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I 
 

Abstract 

Neuropathic pain syndrome has a profoundly negative and agonizing impact on the lives 

of the individuals it afflicts. In order to find an effective treatment for this condition, extensive 

and thorough scientific studies have demonstrated that the σ1 receptor serves as an exceptional 

target for therapeutic compounds. The 3D-QSAR studies were constructed using the technique 

of comparative molecular similarity indice analysis (CoMSIA). The outcomes of these studies 

demonstrated the reliability of CoMSIA model (with R2 train value of 0.96 and Q2 value of 

0.54) in accurately predicting the activity of various compounds. By assimilating the valuable 

insights gathered from the field contributors of the 3D-QSAR models and conducting molecular 

docking studies on the highly potent compound C48, a total of sixteen new compounds were 

successfully designed to exhibit enhanced efficacy against neuropathic pain. In addition to the 

comprehensive 3D-QSAR analysis, the newly synthesized compounds were subjected to an 

absorption, distribution, metabolism, excretion, and toxicity evaluation. This evaluation aimed 

to assess the pharmacokinetic and toxicological properties of the compounds, providing 

valuable insight for future in vitro investigations. Calculations DFT of the new compounds 

Mol2, Mol3, and Mol4, including the analysis of their molecular properties, geometric 

optimization, frontier molecular orbital (FMOs), density states (DOS), and energy evaluation, 

In order to compare these compounds with the reference ligand 61w, their respective properties 

were thoroughly investigated. The most stable orientations for the compounds Mol2, Mol4, and 

Mol3 were determined to be the ones that yielded the highest stability and efficiency. The 

significant advancements made in this study, should serve as a strong motivation for future in 

vitro investigations on these compounds. 

 

Keywords: 1 receptor antagonists; Pyrimidine derivatives; 3D-QSAR; Molecular Docking, ADMET, 

DFT, FMOs, DOS. 

 

 

 

 

 

 



 

II 
 

 الملــــــخص

متلازمة آلام الاعتلال العصبي لها تأثير سلبي ومؤلم للغاية على حياة الأفراد الذين تعاني منهم. من أجل إيجاد علاج 

يعمل كهدف استثنائي للمركبات العلاجية. تم  σ 1فعال لهذه الحالة، أظهرت الدراسات العلمية المكثفة والشاملة أن مستقبل 

 .(CoMSIA)باستخدام تقنية تحليل مؤشر التشابه الجزيئي المقارن  -D3QSARإنشاء الدراسات 

( في التنبؤ 2Q 0,54وقيمة  تدريب 2R 0,96)بقيمة  CoMSIAأظهرت نتائج هذه الدراسات موثوقية نموذج 

م وإجراء دراسات الالتحا 3D-QSAR مقارنة القيم المحصل عليها من نموذجالدقيق بنشاط المركبات المختلفة. من خلال 

المركب عالي الفعالية، تم تصميم ما مجموعه ستة عشر مركبًا جديداً بنجاح لإظهار فعالية معززة ضد  C48الجزيئي على 

الشامل، خضعت المركبات المصنعة حديثاً لتقييم الامتصاص والتوزيع  -D3QSARآلام الأعصاب. بالإضافة إلى تحليل 

 والإفراز والسمية. ستقلابوالإ

يهدف هذا التقييم إلى تقييم الخصائص الدوائية والسمية للمركبات، مما يوفر نظرة ثاقبة للتحقيقات المستقبلية في 

، بما في ذلك تحليل خصائصها الجزيئية، والتحسين Mol4و  Mol3و  Mol2للمركبات الجديدة  DFTالمختبر. حسابات 

(، وتقييم الطاقة، من أجل مقارنة هذه المركبات مع DOSلكثافة )(، وحالات اFMOsالهندسي، والمدار الجزيئي الحدودي )

 Mol2 Mol4 Mol3تم فحص خصائصها بدقة. تم تحديد التوجهات الأكثر استقرارًا للمركبات   .w16الرباط المرجعي 

ذه رازها في هعلى أنها تلك التي أسفرت عن أعلى درجات الاستقرار والكفاءة. يجب أن تكون التطورات المهمة التي تم إح

 المستقبلية على هذه المركبات. in vivoالدراسة بمثابة دافع قوي للتحقيقات المختبرية 

  :لكلمات المفتاحيةا

-امتصاص ،ساء الجزيئيثلاثي الابعاد، الار نشاط-قة بنيةلاالتحليل الكمي للع، مشتقات بيريميدين ،مضادات المستقبل، 1سيقما 

 .حالات الكثافة، المدار الجزيئي الحدودي، نظرية الكثافة الوظيفيةسمية، -اطراح-معالجة -توزيع
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2 
 

 General Introduction 

Peripheral or central nervous system injury produces a syndrome called neuropathy, 

which greatly affects about 6-10% of the world's population. Recent studies expect that this 

syndrome will increase in prevalence due to aging in the coming years, and this leads to an 

increase in the survival of patients with chronic diseases related to neuropathic pains, which are 

associated also with the emergence of specific symptoms in patients presenting this syndrome. 

For the treatment of these diseases, some medications are prescribed, such as opiates, 

anticonvulsants and antidepressants, which have a certain ability to block ion channels 

responsible for these neuropathic pains. However, the effectiveness of these drugs is weak in 

addition to their confirmed significant side effects. Therefore, it is necessary to reduce the 

symptoms of this syndrome by discovering new effective drugs1. 

Due to its ease of transport to many parts of the cell, various studies have shown that 

human 1 receptor, S1R, uniquely treats neuropathic pain. S1R is a transmembrane protein, 

which is predominantly located in the endoplasmic reticulum and the mitochondrial reticulum2. 

Such receptors were widely investigated because of their important role in correcting the cell 

function and stability3. Intracellular S1R regulates all signaling and modulation between the 

endoplasmic and mitochondria, the membrane and the cell nucleus. Also, it acts on the second 

messenger systems such as protein kinase C, phospholipase C and Inositol 1,4,5-trisphosphate 

system. Besides, preclinical studies conducted on several models of memory impairment 

revealed the appropriateness of S1R links for the treatment of memory, concentration, and 

cognitive impairments4. Indeed, S1R has many biological functions, making it suitable for the 

future treatments of cancers, epilepsy, Parkinson's disease, Alzheimer's disease, sclerosis, 

schizophrenia, etc. Also, it has been classified as a promising target for the treatment of many 

types of mental disorders, mainly neurological and neurodegenerative ones. It acts via 

correcting the oxidative stress responses as well as the depressive states2. Such studies have 

targeted S1R for drug discovery. It is suggested as an effective alternative to the available 

treatment methods at least via its action on regulating the Ca2+ ion1. 

     Nowadays, the pharmaceutical industry is increasingly utilizing in silico technologies for 

the purpose of advancing upstream research, with the aim of expediting the process of 

developing and uncovering potential therapeutic drug candidate molecules. These in silico 

methodologies have the capability to predict the toxicity and effectiveness of a molecule even 

before progressing to in vivo experimental trials. This predictive ability allows for the 

identification and elimination of highly toxic molecules at an early stage, thus contributing to a 

reduction in the utilization of animals for testing purposes and saving valuable time in the drug 

development process.  
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     Furthermore, Quantitative Structure-Activity Relationship (QSAR) modeling stands out as 

a dependable and efficient instrument currently employed to bridge the gaps present in in vivo 

and in vitro investigations, while also aiming to curtail the necessity for biological assays. 

QSAR is a technique that seeks to establish a quantitative correlation between the activity 

measured through experimentation and the theoretical or empirical descriptors associated with 

the molecular structure.  

     Molecular docking is a computational technique employed to predict the most optimal 

conformation, which refers to the relative position and orientation, of two molecules interacting 

with each other to form a stable complex. Once the preferred conformation is determined, it 

facilitates the estimation of the binding affinity between these molecules, indicating the strength 

of their association. This method plays a crucial role in understanding the molecular interactions 

and potential outcomes of these interactions. 

     The utilization of in silico methods has significantly contributed to the exploration of the 

pharmacokinetic characteristics of pharmaceuticals, encompassing the stages of absorption, 

distribution, metabolism, excretion, as well as the toxicological assessment. These 

computational approaches are particularly valuable during the preclinical stages of drug 

development, aiding in the evaluation of potential drug interactions and the identification of 

late-onset side effects, even for drugs already on the market. 

     The current importance of Density Functional Theory (DFT) in exploring experimental data 

and studying biological systems is immense. DFT's use spans diverse calculations, aiding in 

constructing a theoretical framework that offers valuable insights into molecular geometry, 

molecular orbitals, and spectroscopic properties. Recent advancements have made these 

techniques highly reliable, accurately predicting molecular properties with exceptional 

precision, as evidenced by numerous studies. Given the promising advantages of compounds in 

various biological applications, they've garnered significant attention, prompting investigations 

into designing new and potentially active compounds5. Hence, the culmination of our research 

involves utilizing DFT for analyzing candidate drug compounds, aiming to delve deeper into 

their characteristics for a more comprehensive understanding. 

     The primary objective of this research is to employ virtual screening techniques like 

Quantitative Structure-Activity Relationship (QSAR), molecular docking, Absorption, 

Distribution, Metabolism, Excretion, and Toxicity (ADMET) prediction, as well as Density 
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Functional Theory (DFT) calculations on pyrimidine derivatives. The goal is to identify 

promising compounds that exhibit more favorable reactivity towards the treatment of 

neuropathic pain conditions. By leveraging these computational tools, the study aims to enhance 

the selection process for potential drug candidates that could offer improved therapeutic 

outcomes in managing neuropathic pain. 

Our work is divided into four chapters: 

The first chapter a general overview of the pyrimidine and inhibition of human σ1 receptor for 

neuropathic pain syndrome treatment. 

In the second chapter we gave an overview of the main virtual screening strategies that are the 

most widely used predictive methods in the design of new molecules of therapeutic interest: 

both the strategy based on target structure and that based on ligand structure and properties. 

In the third chapter, we present the different materials and methods used in this study.  

In the fourth chapter, we present the main results and a discussion. 

Finally, we offer a general conclusion summarizing the work carried out. 
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1. The pyrimidine 

1.1 Introduction 

     The escalation of resistance to antimicrobial agents has emerged as a significant global issue 

of concern. Out of the annual 2 million individuals contracting bacterial infections in US 

medical facilities, approximately 70% of cases now involve strains that exhibit resistance to at 

least one medication. The prevalence of patients with antibiotic-resistant infections is steadily 

increasing in both community and hospital settings worldwide. A prominent worry in the United 

Kingdom is the surge of methicillin-resistant Staphylococcus aureus (MRSA), which 

previously had minimal presence but currently represents around 50% of all S. aureus isolates. 

Urgent substantial funding and research efforts in the field of anti-infectives are imperative to 

prevent a looming public health crisis. The etiology of antimicrobial resistance is complex and 

multifaceted. The persistence of resistance to antibiotics is predominantly attributed to the 

continued excessive reliance on and inappropriate utilization of these antibacterial drugs, with 

mounting indications suggesting a similar scenario for the emergence of biocide resistance. A 

critical issue is the potential co-resistance of antibiotics and biocides due to shared resistance 

mechanisms. The rise of metal resistance is being observed as a consequence of contaminated 

environments. Prolonged exposure to antibacterial environments leads to the proliferation of 

bacteria inherently resistant to antimicrobials or that have developed mechanisms to resist these 

substances1. 

     The modification of the structure of antimicrobial drugs facing resistance has been 

demonstrated as an effective strategy to prolong the efficacy of antifungal agents like the azoles, 

antiviral agents such as nonnucleoside reverse transcriptase inhibitors, and a variety of 

antibacterial agents including β-lactams and quinolones. Consequently, it is not unexpected 

that, in response to antimicrobial resistance, major pharmaceutical corporations have tended to 

focus on enhancing existing classes of antimicrobial agents. Nonetheless, given the current 

array of therapeutic options, it is recognized that researchers are approaching a critical juncture 

in terms of modifying parent structures. As a result, there is a growing demand for the 

development of novel drug classes that target different sites from those targeted by existing 

drugs. 

     Heterocyclic compounds, which are prevalent in nature, hold significant importance in the 

realm of life due to the presence of their structural components in various natural substances 
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like vitamins, hormones, and antibiotics. Consequently, they have garnered substantial interest 

in the realm of designing biologically active molecules and in the field of advanced organic 

chemistry. Nitrogen-containing heterocycles, a vital subgroup within the family of heterocyclic 

compounds, play a crucial role in medicinal chemistry and have made notable contributions to 

both biological and industrial sectors, aiding in the comprehension of life processes. An 

unsaturated six-membered ring that contains nitrogen is termed as azine or pyridine (1); when 

it contains two nitrogen atoms, it is referred to as diazine. Additionally, if a nitrogen is located 

at the 1,2-position, it is identified as pyridine (2), at the 1,3-position as pyrimidine (3), and at 

the 1,4-position as pyrazine (4) (Fig. 1). The present review, however, aims to concentrate on 

the importance of antimicrobial agents belonging to the pyrimidine class, elucidating their 

clinical and in vitro applications in order to facilitate the enhancement of more potent and 

efficacious antimicrobial agents1. 

 

Fig. 1. Pyridine and different isomeric forms of diazine family. 

1.2 Pyrimidine ring structure  

     Pyrimidines are aromatic heterocyclic compounds resembling benzene and pyridine with 

two nitrogen atoms positioned at 1 and 3 within the six-membered rings, thus garnering 

significant scientific interest due to their natural and synthetic diversity, many of which 

demonstrate noteworthy biological activities and clinical relevance. The presence of pyrimidine 

moiety in heterocycles is of particular importance, as they constitute a vital category of various 

natural and synthetic compounds, some of which are prominently featured in biological systems 

and were among the initial subjects of exploration by organic chemists. Purines and 
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pyrimidines, when substituted, are prevalent in biological systems and hold historical 

significance as some of the first compounds scrutinized by organic chemists (Fig. 2(a)) 1. 

Pyrimidines, as a class of heterocycles, hold immense biological significance, being the most 

widespread entities within the diazine family, notably represented by uracil and thymine found 

in RNA and DNA, alongside cytosine as depicted in Fig. 2(b). Moreover, the structural 

framework of pyrimidines is encountered in various natural products like thiamine (vitamin B1) 

and in synthetic compounds such as barbituric acid and Veranal, both utilized for their hypnotic 

properties (Fig. 2(b)) 1. 

 

Fig. 2. (a) Pyrimidine. (b) Pyrimidine containing natural and synthetic products. 

1.3 Medicinal Properties of Pyrimidines 

     The existence of pyrimidine base in thymine, cytosine, and uracil, components crucial for 

the formation of nucleic acids DNA and RNA, may be attributed to their extensive therapeutic 
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uses. Pyrimidines are known to belong to a highly active category of compounds with a broad 

range of biological functions, demonstrating notable in vitro efficacy against diverse DNA and 

RNA, viruses such as polioherpes viruses, diuretic, antitumor, anti-HIV, and cardiovascular. 

Research literature has revealed that compounds containing the pyrimidines nucleus display a 

diverse array of pharmacological effects. Moreover, a variety of analogs of pyrimidines have 

exhibited antibacterial, antifungal, antileishmanial, anti-inflammatory, analgesic, 

antihypertensive, antipyretic, antiviral, antidiabetic, antiallergic, anticonvulsant, antioxidant, 

antihistaminic, herbicidal, and anticancer properties, with several derivatives of pyrimidines 

identified for their potential as central nervous system (CNS) depressants1. 

2. Pain: A simplified model 

     Post-synaptically, the transmission of nociceptive input occurs towards superior 

(supraspinal) centers. The regulation of descending output from supra-spinal centers is 

perceived at the dorsal horn level. The local environment (inflammatory soup) at the original 

site of noxious stimuli (injury) and surrounding the dorsal horn plays a significant role in 

influencing the strength and duration of the signal (Fig. 3) 2. 

 

Fig. 3. First neuron (in blue) of the ascending pain pathway. Red-brown arrow: Second ascending neuron 

leading to supra-spinal centers. Green arrow: Descending modulatory output from supra-spinal centers2. 

 



 The pyrimidine and inhibition of human σ1 receptor for neuropathic pain syndrome 

treatment  

12 
 

 

2.1 Nociceptive input 

     Injury initiates the activation of Transient Receptor Potential (TRP) nociceptors in the 

periphery, leading to the subsequent opening of cation channels causing depolarization and 

propagation of action potential along afferent sensory fibers to the synapse in the dorsal horn. 

