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  ملخص

 
ية مكانة اقتصادية كبيرة، حيث تحتل المرتبة الثالثة عالمياً في إنتاج التمور ومع ذلك، هناك فجوة . تحتل سوق التمور الجزائر

ية. كبيرة بين قدرتها الإنتاجية وصادراتها التقليدية البطيئة والمعرضة للخطأ والتي  وينبع هذا الإشكال من طرق الفرز اليدو
تهدف هذه الأطروحة إلى معالجة . تتطلب ال كثير من العمالة، وكذا  تعتمد على الفحص البصري لعوامل الجودة المختلفة

تتضمن الشبكات العصبية . لأتمته فرز التمر( CNNs)هذه القيود من خلال الاستفادة من الشبكات العصبية التلافيفية 
ية أحادية المنظور، مما يخلق حلاً أكثر فعاليةالت يستخدم نهجنا المبتكر مجموعة بيانات . لافيفية معلومات تتجاوز بيانات الرؤ

متعددة الوسائط تجمع بين ميزات من وجوه متعددة للتمر جنباً إلى جنب مع بيانات التصوير الحراري وقياس الوزن، مما 
تتعمق هذه الأطروحة في ثلاث مساهمات رئيسية تستكشف وتوضح فعالية . كل ثمرة تمريوفر تمثيلاً أكثر ثراءً وشمولية ل

 .هذه الأساليب القائمة على الشبكات العصبية التلافيفية

 ٪94المساهمة الأولى توضح فعالية نهج متعدد الوسائط مع الشبكات العصبية التلافيفية، حيث تحقق دقة اختبار تبلغ 
تبحث المساهمة الثانية في دمج . ن خلال دمج جميع المعلومات في مدخل بيانات مرئي واحدم VGG16باستخدام نموذج 

يو الأول، يتم تصنيف ال. البيانات متعددة الوسائط باستخدام تقنيات الاندماج المتأخر ً على صور من  تمرفي السينار بناء
يو الأول من خلال دمج . أربع زوايا يو الثاني السينار ية وقياسات الوزنا سبق مع مميوسع السينار تسلط . الصور الحرار

يو الثاني تتعامل المساهمة . النتائج الضوء على التحسين ال كبير في الدقة الذي لوحظ عند دمج ميزات إضافية في السينار
يقة . الأخيرة مع قيود تحليل وجه واحد ومجموعات البيانات الصغيرة  تمردمج المعلومات من وجوه متعددة لللتقترح طر

يادة حجم مجموعة البيانات يفةوتستخدم وظ تعمل هذه المقاربة على تحسين دقة التصنيف بشكل كبير، حيث . التبديل لز
البيانات  حجم مع دمج أربعة وجوه، مما يبرز إمكانات تقنيات تكبير( ٪100)المضبوط بدقة تامة   VGG16يصل نموذج 

في الختام، توضح هذه الأطروحة إمكانات الشبكات العصبية التلافيفية . لمعالجة القيود المرتبطة بمجموعات البيانات المحدودة
(CNNs )من خلال الاستفادة من المعلومات من أربع صور مرئية . جنباً إلى جنب مع دمج البيانات متعددة الوسائط

يقة المقترحة على تحسين دقة وكم المعلومات حول الثمرة بأكملهاتلتقط وجوهاً مختلفة لثمرة ال يق . تمر، تعمل الطر يمهد هذا الطر
يةالآلي ل فرزاللإحداث ثورة في   .لتمر الجزائري، مما يؤدي في النهاية إلى مستقبل أكثر كفاءة ودقة لسوق التمور الجزائر

 

،  التمر، تصنيف الصور، دمج البيانات متعددة الوسائط، (CNNs)الشبكات العصبية التلافيفية  :الكلمات المفتاحية
 .التصوير متعدد الزوايا، التصوير الحراري، التعلم بالنقل، قياس الوزن



Abstract

The Algerian date market holds signi�cant economic potential, ranking third in global

date production. However, a substantial gap exists between its production capacity and

date fruit exports. This limitation stems from slow, error-prone, and labour-intensive

traditional manual sorting methods that rely on visual inspection of various quality fac-

tors. This thesis addresses these limitations by leveraging Convolutional Neural Net-

works (CNNs) to automate date fruit sorting. CNNs incorporate information beyond

single-view visual data, creating a more e�cient solution. Our novel approach utilizes

a multimodal dataset that combines features from multiple fruit faces alongside thermal

imaging data and weight measurements, providing a richer and more comprehensive rep-

resentation of each date fruit. The thesis delves into three key contributions that explore

and demonstrate the e�ectiveness of these CNN-based approaches. The �rst contribu-

tion demonstrates the e�ectiveness of a multi-modal approach with CNNs, achieving 94%

testing accuracy using a VGG16 model by combining all information into one visual data

input. The second contribution investigates multi-modal data fusion with late fusion

techniques. In Scenario I, fruits are classi�ed based on four-view images. Scenario II ex-

tends scenario I by incorporating thermal images and weight measurements. The results

highlight the signi�cant accuracy improvement observed when incorporating additional

features in Scenario II. The �nal contribution addresses the limitations of single-face anal-

ysis and small datasets. It proposes a method to combine information from multiple fruit

faces and utilizes permutation functions to increase dataset size. This approach signi�-

cantly enhances classi�cation accuracy, with a �ne-tuned VGG16 model achieving perfect

accuracy (100%) with merged four faces, highlighting the potential of data augmentation

techniques to address limitations associated with limited datasets. In conclusion, this

thesis demonstrates the potential of Convolutional Neural Networks (CNNs) combined

with multi-modal data fusion. By leveraging information from four visual images cap-

turing di�erent faces of the date fruit, the proposed approach enhances the accuracy and

richness of information about the entire fruit. This paves the way for revolutionizing au-

tomated Algerian date fruit sorting, ultimately leading to a more e�cient and accurate

future for the Algerian date fruit market.

Keywords: Convolutional Neural Networks (CNNs), Date Fruit, Image Classi�ca-

tion, Multi-modal Data Fusion, Multi-view Imaging, Thermal Imaging, Transfer Learn-

ing, Weight Measurement.
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Résumé

Le marché des dattes en Algérie présente un potentiel économique important, se clas-

sant troisième dans la production mondiale de dattes. Cependant, un écart important

existe entre sa capacité de production et ses exportations de fruits de dattes. Cette lim-

itation découle de méthodes traditionnelles de tri manuel lentes, sujettes aux erreurs et

à forte intensité de main-d'÷uvre, qui reposent sur l'inspection visuelle de divers fac-

teurs de qualité. Cette thèse vise à remédier à ces limitations en exploitant les Réseaux

Neuronaux Convolutifs (CNN) pour automatiser le tri des fruits de dattes. Les CNN

intègrent des informations au-delà des données visuelles à vue unique, créant ainsi une

solution plus e�cace. Notre approche novatrice utilise un ensemble de données multi-

modal qui combine des caractéristiques de plusieurs faces de fruits ainsi que des données

d'imagerie thermique et des mesures de poids, o�rant une représentation plus riche et

plus complète de chaque fruit de datte. La thèse explore trois contributions clés qui

explorent et démontrent l'e�cacité de ces approches basées sur les CNN. La première

contribution démontre l'e�cacité d'une approche multimodale avec les CNN, atteignant

une précision de test de 94% en utilisant un modèle VGG16 en combinant toutes les

informations en une seule entrée de données visuelles. La deuxième contribution examine

la fusion de données multimodales avec des techniques de fusion tardive. Dans le scé-

nario I, les fruits de dattes sont classés sur la base d'images à quatre vues. Le scénario

II étend le scénario I en incorporant des images thermiques et des mesures de poids. Les

résultats mettent en évidence l'amélioration signi�cative de la précision observée lors de

l'incorporation de fonctionnalités supplémentaires dans le scénario II. La dernière con-

tribution aborde les limitations de l'analyse à visage unique et des petits ensembles de

données. Elle propose une méthode pour combiner les informations de plusieurs faces de

fruits et utilise des fonctions de permutation pour augmenter la taille de l'ensemble de

données. Cette approche améliore considérablement la précision de classi�cation, avec

un modèle VGG16 a�né atteignant une précision parfaite (100%) avec quatre visages

fusionnés, ce qui met en évidence le potentiel des techniques d'augmentation de données

pour remédier aux limitations associées aux ensembles de données limités. En conclusion,

cette thèse démontre le potentiel des Réseaux Neuronaux Convolutifs (CNN) combinés

à la fusion de données multimodales. En exploitant les informations de quatre images

visuelles capturant di�érentes faces du fruit de datte, l'approche proposée améliore la

précision et la richesse des informations sur l'ensemble du fruit de datte. Cela ouvre la

voie à la révolution du tri automatisé des dattes algériennes, conduisant �nalement à un

avenir plus e�cace et précis pour le marché des dattes en Algérie.

Mots-clés: Réseaux Neuronaux Convolutifs (CNNs), Fruit de Datte, Classi�cation

d'Images, Fusion de Données Multi-modales, Imagerie Multi-vue, Imagerie Thermique,

Apprentissage par Transfert, Mesure de Poids.

vi



Contents

Table of Contents vii

List of Figures x

List of Tables xiii

1 INTRODUCTION 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Part I Background and Literature Review 6

2 Date Fruit Sorting 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Overview of Date Palms . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Global Date Palm Production . . . . . . . . . . . . . . . . . . . . 8

2.2.2 The Date Palm in Algeria . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Comprehensive Overview of Dates . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Developmental Growth Stages of Dates . . . . . . . . . . . . . . . . . . . 10

2.5 Date Fruit Classi�cations . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Date Fruit Varieties in Algeria . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6.1 Commercial Varieties of Dates . . . . . . . . . . . . . . . . . . . . 12

2.6.2 Common Dates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6.3 Secondary Dates . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Grading and Sorting Process . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8 Quality Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.8.1 Consumer Perspective . . . . . . . . . . . . . . . . . . . . . . . . 16

vii



2.8.2 Producers Perspective . . . . . . . . . . . . . . . . . . . . . . . . 16

2.8.3 USDA Standards for Date Grades . . . . . . . . . . . . . . . . . . 16

2.8.4 UNECE Standard DDP-08 . . . . . . . . . . . . . . . . . . . . . . 21

2.8.5 The CODEX STAN 143-1985 . . . . . . . . . . . . . . . . . . . . 22

2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Machine Learning Fundamentals for Image Classi�cation 24

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Overview of Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Machine Learning Categories . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1.1 Supervised Machine Learning Types . . . . . . . . . . . 27

3.3.1.2 Common Supervised Learning Algorithms . . . . . . . . 27

3.3.2 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2.1 Unsupervised Machine Learning Techniques . . . . . . . 29

3.3.2.2 Common Unsupervised Learning Algorithms . . . . . . . 30

3.3.3 Reinforcement Learning (RL) . . . . . . . . . . . . . . . . . . . . 31

3.3.3.1 Reinforcement Learning Types . . . . . . . . . . . . . . 31

3.3.3.2 Common Reinforcement Learning Algorithms . . . . . . 32

3.4 Deep Learning for Image Classi�cation . . . . . . . . . . . . . . . . . . . 32

3.5 Arti�cial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Arti�cial Neural Network Components . . . . . . . . . . . . . . . . . . . 34

3.6.1 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.2 Optimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 Types of Arti�cial Neural Networks . . . . . . . . . . . . . . . . . . . . . 38

3.7.1 Recurrent Neural Networks (RNNs) . . . . . . . . . . . . . . . . . 39

3.7.2 Convolutional Neural Networks (CNNs) . . . . . . . . . . . . . . 39

3.7.3 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.7.3.1 Pretrained CNN Architectures . . . . . . . . . . . . . . 42

3.7.3.2 Fine-tuning . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.8 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Literature Review 48

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Application of Arti�cial Intelligence Systems in Agricultural Products . 48

4.2.1 Classi�cation Using Traditional Machine Learning Techniques . . 49

4.2.2 Classi�cation Using Deep Learning Techniques . . . . . . . . . . . 51

4.3 Date Fruit Classi�cation: Traditional and Deep Learning Approaches . . 56

viii



4.3.1 Date Fruit Classi�cation Systems Using Machine Learning . . . . 56

4.3.2 Application of Deep Learning in Date Fruit Classi�cation . . . . . 58

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Part II CONTRIBUTIONS 64

5 Improving date fruit sorting with a novel multimodal approach and

CNN 65

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 The Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 Dataset Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.2.1 Image Grayscale Transformation . . . . . . . . . . . . . 69

5.2.2.2 Image Averaging . . . . . . . . . . . . . . . . . . . . . . 70

5.2.2.3 Customising Image Channel Values . . . . . . . . . . . . 70

5.2.3 Model Conception . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.3.1 Transfer Learning Approach . . . . . . . . . . . . . . . . 72

5.2.3.2 Custom CNN Model . . . . . . . . . . . . . . . . . . . . 73

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Multimodal Data Fusion and Deep Learning for Automated Date Fruit

Classi�cation 84

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.2 Classi�cation Scenarios . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2.2.1 Scenario I: Multi-View Fusion with Deep Learning Archi-

tectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.2.2 Scenario II: Multimodal Fusion with Deep Learning Ar-

chitectures . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.1 Classi�cation Results on Multi-View Data (Scenario I): . . . . . . 90

6.3.2 Classi�cation Results on Multimodal Data (Scenario II) . . . . . . 93

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7 Optimizing Date Fruit Classi�cation Through Multi-View Imaging and

Deep Learning 99

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

ix



7.2.1 Dataset Preparation . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2.1.1 Merging Faces Step . . . . . . . . . . . . . . . . . . . . . 102

7.2.1.2 Permutation Step . . . . . . . . . . . . . . . . . . . . . . 103

7.2.2 Training and Testing Step . . . . . . . . . . . . . . . . . . . . . . 106

7.3 Experimental result and Discussion . . . . . . . . . . . . . . . . . . . . . 109

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8 General Conclusion 120

Bibliography 128

x



List of Figures

2.1 Morphological features of a date palm tree [11] . . . . . . . . . . . . . . . 8

2.2 Charting the Top 10 Date-Producing Nations [15] . . . . . . . . . . . . . 9

2.3 Date fruit compositions [19] . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Date fruit stages [22] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Manual date sorting and grading process. . . . . . . . . . . . . . . . . . . 15

3.1 A Venn diagram illustrating the relationships between arti�cial intelligence

(AI), machine learning (ML), neural networks, deep learning, and other

algorithms within each category [37]. . . . . . . . . . . . . . . . . . . . . 25

3.2 Types of Machine Learning [37]. . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Supervised Learning Process [42] . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Unsupervised Learning Process [42] . . . . . . . . . . . . . . . . . . . . . 29

3.5 Reinforcement Learning Process [39] . . . . . . . . . . . . . . . . . . . . 31

3.6 Machine Learning versus Deep Learning [50] . . . . . . . . . . . . . . . . 33

3.7 Arti�cial Neural Network Components: (a) Basic NN Layers [57], (b) An

overview of the neural network training process [58]. . . . . . . . . . . . . 36

3.8 Recurrent neural network (RNN) architecture [36] . . . . . . . . . . . . . 39

3.9 Example of CNN Architecture [65] . . . . . . . . . . . . . . . . . . . . . 40

3.10 Diagram illustrating the convolution operation [51] . . . . . . . . . . . . 40

3.11 Example illustrating the pooling layer types [67] . . . . . . . . . . . . . . 41

3.12 The architecture of transfer learning [69] . . . . . . . . . . . . . . . . . . 42

3.13 VGG16 architecture [65] . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.14 ResNet architecture [70] . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.15 MobileNetV2 architecture [71] . . . . . . . . . . . . . . . . . . . . . . . . 44

3.16 Confusion matrix with the equations for evaluation metrics [72] . . . . . 45

3.17 AUC - ROC Curve [74] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1 Flowchart Illustrating the Processing of Multimodal Data for Date Fruit

Classi�cation with CNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xi



5.2 Examples of Date Fruit Varieties in Our Dataset (Deglet Noor and Mech

Degla) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Example of a Deglet Noor Date Fruit (Grade 1) with Highlighted Features 68

5.4 Example of Grayscale Conversion (RGB Image vs. Grayscale Image) . . 69

5.5 Image Averaging: From Four Grayscale Views to a Single Averaged Image 71

5.6 Customizing Image Channels: Assigning Red, Green, and Blue Values from

Grayscale Images and Weight. . . . . . . . . . . . . . . . . . . . . . . . . 72

5.7 Transfer Learning Architecture for Date fruit Quality Classi�cation. . . . 73

5.8 Custom CNN modelArchitecture for Date fruit Quality Classi�cation. . . 74

5.9 Curves of Loss and accuracy during the model training for four models:

(a) VGG16 (b) InceptionV3 (c) ResNet50 (d) Custom-CNN model. . . . 76

5.10 The ROC AUC curve for various models: (a) VGG16 (b) InceptionV3 (c)

ResNet50 (d) CNN model from scratch. . . . . . . . . . . . . . . . . . . . 78

5.11 The confusion matrix for various models . . . . . . . . . . . . . . . . . . 79

5.12 The Kappa and Matthews scores for various models . . . . . . . . . . . . 79

5.13 Performance Comparison of Four Models. . . . . . . . . . . . . . . . . . . 80

5.14 Step 1 - Selecting the date fruit to predict. The user selects both thermal

and four-face images and inputs the fruit's weight. . . . . . . . . . . . . . 81

5.15 Step 2 - Displaying the data for prediction. This interface presents all the

information the user enters, including the thermal and four-face images of

the chosen date fruit and its weight. This information is used to predict

the class of the date fruit. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.16 Step 3 - Displaying the prediction results. This table shows the predicted

class for the chosen date fruit made by each of the four models used in the

experiment. The VGG16 and Resnet50 models predicted the class of the

date fruit correctly, while the other models did not. . . . . . . . . . . . . 82

6.1 Diagram illustrates a Multimodal Fusion Architecture for Date Fruit Clas-

si�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Multimodal Data Acquisition for Date Fruit Classi�cation . . . . . . . . 87

6.3 Scenario I: Multi-View Fusion with Deep Learning Architectures . . . . . 88

6.4 Scenario II: Multimodal Fusion with Deep Learning Architectures . . . . 89

6.5 Accuracy Curves for the Four Models in Scenario I. . . . . . . . . . . . . 91

6.6 Training and Validation Loss Curves for the Four Models in Scenario I. . 91

6.7 Confusion Matrices for the Four Models in Scenario I (Four-View Images) 92

6.8 Performance Metrics for Models in Scenario I . . . . . . . . . . . . . . . 93

6.9 Training and Validation Accuracy Curves for the Four Models in Scenario II 94

6.10 Training and Validation Loss Curves for the Four Models in Scenario I . 95

6.11 Confusion Matrices for the Four Models in Scenario II (Multimodal Data) 96

xii



6.12 Performance Metrics for Models in Scenario II . . . . . . . . . . . . . . . 96

6.13 Performance Comparison of Custom CNN Model Across Scenarios . . . . 97

7.1 Date Fruit Classi�cation Methodology with Four-sides Image Input . . . 100

7.2 Flowchart of the Proposed Methodology for Classifying Date Fruits . . . 101

7.3 The dataset after the merging step: (a) Merged image for two faces, (b)

Merged image for three faces, and (c) Merged image for four faces. . . . . 103

7.4 Examples of Permuted Date Fruit Images. . . . . . . . . . . . . . . . . . 104

7.5 Classi�cation Process for Date Fruits Using Proposed Architectural Models 106

7.6 Detailed Con�guration of Customized VGG16 for Date Fruit Classi�cation. 107

7.7 Detailed Con�guration of Customized CNN for Date Fruit Classi�cation. 110

7.8 Curves of Accuracy during the model training of a CNN with dropouts . 111

7.9 Curves of Loss during the model training of a CNN with dropouts . . . . 111

7.10 Confusion matrices of a CNN from scratch with a dropout . . . . . . . . 112

7.11 Curves of Accuracy during the model training of a �ne-tuned VGG16 model113

7.12 Curves of Loss during the model training of a �ne-tuned VGG16 model . 114

7.13 Confusion matrices of a Fine-tuned VGG16 Model . . . . . . . . . . . . . 114

7.14 The date fruit classi�cation process within the application interface. . . . 117

xiii



List of Tables

2.1 Cultivar Inventory in the Three Date Palm Regions of Algeria [16] . . . . 10

2.2 Comparative Characteristics of Four Date Cultivars: Deglet-Nour, Mech

Degla, Ghars, and Degla-Beidha [26, 27] . . . . . . . . . . . . . . . . . . 14

2.3 Score Points for Classi�cation Factors [32] . . . . . . . . . . . . . . . . . 18

2.4 Scoring Points for Date Classi�cation Based on Color [32] . . . . . . . . 18

4.1 A Comparison Table Between Traditional and Deep Learning Techniques

in Agricultural Product Classi�cation . . . . . . . . . . . . . . . . . . . . 55

4.2 A Comparison Table Between Traditional and Deep Learning Techniques

in Date Fruit Classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 Training and Validation Results for Various Models. . . . . . . . . . . . . 76

5.2 Testing Results for Four Models. . . . . . . . . . . . . . . . . . . . . . . . 80

6.1 Distribution of Date Fruit Samples in our Dataset . . . . . . . . . . . . . 86

6.2 Performance Metrics for Four Deep Learning Models on Multimodal Data

Classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.1 Distribution of Samples in the Dataset by Grade and Number of Faces

(Before and After Merging/Permutation) . . . . . . . . . . . . . . . . . . 108

7.2 The comparison among the proposed models of di�erent datsets . . . . . 116

7.3 Performance comparison between the methods using deep learning and our

proposed system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

xiv



LIST OF ABBREVIATIONS

CNNs Convolutional Neural Networks

VGG Visual Geometry Group

FAOSTAT Food and Agriculture Organization Corporate Statistical Database

TSS Total Soluble Solids

Ph Potential of Hydrogen

USDA United States Department of Agriculture

SStd Substandard

UNECE United Nations Economic Commission for Europe

CODEX Codex Alimentarius Commission

ANNs Arti�cial Neural Networks

AI Arti�cial Intelligence

k-NN k-Nearest Neighbors

SVMs Support Vector Machines

PCA Principal Component Analysis

ReLU Recti�ed Linear Unit

Lr Learning Rate

SGD Stochastic Gradient Descent

Adam Adaptive Moment Estimation

RMSprop Root Mean Square Propagation

AUC Area Under the Curve

ROC Receiver Operating Characteristic

MCC Matthew's Correlation Coe�cient

MLP Multi-Layer Perceptron

xv



RGB Red, Green, Blue

HSV Hue, Saturation, Value

SSC Soluble Solids Content

DM Dried Matter

LDA Linear Discriminant Analysis

IR Infrared

xvi



List of Publications

International Journal Paper

� Ibtissam BOUMARAF, Abdelhamid DJEFFAL, Sarah SETTA, and Abdelmalik

TALEB-AHMED, IMPROVINGDATE FRUIT SORTINGWITH A NOVELMUL-

TIMODAL APPROACH AND CNNS, International Journal of Advances in Soft

Computing and its Application, 15, 3(2023), 190-206. doi: 10.15849/IJASCA.231130.13.

International Conference Papers

� Ibtissam BOUMARAF, Abdelhamid DJEFFAL, Abou Bakr Seddik DRID, DE-

SIGNING SORTING DATES MACHINE USING EMBEDDED SYSTEM, Second

International Conference on Electrical Engineering ICEEB2018, December 2-3 2018,

Biskra, Algeria.

� Ibtissam BOUMARAF, Mohamed Aymene SLIMANE, Abdelhamid DJEFFAL,

MULTIFACE AND INFRARED IMAGES FOR HIGH DATES SORTING PRECI-

SION, 11th International Conference on Information Systems and Advanced Tech-

nologies, 22�23 December 2021, Annaba, Algeria.

Workshops

� Abdelhamid DJEFFAL, Ibtissam BOUMARAF, TRI DES DATTES A BASE DE

CARACTERISTIQUES APPROFONDIES, Workshop International sur la dura-

bilité des systèmes de production phoenicicoles en Algérie, Université de Biskra, 6

et 7 Décembre 2016.

� Ibtissam BOUMARAF, Abdelhamid DJEFFAL, and Abdelmalik TALEB-AHMED,

AUTOMATING DATE FRUIT SORTING: A MULTI-MODAL FUSION AND

DEEP LEARNING APPROACH, in 1st workshop on Advances in Deep Learn-

ing for Images and Immersive Technologies (ADL2IT), 10-12 October 2023.

Poster

� Ibtissam BOUMARAF, Abdelhamid DJEFFAL, AUTOMATIC DATE SORTING

SYSTEM BASED ON AUTOMATIC LEARNING AND VISUAL CHARACTER-

ISTICS, 1st Ph.D Days, JDITA'2018, Biskra, Algeria, January 28-30, 2018.

xvii



Chapter 1
INTRODUCTION

1.1 Context

The Algerian government is making signi�cant e�orts to diversify its economy, focus-

ing on the agricultural sector. Algeria's agricultural development policy strongly focuses

on increasing food production and improving quality. The ultimate goal is to modernize

and develop the agricultural industry to achieve self-su�ciency and increase exports [1].

