbit x∗(t)

lim
t→tf
‖x(t)− x∗(t)‖ = 0,

generally we determine the control u(t) which guides the state vectorx(t) corresponding to

the nonlinear system:

CDαx(t) = f(x, t) + u(t),

towards the target orbit x∗(t) as follows

u(t) =C Dαx∗(t)− f(x(t), t) + k(x(t)− x∗(t)),

where k the return gain.

4.2 Feadbak Control of fractional Jerk System

4.2.1 Description of the Model

Many dynamic systems are better characterized by a dynamic fractional order model, gen-

erally based on the notion of differentiation or integration of non integer order. In this work

we choose "The Jerk System" to apply the theories of stability and control using the

generalized Routh-Hurwitz criterion to fractional order.
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The Jerk system defined as follows :


dαx
dtα

= y

dαy
dtα

= z

dαz
dtα

= −2y + (|x| − 1)

, (4.2)

where α is the fractional-order of system (4.2) which has two equilibrium points : E1(1, 0, 0)

and E2(−1, 0, 0).

4.2.2 Stability of the equilibrium points

The Jacobian matrix Jf (x∗, y∗, z∗) associated with the point of equilibrium is given by:

Jf (x
∗, y∗, z∗) =


0 1 0

0 0 1

x∗

|x∗| −2 0

 .

To study the equilibrium point stability conditions, we apply the Routh-Hurwitz criterion

(4.3) in which all real parts of the eigenvalues are negative if and only if the following

condition is true:

a1 > 0, a3 > 0, a1a2 > a3, (4.3)

where a1,a2 and a3 are defined as :

p(λ) = λ3 + a1λ
2 + a2λ+ a3.

Stability Condition of E1(1,0,0)
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The Jacobian matrix at equilibrium E1 is :

Jf (x1, y1, z1) =


0 1 0

0 0 1

1 −2 0

 .

The characteristic polynomial associated with the equilibrium point E1 is given by:

p(λ) = λ3 + 2λ− 1,

applying the Routh-Hurwitz criterion (4.3), we find that E1 is unstable .

Stability condition of E2(-1,0,0)

The Jacobian matrix at equilibrium E2 is :

Jf (x2, y2, z2) =


0 1 0

0 0 1

−1 −2 0

 .

The characteristic polynomial associated with the equilibrium point E2 is given by: p(λ) =

λ3 + 2λ+ 1.

Their eigenvalues are given as: λ0 = 0.45340, λ1.2 = −0.22670± 1.4677i.

Applying the Routh-Hurwitz criterion (4.3), we find that E2 is locally asymptotically

stable when α < 2/3. E2 is a saddle point of index 2, thus the necessary condition for the

fractional-order system (4.2) to remain chaotic is α > 2
π

arctan
(
|λ1.2|

Re(λ1.2)

)
; Consequently, the

lowest fractional order α, for which the fractional-order system (4.2) demonstrates chaos at

the above-mentioned parameters, is given by the inequality α > 0.903 56, (see Figs.4.3 and

4.4).

The following fugures show that the system (4.2) is chaotic for α=0.95 and stable for α=0.85.
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Figure 4.3: The system (4.2) is chaotic for α = 0.95

Figure 4.4: The system (4.2) is stable for α = 0.85
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4.2.3 Chaos control

The controlled fractional-order system associated with the system (4.2) is given by :


dαx
dtα

= y − k1 (x− x∗)
dαy
dtα

= z − k2(y − y∗)
dαz
dtα

= −2y + (|x| − 1)− k3(z − z∗)

, (4.4)

where (x∗, y∗, z∗) represents an arbitrary equilibrium point of system (4.2) . The goal is to

drive the system trajectories to any of the two unstable equilibrium point E. For simplicity,

we are going to choose the feedback gains K = diag(0, k2, 0).

The suffi cient condition for the stabilization of controlled systems (4.4) is given by the fol-

lowing proposition:

Proposition 4.2.1 If k2 = 1/2 , then the trajectories of the controlled system (4.4) are

driven to the stable equilibrium point E2.

Proof. The characteristic equation of the controlled system (4.4) at E2 is given as:

λ3 + k2λ
2 + 2λ+ 1 = 0.

Its discriminant is given byD(p) = −4k3
2 +4k2

2 +36k2−59, then following the graphD(P ) < 0

if k2 ∈ [−3.4, 2] .

If k2 = 1/2, then the stability condition (3) holds and the trajectories of the controlled system

(4.4) are driven to the stable equilibrium points E2 for all α ε ]0; 1[.

4.2.4 Numerical Results

For k2 = 1/2 and k1 = k3 = 0, It follows that D(P ) = −40.25 < 0, a1 > 0, a3 > 0 and

a1a2 = a3

Therefore, the stability conditions (3) is checked. This implies that the trajectories of the
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controlled fractional-order system (4.4) converge to the equilibrium E2 as shown in Fig (4.5)

. But in the integer-order case, there are two pure imaginary eigenvalues of the character-

istic equation. This means that the integer-order form of the controlled system (4.4) is not

stabilized to the same equilibrium point E2, see Fig (4.6) .

Figure 4.5: The trajectories of the controlled system (4.4) stabilized to the equilibrium point
E2 for α = 0.95

Figure 4.6: The trajectories of the controlled system (4.4) not stabilized to the equilibrium
point E2 for α = 1

The results obtained in this section show the effect of the fractional order on the control, which

proves the effectiveness of the method applied to distinguish the fractional case and that of

the integer order case and to underline the importance of the control of the fractional systems,

those systems that have proven to be more accurate than its integer order counterparts.
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Conclusion

The objective of this thesis falls within the framework of the study of stability, bifurcation

and control for a fractional order systems, it is organized as follows:

Chapter 1: We cited the approaches of the fractional integration and the fractional deriv-

ation by presenting three famous approaches (Grünwald-Letnikov, Riemann-Liouville, Cap-

uto), their Laplace transforms, and their properties, then we cited the notions of stability of

dynamical systems theory

Chapter 2: is reserved for introducing chaos and bifurcation theory in fractional order dy-

namical systems.

Chapter 3: we choose "The Jerk system" to apply the stability theory and control based on

the Routh-Hurwitz criterion generalized to the fractional order. Thus we have demonstrated

the influence of fractional order on the location of Hoph’s bifurcation point and on stability.

Chapter 4: we finish our work by presented two methods for controlling chaos (the OGY

method and the Feedback method). We also studied the problem of stabilization of equi-

librium points, chaos control of another " Jerk System (2)" in fractional case. We showed

that the fractional-order systems are controlled to their equilibrium points, however, their

integer-order counterparts are not.

This thesis shows the importance to fractional order systems in applications. Fractional

order systems can exhibit more complex dynamics near the critical Hopf bifurcation point

compared to integer-order systems.

Our next project will be the study of stability, bifurcations and control in other dynamical

systems, with other methods and we try to apply it in various fields.
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