Excitatory non-peptide transmitters (glutamate, AMPA, and NMDA receptor agonists) and 

peptide transmitters [Substance P (SP) (NK1 neurokinin receptor 1 agonist) and Calcitonin 

Gene-Related Peptide (CGRP) (agonist of Calcitonin like Receptor and Receptor Activity 

Modifying Protein complex)] are released by presynaptic vesicles. Neuropeptide Y (NPY) and 

CGRP receptors have extensive co-localization with mostly opposing effects. NPY acts on Y2 

receptors at the central terminals of primary afferents to inhibit SP release. CGRP acts as a 

potent vasodilator in blood vessels when compared to known vasodilators like histamine, 

prostaglandin E2, and SP. Inhibitors of the CGRP receptor are distinguished by the suffix–

gepant (ubrogepant; atogepant). AMPA receptor antagonists are recognized by the suffix–

ampanel (perampanel). Kynurenic acid acts as an endogenous antagonist at ionotropic AMPA, 

NMDA (glycine-site ligand), and kainate glutamate receptors. The second neuron: Upon 

crossing to the contralateral side, the signal progresses through the ascending lateral spino-

thalamic tract (TST) to the thalamus3. 

     The third neuron: The signal travels from the thalamus to the sensory cortex in the parietal 

lobe through the thalamo-cortical tract TTC (Brodmann areas 1, 2, and 3) enabling pain 

localization (Fig. 4). 
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Fig. 4. TRPV1, transient receptor potential vanilloid subfamily, member 1, capsaicin or hot chili pepper 

receptor; TRPA1, transient receptor potential ankyrin subfamily, member 1, allyl isothiocyanate or 

wasabi receptor; DRG, dorsal root ganglion; GLU, glutamate; SP, substance P (11 AA); AMPA, α-

amino-3-hydroxy5-methyl-4-isoxazolepropionic acid; NMDA, N-methyl-d-aspartate; NK1, Neurokinin 

1 receptor; CGRP, calcitonin gene-related peptide (37 AA); CLR-RAMP, calcitonin like receptor—

receptor activity modifying protein complex; TST, Tractus spino-thalamicus; TTC, tractus thalamo-

corticalis; .Ca2+; .Na+; Microglia ; Chili pepper: Capsaicin; Wasabi: Allyl isothiocyanate2. 

2.2 Modulatory output 

     Descending noradrenergic (norepinephrine; NE) and serotoninergic (5-HT) fibers exert an 

impact on pain perception. The majority of noradrenergic fibers stem from the pontine locus 

coeruleus (LC; blue spot) while descending serotonergic pathways originate from the floor of 

the medulla oblongata from the nucleus raphe magnus (NRM). NE and 5-HT induce membrane 

hyperpolarization, reduce the release of excitatory transmitters from primary Aδ and C afferent 

fibers pre-synaptically, and enhance the release of inhibitory GABA and glycine from 

interneurons. Administration of 5-HT results in membrane hyperpolarization in approximately 

50% of dorsal horn neurons, while NE hyperpolarizes over 80% of them, indicating the 

necessity to enhance concentrations of both NE and 5-HT to suppress algesia. Neither 

atomoxetine (selective noradrenaline reuptake inhibitor) nor an SSRI alone display such a 

pronounced effect. Norepinephrine inhibits neuropathic pain via α2-adrenoceptors, while α1-

adrenoceptors exacerbate it. Regarding the receptors involved in serotoninergic pain 

modulation, research suggests a role for 5-HT7 receptors in antinociception and a role for 5-

HT3 in pro-nociceptive facilitation. Activation of 5-HT7 receptors does not directly inhibit 

nociceptive dorsal horn neurons as these receptors are positively linked to adenylate cyclase 

and their stimulation is excitatory. Activation of 5-HT7 receptors situated on spinal inhibitory 

enkephalinergic or GABAergic interneurons leads to the release of enkephalins or GABA, 

resulting in the inhibition of nociceptive transmission4 (Fig. 5). 
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Fig. 5. Green arrow: Receptors reducing nociception: µ opioid receptor; α2, adrenergic receptor; 5-HT7, 

serotonin receptor; NPY2, neuropeptide Y receptor type 2. Red arrow: Receptors enhancing nociception: 

CCK2, cholecystokinin 2(B) receptor; α1, adrenergic receptor; 5-HT3, ionotropic serotonin receptor;                                                                                                

Periaqueductal Gray: Endogenous Opioids;      Locus Caeruleus: NE;    Nucleus Raphe Magnus: 5-HT2. 

2.3 Local control 

     The intricate feedback loop involving (afferent) nociceptive input and modulatory (efferent) 

output is significantly impacted by the composition of the "cytokine soup" at the origin site and 

synaptic relay stations. An environment rich in ATP promotes inflammation and nociception, 

whereas an adenosine-rich environment exerts the opposite effect. Following injury, glia cells 

release intracellular ATP through the vesicular nucleotide transporter (VNUT) into the 

extracellular space. ATP activates purinergic P2X ionotropic and metabotropic P2Y receptors, 

enhancing the sodium and calcium conductance of various TRP receptors. The degradation of 

nucleotides by cell surface (ecto) nucleotidases terminates purinergic signaling, akin to 

cholinesterase activity at cholinergic synapses. Adenosine produced extracellularly from the 

breakdown of nucleotides activates adenosine receptors (A1, A2A, A2B, and A3) that reduce 

the sodium and calcium permeability of TRP receptors5 (Fig. 6). The analgesic effects of 

adenosine primarily occur through the activation of adenosine A1 receptors, with a potential 

role also attributed to A3A receptors. However, the role of adenosine A2A and A2B receptors 
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remains controversial, as their activation elicits both pro-nociceptive and antinociceptive 

outcomes. The purinergic modulation is accompanied by a variety of pro-and anti-nociceptive 

substances, including endogenous opioid peptides, anti-opioid cholecystokinin (CCK), 

bradykinin, and cytokines, as well as non-peptides like histamine, prostanoids, and 

leukotrienes. Non-steroidal anti-inflammatory drugs (NSAIDs) are effective in managing 

nociceptive pain and inflammation-induced pain by inhibiting cyclooxygenase-2. While 

commonly prescribed for neuropathic pain, the evidence supporting the use of NSAIDs in this 

context is insufficient and thus they are not included in major guidelines for neuropathic pain 

treatment. It is important to acknowledge that pain typically involves a combination of 

neuropathic and nociceptive components2. 

 

Fig. 6. ATP is released from microglia, keratinocytes and other cells via the activity of the VNUT; 

inhibition of the transporter reduces the ATP concentration and thus its pro-inflammatory effect 

mediated via interaction with both ionotropic (P2X) and metabotropic (P2Y) purinergic receptors. ATP 

is metabolized by ectoenzymes (CD; cluster of differentiation 73 and 39). Extracellular adenosine 

generated by metabolic break-down of nucleotides activates adenosine receptors that decrease the 

sodium and calcium permeability of TRP receptors. Adenosine is metabolized by deaminases2. 
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2.4 Neuropathic pain 

     Nociceptive pain arises as a physiological response to nociceptor activation and serves a 

protective function due to its role in eliciting appropriate responses. On the other hand, 

neuropathic pain, which occurs independently of nociceptor activation, is unlikely to be 

beneficial and results from sensitization and ectopic activity of various pronociceptive entities, 

primarily sodium and calcium channels. The nature of dull nociceptive pain differs from the 

sharp characteristics of neuropathic pain. Chronic and neuropathic pain exhibit some overlap, 

with neuropathic pain being chronic but not all chronic pain being neuropathic. The inefficacy 

of opioids in managing neuropathic pain is thought to be linked to increased activity of the 

endogenous pronociceptive neuropeptide CCK. In the central nervous system, the predominant 

form of CCK is an octapeptide. Opioid-induced release of CCK is a proposed mechanism for 

opioid tolerance and hyperalgesia. The recent findings have demonstrated the 

heterodimerization of opioid and CCK receptors following the binding of CCK octapeptide. 

This specific interaction has been recognized as the underlying factor responsible for the 

inhibition of opioid signal transduction and the counteraction of morphine analgesia. Studies 

have shown that CCK antagonists can amplify the analgesic effectiveness of endogenous 

opioids in animal pain models. NPY exhibits pro-analgesic properties, and the administration 

of naloxone diminishes the analgesic effects of NPY. Despite the historical success of opioids 

in pain management, there has been a notable increase in opioid overdoses posing a significant 

challenge in clinical pain treatment. Notably, the most devastating drug overdose epidemic in 

the history of the United States has been linked to opioids. The introduction of a slow-release 

version of oxycodone in 1996 is believed to have played a crucial role in the emergence of this 

overdose crisis, commonly referred to as the US opioid epidemic6. 

3. The sigma-1 receptor 

3.1 History and discovery of Sigma-1 Receptor 

     The term sigma receptor is derived historically from the sigma/opioid receptor proposed 

by Martin et al. (1976) to mediate the psychotomimetic action seen with the benzomorphan, N-

allylnormetazocine, and its analogs. The receptor was called an opioid receptor because the 

effect of N-allylnormetazocine was reported to be antagonized by the universal opioid 

antagonist, naloxone. Attempting to demonstrate the sigma/opioid receptor, Su identified a 

binding site that, although labeled by the prototypic sigma/opioid receptor ligand (±)SKF-

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785038/#R70
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10,047 ((±)N-allylnormetazocine), was however insensitive to naloxone7. Mistakenly, the 

binding site then identified was termed the sigma/opioid receptor, which in fact is not the 

sigma/opioid receptor proposed by Martin et al. (1976), as the latter is sensitive to naloxone. It 

must be mentioned that the SKF-10047 experiment was repeated by the same laboratory at a 

later date and it was found that the “psychotomimetic” effect caused by SKF-10047 was not 

blocked by naltrexone, another potent analog of naloxone. Thus, the name of the binding site 

identified by Su (1982) was changed to sigma receptor to differentiate it from the sigma/opioid 

receptor. The sigma receptor was confused with the PCP/NMDA receptor for a while as some 

ligands for each receptor cross-react with the other receptor. The confusion was dispelled after 

it was realized that the confusion arose from the fact that numerous ligands from the two 

receptors could cross-react. The psychotomimetic effect of SKF-10047 is now believed to be 

mediated via NMDA receptors, kappa opioid receptors, or sigma-1 receptors7. 

     Based on the ligand selectivity in the receptor binding assay, as seen in different tissues, the 

sigma receptor was later found to consist of two subtypes, the sigma-1 and sigma-2 receptors. 

Apparently, some ligands could bind both subtypes of the receptor. Nevertheless, the sigma 

receptor identified by Su (1982) is in fact the sigma-1 receptor because the ligand selectivity of 

the sigma receptor identified by Su (1982; Su et al., 1988) is exactly the same as the sigma-1 

receptor demonstrated by Bowen’s lab. The exact reason why sigma-2 receptors were not 

identified in Su’s 1982 study could have been that the ligand used in the study did not have 

sufficient affinity for sigma-2 receptors. The sigma-1 receptor was first cloned in 1996. The 

sigma-2 receptor has not yet been cloned. This review will focus mainly on the sigma-1 

receptor, but will review some data on the sigma-2 receptor as well as it is relevant to the content 

of the review. 

     Since the discovery of the sigma-1 receptor, many preclinical studies have implicated the 

receptor in many diseases. The contents of this review will first examine the role of sigma-1 

receptors in different diseases followed by a discussion of potential mechanistic explanations. 

Because the sigma receptor has been the subject of many excellent reviews in the past, we will 

focus on discoveries made mainly over the past 10 years7. 

 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785038/#R70
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785038/#R142
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785038/#R142
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785038/#R142
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785038/#R143
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785038/#R142
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3.2 The pharmacology of Sigma-1 Receptor 

     The involvement of the sigma-1 receptor in the analgesic effects mediated by various opioid 

receptors such as mu-, delta-, kappa1, and kappa3 was identified by Mei and Pasternak in 2002. 

This research serves as a continuation of their seminal discovery from the 1990s regarding the 

role of sigma-1 receptors in opioid-induced analgesia as reported by King et al. (1997). The 

study by Mei and Pasternak in 2002 highlighted that the function of sigma-1 receptors in 

facilitating the analgesic effects of opioids primarily occurs at the supraspinal level. Consistent 

with their previous findings, it was observed that the sigma-1 receptor antagonist, haloperidol, 

enhances opioid-induced analgesia, whereas the sigma-1 receptor agonist diminishes opioid 

analgesia. Additionally, the decrease in sigma-1 receptors in the supraspinal region intensifies 

opioid analgesia. Recent investigations by the research group have revealed that the brain 

regions crucial for the modulation of morphine-induced analgesia by sigma-1 receptor ligands 

are located in the brainstem, specifically in the periaqueductal gray and the rostroventral 

medulla, and the locus coeruleus8. The series of fascinating reports by the group indicate the 

existence of an endogenous anti-opioid sigma-1 receptor system in the CNS. Their study also 

provides a tentative molecular explanation, afforded by the haloperidol-sigma-1 receptor 

interaction, of the long-held mystery of why haloperidol potentiates morphine analgesia which 

has puzzled medical experts for several decades. 

     Results from the investigations conducted by Pasternak’s group have been corroborated by 

numerous studies; however, the precise molecular mechanism through which sigma-1 receptors 

influence opioid analgesia is currently the subject of intense scrutiny. Cendan et al. (2005) 

demonstrated a reduction in formalin-induced pain in sigma-1 receptor knockout mice. The 

administration of the sigma-1 receptor antagonist, BD1047, via intrathecal treatment in mice 

not only decreased formalin-induced pain but also mitigated the phosphorylation of the N-

methyl-D-aspartate (NMDA) receptor subunit 1 induced by formalin. Moreover, the intrathecal 

administration of the sigma-1 receptor agonists, PRE-084 and carbetapentane, in mice led to an 

augmentation in the protein kinase C- and protein kinase A-dependent phosphorylation of the 

NR1 subunit of the NMDA receptor. This enhancement was impeded by the sigma-1 receptor 

antagonist, BD1047. The research team also expanded this observation to neuropathic pain7. 

The neurosteroid, DHEA, has been demonstrated to be a sigma-1 receptor agonist by many 

mnemonic studies. DHEA induced a rapid pronociceptive action in sciatic-neuropathic rats, 

consistent with it being a sigma-1 receptor agonist. Further, the sigma-1 receptor antagonist, 
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BD1047, blocked the transient pronociceptive effect provoked by DHEA, which is a sigma-1 

agonist9. Further, Ronsisvalle’s group synthesized a new sigma-1 receptor agonist 

(1R,2S/1S,2R)-2-[4-hydroxy-4-phenylpiperidin-1-yl]methyl]-1-(4-

methylphenyl)cyclopropanecarboxylate and found that it antagonized kappa opioid receptor-

mediated antinociceptive effects10. 

     The exact molecular mechanism of the action of sigma-1 receptors in the modulation of 

opioid-induced pain and neuropathic pain needs to be definitively established and certainly 

warrants further investigation. 
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1. Introduction 

     Drug discovery plays a pivotal role in the expansion of pharmaceutical companies and 

society at large, as it leads to the introduction of newer and safer drugs in the market. The 

primary objective of drug discovery is to enhance the therapeutic value and safety of 

medications. Over the years, the pharmaceutical industry has consistently demonstrated its 

ability to discover and develop innovative medicines for a wide range of diseases 1. The journey 

of drug research, as we know it today, began at a time when chemistry had reached its zenith, 

enabling the application of chemical principles and theories to problems beyond the realm of 

chemistry. This coincided with the emergence of pharmacology as an independent scientific 

discipline in its own right. By the year 1870, the foundations of chemistry theory had been 

firmly established 2, 3. The twentieth century witnessed the remarkable influence of 

biochemistry on drug research in numerous ways. It was during this period that the concept of 

targeting enzymes and designing drugs as inhibitors came into existence 4. However, it is 

important to note that the current drug-discovery process is not without its challenges. It is a 

time-consuming and expensive endeavor that can span over a decade, requiring exhaustive 

research, substantial financial investment, and rigorous clinical trials before a molecule can be 

recognized as a drug. Despite the various research and development (R&D) approaches adopted 

by pharmaceutical companies, the attrition rate remains unacceptably high. One of the factors 

contributing to this high attrition rate is the presence of active compounds that exhibit 

unfavorable absorption, distribution, metabolism, excretion, and toxicity (ADMET) effects, 

necessitating their withdrawal from further development. This factor alone accounts for 

approximately 50% of all costly failures in drug development 5. Consequently, it has become 

widely acknowledged that these areas should be addressed as early as possible in the drug-

discovery process 6, 7. Given the pitfalls of the current drug-discovery process, there is a pressing 

need for an unconventional approach that not only reduces the R&D time but also minimizes 

the associated costs 8. 