Among Algerian agricultural products, dates are important, ranking second after

olives. Despite being one of the world's largest date producers, Algeria's presence in the

international market is relatively modest. In 2022, global statistics ranked Algeria as the

third largest date producer, re�ecting its agricultural prowess [2]. However, despite this

impressive production capacity, Algeria's date fruit exports must catch up to its produc-

tion capabilities. In 2021, Algeria ranked seventh globally in date exports, highlighting a

signi�cant gap between production and export levels and indicating untapped potential

to expand its global market share [3]. Despite o�ering high-quality date products with a

wide range of options, Algeria still needs help gaining a stronger foothold in international

competition.

The post-harvest sorting of dates is a crucial yet challenging step that signi�cantly

impacts marketability. This meticulous process requires careful size, shape, colour, and

defect assessments. While traditionally relying on human workers' exceptional vision

and precision, manual sorting is often tedious, error-prone, and time-consuming. These

limitations pose a signi�cant obstacle in the date fruit industry, prompting the need for

automated solutions. The agricultural sector faces a critical challenge in ensuring e�cient

and consistent sorting of high-value crops. Traditional sorting methods, which frequently

rely on manual labour, face limitations that impede productivity and product quality.

They are inherently time-consuming and labour-intensive, a�ecting overall throughput

and constraining the capacity to meet market demands. Human sorters rely on visual

inspection and experience, leading to inconsistencies and variability in sorting outcomes.
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These inconsistencies can result in a mix of product grades within a group, impacting

marketability and revenue.

1.2 Motivation and Objectives

Traditional sorting methods in the food industry, particularly agriculture, are labour-

intensive and often yield inconsistent results. Deep learning systems o�er a transformative

solution to address these issues. By automating the sorting process, these systems can

reduce manual labour and enhance e�ciency. Additionally, deep learning, especially sys-

tems utilizing Convolutional Neural Networks (CNNs), can detect subtle visual cues that

human sorters might miss, leading to more thorough and consistent quality assessments.

Numerous researchers have explored the application of deep learning to date fruit

classi�cation (sorting and grading). Used architectures like VGG16, AlexNet, VGG-19,

Inception-v3, and MobileNetV2 have achieved impressive results in classifying date fruits

( for tasks like maturity, type, and harvesting decisions)[4�7]. Existing research primarily

focuses on single-perspective image data and may not capture the full spectrum of quality

variations within a date type [4, 7]. However, these studies have certain limitations.

They primarily focused on classifying di�erent types of date fruits or evaluating their

ripeness stages, often neglecting sorting based on the quality grade of a speci�c date

fruit type. Furthermore, they prioritized applying the latest deep learning technologies

without necessarily delving deeper into data collection to detect external and internal

features according to international quality standards. Another signi�cant limitation is

that these studies generally considered only one side of the fruit, which can lead to errors

in detecting defects on other sides. This thesis aims to address these gaps by developing

a comprehensive and e�ective deep learning-based system for automatically sorting and

grading date fruits.

The proposed system will consider multiple fruit aspects, incorporate thermal imaging,

and measure the weight of the date fruit to enhance defect detection and provide a more

accurate assessment of fruit quality. Improving the e�ciency and accuracy of the sorting

process will signi�cantly enhance Algeria's competitiveness in the global market in terms

of date exports.

1.3 Thesis Contributions

All the above considerations lead this thesis to address the challenge of delving deeper

into the characteristics of date fruits. We will accomplish this goal by integrating various

data sources, such as images taken from di�erent perspectives, internal characteristics,

and weight measurements. The research will then explore the most e�ective strategies
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to fuse this multimodal data and leverage the power of deep learning models to achieve

superior classi�cation performance.

We compiled a custom dataset to develop an automated Algerian date fruit sorting

and grading system. This dataset encompasses two prevalent varieties, Deglet Noor and

Mech Degla, with each variety further categorized into di�erent quality grades. The key

contributions of this thesis are as follows:

1. Improving date fruit sorting with a novel multimodal approach and CNNs:

In this contribution, we introduce a unique technique to classify each variety type

of date fruit in our dataset into �ve grades. Each date fruit has four images of four

faces, a thermal image, and a weight measure. We use a two-step data preparation

strategy to e�ectively utilize these varied data sources.

Firstly, we capture the overall visual appearance by converting the four visual im-

ages to grayscale and then averaging them. This process creates a single grayscale

image representing the average visual characteristics from all fruit sides.

Secondly, we implement a "Customized Image Channel" strategy, which combines

the averaged grayscale image with the thermal image and the weight measurement of

the fruit. These combined channels serve as the input for various convolutional neu-

ral network architectures. These crucial data preparation steps play a crucial role

in achieving accurate and e�cient classi�cation using CNNs (VGG16, ResNet50,

InceptionV3, and CNN model from scratch). By reducing noise, simplifying data

representation, and ensuring consistency, these steps signi�cantly improve the qual-

ity and reliability of the automated date fruit sorting process.

2. Multimodal Data Fusion and Deep Learning for Automated Date Fruit

Classi�cation:

In this contribution, we explore the concept of multimodal data fusion for accurately

classifying date fruits. We propose a late-fusion technique that combines multiple

sources of information in two di�erent scenarios.

Firstly, we employ the fusion of convolutional neural networks (CNNs) trained on

four images taken from di�erent sides of the date fruit. Combining these multiple-

face images, we aim to represent the fruit's visual features comprehensively.

In the second scenario, we explore the fusion of these multiple-face images with

thermal imaging data and the weight information of the date fruit. Thermal im-

ages provide valuable temperature-related information, which can o�er insights into

the internal properties and ripeness of the date fruit. By incorporating the weight

data, we leverage the additional physical attributes of the fruit. By integrating this

multimodal data into the classi�cation process, we aim to enhance the accuracy and
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robustness of the classi�cation system. To assess the e�cacy of our suggested mul-

timodal data fusion methodology, we employ commonly used pre-trained models,

including VGG16, ResNet50, MobileNet, and a custom CNN design, all of which

have extensive recognition for their pro�ciency in visual identi�cation tasks.

3. Optimizing Date Fruit Classi�cation Through Multi-View Imaging and

Deep Learning:

This contribution presents a novel approach for high-precision date fruit classi�ca-

tion, signi�cantly advancing the sorting process. We focus on enriching the dataset

and capturing more comprehensive information by capturing four images of each

date fruit from di�erent sides. These images are then processed to create a repre-

sentation that preserves data integrity while preparing the data for a convolutional

neural network (CNN) training phase. Our customized CNN architecture lever-

ages sophisticated techniques like dropout regularization to prevent over�tting and

�ne-tunes a pre-trained VGG16 model for optimal performance. Additionally, we

employ a permutation function to explore the signi�cance of using multiple views to

generate all possible con�gurations of these facial elements. By applying the same

techniques to datasets with one, two, and three faces, we will demonstrate the

e�ectiveness of incorporating multiple views for improved classi�cation accuracy.

Finally, our contributions aim to enhance the accuracy and reliability of Algerian date

fruit classi�cation, o�ering valuable bene�ts for date fruit exporters and consumers.

1.4 Thesis Structure

The thesis structure comprises two distinct parts:

Part I, entitled "Background and Literature Review," establishes the foundational

knowledge for the research. Chapter 2 provides a comprehensive overview of date fruit

fundamentals, encompassing growth stages, existing classi�cations, prominent Algerian

varieties, and established quality assessment standards. Chapter 3 delves into the core

concepts of machine learning pertinent to image classi�cation. In contrast, Chapter 4

reviews the application of arti�cial intelligence within the agricultural sector, speci�cally

focusing on existing date fruit classi�cation techniques utilizing both traditional and deep

learning approaches.

Part II, titled "Contributions," showcases the novel research conducted within this

thesis. Chapter 5 details a multimodal approach that leverages CNNs for automated

date fruit sorting, including data preparation steps and the methodology employed to

convert multiple input sources into a uni�ed image representation. Chapter 6 investi-

gates multimodal data fusion using concatenation with deep learning for automated date
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fruit classi�cation. Chapter 7 explores classi�cation optimization through multi-view

imaging and deep learning, employing techniques such as merging and permutation func-

tions. Finally, Chapter 8 presents a comprehensive conclusion summarizing the critical

contributions of the thesis and proposing several directions for future research.
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Chapter 2
Date Fruit Sorting

2.1 Introduction

The date palm tree is known scienti�cally as Phoenix dactylifera. It plays a role in

the oasis ecosystem of regions and holds great importance in agricultural production in

dry and semi-dry areas. It serves as an element within the oasis environment, playing an

economic and social function for local communities by producing date fruits. Additionally,

the presence of date palms contributes to the stability of the Algerian Sahara, home to

over 3 million residents. Dates are popular and nutritious locally and enjoy international

acclaim for their high-energy content [8].

This chapter o�ers an overview of date fruits, covering aspects such as growth stages,

classi�cations, and global signi�cance, emphasising Algerian varieties. It delves into the

grading and sorting processes and the stringent quality standards that adhere to producers

and regulatory bodies.

2.2 Overview of Date Palms

The date palm (Phoenix dactylifera) occupies a signi�cant position in the history

and cultures of arid and desert regions, particularly in the Middle East and North Africa.

These resilient trees thrive in some of the harshest environments on Earth and have earned

admiration for sustaining communities by providing shelter, food, and raw materials. As

a result, they have become iconic symbols in various societies [9].

A date palm can grow up to 20 metres in height and continue to produce dates for

up to 200 years, provided it remains disease-free and una�ected by drought, which can

destroy palm groves that have thrived for decades. The tree has a cylindrical trunk

adorned with a stipe (a group of tough leafy fronds) and a crown of slender pinnate

leaves measuring 4 to 7 metres. The date �ower appears in large, airy clusters. Date

palms typically begin to bear fruit around age 5, with an average annual production of
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400 to 600 kg per tree, which can persist for up to 60 years [10]. The schematic diagram

of a date palm tree is illustrated in Figure 2.1.

Figure 2.1: Morphological features of a date palm tree [11]

The cultivation of dates, a globally beloved fruit enjoyed across Africa, North and

South America, and Asia, is intricately tied to its historical roots in the Middle East

and the Maghreb. An impressive 90% of the world's date production emanates from

these regions, re�ecting its cultural centrality and economic importance [12], [13], [14].

This section will further explore global date palm production and Algerian date fruit

production in diverse regions.

2.2.1 Global Date Palm Production

The ten countries leading in date palm production, according to FAOSTAT 2022,

are Egypt, Saudi Arabia, Algeria, Iran, Pakistan, Iraq, Sudan, United Arab Emirates,

Oman, and Tunisia [15]. This order re�ects their signi�cant role in shaping global date

palm cultivation. Starting with Egypt and ending with Tunisia, this list shows how

various factors, such as geography and climate, in�uence each country's contribution. In

particular, Saudi Arabia, Algeria, and Iran play crucial roles in date palm production

globally. For a visual representation, refer to Figure 2.2, which illustrates the top 10

date fruit producers. This graphic helps us understand each country's hierarchy and

importance in the global date palm industry.
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Figure 2.2: Charting the Top 10 Date-Producing Nations [15]

2.2.2 The Date Palm in Algeria

Despite being one of the world's top date producers, Algeria's presence in the interna-

tional market remains relatively modest. In 2022, global statistics ranked Algeria as the

third-largest date producer, a testament to its agricultural prowess. According to a recent

report by the Food and Agriculture Organization of the United Nations (FAO), Algeria

produced over 1.4 million tonnes of dates in 2022, a 7 % increase from the previous year

[2].

Despite this impressive production capacity, Algeria's date exports must catch up to

its production capabilities. In 2021, Algeria ranked seventh globally in date exports, with

a total volume of 76.9 thousand tonnes valued at 79 million dollars [3].

On the cultivation front, date palms in Algeria thrive in various oases in the hot and

arid southern regions. They are found from the west near Morocco to the east by Tunisia-

Libya and from the Saharan Atlas in the north to places like Reggane in the southwest,

Tamanrasset in the central part, and Djanet in the southeast. There are about a thousand

types of date palms, with three main areas known for having di�erent varieties. Wild

palms, known as "Khalts," grow randomly in oases, providing a valuable resource for

selecting new cultivars known for their premium dates and resistance to bayoud disease.

Date palms spread out in an east-west pattern, with most remaining in their original

areas. In the eastern part of Algeria, a popular variety called Deglet Nour is well-liked

for export, constituting almost half of all date palms planted there. Some varieties,

such as Degla Beida and Tinnaser, are sent to sub-Saharan African countries; Export-

oriented varieties like Hmira �nd their way to countries like Russia and China, while new

introductions like Tafezwin are gaining traction in South America. Meanwhile, within

Algeria, the Bentqbala variety reigns supreme in the eastern Ghardaïa market, re�ecting

local preferences. Agaz, a variety harvested early in Tidikelt in the west, performs well

in the markets of Ouargla and Ghardaïa [16]. Table 2.1 presents the most cultivated

varieties of date fruit in di�erent regions of Algeria.
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Region Number of cultivars Most common cultivars
West

Atlas 70 Ghares, 'Asyan, Feggus
Saoura 80 Feggus, Hartan, Cherka, Hmira, Deglet Talmine
Gourara 230 Hmira, Tinnaser, Taqerbuch
Touat 190 Tgazza, Aghamu, Taqerbuch
Tidikelt 60 Tgazza, Taqerbuch, Cheddakh, Aggaz

Center
El-Menia 70 Timjuhart, Ghars, Timedwel
M'Zab 140 Azerza, Ghars, Deglet Nour, Taddela, Bentqbala

East
Ouargla 70 Ghars, Deglet Nour, Degla Beida

Oued Righ 130 Deglet Nour, Ghars, Degla Beida
Sou� 70 Deglet Nour, Ghars, Degla Beida, Mich Degla
Zibans 140 Deglet Nour, Ghars, Degla Beida, Mich Degla
Aures 220 Buzrur, 'Alig, Buhles, Mich Degla
Tassili 180 Tanghimen, Tabanis, Khadaji

Table 2.1: Cultivar Inventory in the Three Date Palm Regions of Algeria [16]

2.3 Comprehensive Overview of Dates

The date palm tree generously yields its sweet and nutritious fruit, the date, which

has been a cherished food for centuries. Dates are a natural health snack packed with

carbohydrates, �bre, vitamins, and minerals. These antioxidant powerhouses help �ght

oxidative stress and in�ammation in the body. Dates boast incredible versatility in the

kitchen, enjoyed fresh or dried [17].

On the botanical front, date fruit is an elongated or rounded drupe with a single seed.

It comprises a �ne cellulosic envelope known as the pericarp or skin and a mesocarp that

is more or less �eshy with variable consistency. The mesocarp consists of a peripheral

zone with a sustained colour and compact texture, an inner zone of a lighter shade and

a �brous texture called the endocarp. The endocarp forms a membrane surrounding the

seed [18]. Figure 2.3 shows date fruit compositions.

2.4 Developmental Growth Stages of Dates

Date fruit development involves �ve maturity stages over approximately 6�8 months,

as shown in Figure 2.4. These stages include [20]:

- Hababouk (Loulou): The initial stage, lasting 4 to 5 weeks after pollination,

features round-shaped fruit with a whitish-cream colour and green stripes.

- Kimri (Bleh): Within the �rst 17 weeks, young, elongated fruit with a greenish
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Figure 2.3: Date fruit compositions [19]

colour, hard texture, and high moisture appears. Although unsuitable for direct

consumption, people use this fruit to make chutney or pickles.

- Kalal (Bser): During the next six weeks, the date fruit reaches maximum size and

weight, transitioning to yellow, purplish pink, or red, depending on the cultivar. The

sugar content increases, making dates suitable for raw consumption or processing

into jam, butter, or date-in-syrup.

- Rutab (Martouba): In the following four weeks, dates lose water, becoming

softer, sweeter, and darker in colour (light brown). Sucrose converts to reducing

sugars, marking the beginning of ripening. Rutab stage dates are consumed fresh

or processed into various products.

- Tamar: The �nal two weeks involve the fruit gaining maximum total solids, high

sweetness, low astringency, a dark brown colour, soft texture, and a wrinkled shape.

These dates have good storage stability due to their low moisture and high sugar

content [21].

Figure 2.4: Date fruit stages [22]
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2.5 Date Fruit Classi�cations

Date fruits can be classi�ed into three primary categories based on their texture: soft,

semi-soft, and dry dates. Espiard (2002) pointed out that these categories are determined

by the variation in texture observed in dates. Munier's quality index, introduced in 1973

and known as "r," further aids in classi�cation. This index assesses the fruit's stability

degree, resulting in the following classi�cation [23, 24]:

- Soft dates: Soft dates typically contain over 30% moisture, low levels of sucrose,

but high amounts of reducing sugars (glucose and fructose), and r < 2.

- Semi-soft dates: Semi-soft dates have a moisture content ranging from 20% to

30%, with 18% to 30% sucrose and 45% to 54% reducing sugars, and 2 < r < 3.5.

- Dry dates: Dry dates have moisture levels below 20% and nearly equal proportions

of sucrose and reducing sugars, ranging from 33% to 46%, and r > 3.5.

- At r = 2, the stability of the fruit is optimal, and its suitability for preservation is

highly appreciated.

2.6 Date Fruit Varieties in Algeria

The Algerian palm tree has a diversity of varieties, which present dates of varying

shapes and characteristics, categorised into three distinct groups [25]:

2.6.1 Commercial Varieties of Dates

Deglet Noor is the most famous date fruit type that is revered nationally and inter-

nationally in Algeria. It makes up almost half of all dates grown in the country. These

dates are soft and look nice. When ready to eat, they turn shiny brown and have smooth

skin with wrinkles. Inside, they are soft and �brous, but they taste perfect. People all

over love Deglet Noor dates because they look and taste great, making them an excellent

choice for snacks and desserts [23].

2.6.2 Common Dates

Common Algerian varieties dominate the southwest regions, constituting a signi�cant

portion of the market. Examples include Mech Degla, Ghars, and Degla Beida, each with

distinct features [26]:

- Mech Degla: It exhibits a sub-cylindrical form, with slight elongation and �atten-

ing at its base. It displays a light beige hue when it reaches maturity, accompanied
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by a subtle brownish tinge. The outermost layer, the epicarp, exhibits a wrinkled

texture, lack of shine, and fragility. The mesocarp is not succulent in its inner

composition, presenting a white colouration, dry consistency, and a mealy texture.

- Ghars: Ghars can be described as a type of date fruit with a notably tender texture

when fully mature. It exhibits a yellow hue in its early stage, becomes honeyed

during the rutab stage, and assumes a dark brown colour when fully ripe. The

epicarp is characterised by its glassy appearance, glossy �nish, adhesive properties,

and slight wrinkling. The mesocarp consists of a pulpy material that feels soft and

�brous.

- Degla-Beidha: The object's shape is tapering, with a �attened side on the peri-

anth and a narrowed end on the opposite side. During the maturation stages, its

colour is yellow, then transitions to a light brown or beige hue once it is fully ripe.

The outer layer, known as the epicarp, is thick and smooth. The middle layer, the

mesocarp, possesses a �eshy consistency that is dry and mealy texture. The calyx,

which is �at in shape, presents a colouration ranging from yellow to orange and

exhibits a solid adherence to the �esh.

2.6.3 Secondary Dates

The category of secondary dates includes cultivars that are less prevalent or facing

endangerment, with more than 150 varieties identi�ed. Notable examples include Hamra,

Timnaceur, Tegaza, Tezerzait, and Takerboucht. Takerboucht is particularly noteworthy

for its resistance to Bayoud disease, making it particularly interesting to researchers and

cultivators [25].

In the study of Algerian date fruit varieties, researchers have identi�ed signi�cant dif-

ferences in characteristics such as maturity, harvest date, average size, and sugar content

among cultivars [26, 27]. Table 2.2 presents a comparative analysis of four prominent

cultivars: Deglet-Nour, Mech Degla, Ghars, and Degla-Beidha.
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2.7 Grading and Sorting Process

Sorting and grading are crucial to ensuring market readiness and maintaining quality

consistency for date fruits. The sorting process involves carefully removing defective fruits

and categorising them based on size, maturity, texture, colour, and shape. Manual labour

typically handles this process. In contrast, grading focuses on aspects like size, weight,

visual defects, skin condition, uniformity of colour, and absence of decay or damage [22].

International standards like Codex and U.S. Grades establish quality criteria, which

help standardise grading practices (see section 2.8.2). Although sorting aims to segre-

gate fruits based on their characteristics, grading/classi�cation plays a central role in

categorising fruits into distinct groups to meet diverse market demands [22].

Despite being labour-intensive and time-consuming, the manual nature of sorting and

grading processes remains prevalent in all countries, posing challenges in post-harvest

operations. In South Algeria, for example, a single grader can typically handle around

200 kilograms of dates during an 8-hour shift. However, this capacity doubles to 400

kilograms when using conveyor belts, although it is essential to ensure that the belts do

not move faster than approximately 9 metres per minute [17].

Understanding their maturity stages is essential to sorting and grading date fruits,

from rapid growth to complete ripening. Furthermore, variations in chemical composition,

including sugar levels and dietary �bre, signi�cantly in�uence these processes [20].

Mechanical methods, such as sorting on moving belts or crates, complemented by

manual approaches illustrated in Figure 2.5, contribute to improving the e�ciency of

date fruit sorting and grading, thus ensuring uniformity and quality between batches

[28].

a. Date Grading in Iraq, Oman [17] b. Sorting dates [29]

Figure 2.5: Manual date sorting and grading process.
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2.8 Quality Assessment

Dates, revered as versatile and nutritionally rich fruit, boast myriad distinct qualities

that signi�cantly contribute to their overall desirability. The assessment of date fruit

quality is a multifaceted process that considers consumer preferences and the rigorous

standards set by producers. Striking a balance between these perspectives ensures that

dates meet consumers' taste preferences and align with the stringent criteria set forth by

regulatory bodies and international trade agreements.

2.8.1 Consumer Perspective

For consumers, taste and texture are the most essential qualities of dates. A study

supports this, revealing that consumers rank taste as the primary factor in�uencing their

purchase intent. Additionally, the texture of dates is a crucial factor a�ecting consumer

preferences. Furthermore, the colour of dates plays a signi�cant role in consumer per-

ception [30]. Consumers often use visual colour evaluation to determine dates' perceived

freshness and ripeness. It is essential for date fruit producers to prioritise taste, texture,

and colour to meet consumer expectations and drive purchase intent. In addition to taste,

texture, and colour, other essential qualities of dates include their size and the presence

or absence of defects [31].

2.8.2 Producers Perspective

From the producers' perspective, ensuring the consistent quality of the dates is not

just a commitment to consumer satisfaction but also a strategic imperative to maintain

competitiveness in the market. Meeting and surpassing industry standards are indispens-

able for building trust within the supply chain, cultivating a robust brand reputation,

and securing access to international markets. Implementing rigorous quality control mea-

sures, including morphological and physicochemical evaluations, empowers producers to

adhere to established benchmarks, comply with regulatory requirements, and maintain

the integrity of their products. After harvesting, various tasks within the date fruit in-

dustry are essential to prepare the date fruit for the subsequent packaging step. The

sorting and grading process represents a crucial step in which workers segregate the dates

according to the standards established by international organisations.

2.8.3 USDA Standards for Date Grades

The recent standards for grading dates, developed by the United States Department

of Agriculture (USDA), provide a comprehensive framework that meticulously outlines

sorting criteria, including colour, uniformity, absence of defects, character, and score.
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This section explores the U.S. grading system for dates and classi�es date fruits based on

distinct characteristics and quality standards [32]:

� Grade A (or U.S. Fancy): This category includes whole or pitted dates of a

single variety with good colour, nearly uniform size, minimal defects, and a positive

overall character (Total Score over 90 score points).

� Grade B (or US Choice): Whole or pitted dates of one variety fall into this

class, featuring reasonably good colour, moderate uniformity in size, a moderate

level of defects, and a satisfactory character (Total score of about 80 score points).

� Grade B (dry) or US Choice (dry): This category pertains to whole dry dates

intended for processing. The criteria include reasonably good colour, moderate

uniformity in size, moderate defects, and a satisfactory character (Total Score of

about 80 score points).

� Grade C (or US standard): This grade encompasses whole or pitted dates

(excluding dry dates for processing) of one variety or date pieces/macerated dates.

The characteristics include pretty good colour, moderate uniformity in size (except

for pieces), moderate defects, and a satisfactory character (Total Score of about 70

score points).

� Grade C (Dry) or U.S. Standard (Dry): Whole dry dates intended for pro-

cessing belong to this class, exhibiting fairly good colour, moderate uniformity in

size, a moderate level of defects, and a satisfactory character (Total Score of about

70 score points).

� Substandard or Cull Date Fruit: This category refers to dates that do not meet

the criteria of US Grade C or US Standard (dry), as described in Section 798 of

the California Agricultural Code. Cull dates are a�ected by various defects such

as insect infestation, decay, mould, fermentation, souring, dirt, or other foreign

material, damage from black scald, side spots, and improper ripening (total score

below 60 score points).

