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 ملخص 
 

مصادر الطاقة   من خلال تحسين دمجتعزيز أداء الشبكات الكهربائية الحديثة    فيالمساهمة الرئيسية لهذه الأطروحة  تتمثل       

من  الهدف أين كان . استدلالية الحديثة-باستخدام طرق التحسين الميتا (FACTS) أجهزة مرنة للنقل بالتيار المتناوب و ،المتجددة

تقليل    من بينها. تم تحليل وظائف مختلفة،  ة الأهدافطاقة ذات الهدف الواحد والمتعددللالأمثل  حل مشاكل تدفق    وهدراسة  ذه اله

وكذلك   (IEEE 30-bus) فقدان الطاقة، وانحرافات الجهد، على كل من شبكة النقل الكهربائية،  اتتكلفة الوقود، انبعاثات الغاز

قمنا أيضًا في هذه الأطروحة بتركيب أجهزة مرنة للنقل بالتيار المتناوب     (DZA-114 bus) .الجزائرية على الشبكة الكهربائية  

خوارزميات هجينة مستوحاة من الطبيعة، واحدة منها تم استخدامها لأول مرة في هذه  لتحسين أداء نظام الطاقة. تم استعمال أربع  

الأطروحة، لحل مشكلة أمثلية الطاقة أحادية الهدف في أنظمة الطاقة الحديثة المدمجة بالطاقات المتجددة. الهدف من استعمال  

حة لتحديد أفضل موقع لأنظمة تحسين التوتر المرنة خوارزميات هجينة هو تحسين الحل الأمثل. تم استخدام المنهجيات المقتر

لتقليل تكلفة الإنتاج، التقليل من ضياع الطاقة، وتحسين الجهد الكهربائي، لضمان تشغيل فعال للشبكات الكهربائية. لاختبار فعالية  

المتناوب بالتيار  للنقل  المرنة  الأجهزة  وأثر  المقترحة  الخوارزميات  بتط (FACTS) ونجاعة  الشبكة قمنا  على  البرنامج  بيق 

المدمجة بطاقة  (DZA-114 bus) المدمجة بطاقة الرياح، وعلى الشبكة الكهربائية الجزائرية  (IEEE 30-bus)  الكهربائية

الرياح وكذلك الطاقة الشمسية. تؤكد النتائج التي تم الحصول عليها فعالية الطرق المقترحة لحل مشكلة التدفق الأمثل للطاقة في  

 (FACTS) .  وجود مختلف أجهزة النقل المرنة

طرق التحسين    ،(FACTS) أجهزة مرنة للنقل بالتيار المتناوب  للطاقة،التدفق الأمثل    ،مصادر الطاقة المتجددة  :كلمات مفتاحية

الخوارزميات  ،(DZA-114 bus) الجزائرية، الشتتتبكة الكهربائية  (IEEE 30-bus) الشتتتبكة الكهربائية  ،استتتتدلالية-الميتا

  الهجينة، الأمثلة متعددة الأهداف، أنظمة الطاقة الحديثة، الطاقات المتجددة، الأنظمة المرنة للنقل بالتيار المتناوب، تكلفة الإنتاج
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Abstract 

 

     The main contribution of this thesis is to enhance the performance of modern electrical 

networks by optimizing the integration of renewable energy sources and Flexible Alternating 

Current Transmission Systems (FACTS) through recent metaheuristic optimization methods. 

Where the objective of this study was to solve single and multi-objective optimal power flow 

problems. Various functions were analyzed, including the minimization of fuel cost, gas emissions, 

energy losses, and voltage deviations, on both the IEEE 30-bus electrical transmission network 

and the Algerian electrical network (DZA-114 bus). In this thesis, we also installed FACTS 

devices to improve the performance of the power system. Four nature-inspired hybrid algorithms 

were used, one of which was employed for the first time in this thesis, to solve the single-objective 

energy optimization problem in modern power systems integrated with renewable energies. The 

aim of using hybrid algorithms is to improve the optimal solution. The proposed methodologies 

were used to determine the best location for flexible voltage regulation systems to reduce 

production costs, decrease energy losses, and improve voltage levels, ensuring efficient operation 

of electrical networks. To test the effectiveness and efficiency of the proposed algorithms and the 

impact of flexible alternating current transmission systems (FACTS), we applied the program to 

the IEEE 30-bus electrical network integrated with wind energy, and to the Algerian electrical 

network DZA-114 bus integrated with both wind and solar energy. The results obtained confirm 

the effectiveness of the proposed methods for solving the optimal power flow problem in the 

presence of various flexible transmission devices (FACTS). 

Keywords: Renewable energy sources, Flexible Alternating Current Transmission Systems 

(FACTS), optimal power flow, metaheuristic optimization methods, IEEE 30-bus electrical 

network, Algerian electrical network DZA-114 bus. hybrid algorithms, multi-objective 

optimization, modern power systems 
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Résumé 

 

     La contribution principale de cette thèse consiste à améliorer la performance des réseaux 

électriques modernes en optimisant l'intégration des sources d'énergie renouvelables et des 

Systèmes Flexibles de Transmission en Courant Alternatif (FACTS) à l'aide des méthodes 

d'optimisation métaheuristiques récentes. Où l'objectif de cette étude était de résoudre des 

problèmes de flux optimal de puissance à objectif unique et multi-objectifs. Diverses fonctions ont 

été analysées, notamment minimisation du coût du carburant, les émissions de gaz, les pertes 

d'énergie et les déviations de tension, tant sur le réseau de transmission électrique sur le réseau de 

transport électrique (IEEE 30-bus) ainsi que sur le réseau électrique algérien (DZA-114 bus). Dans 

cette thèse, nous avons également installé des dispositifs flexibles de transport en courant alternatif 

pour améliorer la performance du système énergétique. Quatre algorithmes hybrides inspirés de la 

nature ont été utilisés, dont l'un pour la première fois dans cette thèse, pour résoudre le problème 

d'optimisation de l'énergie à objectif simple dans les systèmes énergétiques modernes intégrant 

des énergies renouvelables. L'objectif de l'utilisation d'algorithmes hybrides est d'améliorer la 

solution optimale. Les méthodologies proposées ont été utilisées pour déterminer le meilleur 

emplacement des systèmes flexibles de régulation de tension afin de réduire les coûts de 

production, diminuer les pertes d'énergie et améliorer la tension électrique, assurant ainsi un 

fonctionnement efficace des réseaux électriques. Pour tester l'efficacité et la performance des 

algorithmes proposés et l'impact des dispositifs flexibles de transport en courant alternatif 

(FACTS), nous avons appliqué le programme sur le réseau électrique (IEEE 30-bus) intégré à 

l'énergie éolienne, ainsi que sur le réseau électrique algérien (DZA-114 bus) intégré à l'énergie 

éolienne et solaire. Les résultats obtenus confirment l'efficacité des méthodes proposées pour 

résoudre le problème de flux de puissance optimal en présence de divers dispositifs de transport 

flexibles (FACTS). 

Mots clés : sources d'énergie renouvelables, flux optimal de puissance, méthodes d'optimisation 

métaheuristique, algorithmes hybrides, optimisation multi-objectifs, systèmes énergétiques 

modernes, énergies renouvelables, dispositifs flexibles de transport en courant alternatif, coût du 

carburant, réseau électrique IEEE 30-bus, réseau électrique algérien DZA-114 bus
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General Introduction 

 

        In modern times, electrical energy is crucial for most activities that would be nearly 

impossible without it. Recently, the use of electrical power has surged due to the growing global 

demand. Ensuring stable, reliable, and continuous power quality with minimal loss is a significant 

challenge for energy systems. This increase in demand poses challenges, particularly in 

maintaining a delicate balance between production and consumption. Complicating matters is the 

immediate need to consume electricity upon production due to the limited and inefficient current 

storage options. Not long ago, conventional energy sources were the primary means of electricity 

production, based on fuel-fossil thermal power plants, met the most of the demand for electricity. 

However, electricity generation from these plants are neither eco-friendly nor sustainable. 

Nowadays, renewable energy sources (RES) have been widely integrated into energy systems to 

meet the rising demand for electricity and provide a sustainable, eco-friendly alternative to fossil 

fuel-based energy sources. Consequently, the generation of electricity from sustainable energy 

sources has gained increasing significance. 

The primary challenges facing modern power systems that integrate renewable (such as wind and 

solar power) and non-renewable energy sources into the main electrical grid are their fluctuating 

nature and the resulting power quality issues. This intermittency creates unpredictable scenarios 

for the power grid operator, who must continuously ensure that production and consumption are 

balanced at all times. This necessitates additional means to optimize the monitoring, protection, 

and management of power flow within electrical transmission and distribution networks [1]. 

Several technologies have been utilized to enhance power quality in electrical networks, which is 

paramount for present and future power systems. In these situations, Flexible Alternating Current 

Transmission System (FACTS) controllers play a crucial role in managing power system security. 

These intelligent power electronic devices offer a promising solution due to their significant 

capacity to control voltage levels and power flow in real time. They are very promising under high 

penetration of renewable energies, which is expected to occur within a few decades. As well 

alleviate electrical network congestion during power grid overloads [2]. Electric power system 

operators are always on the lookout for exploring new approaches to tackle operational planning 

hurdles, aiming to maintain service continuity while reducing damage to electrical equipment. In 

today's power system operations, every fluctuation in demand necessitates precise adjustments in 
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power generation to maintain the balance between supply and demand, ensuring grid stability. This 

can be locally achieved through effective power management.  

The Optimal Power Flow (OPF) is crucial for planning future growth and operating power 

systems. Its main goal is to ensure network safety by optimizing specific objectives while adhering 

to inequality and equality constraints, adapting to load demand changes by updating control 

variable settings within grid operating conditions and various constraints. This makes it a complex 

optimization issue characterized by high non-linearity, large-scale dimensions, 

multidimensionality, and non-convexity. The classical objectives of OPF focus on conventional 

thermal generating units. However, the integration of large-scale, unpredictable renewable energy 

sources like wind and solar into the electrical network requires additional considerations, including 

security and operational constraints. OPF scheduling now also needs to account for the forecast 

uncertainty of these renewables, making it essential to reassess OPF strategies to accommodate 

the diversity of energy sources [3].  

Over the past decade, with the rise emergence of the recent optimization techniques, such as 

metaheuristic methods, alongside the deregulation of electricity markets and the incorporation of 

renewable energy sources (RES) and FACTS devices, has substantially complicated the study of 

OPF. This complexity has significantly heightened the objectives of OPF, requiring special efforts 

to establish optimal planning and operations management for electric power systems. This is 

attributed to the diverse functions derived from the variability and uncertainty inherent in its 

problem formulation [4].   In this context, developing of new strategies to address this challenge 

has garnered significant interest in academic and research circles, particularly with the rise of 

computational intelligence. Where this field has become immensely popular among scientific and 

engineering communities for its capability to tackle complex problems. 

This thesis focuses on applying artificial intelligence methods to solve engineering optimization 

problems, such as optimizing the electrical parameters of PV models and solving the single and 

multi-objective optimal power flow in the IEEE 30-bus system and the Algerian electrical network 

DZA-114 bus. 

In the second part based on the work of Pr. MAHDAD Belkacem in the field of power flow 

optimization, and referring to his published articles[5][6][7][8], also, and the work of Dr. Partha 

Biswass, and his published articles as basic references [8][9], when integrate the renewables 

energies in the electrical transmission network 30 bus, with optimal placement of FACTS devices. 

And referring in the scientific papers of DR. Mouassa Souhil as basic references [10], when 
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integrate the renewables energies such as, wind and solar in the electrical transmission network 

Algerian DZA-114 bus. Here, one of this research contributes is that it only takes into account 

wind and solar energies resources into the modified electrical network DZA-114 bus, with optimal 

placement of FACTS devices.  

The subject of our thesis is the optimization of the electrical network with presence of FACTS; 

case study electrical network Algeria. This thesis titled " Contribution à l’optimisation de 

l’intégration des énergies renouvelables et des systèmes FACTS dans les réseaux électriques: 

Cas d’étude Réseau Electrique Algérien " was conducted within the Laboratory of Modeling of 

Energy Systems (LMSE) at the University of Biskra. It represents a contribution to the 

improvement of some recent intelligent optimization methods for solving the OPF in the 

transmission electrical network in the test network IEEE 30-bus, the reel transmission electrical 

network Algeria DZA-114 bus with presence of renewables energies and FACTS devices. 
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1.1. Introduction  

The expansion of modern power systems, including increased loads, lines, and generators, coupled 

with a surge in demand and environmental concerns, necessitates the use of more efficient 

elements and procedures. The challenge of managing long-distance power flows and evolving 

system demands has spurred the development of methods that satisfy economic and technical 

criteria, a problem commonly addressed as Optimal Power Flow (OPF). OPF analysis is essential 

in both the planning and real-time operation of power grid. 

Numerous approaches have been suggested to address the OPF problems with including both 

thermal and RESs, where the incorporation of power electronics has significantly advanced the 

integration process. By employing FACTS controllers, it's possible to adjust power flow for 

optimal accuracy, precision, and speed, thus enhancing the utilization of existing and future 

electrical networks. To solve OPF problems involving thermal generators and FACTS devices 

alongside RESs, various metaheuristic algorithms have been proposed. These solutions aim to 

maintain reasonable electricity prices, thereby preserving consumer loyalty. However, applying 

these strategies to improve load control and ensure system security presents ongoing challenges. 

Demand side management schemes benefit from various optimization algorithms, leading to 

improved outcomes by accommodating flexible load models tailored to individual lifestyles, 

ultimately enhancing user comfort. The culmination of this work is the efficient scheduling of 

power in the modern electrical network, employing unconventional optimization techniques and 

considering two pricing schemes to optimize comfort and efficiency [11].  

This chapter presents an overview about our thesis, defense plans used to prevent major outages. 

Our focus lies specifically on Flexible Alternating Current Transmission Systems (FACTS) and 

the integration of renewable energies. 

1.2. State of art 

Starting in 1919, research engineers began to take an interest in the optimal functioning of power 

systems. In 1958, Kirchmayer's book "Economic Operation of Power Systems," introduced a 

nonlinear programming formulation of the economic dispatch problem, leading to the development 

of the first algorithms for solving power flow. The majority of traditional optimization methods 

rely on sensitivity analysis and gradient-based methodologies. In 1961 to 1962: Squires and 

Carpentier began optimal power flow (OPF) research. Although some researchers credit Dommel 

and Tinney (1968) with developing the OPF methodology to address the economic dispatch 
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problem. Since then, the OPF approach has been adapted to various challenges and has become 

the foundation for managing and controlling power networks. Today, it is widely used to allocate 

available power plant generation while optimizing specific objective functions or multiple 

objectives simultaneously [12].  

In previous years, conventional and intelligent optimization algorithms can be addressed the OPF 

problems. In this connection, quite a few mathematical programming methodologies that have 

been implemented for handling the OPF problems such as newton-based technique. In [13], a 

linear programming (LP) approach was tested on IEEE-14, 57, and 118 bus systems, 

demonstrating its effectiveness through numerical simulations. In [14] used quadratic 

programming (QP) used for solving Economic Dispatch problems, tested on IEEE-5, 14, 30, 57, 

and 118 bus systems. Nonlinear programming (NLP) [15], employed to solve OPF problems by 

locating reactive power support among competing generators in a deregulated environment. 

Performance was analyzed using a modified IEEE-118 bus system. Interior point (IP) methods, 

implemented in [16] on IEEE 30-bus system to minimize generation cost, with results compared 

to the lambda iterative method, showing very close outcomes but slight differences in active losses. 

Furthermore, the OPF problem has traditionally been solved using conventional methods. 

However, these approaches have significant limitations, they are limited to specific OPF problems 

and continuous problems that use derivatives and gradients, providing optimal solutions only 

under certain conditions involving simple and differentiable objective functions. However, in 

modern power systems, the OPF problem is consistently a nonlinear optimization challenge that 

may also be non-differentiable. This complex nature poses a significant challenge for conventional 

techniques within practical power grids. To overcome these limitations, metaheuristic methods 

have been considered as alternative approaches to solving the complex OPF optimization problem 

[17]. 

The emergence of "metaheuristics" began in the 1980s, particularly with Glover's work in 1986. 

Advancements in computer science have since led to the development of various intelligent 

optimization approaches to tackle OPF challenges, especially in systems with thermal generators 

[17]. One prominent example is the Genetic Algorithm (GA), recognized for its efficiency in 

finding optimal solutions. The feasibility of GA was demonstrated using the IEEE 30-bus system, 

where it was compared with other techniques from the literature, showing the effectiveness of the 

proposed method [18]. An Enhanced GA (EGA) was also developed to address the OPF problem, 

incorporates an incremental power flow model based on sensitivities, significantly reducing CPU 

time [19]. The Particle Swarm Optimization (PSO) introduced by Eberhart and Kennedy in 1995, 
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it has proven effective in solving OPF challenges, as demonstrated on the IEEE-30 bus system 

[20], The Differential Evolution (DE) algorithm inspired by evolutionary strategies and GA, DE 

is effective for continuous variable problems, as tested on IEEE-14, 30, 57, and 118 bus systems, 

showing strong results for nonlinear objectives and constraints [21]. The Artificial bee colony has 

been tested on IEEE-9, 30, and 57 bus systems, showing effectiveness in solving large-scale OPF 

problems [22]. Gravitational search algorithm (GSA) Based on Newtonian gravity, GSA has been 

applied to IEEE-30 and 57 bus systems, demonstrating robust and high-quality results [23]. Other 

notable algorithms include Tabu Search (TS) [24], self-adaptive differential evolution (SADE) 

[25], modified differential evolution algorithm (MDEA) [26], adaptive real coded biogeography-

based optimization (ARCBOA) [27], Grey Wolf Optimizer GWO [28], moth swarm algorithm 

(MSA) [29]. In [30], Moth Swarm Algorithm (MSA) The MSA and four other algorithms are 

applied to solve the OPF on the IEEE 30-bus, 57-bus, and 118-bus power systems, the results 

demonstrate the MSA's effectiveness and superiority over many recent OPF solutions. stud krill 

herd algorithm (SKHA) [31], Developed grey wolf optimization (IGWO) [32], salp swarm 

algorithm (SSA) [33], whale optimization algorithm (WOA) [34]. the Peafowl Optimization 

Algorithm (POA) [35] was applied the solve the OPF in the standard electrical network IEEE 14-

bus and 57-bus, the results clearly shown the superiority of this algorithm in tacking this 

challenges’ Grey Wolf Optimization (GWO) [36], … etc... In addition to these, hybrid Particle 

Swarm Optimization and Differential Evolution (HPSO-DE) [37], and the hybrid Particle Swarm 

Optimization and Gravitational Search Approach (HPSO-GSA) [38], In [39], a hybrid method 

designed and applied to tackle the OPF problems, which is Fitness-distance balance based artificial 

ecosystem optimization (FDB-AEO), the main advantage of this approach is more efficiently 

reaches the global optimum., …etc. These methods demonstrate the vast potential of intelligent 

optimization in solving complex OPF problems. 

With the integration of large-scale renewable power into power systems, OPF scheduling now 

requires to account for the forecast uncertainty of renewable energy. To address these challenges, 

numerous approaches have been developed for OPF problems involving both thermal and 

renewable energy sources (RES). Some of these optimization methods employ approximate 

techniques to manage the complexity of incorporating renewable energy into OPF scheduling, 

such as the Fitness–Distance Balance based (FBD-AGDEA) adaptive guided differential evolution 

algorithm [40].  Chaotic Bonobo Optimizer (CBO) algorithm [41], has been employed to tackle 

the OPF problem in systems featuring thermal and RES generators. The algorithm is verified on 

modified IEEE-30 and IEEE-57 bus test systems. The results prove the efficiency, the superiority 
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and robustness of CBO for finding the best solution to the OPF problem with stochastic RESs. In 

[42] Conditional Value at Risk (CVaR) have been employed to tackle the OPF problem in systems 

featuring thermal and RESs generators, as well as wind generation units, is used as a management 

tool to enhance the security level of each operational constraint. A hybrid optimization algorithm, 

the Particle Swarm with Gray Wolf Optimizer (HPS-GWO) [43], has been used to address the 

OPF problem on the IEEE 30-bus system, including renewable energy sources. Simulation results 

confirm its strong exploitation and exploration capabilities for tacking this challenge. The hybrid 

algorithm PSO with an Aging Leader and Challengers (ALC-PSO) was implemented in [44] which 

has been used to identify high-quality solutions to OPF problems in systems equipped with FACTS 

components. adaptive fitness-distance balance-based (AFBD-SFSA) stochastic fractal search 

algorithm [45], was implanted for solving OPF problems in systems equipped with FACTS 

components, …. Etc 

The incorporating FACTS devices into modern electrical systems significantly increases the 

complexity of OPF problems, and making it more challenging to obtain optimal solutions. A brief 

overview of the metaheuristic approaches utilized to address the OPF problems of a system that 

involves thermal generators is given, such as, Genetic Algorithm (GA) has been used to solve 

FACTS allocation within the context of the OPF problem. Specifically, the allocation of the 

TCPST was managed using GA and OPF equations. GA handled OPF to solve the power balance 

equations and adjust the voltage regulators (VRs) [46]. The cross-entropy approach was 

implemented for minimizing both power loss and voltage deviation for best location of SVC and 

TCPS [47]. The particle swarm optimization (PSO) [48], The optimal placement and rating of two 

TCSCs in transmission network IEEE 30-bus was performed by utilizing adaptive parallel seeker 

optimization (APSOA) algorithm [49], was applied to optimize the coordination and placement of 

TCSC, SVC, TCPS, and UPFC in IEEE 30-bus, Incorporating the unpredictability of loads, the 

properties of transmission lines, and the cost associated with TCSCs were all included in the 

problem formulation. A Hybrid Particle Swarm Optimization and adaptive (PSO-GSA) used for 

optimizing the allocation and rating of TCSC and SVC concepts [50]. Non-dominated sorting 

particle swarm optimization algorithm (NSPSO) was applied for enhancing the higher voltage 

stability of the electrical grid by utilizing both SVC and TCSC and optimizing their location and 

size [51]. In [52], the Moth Swarm Algorithm (MSA) was employed to find the correct position 

TCSC on the electrical network IEEE 30-bus test system, … etc. In certain other studies, the 

placement and sizing were optimized for single or multi-types of FACTS devices along with the 
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primary aims being to improve the voltage stability and/or the load capacity of a power grid 

comprising thermal generators. 

To solve OPF problems in energy systems featuring thermal generators, renewable energy sources 

(RES), and FACTS devices, several intelligent optimization algorithms have been proposed for 

solving this problem. In [53] some of proposed techniques were evaluated against established 

methods, including Particle Swarm Optimization (PSO), Moth Flame Optimization (MFO), and 

Grey Wolf Optimizer (GWO), using the IEEE 30-bus test system, with the presence and absence 

of FCTAS, renewable energy sources. The results showed that MPA, SMA, JS, and AEO 

algorithms are more effective in solving OPF problems compared to PSO, GWO, and MFO, ... etc.  

Currently, there is a limited amount of research using metaheuristic optimization techniques for 

solving OPF problems in networks with integrated renewable energy and FACTS devices. 

Moreover, there is a few studies comparing novel metaheuristic optimization techniques or 

analyzing the impact of renewable energy sources, such as wind and solar, on network efficiency 

and optimization methods.  In [9], a recent study by Biswas et al. addressed OPF for the IEEE 30-

bus network, focusing on the optimal location and sizing of various FACTS devices, including 

VAR compensator (SVC), TCSC (thyristor-controlled series compensator), and TCPS (thyristor-

controlled phase shifter), using the Success History-based Adaptive Differential Evolution 

(SHADE) method. This study concentrated on single-objective OPF problems related to electricity 

production costs and power loss, and included fixed-location wind turbine generators as renewable 

energy sources but neglected solar energy units. Additionally, the developed Runge Kutta 

optimizer (DRKO) was used for OPF analysis in systems with wind/PV/TCSC [54]. The modified 

krill herd algorithm (MKHA) was applied to the best allocation and rating of FACTS devices in 

the IEEE 30-bus grid with wind power [55]. In [56], An improved Hunter-prey optimization (HPO) 

method was also used to enhance search capabilities for OPF problems involving FACTS devices 

and wind power integration, The Hunter-Prey Optimization (HPO) method has been utilized to 

enhance search capabilities for solving the Optimal Power Flow (OPF) problem, incorporating 

FACTS devices and wind power energy integration. Furthermore, in [57], the Chaos Game 

Optimization Approach conducted to study the OPF in the IEEE 30-bus network.  

Based on this historical overview about the OPF, and the previous studies primarily dealt with 

OPF issues in electrical networks supported by FACTS, integrating wind turbines and PV 

generator units in smaller grids, this thesis focuses on the integrating those stochastic generation 

units to determine optimal placements for FACTS devices and address more complex OPF 
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challenges in large-scale electrical networks, which is the reel electric Algerian transmission 

network DZA-114 bus. 

1.3. Problem statement 

Power systems are operating at near full capacity, posing risks to the security of the electrical grid. 

There is a consensus on the need to reinforce and upgrade the electrical transmission infrastructure 

by adding new lines, substations, and equipment. However, this solution is difficult, expensive, 

time-consuming, and controversial.  

The optimal power flow (OPF) is gaining paramount importance in the operation and planning 

phases of the electrical network. Several optimization methods face challenges in handling the 

stochastic nature of OPF problems, especially within practical electric grids. Unlike conventional 

thermal generators, the integration of renewable energy sources (RES), which adds significant 

complexity due to these generators cannot be scheduled predictably, as their output depends on 

variable climatic factors like solar irradiation and wind speed. This variability poses a major 

challenge for operating hybrid generation systems and integrating RES into power grids on a large 

scale. The uncertainty associated with climatic conditions further complicates maintaining a stable 

and reliable power supply. This highlights the need for innovative solutions and optimization 

techniques that can accommodate the dynamic and unpredictable nature of renewable energy in 

OPF calculations Additionally, the variability of renewable energy sources introduces power 

quality challenges in the grid, necessitating the application of advanced technologies. FACTS 

controllers are effective technical solutions for these challenges, offering significant benefits in 

power system security management and mitigating the inherent drawbacks of renewable energy 

integration [3][10][11].  

Over the past two decades, numerous optimization methods have been used to determine optimal 

control variables for power flow problems, both single and multi-objective, with and without 

renewable energy sources (RES). Despite some success results, the effectiveness of these methods 

has been limited by the complex nature of the OPF problem. especially in large-scale power grids 

with conflicting objectives, and selecting the right optimization approach remain challenging for 

Identifying optimal solutions.  Solving the OPF problem in the presence of RES and FACTS 

devices is crucial for the efficient and reliable operation of modern power systems. It requires 

sophisticated optimization approaches that can handle the system's complexity and uncertainties. 

Advanced optimization techniques such as metaheuristic algorithms, machine learning, and robust 



Chapter 1: Overview of the thesis 

 

38 

 

optimization are employed to find a global optimum solution that balances all objectives while 

satisfying constraints with reasonable computational effort. 