2. Computer-aided drug design  

     In response to these challenges, the field of computer-aided drug design (CADD) has 

emerged as a multidisciplinary endeavor that attracts researchers from various fields, including 

information technology, medicine, and pharmacology. CADD leverages computational tools to 

enhance the drug discovery and design processes (Figure 1). Computational chemistry methods 

are routinely employed to study drug-receptor complexes at an atomic level of detail and to 
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calculate properties of small-molecule drug candidates. On the other hand, tools from 

information sciences and statistics are increasingly crucial for organizing and managing the vast 

chemical and biological activity databases that pharmaceutical companies now possess, thereby 

optimizing their utilization 9. 

2.1 CADD applications in drug discovery and development 

 There are several key areas where CADD plays a crucial role in the design of effective 

drugs. Virtual high-throughput screening (vHTS), which is a method used to search for 

new lead molecules that have the potential to be developed into promising drugs for 

specific disease targets. In vHTS, small molecules similar to drug compounds that are 

stored in a database are screened against protein targets to identify molecules that 

exhibit strong binding affinity to the target protein 10. Lead molecules for a specific 

disease are referred to as such. These lead molecules are subsequently extracted from 

the database for further experimentation. In today's day and age, with the availability of 

efficient computer-aided drug design (CADD) screening tools, the time and expenditure 

required to discover a promising lead molecule is significantly reduced compared to 

traditional methods. 

 Sequence analysis plays a crucial role in the design of successful drugs as it provides 

valuable insights into the amino acid sequence of protein molecules in various 

organisms. To facilitate this process, CADD researchers have developed numerous 

sequence analysis tools and algorithms that enable the determination of similarity 

among species based on proteomic and genomic sequences. This information on 

sequence similarity proves useful in assuming the relationships among the different 

organisms under study. 

 Homology Modeling. In drug design, having meticulous knowledge about the three-

dimensional structure of protein molecules, which serve as the majority of drug targets, 

is essential. However, the number of experimentally determined protein structures is 

limited. To overcome this limitation, CADD techniques can be employed to predict the 

three-dimensional structures of protein molecules. This prediction process, known as 

homology modeling, relies on the fact that many protein molecules share similar amino 

acid sequences. If the three-dimensional structure of a known protein molecule is 

available, it can be used to predict the structure of other protein molecules that exhibit 

high similarity scores with the reference protein. Various databases, such as the SWISS 
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MODEL repository, have been created using CADD homology modeling techniques to 

house these predicted three-dimensional protein structures. 

 Similarity Searches. Another important aspect of drug discovery is the search for drug 

analogues. By utilizing CADD tools, one can search for chemical compounds with 

similar protein structures (in either two or three dimensions), common amino acid 

sequences, or similar electrostatic properties from existing proteomic and genomic 

databases. These drug analogues can then be further tested to identify an improved drug 

candidate that could potentially replace an existing drug. 

 Physicochemical Modeling: Understanding the physicochemical properties of both the 

drug and its target is crucial in drug-receptor interactions, as these interactions occur at 

atomic scales. Properties such as hydrophobicity and polarity of the drug and target play 

a significant role in determining how candidate drugs bind to protein targets. Therefore, 

studying the biochemical and biophysical properties of the drug and its target provides 

a comprehensive understanding of these interactions. 

 Drug Optimization: Once a promising candidate drug has been identified during the 

drug discovery process, the next step is to optimize it to enhance its affinity and binding 

towards the target protein. This optimization process involves modifying the structure 

of the drug and evaluating alternative templates or scaffolds that resemble the newly 

discovered drug. The goal is to find a promising drug candidate for the targeted disease. 

Additionally, the metabolic and toxic properties of the candidate drug are also optimized 

to maximize its potential. 

 ADMET properties of a drug, which encompass Absorption, Distribution, Metabolism, 

Excretion, and Toxicity (ADMET), are crucial characteristics that determine the 

bioavailability and bioactivity of a drug. In clinical trials, many candidate drugs fail due 

to issues related to their toxicity and metabolism in human beings, resulting in the 

wastage of billions of dollars and years of research. To mitigate these challenges, it is 

imperative to measure these properties in the laboratory. However, it is also possible to 

predict these properties in advance using Computer-Aided Drug Design (CADD) tools, 

which not only save valuable time but also reduce the financial burden associated with 

experimental studies on candidate drugs 11, 12. 
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Fig.1. CADD in drug discovery 

2.2 Classification of CADD 

     CADD can be classified into two general categories: structure-based and ligand-based 

(Figure 2).  

2.2.1 Ligand-based drug design (LBDD) 

     Ligand-based drug design, also known as indirect drug design, relies on the knowledge of 

active molecules that have demonstrated potential against specific biological targets of interest 

13. Pharmacophore models, derived from these known molecules, define the essential structural 

characteristics required for effective binding to the biological target 14. On the other hand, 

Quantitative Structure-Activity Relationship (QSAR) involves establishing a correlation 

between the calculated molecular properties of a compound and its experimentally determined 

biological activity 15. These QSAR correlations can then be utilized to predict the activity of 

novel analogs 16. 

2.2.2 Structure-based drug discovery (SBDD) 

     Structure-based drug discovery (SBDD) is another approach used in CADD when the three-

dimensional structure of a disease-related drug target is known. This technique involves 
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designing therapeutics based on the knowledge of the target's structure. Molecular docking 

approaches and de novo ligand design are two commonly employed methods in SBDD. 

Molecular dynamics (MD) simulations play a significant role in SBDD as they provide insights 

into the binding mechanisms of ligands with target proteins, including the pathways of 

interaction and the flexibility of the target. This becomes particularly crucial in the case of drug 

targets that are membrane proteins, as membrane permeability is a vital consideration for the 

effectiveness of drugs 17, 18. The simulation of a biomolecular system can be achieved using 

molecular mechanics (MM), quantum mechanics (QM), or a hybrid method (QM/MM), 

depending on the specific research problem at hand. 

 

Fig.2. Flow chart of CADD processes 

2.3 Molecular mechanics 

     Molecular mechanics (MM) is a commonly applied technique in large-scale systems for 

calculating molecular structures and determining the relative potential energies of different 

conformations or atom arrangements 19-21. In MM, the electrons within the system are not 

explicitly considered; rather, each atom, including its atomic nucleus and associated electrons, 
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is treated as a single particle. This exclusion of electrons is justified by the Born-Oppenheimer 

approximation, which states that electronic and nuclear motions can be decoupled and 

considered separately 22. The focus of MM calculations is on energy differences between 

conformations, rather than absolute values of potential energies. MM can be likened to a ball-

and-spring model of atoms and molecules, where classical forces act between them 23. These 

forces are accounted for by potential energy functions that take into account various structural 

features such as bond length, bond angles, and torsional angles. The parameters used in these 

potential energy functions are designed to replicate experimental properties 20. The total 

potential energy of a molecule, known as the MM or molecular mechanics, encompasses several 

energy components. These components include the energy associated with bond stretching 

(referred to as Estr), the energy resulting from bond angle bending (known as Ebend), the torsion 

energy arising from twisting motions (Etor), as well as the energy of interactions among unbound 

atoms (Enb). The energy contributions from the latter include both van der Waals forces and 

electrostatic interactions. 

Etot= Estr+ Ebend+ Etor+ Evdw+ Eelec                                                                           (1) 

 Etot = ∑𝑏𝑜𝑛𝑑𝑠𝐾𝑟 (𝑟 − 𝑟𝑒)2 + ∑𝑎𝑛𝑔𝑙𝑒𝑠𝐾⍬ (⍬ − ⍬𝑒𝑞 )2 + ∑ dihedrals νn/2 (1 − cos(nϕ − r ) ]+ ∑i<j [Aij/ 

rij
12 + Bij /rij

6 + qi qj /εrij]                                                               (2) 

     In the context of MM, the overall potential energy, denoted as Etot, can be understood as the 

sum of various energy terms. The stretch terms pertain to the energy associated with bond 

stretching (Estr), the bend terms refer to the bond angle-bending energy (Ebend), the torsional 

terms relate to the twisting energy (Etor), and the unbound interactions encompass the van der 

Waals and electrostatic forces between atoms that lack chemical bonding. Additionally, the 

MM framework also incorporates energy contributions from special treatments of hydrogen 

bonding and stretch-bend coupling interactions. 

3. Quantitative structure–activity relationship 

     Quantitative structure-activity relationship (QSAR) modeling, which was initially proposed 

by Hammett in the 1930s and later developed by Hansch and Fujita in the mid-1960s, is a 

ligand-based drug design method 24. The methodology of QSAR is rooted in the utilization of 

chemometric techniques to generate statistically-derived models that establish correlations 

between the independent variables, also known as descriptors, of systems and their dependent 
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variables 25. In the context of drug design, the independent variables encompass all the structural 

attributes of chemical entities, including their physicochemical and biological properties, while 

the dependent variables refer to the functions of these entities, such as binding affinity, activity, 

toxicity, rate constants, and more 25. The general formula of a QSAR model can be expressed 

as follows: Predicted Biological Activity = Function (Chemical Structure). 

     QSAR has emerged as a vital analytical tool in various fields of chemistry, encompassing 

medicinal chemistry, agricultural chemistry, environmental chemistry, and toxicology. 

Particularly within pharmaceutical chemistry, QSAR analysis has become an indispensable 

means for drug discovery and is now a standard component of all industrial drug design 

software packages 26. The recent trends in the drug discovery and development process can be 

summarized into two fundamental points. Firstly, there is an emphasis on the development of 

reliable models that possess the ability to accurately predict and classify the biological 

responses of potential leads. Secondly, these models are being applied in the design of new 

chemical entities (NCEs) and the screening of extensive libraries or datasets of compounds to 

identify new hits with desired attributes. However, it is crucial to validate these predictions 

experimentally 27, 28. By selecting promising hits, QSAR analysis allows for a reduction in the 

number of costly experiments, thereby minimizing the expenses associated with candidate drug 

failures 29. 

3.1 3D-QSAR  

     3D-QSAR approaches have been extensively developed in order to establish a correlation 

between the biological activity of a series of reference active compounds and the spatial 

arrangement of numerous properties exhibited by the molecule, including steric, lipophilic, and 

electronic properties. This correlation analysis is crucial as it provides valuable indications for 

the optimization of compounds through pharmacomodulation and the design of novel 

compounds with enhanced activity profiles. The first 3D-QSAR approach, proposed back in 

1979, focused on describing the molecular field properties of compounds by calculating them 

on a regular grid and subsequently correlating them with their biological activity using principal 

component analysis (PCA). This approach, initially known as DYLOMMS (Dynamic Latice-

Oriented Molecular Modeling System), gained momentum only when Partial Least Squares 

(PLS) was introduced for the correlation of properties with biological activity. It is worth noting 

that there are various 3D-QSAR methods currently in use, such as CoMFA (Comparative 

Molecular Field Analysis), CoMSIA (Comparative Molecular Similarity Indices Analysis), 
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GRID/GOLPE, and Phase. An important point to highlight is that all these methods necessitate 

a meticulous alignment of the reference ligands. Once the 3D structure of the biological target 

has been determined, receptor-dependent 3D-QSAR (RD-QSAR) models can be implemented 

30. 

3.1.1 The CoMFA method 

     Which stands for Comparative Molecular Field Analysis, is based on the fundamental 

concept that differences in activity observed among molecules in a series are directly associated 

with dissimilarities in the shape of non-covalent Molecular Interaction Fields (MIFs). This 

method carefully analyzes the steric and electrostatic interaction fields exhibited by the 

molecules. The shape of these interaction fields is described by sampling their magnitude at 

regular intervals within the space surrounding the molecules, resulting in the generation of a 

three-dimensional matrix. Once the interaction fields have been described for each molecule, 

they are compared using a statistical analysis similar to Partial Least Squares (PLS). This 

analysis is crucial as it allows for the establishment of correlations between variations in the 

position and intensity of the potentials and the corresponding variations in activity. 

Consequently, valuable insights can be obtained regarding trends that either favor or hinder the 

target property. However, in order to accurately compare these three-dimensional objects, they 

need to be aligned in a common frame of reference, which entails aligning the molecules 

themselves 31. 

3.1.2 The CoMSIA method 

     On the other hand, is an extension of CoMFA that incorporates additional fields, including 

a lipophilic interaction field, a "hydrogen bond acceptor" field, and a "hydrogen bond donor" 

field, in addition to the steric and electrostatic interaction fields. While both techniques 

generally yield comparable results, CoMSIA models are often considered to be more 

comprehensive and easier to interpret 32. 

3.1.3 Alignment of the structures 

     Another important aspect in the development of a 3D-QSAR model of the CoMFA or 

CoMSIA type is the alignment of the structures in their active conformation. Ideally, the 

structure of the receptor should be co-crystallized with one or more ligands that closely 

resemble the series of compounds being studied. In this case, the co-crystallized ligand serves 
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as the reference molecule onto which the structures in the series can be aligned. Moreover, 

having the structure of the receptor also enables the docking of the compounds, which can 

potentially provide a plausible alignment. 

Unfortunately, the availability of the structure of the receiver is lacking in the majority of cases.  

     Consequently, the alignment process will have to rely solely on the structures present in the 

series. This alignment process heavily depends on the experience and expertise of the modeller. 

While rational and automated methods have been developed to aid in the alignment process, 

these methods still present challenges in terms of accessibility. 

 One approach to automated alignment involves the execution of algorithms that call on 

different independent programs and scripts. However, this method may require a 

significant amount of user intervention and is not fully automated. 

 Another approach involves integrating the entire alignment procedure into a single 

software. However, this approach is typically found in commercial software and may 

not be readily available to all researchers 33-35. 

3.1.4 Calculation of molecular interaction fields 

       When it comes to the calculation of molecular interaction fields, the CoMFA method 

utilizes a Lennard-Jones potential to calculate the steric field and a Coulomb potential to 

calculate the electrostatic field 31. While this approach is widely accepted and efficient, it does 

present certain challenges. Specifically, both of these potential functions exhibit a steep slope 

near the Van der Waals surface of the molecule. This steep slope leads to abrupt changes in the 

description of the surfaces, necessitating the use of threshold values to avoid calculating 

potentials within the molecule. Additionally, a scaling factor is applied to the steric field to 

allow for comparison and utilization alongside the electrostatic field in the same Partial Least 

Squares (PLS) analysis. Furthermore, if the measurement matrix's orientation is altered relative 

to the set of aligned molecules, significant variations in the analysis results can be observed. 

These discrepancies are likely attributable to the use of strict threshold values 36. 

       In the case of CoMSIA, five distinct similarity fields are calculated, including the steric, 

electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond acceptor fields. These 

fields encompass the major types of interaction involved in ligand-receptor binding 37. 

Similarity indices are computed in a three-dimensional matrix, which is comparable to that used 
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in CoMFA. The potentials, which depend on the distance between the probe and the molecule, 

are modeled using a Gaussian function. The shape of this function differs from conventional 

potential functions and enables the calculation of similarity indices for all points in the matrix, 

both within and outside the Van der Waals surface (Figure 3). 

 

Fig.3. General shape of the classic potentials used by CoMFA (thin lines) and the potential used by 

CoMSIA (bold line).  

3.1.5 Interpretation and validation of a QSAR model 

        Interpretation and validation of a QSAR model entails various important considerations. 

Once the model equation has been obtained, it becomes imperative to assess not only the 

stability and goodness of fit of the model, but also to estimate its power and validity before 

utilizing it for the prediction of biological activity. The validity of a QSAR model involves 

establishing the reliability and significance of the method for a specific purpose. Hence, it is 

essential to validate a QSAR model 38. 

     The process of validation encompasses three main types: internal validation, external 

validation, and standard statistical tests and coefficients.  

3.1.5.1 Internal validation 

     Internal validation primarily focuses on ensuring the stability of the model using the dataset 

from which it was built. A commonly employed technique for internal validation is cross-
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validation (CV), which is frequently used in statistical modeling. The CV method involves the 

extraction of one compound from the set each time, followed by the recalculation of the model 

using the remaining compounds (n-1, where n is the number of compounds) as the training set. 

This allows for the prediction of the biological activity value for the extracted compound across 

all compounds in the set. This iterative process is repeated for each compound in the initial set, 

resulting in a prediction for every object 39. 

