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 ملخص
   

        

نھتم في الموضوع الأول من ھذه الأطروحة بدراسة تنظیم مالیافین و مخططات التقریب     

.العددیة لفئة من المعادلات التفاضلیة العشوائیة التراجعیة ذات المعامل التربیعي  

لتحكم الأمثل لنوع من لو الكافیة  لازمةفیتعلق بدراسة الشروط ال،أما الموضوع الثاني    

.المعادلات التفاضلیة العشوائیة  

، یتناول الفصل الأول وجود و وحدانیة الحل و إثبات تتألف ھذه الأطروحة من ثلاثة  فصول    

المعادلات مع معادلات تفاضلیة ،و ذلك باستخدام الارتباط بین ھذا النوع من ھولدر  استمراریة

الأداة المستخدمة في ذلك ھي حساب . عشوائیة تراجعیة ذات مولدات تحقق شرط لیبشیتز

.مالیافین و تحویل زفینكن  

في الفصل الثاني ،یتم التركیز على مخططات التقریب العددیة سواء كانت صریحة أو    

.ثم نستنتج معدلات تقاربھا ،ینة متقطعا كاملا تحت شروط معضمنیة، كما نقترح مخططا   

لنوع من المعادلات  لتحكم الأمثللو الكافیة  لازمة ،الشروط الیستعرض الفصل الثالث    

التفاضلیة العشوائیة ذات معاملات لیبشیزیة، لكن غیر قابلة للتفاضل و ذلك باستخدام حساب 

.فین و نظریة رادماشریامال  

وجود و ؛ذات المعامل التربیعي  التفاضلیة العشوائیة التراجعیةالمعادلات  :الكلمات المفتاحیة

یة ؛معدل التقارب ؛ ؛مخططات التقریب العدد ؛تحویل زفینكن استمراریة ھولدر؛وحدانیة الحل 

.و الكافي ؛حساب مالیافین ؛نظریة رادمشر الشرط اللازم   
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Résumé

Cette thèse explore deux domaines distincts dans le champ des systèmes stochas-

tiques : la régularité au sens de Malliavin des solutions et la théorie du contrôle.

Le premier domaine se concentre sur la régularité de Malliavin des solutions d’un type

spécifique d’équations différentielles stochastiques rétrogrades quadratiques (EDSR-Q),

ainsi que sur la convergence de leurs schémas d’approximation numérique. Le deuxième

domaine aborde les problèmes de contrôle optimal pour les systèmes stochastiques dont

les coefficients ne sont pas réguliers.

Dans le premier chapitre, nous examinons l’existence et l’unicité dans Lq(q ≥ 2) des

solutions des EDSRs quadratiques unidimensionnelles , ainsi que leurs propriétés. Nous

établissons la continuité Hölderienne des solutions dans Lp pour (q > 4) et (2 ≤ p < 1
2),

et présentons des résultats importants concernant la r égularité des solutions des EDSR-

Q. Ces résultats sont obtenus en exploitant la connexion entre les EDSR-Q et les EDSR

Lipschitz (L-EDSR), en utilisant notamment le calcul de Malliavin et la transformation

de Zvonkin.

Le deuxième chapitre utilise les résultats existants dans la littérature sur les L-EDSRs

pour construire et étudier les taux de convergence de différents types de schémas numériques

pour la solution des EDSR-Q dans des cas explicites et implicites. Bien que ces schémas

ne soient pas complètement discrets par rapport à la variable z, nous introduisons et

examinons un "schéma complètement discret" sous certaines conditions restrictives.

Enfin, le dernier chapitre se concentre sur les conditions nécessaires et suffisantes

d’optimalité pour une classe d’équations différentielles stochastiques contrôlées, où les
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coefficients sont globallement Lipschitz par rapport à la variable d’état mais pas néces-

sairement partou différentiables. Dans cette analyse, nous faisons usage du calcul de

Malliavin et le Théorème de Radmecher comme principaux outils. Cela élargit le champ

d’application de la théorie du contrôle stochastique et permet de traiter des problèmes

plus complexes rencontrés dans divers domaines d’application.

Mots clés. Équations différentielles stochastiques rétrogrades quadratiques; Calcul

de Malliavin ; Schéma explicite ; Schéma implicite ; Taux de convergence ; Continuité

Hölderienne; Équations différentielles stochastiques ; Principe du maximum stochastique

; Théorème de Rademacher; Principe variationnel d’Ekeland ; Inégalité de Krylov.



Abstract

This thesis studies two different topics in the stochastic systems fields: The solu-

tions’ Malliavin regularity and control theory. The first is related to the Malliavin

smoothness of the solutions of a specific type of quadratic backward stochastic differen-

tial equation (chapter 1) and the convergence of their numerical approximating schemes

(chapter 2). The second topic refers to optimal control problems for stochastic systems

with non-smooth coefficients (chapter 3).

Chapter one focuses on the Lq(q ≥ 2)-existence and uniqueness of the solutions of

the one-dimensional quadratic backward stochastic differential equation (Q-BSDEs for

short) and their properties. The Lp-Hölder continuity of the solutions for any (q > 4 and

2 ≤ p < q
2) are established and some important results concerning the smoothness of the

solution of Q-BSDEs are presented. These findings are obtained based on the connection

between the underlying Q-BSDEs and the related Lipschitz BSDE (L-BSDEs for short).

The natural tools are the Malliavin calculus and the so-called Zvonkin’s transformation.

Chapter two uses some existing results on L-BSDEs literature to construct and study

the convergence rates of different types of numerical schemes for the solution of Q-BSDE

in different cases: explicit and implicit. Those schemes are not completely discrete with

respect to the z-variable. However, under some restrictive conditions, a completely dis-

crete scheme” is introduced and studied.

The last chapter investigates the necessary and sufficient optimality conditions for

a class of controlled stochastic differential equations where the coefficients are merely

Lipschitz continuous in the state variable but not necessarily differentiable everywhere.



The Malliavin calculus and Radmecher’s theorem are the main tools in this analysis.

Key-Words: Quadratic backward stochastic differential equations; Malliavin calcu-

lus; Explicit scheme; Implicit scheme; Rate of convergence; Hölder continuity; Stochastic

differential equations; Stochastic maximum principle; Rademacher’s Theorem; Ekelands

variational principle; Krylov’s inequality.



Contents

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Aknowledgemnt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Abstract in Arabic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract in French . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

General Introduction xii

1 Lp-Hölder Continuity of the Solutions of Q-BSDEs (2 ≤ p < q
2) 13

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Malliavin Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Notations and Preliminaries . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Some Properties of L-BSDE . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.1 Estimates on the Solution of BSDEs . . . . . . . . . . . . . . . . . 17

1.3.2 The Malliavin Regularity for L-BSDE . . . . . . . . . . . . . . . . . 19

1.4 Lp-Hölder Continuity of the Solutions of Q-BSDEs (2 ≤ p < q
2) . . . . . . 23

1.4.1 Lq(q ≥ 2)-Solutions of Q-BSDE . . . . . . . . . . . . . . . . . . . . 23

1.4.2 The Malliavin Regularity of non-Markovian Quadratic BSDE . . . . 27

2 The Numerical Schemes for Q-BSDEs and Their Rate of Convergence 36

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Numerical Schemes for L-BSDEs . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 The Rate of Convergence of Q-BSDEs . . . . . . . . . . . . . . . . . . . . 40

2.3.1 An Explicit Scheme for Q-BSDE . . . . . . . . . . . . . . . . . . . 40

2.3.2 An Implicit Scheme for Q-BSDE . . . . . . . . . . . . . . . . . . . 42

2.3.3 A Fully Discrete Scheme for Q-BSDE . . . . . . . . . . . . . . . . . 46

viii



CONTENTS ix

2.4 Simulation results for Q-BSDE . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 The Maximum Principle for Optimal Control of Diffusion with Non-Smooth Coefficients via Malli-

avin Calculus 55

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Problem Formulation and Auxiliary Lemmas . . . . . . . . . . . . . . . . . 56

3.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.2 Some Auxiliary Findings . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.3 Near-Optimality Conditions for a Sequence of Perturbed Control

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Stochastic Maximum Principle . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.1 Some Convergence Results . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.2 Optimal Variational Principle . . . . . . . . . . . . . . . . . . . . . 71

3.4 Application to Quadratic SDE . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4.1 Necessary and Sufficient Conditions for Optimality . . . . . . . . . 76

Mohamed Khider University of Biskra.



Symbols and Abbreviations x

List of Symbols and Abbreviations
The different symbols and abbreviations used in this thesis.

Symbols

· (Ω,F ,P): probability space.

· W = (Wt)t∈[0,T ]: Brownian motion.

· F = {Ft}t∈[0,T ]: is the natural filtration generated by the Brownian motion W .

· σ (A): σ-algebre generated by A.

· (Ω,F ,Ft,P): filtered probability space.

· XA: the indicator function of the set A.

· R: the set of all real numbers.

· Rn: n-dimensional real Euclidean space.

· ∂y: partial derivative with respect to the variable "y".

· E[·]: the mathematical expectation.

· E[·|F ]: conditional expectation.

· u(·) : optimal strict control.

· J (u): The expected cost corresponding to the control u.

· H: The Hamiltonian.

· P : the progressive σ-field defined on the product space [0, T ] × Ω.

· P⊗dt: the product measure of P with the Lebesgue measure dt.

x



Symbols and Abbreviations xi

· ⟨., .⟩H : the scalar product of the separable Hilbert space H.

· Lp(Ω): denotes the space of all FT -measurable random variables X satisfying E |X|p

< +∞, for any p ≥ 2.

· D: the Malliavin derivative

· D1,2: the set of all random variables which are Malliavin differentiable in L2(Ω).

· D1,p: the set of all random variables which are Malliavin differentiable in Lp(Ω).

· H := L2([0, T ]): Hilbert space.

· H⊗n: the n-fold tensor product of a Hilbert space H.

· Lp
(
Ω, H⊗k

)
: Lebesgue space of p-integrable functions defined on a measurable space

Ω with values in the tensor product H⊗k.

· Hp
F([0, T ]) denotes the Banach space of all progressively measurable processes

φ : ([0, T ] × Ω,P) → (R,B) with norm

∥φ∥Hp =
E(∫ T

0
|φt|2 dt

) p
2


1
p

< +∞.

· Sp
F([0, T ]): denotes the Banach space of all the RCLL (right continuous with left

limits) adapted processes φ : ([0, T ] × Ω,P) → (R,B) with norm

∥φ∥Sp =
(
E sup

0≤t≤T
|φt|p

) 1
p

< +∞.

· M2,p: for any p ≥ 2, denotes the class of square-integrable random variables F with

a stochastic integral representation of the form

F = E [F ] +
∫ T

0
utdWt,

where u is a progressively measurable process satisfying sup0≤t≤T E|ut|p is finite.
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Symbols and Abbreviations xii

· L1,p
a : stand for the set of all H-valued processes {ut}0≤t≤T , which are progressively

measurable and have real-valued versions, such that:

(a) For almost all t ∈ [0, T ], ut ∈ D1,p.

(b) E[(
∫ T

0 |ut|2 dt) p
2 + (

∫ T
0
∫ T

0 |Dθut|2 dθdt) p
2 ] < +∞.

· W2
1 (R): the space of continuous functions g from R to R such that g′ is continuous

and g′′ is integrable on R.

Abbreviations:

· a.e: almost everywhere.

· a.s: almost surely.

· i.e: that is to say.

· w.r.t: with respect to

· RCLL: right continuous with left limits.

· SDE: stochastic differential equations.

· Q-SDE: quadratic stochastic differential equations.

· BSDE: backward stochastic differential equations.

· F-BSDE: forward-backward stochastic differential equations.

· L-BSDE: Lipschitz backward stochastic differential equations.

· Q-BSDE: quadratic backward stochastic differential equations.

· NCO : necessary conditions of optimality.

· SCO : sufficient conditions of optimality.
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General Introduction

T he Malliavin calculus is essential for analyzing the smoothness of solutions to

backward stochastic differential equations (BSDEs). The methods provided are

highly effective in establishing solutions’ existence, uniqueness, and regularity and exam-

ining their sensitivity to parameter changes.

One of the significant advantages of this stochastic calculus of variations is its capacity

to calculate derivatives of solutions of BSDEs with respect to parameters and initial

conditions. This enables a comprehensive examination of the regular characteristics of

solutions, such as their level of smoothness and continuity, providing vital insights into

the dynamics of stochastic processes.

Furthermore, Malliavin calculus is a highly effective technique for analyzing stochastic

differential equations (SDEs) and their applications in diverse domains such as economics,

physics, and biology. Examining stochastic optimal control, filtering theory, and analyzing

stochastic partial differential equations is essential. The applications of this concept span

from pricing options and managing risk in finance to analyzing stochastic processes in

physics and biology.

Recall that backward stochastic differential equations (BSDEs) were first studied by

Bismut [10] in the linear case; Bismut introduced a linear backward stochastic differential

equation to represent the conjugate variable or adjoint process in the stochastic version

of the Pontryagin maximum principle. Pardoux and Peng [48] published a seminal paper

in which they studied the general nonlinear backward stochastic differential equations

(BSDEs) where the generator is global Lipschitz and the terminal condition is square

1



General Introduction 2

integrable. Since then, there has been extensive research on BSDEs; we refer to [13, 27, 40]

for a more complete presentation of the theory. This type of equation has proven to be

a powerful tool for studying stochastic processes and has applications in many fields,

including finance, economics, engineering, and mathematical biology.

This thesis focuses on two issues. The initial topic concerns the examination of the

Malliavin regularity of solutions to a certain class of backward stochastic differential

equations that demonstrate quadratic growth. In addition, we devise diverse numerical

techniques to solve these equations and ascertain the rate at which their numerical schemes

converge. These equations are characterized by the following form:

Yt = ξ +
∫ T

t

(
h(r, Yr) + h1(r)Zr + f(Yr) |Zr|2

)
dr −

∫ T

t
ZrdWr, 0 ≤ t ≤ T, (0.1)

where the process h : [0, T ]×Ω×R → R is a given bounded and global Lipschitz function

in y uniformly in r, h1 : [0, T ] → R is a bounded function, f : R → R is an integrable

function and ξ is a given terminal datum such that ξ need not be a function of a forward

diffusion; this means that the random variable ξ can be taken arbitrarily. Since finding

explicit solutions for BSDEs is difficult, several researchers have focused on numerical

methods. Generally speaking, numerical approximation schemes are a very important

research topic in recent years that many studies have focused on. One of the challenges

for solving BSDEs numerically is that the equations are nonlinear and high-dimensional,

which makes it difficult to obtain exact solutions. Therefore, researchers have developed

a variety of numerical approximation schemes to solve BSDEs, including Monte Carlo

methods, finite difference methods, and numerical methods based on partial differential

equation theory. In particular, in the Markovian case, Douglas et al. [23] established

numerical methods for a class of forward-backward SDEs based on the four-step scheme

developed by Ma et al. [39] to solve general F-BSDEs requiring the numerical resolution of

quasi-linear parabolic PDE. Bally [8] proposed a time discretization scheme and obtained

its convergence rate. Zhang [52] established some L2-regularity on Z and found that

their scheme converges and also derived its convergence rate. It is worth mentioning the

work of Briand et al. [16], where a scaled random walk replaces Brownian motion. Good

references for this are [18, 29, 30, 36, 45]. The research paper we relied on is Hu et al.

[34] in the non-Markovian case, which is considered the first generalized result because

Mohamed Khider University of Biskra.



General Introduction 3

they investigate BSDE with a general terminal value and random generator. Notably,

they do not impose the condition that the terminal value should stem from a forward

diffusion equation. Similarly, the generator’s randomness need not arise from a forward

equation and verify a Lipschitz condition. They initially establish the Lp-Hölder continuity

of the solution. Subsequently, they devise some numerical approximation schemes for

backward stochastic differential equations, determining the convergence rate based on the

attained Lp-Hölder continuity results. The Malliavin calculus serves as the main tool

in their analysis. Many researchers have turned their interest toward Q-BSDE theory

in the last few years. The very well-known result of the existence of the solution was

proved by Kobylanski in [37] when the terminal condition is bounded, the generator

coefficient (h(r, y)+h1(r)z+f(y) |z|2 in our case) is continuous and has a quadratic growth

in z. Later, Bahlali et al. studied in [4] one-dimensional Q-BSDE with a measurable

generator in cases where h(r, y) + h1(r)z = 0 and the terminal condition is merely square

integrable. Q-BSDE-theory has been developed very remarkably in different perspectives;

in particular, in Bahlali et al. [5], the authors studied a BSDE whose generator shows

logarithmic growth and provided a relation between this latter and one type of Q-BSDE.

Subsequently, in [41], Madoui et al. focused on solving a class of quadratic BSDEs with

Jumps.

As opposed to ordinary BSDEs, only a few studies are devoted to the numerical study

of Q-BSDEs. Indeed, Imkeller and Dos Reis in [35] gave explicit convergence rates for

the difference between the solution of a Q-BSDE and its truncation; in the same context,

Richou in [50] provided a new time discretization scheme with a non-uniform time step

for such BSDEs and also obtained an explicit convergence rate for this scheme. Recently,

Chassagneux and Richou in [17] introduced a fully implementable algorithm for a Q-

BSDE based on quantization and illustrated their convergence results with numerical

examples. The question arises at this stage: Can we extend some existing findings in the

global Lipschitz BSDE framework into the quadratic BSDE? These findings concern the

Lp-Hölder continuity of the solution, numerical approximation schemes, and their rate of

convergence.

During our journey to answer this question, we have faced several drawbacks and

Mohamed Khider University of Biskra.



General Introduction 4

difficulties. Below, we list the important four among them. The first one is how to choose

the form of the generator itself to transform the initial Q-BSDE to the Lipschitz BSDE

(L-BSDE in short). After several attempts, we ended up with the following generator’s

form h(r, y) +h1(r)z+ f(y) |z|2, where the function h, h1 are bounded, and h is Lipschitz

in y. The second drawback concerns the function h1, which makes it difficult to ensure

that the generator of the transformed L-BSDE is Hölder continuous. We were forced to

assume that h1 is a constant function to overcome this difficulty.

The third difficulty concerns the problem of the explicit scheme’s rate convergence.

More precisely, we can not prove the convergence of the approximating Z-component of

the underlying Q-BSDE. Defer from Hu et al. [34], because of pure technical reasons, we

have chosen to work on Lp (p < 2) rather than L2.

The fourth drawback is due to the presence of the integral of Z over some intervals in

both explicit and implicit numerical schemes, making it difficult to provide fully discrete

schemes. To get around this obstacle, we restricted ourselves to the cases where the

generator has the following two forms,

β(s)z + f(y) |z|2 and α(s) + β(s)z + 1
2 |z|2 ,

the functions α and β are assumed to be deterministic, bounded and Hölder continuous.

The answer to the above mentioned question is the contents of the first and second

chapters.

In the first chapter, we study the existence and uniqueness of solutions to Q-BSDE

(0.1) by using the relationship between some types of Q-BSDEs and Lipschitz BSDE

(L-BSDE in short). Indeed, the following space transformation

F (x) =
∫ x

0
exp(2

∫ y

0
f(t)dt)dy, (0.2)

allows the elimination of the Q-BSDE’s generator or the quadratic part of it to obtain L-

BSDE. Because this transformation function is a bijection, one can transfer the properties

interchangeably between the Q-BSDE and L-BSDE under consideration. Applying Itô-

Krylov’s formula to F (Yt), one can obtain

F (Yt) = F (ξ) +
∫ T

t
(h(s, Ys)F ′ (Ys) + h1(s)F ′ (Ys)Zs) ds−

∫ T

t
F ′ (Ys)ZsdWs. (0.3)

Mohamed Khider University of Biskra.



General Introduction 5

To simplify notations, we put

F (Yt) = Ȳt, Z̄t = F ′ (Yt)Zt and F (ξ) = ξ̄. (0.4)

Thus, Equation (0.3) reads

Ȳt = ξ̄ +
∫ T

t
h̄(s, Ȳs, Z̄s)ds−

∫ T

t
Z̄sdWs, (0.5)

where h̄(s, y, z) = h(s, F−1 (y))F ′ (F−1 (y)) + h1(s)z, which is a Lipschitz generator.

If (Y, Z) is a solution to Q-BSDE (0.1), then Itô-Krylov’s formula applied to F (Yt)

shows that (Ȳ , Z̄) is a solution to (0.5). Conversely, if (Ȳ , Z̄) is a solution to (0.5), then by

applying Itô-Krylov’s formula to F−1
(
Ȳt

)
, we show that (Y = F−1

(
Ȳ
)
, Z = Z̄

F ′(F −1(Ȳ ))
)

is a solution to Q − BSDE (0.1). Our second aim is to prove, under some extra conditions

on f , and the Lp-Hölder continuity of the solution (Ȳ , Z̄) proven in Hu et al. [34], in the

case where the terminal value is twice differentiable in the sense of Malliavin calculus, and

the first and second derivatives satisfy some integrability conditions; also the generator

satisfied similar assumption (see Assumption 2 in Chapter 1, for more details). Several

statements concerning the path regularity property of the solutions of Q-BSDE (0.1) in

the sense of Malliavin calculus and thus establish the following estimates, for any q > 4,

2 ≤ p < q
2 and s, t ∈ [0, T ]

E|Yt − Ys|p ≤ K|t− s|
p
2 and E|Zt − Zs|p ≤ K|t− s|

p
2 , (0.6)

where K is a constant independent of s and t. Moreover, we shall prove that the Q-

BSDE’s solution (Y, Z) is Malliavin differentiable, and the process Z can be determined

as the trace of the Malliavin derivative of Y . Our results are illustrated by three examples.