1.4. Major contributions of the thesis 

This doctoral thesis focuses to address the issue OPF in electrical transmission networks by 

optimizing a specific objective function using metaheuristic optimization methods. The main 

objectives and effects and contributions of the dissertation can be outlined in the following points: 

- Different metaheuristics algorithms were proposed to identify the best optimal electrical 

parameters of PV models. 

- Recent intelligence artificial optimization algorithms were proposed to deal with different single 

and multi-objective optimal power flow problem in the electrical transmission network IEEE 30-

bus test system, and in large-scale power systems, which is the real electric network Algerian 

DZA-114 bus. 

• Our thesis motivation is to showcase the current state of power systems integrated with intelligent 

techniques, particularly for renewable resources and FACTS devices.  

• The stochastic wind and solar power plants are modeled, analyzed, and calculated using Weibull 

PDF (probability density function). 

• Study of the impact of some FACTS devices on the electrical transmission network. Our research 

focuses on optimizing the placement and sizing of FACTS devices (two TCPSs, two TCSCs, and 

two SVCs) in the modified electrical transmission network IEEE 30-bus test system, and the 

modified electrical transmission network Algerian DZA-114 bus.  

The optimization process was conducted using recent optimization algorithms in order to explore 

the advantages of each with a view to improving the quality of the solution obtained and the 

execution time. A novel algorithm was proposed and developed specifically for the first time 

known as the FDB-AOA. in this thesis for resolving this issue in the electrical network involving 

both renewable and thermal power generators, and finally achieve the best solution of the OPF 

problem. Making decisions about the dimensions of a search agent is a crucial step. there are 27 

decision variables control for the modified IEEE 30-bus, and 57 decision variables for the modified 

DZA-114 bus.  
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1.5. Outline of the thesis  

Including this introductory chapter, this thesis is organized into six chapters: 

 In the second chapter, the overviews for FACTS devices are presented, along with their 

advantages to the power grid. To validate the impact of integrating these devices on improving the 

efficiency of transmission networks. 

In the third chapter, we will present the renewable energies, their classification, and detailed some 

interesting in our thesis like the wind and solar power plants, and their modulation. In the fourth 

chapter, we presented the formulation of the optimal power flow problem, which summarizes the 

objective functions addressed in our thesis, namely the minimization of fuel cost, emission gases, 

active power losses, and voltage deviation.  

In Chapter 5, basics of some metaheuristic methods was detailed, the concept of inspiration, and 

its operational principles. We will focus on those we have studied in the context of this thesis 

presented the most commonly optimization methods used in solving the OPF problem.  

The simulation results as well as the corresponding analysis and discussion of these results 

will be also presented in the Chapter 6. Finally, conclusions, the thesis concludes with a general 

conclusion, synthesizing the main contributions presented in this work.  and perspectives that 

could be further developed, envisaged to address the multi-objectives problem of electrical 

network planning in the presence of renewable sources and in coordination with FACTS systems, 

while considering the real models of renewable sources characterized by probabilistic aspects, thus 

opening new avenues and proposals aimed at improving this work and initiating future research, 

will also be provided. 

1.6. Conclusion  

This chapter presented a detailed overview of the contents of this thesis. It began with an 

exploration of the state of the art in Optimal Power Flow (OPF) and the various optimization 

methods used in this domain. Following this, the outlined the problem statement, highlighting the 

key challenges and research gaps that this thesis aims to address. Subsequently, the contributions 

of this thesis were discussed, detailing the novel approaches and findings that this research will 

offer to the field. Finally, the chapter concluded with an outline of the thesis, providing a roadmap 

for the subsequent chapters and the overall structure of the research. 
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2.1. Overview of FACTS devices 

The increase in electrical energy demand has led to more complex electrical power transmission 

networks, making them more susceptible to issues such as power transfer challenges and increased 

stress on transmission lines. … etc. It has become challenging to ensure reliable control of energy 

transfer’s process. The most obvious solution to address these challenges is the construction of 

new transmission lines. However, this approach has significant disadvantages, including high costs 

and lengthy implementation periods. The conventional means of controlling or enhancing the 

performance of electrical network, and system parameters such as; power flow, transmission line 

impedances, voltage magnitude, and phase angle of the bus, necessitate a more strategic use of 

existing alternating current (AC) links. This emerging trend has been provided through modern 

technologies to overcome these current challenges in electrical transmission systems. One such 

innovative framework is the Flexible Alternating Current Transmission System (FACTS), which 

offers advanced solutions to ensure better performance and improved reliability in electrical 

transmission networks [58][59].  

This chapter focused on an overview of the FACTS system; the main objective is to assess the 

impact of FACTS devices on the operation of the electrical network. 

2.2. Flexible Alternating Current Transmission Systems (FACTS) 

According to the IEEE (Institute of Electrical and Electronics Engineers) FACTS devices can be 

defined: “FACTS is a system based on power electronics and other static equipment that control 

one or more parameters of the AC transmission system to enhance controllability and increase the 

power transfer capability of the electrical network”. FACTS devices achieve this by the 

modification of the apparent impedance of a transmission line to control the active and reactive 

power flow and regulate the voltage levels by injecting (or absorbing) reactive power at bus 

(busbars). They can also improve the overall quality of the electricity transmitted [60].  

2.3. State of art about FACTS devices 

The FACTS technology was introduced by the Electric Power Research Institute (EPRI) in 1986, 

and their inception of the concept of FACTS devices was defined by Hingorani in 1988 [61]. The 

first generation of FACTS technology is begun with theoretical research and studies exploring the 

potential of power electronics in power systems for controlling, and enhancing the electrical 

networks operation [62]. These devices have been developed in the 1980s and 1990s, focused on 

controlling reactive power flow in transmission lines. These devices significantly improved power 
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system stability, increased power transfer capacity, and reduced voltage fluctuations. The second 

generation, developed in the late 1990s and early 2000s, advanced to manage both reactive and 

active power flow. Since  then, extensive research has been conducted to explore the impact of 

FACTS devices on power systems, particularly on steady-state performance and both dynamic and 

transient stability. These devices can be installed at multiple locations throughout a power system, 

allowing for more precise control over power flow and voltage stability. Overall, each generation 

of FACTS devices has built upon the previous generation’s capabilities, providing increasingly 

sophisticated methods for controlling power flow in transmission systems [63].  

The first use of FACTS devices in transmission networks can be traced back early 1990s. One of 

the pioneering implementations was the installation of a Static Var Compensator (SVC) in the 

United States in the late 1980s. In 2002, Algeria decided to install a total of three Static Var 

Compensators (SVCs) in the electrical transmission network: one at the Naama substation and two 

at Bechar. All three SVCs have a rating of (-10 / +40 MVAR) at 220 kV [12]. The figure (2.1) 

Static Var Compensators (SVCs) installed in the Algerian transmission network. 

 
Fig. 2.1: Static Var Compensators (SVCs) installed in the Algerian transmission network. 

2.4. Classification of FACTS devices 

FACTS systems are mainly classified into three categories, each distinguished by its structure.  

The first category employs conventional control systems such as transformers with load-adjustable 

taps, phase-shifting transformers, and banks of capacitors or inductors, all controlled by 

conventional thyristors. The other two categories use static converters based on power 

semiconductors, controllable by Gate Turn-Off thyristors (GTOs). The most recent classification 
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of FACTS controllers, based on their arrangement within the power system, is depicted in the 

figure (2.2) [64]. 

 

Fig. 2.2: Classification of FACTS devices. 

2.4.1. Shunt FACTS compensator 

A shunt compensator is a device used in power systems to manage and improve the quality of 

electrical power. It functions as a variable impedance, variable source, or the both. The most 

common types of shunt devices include: 

2.4.1.1. Static Var Compensator (SVC) 

A Static Var Compensator (SVC) is a device that generates or absorbs reactive power, it connected 

in parallel at critical points within the transmission network. The SVC is capable of providing 

compensation for inductive and capacitive loads by varying its reactive power output based on 
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system needs, with the role to control busbar voltage. The basic structure of SVC is illustrated in 

figure (2.3 (a)), and their susceptance model is illustrated in figure. (2.3 (b)) [64][65]. 

 

Fig. 2.3. (a): Basic equivalent circuit structure of SVC, (b): Model of SVC. 

the SVC consists of a thyristor-controlled reactor (𝑋𝐿 = 𝜔𝐿) paired with a capacitor 

(𝑋𝐶 = 1/𝜔𝐶). The reactance is adjusted by controlling the firing angle of the thyristors (𝜃𝑚), The 

equivalent susceptance of SVC represents by equation (2.1): 

𝐵SVC = 𝐵𝐶 + 𝐵𝐿(𝜃𝑚)         (2.1) 

Where;  𝐵𝐶 = 𝜔𝐶                     (2.2) 

 and 𝐵𝐿(𝜃𝑚) =
1

𝜔𝐿
(1 −

2𝛾

𝜋
−

sin2(𝜃𝑚)

𝜋
)                                     (2.3)       

The current consumed by the SVC is given by equation (2.4): 

𝐼𝑆𝑉𝐶 = 𝑗𝐵𝑆𝑉𝐶𝑉𝑚                     (2.4) 

Where, 𝐵𝑠𝑣𝑐  is the susceptance of the SVC, and 𝑉𝑚 is the voltage at bus m. When conducting a 

power flow analysis, the amount of reactive power (𝑄SVC) supplied by SVC can be represented in 

the following manner (2.5) [63]: 

𝑄𝑆𝑉𝐶 = 𝑄𝑚 = −𝑉𝑚
2 ⋅ 𝐵SVC                               (2.5) 

Where, the variable susceptance 𝐵𝑆𝑉𝐶  is taken as a state variable. 𝜃𝑚 is the firing angle of the 

thyristor. 

With  𝐵𝑠𝑣𝑐
min ≤ 𝑩𝑆𝑉𝐶 ≤ 𝑩𝑠𝑣𝑐

max                                                               (2.6) 

Where 𝐵𝑠𝑣𝑐
min and 𝑩𝑠𝑣𝑐

max are the minimum and maximum limits of the susceptance SVC. 
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2.4.1.2. Synchronous Static Compensator (STATCOM) 

The STATCOM is defined as a device used in alternating current electricity transmission networks 

to control reactive power. It operates as a static synchronous generator connected in parallel to the 

network, with its capacitive or inductive output current controllable independently from the system 

voltage [8][65]. The figure (2.4) shows the basic schematic diagram model of a STATCOM. 

Generally, the STATCOM is modeled as a controllable voltage source in series with impedance, 

acting as a source or sink of reactive power [10]. It performs a similar function to a Static Var 

Compensator (SVC) but offers greater robustness, delivering reactive power even when busbar 

voltage is low. Ideally, a STATCOM should not exchange active power with the grid [66]. 

    

Fig. 2.4: Basic schematic diagram of STATCOM. 

2.4.2. Serie FACTS compensators 

Series compensation devices are integrated into transmission lines through a transformer and 

function as controllable voltage sources. Their main purpose is to regulate power by acting as 

variable impedances. This capability helps enhance voltage levels, transient stability, and power 

oscillation damping [28]. Notable examples of series FACTS devices include: 

2.4.2.1. Thyristor-Controlled Series Compensator (TCSC) 

The TCSC (Thyristor-Controlled Series Capacitor) consists of an inductor paired with a thyristor-

controlled capacitor and is placed in series along the transmission line. It features a fixed series 

capacitor (𝑋𝐶) in parallel with a thyristor-controlled reactor (𝑋𝐿) branch. This configuration allows 

the TCSC to control and enhance the power transfer capacity of the transmission line by adjusting 

its reactance, providing either capacitive or inductive compensation [67]. The equivalent circuit of 

the TCSC is shown in figure (2.5) [68]. 
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(a)                                                                                                  (b) 

Fig. 2.5 (a): schematic diagram of the TCSC; (b): equivalent circuit of TCSC model’. 

It is crucial to note that the reactance value 𝑋𝐶 < 𝑋𝐿 , enabling the TCSC to function as an 

adjustable capacitive impedance by altering the firing angle of the thyristors (𝛾). The combined 

reactance of a TCSC, represented by 𝑋𝐶 and 𝑋𝐿 can be mathematically written as (2.7): 

𝑋𝑇𝐶𝑆𝐶(𝛾) =
𝑋𝐶𝑋𝐿(𝛾)

𝑋𝐿(𝛾)
                                                                                         (2.7) 

The controllable reactance 𝑋𝑇𝐶𝑆𝐶 is used directly as a control variable and can be given by (2.8): 

𝑋TCSC =
𝑋𝐶𝑋𝐿

𝑋𝐶
𝜋

[2(𝜋−𝛼)+sin (2𝛼i]−𝑋𝐿

                                                                  (2.8) 

The modified equivalent reactance (𝑋𝑒𝑞) of the transmission line, after incorporating a TCSC can 

be stated as (2.9): 

𝑋𝑒𝑞 = (1 − 𝜏)𝑋𝑚𝑛                          (2.9) 

where 𝜏 =
𝑋𝑇𝐶𝑆𝐶

𝑋𝑚𝑛
                                                              

which indicated the degree of compensation of the series, where 𝑋𝑚𝑛 and 𝛿𝑚𝑛 represent the 

reactance and the phase angle of the line inductive (m n) [64,65,67]. The specific equations that 

describe the active and reactive power flow from the appropriate buses and line can be formulated 

as follow [69]: 

𝑃𝑚𝑛 = 𝑉𝑚
2𝐺𝑚𝑛 − 𝑉𝑚𝑉𝑛(𝐺𝑚𝑛cos 𝛿𝑚𝑛 + 𝐵𝑚𝑛sin 𝛿𝑚𝑛)           (2.10) 

𝑄𝑚𝑛 = −𝑉𝑚
2(𝐵𝑚𝑛 + 𝐵𝑠ℎ) − 𝑉𝑚𝑉𝑛(𝐺𝑚𝑛sin 𝛿𝑚𝑛 − 𝐵𝑚𝑛cos 𝛿𝑚𝑛)        (2.11) 

𝑃𝑛𝑚 = 𝑉𝑛
2𝐺𝑛𝑚 − 𝑉𝑛𝑉𝑚(𝐺𝑛𝑚cos 𝛿𝑛𝑚 − 𝐵𝑛𝑚sin 𝛿𝑛𝑚)                (2.12) 

𝑄𝑛𝑚 = −𝑉𝑛
2(𝐵𝑚𝑛 + 𝐵𝑠ℎ) + 𝑉𝑛𝑉𝑚(𝐺𝑚𝑛sin 𝛿𝑚𝑛 + 𝐵𝑚𝑛cos 𝛿𝑚𝑛)        (2.13) 

𝐺𝑚𝑛 =
𝑅

𝑅2+(𝑋𝑚𝑛−𝑋𝑇𝑐𝑠𝑐)2
   and   𝐵𝑚𝑛 =

−𝑋𝑚𝑛−𝑋𝑇𝑐𝑠𝑐

𝑅2+(𝑋𝑚𝑛−𝑋𝑇𝑐𝑠𝑐)2
         (2.14)  
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2.4.2.2. Thyristor Controlled Series Reactor (TCSR)  

       This device is an inductive reactance compensator designed to replace mechanically 

controlled phase-shifting transformers with on-load tap changers. It comprises two transformers: 

one in series with the line, controlled by thyristors in anti-parallel and regulated by a firing angle 

(α) from 90° to 180°, and the other in parallel with a thyristor-switched reactor. These transformers 

are interconnected via thyristors to provide smooth variable inductive reactance. When the firing 

angle is 180°, the reactor stops conducting, acting as a fault current limiter. If the firing angle is 

below 180°, the net inductance decreases, thus controlling the voltage in the network. The figure 

(2.6) shows the diagram of a TCSR [70]. 

 

Fig. 2.6: Diagram of the principle of a TCSR. 

2.4.2.3. Thyristor Switched Series Capacitor (TSSC) 

The TSSC consists of several series capacitors, each controlled by two anti-parallel thyristors, as 

shown in the figure (2.7) [71], Each capacitor is shunted by a bypass valve made up of reverse 

parallel connected thyristors, allowing the system to quickly adapt to changing conditions by 

bypassing or engaging specific capacitors as needed. All capacitors have the same value, 𝐶𝑇𝑆𝑆𝐶 

[72]. 

 

Fig. 2.7: Thyristor Switched Series Capacitor. 
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The overall capacitance of the circuit is controlled by conducting or blocking each thyristor pair. 

When a thyristor pair conducts, the capacitor 𝐶𝑇𝑆𝑆𝐶 is short-circuited. When a thyristor pair is 

open, the value 𝐶𝑇𝑆𝑆𝐶 is added to the total capacitance 𝐶𝑇. The total capacitance is given by 

equation (2.15):  

𝐶𝑇 =
𝐶𝑇𝑆𝑆𝐶

𝑚
                                                                          (2.15) 

Where; m is the number of active capacitors. 

In this mode, the compensating capacitive reactance is chosen to provide maximum nominal series 

compensation [72][73].  

2.4.2.4. Static Synchronous Series Compensator (SSSC) 

        The SSSC is a series-connected FACTS device that provides inductive or capacitive voltage 

independently of the transmission line current within its rated limits. It consists of a three-phase 

inverter coupled in series with the power line via a transformer and includes parallel elements to 

control power flow and adjust reactance. By injecting a voltage in quadrature with the transmission 

line, the SSSC controls active power flow without consuming reactive power from the grid, 

utilizing energy stored in capacitor banks. It can exchange both active and reactive power with the 

AC system. Its basic configuration includes a voltage source converter connected to a DC voltage 

source and coupled to the AC system through a series transformer, as shown in figure (2.8) [72]. 

 

Fig. 2.8: Schematic representation of SSSC. 

2.4.3. Combined Series-Series Controllers 

This system combines separate series controllers that are coordinately controlled across multiple 

transmission lines. It could be an Interline Power Flow Controller (IPFC). 
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2.4.3.1. The Interline Power Flow Controller (IPFC) 

The IPFC is designed to manage the transfer of real power among transmission lines while 

independently controlling reactive compensation for each line [74]. Typically, the IPFC employs 

multiple DC-to-AC converters, each providing series compensation for different lines. The 

simplest IPFC configuration includes two back-to-back DC-to-AC converters, where each SSSC 

adds series power to its respective transmission line [75]. These converters are connected via a DC 

capacitor and directly attached to the AC network through transformers as shown in the figure 

(2.9). 

.  

Fig. 2. 9: Schematic diagram of IPFC. 

By this, it not only provides reactive power addition, but also any of the converters can be 

manipulated to inject the optimal real power to the dc joint from its own transmission. Through 

the bidirectional link facilitates active power exchange between voltage sources [76].  

𝑉𝑖, 𝑉𝑗 and 𝑉𝑘 are the complex bus voltages at the buses 𝑖, j and 𝑘 respectively, defined as: 

 𝑉𝑥 = 𝑉𝑥∠𝜃𝑥 (𝑥 = 𝑖, 𝑗 and 𝑘).                                                                            (2.16) 

2.4.3.2. Thyristor-Controlled Phase-Angle Regulator (TCPAR) 

TCPARs are usually installed to facilitate operation and maintenance. Therefore, the line shunt 

impedance should be placed on the right side of the TCPAR. For simplicity in problem 

formulation, the shunt impedance is moved to the left side of the TCPAR, as depicted in figure 

(2.10). In practice, this approximation has minimal impact on computational accuracy. 

The TCPAR is equipment that can control power flow in transmission lines of power system             

by regulating the phase angle of the bus voltage. Environment restrictions usually restrict           

opportunities of reinforcement through the consideration of new routes. In such a situation, the 
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TCPAR play an important role in increasing load ability of the existing system and controlling the 

congestion in the network. FACTS device like TCPAR can be used to regulate the power flow in 

the tie-lines of interconnected power system. When TCPAR is equipped with power regulator and 

frequency [77]. Its operating principle is to inject into the three phases of the line a voltage ∆V in 

quadrature with the voltage to be phase shifted. It has the advantage of not generating harmonics. 

The amplitude of the injected voltage is a combination of the secondaries of the parallel 

transformer whose transformation ratios are n1, n2, n3. 

 

Fig. 2.10: Equivalent circuit of TCPAR. 

2.4.4. Combined Series-Shunt Controllers 

These controllers have combined both shunt and series controllers, with advanced control 

mechanisms. When used together, the shunt and series controllers facilitate real power exchange 

through their common DC link. 

2.4.4.1. The Unified power flow controller (UPFC) 

The UPFC, a series-shunt controller, is mainly used to enhance voltage stability and control the 

power flow. It can independently or concurrently manage various parameters and switch control 

schemes in real-time. The UPFC is placed at the beginning of the transmission line connecting bus 

k and m. The UPFC combines STATCOM (shunt) and SSSC (series) via a d.c. link. The converters 

are connected to the line through transformers. This configuration offers flexible operation within 

a power system network. The figure (2.11) illustrates the UPFC schematic [17],[78]. 
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Fig. 2.11: schema diagram of an UPFC. 

2.4.4.2. Thyristor-controlled phase shifter (TCPS) 

      The TCPST is essential for managing and adjusting the phase angle of the bus voltage between 

two points on a transmission line. It does this by introducing a perpendicular voltage component, 

which can either increase or decrease the phase angle. The TCPST can be depicted as a voltage 

compensation series or an ideal phase shifter. The figure (2.12) illustrates the equivalent circuit of 

the TCPST placed between buses m and n.  

 

Fig. 2.12: Basic equivalent circuit of TCPS. 

When taking into account the phase angle alteration caused by TCPS, the power flow equations of 

the line can be written as follows [79]:  

𝑃𝑚𝑛 =
𝑉𝑚

2 𝐺𝑚𝑛

cos2 Φ
−

𝑉𝑚𝑉𝑛

cosΦ
[𝐺𝑚𝑛cos (𝛿𝑚 − 𝛿𝑛 + Φ) + 𝐵𝑚𝑛sin (𝛿𝑚 − 𝛿𝑛 + Φ)]                    (2.17) 

 

𝑄𝑚𝑛 = −
𝑉𝑚

2 𝐵𝑚𝑛

cos2 Φ
−

𝑉𝑚𝑉𝑛

cosΦ
[𝐺𝑚𝑛sin (𝛿𝑚 − 𝛿𝑛 + Φ) − 𝐵𝑚𝑛cos (𝛿𝑚 − 𝛿𝑛 + Φ)]                (2.18) 

𝑃𝑛𝑚 = 𝑉𝑛
2𝐺𝑚𝑛 −

𝑉𝑚𝑉𝑛

cosΦ
[𝐺𝑚𝑛cos (𝛿𝑚 − 𝛿𝑛 + Φ) − 𝐵𝑚𝑛sin (𝛿𝑚 − 𝛿𝑛 + Φ)]                   (2.19) 
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𝑄𝑛𝑚 = −𝑉𝑛
2𝐵𝑚𝑛 +

𝑉𝑚𝑉𝑛

cosΦ
[𝐺𝑚𝑛sin (𝛿𝑚 − 𝛿𝑛 + Φ) + 𝐵𝑚𝑛cos (𝛿𝑚 − 𝛿𝑛 + Φ)]              (2.20) 

The active and reactive power injected into the transmission line can be expressed using the 

following equations [68]: 

𝑃𝑚𝑠 = & − 𝐺𝑚𝑛𝑉𝑚
2tan2 Φ − 𝑉𝑚𝑉𝑛tan Φ[𝐺𝑚𝑛sin (𝛿𝑚 − 𝛿𝑛) − 𝐵𝑚𝑛cos (𝛿𝑚 − 𝛿𝑛)]      (2.21) 

𝑄𝑚𝑠 = 𝐵𝑚𝑛𝑉𝑚
2tan2 Φ + 𝑉𝑚𝑉𝑛tan Φ[𝐺𝑚𝑛cos (𝛿𝑚 − 𝛿𝑛) + 𝐵𝑚𝑛sin (𝛿𝑚 − 𝛿𝑛)]             (2.22) 

𝑃𝑛𝑠 = −𝑉𝑚𝑉𝑛tan Φ[𝐺𝑚𝑛sin (𝛿𝑚 − 𝛿𝑛) + 𝐵𝑚𝑛cos (𝛿𝑚 − 𝛿𝑛)]                        (2.23) 

𝑄𝑛𝑠 = −𝑉𝑚𝑉𝑛tan Φ[𝐺𝑚𝑛cos (𝛿𝑚 − 𝛿𝑛) − 𝐵𝑚𝑛sin (𝛿𝑚 − 𝛿𝑛)]             (2.24) 

2.5. Conclusion 

This chapter provides a comprehensive introduction to FACTS (Flexible AC Transmission 

Systems) devices, presenting their definition, role, classification, various categories, as well as 

their structure and operating principles, illustrated by diagrams detailing each device. The first part 

focuses on a general overview of FACTS devices, highlighting their importance and operation 

within electrical networks. The second part addresses the modeling of certain FACTS devices 

integrated into the electrical network. These devices modeling aims to use for controlling the 

voltage levels at busbar and the power flow in electric power transmission networks. In the 

following chapter, we will present the renewable energies sources, detailing some of them.  
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3.1. Introduction 

Due to the high increasing energy demand worldwide, and the constrained reserves of resources 

fossil fuel-based energy. At the same time, the use of conventional energy sources has significant 

environmental impacts, such as climate change, and greenhouse gas emissions, these issues present 

formidable challenges that must be addressed. Nowadays, experts from various fields are 

collaborating working to create clean energy-harvesting environment, that have low-carbon 

technology, aiming to reduce pollution [80]. To achieve this transition, many governments have 

encouraged research in the field of renewable energy, and investing in ways how to incorporate 

these sources into the electrical grids looking to diversify production sources, and ensure a stable, 

environmentally friendly energy supply for the future [81].  

This chapter focuses on renewable energy sources, covering their classification, definition, and 

exploration. It particularly interests on solar and wind power plants, along with the prevalent 

modeling techniques and simulations used for these energy sources. 

3.2. Definition of Renewable Energy Sources 

Renewable energy sources (RESs), defined as those naturally replenished on a timescale. They 

characterized by their cyclical recovery, vast availability, and have minimal environmental impact 

compared to fossil fuels. However, their intermittent nature, requiring careful planning for 

integration into the electrical network [82]. 

3.3. Classification of renewable energy sources 

The classifications are based on the type of energy source used [83], such as solar, wind, hydro, 

and geothermal, … etc, are essential for a sustainable future due to their ability to provide an 

inexhaustible supply of clean energy. The main classification of renewable energy sources can be 

illustrated in figure (3.1). 

In this part we present a brief overview about the renewable energies’ sources, definition, and the 

main renewable energies sources. In the next part, we will present the details of those interesting 

in our thesis, which are the solar and wind power plants. Below are the details of these two energies 

sources and their modulizations.  

 



    Chapter 3: Renewable Energies Sources  

 

55 

 

 

Fig. 3.1: Classification of renewable energy sources. 

3.3.1.  Photovoltaic (PV) Sources 

 3.3.1.1. Overviews about Photovoltaic (PV) Sources 

Solar energy systems are of particular interest for their significant future impact. These systems 

use photovoltaic (PV) panels to convert sunlight directly into electricity through the photovoltaic 

effect of semiconductors. Solar production is affected by weather conditions, making storage 

batteries necessary to stabilize output. Solar energy harvesting has emerged as the most favorable 

choice among all renewable energy sources due to its usability, cleanliness, widespread 

availability, and lower maintenance costs [35].  