     The LOO (leave-one-out) method is a specific form of cross-validation that is often utilized 

in QSAR modeling. Alternatively, the CV leave-out method, also known as Leave-many-Out 

(LMO) or leave-group-out (LGO) 40, can be employed by omitting multiple compounds from 

the dataset during each iteration. The calculation of the correlation coefficient for the Q2 cross-

validation procedure is crucial, as it provides an indication of the model's validity. By definition, 

the Q2 correlation coefficient is smaller than or equal to the R2 set (correlation coefficient) for 

a QSAR equation. Another procedure for testing the validity of the model is the randomization 

test, which involves randomizing the compounds. This is particularly useful in situations where 

a large number of compounds and a small number of descriptors are present, as an equation can 

still possess low predictive power 41. 

3.1.5.2 Standard statistical tests and coefficients 

     Apart from internal validation, standard statistical tests and coefficients provide additional 

means of judging and validating QSAR models. A range of tests and coefficients can be 

employed for this purpose, and Table 1 presents the most significant ones that serve as a 

standard for model validation 42. These tests and coefficients play a pivotal role in ensuring the 

reliability and robustness of QSAR models, thereby contributing to their overall validation 

process. 

 

 

 

 

 



  Overview on Computational methods in drug discovery  
  

36 
 

 

Table 1. Standard tests for model validation. 

 

ŷ and yi the observed and calculated values of the dependent variable. 

n: number of observations (molecules). 

P: degrees of freedom. 

3.1.5.3 External validation 

     In order to ensure the dependability of evaluating the forecasting capability, it becomes 

imperative to employ an external validation set that has not been used for the development of 

the model. This external validation set is necessary to ensure that the initial data set is of 

sufficient size. The validation of the model is done using specific parameters, namely R2 (test) 

and RCV
2 (test). Moreover, it is crucial to examine other parameters for the purpose of external 

validation. These parameters, commonly known as "external validation criteria" or often 

referred to as "Tropsha criteria", play a significant role in assessing the model's predictive 

power. The "Tropsha criteria" 43 serve as the guiding principles for the evaluation of the model's 

performance during the external validation process. 

     External validation criteria, also known as test series, serve as the foundation for evaluating 

the reliability and accuracy of the model. These criteria play a pivotal role in determining the 

model's ability to make accurate predictions when confronted with new and unseen data. By 

employing an external validation set that has not been utilized during the model development 

phase, it ensures that the model's performance is tested on an independent and unbiased dataset. 

This external validation process is crucial in order to validate the model's generalizability and 
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to ensure that the model is not over fitting to the initial data set. Therefore, the utilization of 

external validation criteria is imperative for accurately assessing the model's predictive power 

and its ability to perform well on unseen data. Additionally, these criteria help in establishing 

the model's credibility and applicability in real-world scenarios, making them an essential 

component of any predictive modeling process. 

External validation criteria (test series) 

• 𝑅2> 0.7  

• 𝑅𝐶𝑉
2 > 0.6 

 • R2− R0
2 R2 < 0.1 and 0.85 ≤ k ≤ 1.15  

• R2− R0 
′2 R2 < 0.1 and 0.85 ≤ k’ ≤ 1.15 

 • |𝑅2 − 𝑅0
2 | ≤ 0.3 

With: 

R2: Correlation coefficient for the molecules in the test series. 

R0
2: Correlation coefficient between predicted and experimental values for the test series. 

R0′2: Correlation coefficient between experimental and predicted values for the test series. 

K: is the constant of the correlation line (at the origin) (predicted values as a function of 

experimental values) 

K': is the constant of the correlation line (at the origin) (experimental values as a function of 

predicted values). 

3.1.6 Applications of the QSAR study  

     The applications of the Quantitative Structure-Activity Relationship (QSAR) study are vast 

and diverse. While some QSAR studies may appear to be more academically-oriented, these 

models have found numerous practical applications 44. These applications encompass a wide 

range of fields and industries, including but not limited to: 
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 The optimization of pharmacological activity: QSAR models can be used to predict and 

optimize the activity of drug compounds. By understanding the relationship between 

the structure of a molecule and its biological activity, researchers can design more 

effective and potent drugs. 

 The rational design of other products: QSAR models can also be applied to the design 

of various non-pharmaceutical products. For example, they can be used to optimize the 

properties of surfactants, fragrances, dyes, and fine chemicals, ensuring their desired 

functionality and performance. 

 The identification of hazardous compounds: QSAR models can aid in the early detection 

and identification of potentially hazardous compounds during the product development 

process. By predicting the toxicity of compounds, researchers can prioritize safety and 

mitigate potential risks. 

 Predicting toxicity and side effects: QSAR models can help in predicting the toxicity 

and side effects of new compounds. This information is crucial in drug development, as 

it allows researchers to identify potential safety concerns before extensive testing in 

animals or humans. 

 Predicting toxicity to environmental species: QSAR models can also be used to predict 

the toxicity of chemicals to various environmental species. This information is valuable 

in assessing the potential environmental impact of new compounds and guiding 

regulatory decisions. 

 The selection of compounds with optimal pharmacokinetic properties: QSAR models 

can assist in identifying compounds with favorable pharmacokinetic properties. This 

includes factors such as stability and availability in biological systems, which are 

important considerations in drug development. 

 Predicting physico-chemical properties: QSAR models can be utilized to predict a 

variety of physico-chemical properties of molecules. This includes properties such as 

solubility, partition coefficient, and molecular weight, which are essential for 

understanding a compound's behavior and interactions. 

 Predicting combined effects of molecules: QSAR models can predict the combined 

effects of molecules, whether in mixtures or formulations. This information is valuable 

in fields such as environmental toxicology and pharmaceutical formulation 

development. 
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3.2 Structure-based virtual screening 

     Moving on to another aspect of drug discovery, structure-based virtual screening plays a 

crucial role in identifying potential drug candidates. This approach relies on the knowledge of 

the target's three-dimensional (3D) structure and evaluates the ability of ligands to interact with 

the binding site 45. Structure-based virtual screening can be performed using two experimental 

methods: X-ray crystallography and Nuclear Magnetic Resonance (NMR). These methods 

provide detailed information about the 3D structure of the target, which can then be used to 

discover new active compounds. 

     When the 3D structure of the target is available, various structure-based methods can be 

employed. These methods include the construction of pharmacophore models based on the 

target's structure, the establishment of RD-QSAR models, de novo design, and docking 

methods. These techniques rely on the identification of the binding site and aim to identify 

molecules that can effectively interact with the target. 

     In summary, QSAR studies have a wide range of applications in the fields of drug discovery 

and product development. These models can optimize pharmacological activity, aid in the 

rational design of various products, identify hazardous compounds, predict toxicity and side 

effects, select compounds with optimal properties, predict physico-chemical properties, and 

assess the combined effects of molecules. Additionally, structure-based virtual screening, based 

on the 3D structure of the target, allows for the identification of potential drug candidates 

through the assessment of ligand-binding interactions 45, 46. 

4. Molecular docking 

     In an organism, there are numerous ways in which two chemical elements can interact, with 

the most common interactions being protein-protein or protein-small molecule interactions. The 

field of molecular docking enables us to estimate the intermolecular framework that is 

generated between a macromolecule and a small molecule or between two macromolecules. It 

also allows us to identify the binding modes that are necessary for target regulation. 

Traditionally, the concept of molecular recognition of a ligand/target complex was compared 

to a "lock and key" mechanism. However, this terminology has now been refined to take into 

account the target-flexibility and the mutual adaptation with the ligand, resembling a "hand and 

a glove" interaction (Figure 4). 
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Fig.4 The classical analogy of ligand/target complex as "lock and key" and the current analogy as 

''hand and glove'' 47. 

     To conduct reliable docking experiments, it is essential to have a high-resolution X-ray, 

NMR, or homologymodeled structure with a known or expected binding site in the target. 

Docking approaches involve fitting a ligand into a binding site by considering factors such as 

steric, hydrophobic, and electrostatic complementarity. Additionally, the evaluation of binding 

free energy (scoring) is also crucial 48–50. 

4.1 General protocol 

     The process of molecular docking is carried out through two main pathways. Firstly, all 

possible poses of the ligand within the target binding site are sampled, and each pose is 

associated with a score value that approximates its free energy landscape. Then, at the end of 

the simulations, the best binding modes are ranked based on these score values, and the most 

suitable complexes are selected. Ideally, the sampling algorithms should be able to reproduce 

the experimental binding mode, and the scoring function (SF) should rank it as the best among 

all the generated conformations 51. Figure 5 provides an overview of the general workflow of 

a molecular docking simulation. 
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Fig. 5. General workflow of molecular docking simulation 52. 

4.1.1 Ligand preparation 

     Ligand preparation involves the generation, optimization, and analysis of its three-

dimensional (3D) structure. There are several drawing software options available such as 

ChemSketch, ChemDraw, Avogadro, and others, which can be used to manually build the 3D 

structures of ligands. These structures can be created either from their 2D representations or 

from simpler schemes like SMILES. Additionally, ligand structures can also be obtained 

directly from virtual databases such as the Cambridge Structural Database (CSD), Available 

Chemical Directory (ACD), MDL Drug Data Report (MDDR), PubChem, and more. These 

databases provide a vast number of conformations that can be used for virtual screening 50-52. 

4.1.2 Target preparation 

     Target preparation involves the minimization, correction, and protonation of its 3D structure. 

The structures of targets can be obtained in PDB file format from various protein databases like 
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the RCSB-Protein Data Bank (https://www.rcsb.org/). These protein databases provide access 

to the 3D atomic coordinates of target conformations, which are characterized using 

experimental and/or computational prediction methods such as X-ray crystallography, nuclear 

magnetic resonance (NMR), infrared spectroscopy, homology modeling, electron density, and 

more 50-52. 

4.1.3 Binding site detection 

     In the context of binding site detection, it is common for the binding site that is of interest 

for the docking simulation to already be known and assigned by the docking software. However, 

in cases where the information regarding the binding location is unavailable, it is possible to 

predict the most likely locus algorithmically or by implementing a so-called "blind docking" 

approach. The blind docking method covers the entire surface of the target, but it comes with a 

high computational cost 50, 52. 

4.1.4 Docking validation 

     If the process of connecting two entities together, known as docking, is able to regenerate 

the identical manner of binding that was originally established and defined through the 

utilization of experimental and/or computational approaches, it is acknowledged as being valid. 

The Root-Mean-Square Deviation (RMSD) serves as a valuable tool for evaluating the degree 

of structural similarity between two configurations that have been superimposed upon one 

another. This calculation is derived from the equation presented as (*) 53. Furthermore, the 

RMSD, in combination with the values obtained from the scoring function, known as Sscore, 

are employed for the purpose of evaluating and ranking the stability and attraction of complexes 

consisting of a ligand and a target. These assessments are made possible through the values 

generated from both RMSD and Sscore, as highlighted in references 50, 52. 

                                                                  (*) 
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4.2 Types of molecular docking 

4.2.1 Rigid docking 

     In this particular type of molecular docking, both the ligand and the protein are treated as 

rigid objects, meaning that their structures are not allowed to change during the docking 

process. This approach is employed in order to limit the search space and reduce the 

computational complexity by considering only three translational and three rotational degrees 

of freedom for both the ligand and the protein. The flexibility of the ligand, however, is taken 

into account through the use of a pre-adjusted list of ligand conformations or through the 

inclusion of atom-atom interactions between the target and the ligand. This approximation 

allows for the simulation of the "lock-key" binding mechanism, which is often observed in cases 

where the number of conformational degrees of freedom is too high to be sampled, particularly 

in protein-protein docking. In this method, the target site and the ligand are represented as "hot" 

points, and the superposition of these matching points is assessed to determine the best binding 

conformation 54. 

4.2.2 Semi-flexible docking 

     Considering the inherent flexibility of molecular systems, it is crucial to incorporate this 

flexibility into the docking process to accurately model the interactions between ligands and 

receptors. This flexibility allows both ligands and receptors to adapt their conformations and 

form the most energetically favorable complex. However, due to the computationally expensive 

nature of fully flexible docking, most docking software employ a semi-flexible docking 

approach. In this approach, the protein conformation is assumed to be fixed and capable of 

recognizing the ligands to be anchored. Although this assumption is not always supported, it is 

a practical compromise to reduce the computational cost and time. In semi-flexible docking, 

the ligands are treated as flexible entities, while the receptor remains rigid throughout the 

docking process. The search space is expanded to include six translational and six rotational 

degrees of freedom, and all the conformational degrees of freedom of the ligand are sampled 

55. 

4.2.3 Flexible-flexible docking 

     On the other hand, fully flexible docking takes into account the flexibility of both the ligand 

and the receptor. This technique allows the flexible ligand to freely anchor into a flexible 
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receptor, taking into consideration that the intrinsic kinetics of the protein are strongly 

influenced by the orientation of the ligand in the binding site. Implementing receptor flexibility 

in molecular docking represents a significant advancement in the field, as it enables the 

modeling of all degrees of freedom in the ligand-receptor complex. However, this approach is 

not without its limitations. One of the main challenges is the problem of insufficient sampling, 

which can lead to inaccurate results. Additionally, the computational costs associated with fully 

flexible docking can be prohibitively high, especially when dealing with large chemical 

libraries. The size and complexity of protein structures further complicate the inclusion of full 

receptor flexibility in the docking process. Therefore, most studies on molecular docking are 

typically limited to specific residues or regions of interest within the protein. Nonetheless, there 

have been recent developments in docking programs that partially incorporate receptor 

flexibility, offering more flexibility in terms of target conformation. These programs provide 

various strategies for implementing receptor flexibility, allowing researchers to explore 

different conformational states and potentially improve the accuracy of molecular docking 

predictions. Figure 6 provides a visual representation of the different strategies for 

implementing receptor flexibility in molecular docking. 

 

Fig. 6.  The described strategies for including receptor flexibility in docking simulation 56. 
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4.3 Scoring Functions (SFs) 

     Scoring functions (SFs) serve as crucial pose selectors, effectively distinguishing between 

the most efficient biological binding modes and binders from inactive ligands within the set of 

poses acquired through the sampling algorithm (Figure 7). In contrast, SFs rely on various 

approximations and simplifications to estimate, rather than precisely calculate, the binding 

affinity of the target and the ligand 55, 57. Consequently, an accurate and reliable SF should 

possess three essential capabilities: firstly, the competence to select the optimal binding mode 

of a ligand from a collection of computationally simulated poses; secondly, the competence to 

accurately rank a given set of ligands with known binding modes when attached to the same 

target; and thirdly, the competence to generate binding scores that are linearly associated with 

experimentally measured binding affinities of target-ligand complexes possessing known three-

dimensional structures 58. 

 

Fig. 7. The SF role as pose selector 59. 

Recently, the field of SFs has witnessed the development of five distinct classes: physics-based, 

empirical, knowledge-based, consensus, and machine-learning-based SFs 59. 

4.3.1 Physics-based SFs 

     Physics-based SFs encompass SFs that are founded upon force field principles, solvation 

models, and quantum mechanics methods (Figure 8) 59. The concept of force field, rooted in 

molecular mechanics, represents a traditional approach that entails utilizing a combination of 

the bonded (intramolecular) and non-bonded (intermolecular) components of a system to 

estimate its potential energy. In the context of the docking approach, non-bonded elements are 

frequently taken into consideration, with the possibility of incorporating ligand-bonded terms, 

particularly the torsional elements 55. 
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Fig. 8. The description for physics-based SF 59. 

     The estimation of binding energy in classical force-field-based scoring functions (SFs) often 

relies on the sum of non-bonded interactions, which are represented by electrostatic and van 

der Waals energy terms. However, in addition to these interactions, other factors such as 

hydrogen bonds, solvation effects, and entropy contributions can also be taken into account in 

force-field-based SFs. The calculation of electrostatic forces involves the use of the coulomb 

formula. However, due to the limitations of point charge computations in accurately describing 

the surrounding environment of the target, a distance-dependent dielectric function is typically 

employed to adjust the effect of charge-charge interactions. Similarly, the van der Waals terms 

are defined by the Lennard-Jones potential function. The hardness of this potential, which 

governs the permissible cut-off distances between the target and ligand atoms, can be adjusted 

by varying the parameter settings for the Lennard-Jones potential 51. 

     Different software programs have varying approaches to handling hydrogen bonding, the 

form of the energy function, and other aspects of SFs. To improve the accuracy of binding 

energy prediction, the results of docking simulations using force-field-based functions can be 

further refined using other methods such as linear interaction energy and free-energy 

perturbation methods (FEP). Several examples of force-field-based SFs include D-Score, G-

Score, GOLD, AutoDock, MOE, DOCK, HADDOCK Score, ICM SF, QXP SF, GBVI/WSA, 

and many more 48, 55. 