The standards established by the United States for grading and sorting dates de�ne

quality standards using a scoring system. The numerical representation of each scored

factor is expressed on a scale of 100. Table 2.3 represents the maximum points assignable

to these factors.

To ensure the consistent application of these grade standards, each inspector needs

to gain experience under the guidance of individuals knowledgeable in date sorting, and

each factor is represented numerically as detailed as follows [32]:
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Factors Points
Color 20

Uniformity of Size 10
Absence of defects 30

Character 40
Total Score 100

Table 2.3: Score Points for Classi�cation Factors [32]

- Colour: The colour-scoring procedure allows for �exible sample sorting within

the appropriate grade. Grade A requires a sample with "good colour," typically

any shade of amber consistent with the variety. For Grade B, uniform, typical

amber is essential, but some variations in date fruit are acceptable. Grade C re-

quires a relatively uniform colour, typical amber for whole and pitted dates, along

with consistency of colour in date fruit. Dates burnt to a cherry-red colour due

to over-hydration are addressed under defects, not colour. Speci�c score thresh-

olds determine the �nal grade within each classi�cation. Table 2.4 is provided for

assigning scores based on colour requirements.

Classi�cation Score Points Marked Variation

A
20 Over 0% to 1%
19 Over 1% to 3%
18 Over 3% to 5%

B and B Dry
17 Over 5% to 8%
16 Over 8% to 10%

C and C Dry
15 Over 10% to 15%
14 Over 15% to 20%

Substandard 13 or less Over 20%

Table 2.4: Scoring Points for Date Classi�cation Based on Color [32]

- Uniform Size: It is crucial in grading whole and pitted date styles.

� "A" classi�cation, dates that are practically uniform in size can receive a score

of 9 or 10 points, with the criteria that not more than 10%, by weight, should

deviate conspicuously from the average size of the dates in the container.

� The "B" classi�cation, of reasonably uniform size, allows for a score of 8 points,

with a limit of 15% deviation from the average size.

� Classi�cation "C" allows a score of 7 points for a fairly uniform size, with a

limit of 20% deviation.

� The "SStd (Substandard)" classi�cation applies to dates failing the require-

ments of the "C" classi�cation, receiving a score of 0 to 6 points and graded

as Substandard.
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- Absence of Defect: Defects in dates are classi�ed based on various characteristics,

a�ecting their appearance, edibility, or quality:

1. Damaged by Discolouration: Presence of a dark area visible through the skin,

more than one-fourth (1/4) inch wide, of natural origin.

2. Damaged by Broken Skin: Any rupture exposing the �esh, with the shortest

dimension of the exposed area at least three-sixteenths (3/16) inch.

3. Damaged by Checking: Fine lines from water injury covering at least one-

fourth of the date's surface.

4. Seriously Damaged by Checking: Heavy lines from water injury covering a

signi�cant portion of the date's surface.

5. Damaged by Deformity: Abnormal shape signi�cantly deviating from the va-

riety's typical form.

6. Damaged by Pu�ness: Soft, pliable skin separated from the �esh in a balloon-

like fashion over a substantial portion of the date's surface.

7. Seriously Damaged by Pu�ness: Dry, hard skin separated from the �esh over

a signi�cant portion of the date's surface.

8. Damaged by Scars: Blemishes a�ecting the exterior, not less than three-

sixteenths (3/16) inch in the shortest dimension.

9. Damaged by Sunburn: Light-coloured area scarred by sun heat, not less than

three-sixteenth inch in the shortest dimension.

10. Damaged by Insect Injury: Blemishes resulting from insects or mites a�ect at

least one-fourth of the date's surface.

11. Damaged by Improper Hydrating: Injury from excessive heat or incomplete

hydrating process.

12. Damaged by Mashing: Physical injury partially mangling the �esh while keep-

ing the date whole.

13. Damaged by Mechanical Injury: Excessive trimming or similar injury a�ecting

appearance or eating quality.

14. Damaged by Lack of Pollination: Manifested by absence of a pit or thin,

immature appearance.

15. Damaged by Blacknose: Severe checking causing dark, crusty, dry �esh over a

signi�cant area.

16. Damaged by Side Spot: Circular dark area extending into the �esh, a�ecting

a minimum area.
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17. Damaged by Black Scald: Collapse, death, and blackening of �esh along the

side, often with a bitter taste.

18. Damaged by Improper Ripening: Pronounced evidence of green shrivel or pu�y

�esh due to climatic or cultural issues.

19. Damaged by Other Defects: Any injury or defect not de�ned, materially af-

fecting appearance, edibility, or quality.

20. A�ected by Souring: Breakdown of sugars into alcohol and acetic acid by

yeasts and bacteria.

21. A�ected by Mold: Visible presence of mold.

22. A�ected by Dirt: Presence of any quantity of dirt.

23. A�ected by Insect Infestation: Presence of dead insects, insect parts, or exc-

reta.

24. The presence of any quantity of such substance is the condition that is in�u-

enced by foreign material.

25. The state of decomposition is a condition that is in�uenced by decay.

The classi�cation of dates based on the presence of defects includes:

- "A" classi�cation: Practically free from defects, scoring 27 to 30 points.

- "B" Classi�cation: Reasonably free from defects, scoring 24 to 26 points.

- "C" Classi�cation: Fairly free from defects, scoring 21 to 23 points.

- "SStd" Classi�cation: Fail to meet requirements, scoring 0 to 20 points, is

graded as substandard.

- Character: The quality and attributes of dates are subject to various intercon-

nected factors, such as their development, �eshiness, softness, ripeness, dryness,

and semi-dry or dry calyx ends.

- Development refers to the fruit size and maturity growth stage.

- Fleshiness pertains to the thickness of the date material relative to its size.

- Softness indicates the lack of �rmness in the date �esh, which is often in�u-

enced by the moisture content and the breakdown of the structure of the cell

wall, both of which are essential for complete ripening.

- Ripeness signi�es the extent to which the cell wall structure of the date �esh

has been broken down. Fully ripened dates exhibit translucency, pliability,

and a lack of woody texture, often achieved through partial drying.
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- Dryness is related to the moisture content of the date, which a�ects its texture

and �rmness.

- The presence of semi-dry or dry calyx ends describes the texture,

�rmness, or dryness of the date, often categorized as semi-dry or dry ends,

which can impact overall quality.

The classi�cation of dates based on their character includes:

- A Classi�cation: Dates with good character receive a score of 36 to 40 points.

They are well-developed, well-�eshed, and soft, or they ripen su�ciently to

develop these qualities within 15 days. The presence of semi-dry or dry calyx

ends should be minimal.

- B Classi�cation: Dates with a reasonably good character score of 32 to 35

points. They should be pliable and well-developed, with no more than 10% of

the dates having semi-dry or dry calyx ends.

- C Classi�cation: Dates with a fairly good character score of 28 to 31 points.

They are pliable, fairly well-developed, and �eshed, with no more than 20% of

the dates having dry calyx ends.

- SStd Classi�cation: Dates that fail to meet the requirements receive a score

of 0 to 27 points and are graded as substandard.

2.8.4 UNECE Standard DDP-08

UNECE Standard DDP-08 is a standard developed by the United Nations Economic

Commission for Europe (UNECE) Working Party on Agricultural Quality Standards to

ensure the marketing and commercial quality control of dates. The standard categorises

dates into three classes: "Extra" Class, Class I, and Class II, based on the following

criteria [33]:

- Dates must be devoid of abnormal external moisture and foreign smells or tastes.

- The dates' condition should allow for e�ective marketing and commercial control.

- Quality and size tolerances are allowed in each lot for produce that falls short of

the minimum requirements for the speci�ed class.

- Switzerland does not allow a tolerance exceeding 6% for produce damaged by pests.

- Each package must contain uniform contents, including only dates of the same

origin, quality, and variety.

- Each package's minimum weight of dates should be 4.0 g.
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2.8.5 The CODEX STAN 143-1985

CODEX STAN 143-1985 sets quality standards for commercially prepared whole

dates, both pitted and unpitted. Here is a summary of the grading and classi�cation

standards. Dates are assigned a grade based on overall quality: "Choice", "Standard",

or "Substandard" [34]:

- Choice: Dates that possess exceptional quality, devoid of any major defects, display

uniformity in size, colour, and distinctive �avour and texture.

- Standard: Dates that exhibit good quality, allowing for slight defects and minor

variations in size and colour, while still meeting the market's expectations.

- Substandard: Dates that do not conform to either the "Choice" or "Standard"

categories, primarily due to more signi�cant defects, deviations in colour and size,

or compromised characteristics.

Dates are classi�ed according to various factors:

- Style: Pitted or unpitted.

- Moisture content: Dry, semi-dry, or moist.

- Ripeness: Fully ripe or semi-ripe.

- Size: Extra-large, large, medium, small.

- Blemishes: Slight, serious, free of blemishes.

- Variety: for example, Deglet Noor, Medjool, and Barhi.

2.9 Conclusion

Dates hold signi�cant importance, particularly in numerous regions spanning Africa,

the Middle East, and Asia, and they have recently emerged as a valuable commodity in

global trade. In the past two decades, global date production has signi�cantly risen. In

2022, production reached approximately 9.75 million metric tons [35], and this upward

trend is expected to continue, as forecasted by the Food and Agriculture Organization

(FAO).

The processing journey of dates encompasses various crucial stages, such as harvesting,

cleaning, grading, sorting, packaging, and distribution to local or international markets.

Consequently, ensuring the quality of date fruit has become essential, requiring strict
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adherence to international standards. These standards establish precise criteria and clas-

si�cations, guiding producers and stakeholders in upholding quality standards throughout

the supply chain.

However, numerous obstacles still need to be overcome in producing and trading date

fruits, particularly postharvest handling technologies, food safety protocols, and quality

assurance measures. This section o�ers a comprehensive analysis of date fruit production,

covering aspects such as cultivation, the recognition of notable Algerian date varieties,

postharvest sorting and grading techniques, and an investigation into international stan-

dards for quality assessment pertinent to date fruits.
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Chapter 3
Machine Learning Fundamentals for Image

Classi�cation

3.1 Introduction

The ability to automatically classify images has become increasingly important in

various �elds. Image classi�cation tasks involve training computer models to analyze

visual data and assign appropriate categories to the content of images. This chapter

delves into the fundamental principles of machine learning that empower these models to

achieve impressive classi�cation accuracy.

Delving into Deep Learning, a powerful sub�eld of machine learning, requires a solid

understanding of its core concepts. We will begin by examining machine learning's funda-

mental approaches (supervised, unsupervised, reinforcement) to pave the way for tackling

intricate image data.

The focus then shifts to Arti�cial Neural Networks (ANNs), the cornerstone of Deep

Learning architectures. We will dissect the components of ANNs, including layers,

weights, biases, activation functions, and optimization techniques. Next, we will explore

Convolutional Neural Networks (CNNs), a specialized type of ANN designed explicitly

for image classi�cation tasks.

Finally, the chapter concludes by introducing essential metrics used to evaluate the

performance of image classi�cation models.

3.2 Overview of Machine Learning

Figure 3.1 highlights the intricate interplay between arti�cial intelligence (AI) and its

crucial sub�eld, machine learning. Machine learning is at the forefront of technological

advancement. It specializes in crafting algorithms and models that enable autonomous

learning and decision-making processes. Unlike conventional programming paradigms
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reliant on pre-de�ned commands, machine learning empowers systems to dynamically

adapt and evolve in response to the data they encounter.

Its algorithms are central to machine learning's e�cacy. These algorithms harness

extensive datasets to solve complex problems without explicit programming instructions.

Notable among these algorithms are decision trees, support vector machines, and Bayesian

networks, each o�ering unique pattern recognition and prediction approaches.

Deep learning, a specialized subset of machine learning, further enhances the �eld's

capabilities by employing multi-layered models that simultaneously perform feature se-

lection and model �tting. This approach has ushered in a new era of predictive modelling,

enabling the development of sophisticated algorithms that outperform traditional meth-

ods.

Recent advancements in computational power have been instrumental in fueling the

rapid progress of machine learning and deep learning techniques. This surge in computa-

tional capacity has facilitated the development of complex prediction models, leveraging

architectures such as arti�cial neural networks, convolutional networks, and recurrent

neural networks to achieve unprecedented levels of precision and performance [36, 37].

Figure 3.1: A Venn diagram illustrating the relationships between arti�cial intelligence
(AI), machine learning (ML), neural networks, deep learning, and other algorithms within
each category [37].

Machine learning algorithms are the backbone of modern technological advancements,

permeating diverse applications such as image recognition, natural language processing,

and recommendation systems. These algorithms enable systems to analyze complex data,

recognize patterns, and make intelligent decisions without explicit human intervention.

From identifying objects in images to understanding human language nuances, machine

learning capabilities continue to fuel transformative breakthroughs, revolutionizing in-

dustries and improving everyday experiences [36].
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3.3 Machine Learning Categories

Machine learning encompasses diverse algorithms designed to address a broad spec-

trum of problems. These algorithms can be broadly classi�ed into three main paradigms:

supervised learning, unsupervised learning, and reinforcement learning [36, 38�41]. Each

paradigm adopts a distinct approach to the learning process, which we will discuss further.

Figure 3.2 shows a visual representation of these machine learning paradigms.

Figure 3.2: Types of Machine Learning [37].

3.3.1 Supervised Learning

Supervised learning is a fundamental division within machine learning dedicated to

pattern recognition by establishing correlations between variables and known outcomes.

This methodology primarily operates with annotated datasets, wherein the algorithm is

endowed with training data comprising diverse characteristics (referred to as "X") and

their corresponding accurate output values (referred to as "y"). This approach enables

the algorithm to identify underlying patterns within the data and formulate a model

capable of replicating these patterns when presented with new data instances [36, 40].

Researchers play a pivotal role in advancing supervised learning by curating labelled

datasets that adjust network parameters through a direct comparison between input

data and the desired output (target) values, facilitating the e�cient education of the

algorithm. Training the algorithm through labelled examples makes supervised learning

ideal for tackling forecasting tasks like classi�cation and regression. As Figure 3.3 illus-

trates, supervised learning excels when the target variable is categorical (classi�cation)

or continuous (regression). The overarching objective of supervised learning is to extract

valuable insights from historical information in the form of labelled training data [37�39,

41].
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Figure 3.3: Supervised Learning Process [42]

3.3.1.1 Supervised Machine Learning Types

Supervised learning excels at making predictions based on labelled data. Two funda-

mental types of supervised learning techniques are regression and classi�cation. Below,

we delve into these essential techniques:

� Regression is a supervised learning technique that aims to establish the relation-

ship between a dependent variable (the target for prediction) and one or more

independent variables (the predictors). It predicts continuous outcomes like real

estate prices, stock prices, or exam scores. Linear regression, the simplest form,

�ts a straight line to depict the relationship between the variables [39]. However,

there is a wide array of other regression methods, and techniques like bagging in

ensemble learning can help improve model accuracy [36, 43].

� Classi�cation is a process that predicts categorical or nominal variables, dividing

the output into speci�c classes based on the training data provided. This process

entails categorizing the output into distinct classes according to the training data.

This technique falls under supervised learning, in which the model gains insights

from annotated data to classify fresh data into predetermined classes [36, 39, 43].

3.3.1.2 Common Supervised Learning Algorithms

The following section explores some of the most widely used supervised learning al-

gorithms, highlighting their key features and each with its strengths.

� Linear Regression is a supervised learning technique used for forecasting, illus-

trating the relationship between a dependent variable (the target of prediction) and

one or more independent variables (the predictors), assuming a linear connection.

The process involves placing a straight line on a scatterplot containing the data

points. The optimal line is the one that minimizes the overall distance between

itself and all the data points [36, 40].
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� Decision Tree Algorithm is a popular supervised learning technique used for

both regression (predicting continuous values) and classi�cation (predicting cate-

gories). It works by building a tree-like structure where each node represents a

question or test on a data feature. The algorithm recursively divides the data into

subsets based on the characteristic that best separates the data points according

to the desired outcome (classi�cation or prediction). This process continues until a

stopping criterion is met, resulting in a tree with decision nodes (asking questions)

and leaf nodes (containing the �nal predictions) [36, 40, 41]

� Random Forest Algorithm is an ensemble classi�er that leverages the combined

predictions of numerous decision tree classi�ers. Each decision tree grows using a

randomized subset of features and binary questions, resulting in diverse trees. After

constructing the random forest by combining these trees, the model makes the �nal

classi�cation or prediction through a majority vote on the individual tree outputs

[39, 40]. Compared to other algorithms, Random Forest requires minimal tuning.

However, a potential drawback is the increased computational cost associated with

a higher number of trees, which can sometimes lead to inaccuracies in the results

[43].

� K-Nearest Neighbors Algorithm (k-NN) stands out for its simplicity and

e�ectiveness. The core concept relies on the observation that data points with

similar characteristics cluster closely together. This analogy is fundamental to how

k-NN works: it predicts the class of an unlabeled data point by examining the k

nearest labelled data points in the training set. Like neighbours in a community

share characteristics, the k-NN algorithm predicts the class label of the unlabeled

point based on the most frequent class label among its k-nearest neighbours. This

process resembles a form of collaborative decision-making [39, 40].

� Support Vector Machine Algorithm: Vladimir Vapnik formulated the con-

cept of support vector machines (SVMs), also known as support vector networks,

in the early 1960s. Researchers use these supervised learning algorithms for re-

gression and classi�cation tasks. Further advancements occurred in the late 1990s

through collaborations with Corinna Cortes, Chris Burges, Alex Smola, and Bern-

hard Scholkopf. SVMs aim to construct a discriminative hyperplane that e�ectively

separates data points belonging to di�erent classes. The input data is often pro-

jected into a higher-dimensional feature space to achieve better separability [43,

44]. The SVM algorithm creates one or more hyperplanes in this high-dimensional

space to delineate (or partition) the data into distinct classes. This approach is

particularly well-suited for datasets with a clear separation between classes. SVMs

are known for their ability to handle high-dimensional data and model non-linear
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relationships between variables [36, 39].

3.3.2 Unsupervised Learning

Unsupervised learning focuses on unveiling latent patterns in data without explicit

classi�cation. By employing unsupervised learning algorithms, machines autonomously

discern patterns and create labels, particularly useful in �elds like fraud detection [40].

Unsupervised datasets lack associated targets, presenting unique challenges compared

to supervised datasets, where prede�ned labels guide learning [38]. In this paradigm, algo-

rithms autonomously segregate samples based on inputs, enabling tasks such as clustering

and dimensionality reduction [36, 37].

In unsupervised learning, the focus shifts to autoassociation input information, which

reduces data dimensionality. Driven solely by input data correlations, unsupervised learn-

ing uncovers signi�cant patterns without external guidance [41].

Furthermore, unsupervised learning deviates from supervised learning by eschewing

labelled data reliance and speci�c prediction anticipation. Instead, its objective is to

elucidate natural groupings or patterns latent within data elements or records [39], as

illustrated in Figure 3.4.

Figure 3.4: Unsupervised Learning Process [42]

3.3.2.1 Unsupervised Machine Learning Techniques

Unsupervised learning uncovers hidden patterns within unlabeled data, providing

valuable insights for various applications. Here, we explore two essential techniques:

� Clustering: This task is grouping similar data points based on their characteris-

tics. It enables the discovery of inherent structures within the data, forming clusters

where objects within a cluster share a high degree of similarity. In contrast, objects

in di�erent clusters are more dissimilar. This technique is bene�cial for analyzing

large datasets and identifying previously unknown subgroups. K-means clustering

is a popular method for achieving this partitioning, but various other clustering

algorithms are available [36, 39, 40, 45].
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� Dimensionality Reduction: This process involves reducing the number of fea-

tures (dimensions) in a dataset while preserving the most critical information. By

transforming high-dimensional data into a lower-dimensional space, dimensionality

reduction simpli�es it, making it easier to analyze and visualize. Additionally, it

can enhance the e�ciency of machine learning algorithms by mitigating the e�ects

of the "curse of dimensionality." Principal Component Analysis (PCA) is a widely

used method for dimensionality reduction, among many other available techniques

[36, 39, 41, 45].

3.3.2.2 Common Unsupervised Learning Algorithms

After exploring the popular unsupervised learning techniques of clustering and dimen-

sionality reduction, we explore two widely used algorithms for each technique: K-means

clustering and Principal Component Analysis (PCA).

� K-Means Clustering is a popular unsupervised learning technique that divides

data points into a prede�ned number (k) of clusters. The method optimizes the

assignment of data points between clusters based on similarity. Initially, the process

randomly selects k cluster centres or centroids. Each data point then assigns itself to

the nearest centroid. The algorithm updates the centroids to align with the mean

of the assigned data points. This cycle of reassigning data points and updating

centroids continues until the centroids show little change, indicating convergence.

This approach facilitates the discovery of underlying patterns in the dataset and

is useful for tasks like data exploration, anomaly detection, and segmentation [36,

40].

� Principal Component Analysis (PCA) is a popular unsupervised dimensional-

ity reduction approach. Its goal is to convert a dataset from a high-dimensional to

a low-dimensional space while preserving as much of the original information (vari-

ance) as possible. The method achieves this by �nding a new set of uncorrelated

variables known as principal components (PCs), representing the directions of the

highest variance in the data. These key components e�ectively indicate the most

informative directions in the data. PCA provides various advantages, including

data visualization in reduced dimensions, feature extraction for machine learning

methods, and reducing the "curse of dimensionality" [36, 39].

3.3.3 Reinforcement Learning (RL)

Unlike supervised and unsupervised learning, which have prede�ned goals, reinforce-

ment learning operates in an open-ended way. It does not require a pre-de�ned "correct

answer" but instead learns through interacting with its environment. The learner (an
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agent) takes actions, receives feedback through rewards or penalties, and continuously

re�nes its model based on these experiences, as illustrated in Figure 3.5. This itera-

tive process mirrors how humans and animals learn through trial and error, constantly

adapting their behaviour based on the outcomes of their actions [36, 39�41, 45].

Figure 3.5: Reinforcement Learning Process [39]

3.3.3.1 Reinforcement Learning Types

Reinforcement learning (RL) equips agents to make optimal decisions in an environ-

ment by learning from rewards and penalties. However, the way agents acquire this

knowledge di�ers between two main types [46]:

� Model-Based Reinforcement Learning: In model-based reinforcement learn-

ing, the agent comprehensively understands the environment, allowing it to predict

the rewards of each action and prioritize those with the highest predicted rewards.

This greedy method works best in static and predictable environments, where the

agent builds an accurate model and uses it for e�cient planning and strategy based

on anticipated outcomes.

� Model-Free Reinforcement Learning: This type of reinforcement learning fo-

cuses on direct interaction with the environment. The agent does not rely on a

pre-de�ned model but learns through trial and error. The agent explores di�erent

actions and observes the resulting rewards to gradually develop a strategy (pol-

icy) for maximizing future rewards in dynamic environments. There are two main

approaches to categorize this method: value-based and policy-based.

3.3.3.2 Common Reinforcement Learning Algorithms

This section delves into two fundamental algorithms that play a crucial role in achiev-

ing this goal: Q-learning and SARSA. These algorithms and their variations form the

backbone of many successful RL applications in robotics [36].
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� Q-learning: This is a model-free, o�-policy reinforcement learning algorithm. It

utilizes a Q-function, which estimates the future reward an agent can expect by

taking a speci�c action in a particular state. Through trial and error interactions

with the environment, Q-learning updates this Q-function to learn the optimal

policy (action selection strategy) for maximizing future rewards. Q-learning and its

variations are the most commonly used RL methods in social robotics [36, 47].

� SARSA (State-Action-Reward-State-Action): This on-policy reinforcement

learning algorithm estimates Q-values for actions in speci�c states by iteratively

updating based on rewards and state transitions. Unlike Q-learning, SARSA uses

the current policy to select the following action, in�uencing the Q-value updates

for the initial state-action pair. This approach can lead to di�erent learning paths

and outcomes compared to Q-learning, as it follows the used policy [36, 45].

3.4 Deep Learning for Image Classi�cation

Image classi�cation using machine learning traditionally relied on feature extraction,

a manual process in which experts select and extract essential image characteristics. This

strategy had limitations:

� Feature extraction: It required extensive domain expertise, making it a time-

consuming and challenging operation.

� Insu�cient Feature Representation: Manually selected features often fail to

capture the rich and complex information within images, thus limiting the accuracy

of standard machine learning models.

Traditional methods in image classi�cation often need help with complex data due

to the need for manually-de�ned features. Deep learning overcomes this limitation by

automatically learning these features directly from the data. With their multiple layers,

deep neural networks excel at extracting progressively intricate characteristics from the

image. This capability allows them to capture the image's underlying structure e�ec-

tively. As a result, deep learning models often outperform traditional methods in image

classi�cation tasks, as demonstrated in Figure 3.6.This advancement can be attributed

to two key factors: the availability of advanced hardware, such as powerful GPUs and

specialized accelerators, which facilitate the training of complex models, and the devel-

opment of innovative network architectures like Convolutional Neural Networks (CNNs).