In the second chapter, depending on the results of Hu et al. in [34], we construct

different types of numerical schemes for the solution of Q-BSDE (0.1) and give the rate

of their convergence. Our starting point is to define both explicit and implicit numerical

schemes of Q-BSDE (0.1) as

(Y π, Zπ) =
F−1

(
Ȳ π
)
,

Z̄π

F ′(F−1
(
Ȳ π
)
)

 .
where the approximating pairs

(
Ȳ π, Z̄π

)
associated global Lipschitz BSDE (0.5).
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Firstly, we prove that the rate of convergence of the explicit schemes is given by

E sup
0≤t≤T

|Yt − Y π
t |2 ≤ K(|π| + E|ξ − ξπ|2). (0.7)

while the one of Z takes the following form
∫ T

0
E |Zt − Zπ

t |p dt ≤ K
(
|π| + E |ξ − ξπ|2

) p
2 ∀ 1 ≤ p < 2. (0.8)

Secondly, we focus on the rate of convergence of the implicit numerical scheme for Q-BSDE

(0.1), which is given as follows: for any p ≥ 2

E sup
0≤t≤T

|Yt − Y π
t |p ≤ K

(
|π|

p
2 + E|ξ − ξπ|p

)
,

and

E
(∫ T

0
|Zt − Zπ

t |2 dt
) p

2

≤ K
(
|π|

p
2 + max

(
E |ξ − ξπ|p , |π|−

p
2 E |ξ − ξπ|2p

))
.

Notice that both explicit and implicit numerical schemes are not completely discrete due

to the use of the integral of the process Z in each iteration of the schemes. However, we

suggest a “fully discrete scheme” where the Lipschitz part h of the generator is independent

of y and is assumed to be linear in z. More precisely, we will deal with the following form

of Q-BSDE for 0 ≤ t ≤ T

Yt = ξ +
∫ T

t

(
α (r) + β (r)Zr + f(Yr) |Zr|2

)
dr −

∫ T

t
ZrdWr

and prove the following rate of convergence in two cases: the first case, when α ≡ 0 and

the second one when f ≡ 1
2

E max
0≤i≤n

{∣∣∣Yti
− Y π

ti

∣∣∣p +
∣∣∣Zti

− Zπ
ti

∣∣∣p} ≤ C |π|
p
2 − p

2 ln 1
|π|

(
ln 1

|π|

) p
2

.

The second topic is concerned with the optimality conditions of a controlled state process

governed by the subsequent stochastic differential equation: dXt = b(t,Xt, ut)dt+ σ (t,Xt) dWt,

X0 = x ∈ R,
(0.9)

where: b : [0, T ] × Rd × U → Rd, σ : [0, T ] × Rd → Rd ⊗ Rd, are given deterministic

functions, T be a fixed strictly positive real number which serves as a finite time horizon,
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U be some Borel subset of Rd, (Wt)t∈[0,T ] is a d-dimensional Brownian motion, x is the

initial state at time 0 and u stands for the control process. The primary goal is to

establish the necessary as well as sufficient conditions of optimality in the case where

the coefficients b and σ are merely Lipschitz continuous in the state variable but not

necessarily differentiable everywhere.

Let G = (Gt)t∈[0, T ] be a sub-filtration of F and U be some Borel subset of Rd. We

denote UG as the set comprising all admissible controls, defined as the set of all measurable,

G-adapted, and dt⊗ dP -integrable processes u : [0, T ] × Ω → U .

The cost to be minimized is expressed as the expected value of:

J (u) = E
[ ∫ T

0
ℓ(t,Xt, ut)dt+ g(XT )

]
, (0.10)

where ℓ and g are given real-valued functions defined respectively on [0, T ] ×Rd ×U and

Rd. Keep in mind that an optimal control is characterized as an admissible control that

meets the following criteria:

J (û) = min
u∈UG

J (u). (0.11)

Henceforth, the above control problem will be referred to as “Problem A".

Typically, the study of the Problem A can be carried out using two distinct ap-

proaches. The first method is Bellman’s dynamic programming, named after the Ameri-

can mathematician Richard Bellman. The second approach, which is the centre of interest

of this work, is named after the Soviet mathematician Lev Semenovich Pontryagin. Dif-

ferent mathematical methodologies are needed to handle these two approaches. Dynamic

programming seeks to derive a second-order partial differential equation, commonly called

the Hamilton-Jacobi-Bellman equation, that describes the value function.

The second approach explores optimality determination based on Pontryagin’s neces-

sary conditions, commonly known as the stochastic maximum principle (SMP for short).

Generally, we use two different mathematical tools to study the stochastic maximum prin-

ciple: Frechet derivatives and Malliavin calculus. With Frechet derivatives, the adjoint

processes, which play a vital role in the stochastic maximum principle, are described by

stochastic linear systems. Conversely, Malliavin calculus provides an advantage by of-

fering explicit expressions for the adjoint processes, which are given by employing the

Malliavin derivatives of the optimal state process.
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In the context of the first way, the pioneering work in the SMP field is credited to Kush-

ner [38], who focused on the classical regular case, where the coefficients of the controlled

SDE are sufficiently smooth. Following this groundbreaking research, a substantial body

of literature has emerged, including significant contributions by Benssoussan [9], Bismut

[11], Haussmann [33], and Peng [49]. For a comprehensive overview of this subject and

an extensive list of references, you may consult the well-regarded book authored by Yong

and Zhou [51]. Orrieri [47] established a version of SMP for a controlled SDE with dissi-

pative drift, noteworthy to highlight the pioneering contribution of Azizi and Khelfallah

[1], who explored the initial version of SMP for controlled backward SDEs beyond the

global Lipschitz framework. We also refer the reader to the following papers [2, 6, 12, 31],

which address the SMP for BSDE and F-BSDE systems.

Then, the researchers turned their attention to relaxing the smoothness of the coeffi-

cients of the controlled systems and those of the cost functional. The first attempt in this

direction is due to Mezerdi [15], who introduced a pioneering approach to handle SDEs

with non-smooth drift. The author developed an SMP similar to Kushner’s but with less

regularity on the drift of the controlled SDE. This accomplishment was made possible by

employing Clarke’s generalized gradients and the stable convergence of probability mea-

sures. The work highlights treating a broad class of optimization problems for stochastic

controlled systems with non-differentiable coefficients. Following this, Bahlali et al. [7]

introduced a second version to address stochastic differential equations featuring Lipschitz

coefficients. Their methodology is based on Krylov’s inequality, assuming the diffusion

matrix satisfies the condition of uniform ellipticity. In a similar vein, Bahlali et al. [3]

have established an SMP for the optimal control of SDEs with degenerate diffusion coef-

ficients. Remarkably, this result was derived using techniques similar to those originally

initiated by Bouleau and Hirsch in [14]. Expanding upon this groundwork, Chighoub et

al. [21] broadened the investigation to encompass scenarios where the coefficients of the

cost functional are merely Lipschitz (non-differentiable).

The second way to handle the SMP is initiated with Meyer-Brandis et al. [43]. This

work examines a controlled Itô-Lévy process in which the controller may have access to

a subset of the accessible information. The system coefficients and the objective perfor-
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mance functional are permitted to be random, potentially non-Markovian. The applica-

tion of Malliavin calculus allows for deriving a maximal principle for the optimal control

of a system, in which the adjoint process is explicitly described. subsequently, the main

focus of the paper [44] is to extend the previous work to mixed regular-singular control

issues, where the control variable consists of two components: one is absolutely contin-

uous, and the second is singular. At this stage, the natural question is: Can we relax

the smoothness of the controlled system’s coefficients? The third chapter of this thesis is

devoted to answering this question and exploring some extensions to some non-Lipschitz-

controlled stochastic systems. The main objective of this chapter is to examine Problem

A when the coefficients b and σ are solely Lipschitz continuous, without necessarily being

differentiable everywhere. The primary goal of our work is to investigate the Problem

A when the coefficients b and σ are merely Lipschitz continuous but not necessarily dif-

ferentiable everywhere. Firstly, we want to prove the following SMP represented by the

necessary condition for optimality

E
[
∂uH(t, X̂t, ût, Ŷ (t))

∣∣∣Gt

]
= 0 for a.e. (t, ω), (0.12)

where û refers to the optimal control, X̂ to its associated optimal solution, and the usual

Hamiltonian is defined by:

H(t,Xt, ut, Y (t)) = ℓ(t,Xt, ut) + Y (t)b(t,Xt, ut), (0.13)

here Y stands for the adjoint process, which will be determined later. The key tool to

achieve these fundamental findings is known as Rademacher’s theorem [20], which states

that all Lipschitz functions have bounded and measurable derivatives almost everywhere.

This enables us to define the resulting adjoint equation. With this in mind, we will use

Frankowska’s approach [28] to approximate b and σ by sequences bn and σn, respectively,

which converge uniformly and belong to the class C1. This will yield the following set of

regularized control problems, indexed by n, dXn
t = bn(t,Xn

t , ut)dt+ σn (t,Xn
t ) dWt,

Xn
0 = x ∈ R,

(0.14)

and

Jn(u) = E
[ ∫ T

0
ℓ(t,Xn

t , ut)dt+ g(Xn
T )
]
. (0.15)
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Since bn and σn are C1−functions, Ekeland’s variational principle [25], is instrumental in

deriving a set of near-optimal conditions for the regularized family of control problems

(0.14) and (0.15). Subsequently, by utilizing the result of Mezerdi [44] and Meyer-Brandis

et al. [43], one can derive the following SMP:

E
[
∂uHn(t, X̂n

t , û
n
t , Ŷ

n(t))
∣∣∣Gt

]
= O (δn) for a.e. (t, ω), (0.16)

where ûn is near optimal control for the cost Jn, X̂n denotes its corresponding near optimal

solution, such that the Hamiltonian is defined similarly as in (0.13) for any n. Then, By

utilizing Krylov’s estimate, we employ limit arguments to demonstrate the SMP for the

original problem (0.12). Furthermore, we establish sufficiency conditions, indicating that

if there exists û ∈ UG satisfying (0.12), then û also satisfies (0.11). Finally, we apply our

results to study the necessary and sufficient optimality conditions for controlled quadratic

SDEs.
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Chapter 1

Lp-Hölder Continuity of the Solutions of

Q-BSDEs (2 ≤ p < q
2)

1.1 Introduction

This chapter focuses on two important results regarding a class of quadratic backward

stochastic differential equations (Q-BSDEs ), taking the following form

Yt = ξ +
∫ T

t

(
h(r, Yr) + h1(r)Zr + f(Yr) |Zr|2

)
dr −

∫ T

t
ZrdWr, 0 ≤ t ≤ T, . (1.1)

The first one studies the Lq(q ≥ 2)-existence and uniqueness problem for Q-BSDE (1.1).

The second one establishes the Lp-Hölder continuity of its solutions for any (q > 4, 2 ≤

p < q
2), under some assumptions on the coefficients. The natural tool that we shall

use is the Malliavin calculus and Zvonkin’s transformation allow us to eliminate the

quadratic term and obtain standard L-BSDE. taking advantage of this transformed L-

BSDE’s existence and uniqueness propriety, we can construct a unique solution to the

initial Q-BSDE and study the regularity of its solutions. Additionally, we shall prove

that the Q-BSDE’s solutions (Y, Z) are Malliavin differentiable, and the process Z can be

determined as the trace of the Malliavin derivative of Y . It is worth mentioning that the

content of this and the next Chapter is the subject of our paper Doubbakh et al. [22].

The next section is devoted to some basic notions of Malliavin calculus, the main

tool in proving our crucial results.

1.2 Malliavin Calculus

Over the past few years, Malliavin calculus has generated great interest. One of the

reasons for this is undoubtedly the wide range of applications in mathematical finance,
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1.2. MALLIAVIN CALCULUS 14

particularly in models based on Brownian motion. Following a symposium on the ap-

plications of Malliavin calculus in finance, the journal Mathematical Finance dedicated

its entire January 2003 volume to this new reality. At the same time, empirical data

highlighted the limitations of Brownian financial models, leading to a renewed interest in

jump processes, such as Lévy processes. In risk theory models, which involve an insur-

ance company’s portfolio, Lévy processes have also experienced significant growth. This

situation and the need for discontinuity have created fertile ground for the development

of Malliavin calculus for Lévy processes and the further development of applications for

this important family of stochastic processes.

The question asked was, what is Malliavin’s calculus? It is a stochastic calculus of

variations, or in other words, an infinite-dimensional differential calculus on the Wiener

space, which is the canonical space of Brownian motion. It represents a fusion between

probability theory and differential calculus. The earliest works on this subject date back

to the 1970s, specifically in 1976 when Paul Malliavin published "Stochastic Calculus of

Variations and Hypoelliptic Operators" [42], focusing on the existence and regularity of

the density function of random vectors. The initial application of this theory was to

provide a probabilistic proof of Hörmander’s Theorem (Hörmander’s "sum of squares"

Theorem) on hypoelliptic differential operators.

1.2.1 Notations and Preliminaries

Let W = {Wt}0≤t≤T be a real-valued Brownian motion defined on a complete filtered

probability space (Ω,F ,P, {Ft}0≤t≤T ), such that F = {Ft}0≤t≤T is the natural filtration

generated by the Brownian motion W and the P-null sets and let F = FT .

Now, let us define the core concept of Malliavin calculus: the Malliavin derivative. To

begin with we define the following spaces

• Lq(Ω) denotes the space of all FT -measurable random variables X satisfying E |X|q

< +∞.

• H := L2([0, T ]) denotes the separable Hilbert space of square-integrable functions

defined on the interval [0, T ].
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We represent by ⟨·, ·⟩H the scalar product of the separable Hilbert space H and by ∥h∥H

the norm of any element h of H. For any h ∈ H, we denote the Wiener integral by

W(h) =
∫ T

0
h(t)dWt,

We denote by C∞
p (Rn) the set of all infinitely continuously differentiable functions

g : Rn → R such that g and all their partial derivatives have polynomial growth. For

(h1, . . . , hn) ∈ H⊗n, set

F = g (W(h1), · · · ,W(hn)) . (1.2)

We denote by S the class of all smooth random variables of the form (1.2). Denote

∂ig := ∂g
∂x

, for i = 1, . . . , n..

Definition 1.1
The derivative of a smooth random variable F of the form (1.2) is the H-valued random

variable given by

DF =
i=n∑
i=1

∂ig (W(h1), · · · ,W(hn))hi.

The subsequent outcome is an integration-by-parts formula

Lemma 1.1
Suppose that F is a differentiable random variable and h belongs to the set H. In

such a case. Then

E (⟨DF, h⟩H) = E (FW(h)) .

The domain of D in Lp (Ω), denoted as D1,p, for any p ≥ 1, refers to the closure of the set

of smooth random variables S with respect to the norm,

∥F∥1,p = [E |F |p + E (∥DF∥p
H)]

1
p ,

When p is equal to 2, the space D1,2 becomes a Hilbert space with the scalar product

given by

⟨F,G⟩1,2 = E (FG) + E (⟨DF,DG⟩H) ,

We have the ability to define the iteration of the operator D in a manner that ensures

the iterated derivative DkF , for a smooth random variable F , becomes a random variable
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with values in H⊗k. Consequently, for any natural number k ≥ 1 and every p ≥ 1, we

introduce a seminorm on S that is defined as follows:

∥F∥k,p =
E (|F |p) +

k∑
j=1

E
(∥∥∥DjF

∥∥∥p

H⊗j

) 1
p

,

This family of seminorms verifies the following properties:

(i) Monotonicity: ∥F∥k,p ≤ ∥F∥j,q for any F ∈ S, given that p ≤ q and k ≤ j.

(ii) Closability: the operator Dk is closable from S into Lp
(
Ω, H⊗k

)
for all p ≥ 1.

The following result is the chain rule, which can be easily proved by approximating

the random variable F by smooth random variables and the function ϕ by ϕ∗ψε,

where ψε is an approximation of the identity.

Proposition 1.2
Let ϕ : Rm → R be a continuously differentiable function with bounded partial deriva-

tives, and fix p ≥ 1. Suppose that F = (F1, . . . , Fm) is a random vector whose

components belong to the space D1,p. Then ϕ (F ) ∈ D1,p, and

D (ϕ (F )) =
m∑

i=1
∂iϕ (F )DF i.

Example 1.1
DtW (T ) = X[0,T ] (t) = 1 (for t ∈ [0, T ] .

Example 1.2
By the chaine rule, we get

Dt (expW (t0)) = expW (t0) .X[0,t0] (t) .

Example 1.3
If f is an element of L2([0, T ]), then the Wiener integral

∫ T

0
f(s)dWs,

is differentiable in the sense of Malliavin, meaning that it belongs to D1,2 and its
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derivative is

Dt

(∫ T

0
f(s)dWs

)
= f(t),

Let L1,p
a stand for the set of all H-valued processes {ut}0≤t≤T , which are progressively

measurable and have real-valued versions such that:

(a) For almost all t ∈ [0, T ], ut ∈ D1,p.

(b) E[(
∫ T

0 |ut|2 dt) p
2 + (

∫ T
0
∫ T

0 |Dθut|2 dθdt) p
2 ] < +∞.

For more details on Malliavin calculus, we refer the reader to Nualart’s seminal book [46].

1.3 Some Properties of L-BSDE

Before addressing the important results of this thesis, which are related to the existence,

and uniqueness of the solution for Q-BSDE (0.1) and their Malliavin regularity, we recall

the most crucial results established by Hu et al. in [34] concerning the Malliavin calculus

for L-BSDE.

1.3.1 Estimates on the Solution of BSDEs

Let P be the progressive σ-field defined on the product space [0, T ] × Ω, to begin with

defining, for any q ≥ 1, the following spaces which will be used frequently in the sequel:

• Hq
F([0, T ]) denotes the Banach space of all progressively measurable processes

φ : ([0, T ] × Ω,P) → (R,B) with norm

∥φ∥Hq =
E(∫ T

0
|φt|2 dt

) q
2


1
q

< +∞.

• Sq
F([0, T ]) denotes the Banach space of all the RCLL (right continuous with left

limits) adapted processes φ : ([0, T ] × Ω,P) → (R,B) with norm

∥φ∥Sq =
(
E sup

0≤t≤T
|φt|q

) 1
q

< +∞.
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• M2,q, for any q ≥ 2, denote the class of square-integrable random variables F with

a stochastic integral representation of the form

F = EF +
∫ T

0
utdWt,

where u is a progressively measurable process satisfying sup0≤t≤T E|ut|p is finite.

We consider the following BSDE

Ȳt = ξ̄ +
∫ T

t
h̄(r, Ȳr, Z̄r)dr −

∫ T

t
Z̄rdr, 0 ≤ t ≤ T (1.3)

where: the generator h̄ in the BSDE (1.3) is a measurable function.

h̄ : ([0, T ] × Ω × R × R,P ⊗ B ⊗ B) → (R,B), and the terminal value ξ̄ is an FT -

measurable random variable.

Definition 1.2

A solution to the BSDE (1.3) is a pair of progressively measurable processes
(
Ȳ , Z̄

)
such that

∫ T
0

∣∣∣Z̄t

∣∣∣2 dt < ∞,
∫ T

0

∣∣∣h̄(t, Ȳt, Z̄t)
∣∣∣ dt < ∞, a. s. and

Ȳt = ξ̄ +
∫ T

t
h̄(r, Ȳr, Z̄r)dr −

∫ T

t
Z̄rdr.

The next lemma provides a useful estimate on the solution to BSDE (1.3).

Lemma 1.3

Fix q ≥ 2. Suppose that ξ̄ ∈ Lq (Ω), h̄(t, 0, 0) ∈ Hq
F ([0, T ]) and h̄ is uniformly

Lipschitz in (y, z); namely, there exists a positive number L such that µ× P a.e.