4.3.2 Empirical SFs 

     On the other hand, empirical SFs consider simpler energy factors, resulting in faster binding 

score calculations and reasonably accurate predicted binding energies. These SFs incorporate 

various energy components, including van der Waals, electrostatic, hydrogen bond, ionic 

interaction, desolvation, hydrophobic effect, and binding entropy. To obtain the final score, 
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each energy term is multiplied by a coefficient and then summed together. These coefficients 

are determined through regression analysis on a training set of experimental ligand-target 

complexes with known binding affinities. However, it is important to note that these SFs are 

heavily dependent on the molecular data sets used for regression analysis and fitting, which 

often leads to different weighting factors for individual terms. Consequently, merging terms 

from different SFs into a new SF can be challenging. Some examples of SFs in this category 

include LUDI, GlideScore, ChemScore, PlantsChemplp, SCORE, RankScore, LigScore, HINT, 

F-Score, Fresno, X-Score, and more 48, 55. 

4.3.3 Knowledge-based SFs 

     In contrast to force-field-based SFs, knowledge-based SFs aim to replicate experimental 

structures rather than binding energies. They are based on the premise that more favorable 

interactions are more likely to occur. To achieve this goal, statistical analysis is applied to a 

dataset of crystal 3D structures of ligand-target complexes to determine the frequencies of 

interatomic interactions and distances between the ligand and target. These frequency 

distributions are then used to derive paired atom-type potentials. The score is subsequently 

calculated by prioritizing favorable connections and eliminating repulsive interactions between 

ligand-target atoms within a predefined cutoff 48. The general pathway of knowledge-based SFs 

is illustrated in Figure 9. 

     Knowledge-based functions provide a convenient means of conducting thorough searches 

in vast molecular databases, making them highly valuable tools in the field of drug discovery. 

In addition to their ability to efficiently scan through these databases, knowledge-based 

functions also possess the capability to model specific types of interactions that are often 

overlooked in empirical scoring functions (SFs). These interactions include sulphur-aromatic 

or π-cation interactions, which are known to play crucial roles in ligand binding. Furthermore, 

one of the major advantages of knowledge-based SFs is that their training sets primarily focus 

on the structural details of the molecules, completely disregarding any experimental binding 

affinity. This is particularly significant as it eliminates any uncertainty or bias that may arise 

from the experimental environment, thus enhancing the reliability of the predicted binding 

affinity. Consequently, knowledge-based SFs are better suited for accurately predicting binding 

poses rather than binding affinities. However, it is important to note that these SFs are not 

without their challenges. Two key challenges that researchers face when utilizing knowledge-
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based SFs are the accuracy of estimating the reference state and the under-representation of 

interactions with halogens and metals in the limited training sets. 

 

Fig. 9. The general pathway of knowledge-based SFs. Ρij (r ): number density of the target-ligand atom 

pair i_j at distance r. Ρ*
ij pair density in a reference state. g(r): relative number density of atom pairwise 

i_j at distance r. KB: Boltzmann constant. T: absolute temperature 59. 

     Within the realm of knowledge-based SFs, there exist several notable examples that fall 

under this category, each with its own unique set of features and characteristics. Some of these 

SFs include DrugScore, GOLD/ASP, PMF, SMoG, Bleep, MScore, and ITScore/SE. These SFs 

have been extensively utilized in various drug discovery studies and have proven to be effective 

in their respective applications. Their diverse range of functionalities allows researchers to 

choose the most suitable SF for their specific needs and objectives. 

4.3.4 Consensus scoring 

     To overcome the inherent limitations and constraints associated with the aforementioned 

classes of SFs, the scientific community has embraced the concept of combining multiple SFs 

to achieve more accurate and comprehensive results. This approach, known as "consensus 

scoring," involves integrating information from multiple scoring schemes to balance out any 
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potential errors in individual scores and improve the likelihood of accurately detecting the 

optimal ligand conformation. In essence, a suggested ligand pose is more likely to be accepted 

if it performs well across a variety of scoring schemes. One prominent example of the consensus 

scoring approach is X-CSCORE, which combines the functionalities of GOLD-like, DOCK-

like, ChemScore, PMF, and FlexX SFs. By leveraging the strengths of these different SFs, X-

CSCORE aims to provide a robust and reliable scoring system that can enhance the accuracy 

of ligand binding prediction. 

4.3.5 Machine-learning-based SFs 

     In recent years, machine learning algorithms have emerged as powerful tools in the field of 

drug discovery. Machine-learning-based SFs have been developed and applied using various 

algorithms, including support vector machine, random forest, neural network, and deep 

learning, among others. These SFs have showcased superior performance compared to classical 

SFs, particularly in the area of rescoring. Rather than being integrated directly into docking 

software, machine-learning-based SFs are often utilized to rescore the results obtained from 

classical docking techniques. This two-step process, involving initial docking using classical 

methods followed by rescoring using machine learning SFs, has been shown to significantly 

improve the accuracy of ligand binding predictions. By harnessing the information contained 

within the training dataset, machine-learning-based SFs are able to effectively capture the 

complex relationships between ligand-target interactions and generate more accurate 

predictions 60 (Figure 10). 
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Fig. 10. Workflow of training machine-learning-based SFs 59. 

5. Pharmacokinetics Properties and Computational tools employed in ADMET 

     During the early stages of drug development, the initial assessment of candidate drugs' 

activities and specificities is typically followed by evaluations of pharmacokinetics and 

toxicities. However, it has been observed that a significant number of candidate drugs fail in 

the final stage due to poor efficacy and safety, primarily attributed to their absorption, 

distribution, metabolism, excretion, and toxicity (ADMET) characteristics 61. Researchers have 

identified that poor safety and toxicity are the most prominent factors contributing to the failure 

of more than half of all project closures. Consequently, recognizing the importance of filtering 

and optimizing the ADMET features of pharmaceuticals at an early stage has become widely 

acknowledged and employed in order to reduce the attrition rate in drug research and 

development, similar to the process of drug discovery. In recent years, in vitro and in vivo 

ADMET prediction approaches have gained popularity. However, conducting sophisticated and 

expensive ADMET tests on a large number of drugs is not feasible. Therefore, there is a 

growing interest in an in silico approach to predict ADMET characteristics as a cost-effective 

and high-throughput alternative to experimental testing methods 62. 

     In order to effectively predict ADMET characteristics, there are two essential components 

to consider: data modelling and molecular modelling, each requiring its own set of tools. Data 

modelling commonly employs Quantitative Structure Activity Relationship (QSAR) 

techniques. The QSAR method aims to identify connections between a specific property and a 

series of chemical and structural descriptors for the molecules under investigation. Over the 

past six decades, a wide range of descriptors suitable for QSAR research have been generated, 

such as those available in the software program Dragon. From this vast pool of descriptors, it 

is possible to select a subset that could prove useful in future predictions of ADME features. 

On the other hand, molecular modelling utilizes quantum mechanical methods to analyze the 

potential for interaction between small compounds and proteins known to be involved in 

ADME processes, such as cytochrome P450s. In cases where the structure of the human protein 

is unknown, homology modelling of related structures can be employed to construct three-

dimensional structural information of the protein 60. 

6. Quantum mechanics 
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     Quantum mechanics (QM) serves as an essential method for comprehending the behavior of 

systems at the atomic level. In QM, molecules are treated as collections of nuclei and electrons, 

devoid of any explicit reference to chemical bonds. By applying the principles of QM, 

approximations are made to the wave function and the Schrödinger equation is solved. The 

solutions to the Schrödinger equation provide insights into the motions of electrons, which 

subsequently determine molecular structure, energy, and various other observables, including 

bonding information. However, it is important to note that the Schrödinger equation cannot be 

solved exactly for systems with more than one electron, except for the hydrogen atom, 

necessitating the use of approximations 63.  

H=T+V                                             (3) 

Where H is the Hamiltonian operator (sum of kinetic energy), T the potential energy, and V the 

operator. H can also be defined as: 

H=[− ℎ2/ 8𝜋2 ∑i 1/𝑚𝑗 ( 𝜕2/𝜕𝑥2 + 𝜕2/𝜕𝑦2 + 𝜕2/𝜕𝑧2)] + ∑i ∑<j ( 𝑒𝑖𝑒𝑗 /𝑟𝑖𝑗 ) 

     QM methods encompass various approaches, such as ab initio calculations, density 

functional theory (DFT), and semi-empirical methods. For more accurate QM calculations, 

electron correlation methods, including CCSDT and MP2, are often employed. These methods 

are also valuable in identifying the activated complex in chemical reactions, thereby aiding in 

the determination of reaction pathways. Due to the inherent complexity of solving the 

Schrödinger equation for large molecular systems, semi-empirical and ab initio DFT methods 

have been developed as approximations to obtain precise QM solutions. Although QM models 

offer the highest level of accuracy, they are also the most computationally demanding and time-

consuming, typically applied to smaller systems due to resource limitations 64. 

7. Density Functional Theory (DFT) 

7.1 Conceptual Density Functional Theory (DFT) 

     The utilization of methodologies in Computational Chemistry plays an extremely crucial 

role in the application of modern medicinal chemistry, providing a vast potential for enhancing 

various stages of drug research, with a particular focus on time and cost effectiveness 65. The 

recent impact of density functional theory (DFT) has had a considerable influence on the 

advancement of quantum chemistry, which can be attributed to the achievement of what is 
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known as "chemical accuracy" in the late 1980s through the introduction of gradient-corrected 

and hybrid functional methods. DFT is primarily based on the renowned Hohenberg and Kohn 

theorems established in 1964, which concentrate on the electron density, p(r), itself as the 

carrier of molecular (or atomic) properties at significantly lower costs compared to traditional 

ab initio wave function techniques. The incorporation of orbitals into the conceptual framework 

of DFT was accomplished through the Kohn-Sham formalism. The Kohn- Sham methodology 

encompasses the determination of molecular energy and density for a given system, as well as 

the orbital energies that are explicitly associated with the frontier orbitals, including the Highest 

Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO) 

60. 

7.1.1 Fundamental and Computational Aspects of DFT 

 The Basics of DFT: The Hohenberg−Kohn Theorems 

     In the realm of chemical reactions, the formation and breaking of bonds occur due to the 

accumulation and depletion of electron density between nuclei. Hence, understanding how the 

electron density in a molecule redistributes during a chemical reaction is crucial in the field of 

chemistry. For a system consisting of N electrons bound by an external potential v(r), the 

Hamiltonian H is fully defined by N and v(r). By solving the SchrÖdinger equation with Hˆ, 

one can obtain the many-electron wave function  (r1, r2, . . . . . . . . .. . . , rN ), which contains 

all the physical information about the system. Integrating over the coordinates of (N-1) 

electrons, the single-particle density or the electron density p(r) can be obtained 60. 

p(r) = N… * (r1, r2, … rN )  (r1, r2, ... , rN ) dr2 …drN                                           (3) 

 Which integrates to the total number of electrons, 

  p(r)dr = N                                        (4)  

Therefore N and v(r) determine p(r). That is, there is a mapping from v(r) to p(r). 

 DFT as a Tool for Calculating Atomic and Molecular Properties: The Kohn−Sham 

Equations 
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     When examining the quantitative aspects related to Conceptual DFT descriptors, the Kohn-

Sham approach proves to be advantageous. However, there is currently significant controversy 

surrounding the utilization of a range-separated exchange-correlation density functional in 

Kohn-Sham DFT. The partitioning of the exchange and correlation operators into long- and 

short-ranged components, along with the inclusion of a range-separation parameter that governs 

the rate at which long-range behavior is achieved, is vital in constructing these density 

functionals. Through a molecule-by-molecule approach and following certain tuning criteria, 

the estimation of the range-separation parameter can be fixed or "tuned." The optimal tuning 

process relies on the relationship between the KS HOMO energy and the vertical ionization 

potential (IP), which calculates the energy difference, E(N-1)-E(N-1) (N). In the case of an N-

electron molecular system, the application of Generalized KS theory is necessary 60. 

-IP(N) = eH(N) 

     One might consider the Generalized KS theory as the DFT equivalent of the well-known 

Koopmans' theorem. However, it is important to note that only the exact density functional is 

truly valid. In situations where an approximated density functional must be utilized for practical 

reasons, there may be a substantial discrepancy between -IP(N) and eH(N). Consequently, 

achieving perfect tuning involves establishing a range-separation parameter that is specific to 

the system at hand 60. 
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1. Introduction 

In this section, a comprehensive description of the materials and methods employed for the 

examination of 54 pyrimidine derivative compounds will be provided. Initially, the analysis 

involves the utilization of CoMSIA technique within the framework of a 3D-QSAR 

investigation. Subsequently, an extensive exploration is conducted to introduce a maximal 

number of novel pyrimidine derivative compounds. The validation of the novelty and feasibility 

of this proposed initiative is corroborated through the meticulous examination of molecular 

docking patterns exhibited by these compounds. Furthermore, the assessment extends to the 

prediction of ADMET properties, serving as a crucial adjunct to the investigative process. 

Ultimately, the investigation culminates in the implementation of DFT calculations, 

underscoring the comprehensive and multifaceted nature of the research endeavor being 

undertaken. 

2. Computational methods 

This research is performed by using several packages: HyperChem software1 for 

geometry pre-optimizations and SYBYL X-2.12 for 3D-QSAR studies. Molecular docking 

studies are carried out using the Chemical Computing Group’s Molecular Operating 

Environment (MOE) software (2014.09) 3 and the analysis of the interactions are done by 

Discovery Studio (2019) 4. The ADMET pharmacokinetic parameters are determined by the 

pkCSM online server5.Also, the SwissADME online tool6 is used to create a drawing of a 

boiled-egg. 

  

Fig. 1. Structure of the studied compounds. See Table 1 for the designation of R1, R2, R3, R4, R5 and R6 

substituents. 
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Table 1 

Series of 54 compounds (Cp.) containing pyrimidine of S1R antagonists investigated presently is for the test set. 
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3. Data sets 

Table 2 

Series of 54 compounds (Cp.) containing pyrimidine as S1R antagonists with their 

experimental, predicted and residual values of pKi (CoMSIA model). t is for the test set. The 

experimental values are from Ref [7]. 

Cp. Exp.pKi Pred.pKi Resid.pKi Cp. Exp.pKi Pred.pKi Resid.pKi 

C1t 7.440 7.100 0.340 C28t 8.020 7.717 0.303 

C2 7.020 7.668 -0.648 C29 8.430 7.760 0.670 

C3 6.410 7.314 -0.904 C30 8.630 8.055 0.575 

C4 6.940 7.239 -0.299 C31 7.650 7.780 -0.130 

C5 6.370 7.379 -1.009 C32 7.410 7.426 -0.016 

C6t 6.310 7.334 -1.024 C33 6.660 7.419 -0.759 

C7 7.930 7.871 0.059 C34 7.710 7.702 0.008 

C8 7.780 7.808 -0.028 C35t 7.560 7.818 -0.258 

C9 7.520 7.895 -0.375 C36t 6.560 7.506 -0.946 

C10t 7.420 7.964 -0.544 C37t 6.130 7.111 -0.981 

C11t 6.340 7.334 -0.994 C38 t 7.940 7.819 0.121 

C12 6.500 7.427 -0.927 C39 8.450 7.832 0.618 

C13 6.820 7.246 -0.426 C40 8.400 7.984 0.416 

C14 7.640 7.823 -0.183 C41 7.350 7.573 -0.223 

C15 7.510 7.609 -0.099 C42t 7.230 7.537 -0.307 

C16t 7.730 7.587 0.143 C43 5.720 7.260 -1.540 

C17 7.870 8.129 -0.259 C44 8.710 8.087 0.623 

C18 7.330 7.613 -0.283 C45t 8.410 7.960 0.450 

C19 7.080 7.612 -0.532 C46 8.350 8.002 0.348 

C20 7.410 7.517 -0.107 C47t 8.940 8.024 0.916 

C21 7.690 7.706 -0.016 C48 9.010 7.895 1.115 

C22 7.460 7.802 -0.342 C49 8.970 7.998 0.972 

C23 6.730 7.441 -0.711 C50t 7.050 7.979 -0.929 

C24 7.710 7.671 0.039 C51t 6.690 8.234 -1.544 

C25 7.560 7.860 -0.300 C52t 6.730 7.866 -1.136 

C26 6.600 7.330 -0.730 C53t 7.230 7.964 -0.734 

C27 6.020 6.904 -0.884 C54t 7.400 8.003 -0.603 

 

In this study, we consider 54 compounds containing pyrimidine scaffold (Fig. 1 and 

Table 1) as characterized by Lan et al. 7. We quote in Table 2 their pKi values as S1R 

antagonists as determined by Lan et al. First, we created 3D structures for these 54 compounds 

and optimized their energies using Gasteiger-Hückel charge in the Tripos force field8. Then, we 
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randomly selected 36 compounds to construct the quantitative model as a training group and 

the rest of the compounds as a test group consisting of 18 compounds as specified in Tables 1 

and 2. 