 3.3.1.2. State of art about photovoltaic 

The photovoltaic (PV) effect, discovered by Becquerel in 1839, began to see commercial 

development for power generation in the mid-1950s, primarily for spacecraft applications until the 

mid-1970s. the cost of PV power was prohibitively high, which was about $100/W in 1962 and 

Wind Hydrogen Biomass 

Photovoltaic  fuel cells Geothermal  
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decreased to $2.50/W by 1988, limited its competitiveness with traditional power sources for most 

terrestrial uses. Despite this, the PV industry grew significantly, from a cumulative capacity of 

about 5 MW in 1980 to around 160 MW.  PV technology has become economically viable for 

remote corrosion protection and communications, with potential for significant market expansion 

at $2/W and utility-scale adoption at $1/W. Cost reductions, alongside efficiency and lifespan 

improvements, are expected to increase PV capacity to between 5,000 and 20,000 MW by the year 

2000. A more conservative estimate by the Commission of European Communities in 1982 

predicted annual world sales of 100 MW by 1990, reaching at least 200 MW/year by 2000.  

This context underscores the importance of exploring PV applications and estimating system 

performance beyond monitored prototype systems, with PV systems being configured in various 

ways to accommodate diverse electrical loads [85].  

 3.3.1.3. Modeling a photovoltaic (PV) system 

In a photovoltaic (PV) system, PV modules capture solar energy and convert it into direct current 

(DC) electricity. These modules are interconnected to form a PV solar panel system. An inverter 

is typically connected to this system to convert the DC into alternating current (AC), enabling its 

use in an independent power system or integration into the electrical grid, the figure (3.2) 

represents the diagram of a photovoltaic solar energy conversion chain [85]. 

 

Fig. 3.2: Diagram of a photovoltaic solar energy conversion chain. 

 The photovoltaic cell models  

PV cell models are classified into various equivalent circuits, the most widely used models are the 

Single Diode Model (SDM) and the Double Diode Model (DDM). These models provide 

frameworks for understanding and analyzing the performance of PV solar cells [86]:  
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A. Single-Diode Model (SDM) 

The SDM is favored for its simplicity and high accuracy in describing the static properties of 

photovoltaic (PV) solar cells. It comprises a current source and a diode, with shunt resistance 

indicates leakage current, and the series resistance (𝑅𝑆), reflects load current losses. The figure 

(2.3 (a)) depicts the equivalent circuit of a SDM, which has five parameters: the photocurrent (𝐼𝑝ℎ), 

the saturation current (𝐼𝑠𝑑), the ideality factor (n), and the shunt resistance (𝑅𝑆ℎ). 

 
Fig. 3.3 (a): the equivalent circuit of a single-diode model (SDM). 

 uses the follow equation to express the output current (𝐼𝐿), demonstrating its approach to modeling 

PV cell behavior [86]. 

𝐼𝐿 = 𝐼𝑝ℎ − 𝐼𝑠𝑑 (exp(
𝑉𝐿+𝑅𝑆𝐼𝐿

𝑛
𝑘𝑇

𝑞

) − 1) −
𝑉𝐿+𝑅𝑆𝐼𝐿

𝑅𝑠ℎ
                                                         (3.1) 

Where, 𝑉𝐿and 𝐼𝐿 refer to the measured I-V data of the PV cell, k denotes the Boltzmann constant, 

and electron charge are indicated by q, respectively; T refers to the cell temperature (K).  

B. Double-diode model (DDM)  

To improve the accuracy of PV cell modeling by accounting for current losses due to 

recombination in the depletion region, a factor not fully addressed by the Single Diode Model 

(SDM), an additional recombination diode is introduced. This addition incorporates two new 

parameters: 𝑛2 and 𝐼𝑠𝑑2. The Double Diode Model (DDM) is depicted in the figure (2.3 (b)) and 

includes seven parameters: 𝐼𝑝ℎ, 𝐼𝑠𝑑1, 𝑛1, 𝐼𝑠𝑑2, 𝑛2, 𝑅𝑠 and 𝑅𝑠ℎ. The mathematical representation for 

the output current (𝐼𝐿) in this model is expressed by equation (2): 

𝐼𝐿 = 𝐼𝑝ℎ − 𝐼𝑠𝑑1 (exp(
𝑉𝐿+𝑅𝑠𝐼𝐿

𝑛1
𝑘𝑇

𝑞

) − 1) − 𝐼𝑠𝑑2 (exp(
𝑉𝐿+𝑅𝑆𝐼𝐿

𝑛2
𝑘𝑇

𝑞

) − 1) −
𝑉𝐿+𝑅𝑆𝐼𝐿

𝑅𝑠ℎ
                      (3.2) 

where 𝐼𝑠𝑑1 refers to the diffusion current and 𝑛1 indicates ideality factor; 𝑛2 and 𝐼𝑠𝑑2 refer to 

complex diode ideality issue and capacity current, respectively [80]. 
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Fig. 3.3. (b): The equivalent circuits of double diode model. 

There are also other models which can be derived from these two basic models, such as the three-

diode model, which is rarely used due to its high computational complexity that does not simplify 

the reverse saturation current equation, among other derivatives. 

C. The photovoltaic Module (PVM) 

Taking into account 𝑁𝑝 by 𝑁𝑠 solar cells with varied parallel or series connections, the resulting 

output current, I, can be explained using equations (10) and (11) for both SDM and DDM. The 

Fig. 3.3 (c) depicts the equivalent circuits of PV module [80]. 

  
Fig. 3.3 (c): The equivalent circuits of PV cell model. 

𝐼 = 𝐼𝑝ℎ𝑁𝑝 − 𝐼𝑠𝑑𝑁𝑝 (𝑒

𝑣𝐿+𝑅𝑠𝐼𝐿(
𝑁𝑠
𝑁𝑝

)

𝑛𝑉𝑡 − 1) −
𝑉𝐿+𝑅𝑆𝐼𝐿(

𝑁𝑠
𝑁𝑝

)

𝑅𝑠ℎ(
𝑁𝑠
𝑁𝑝

)
                                                      (3.3) 

𝐼 = 𝐼𝑝ℎ𝑁𝑝 − 𝐼𝑠𝑑1𝑁𝑝 (𝑒

𝑉𝐿+𝑅𝑠𝐼𝐿(
𝑁𝑠
𝑁𝑝

)

𝑛1𝑉𝑡 − 1) − 𝐼𝑠𝑑2𝑁𝑝 (𝑒

𝑉𝐿+𝑅𝑠𝐼𝐿(
𝑁𝑠
𝑁𝑝

)

𝑛2𝑉𝑡 − 1) −
𝑉𝐿+𝑅𝑠𝐼𝐿(

𝑁𝑠
𝑁𝑝

)

𝑅𝑠ℎ(
𝑁𝑠
𝑁𝑝

)
   (3.4) 
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3.3.1.4. Maximum Power Point Tracking (MPPT) 

The MPPT techniques are used in PV systems to optimize the power output of solar panels by 

continuously tracking the MPP under different environmental conditions. This has led to extensive 

research and the development of various methods to address specific disadvantages. The figure 

(3.4) depicts the current and power under constant temperature and irradiance. The experimental 

method for building a solar model involves using key points on the I-V curve, such as the short 

circuit point (A), maximum power point (B), and open circuit point (C). For a four-parameter 

model, four equations are used to calculate the parameters (𝐼0, 𝐼𝑝𝑣, 𝛼, 𝑅𝑠) by using a substitutable 

points A, B, C, and the zero value of the power derivative with respect to voltage (MPP D). For a 

five-parameter model, an additional point (E) is considered, which is the voltage midway between 

the open circuit voltage (𝑉𝑜𝑐) and the MPP voltage point (𝑉𝑚𝑝). The voltage value of this point can 

be determined by a specific equation (3.5) [87][88],  

𝑉𝑚 =
1

2
(𝑉𝑚𝑝 + 𝑉𝑜𝑐)                                                                                                        ( 3.5) 

 

Fig. 3.4: The current and power under the condition of constant temperature and irradiance.  

3.3.1.5. Electrical characteristics of a Photovoltaic (PV) cell  

The electrical characteristics of a photovoltaic (PV) cell, including the current-voltage (I-V) and 

power-voltage (P-V) relationships, are essential for understanding its behavior and performance. 

These characteristics help determine the cell's efficiency, and its response to environmental 

changes such as varying sunlight intensity, temperature, and load.… etc. They illustrate how the 

current output changes with different voltage levels across the cell's terminals under various 

conditions [89].  



    Chapter 3: Renewable Energies Sources  

 

60 

 

- Example:  The typical characteristics of the PV cell are illustrated by the current versus 

voltage (I-V) and the power versus voltage (P-V) curves, shown in figure (3.5 and 3.6). 

 The Table 3.1 represents the electrical parameters for the PV module from Tata Power Solar 

Systems TP250MBZ. 

Table. 3.1: PV module parameters of Tata Power Solar Systems TP250MBZ. 

PV-parameters Abbreviations Values 

Maximum-power Pmax 249 W 

Voltage at MPPT Vmax 30 V 

Current at MPPT Imax 8.3 A 

Short circuit current Isc 8.83 A 

Open circuit voltage Voc 36.8 V 

Temperature coeffecient Isc Tsc 0.063805 (%/deg.C) 

Temperature coeffecient Voc Toc -0.33 (%/deg.C) 

Series-connected cells No.cells 60 (Ncell) 

• The Influence of illumination 

The figure (3.5) demonstrates the Influence of illumination on I-V and P-V characteristics curves 

of PV module at various irradiance and constant temperature of 25°C. 

 

Fig. 3.5: The I-V and P-V curves of PV module at various irradiance and constant temperature of 25°C. 

• the Influence of temperature 

The figure (3.6) Demonstrates the Influence of temperature on I-V and P-V characteristics of PV 

module at various temperatures and constant irradiance of 1000 W/m2. 
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Fig. 3.6: The I-V and P-V curves of PV module at constant irradiance of 1000 W/m2 and various 

temperatures. 

 Figure 3.6 shows that as the temperature decreases, the open-circuit voltage increases, while the 

short-circuit current decreases. The main factor contributing to the drop in current at lower 

temperatures is a reduction in saturation current. Since the decrease in current has a greater effect 

than the increase in open-circuit voltage, the overall maximum power output decreases. 

3.3.1.6. Stochastic modeling of Solar power plant 

Monte Carlo simulations are used to model the probability of different outcomes in processes 

influenced by random variables. For solar irradiance, this involve simulating various atmospheric 

conditions, like the sunlight angles, cloud coverage, and other that affect the solar energy received 

on a surface. The output depends on solar irradiance (𝐺) which follows a lognormal probability 

density function (PDF), with mean 𝜇 and standard deviation 𝜎 is [8]: 

𝑓𝐺(𝐺) =
1

𝐺𝜎√2𝜋
exp {

−(ln 𝐺−𝜇)2

2𝜎2
}  for 𝐺 > 0                                                                      (3.6) 

Mean of lognormal distribution is defined as: 

𝑀𝑙𝑔𝑛 = exp (𝜇 +
𝜎2

2
)                                                                                                       (3.7) 

3.3.1.7. Solar photovoltaic power Uncertainty Modeling 

The solar irradiance (G) to energy conversion for solar PV is given by: 

𝑃𝑠(𝐺) = {
𝑃𝑠𝑟 (

𝐺2

𝐺𝑠𝑡𝑑𝑅𝑐
)  for 0 < 𝐺 < 𝑅𝑐

𝑃𝑠𝑟 (
𝐺

𝐺𝑠𝑡𝑑
)  for 𝐺 ⩾ 𝑅𝑐

                                                                             (3.8) 

where, 𝐺𝑠𝑡𝑑 is the solar irradiance in standard environment. 𝑅𝑐 is a certain irradiance point. 𝑃𝑠𝑟 is 

the rated output power of the solar PV unit. 
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- Example 1: 

𝐺𝑠𝑡𝑑 is set as 800W/m2. 𝑅𝑐 is a set as 120W/m2. 𝑃𝑠𝑟 is a set as 50 𝑀W; 𝑅𝑐 = 120W/m2  

nbins = 30; the number of bins for histogram,  

Monte Carlo simulation size = 8000; the number of Monte Calro scenarios. 

- PDF parameters of solar PV power plants 

Table. 3.2:  summarizes the selected parameters for lognormal PDF. 

Solar PV plant 

Lognormal PDF parameters Lognormal mean, 𝑴𝒍𝒈𝒏 

𝜇 = 6 

𝜎 = 0.6 

𝐺 = 483 W/m2 

 

Fig. 3.7: Solar irradiance distribution for solar PV ( 𝝁 = 𝟔 𝝈 = 𝟎. 𝟔) (example 1) 

The figure (3.7) indicates frequency distribution and lognormal fitting of solar irradiance after 

running Monte Carlo simulation with a sample size of 8000.  

       The histogram in figure (3.8) illustrates the stochastic power output from a solar PV plant. 

The magenta dotted line represents the scheduled power that the solar PV plant is supposed to 

deliver to the grid. This scheduled power is a predetermined amount agreed upon between the 

Independent System Operator (ISO) and the solar PV firm owner. 
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Fig. 3.8: Real power distribution (MW) of Solar PV (exemple 1). 

3.3.2. Wind Turbine sources 

Wind energy is a renewable energy that comes from the wind. It's made by using wind turbines 

generation, which are tall machines with big blades. When the wind blows, it turns the blades, 

creating a kinetic energy used to generate electricity. This form of energy is clean and 

environmentally friendly. However, its availability fluctuates due to weather conditions, requiring 

careful planning for integration into the electrical network, and additional power sources support 

wind energy to stabilize the electrical supply. Wind farms consist of multiple wind turbines, are 

set up to produce significant amounts of power and are connected to transmission and distribution 

networks [35]. 

3.3.2.1. State of Art about the wind turbine 

Wind power has a long history, initially has been used for mechanical tasks such as pumping water 

and grinding grain. In the Middle Ages, windmills were used across the Mediterranean, but by the 

end of the 18th cycle, around 10,000 wind turbines were in service only in the Netherlands. The 

first electricity-generating wind turbine was built in 1887 created by Scottish engineer James 

Blyth. followed by wind turbine invented in 1888 in Cleveland with a capacity of generated about 

12 kilowatts (kW) of power. Since then, wind turbines have become more advanced, with a shift 

in the late 20th century to large-scale wind farms for electricity generation. Technological 

advancements since the 1990s have led to the development of wind turbines exceeding 5 MW, 

with 12 MW turbines currently being developed. The largest turbine in the world is GE's Haliade-

X, the industry's first 12 MW turbine. The average size of offshore turbines installed in 2019 was 
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7.8 MW, up from 6.8 MW in 2018 according to trade body Wind Europe. The first prototype was 

installed at the Port of Rotterdam in 2019 for testing, with commercialization expected in 2021. 

Government subsidies have enabled the development of offshore wind farms, which now produce 

alternating current for electricity grids, similar to thermal power plants. In recent decades, 

technological advancements have significantly increased the efficiency and capacity of wind 

turbines, making wind energy a crucial part of the global energy mix, providing clean renewable 

electricity [88].  

3.3.2.2. Types of wind turbine 

There are two major types of wind turbine basics of wind turbine technologies available depending 

on the turbine’s axis of rotation [88][89] [90]:  

A. Horizontal axis wind turbines (HAWTs) 

 In the HAWT (figure (3.9)), a prominent rotor shaft and electric generator are essential 

components. The gearbox increases the slow rotation of the blades rotation speed to improve 

electricity generation efficiency. The main rotor shaft is designed vertically, offering high 

efficiency and the ability to generate power from winds coming from multiple directions. 

 

Fig. 3.9: Horizontal axis wind turbine. 

B. Vertical axis wind turbines (VAWTs) 

The VAWTs (figure (3.10)), can harness winds from various directions. However, Horizontal 

Axis Wind Turbines (HAWTs) generally perform better in wind power extraction, making them 

more common in commercial use. On the other hand, VAWTs are a wind turbine type that is much 

less used. However, recent advancements have led to important new trends in the use and benefits 

of VAWT technologies provided by researchers and manufacturers [88][91]. 
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Fig. 3.10: Vertical axis wind turbine. 

3.3.2.3. Operation and Components of Wind Turbines 

The major components of a wind turbine system are shown in the following figure (3.11) [88][91].  

1. Anemometer: Measures wind speed and transmits the data to the controller. 

 2. Blades: Captures the kinetic energy from the wind and converts it into rotational energy. 

3. Brake: The brake is used to stop the shaft in case of emergency.  

4. Controller: It is used for starting up, and controlling the turbine's speed and adjusts operation 

for optimal performance and safety. 

 5. Gear box: The main function of gear is to rise the speed from the high-speed shaft to another 

shaft. It is connected direct to the generator.  

 6. Generator: It is the most important part of the wind energy system. Converts the rotational 

energy from the rotor into electricity. 

 7. Shaft: It is used for changing the low speed to high speed by the rotor. 

 8. Nacelle: The rotor attaches to the nacelle that fixed at the top of the tower.  

9. Pitch: It is used to stop blades or to increase the speed in case of high and low power generation.  

10. Rotor: It consists of blades and hub.  

11. Tower: The quality of power generation depends on the height of towers.  

12. Wind Vane: It is a sensor to track the wind's flow and communicate with yaw to change the 

direction of the blades. 

13.Yaw Drive: It is used to track the wind direction  
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Fig. 3.11:  Inside wind turbines showing mechanical, electrical, and control components. 

3.3.2.4. Wind turbine electric generators technology 

The major type of wind turbine generators can be represented in the following figure (3.12): 

 

Fig. 3.12: Type of Wind turbine generators. 

3.3.2.5. Wind energy conversion system (WECS) 

The Wind Energy Conversion System (WECS) includes wind turbines, generators, control 

systems, and interconnection apparatus. The blades convert wind kinetic energy into mechanical 

energy, which is then transformed into electrical energy by a generator. Most generators require 

high speeds to generate electricity. The power output is transmitted to the grid via a transformer, 
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with a controller in place to prevent disturbances and protect the electrical system. Wind farms can 

be located in various areas, such as offshore, onshore, and hilly regions, …. etc. the figure (3.13) 

illustrates the block diagram of the WECS [90]. 

 
Fig. 3.13: The wind energy conversion system (WECS). 

The kinetic energy (𝐸𝑘) can be expressed as follows: 

𝐸𝑘 =
1

3
 𝑚𝑣𝑤𝑖𝑛𝑑

2 =
1

2
(𝜌𝐴)𝑣𝑤𝑖𝑛𝑑

2                                                                                       (3.9) 

Where:  

𝒎  is the mass of air passing through a given area “𝑨” 

𝝆 is the air density 1.225 (kg/m3) 

𝐀 A= R2 is the surface area swept by the rotor (m2) 

𝒗𝒘𝒊𝒏𝒅 is the wind speed at the center of the rotor (m/sec), 

𝛌 Tip speed ratio of the rotor blade  

𝛃 Blade pitch angle (deg) 

The mechanical output power of the wind turbine is given by the following equation: 

𝑷𝒎 = 𝑪𝒑(𝛌, 𝛃)
𝝆𝑨

𝟐
𝒗𝒘𝒊𝒏𝒅

𝟑                                                                                           (3.10) 

𝑪𝒑 is the performance coefficient of the wind energy conversion  

𝑷𝒎 Mechanical output power of the turbine (W) 

With:  𝜆 =
Ω𝑡𝑅𝑡

𝑉
  

Where, 𝑅𝑡 is the rotor blade radius in m, Ω𝑡 is the low-speed shaft turbine speed in rad/sec [92]. 

3.3.2.6. Stochastic modeling of wind power plant 

the Weibull probability density function (PDF) is used to model and characterize the variations in 

wind speed distributions. The PDF helps identify the frequency distribution of wind speeds over 
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specific periods, which is crucial for the wind industry to differentiate between different speeds. 

The formula for the Weibull distribution PDF is provided in equation (3.11) [93]: 

𝑓𝑉(𝑉) =
𝛽

𝛼
(

𝑣

𝛼
)
𝛽−1

𝑒
[(−

𝑣

𝛼
)
𝛽
]
                                                                                                  (3.11) 

Where; 𝑓𝑉  is the PDF of wind speed, (𝛽) and, (α)  represent the shape factor and scale factor, 

respectively, v is the wind speed(m/s). 

The mean of Weibull distribution is expressed as follow (3.12): 

𝑀𝑤𝑏𝑙 = 𝛼𝑚 ∗ Γ (1 +
𝑚

𝛽
) ,𝑚 = 1,2, ……𝑛                                                                          (3.12) 

Where; gamma function Γ is given by equation (3.13) as follow: 

Γ(x) = ∫  
∞

0
exp−𝑡 𝑡𝑥−1𝑑𝑡                                                                                                   (3.13) 

3.3.2.7. Wind speed distribution 

The Weibull fitting and wind frequency distributions shown in figure (3. 14) are derived from 

8000 Monte-Carlo scenarios. According to reference [68], the design requirements for wind 

turbines specify the highest turbulent class IA, certifying turbines to operate effectively at a 

maximum annual average wind speed of 10 m/s at hub height [9].  

The windfarms' shape (𝛽) and scale (𝛼) parameters are carefully selected to maintain a maximum 

Weibull mean value, remains around besides. 

- Example 2: PDF parameters of wind power plants 

The table (3.3) represent the PDF parameters Values of selected Weibull shape (𝛽) and scale (𝛼). 

The figure (3.14) represents the Wind speed distribution for wind farm (example 2). 

Table. 3.3: PDF parameters Values of selected Weibull shape (β) and scale (α).  

Wind power generating plants 

 

Windfarm 

Weibull PDF parameters Weibull mean, 𝑀𝑤𝑏𝑙 

𝛼 = 10 

𝛽 = 2 

𝑣 = 8.862 m/s 
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Fig. 3.14: Wind speed distribution for wind farm (𝜶 = 𝟏𝟎, 𝜷 = 𝟐) (example 2) 

3.3.2.8. Modeling of Wind Power Uncertainty power  

The Weibull distribution is widely used in statistical analysis, particularly in studies related to 

wind energy. Output power of a wind turbine, the PDFs for two different scale and shape factors, 

also the relationship between the power generated, and wind speed are represented in the following 

equations (3.14) [94]: 

𝑝𝑤(𝑣) = {

0,  for 𝑣 < 𝑣in  and 𝑣 > 𝑣out 

𝑝𝑤𝑟 (
𝑣−𝑣𝑖𝑛

𝑣𝑟−𝑣𝑖𝑛
)  for 𝑣in ≤ 𝑣 ≤ 𝑣𝑟

𝑝𝑤𝑟  for 𝑣𝑟 < 𝑣 ≤ 𝑣out 

                             (3.14) 

Where, 𝑝𝑤 denotes the sized output power of the windfarm (installed capacity), 𝑣𝑖𝑛 indicates the 

cut-in wind speed, and 𝑣out denotes the cut-out wind speed of the turbine, 𝑣𝑟 represents the wind 

speed rated, the sized output of a particular wind turbine is indicated by  𝑝𝑤𝑟.  

3.3.2.9. Operating Region and control strategies of the Wind Turbine  

Referring to equation (3.13), it may be observed that the variable wind power is discrete in a couple 

of regions of wind speeds. The power curve shows the theoretical relationship between wind speed 

and the wind turbine’s output, which is divided into three speed control the 𝑣in  wind speed, the 

rated wind speed 𝑣r , and the 𝑣out wind speed [92][93]. Which represent by four discrete operating 

zones of the turbine, probabilities can be distinguished in the figure (3.15) [10]: 
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Fig. 3.15: The wind power output curve. 

In the first region, when the wind speed (𝑣) is below 𝑣in  speed, there is no power will be produced 

due to the very low speeds. In the second region, when the wind speed (𝑣) is more than 𝑣in  speed 

and below the rated speed  𝑣𝑟; wind turbines are started to generate power when the wind speed 

exceeds 𝑣in , and the power generated increases with the wind speed grows until the rated power 

of the turbine is reached at the rated speed  𝑣𝑟.  In the third region, where wind speeds from 𝑣𝑟 to 

𝑣𝑜𝑢𝑡, the power generation remains constant until cut-off wind speed (𝑣𝑜𝑢𝑡  in the figure 3.15). In 

the fourth region, to avoid high mechanical damage, the wind turbine is stopped when wind 

speeds exceed the 𝑣𝑜𝑢𝑡wind speed limit. 

3.3.2.10. Calculation of wind power probabilities 

It can be noticed that the output power from a wind generator is non-continuous and is limited to 

specific wind speeds. [94]. From equation 3.15, it's evident that if the wind speed 𝑣 is less than 𝑣in  

and above 𝑣out , Additionally, when the wind speed falls within the range 𝑣𝑟 ≤ 𝑣 ≤ 𝑣out ; the 

turbine produces power 𝑃𝑤𝑟. Wind output power probabilities for each zone are calculated by as 

follows equation (3.16) [3]: 

𝑓𝑤(𝑝𝑤){𝑝𝑤 = 0} = 1 − exp [− (
𝑣in 

𝛼
)
𝛽

] + exp [− (
𝑣out 

𝛼
)
𝛽

]                           (3.15) 

𝑓𝑤(𝑝𝑤){𝑝𝑤 = 𝑝𝑤𝑟} = exp [− (
𝑣𝑟

𝛼
)
𝛽

] − exp [− (
𝑣out 

𝛼
)
𝛽

]                               (3.16) 

 

On the other hand, the chances of achieving the rated and output power of the wind turbine for the 

continuous portion is being between 𝑣in and 𝑣r and is mentioned as follows: 

𝑓𝑤(𝑃𝑤) = (
𝑘(𝑣𝑟−𝑣𝑖𝑛)

𝛼𝑃𝑤𝑟
) (

𝑣𝑖𝑛𝑃𝑤𝑟+𝑃𝑤(𝑣𝑟−𝑣𝑖𝑛)

𝛼𝑃𝑤𝑟
)
(𝛽−1)

⋅ exp (− (
𝑣𝑖𝑛𝑃𝑤𝑟+𝑃𝑤(𝑣𝑟−𝑣𝑖𝑛)

𝛼𝑃𝑤𝑟
)
𝛽

)                  (3.17) 
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Where;  

 ρ =  𝑃𝑊/ 𝑃𝑤𝑟  is the ration of linear range wind speed to cut-in wind speed, 𝑙 = (𝑣r− 𝑣𝑖𝑛)/𝑣out is 

the ratio of wind power output to rated wind power. 