∣∣∣h̄(t, y1, z1) − h̄(t, y2, z2)
∣∣∣ ≤ L (|y1 − y2| + |z1 − z2|)

for all y1, y2 ∈ R and z1, z2 ∈ R. Then there exists a unique solution pair (Ȳ , Z̄) ∈

Sq
F ([0, T ]) × Hq

F ([0, T ]) to (1.3). Moreover, we have the following estimate for the

solution

E sup
0≤t≤T

∣∣∣Ȳt

∣∣∣q + E
(∫ T

0

∣∣∣Z̄t

∣∣∣2 dt
) q

2

≤ K

E ∣∣∣ξ̄∣∣∣q +E
(∫ T

0

∣∣∣h̄(t, 0, 0)
∣∣∣2 dt

) q
2
 . (1.4)

Proof : See Hu et al. [34].
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1.3.2 The Malliavin Regularity for L-BSDE

It is important to remember the most significant results established by Hu et al. in

[34], regarding the Lp-Hölder continuity of the solution in the case where the generator is

global Lipschitz. As we will see later, for a given L-BSDE the process Z̄ will be expressed

in terms of the Malliavin derivative of the solution Ȳ , which will satisfy a linear BSDE

with random coefficients. To study the properties of Z̄ we need to analyze a class of linear

BSDEs.

Given two progressively measurable processes {αt}0≤t≤T and {βt}0≤t≤T with 0 ≤ t ≤ T .

We will make use of the following integrability conditions:

(H1) For any λ > 0,

Cλ := E exp
(
λ
∫ T

0

(
|αt| + β2

t

)
dt
)
< ∞.

(H2) For any p ≥ 1,

Kp := sup
0≤t≤T

E (|αt|p + |βt|p) < ∞.

Under condition (H1), we denote by {ρt}0≤t≤T the solution of the linear stochastic

differential equation  dρt = αtρtdt+ βtρtdWt, 0 ≤ t ≤ T,

ρ0 = 1.
(1.5)

The proof of the main Theorem in this context is crucially dependent on the Theorem

presented below.

Theorem 1.4

Let q > p ≥ 2 and let ξ̄ ∈ Lq (Ω) and f̄ ∈ Hq
F ([0, T ]). Let {αt}0≤t≤T and {βt}0≤t≤T are

two progressively measurable processes satisfying conditions (H1) and (H2). Suppose

that the random variables ξ̄ρT and
∫ T

0 ρtf̄tdt belong to M2,q, where {ρt}0≤t≤T is the

solution to equation (1.5). Then the following linear BSDE,

Ȳt = ξ̄ +
∫ T

t

(
αrȲr + βrZ̄r + f̄r

)
dr −

∫ T

t
Z̄rdWr, 0 ≤ t ≤ T,

has a unique solution pair (Ȳ , Z̄), and there is a constant K > 0 such that

E
∣∣∣Ȳt − Ȳs

∣∣∣p ≤ K |t− s|
p
2
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for all s, t ∈ [0, T ].

Proof : See Hu et al. [34].

Throughout this section, we will make use of the following important assumptions on

the terminal value ξ̄ and the generator h̄ of L-BSDE (1.3) :

Assumption 1 Fix q > 4 and 2 ≤ p < q
2

(1.i) ξ̄ ∈ D2,q and satisfies

E|Dθξ̄ −Dθ′ ξ̄|p ≤ L |θ − θ′|
p
2 , (1.6)

sup
0≤θ≤T

E|Dθξ̄|q < +∞ (1.7)

and

sup
0≤θ≤T

sup
0≤u≤T

E|DuDθξ̄|q < +∞. (1.8)

where L > 0 is a constant and θ, θ′ ∈ [0, T ].

(1.ii) h̄ has continuous and uniformly bounded first- and second-order partial derivatives

with respect to ȳ and z̄, and h̄(·, 0, 0) ∈ Hq
F([0, T ]).

(1.iii) ξ̄ and h̄ satisfy respectively the conditions (1.i) and (1.ii). Let (Ȳ , Z̄) be the

unique solution of (1.3) with terminal value ξ̄ and generator h̄ such that h̄(t, Ȳt, Z̄t),

∂ȳh̄(t, Ȳt, Z̄t) and ∂z̄h̄(t, Ȳt, Z̄t) belong to L1,q
a and D·h̄(t, Ȳt, Z̄t), D·∂ȳh̄(t, Ȳt, Z̄t)

and D·∂z̄h̄(t, Ȳt, Z̄t) satisfy

sup
0≤θ≤T

E
(∫ T

θ

∣∣∣Dθh̄
(
t, Ȳt, Z̄t

)∣∣∣2 dt
) q

2

< +∞, (1.9)

sup
0≤θ≤T

E
(∫ T

θ

∣∣∣Dθ∂ȳh̄
(
t, Ȳt, Z̄t

)∣∣∣2 dt
) q

2

< +∞, (1.10)

sup
0≤θ≤T

E
(∫ T

θ

∣∣∣Dθ∂z̄h̄
(
t, Ȳt, Z̄t

)∣∣∣2 dt
) q

2

< +∞. (1.11)

There exists L > 0 such that for any t ∈ (0, T ] and for any 0 ≤ θ, θ′ ≤ t ≤ T

E

(∫ T

t

∣∣∣Dθh̄
(
t, Ȳt, Z̄t

)
−Dθ′h̄

(
t, Ȳt, Z̄t

)∣∣∣2 dt
) p

2
 ≤ L |θ − θ′|

p
2 . (1.12)
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For each θ ∈ [0, T ] and each pair of (ȳ, z̄), Dθh̄(·, Ȳt, Z̄t) ∈ L1,q
a and it has continuous

partial derivatives with respect to ȳ, z̄, which are denoted by ∂ȳDθh̄(·, Ȳt, Z̄t) and

∂z̄Dθh̄(·, Ȳt, Z̄t) and the Malliavin derivative DuDθh̄(·, Ȳt, Z̄t) satisfies

sup
0≤t≤T

sup
0≤u≤T

E
(∫ T

u∨θ

∣∣∣DuDθh̄
(
t, Ȳt, Z̄t

)∣∣∣2 dt
) q

2

< ∞.

Theorem 1.5
Let Assumption 1 be satisfied.

(a) There exists a unique solution pair
{(
Ȳt, Z̄t

)}
0≤t≤T

to BSDE (1.3), and Ȳ ,

Z̄ are in L1,q
a . A version of the Malliavin derivatives

{(
DθȲt, DθZ̄t

)}
0≤θ,t≤T

of the

solution pair satisfies the following linear BSDE:

DθȲt = Dθξ̄ +
∫ T

t

[
∂ȳh̄

(
r, Ȳr, Z̄r

)
DθȲr + ∂z̄h̄

(
r, Ȳr, Z̄r

)
DθZ̄r

+Dθh̄
(
r, Ȳr, Z̄r

)]
dr −

∫ T
t DθZ̄rdWr, 0 ≤ θ ≤ t ≤ T,

(1.13)

DθȲt = 0, DθZ̄t = 0, 0 ≤ t ≤ θ ≤ T (1.14)

Moreover,
{
DtȲt

}
0≤t≤T

, defined by (1.13), gives a version of
{
Z̄t

}
0≤t≤T

, namely, µ× P

a.e.

Z̄t = DtȲt. (1.15)

(b) There exists a constant K > 0, such that, for all s, t ∈ [0, T ]:

E
∣∣∣Z̄t − Z̄t

∣∣∣p ≤ K |t− s|
p
2 . (1.16)

Proof : (a) The proof of the existence and uniqueness of the solution
(
Ȳ , Z̄

)
, and Ȳ ,

Z̄ ∈ L1,2
a is similar to the Proposition 5.3 in [27], and also the fact

(
DθȲ , DθZ̄

)
is given

by (1.13) and (1.14). In Proposition 5.3 in [27] the exponent q is equal to 4, and one

assume that
∫ T

0

∥∥∥Dθh̄(·, Ȳ , Z̄)
∥∥∥2

H2
dθ < ∞, which is a consequence of (1.9) and the fact

that Ȳ , Z̄ ∈ L1,2
a . Furthermore, from conditions (1.7) and (1.9) and the estimate (1.4)

in Lemma 1.3, we obtain

sup
0≤θ≤T

E sup
θ≤t≤T

∣∣∣DθȲt

∣∣∣q + E
(∫ T

θ

∣∣∣DθZ̄t

∣∣∣2 dt

) q
2
 < ∞.

Hence, by Proposition 1.5.5 in [46], Ȳ and Z̄ belong to L1,q
a .
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(b) Let 0 ≤ s ≤ t ≤ T . In this proof, C > 0 will be a constant independent of s and

t, and my vary from line to line. By representation (1.15), we have

Z̄t − Z̄s = DtȲt − DsȲs =
(
DtȲt − DsȲt

)
+
(
DsȲt − DsȲs

)
(1.17)

From Lemma 1.3 and equation (1.13) for θ = s and θ′ = t, respectively, we obtain, using

conditions (1.7) and (1.12)

E
∣∣∣DtȲt − DsȲt

∣∣∣p + E
(∫ T

t

∣∣∣DtZ̄r − DsZ̄r

∣∣∣2 dr

) p
2

≤ C

[
E
∣∣∣Dtξ̄ − Dsξ̄

∣∣∣p + E
(∫ T

t

∣∣∣Dth̄
(
r, Ȳr, Z̄r

)
− Dth̄

(
r, Ȳr, Z̄r

)∣∣∣2 dr

) p
2
]

≤ C |t − s|
p
2 .

(1.18)

Denote αu = ∂ȳh̄
(
u, Ȳu, Z̄u

)
and βu = ∂z̄h̄

(
u, Ȳu, Z̄u

)
for all u ∈ [0, T ]. Then, by 1.ii

in Assumption 1, the processes α and β satisfy the conditions (H1) and (H2), and from

(1.13) we have for r ∈ [s, T ]

DsȲr = Dsξ̄ +
∫ T

r

[
αuDsȲu + βuDsZ̄u + Dsh̄

(
u, Ȳu, Z̄u

)]
du −

∫ T

r
DsZ̄udWu.

Then, we use Theorem 1.4 to estimate E
∣∣∣DsȲt − DsȲt

∣∣∣p by the following form

E
∣∣∣DsȲt − DsȲt

∣∣∣p ≤ C |t − s|
p
2 (1.19)

for all s, t ∈ [0, T ]. Combining (1.19) with (1.17) and (1.18), we obtain that there is a

constant K > 0 independent of s and t, such that

E
∣∣∣Z̄t − Z̄t

∣∣∣p ≤ K |t − s|
p
2

for all s, t ∈ [0, T ].

For more details, can you see Proposition 5.3 in [27] and Theorem 2.6 in [34].

Remark 1.6

From Theorem 1.5 we know that
{(
DθȲt, DθZ̄t

)}
0≤θ, t≤T

satisfies equation (1.13) and

Z̄t = DtȲt, µ× P a.e. Moreover, since (1.7) and (1.9) hold, we can apply the estimate

(1.4) in Lemma 1.4 to the linear BSDE (1.13) and deduce sup
0≤t≤T

E
∣∣∣Z̄t

∣∣∣q < ∞.
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Corollary 1.1

Under the assumptions in Lemma 1.3, let
(
Ȳ , Z̄

)
∈ Sq

F ([0, T ]) × Hq
F ([0, T ]) be the

unique solution pair to (1.3). If sup
0≤t≤T

E
∣∣∣Z̄t

∣∣∣q is finite, then there exists a constant C

such that, for any s, t ∈ [0, T ]:

E
∣∣∣Ȳt − Ȳs

∣∣∣q ≤ K |t− s|
q
2 .

Proof : See Hu et al. [34].

In the following section, we extend these findings to the framework of Q-BSDE.

1.4 Lp-Hölder Continuity of the Solutions of Q-BSDEs

(2 ≤ p < q
2)

In this section, we shall study the regularity in the sense of stochastic calculus of

variations for solutions of a class of singular BSDEs that show quadratic growth on the

variable z.

1.4.1 Lq(q ≥ 2)-Solutions of Q-BSDE

Now we establish an existence and uniqueness result to Q-BSDE (0.1) by performing

an exponential transformation, known as Zvonkin’s transformation as mentioned in [4],

we need the following Assumption:

Assumption 2 Fix q ≥ 2

(2.i) h(·, 0) ∈ Hq
F([0, T ]) and h is bounded and uniformly Lipschitz in y.

(2.ii) f : R −→ R is a given integrable function.

(2.iii) ξ is q-integrable.

(2.iv) There exists a constant L > 0 such that

|h(t2, y) − h(t1, y)| ≤ L |t2 − t1|
1
2 .
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We recall the following Lemma which will be used frequently in the sequel.

Lemma 1.7
The function F defined by

F (x) =
∫ x

0
exp(2

∫ y

0
f(t)dt)dy, (1.20)

satisfies,

F ′′(x) − 2f(x)F ′(x) = 0, for a.e. x ∈ R, (1.21)

and has the following properties:

(i) F and F−1 are quasi-isometry, that is for any x, y ∈ R and |f |1 =
∫
R |f(x)| dx

e−2|f |1 |x− y| ≤ |F (x) − F (y)| ≤ e2|f |1 |x− y|

e−2|f |1 |x− y| ≤ |F−1(x) − F−1(y)| ≤ e2|f |1 |x− y|
(1.22)

(ii) F is a one-to-one function. Both F and its inverse function F−1 belongs to

W2
1 (R).

Proof : (i) By definition the function F and its inverse F −1 are continuous, one to one,

strictly increasing function, moreover F ′′(x) − 2f(x)F ′(x) = 0 for a. e. x ∈ R. In

addition F ′(x) = exp(2
∫ x

0 f(t)dt), hence, for all x ∈ R

m =: e−2|f |1 ≤ F ′(x) ≤ e2|f |1 := M and m =: e−2|f |1 ≤ (F −1)′(x) ≤ e2|f |1 := M. (1.23)

(ii) Using the inequality (1.23), one can show that both F and F −1 are C1 (R). Since the

second generalized derivative F ′′ satisfies (1.21) for almost all x, we get that F ′′ belongs

to L1 (R). therefore, F belongs to the space W2
1 (R). using again assertion (i), one can

check that F −1 also belongs to W2
1 (R).

The function F defined for every x ∈ R by

F (x) =
∫ x

0
exp

(
2
∫ y

0
f(t)dt

)
dy (1.24)

satisfies

F ′′(x) − 2f(x)F ′(x) = 0, for a.e. x ∈ R.
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It was shown in [4], that both F and its inverse are global Lipschitz, one to one and C2

functions from R onto R.

By applying Itô-Krylov’s formula to F (Yt) shows that

dF (Yt) = F ′ (Yt) dYt + 1
2F

′′ (Yt) d ⟨Y·⟩t

= −F ′ (Yt) (h(t, Yt) + h1(t)Zt) dt+ ZtF
′ (Yt) dWt

+
(

−F ′ (Yt) f(Yt) + 1
2F

′′ (Yt)
)

|Zt|2 dt,

since

−F ′ (x) f(x) + 1
2F

′′ (x) = 0, (1.25)

we obtain

F (Yt) = F (ξ) −
∫ T

t
ZsF

′ (Ys) dWs (1.26)

+
∫ T

t
(h(s, Ys)F ′ (Ys) + h1(s)F ′ (Ys)Zs) ds. (1.27)

If we set

F (Yt) = Ȳt then Yt = F−1
(
Ȳt

)
, ZtF

′ (Yt) = Z̄t then Zt = Z̄t

F ′ (Yt)
, and F (ξ) = ξ̄. (1.28)

BSDE (1.27) becomes:

Ȳt = ξ̄ +
∫ T

t

(
h(s, F−1

(
Ȳs

)
)F ′

(
F−1

(
Ȳs

))
+ h1(s)Z̄s

)
ds−

∫ T

t
Z̄sdWs. (1.29)

To simplify statement (1.29), we use the following notation

h̄(s, y, z) =
(
h(s, F−1 (y))F ′

(
F−1 (y)

)
+ h1(s)z

)
. (1.30)

Then, we have

Ȳt = ξ̄ +
∫ T

t
h̄(s, Ȳs, Z̄s)ds−

∫ T

t
Z̄sdWs. (1.31)

Proposition 1.8 (A Priori Estimates)

Let ξ ∈ Lq(Ω). If
(
Ȳ , Z̄

)
∈ Sq

F([0, T ]) × Hq
F([0, T ]) is a solution of BSDE (1.31) and

(Y, Z) satisfies Q-BSDE (0.1), then we have:

(i) (Zr)0≤r≤T ∈ Hq
F([0, T ]),
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(ii) (Yr)0≤r≤T ∈ Sq
F([0, T ]),

(iii) E|
∫ T

0 (h(r, Yr) + h1(r)Zr + f(Yr)|Zr|2) dr|q is finite.

Proof of (i) and (ii) : Suppose that
(
Ȳt, Z̄t

)
∈ Sq

F ([0, T ]) × Hq
F ([0, T ]) be a solution

to BSDE (1.31), then, we have

E sup
0≤t≤T

∣∣∣Ȳt

∣∣∣q + E
(∫ T

0

∣∣∣Z̄t

∣∣∣2 dt

) q
2

< ∞.

Since m |x − y| ≤ |F (x) − F (y)| and m ≤ F ′(x), we have

mqE

 sup
0≤t≤T

|Yt|q +
(∫ T

0
|Zt|2 dt

) q
2


≤ E sup
0≤t≤T

|F (Yt) − F (0)|q + E
(∫ T

0

∣∣∣ZtF
′(Yt)

∣∣∣2 dt

) q
2

≤ E sup
0≤t≤T

∣∣∣Ȳt

∣∣∣q + E
(∫ T

0

∣∣∣Z̄t

∣∣∣2 dt

) q
2

< ∞.

Proof of (iii). : Since (Y·, Z·) satisfies Q-BSDE (0.1),∫ T

0

(
h(r, Yr) + h1(r)Zr + f(Yr) |Zr|2

)
dr =

∫ T

0
ZrdWr + Y0 − ξ.

Now, taking the expectation and using Burkholder–Davis–Gundy inequality, we obtain

E
∣∣∣∣∣
∫ T

0

(
h(r, Yr) + h1(r)Zr + f(Yr) |Zr|2

)
dr

∣∣∣∣∣
q

≤ C

(
E
∣∣∣∣∣
∫ T

0
ZrdWr

∣∣∣∣∣
q

+ E (|Y0|q + |ξ|q)
)

≤ C

E |ξ|q + |Y0|q + CpE
(∫ T

0
|Zr|2 dr

) q
2
 .

Finally,

E
∣∣∣∣∣
∫ T

0
(h(r, Yr) + h1(r)Zr + f(Yr) |Zr|2)dr

∣∣∣∣∣
q

is finite thanks to (i) and (ii).
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Theorem 1.9 ( Lq (q ≥ 2)-Solutions of Q-BSDE )
For any q ≥ 2, assume that (2.i), (2.ii) and (2.iii) in Assumption 2 are in force. Then,

Q-BSDE (0.1) has a unique solution that belongs to Sq
F([0, T ]) × Hq

F([0, T ]).

Proof : If (Y, Z) is a solution to Q-BSDE (0.1), then Itô-Krylov’s formula applied to F (Yt)

leads to L-BSDE (1.31) which is described by

Ȳt = ξ̄ +
∫ T

t
h̄(s, Ȳs, Z̄s)ds −

∫ T

t
Z̄sdWs.

Since ξ̄, h̄ satisfy the conditions of Lemma 1.3, there exists a unique solution pair(
Ȳ , Z̄

)
∈ Sq

F ([0, T ]) × Hq
F ([0, T ]) to L-BSDE (1.31).

Conversely: By applying Itô-Krylov’s formula to F −1(Ȳt), we obtain

dF −1(Ȳt) = (F −1)′(Ȳt)dȲt + 1
2(F −1)′′(Ȳt)d

〈
Ȳ·
〉

t
,

we know that

(F −1)′(Ȳt) = 1
F ′(F −1(Ȳt))

and (F −1)′′(Ȳt) = −F
′′(F −1(Ȳt))

(F ′(F −1(Ȳt)))3 . (1.32)

Using notations (1.28), we have

Yt = ξ +
∫ T

t

(
h(r, Yr) + h1(r)Zr + f(Yr) |Zr|2

)
dr −

∫ T

t
ZrdWr, 0 ≤ t ≤ T.

Which means that (Y, Z) is the unique solution to Q-BSDE (0.1). Thanks to the priori

estimates in Proposition 1.8 one can confirm that (Y, Z) ∈ Sq
F ([0, T ]) × Hq

F ([0, T ]).

1.4.2 The Malliavin Regularity of non-Markovian Quadratic BSDE

In this subsection, we can obtain some estimates for solutions to Q-BSDE (0.1). To

begin with, let
(
Ȳ , Z̄

)
be the unique solution of L-BSDE (1.31) associated to Q-BSDE

(0.1).

Below, we specify some assumptions on the coefficients.

Assumption 3 Fix q > 4 and 2 ≤ p < q
2

(3.i) ξ satisfies (1.i) in Assumption 1,
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(3.ii) The first- and second-order partial derivatives of h are continuous and uniformly

bounded with respect to y and f : R −→ R is a continuously differentiable function

such that f and f ′ are bounded functions.

(3.iii) h(·, Yt) and ∂yh(·, Yt) belong to L1,q
a and we have

sup
0≤θ≤T

E
(∫ T

θ
|Dθh(t, Yt|2 dt

) q
2

< +∞,

sup
0≤θ≤T

E
(∫ T

θ
|Dθ∂yh(t, Yt)|2 dt

) q
2

< +∞,

and there exists L > 0 such that for any t ∈ (0, T ] and for any 0 ≤ θ, θ′ ≤ t ≤ T

E
(∫ T

t
|Dθh(r, Yr) −Dθ′h(r, Yr)|2 dt

) p
2

≤ L
∣∣∣θ − θ

′
∣∣∣ p

2 .