[48, 49].
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Figure 3.6: Machine Learning versus Deep Learning [50]

3.5 Arti�cial Neural Networks

Arti�cial neural networks (ANNs), the base of deep learning, have advanced long since

their creation in the 1940s. They consist of perceptrons (processing units) structured into

three layers: input (image data), hidden (information processing), and output (classi�ca-

tions). The complexity of the network is determined by its number of hidden layers and

neurons [48, 51].

ANNs learn by training on labelled image data. The network learns to distinguish

between classes by modifying connections in response to prediction errors. Deep ANNs

perform feature extraction (automatically learning complicated features) and modelling

non-linear relationships in image data, which are critical for e�ective classi�cation [52].

Despite requiring signi�cant computational resources and data, advancements in hard-

ware (GPUs) and techniques like unsupervised pre-training improve the e�ciency of deep

ANN training for image classi�cation. This foundation in ANNs paves the way for ex-

ploring the specialized architectures of deep learning models used in this �eld [49].

3.6 Arti�cial Neural Network Components

The essential building blocks of arti�cial neural networks (ANNs) de�ne their struc-

ture and function. We will brie�y review the main elements below:

� Input Layer: It acts as the network entry point, receiving the data's features

(such as pixel intensities). Each feature has a corresponding node that feeds its

value forward through connections to the next layer (often hidden). Notably, for

one-dimensional data (e.g., Multilayer Perceptron), the input layer's shape must

account for the training minibatch size. Ultimately, the input layer prepares the

data for processing by subsequent layers, contributing to the �nal predictions at

the output layer [53, 54].
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� Hidden Layers: Arti�cial neural networks rely on hidden layers and internal

processing stages in which interconnected neurons analyze and transform data.

These layers progressively extract features, building on each other to uncover deeper

patterns in the data. The number of hidden layers and neurons are crucial design

choices tailored to the speci�c problem. Hidden layers, or "dense layers," are the

engines that power neural networks' ability to learn and make predictions [40, 52,

55].

� Output Layer: It consists of neurons that transmit processed data to the external

environment. In this layer, the network generates a response or prediction based on

the input received from the input layer. The con�guration of the ANN determines

the type of �nal output, which can be continuous, binary, ordinal, or count. This

output format depends on the activation function chosen for the neurons in the

output layer [55].

� Weights: It represents the strength of connections between neurons. A lower

weight indicates that the data passing through this connection has minimal impact

on the �nal predictions. In contrast, a signi�cant positive or negative weight mod-

i�es the information received by subsequent layers, which may impact predictions.

This approach is similar to how brain cells communicate, with connections grow-

ing or decreasing as they acquire experience. As connections de�ne speci�c brain

regions activated or deactivated in response to processed informationConnections

de�ne brain regions activated or deactivated in response to processed information

[51].

� Biases: It indicates the prediction baseline when all characteristics have zero val-

ues. In default prediction generation, bias can be a signi�cant factor, mainly if

some features are absent and have a zero value [51].

� Activation Functions: Neural networks rely on activation functions, which are

the fundamental mechanisms within each neuron, to control the transformation of

inputs into outputs. These functions act as calculators that process the combined

in�uence of incoming neuron signals (weighted sum). After processing, activation

functions determine whether the resulting value is signi�cant enough to be passed

on to the next layer. This thresholding process allows the network to focus on rel-

evant information and introduces non-linearity, a critical factor in solving complex

problems. Activation functions act as decision gates, determining which signals are

strong enough to in�uence the network's overall prediction [51, 55].

� Sigmoid Function (Logistic Function): It converts di�erent inputs into

probabilities ranging from 0 to 1. Its S-shaped curve introduces critical non-

linearity for tackling complex tasks. The popularity of this function stems from
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its alignment with probabilistic models and binary classi�cations. However,

vanishing gradients, where error signals diminish during training, limit its

e�ectiveness in deeper networks. Therefore, alternative activation functions

may be necessary for deeper architectures. This function is represented as [51,

55]:

A(x) =
1

1 + e−x

.

� Tanh Function: It o�ers a compelling alternative to the sigmoid function

in ANNs and DNNs. Both share a sigmoidal output curve, but Tanh's key

advantage lies in its broader output range (-1 to 1) compared to sigmoid's 0

to 1. This seemingly minor di�erence translates to a signi�cant bene�t: Tanh

is less susceptible to the vanishing gradient problem, a hurdle that hinders

learning in deep networks. While not entirely immune, Tanh o�ers a clear

advantage over sigmoid, potentially leading to faster learning [51, 55]. As

shown in the equation below, the Tanh function is represented as:

A =

(
2

1 + e−2x

)
− 1

.

� ReLU Function (Recti�ed Linear Unit): has emerged as a dominant

choice in arti�cial neural networks (ANNs) and deep neural networks (DNNs)

due to its e�ciency and ability to overcome limitations present in previous

activation functions. Unlike sigmoid and Tanh functions with their sigmoidal

curves, ReLU operates according to a segmented linear rule. For negative input

values, ReLU outputs zero. However, for positive input values, ReLU main-

tains a linear relationship, essentially acting like a standard identity function

g(z) = max(0, z) [55].

� Softmax Function: Similar to the sigmoid function, the softmax function

manages categorical outcomes in multinomial labelling systems. It converts

the model's outputs into a probability distribution, enabling more nuanced

predictions [55, 56]. It can be de�ned as [56]:

f(x)j =
exj∑K
k=1 e

xk

, j = 1, . . . , K.

� Loss Function / Cost Function: The loss function and cost function are con-

ceptually similar. Both serve as quality checks, regularly assessing the di�erence

between the network's predictions and actual values. The loss function calculates

a speci�c error metric for each data point, providing valuable feedback on network

35



performance. Iterative optimization procedures like gradient descent use this data

to improve the network's internal parameters (weights and biases). Consider the

loss function to be a teacher who regularly corrects the network's errors, allowing it

to change and improve its predictions over time. The critical di�erence lies in scope:

the loss function focuses on a single data point, while the cost function aggregates

the error across the entire training dataset [39, 55].

a. b.

Figure 3.7: Arti�cial Neural Network Components: (a) Basic NN Layers [57], (b) An
overview of the neural network training process [58].

3.6.1 Hyperparameters

Hyperparameters are essential for optimizing neural network performance and e�-

ciency. These settings, determined before training, such as learning rate and regulariza-

tion methods, in�uence how the model learns from data and adapts to unseen information.

� Learning Rate: It is a crucial hyperparameter in neural network training and

determines the magnitude of steps taken during optimization. Typically de�ned as

a small positive value (0.0 to 1.0), it controls the amount of weight adjustment per

iteration, a�ecting both e�ciency and convergence. A higher learning rate o�ers

faster learning but risks suboptimal weights, while a lower rate allows for more

precise adjustments and potentially leads to a global optimum. However, setting

the learning rate too low may extend training or halt convergence, locking the model

ine�ciently. Therefore, selecting the correct learning rate is critical for balancing

training speed with achieving an optimal solution [52, 59].

� Regularisation: It is a technique in machine learning that prevents over�tting,

where a model learns to memorize training data rather than generalize well to new,

unseen data. The aim is to encourage simpler models that perform better on out-

of-sample data. There are several methods of regularisation, including L1 (Lasso
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penalization), L2 (Ridge penalization), L2-L1 (Elastic Net penalization), and the

dropout method.

- The L1 regularization method compels numerous weights to assume zero value,

encouraging a sparse distribution in the model's weights.

- L2 penalizes the squared values of the weights, shrinking them towards zero.

- L2-L1 regularisation strikes a balance between the L1 and L2 methods.

- The dropout method randomly turns o� a certain percentage of neurons during

training, preventing the network from becoming too dependent on speci�c

neurons or features.

The choice of regularisation method depends on the speci�c characteristics of the

data and the problem at hand. Ultimately, regularisation improves the model's

performance and generalization capabilities, leading to better results on unseen

data [52, 55].

3.6.2 Optimizers

Optimizers guide neural network training, ensuring e�cient and e�ective learning

tailored to the speci�c problem. Optimizers guide neural network training, ensuring

e�cient and e�ective learning tailored to the speci�c problem. Achieving this involves

continuously �ne-tuning the network's internal parameters (weights and biases) based

on the calculated loss function. This function measures the discrepancy between the

network's predictions and reality. The chosen optimization algorithm minimizes the loss

function, leading to more accurate network predictions. Selecting the right optimizer is

crucial, as di�erent algorithms o�er distinct strengths and weaknesses [51, 55].

� Gradient Descent is a workhorse optimizer in deep learning, helps models learn

by iteratively adjusting weights based on the loss function (a guide for minimizing

error). Each step re�nes the performance until the loss reaches a desired level,

indicating an optimal con�guration [51].

� Stochastic Gradient Descent (SGD) is a variant of the traditional gradient

descent algorithm designed for faster training. Unlike standard gradient descent,

which uses the entire dataset for each update, SGD utilizes a single data point

(extreme case) or a small batch of data points (mini-batch) in each iteration. This

approach allows SGD to process large datasets that would not �t in memory at once,

potentially leading to faster convergence due to more frequent parameter updates

[51, 52, 55].
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� Adaptive Moment Estimation (Adam) has become dominant in deep learning

optimization. Unlike traditional gradient descent algorithms that rely on a single,

�xed learning rate for all parameters, Adam tackles a fundamental challenge: de-

termining the optimal learning rate for each parameter within the network. This

personalized approach leads to faster convergence and potentially superior perfor-

mance [55].

� Root Mean Square Propagation (RMSprop) is a powerful optimizer that ad-

dresses the limitations of gradient descent. While gradient descent can struggle with

oscillations, RMSprop incorporates momentum for smoother learning. Crucially, it

also introduces adaptive learning rates. RMSprop adjusts the learning rate for each

parameter based on its past behaviour, using recent gradient magnitudes to prevent

excessive updates for noisy parameters and accelerate learning for stable ones. This

approach leads to faster convergence and makes RMSprop a valuable tool for deep

learning tasks [60].

3.7 Types of Arti�cial Neural Networks

Arti�cial neural networks (ANNs) are versatile machine learning tools. They come in

many forms, each suited for speci�c tasks. This variety in structure allows them to tackle

a wide range of problems. The following section will explore some of the common types

of arti�cial neural networks:

3.7.1 Recurrent Neural Networks (RNNs)

The 1980s saw the emergence of Recurrent Neural Networks (RNNs), tailored specif-

ically to excel with sequential data such as time series. Unlike standard neural net-

works, RNNs feature a unique looped structure within their hidden layers. This loop

endows them with the ability to retain past information from preceding inputs, providing

a "memory" crucial for tasks such as language translation (remembering a sentence's sub-

ject for subsequent verb translation) and discerning relationships between events, even

when widely spaced in the sequence (as illustrated in Figure 3.8). This memory o�ers

additional advantages, including parameter e�ciency through parameter sharing across

time steps and compatibility with convolutional layers for tasks involving sequential data

with spatial information, such as image captioning. Despite encountering challenges like

vanishing gradients during training, RNNs remain a potent tool for many applications

reliant on sequence comprehension [61, 62].
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Figure 3.8: Recurrent neural network (RNN) architecture [36]

3.7.2 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are arti�cial neural networks inspired by the

animal visual cortex, renowned for their success in image recognition and computer vision

tasks. They have a unique architecture with neurons arranged in three dimensions,

allowing them to process spatial relationships and reduce complexity. CNNs extract

features from input data through convolution, using weight sharing to improve e�ciency.

They can directly work with raw images, simplifying tasks like image classi�cation and

object detection ( Figure 3.9 ). However, their layered architecture makes design and

maintenance more challenging, and training is computationally expensive and slower

[62�64].

Figure 3.9: Example of CNN Architecture [65]

Convolutional neural networks (CNNs) consist of several vital layers that work to-

gether to extract and process features from input data. These layers include convolution,

pooling, fully connected, and dropout layers, each serving a unique function in the net-

work's architecture. Here is a brief overview of these essential components:

� Convolution Layer is the main component of any CNN, following the input layer

and is where most computations occur. Here, multiple �lters, small in height and
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width but spanning the entire image depth, scan across the input image. These

�lters act as feature detectors, searching for speci�c patterns within the image. By

convolving the �lters with the input, the convolutional layer generates feature maps

that highlight the presence and location of these detected features within the image

[50, 63, 66], As illustrated in Figure 3.10.

Figure 3.10: Diagram illustrating the convolution operation [51]

� Pooling Layer, situated between convolution layers, plays a pivotal role in reduc-

ing the spatial resolution of the feature maps. They e�ectively downsample the

image by selecting the maximum or average value within de�ned pooling regions.

Speci�cally, four principal types of pooling layers exist ( Figure 3.11 ): Max pooling,

which consistently chooses the most signi�cant value in the region; Average pool-

ing, which computes the mean within the region; Global max pooling, and Global

average pooling [51, 54].

Figure 3.11: Example illustrating the pooling layer types [67]

� Fully Connected Layer (FCN) represents the �nal phase of a Convolutional
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Neural Network (CNN), following the convolution and pooling layers. This speci�c

layer requires a 1D vector as input, achieved by �attening the incoming 3D vector.

The FCN is responsible for classi�cation, and it combines information from previous

layers to make predictions about the image category, providing probabilities for each

classi�cation. Every node in the FCN layer connects to all nodes in the previous

layer, correlating with the number of target classes. Using the softmax activation

function, the FCN produces probabilities for each target class, ensuring that the

sum of all softmax values equals 1 [56, 62].

� Dropout Layer represents a common technique in convolutional neural networks

(CNNs) to enhance model generalization and reduce over�tting. During training,

approximately 50% of neurons undergo random deactivation, disrupting overly re-

liant connections and encouraging acquiring novel, distinct characteristics. As a

result, the network is less prone to over�tting and demonstrates improved perfor-

mance on unseen data [62].

3.7.3 Transfer Learning

Transfer learning utilizes pre-trained models, initially trained on extensive datasets

like ImageNet, to address novel tasks, particularly in situations with limited data avail-

ability. Transfer learning signi�cantly reduces the need to gather large amounts of new

data by using the learned features from one domain in another. Adapting a pre-trained

model's architecture, typically a deep CNN, to suit the new task involves replacing its

output layer and �ne-tuning it on the target dataset ( Figure 3.12). This strategy has

demonstrated its e�ectiveness in various domains, such as image classi�cation, by train-

ing only the newly added layers, thus decreasing the time required for training and the

data volume needed [56, 62, 68].
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Figure 3.12: The architecture of transfer learning [69]

3.7.3.1 Pretrained CNN Architectures

Pretrained Convolutional Neural Network (CNN) architectures signi�cantly advance

deep learning by o�ering robust models adaptable to various tasks. Each architecture

introduces unique innovations that enhance performance and suitability for di�erent ap-

plications. Below, we explore some of the most in�uential pretrained CNN architectures.

� VGGNet: It devised by Simonyan and Zisserman from the University of Oxford

in 2014, represents a signi�cant advancement in CNN architecture. The model,

available in con�gurations with 16 and 19 layers, employs 3x3 �lters with a stride

and padding of size one and 2x2 max pooling with a stride of 2. This strategic

design reduces the number of parameters while improving the depth of the network.

Despite reducing image size due to max pooling, the number of �lters increases with

each layer, ensuring robust feature extraction. VGGNet-16 features an astonishing

138 million parameters. However, its parameter uniformity remains commendable,

with a consistent increase in �lter count as the network deepens. This architectural

simplicity ( Figure 3.13), coupled with the use of small-sized �lters, underscores

VGGNet's popularity and e�cacy in image classi�cation tasks [52, 63, 66].

Figure 3.13: VGG16 architecture [65]
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� ResNet: In 2015, He et al. from Microsoft Research introduced ResNet, a break-

through architecture that achieved remarkable success in the ImageNet competi-

tion. This achievement challenged the conventional wisdom that increasing network

depth leads to over�tting due to vanishing gradients or a high number of parame-

ters. The core innovation of ResNet lies in its use of residual blocks. These blocks

cleverly connect layers within the network, facilitating the �ow of gradients during

training and addressing the vanishing gradient problem prevalent in deep CNNs (

Figure 3.14). By allowing the network to learn residual functions related to the

layers' input, residual blocks allow e�cient optimization and improved accuracy

even with a greater network depth [52, 63, 66].

Figure 3.14: ResNet architecture [70]

� GoogleNet Inception Module: Szegedy et al. (2014) revolutionized CNNs with

GoogleNet, featuring the groundbreaking Inception module. This innovation se-

cured victory in the ImageNet image classi�cation competition. At its core, the

Inception module enables �exible layer utilization. Unlike traditional CNNs, Incep-

tion modules employ multiple �lter sizes (kernels) within a single layer (e.g., 1x1,

3x3, 5x5). This design allows for the simultaneous detection of low-level details and

higher-level abstractions, which improves classi�cation performance. GoogleNet

leverages parallel processing within Inception modules to e�ciently create high-

dimensional feature maps [52, 66].

� MobileNetV2 Module: It is a CNN architecture designed for mobile devices,

featuring 32 initial convolution layers and 19 bottleneck layers. It o�ers robust

performance with minimal memory consumption and facilitates fast transaction

execution. Its predecessor, MobileNetV1, introduced Depthwise Separable convo-

lution and gained recognition for its lightweight nature. Both models accept input

images of 224 x 224 pixels or 300 x 300 pixels, making them suitable for SSD back-

bone networks. The critical innovation in MobileNetV2 is the 'Inverted Bottleneck

Residual Block.' This block incorporates a bottleneck layer and a residual connec-

tion, allowing the network to process information more e�ciently while maintaining

accuracy [68, 71]. Figure 3.15 presents the architecture.
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Figure 3.15: MobileNetV2 architecture [71]

3.7.3.2 Fine-tuning

Fine-tuning is crucial in transfer learning for convolutional neural networks (CNNs).

This technique e�ectively leverages pre-trained models for new tasks, especially with

limited data. It optimizes a pre-trained model by adjusting its �nal layers to �t the new

task.

During �ne-tuning, practitioners typically freeze the pre-trained model, which serves

as a vital feature extractor, except for the �nal layers. They then train these �nal layers

and any new classi�er layers added for the speci�c task simultaneously. The objective is

to progressively adjust the higher-level feature representations of the pre-trained model

to �t the new classi�cation task better. Fine-tuning allows the network to specialize its

later layers for the new data while preserving the valuable general knowledge acquired

during pretraining, thereby mitigating over�tting [71].

3.8 Evaluation Metrics

Assessing the e�ectiveness of an image classi�cation model involves using a range of

metrics to evaluate how well it can accurately predict. These metrics provide valuable

insights into the strengths and weaknesses of the model, aiding in guiding its further

development and optimization. Below are some commonly used metrics:

� Confusion matrix is a valuable tool for evaluating a model's performance by com-

paring predicted results against actual values. It provides a detailed breakdown of

the model's predictions, including the number of true positives, true negatives, false

positives, and false negatives. In addition, it o�ers information on the speci�c types

of errors the model makes. Furthermore, the confusion matrix is the foundation for

calculating various other metrics, such as accuracy, Precision, Recall, and speci�city

[72], as illustrated in �gure 3.16. True Positive (TP) refers to correctly classi�ed

positive samples, while True Negative (TN) refers to correctly classi�ed negative
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samples. False Positive (FP) indicates incorrectly classi�ed positive samples, and

False Negative (FN) indicates incorrectly classi�ed negative samples [71].

Figure 3.16: Confusion matrix with the equations for evaluation metrics [72]

� Accuracy quanti�es the overall correctness of a model by dividing the total number

of correct classi�cations, including both true positives and true negatives, by the

total number of classi�cations performed. It provides a straightforward assessment

of the model's accuracy, indicating how well it performs across all classes. Nonethe-

less, accuracy alone may not provide detailed insights into the model's performance

on speci�c classes, mainly when dealing with imbalanced datasets or when focusing

solely on positive or negative predictions, which is de�ned as follows [38, 39, 48]:

Accuracy Score =
TP + TN

TP + TN + FP + FN

� Precision: Also known as a positive predictive value, measures the accuracy of

optimistic predictions by determining the proportion of correctly predicted positive

cases among all instances predicted as positive, as calculated as [65, 73]:

Precision =
TP

TP + FP

� Recall (sensitivity) focuses on a model's ability to identify all relevant positive

cases within a dataset comprehensively. It calculates the proportion of actual pos-

itive instances the model correctly classi�ed, providing insight into how well it

captures true positives. [60, 65].

Recall =
TP

TP + FN
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� F1-score is a metric used in classi�cation tasks to balance the model's perfor-

mance between Precision and Recall. The F1 score aims to capture how well the

model identi�es true positives while also minimizing false positives. A high F1-score

indicates a good balance between these two aspects [38, 39].

F1 =
2× Precision× Recall
Precision+ Recall

� AUC - ROC Curve: It is a graphical tool used to visualize the trade-o� between

True Positive Rate (TPR) (Recall) and False Positive Rate (FPR) (1-Speci�city).

A higher ROC curve indicates better performance, while a higher AUC indicates

a better ability to distinguish positive from negative cases. The optimal operating

point on the ROC curve minimizes the distance between correctly classifying posi-

tive and negative cases, determined by locating the nearest distance d to point (0,

1.0) in the curve [74].

Figure 3.17: AUC - ROC Curve [74]

� Cohen's kappa: It is a metric used to assess agreement between two ratings.

A high score (closer to 1.0) indicates strong agreement, meaning the ratings are

similar. Conversely, a low score (closer to 0) suggests signi�cant di�erences. It is

bene�cial for classi�cation tasks with N distinct categories, where a good metric

re�ects how close the ratings are to achieving the same classi�cation [75].

� Matthew's correlation coe�cient (MCC) is a metric for evaluating classi�ca-

tion models that consider all aspects of a confusion matrix (correct and incorrect

classi�cations for both positive and negative cases). Introduced in 1975, MCC

gained popularity in the 2000s and was used in various machine learning compe-

titions [75]. MCC ranges from -1 to 1. 1 is perfect prediction, -1 is imperfect
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prediction, and 0 is random prediction. The formula for MCC is [38]:

MCC =
TP × TN − FP × FN√

(TP + FP )× (FN + TN)× (FP + TN)× (TP + FN)

3.9 Conclusion

This chapter has established the foundation of machine learning for image classi�ca-

tion, focusing on Deep Learning and Convolutional Neural Networks (CNNs). We have

explored various CNN architectures and underscored the importance of evaluating their

performance using a variety of metrics. With ongoing advancements in CNN technology,

we anticipate even greater accuracy and e�ciency in automated sorting systems.

The next chapter will delve deeper into this dynamic �eld, investigating how re-

searchers have utilized Deep Learning, CNNs, and other AI techniques to tackle similar

challenges across diverse agricultural domains. Through thoroughly examining these

studies, we aim to extract best practices applicable to our case study on automated date

fruit sorting. This exploration will pave the way for developing a robust and e�cient

date fruit sorting system.
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Chapter 4
Literature Review

4.1 Introduction

The agricultural sector is signi�cantly transforming by integrating arti�cial intelli-

gence (AI). This transformation drives automation and substantially improves quality

control processes' e�ciency, accuracy, and consistency. This chapter delves into the fasci-

nating world of machine learning techniques applied to agricultural product classi�cation,

focusing on date fruit classi�cation.

Section 4.2 explores Traditional Machine Learning versus Deep Learning Techniques,

comparing their strengths and weaknesses. Traditional Machine Learning methods are

known for their high interpretability but often require manual feature extraction. In

contrast, Deep Learning Techniques, especially Convolutional Neural Networks (CNNs),

excel by automatically learning features from raw data, enhancing classi�cation accuracy.

Section 4.3 is dedicated to a Date Fruit Classi�cation case study. We identify their

respective advancements and limitations by meticulously analyzing traditional and deep

learning approaches. This analysis involves a comprehensive review of the literature and

practical experiments. We utilize comparison tables to present our �ndings, which can

guide future research and help determine the most e�ective method for accurate date

fruit categorization based on various quality parameters.

4.2 Application of Arti�cial Intelligence Systems in

Agricultural Products

Arti�cial intelligence (AI) in agriculture has gained signi�cant traction, particularly in

classifying, sorting, and grading fruits and vegetables. This technology aims to enhance

the e�ciency, accuracy, and consistency of quality control processes. The literature re-

veals a wealth of research focused on developing AI systems for these tasks, utilizing
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traditional machine learning techniques and more advanced deep learning approaches.

This section is divided into two subsections, each exploring this literature in detail.

4.2.1 Classi�cation Using Traditional Machine Learning Tech-

niques

Traditional machine-learning techniques have been widely employed in classifying and

sorting agricultural products. Omidi Arjenaki et al. (2013) developed a machine vision

system to sort tomatoes by shape, maturity, size, and defects, as outlined in their study

[76]. The system utilized a CCD camera to capture images of the tomatoes. To di�eren-

tiate between healthy, immature, and defective tomatoes based on colour, the researchers

employed thresholding techniques, precisely the Otsu method, which achieved the best

results in defect classi�cation compared to other methods tested. Thresholds for other

sorting tasks were established based on speci�c image features: minimum fullness for

defect sorting, quartile values of eccentricity for shape sorting, 2-D area quartile values

for size sorting, and the range of mean colour components for maturity sorting. The

system was evaluated using 210 tomato samples and achieved individual accuracies of

84.4% for defect detection, 90.9% for shape classi�cation, 94.5% for size classi�cation,

and an overall system accuracy of 90%.