3.4. Conclusion  

This chapter offers a detailed exploration of renewable energy sources. It provides a systematic 

classification scheme and in-depth analysis of specific types, including solar photovoltaic and 

wind power. The next chapter focuses to the study of the optimal power flow (OPF). Highlighting 

their importance in identifying and addressing issues within electrical networks. It delves into the 

description of the optimal power flow problems in a hybrid network, taking into account the 

integration of renewable energy sources. 
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4.1. Introduction 

Power flow (PF) is one of the primary challenges faced by managers of an electrical energy 

production and transport system. It is a key element in enhancing, planning and the smooth 

operation of electrical networks. The problem of optimal power flow (OPF) has been a key 

research focus since it was introduced by Carpentier in 1962. OPF aims to minimize the total cost 

of power generation while reducing power losses and adhering to both equality and inequality 

constraints [17]. As well as to plan for future growth of the electrical power systems, the issue of 

OPF is considered an essential operator’s tool, that has emerged as one of the more complex 

problems that must be solved [35]. OPF plays a significant role in solving modern optimization 

problems in power systems management, planning, and operation [95], It provides real-time 

optimization to ensure efficiency and safety way when increasing load demand is an urgent 

challenge, aiming to find optimal operating conditions within physical, management, and 

engineering constraints of energy system operators in electrical grids [96]. The primary objective 

of OPF is to assess and ensure network safety by optimizing a specific objective while respecting 

constraints. This problem is typically complex, non-linear, large-scale, multi-dimensional, and 

involves non-convex constraints [97]. 

This chapter provides an overview of the Optimal Power Flow (OPF). It starts with a brief 

modeling of the electrical network elements, followed by a concise overview about the formulation 

of the OPF problem, including objective functions, and constraints, highlighting their key features. 

4.2. Modeling of the electrical network elements 

The analysis of power flow is generally conducted on a network whose electrical components and 

their models are known. When the network modeling is accurate, the results of the analysis reflect, 

quite reliably, the measurements taken in the field [98][99]. 

4.2.1. Generator model 

Generators are the network elements capable of providing active power to the system. They can 

also produce or consume reactive power to maintain a certain level of voltage. The production 

limits of generators are defined by: 

𝑃𝐺𝑖

𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖
≤ 𝑃𝐺𝑖

𝑚𝑎𝑥        (4.1) 

𝑄𝐺𝑖

𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖
≤ 𝑄𝐺𝑖

𝑚𝑎𝑥        (4.2) 
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Fig. 4.1: Generator Model. 

4.2.2. Load model 

Loads represent the consumers connected to the network (industries, services, households, etc.). 

They are modeled by constant powers independent of nodal voltage: 

   𝑆𝐷𝑖
= 𝑃𝐷𝑖

+ 𝑗𝐷𝐷𝑖
                                                                                                                        (4.3) 

 
Fig. 4.2: load model. 

Reactive power can be positive or negative depending on whether the load is inductive or 

capacitive in nature. 

4.2.3. Transformers 

An electrical energy transformer is represented by an asymmetric π quadrupole. The associated 

parameters are the transformation ratio 𝑎𝑖𝑗 and the leakage impedance. (Figure 4.3). 

 

Fig. 4.3: transformer model. 
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4.2.4. Transmission lines 

Transmission lines are typically modeled using their classic π equivalent circuit, where the 

transverse conductance is neglected (see figure (4.4)). 

 

Fig. 4.4: Model of a π-form transmission line. 

The nodal admittance matrix of a line connecting between the buses i and j is given by: 

𝑌 = (
yij +

yij0

2
−yij

−yij yij +
yij0

2

)                                                                               (4.4) 

Where the series admittance 𝐲𝐢𝐣 represent by: 

yij =
1

rij+jxij
= gij − jbij                                                                                     (4.5) 

𝐫𝐢𝐣∶ series resistance of line; 𝐱𝐢𝐣∶ series reactance of line; 

The transversal admittance corresponding to capacitive effects is written as: 

𝑦ij
0

=  jbij0
                                                                                                                      (4.6) 

 𝐛𝐢𝐣𝟎
: The transverse susceptance. 

4.2.5. Shunt elements 

Shunt devices, typically used for reactive power compensation and voltage support, are modeled 

by admittances yiof the form: 

𝑦𝑖 = 𝑔𝑖 + 𝑗𝑏𝑖c                                                                                                                     (4.7) 

 

Fig. 4.5: Shunt Element Model. 
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4.3. Types of bus  

Busbars (bus) in a system are generally classified into three types [99]: 

4.3.1. Reference bus 

This busbar serves as a reference point where the magnitude and phase angle of the voltage are 

specified. This busbar accounts for the difference between the predicted loads and the generated 

energy, which is caused by losses in the network. 

4.3.2. Load bus 

In these busbars, active and reactive powers are specified. The magnitude and phase angle of bus 

voltages are unknown. These busbars are referred to as P-Q buses. 

4.3.3. Generation (Regulation, control) bus 

 Also known as voltage-controlled bars. In these nodes, active power and voltage magnitude are 

specified. The phase angle of the voltage and reactive power are to be determined. Limits on the 

reactive power value are also specified. These busbars are referred to as P-V buses.  

Table. 4. 1: Bus Types. 

Type of bus Known Variables Unknown Variables 

PQ Active and reactive powers (P,Q)   Voltage magnitude and phase angle (V,δ) 

PV Active power and voltage (P,V) Voltage angle and reactive power (δ,Q) 

Reference Voltage magnitude and angle (V,δ)    Active and reactive powers (P,Q) 

4.4. Description of the Power Flow  

In electrical networks, power flows from plants to load centers. The calculation of power flow 

helps in identifying power system behavior, it is crucial for control and planning applications to 

ensure the network operates within limits. Solving a power flow problem involves determining 

and aims to collect detailed information under specified operating conditions about [12][97]: 

• Voltage angles and magnitudes for each node. 

• Power flows through transmission lines from one node to another. 

• Power is injected at a node, active and reactive losses in the electrical network. 

4.4.1. Methods for solving of Power Flow (PF) 

Nonlinear equations defining the power flow (PF) problem require iterative algorithms for 

resolution. The study of power flow is essential for analyzing and understanding the behavior of 
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electrical power system networks under various operating conditions. Several methods are used to 

address their issues, the most commonly used iterative algorithms include [12]: 

➢ Gauss-Seidel Method. 

➢ Newton-Raphson Method. 

➢ Fast Decoupled Method 

Each method has its advantages and limitations, and the choice of method depends on factors such 

as the size and complexity of the power system, the desired level of accuracy, and the 

computational resources available. The first numerical method used was the Gauss-Seidel iterative 

method. This method requires a large number of iterations for large networks and a very long 

convergence time. The most well-known method is the Newton-Raphson (N-R) method. The latter 

requires more time per iteration than the Gauss-Seidel method, but it only requires a few iterations 

to reach the solution, even for large networks [12]. 

4.5. Description and formulation of the OPF problems 

       Optimal Power Flow (OPF) focuses on determining the best operating conditions for a power 

system. As a crucial tool for energy management optimization, OPF aims to enhance a specific 

objective function while adhering certain constraints. The OPF challenge can typically be 

described in the following manner [100][101]: 

• Optimize:   

•     𝑓(𝑥, 𝑢)                  (is the modeled fitness function of OPF)                               (4.8) 

• Subjected to: 

• 𝐺𝑖(𝑥, 𝑢) = 0       𝑖 = 1,2, ……… .𝑚       (is the equality constraints)  (4.9) 

• 𝐻𝑗(𝑥, 𝑢) ≤ 0      𝑗 = 1,2, ……… . 𝑝             (is the inequality constraints)            (4.10) 

Here; 𝑢 indicates the decision variables; 𝑥 indicates the state variables. 

the following equation (4.11) can be used to explain the vector of state variables [100]: 

𝑥 = [𝑃𝐺1
 , 𝑉𝐿1 …𝑉𝐿,𝑁𝑃𝑄 , 𝑄𝐺,1 …𝑄𝐺,𝑁𝐺

, 𝑆𝑇𝐿,1 …𝑆𝑇𝐿,𝑁𝑇𝐿]               (4.11) 

where, 𝑃𝐺1  represents the power of the slack bus, 𝑉𝐿, denotes the voltage of the load bus. The 

generator’s reactive power is represented by 𝑄𝐺, 𝑆𝑇𝐿 represents the apparent power flow in the 

transmission lines.  
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 The follow formula (4.12) can be explained the controlled variables (u) vector [100]: 

𝑢 = [𝑃𝐺2
…𝑃𝐺,𝑁𝐺 , 𝑉𝐺,1 …𝑉𝐺,𝑁𝐺 , 𝑄𝐶,1 …𝑄𝐶,𝑛𝐶

, 𝑇1 …𝑇𝑁𝑇𝑟
]                 (4.12) 

Where, 𝑃𝐺  denotes the generator’s power, the injected shunt compensator’s reactive power units 

and their number are indicated by 𝑄𝑐, and 𝑛𝐶 , respectively, the transformer’s tap setting and their 

number are denoted by T, and 𝑁𝑇𝑟. The generator’s bus voltage is represented by 𝑉𝐺. 

4.5.1. Types of Optimal Power Flow 

The figure (4.6) illustrated the main types of Optimal Power Flow.  

 
Fig. 4.6:  Types of Optimal Power Flow. 
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4.5.2. Objective Functions 

The main types of OPF can be categorized into various types, distinguished by objectives, 

constraints, solution methodologies, and reflecting the nature of power management they entail. 

Here Some well-known objectives can be identified as below [58]: 

A) Minimizing the Total Cost of Thermal Power Generation Units (TFC): 

The power generation cost is primarily dependent on operating costs, which consist of fuel costs 

for thermal generators being a significant component in the thermal power plants. The relationship 

between the generated power (MW) and the fuel cost ($/h) is typically represented through a 

quadratic equation using a single polynomial, as demonstrated in the following equation (4.13) 

[9][100]. 

𝐹1 = 𝐶𝑇𝐺(𝑃𝑇𝐺) = ∑  (
𝑁𝑇𝐺

𝑖=1
𝑐𝑖𝑃𝑇𝐺𝑖

2 + 𝑏𝑖𝑃𝑇𝐺𝑖
+ 𝑎𝑖) ($/h)             (4.13) 

Where: 𝐹1 stands for the total thermal cost, 𝑁𝑇𝐺 denotes to the total number of thermal generators.  

B. Emission gas (TEG) 

    During the process of power generation, conventional energy sources are known to emit harmful 

gases into the atmosphere. The fitness function Emission (ton/h) can be expressed through 

equation (4.14); [8][100][102]. 

𝐹2 = 𝐸 = ∑  
𝑁𝑇𝐺
𝑖=1 [(𝛼𝑖 + 𝛽𝑖𝑃𝑇𝐺𝑖 + 𝛾𝑖𝑃𝑇𝐺𝑖

2 ) × 0.01 + 𝜔𝑖𝑒
(𝜇𝑖𝑃𝑇𝐺𝑖)]            (4.14) 

C. The cost of Power Generating Units incorporation valve-point effect 

The cost function for fuel-based generation units is non-convexity containing multiple increases 

due to valve point stacking effects. This creates a ripple effect on the price curve. The cost function 

with incorporation valve-point effect, as outlined in the equation (4.15) [9][40][63][102]: 

𝐹3 = 𝐶𝑇𝐺(𝑃𝑇𝐺) = ∑ 𝑎𝑖 + 𝑏𝑖𝑃𝑇𝐺𝑖 + 𝑐𝑖𝑃𝑇𝐺𝑖
2  + |𝑑𝑖 × sin (𝑒𝑖 × (𝑃𝑇𝐺𝑖

𝑚𝑖𝑛 − 𝑃𝑇𝐺𝑖))|   
𝑁𝑇𝐺

𝑖=1
         (4.15) 

Where  𝐹3 is the total fuel cost with the valve-point effect. 𝑃𝑇𝐺𝑖
𝑚𝑖𝑛 refers to the minimum real power 

limit of the ith thermal generators. 
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D. The Price of Power Generating Units with presence of renewable energy 

• Cost evaluation of uncertain wind power plants generators 

Since wind power is intermittent, the Monte Carlo simulations are employed to address the 

uncertainty and associated costs. The estimated cost of wind power intermittency is considered in 

three different manners: Direct, reserve, and penalty prices [40]. 

- Direct Price of Stochastic wind Plant 

 

     Wind power generators are stochastic power plants that are typically owned by private 

companies, often referred to as independent system operators (ISOs). These ISOs can sell fixed 

amounts of electricity to the network operator. When an ISO owns a wind farm, there is no direct 

price component unless the ISO chooses to recover some of the setup or maintenance costs. On 

the other hand, the ISO must pay a direct price based on a pre-agreed amount of power supply. 

The direct cost of the  𝑗th wind plant is represented by the scheduled power 𝑃𝑤𝑠,𝑗, as shown in the 

following equation (4.16); 

𝐶𝑤,𝑗(𝑃𝑤𝑠,𝑗) = 𝑔𝑤𝑗𝑃𝑤𝑠,𝑗.                             (4.16) 

Here, the direct cost coefficient linked to jth wind wind-farm is denoted 𝑔𝑤𝑗[9][40]. 

- Reserve wind power plants generators 

The inherent uncertainty in weather conditions can cause power generation to fall below scheduled 

levels. To mitigate this issue and ensure a stable power supply, a spinning reserve is crucial. This 

reserve maintains agreed-upon power levels despite wind farm output fluctuations and increased 

demand, acting as a safety net. The ISO network should maintain a rotating reserve to handle these 

uncertainties and ensure uninterrupted power to end-users. The reserve cost component for wind 

power plants is the cost of forcing a generator to meet overestimated power, as outlined in equation 

(4.17): 

𝐶𝑅𝑤𝑗(𝑃𝑤𝑠𝑗 − 𝑃𝑤𝑎𝑣𝑗) = 𝐾𝑅𝑤𝑗(𝑃𝑤𝑠𝑗 − 𝑃𝑤𝑎𝑣𝑗) = 𝐾𝑅𝑤𝑗 ∫ (𝑃𝑤𝑠𝑗 − 𝑝𝑤)𝑓𝑤𝑗(𝑝𝑤)𝑑𝑝𝑤

𝑃𝑤𝑠𝑗
     (4.17) 

where, the reserve cost coefficient for wind power plants is denoted by 𝐾𝑅𝑤𝑗, while the current 

power available from the plant is 𝑃𝑤𝑎𝑣𝑗. 𝑓𝑤𝑗(𝑝𝑤) indicate the PDF of the wind power generator. 

The right-hand side for the reserve price can be expressed as follows equation (4.18). 
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𝐾𝑅𝑤𝑗 ∫  
𝑃𝑤𝑠𝑗

0
{(𝑃𝑤𝑠𝑗 − 𝑝

𝑤
)

𝛽(𝑣𝑟−𝑣𝑖𝑛)

𝛼𝛽∗𝑃𝑤𝑟𝑗

[𝑣𝑖𝑛 +
𝑝𝑤

𝑃𝑤𝑟𝑗

(𝑣𝑟 − 𝑣𝑖𝑛)]
𝛽−1

exp [− (
𝑣𝑖𝑛+

𝑝𝑤

𝑃𝑤𝑟𝑗
(𝑣𝑟−𝑣𝑖𝑛)

𝛼
)

𝛽

]}

+𝐾𝑅𝑤𝑗(𝑃𝑤𝑠𝑗 − 0) ∗ 𝑓
𝑤𝑗
(𝑝

𝑤
){𝑝

𝑤
= 0}

𝑑𝑝
𝑤

           (4.18) 

Here, 𝑃𝑤𝑟𝑗 denotes the rated output power of the 𝑗th wind power plant [9]. 

-  Penalty Price of Stochastic wind Plant  

Underestimated power occurs when a wind farm's current power provided more than what is the 

demand needed value, leading to excess power being wasted. If there is no control over thermal 

unit output power. If there is no way to control the output power from thermal units, the excess 

power will go to waste. In this case, ISO should be charged a penalty fee for the extra power. The 

penalty price for underestimating wind power can be calculated using equation (4.19). 

𝐶𝑃𝑤𝑗(𝑃𝑤𝑎𝑣𝑗 − 𝑃𝑤𝑠𝑗) = 𝐾𝑃𝑤𝑗(𝑃𝑤𝑎𝑣𝑗 − 𝑃𝑤𝑠𝑗) = 𝐾𝑃𝑤𝑗 ∫  
𝑃𝑤𝑟𝑗

𝑃𝑤𝑠𝑗
(𝑝𝑤 − 𝑃𝑤𝑠𝑗)𝑓𝑤𝑗(𝑝𝑤)𝑑𝑝𝑤   (4.19)  

The penalty cost coefficient of a wind generating units is represented by 𝐾𝑃𝑤𝑗, and the specified 

output power for the 𝑗th wind is denoted by 𝑝𝑤𝑟𝑗 [8][63].  

To expand the right-hand side for the penalty cost, the following formula can be expressed the 

penalty price (4.20): 

𝐾𝑃𝑤𝑗 ∫  
𝑃𝑤𝑟𝑗

𝑃𝑤𝑠𝑗
{(𝑝𝑤 − 𝑃𝑤𝑠𝑗)

𝛽(𝑣𝑟−𝑣𝑖𝑛)

𝛼𝛽∗𝑃𝑤𝑟𝑗
[𝑣𝑖𝑛 +

𝑝𝑤

𝑃𝑤𝑟𝑗
(𝑣𝑟 − 𝑣𝑖𝑛)]

𝛽−1

exp [−(
𝑣𝑖𝑛+

𝑝𝑤
𝑃𝑤𝑟𝑗

(𝑣𝑟−𝑣𝑖𝑛)

𝛼
)

𝛽

]}𝑑𝑝𝑤

+𝐾𝑃𝑤𝑗(𝑃𝑤𝑟𝑗 − 𝑃𝑤𝑠𝑗) ∗ 𝑓𝑤𝑗(𝑝𝑤){𝑝𝑤 = 𝑝𝑤𝑟}

                   

(4.20) 

• Cost evaluation of uncertainties in solar photovoltaic power  [8][100]: 

The direct cost for the solar PV plant is given by: 

𝐶𝑠(𝑃𝑠𝑠,𝑘) = ℎ𝑠𝑃𝑠𝑠,𝑘                                                                                                             (4.21) 

Where, 𝑃𝑠𝑠,𝑘 is the scheduled power from the solar PV plant, ℎ𝑠 is the direct cost coefficient. 

Similar to wind power plants, solar PV plants also experience intermittent and uncertain outputs 

due to natural fluctuations in solar radiation. Strategies for managing overestimation and 

underestimation of solar power should align with those for wind power. However, it's important 

to note that solar radiation is characterized by a lognormal probability distribution function (PDF). 

The reserve cost for the kth solar PV plant is: 
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𝐶𝑅𝑠,𝑘(𝑃𝑠𝑠,𝑘 − 𝑃𝑠𝑎𝑣,𝑘) = 𝐾𝑅𝑠,𝑘(𝑃𝑠𝑠,𝑘 − 𝑃𝑠𝑎𝑣,𝑘)

= 𝐾𝑅𝑠,𝑘 ∗ 𝑓𝑠(𝑃𝑠𝑎𝑣,𝑘 < 𝑃𝑠𝑠,𝑘) ∗ [𝑃𝑠𝑠,𝑘 − 𝐸(𝑃𝑠𝑎𝑣,𝑘 < 𝑃𝑠𝑠,𝑘)]                                           (4.22)  

Where, 𝐾𝑅𝑠,𝑘 is the reserve cost coefficient for the k-th solar PV plant 

Penalty cost for the underestimation of k -th solar PV plant is: 

𝐶𝑃𝑠,𝑘(𝑃𝑠𝑎𝑣,𝑘 − 𝑃𝑠𝑠,𝑘) = 𝐾𝑃𝑠,𝑘(𝑃𝑠𝑎𝑣,𝑘 − 𝑃𝑠𝑠,𝑘)

= 𝐾𝑃𝑠,𝑘 ∗ 𝑓𝑠(𝑃𝑠𝑎𝑣,𝑘 > 𝑃𝑠𝑠,𝑘) ∗ [𝐸(𝑃𝑠𝑎𝑣,𝑘 > 𝑃𝑠𝑠,𝑘) − 𝑃𝑠𝑠,𝑘]                                                 (4.23) 

Where, 𝐾𝑃𝑠,𝑘 is the penalty cost coefficient pertaining to kth solar PV plant. 

 𝑃𝑠𝑎𝑣,𝑘 is the actual available power from the same plant. 𝑓𝑠(𝑃𝑠𝑎𝑣,𝑘 < 𝑃𝑠𝑠,𝑘) is the probability of 

solar power shortage occurrence than the scheduled power (𝑃𝑠𝑠,𝑘, 𝐸(𝑃𝑠𝑎𝑣,𝑘 < 𝑃𝑠𝑠,𝑘) is the 

expectation of solar PV power plant above 𝑃𝑠𝑠,𝑘. 

• The objective of OPF is to minimize the generation cost. the objective function (𝐹3.1): 

Minimize the total cost including all thermal and wind energy price, where the emission cost 

is not included is given by the follow equation: 

𝐹3.1 = 𝐶𝑇(𝑃𝑇𝐺) + ∑  
𝑁𝑊𝐺
𝑗=1 [𝐶𝑤,𝑗(𝑃𝑤𝑠,𝑗) + 𝐶𝑅𝑤,𝑗(𝑃𝑤𝑠,𝑗 − 𝑃𝑤𝑎𝑣,𝑗)+𝐶𝑃𝑤,𝑗(𝑃𝑤𝑎𝑣,𝑗 − 𝑃𝑤𝑠,𝑗)]     (4.24) 

• The objective function (𝐹3.2), including the total cost including all thermal and renewable 

energy price, where the emission cost is not included is given by the follow equation: 

𝐹3.2 = 𝐶𝑇(𝑃𝑇𝐺) + ∑  
𝑁𝑊𝐺
𝑗=1 [𝐶𝑤,𝑗(𝑃𝑤𝑠,𝑗) + 𝐶𝑅𝑤,𝑗(𝑃𝑤𝑠,𝑗 − 𝑃𝑤𝑎𝑣,𝑗)+𝐶𝑃𝑤,𝑗(𝑃𝑤𝑎𝑣,𝑗 − 𝑃𝑤𝑠,𝑗)]

+∑  
𝑁𝑆𝐺
𝑘=1 [𝐶𝑠,𝑘(𝑃𝑠𝑠,𝑘) + 𝐶𝑅𝑠,𝑘(𝑃𝑠𝑠,𝑘 − 𝑃𝑠𝑎𝑣,𝑘)+𝐶𝑃𝑠,𝑘(𝑃𝑠𝑎𝑣,𝑘 − 𝑃𝑠𝑠,𝑘)]       (4.25)    

• To study the change in generation scheduling when emission gas is imposed, the objective 

function (𝐹3.3):  is constructed to Minimize the total cost including all thermal and wind energy 

price, is given by the follow equation: 

𝐹3.3 = 𝐶𝑇(𝑃𝑇𝐺) + ∑  𝑁𝑊𝐺
𝑗=1 [𝐶𝑤,𝑗(𝑃𝑤𝑠,𝑗) + 𝐶𝑅𝑤,𝑗(𝑃𝑤𝑠,𝑗 − 𝑃𝑤𝑎𝑣,𝑗)

+𝐶𝑃𝑤,𝑗(𝑃𝑤𝑎𝑣,𝑗 − 𝑃𝑤𝑠,𝑗)] + |𝑑𝑖 × sin (𝑒𝑖 × (𝑃𝑇𝐺𝑖
𝑚𝑖𝑛 − 𝑃𝑇𝐺𝑖))|   

                                        (4.26)                             

• The objective function (𝐹3.4), including the cost including all thermal and renewable energy 

price, where the emission gas cost is imposed is given by the follow equation: 

𝐹3.4 = 𝐶𝑇(𝑃𝑇𝐺) + ∑  
𝑁𝑊𝐺
𝑗=1 [𝐶𝑤,𝑗(𝑃𝑤𝑠,𝑗) + 𝐶𝑅𝑤,𝑗(𝑃𝑤𝑠,𝑗 − 𝑃𝑤𝑎𝑣,𝑗)+𝐶𝑃𝑤,𝑗(𝑃𝑤𝑎𝑣,𝑗 − 𝑃𝑤𝑠,𝑗)] +

∑  
𝑁𝑆𝐺
𝑘=1 [𝐶𝑠,𝑘(𝑃𝑠𝑠,𝑘) + 𝐶𝑅𝑠,𝑘(𝑃𝑠𝑠,𝑘 − 𝑃𝑠𝑎𝑣,𝑘)+𝐶𝑃𝑠,𝑘(𝑃𝑠𝑎𝑣,𝑘 − 𝑃𝑠𝑠,𝑘)] + |𝑑𝑖 × sin (𝑒𝑖 × (𝑃𝑇𝐺𝑖

𝑚𝑖𝑛 − 𝑃𝑇𝐺𝑖))|
  

(4.27) 
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where, 𝑁𝑊𝐺 and 𝑁𝑆𝐺  represent the number of wind generators and solar PV units in the network, 

respectively. All other cost components are determined using the specified equations (4.26, 4.27). 

E. Real Power Losses (RPL) 

Equation (4.28) describes the expression of fitness function associated to power loss minimization: 

𝐹4 = 𝑃loss = 𝑀𝑖𝑛[∑  𝑁𝑇𝐿
𝑖=1 𝐺𝑖𝑗(𝑉

2
𝑖 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗cos 𝜃𝑖𝑗)]                 (4.28) 

B. Enhancement of the Voltage Stability: 

The voltage stability index problem is recognized as one of the challenges in modern energy 

systems, and its fitness function can be modeled using the following equations (4.29) and (4.30) 

[40]: 

𝐹5 = 𝐿𝑗 = |1 − ∑  
𝑁𝐺
𝑖=1 𝐹𝑗𝑖

𝑉𝑖

𝑉𝑗
|             where 𝑗 = 1,2, … ,𝑁𝑃𝑄                (4.29) 

𝐹𝑗𝑖 = −[𝒀𝑳]
−1[𝒀𝑳𝑮]                                (4.30) 

Where; the index value of the jth bus is represented BY  𝐿𝑗; 𝒀𝑳and 𝒀𝑳𝑮 are determined from the 

electrical grid. 

F. Total Voltage Deviation (TVD):  

The Total Voltage Deviation (TVD) expressed using equation (4.31), refers to minimizing the 

fluctuations of voltage magnitudes across the power system from a reference value of 1 per unit 

(pu) [40][79] [102]: 

𝐹6 = 𝑇𝑉𝐷 = (∑  𝑁𝑃𝑄
𝑖=1 |𝑉𝐿𝑖

− 1|)                                                                                            (4.31)    

G. the Total cost with renewable energy cost and loss cost (Gross cost): 

The total cost of the network, considering wind energy, thermal power, and power loss, is given 

by equation (4.32) [53]: 

𝐹7 = 𝑚𝑖𝑛{𝐹3.3 + 𝑃loss ∗ 103 ∗ 0.1 }.                                                                                     (4.32) 

The total cost of the network, considering wind energy, solar sources, thermal units, and power 

loss, is given by equation (4.33) [53]: 

𝐹7,1 = 𝑚𝑖𝑛{𝐹3.4 + 𝑃loss ∗ 103 ∗ 0.1 }.                                                                                   (4.33) 
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5.5.3. Constraints system 

To optimally achieve the above objectives, it is necessary to satisfy a collection of limitations 

that include both equality and inequality constraints must be fulfilled. 