(3.iv) For each θ ∈ [0, T ], Dθh(·, Yt) ∈ L1,q
a and it has continuous partial derivative

with respect to y, which is denoted by ∂yDθh(·, Yt) and the Malliavin derivatives

DuDθh(·, Yt) satisfy

sup
0≤θ≤T

sup
0≤u≤T

E
(∫ T

θ∨u
|DuDθh(t, Yt)|2 dt

) q
2

< +∞.

Remark 1.10
Notice that Assumption 3 and (2.i), (2.iii) in Assumption 2 imply that the terminal

value ξ̄ and the generator h̄ satisfy Assumption 1.

Remark 1.11

From Theorem 1.5, we know that
{(
DθȲt, DθZ̄t

)}
0≤θ≤t≤T

satisfies the following

linear BSDE

DθȲt = Dθξ̄ −
∫ T

t
DθZ̄rdWr (1.33)

+
∫ T

t

[
∂ȳh̄

(
r, Ȳr, Z̄r

)
DθȲr + ∂z̄h̄

(
r, Ȳr, Z̄r

)
DθZ̄r +Dθh̄

(
r, Ȳr, Z̄r

)]
dr

and Z̄t = DtȲt, µ⊗P-a.e. Moreover, since ξ̄ and h̄ satisfy (1.7) and (1.9) in Assumption

1, then, from estimate (1.4) in Lemma 1.3, we deduce that

E sup
0≤t≤T

∣∣∣Z̄t

∣∣∣q < ∞ (1.34)
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for any q ≥ 2.

Lemma 1.12
For any 2 ≤ p < q

2 , let Assumption 3, (2.i) and (2.iii) in Assumption 2 be satisfied

then, there exists a constant K such that, for any s, t ∈ [0, T ], we have:

(i) E |Yt − Ys|p ≤ K |t− s|
p
2 ,

(ii) E |Zt − Zs|p ≤ K |t− s|
p
2 ,

(iii) For any partition π = {0 = t0 < t1 < . . . < tn = T} of the interval [0, T ], we

have
n−1∑
i=0

∫ ti+1

ti

E
[
|Zt − Zti

|2 +
∣∣∣Zt − Zti+1

∣∣∣2] dt ≤ K |π| ,

where |π| = max
0≤i≤n−1

(ti+1 − ti) and K is a constant independent of the partition

π.

Proof : Due to the fact that ξ̄ and h̄ satisfy Assumption 1, then, thanks to Theorem 1.5 and

Corollary 1.1 and with Hölder’s inequality, there exists a constant K, that may change

from line to line, such that for any s, t ∈ [0, T ]

E
∣∣∣Ȳt − Ȳs

∣∣∣p ≤ K |t − s|
p
2 , (1.35)

and

E
∣∣∣Z̄t − Z̄s

∣∣∣p ≤ K |t − s|
p
2 . (1.36)

Now, we proceed to prove the estimates (i) and (ii).

Since F −1 is Lipschitz and by using the previous result (1.35), the following estimate

holds for all s, t ∈ [0, T ],

E |Yt − Ys|p = E
∣∣∣F −1

(
Ȳt

)
− F −1

(
Ȳs

)∣∣∣p ≤ K |t − s|
p
2 . (1.37)

where K is a positive constant.

Using the fact that both F ′ and F −1 are Lipschitz functions, m ≤ F ′ ≤ M , we
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obtain:

|Zt − Zs| =
∣∣∣∣∣ Z̄t

F ′(Yt)
− Z̄s

F ′(Yt)
+ Z̄s

F ′(Yt)
− Z̄s

F ′(Ys)

∣∣∣∣∣
≤ 1

m

∣∣∣Z̄t − Z̄s

∣∣∣+ 1
m2

(∣∣∣Z̄s

∣∣∣ ∣∣F ′(Ys) − F ′(Yt)
∣∣)

≤ 1
m

∣∣∣Z̄t − Z̄s

∣∣∣+ 1
m2

(∣∣∣Z̄s

∣∣∣ ∣∣∣F ′(F −1
(
Ȳt

)
) − F ′(F −1

(
Ȳs

)
)
∣∣∣)

≤ 1
m

∣∣∣Z̄t − Z̄s

∣∣∣+ L

m2

(∣∣∣Z̄s

∣∣∣ ∣∣∣Ȳt − Ȳs

∣∣∣) ,

where L is the Lipschitz constant of F ′(F −1 (·)).

For α = q
p , β = q

q−p , such that, 1
α + 1

β = 1, using Hölder inequality and taking account

of the relations (1.34)–(1.36), we obtain (ii).

Finally, (iii) is a simple consequence of (ii) with p = 2.

Smoothness of Solutions of Q-BSDEs

In this subsubsection, we will present some important results concerning Q-BSDEs, the

natural tool we will use is the Malliavin calculus, and previous results for the regularity

of the associated L-BSDE (1.31).

Theorem 1.13
Let (Y·, Z·) ∈ Sq

F([0, T ]) × Hq
F([0, T ]) be the unique solution to Q-BSDE (0.1) for

any q ≥ 4, then

(i) E sup0≤t≤T |Zt|q < +∞,

(ii) Y belongs to L1,q
a and Z belongs to L1, q

2
a ,

(iii) Zt = DtYt, µ⊗ P-a.e.

(iv) sup0≤θ≤T {E sup0≤t≤T |DθYt|q + E(
∫ T

θ |DθZt|2 dt) q
4 } < +∞.

Proof of (i) : Keeping in mind that F ′ is bounded and (1.34), then (i) follows immediately

from the fact that Zt = Z̄t

F ′(F −1(Ȳt)) .
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Proof of (ii) : We will prove that Y , Z belongs to L1,q
a . To do that we should prove the

following two assertions.

(a) Due to the Lipschitz continuity of F −1 and Ȳ ∈ D1,q, it is obvious that Y ∈ D1,q.

Since Z̄ ∈ D1,q and F ′ ∈ C1 (R) with bounded derivative and Y ∈ D1,q, then

Z ∈ D1,q

(b) First, since (Y, Z) is a solution of Q-BSDE (0.1) then we have the following esti-

mates

E
(∫ T

0
|Yt|2 dt

) q
2

+ E
(∫ T

0
|Zt|2 dt

) q
2

< ∞.

We want to prove,

E
(∫ T

0

∫ T

0
|DθYt|2 dθdt

) q
2

+ E
(∫ T

0

∫ T

0
|DθZt|2 dθdt

) q
4

< ∞.

Since DθYt = DθȲt

F ′(Yt)
, Ȳ ∈ L1,q

a and the relation m ≤ F ′(x) ≤ M , we obtain

E
(∫ T

0

∫ T

0
|DθYt|2 dθdt

) q
2

≤ 1
mq

E
(∫ T

0

∫ T

0

∣∣∣DθȲt

∣∣∣2 dθdt

) q
2

< ∞.

A simple computation shows that

DθZt = DθZ̄t

F ′ (Yt)
− F ′′ (Yt)

F ′ (Yt)
ZtDθYt.

Thus by the Cauchy–Schwartz inequality and the fact that E sup0≤t≤T |Zt|q is finite

for any q ≥ 4, we have

E
(∫ T

0

∫ T

0
|ZtDθYt|2 dθdt

) q
4

≤
(
E sup

0≤t≤T
|Zt|q

) 1
2
E(∫ T

0

∫ T

0
|DθYt|2 dθdt

) q
2


1
2

.

and hence,

E
(∫ T

0

∫ T

0
|DθZt|2 dθdt

) q
4

≤ 1
m

q
2
E
(∫ T

0

∫ T

0

∣∣∣DθZ̄t

∣∣∣2 dθdt

) q
4

+ M
q
2

m
q
2

(
E sup

0≤t≤T
|Zt|q

) 1
2
E(∫ T

0

∫ T

0
|DθYt|2 dθdt

) q
2


1
2

.

Proof of (iii) :
{

DtȲt

}
0≤t≤T

gives a version of
{

Z̄t

}
0≤t≤T

, namely, Z̄t = DtȲt; then

ZtF
′ (Yt) = Z̄t = DtȲt = Dt(F (Yt)) = F

′ (Yt) DtYt,

then, Zt = DtYt.
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Proof of (iv) : We know that ξ̄ and h̄ satisfy conditions (1.7) and (1.9) and by invoking

the estimate in Lemma 1.3, we obtain

sup
0≤θ≤T

E sup
0≤t≤T

∣∣∣DθȲt

∣∣∣q + E
(∫ T

θ

∣∣∣DθZ̄t

∣∣∣2 dt

) q
4
 < +∞. (1.38)

Using (1.38) and m ≤ F ′ ≤ M , we have

sup
0≤θ≤T

E sup
0≤t≤T

|DθYt|q ≤ sup
0≤θ≤T

E sup
0≤t≤T

∣∣∣∣ 1
F ′ (Yt)

DθȲt

∣∣∣∣q
≤ 1

mq
sup

0≤θ≤T
E sup

0≤t≤T

∣∣∣DθȲt

∣∣∣q < +∞.

The Cauchy–Schwartz inequality, F ′ and F ′′ are bounded functions and the fact that

E sup0≤t≤T |Zt|q is finite, leads to

sup
0≤θ≤T

E
(∫ T

θ
|DθZt|2 dt

) q
4

≤ sup
0≤θ≤T

E

∫ T

θ

∣∣∣∣∣ DθZ̄t

F ′ (Yt)

∣∣∣∣∣
2

dt


q
4

+ E
(∫ T

θ

∣∣∣∣F ′′ (Yt)
F ′ (Yt)

ZtDθYt

∣∣∣∣2 dt

) q
4


≤ 1

m
q
2

sup
0≤θ≤T

E
(∫ T

θ

∣∣∣DθZ̄t

∣∣∣2 dt

) q
4

+ M
q
2

m
q
2

sup
0≤θ≤T


(
E sup

0≤t≤T
|Zt|q

) 1
2
E(∫ T

θ
|DθYt|2 dt

) q
2


1
2
 < +∞.

Remark 1.14
We would like to point out that the estimations for Y and DθY in Theorem 1.13 hold

also true for q ≥ 2.

In what follows, we shall adapt the examples studied in [34] to our setting of quadratic

BSDEs for which Assumption 3 is satisfied.

Example 1.4

Consider the Q-BSDE (0.1) with generator h(t, y) + h1(t)z + f(y) |z|2.

(i) Assume that h : [0, T ] ×R −→ R is a deterministic function twice continuously

differentiable with uniformly bounded first- and second-order partial derivatives

with respect to y and
∫ T

0 |h (t, 0)|2 dt < +∞.
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(ii) We define the terminal value ξ as the multiple stochastic integrals of the form

ξ =
∫

[0, T ]n
g(t1, · · · , tn)dWt1 · · · dWtn ,

where n ≥ 2 is an integer and g(t1, . . . , tn) is a symmetric function in L2 ([0, T ]n),

such that

Duξ = n
∫

[0, T ]n−1
g(t1, · · · , tn−1, u)dWt1 · · · dWtn−1

DvDuξ = n(n− 1)
∫

[0, T ]n−2
g(t1, · · · , tn−2, u, v)dWt1 · · · dWtn−2 .

Then

sup
0≤u≤T

E
[
|Duξ|2

]
≤ n sup

0≤u≤T

∫
[0, T ]n−1

(g(t1, · · · , tn−1, u))2 dt1 · · · dtn−1 < +∞,

and

sup
0≤u≤T

sup
0≤v≤T

E
[
|DuDvξ|2

]
≤ n(n− 1) sup

0≤u≤T
sup

0≤v≤T

∫
[0, T ]n−2

(g(t1, · · · , tn−2, u, v))2 dt1 · · · dtn−2 < +∞,

Moreover, there is a constant L > 0 such that for any u, v ∈ [0, T ]
∫

[0, T ]n−1
|g(t1, · · · , tn−1, u) − g(t1, · · · , tn−1, v)|2 dt1 · · · dtn−1 ≤ L |u− v| .

Assumptions (i) and (ii) imply Assumption 3, and thus Z satisfies property (ii)

of Lemma 1.12.

Example 1.5

We consider the Q-BSDE (0.1) with generator h(r, y) + h1(r)z + f(y) |z|2.

Let Ω = C0 ([0, T ]) be the classical Wiener space equipped with the Borel σ-

field and Wiener measure. Then, Ω is a Banach space with a uniform norm ∥·∥∞

and Wt = ω(t) is the canonical Wiener process:

(i) Assume that h : [0, T ] ×R −→ R is a twice differentiable deterministic function

such that their first- and second-order partial derivatives with respect to y are
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uniformly bounded and
∫ T

0 h2 (t, 0) dt < +∞.

(ii) We put ξ = φ (W ) such that φ : Ω → R is twice Fréchet differentiable, assuming

further that the Fréchet derivatives δφ and δ2φ satisfy for all ω ∈ Ω and some

positive constants C1 and C2

|φ(ω)| + ∥δφ(ω)∥ +
∥∥∥δ2φ (ω)

∥∥∥ ≤ C1 exp (C2 ∥ω∥r
∞) , 0 < r < 2

where ∥·∥ stands for the operator norm.

(iii) We associate with δφ and δ2φ the signed measure λ on [0, 1] and υ on [0, 1] ×

[0, 1], respectively; there exists a constant L > 0 such that for all 0 ≤ θ ≤ θ′ ≤ 1,

for some p ≥ 2

E |λ ((θ, θ′])|p ≤ L |θ − θ′|
p
2 ,

we know that Dθξ = λ ((θ, 1]) and DuDθξ = υ ((θ, 1] × (u, 1]). From (i), (ii), (iii)

and Fernique’s Theorem, we can check that Assumption 3 is satisfied and there-

fore the Hölder continuity property of Z (ii) of Lemma 1.12 is established.

Example 1.6
Consider the following quadratic forward–backward SDE

Xt = X0 +
∫ t

0
b(r,Xr)dr +

∫ t

0
σ(r,Xr)dWr,

Yt = φ

(∫ T

0
X2

r dr
)

−
∫ T

t
ZrdWr

+
∫ T

t

(
h(r,Xr, Yr) + h1(r)Zr + f(Yr) |Zr|2

)
dr,

(1.39)

where b, σ, φ, h, and f are deterministic functions and X0 ∈ R.

We make the following assumptions:

(i) b and σ are twice differentiable and their first- and second-order partial deriva-

tives with respect to x are uniformly bounded; in addition, there is a constant

L > 0, such that, for any s, t ∈ [0, T ], x ∈ R

|σ (t, x) − σ (s, x)| ≤ L |t− s|
1
2
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(ii) sup0≤t≤T {|b(t, 0)| + |σ(t, 0)|} < +∞.

(iii) φ is twice differentiable and there exists a positive constant C and integer n such

that ∣∣∣∣∣φ
(∫ T

0
x2

t dt
)∣∣∣∣∣+

∣∣∣∣∣φ′
(∫ T

0
x2

t dt
)∣∣∣∣∣+

∣∣∣∣∣φ′′
(∫ T

0
x2

t dt
)∣∣∣∣∣ ≤ C (1 + ∥x∥∞)n ,

where ∥x∥∞ = sup0≤t≤T |xt|, for any x· ∈ C ([0, T ]).

(iv) The first- and second-order partial derivatives of h(t, ·, ·) with respect to x and

y are continuous and uniformly bounded and
∫ T

0 (h(t, 0, 0))2dt < +∞.

Under assumptions (i) and (iv), equation (1.39) has a unique solution triple (X, Y, Z).

Moreover, the following results hold true; for any real number r > 0, there exists a

constant C > 0 such that, for any t, s ∈ [0, T ]

E sup
0≤t≤T

|Xt|r < +∞, E |Xt −Xs|r ≤ C |t− s|
r
2 . (1.40)

For any fixed y ∈ R, we have Dθh(t,Xt, y) = ∂xh(t,Xt, y)DθXt. Then, keeping in

mind all the assumptions in this example, by Theorem 2.2.1, Lemma 2.2.2 in [46],

and the estimates in (1.40), one can check that the assertions of Assumption 3 are

satisfied. Therefore, Z enjoys the Hölder continuity property (ii) of Lemma 1.12.
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Chapter 2

The Numerical Schemes for Q-BSDEs and Their

Rate of Convergence

2.1 Introduction

Hu et al. in [34] construct and develop, by utilizing the Malliavin calculus, multiple

numerical approximation schemes for solving backward stochastic differential equations

with a global Lipschitz coefficient in the non-Markovian framework. Additionally, they

determine their convergence rate using the Lp-Hölder continuity results. The primary

objective of this chapter is to generalize the above mentioned results to quadratic backward

stochastic differential equations.

2.2 Numerical Schemes for L-BSDEs

In this subsection, we recall the most important results established in [34] concerning

the numerical schemes and their rate of convergence in the case where the generator is

global Lipschitz. For this purpose, we consider the following L-BSDE

Ȳt = ξ̄ +
∫ T

t
h̄(r, Ȳr, Z̄r)dr −

∫ T

t
Z̄rdWr, 0 ≤ t ≤ T, (2.1)

where h̄ :[0, T ] × Ω × R × R → R is a given generator and ξ̄ the terminal condition.

Note that, if for any q ≥ 2, ξ̄ ∈ Lq (Ω) and h̄ is a uniformly Lipshitz function, then Lemma

1.3 shows the existence of a unique solution
(
Ȳ , Z̄

)
∈ Sq

F([0, T ]) × Hq
F([0, T ]) to BSDE

(2.1).

In this subsection and in the rest of the thesis, we let π = {0 = t0 < t1 < . . . < tn = T}

stand for an arbitrary partition of the interval [0, T ] and |π| = max0≤i≤n−1 |ti+1 − ti|

and we denote ∆i = ti+1 − ti, 0 ≤ i ≤ n− 1..

36
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◁ Explicit scheme: An explicit scheme for L-BSDE (2.1) has been presented in [34],

where the approximate pairs
(
Ȳ π, Z̄π

)
are defined as follows

Ȳ π
tn

= ξ̄π, Z̄π
tn

= 0,

Ȳ π
t = Ȳ π

ti+1
+ h̄

(
ti+1, Ȳ

π
ti+1

,E
[

1
∆i+1

∫ ti+2

ti+1
Z̄π

r dr | Fti+1

])
∆i

−
∫ ti+1

t
Z̄π

r dWr, t ∈ [ti, ti+1) ,

(2.2)

i = n− 1, n− 2, . . ., 0, where we have by convention,

E
[

1
∆i+1

∫ ti+2

ti+1
Z̄π

r dr | Fti+1

]
= 0 for i = n− 1.

Proposition 2.1
Consider the explicit scheme (2.2). Assume that Assumption 1 holds true and the

partition π satisfies

max
0≤i≤n−1

∆i

∆i+1
≤ L1,

where L1 is a constant. Assume that a constant L2 > 0 exists such that

∣∣∣h̄ (t2, ȳ, z̄) − h̄ (t1, ȳ, z̄)
∣∣∣ ≤ L2 |t2 − t1|

1
2 (2.3)

for all t1, t2 ∈ [0, T ] and ȳ, z̄ ∈ R. Then, there exist two positive constants δ and K

which are independent from π, such that, if |π| < δ, then

E sup
0≤t≤T

∣∣∣Ȳt − Ȳ π
t

∣∣∣2 +
∫ T

0
E
∣∣∣Z̄t − Z̄π

t

∣∣∣2 dt ≤ K
(

|π| + E
∣∣∣ξ̄ − ξ̄π

∣∣∣2) .

Proof : See Theorem 3.1 in [34].

◁ Implicit scheme: We also recall the numerical scheme in the implicit case for

L-BSDE (2.1), the approximating pair
(
Ȳ π, Z̄π

)
is defined recursively by

Ȳ π
tn

= ξ̄π

Ȳ π
t = Ȳ π

ti+1
+ h̄

(
ti+1, Ȳ

π
ti+1

,
1

∆i

∫ ti+1

ti

Z̄π
r dr

)
∆i −

∫ ti+1

t
Z̄π

r dWr,
(2.4)
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for t ∈ [ti, ti+1), i = n−1, n−2, . . ., 0, where ξ̄π is an approximation of the terminal

value ξ̄. In this recursive formula (2.4), on each subinterval [ti, ti+1), i = n−1, . . . , 0,

the nonlinear "generator" h̄ contains the information of Z̄π on the same interval. In

this sense, this formula is different from formula (2.2), and (2.4) is an equation for{(
Ȳ π

t , Z̄
π
t

)}
ti≤t≤ti+1

. When |π| is sufficiently small, the existence and uniqueness of

the solution to the above equation can be established. In fact, equation (2.4) is of

the following form:

Ȳt = ξ̄ + g(
∫ b

a
Z̄rdr) −

∫ b

t
Z̄rdWr, t ∈ [a, b] and 0 ≤ a < b ≤ T . (2.5)

For the BSDE (2.5), we have the following Theorem.