In another study, D. Martínez Gila et al. (2015) [77] investigated the classi�cation of

olive batches (tree or soil) using image processing and machine learning techniques. Their

study focused on three olive varieties (Picudo, Picual, and Hojiblanco) originating from

Priego de Cordoba, Spain. The researchers used a combination of image processing and

Principal Component Analysis (PCA) to extract relevant features from webcam images

(Logitech QuickCam SphereTM), capturing 176 olives (77 from trees and 99 from soil).

The classi�cation was achieved using Fisher Discriminant Analysis, with wrinkles on the

olive skin and colour being the primary features. This approach achieved high accuracy

(over 98%).

The proposed work in [78] of M.M. Sofu et al. (2016) addresses the problem of

designing an automatic apple sorting system using machine vision. This work proposes

a system consisting of roller, transporter, and class conveyors combined with an enclosed

cabin with machine vision, load cell, and control panel units. This type of fruit is sorted

by its colour, size, weight, and then detected mechanical damages like scabs, stains and

rot. They captured four (4) images of each apple rolling on the conveyor and used two

channels, so it captured eight images at the same time. It used a C4.5 decision tree as a

classi�er, resulting in an average sorting accuracy rate of 73.96%.

Jyoti Jhawar (2016) [79] proposed an automated grading of oranges system which
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selected a Maharashtra orange variety of India as an experimental dataset. In this work,

the oranges were classi�ed into four classes(Not Ripe, semi-ripe, ripe and over ripe),

and the system extracted only four features from the RGB image as a total number of

pixels, the mean value of red, green and blue colours in the fruit. To achieve their goal

or aim, they used three experiments ( Nearest-Neighbor Prototype, Edited Multi-seed

Nearest-Neighbor Technique which blended three techniques ( edited nearest-neighbour,

K-nearest-neighbor and K-means) which extracted two seed points for each class, and

then the K-means algorithm evaluated these two seed points which calculate the distances

using City block distance metric, the class of orange is the nearest value to the sample.

The last technique is linear regression, which is used to predict the classes of maturity

level of fruit. It used a three-feature red, blue, and green average to calculate a ripeness

measure. This work achieved 92.93%, 89.90 %, and 97.98 % when using the Nearest

Prototype, Edited Multi-Seed Nearest Neighbor, and Linear Regression, respectively.

Megha et al. (2016) [80] addressed the challenge of grading tomato quality in India

by dividing their system design into hardware and software components. Using image

processing techniques, they aimed to classify tomatoes based on defect and ripeness (De-

fective, Non-Defective, Ripe, Unripe). During the feature extraction and selection phase,

nine statistical features were extracted using the MATLAB platform. These features in-

cluded the colour mean, standard deviation, skewness for each colour channel (red, green,

and blue) and colour texture features derived from the image's grey-level co-occurrence

matrix (contrast, correlation, energy, and homogeneity). A multi-layer neural network

classi�er was employed for the classi�cation. The system achieved high accuracy, cor-

rectly classifying tomato images as defective/non-defective and ripe/unripe with 100%

and 96.47% accuracy, respectively.

Payman Moallem et al. (2017) [81] proposed a computer vision system to grade golden

apples from Iran. This system tackles the apples' health status (healthy/ defective) and

quality level (�rst-class, second-class, rejected). First, the system performs pre-processing

steps to remove the stem and calyx regions, which can interfere with defect detection.

Stem removal utilizes morphological methods for external stems and a Mahalanobis clas-

si�er for internal stems based on colour space analysis. Following pre-processing, the

system extracts various features from the apple images, including statistical, textural,

and geometric characteristics. These features are then fed into di�erent classi�ers, in-

cluding Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), and K-Nearest

Neighbor (KNN). The system achieved the highest recognition rate using the SVM clas-

si�er, reaching 92.5% accuracy for healthy vs. defective classi�cation and 89.2% for

three-class quality grading.
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In the same year, Hosein Nouri-Ahmadabadi et al. [82] developed a sorting system

of peeled pistachio into two classes of pistachio kernels (PK) and pistachio shells (PS)

using a Support Vector Machine, for the extraction features step they converted an RGB

colour space to HSV which using an H-component and Otsu thresholding method, a 30

colour features they used as input vector of the classi�er system which used statistically

indexed (the �ve indices ' Mean, Variance, Skewness, Rang, Kurtosis' for each sample

in the images were extracted from the components of RGB and HSV colour spaces), for

their implementation used 240 samples for training and validation and 120 samples for

testing. Their system achieved 99,58% and 99,17% for training and testing accuracy,

respectively.

Traditional machine learning models, such as decision trees and linear regression, o�er

simplicity and interpretability, making it easier to understand how decisions are made.

They are e�ective with smaller datasets, which is bene�cial when large amounts of la-

belled data are unavailable and generally require less computational power and resources

than deep learning models, making them more accessible for implementation in environ-

ments with limited computational capacity. However, traditional techniques often rely

on manual feature extraction, which can be time-consuming and may only capture some

relevant data features.

Deep learning has emerged as a powerful alternative to address the limitations of tra-

ditional machine learning, such as the need for manual feature extraction. Deep learning

models, particularly Convolutional Neural Networks (CNNs), have demonstrated higher

accuracy in image classi�cation tasks due to their ability to learn and extract complex

features from raw data automatically. The following subsection will delve into how deep

learning techniques have been applied to classify and grade fruits and vegetables.

4.2.2 Classi�cation Using Deep Learning Techniques

Deep learning techniques have revolutionized agricultural product classi�cation by

providing higher accuracy and robustness compared to traditional methods. The following

research supports this.

In a study by Shadman Sakib et al. (2019) [83], the Fruits-360 dataset comprising 25

categories of fruits was utilized to train and evaluate a CNN-based classi�er. The dataset,

consisting of 14,258 training images and 3,565 testing images, encompassed a diverse

range of fruit types. Using a CNN architecture with a batch size of 15 and an Adam

optimizer with a learning rate of 0.002, the model achieved impressive results, boasting a

training accuracy of 99.79% and a testing accuracy of 100%. These �ndings underscore

the e�ectiveness of CNNs in fruit recognition tasks and highlight their potential for real-
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world applications in agriculture and the food industry.

Ranjit K.N. et al. (2019) [84] proposed a two-stage deep learning method for accurate

fruit disease detection and classi�cation. In the �rst stage, a novel quad-tree approach

e�ciently identi�es potential disease regions by analyzing pixel homogeneity within im-

age subsections. This approach reduces the computational burden in the subsequent

stage. The second stage leverages a deep learning architecture with six hidden layers for

disease classi�cation. The model was trained on a substantial dataset of 40,000 images

containing 1,000 diseased and non-diseased samples for each of the 20 fruit classes. The

researchers used convolutional neural networks (CNNs) and a Stochastic Gradient De-

scent Momentum (SGDM) optimizer with a learning rate of 0.1 for 50 epochs to achieve

optimal performance. This two-stage approach achieved signi�cant accuracy, outper-

forming traditional classi�ers (SVM, KNN) in detection and classi�cation tasks. The

study demonstrates the e�ectiveness of deep learning for automated fruit disease analy-

sis, particularly its ability to handle many fruit classes while maintaining high accuracy.

Notably, the reported accuracy was 0.86% before image segmentation (BS) and improved

to 0.93% after segmentation (AS), highlighting the bene�t of the preprocessing stage in

identifying regions of interest.

Leveraging transfer learning, Juan Ponce et al. (2019) [85] conducted a study on the

classi�cation of olive-fruit varieties using Convolutional Neural Networks (CNNs). Their

research focused on olive samples from Gibraleon, Spain, collected in 2018, including

several olive varieties. The study evaluated several popular CNN architectures, including

AlexNet, InceptionV1, InceptionV3, ResNet-50, ResNet-101, and Inception-ResNetV2,

trained using the Adam optimizer with a learning rate 0.001. The dataset consisted of

2,800 samples, and each variety comprised 400 olive fruits. Preprocessing techniques, uti-

lizing machine vision methods, were applied to extract features from the images. Among

the CNN architectures, Inception-ResNetV2 demonstrated the highest average hit rate

of 95.91% and exhibited superior average probability values for correct classi�cation,

demonstrating its e�ectiveness for olive variety classi�cation. While all CNNs achieved

notable performance, AlexNet and InceptionV1 displayed comparatively lower accuracy,

suggesting limitations for this classi�cation task. The study highlights the importance of

fruit morphology as a pivotal feature for olive variety classi�cation through CNN-based

approaches.

Shuxiang Fan et al. (2020) [86] investigated an innovative approach for automated

Apple defect detection using Convolutional Neural Networks (CNNs). Their study, con-

ducted on apples from China in 2020, involved the classi�cation of apples into normal

and defective categories using both CNNs and Support Vector Machines (SVMs). For
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SVMs, the means and standard deviations of the R, G, and B components were utilized

as textural features. Meanwhile, the CNN approach incorporated textural features such

as entropy, energy, correlation, contrast, and homogeneity, employing stochastic mini-

batch gradient descent with a learning rate of 0.001 and a batch size of 16. Testing

on a dataset comprising 200 apples revealed CNN's superior performance, achieving an

accuracy of 96.5% compared to SVM's accuracy of 87.1%. Furthermore, independent val-

idation con�rmed CNN's e�ectiveness, achieving an accuracy of 92% with a processing

time of under 72 milliseconds for six images of a single apple. Notably, the CNN-based

method surpassed the traditional image processing approach (SVM), showcasing its po-

tential for real-world implementation in fruit sorting machines owing to its high accuracy

and e�ciency.

Pandey et al. (2021) [87] investigated the potential of deep learning for mango cultivar

recognition in India. Their study employed four pre-trained convolutional neural network

(CNN) architectures: AlexNet, GoogLeNet, ResNet50, and VGG16. These models were

evaluated on a dataset curated for Indian mangoes, encompassing nearly 1850 images

representing 15 popular cultivars. The evaluation results demonstrated the e�ectiveness

of transfer learning for this task. GoogLeNet achieved the highest F1 score (87.62%) with

a low false positive rate (0.008), outperforming the other three CNN models (AlexNet:

85.88%, ResNet50: 86.61%, VGG16: 86.23%).

Tapia-Mendez et al. (2023) [88] executed a novel study classifying 32 distinct fruits

and vegetables categories using advanced deep learning models, also examining their

ripeness level. They used a dataset sourced from Kaggle, each labelled as either "fresh"

or "rotten." Notably, the authors employed two prominent deep learning architectures,

MobileNet V2 and InceptionV2, to develop dedicated models for each task: classi�cation

and ripeness assessment. Intriguingly, the MobileNet V2 model emerged as the standout

performer across both tasks, showcasing its versatility and e�cacy in fruit and vegetable

analysis. Speci�cally, the MobileNet V2 model achieved an exceptional accuracy rate of

97.86% in classifying the 32 produce types, underscoring its robustness in distinguishing

between a diverse range of fruits and vegetables. Moreover, in evaluating ripeness across

12 classes of fresh and rotten stages, the MobileNet V2 model demonstrated unparalleled

precision, achieving a �awless accuracy rate of 100%. These �ndings underscore Mo-

bileNet V2's suitability and superiority for such applications, o�ering valuable insights

into its potential for advancing the �eld of agricultural classi�cation and assessment.

Deep learning techniques have signi�cantly advanced the classi�cation and sorting

of agricultural products, o�ering several key advantages. Deep learning models, particu-

larly Convolutional Neural Networks (CNNs), demonstrate high accuracy and robustness,
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particularly with complex and high-dimensional image data, e�ectively outperforming

traditional methods. They automate feature extraction, eliminating the need for man-

ual feature engineering and domain-speci�c knowledge. These models are scalable and

adaptable, handling the ever-growing volumes of agricultural image data and �ne-tuning

pre-trained models for various agricultural products.

With advancements in hardware and algorithms, deep learning models can achieve

real-time processing, facilitating on-the-�y classi�cation and sorting in agricultural en-

vironments while remaining robust to variability in lighting and angle. However, deep

learning techniques also have limitations, including high computational requirements, the

need for large annotated datasets, complexity and interpretability challenges, and the risk

of over�tting.

To better understand the di�erences between traditional machine learning and deep

learning techniques, Table 4.1 summarising a comparison of the studies mentioned above

is provided below.

Now that we have a comprehensive understanding of both traditional and deep learn-

ing techniques and their strengths and weaknesses in agricultural product classi�cation,

we can delve deeper into our study on date fruit classi�cation. In the following section, we

will embark on a meticulous analysis of this domain. We will explore the methodologies,

datasets, feature extraction techniques, and classi�cation algorithms employed in prior

studies.

Through a comparative assessment of traditional machine learning models and deep

learning architectures, we aim to identify the most optimal approach for accurately cat-

egorizing date fruits based on various quality parameters.
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4.3 Date Fruit Classi�cation: Traditional and Deep

Learning Approaches

Dates hold signi�cant economic and cultural value across various regions worldwide.

As the demand for standardized quality and e�cient processing methods increases, ar-

ti�cial intelligence (AI) systems rapidly transform the date fruit sorting and grading

landscape. This section delves into the evolution of sorting techniques, highlighting the

transition from traditional methodologies to the revolutionary impact of deep learning

approaches. We will explore how AI empowers automated sorting systems, leading to

greater consistency, e�ciency, and ultimately, a higher quality of date fruit products

reaching consumers.

4.3.1 Date Fruit Classi�cation Systems Using Machine Learning

Traditional sorting and grading methodologies have long been the foundation for

automated classi�cation tasks in date fruit processing. Researchers have explored various

techniques, ranging from statistical analysis to machine learning algorithms, for accurate

and e�cient sorting.

Dje�al et al. (2010) [89] investigated the application of Support Vector Machines

(SVM) in automated classi�cation tasks. Their study analysed single-view image images

of dates, extracting length, width, colour, volume, and homogeneity features. These

features were then used to train an SVM model capable of classifying dates into six

categories (Standard, Fraza, Small Fruit Standard, Small Fraza Fruit, Stained Fruit,

Boufarwa). Notably, the system achieved a high training accuracy of 98.85% on a dataset

of 353 samples, demonstrating the potential of machine learning for automated date

sorting.

In this context, Al Ohali (2011) [90] explored the application of computer vision tech-

nology for the automated grading and sorting of date palm fruits. Their innovative system

used RGB images of date fruits to extract a comprehensive range of prede�ned external

quality features. These encompassed critical attributes such as size, shape, colour, wrin-

kles, and the identi�cation of defects such as bruises and bird pecks. Employing these

extracted features, the researchers implemented a sophisticated back-propagation neural

network classi�er to categorize dates into three distinct quality tiers. Impressively, their

system achieved an accuracy rate of 80% when tested on a sizable dataset comprising

1,200 training and 660 testing samples. This research underscores the potential of com-

puter vision techniques in revolutionizing date fruit quality assessment and highlights the

promise of improved e�ciency and consistency in the date grading process.
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The researchers Tavakolian et al. (2013) [91] successfully employed FT-NIR spec-

troscopy and advanced statistical analysis to achieve a signi�cant breakthrough in date

fruit processing. This technique enables the non-destructive classi�cation of various date

palm cultivars, focusing on discriminating between six cultivars (�ve Iranian date fruits

and Tunisian Deglet Noor) with over 90% accuracy. Moreover, FT-NIR spectroscopy,

coupled with the application of Partial Least Squares (PLS) analysis on aggregate data,

showed promising potential for estimating critical quality parameters such as soluble

solids content (SSC) and dried matter composition (DM). That eliminates the need for

destructive testing, streamlining the sorting process and ensuring consistent quality. The

real-time nature of FT-NIR spectroscopy makes it ideal for integration into date fruit

processing facilities, enabling e�cient quality control measures.

In 2014, Mohana et al. [92] introduced an innovative approach for grading Indian

date fruit, categorizing them into six distinct grades based on surface hardness and size.

The grades included hard surfaces with small and large sizes, semi-hard surfaces with

small and large sizes, and soft surfaces with small and large sizes. Using a Sobel operator

to capture the shape features, the authors employed perimeter, area, major-axis length,

minor-axis length, eccentricity, and equidiameter measurements derived from the fruit's

contour. Additionally, they utilized texture analysis, extracting features through Local

Binary Pattern (LBP) mapping to compute mean and standard deviation values.

Mohana et al. employed three classi�cation techniques for the grading process: the K-

NN classi�er, Support Vector Machine (SVM), and Linear Discriminant Analysis (LDA)

classi�ers. Among these, the K-NN classi�er demonstrated superior performance, achiev-

ing an accuracy of 96.45%. This robust accuracy surpassed the performance of the SVM

and LDA classi�ers, showcasing the e�ectiveness of the proposed grading methodology

in accurately categorizing date fruit based on its distinctive characteristics.

Building upon the existing research on shape and texture analysis for date fruit classi-

�cation, Ghulam Muhammad (2015) [93] investigated the use of Support Vector Machines

(SVM) for classifying four distinct Saudi Arabian date varieties: Ajwah, Sagai, Sellaj,

and Sukkary. His approach went beyond traditional methods by incorporating colour

information alongside the standard shape and size features. Notably, the study achieved

a remarkable classi�cation accuracy of 98.1% using a combination of Weber Local De-

scriptor (WLD) texture descriptors, shape and size features, and the YCbCr colour space

(with a dataset of 800 samples, 200 per variety). This �nding highlights the potential

of WLD descriptors as a powerful feature extraction method for accurate date variety

classi�cation, mainly when used in conjunction with SVM classi�ers.

Oussama Aiadi et al. (2016) [94] delved into the classi�cation of Algerian date fruit
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varieties, focusing on seven cultivars cultivated in Touggourt, Algeria, using Support Vec-

tor Machines (SVM). Their focus was on leveraging a combination of shape and colour

features to achieve accurate classi�cation. Comprising a dataset of 350 meticulously cu-

rated date fruit samples, the researchers meticulously partitioned 280 specimens for the

learning phase and reserved 70 for rigorous testing. Notably, the SVM-based classi�ca-

tion methodology exhibited remarkable prowess, boasting an impressive accuracy rate

of 97.14%. Such high accuracy demonstrates the power of machine learning in identify-

ing subtle di�erences among Touggourt date fruit varieties. Encouraged by this success,

Aiadi et al. (2017) [95] explored an alternative approach, proposing a novel method for

automatic date fruit classi�cation using a Gaussian Mixture Model (GMM). Their study

focused on ten Algerian date varieties (Ajina, Adam Deglet Noor, etc.) and employed a

combination of colour histogram, texture, and shape features for classi�cation. Utilizing

a dataset of 5,000 date images and the Calinski-Harabasz index for cluster evaluation,

their method achieved a high accuracy of 97.49%. This work highlights the potential of

GMM for accurate date variety classi�cation and emphasizes the e�ectiveness of combin-

ing multiple feature types.

Annamalai et al. (2018) [96] investigated date fruit classi�cation based on hardness

for three major Omani growing regions. Their study employed two machine learning

approaches: Linear Discriminant Analysis (LDA) and Arti�cial Neural Networks (ANN).

Feature extraction focused on histogram and texture characteristics, utilizing a dataset

of 1,800 date fruit samples. The three-class model (soft, semi-hard, and hard) achieved

classi�cation accuracies of 66% and 71% for LDA and ANN, respectively. Interestingly,

accuracy improved to 84% and 77% for LDA and ANN when using a simpli�ed two-class

model (combining soft and hard dates). This �nding suggests that distinguishing between

two hardness categories might be more e�cient. Additionally, the study revealed that

histogram features were more in�uential than texture features for hardness classi�cation.

Finally, the analysis of mean grey values indicated that hard dates were signi�cantly

brighter than softer varieties.

While traditional methodologies have achieved commendable results, they have limi-

tations, as discussed in 4.2.1. Transitioning to deep learning for date fruit classi�cation

represents a paradigm shift. Deep learning o�ers the advantage of automated feature

learning, enhancing accuracy and e�ciency.

4.3.2 Application of Deep Learning in Date Fruit Classi�cation

Building upon the foundation in section 4.2.2, deep learning emerges as a transfor-

mative force for agricultural processes, particularly in sorting. Convolutional Neural

Networks (CNNs) have been at the forefront of this revolution, demonstrating remark-
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able e�ectiveness in automating and streamlining date fruit sorting. These CNN-powered

systems achieve superior precision, signi�cantly improving e�ciency and accuracy com-

pared to traditional methods. We will delve into speci�c examples of these studies to

showcase the practical applications of deep learning in revolutionizing date fruit sorting.

Researchers Nasiri et al. (2019) [4] used image-based deep learning to conduct an

innovative study on the automatic sorting of Shahani date cultivars from Iran. The

study classi�ed date fruits into four categories: Khalal, Rutab, Tamar, and defective

dates. By employing the well-known VGG-16 convolutional neural network model, they

achieved an impressive 96.98% classi�cation accuracy. Their dataset comprised 1,300

high-quality images processed over 25 training epochs with the RMSProp optimizer.

This approach demonstrates the transformative impact that advanced image-based deep

learning methods can have on the automated sorting and grading of date fruits, paving

the way for more precise and e�cient agricultural practices.

Hamdi Altaheri (2019) [6] conducted a notable study to explore the e�ectiveness of

deep learning models in classifying date fruits based on type, maturity stages, and readi-

ness for harvesting, aiming to assist in the development of robotic harvesting systems

in orchard environments in Saudi Arabia. Utilizing a large dataset of over 8,000 sam-

ples, divided into training and testing sets for both date type (4,530 training samples

and 3,542 testing samples) and maturity stages (3,227 training samples and 3,420 testing

samples), the study �ne-tuned two deep learning architectures, VGG-16 and AlexNet.

Trained using di�erent learning rates (0.002 for VGG-16 and 0.0001 for AlexNet) and

optimized with the Stochastic Gradient Descent (SGD) optimizer, the models employed

data augmentation techniques to enhance robustness and generalisability. The VGG-16

model outperformed AlexNet across all categories, achieving 99.01% accuracy for date

type classi�cation, 97.25% for maturity classi�cation, and 98.59% for harvest readiness

classi�cation, compared to AlexNet's 96.51%, 94.98%, and 95.51%, respectively. These

results demonstrate the superior performance of VGG-16 in capturing intricate visual

features necessary for accurate classi�cation and suggest signi�cant potential for devel-

oping automated systems for date fruit harvesting. Altaheri's research underscores the

potential of deep learning models, particularly VGG-16, in automating date fruit classi-

�cation and harvesting, with future research opportunities to integrate these models into

fully automated robotic systems and to expand the dataset to improve robustness and

adaptability.

Alhamdan et al. (2021) [97] conducted a comprehensive study to classify nine di�erent

types of Saudi Arabian date fruits using various convolutional neural network (CNN)

models. Leveraging a dataset available on Kaggle comprising 1,658 samples, the research
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demonstrates the application of deep learning techniques to improve the accuracy and

e�ciency of date fruit classi�cation. In their work, they developed and compared four

di�erent CNN models, each with distinct con�gurations and training parameters. The 48-

4L model optimized with SGD at a learning rate of 0.001 achieved 96% accuracy without

data augmentation or noise. The 65-4L model, using Adagrad with data augmentation

and L2 regularisation, achieved 95% accuracy. The 70-4L model, utilizing Adam with a

meagre learning rate and noise but without augmentation, achieved the highest accuracy

of 97%. The 74-4L model, also using Adagrad with data augmentation and noise, had the

lowest accuracy at 91%. These results indicate that di�erent con�gurations and training

strategies signi�cantly impact the performance of CNN models in date fruit classi�cation.

The high accuracy rates across all models demonstrate the potential of CNNs in this

application, although the speci�c approach and parameters need careful optimization to

achieve the best results.

Dalila Pérez-Pérez et al. (2021) [98] conducted an in-depth study on the classi�cation

of Mexican dates harvested in 2020 to determine their ripeness. Using a dataset of 1,002

images categorized into ripe and unripe, they employed various state-of-the-art deep

learning models, including pre-trained architectures such as VGG-16, VGG-19, Inception

V3, ResNet-50, ResNet-101, ResNet-152, and AlexNet, and a custom CNN model built

from scratch for comparison. The models were trained with di�erent con�gurations,

including epochs (25 and 400), batch sizes (64 and 128), and optimizers (Adam and SGD),

with learning rates of 0.001 and 0.01. VGG-19 achieved the highest accuracy of 99.32%,

highlighting its superior performance in classifying the ripeness of date fruits. While

other models performed well, they did not match the accuracy of VGG-19. While useful

as a baseline, the custom CNN outperformed the pre-trained models, demonstrating the

advantage of leveraging pre-trained architectures for complex classi�cation tasks. The

study underscores the importance of selecting the exemplary model architecture and

training parameters to achieve optimal performance in image classi�cation tasks.