5.4.3.1. Equality constraints 

      The equality constraints reflect to the physical properties of an energy system. These constraint 

functions that control the system creating from the equilibrium between generated power, load 

power consumption, and losses, as well as both active and reactive power balance [40][54]. It is 

feasible to classify equality constraints according to equations (4.34, and 4.35): 

𝑃𝐺𝑖
− 𝑃𝐷𝑖

= 𝑉𝑖 ∑  
𝑁𝑏
𝑖=1
𝑗=1

𝑉𝑗(𝐺𝑖𝑗 cos(𝜃𝑖𝑗) + 𝐵𝑖𝑗 sin(𝜃𝑖𝑗))                           (4.34) 

𝑄𝐺𝑖
− 𝑄𝐷𝑖

= 𝑉𝑖 ∑  
𝑁𝑏
𝑖=1 𝑉𝑗 (𝐺𝑖𝑗sin (𝜃𝑖𝑗) − 𝐵𝑖𝑗cos (𝜃𝑖𝑗))                 (4.35) 

5.4.3.2. Inequality Constraints Systems 

The system's inequality constraints represent security and operational limitations, which are 

elaborated upon below [103]: 

A. Generation constraints:  

The constraints related to the both the active power and reactive power plants generating units, as 

well as constraints on voltage magnitudes are expressed as follows equations (4.36, 4.37 and 4.38) 

[79][100] [102]:  

𝑃𝐺𝑖

𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖
≤ 𝑃𝐺𝑖

𝑚𝑎𝑥                     (4.36) 

𝑄𝐺𝑖

𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖
≤ 𝑄𝐺𝑖

𝑚𝑎𝑥                     (4.37) 

𝑉𝐺𝑖

𝑚𝑖𝑛 ≤ 𝑉𝐺𝑖
≤ 𝑉𝐺𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, … ,𝑁𝐺                    (4.38) 

B. Security constraints 

Security constraints involve limits on voltage magnitudes at load buses, power transmission line 

limits, and transformer tap settings [40][100]. 

• Power transmission line limit   

The equation (4.39) explains the capacity constraint power transmission line [100]: 

|𝑆𝐿,𝑖| ≤ 𝑆𝐿,𝑖
𝑚𝑎𝑥; 𝑖 = 1,2, … ,𝑁STL                     (4.39) 
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• Load bus: voltage magnitudes of load bus 

Equation (4.40) describes the boundaries voltage load buses [100][104][105]: 

𝑉𝐿,𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐿,𝑖 ≤ 𝑉𝐿,𝑖

𝑚𝑎𝑥;       𝑖 = 1,2, … , NPQ                             (4.40) 

Where; the ith load bus is represented by 𝑉𝐿,𝑖. 

• Transformer: tap setting transformer [100] 

The equation (4.41) refers to constraints tap setting Transformer ranges:  

𝑇𝑇𝑟,𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑇𝑟,𝑖 ≤ 𝑇𝑇𝑟,𝑖

𝑚𝑎𝑥;                         𝑖 = 1,2, … ,𝑁𝑇𝑟                (4.41) 

C. Shunt capacitor:    

The equation (4.42) refers to constraints of shunt capacitors [104]. 

𝑄𝐶,𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐶,𝑖 ≤ 𝑄𝐶,𝑖

𝑚𝑎𝑥;         𝑖 = 1,2, … , 𝑛𝐶                 (4.42) 

D. FACTS Devices Constraints: 

TCSC:                   𝜏𝑇𝐶𝑆𝐶𝑚
𝑚𝑖𝑛 ≤ 𝜏𝑇𝐶𝑆𝐶𝑚 ≤ 𝜏𝑇𝐶𝑆𝐶𝑚

𝑚𝑎𝑥 ∀𝑚 ∈ 𝑁𝑇𝐶𝑆𝐶               (4.43) 

TCPS:                  Φ𝑇𝐶𝑃𝑆𝑛
𝑚𝑖𝑛 ≤ Φ𝑇𝐶𝑃𝑆𝑛 ≤ Φ𝑇𝐶𝑃𝑆𝑛

𝑚𝑎𝑥 ∀𝑛 ∈ 𝑁𝑇𝐶𝑃𝑆              (4.44) 

SVC:                     𝑄𝑆𝑉𝐶𝑗
𝑚𝑖𝑛 ≤ 𝑄𝑆𝑉𝐶𝑗 ≤ 𝑄𝑆𝑉𝐶𝑗

𝑚𝑎𝑥∀𝑗 ∈ 𝑁𝑆𝑉𝐶                                     (4.45) 

The equations (4.43, 4.44, and 4.45), respectively, refer to the boundaries on FACTS controllers 

– TCSC, TCPS, and SVC [102][56][64] [102]. 

4.6. Conclusion   

This chapter aimed to provide a comprehensive overview of the fundamental concepts related to 

Optimal Power Flow (OPF). It began with the modeling of electrical network elements, followed 

by a summary of power flow calculations and the iterative methods used to solve it. Next, it 

presented the formulation of the OPF problem, including the mathematical framework necessary 

for its analysis and solution. The chapter also explored various types of objective functions within 

the OPF framework, such as minimizing of generation costs, the total emission gas, … etc, were 

defined, tailored to specific operational goals. Additionally, it discussed the inherent constraints, 

ensuring that solutions are optimal, feasible, and safe within the operational limits of the power 

system. The next chapter presents the global optimization methods used for solving the Optimal 

Power Flow (OPF) problem, followed by a detailed discussion of those methods applied in our 

thesis. 
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5.1. Overview about the optimization  

Optimization offers significant advantages in the practical field of engineering. In electrical 

network, it plays a crucial role in ensuring that electrical power systems operate efficiently, 

economically, and securely. The OPF problem involves in finding the optimal settings for 

variables like generator outputs and voltage levels while adhering to constraints such as power 

balance and transmission limits. Given the complexity, non-linearity, and high dimensionality of 

power systems[106][107], it requires the use of optimization methods to solve it. The chapter 

focuses on the global optimization techniques, it starts by introducing fundamental definitions of 

optimization problems, including the notions of local optimum and global optimum. Then, it 

provides an overview about the optimization in the context of electrical network. Specific attention 

is given to the methods used to address particular issues on electrical power system, such as 

optimal power flow (OPF). 

5.2 Notion of Optimization 

Optimization is defined by the search of the most effective solution to a problem, by identifying 

the combination of control variables that aimed to either minimizing or maximizing an objective 

function within a defined search space while adhering to specific constraints. Solving an 

optimization problem, requires firstly accurately modeling the system and selecting efficiency 

measures to quantitatively define it [12]. The formulation of any optimization problem can be 

considered as follows (figure 5.1): 

  

Fig. 5.1: The basic steps of solving an optimization problem. 
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5.3 Types of Optimizations 

An optimization problem is defined as, "Finding the best solution from a set of solutions where 

every solution in the set satisfies problem constraints." Generally, optimization can be categorized 

into two types: (i) Single-Objective optimization (ii) multi-objective optimization [108]: 

5.3.1. Single-objective Optimization problem 

A model that addresses only a single objective at once and provides a solution concerning that 

single objective is known as Single-objective optimization [108]. The mathematical formulation 

of this problem with consideration of constraints, is given as follows: 

• Optimize 𝑓(𝑥, 𝑢)                                                                                     (5.1) 

• Subjected to 

• 𝐺𝑖(𝑥, 𝑢) = 0       𝑖 = 1,2, ……… .𝑚       (is the equality constraints)       (5.2) 

• 𝐻𝑗(𝑥, 𝑢) ≤ 0      𝑗 = 1,2, ……… . 𝑝             (is the inequality constraints)       (5.3) 

5.3.2. Multi-objective Optimization problem 

A multi-objective optimization (MOO) problem involves optimizing several objective functions 

simultaneously. The aim is to find the best trade-offs between conflicting objectives while 

adhering to certain equality and inequality constraints, leading to an infinite number of potential 

solutions. These solutions are known as Pareto fronts or Pareto optimal solutions [17][109]. The 

MOO problem can be mathematically modeled as the given equation: 

• Optimize { 𝑓1(𝑥, 𝑢), 𝑓2(𝑥, 𝑢), …  𝑓𝑘(𝑥, 𝑢)}                                                                  (5.4) 

Subject to  

• 𝐺𝑖(𝑥, 𝑢) = 0       𝑖 = 1,2, ……… .𝑚       (is the equality constraints)        (5.5) 

• 𝐻𝑗(𝑥, 𝑢) ≤ 0      𝑗 = 1,2, ……… . 𝑝             (is the inequality constraints)        (5.6) 

Here; 𝑓 denotes the modeled fitness function; 𝑢 represents the decision variables; 𝑥 indicates the 

state variables, k is the number of objective functions. 

Solving a multi-objective optimization problem involves finding solutions that best align with the 

decision maker's preferences among a range of viable compromise solutions. Instead of a single 

optimal solution, the solution is a set of solutions known as the Pareto-optimal solution set. This 

process, called Pareto Optimization, uses the concepts of dominance and Pareto optimality to 
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simultaneously address all objectives. The Pareto concept, introduced by the Italian economist and 

sociologist Vilfredo Pareto in 1986, states that a solution 𝑥 is Pareto-optimal if no other solution 

in the feasible space 𝑋 dominates it. These solutions are termed non-dominated or non-inferior 

solutions [17]. To better understand Pareto optimality, it is important to first define Pareto 

dominance and the Pareto frontier. 

• Definition (Pareto Domination): 

Let two decision vectors 𝑢 = [𝑢1, … , 𝑢𝑛] and and  𝑣 = [𝑣1, … , 𝑣𝑛] be in the objective function 

space where a minimization problem is considered. Denoted that vector 𝑢 dominates vectors 𝑣 

( 𝑢 ≤  𝑣), if and only if: all components of 𝑢 are less than or equal to their corresponding ones in 

𝑣, and at least one component of 𝑢 is strictly less than its corresponding one in 𝑣, i.e.: 

∀ 𝑖 𝜖 {1,2, …𝑘}, 𝐹𝑖(𝑢) ≤  𝐹𝑖(𝑣), ∃ 𝑖 𝜖 {1,2, … 𝑛}, 𝐹𝑖(𝑢) <  𝐹𝑖(𝑣)                                           (5.7) 

• Definition (Pareto Frontier):  

the Pareto Front also known as Trade-off Surface, is the collection of all Pareto-optimal points in 

the objective function space (Fig. 2.21). These points represent solutions where no other solution 

in the feasible space dominates them according to the Pareto dominance criterion. Specifically, a 

solution 𝑥 dominates another solution 𝑥′ if, for all criteria 𝑓𝑖 (with 𝑖 ranging from 1 to 𝑚), 𝑓𝑖(𝑥) ≤

𝑓𝑖(𝑥
′), with at least one strict inequality. A Pareto-optimal solution is non-dominated, meaning no 

other solution in the feasible space dominates it according to this criterion. This leads to a set of 

solutions forming an optimality frontier, known as the Pareto front or trade-off surface. The figure 

(5.2) illustrates the Pareto Frontier for minimizing 𝐹1, and 𝐹2. 

 

Fig. 5.2: Pareto Frontier of minimum (F1, F2). 
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The solutions positioned on the Pareto front cannot be compared, as none is systematically better 

than the others across all objectives. It is up to the decision-maker to choose which solution to 

retain. 

5.4. Methods for solving optimization problems 

Optimization techniques are primarily categorized into two groups: deterministic methods and 

Approaches methods [110]. Additionally, there's a pseudo-class known as the hybrid method, 

which emerges from combining different methods. This classification is illustrated in figure (5.3) 

[111]. 

 

Fig. 5.3: Classification of optimization methods. 

5.4.1. determinist methods: 

These methods are referred to as deterministic because they always lead, from a specific starting 

point, to the same final result. However, their limitation lies in possibly converging to a local 

optimum in cases where the objective function has multiple optima. They include techniques such 

as Branch & Bound, mathematical methods, … etc [110][111]. 

5.4.2. Non-deterministic (approaches) methods: 

These methods are use probabilistic and random transitions process to explore the search space 

and converge to the global optimum. This category includes heuristic and metaheuristic 

methods[110][112]. 
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5.4.2.1. Heuristic methods: 

Among these methods are the Monte Carlo method, simulated annealing, …. and others. These 

methods start with an initial solution and attempt to improve it within the problem's constraints. 

Progress toward an optimal solution is achieved by successively testing a neighboring solution to 

the current one. The figure (5.4) illustrates a simple representation of a traversal-based (heuristic) 

optimization method [100] [112]. 

 

Fig. 5.4: Simplified heuristic approach. 

5.4.2.2. Metaheuristic methods: 

Metaheuristic algorithms, are often inspired by natural phenomena, and have become part of the 

most widely used stochastic optimization algorithms. Their simplicity and robustness have led to 

successful applications in various optimization fields. As global optimization methods, they avoid 

being trapped in local optima, overcoming the limitations of classical and heuristic methods. A 

schematic representation of metaheuristics is provided in figure (5.5) [110][112][113]. 

 

Fig. 5.5: Simplified Metaheuristic Approach. 
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In this representation, metaheuristics (MH) aim to find the global optimum (OG) of a complex 

optimization problem (f(x)), that may encompass elements such as discontinuities (DC), while 

avoiding entrapment in local optima (OL) [110]. 

5.5. Overviews of the Optimization in Electrical Networks 

Research interest in optimizing electrical networks field began in 1919, focusing on enhancing the 

efficiency of power systems. In 1943, Steinberg and Smith published a classic book titled 

"Economy Loading of Power Plants and Electric Systems" deals notable contributions include on 

incremental methods and loss modeling, and the research have been continued, where the classic 

economic equations were discovered by Kirchmayer and Stagg in 1951. Kirchmayer's 1958 work 

on economic operation of power systems, laying the groundwork for modern economic operations 

in power distribution. In 1958, Kirchmayer published a book entitled "Economic Operation of 

Power Systems," where the author presented the formulation of the conventional economic 

dispatch problem. These efforts culminated in the development of the first algorithms for power 

flow analysis and the pursuit of optimal power flow, highlighted by Squires' and Carpentier's 

research in the early 1960s. This period marked the beginning of systematic optimization in 

electrical networks, with a focus on real-time operational studies to achieve demand satisfaction 

efficiently and cost-effectively. Recently, several optimization problems require considering time 

scales from planning to operation. Network operators must conduct several real-time studies 

(minutes, hours, days, year) to meet demand optimally at minimal cost [17]. 

5.6. Resolution of optimal power flow (OPF) by optimization methods 

The resolution of Optimal Power Flow (OPF) problems is a critical area in power system 

engineering. OPF seeks the most cost-effective generation dispatch that satisfies demand while 

adhering to system constraints such as generator limits, network capacity, and operational security. 

Algorithmic optimization methods have been employed for several years in the planning, 

operation, and control of electrical networks due to the complexity of large-scale electrical network 

solutions [81][114]. These techniques can be classified into two categories: conventional methods 

and Intelligence optimization methods are depicted in figure (5.6) [115]. 
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Fig. 5.6: Solution methods of optimal power flow problem. 

5.6.1. Conventional optimization methods for OPF Problem 
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methodologies. In 1968, Dommel and Tinney introduced the first solution approach for the OPF 
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OPF problems, such as mixed-integer programming (MIP), linear programming (LP), nonlinear 

programming (NLP), … etc.  
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OPF problems, leading to potential entrapment in local minima. Additionally, the precision of 

these methods can be compromised by rounding errors in digital computation. Therefore, there is 

a crucial need for developing optimization techniques that can address these drawbacks, ensuring 

faster, more reliable solutions for real-time power system operations [90][115]. 

5.6.2. Recent optimization methods for optimal power flow  

The recent intelligence methods based on evolutionary or metaheuristic optimization techniques 

have been proposed to solve the non-linear or non-convex complex optimization problems in small 

and large-scale systems [115]. Recently, several of them were developed and implemented in the 

electrical power system for solving the OPF problems [99][116]. Such as: 

Evolutionary-based methods, Among these methods:  like the Genetic Algorithm (GA), 

Differential Evolutionary (DE), enhanced genetic algorithms (EGA),…. etc. 

Swarm and Bio-inspired Optimization Techniques, like Particle Swarm Optimisation (PSO), 

such as bat algorithms (Bat), Artificial Bee Colony algorithm (ABC) [117], enhanced Equilibrium 

Optimizer (EEO) [118], Peafowl Optimization Algorithm [119], …etc.  

 Physics-Inspired Optimization Techniques (PIOA), Among these methods: Improved colliding 

bodies optimization algorithm (ICBO) [120], and Galaxy-based Search Algorithm (GbSA) [121], 

a physics-guided graph convolution neural network (GCNN) [122]. Thermal Exchange 

Optimization (TEO) [123], …etc. 

 Human-Inspired Optimization Techniques, are inspired by human behaviors, especially when 

it comes to thinking or making decisions. Some of the most popular human-inspired techniques 

are Group Search Optimizer (GSO)[124], The Teaching Learning Based Optimization (TLbO) 

[125], etc… 

Various hybrid metaheuristic algorithms have been developed and continue to be developed every 

day. Some of these have been applied for solving the OPF problem like; the hybrid PSO and GSA 

[126] [126], hybrid DE with harmony search algorithm (DE-HSA) [127]. The hybrid Harrison 

Hawk Optimization based on Differential Evolution (HHODE)algorithm [128], …etc. and others 

various hybrid metaheuristic algorithms was developed and applied for solving the single and 

mult-objective OPF.  
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5.7. Details of some methods applied in this thesis theses 

5.7.1. The Genetic Algorithm (GA) 

GA is relied on the genetics and natural selection laws, t provides the best solutions by explore the 

search space, in a parallel manner to get the optimal solution from population of points. Therefore, 

GA can avoid the local optimal solution problem. Real-Coded GA consists of four essential phases 

which are initial population, evaluation function, selection, and genetic operators (mutation and 

crossover). GA algorithm guides the population into convergence to obtain the global optimal 

solution. Primarily, the initial population or chromosome population is created. Depending on 

genetic operators, new chromosomes are created which in turn create a new population with 

improved fitness of the objective function. This procedure is repeated till the improvement is 

stopped. It can be accomplished after a certain number of iterations [129][130]. The flowchart of 

the GA as shown in the figure (5.7). 

 

Fig. 5.7: Flowchart of the GA. 
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5.7.2. Particle Swarm Optimization (PSO) algorithm 

The PSO algorithm is inspired from the social behavior of birds, to find the best optimum value of 

the function/problem [43], it is initialized with a group of random particles, each representing a 

potential solution to the problem, and then searches for optima by updating generations. In every 

iteration, each particle is updated by two” best” values. The first one is the best solution (fitness) 

it has achieved so far, the best position of particle. The other best value that is tracked by the 

particle swarm optimizer is the best value obtained so far by any particle in the population (the 

global best position) [131]. The best-known local position for the particle affects the movement of 

each particle. The position and velocity of 𝑁 particles change until they attain the target. Equation 

(5.8) is used to update the particle's position and equation (5.9) is used to update the velocity of 

the particle. 𝑣𝑖(𝑡) is the particle's velocity at t time step, 𝑥𝑖(𝑡) denotes the position of particle (𝑖), 

𝑟1 and 𝑟2 have range 0 to 1 and they represent random values, 𝑐1 and 𝑐2 represents the positive 

acceleration coefficients. By adding a velocity 𝑣𝑖(𝑡) to the present position, the particle's position 

changes [132][133]: 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)             (5.8) 

𝑣𝑖(𝑡) = 𝑣𝑖(𝑡 − 1) + 𝑐1𝑟1[𝑙𝑏(𝑡) − 𝑥𝑖(𝑡 − 1)] + 𝑐2𝑟2[𝑔𝑏(𝑡) − 𝑥𝑖(𝑡 − 1)]               (5.9) 

The flowchart of PSO as shown in the figure 5.8 

 

Fig. 5.8: Flowchart of the PSO algorithm. 
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5.7.3. Dandelion Optimizer algorithm 

Firstly, this part discusses the basic concept of the suggested algorithm which is the dandelion 

optimizer (DO), their biological mechanism, and motivation. The flowchart of the DO algorithm 

is provided in the figure (5.9), then, the mathematical model represents as follow: 

a. Inspiration 

in 2022, Shijie Zhao introduced a new algorithm which is known as the dandelion optimizer (DO), 

scientifically recognized as Herba taraxaci is a perennial herb in the family Asteraceae. It may 

attain a length over 20 centimeters. The head of dandelions is formed like florets. Typically, the 

seeds consist of hundreds of crest-like hairs, a beak, and an achene [134]. 

b. Mathematical model 

This part is primarily dedicated to the mathematical formulation of DO, it provides the 

mathematical representation of the two types of meteorological conditions and analyzes their 

landing steps [134]. 

Step 1: Initialization [134][135] 

DO algorithm performs iterative optimization based on the initial population. Each dandelion seed 

is supposed to be a candidate solution, and its population is expressed as follows: 

Population = [
𝑥1

1 … 𝑥1
dim 

⋮ ⋱ ⋮
𝑥Pop 

1 … 𝑥Pop 
dim 

]                                                                                 (5.10) 

Where; P𝑜𝑝 refers to the population size, d𝑖𝑚 denotes the variable’s scale. Each candidate solution 

is randomly created between in interval limits by upper bound (𝑈b) and lower bound (𝐿b), and the 

expression of the 𝑖th individual 𝑋𝑖 is: 

𝑋𝑖 =  rand × (𝑈𝑏 − 𝐿𝑏) + 𝐿𝑏                                                                                               (5.11) 

where 𝑖 refers to a random integer between 1 and P𝑜𝑝, and 𝑟𝑎𝑛𝑑 is a random number in the 

range 0 and 1. the upper and the lower boundaries are expressed as follow (5.12) [134][135]: 

𝐿𝑏 = [𝑙𝑏1, … , 𝑙𝑏dim ]

𝑈𝑏 = [𝑢𝑏1, … , 𝑢𝑏dim ]
                                                                                                              (5.12) 

During startup, DO considers the individual has a highest fitness value to be the first elite, it is 

roughly equivalent to the optimal site of dandelions to flower. Taking the minimum value as an 

illustration, the initial elite is 𝑋Elite  [134] can be expressed as follow (5.13): 
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𝑓best = 𝑀𝑖𝑛(𝑓(𝑋𝑖))

𝑋Elite = 𝑋 ( find (𝑓best == 𝑓(𝑋𝑖)))
                                                                                    (5.13)     

where 𝑓𝑖𝑛𝑑 () denote two indices with equal value. 

Step 2: Rising step 

 In the buoyant step, dandelion seeds must attain a particular height before they are able to 

separate from their parent plant. Depending on factors such as whether conditions like humidity, 

wind speed, etc. dandelion seeds will grow to varying heights. Here, the weather is divided into 

the two situations described below [134]. 

• Situation-1 [134][135][135]  

On bright days, wind speed can be represented by the lognormal distribution ln 𝑌 ∼ 𝑁 (𝜇, 𝜎2). 

The wind velocity determines how high a dandelion seed will grow. If the wind is stronger, the 

dandelion will fly higher and its seeds will disperse further. In this instance, the relevant 

mathematical expression is:  

 𝑋𝑡+1 = 𝑋𝑡 + 𝛼 ∗ 𝑣𝑥 ∗ 𝑣𝑦 ∗ ln 𝑌 ∗ (𝑋𝑠 − 𝑋𝑡)                                                                      (5.14) 

where 𝑋s denotes the randomly position of the dandelion seed at iteration 𝑡. 𝑋t denotes the 

chosen location in the search space at iteration 𝑡. An expression that returns a randomly 

generated position as shows as follow equation (5.15): 

𝑋𝑠 = rand (1, Dim) ∗ (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵                                                                            (5.15) 

ln 𝑌 represents the random vector distribution subject to μ = 0;   𝜎2 = 1, and its mathematical 

expression as follows equation (5.16): 

ln 𝑌 = {
1

𝑦√2𝜋
exp [−

1

2𝜎2
(ln 𝑦)2] 𝑦 ≥ 0

0 𝑦 < 0
                                                                        (5.16) 

In eq. 16, 𝑦 refers to the standard normal distribution (0 and 1). 

 𝛼 is a variable utilized to control the length of each search step, can be expressed by the follow 

𝛼 = rand() ∗ (
1

𝑇2
𝑡2 −

2

𝑇
𝑡 + 1)                                                                                         (5.17) 

𝛼 is a random disturbance in the interval [0,1] in the process of nonlinear decay approach 0.  

 𝑣𝑥 and 𝑣𝑦 represent the coefficients of the dandelion's lift component due to separate eddy 

currents. The equation (5.18) is used to determinate the force in the variable dimension. 



    Chapter 5: Global optimization methods  

          

99 

 

𝑟 =
1

𝑒𝜃

𝑣𝑥 = 𝑟cos 𝜃
𝑣𝑦 = 𝑟sin 𝜃

                                                                                                                    (5.18) 

where 𝜃 fluctuates at random in the interval [−π, π]. 

• Situation-2: 

On a damp day, dandelion seeds struggle to rise effectively with the breeze due to air resistance 

and humidity. 

𝑋𝑡+1 = 𝑋𝑡 × 𝑘
𝑘 = 1 − rand() ∗ 𝑞

                                                                                                         (5.19) 

A dandelion utilized k to adjust its position search space. The domain (q) can be provided by the 

equation (5.20): 

𝑞 =
1

𝑇2−2𝑇+1
𝑡2 −

1

𝑇2−2𝑇+1
𝑡 + 1 +

1

𝑇2−2𝑇+1
                                                                       (5.20) 

Finally, the mathematical formula for the rising stage of a dandelion seed is: 

𝑋𝑡+1 = {
𝑋𝑡+1 = 𝑋𝑡 + 𝛼 × 𝑣𝑥 × 𝑣𝑦 × ln 𝑌 × (𝑋𝑠 − 𝑋𝑡)

𝑋𝑡+1 = 𝑋𝑡 × 𝑘
}

 randn < 1.5
 else 

                             (5.21) 

The function randn () creates random numbers with a normal distribution. 

Step 3: Descending step 

The DO employs Brownian motion to recreate the trajectory of a moving dandelion (5.22). 

𝑋𝑡+1 = 𝑋𝑡 − 𝛼 × 𝛽𝑡 × (𝑋mean 𝑡 − 𝛼 × 𝛽𝑡 × 𝑋𝑡)                                                                 (5.22) 

𝛽𝑡 symbolizes the Brownian motion. 

𝑋mean_t =
1

 pop 
∑  𝑝𝑜𝑝

𝑖=1 𝑋𝑖                                                                                                       (5.23) 

Step 4: Landing step  

The landing step of the dandelion seed decided by random chance based on the improvements 

results of the first two steps. As the number of iterations increases, the algorithm ought to converge 

to the best optimal solution [134][135]. The evolution of the population to the final leads global 

optimum solution which is mathematically expressed by the following (5.24): 

𝑋𝑡+1 = 𝑋elite + lev 𝑦(𝜆) × 𝛼 × (𝑋elite − 𝑋𝑡 × 𝛿)                                                               (5.24) 

𝑋elite  represents the seed’s optimal location. 

levy(𝜆) = 𝑠 ×
𝑤×𝜎

|𝑡|
1
𝛽

                                                                                                             (5.25) 
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The constant value for s is 0.01, b represents a randomly integer from the range 0 to 2. w and t; 

are arbitrary numbers fluctuate in the interval [0, 1], mathematically stated by the follow (5.26): 

𝜎 = (
Γ(1+𝛽)×sin (

𝜋𝛽

2
)

Γ(
1+𝛽

2
)×sin (

𝛽−1

2
)
)                                                                                                      (5.26) 

The value of 𝛽 is 1.5, and d can be calculated by the equation (5.27): 

𝛿 =
2𝑡

𝑇
                                                                                                                               (5.27) 

 

Fig. 5.9: The flowchart of the proposed DO. 
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5.7.3. Salp Swarm Algorithm 

Salp swarm algorithm (SSA) is a swarm-based algorithm, Salps are one of the marine organisms 

from the Salpidae family, with a similar appearance to jellyfish. In the procedure for foraging the 

food, the algorithm starts by randomly selecting an initial population of salps based on their fitness 

function values, archiving solutions using a roulette wheel, and updating the positions of leading 

and follower salps to ensure the best solution until an end condition is met. Modern optimization 

techniques are commonly used to solve OPF problems and have proven high performance in 

various optimization problems [136].  