Theorem 2.2

Let 0 ≤ a < b ≤ T and p ≥ 2. Let ξ̄ be Fb-measurable and ξ̄ ∈ Lp(Ω). If there exists

a constant L > 0 such that g : (Ω × R,Fb ⊗ B) → (R,B) satisfies

|g(z1) − g(z2)| ≤ L |z1 − z2|

for all z1, z2 ∈ R and g(0) ∈ Lp(Ω), then there is a constant δ(p, L) > 0, such that,

when b−a < δ(p, L), equation (2.5) has a unique solution (Ȳ , Z̄) ∈ Sp
F([a, b])×Hp

F([a, b]).

Proof : See [34].

Proposition 2.3

Assume that h̄ satisfies condition (2.3) in Proposition 2.1. If Assumption 1 holds true

and ξ̄π ∈ Lp(Ω), then there exist two positive constants δ and K which are independent

from π, such that, whenever |π| < δ, we have

E sup
0≤t≤T

∣∣∣Ȳt − Ȳ π
t

∣∣∣p + E
(∫ T

0

∣∣∣Z̄t − Z̄π
t

∣∣∣2 dt
) p

2

≤ K
(
|π|

p
2 + E

∣∣∣ξ − ξ̄π
∣∣∣p) .

Proof : See [34].

◁ Totally discrete scheme: In addition to the two aforementioned types of schemes

discussed in [34], the authors propose a totally discrete scheme in the case where
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the generator h̄ takes the following linear form;

h̄(t, ȳ, z̄) = g(t)ȳ + h(t)z̄ + f1(t), (2.6)

where the functions g, h are bounded and f1 ∈ L2 ([0, T ]) and the following assumptions

are in force:

(H1) h̄ is deterministic, which implies Dθh̄(t, ȳ, z̄) = 0.

(H2) The functions g, h, and f1 are 1
2 -Hölder continuous in t.

(H3) E sup0≤θ≤T |Dθξ̄|r < +∞, for all r ≥ 1.

From (2.1), {DθȲt}0≤θ≤t≤T can be represented as

DθȲt = E
[
ρt,TDθξ̄ +

∫ T

t
ρt,rDθh̄

(
r, Ȳr, Z̄r

)
dr | Ft

]
, (2.7)

where

ρt,r = exp
{∫ r

t
βsdWs +

∫ r

t

(
h1(s) − 1

2β
2
s

)
ds
}

(2.8)

with αs = ∂ȳh̄(s, Ȳs, Z̄s) and βs = ∂z̄h̄(s, Ȳs, Z̄s).

Using Z̄t = DtȲt, µ⊗ P a.e., from (2.1), (2.7) and (2.8), we define recursively
Ȳ π

t = ξ̄π, Z̄π
tn

= DT ξ̄

Ȳ π
ti

= E
[
Ȳ π

ti+1
+ h̄

(
ti+1, Ȳ

π
ti+1

, Z̄π
ti+1

)
∆i | Fti

]
Z̄π

ti
= E

[
ρπ

ti+1,tn
Dti

ξ̄ +
n−1∑
k=i

ρπ
ti+1,tk+1

h̄
(
tk+1, Ȳ

π
tk+1

, Z̄π
tk+1

)
∆k | Fti

]
,

(2.9)

i = n− 1, n− 2, . . ., 0, such that ρπ
ti,ti

= 1, i = 0, 1, . . . , n and for 0 ≤ i < j ≤ n,

ρπ
ti,tj

= exp


j−1∑
k=i

∫ tk+1

tk

∂z̄h̄
(
r, Ȳ π

tk
, Z̄π

tk

)
dWr (2.10)

+
j−1∑
k=i

∫ tk+1

tk

(
∂ȳh̄

(
r, Ȳ π

tk
, Z̄π

tk

)
− 1

2
[
∂z̄h̄

(
r, Ȳ π

tk
, Z̄π

tk

)]2)
dr
 .

Proposition 2.4

Let ξ̄ satisfy (1.i) in Assumption 1 and h̄ be a linear function taking the form (2.6).

Then, under assumptions (H1)–(H3) there exist two positive constants δ and K which
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are independent from π, such that when |π| < δ we have

E max
0≤i≤n

{∣∣∣Ȳti
− Ȳ π

ti

∣∣∣p +
∣∣∣Z̄ti

− Z̄π
ti

∣∣∣p} ≤ K |π|
p
2 − p

(2 ln 1
|π|)

(
ln 1

|π|

) p
2

.

Proof : See [34].

2.3 The Rate of Convergence of Q-BSDEs

In this section, with the help of the aforementioned explicit (2.2), implicit (2.4), and

fully discrete (2.9) schemes provided for the numerical study of L-BSDE (2.1), we aim to

construct numerical schemes for the underlying Q-BSDE (0.1). We also take a further

step to study the convergence rates of these schemes. It is important to note that, due

to technical concerns, we ought to assume that the function h1 in Q-BSDE (0.1) is a

constant.

2.3.1 An Explicit Scheme for Q-BSDE

From (1.31), we know that, when t ∈ [ti, ti+1], the L-BSDE associated to the Q-BSDE

(0.1) is given by

Ȳt = Ȳti+1 +
∫ ti+1

t
h̄
(
r, Ȳr, Z̄r

)
dr −

∫ ti+1

t
Z̄rdWr.
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In the same way as defining the alternative scheme (2.2), the approximating pairs
(
Ȳ π, Z̄π

)
of the above L-BSDE are defined recursively by

Ȳ π
tn

= ξ̄π, Z̄π
tn

= 0

Ȳ π
t = Ȳ π

ti+1
−
∫ ti+1

t
Z̄π

r dWr

+h
(
ti+1, F

−1
(
Ȳ π

ti+1

))
F ′
(
F−1

(
Ȳ π

ti+1

))
△i

+h1 (ti+1)E
[

1
△i+1

∫ ti+2

ti+1
Z̄π

r dr | Fti+1

]
△i

(2.11)

for t ∈ [ti, ti+1), i = n− 1, n− 2, . . . , 0 and ξ̄π ∈ L2(Ω) is an approximation of the final

condition ξ̄ and by convention

E
[

1
△i+1

∫ ti+2

ti+1
Z̄π

r dr | Fti+1

]
= 0 when i = n− 1.

We define the scheme associated with Q-BSDE (0.1) as follows: Y π
t = F−1

(
Ȳ π

t

)
where Zπ

t = Z̄π
t

F ′(F −1(Ȳ π
t )) . We should point out that (Y π, Zπ) does not satisfy a QBSDE;

the reason is that the numerical scheme (2.11) is not a BSDE since the non-linear generator

h̄ contains the information of Z̄π on the time interval [ti+1, ti+2] rather than [ti, ti+1].

Theorem 2.5
Let Assumption 3, (2.i), (2.iii) and (2.iv) in Assumption 2 be satisfied and the partition

π satisfies max0≤i≤n−1
△i

△i+1
≤ L1, where L1 is a positive constant. Then, there exist

two positive constants δ and K which are independent of π, such that, for |π| < δ, we

have the following estimates

E sup
0≤t≤T

|Yt − Y π
t |2 ≤ K

(
|π| + E |ξ − ξπ|2

)
,

and for all 1 ≤ p < 2,

E
∫ T

0
|Zt − Zπ

t |p dt ≤ K
(
|π| + E |ξ − ξπ|2

) p
2 .

Proof : We consider the approximation scheme (2.11). We have already seen that the inputs

ξ̄ and h̄ of Equation (1.31) satisfy Assumption 1. Using assertion (iv) of Assumption 2,
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h1 is a constant function and the fact that F ′ is bounded one shows the existence of a

constant L3 > 0, such that, for all t1, t2 ∈ [0, T ] and y, z ∈ R∣∣∣h̄(t2, y, z) − h̄(t1, y, z)
∣∣∣ ≤ L3 |t2 − t1|

1
2 . (2.12)

Then, thanks to Proposition 2.1, there exist positive constants K and δ, independent of

the partition π, such that, whenever |π| < δ, we have

E sup
0≤t≤T

∣∣∣Ȳt − Ȳ π
t

∣∣∣2 + E
∫ T

0

∣∣∣Z̄t − Z̄π
t

∣∣∣2 dt ≤ K
(
|π| + E |ξ − ξπ|2

)
. (2.13)

Firstly, by using (2.13) and the fact that F and F −1 are Lipschitz functions, we have

E sup
0≤t≤T

|Yt − Y π
t |2 = E sup

0≤t≤T

∣∣∣F −1
(
Ȳt

)
− F −1

(
Ȳ π

t

)∣∣∣2
≤ K

[
|π| + E |ξ − ξπ|2

]
.

Now, we shall show that for 1 ≤ p < 2

E
∫ T

0
|Zt − Zπ

t |p dt ≤ K
(
|π| + E |ξ − ξπ|2

) p
2 .

Applying the Hölder inequality twice and using (2.13), we have

E
∫ T

0

∣∣∣Z̄t − Z̄π
t

∣∣∣p dt ≤ KE
(∫ T

0

∣∣∣Z̄t − Z̄π
t

∣∣∣2 dt

) p
2

(2.14)

≤ K
(
|π| + E |ξ − ξπ|2

) p
2 ,

With the Hölder inequality and E sup0≤t≤T

∣∣∣Z̄t

∣∣∣q < +∞, for any q ≥ 2, we have

E
∫ T

0

∣∣∣Z̄t

∣∣∣p ∣∣∣Ȳt − Ȳ π
t

∣∣∣p dt ≤ T

(
E sup

0≤t≤T

∣∣∣Ȳt − Ȳ π
t

∣∣∣2) p
2
(
E sup

0≤t≤T

∣∣∣Z̄t

∣∣∣ 2p
2−p

) 2−p
2

≤ K
(
|π| + E |ξ − ξπ|2

) p
2 , (2.15)

and hence, by (2.14) and (2.15), we obtain the desired result.

2.3.2 An Implicit Scheme for Q-BSDE

Firstly, we give the numerical scheme for the associated L-BSDE (1.31)

Ȳ π
tn

= ξ̄π

Ȳ π
t = Ȳ π

ti+1
−
∫ ti+1

t
Z̄π

r dWr

+
[
F ′
(
F−1

(
Ȳ π

ti+1

))
h
(
ti+1, F

−1
(
Ȳ π

ti+1

))
+ h1 (ti+1)

△i

∫ ti+1

ti

Z̄π
s ds

]
△i,

(2.16)
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for t ∈ [ti, ti+1), i = n−1, n−2, . . . , 0, where the partition π and ∆i, i = n−1, . . . , 0 are

defined as in the previous section and ξ̄π is an approximation (if necessary) of the terminal

condition ξ̄. Then, we define Y π
t = F−1(Ȳ π

t ) and Zπ
t = Z̄π

t

F ′(F −1(Ȳ π
t )) . The pair (Y π, Zπ) is

an approximation of the unique solution (Y, Z) of Q-BSDE (0.1). Then, (Y π, Zπ) satisfies

the following recursive quadratic BSDEs
Y π

tn
= ξπ,

Y π
t = φ

(∫ ti+1

ti

F ′ (Y π
r )Zπ

r dr
)

+
∫ ti+1

t
f(Y π

r ) |Zπ
r |2 dr −

∫ ti+1

t
Zπ

r dWr,
(2.17)

where t ∈ [ti, ti+1), i = n− 1, n− 2, . . . , 0 and

φ
(∫ ti+1

ti

F ′ (Y π
r )Zπ

r dr
)

= F−1
(
F
(
Y π

ti+1

)
+ F ′(Y π

ti+1
)h
(
ti+1, Y

π
ti+1

)
△i +h1 (ti+1)

∫ ti+1

ti

Zπ
r F

′ (Y π
r ) dr

)
.

In fact, Equation (2.17) can be written in the form:

Yt = F−1
(
ξ̄ + g

(∫ v

u
F ′ (Yr)Zrdr

))
+
∫ v

t
f(Yr) |Zr|2 dr −

∫ v

t
ZrdWr. (2.18)

for t ∈ [u, v] and 0 ≤ u < v ≤ T , ξ̄ is Fv-measurable and g : (Ω × R, Fv ⊗ B) −→ (R, B)

is a given function. In the following Theorem we will give an existence and uniqueness

result for this new type of Q-BSDE.

Theorem 2.6
Let 0 ≤ u < v ≤ T and p ≥ 2. Let g be a Lipschitz function such that g (0) ∈ Lp(Ω)

and ξ̄ ∈ Lp(Ω), then equation (2.18) admits a unique solution

(Y, Z) ∈ Sp
F ([u, v]) × Hp

F ([u, v]) .

Proof : Itô’s formula applied to Ȳt = F (Yt), taking into account that Z̄t = F ′ (Yt) Zt, yields
dȲt = F ′(Yt)

(
−f(Yt) |Zt|2 dt + ZtdWt

)
+ 1

2F
′′(Yt) |Zt|2 dt = Z̄tdWt

Ȳv = ξ̄ + g

(∫ v

u
Z̄rdr

)
.

Or equivalently in its integral form

Ȳt = ξ̄ + g

(∫ v

u
Z̄rdr

)
−
∫ v

t
Z̄rdWr, t ∈ [u, v]. (2.19)
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Notice that g and ξ̄ satisfy all the conditions of Theorem 2.2 and therefore the BSDE

(2.19) has a unique solution (Ȳ , Z̄) ∈ Sp
F ([u, v]) × Hp

F ([u, v]).

Now, Itô’s formula applied to F −1(Ȳt) shows that

dF −1(Ȳt) = (F −1)′(Ȳt)dȲt + 1
2(F −1)′′(Ȳt)d⟨Ȳ·⟩t.

By invoking notations (1.28) and (1.32), we have

dF −1(Ȳt) = Z̄t

F ′(F −1
(
Ȳt

)
)
dWt − 1

2
F ′′(F −1(Ȳt))(

F ′(F −1
(
Ȳt

)
)
)3

∣∣∣Z̄t

∣∣∣2 dt,

which will be written in its integral form as

Yt = Yv +
∫ v

t
f(Yr) |Zr|2 dr −

∫ v

t
ZrdWr. (2.20)

Theorem 2.7
For any p ≥ 2, let (Y π, Zπ) ∈ Sp

F ([0, T ]) × Hp
F ([0, T ]) be a solution of equation

(2.17). Let Assumption 3 and (2.i), (2.iii) and (2.iv) in Assumption 2 be satisfied.

Then, there exist two positive constants δ and K which are independent from π, such

that, if |π| < δ, the rate of convergence of the implicit scheme (2.17) of Q-BSDE (0.1)

is of this type:

E sup
0≤t≤T

|Yt − Y π
t |p ≤ K

(
|π|

p
2 + E|ξ − ξπ|p

)
,

and

E
(∫ T

0
|Zt − Zπ

t |2 dt
) p

2

≤ K
(
|π|

p
2 + max

(
E |ξ − ξπ|p , |π|−

p
2 E |ξ − ξπ|2p

))
.

Proof : Thanks to assertion (2.iv) in Assumption 2, and considering that h1 is a constant

function and the boundedness of F ′, we can easily check that h̄ satisfies condition (2.12).

Assuming that ξπ is p-integrable, it can be easily verified that ξ̄π ∈ Lp(Ω), for any p ≥ 2.

Keeping in mind that ξ̄ and h̄ satisfy Assumption 1, Proposition 2.3 shows that there are

two positive constants K and δ, independent of the partition π, such that, for |π| < δ,

we have

E sup
0≤t≤T

∣∣∣Ȳt − Ȳ π
t

∣∣∣p + E
(∫ T

0

∣∣∣Z̄t − Z̄π
t

∣∣∣2 dt

) p
2

≤ K
(
|π|

p
2 + E |ξ − ξπ|p

)
. (2.21)
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Since F and F −1 are Lipschitz functions and by using (2.21) we have

E sup
0≤t≤T

|Yt − Y π
t |p ≤ KE sup

0≤t≤T

∣∣∣Ȳt − Ȳ π
t

∣∣∣p
≤ K

(
|π|

p
2 + E |ξ − ξπ|p

)
.

Now, let us show that:

E
(∫ T

0
|Zt − Zπ

t |2 dt

) p
2

≤ K
(
|π|

p
2 + max

(
E |ξ − ξπ|p , |π|−

p
2 E |ξ − ξπ|2p

))
.

We have for all q ≥ 1, (|x| + |y|)q ≤ 2q−1 (|x|q + |y|q),

E
(∫ T

0
|Zt − Zπ

t |2 dt

) p
2

≤ K

E(∫ T

0

∣∣∣Z̄t − Z̄π
t

∣∣∣2 dt

) p
2

+ E
(∫ T

0

∣∣∣Z̄t

∣∣∣2 ∣∣∣Ȳt − Ȳ π
t

∣∣∣2 dt

) p
2


so, by Cauchy–Schwartz inequality, we obtain

E
(∫ T

0

∣∣∣Z̄t

∣∣∣2 ∣∣∣Ȳt − Ȳ π
t

∣∣∣2 dt

) p
2

≤ E sup
0≤t≤T

∣∣∣Ȳt − Ȳ π
t

∣∣∣p(∫ T

0

∣∣∣Z̄t

∣∣∣2 dt

) p
2

≤
(
E sup

0≤t≤T

∣∣∣Ȳt − Ȳ π
t

∣∣∣2p
) 1

2
(
E
(∫ T

0

∣∣∣Z̄t

∣∣∣2 dt

)p) 1
2

.

Now, for all x > 0, y ≥ 0 and 0 < q < 1, we have (x + y)q ≤ xq + qxq−1y and by using

(2.21), we obtain(
E sup

0≤t≤T

∣∣∣Ȳt − Ȳ π
t

∣∣∣2p
) 1

2

≤ K
(
|π|p + E |ξ − ξπ|2p

) 1
2

≤ K
(
|π|

p
2 + |π|−

p
2 E |ξ − ξπ|2p

)
.

Moreover, one has

E
(∫ T

0

∣∣∣Z̄t

∣∣∣2 dt

)p

≤ T pE sup
0≤t≤T

∣∣∣Z̄t

∣∣∣2p
< +∞.

and therefore

E
(∫ T

0

∣∣∣Z̄t

∣∣∣2 ∣∣∣Ȳt − Ȳ π
t

∣∣∣2 dt

) p
2

≤ K
(
|π|

p
2 + |π|−

p
2 E |ξ − ξπ|2p

)
.

Finally,

E
(∫ T

0
|Zt − Zπ

t |2 dt

) p
2

≤ K
(
|π|

p
2 + E |ξ − ξπ|p

)
+ K

(
|π|

p
2 + |π|−

p
2 E |ξ − ξπ|2p

)
≤ K

(
|π|

p
2 + max

(
E |ξ − ξπ|p , |π|−

p
2 E |ξ − ξπ|2p

))
.

This ends the proof of theorem.
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Remark 2.8

(i) Implicit and explicit schemes give the same results if h̄ does not depend on Z̄.

(ii) For both explicit and implicit numerical schemes considered in this section,

the problem is how to evaluate the processes {Zπ
t }0≤t≤T and {Z̄π

t }0≤t≤T , in order

to implement the scheme on computers.

2.3.3 A Fully Discrete Scheme for Q-BSDE

In this part, we consider the following Q-BSDE

Yt = ξ +
∫ T

t

(
α(s) + β(s)Zs + f(Ys) |Zs|2

)
ds−

∫ T

t
ZsdWs (2.22)

under the following Assumptions:

(A1) Assume that α and β are deterministic and bounded functions, moreover, there

exists a constant L > 0, such that for all t1, t2 ∈ [0, T ]

|α(t2) − α(t1)| + |β(t2) − β(t1)| ≤ L |t2 − t1|
1
2 .

(A2) E[sup0≤θ≤T |Dθξ|r] is finite for all r ≥ 1.

(A3) There exists a constant M > 0 such that, ξ ≤ M P-a.s.

QBSDE (ξ, β(s)z + f(y) |y|2) This paragraph is devoted to the study of a particular

case of Q-BSDE (2.22) when α ≡ 0. By using Zvonkin’s transformation and the notations

(1.28), the equation QBSDE (2.22) will be transformed formally a.s. to the following

equation

Ȳt = ξ̄ +
∫ T

t
β(s)Z̄sds−

∫ T

t
Z̄sdWs. (2.23)

The fully discrete numerical scheme of (2.23) will be defined similarly to the one of

(2.9) with h̄(ti+1, Ȳ
π

ti+1
, Z̄π

ti+1
) = β(ti+1)Z̄π

ti+1
,

Ȳ π
tn

= ξ̄, Z̄π
tn

= DT ξ̄,

Ȳ π
ti

= E
[
Ȳ π

ti+1
+ β(ti+1)Z̄π

ti+1
∆i | Fti

]
,

Z̄π
ti

= E
[
ρπ

ti+1,tn
Dti

ξ̄ | Fti

]
,

(2.24)
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where ρπ
ti,ti

= 1, i = 0, 1, . . . , n and for 0 ≤ i < j ≤ n,

ρπ
ti,tj

= exp


j−1∑
k=i

∫ tk+1

tk

β(s)dWs − 1
2

j−1∑
k=i

∫ tk+1

tk

β2(s)ds
 .