Khalied Albarrak et al. (2022) [7] conducted a pivotal study on classifying Saudi

Arabian dates using advanced deep learning techniques, focusing on distinguishing be-

tween eight di�erent classes of date fruits with the MobileNetV2 architecture. Utilizing

a dataset of 1,717 date fruit samples, the researchers trained their model over 100 epochs

with an adaptive learning rate, starting at 0.0001 and decaying by the number of epochs.

Various preprocessing and model-tuning techniques, such as data augmentation, model

checkpointing, and dropout, were employed to enhance performance. To evaluate their

model, Albarrak et al. compared it against three other models: Model I, which used Mo-

bileNetV2 with a super�cial classi�cation layer of eight nodes, achieving 64% accuracy;

Model II, which featured a more complex classi�cation layer with �ve layers, achieving
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85% accuracy; and Model III, which involved freezing the pre-existing layers for the �rst

20 iterations, resulting in 88% accuracy. The proposed model outperformed all three,

achieving an impressive 99% accuracy, thanks to the integration of customized classi�ca-

tion layers and advanced preprocessing and model tuning techniques.

A comprehensive comparison table has been compiled to explore date fruit classi�ca-

tion methodologies, detailing the e�cacy of traditional and deep learning approaches in

date fruit classi�cation (Table 4.2).

The studies conducted by Nasiri et al. (2019)[4], Altaheri (2019)[6], Alhamdan et al.

(2021)[97], Pérez-Pérez et al. (2021)[98], and Albarrak et al. (2022)[7] collectively con-

tribute valuable insights into the application of deep learning in date fruit classi�cation.

However, despite their notable achievements, certain common limitations persist across

these works. One recurring constraint is the reliance on limited data, often single-sided

images, which impedes the model's ability to capture all relevant fruit features. This

limitation can lead to incomplete assessments and potentially inaccurate classi�cations,

particularly concerning features that vary across di�erent sides or angles.

Moreover, while these studies excel at classifying general quality parameters, they

often need to pay more attention to the speci�c criteria outlined in international quality

standards established by organizations such as the Food and Agriculture Organization.

Integrating these standards into the classi�cation process could enhance real-world ap-

plicability. Additionally, the exclusive use of RGB images limits the input data's scope,

neglecting complementary information that could improve classi�cation accuracy. Incor-

porating data such as weight measurements or internal defect detection using techniques

like infrared imaging (IR) could o�er a more comprehensive picture of fruit quality.

Despite these limitations, these studies represent signi�cant advancements in date

fruit classi�cation using deep learning. By addressing these issues, we can unlock the full

potential of this technology for developing even more robust and comprehensive systems

in the future.
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4.4 Conclusion

This chapter provides a comprehensive overview of arti�cial intelligence's transfor-

mative impact on agricultural product classi�cation, explicitly focusing on date fruit

classi�cation. By thoroughly exploring traditional machine learning and deep learning

techniques, we have identi�ed the strengths and limitations of these methods in automat-

ing classi�cation processes.

The evolution of classi�cation techniques for date fruits has been examined, show-

casing the signi�cant advancements achieved through the application of deep learning,

particularly Convolutional Neural Networks. As we look to the future, the role of AI in

agriculture appears bright, holding immense potential for further improving e�ciency and

accuracy in agricultural quality control processes. However, it is essential to acknowledge

that relying solely on RGB images and limited datasets can restrict the model's ability

to capture all relevant features. Therefore, utilizing larger, more diverse datasets and in-

corporating additional data points, such as weight or infrared imaging for internal defect

detection, could o�er a more comprehensive picture of fruit quality.

Additionally, integrating international quality standards into the classi�cation process

can further enhance the capabilities of classi�cation systems, ultimately bene�ting the

agricultural industry and ensuring the delivery of high-quality products to consumers

worldwide.
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Chapter 5
Improving date fruit sorting with a novel

multimodal approach and CNN

5.1 Introduction

As the global popularity of date fruit rises, traditional sorting methods face signi�-

cant challenges. These manual processes are time-consuming, prone to errors, and lead

to inconsistent quality. This situation presents an opportunity to use AI innovation. Au-

tomating sorting with deep learning can revolutionize the industry, ensuring consistent

quality and enhanced e�ciency.

This chapter presents a solution to the limitations of traditional date fruit sorting by

achieving a more e�cient and accurate automated Algerian date sorting. We created our

dataset, which contains two famous varieties: Deglet Noor and Mech Degla.

Our contribution focuses on developing a robust automated system based on multi-

modal data of date fruit. This system combines visual (RGB and thermal images) and

physical data (weight) to provide a comprehensive characterization of each date fruit.

By leveraging Convolutional Neural Networks (CNNs), the system extracts key features

from this rich data and performs automated classi�cation for sorting purposes. We will

evaluate the system's performance using various metrics, demonstrating its e�ectiveness

in addressing a critical challenge in the date fruit sorting process.

The remaining sections of this chapter will detail our research methodology, including

dataset acquisition, proposed architecture, and data preprocessing techniques. We will

also present experimental results and their signi�cance and conclude with �ndings and

potential future research directions.

This contribution was published in the International Journal of Advances in Soft

Computing and its Applications in 2023. The published article is entitled Improving

Date Fruit Sorting with a Novel Multimodal Approach and CNNs 1.

1http://ijasca.zuj.edu.jo/PapersUploaded/2023.3.13.pdf
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5.2 The Proposed Method

Previous works on the date fruit classi�cation have often relied on single RGB im-

ages, which do not capture the full range of visual and physical characteristics neces-

sary for accurate and e�cient sorting. These methods are limited by their inability to

provide comprehensive data, leading to suboptimal performance in classi�cation tasks.

In response to these limitations, our proposed method leverages a combination of data

modalities and deep learning techniques to improve the accuracy and e�ciency of date

fruit classi�cation, as depicted in Figure 5.1.

Our proposed method begins with Data Acquisition and Preprocessing. We built a

comprehensive dataset by collecting multiple data types for each date fruit: four RGB im-

ages captured from various angles to capture the fruit's visual characteristics, one thermal

image to provide insights into internal properties such as maturity or defects, and weight

data as a quantitative measure of size and potential maturity. During preprocessing, the

RGB images are converted to grayscale to simplify the visual information, and image

averaging is used to create a single image that represents the average visual properties,

reducing noise and highlighting key features. We also customize the channel values, com-

bining the grayscale image, thermal image, and weight data into a multi-channel format

to enhance the deep learning model's ability to utilize diverse data.

The dataset is then divided into training (70%), validation (20%), and testing (10%)

sets. In the Model Selection and Training phase, we experiment with various Convolu-

tional Neural Networks (CNNs), including VGG16, InceptionV3, ResNet50, and a CNN

model from scratch. These models are trained on the training set, with the validation set

used to �ne-tune the models and prevent over�tting. This process optimizes the models'

ability to extract relevant features from the multimodal data for accurate classi�cation.

In the Testing and Evaluation phase, we evaluate the trained models on the test-

ing set using performance metrics such as accuracy, precision, and recall to assess their

e�ectiveness comprehensively. Finally, we develop a practical application using the best-

performing CNN model. This application classi�es date fruits into speci�c varieties, such

as Deglet-Noor and Mech-Degla. Each variety is graded into �ve grades based on quality.

This method addresses the limitations of previous approaches by incorporating multiple

data modalities and advanced deep learning techniques to achieve superior classi�cation

performance.

5.2.1 Dataset Acquisition

A comprehensive dataset is essential to train and evaluate deep learning models e�ec-

tively. In our research, we constructed such a dataset encompassing two distinct Algerian

date fruit varieties: Deglet Noor and Mech Degla, each categorized into �ve quality grades
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Figure 5.1: Flowchart Illustrating the Processing of Multimodal Data for Date Fruit
Classi�cation with CNNs

(Grades 1-5) based on visual appearance, internal properties, and weight, as illustrated

in Figure 5.2.

To ensure our proposed multimodal classi�cation system achieves reliable sorting re-

sults, we meticulously constructed a balanced dataset of 1,103 date fruits, encompassing

both Deglet Noor and Mech Degla varieties. For Deglet Noor, we collected 109, 105, 69,

104, and 80 fruits in Grades 1-5, respectively. Similarly, Mech Degla is represented by

63, 120, 203, 140, and 110 fruits in Grades 1-5, respectively. We captured a rich data set

for each fruit: four RGB images from various angles using an RGB camera for detailed

visual information, a single thermal image using a FLIR camera to analyze internal char-

acteristics, and weight measurements with a high-precision scale (as illustrated in Figure
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Figure 5.2: Examples of Date Fruit Varieties in Our Dataset (Deglet Noor and Mech
Degla)

5.3). This diverse data collection forms the foundation for our multimodal data fusion

model, enabling it to comprehensively characterize each date fruit and achieve accurate

classi�cation for automated sorting.

Figure 5.3: Example of a Deglet Noor Date Fruit (Grade 1) with Highlighted Features

The RGB images provided detailed visual characteristics, the thermal images o�ered

insights into internal properties, and the weight data indicated size and maturity. We

ensured high-quality image capture and consistency with a controlled setup that included

consistent lighting from four �uorescent lamps, a uniformly coloured blue background,

and no size restrictions during image capture to accurately re�ect real-world scenarios.

This meticulous approach resulted in a comprehensive and well-balanced dataset suit-

able for training and evaluating deep-learning models for date fruit classi�cation and

quality grading.

5.2.2 Data Preprocessing

Data preprocessing is an essential stage in the machine learning work�ow. It bridges

the gap between raw data and the format required by speci�c algorithms. This stage
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involves a series of transformations that normalize and enrich the data to improve the

e�ectiveness and e�ciency of subsequent analysis.

In our study on date fruit classi�cation using deep learning, we implemented a metic-

ulous sequence of operations tailored to our multimodal dataset. This sequence consisted

of three key steps designed to enhance the data representation and facilitate optimal

model performance:

5.2.2.1 Image Grayscale Transformation

A crucial step in the data preprocessing stage involved applying a grayscale transfor-

mation to all the images captured for each date fruit. This dataset comprised four RGB

images (GrayF1, GrayF2, GrayF3, and GrayF4) captured from various angles to provide

a comprehensive view of the fruit's visual characteristics. Additionally, a thermal image

(denoted as GrayIR) was captured with a FLIR camera to o�er insights into internal

properties such as maturity levels or defects (refer to Figure 5.2, and 5.3).

Grayscale transformation plays a signi�cant role in our approach for several reasons: It

reduces data dimensionality by converting RGB images, which have three colour channels

(red, green, and blue), into a single intensity channel. This transformation signi�cantly

improves computational e�ciency during image processing and model training. Addi-

tionally, grayscale transformation emphasizes shape and texture. However, it is essential

to note that while a spot in the date fruit might appear relatively dark in grayscale, a

healthy area might not show such a stark contrast. Due to grayscale conversions being

based on brightness, original defects and healthy areas can in�uence their �nal grayscale

intensity, as illustrated in Figure 5.4.

Figure 5.4: Example of Grayscale Conversion (RGB Image vs. Grayscale Image)

The process involves transforming RGB images into grayscale using a weighted sum

of their red, green, and blue components, as speci�ed in Equation Eq. 1. The weights

re�ect each channel's contribution to perceived brightness.
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Gray(img) = 0.2989× R(img) + 0.5870×G(img) + 0.1140× B(img). (Eq. 1)

This formula was applied to all images in our dataset, including the four RGB images

(GrayF1, GrayF2, GrayF3, and GrayF4) and the thermal image (GrayIR), achieving a

more e�cient and potentially more informative data representation for our deep learning

models.

5.2.2.2 Image Averaging

Following grayscale conversion, we incorporated image averaging into our data pre-

processing work�ow to address potential variations from capturing images from di�erent

angles of the date fruit. While capturing multiple views provides valuable information

about the fruit's shape and texture, slight variations in perspective during image ac-

quisition can introduce noise into the data. This noise might confuse the deep learning

model.

Image averaging aims to mitigate this issue. We generate a new image incorporating

information from all viewpoints by calculating the average pixel value across correspond-

ing pixels in a set of images (one from each side of the fruit). It will reduce the impact of

minor viewpoint inconsistencies and provide a more robust representation of the model

by capturing the most prominent features.

The process involves four grayscale images (GrayF1, GrayF2, GrayF3, and GrayF4)

captured from di�erent angles of each fruit. For each pixel location (x, y) in the out-

put image (denoted as Gray(x,y)avg), we calculate the average of the corresponding pixel

values from the four input images (mathematically represented by the formula in Equa-

tion Eq.2). This process generates a new image that amalgamates information from all

viewpoints, e�ectively capturing the most salient visual features of the date fruit while

reducing the impact of minor viewpoint inconsistencies, as illustrated in Figure 5.5.

Gray(x, y)avg =
Gray(x, y)F1 +Gray(x, y)F2 +Gray(x, y)F3 +Gray(x, y)F4

4
(Eq.2)

5.2.2.3 Customising Image Channel Values

In the �nal data preprocessing step, we create a custom image designed as input

for our Convolutional Neural Networks (CNNs). This image combines information from

three sources: the Grayscale Averaged Image, the Grayscale FLIR Image, and the weight

of the date fruit.
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Figure 5.5: Image Averaging: From Four Grayscale Views to a Single Averaged Image

To create this three-channel image, we �rst ensure the FLIR image is resized to match

the dimensions of the averaged grayscale image, achieving accurate alignment between

the two images. Next, we construct a new image with red, green, and blue channels, each

representing di�erent information sources:

- Red Channel: Each pixel's red channel value is assigned the corresponding pixel

value from the averaged grayscale image.

- Green Channel: Each pixel's green channel value is assigned the corresponding

pixel value from the FLIR image.

- Blue Channel: Each pixel's blue channel value is determined by the fruit's weight,

processed as follows:

1. Normalize the original weight value (Weightoriginal) by subtracting 1 and di-

viding by 20.0, scaling the weights to a consistent range.

Normalized_Weight =
Weightoriginal − 1

20.0
(Eq.3)

2. Multiply the normalized weight by 255 and round to the nearest integer, en-

suring compatibility with typical image intensity ranges (0-255).

Scaled_Weight = round(Normalized_Weight× 255) (Eq.4)
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This process is applied to each pixel in the new image, integrating visual and weight

data into a single, cohesive three-channel image, as presented in Eq.5. This compos-

ite image allows the CNN to analyze the combined features and improve classi�cation

accuracy. Figure 5.6 illustrates the customizing image channel values.

Resulting_Image(x, y) = (R_V alue,G_V alue,B_V alue)

R_V alue = Gray(x, y)_avg

G_V alue = Gray(x, y)_IR

B_V alue = Scaled_Weight

(Eq.5)

Figure 5.6: Customizing Image Channels: Assigning Red, Green, and Blue Values from
Grayscale Images and Weight.

5.2.3 Model Conception

Following data preprocessing, we explored various deep-learning models to classify

date fruit quality based on the custom three-channel images (averaged grayscale, FLIR

image, and weight information). We employed two distinct approaches: transfer learning

with pre-trained models and a custom-designed Convolutional Neural Network (CNN).

We trained all models using the Adam optimizer with a learning rate of 0.00001, a batch

size of 16, and an image size of 244 × 244 pixels, except for InceptionV3, which used a

picture size of 299 × 299 pixels

5.2.3.1 Transfer Learning Approach

In the transfer learning approach, we utilized pre-trained models such as VGG16,

InceptionV3, and ResNet50, renowned for their remarkable performance in image classi-
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�cation tasks, �ne-tuning them on our dataset to adapt their learned representations to

the speci�cs of date fruit quality classi�cation. The architecture of the transfer learning

approach is illustrated in Figure 5.7.

The architecture for all transfer learning models remained consistent in terms of hyper-

parameters, with variations occurring in the selection of the base model. This architecture

encompassed several key components:

- An Input Layer to receive the three-channel image data.

- A Pre-trained CNN (VGG16, InceptionV3, ResNet50) for feature extraction.

- A Global Average Pooling 2D layer to reduce spatial dimensions.

- Dropout layers (with a dropout rate of 0.2) to prevent over�tting.

- Dense layers for classi�cation, with the �nal layer consisting of 10 neurons cor-

responding to the number of dates fruit quality classes, employing the Softmax

activation function to provide class probabilities.

Figure 5.7: Transfer Learning Architecture for Date fruit Quality Classi�cation.

5.2.3.2 Custom CNN Model

Furthermore, we examined the performance of a custom CNN model explicitly de-

signed to classify date fruit quality. This model was constructed with convolutional
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layers, progressively extracting hierarchical features from the input data. The �rst con-

volutional layer utilized 64 �lters of size (3x3) with the ReLU activation function, fol-

lowed by subsequent layers employing 64 and 128 �lters, respectively. Max-pooling layers

were interspersed between convolutional layers to reduce spatial dimensions and focus on

salient features. Dropout layers (with a dropout rate of 0.3) were included to mitigate

over�tting during training. The Flatten layer then transformed the data into a one-

dimensional vector, which was fed into Dense layers for classi�cation. Like the transfer

learning approach, the �nal Dense layer consisted of 10 neurons with Softmax activation,

providing class probabilities for each image. The architecture of the Custom-CNN is

depicted in Figure 5.8.

Figure 5.8: Custom CNN modelArchitecture for Date fruit Quality Classi�cation.

5.3 Results and Discussion

This section presents the performance evaluation of the implemented deep learning

models for date fruit quality classi�cation. The experiments used Python 3.9.6 on a Win-

dows 10 Pro machine with an Intel® Core� i5-6200U CPU @ 2.30 GHz and 4.00 GB of

RAM. TensorFlow and Keras libraries (versions 2.6.0) facilitated the model development

and training process.

Four distinct deep-learning models were evaluated using a 70/20 training-validation

data split. The performance metrics employed for evaluation were training accuracy and
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validation accuracy, and the results are presented in Table 5.1.

- VGG16: The VGG16 model achieved a training accuracy of 99.6% and a valida-

tion accuracy of 90.4%, with a training loss of 0.0153. As depicted in Figure 5.9(a),

the loss function exhibits a signi�cant decrease while the training accuracy signif-

icantly increases, indicating e�ective learning by the model. The validation loss

and accuracy curves also demonstrate a similar trend, suggesting that the model

is not severely over�tting to the training data. Notably, the validation accuracy

remains consistently high (around 88% to 91%) after epoch 17, signifying robust

generalization capability.

- InceptionV3: The InceptionV3 model attained a training accuracy of 100% but

yielded a lower validation accuracy of 69.9%. Figure 5.9(b) illustrates an initial

high loss and low accuracy for the model during training, followed by a gradual

decrease and increase, respectively. While the validation set performance followed

a similar trend, the accuracy consistently remained lower than the training accu-

racy, suggesting potential over�tting. The model achieved 100% training accuracy

after only 7 epochs, indicating memorization of the training data and a validation

accuracy of around 70%, suggesting limited generalizability to unseen data. The

validation loss exhibits a decreasing trend until epoch 15, followed by an upward

trend, further supporting the possibility of over�tting.

- ResNet50: The ResNet50 model achieved a training accuracy of 100%, but the

validation accuracy plateaued at around 78%, indicating over�tting to the training

set and potentially poor generalization ability. As shown in Figure 5.9(c), the loss

and validation loss curves exhibit a similar decrease, signifying learning from the

training data. However, the validation loss rises after epoch 10, suggesting the

onset of over�tting. The model's complexity (50 layers) might contribute to the

high training accuracy and over�tting behaviour.

- Custom CNNmodel: It achieved an accuracy of 87.5% during training and 81.4%

during validation, with a training loss of 0.3893. As depicted in Figure 5.9(d), both

training loss and accuracy improve with increasing epochs, indicating successful

learning on the training data. The validation loss and accuracy curves also exhibit a

positive trend, suggesting the model's ability to generalize e�ectively to unseen data

and signifying its capability of performing well on both the training and validation

sets.

The performance of the trained models was further assessed on a separate 10% test

dataset to evaluate generalizability to unseen data. Performance metrics employed for

evaluation included Receiver Operating Characteristic (ROC) Area Under the Curve
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a. Accuracy and Loss of the VGG16 model. b. Accuracy and Loss of the Inception V3 model.

c. Accuracy and Loss of the ResNet50 model. d. Accuracy and Loss of the Custom CNN model.

Figure 5.9: Curves of Loss and accuracy during the model training for four models: (a)
VGG16 (b) InceptionV3 (c) ResNet50 (d) Custom-CNN model.

Model Type Training results Validation results
Loss Accuracy (%) Loss Accuracy (%)

VGG16 0.0153 99.6 0.4027 90.4
InceptionV3 0.0010 100 0.9461 69.9
ResNet50 0.0009 100 0.7274 78.64
Custom CNN model 0.3893 87.5 0.4684 81.4

Table 5.1: Training and Validation Results for Various Models.

(AUC), confusion matrix, Cohen's Kappa coe�cient, Matthews Correlation Coe�cient

(MCC), precision, recall, F1-score, and accuracy.

- VGG16: The VGG16 model achieved outstanding performance across all classes,

as evidenced by ROC AUC values close to 1.0 (Figure 5.10(a)). That suggests ex-

ceptional classi�cation ability for all classes. The confusion matrix in Figure 5.11(a)

further supports this observation, demonstrating high accuracy in predicting each

class. Additionally, the model yielded a Kappa coe�cient and MCC of 0.93 (Fig-
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ure 5.12(a)), indicating an almost perfect level of agreement between predicted and

actual labels.

Furthermore, as shown in Table 5.2, the F1-score of 93.69% demonstrates a desirable

balance between precision (93.75%) and recall (93.69%). These metrics suggest that

the model made few false positive predictions while correctly identifying a high

proportion of actual positive instances. The overall accuracy of 93.69% indicates

the model's success rate in making accurate predictions across all classes.

- InceptionV3: While the InceptionV3 model exhibited good performance with a

ROC AUC score of 0.9609 (Figure 5.10(b)), the confusion matrix in Figure 5.11(b)

reveals some variation in performance across classes. The Kappa coe�cient and

MCC of 0.7332 and 0.7359, respectively (Figure 5.12(b)), indicate a substantial,

but not perfect, level of agreement between predicted and actual labels.

Table 5.2 shows that the InceptionV3 model achieved a moderate balance between

precision (80.56%) and recall (76.58%), re�ected in the F1-score of 76.58%. The

model made relatively few false positive predictions (precision) but demonstrated a

moderate ability to identify actual positive instances (recall). The overall accuracy

of 76.58% represents the model's success rate in making accurate predictions.

- ResNet50: The ResNet50 model achieved high performance in most classes, with

perfect ROC AUC values for �ve classes and values exceeding 0.98 for most oth-

ers (Figure 5.10(c)), indicating excellent classi�cation ability across the majority of

classes. The confusion matrix (Figure 5.11(c)) further reinforces this observation.

The Kappa coe�cient and MCC of 0.8259 and 0.8285, respectively (Figure 5.12(c)),

suggest a substantial level of agreement between predicted and actual labels, al-

though not perfect.

Table 5.2 demonstrates good performance for the ResNet50 model across all metrics.

The F1-score of 84.68% re�ects a satisfactory balance between precision (87.50%)

and recall (84.68%). The model made a few false positive predictions and correctly

identi�ed a high proportion of actual positive instances. The overall accuracy of

84.68% represents the model's success rate in making accurate predictions.

- Custom CNN model: It exhibited excellent performance in terms of ROC AUC

values, with all classes exceeding 0.96 and most exceeding 0.98 (Figure 5.10(d)),

which indicates the model's e�ectiveness in distinguishing between classes. The

confusion matrix (Figure 5.11(d)) demonstrates moderate performance across all

classes. The Kappa coe�cient and MCC of 0.8263 and 0.8277, respectively (Fig-

ure 5.12(d)), suggest a substantial level of agreement between predicted and actual

labels, although not perfect.
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Table 5.2 shows that the CNN model performed well, achieving a moderate balance

between precision (80.00%) and recall (84.68%), re�ected in the F1-score of 84.68%.

The model made relatively few false positive predictions and correctly identi�ed a

moderate proportion of actual positive instances. The overall accuracy of 84.68%

indicates the model's high success rate in making accurate predictions.

The results, presented in Table 5.2 and Figure 5.13, revealed a clear distinction in

performance between the models. VGG16 consistently achieved the highest values across

most evaluation metrics, demonstrating its superiority in image classi�cation for this

speci�c task. VGG16 attained an F1-Score of 93.69%, precision of 93.75%, recall of

93.69%, accuracy of 93.69%, and a remarkable ROC AUC of 0.998, suggests VGG16's

exceptional ability to correctly classify images and e�ectively di�erentiate between various

classes within the dataset.

a. VGG16 model result. b. Inception V3 model result.

c. ResNet50 model result. d. Custom CNN model result.

Figure 5.10: The ROC AUC curve for various models: (a) VGG16 (b) InceptionV3 (c)
ResNet50 (d) CNN model from scratch.
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a. VGG16 model result. b. Inception V3 model result.

c. ResNet50 model result. d. Custom CNN model result.