4. Equilibrium structure optimizations 

Reliable predictions of molecular geometries are sensitive to the choice of electronic 

structure method and of the set of atomic bases used for the description of atoms. We started 

our work by selecting an appropriate methodology to be used for the determination of the 

equilibrium structures of the pyrimidine derivatives under study. Indeed, these molecular 

structures were constructed using the sketch module and then optimized under the tripos force 

standard field utilizing the matching Gasteiger–Huckel atomic partial charges implemented on 

SYBYL-X 2.1 software2. Additionally, 0.005 kcal/mol was chosen as the Powell gradient 

algorithm’s convergence threshold, with a maximum of 10 000 iterations required to obtain a 

stable conformation5, 9. Prior to that, we pre-optimized these molecules using HyperChem1. 

All compounds in the series were carefully converted and saved as separate Mol2 files in 

MOL2 format. The SYBYL X2.1.1 software was used to generate fifty-four molecular 

structures and to minimize the energy of each 3D structure created with the standard Tripos 

Powell force field (100 iterations) 9. Then, their Gasteiger-Hückel atomic partial charges to 

construct 3D-QSAR models were determined10. All molecular structures were analyzed with a 

distance-dependent buffer function until a root mean square (RMS) deviation of 0.05 kcal/(mol) 

was reached by the SYBYL X2.1.1 software. 

 

5. Generation of 3D-QSAR studies and CoMSIA analysis 

The selected compounds cover the full range of targeted biological activities. Afterwards, 

we created the data set in the molecular data table. Then we made several attempts (till 300), 

while leaving the value of the Powell gradient energy at 0.005 kcal/molÅ.In order to obtain the 

best 3D-QSAR model and the molecular morphology, we used multiple ways to search. For 

instance, we created the CoMSIA model with the training set, which consists of 36 compounds 

and using 18 molecules as a test setas specified in Table 2. The COMSIA model was validated 

after analysis of the partial least squares (PLS) regression with a grid spacing of 2 Å.We 

calculated the field dimensions of the CoMSIA model forboth steric and electrostatic fields, 

hydrophobic and H-bonds donor and acceptor, and we also explained the main structural 

properties of the work of antagonists of S1R against neuropathic pain11. For the calculations, 

we used the PLS of the limit factor R2, the cross-validation factor Q2 and the cross-validation 

standard error of the estimate SEE, and for evaluating the model we calculated the value of 
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F.Based on the high values of F, R2 and Q2 whose values should represent (R2> 0.6) and (Q2> 

0.5) and the low value of SEE, we choose the best model among others that respect the tests. 

 

6. Molecular docking 

We screened sixteen compounds and the active compound C48 using molecular docking 

in order to identify their binding mechanisms to the Human S1R protein (PDB ID: 5HK1) 12. 

We also considered 61Winhibitor, which is assumed to be a standard reference. 

6.1. Preparation of the membrane protein 5HK1 

We downloaded the 5HK1structure with inhibitor 61W from the PDB file (Protein Data 

Bank) 12,13. We performed several steps to prepare the selected transmembrane protein for the 

molecular docking study. We added hydrogen atoms to the system. Then, we corrected all errors 

in the connections or in the types of atoms. Afterwards, we searched an active site of the selected 

protein that fits with the 61Winhibitor through the application of a site finder. Briefly, this 

consisted in mapping the structure of the protein and the identification of this active site using 

virtual elements by creating dummy atoms for the docking step. Finally, we minimized the 

energy of the protein14,15. 

 

6.2. Docking of the proposed molecules into the 5HK1 binding site 

We first loaded the active protein file prepared in the previous step and then started the 

docking process16. We initially performed a validation of the active site by binding the reference 

compound 61W inhibitor. The accuracy of the docking program is thus checked. Then we 

applied the docking process for the series of compounds under study. Indeed, we modified the 

program where we set the docking site as dummy atoms. For the refinement methodology, we 

chose the rigid receptors to find the best sites. GBVI / WSA dG is the scoring method for this 

selection, and the corresponding triangle method as the positioning methodology. Specifically, 

the scoring methodology that we implemented is London dG. Afterwards, we downloaded the 

MDB file for our proposed 33 molecules with damper 61W and automated the global docking 

calculations. After computations, we investigated the binding sites. The best ones were chosen 

according to the RMSD refine values, which highlight their best degrees and the types of 

interactions of the linking site17. 

7. Prediction of synthetic accessibility and ADMET characteristics 

ADMET properties correspond to absorption, distribution, metabolism, elimination and 

toxicity, respectively. Because of the criteria for potentially unfavorable therapeutic agents for 
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ADMET, many compounds fail to reach clinical trials18,19. The most common strategy to 

discover pharmaceuticals chemicals is drug-likeness. 

To anticipate the in silico properties of ADMET for the proposed new compounds, we 

implemented an online pkCSM server. We considered the most absorbable compounds, which 

possess greater than 30% in the intestinal absorption function (human) (percentage absorbed). 

For a stable volume distribution, VDss (human) less than 1.209 log L/kg means that it is a low 

value. Besides, we checked whether a potential P450 inhibitor is metabolized or not. This is to 

prove the possibility of the action of these compounds in order to inhibit some of the known 

isoforms of cytochrome P450, because the latter can lead to inhibition of the pharmacokinetic-

drug interactions. Therefore, the drugs that are taken together in the diet fail and accumulate in 

toxic forms20. 

In order to achieve steady-state concentrations that agree with bioavailability according 

to the values of total clearance doses values were set. The proposed new compounds are 

expected to have toxic properties that we observed through hepatotoxicity, skin sensitivity and 

predicted AMES toxicity21. 

 

8. DFT calculations 

The Gaussian 09 package22 was employed to carry out the three-dimensional (3D) geometry 

optimizations of the ligand of reference 61w and its mol2, mol3, and mol4 compounds. Shown 

in the supplementary in Table S1 with the 2D structures with their chemical nomenclature and 

as well as their masses with close values. This was done using the DFT/B3LYP functional with 

a 6-31++G(d, p) basis set. The calculations began with the optimization of the geometry and 

subsequent evaluation of the energy. Orientations were then investigated based on the analysis 

of the frontier molecular orbitals, specifically the Highest Occupied Molecular Orbital (HOMO) 

and Lowest Unoccupied Molecular Orbital (LUMO). Furthermore, quantum chemical 

parameters were derived from the HOMO and LUMO energy values. These parameters 

included the energy gap (ΔE), electronegativity (χ), chemical potential (μ), chemical hardness 

(η), softness (σ), and electrophilicity index (ω) 23, can be expressed through equations (1)–(8) 

in the following manner: 

Energy gap (ΔE) = LUMO – HOMO          (1) 

Ionization potential (IP) = - EHOMO        (2) 

Electron affinity (EA) = - ELUMO (3) 

Hardness (η) = (IP-EA)/2                          (4) 

Electronegativity (χ) = (IP+EA)/2      (5) 
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Softness (σ) = 1/2η         (6) 

Chemical potential (μ) = -χ       (7) 

Electrophilicity index (ω) = μ2/2η           (8) 

 

To calculate the molecular orbital contribution of different constituting elements to the total 

system for the compound mol2, the Density of States (DOS) was determined using the 

GaussSum software24. 
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1. Introduction 

In this section, the outcomes derived from the implementation of different methodologies 

specified in the third chapter will be thoroughly examined and analyzed in order to gain a 

comprehensive understanding of the findings. 

2. Optimized geometries of the compounds of the series 

Table S1 gives the optimized 3D structures of the series of the 54 compounds containing 

pyrimidine of S1R antagonists currently studied. This table shows that the phenyl pyrimidine 

subunit as specified in (Fig. 1 (chapter III)) is planar in all compounds which favor their stability 

by electronic delocalization. For most of the compounds, the R1 group is also lying on the plan 

of this subunit in spite that the a priori free rotations around the simple bonds to the C - O atom 

connecting this group to the phenyl pyrimidine subunit. This may be due to steric effects that 

favor the deployment of the whole compound instead of its folding. These structural findings 

may be connected to the efficiency of these compounds against S1R favoring thus the 

interaction of these inhibitors with the active site of the enzyme. This is confirmed by the 

docking studies we performed (vide infra).  

 

3. CoMSIA results 

3.1. CoMSIA model 

COMSIA is applied in order to predict accurate values of the field by calculating each 

point around the studied molecular structure from a 3D lattice. The COMSIA algorithm is 

designed by calculating five fields including electrostatic interactions, steric probes, H-bond 

acceptor and donor, and hydrophobic properties. Next, we perform a molecular least squares 

(PLS) analysis by exploiting the data represented by COMSIA1. 

 

Table 1 

PLS statistics of CoMSIA model. R2: Non-cross- validated determination coefficient. Q2: 

Cross-validated determination coefficient. SEE: Standard error of the estimate. F: F-test 

value.Str: Steric field, Ele: Electrostatic field, Hyd: Hydrophobic field, HBA and HBD 

correspond to H-bonds Acceptor and Donor. 

 

Model R2 Q2 SEE F Fractions 

Str Ele Hyd HBA HBD 

CoMSIA 0.957 0.653 0.185 108.280 0.141 0.455 0.232 0.134 0.038 
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Using CoMSIA model, we obtained the predicted activity values for the training and test 

groups as presented in (Table 2 (chapter III)), as well as their residual values. The result of the 

CoMSIA model is given in (Table 1 (chapter III)). They show good values for the statistical 

parameters: R2=0.957, Q2=0.653 and test value F=108.280 and a lower standard error of the 

estimate SEE=0.185. This means that the CoMSIA model has a good predictive power, as well 

as a high level of stability. Also, Table 3 shows that the contributions of hydrophobic and 

electrostatic fields amount to 23.2% and 45.5%, respectively. Such large percentages indicate 

their great importance in this model. 

The plot depicted in Fig. 1 show cases the relationship between the actual pKi values and the 

predicted pKi values determined by the CoMSIA model. Upon observing the plot, it becomes 

evident that the blue circle solid point and the orange circle solid point closely align with the 

line Y = X. This alignment signifies a robust linear correlation between the actual and predicted 

activities across the entirety of the data set2. 

 

Fig. 1. The plot showcases the correlation between the experimental activities and the predicted 

activities as determined by the CoMSIA model. 

 

3.2. CoMSIA graphical interpretation and contour analysis 

We analyzed the CoMSIA model in order to determine the nature of the alternatives that 

increase the activity of the studied molecules. Through the analysis of the respective generated 

contour maps, we derived information explaining the appropriate and unsuitable regions of the 

investigated molecules regarding their biological activity. For illustration, we considered C48 

compound as a reference that has a large activity. Therefore, we designed 3D contour maps, 
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which are used to highlight the complexation induced transformations that occur in the physical 

and chemical properties of this compound. Indeed, changes may occur in its structure, which 

can increase or decrease its biological activity. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 2. CoMSIA contour maps of C48 compound. (a) steric field; (b) electrostatic field; (c) hydrophobic 

field; (d) hydrogen bond acceptor field. See text for more details. 

 

Fig. 2 shows the CoMSIA contour maps ofcompoundC48, which is the most active in the 

series. In this figure, we specify the steric, electrostatic, hydrophobic and hydrogen bond 

acceptor fields. For the steric field, the green color appears around the positions starting from 

R3group extending to R1 substituent. This indicates that the increase in the activity of this 

molecule lies in the addition of substituents of larger size, whereas the yellow color can be 

found at the R1position and around the chlorine and fluorine atoms at R2 and R5positions, 

respectively. This reveals that the addition of larger groups and of chlorine and fluorine atoms 

is suitable for improving the biological activity. For the electrostatic field, the blue color can be 

seen around R4, R2 and R5, which indicates that these areas have an increase in the positive 
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charge, while the areas in which the negative charges increase are in red. This explains the large 

activity of compound C48 (pKi=9.010) compared to the other compounds of this series. 

For the hydrophobic field, the brown color indicates that the hydrophobic substituents 

around R2, R4 and R5 are preferred and are favorable in these positions, while the gray color 

shows that the hydrophilic substituents are granular and improve the activity of the compound 

with an inhibitory character. For the hydrogen bond acceptor domain, the purple contour 

represents the H-acceptor region, while the unfavorable region of the H-acceptor is represented 

in red. For instance, the comparison of the most active compound C48 with the rest of the 

compounds in the series, reveals that compounds C18, C19 and C20, which exhibit a less 

efficient biological activity than C48, lack large-volume substituents at position R1.As for many 

compounds of the series that do not contain chlorine or fluorine atoms, let us mention some of 

them from compound C1 to compound C28 in positions R2, R4 and R5. The latter have also 

smaller pKi than that of C48. In these same areas, some compounds such as C31 and C32 do 

not have the positive charge. 

 

4. Design and selection of new human σ1 receptor inhibitors 

 

Fig. 3. Chemical structures of the proposed new human σ1 receptor inhibitors. See Table 2 for the 

designation of the𝐑𝟏
′ ,𝐑𝟐

′  and 𝐑𝟑
′ substituents. 

 

Table 2 

Designation of the 𝐑𝟏
′ ,𝐑𝟐

′  and 𝐑𝟑
′  substituents, pKi (CoMSIA model) and total scoring values 

of the proposed new human σ1 receptor inhibitors and of the active compound C48. 

Cp. 𝐑𝟏
′

 𝐑𝟐
′

 𝐑𝟑
′

 Pred. 

pKi 

CoMSI

A 

Total 

scorin

g 

Cp. 𝐑𝟏
′

 𝐑𝟐
′

 𝐑𝟑
′

 Pred. 

pKi 

CoMSI

A 

Total 

scorin

g 
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C48 F F 
 

7.895 -9.5122 Mol9 Cl H 

 

10.4 -8.9117 

Mol

1 

F F 

 

9.75 -9.3772 Mol10 H OCH3 

 

9.8 -9.2238 

Mol

2 

F F 

 

9.67 -9.4249 Mol11 H OCH3 

 

9.67 -8.9416 

Mol

3 

F F 

 

9.19 -9.3492 Mol12 H CF3 

 

9.29 -8.8011 

Mol

4 

F F 

 

9.67 -7.7285 Mol13 H CF3 

 

9.32 -8.7852 

Mol

5 

OCH3 H 

 

10.18 -8.8107 Mol14 H CF3 

 

9.62 -9.3833 

Mol

6 

OCH3 H 

 

9.97 -9.2341 Mol15 H Cl 
 

9.79 -9.9964 

Mol

7 

CF3 H 

 

10.47 -8.8538 Mol16 H Cl 

 

9.4 -9.4849 

Mol

8 

CF3 H 

 

9.76 -8.9814       

 

 

Based on the results of the study of the bioactive series and the model obtained, we 

initially designed one hundred and twenty-seven new molecules as potent human σ1 receptor 

inhibitors. Indeed, these molecules were created based on the study and analysis of 3D-QSAR 

that were inferred through the analysis and information collected from the fields we studied for 

the most active molecule C48. Then we made changes in the molecular structure of C48 at the 

level of radicals that we named 𝐑𝟏
′ , 𝐑𝟐

′  and 𝐑𝟑
′  (Fig. 3) in order to increase the respective 

biological activity. Then we selected the best sixteen compounds in terms of activity value (pKi) 

for their in-depth investigation. The molecular structures of these new compounds are given in 

Fig. 3 and Table 2. Then, the activity of these proposed new molecules was predicted using the 

CoMSIA model, from this we obtained their pKi values as well as their total score values as 

listed in Table 2. As expected, this table shows that these compounds exhibit an improved 

inhibitory activity compared to compound C48, since their CoMSIA predicted pKi values are 

larger. In particular, the most active ones are Mol2, Mol15 and Mol16 as confirmed by their 

high total scoring value of docking compared to the rest of the designed compounds (Table 2). 