For an optimization problem with n variables, the Salpi position is represented by a vector of n 

elements: 𝑥𝑖 = [𝑥𝑗
1 , 𝑥𝑗

2, . . . , 𝑥𝑗
𝑛]  

The position of the leader in the salp chain is updated by the following equation (5.28): 

𝑥𝑗
1 = {

𝐹𝑗 |𝑐1 ((𝑢𝑏𝑗𝑙𝑏𝑗)) 𝑐2| 𝑙𝑏𝑗 , 𝑐3 > 0.5

𝐹𝑗 − 𝑐1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)) 𝑐2 + 𝑙𝑏𝑗 , 𝑐3 ≤ 0.5
                                                              (5.28) 

Where; 𝑥𝑗
1, 𝐹𝑗 denotes the location of the first salp (leader) and the food source in the j th 

dimension, respectively. 

𝑢𝑏𝑗 , 𝑙𝑏𝑗 symbolize the boundaries of jth dimension, 𝑐1 , 𝑐2, and 𝑐3  are random numbers uniformly 

created between 0 and 1. In fact, they determine whether the next location in j th dimension should 

be positive or negative infinity as well as the step size.  

The coefficient 𝑐1 is the most crucial parameter in SSA because it strikes the balance between 

exploration and exploitation. It expressed by the following equation (5.30): 

𝑐1 = 2𝑒−(
4𝑙

𝐿
)
2

                                                                                                                          (5.30) 

 Where; l symbolizes the current iteration; L represents the maximum number of iterations.  

To update the location of the followers, the bellow equations are used (Newton's law of motion) 

equation (5.31): 

𝑥𝑗
𝑖 =

1

2
𝑎𝑡2 + 𝑣0𝑡                                                                                                                 (5.31)    

Where; 𝑖 ≥ 2, 𝑥𝑗
𝑖 represents the location of ith follower salp in jth dimension, t is time, 𝑣0 is the 

initial speed, and 𝑎 =
𝑉𝑓𝑖𝑛𝑎𝑙

𝑉0
 where 𝑣 =  𝑣 − 𝑥0𝑡 .  

The location of the leader is updated; the location of the followers will change according to the 

following equation (5.32): 
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𝑥𝑗
𝑖 =

1

2
(𝑥𝑗

𝑖 + 𝑥𝑗
𝑖−1)                                                                                                            (5.32) 

Where 𝑥𝑗
𝑖 refers to the location of agent i, in the jth dimension with 2 ≤  i ≤  n. The swarm 

behavior of salp chains is simulated based on the above-described mathematical formula. SSA 

solution process for optimize single objective problems are shown in the flowchart (figure (5.10)) 

 

Fig. 5.10: flowchart of SSA algorithm. 
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𝜇𝑚 = {

1 𝐽𝑚 ≤ 𝐽𝑚
min

𝐽𝑚
max−𝐽𝑚

𝐽𝑚
max−𝐽𝑚

min 𝐽𝑚
min < 𝑗𝑚 < 𝐽𝑚

max

0 𝐽𝑚 ≥ 𝐽𝑚
max

}                                                                               ( 5.33) 

 

Fig. 5.11: flowchart of the MSSA algorithm. 
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5.7.4. Thermal exchange optimization (TEO) 

The Thermal Exchange Optimization (TEO) method, introduced by Kaveh and Dadras in 2017, is 

inspired by physical phenomena to address optimization problems. This algorithm leverages the 

Newtonian law of cooling to determine the optimal solution. It operates based on the temperature-

induced behavior of objects, with positions changing as they switch between warm and cold states 

to reveal updated positions. In the TEO optimizer, search agents are divided into two groups: 

candidate search agents (cooling objects with temperatures representing optimizing variables) and 

remaining agents (representing the environment). The method involves a process that mirrors these 

behaviors to find the optimal solution [137][138]. The steps of the original TEO algorithm are 

outlined in a flowchart depicted in figure (5.12). 

The algorithm begins by initializing the temperatures for all search agents or objects, as described 

in equation (5.34) [137]. 

𝑻𝑘
0 = 𝑻𝑀𝑖𝑛 + rand𝑘 ⋅ (𝑻𝑀𝑎𝑥 − 𝑻𝑀𝑖𝑛)        k=1,………, N                (5.34) 

Where;  𝑻𝑘
0  represents the initial solution vector for the kth object,  𝑻𝑀𝑎𝑥 and 𝑻𝑀𝑖𝑛 are the upper 

and lower boundaries for the solution vector, rand𝑘 is a vector of random numbers generated 

independently for the kth object, with each component ranging between 0 and 1, 𝑁 denotes the 

number of objects or search agents [137]. 

The process involves evaluating the temperatures of all objects and arranging them in descending 

order based on their cost function values. This ensures that the first NPop  number of objects are 

maintained, equal to the number of presumed objects. The best historically obtained solution 

must be saved in thermal memory (TM) to enhance efficiency and reduce complexity. TM is 

updated with new solutions at each iteration [137].  
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Fig. 5.12: Flowchart of the TEO algorithm. 
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The Newtonian law of cooling states that the rate of heat loss from an object is directly proportional 

to the temperature difference between the object and its environment. This relationship is 

expressed in equation (5.35). 

𝑇𝑒(𝑡)−𝑇𝑒Env

𝑇𝑒0−𝑇𝑒Env
= 𝑒𝑥𝑝(−βt)                     (5.35) 

Where: 𝑇e(𝑡) refers to the new temperature at time 𝑡 after thermal exchange between an object at 

initial temperature 𝑇𝑒0 and the environment at temperature 𝑇𝑒Env. The constant 𝛽 is related on 

parameters such as heat capacity and the object's specific density. It can be noted that when 𝛽 is 

higher, the object's temperature changes less.  

𝛽 is defined to reduce the solution's cost and variance. Its value is given as follows (5.36): 

𝛽 =
𝑓𝑖

𝑓𝑚𝑎𝑥
                        (5.36) 

Where 𝑓𝑖 indicates the current object's cost and 𝑓𝑖 is the highest cost among the worst objects in 

the population. 𝑡 corresponds to the iteration number, as shown in the follow (5.37). 

𝑡 =
Iter 

 Max-Iter 
                        (5.37) 

where, Iter is the current iteration and, 𝑀𝑎𝑥 − Iter is the maximum number of iterations. 

The first of the dual mechanisms for escaping local optima involves randomizing environmental 

solutions before updating the temperature using the follow equation (5.38) [137]. 

𝑻𝑖
𝐸𝑛𝑣 = (1 − (𝐶1 + 𝐶2 × (1 − 𝑡)) ×  Rand ) × 𝑻𝑖

"Env                   (5.38) 

Where, 𝑻𝑖
"Env and 𝑻𝑖

𝐸𝑛𝑣 denote the object's temperature before and after modification, 

respectively; 𝐶1and 𝐶2 are internal control parameters; Rand is a random vector within the interval 

[0, 1]. The equation (5.39) was designed to reduce randomness as the algorithm approaches its 

final iterations, thus balancing exploitation [138]. 

𝑇𝑖
New = 𝑇𝑖

Env + (𝑇𝑖
Env − 𝑇𝑖

Old ) × exp (−𝛽 × 𝑡)                  (5.39) 

Where; 𝑇𝑖
Old and 𝑇𝑖

New denotes the prior and current temperatures of the ith object, 𝛽 and t being 

the parameters previously mentioned. 

The second mechanism for escaping local optima aims for a global optimum by introducing the 

parameter Pro within the range (0,1). This parameter determines whether a component of each 

cooling object needs replacement. For each agent, if a randomly generated number Ran(i), 
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uniformly distributed between 0 and 1, and Ran(i)<Pro, a dimension of that agent is randomly 

regenerated according to Equation (5.40) [137]: 

𝑇𝑖
j 
= 𝑇𝑗

min +  random ⋅ (𝑇𝑗
max − 𝑇𝑗

min )                                                             (5.40) 

Stopping criteria of the algorithm: The algorithm manages the maximum number of iterations. 

Upon reaching this limit, it reports the best solution found. If the limit is not reached, the algorithm 

continues and re-evaluates the temperature. The process ends after several iterations [138]. 

 Multi-objective thermal exchange optimization 

Because of the structural similarity to a single-objective TEO, only essential differences are 

mentioned briefly. The essential distinctions between the introduced MOTEO and its basic single-

objective version primarily revolve around two aspects: the arrangement of objects and the 

measurement of parameter β, which is reformulated according to Equation (5.41) [138]. 

𝛽 =
𝑟𝑖

𝑵𝑃𝑜𝑝
                       (5.41) 

Here, 𝑟𝑖 represents the final ranking of the solution, while 𝑵𝑃𝑜𝑝 is the number of populations. 

In TEO, a higher β parameter corresponds to an increased cost value of the solution (Eq. (5.36)). 

In MOTEO, each solution requires multiple cost values, unlike TEO where each solution has a 

single cost value. Consequently, a new formulation (Eq. (5.41) is proposed, which functions 

similarly. Solutions that belong to a higher rank on the Pareto front have a higher β parameter. 

The Flowchart of the figure (5.14) explain the basic of MOTEO.  

 
Fig. 5.14: Flowchart of the proposed MOTEO algorithm. 
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The remaining steps are similar to those in TEO, Further details about MOTEO can be retrieved 

from the reference [137]. 

5.7.5. Fitness Distance Balance based Artificial Ecosystem Optimization Algorithm: FBD-

AEO  

5.7.5.1. AEO algorithm  

The AEO algorithm is inspired by the natural ecosystem of Earth, mimicking the behaviors of 

living organisms to achieve ecological balance. The production, consumption, and decomposition 

are utilized as mechanisms to model the flow of energy through an ecosystem. The candidate 

solutions are depicted as producers, consumers, and decomposers, each having fitness values 

reflecting their energy levels [139]. The figure (5.15) depicted the AEO ecosystem: 

 

Fig. 5.15: An AEO ecosystem. 

the producer as the pool candidate solution with the highest energy level (𝑥1). Conversely, 

candidates with the lowest energy levels, 𝑥3 and 𝑥𝑛, represent the best individuals and labeled as 

decomposers. The remaining candidates, 𝑥2 to 𝑥7 are classified as consumers and are evenly 

distributed among herbivores (𝑥2 and 𝑥5), carnivores (𝑥4 and 𝑥6), and omnivores (𝑥3 and 𝑥7). The 

solutions are arranged in order by energy levels, with arrows indicating energy exchange among 

them.  

The next section elaborates the algorithm's operators and search process [139]. 

1. Production operator  

The objective of the operation is to lead other individuals in the population to explore various areas 

in the search space associated with the updated individual, represented as follows: 
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𝑥1(𝑡 + 1) = (1 − 𝛾)𝑥𝑛(𝑡) + 𝛾𝑥𝑟𝑛𝑑(𝑡)                                                                                 (5.42) 

Here, the population dimension is indicated by n, t is denoted the number of iterations. γ is a 

coefficient used in the linear movement. 𝑥𝑟𝑛𝑑 is the position of an individual in the search space. 

2. Operator of Consumption  

The AEO algorithm involves consumers sustaining energy flow by feeding lower-level producers. 

Positions of individuals are updated based on the worst, a randomly chosen, or a combination of 

both, using the equations (5.43) and (5.43): 

𝐶 =
1

2

𝑣1

|𝑣2|
                                                                                                                               (5.43) 

𝑣1 ∼ 𝑁(𝜇, 𝜎), 𝑣2 ∼ 𝑁(𝜇, 𝜎)                                                                                                 (5.43) 

Where, distribution 𝑁(𝜇, 𝜎) refers to a normal distribution with a mean (𝜇 = 0), and a standard 

deviation (𝜎 = 1). 

In the AEO ecosystem, different consumer types have distinct consumption patterns, which are 

considered when updating their positions. such as herbivores who exclusively feed on specific 

producers like 𝑥𝑖, as explained by the following equation (5.44) [139]: 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝐶. (𝑥𝑖(𝑡) − 𝑥1(𝑡)), 𝑖 ∈ [2, 𝑛]                                                                (5.44) 

 

When the ith consumer is a carnivore, it selects another organism with a higher energy level, chosen 

randomly from the range of 𝑥2 to 𝑥𝑖−1. The consumption process is described by equation (5.45): 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝐶. (𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)) , 𝑖 ∈ [3, 𝑛],       𝑗 = rand [2, 𝑖 − 1]                          (5.45) 

If the ith consumer is an omnivore, it consumes both the producer 𝑥1and another consumer with 

higher energy selected from the interval from 𝑥2 to 𝑥𝑖−1. as represented by the following equation 

(5.46): 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝐶 ⋅ (𝑅2 ⋅ (𝑥𝑖(𝑡) − 𝑥1(𝑡))) + (1 − 𝑅2) ⋅ (𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)) , 𝑖 ∈ [3, 𝑛], 𝑗 =

rand [2, 𝑖 − 1]   (5.46)  

Here, '𝑅2' represents a random number that falls within the range of 0 to 1. 

3. Operator for Decomposition 

      The AEO algorithm simulates the decomposition phase, where decomposers like bacteria or 

fungi break down dead organisms' remains. It introduces parameters like e and h (weight 
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coefficients) and D (decomposition factor). it updates the position of the ith individual based on 

decomposer's position, denoted 𝑥𝑛 (the best individual). This determines their next position in the 

ecosystem. This process is defined mathematically as the process of decomposition: 

𝑥𝑖(𝑡 + 1) = 𝑥𝑛(𝑡) + 𝐷 ⋅ (𝑒 ⋅ 𝑥𝑛(𝑡) − ℎ ⋅ 𝑥𝑖(𝑡)), 𝑖 = 1,… , 𝑛                                                (5.47) 

𝐷 = 3𝑢, 𝑢 ∼ 𝑁(𝜇, 𝜎), 𝜇 = 1 and  𝜎 = 1                                                                               (5.48) 

𝑒 = 𝑅3 ⋅ randi ([1,2]) − 1                                                                                                    (5.49) 

ℎ = 2 ⋅ 𝑅3 − 1                                                                                                                       (5.50) 

The steps of the AEO algorithm's pseudo code represented in reference [139]:  

5.7.5.2. FDB selection method  

The AEO algorithm was improved by incorporating the FDB selection approach. The FDB 

selection technique is a method that calculates score values based on the impact of candidates on 

finding a solution, considering fitness values (𝑋𝑏𝑒𝑠𝑡) and the distance of the population from the 

most successful solution, known as (𝑃𝑏𝑒𝑠𝑡). This approach enhances the exploration capability of 

a Metaheuristic Algorithm (MHA) during the search process. The stages of calculating score 

values using the FDB selection technique are as follows [139]: 

Stage 1: The Euclidian metric is used to determine the distance of the ith solution candidate from 

𝑃𝑖  to 𝑝best in an optimization problem of size ‘m’ and 'n', as follows: 

∀𝑃𝑖 , 𝐷𝑃𝑖
= √(𝑝𝑖[1] − 𝑝best [1])

2
+ (𝑝𝑖[2] − 𝑝best [2])

2
+ ⋯+ (𝑝𝑖[𝑚] − 𝑝best [𝑚])

2
,i=1……..n   (5.51) 

Stage 2: The distance of each individual in the ecosystem area can be explained using the vector 

𝐷𝑝 as outlined below: 

𝐷𝑃 ≡ [

𝑑1

⋅
⋅

𝑑𝑛

]

𝑛×1

                                                                                                                           (5.52) 

 

Stage 3: The FDB score is calculated by considering each individual's fitness value within the 

ecosystem and incorporating the distance vector in equation (5.52). Parameters are adjusted to fit 

within the [0, 1] interval, with normalized fitness and distance values represented by  normF  and 

normDp , in the following manner (5.53) [139]: 

𝑖=1
𝑛 ∀𝑃𝑖, 𝑆𝑃[𝑖]

= 𝑤 ∗ norm𝐹[𝑖]
+ (1 − 𝑤) ∗ norm𝐷𝑝[𝑖]

                                                             (5.53) 
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Stage 4: The FDB method employs a random or probabilistic approach to select individuals from 

the 𝑆𝑝 vector, prioritizing the superior FDB score value over the other methods. The FDB score of 

each individual can be explained by using by the vector 𝑆𝑝 as outlined in the equation (5.54): 

𝑠𝑝 ≡

[
 
 
 
 
𝑠1

⋅
⋅
⋅
𝑠𝑛]

 
 
 
 

𝑛×1

                                                                                                                           (5.54) 

5.7.5.3. FDB-AEO method 

      The FDB-AEO algorithm aims to improve the representation of natural energy flows by 

involving organisms with higher energy levels in the decomposition process. This is achieved by 

updating the positions of individuals using both organisms. A novel individual, 𝑥𝐹𝐷𝐵, was selected 

to enhance the search process within the conventional AEO algorithm through decomposition. The 

equation (5.47) was modified and tested with different variations distinct cases, as detailed in 

Table 5.1. The changes made were highlighted in Algorithm 2 marking the implementation of the 

new approach referred to as FDB-AEO [139]. 

Table. 5. 1: Mathematical representation of the FDB-AEO. 

 
Description and Mathematical representation of FDB_AEO 

 

Case 1 

The FDB method is introduced to modify Equation (5.47) from the original AEO 

algorithm, with 90% of the initial solution candidate using Equation (24). 

𝑥𝑙(𝑡 + 1) = 𝑥𝐹𝐷𝐵(𝑡) + 𝐷 ⋅ (𝑒 ⋅ 𝑥𝑛(𝑡) − ℎ ⋅ 𝑥𝑙(𝑡)), 𝑖 = 1,… , 𝑛      (5.55) 

 

Case 2 

The AEO algorithm has been modified with a new approach using the FDB method, 

replacing the second solution candidate 𝑥𝑛(𝑡) with the chosen candidate, and 

operating Equation (5.55) at 100% throughout the search process. 

 𝑥𝑙(𝑡 + 1) = 𝑥𝑛(𝑡) + 𝐷 ⋅ (𝑒 ⋅ 𝑥𝐹𝐷𝐵(𝑡) − ℎ ⋅ 𝑥𝑙(𝑡))𝑖 = 1,… , 𝑛         (5.56) 

Case 3 Equation (5.49) developed in Case-1 was executed continuously at a 100% rate 

throughout the entire search process life cycle. 

Case 4 Equation (5.56) was applied at a of 10% rate, while Equation (5.47) developed in 

Case-2 was executed at a rate of 90% during the entire search process life cycle. 
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The pseudo code of introduced method can be explanted as follow [139]: 

Algorithm 2. FDB-AEO algorithm's pseudo code is as follows:  

Begin  

Initialize the ecosystem: by randomly creating a set of  𝑋𝑖solutions  

for  𝑖 =  1: n  
      Compute the fitness values (𝑓𝑖𝑡𝑖) and determine the best solution ( 𝑋𝑏𝑒𝑠𝑡) 

end for  

while (the termination condition is not met, continue the process for a maximum fitness 

evaluation (MaxFEs) is reached.) 

the position of 𝑋1 is updated by applying the Eq (5.42) during the Production stage. 

    for 𝑖 =  2: n do during Consumption stage 

        If(rand < 1/3) the location of 𝑋𝑖is updated by applying the Eq (5.44; Herbivore)  

             Else If (1/3 <  𝑟𝑎𝑛𝑑 < 2/3 the location of 𝑋𝑖is updated by applying the Eq (5.45); 

Carnivore)  

              Else the position of 𝑋𝑖 is updated by applying the Eq (5.46; omnivore)  

             End Else If  

       End If  

   end for  

   For 𝑖 =  1: n  do  

         Compute the 𝑓𝑖𝑡𝑖 and determine 𝑋𝑏𝑒𝑠𝑡 

   end for  

   for 𝑖 =  2: n  do During Decomposition Stage  

the distance of each individual is determined by applying Eq (5.51) 

the FDB score for each individual is determined by applying Eq (5.54)  

   end for; 

Generate 𝐷𝑝 and 𝑆𝑝vectors by applying Eq (5.52) and Eq (5.54) 

   For 𝑖 =  1: n do  

the location of 𝑋𝑖 is updated by applying eq (5.55) for case-1 and eq (5.56) for case-2   

determine the fitness 𝑓𝑖𝑡𝑖 
   end for  

       the 𝑋𝑏𝑒𝑠𝑡 is updated 

end while  

Return the best solution 𝑋𝑏𝑒𝑠𝑡 

5.7.6. Fitness Distance Balance based Archimedes Optimization Algorithm: FBD-AOA  

5.7.6.1. Archimedes Optimization Algorithm (AOA) 

The AOA is one of the most promising methods among the various Physics-Inspired Optimization 

Algorithms (PIOA). It is inspired by the forces acting on objects submerged in a fluid and their 

positions within the fluid. This algorithm is developed based on Archimedes' principle, which 

states that when an object is fully or partially submerged in a fluid, it experiences an upward force 

equal to the weight of the fluid displaced by the object [139]. 
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• Algorithmic stages 

The various stages of the AOA algorithm can be mathematically detailed as bellow. 

Stage 1— initialization stage: Initialize the locations of each object applying (5.57): 

𝑂𝑖 = 𝑙𝑏𝑖 +  rand × (𝑢𝑏𝑖 − 𝑙𝑏𝑖);    𝑖 = 1,2, … ,𝑁                    (5.57) 

where 𝑂𝑖 denotes the ith object in a population of 𝑁 objects. The boundaries of the search-area are 

symbolized by 𝑙𝑏𝑖 and 𝑢𝑏𝑖, respectively. 

Initialization of the density (den) and volume (vol) for each ith object applying (5.58, 5.59): 

 den 𝑖 =  rand                           (5.58) 

 vol 𝑖 =  rand                           (5.59) 

Here, " rand " refers to the dimensional vector ‘D’ containing random numbers within the [0, 1] 

interval. 

 The initialization of the acceleration 𝑎𝑐𝑐𝑖 of ith object applying the equation (5.60): 

𝑎𝑐𝑐𝑖 = 𝑙𝑏𝑖 + 𝑟𝑎𝑛𝑑 × (𝑢𝑏𝑖 − 𝑙𝑏𝑖)                         (5.60) 

During this stage, the focus is on obtaining the initial population and identifying the best object 

with the highest fitness value.  

Stage 2—Update volumes, and densities [140] 

The volume and density of 𝑖th object are updated for the next iteration (𝑡 + 1) using the following 

formula: (5.61, 5.62): 

vol𝑖
𝑡+1 =  vol 𝑖

𝑡 +  rand × ( vol best −  vol 𝑖
𝑡)                              (5.61) 

den𝑖
𝑡+1 =  den 𝑖

𝑡 + rand × ( den best −  den 𝑖
𝑡)                              (5.62) 

Here;   vol best  , and den best represent the volume and density of the best object discovered so far, 

respectively, while "rand" denotes a random number that is uniformly distributed. 

Stage 3— Density factor and Transfer operator;  

The initial phase involves the collision of objects striving to reach a state of equilibrium. This 

process is supported by a transfer operator, denoted as TF, which facilitates transitions in the search 

space, aiming to maintain a balance between exploration and exploitation. It is defined as follows 

(5.63, 5.64): 
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𝑇𝐹 = exp (
𝑡−𝑡𝑚𝑎𝑥

𝑡𝑚𝑎𝑥
)                                   (5.63) 

𝑑𝑡+1 = exp (
𝑡𝑚𝑎𝑥−𝑡

𝑡𝑚𝑎𝑥
) − (

𝑡

𝑡𝑚𝑎𝑥
)                        (5.64) 

Where; 𝑑𝑡+1 exhibits a decreasing trend over time indicates convergence within the identified 

promising region.  

Stage 4.1—Exploration phase (collision between objects occurs) [140] 

 If 𝑇𝐹 ≤  0.5, The collision involves the selection of material (mr), and updating their acceleration 

for the next iteration (t+1) using the equation (5.65). 

𝑎𝑐𝑐𝑖
𝑡+1 =

dent𝑚𝑟+vol𝑚𝑟×𝑎𝑐𝑐𝑚𝑟

den𝑖
𝑡+1×vol𝑖

𝑡+1                                      (5.65) 

Here, the acceleration, density, and volume of a random material of ith object are represented by 

𝑎𝑐𝑐𝑚𝑟, dent𝑚𝑟 and vol𝑚𝑟 .  

Exploration is guaranteed in one-third of iterations, and using a value other than 0.5 can alter the 

equilibrium between exploratory and exploitative phases. 

Step 4.2—Exploitation phase (no collision between objects) 

If 𝑇𝐹 > 0.5, there is no collision between objects, and updating its acceleration for the next 

iteration (t+1) using the equation (5.66): 

𝑎𝑐𝑐𝑖
𝑡+1 =

 den best + vol best ×𝑎𝑐𝑐best 

den𝑖
𝑡+1×vol𝑖

𝑡+1                      (5.66) 

where 𝑎𝑐𝑐best  is the acceleration of the best object. 

Step 4.3— normalization the acceleration 

 To determine the percentage of change, it is necessary to standardize the acceleration applying 

equation (5.67).  

𝑎𝑐𝑐𝑖− norm 
𝑡+1 = 𝑢 ×

𝑎𝑐𝑐𝑖
𝑡+1−𝑚𝑖𝑛(𝑎𝑐𝑐)

𝑚𝑎𝑥(𝑎𝑐𝑐)−𝑚𝑖𝑛(𝑎𝑐𝑐)
+ 𝑙                         (5.67) 

In this context, the normalization range is defined by the upper (𝑢) and lower ( 𝑙) limits set to 0.9 

and 0.1 respectively.  

The percentage of step that each agent will change is determined by acci−norm
t+1 . A high acceleration 

value indicates that the 𝑖th object is far from the global optimum, and in the exploration phase. 

Otherwise, the object is in the exploitation stage. 
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Stage: 5- Updating the position 

 If  𝑇𝐹 ≤  0.5  (during the exploratory stage), the next locations of the ith object at iteration 𝑡 +

1 applying the equation follow (5.68): 

𝑋𝑖
𝑡+1 = 𝑋𝑓𝑎𝑏 + 𝐶1 ∗  rand ∗ accnorm 𝑖

⋅∗ (𝑋rand − 𝑋i 
𝑡)                        (5.68) 

where 𝐶1 denotes a constant equal to 2, the current normalized acceleration value is represented 

by the parameter accnorm 𝑖
 

However, if 𝑇𝐹 >  0.5 (during the exploitative stage), the positions of the objects are updated 

by applying the equations (5.69, 5.70).  