Theorem 2.9
For any p ≥ 2, let Assumptions (A1) and (A2) be satisfied and ξ satisfy assertion (1.i)

in Assumption 1. Then, the rate of convergence of the fully discrete scheme associated

with Q-BSDE (2.22) is given by

E max
0≤i≤n

{∣∣∣Yti
− Y π

ti

∣∣∣p +
∣∣∣Zti

− Zπ
ti

∣∣∣p} ≤ C |π|
p
2 − p

(2 ln 1
|π|)

(
ln 1

|π|

) p
2

.

Proof : Considering that ξ̄ satisfies (1.i) in Assumption 1, and Assumptions (A1) and (A2)

are satisfied, then thanks to Proposition 2.4, the following inequality gives the rate of

convergence of the fully discrete scheme (2.24) related to BSDE (2.23),

E max
0≤i≤n

{∣∣∣Ȳti − Ȳ π
ti

∣∣∣p +
∣∣∣Z̄ti − Z̄π

ti

∣∣∣p} ≤ C |π|
p
2 − p(

2 ln 1
|π|

) (
ln 1

|π|

) p
2

. (2.25)

Let (Y π, Zπ) such that Y π
t = F −1(Ȳ π

t ) and Zπ
t = Z̄π

t

F ′(F −1(Ȳ π
t )) be an approximation of

the unique solution pair (Y, Z) of Q-BSDE (2.22). Firstly, since F and F −1 are Lipschitz

functions, we deduce from (2.25) that

E max
0≤i≤n

∣∣∣Yti − Y π
ti

∣∣∣p ≤ ME max
0≤i≤n

∣∣∣Ȳti − Ȳ π
ti

∣∣∣p
≤ C |π|

p
2 − p(

2 ln 1
|π|

) (
ln 1

|π|

) p
2

.

where M is the Lipschitz constant of F .

Now, by (2.25), Cauchy–Schwartz inequality and sup0≤t≤T E[|Z̄t|2p] < +∞, we have

E max
0≤i≤n

∣∣∣Z̄ti

∣∣∣p ∣∣∣Ȳti − Ȳ π
ti

∣∣∣p ≤
(
E max

0≤i≤n

∣∣∣Z̄ti

∣∣∣2p
) 1

2
(
E max

0≤i≤n

∣∣∣Ȳti − Ȳ π
ti

∣∣∣2p
) 1

2

≤ C |π|
p
2 − p(

2 ln 1
|π|

) (
ln 1

|π|

) p
2

. (2.26)

Then, we have

E max
0≤i≤n

∣∣∣Zti − Zπ
ti

∣∣∣p ≤ C

(
E max

0≤i≤n

∣∣∣Z̄ti − Z̄π
ti

∣∣∣p + E max
0≤i≤n

∣∣∣Z̄ti

∣∣∣p ∣∣∣Ȳti − Ȳ π
ti

∣∣∣p)
≤ C |π|

p
2 − p(

2 ln 1
|π|

) (
ln 1

|π|

) p
2

.
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QBSDE (ξ, α(s)+β(s)z+ 1
2 |z|2) In this paragraph, we consider the case where f ≡ 1

2 ,

so that the generator of Q-BSDE (2.22) takes the following form α(s) + β(s)z + 1
2 |z|2.

The exponential change of variable Ȳt = exp(Yt) transforms formally equation (2.22) a.s.:

∀ t ∈ [0, T ],

Ȳt = exp(ξ) −
∫ T

t
Zs exp (Ys) dWs

+
∫ T

t
(α(s) exp(Ys) + β(s) exp (Ys)Zs) ds

= exp(ξ) +
∫ T

t

(
α(s)Ȳs + β(s)Z̄s

)
ds−

∫ T

t
Z̄sdWs. (2.27)

The latter BSDE being linear with α is a positive function, and one can define

∀ t ∈ [0, T ], Yt = ln
(
Ȳt

)
, Zt = Z̄t

Ȳt

.

We define the fully discrete numerical scheme of (2.27) similarly to (2.9) with

h̄(ti+1, Ȳ
π

ti+1
, Z̄π

ti+1
) = α(ti+1)Ȳ π

ti+1
+ β(ti+1)Z̄π

ti+1
,

Ȳ π
tn

= exp (ξ) , Z̄π
tn

= exp (ξ)DT ξ,

Ȳ π
ti

= E
[
Ȳ π

ti+1
+
(
α(ti+1)Ȳ π

ti+1
+ β(ti+1)Z̄π

ti+1

)
∆i | Fti

]
,

Z̄π
ti

= E
[
ρπ

ti+1,tn
exp (ξ)Dti

ξ | Fti

]
,

(2.28)

where ρπ
ti,ti

= 1, i = 0, 1, . . . , n and for 0 ≤ i < j ≤ n,

ρπ
ti,tj

= exp


j−1∑
k=i

∫ tk+1

tk

β(s)dWs −
j−1∑
k=i

∫ tk+1

tk

(
α(s) − 1

2β(s)2
)

ds
 .

Let ξ satisfy condition (1.i) in Assumption 1, under Assumptions (A1), (A2) and (A3)

and thanks to Proposition 2.4, there are positive constants C and δ independent of the

partition π, such that, when |π| < δ we have, for any p ≥ 2,

E max
0≤i≤n

{∣∣∣Ȳti
− Ȳ π

ti

∣∣∣p +
∣∣∣Z̄ti

− Z̄π
ti

∣∣∣p} ≤ C |π|
p
2 − p

(2 ln 1
|π|)

(
ln 1

|π|

) p
2

. (2.29)

Theorem 2.10
If ξ satisfies (1.i) in Assumption 1, and Assumptions (A1), (A2) and (A3) hold true,

then there are positive constants C and δ independent of the partition π, such that,
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when |π| < δ, we have the following rate of convergence

E
[

max
0≤i≤n

{∣∣∣Yti
− Y π

ti

∣∣∣p +
∣∣∣Zti

− Zπ
ti

∣∣∣p}] ≤ C |π|
p
2 − p

(2 ln 1
|π|)

(
ln 1

|π|

) p
2

.

Proof : We define the approximation of the couple (Y, Z) solution of Q-BSDE (2.22), as

follows Y π
t = ln

(
Ȳ π

t

)
and Zπ

t = Z̄π
t

Ȳ π
t

. Noting that the linear BSDE (2.27) has a unique

solution
(
Ȳ , Z̄

)
where Ȳ is given explicitly by Ȳt = E[exp(ξ)Γt,T |Ft], such that (Γt,s)s≥t

is the solution of the following SDE dΓt,s = Γt,s (α(s)ds + β(s)dWs) ,

Γt,t = 1.

Define P∗ = LT P, where

Lt = exp
(∫ t

0
β(s)dWs − 1

2

∫ t

0
|β(s)|2 ds

)
,

then

Ȳt = E∗
[
exp(ξ) exp

(∫ T

t
α(s)ds

)
| Ft

]
,

where E∗ stands for the mathematical expectation under P∗. Obviously, if ξ ≥ 0, α(s) ≥

0, we have

Ȳt ≥ exp
(∫ T

t
α(s)ds

)
≥ 1.

Due the fact that ln (·) is a Lipschitz function in the interval [1, +∞[ and by using (2.29),

one can obtain

E max
0≤i≤n

∣∣∣Yti − Y π
ti

∣∣∣p = E max
0≤i≤n

∣∣∣ln(Ȳti) − ln
(
Ȳ π

ti

)∣∣∣p (2.30)

≤ CE max
0≤i≤n

∣∣∣Ȳti − Ȳ π
ti

∣∣∣p
≤ C |π|

p
2 − p(

2 ln 1
|π|

) (
ln 1

|π|

) p
2

.

Let
(
Ȳ , Z̄

)
be the unique solution of BSDE (2.27). Since exp (ξ) and the functions

α, β are bounded, it was shown by Proposition 2. d (i) in [32] that Ȳ and Z̄ are

bounded. Moreover, thanks to scheme (2.28), it is easy to verify that Ȳ π is also bounded.
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Elementary calculation shows that

E max
0≤i≤n

∣∣∣Zti − Zπ
ti

∣∣∣p = E max
0≤i≤n

∣∣∣∣∣ Z̄ti

Ȳti

−
Z̄π

ti

Ȳ π
ti

∣∣∣∣∣
p

≤ E
[

max
0≤i≤n

(∣∣∣∣∣ 1
Ȳ π

ti

(
Z̄ti − Z̄π

ti

)∣∣∣∣∣
p

+
∣∣∣∣∣ Z̄ti

Ȳti Ȳ
π

ti

∣∣∣∣∣
p ∣∣∣Ȳti − Ȳ π

ti

∣∣∣p)]

≤ C

(
E max

0≤i≤n

∣∣∣Z̄ti − Z̄π
ti

∣∣∣p + E max
0≤i≤n

∣∣∣Ȳti − Ȳ π
ti

∣∣∣p) .

Finally, by invoking relation (2.29), we obtain

E max
0≤i≤n

∣∣∣Zti − Zπ
ti

∣∣∣p ≤ C |π|
p
2 − p(

2 ln 1
|π|

) (
ln 1

|π|

) p
2

.

2.4 Simulation results for Q-BSDE

Let (Ω,F , P ) be complete probability space, (Wt)t≤T be a 1-dimensional Brownian motion

defined on fixed interval [0, T ]. We consider for a fixed n ∈ N,

W n
t :=

√
δ

[t/δ]∑
j=1

Xj, for all 0 ≤ t ≤ T, δ = T

n
,

where {Xj}n
j=1 is a {1,−1}-valued i.i.d. sequence with P (Xj = 1) = P (Xj = −1) = 0.5,

i.e., a Bernoulli sequence. By Donsker’s theorem, we have sup0≤t≤T |W n
t − Wt| → 0, as

n → ∞.

2.4.1 Examples

In what follows, we will consider the terminal time T = 1.

Example 2.1
We consider the Q-BSDE as follows

Yt = ln |W1| +
∫ 1

t

(
1 + Zr + 1

2 |Zr|2
)

dr −
∫ 1

t
ZrdWr, 0 ≤ t ≤ 1, (2.31)

The exponential change of variable Ȳ = exp (Y ) transforms formally this equation

a.s.:

Ȳt = |W1| +
∫ 1

t

(
Ȳr + Z̄r

)
dr −

∫ 1

t
Z̄rdWr, 0 ≤ t ≤ 1,
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such that Z̄t = Zt exp (Y ) .

The numerical results obtained for Q-BSDE (2.31) are:

n 100 500 1000 2000 5000

Y n 1.1571 1.1547 1.1544 1.1543 1.1540

Applying the Monte-Carlo method with 10 000 000 samples to the exact solution of

the Q-BSDE (2.31) Y0 = ln
(
Ȳ0
)

= ln
(
exp

(
1
2

)
E (|W1| exp (W1))

)
, then, Y0 = 1.1540.

The following figure shows the Y and Z process trajectories for Example 1.
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Figure 2.1: The trajectories of the solution of Q-BSDE

Example 2.2
We consider the Q-BSDE as follows

Yt = |W1| +
∫ 1

t

(
Zr + 1

2 |Zr|2
)

dr −
∫ 1

t
ZrdWr, 0 ≤ t ≤ 1, (2.32)

By the exponential change of variable Ȳ = exp (Y ), we obtain

Ȳt = exp |W1| +
∫ 1

t
Z̄rdr −

∫ 1

t
Z̄rdWr, 0 ≤ t ≤ 1, (2.33)
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The numerical results obtained for Q-BSDE (2.32) are

n 200 400 600 800 1000

Y n 1.5532 1.5526 1.5446 1.5389 1.5439

We apply the Monte-Carlo method, with 10 000 000 samples, to calculate the exact

solution of Q-BSDE (2.32) Y0 = ln
(
Ȳ0
)

= ln
(
exp

(
−1

2

)
E (exp |W1| exp (W1))

)
, then,

Y0 = 1.5424

The following figure shows the Y and Z process trajectories for Example 2.
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Figure 2.2: The trajectories of the solution of Q-BSDE

Example 2.3
We consider the Q-BSDE as follows

Yt = exp(W1) +
∫ 1

t

(
Zr + X[0,2] |Zr|2

)
dr −

∫ 1

t
ZrdWr, 0 ≤ t ≤ 1, (2.34)
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In this example, we use Zvenkin’s transformation, which can be computed as follows:

∫ y

0
f(t)dt =



0 if y ≤ 0

∫ y
0 X[0,2](t)dt =

∫ y
0 dt = y if 0 < y ≤ 2

∫ 2
0 dt = 2 if 2 < y

and

g(y) = exp(
∫ y

0
2f(t)dt) =



1 if y ≤ 0

e2y if 0 < y ≤ 2

e4 if 2 < y

and finally

F (x) =
∫ x

0
g(y)dy =



x if x ≤ 0

e2x − 1
2 if 0 < x ≤ 2

F (2) +
∫ x

2 g(y)dy = e4 − 1
2 + e4 (x− 2) if 2 < x

and the inverse is given by

F−1(z) =



z if z ≤ 0

ln(2z + 1)
2 if 0 < z ≤ e4 − 1

2

e−4
(
z + 3

2e
4 + 1

2

)
if z >

e4 − 1
2 .

After transformation Ȳt = F (Yt) we find the following linear BSDE

Ȳt = F (ξ) +
∫ 1

t
Z̄sds−

∫ 1

t
Z̄sdWs, (2.35)

with Z̄t = g(Yt)Zt.
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We apply the Monte Carlo method, with 10000000 samples, to calculate the exact

solution of Q-BSDE (2.34) Y0 = F−1
(
Ȳ0
)

= F−1
(
exp

(
−1

2

)
E (F (ξ) exp (W1))

)
, then,

Y0 = 4.4804. The numerical results obtained for Q-BSDE (2.34) are

n 200 400 600 800 1000

Y n 4.4876 4.5087 4.4857 4.4780 4.5149

The following figure shows the Y and Z process trajectories for Example 3.
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Figure 2.3: The trajectories of the solution of Q-BSDE
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Chapter 3

The Maximum Principle for Optimal Control of

Diffusion with Non-Smooth Coefficients via

Malliavin Calculus

3.1 Introduction

This chapter presents the main results of the second topic of this thesis; we focus

on investigating both the necessary and sufficient conditions of optimality for a class of

controlled stochastic differential equations taking the following form: dXt = b(t,Xt, ut)dt+ σ (t,Xt) dWt,

X0 = x ∈ R,
(3.1)

where b : [0, T ] × Rd × U → Rd, σ : [0, T ] × Rd → Rd ⊗ Rd, are given deterministic

functions, (Wt)t∈[0,T ] is a d-dimensional Brownian motion, x is the initial state at time

0 and u stands for the control process. We aim to extend the result established by

Mezerdi and Yekhlef to the global Lipschitz setting. Our analytical approach relies on

the Rademacher Theorem, which states that nearly all points within the domain of a

Lipschitz function exhibit differentiability. Moreover, the Theorem specifies that these

points of differentiability possess Borel-measurable and uniformly bounded derivatives.

The proof strategy involves the following steps:

1) We approximate the original non-regular control problem through a sequence of

perturbed regular problems.

2) We establish the necessary conditions for near-optimality by utilizing the Malliavin

calculus.

3) We achieve the desired outcome by taking the limits.
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3.2 Problem Formulation and Auxiliary Lemmas

3.2.1 Problem Statement

We aim to investigate necessary and sufficient optimality conditions verified by û associ-

ated with the problem A as already described in the introduction. To achieve this, we

need to consider the following assumptions.

Assumptions 1

(A1) ℓ, b are continuously differentiable with respect to u and their first derivatives are

bounded.

(A2) b and σ are bounded and b, σ, ∂uℓ, ∂ub are Lipschitz functions in x

(A3) ℓ and g are twice continuously differentiable in x, with bounded first and second

derivatives.

(A4) There exists λ > 0 such that for ∀ ξ ∈ Rd, ξ∗σσ∗ξ ≥ λ|ξ|2,

(A5) E|∂ub(t, X̂t, ût)|2 is finite.

With these assumptions in mind, it is evident that equation (3.1) fulfills the standard

Lipschitz and linear growth conditions. Therefore, it possesses one and only one solution

such that for any p ≥ 1, E[supt≤T |Xt|p] is finite.

Given that the functions b and σ exhibit Lipschitz continuity solely in x, Rademacher’s

Theorem verifies the existence of derivatives almost everywhere (as per the Lebesgue

measure). Let ∂xb(t, x, a) and ∂xσ(t, x) denote any Borel measurable functions satisfying

for each (t, a):

∂b

∂x
(t, x, a) = ∂xb (t, x, a) dx a.e.
∂σ

∂x
(t, x) = ∂xσ(t, x) dx a.e.

It is evident that the derivatives of Lipschitz functions are bounded by the Lipschitz

constant M almost everywhere. Suppose that the mapping:

a 7→ ∂xb(t, x, a) is continuous uniformly in (t, x). (3.2)
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Let us recall Krylov’s inequality and Ekeland’s variational principle, which will be used

in the sequel.

Lemma 3.1 (Krylov’s inequality)

Let (Wt, t ≥ 0) be a d-dimensional Brownian motion defined on a filtered and com-

pleted probability space (Ω,F , (Ft)t≥0 ,P). Given a stochastic process X that can be

written in integral form as Xt = x +
∫ t

0 b(s)ds +
∫ t

0 σ(s)dWs where b : Ω × R+ → Rd

and σ : Ω×R+ → Rd ⊗Rd are Ft-adapted and bounded processes such that σ satisfies

the assumption (A4) Then, for any Borel function

φ : R+ × Rd → R with support in [0, T ] ×B (0, R)

the following inequality holds:

∫ T

0
E|φ(t,Xt)|dt ≤ C

(∫ T

0

∫
B(0,R)

|φ(t, x)|d+1dtdx
) 1

d+1

,

Here C is a constant and B(0, R) is the ball, of Rd, centered at 0 with radius R.

The following Lemma is often referred to as Ekeland’s variational principle. It provides

a method for establishing near-optimal necessary conditions.

Lemma 3.2 (Ekeland’s variational principle)
On a complete metric space (U, d) we consider a lower semi-continuous function

J : U → R∪ {+∞} assumed to be bounded from below such that for each ε > 0 there

exists u ∈ U : J(u) ≤ inf {J(v); v ∈ U} + ε, then there exists uε such that:

(i) J(uε) ≤ J(u),

(ii) d(u, uε) ≤
√
ε,

(iii) J(v) +
√
εd(v, uε) ≤ J(uε), ∀ v ∈ U .

3.2.2 Some Auxiliary Findings

In this subsection, we will outline some fundamental results concerning the SMP

theory. To begin with, we endowed the set UG by the following metric d. For u, v ∈ UG,

d(u, v) = (
∫ T

0 E|ut − vt|pdt)
1
p , for some p ≥ 2.
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Lemma 3.3

(i) (UG, d) is a complete metric space,

(ii) Let u, v ∈ UG, Xu and Xv the solution of (3.1) corresponding to u and v, then

:

E sup
t≤T

|Xu
t −Xv

t |p ≤ Kdp(u, v),

(iii) The cost functional J : (UG, d) −→ R is continuous.

Proof : i) See [26] and [21].

ii) The convexity property of the mapping x 7→ |x|p for p > 1 together with Hölder’s

inequality, lead to

E sup
0≤t≤T

|Xu
t − Xv

t |p ≤ C

∫ T

0
E|b(t, Xu

t , ut) − b(t, Xv
t , vt)|pdt

+CE sup
0≤t≤T

∣∣∣∣∫ t

0
(σ(s, Xu

s ) − σ(s, Xv
s ) dWs

∣∣∣∣p
Exploiting the Lipschitz continuity of the coefficients b,σ, and using Hölder’s and

BDG inequalities, one can derive:

E sup
t≤T

|Xu
t − Xv

t |p ≤ C

[∫ T

0
E|Xu

t − Xv
t |pdt

]
+ C

∫ T

0
E|ut − vt|pdt.

Gronwall’s inequality implies the existence of a positive constant C (which may

vary from one line to another) such that:

E sup
t≤T

|Xu
t − Xv

t |p ≤ Cdp(u, v).

iii) Similar arguments demonstrate the continuity of J .

We must outline the following processes to establish the Hamiltonian function:

K(t) : = ∂xg(XT ) +
∫ T

t
∂xℓ(s, Xs, us)ds,

DtK(t) : = Dt∂xg(XT ) +
∫ T

t
Dt∂xℓ(s, Xs, us)ds,

H0(s, x, u) : = K(s)b(s, x, u) + DsK(s)σ(s, x),

G(t, s) : = exp
(∫ s

t
{∂xb (r, Xr, ur) − 1

2 (∂xσ) (∂xσ)∗ (r, Xr)}dr +
∫ s

t
∂xσ(r, Xr)dWr

)
,

and

Y (t) : = K(t) +
∫ T

t
∂xH0(s,Xs, us)G(t, s)ds, (3.3)
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where D stands for the Malliavin derivative.