5. Docking results and analysis 

Molecular docking is a powerful method to identify and characterize the interactions that 

occur within the active site of a protein (5HK1 here) and a ligand (an inhibitor here). First we 

analyzed the interactions of this active site with the reference ligand 61W and the previously 
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identified as the most active compound C48. We also investigated the three most active 

inhibitors proposed in this work, namely Mol2, Mol15 and Mol16 compounds. These data are 

displayed in Fig. 5 for these compounds and in Figures S2-S4 (In the Supplementary) for those 

of the other compounds of Table 2. 

By comparing the interactions of the proposed active molecules Mol12, Mol15, Mol16 

and the most active compound C48 with the reference compound 61W (Table S3 (In the 

Supplementary)), we found that there are, in all cases, hydrogen bonds with the same amino 

acids: Interactions of salt bridge with the common amino acid GLU A:172 and of alkyl and -

alkyl interactions type. In particular, the proposed compound Mol15 - as well as the reference 

compound 61W - interacts with the largest number of amino acids (i.e. ILE A:124, TYR A:120, 

ALA A:185, LEU A:105, MET A:93, LEU A:95, LEU A:182. So, this documents that 

compound Mol15 is the most active among all the proposed compounds, as its activity increases 

in the presence of these interactions, as well as the Score value, which is -9.9964 (Table 2). 

The latter value is larger, in absolute value, than that of the reference compound 61W (of -

8.7178) and of C48 (of -9.5122). This may explain its stability as well its strong inhibition 

effect on the receptor protein. 

Docking interactions of 61W 

 

 

Docking interactions of C48 
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Docking interactions of Mol2 

 
 

Docking interactions of Mol15 

  

Docking interactions of Mol16 

 

 
 

 

Docking interactions of BD-1047 

 

Docking interactions of S1RA  
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Docking interactions of PRE-084  

 

 

Docking interactions of Blarcamesine 

 

 

 

Fig. 4. Docking interactions of the 5HK1 enzyme with the three best inhibitors Mol2, Mol15 and Mol16 

as well with the reference ligand 61W and C48 compound, as well as examining the intricate interactions 

for the antagonists BD-1047 and S1RA, as well as the agonists PRE-084 and Blarcamesine. These 

interactions are also specified in Table S4 (In the Supplementary). Other views of compound C48; 61W, 

Mol2 and Mol3 in Figures S2-S4 (In the Supplementary). 
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In addition to the previous interactions mentioned, we found the establishment of a 

number of interactions with the enzyme 5HK1 while C48,Mol12, Mol15 and Mol16 are 

complexed with this enzyme such as conventional hydrogen bonds, - T-shaped and also -

cation(except Mol12 and Mol16), -anion (except Mol16), attractive charge, as for the latter, 

(except for Mol16), halogen (Fluorine) interactions with THE A:202 and -stacking with 

TYR A:103, TYR A:206 (for C48). Besides, the proposed compound Mol16 is characterized 

by its own - interaction with LEU A: 182. Interestingly, these interactions are not present in 

the reference compound 61W interacting with 5HK1. In sum, the exploration of all these 

interactions between the inhibitors and 5HK1 confirm the stability of the newly proposed 

compounds with respect to the active site of this protein. Also, we conclude that the addition of 

chlorine and fluorine atoms and the large size of the radicals effectively increase the inhibitory 

activity of these molecules against 5HK1. 

To perform a thorough validation of the docking results for the proposed new compounds 

Mol12, Mol15, and Mol16, we conducted a redocking experiment involving both activators 

(such as PRE-084 and Blarcamesine) and antagonists (such as BD-1047 and S1RA). The 

purpose of this experiment was to assess whether the latter compounds share the same action 

as our proposed compounds. As a result of our experiment, we obtained a comprehensive set 

of results, which can be found in the supplementary part of this study, specifically in the table 

provided (Table S5 (In the Supplementary)). 

 

In order to verify the validity of our proposed compounds, we utilized a comparative 

approach, focusing on the interactions exhibited by these compounds. Interestingly, we found 

that these interactions align closely with those observed with the antibodies BD-1047 and 

S1RA. For instance, in the case of BD-1047, which possesses a Score value of -7.9371 as 

indicated in the Table S5 (In the Supplementary), we observed the presence of Alkyl and Pi-

Alkyl interactions with specific amino acids shared by our proposed compounds, namely VAL 

A:84, ALA A:185, LEU A:105, MET A:93, and LEU A:182. Moreover, BD-1047 also engaged 

in Pi-Pi T-shaped interactions with the amino acid TYR A:103, Carbon Hydrogen Bond 

interaction with TYR A:120, salt bridge and attractive charge interactions with the common 

amino acid GLU A:172, and Conventional Hydrogen Bond with ASP A:126.  

Similarly, when examining the results pertaining to S1RA, which possesses a Score value 

of -9.0658 (Table S5 (In the Supplementary)), we found the presence of Alkyl and Pi-Alkyl 

interactions with the same amino acids shared by our proposed compounds, including VAL 
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A:84, TYR A:120, ALA A:185, LEU A:105, MET A:93, LEU A:95, LEU A:182, and ALA 

A:98. Additionally, S1RA exhibited Pi-Pi T-shaped interactions with the amino acid TYR 

A:206, Carbon Hydrogen Bond interaction with ASP A:126, and interactions of Pi-Anion and 

attractive charge with the common amino acid GLU A:172. 

On the other hand, show a significant difference when comparing the interactions of 

compounds Mol12, Mol15, and Mol16 with those of the activators (PRE-084 and 

Blarcamesine). Specifically, when examining Blarcamesine, which displayed a relatively weak 

Score value of -4.4224 (Table S5 (In the Supplementary)), we observed that it lacked several 

fundamental interactions, including Carbon Hydrogen Bond, interactions of Pi-Anion, 

Conventional Hydrogen Bond, and interactions of salt bridge. Consequently, Blarcamesine only 

exhibited Alkyl and Pi-Alkyl interactions with amino acids such as VAL A:84, ALA A:185, 

LEU A:105, MET A:93, and LEU A:95. Furthermore, it participated in Pi-Pi T-shaped 

interactions with the amino acid TYR A:103 and Pi-Cation interactions with the amino acid 

GLU A:172 and PHE A:107. 

Similarly, in the case of PRE-084, which possessed a Score value of -7.4501 (Table 3), 

we observed a lack of crucial Pi-Pi T-shaped interactions, interactions of attractive charge, 

Conventional Hydrogen Bond, and interactions of Pi-Anion. Consequently, the only 

interactions exhibited by PRE-084 were Alkyl and Pi-Alkyl interactions with amino acids such 

as ALA A:185, MET A:93, TYR A:103, and TYR A:120. Additionally, it engaged in Carbon 

Hydrogen Bond with ASP A:126 and Pi-Cation interactions with the amino acid GLU A:172 

and PHE A:107. In conclusion, our comprehensive analysis of the docking results for the 

proposed new compounds Mol12, Mol15, and Mol16, along with the comparative assessment 

of the interactions exhibited by both activators (PRE-084 and Blarcamesine) and antagonists 

(BD-1047 and S1RA), shed light on the similarities and differences among these compounds. 

The detailed findings, which are outlined in the supplementary table, provide valuable insights 

into the molecular interactions and potential mechanisms of action associated with these 

compounds2,3. 

6. ADMET prediction and synthetic accessibility 

PkCSM4 is an online tool. It was used to calculate the ADMET pharmacokinetic 

parameters of the proposed new compounds in order to verify their applicability. The results 

are listed in Table 3. They consist on important computed ADMET properties and computed 

safety end points of the screened best sixteen compounds and of the most active compound. 

This table shows that the intestinal absorption for the sixteen compounds range from 88.067% 

to 93.832%. Thus, their absorption characteristics are very high, where we find the highest 
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value for compound Mol10. If the composite values are more than 0.45, it reveals a high volume 

distribution VDss. Indeed, Table 3 shows that and proves a high volume distribution of VDss 

because its values exceed the specified value and range from 0.697 to 1.209 log L/kg. 

More than 90% of drugs enter the first stage of metabolism5,6. The primary role of 

enzymatic metabolism in the body is to exchange drug molecules, which is referred to as the 

biochemical conversion of a drug. Medicines create different enzymatic receptors in the body, 

which in turn work at concentrations with multiple pharmacological properties to activate the 

reaction7. For compounds with predictors of the trimer substrate indicates YES, we can predict 

their metabolism using cytochrome P450. So that it has the primary role in drug metabolism 

because the metabolic task is led by the main liver enzyme system. But some inhibitors are 

strong inhibitors to cytochrome P450. This is the case, for instance of Mol11which carries a 

categorical inhibitor YES prediction for CYP1A2/ CYP2C19/ CYP2D6 and of Mol10 for 

CYP1A2/ CYP2C19/ CYP3A4.In 2020, out of 17 families only 57 genes of CYP was identified 

in humans. Assuming that only CYP is responsible for biotransformation, we treated the cases 

of 1A2, 2C19, 2D6, 3A4 and 2C9. Our study revealed that the most important inhibitor is 

CYP3A4 among all these families8. Indeed, Table 6 shows that the new proposed molecules 

are substrates as well as CYP3A4 inhibitors. 
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Table3 

Important computed ADMET properties and computed safety end points of the screened best sixteen compounds of and of the most active 

compound C48. 

Cp. Caco2 

permeability 

(log Papp in 

10-6 cm/s) 

Intestinal 

absorption 

(human) 

(% 

Absorbed) 

VDss(human) 

(log L/kg) 

Fraction 

unbound 

(human) 

(Fu) 

P-gp 

substrate 

(Yes/No) 

BBB 

Permeability 

(log BB) 

Synthetic 

accessibility 

Total 

clearance 

(log 

ml/min/kg) 

Renal 

OCT2 

substrate 

(Yes/No) 

Skin 

sensitization 

(Yes/No) 

C48 1.476 92.393 0.728 0.258 no 0.403 3.10 0.753 no no 

Mol1 1.431 92.530 0.697 0.280 no 0.495 3.53 0.583 no no 

Mol2 1.478 91.664 0.776 0.245 no 0.434 3.66 0.743 no no 

Mol3 1.475 92.333 0.764 0.248 no 0.415 3.66 0.559 no no 

Mol4 1.521 90.593 0.749 0.158 no 0.410 3.89 0.570 yes no 

Mol5 1.272 91.704 1.160 0.205 yes 0.433 3.35 1.013 yes no 

Mol6 1.177 93.820 1.023 0.237 yes 0.521 3.97 0.902 yes no 

Mol7 1.228 88.678 0.827 0.163 no 0.865 3.63 0.460 no no 

Mol8 1.274 88.919 1.010 0.149 no 0.815 4.01 0.608 yes no 

Mol9 1.31 89.374 1.209 0.179 no 0.713 3.78 0.971 yes no 

Mol10 1.173 93.832 0.935 0.248 yes 0.392 3.61 0.633 yes no 

Mol11 1.189 93.785 1.073 0.242 yes 0.383 4.19 0.686 yes no 

Mol12 1.286 88.067 0.924 0.122 no 0.798 4.23 0.485 no no 

Mol13 1.222 88.445 0.974 0.140 no 0.904 4.17 0.502 no no 

Mol14 1.222 88.793 0.892 0.159 no 0.891 4.07 0.646 no no 

Mol15 1.262 90.420 1.053 0.192 no 0.762 3.59 0.732 no no 

Mol16 1.275 91.113 1.083 0.179 no 0.788 4.16 0.691 no no 
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Table4 

Metabolism and toxicity predictions for the best sixteen compounds and for the active compound C48. 

Cp. CYP1A2 

inhibitor 

(Yes/No) 

CYP2C19 

inhibitor 

(Yes/No) 

CYP2C9 

inhibitor 

(Yes/No) 

CYP2D6 

inhibitor 

(Yes/No) 

CYP3A4 

inhibitor 

(Yes/No) 

Hepatotoxicity 

(Yes/No) 

AMES 

toxicity 

(Yes/No) 

hERG I 

inhibitor 

(Yes/No) 

Oral rat acute 

toxicity (LD50) 

(mol/kg) 

Oral rat chronic 

toxicity 

(LOAEL) 

(log mg/kg_bw/day) 

C48 no no no no no yes no no 3.061 0.830 

Mol1 no no no no no yes no no 3.03 0.991 

Mol2 no no no no no no no no 3.064 1.007 

Mol3 no no no no no no no no 3.087 0.873 

Mol4 no no no no yes no no no 2.911 1.358 

Mol5 no no no no yes yes no no 2.981 1.186 

Mol6 yes no no no no yes no no 3.035 1.323 

Mol7 no no no no no yes no no 3.185 0.675 

Mol8 no no no no no yes no no 3.299 0.696 

Mol9 no no no no yes yes no no 3.043 1.300 

Mol10 yes yes no no yes yes no no 2.962 1.332 

Mol11 yes yes no yes no yes no no 2.954 1.322 

Mol12 no no no no yes yes no no 3.23 0.695 

Mol13 no no no no yes yes no no 3.308 0.789 

Mol14 no no no no no yes no no 3.282 0.744 

Mol15 no no no no no yes no no 3.06 0.710 

Mol16 no no no no no yes no no 3.101 0.802 
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By using the online SwissADME tool, we detected the similarity features of the drugs 

(Table 3). For a particular molecule, the blood-brain barrier (BBB) permeability coefficients 

should be in the range -1<Log BB<0.3.When LogBB < -1, this means that the distribution is 

weak on the brain, while it is essential for the passage of the BBB at LogBB >0.39. Table 5 

shows that all values of the proposed compounds achieve LogBB >0.3, which evidence their 

great potential to penetrate the barriers mainly. Also, we have reached the significant and 

complex reduction of the structure based on the values of the potentials of new compounds for 

synthetic accessibility, which ranges between the lowest value of 3.10 for the most active 

molecule (i.e. C48) and the value of 4.23 for compound Mol12, and thus proving its industrial 

potential applications. 

Table 4 shows that we achieve good results for skin sensitization, as indicated by the 

hERGI inhibitor and for AMES toxicity with NO for all the proposed molecules. The values of 

Oral Rat Acute Toxicity in the field (2.911-3.308) mol/kg and Oral Rat Chronic Toxicity in the 

field (0.675-1.358), and for hepatotoxicity are also good for compounds Mol2, Mol3 andMol4. 

Comparing it with the poor YES score for the most active molecule C48, this is the best 

indicator of the effectiveness of the new designed molecules. We can also deduce that the latter 

facilitates the basic and normal function of the liver (Table 4). 

Table 4 clearly revealed that Mol2 and Mol3 exhibit non-hepatotoxicity and non-AMES 

toxicity, confirming that ADMET results reveal potential new outcomes with improved efficacy 

for sigma-1 antagonists2. In the Supplementary Information section, we have added Smiles 

icons (Table S2) and in Fig. S1 a boiled-egg drawing of the proposed new compounds. For 

instance, Fig. S1 shows the plot between TPSA and WLOGP for boiled eggs in order to predict 

penetration into the brain and to predict better absorption at the gastrointestinal level of the 

proposed new compounds. Commenting on this graph, we note that compound Mol13, which 

has the highest degree of BBB within the yellow region, exhibits a good absorption at the level 

of the gastrointestinal tract. The white region contains higher HIA values for two compounds. 

For substrate prediction (PGP+) and non-substrates (PGP-), this chart predicts them in order to 

know the permeability of glycoprotein (PGP). 

 

7. DFT calculations 

7.1. The trend of reactivity and FMO study 

The frontier molecular orbitals (FMOs), namely the highest occupied molecular orbital 

(HOMO) and the lowest unoccupied molecular orbital (LUMO), play a crucial role in 

comprehending the chemical characteristics of a molecule. In order to gain a deeper 
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understanding of the HOMO-LUMO orbitals of the compounds Mol2, Mol3, and Mol4 with 

the ligand of reference, an illustrative representation was provided in Fig. 5. Exploiting the 

LUMO-HOMO energies, several important parameters such as the energy gap (ΔE), ionization 

potential (IP), electron affinity (EA), electronegativity (χ), chemical potentials (μ), chemical 

hardness (η), softness (σ), and electrophilicity index (ω) were meticulously calculated and 

presented in Table 5. The HOMO and LUMO orbitals serve as distinctive markers for 

determining the susceptibility of a molecule towards an attack by electrophiles. Based on the 

obtained EHOMO and ELUMO values, as shown in Table 5, it is noteworthy that a higher EHOMO 

signifies the ease of electron donation between the substrate and the target proteins. Conversely, 

a lower ELUMO indicates the ease of electron acceptance between the substrate and the target 

proteins10. Consequently, the order of increasing electron donation/acceptance ease can be 

established as follows: Mol2 > Mol3 > Mol4. 