𝑋𝑖
𝑡+1 = 𝑋best 

𝑡 + 𝐹 × 𝐶2 ∗  rand ∗ 𝑎𝑐𝑐𝑖− norm 
𝑡+1 ∗ 𝑑.∗ (𝐶3 ∗ 𝑇𝐹 ∗ 𝑋best 

𝑡 − 𝑋𝑖
𝑡)                  (5.69) 

or 

𝑋𝑖
𝑡+1 = 𝑋best 

𝑡 − 𝐹 × 𝐶2 ∗  rand ∗ 𝑎𝑐𝑐𝑖− norm 
𝑡+1 ∗ 𝑑.∗ (𝐶3 ∗ 𝑇𝐹 ∗ 𝑋best 

𝑡 − 𝑋𝑖
𝑡)                 (5.70) 

Where, 𝑋𝑖
𝑡 is referred to the location of the object at the tth iteration that has the ith solution; while 

the object which has the best placement is represented by 𝑋best 
𝑡 .  

The optimal values for AOA are achieved through three parameters: 𝐶1, 𝐶2, and 𝐶3. AOA uses the 

transfer operator TF to transition from the exploration to the exploitation stage [140]. 

F denotes the flag that can be used to alter the direction of motion applying the equation (5.71): 

𝐹 = {
+1 if 𝑃 ≤ 0.5
−1 if 𝑃 > 0.5

                               (5.71) 

where 𝑃 =  2 ×  𝑟𝑎𝑛𝑑 − 𝐶4 

Step 6—Evaluation  

The objects must be evaluated based on the fitness function 𝑓, and the best solution found so far 

must be recorded. should be assigned accordingly by 𝑋best 
𝑡 , 𝑑𝑒𝑛best , 𝑣𝑜𝑙best , and 𝑎𝑐𝑐best  . 

5.7.6.2. FBD-AOA: Fitness Distance Balance based AOA  

The exploitation task in AOA is achieved through equations (69, 70), refers to the optimal material 

from the set of objects, focusing on intensification around 𝑋best 
𝑡  without collisions between objects. 

Equation (68) uses a vector 𝑋rand , selected randomly from available materials, to enhance diversity 

process. The search performance of AOA is influenced by the locations of the guide objects in the 

equations (68,69 and 70). Analysis of these equations reveals that three distinct objects 𝑋𝑖
𝑡, 

𝑋best 
𝑡 and 𝑋rand  lead the search proceed in AOA [141]. 
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In AOA, the denoted as the first of these three leaders, which is the object chosen from among 

the population members in a sequential manner: 

𝑋𝑖
𝑡, is chosen sequentially from the population. 

the 𝑋rand , is chosen randomly. 

𝑋best 
𝑡  has the optimal fitness value. 

The Fitness-Distance Balance (FDB) technique is used to effectively select vectors that guide the 

search process in population-based metaheuristic algorithms. This allows for redesigning 

convergence equations for neighborhood search and diversity tasks in AOA, using the FDB-based 

guidance process. Equations (5.69, 5.70) crucial for AOA's convergence have been modified to 

include this mechanism. The vector chosen by the FDB selection mechanism replaces some of the 

𝑋𝑖
𝑡, 𝑋rand and 𝑋best guides in these equations to improve exploitation and exploration phases. 

Table. 5. 2: Mathematical explanations of variations of FDB-AOA 

 Explanation Convergence equations revamped by utilizing the FDB-based leader 

selection method 

Case-1  

 
𝑋i 

𝑡 ← 𝑋fbd 
𝑡  𝑋𝑖

𝑡+1 = 𝑋fbd 
𝑡 + 𝐶1 ∗  rand ∗ 𝑎𝑐𝑐𝑖− norm 

𝑡+1 ∗ 𝑑.∗ (𝑋rand − 𝑋𝑖
𝑡) 

𝑋best 
𝑡 ← 𝑋fbd 

𝑡  𝑋𝑖
𝑡+1 = 𝑋fbd 

𝑡 + 𝐹 × 𝐶2 ∗  rand ∗ 𝑎𝑐𝑐𝑖− norm 
𝑡+1 ∗ 𝑑.∗ (𝐶3 ∗ 𝑇𝐹 ∗ 𝑋best 

𝑡 − 𝑋𝑖
𝑡) 

𝑋𝑖 ← 𝑋fbd 
𝑡  𝑋𝑖

𝑡+1 = 𝑋fbd 
𝑡 − 𝐹 × 𝐶2 ∗  rand ∗ 𝑎𝑐𝑐𝑖− norm 

𝑡+1 ∗ 𝑑.∗ (𝐶3 ∗ 𝑇𝐹 ∗ 𝑋best 
𝑡 − 𝑋𝑖

𝑡) 

Case-2  
𝑋i 

𝑡 ← 𝑋fbd 
𝑡  𝑋𝑖

𝑡+1 = 𝑋fbd 
𝑡 + 𝐶1 ∗  rand ∗ 𝑎𝑐𝑐𝑖− norm 

𝑡+1 ∗ 𝑑.∗ (𝑋rand − 𝑋𝑖
𝑡) 

𝑋best 
𝑡 ← 𝑋fbd 

𝑡  𝑋𝑖
𝑡+1 = 𝑋fbd 

𝑡 + 𝐹 ∗ 𝐶2 ∗  rand ∗ 𝑎𝑐𝑐𝑖− norm 
𝑡+1 ∗ 𝑑 ⋅∗ (𝐶3 ∗ 𝑇𝐹 ∗ 𝑋best 

𝑡 − 𝑋𝑖
𝑡) 

 

Case-3 

 

𝑋i 
𝑡 ← 𝑋fbd 

𝑡  𝑋𝑖
𝑡+1 = 𝑋𝑓𝑎𝑏 + 𝐶1 ∗  rand ∗ 𝑎𝑐𝑐𝑖− norm 

𝑡+1 ∗ 𝑑 ⋅∗ (𝑋rand − 𝑋𝑖
𝑡) 

𝑋best 
𝑡 ← 𝑋fbd 

𝑡  𝑋𝑖
𝑡+1 = 𝑋𝑓𝑑𝑏 + 𝐹 ∗ 𝐶2 ∗  rand ∗  𝑎𝑐𝑐𝑖− norm 

𝑡+1 ∗ 𝑑 ⋅∗ (𝐶3 ∗ 𝑇𝐹 ∗ 𝑋best 
𝑡 − 𝑋𝑖

𝑡) 

𝑋best 
𝑡 ← 𝑋fbd 

𝑡  𝑋𝑖
𝑡+1 = 𝑋fbd 

𝑡 − 𝐹 ∗ 𝐶2 ∗  rand ∗   𝑎𝑐𝑐𝑖− norm 
𝑡+1 ∗ 𝑑 ⋅∗ (𝐶3 ∗ 𝑇𝐹 ∗ 𝑋best 

𝑡 − 𝑋𝑖) 

Upon examining Table 5.2, it becomes clear that three distinct variations of FDB-AOA were 

generated and labeled as the cases (1 to 3). To achieve this, these variations were utilized to assign 

certain guide locations in equations (5.68, 5.69 and 5.70) utilizing the FDB method [141]. 

 The framework of the pseudo code of the proposed FBD-AOA method  

Input: The size of the population:   N, the maximum number of iterations Max_Iter, 𝐶1, 𝐶2, 

𝐶3 and 𝐶4    

Output: Optimal solution;  

Initialize: create a population of objects by randomly assigning their positions, densities, and 

volumes, respectively;  

Acceleration (acc) of each object is created randomly on D-dimensional search space 

Calculate the fitness value for each object; 
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Find the best solution  𝑋𝑖
𝑡, 𝑋𝑏𝑒𝑠𝑡

𝑡   and  𝑋rand  by using the equation of Case1, Case 2, and Case 

3; 

Evaluate The starting population will be analyzed and the individual with the highest fitness 

value will be selected.;  

Set iteration counter t = 1  

while Iter ≤ Max_Iter & FEs ≤  MaxFEs do  

for each object i do  

Density and volume of each object can be updated using the following equations: (61,62); 

Updating the transfer and density reducing factors TF and d; applying (63,64); 

if  Iter ≤ T F ≤  0.5 then 

Exploration stage;  

Updating and normalize acceleration by utilizing equation (65) to ensure accurate results;  

Updating the locations; by using the equation of Case1, Case 2, and Case 3;  

else  

Exploitation stage; 

Updating and normalize acceleration to ensure accurate results by utilizing equation (65,66); 

Updating the direction flag F (71);  

Updating the location by using the equation of Case1, Case 2, and Case 3; 

End 

end  

Evaluate Assuming a fitness function is in place, assess each item and choose the one with 

the highest fitness value;  

Set   FEs = FEs + 1 ; 
Set t = t + 1 ;  
end  

Return the global optimum solution 𝑋best  

5.8. Other’s multi-objective method for solving OPF 

        Some multi-objective algorithms have been suggested for solving the OPF problem 

comprising two or more fitness functions like the non-dominated sorting genetic algorithm 

(NSGA-III) [142], multi-objective particle swarm optimization (MOPSO) [143]. In [144], 

a powerful and stable method called the Multi-Objective Adaptive Guided Differential Evolution 

(MOAGDE), was used for solving the MOOPF, and can find the best Pareto optimum solutions. 

In [145] a recent multi-objective version named Improved Multi-Objective Manta-Ray Foraging 

Optimization (IMOMRFO), this method has the ability to achieve the best compromise solution 

with high efficiency, and precision... etc. These modern optimization techniques can mostly be 

used to solve the OPF problem and have proven their high performance in several power-

engineering optimization problems. In our work, highly effective optimization methods are 

required. Some new and efficient metaheuristic techniques have been proposed with the aim is 

solving the classical OPF problem, also OPF considers stochastic renewable energies and FACTS 

technology. These algorithms namely;  
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5.9. Conclusion 

This chapter represent optimization methods are essential tools for identifying the best solutions 

to complex problems across various domains. Partially an overview about the global optimization 

method, not to mention the classification of optimization methods. In the present work, we are 

interested in simple and hybrid metaheuristic methods for solving the optimal power flow problem 

we detail some of them, which will be used for solving the optimal power in the electrical 

transmission network. In the following chapter, we will present the application of recent 

optimization algorithms for solving some problem in electrical fields, like the optimization the 

electrical parameters of PV models, also for solving the optimal power flow problem. 
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6.1. Introduction 

Metaheuristics are considered a powerful tool to assist in solving difficult optimization 

problems. This chapter focuses on the practical application of optimization algorithms to 

address various problems in the electrical field. The chapter is organized into three phases: The 

first application involves estimating the electrical parameters of PV panel models. The second 

application addresses the OPF for both single and multi-objective scenarios in two systems: the 

IEEE 30-bus system and the Algerian electrical transmission network DZA-114 bus. The third 

application solves the OPF with the integration of renewable energies and FACTS devices in 

both electrical networks mentioned previously. All conducted results within a uniform 

computational condition, utilizing an HP PC with an Intel(R) Core (TM) i5-1035 G1 CPU, 8 

GB of RAM, running on the Windows 10 64-bit operating system, and employing MATLAB 

2021a. The system also included a 256 GB hard drive. 

6.2. Application 1: Estimation of the PV panels parameters 

The accurate and reliable identification of photovoltaic (PV) parameters is essential for the 

effective utilization of PV panel energy. This part proposes a novel optimization approach 

named Dandelion Optimizer (DO) Algorithm, that operates in conjunction with the Newton-

Raphson method, creating a robust approach for extracting PV parameters panels. Nevertheless, 

the task of identifying PV parameters is commonly recognized as multimodal, presenting a 

complex optimization challenge. metaheuristic algorithm capable of efficiently addressing and 

mitigating the limitations associated with solar cell parameters, the results have been validated 

in the reference [146].  

6.2.1. Problem statement of estimation of Parameter for PV Solar cell Models   

The process of determining the PV parameters has become an optimization problem, that aims 

to reduce the disparity (error) between the kth point measured and simulated current values. The 

Root Mean Square Error (RMSE) is frequently employed as a fitness function; it can be 

expressed by the following equation (6.1) [147]: 

𝑚𝑖𝑛ℎ(𝑥) = 𝑅𝑀𝑆𝐸(𝑋) = √
1

𝑁
∑  𝑁

𝑘=1 (𝐼𝐾
𝑚𝑒𝑎𝑠 − 𝐼𝐾

𝑠𝑖𝑚)
2
                                                         (6.1) 

Where N indicates the number of measured data I-V data, 𝐼𝐾
𝑠𝑖𝑚is the simulated current value, 

and 𝐼𝐾
𝑚𝑒𝑎𝑠is the measured current value.  
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Consequently, for the PV solar cell models, the error function values 𝑓(𝑉𝐿 ⋅ 𝐼𝐿 ⋅ 𝑿) can be 

expressed as following equations (6.2) and (6.3) [147]: 

• For SDM 

{
𝑓(𝑉𝐿 ⋅ 𝐼𝐿 ⋅ 𝑿) = 𝐼𝑝ℎ − 𝐼𝑠𝑑 (exp(

𝑉𝐿+𝑅𝑠𝐼𝐿𝑁𝑆

𝑛𝑁𝑠
𝑘𝑇

𝑞

) − 1) −
𝑉𝐿+𝑅𝑆𝐼𝐿𝑁𝑆

𝑅𝑠ℎ𝑁𝑠
− 𝐼𝐿

𝑋 = {𝐼𝑝ℎ ⋅ 𝐼𝑠𝑑 ⋅ 𝑅𝑆 ⋅ 𝑅𝑠ℎ ⋅ 𝑛}

                                   (6.2) 

• For DDM 

{,
𝑓(𝑉𝐿 ⋅ 𝐼𝐿 ⋅ 𝑋) = 𝐼𝑝ℎ − 𝐼𝑠𝑑1 (exp(

𝑉𝐿+𝑅𝑆𝐼𝐿

𝑛1
𝑘𝑇

𝑞

) − 1) × 𝐼𝑠𝑑2 (exp(
𝑉𝐿+𝑅𝑆𝐼𝐿

𝑛2
𝑘𝑇

𝑞

) − 1) −
𝑉𝐿+𝑅𝑆𝐼𝐿

𝑅𝑠ℎ
− 𝐼𝐿

𝑋 = {𝐼𝑝ℎ ⋅ 𝐼𝑠𝑑1 ⋅ 𝐼𝑠𝑑2 ⋅ 𝑅𝑆 ⋅ 𝑅𝑠ℎ ⋅ 𝑛1 ⋅ 𝑛2}

     

                                                                   (6.3) 

The function involves quantifying the overall error between the observed and simulated current 

using the root mean square error (RMSE). can be also formulated as follow (6.4) [146] 

𝑅𝑀𝑆𝐸(𝑿) = √
1

𝑁
∑  𝑁

𝑘=1 𝑓(𝑉𝐿 ⋅ 𝐼𝐿 ⋅ 𝑿)2                                                                               (6.4) 

X indicates a vector that summarizes the unknown parameters to be determined.  

6.2.2. Experimental results for the PV solar cell parameter 

The Dandelion Optimizer (DO) Algorithm is investigated to identify the parameters for solar 

PV models in limited benchmark case studies of optimization, including the RTC France silicon 

solar cell with both types SDM and DDM. The effectiveness of the current leading method 

(DO) algorithm, is evaluated by comparing it against two other well-established and powerful 

metaheuristic techniques to assess the performance, such as the genetic algorithm (GA), Particle 

Swarm optimizer (PSO) algorithm. The simulation results demonstrate the superiority and 

reliability of the proposed method to other reported comparative approaches. Consequently, it 

is evident that (DO) stands out as a highly effective approach for precisely extracting the 

parameters of PV solar cells/panels models. 

6.2.2.1. Optimization process of Metaheuristic Algorithm 

To determine the parameters of solar PV cells, the DO technique is applied to minimize the 

fitness function (RMSE) described in equation (6.1). During optimization and fitness function 

computation, the Newton-Raphson technique utilizes DO to acquire the solar PV cell 
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parameters. Subsequently, the Newton-Raphson method addresses the equation described in 

equations (6.2), (6.3) at a specific voltage, resulting in a substantially reduced absolute error in 

the output current. The optimization process represents in the figure (6.1): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.1: Optimization process for extracting the parameters of solar PV cells. 

The corresponding table (6.1) represent the Parameters boundaries of the standard R.T.C 

France solar cell for both types of PV cell models: single-diode and double-diode. The dataset 

The measurement 

Current/Voltage data 

Fitness Function 

RMSE  

Optimization methods using 

MATLAB 

𝑹𝑴𝑺𝑬(𝑿) = ඩ
𝟏

𝑵
∑  

𝑵

𝒌=𝟏

(𝑰𝑲
𝒎𝒆𝒂𝒔 − 𝑰𝑲

𝒔𝒊𝒎
)
𝟐
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technique 

Single diode Model 

{𝑰𝒑𝒉 ⋅ 𝑰𝒔𝒅 ⋅ 𝑹𝑺 ⋅ 𝑹𝒔𝒉 ⋅ 𝒏} {𝑰𝒑𝒉 ⋅ 𝑰𝒔𝒅𝟏 ⋅ 𝑰𝒔𝒅𝟐 ⋅ 𝑹𝑺 ⋅ 𝑹𝒔𝒉 ⋅ 𝒏𝟏 ⋅ 𝒏𝟐} 

GA 
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Double diode Model 

MATLAB 2021 a 

 

Comparative study 
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comprised 26 pairs of experimental data points, representing current and voltage under 

conditions of 33 °C temperature and 1000 W/m² irradiance [147]. 

Table. 6.1: the Parameters boundaries of SDM and DDM PV model’s Parameters boundaries.   

Parameters Single Diode Parameters Double Diode 

Lower-

Bound 

Upper-Bound Lower-Bound Upper-

Bound 

𝑰𝒑𝒉(𝑨) 0 1 𝑰𝒑𝒉(𝑨) 0 1 

𝑰𝒔𝒅(µ𝑨) 0 1 𝑰𝒔𝒅𝟏/𝑰𝒔𝒅𝟐(µ𝑨) 0 1 

𝑹𝑺(Ω) 0 0.5 𝑹𝑺(Ω) 0 0.5 

𝑹𝑺𝒉(Ω) 0 200 𝑹𝑺𝒉(Ω) 0 200 

n 1 2 𝒏𝟏/𝒏𝟐 1 2 

To demonstrate the performance of the presented algorithm (DO), in extraction the PV 

parameters of solar cell model the optimized results have been compared with 2 well-known 

algorithms, such as GA and PSO. To obtain a logical comparison, the results of the three 

approaches were compared under a similar condition as illustrates in the table (6.2).  

Table. 6.2:  Parameter Settings of The Proposed Algorithms. 

Algorithm Parameters Value 

All algorithms Population size 50 

Maximum iterations 1000 

DO 𝛼 [0, 1] 

k [0, 1] 

 

PSO 

Local Weight (c1) 1.2 

Local Weight (c2) 1.4 

Inertia Weight (w1) 0.5 

Inertia Weight (w2) 0.9 

GA Selection type roulette 

mutation 0.8 

Crossover 0.6 

6.2.2.2. Optimization Results of PV parameters 

A. Case 1: Results of the Single Diode model (SDM)  

The table (6.3) displays the simulation results, presenting the best values of the five extracted 

parameters {𝐼𝑝ℎ, 𝐼𝑠𝑑,𝑅𝑠, 𝑅𝑠ℎ,𝑛} that must be calculated. Since no information regarding the 

parameter values is provided, the RMSE value serves as an indicator to assess the accuracy of 

the extracted parameters. According to the results, the proposed method (DO) technique 

achieved the best RMSE value of 7.78921e-04, were followed by PSO and GA.  
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The figure (6.2) describes a comparison between the convergence graphs of the fitness function 

(RMSE) obtained by each optimization algorithms for a single diode model. 

Table. 6.3: Comparison results among three methods on SDM. 

Algorithm GA PSO DO 

𝑰𝒑𝒉(𝑨) 0.7596 0.7609 0.760745 

𝑰𝒔𝒅(µ𝑨) 0.2241 0.2104 0.330135 

𝑹𝑺(Ω) 0.0384 0.0383 0.0362889 

𝑹𝑺𝒉(Ω) 68.3404 46.2915 54.5641 

m 1.4449 1.4392 1.48338 

RMSE 1.3682e-3 9.7962e-04 7.78921e-04 

 

Fig. 6.2: Convergence curves of the RMSE for SDM. 

This figure (6.2) distinctly demonstrates that the DO algorithm converges to the best solutions, 

showcasing its superior accuracy compared to other algorithms. This firmly establishes that 

parameter extraction using the presented method achieves higher accuracy compared to other 

methods. It can be seen that the best optimal solution obtained by dandelion optimizer 

algorithm. The comparison between the others algorithm show that DO converges quicker than 

the other metaheuristic techniques and continues to exploit the global optimum value to achieve 

better convergence with an accuracy. it can successfully converge to the optimal value of RMSE 

in the case of a SDM and the composition of convergence demonstrates the efficiency of 

reported method to a certain extent. In addition, the extracted parameters can be used to Improve 

modeling real solar power plants. The best PV parameters obtained from FDB-AEO are utilized 

to plot I-V and P-V graphs. 
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The figures (6.3 (a)) and (6.3 (b)) depict the comparison of simulated and measured current-

voltage (I-V) and power-voltage (P-V) curves, respectively, obtained with the single-diode 

model. 

 

Fig. 6.3 (a):  I-V curves with the measured and estimated data for SDM. 

 

Fig. 6.3 (b): P-V curve with the measured and estimated data for SDM. 

These figures demonstrate that the simulated results values achieved by DO are showcasing 

highly consistent I-V and P-V curves. This reveals that the parameters of the SDM predicted 

by DO are more accurate than the two others metaheuristic methods. It's unnecessary to mention 

after these results, as the optimized parameters achieved clearly demonstrate that the simulated 

data generated by DO were extremely close to the experimental dataset.  Which confirm that 

best extract PV parameters of the SDM among the two others optimization approaches. 
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B. Case 1: Results of the Single Diode model (SDM)  

In this case, The DDM, in contrast to the SDM, requires the identification of seven parameters 

that must be extracted. The simulation results for the DDM displays in the table (6.4), which 

including the seven extracted parameters {𝐼𝑝ℎ,𝐼𝑠𝑑1,𝐼𝑠𝑑2, 𝑅𝑆 , 𝑅𝑆ℎ, 𝑛1 ,𝑛2}, and the RMSE 

values of the comparing techniques on the DDM. It can be observed that the proposed DO 

obtained the lowest value of fitness function (RMSE) as a value (9.8666e-04) among the other 

methods. 

Table. 6.4: Comparison Results Among Different Algorithms on DD Model. 

Algorithms GA PSO DO 

𝐼𝑝ℎ(𝐴) 0.7615 0.7608 0.76077 

𝐼𝑠𝑑1(µ𝐴) 0.8020 -0.0829 0.0891729 

𝐼𝑠𝑑2(µ𝐴) 0.2953 0.3466 0.302307 

𝑅𝑆(Ω) 0.0355 0.0363 0.0365362 

𝑅𝑆ℎ(Ω) 51.6081 53.6593 54.548 

N1 1.9987 1.4869 1.41558 

N2 1.4780 1.8459 1.55766 

RMSE 1.26159e-3 9.8680e-04 9.8666e-04 

the convergence graphs of the best fitness function (RMSE) obtained by the presented algorithm 

compared for each three tested methods is illustrated in the figure (6.4). 

 

Fig. 6.4: Convergence curves of the RMSE for DDM 
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from this figure it can be noticed that the best solutions have been achieved by using the DO, 

these results reveal that Only DO algorithm can find better solutions at a faster rate than the 

comparison of the two other methods (GA, PSO), demonstrating DO's great capacity to achieve 

the best optima. Through using the best model that extract by DO. Furthermore, the best 

parameter extract with the presented method is better than the others method, which used for 

plotting I-V and P-V curves.  

The DDM's I-V and P-V characteristic graphs can be illustrate in figures (6.5 (a), 6.5 (b)). 

Besides. These figures demonstrate that the measured and simulated data produce highly 

consistent I-V and P-V curves, revealing the best PV parameters of the DDM model predicted 

by DO more accurate.  

 

Fig. 6.5 (a).  I-V curves with the measured and estimated data for DDM 

 

Fig. 6.5 (b) P-V curve with the measured and estimated data for DDM 
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This part presents the application of a new metaheuristic technique, namely Dandelion 

Optimizer (DO) Algorithm for extracting PV module parameters through optimization 

methods. The suggested DO technique can provide efficient results compared to other 

techniques, extracting the parameters of each PV model with high accuracy, precision, and 

rapidity. Furthermore, the collection of photovoltaic model parameters aims to enhance the 

control of real solar power plants. However, the extracted parameters can be applied for 

Improving the modulization of real solar power plants. 

6.3. Application 2: optimal power flow (OPF) 

The problem of optimal power flow (OPF) is classified into two categories: single-objective 

problem (OPF) and multi-objective problem (MOOPF). The treated objective functions include 

fuel cost, gas emissions, power losses, and voltage deviations.  the first section aims to enhance 

the performance of the IEEE 30-bus network and the Algerian network using global 

optimization methods.  

6.3.1. Application 2.1: electrical transmission network IEEE 30-bus test system 

The first section aims to examine the performance of the proposed thermal exchange 

optimization (TEO) algorithm in solving the OPF problems with both types, the IEEE 30-bus 

electrical transmission network is taken as a tested network. For the single-OPF problems, five 

other powerful optimization methods used to compare the obtained results by the proposed 

TEO, like fitness distance balance-based Archimedes optimization algorithm (FDB-AOA) 

FDB-based artificial ecosystem optimization (FDB-AEO); salp swarm algorithm (SSA); 

Particle Swarm Optimization (PSO); and Genetic Algorithms (GA). For the MOOPF, the 

recent multi-objective version of thermal exchange optimization (MOTEO) algorithm, are used 

for solving the multi-objective OPF compared with, improved multi-objective manta-ray 

foraging optimization (IMOMRFO); Dynamic Switched Crowding Mult objective- Adaptive 

Guided Differential Evolution Algorithm (DSC-MOAGDE); multi-objective salp swarm 

algorithm (MSSA); multi-objective particle swarm optimization (MOPSO); and multi-

objective genetic algorithm (MOGA), those results validated in the article with reference[123]. 
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 Overview of The IEEE 30-bus Test System: 

The specific data for this test system are provided in table (6.5), the table (6.6) present the cost 

and emission generator coefficients, along with the boundary limits for output generation power 

boundary limits. The figure (6.6) shows the topology of the IEEE 30-bus test system [148]. 