Figure 5.11: The confusion matrix for various models

a. VGG16 model result. b. Inception V3 model result.

c. ResNet50 model result. d. Custom CNN model result.

Figure 5.12: The Kappa and Matthews scores for various models
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While all evaluated models achieved promising results, InceptionV3 presented the

lowest performance across most metrics except precision. Its F1-Score (76.58%), recall

(76.58%), accuracy (76.58%), and ROC AUC (0.9609) indicate a need for further inves-

tigation into its suitability for this particular task. While InceptionV3 might possess a

more complex architecture than other models, its performance suggests potential chal-

lenges with generalizability to unseen data.

ResNet50 and The custom-CNN achieved comparable performance in terms of F1-

Score (84.68% for both). However, a closer examination reveals that ResNet50 had a

slight advantage in precision (87.50%) and Kappa (0.8259), potentially indicating a more

balanced classi�cation approach. Interestingly, the Custom-CNN model outperformed

ResNet50 in ROC AUC (0.9837 vs. 0.9757), suggesting a potential advantage in discrim-

inating between positive and negative classes.

The observed trends in performance during the testing phase mirrored those seen

during validation, highlighting the e�ectiveness of validation in assessing model gener-

alizability beyond the training data. VGG16 maintained its lead, while InceptionV3

continued to show the lowest performance, validating the importance of the validation

step.

Figure 5.13: Performance Comparison of Four Models.

Model F1-Score Precision Recall Accuracy
ROC
AUC

Kappa MCC

VGG16 93.69% 93.75% 93.69% 93.69% 0.998 0.9287 0.9293
InceptionV3 76.58% 80.56% 76.58% 76.58% 0.9609 0.7333 0.7359
ResNet50 84.68% 87.50% 84.68% 84.68% 0.9757 0.8259 0.8285
Custom CNN model 84.68% 80.00% 84.68% 84.68% 0.9837 0.8263 0.8277

Table 5.2: Testing Results for Four Models.

The superior performance of VGG16 on unseen data highlights the importance of
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model selection for practical sorting applications. While InceptionV3 and ResNet50 boast

more complex architectures, this complexity could lead to over�tting on the training

data, hindering their ability to generalize to novel fruit characteristics encountered dur-

ing real-world sorting. VGG16's simpler architecture likely contributed to its superior

generalizability and e�ectiveness in sorting unseen date fruits.

This work underscores the critical role of model selection and evaluation strategies

in achieving optimal performance for date fruit classi�cation tasks. The choice of the

model architecture and the e�ectiveness of hyperparameter tuning signi�cantly impact

the ability to classify images accurately. While VGG16 excelled in this instance, further

research could explore advanced optimization techniques for other models and investi-

gate methods to mitigate over�tting issues. Additionally, augmenting the dataset with

more diverse and representative samples could further improve the generalisability and

robustness of all models.

A Flask-based web application was developed to facilitate user interaction with the

date fruit classi�cation models. Users can upload thermal and four-face images of the

date fruit for classi�cation and input for the fruit's weight. The user interface (Figures

5.14 and 5.15) guides users through image selection and weight input before initiating

the prediction process.

Figure 5.14: Step 1 - Selecting the date fruit to predict. The user selects both thermal
and four-face images and inputs the fruit's weight.

The results are then presented within the application interface (Figure 5.16) as a ta-

ble displaying the predicted class for the date fruit by each model (VGG16, InceptionV3,

ResNet50, and CNN model from scratch). The evaluation con�rmed the superior per-
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Figure 5.15: Step 2 - Displaying the data for prediction. This interface presents all
the information the user enters, including the thermal and four-face images of the chosen
date fruit and its weight. This information is used to predict the class of the date fruit.

formance of VGG16 for our date fruit classi�cation task, as both VGG16 and ResNet50

correctly classi�ed the Deglet Noor Q3 sample (Figure 5.16). The �ndings from the per-

formance metrics analysis. These results suggest a potential bene�t in using multimodal

data (thermal, visual images, and the weight of the date fruit) to improve prediction

accuracy.

Figure 5.16: Step 3 - Displaying the prediction results. This table shows the predicted
class for the chosen date fruit made by each of the four models used in the experiment.
The VGG16 and Resnet50 models predicted the class of the date fruit correctly, while
the other models did not.
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5.4 Conclusion

This contribution investigated the potential of using multimodal data, combined

with convolutional neural networks (CNNs), to classify Algerian date fruit e�ciently.

A grayscale, image averaging, and customized image channel adjustment method was

proposed to simplify and standardize the input data for CNN models, resulting in high

accuracy rates during training (99.6%) and testing (94%).

Our experimentation revealed that the VGG16 model achieved the highest perfor-

mance in classifying Algerian date fruit, with a testing accuracy of 94%. Conversely, the

InceptionV3 model exhibited the lowest accuracy. While the ResNet50 and CNN from

scratch models performed similarly, VGG16 emerged as the most e�ective choice for this

task.

These �ndings suggest that the proposed approach has the potential to signi�cantly

improve the e�ciency and accuracy of date fruit sorting compared to traditional manual

methods. Automating the sorting process can reduce labour costs and processing time

and enhance sorted fruit's consistency and quality, potentially increasing market value.

Further research could explore the impact of incorporating additional data modalities

on classi�cation accuracy and using other methodologies. Investigating advanced data

augmentation techniques and hyperparameter optimization for the CNN models might

improve performance.
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Chapter 6
Multimodal Data Fusion and Deep Learning

for Automated Date Fruit Classi�cation

6.1 Introduction

Date fruit sorting is crucial for maintaining product quality and meeting consumer

preferences. However, the diversity of date fruit types and grades challenges traditional

manual sorting methods.

While machine learning and deep learning o�er promising solutions, limitations exist,

such as over�tting and sensitivity to data diversity and size. Our previous contribution

encountered these limitations. Nevertheless, the potential of Convolutional Neural Net-

works (CNNs) in a multimodal fusion approach for date fruit sorting remains largely

unexplored.

This chapter of our second contribution proposes a novel approach for automating

date fruit sorting accuracy by integrating multimodal data through a late fusion tech-

nique. This technique combines information from various sources, including images from

multiple angles, thermal imaging, and fruit weight. We explore the e�ectiveness of this

approach using four established deep learning models (Custom-CNN, VGG16, ResNet50,

and MobileNet) on a new dataset encompassing eight distinct date fruit grades (5 from

Deglet Noor and 3 from Mech Degla).

This chapter is structured as follows: Section 6.2 details the proposed methods, Sec-

tion 6.3 presents the experimental results and analysis, and the �nal section concludes

with key �ndings and future directions.

6.2 Methodology

By collecting data from various modalities (visual images from multiple angles, ther-

mal images, and weight), the system gathers a richer and more informative set of features
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for classi�cation. This multimodal representation of the fruit creates a multi-dimensional

pro�le, capturing details beyond visual appearance. This approach has the potential

to signi�cantly improve classi�cation accuracy compared to methods that rely solely on

RGB images. The steps involved in our methodology are summarized in Figure 6.1.

Figure 6.1: Diagram illustrates a Multimodal Fusion Architecture for Date Fruit Clas-
si�cation

The proposed methodology explores two distinct classi�cation scenarios to investigate

how incorporating di�erent data modalities a�ects the overall classi�cation performance.

In Scenario 1, the focus is on leveraging the visual information captured from the

four acquired images. Four deep learning models are employed, one for each preprocessed

image from a unique viewpoint. Each deep learning model independently analyzes its

assigned image, extracting features that represent signi�cant patterns or characteristics

within the image.
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Scenario 2 expands upon this by incorporating all the data modalities: multi-angle

images, thermal images, and weight data. Similar to Scenario 1, four deep learning models

extract features from each of the four RGB images. Additionally, a separate deep learning

model likely processes the thermal image to extract features related to heat distribution

patterns.

The central aspect of this contribution is how the extracted features from di�erent

modalities are combined. This methodology utilizes a late fusion strategy. After each deep

learning model independently extracts features, these features are concatenated into a

single feature vector. Concatenation combines all modalities' features (visual information

from multiple angles, potential thermal properties, and weight) into a comprehensive

representation of the date fruit sample.

This comprehensive feature vector is then used to train the �nal classi�cation model.

The training process involves exposing the model to a portion of the data (training set)

and allowing it to learn patterns that distinguish between di�erent fruit classes (e.g.,

variety, quality level). A separate validation set is used to monitor model performance

and prevent over�tting. Finally, the model goes through multiple training epochs (100

epochs) to ensure it converges and achieves stability. Once trained, the performance of the

classi�cation model is evaluated using various metrics. These metrics include accuracy,

precision, recall, and F1-score. These metrics provide insights into how well the model

can correctly classify date fruits across di�erent classes.

6.2.1 Data Collection

A multimodal data acquisition strategy was employed to create a comprehensive

dataset for date fruit classi�cation. This strategy encompassed 853 samples from two

distinct varieties: Deglet-Noor (categorized into �ve quality classes) and MechDegla (cat-

egorized into three quality classes). The distribution of these samples across classes is

detailed in Table 6.1. This multi-modality aimed to capture a comprehensive representa-

tion of each fruit. High-resolution RGB images were captured from four distinct angles

(right, left, front, and back), thermal infrared imaging obtained with a FLIR ONE Gen

3 camera, and the weight of each fruit sample, as detailed in the previous contribution.

Variety Deglet Noor Mech Degla
Grade DN-G1 DN-G2 DN-G3 DN-G4 DN-G5 MD-G1 MD-G2 MD-G3
Number
samples

109 105 69 104 80 63 120 203

Total 853

Table 6.1: Distribution of Date Fruit Samples in our Dataset

The collected data was then organized into a comma-separated values (CSV) �le for
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e�cient storage and manipulation. Each entry within the CSV �le followed a consis-

tent structure, including unique identi�ers for each fruit, designated quality class labels,

�le paths for the corresponding acquired images from all four angles and the thermal

camera, and the recorded weight of the fruit sample. Figure 6.2 represents our dataset

collection. The data was split into training, validation, and testing sets to ensure a robust

training process and facilitate reliable model evaluation. This distribution allocates most

of the data (80%) for training the classi�cation model, while the remaining 20% is for

validation/testing.

Figure 6.2: Multimodal Data Acquisition for Date Fruit Classi�cation

6.2.2 Classi�cation Scenarios

Following data acquisition, our approach utilizes two distinct classi�cation scenarios.

The �rst scenario, multi-view fusion, leverages four visual representations (corresponding

to four viewing angles) of each date fruit for classi�cation. The second scenario, multi-

modal fusion, incorporates richer information by combining visual data ( The same views

used in scenario 1) with thermal image data and weight data for each date fruit. Subse-

quently, both scenarios leverage four deep learning models for classi�cation: Customized

Convolutional Neural Network (CNN), VGG16, ResNet50, and MobileNet.
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6.2.2.1 Scenario I: Multi-View Fusion with Deep Learning Architectures

This scenario explores classifying date fruits using visual information captured from

four angles (front, back, left, and right) as shown in Figure 6.3.

Figure 6.3: Scenario I: Multi-View Fusion with Deep Learning Architectures

We evaluate two deep learning architectures:

- Custom CNN model Architecture: This architecture utilizes four identical

sub-networks, each dedicated to a single view. Each sub-network extracts features

through convolutional layers with increasing �lter complexity (64, 64, 128, 128)

and ReLU activation. These layers capture spatial patterns within the images. Max

pooling layers (2x2 pool size) are then applied to reduce dimensionality and capture

dominant features. Finally, a �attening layer transforms the multi-dimensional

outputs into one-dimensional vectors suitable for fully connected layers. Each sub-

network concludes with a dense layer of 512 units and ReLU activation. The outputs

from all sub-networks (representing features from each view) are then concatenated,

creating a combined feature representation. This uni�ed representation is further

processed through a dense layer (FC1). Finally, a dense output layer with eight

units and softmax activation makes the �nal classi�cation decision, assigning each

date fruit to one of eight categories.

- Pre-trained Model Architecture: This architecture leverages pre-trained mod-

els like VGG16, ResNet50, and MobileNet. Here, we �ne-tune these pre-trained

models for the speci�c task of date fruit classi�cation. Like the Custom CNN
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model approach, the outputs from four sub-models (one for each view) are concate-

nated and fed into dense layers for �nal classi�cation. Each sub-model utilizes a

pre-trained model as its base, with its weights pre-trained on ImageNet data. These

layers are then made trainable during the �ne-tuning process. Global average pool-

ing is added to the base model's output to capture overall feature information.

Dropout layers are also employed to prevent over�tting during training.

6.2.2.2 Scenario II: Multimodal Fusion with Deep Learning Architectures

Building on the multi-view fusion approach, this scenario (Figure 6.4) investigates

the impact of incorporating additional sensor data on classi�cation accuracy. We enrich

the dataset with thermal images alongside the four-view visual data. The classi�cation

process follows similar principles to the �rst scenario, employing both the Custom CNN

model and pre-trained model architectures. The respective models perform feature ex-

traction for each data modality (four visual and thermal images). The extracted features

are concatenated with weight data obtained from a weight scale before �nal classi�cation

through dense layers. By comparing the performance of these two scenarios, we aim

to assess the in�uence of multimodal fusion (visual, thermal, and weight data) on the

e�ectiveness of date fruit classi�cation.

Figure 6.4: Scenario II: Multimodal Fusion with Deep Learning Architectures
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6.3 Results and Discussion

We designed two scenarios with varying data complexities to comprehensively assess

the adaptability of di�erent deep-learning architectures for date fruit classi�cation (our

contribution). This section delves into the results and analysis of our experiments, where

we trained and validated four models (Custom CNN model, VGG16, ResNet50, and

MobileNet) on each scenario. We must note that we employed a custom dataset curated

explicitly for this task, featuring images of Deglet Noor and Mech Degla date varieties.

Furthermore, we optimized the training process by employing the SGD optimizer with

a learning rate of 0.001, a batch size of 32, and 100 epochs. The experiments were

conducted on Processeur: Intel Xeon (R) E5-2660 v3 @ de 2.60 GHz x 20, 64 GB de

RAM, 2 TB HDD, RedHat Enterprise Linux Server 7.2, 64 bit.

6.3.1 Classi�cation Results on Multi-View Data (Scenario I):

Leveraging four views of each date fruit, Scenario I explores the e�ectiveness of

multi-view fusion for classi�cation with deep learning models (Custom CNN , VGG16,

ResNet50, and MobileNet). This subsection analyzes the performance of these models.

The Custom CNN model achieved a training accuracy of 100% and a validation accu-

racy of 80%, indicating that it might be over�tting the training data, memorizing speci�c

patterns that do not necessarily generalize well to unseen examples. The over�tting

phenomenon is also evident in Figure 6.5(a) and Figure 6.6(a), where we observe an in-

creasing gap between training and validation accuracy as the number of epochs increases,

eventually stabilizing after epoch 60. While a high training accuracy is desirable, the

lower validation accuracy indicates a need for potential hyperparameter tuning or data

augmentation to improve generalization on unseen multi-view data.

Compared to Custom CNN , VGG16 achieves a lower training accuracy (79%) but

exhibits a closer gap between training and validation accuracy (75%). This trend is also

evident in Figures 6.5(b) and 6.6(b), where the training and validation curves stay closer

together compared to the Custom-CNN, which indicates that VGG16 is less prone to

over�tting.

While MobileNet exhibits convergence between training and validation curves (accu-

racy and loss) in Figures 6.5(d) and 6.6(d), indicating good generalization potential, it

achieves the lowest training and validation accuracy (66% and 65% respectively) among

the four models. The lower performance suggests that the simpler MobileNet architecture

might not be su�cient to capture the complex relationships within the multi-view data

for this classi�cation task.

Similar to VGG16, ResNet50 exhibits a moderate level of over�tting with a training

accuracy of 90% and a validation accuracy of 76% (Figures 6.5(c) and 6.6(c)).
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a. Custom CNN Accuracy b. VGG16 Accuracy

c. ResNet50 Accuracy d.MobileNet Accuracy

Figure 6.5: Accuracy Curves for the Four Models in Scenario I.

a. Custom CNN Loss b. VGG16 Loss

c. ResNet50 Loss d.MobileNet Loss

Figure 6.6: Training and Validation Loss Curves for the Four Models in Scenario I.
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While training and validation accuracy provide a starting point, a deeper analysis

requires additional metrics like precision, recall, and F1-score. We used a 20% validation

split from the original dataset to evaluate our models. Table 6.2 details the results.

Both the confusion matrix analysis ( Figure 6.7) and these metrics revealed Custom

CNN as the top performer in Scenario I (multi-view data). It achieved an accuracy of

80%, precision of 73%, recall of 77%, and F1-score of 80%. These values indicate minimal

classi�cation errors and a good balance between identifying accurate Deglet Noor dates

and avoiding false positives.

a. Custom CNN Model b. VGG16 Model

c. ResNet50 Model d. MobileNet Model

Figure 6.7: Confusion Matrices for the Four Models in Scenario I (Four-View Images)

ResNet50 emerged as the second-best model, with an accuracy of 76%, precision and

recall of around 70% each, and an F1-score of 76%. VGG16 followed closely, with similar

performance across all metrics (around 75%). MobileNet, however, exhibited the lowest

performance across all metrics (around 60% for each).

In conclusion, the analysis con�rms the �ndings from the confusion matrix. The
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Custom CNN model achieved the best overall performance in Scenario I, demonstrating

high accuracy and a balanced ability to classify date fruit varieties e�ectively. That

suggests that Custom-CNN is the most suitable choice for this scenario using multi-view

data, as shown in Figure 6.8.

Figure 6.8: Performance Metrics for Models in Scenario I

6.3.2 Classi�cation Results on Multimodal Data (Scenario II)

To expand upon the �ndings from Scenario I, this section investigates the performance

of the four deep learning models (Custom-CNN, VGG16, ResNet50, and MobileNet)

in Scenario II. Here, the models are evaluated on their ability to classify date fruits

using multimodal data, which incorporates additional information beyond the four-view

images employed in Scenario I. This multimodal data includes a thermal image and weight

measurement for each fruit.

The analysis leverages a combination of performance metrics (summarized in Table

6.2 and visualized in �gure 6.12 ) to provide a comprehensive understanding of how each

model performs in this richer data environment. These metrics include accuracy, preci-

sion, recall, and confusion matrices, allowing for a detailed comparison of classi�cation

e�ectiveness models.

The Custom CNN model attained the highest validation accuracy (89%) in Scenario

II, showing a marked improvement compared to Scenario I (80%). This indicates that

combining multimodal data bene�ts CNN, potentially allowing it to capture more com-

prehensive features and improve classi�cation performance. However, the substantial gap

between training and validation accuracy (100% vs. 89%) observed in Figure 6.9(a) in-

dicates potential over�tting. Further investigation into hyperparameter tuning or data

augmentation techniques might be necessary to improve model generalizability.
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Similar to Custom CNN , VGG16 exhibited improved performance in Scenario II (82%

validation accuracy) compared to Scenario I (75%) (Figure 6.9(b)). However, its overall

validation accuracy remained slightly lower than Custom CNN 's in Scenario II.

ResNet50 exhibited the least improvement in validation accuracy, increasing from 76%

in Scenario I to 78% in Scenario II (Figure 6.9(c)). Additionally, it displayed the lowest

overall performance among the compared models, which shows that the additional sensor

data in Scenario II might not be as bene�cial for ResNet50's architecture as other models.

MobileNet showcased the most signi�cant improvement in validation accuracy, rising

from 65% in Scenario I to 74% in Scenario II (Figure 6.9(d)). This indicates that the

additional sensor data provides valuable information for MobileNet, potentially mitigating

the limitations of its simpler architecture in Scenario I. However, its overall validation

accuracy remained the lowest among the models.

a. Custom CNN Accuracy b. VGG16 Accuracy

c. ResNet50 Accuracy d.MobileNet Accuracy

Figure 6.9: Training and Validation Accuracy Curves for the Four Models in Scenario
II

An analysis of precision and recall, as summarized in Table 6.2 and Figure 6.12, re-

vealed that these metrics are lower than accuracy across all models in Scenario II. While a

detailed analysis of confusion matrices (Figure 6.11) indicates acceptable error rates, with

misclassi�ed instances falling primarily within the same variety or neighbouring grade lev-

els, further investigation might be necessary to understand potential class imbalance or
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a. Custom CNN Loss b. VGG16 Loss

c. ResNet50 Loss d.MobileNet Loss

Figure 6.10: Training and Validation Loss Curves for the Four Models in Scenario I

speci�c classi�cation errors. Notably, the Custom CNN model demonstrated superior

performance in distinguishing between grades compared to other models in Scenario II.

In conclusion, incorporating multimodal data in Scenario II led to improved perfor-

mance for most models, with Custom CNN achieving the highest validation accuracy

(89%). However, all models exhibit some over�tting, requiring further exploration of

hyperparameter tuning or data augmentation.

Model Scenario
Performance Metrics (%)

Accuracy Precision F1-Score Recall Acc. (Train)

Custom CNN
Scenario I 80 73 77 80 100
Scenario II 89 80 88 90 100

VGG16
Scenario I 75 70 71 75 79
Scenario II 82 83 79 82 86

ResNet50
Scenario I 76 70 71 76 90
Scenario II 78 67 75 78 93

MobileNet
Scenario I 65 62 61 65 66
Scenario II 74 69 70 74 76

Note: Scenario I: Four-view images. Scenario II: Multimodal Data.

Table 6.2: Performance Metrics for Four Deep Learning Models on Multimodal Data
Classi�cation
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a. Custom CNN Model b. VGG16 Model

c. ResNet50 Model d. MobileNet Model

Figure 6.11: Confusion Matrices for the Four Models in Scenario II (Multimodal Data)

Figure 6.12: Performance Metrics for Models in Scenario II
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The results reveal that di�erent models exhibit varying success in classifying date

fruits. The custom-CNN model demonstrates strong performance across both scenarios

(Scenario I: four-view images; Scenario II: four-view images, thermal image, and weight).

Furthermore, incorporating additional features, such as thermal images and weight

measurements in Scenario II, signi�cantly improves CNN's classi�cation accuracy (refer

to Figure 6.13). This �nding suggests that a late fusion approach, combining multimodal

data before the �nal classi�cation stage, can enhance model performance.

However, the results also emphasize the importance of selecting an appropriate deep-

learning architecture. While Custom CNN performs well in both scenarios, other models,

such as ResNet50, show limited improvement with additional data. This highlights the

need for further exploration of model architectures speci�cally designed to leverage the

combined strengths of multimodal data in the context of date fruit classi�cation.

Figure 6.13: Performance Comparison of Custom CNN Model Across Scenarios
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6.4 Conclusion

This contribution investigated the e�ectiveness of deep learning models for classifying

date fruits using multimodal data. The �ndings demonstrate that incorporating addi-

tional information, such as thermal images and weight measurements, can signi�cantly

improve classi�cation accuracy, particularly for Custom CNN models that achieve an

accuracy of 89% using a late fusion approach.

However, the results also emphasize the importance of selecting an appropriate model

architecture, as some models exhibited limited improvement with additional data. This

suggests that further exploration of deep learning architectures speci�cally designed to

leverage the strengths of multimodal data is necessary for optimal performance in date

fruit classi�cation tasks.

This contribution highlights the potential of multimodal data and late fusion tech-

niques to enhance deep-learning model performance in date fruit classi�cation. It also

underscores the need for careful consideration of model architecture selection to maximize

the bene�ts of this approach.

A signi�cant limitation of this study is the relatively small dataset used. To enhance

the generalFuturexpanding the dataset and exploring advanced data augmentation tech-

niques.

to enhance the generalizability and e�ectiveness of multimodal and multi-view date

fruit classi�cation
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Chapter 7
Optimizing Date Fruit Classi�cation Through

Multi-View Imaging and Deep Learning

7.1 Introduction

This contribution proposes an automated date fruit sorting system to address the

limitations of previous studies, which encountered challenges due to inadequate and lim-

ited datasets. Speci�cally, this work focuses on the two most commercially signi�cant

varieties: Deglet Noor and Mech Degla, as highlighted in prior contributions.

The system leverages the power of multi-view imaging in conjunction with convo-

lutional neural networks (CNNs) to achieve accurate classi�cation. Four distinct facial

images of each date fruit are captured, comprehensively representing its morphology.

These images are then strategically merged into a single composite image, preserving

data integrity and facilitating training.

A permutation function was employed to enrich the dataset further and generate

variations of the multi-view images. This data augmentation technique helps improve

the model's generalization ability to unseen data. The core of the classi�cation system is

a CNN architecture equipped with advanced techniques like dropout regularisation and

�ne-tuning.

This contribution enhances the date fruit classi�cation system by leveraging in-depth

features and examining their impact on classi�cation precision. The subsequent sections

detail our contribution: Section 7.2 describes the methodology and proposed models,

while Section 7.3 presents experimental results and analysis.

7.2 Methodology

In date fruit classi�cation, this study presents a novel methodology that uses convo-

lutional neural networks (CNNs) to distinguish between eight distinct categories. The
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proposed approach, illustrated by a three-phase �owchart (Figure 7.1), emphasizes metic-

ulous data preparation, rigorous training, and robust testing.