Since ∂xb and ∂xσ are bounded, it clear that for fixed t, G(t, ·) uniquely satisfy is the

following linear SDE dG(t, s) = ∂xb(s,Xs, us)G(t, s)ds+ ∂xσ(s,Xs)G(t, s)dWs,

G(t, t) = 1.
(3.4)

which satisfies, for any p > 0

E sup
0≤t≤s≤T

|G(t, s)|p < ∞. (3.5)

Let ∂xbi and ∂xσi be versions of ∂xb and ∂xσ for i = 1, 2. We denote by G1 and G2

respectively Y1 and Y2 solutions of (3.4) respectively (3.3) corresponding to ∂xbi and ∂xσi

for i = 1, 2.

The purpose of the next Lemma is to show that the two versions G1 and G2 are

indistinguishable, as well as Y1 and Y2.

Lemma 3.4
For any p ≥ 2 the following proprieties are satisfied

(i) E sup0≤s≤t≤T |G1(t, s) −G2(t, s)|p = 0,

(ii) E sup0≤t≤T |Y1(t) − Y2(t)|p = 0.

Proof (i) : Let ∂xb1, ∂xb2 and ∂xσ1, ∂xσ2 be respectively two Borel versions of the general-

ized derivatives of b and σ with respect to x, that is for each t ∈ [0, T ], v ∈ R,

∂xb1(t, x, v) = ∂xb2(t, x, v) and ∂xσ1(t, x, v) = ∂xσ2(t, x, v) dx a.e.

From the inequality |ex − ey| ≤ (ex + ey)|x − y| we deduce

|G1(t, s) − G2(t, s)| ≤ (G1(t, s) + G2(t, s))
[ ∫ s

t
|∂xb1 − ∂xb2|(r, Xr, ur)dr

+1
2

∫ s

t

∣∣(∂xσ1)2 − (∂xσ2)2∣∣(r, Xr)dr (3.6)

+
∣∣ ∫ s

t

(
∂xσ1 − ∂xσ2

)
(r, Xr)dWr

∣∣].
since ∂xσ1, and ∂xσ2 are bounded, we get

E sup
0≤t≤s≤T

|Gi(t, s)|p < ∞ for i = 1, 2.

Mohamed Khider University of Biskra.



3.2. PROBLEM FORMULATION AND AUXILIARY LEMMAS 60

We can confidently assert, while preserving generality, that the support of the functions

∂xbi and ∂xσi are included in [0, T ] × B (0, R) for i = 1, 2, applying Krylov’s inequality,

we obtain

E
[

sup
0≤t≤s≤T

|G1(t, s) − G2(t, s)|p
]

(3.7)

≤ C


(∫ T

0

∫
B(0,R)

sup
a∈U

|∂xb1(r, x, a) − ∂xb2(r, x, a)|2p(d+1)dxdr

) 1
d+1

+
(∫ T

0

∫
B(0,R)

|∂xσ1(r, x) − ∂xσ2 (r, x) |2p(d+1)dxdr

) 1
d+1

+
(∫ T

0

∫
B(0,R)

|∂xσ1(r, x) − ∂xσ2 (r, x) |2(d+1)dxdr

) p
d+1


1
2

.

Since ∂xb1(t, x, v) = ∂xb2(t, x, v) and ∂xσ1(t, x) = ∂xσ2(t, x) dx a.e., we get the desired

result.

Proof (ii) : By Hölder’s inequality, we have:

E sup
0≤t≤T

|Y1(t) − Y2(t)|p

≤ E
∫ T

0
sup

0≤t≤s≤T
|∂xH1

0(s, Xs, us)G1(t, s) − ∂xH2
0(s, Xs, us)G2(t, s)|pds

≤ CE
∫ T

0
|∂xb1(s, Xs, us) − ∂xb2(s, Xs, us)|p|K1(s)|p sup

0≤t≤s≤T
|G1(t, s)|pds

+CE
∫ T

0
|K(s)∂xb2(s, Xs, us)|p sup

0≤t≤s≤T
|G1(t, s) − G2(t, s)|pds

+CE
∫ T

0
|∂xσ1(s, Xs) − ∂xσ2(s, Xs)|p|DsK(s)|p sup

0≤t≤s≤T
|G1(t, s)|pds

+CE
∫ T

0
|∂xσ2(s, Xs)|p|DsK(s)|p sup

0≤t≤s≤T
|G1(t, s) − G2(t, s)|pds.

Then, by using Cauchy-Schwartz inequality, K, ∂xσ2, ∂xb2 are bounded, Krylov’s in-

equality, the previous Assertion (i) and (3.5), one can obtain

E sup
0≤t≤T

|Y1(t) − Y2(t)|p = 0.
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3.2.3 Near-Optimality Conditions for a Sequence of Perturbed

Control Problems

Using convolution, we will smooth out the coefficients b and σ. Assume that φ is an Rd-

valued non-negative function that has one continuous derivative and a compact support,

such that: ∫
Rd
φ(z)dz = 1.

Then the functions bn and σn defined by

bn(t, x, u) = ndb(t, ·, u) ∗ φ(n·)(x) and σn(t, x) = ndσ(t, ·) ∗ φ(n·)(x)

are smooth functions.

Lemma 3.5

a) The Borel measurable functions bn and σn are bounded and Lipschitz in x.

b) ∀ (t, x, u) ∈ [0, T ] × Rd × U ,

(i)

|(bn − b)(t, x, u)| + |(σn − σ)(t, x)| ≤ C

n
= εn,

(ii)

|(∂ubn − ∂ub)(t, x, u)| ≤ C

n
= εn,

where the constant C is positive.

c) σn and bn are continuously differentiable functions in both x and u. Moreover,

∀ t ∈ [0, T ], such that ρ = x, u, we have

lim
n→+∞

∂ρσn(t, x) = ∂ρσ(t, x) dx a.e.,

and

lim
n→+∞

∂ρbn(t, x, a) = ∂ρb(t, x, a) dx a.e.,

d)
∫ ∫

[0, T ]×B(0,R) supu∈U |(∂xbn − ∂xb)(t, x, u)|dtdx →n→+∞ 0.

Mohamed Khider University of Biskra.



3.2. PROBLEM FORMULATION AND AUXILIARY LEMMAS 62

Proof : The proofs of the assertions a), b-(i), c) with ρ = x and d) are carried out in [7].

To prove b-(ii) and c) with ρ = u, it suffices to remark that

∂ubn(t, x, a) = nd
∫

∂ub(t, x − y, a)φ(ny)dy.

Now we define a family of modified control problems, where for each integer n, the

original non-smooth coefficients b and σ are replaced by their respective smooth counter-

parts bn and σn. We denote by Xn
t the solution of the following SDE: dXn

t = bn (t,Xn
t , ut) dt+ σn (t,Xn

t ) dWt,

Xn
0 = x,

(3.8)

The associated cost is defined as follows:

Jn(u) = E
[∫ T

0
ℓ (t,Xn

t , ut) dt+ g(Xn
t )
]
. (3.9)

The subsequent outcome provides estimations that establish the relationship between the

original control problem and its perturbed versions.

Lemma 3.6
Let u ∈ UG and X, Xn represent respectively the solution of (3.1) and (3.8) corre-

sponding to u. Then, for any p ≥ 2, there exist a positive constant Cp, such that the

upcoming estimates hold:

a) E sup0≤t≤T |Xt −Xn
t |p ≤ Cp(εn)p, εn = c

n
.

b) |Jn(u) − J (u)| ≤ Cpεn.

Proof : The proof of the previous Lemma lies on the condition (A2) in Assumptions 1, and

the use of Lemma 3.5, Hölder’s and Burkholder-Davis-Gundy inequalities. It is rather

standard, so we dropped it here.

Assume that the control û is optimal for the original problem (3.1) and (0.10), that is:

J (û) = min
u∈UG

{J (u)} .

Here we point out that û is not optimal for the new regularized control problem described

by (3.8) and (3.9). Indeed, according to Lemma 3.6, there exists a sequence δn of positive
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real numbers converging to 0 such that:

Jn (û) = min
u∈UG

Jn (u) + δn

. Now, we can express the perturbed near-optimal control problem in the following

manner.

Problem Aδn : For each integer n, we want to find u ∈ UG such that û nearly minimizing

the cost functional (3.9) subject to (3.8).

Remark 3.7
As δn tends to 0, Problem Aδn transforms back into Problem A.

Since û is near-optimal for (3.8) and (3.9), and the Assumptions in [44] are satisfied

according to the Assumptions 1, this ensures the smoothness of the functions; there-

fore, we can return to the result previously established in [44], using Malliavin calculus.

Specifically, the SMP for near optimality is given by the following Proposition.

In what follows we will denote by the processes K̂, X̂, Ĝ, and Ŷ by K, X, G, and Y

when they are associated with the optimal control û.

Proposition 3.8 (Necessary Condition for near Optimality )
Assume that ûn ∈ UG is near optimal control for the cost Jn. Then, for all bounded

Gt-measurable random variable α, we can write:

E
[
∂uHn(t, X̂n

t , û
n
t , Ŷ

n(t))α
]

= O (δn) , (3.10)

alternatively, we can express this as:

E
[
∂uHn(t, X̂n

t , û
n
t , Ŷ

n(t))
∣∣∣Gt

]
= O (δn) , for a.e. (t, ω), (3.11)

where the family of Hamiltonian functions Hn : [0, T ] ×R×U ×R → R, is defined by:

Hn(t, x, u, Y ) = ℓ (t, x, u) + Y (t) bn (t, x, u) , (3.12)

for each integer n.

Proof : Since that û is δn-optimal for the Problem Aδn , so by applying Lemma 3.2 to the

continuous functional Jn, there exists an admissible control ûn ∈ UG such that

i) Jn (ûn) ≤ Jn(u), for any u ∈ UG ,

Mohamed Khider University of Biskra.



3.2. PROBLEM FORMULATION AND AUXILIARY LEMMAS 64

ii) d (ûn, û) ≤ (δn)
1
2 ,

iii) ûn minimizes the new cost functional Jn,δ(u) := Jn(u) + (δn)
1
2 d(u, ûn)

Now, let us define the perturbed controls as follows: for vn ∈ UG such that vn is a

bounded Gt-adapted process, there exists δ > 0 such that

un,θ = ûn + θvn ∈ UG for all θ ∈ [−δ, δ] . (3.13)

The fact that

lim
θ→0

1
θ

(
Jn,δ

(
un,θ

)
− Jn,δ (ûn)

)
= 0,

and a simple computation leads to

lim
θ→0

1
θ

(
Jn(un,θ) − Jn (ûn)

)
= O (δn) .

We use the same arguments as in [44], for the expression on the left-hand side of the

above equation, one can show that, for any α = α (ω) bounded and Gt-measurable, we

have

E
[
∂uHn(t, X̂n

t , ûn
t , Ŷ n(t))α

]
= O (δn) .

Before proceeding to the subsequent regular sufficient condition for optimality, a

pivotal tool in establishing our second main result, it is imperative to introduce the

following process

Ẑn
t = lim

θ→0

1
θ

(
Xn,θ

t − X̂n
t

)
such that Xn,θ the solution associated to the perturbed control defined as follow

un,θ = ûn + θvn

where vn is some bounded Gt-adapted process and θ ∈ [−δ, δ] . Obviously, the process Ẑn

satisfies the following equation


dẐn

t =
[
∂xbn(t, X̂n

t , û
n
t )Ẑn

t + ∂ubn(t, X̂n
t , û

n
t )vn

t

]
dt

+∂xσn(t, X̂n
t )Ẑn

t dWt,

Ẑn
0 = 0,
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We also need to define the subsequent quantities. For any t, h ∈ (0, T ) such that t+h ≤ T ,

we set

I1 = E
[∫ T

t

{
K̂n(s)∂xbn(s, X̂n

s , û
n
s )Ẑn

s +DsK̂
n(s)∂xσn(s, X̂n

s )Ẑn
s

}
ds
]
,

I2 = E
[ ∫ t+h

t

{
K̂n(s)∂ubn(s, X̂n

s , û
n
s ) +DsK̂

n(s)∂uσn(s, X̂n
s ) + ∂uℓ(s, X̂n

s , û
n
s )
}
αds

]
.

Proposition 3.9 (Sufficient Condition for near Optimality )
Suppose there exists ûn ∈ UG such that the condition (3.11) holds true. Then, ûn is

near optimal for Problem Aδn .

Proof : Suppose ûn ∈ UG satisfies (3.11). Then, reversing the proof’s steps of the SMP

outlined in Mezerdi et al. [44], we can establish the validity of the following inequality:

I1 + I2 ≤ O (δn) , (3.14)

Then, for all vα(s) ∈ UG of the form

vα(s, ω) = α(ω)X(t,t+h](s)

For any t, h within the interval [0, T ] where t + h ≤ T , and for some bounded Gt-

measurable α, we have the following inequality

0 ≥ E
[ ∫ T

0

{
K̂n(t)

{
∂xbn(t, X̂n

t , ûn
t )Ẑn

t + ∂ubn(t, X̂n
t , ûn

t )vt
}

(3.15)

+DtK̂
n(t)∂xσn(t, X̂n

t )Ẑn
t + ∂uℓ(t, X̂n

t , ûn
t )vt

}
dt
]
,

is satisfied for all linear combinations of such vα. Considering that all bounded v ∈ UG

can be pointwise approximated by linear combinations bounded in (t, ω), it consequently

implies that the inequality (3.15) remains valid for all bounded v ∈ UG . Hence, by

reversing the steps in the proof of Lemma 4.3 in [44], we deduce that

lim
θ→0

1
θ

(Jn(un,θ) − Jn(ûn)) ≤ O (δn) .

3.3 Stochastic Maximum Principle

This section aims to derive the NCO and the SCO for Problem A mentioned earlier,

where the coefficients b and σ are Lipschitz continuous but not necessarily differentiable
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in x. In the next subsection, we will summarize and prove some approximations that will

aid in establishing these conditions.

3.3.1 Some Convergence Results
Lemma 3.10

For any p ≥ 1, under (A1),(A2) and (A5) we have

(i) limn→+∞ E(
∫ T

0 |∂xbn(s, X̂n
s , û

n
s ) − ∂xb(s, X̂s, ûs)|pds) = 0, and

limn→+∞ E
∫ T

0 |∂xσj,n(s, X̂n
s ) − ∂xσj(s, X̂s)|pds = 0

(ii) limn→+∞ E|∂ubn(s, X̂n
s , û

n
s ) − ∂ub(s, X̂s, ûs)|p = 0.

Proof : Firstly, we prove the assertion (i), we give the proof for b, and the same method is

applied for σ. It should be noted that in (i), it is possible to substitute ûn
s with ûs, due

to the fact that d(ûn
s , ûs) tends to 0 as n approaches to +∞. Let n0 ≥ 1, then:

lim
n→+∞

E
(∫ T

0
|∂xbn(s, X̂n

s , ûn
s ) − ∂xb(s, X̂s, ûs)|pds

)

≤ limn→+∞Cp

{
E
(∫ T

0
|∂xbn(s, X̂n

s , ûs) − ∂xbn0(s, X̂n
s , ûs)|pds

)

+ E
(∫ T

0
|∂xbn0(s, X̂n

s , ûs) − ∂xbn0(s, X̂s, ûs)|pds

)

+E
(∫ T

0
|∂xbn0(s, X̂n

s , ûs) − ∂xb(s, X̂s, ûs)|pds

)}
= Cp (Jn

1 + Jn
2 + Jn

3 ) .

Consider a continuous function w(t, x), which satisfies that w(t, x) = 0 for t2 + |x|2 ≥ 1,

w(0, 0) = 1. Then, for N > 0

limn→+∞Jn
1 ≤ NCp

{
E
(∫ T

0

(
1 − w

(
t

R
,
X̂t

R

))
dt

)

+limn→+∞E
(∫ T

0
w

(
t

R
,
X̂n

t

R

)
sup
a∈U

|∂xbn(t, X̂n
t , a) − ∂xbn0(t, X̂n

t , a)|pdt

)}
.

Then, according to Krylov’s inequality, we have:

limn→+∞Jn
1 ≤ NCp

{
E
(∫ T

0

(
1 − w

(
t

R
,
X̂t

R

))
dt

)

+N limn→+∞| sup
a∈U

|∂xbn(t, x, a) − ∂xbn0(t, x, a)|p|d+1,R

}
.
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where |·|d+1,R denotes the norm in Ld+1 ([0, T ] × B(0, R)). Based on Lemma 3.5, the

final expression on the right-hand side approaches 0 as both n0 and n tend to infin-

ity. Additionally, as R tends to infinity, we find that limn→+∞Jn
1 = 0. Similarly, by

estimating Jn
3 , we also have limn→+∞Jn

3 = 0.

Finally, limn→+∞ Jn
2 = 0, due to the continuity of ∂xbn0(s, x, a) in (x, a) and the

uniform convergence in probability of X̂n
t to X̂t. Hence

lim
n→+∞

E
(∫ T

0
|∂xbn(s, X̂n

s , ûn
s ) − ∂xb(s, X̂s, ûs)|pds

)
= 0.

Secondly, we return to (ii), we have

E|∂ubn(t, X̂n
t , ûn

t ) − ∂ub(t, X̂t, ût)|p ≤ CE|∂ubn(t, X̂n
t , ûn

t ) − ∂ub(t, X̂n
t , ûn

t )|p (3.16)

+CE|∂ub(t, X̂n
t , ûn

t ) − ∂ub(t, X̂t, ûn
t )|p

+CE|∂ub(t, X̂t, ûn
t ) − ∂ub(t, X̂t, ût)|p,

According to Lemma 3.5, the first term converges to 0. Utilizing the fact that ∂ub is

Lipschitz in x and u, d(ûn, û) converges to 0 and Lemma 3.3, we show that the second

and third terms in the right-hand side of (3.16) converge to 0.

Lemma 3.11
If (A2) is satisfied then, for any p ≥ 2, we have

(i)

E sup
0≤t≤s≤T

∣∣∣Ĝn(t, s) − Ĝ(t, s)
∣∣∣p →

n→+∞
0

(ii)

E sup
0≤r≤t≤T

|DrX̂
n
t −DrX̂t|p →

n→+∞
0.

Proof (i) : : Since |ex−ey| ≤ (ex+ey)|x−y|, by Cauchy-Schwartz, Burkholder-Davis-Gundy

inequalities, E sup0≤s≤t≤T |Ĝ(t, s)|p is finite, the fact that (a2 − b2) = (a − b)(a + b), ∂xσn
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and ∂xσ are bounded functions. Thanks to Lemma 3.10, we obtain

E sup
0≤t≤s≤T

∣∣∣Ĝn(t, s) − Ĝ(t, s)
∣∣∣p

≤ CpE
∫ T

0

∣∣∂xbn(r, X̂n
r , ûn

r ) − ∂xb(r, X̂r, ûr)
∣∣2pdr

+CpE
∫ T

0

(∣∣∂xσn(r, X̂n
r )
∣∣2p +

∣∣∂xσ(r, X̂r)
∣∣2p
)∣∣(∂xσn(r, X̂n

r ) − ∂xσ(r, X̂r))
∣∣2pdr

+CpE
( ∫ T

0

∣∣∂xσn(r, X̂n
r ) − ∂xσ(r, X̂r)

∣∣2dr
) p

2

→
n→+∞

0.

Proof (ii) : : We know that, the Malliavin derivative {(DrX̂t)}0≤r≤t≤T obeys the subse-

quent linear stochastic differential equation

DrX̂t = σ̂(r, X̂r) +
∫ t

r
∂xσ̂(s, X̂s)DrX̂sdWs +

∫ t

r
∂xb̂(s, X̂s, ûs)DrX̂sds.

Therefore, according to Itô’s formula,

DrX̂t = σ(r, X̂r) exp
{∫ t

r
∂xσ(s, X̂s)dWs +

∫ t

r
∂xb(s, X̂s, ûs) − 1

2∂xσ(s, X̂s)ds

}
,

By the same steps as the previous assertion (i), we obtain

|DrX̂n
t − DrX̂t| ≤ |σn(r, X̂n

r )||Ĝn(r, t) − Ĝ(r, t)| + |Ĝ(r, t)||σn(r, X̂n
r ) − σ(r, X̂r)|.

Thanks to assertion (i), E sup0≤r≤t≤T |Ĝ(r, t)|p < ∞ and σn bounded function and

Lemma 3.6, we successfully attain the desired result.

Lemma 3.12
Under (A2) and (A3), for any p ≥ 2, we have

(i)

E
[

sup
0≤t≤T

|K̂n(t) − K̂(t)|p
]

→ 0, n → +∞.

(ii)

E
[

sup
0≤s≤t≤T

|DsK̂
n(t) −DsK̂(t)|p

]
→ 0, n → +∞.