 

 

 

 

 

 

 

 

 

 

Fig. 5. HOMO-LUMO structures of the compound Mol2, Mol3 and Mol4 with ligand of reference 

61w. 

The energy gap (ΔE) essentially represents the disparity between the LUMO and HOMO 

values. It is worth mentioning that a smaller ΔE value signifies a more reactive molecule 

           61w                                Mol2                         Mol3                                Mol4 

         

ELUMO=-0.055                   ELUMO=-0.071              ELUMO=-0.073        ELUMO=-0.069 

          ΔE=0.163                       ΔE=0.138                      ΔE=0.149                  ΔE=0.140 

EHOMO=-0.219                  EHOMO=-0.209              EHOMO=-0.222        EHOMO=-0.209 
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towards docking. Hence, the global reactivity of the compounds under investigation can be 

ranked as Mol2 > Mol4 > Mol3. The intermolecular behavior of one molecule towards another 

molecule can be effectively analyzed by employing the hard-soft-acid-base rule. In the realm 

of biological targets such as cells and proteins, the softness factor plays a pivotal role. 

Consequently, it is observed that soft molecules can effortlessly interact with biological targets 

compared to hard molecules. This implies that as softness increases and hardness decreases, the 

biological activity also increases, as stated in reference10. Therefore, the reactivity ranking 

should adhere to the following order: Mol2 > Mol4 > Mol3, as depicted in Table 5. 

Furthermore, the negative value of the chemical potential serves as an indicator of the stability 

of the compounds Mol2, Mol3, and Mol4, as elaborated in reference11. It is also worth noting 

that a higher value of the electrophilicity index (ω) and a lower value of the chemical potential 

favor the electrophilic behavior of the compounds, as highlighted in reference12. 

Table5 

The EHOMO, ELUMO, energy gap (ΔE), ionization potential (IP), electron affinity (EA), 

electronegativity (χ), chemical potentials (μ), Chemical hardness (η), Softness (σ), and 

electrophilicity index (ω) of the subject ligands have been accurately calculated in electron 

volt (eV) units. 

 EHOM

O 

ELUM

O 

ΔE IP EA χ μ η σ ω 

61w -0.219 -0.055 0.163 0.219 0.055 0.137 -0.137 0.082 6.121 0.115 

Mol2 -0.209 -0.071 0.138 0.209 0.071 0.140 -0.140 0.069 7.263 0.142 

Mol3 -0.222 -0.073 0.149 0.222 0.073 0.147 -0.147 0.075 6.706 0.145 

Mol4 -0.209 -0.069 0.140 0.209 0.069 0.139 -0.139 0.070 7.138 0.139 

 

7.2. Density of states (DOS) 

The DOS spectrum, which showcases the distribution of states for a given compound, was 

generated through the utilization of the highly advanced and sophisticated Gauss Sum 3.0 

program. This program possesses the remarkable capability of providing an accurate 

representation of the states by employing a full width at half maximum (FWHM) of 0.3 eV, 

ensuring a precise and comprehensive analysis. In the energy range spanning from -20 eV to 0 

eV, the DOS spectra for the compound Mol2 are depicted in the captivating Fig. 6, captivatingly 

capturing the essence of the compound's electronic structure. The intricately designed plot 



      Results and discussion 

91 

 

 

masterfully unravels the nature of the interaction between two orbitals, allowing for a profound 

understanding of whether the interaction is bonding or anti-bonding in nature. Through careful 

examination of the plot, one can discern the presence of a high-intensity DOS at specific energy 

levels, signifying the existence of multiple states that are readily available for occupation. 

Conversely, a state of zero intensity within the plot signifies the absence of any available states, 

thereby suggesting a lack of occupation possibilities. Interestingly, the presence of negative 

intensity within the plot serves as a clear indication of an anti-bonding interaction, further 

enhancing the depth of the analysis. It is truly fascinating to observe that the energy values 

presented in the HOMO-LUMO analysis are intricately coordinated with the energy gap that is 

depicted within the DOS spectrum, providing a cohesive and comprehensive understanding of 

the compound's electronic properties13. 

 

 

Fig. 6. DOS plot of the compound Mol2. 
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General Conclusion  

With the aim of discovering new anti-neuropathic pain drugs, we performed a 3D-QSAR 

study of a series of 54 S1R antagonists, which are known to have a good inhibitory activity 

against this receptor. Because of the excellent predictive ability of the CoMSIA model, highly 

statistical results were obtained. Afterwards, we analyzed the contour maps resulting from the 

CoMSIA model, which allowed identifying the appropriate and unsuitable alternatives for the 

structure that can produce a distinctive activity. Based on that, sixteen new active compounds 

were successfully designed. They exhibit a more efficient biological activity. Afterwards, 

interactions between the transmembrane protein 5HK1 with the newly designed most active 

molecules Mol2, Mol15, Mol16 and the active compound C48 were studied. The three newly 

proposed active compounds reveal a stability that exceeded those of the reference compound 

61Wand of compoundC48. The ADMET model, which showed us the features and 

characteristics of all the proposed compounds, proved the effectiveness and the essential role 

of the normal function of the liver for these molecules. We hope that our work will encourage 

the synthesis in the laboratory of the new series of sixteen proposed compounds and their 

pharmacological investigations. DFT calculations were expertly executed, and an in-depth 

analysis was conducted to examine the discrepancies in the HOMO-LUMO gap present within 

the finest Mol2, Mol3, and Mol4 compounds from prior research in comparison to the reference 

compound 61w. This ground breaking technique has bestowed upon us the remarkable ability 

to accurately forecast various properties of molecules and delve into the intricate realm of 

geometric properties and energy evaluation. Moreover, it facilitates a meticulous examination 

of the border molecular orbitals, shedding light on their characteristics, while simultaneously 

permitting the determination of the density of states (DOS) of the exceptionally stable 

compound known as Mol2. As a result, this research could contribute to the development of 

drugs for neuropathic pain with high inhibitory power. 
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Table S1 

Structures of the best newly compounds, Chemical nomenclature and their masses (Mol2, 

Mol3 and Mol4). 

 

 

 

 

 

 

 

 

 

 

 

 

 Structure Chemical nomenclature MW 

amu 

Mol2 

 

5-chloro-2-(3,4-difluorophenyl)-4-

methyl-6-((4-(piperidin-1-yl)butan-

2-yl)oxy)pyrimidine 

 

395.88 

Mol3 

 

5-chloro-2-(3,4-difluorophenyl)-4-

methyl-6-(2-methyl-3-(piperidin-1-

yl)propoxy)pyrimidine 

395.88 

Mol4 

 

5-chloro-2-(3,4-difluorophenyl)-4-

methyl-6-((4-methyl-1-(piperidin-

1-yl)pentan-3-yl)oxy)pyrimidine 

423.93 
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Table S2 

Optimized 3D structures (Cp.) of the series of 54 optimized compounds containing pyrimidine of S1R 

antagonists currently studied. 

 

Cp. 3D structure 
Cp. 3D structure 

Cp. 3D structure 
Cp. 3D structure 

C1t 

 

C15 

 

C29 

 

C43 

 

C2 

 

C16t 

 

C30 

 

C44 

 

C3 

 

C17 

 

C31 

 

C45t 

 

C4 

 

C18 

 

C32 

 

C46 

 

C5 

 

C19 

 

C33 

 

C47t 

 

C6t 

 

C20 

 

C34 

 

C48 

 

C7 

 

C21 

 

C35t 

 

C49 

 

C8 

 

C22 

 

C36t 

 

C50t 

 

C9 

 

C23 

 

C37t 

 

C51t 

 

C10t 

 

C24 

 

C38t 

 

C52t 

 

C11t 

 

C25 

 

C39 

 

C53t 
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C12 

 

C26 

 

C40 

 

C54t 

 

C13 

 

C27 

 

C41 

 

  

C14 

 

C28t 

 

C42t 

 

  

 

Table S3 

SMILES notation for the proposed new molecules. 

Comp. Smile 

C48 Cc:1:n:c(:n:c(OCCCN2CCCCC2):c:1Cl)c:3:[cH]:[cH]:c(F):c(F):[cH]:3 

Mol1 Cc:1:n:c(:n:c(OC(C)CN2CCCCC2):c:1Cl)c:3:[cH]:[cH]:c(F):c(F):[cH]:3 

Mol2 Cc:1:n:c(:n:c(OC(C)CCN2CCCCC2):c:1Cl)c:3:[cH]:[cH]:c(F):c(F):[cH]:3 

Mol3 Cc:1:n:c(:n:c(OCC(C)CN2CCCCC2):c:1Cl)c:3:[cH]:[cH]:c(F):c(F):[cH]:3 

Mol4 Cc:1:n:c(:n:c(OC(CCN2CCCCC2)C(C)C):c:1Cl)c:3:[cH]:[cH]:c(F):c(F):[cH]:3 

Mol5 COc:1:[cH]:[cH]:c(:[cH]:[cH]:1)c:2:n:c(C):c(Cl):c(:n:2)OCC3(CC3)CN4CCCCC4 

Mol6 COc:1:[cH]:[cH]:c(:[cH]:[cH]:1)c:2:n:c(C):c(Cl):c(:n:2)OC3CC(C3)N4CCCCC4 

Mol7 Cc:1:n:c(:n:c(OC(C)CN2CCCCC2):c:1Cl)c:3:[cH]:[cH]:c(:[cH]:[cH]:3)C(F)(F)F 

Mol8 Cc:1:n:c(:n:c(OC2CC2CN3CCCCC3):c:1Cl)c:4:[cH]:[cH]:c(:[cH]:[cH]:4)C(F)(F)F 

Mol9 Cc:1:n:c(:n:c(OCC2(CC2)C(C)N3CCCCC3):c:1Cl)c:4:[cH]:[cH]:c(Cl):[cH]:[cH]:4 

Mol10 COc:1:[cH]:[cH]:[cH]:c(:[cH]:1)c:2:n:c(C):c(Cl):c(:n:2)OC(C)CN3CCCCC3 

Mol11 COc:1:[cH]:[cH]:[cH]:c(:[cH]:1)c:2:n:c(C):c(Cl):c(:n:2)OC3C(C)C3N4CCCCC4 

Mol12 Cc:1:n:c(:n:c(OCC(C)C(C)N2CCCCC2):c:1Cl)c:3:[cH]:[cH]:[cH]:c(:[cH]:3)C(F)(F)F 

Mol13 Cc:1:n:c(:n:c(OC2CCCC2N3CCCCC3):c:1Cl)c:4:[cH]:[cH]:[cH]:c(:[cH]:4)C(F)(F)F 

Mol14 Cc:1:n:c(:n:c(OC2CC(C2)N3CCCCC3):c:1Cl)c:4:[cH]:[cH]:[cH]:c(:[cH]:4)C(F)(F)F 

Mol15 Cc:1:n:c(:n:c(OC(C)CCN2CCCCC2):c:1Cl)c:3:[cH]:[cH]:[cH]:c(Cl):[cH]:3 

Mol16 Cc:1:n:c(:n:c(OC2CC2C(C)N3CCCCC3):c:1Cl)c:4:[cH]:[cH]:[cH]:c(Cl):[cH]:4 
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Table S4 

Interactions of the enzyme 5HK1 with the three best inhibitors and reference ligand 61W and C48 as 

presented in Figure 4. 

Complex 

(Ligands-5HK1) 

Amino Acids Categories Interactions 

61W-5HK1 HIS A:154  Hydrophobic Alkyl and Pi-Alkyl 

ILE A:124  Hydrophobic 

TYR A:120 Hydrophobic 

ALA A:185 Hydrophobic 

LEU A:105 Hydrophobic 

VAL A:84 Hydrophobic 

MET A:93 Hydrophobic 

LEU A:95 Hydrophobic 

THR A:202 Hydrophobic 

LEU A:182 Hydrophobic 

ALA A:98 Hydrophobic 

TYR A:206 Hydrophobic 

GLU A:172  Hydrogen Carbon Hydrogen Bond 

SER A:117 Hydrogen 

TYR A:120 Hydrogen 

GLU A:172  Other Salt Bridge 

ASP A:126 Other 

C48-5HK1 ALA A:185  Hydrophobic Alkyl and Pi-Alkyl 

TYR A: 120 Hydrophobic 

PHE A: 184 Hydrophobic 

TYR A:103 Hydrophobic 

LEU A: 182 Hydrophobic 

LEU A:95 Hydrophobic 

ILE A:124  Hydrogen Carbon Hydrogen Bond 

TRPA A:89 Hydrogen 

TYR A:120 Hydrogen Conventional Hydrogen Bond 

THR A:202 Halogen Halogen (Fluorine) 

TYR A:103  Hydrophobic Pi-Pi Stacked 

 Pi-Pi T-shaped TYR A:206 Hydrophobic 

GLU A:172  Other Pi-Cation 

Pi-Anion 

Salt Bridge  

Attractive Charge 

PHE A:107 Other 

ASP A:126 Other 

Mol2-5HK1 PHE A:107  Hydrophobic Alkyl and Pi-Alkyl 
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LEU A:105 Hydrophobic 

MET A:93 Hydrophobic 

LEU A :95 Hydrophobic 

TYR A :103 Hydrophobic 

ILE A :124 Hydrophobic 

ALA A: 185 Hydrophobic 

PHE A: 184 Hydrophobic 

TYR A:120 Hydrophobic 

GLU A:172 Hydrogen Carbon Hydrogen Bond 

TYR A: 120 Hydrogen Conventional Hydrogen Bond 

GLU A:172  Other Pi-Anion 

 Salt Bridge  

Attractive Charge 

ASP A:126 Other 

TYR A:103  Hydrophobic Pi-Pi T-shaped 

TYR A:206 Hydrophobic 

Mol15-5HK1 ILE A:124  Hydrophobic Alkyl and Pi-Alkyl 

TYR A:103 Hydrophobic 

ALA A:185 Hydrophobic 

PHE A:184 Hydrophobic 

TYR A:120 Hydrophobic 

PHE A:107 Hydrophobic 

LEU A:105 Hydrophobic 

MET A:93 Hydrophobic 

LEU A:95 Hydrophobic 

LEU A:182 Hydrophobic 

TYR A: 120 Hydrogen Carbon Hydrogen Bond 

GLU A:172 Hydrogen 

TYR A: 120 Hydrogen Conventional Hydrogen Bond 

TYR A:206 Hydrophobic Pi-Pi T-shaped 

GLU A:172 

 

Other Pi-Cation 

 Pi-Anion 

 Salt Bridge  

Attractive Charge 

PHE A:107 Other 

ASP A:126 Other 

Mol16-5HK1 ALA A:98  Hydrophobic Alkyl and Pi-Alkyl 

LEU A:95 Hydrophobic 

ALA A:185 Hydrophobic 

PHE A:107 Hydrophobic 

LEU A:105 Hydrophobic 

MET A:93 Hydrophobic 
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VAL A:84 Hydrophobic 

HIS A:154 Hydrophobic 

TYR A: 120 Hydrogen Carbon Hydrogen Bond 

TYR A:103 Hydrogen Conventional Hydrogen Bond 

LEU A: 182 Hydrophobic Pi-Sigma 

TYR A:103 Hydrophobic Pi-Pi T-shaped 

TYR A:206 Hydrophobic 

GLU A:172 Other Salt Bridge 

ASP A:126 Other 

 

 

 

 

 

Fig. S1. Boiled-egg drawing of the proposed new compounds. 
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Table S5 

Structures of the antagonists BD-1047 and S1RA, as well as the agonists PRE-084 and 

Blarcamesine, Chemical nomenclature and their Scores. 

 

Generic 

Name 

Structure Chemical nomenclature Total 

scoring 

BD-1047 

 

N-(2-(3,4-Dichlorophenyl)ethyl)-

N-methyl-2-

(dimethylamino)ethylamine 

-7.9371 

S1RA 

 

4-(2-((5-methyl-1-(naphthalen-2-

yl)-1H-pyrazol-3-

yl)oxy)ethyl)morpholine 

-9.0658 

PRE-084 

 

2-(4-Morpholino)ethyl-1-

phenylcyclohexane-1-carboxylate 

-4.4224 
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Fig.S2. Docking interactions of 61W 

 

 

Blarcamesine 

 

 

1-(2,2-diphenyltetrahydrofuran-3-

yl)-N,N-dimethylmethanamine 

-7.4501 
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Fig. S3. Docking interactions of C48 
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Fig.S4. Docking interactions of Mol1. 

 

 



 

 

 

 