The initial phase involves capturing images from all four sides of each fruit, ensuring

a comprehensive view of the model. Various techniques are implemented to enrich and

diversify the dataset to enhance the model's ability to handle variations and prevent

over�tting.

The training phase adopts a two-pronged strategy. The �rst approach utilizes a

customized CNN architecture tailored speci�cally for this task. The second strategy

incorporates a pre-trained VGG-16 model, previously trained on a large image dataset,

for a di�erent classi�cation purpose. This pre-trained model provides a strong foundation,

and its weights are �ne-tuned for the speci�c challenge of date fruit classi�cation.

Figure 7.1: Date Fruit Classi�cation Methodology with Four-sides Image Input

In the �nal testing phase, unseen data is presented to the trained models to evaluate
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their true capabilities. Metrics such as accuracy, precision, recall, and F1-score are used

to assess the models' performance meticulously. Additionally, the research incorporates

a comparative analysis, experimenting with images from one, two, and three sides of the

fruit at a time, as illustrated in Figure 7.2. By capturing a more comprehensive picture

by including additional date fruit faces, the study aims to demonstrate the importance

of considering a more comprehensive range of date fruit attributes to optimize model

performance.

Figure 7.2: Flowchart of the Proposed Methodology for Classifying Date Fruits

7.2.1 Dataset Preparation

Our experimental of this contribution revolves around eight distinct classes of date

fruit, which comprise �ve grades for Deglet-Noor, referred to as (DN-G1, DN-G2, DN-

G3, DN-G4, DN-G5), and three grades for Mech-Degla, designated as: (MD-G1, MD-G2,

MD-G3). To optimize the date fruit sorting system's performance, our approach involves

capturing and extracting features from all sides of the fruit. Therefore, as mentioned and
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detailed in the previous contribution, we captured four images of each date, representing

its four faces.

In this contribution, we created four di�erent datasets: the �rst containing only one

face of the date fruit, the second with two faces, the third with three faces, and the

primary dataset consisting of all four faces of each date fruit, totalling approximately

3412 images.

We propose a two-step data preparation process to extract valuable information from

all four sides of the date fruit and improve model performance. The �rst step involves

merging the images from each side into a single image. The second step utilizes a per-

mutation function to create various arrangements of these merged images.

7.2.1.1 Merging Faces Step

In our approach to classifying date fruits, a crucial step involves merging the images

captured from each of the four sides into a single composite image. This merging process

serves a dual purpose:

- Data Integrity: By combining the images, we ensure that information from each

date fruit remains distinct and is not accidentally mixed with data from other fruits.

This is crucial for maintaining accurate labelling and training the model e�ectively.

- Model E�ciency: Merging the images allows us to avoid separating CNN models

for each face or the complex task of concatenating their fully connected layers. This

streamlined approach o�ers several bene�ts:

- Faster Prediction: By working with a single image, the model can make

predictions more quickly than processing multiple separate images.

- Optimal Performance: Our experiments demonstrate that this merging

approach yields the best results for date fruit classi�cation compared to alter-

native methods.

We �rst select the four images captured from each date fruit to implement the merging

process. These images are then combined into a single composite image. The size and

arrangement of this composite image depend on the number of faces available:

- Four Faces: For the complete dataset with images from all four sides, the merged

image is a 2x2 grid (as shown in Figure 7.3( c) ), referred to as "4Faces." This

captures the information from each side in a clear and organized manner.

- Two or Three Faces: If the dataset only contains images from two or three sides

of the fruit due to limitations or speci�c scenarios, we adapt the merging process

accordingly. For two faces, the resulting image is a 1x2 grid (Figure 7.3 (a) ), and
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for three faces, it becomes a 1x3 grid (Figure 7.3 (b)). This maintains consistency

and ensures e�cient utilization of available data.

a. 2-Face Merged Image b. 3-Face Merged Image

c. 4-Face Merged Image

Figure 7.3: The dataset after the merging step: (a) Merged image for two faces, (b)
Merged image for three faces, and (c) Merged image for four faces.

The merging process's signi�cance extends beyond simplifying the model architecture.

It also lays the foundation for the next step in our data preparation pipeline�the permu-

tation function. This function, detailed in the following section, will further enrich the

dataset by generating various arrangements of the merged images. By introducing these

variations, the permutation function aims to improve the model's ability to recognize date

fruits regardless of the orientation they are presented in during the classi�cation process.

7.2.1.2 Permutation Step

Following the merging process, we introduce a crucial step called the permutation

function. This function addresses a potential limitation: the model might struggle to

recognize a date fruit if its orientation during classi�cation di�ers from the one used during

training (when the images were merged). The permutation function mathematically

calculates the possible ways each face of the date fruit can be positioned within the

merged image. This calculation relies on the concept of permutations, which determines
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the number of unique arrangements for a set of objects. The formula used to calculate

the total number of permutations (P(n, r)) is provided in Equation Eq. 1:

P (n, r) =
n!

(n− r)!
(Eq. 1)

Where P(n, r) represents the number of permutations, n represents the total number

of faces (four in our case), and r represents the number of selected faces (also four in our

case). In our study, where n and r are equal to 4 (four faces, four selected positions), the

permutation function calculates 24 possible arrangements for each date fruit. This means

the permutation function generates 23 additional images with di�erent face arrangements

for each merged image containing all four faces.

Figure 7.4 illustrates the concept of permutations. Figure 7.4 (c) shows an example

of the complete dataset (four faces). Here, image "a" from the original merged image

is moved to a di�erent position (position 2), and all other faces are shifted accordingly,

creating a new variation. Similarly, the permutation function generates di�erent arrange-

ments for datasets with two or three faces (Figures 7.4 (a) and 7.4 (b) respectively). This

ensures the model encounters a wider variety of face orientations during training, enhanc-

ing its ability to recognize fruits regardless of their presentation during classi�cation.

a. Image with 2 Faces b. Image with 3 Faces

c. Image with 4 Faces

Figure 7.4: Examples of Permuted Date Fruit Images.

The merging and permutation procedures, detailed in Algorithm 1, signi�cantly con-

tribute to the overall e�ectiveness of our approach. Creating a more diverse dataset with
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Algorithm 1: Permutation and Merging Algorithm for Date Fruit Images
Input : List of image names
Output: Saved permutation images
Function MergeAndPermuteImages:

nums = [′a′,′ b′,′ c′,′ d′];
y← 0;
foreach x in permutations( nums) do

iteration← 0;
foreach e in [0, 1, 2, 3] do

img← chooseImg(x[e]);
imgsPerm(iteration, img);
iteration← iteration+ 1;

ab← concatenate_images_horizontally(a, b);
cd← concatenate_images_horizontally(c, d);
abcd← concatenate_images_vertically(ab, cd);
image_name← paths+ name+′ _′ + str(y) +′ .jpg′;
save_image(image_name, abcd);
y← y + 1;

Function chooseImg(img):
switch img do

case 'a' do
im← cv2.imread(�le_list[i]);

case 'b' do
im← cv2.imread(�le_list2[i]);

case 'c' do
im← cv2.imread(�le_list3[i]);

case 'd' do
im← cv2.imread(�le_list4[i]);

im← cv2.resize(im, (0, 0),None, 0.25, 0.25);
return im;

Function imgsPerm(iteration, x):
switch iteration do

case 0 do
a← chooseImg(x);

case 1 do
b← chooseImg(x);

case 2 do
c← chooseImg(x);

case 3 do
d← chooseImg(x);
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various face arrangements improves model generalizability by exposing the model to a

broader range of scenarios, leading to better performance on unseen data. Additionally,

the permutation function e�ectively increases the dataset size without requiring addi-

tional image acquisition, which can be particularly bene�cial for datasets with limited

resources.

Following the merging and permutation steps, a �nal preprocessing step involves re-

moving the blue background from the date fruit images. This ensures that the model

focuses on the relevant fruit features for classi�cation.

Table 7.1 summarizes the number of samples used in our study for each Deglet Noor

(DN) and Mech Deglet (MD) grade category before and after applying the merging and

permutation procedures. As the table shows, these procedures substantially increase the

total number of samples available for training the model.

7.2.2 Training and Testing Step

To evaluate the e�ectiveness of our approach, we trained and compared two distinct

models: a �ne-tuned VGG16 model and a custom CNN architecture speci�cally designed

for date fruit classi�cation. The training and testing procedures for each model, along

with their detailed architecture, are illustrated in Figure 7.5 This representation o�ers

insights into the design and implementation of our methodology.

Figure 7.5: Classi�cation Process for Date Fruits Using Proposed Architectural Models
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- Training with Pre-trained Model (VGG16):

Our contribution explores the application of transfer learning with a pre-trained

VGG16 model for classifying date fruit images. Unlike the standard approach

of freezing convolutional layers, we employ a strategy of unfreezing all layers in

VGG16 during �ne-tuning. This allows the model to adapt the �nal classi�cation

layers and the earlier feature extraction layers to the speci�c characteristics of date

fruit images, potentially leading to improved learning of nuanced and task-speci�c

features.

The �ne-tuning process involved training the model on a dataset containing images

of the eight date fruit types. A 2D global average pooling layer was added, fol-

lowed by a softmax layer with eight output nodes for classi�cation corresponding to

the eight cultivars. The detailed architecture and con�guration of the pre-trained

VGG16 model used for transfer learning are presented in Figure 7.6.

Figure 7.6: Detailed Con�guration of Customized VGG16 for Date Fruit Classi�cation.
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- Training with Custom Convolutional Neural Network (CNN)

This contribution proposes a convolutional neural network (CNN) architecture for

classifying date fruit images. The architecture leverages convolutional layers for

feature extraction, followed by fully connected layers for classi�cation, as illustrated

in Figure 7.7, which is constructed as follows:

- Input Layer: The model accepts images with an input dimensionality of 150x150

pixels.

- Four convolutional layers are employed to extract features from the input

images. Each convolutional layer is followed by a ReLU (Recti�ed Linear

Unit) activation function for non-linearity. Subsequently, max-pooling layers

with a kernel size of 2x2 are used for dimensionality reduction and capturing

dominant features.

- To prevent over�tting, dropout layers with a rate of 0.2 are strategically incor-

porated after each convolutional layer. These layers randomly drop a certain

percentage of activations during training, encouraging the model to learn ro-

bust features that are not overly dependent on speci�c data points.

- After processing by the convolutional layers, the extracted features are �at-

tened into a single-dimensional vector suitable for feeding into the fully-connected

layer.

- A single fully connected layer with 512 nodes is used to learn higher-level

representations from the extracted features.

- Finally, a Softmax classi�er with eight output nodes and a Softmax activation

function is employed for classi�cation. This con�guration allows the model to

predict the probability of an input image belonging to one of eight distinct

date fruit categories.

After the training phase, the model's performance is evaluated on an unseen test set.

This distinction ensures an unbiased assessment of the model's generalization capability,

which refers to its ability to accurately classify date fruit images it has not encountered

during training. During evaluation, the model predicts class labels for each test image.

These predictions are then compared to the images' true labels to calculate performance

metrics that quantify the model's e�ectiveness. These metrics include confusion matrix,

accuracy, F1-score, recall, and precision.

7.3 Experimental result and Discussion

The experiments were conducted on a Windows 10 Pro system equipped with Python

(version 3.9.6), TensorFlow (version 2.6.0), and Keras (version 2.6.0). The system utilized
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Figure 7.7: Detailed Con�guration of Customized CNN for Date Fruit Classi�cation.

an Intel(R) Core(TM) i5-6200U CPU @ 2.30 GHz to 2.40 GHz and 4.00 GB of RAM.

A consistent data preparation strategy was applied to all datasets. The data was then

divided into three non-overlapping subsets: 70% for training, 20% for validation, and

10% for testing. This standard split ensures a robust evaluation methodology, allowing

the model to learn from the training data, adjust its parameters based on the validation

set, and ultimately be assessed on unseen data in the testing set.

This section presents a detailed analysis of the performance of the proposed CNN and

�ne-tuned VGG16 models for multi-face detection in date fruit images. The experiments

evaluated the models' e�ectiveness using datasets containing varying numbers of faces

(one, two, three, and four).

The �rst experiment employed a CNN from scratch model with dropout regulariza-

tion (rate: 0.2) and the Adam optimizer (learning rate: 0.001). Figure 7.8 illustrates the

validation accuracy curves. As observed, the validation accuracy steadily increased with

the number of faces used for training. The models achieved 61% and 74.4% validation

accuracies for one and two faces, respectively. The accuracy signi�cantly improved for

datasets with three and four faces, reaching 95% and 99%, respectively. The correspond-

ing training and validation loss curves (Figure 7.9) exhibited a typical downward trend

as the number of epochs increased, indicating successful model convergence.
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a. Using one face b. Using two faces c. Using three faces

d. Using four faces

Figure 7.8: Curves of Accuracy during the model training of a CNN with dropouts

a. Using one face b. Using two faces c. Using three faces

d. Using four faces

Figure 7.9: Curves of Loss during the model training of a CNN with dropouts

The e�ectiveness of the trained models was further evaluated on a separate test dataset

not used for training. Figure 7.10 (a-d) presents the confusion matrices for each dataset

con�guration (one to four faces). The number of misclassi�ed instances decreased as the

number of faces used for training increased. Speci�cally, the model trained with one face

resulted in 59 misclassi�cations out of 91 test images (Figure 7.10 (a) ), while the model
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trained with four faces achieved near-perfect performance with only �ve misclassi�ca-

tions out of 2051 test images (Figure 7.10 (d) ). These results demonstrate the model's

improved ability to generalize to unseen data with an increasing number of training faces.

a.With one face b.With two faces

c.With three faces d.With four faces

Figure 7.10: Confusion matrices of a CNN from scratch with a dropout

The second experiment explored the potential of a �ne-tuned VGG16 model for multi-

face detection. As illustrated in Figure 7.11 (a-d), the validation accuracy curves reveal

a clear advantage of this approach. The model achieved exceptional validation accuracy,

reaching 100% for the four-face dataset at a mere 30th epoch (Figure 7.11 (d)). This

rapid convergence suggests e�cient learning and optimal parameter updates. Notably,

even models trained with fewer faces (71%, 91.6%, and 99.4% accuracy for one, two, and

three faces, respectively) demonstrated superior performance compared to their CNN

from scratch counterparts. The training and validation loss curves (Figure 7.12) further

support this observation, depicting a consistent downward trend across epochs, signifying

successful model optimization.
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The e�ectiveness of the �ne-tuned VGG16 model in generalizing to unseen data is

further emphasized by the confusion matrices presented in Figure 7.13 (a-d). Compared

to the CNN from scratch model, the number of misclassi�ed instances in the test set

signi�cantly decreased. While the model trained with one face exhibited some misclassi-

�cations (Figure 7.13 (a)), the model trained with four faces achieved perfect classi�cation

on all test images (Figure 7.13 (d)). This remarkable performance highlights the �ne-

tuned VGG16 model's superior ability to learn robust representations from pre-trained

features, leading to exceptional generalization capabilities, especially when trained with

su�cient faces.

a. Using one face b. Using two faces

c. Using three faces d. Using four faces

Figure 7.11: Curves of Accuracy during the model training of a �ne-tuned VGG16
model
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a. Using one face b. Using two faces

c. Using three faces d. Using four faces

Figure 7.12: Curves of Loss during the model training of a �ne-tuned VGG16 model

a.With one face b.With two faces c.With three faces

d.With four faces

Figure 7.13: Confusion matrices of a Fine-tuned VGG16 Model
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Table 7.2 summarizes the quantitative performance metrics (accuracy, precision, re-

call, and F1-score) for the CNN with dropout regularization and the �ne-tuned VGG16

model. These metrics are evaluated on unseen data from a dedicated testing set compris-

ing 10% of the total dataset for each dataset type ( 1, 2, 3, and 4 faces).

The CNN model achieved a moderate accuracy of 64.8% when trained with a single

face (Table 7.2). This model demonstrated perfect precision (100%) but a lower recall

(64.8%), indicating it correctly identi�ed all detected faces but potentially missed some

actual faces in the dataset. The F1-score, which balances these two aspects, was also

64.8%. During training with one face, the model achieved an accuracy of 87.7% with a

loss of 0.3381, suggesting potential over�tting on the limited training data. Validation

accuracy was lower at 61% with a higher loss of 1.1437, indicating the model generalizes

poorly to unseen data. As the number of training faces increased, performance improved

signi�cantly. With four faces, the model achieved an accuracy of 95%, near-perfect pre-

cision (100%), and a high F1-score (99%), demonstrating its ability to accurately detect

most faces with minimal errors (Table 7.2). Training and validation accuracy also in-

creased to 98% and 99%, respectively, with lower losses (0.0407 and 0.0114), suggesting

better generalization.

The �ne-tuned VGG16 model displayed a similar trend of improvement with more

training faces (Table 7.2). While it achieved a moderate accuracy (67%) with one face,

it reached near-perfect accuracy (100%) with the four-face dataset. Precision, recall, and

F1-score followed a similar pattern, reaching 100% with four faces (Table 7.2). Notably,

the VGG16 model consistently surpassed the CNN model in all metrics across all train-

ing data sizes. Training accuracy for the VGG16 model remained high (often 100%)

throughout, suggesting it learned e�ectively from the training data. Validation accuracy

also generally increased with more training faces, demonstrating better generalizability

than the CNN model.

Our investigation into a multi-face classi�cation for date fruit images revealed several

key �ndings. First, consolidating all four faces of a date fruit into a single image (2x2

grid) and applying permutations to explore all possible face combinations signi�cantly

improved model performance (Table 7.2). This data augmentation technique mitigates

over�tting by increasing training data diversity, allowing the model to learn more robust

features. Furthermore, a positive correlation emerged between the number of faces used

for training and classi�cation accuracy (Table 7.2), indicating that including data from

numerous faces within a single image o�ers a more comprehensive representation of the

date fruit, resulting in more precise classi�cations. The study also compared the e�cacy

of transfer learning with a �ne-tuned VGG16 model against a CNN model with dropout

regularization. The results con�rmed the superiority of transfer learning, with the �ne-

tuned VGG16 model achieving near-perfect accuracy (100%) compared to the CNN's

99% accuracy (Table 7.2).
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The success of using pre-trained features from VGG16 for this task demonstrates its

ability to learn complex representations and adapt them for multi-face detection in date

fruit images. Although the custom-CNN model performed well, the substantial improve-

ment achieved by the �ne-tuned VGG16 model emphasizes the value of transfer learning

for this application. Additionally, comparing with existing deep learning approaches

for date fruit classi�cation and grading highlights the competitiveness of the proposed

methods (see Table 7.3). The custom CNN and the �ne-tuned VGG16 model achieved

excellent classi�cation accuracy, surpassing previous works' performance, underscoring

the proposed system's e�ectiveness for classifying di�erent varieties of date fruits.

To demonstrate the practical applicability of the proposed approach, a user applica-

tion was developed using Python and Flask (version 1.1.2) (Figure 7.14). This web-based

application facilitates real-world deployment and user interaction with the multi-face

classi�cation system for date fruit. The application delivers fast and accurate predictions

of date fruit classes, with a response time of only 0.12 seconds. This rapid processing

speed ensures real-time functionality and minimizes user wait times. This application's

successful development and implementation validate the system's e�ectiveness in a prac-

tical setting. Additionally, the application's fast response time suggests its potential for

integration into the agricultural domain for e�cient date fruit classi�cation tasks.

a. Choosing the date fruit for classi�cation.

b. Prediction result with processing time.

Figure 7.14: The date fruit classi�cation process within the application interface.
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7.4 Conclusion

This contribution delved into the e�ectiveness of utilizing multiple date fruit faces to

improve classi�cation accuracy. A self-generated dataset containing two types (Deglet-

Noor and Mech-Degla) with diverse grades was utilized for training two models: a Con-

volutional Neural Network (CNN) and a �ne-tuned VGG16 model. Our contribution was

that including information from multiple faces would enhance classi�cation accuracy.

The results con�rmed this hypothesis. By merging all four faces into a single image

with permutations and training on this dataset, the �ne-tuned VGG16 model achieved

perfect accuracy (100%). The CNN architecture with dropout also demonstrated notable

results, achieving 95% accuracy on the test dataset. These �ndings highlight the bene�ts

of using multiple faces over previous approaches that depend on single-face analysis.

This method signi�cantly enhances date fruit classi�cation accuracy compared to

current techniques. Our system provides a robust and e�cient solution using multiple

faces and transfer learning.
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Chapter 8
General Conclusion

Automated date fruit sorting is crucial for ensuring product quality and e�ciency.

Conventional manual sorting methods, relying on visual examination and human judg-

ment, struggle to meet the industry's demands due to the inherent diversity of date fruit

varieties and grades. This thesis tackled this challenge by investigating the potential of

Convolutional Neural Networks (CNNs) for automated date fruit classi�cation, explicitly

focusing on leveraging multi-modal data from Algerian date fruits.

We proposed innovative deep learning architectures that leverage multi-modal data

fusion. This approach incorporates features from multiple fruit faces alongside thermal

image data and the weight measure of date fruit, providing a richer dataset for classi�-

cation compared to single-face analysis. Through three distinct contributions, this thesis

explored and demonstrated the e�ectiveness of these CNNs. The research also highlighted

the importance of using multi-face and multi-modal data to achieve high-precision clas-

si�cation across di�erent varieties and grades.

The �rst contribution explored using a multi-modal approach with CNNs [99]. This

approach demonstrated the e�ectiveness of combining visual data from four sides of the

date fruit with additional features extracted from the fruit itself to improve classi�cation

accuracy. Four models were utilized: a CNN from scratch, VGG16, ResNet50, and Incep-

tionV3. The proposed method employed grayscaling, image averaging, and customized

image channel adjustments during pre-processing to simplify and standardize the input

data for the CNN models. Our experiments revealed that the VGG16 model achieved the

highest performance in classifying Algerian date fruit, with a testing accuracy of 94%.

While training accuracy was high at 99.6%. These �ndings suggest that the proposed

approach has the potential to improve the e�ciency and accuracy of date fruit sorting

signi�cantly.

The second contribution studied date fruit classi�cation by incorporating multi-modal
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data with a late fusion technique. It employed four deep learning models, Custom-CNN,

VGG16, ResNet50, and MobileNet, across two distinct scenarios. Scenario I involved

classifying date fruits based on four views captured from di�erent angles. Scenario II

extended this approach by incorporating thermal images and weight measurements as

additional modalities. Our results highlight the strengths of custom-CNN in both sce-

narios. When additional features were introduced in Scenario II, custom-CNN accuracy

improved signi�cantly, reaching 89% on the testing set (training accuracy was 100%).

However, these results were within the high accuracy of the �rst contribution. This �nd-

ing emphasizes the importance of selecting an appropriate model architecture, as some

models exhibited limited improvement with additional data. Further exploration of deep

learning architectures is essential. Additionally, it is imperative to investigate techniques

to address the limitations of a small dataset size.

The last contribution aimed to overcome the limitations of previous studies (Section

4.3.2), which relied on classifying date fruits using only one visual image per fruit, partic-

ularly the challenge of limited dataset size in our previous contribution (5, 6). It proposed

a robust solution to combine information from multiple faces to achieve high classi�ca-

tion accuracy. The e�ectiveness of utilizing multiple date fruit faces was investigated by

merging information from all four faces into a single image. To increase the size of the

dataset, permutation functions were applied to the obtained merged faces. To evaluate

the robustness of this approach, the data was evaluated using two types of models: a

�ne-tuned VGG16 model and a custom-CNN with dropout technique.

Additionally, data with di�erent numbers of faces (one, two, and three) were com-

pared. These experiments con�rmed our hypothesis that incorporating information from

multiple faces signi�cantly enhances classi�cation accuracy compared to single-face analy-

sis. Notably, the �ne-tuned VGG16 model achieved perfect accuracy (100%) with merged

four faces.

In conclusion, this thesis has taken a signi�cant step towards revolutionizing auto-

mated date fruit sorting by exploring Convolutional Neural Networks (CNNs) and in-

depth analysis of multi-modal data from date fruits. While not the �nal answer, this

research paves the way for a more e�cient and accurate future for date fruit sorting.

Future research directions o�er exciting possibilities for further advancement:

- Expanding the dataset size and exploring advanced data augmentation techniques

like Generative Adversarial Networks (GANs): This will enhance the generalizabil-

ity and e�ectiveness of multi-modal and multi-view date fruit classi�cation models.

- Investigating deep learning architectures designed explicitly for multi-modal data,
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such as the EmbraceNet architecture: By customizing architectures to leverage the

strengths of di�erent data types.

- Developing a real prototype machine for date fruit sorting: This could involve

designing a machine that utilizes embedded system technology like Raspberry Pi

to bene�t from the advantages of this technology.

By continuing to explore these promising avenues, we can re�ne and implement auto-

mated date fruit sorting systems, ultimately boosting product quality and global market

competitiveness and potentially revolutionizing food sorting practices beyond the date

fruit product.
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