(iii)

E
[

sup
0≤t≤T

|Ŷ n(t) − Ŷ (t)|p
]

→
n→+∞

0, n → +∞.
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Proof (i) : Given that ∂xg is Lipschitz continuous at x, and applying Hölder’s inequality,

we obtain

E
[

sup
0≤t≤T

|K̂n(t) − K̂(t)|p
]

≤ Cp

(
E|∂xg(X̂n

T ) − ∂xg(X̂T )|p +
∫ T

0
E|∂xℓ(s, X̂n

s , ûn
s ) − ∂xℓ(s, X̂s, ûs)|pds

)

≤ Cp

(
E sup

0≤t≤T
|X̂n

t − X̂t|p +
∫ T

0
E|∂xℓ(s, X̂n

s , ûn
s ) − ∂xℓ(s, X̂s, ûs)|pds

)
.

Thanks to the continuity of ∂xℓ, Lemma 3.6 as well as the convergence of d(ûn, û) to 0

as n goes to +∞, we deduce

lim
n→+∞

E sup
0≤t≤T

|K̂n(t) − K̂(t)|p = 0,

Proof (ii) : We have

DtK̂(t) = ∂xxg(X̂T )DtX̂T +
∫ T

t
∂xxℓ(s, X̂s, ûs)DtX̂sds,

and for each integer n,

DtK̂
n(t) = ∂xxg(X̂n

T )DtX̂
n
T +

∫ T

t
∂xxℓ(s, X̂n

s , ûn
s )DtX̂

n
s ds,

then,

|DtK̂
n(t) − DtK̂(t)| ≤ |∂xxg(X̂n

T )||DtX̂T − DtX̂T |

+|∂xxg(X̂n
T ) − ∂xxg(X̂T )||DtX̂T |

+
∫ T

t
|∂xxℓ(s, X̂n

s , ûn)||DtX̂
n
s − DtX̂s|ds

+
∫ T

t
|∂xxℓ(s, X̂n

s , ûn) − ∂xxℓ(s, X̂s, û)||DtX̂s|ds.

Employing the convexity property of the mapping a 7→ |x|p, for p > 1 and Cauchy-

Schwartz inequality, E sup0≤t≤s≤T |DtX̂s|p is finite, Lemma 3.11 and Lemma 3.6, we get

the desired result.

Proof (iii) : By employing classical estimates once more, along with Hölder’s inequality, we

deduce

E sup
t≤T

∣∣Ŷ n(t) − Ŷ (t)
∣∣p ≤ C

(
E sup

t≤T

∣∣K̂n(t) − K̂(t)
∣∣p (3.17)

+E sup
t≤T

∫ T

t

∣∣∂xHn
0 (r, X̂n

r , ûn
r )Ĝn(t, r) − ∂xH0(r, X̂r, ûr)Ĝ(t, r)

∣∣pdr
)
.
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We start by estimating the second term in (3.17), indeed∫ T

t

∣∣∂xHn
0 (r, X̂n

r , ûn
r )Ĝn(t, r) − ∂xH0(r, X̂r, ûr)Ĝ(t, r)

∣∣pdr (3.18)

≤
∫ T

t

∣∣∂xbn(r, X̂n
r , ûn

r ) − ∂xb(r, X̂r, ûr)
∣∣p∣∣K̂n(r)Ĝn(t, r)

∣∣pdr

+
∫ T

t

∣∣∂xσn(r, X̂n
r ) − ∂xσ(r, X̂r)

∣∣p∣∣DrK̂n(r)Ĝn(t, r)
∣∣pdr

+
∫ T

t

∣∣∂xb(r, X̂r, ûr)
∣∣p∣∣Ĝn(t, r)

∣∣p∣∣K̂n(r) − K̂(r)
∣∣pdr

+
∫ T

t

∣∣∂xσ(r, X̂n
r )
∣∣p∣∣Ĝn(t, r)

∣∣p∣∣DrK̂n(r) − DrK̂(r)
∣∣pdr

+
∫ T

t

∣∣K̂(r)∂xb(r, X̂r, ûr)
∣∣p∣∣Ĝn(t, r) − Ĝ(t, r)

∣∣pdr

+
∫ T

t

∣∣∂xσ(r, X̂n
r )
∣∣p∣∣DrK̂(r)

∣∣p∣∣Ĝn(t, r) − Ĝ(t, r)
∣∣pdr.

By Cauchy-Schwartz inequality and the fact that K̂n is bounded,

E sup
0≤t≤r≤T

∣∣Ĝ(t, r)
∣∣p < ∞ and E

∫ T

0

∣∣DrK̂n(r)
∣∣pdr < ∞

and thanks to Lemma 3.10, the first and the second terms of the right-hand-side of

(3.18) converge to 0, when n goes to +∞. For the third and the fourth terms, we use the

boundedness of ∂xσ and ∂xb, the fact that E sup0≤t≤r≤T |Ĝ(t, r)|p if finite and Lemma

3.12. Finally the two last terms tends to 0, according to Lemma 3.11, keeping in mind

that K̂, ∂xσ and ∂xb are bounded.

Lemma 3.13

Under (A2) in Assumptions 1, we have: E|Ŷt|p is finite.

Proof : Given the boundedness of K̂(t), the finiteness of E sup0≤t≤r≤T |Ĝ(t, r)|2p and Hölder’s

inequality implies

E|Ŷt|p ≤ E|K̂t|p + E
∣∣∣ ∫ T

t
∂xH0(r, X̂r, ûr)Ĝ(t, r)dr

∣∣∣p (3.19)

≤ Cp

(
1 +

(
E
∫ T

t

∣∣∂xH0(r, X̂r, ûr)
∣∣2pdr

) 1
2
)

< ∞.

It is noteworthy that E
∫ T

t |∂xH0(r, X̂r, ûr)|2pdr is finite due to the boundedness of K̂(t),

bx and σx and along with E
∫ T

t |DrK̂(r)|2pdr is finite.
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3.3.2 Optimal Variational Principle

This subsection explores the fundamental results regarding the necessary and sufficient

optimality conditions for controlled SDE with irregular coefficients and a non-degenerate

diffusion matrix.

Necessary Condition for Optimality

Theorem 3.14 (The SMP )
Suppose û represents an admissible control that minimizes the cost functional J over

UG. Then, we obtain:

E
[
∂uH(t, X̂t, ût, Ŷ (t))

∣∣∣Gt

]
= 0, for a.e. (t, ω), (3.20)

where

H(t, X̂t, ût, Ŷ (t)) = ℓ(t, X̂t, ût) + Ŷ (t) b(t, X̂t, ût),

is the usual Hamiltonian with Ŷ defined by (3.3).

Proof : Since ûn is δn-optimal for Problem Aδn , then by invoking Proposition 3.8, we get

E
[
∂uHn(t, X̂n

t , ûn
t , Ŷ n(t))α

]
= O (δn) .

The desired result will be obtained by passing to the limits when n goes to ∞. Indeed,

by Cauchy-Schwartz inequality and keeping in mind that α is bounded, we obtain

E
[∣∣∣(∂uHn(t, X̂n

t , ûn
t , Ŷ n(t)) − ∂uH(t, X̂t, ût, Ŷ (t))

)
α
∣∣∣] (3.21)

≤ C
(
E
[
|∂uℓ(t, X̂n

t , ûn
t ) − ∂uℓ(t, X̂t, ût)|

]
+
(
E|Ŷ n(t) − Ŷ (t)|2

) 1
2
(
E|∂ubn(t, X̂n

t , ûn
t )|2

) 1
2

+
(
E|Ŷ (t)|2

) 1
2
(
E|∂ubn(t, X̂n

t , ûn
t ) − ∂ub(t, X̂t, ût)|2

) 1
2
)
.

Since ∂uℓ(t, ·, ·) is continuous, X̂n
t uniformly converges in probability to X̂t and since

d(ûn, û) converges to 0 as n approaches infinity it follows that the first term in the right-

hand side of (3.21) converge to 0. By using Lemma 3.12 and the fact that ∂ubn are

square-integrable, the second term tends toward zero. Ultimately, using Lemmas 3.10

and 3.13 makes it evident that the third term approaches zero. Then, by (3.21) we get

E
[
∂uH(t, X̂t, ût, Ŷ (t))α

]
= 0. (3.22)
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Since this is valid for any bounded Gt-measurable random variable α, it follows that

E
[
∂uH(t, X̂t, ût, Ŷ (t)) | Gt

]
= 0, for a.e. (t, ω).

This ends the proof.

Sufficient Optimality Condition

The following Lemmas are required to establish sufficient optimality conditions.

Lemma 3.15
Under (H1) in Assumptions 1, we have:

i) E|bn(t, X̂n
t , ut) − b(t, X̂t, ut)|2 ≤ O(δn),

ii) E|ℓ (t, X̂n
t , ut) − ℓ(t, X̂t, ut)|2 ≤ O(δn).

Proof : Firstly, we prove (i), we have

E
∣∣bn(t, X̂n

t , ut) − b(t, X̂t, ut)
∣∣2 ≤ CE

∣∣bn(t, X̂n
t , ut) − b(t, X̂n

t , ut)
∣∣2 (3.23)

+CE
∣∣b(t, X̂n

t , ut) − b(t, X̂t, ut)
∣∣2

≤ O (δn) .

Thanks to Lemma 3.5, we have |(bn − b)(t, X̂n
t , ut)| ≤ C

n = εn, the Lipschitz continuity

of b in x and Lemma 3.6, the second term on the right-hand-side of (3.23) are bounded

by O(δn).

The proof of the assertion (ii) relies on Assumption (A2) and Lemma 3.6.

Lemma 3.16
For each integer n, we have

i) limn→+∞ Jn(ûn) = J (û)

ii) limn→+∞ Jn(u) = J (u)

Proof : For the first assertion i). Notice that g and ℓ are Lipschitz functions in x and u.

Then, by invoking Lemma 3.6, the definition of the distance d with p = 2, and the

Mohamed Khider University of Biskra.



3.3. STOCHASTIC MAXIMUM PRINCIPLE 73

assertion (ii) in the proof of Proposition 3.8, one can easily check that

lim
n→+∞

E|Jn(ûn
t ) − J (ût)|2

≤ lim
n→+∞

(
E
∫ T

0
|ℓ(t, X̂n

t , ûn
t ) − ℓ(t, X̂t, ût)|2dt + E|g(X̂n

T ) − g(X̂T )
∣∣∣2)

≤ lim
n→+∞

C
(
d2(ûn

t , ût) + E sup
0≤t≤T

|X̂n
t − X̂t|2

)
= 0.

For the second assertion ii), for any u(·) an admissible control, by the Lemma 3.6, we

have

|Jn(u) − J (u)| ≤ Cp εn, εn = C

n

where M and C are positive constants, then

lim
n→+∞

E|Jn(u) − J (u)|2 = 0.

Theorem 3.17 (Sufficient Optimality Condition)
Assume that H is convex function in u, if there exists û ∈ UG is a critical point such

that the necessary condition of optimality (3.20) holds. Then, the control û is optimal

for the Problem A.

Proof : Assume that û minimize the Hamiltonian function, that is ,

H
(
t, X̂t, û, Ŷ (t)

)
= min

u∈UG
H
(
t, X̂t, u, Ŷ (t)

)
,

Obviously, û satisfies the necessary condition for optimality (3.20).

Note that û does not necessarily satisfy the necessary condition for optimality for

the perturbed control problem (3.8) and (3.9). For each A ∈ Gt, n ∈ N, set In(û) =

E[Hn(t, X̂n
t , ût, Ŷ n

t )XA], then a simple computation, taking account of Lemma 3.12 and

3.15, leads to

In(û) = min
u∈UG

In(u) + O (δn) .

where O (δn) is a sequence of positive real numbers that converges to 0. Now, applying

Ekeland’s variational principle Lemma 3.2 to In there exists an admissible control ûn

such that

i) In,δ(ûn
t ) ≤ In,δ(u), for any u ∈ UG ,

ii) d(ûn, û) ≤
√

δn,
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iii) ûn minimizes the function In,δ(u) := In(u) +
√

δnd(u, ûn).

Since In,δ is a convex function in u, we conclude that

∂uIn,δ(ûn
t ) = 0,

The use of the perturbation (3.13) and the definition of the derivative leads to,

E
[
∂uHn(t, X̂n

t , ûn
t , Ŷ n(t))XA

]
= O

(√
δn

)
Since the last equality holds true for each A ∈ Gt, we get

E
[
∂uHn(t, X̂n

t , ûn
t , Ŷ n(t))

∣∣Gt
]

= O
(√

δn

)
, for a.e. (t, ω), (3.24)

Then, by using Proposition 3.9, we get

Jn(ûn) ≤ Jn(u) + O (δn)

Now, passing to the limit and according to Lemma 3.16, we get

J (û) = min
u∈UG

J (u),

this means that û is an optimal control for the cost function J .

3.4 Application to Quadratic SDE

In this section, we shall study a control problem associated with a stochastic differential

equation exhibiting an irregular drift term and may have a quadratic term. Clearly, this

corresponds to a specific form of an irregular stochastic control problem. More precisely,

we consider the SDE dXt = b(t,Xt, ut)dt+ f(Xt)σ2 (Xt) dt+ σ(Xt)dWt,

X0 = x ∈ R.
(3.25)

Here u stands for an F-adapted control process enjoying suitable properties and the

bounded function f is supposed to be an integrable function over the whole real line.

The corresponding cost functional to (3.25) given by:

J (u) = E [g(XT )] . (3.26)
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Note that the coefficients b, σ, and g are given maps defined as in Section 2. Furthermore,

we assume that they satisfy Assumption 1. Hence, according to Theorem 4.5 in [24], the

equation (3.25) enjoys the uniqueness and existence property.

We aim to derive the NCO and SCO for the irregular control problem (3.25). The

main tool is to find a space transformation that eliminates the singular and quadratic

part f(Xt)σ2(Xt). It turns out the function Ψ defined, for every x ∈ R, by

Ψ(x) =
∫ x

0
exp

(
−2

∫ y

0
f(t)dt

)
dy. (3.27)

plays this role. In fact the function Ψ is the solution of the second order differential

equation Ψ′′(x) + 2f(x)Ψ′(x) = 0, for a.e. x vanishing at 0. Moreover, it satisfies the

following properties

(i) Ψ is a one-to-one function. Both Ψ and its inverse Ψ−1 belong to W2
1 (R) where W2

1 (R)

the space of continuous function g defined on R such that both g and its generalized

derivatives g′
l and g′′

l are locally integrable on R.

(ii) There exists a constant cf depending only on f such that for any x, y ∈ R

e−2cf |x− y| ≤ |Ψ(x) − Ψ(y)| ≤ e2cf |x− y|,

e−2cf |x− y| ≤ |Ψ−1(x) − Ψ−1(y)| ≤ e2cf |x− y|.

We introduce the following process

Kt : = ∂xg(XT ),

DtKt : = Dt∂xg(XT ),

H0(s,Xs, us) : = K(s)Ψ′ (Xs) b(s,Xs, us) +DsK(s)Ψ′ (Xs)σ(Xs),

G(t, s) : = exp
( ∫ s

t

{
∂x(Ψ′(Xr)b(r,Xr, ur)) − 1

2
(
∂x(Ψ′(Xr)σ(Xr))

)2}
dr

+
∫ s

t
∂x(Ψ′(Xr)σ(Xr))dWr

)
,

and

Yt : = Kt +
∫ T

t
∂xH0(s,Xs, us)G(t, s)ds. (3.28)
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3.4.1 Necessary and Sufficient Conditions for Optimality

From the necessary and sufficient condition of optimality for SDE (3.31), we deduce

the optimality necessary and sufficient condition for the Q-SDE (3.25).

Theorem 3.18
Assume that Assumption 1 is in force.

(i) If û is a minimizer of the cost functional J (u), then, we have:

E
[
∂uH(t, X̂t, ût, Ŷ (t))

∣∣∣Gt

]
= 0, for a.e. (t, ω), (3.29)

where

H(t, X̂t, ût, Ŷ (t)) = Ŷ (t) Ψ′(X̂t)b(t, X̂t, ût),

such that Ŷ is the optimal solution of equation (3.28).

(ii) Conversely, if û satisfies (3.29) and H is convex function in u, then û is optimal

for the cost (3.26).

Proof : First, we prove (i). Let X be a solution to (3.25), applying Itô-Krylov’s formula to

Ψ(Xt) leads to

Ψ(Xt) = Ψ(x) +
∫ t

0
Ψ′(Xs)b(s, Xs, us)ds +

∫ t

0
Ψ′(Xs)σ(Xs)dWs, (3.30)

For any 0 ≤ s ≤ T , we set xs = Ψ(Xs) and define the new coefficients b1 and σ1 by:

b1(s, x, u) = Ψ′(Ψ−1(x))b(s, Ψ−1(x), u) and σ1(x) = Ψ′(Ψ−1(x))σ(Ψ−1(x)).

By these notations the SDE (3.30), becomes

xt = x +
∫ t

0
b1(s, xs, us)ds +

∫ t

0
σ1(xs)dWs. (3.31)

The cost corresponding to (3.31) is given by:

J1(u) = E [g1(XT )] = E
[
g
(
Ψ−1(xT )

)]
.

Obviously, if û ∈ UG minimizes the cost J over UG , it minimizes the cost J1. Note

that if the coefficients b1, σ1 and g1 satisfy all the conditions of Assumption 1, then, by
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invoking Theorem 3.14, there exist the following processes,

K1(t) : = ∂xg1(xt) = ∂xg
(
Ψ−1(xt)

)
DtK1(t) : = Dt∂xg1(xt)

H1
0(s, x, u) : = K1(s)b1(s, x, u) + DsK1(s)σ1(x),

∂xH1
0(s, x, u) : = K1(s)∂xb1(s, x, u) + DsK1(s)∂xσ1(x),

G1(t, s) : = exp
(∫ s

t

{
∂xb1(r, xr, ur) − 1

2 (∂xσ1)2 (xr)
}
dr +

∫ s

t
∂x(σ1(xr))dWr

)
,

and

Y1(t) : = K1(t) +
∫ T

t
∂xH1

0(s, xs, us)G1(t, s)ds.

such that, for a. e (t, ω) , we have:

E
[
∂uH1

(
t, x̂t, ût, Ŷ1(t)

) ∣∣Gt
]

= 0, (3.32)

where

H1(t, x̂t, ût, Ŷ1(t)) = Ŷ1(t)b1(t, x̂t, ût)

= Ŷ (t)Ψ′(X̂t)b(t, X̂t, ût)

= H(t, X̂t, ût, Ŷ (t)).

This implies the NCO (3.29) holds.

Now, we proceed to prove (ii). It is quite clear that if û ∈ UG verifies the NCO

(3.29), then (3.32) also is satisfied. Hence, Theorem 3.17 shows that û is optimal for J1.

Consequently, it is optimal for J .
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Conclusion and Further Questions

In the first part of this thesis, we have provided new results for the Malliavin smooth-

ness of the solution of Quadratic BSDE and the analysis of their numerical schemes,

deepening and extending existing literature.

In Chapter 1, we have extended the results in Hu et al. [34] to Q-BSDE, whose

generator has the following form

h(r, y) + h1(r)z + f(y)z2,

where h is a given bounded and global Lipschitz function in y, h1 is bounded deterministic

function. We have provided an Lq (q ≥ 2)-existence and uniqueness theorem along with

the Lp-Hölder continuity for the solutions of such Q-BSDEs systems. in Chapter 2, we

constructed explicit, implicit, and fully discrete schemes for numerically solving Q-BSDE.

In the second part, we have crucially improved and generalized the results presented in

Meyer-Brandis et al. [43] and Mezerdi et al. [44]. Our findings investigate Pontrayagin’s

variational inequalities under partial information for controlled diffusion processes with

Lipschitz and non-smooth coefficients. Those results allow for more general choices of

the coefficients for the controlled process models in the real world of applications, for

example, but not limited to, portfolio optimization, option pricing, optimal consumption

and saving, optimal investment, motion planning, and sensor fusion. In particular, we

have extended and expanded our main results to break into the non-Lipschitz framework

and include some controlled SDEs with quadratic drift.

Further Questions:

Noting that the findings we have presented covered only some particular cases. The

results of Chapters 1 and 2 demand that the non-quadratic part of the generator be linear

with respect to the Brownian component z, while the results of Chapter 3 require that

the diffusion matrix σ be uniformly elliptic. Therefore, there are still open questions that
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we will address here.

Concerning Chapters 1 and 2, there are some pending questions. We have treated

some specific cases, but the more general case when the generator has the following form

h(r, y, z) + f(y)z2.

still an open problem. Notice that fully explicit or implicit schemes for the case when the

generator has the form

α(s) + β(s)z + f(y) |z|2 ,

or satisfies the Lipschitz property in both y and z plus the quadratic term f(y) |z|2 are

not solved yet. We will focus on analyzing numerical schemes for these last cases in future

research projects and hope we can handle all the problems that are still open.

Concerning Chapter 3, their findings may be extended, based on the Bouleau-Hirsch

flow propriety, to the case when the diffusion matrix σ is degenerate. For further details

on this subject, we refer to [3] and [19]. See Figure 2.1.
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