Table. 6.5: Detailed Information on the IEEE 30-bus test system 

Element Quantity Details 

Buses-number  30 - 

Branches-number  41 - 

generators-number 6 Slack-Bus is 1/ 2/ 5/ 8/ 11 and 13 

capacitors-number 9 buses: 10 and 24 

Transformer with tap changer 4 branches: 11/ 12/ 15 and 36 

Total power 

demand 

Active-power - 283,4 MW 

Reactive-power - 126,2 MVAR 

Load-buses 24 - 

Table. 6.6: Cost and Emission Coefficients of Generating Units in the IEEE 30-bus System 

Bus 𝒄𝒊 𝒃𝒊 𝒂𝒊 𝜸 . 10-2 𝜷. 10-4 𝜶. 10-6 𝝃. 10-4 𝝀. 10-2 𝑷𝑮𝒊

𝒎𝒊𝒏 𝑷𝑮𝒊

𝒎𝒂𝒙 

1 0.00375 2 0 4.091 -5.554 6.49 2.0 2.857 50 200 

2 0.0175 1,75 0 2.543 -6.047 5.638 5.0 3.333 20 80 

5 0.0625 1 0 4.258 -5.094 4.586 0.01 8.0 15 50 

8 0.00834 3.25 0 5.326 -3.55 3.38 20.0 2.0 10 35 

11 0.025 3 0 4.258 -5.094 4.586 0.01 8.0 10 30 

13 0.025 3 0 6.131 -5.555 5.151 10.00 6.667 12 40 
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Fig. 6.6: Schema of IEEE 30-bus test-system. 

• Numerical Results and Discussions 

To ensure a rational comparison, all simulation cases and algorithms were compared under 

identical conditions. The parameter settings for the algorithms are detailed in the table (6.7). 

Table. 6.7: Internal parameters settings of the algorithms. 

 The name of Algorithm Parameters Value 

 All algorithms Population size 20 

Maximum iterations 200 

S
in

g
le o

b
jectiv

e 

TEO C1 1.2 

C2 2.2 

FDB_AOA The default parameters settings of the algorithm 

FDB_AEO The default parameters settings of the algorithm 

SSA C1 [0, 1] 

C2 Rand () 

C3 Rand () 

PSO Inertia-Weight (w1) 0.5 

Inertia-Weight (w2) 0.9 

Local-weight (C1) 1.2 

Local-weight (C2) 1.4 

GA Selection type roulette 

Crossover 0.8 

mutation 0.14 
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m
u

lti-o
b

jectiv
e 

MOTEO C1 1.2 

C2 2.2 

Percentage of Crossover 0.7 

Percentage of Mutation 0.4 

Mutation 0.02 

IMOMRFO The default parameters settings of the algorithm 

DSC-MOAGDE The default parameters settings of the algorithm 

MSSA The default parameters settings of the algorithm 

MOPSO c1 1.2 

c2 1.4 

Beta 0.1 

Lambda 0.9 

w 1 

wdamp 0.95 

MOGA The default parameters settings of the algorithm 

For each case, the optimized-results include the optimal settings of the control variables, total 

fuel cost (TFC), total emission gas (TEG), active power losses (APL), and voltage deviation 

(VD). Table (6.8) represents the all cases addressed in this part of research. 

Table. 6.8: cases addressed in this research. 

case n°  fitness Functions 

case 1 Total Fuel Cost (TFC) 

case 2 Total Emission Gas (TEG) 

case 3 Active Power losses (APL) 

case 4 Voltage Deviation (VD) 

case 5 TFC and TEG simultaneously 

      case 6 TFC and APL simultaneously 

case 7 APL and VD simultaneously 

case 8 TFC, TEG, and APL simultaneously 

6.2.1.1. Single-Objective OPF problem: IEEE 30-bus 

The effectiveness of the proposed TEO was initially assessed by applying it to single-objective 

OPF problems. The summary of the simulated-results for each test case is provided in table 

(6.9). 

Table. 6.9: The summary of the simulated-results of the TEO on for addressing single-objective OPF. 

𝑷𝑮𝒊 (MW) case 4 case 3 case 2 case 1 

𝑷𝑮𝟏 173.1889 51.9111 70.1690 176.4878 

𝑷𝑮𝟐 71.4215 79.9957 71.4234 48.8374 

𝑷𝑮𝟓 15.0800 49.9983 49.1068 21.4310 

𝑷𝑮𝟖 11.4022 34.9973 34.6021 21.9482 

𝑷𝑮𝟏𝟏 10.7081 29.9984 28.2083 12.1969 

𝑷𝑮𝟏𝟑 12.0000 39.9968 33.8037 12.0000 

Total fuel cost ($/h) 815.1328 968.5297 929.7806 802.3607 



    Chapter 6: Applications and Results  

 

132 

 

 

To showcase the superiority of the TEO algorithm, its simulated-results were compared with 

other algorithms, such as the FDB-AOA, FDB-AEO, SSA, PSO, and the GA. These 

comparisons have proven the effectiveness of TEO in solving single-objective OPF problems 

on the IEEE 30-bus electrical network. In this section, these cases are discussed: 

• Case 1: Minimization of the Total fuel cost (TFC (MW)): 

In the initial case, the TFC was chosen as the fitness function. The simulation results, as shown 

in table (6.10), compare the presented technique (TEO) with other methods. The values for the 

best TFC were nearly the same across all methods. Notably, the value of TFC obtained by TEO 

is 802.3607 $/h while requiring less execution time. The convergence characteristics for TFC 

fitness function using TEO and other algorithms are depicted in figure (6.7). 

Table. 6.10: The optimized-results of the proposed TEO method and others: Case 1. 

PG𝐢 (MW) TEO FDB-AOA FDB-AEO SSA PSO GA 

PG1 176.4878  176.9304  176.6824    176.8127 178.2879 172.7648 

PG2 48.8374   49.5669      48.8565   48.7627 48.5015 52.0187 

PG5 21.4310   21.3281     21.5157  21.5116 21.4564 22.9486 

PG8 21.9482   20.5942     21.6382  21.7192 20.2835 20.9285 

PG11 12.1969   12.5504     12.2217  12.1158 11.9820 10.8531 

PG13 12.0000   12.0000   12.0013 12.0000 12.5260 13.2136 

Total fuel cost 

($/h) 

802.3607 

 

802.3883 802.3604 802.3603 802.4219 

 

802.8716 

 

Total Emission gas 

(ton /h) 

0.3665 0.3678   0.3671 0.3674 0.3715 

 

0.3544 

 

Total Active power 

losses (MW) 

9.5012 9.5700   9.5157 9.5220 9.6373 

 

9.3273 

 

𝝙V (p.u) 0.6829 0.6829     0.6828 0.6827 0.6823 0.6817 

CPU-time (sec) 16.9921 18.5131   17.3033 17.5517 18.2526 22.7751 

 

Emission gas (ton/h) 0.3673 0.2216 0.21929 0.3665 

Active power losses (MW) 10.4008 3.4976 3.9134 9.5012 

𝝙V (p.u) 0.67514 0.7237 0.7219 0.6829 

CPU-time (sec) 17.0174 17.2302 17.28617 16.9921 
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Fig. 6.7: Convergence behaviors for minimization of TFC: Case 1: IEEE 30-bus. 

• Case 2: Minimization of total emission gas (TEG): 

The second case was chosen the total emission gas (TEG) as a fitness function. The simulation 

results obtained through the presented technique (TEO), compared with other methods are 

shown in table 6.11. It was observed that TEO achieved the highest reduction in TEG, with a 

value of 0.2137 ton/h, compared with to other techniques, while requiring less execution time. 

The convergence characteristics for minimizing TEG using the presented algorithm and the 

others’ compared algorithms are illustrated in figure (6.8). 

Table. 6.11: The simulated-results of the proposed TEO method and others: Case 2. 

PG𝐢 (MW) TEO FDB-AOA FDB_AEO SSA PSO GA 

PG1 70.5539 68.3633    68.2291 68.1098 68.8179 70.1690 

PG2 68.2759    72.2541   71.3491 71.2237 70.9642 71.4234 

PG5 50.0000    49.9968   49.9992 50.0000 50.0000 49.1068 

PG8 35.0000    34.9782  34.9990 35.0000 35.0000 34.6021 

PG11 30.0000    29.9980  29.9988 30.0000 30.0000 28.2083 

PG13 33.4010    31.6380 32.6383 32.8757 32.4405 33.8037 

Total fuel cost ($/h) 931.5967 934.5488 935.0626 935.3462 934.0096 929.7806 

Total Emission 

gas (ton /h) 

0.2137 

 

    0.2176 0.2176 0.21756 0.21756 0.21929 

 

Total Active power 

losses (MW) 

3.8308 

 

   3.8285 3.8136 3.8092 3.8225 

 

3.9134 

 

𝝙V (p.u) 0.7238  0.7235 0.7237 0.7237 0.7236 0.7219 

CPU-time (sec) 17.2861 17.9821 18.1378 17.2877 18.47389 20.55941 
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Fig. 6.8: Convergence behaviors for minimization TEG: Case 2: IEEE 30-bus. 

Case 3: minimizing the total active power losses (APL):  

The third fitness function focused on minimizing the total active power losses (APL). Table 

(6.12) summarizes the optimal results obtained using the proposed TEO method and other 

techniques. Remarkably, the TEO method achieved the best solution with a value of 3.4976 

MW. The figure (6.9) depicts the convergence behaviors for minimizing total real power loss 

(APL) using the proposed method compared to other methods. 

Table. 6.12: The simulated-results of the proposed TEO method and others: Case 3. 

PG𝐢 (MW) TEO FDB_AOA FDB_AEO SSA PSO GA 

PG1 51.9111  52.3605     52.4025  51.9292 53.2708 55.74086 

PG2 79.9957    79.7951      79.7951   79.9865 79.4866 78.40561 

PG5 49.9983    49.9887       49.9487  49.9955 49.6869 49.90884 

PG8 34.9973    34.9931       34.9731  34.9982 34.9979 34.30025 

PG11 29.9984    29.9124      29.9224  29.9940 29.8611 28.80385 

PG13 39.9968    39.8547    39.8647 39.9946 39.6225 39.81672 

Total fuel cost ($/h) 968.5297 967.5097 967.3385 968.4830 964.7394 960.9912 

Total Emission gas 

(ton /h) 

0.216 

 

0.3662 0.3663 0.2216 

 

0.2213 0.2216 

 

Total Active power 

losses (MW) 

3.4976 

 

3.5045 3.5065 3.4979 

 

3.5259 

 

3.5761 

𝝙V (p.u) 0.7237 0.7236 0.7236 0.7237 0.7236 0.7225 

CPU-time (sec) 17.2302 17.5368 17.3758 17.3293 18.7029 21.7652 
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Fig. 6.9: Convergence behaviors for minimization APL: Case 3: IEEE 30-bus. 

• Case 4: Total Voltage Deviation minimization (TVD):  

         the voltage deviation was selected as the fitness function in this case. Table 6.13 presents 

the optimized results using the presented method (TEO) along with results from other 

algorithms. It is evident that the TEO method achieves the optimal solution with a value of 

0.67514 p.u, despite the fact that the values obtained by all methods are nearly identical. The 

figure (6.10) displays the convergence behaviors for TVD minimization comparing the 

proposed TEO method with other techniques. 

Table. 6.14: The simulated-results of the proposed TEO method and others: Case 4. 

𝑃𝐺𝒊 (MW) TEO FDB-AOA FDB-AEO SSA PSO GA 

𝑃𝐺1 173.1889 168.2957 189.3845 169.6567 159.4153 194.0816 

𝑃𝐺2 71.4215 72.8975 50.8421 74.3248 80.0000 25.2490 

𝑃𝐺5 15.0800 15.7564 20.5075 15.2995 15.0000 35.0760 

𝑃𝐺8 11.4022 13.3754 10.3819 10.4383 13.5643 15.5173 

𝑃𝐺11 10.7081 10.5875 10.6836 10.0772 11.4546 10.8967 

𝑃𝐺13 12.0000 12.5457 12.2959 13.8788 13.5325 12.3078 

Total fuel cost ($/h) 815.1328 815.7353 804.4774 817.9730 823.6236 825.5293 

Total Emission gas 

(ton /h) 

0.3673 0.3553 0.4069 0.3598 0.3290 0.4204 

Total Active power 

losses (MW) 

10.4008 10.0582 10.6954 10.2753 9.5667 9.7284 

𝝙V (p.u) 0.6751 0.6765 0.6754 0.6754 0.6789 0.6806 

CPU-time (sec) 17.0174 18.4908 17.654262 17.4028 18.5927 22.6669 



    Chapter 6: Applications and Results  

 

136 

 

 
Fig. 6.10: Convergence characteristics for minimization of TVD: Case 4: IEEE 30-bus. 

Table (6.15) provides a comparison of the simulated results achieved by the proposed TEO and 

other investigated techniques for a single OPF problem on the IEEE 30-bus test system.  

Table. 6.15: Comparison summary of the optimized-results between TEO and the others for all cases. 

Algorithms VD (p.u) APL (MW) TEG (ton/h) TFC ($/h) 

Initial 0.6380 17.528 0.8983 875.1688 

Case  4  3  2 1 

TEO 0.6751 3.4976 0.2193 802.3607 

FDB-AOA 0.6765 3.5045 0.2176 802.3883 

FDB-AEO 0.6754 3.5065 0.2176 802.3604 

SSA 0.6754 3.4979 0.2176 802.3603 

PSO 0.6789 3.5259 0.2176 802.4219 

GA 0.6801 3.5761 0.2137 802.8716 

• Discussion of The Results of The Single Objective OPF: IEEE 30-bus 

       The optimized results clearly highlighted the effectiveness of the proposed TEO method 

over other prominent metaheuristic algorithms. It accurately addresses different single-

objective OPF problem instances and frequently yields lower values for most cases studied. 

Furthermore, TEO provides optimal solutions within competitive computational execution time 

compared to other algorithms. In the majority of cases, TEO method delivered optimal solutions 
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among other methods. These results demonstrate that the TEO algorithm exhibits superior 

performance in terms of convergence speed, solution quality, and execution time. 

Consequently, TEO can be a highly powerful and robust competitive tool for addressing various 

OPF problems. 

• Statistical Analysis and Robustness of the Proposed Method (TEO) 

          To evaluate the robustness and efficiency of each method, particularly the TEO, in 

solving optimal power management problems, a detailed statistical analysis was conducted. 

Five key-indices were computed: the mean, the minimum (Best), the median, the maximum and 

the standard deviation (SD) across 50 independent runs. The table (6.16) demonstrates that the 

proposed TEO method yielded the most optimal solution, exhibiting a lower SD of 0.03361 in 

comparison to other methods. Figure (6.11) illustrates the evolution simulation of   TFC across 

trials for the TEO method and the other techniques. The figure (6.12) provides a comparative 

analysis of the optimized TFC against trials for TEO in contrast with FDB-AOA, FDB-AEO, 

SSA, PSO, and GA. The results confirm that the TEO method consistently achieved the best 

solution with the lowest SD, demonstrating its accuracy and stability in solving various OPF 

problems. 

Table. 6.16: Comparative Statistical Analysis of TEO and Various Algorithms. 

 TEO FDB-AOA FDB-AEO SSA PSO GA 

Mean 802.4007 802.8336 802.5861 802.4023 802.9784 803.5740 

Best 802.3607 802.3883 802.3604 802.3603 802.4219 802.8716 

Median 802.3937 802.7317 802.4575 802.3956 802.9017 803.5873 

Max 802.5286 803.8324 803.5488 802.5243 803.8347 804.5768 

SD 0.03361 0.3745    0.2905 0.035402 0.382200 0.385200 

 

(a)                                                                                       (b) 
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(c)                                                                                                  (d) 

 
             (e)                                                                                                     (f)  

Fig. 6.11: Evolution of simulated TFC against trials for: (a) GA, (b) PSO, (c) SSA, (d) TEO, (e) FDB-AEO, 

(f) FDB-AOA. 

 
Fig. 6.12: The optimized TFC against trials for TEO, compared with FDB-AOA, FDB-AEO, SSA, PSO, 

and GA 
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• Discussion of results using statistical analysis: cases 1 to 4: IEEE 30-bus 

To evaluate the robustness of the proposed algorithm (TEO), a statistical analysis of cases 1 to 

4 were conducted, where all cases executed with 10 independent runs for each case/ algorithm. 

A boxplot graph was utilized to display the distribution of the solutions based on five-statistical 

indices. The table (6.17) displays the statistical results, while (figure 6.13) shows the box plot 

of the fitness values for the TEO method and other algorithms. The analysis of the findings 

indicates that the proposed algorithm is statistically superior with a lower standard deviation 

(SD) compared to other techniques and exhibits consistent search performance across nearly all 

cases for the single OPF problems. The minimum and maximum values were also favorable, 

highlighting the method's ability to achieve optimal solutions efficiently, where it can be 

concluded that the TEO algorithm is highly effective for solving various OPF problems. 

Table. 6.17: Comparative of the statistical analysis for all cases (1 to 4) of TEO method and other. 

Case  TEO FDB_AOA FDB_AEO SSA PSO GA 

 

 

1 

Mean 802.4074 802.8073 802.5184 802.4258 803.1650 803.5104 

Best 802.3607 802.3883 802.3604 802.3603 802.4219 802.8716 

Median 802.3966 802.6757 802.3782 802.4325 803.1084 803.5851 

Max 802.5286 803.8324 803.5488 802.5243 803.8347 804.5768 

SD 0.0511 0.4171 0.3884 0.0550 0.4502 0.5152 

 

 

2 

Mean 0.2165 0.2179 0.2178 0.2176 0.2177 0.2201 

Best 0.2137 0.2176 0.2176 0.2176 0.2175 0.2193 

Median 0.2172 0.2176 0.2177 0.2176 0.2177 0.2199 

Max 0.2183 0.2192 0.2188 0.2178 0.2179 0.2209 

SD 0.0018 6.2058e-04 3.5997e-04 8.3593e-05 1.0529e-04 5.3991e-04 

 

 

3 

Mean 3.5036 3.5159 3.5291 3.5133 3.5495 3.5882 

Best 3.4976 3.5045 3.5053 3.4979 3.5259 3.5761 

Median 3.5009 3.5175 3.5185 3.5115 3.5370 3.5818 

Max 3.5183 3.5321 3.6423 3.5464 3.6507 3.6308 

SD 0.0074 0.0085 0.0406 0.0160 0.0375 0.0171 

 

 

4 

Mean 0.6756 0.6774 0.6762 0.6773 0.6798 0.6817 

Best 0.6751 0.6765 0.6754 0.6754 0.6789 0.6806 

Median 0.6754 0.6771 0.6763 0.6777 0.6797 0.6816 

Max 0.6763 0.6799 0.6772 0.6797 0.6813 0.6856 

SD 4.7044e-04 0.0012 6.6073e-04 0.0014 7.7405e-04 0.0014 
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T
o
ta

l 
F

u
el

 C
o
st

 (
$

/h
)

802,2

802,7

803,2

803,7

804,2

804,7

Case 1 : Total Fuel Cost (TFC)

GA PSO SSA FDB_AE0 FDB_AOA TEO



    Chapter 6: Applications and Results  

 

140 

 

 
(c) case 2 

 

(d) case 3 

 
(e) case 4 

Fig. 6.13: Boxplot of various fitness values for all algorithms and cases:  Cases 1-4. 
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6.2.1.2. Multi-objective OPF problems (MOOPF) 

In this section, we applied multi-objective metaheuristic methods for multi-objective OPF 

(MOOPF). The MOOPF has been employed to enhance the performance of practical power 

systems in terms of energy quality and operational security.  A recent version of MOTEO has 

been applied to address various combined conflicting bi-objective functions. The performance 

of the proposed MOTEO has been verified and examined using the standard IEEE 30-bus test 

system. The results will be presented, analyzed, and discussed in the following 

• Results and discussions of dual-fitness function  

       To evaluate the efficiency of the MOTEO method, its ability and particularity, a 

comparative study was conducted. The bi-dimensional Pareto fronts produced by MOTEO were 

compared with those generated by other algorithms, including IMOMRFO, DSC-MOAGDE, 

MSSA, MOPSO, and MOGA. 

• Case 5: Optimizing TFC and TEG simultaneously:  

         The goal of this case is to optimize two fitness functions simultaneously: the TFC ($/h) 

and the TEG (ton /h), simultaneously. Table (6.18) compares the optimized-results obtained 

using MOTEO with those from other algorithms. The findings indicate that MOTEO delivers 

the most-effective total cost at 970.82189 $/h, outperforming other methods. The figure (6.14) 

shows the Pareto fronts generated by the proposed MOTEO method and other techniques. 

Table. 6.18: Comparative of simulated dual-fitness function (TFC-TEG): Case 5: IEEE 30-bus. 

PG𝐢 (MW) MOTEO IMOMRFO DSC-

MOAGDE 

MSSA MSSA MOPSO MOGA 

PG1 129.0920 123.6978 124.3816 129.7038 129.7038 119.5862 11h8.9466 

PG2 61.2001 73.7514 51.6604 56.7952 56.7952 65.9017 60.1173 

PG5 26.4864 19.9763 34.9932 30.7532 30.7532 28.2659 33.5915 

PG8 31.3122 27.5029 33.1353 30.2075 30.2075 33.1777 27.1607 

PG11 25.5441 22.2963 18.3483 21.9756 21.9756 25.5318 23.4719 

PG13 16.4142 23.0856 26.9306 20.4509 20.4509 17.1631 26.1024 

Total cost ($/h) 970.8219 979.5550 978.6653 971.84984 971.84984 973.0574 977.9700 

Emission gas 

(ton/h) 

0.26939 0.26886 0.26162 0.26894 0.26894 0.2579 0.2552 

Total fuel cost 

($/h) 

822.4796 831.5045 834.6016 823.7553 823.7553 831.0422 837.4416 

Active power 

losses (MW) 

6.6490 6.9104 

 

6.0494 

 

6.4862 6.4862 6.2264 5.9904 

𝝙V (p.u) 0.7091 0.6687 0.6691 0.7075 0.7075 0.7105 0.7112 

CPU-time (sec) 30.7970 34.3546 32.7852 19.4735 19.4735 32.4147 29.9906 
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Fig. 6.14: The dual-dimensional Pareto front solutions for Case 5: IEEE 30-bus. 

• Case 6: Optimizing the TFC ($/h) and APL (MW) simultaneously: IEEE 30-bus 

      This case study deals on optimizing of dual-fitness function the TFC ($/h) and APL (MW) 

simultaneously. The figure (6.15) illustrates the optimal solutions for the dual-dimensional 

Pareto fronts, which were generated by the MOTEO method as well as other comparative 

methods. The table (6.19) provides the simulated trade-off values for control variables, as 

achieved by the proposed MOTEO algorithm and other compared techniques. 

Table. 6.19: Comparative of optimized dual-fitness function (TFC- APL): Case 6: IEEE 30-bus. 

PG𝐢 (MW) MOTEO IMOMRFO DSC-

MOAGDE 

MSSA MOPSO MOGA 

PG1 127.1674 122.3850 133.9546 117.4630 122.3352 132.7925 

PG2 47.6816 62.8179 49.4046 58.7366 58.4186 54.0488 

PG5 30.8446 28.4283 33.5581 34.9059 38.1387 32.7928 

PG8 35.0000 30.1119 22.4309 31.1443 34.4243 29.4633 

PG11 26.5488 22.8256 23.8560 21.8392 18.6077 17.3037 

PG13 22.2764 23.2041 26.7483 25.1411 17.4201 23.5788 

Total fuel cost 

($/h) 

828.9341 828.8290 829.317 838.8245 837.8367 824.4156 

Total emission 

gas (ton /h) 

0.2631 0.2608 

 

0.2740 

 

0.2531 0.2595 0.2739 

Active power 

losses (MW) 

6.1188 

 

6.3728 6.5526 5.8302 

 

5.9444 

 

6.5799 

𝝙V (p.u) 0.6770 0.6715 0.6720 0.7104 0.7038 0.7030 

CPU-time (sec) 31.4976 32.1245 34.8751 18.6996 31.7991 31.7540 
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Fig. 6.15: The Dual-Dimensional Pareto front solutions for Case 6: IEEE 30-bus. 

• Case-7: optimizing the APL (MW) and the VD (p.u) simultaneously:  

      This case focuses on examining the conflict tradeoff between Active Power Loss (MW) and 

Voltage Deviation (VD) (p.u). The statistical simulation results for this case are shown in the 

table (6.19). The figure (6.16) displays the dual-Dimensional Pareto fronts created by the 

Thermal Emission Optimization (TEO) algorithm compared with other algorithms, where 

highlights a comparative analysis of the MOTEO against other metaheuristic algorithms.  

Table. 6.20: Comparative of optimized dual-fitness function (APL and VD): Case 7 

PG𝐢 (MW) MOTEO IMOMRFO DSC-

MOAGDE 

MOSSA MOPSO MOGA 

PG1 57.1299 100.3876 108.5225 99.6784 74.0321 76.4181 

PG2 80.0000 63.2410 51.2789 73.6429 78.0799 75.9677 

PG5 50.0000 45.0850 49.6713 42.8278 49.1559 49.9982 

PG8 33.7980 26.5437 25.4817 26.6675 35.0000 34.4495 

PG11 26.2274 26.3753 22.7374 16.0669 11.5237 25.5862 

PG13 40.0000 26.5988 30.5887 29.8292 39.9856 25.1417 

Total fuel cost 

($/h) 

959.9527 877.4701 885.3373 876.8233 933.8563 921.0733 

Total emission gas 

(ton /h) 

0.2235 0.2349 0.2421 0.2418 0.2331 0.2226 

Active power 

losses (MW) 

3.7553 4.937 4.9856 5.3127 4.3772 4.1614 

𝝙V (p.u) 0.7198 0.7158 0.7129 0.7041 0.7022 0.7173 

CPU-time (sec) 30.7970 31.8754 32.8756 22.9968 32.8041 30.8146 
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Fig. 6.16: The Dual-Dimensional Pareto front solutions for Case 7: IEEE 30-bus. 

Table 6.20 provides a comparison of the optimized results achieved by the MOTEO method 

with those obtained from other techniques. 

Table. 6.21: A comparative study between MOTEO with other metaheuristics algorithms.  

Cases  MOTEO IMOMRFO DSC-

MOAGDE 

MSSA MOPSO MOGA 

 

5 

TFC ($/h) 822.4796 831.5045 834.6016 823.7553 831.0422 837.4416 

TEG (ton/h) 0.26939 0.26886 0.26162 0.26894 0.25790 0.2552 

TFC ($/h) 970.8219 979.5550 978.6653 971.8498 973.0574 977.9700 

6 TFC ($/h) 828.9341 828.8290 829.317 838.8245 837.8367 824.4156 

APL (MW) 6.1188 6.3728 6.5526 5.8302 5.9444 6.5799 

7 APL (MW) 3.7553 4.937 4.9856 5.3127 4.3772 4.1614 

VD (p.u) 0.7198 0.7158 0.7129 0.7041 0.7022 0.7173 

• Discussion of results 

The simulation results focused on resolving the Multi-Objective Optimal Power Flow 

(MOOPF) problems, three cases were examined to simultaneously address two conflicting 

objective functions. 

       the case 5 (IEEE 30-bus)., investigate the Dual-fitness function concentrated on addressing 

to simultaneously the Total Fuel Cost (TFC) and Total Emissions Gas (TEG). As indicated in 

the table 6.17, the MOTEO algorithm achieved an optimal compromise solution with a TFC of 

822.4796 $/h and a TEG of 0.26939 ton/h. This resulted in a significantly reduced total fuel 

cost of 970.8218974 $/h compared to other algorithms. The figure 6.14 illustrates the trade-off 
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curve between total fuel cost and emissions gas produced by the MOTEO and other methods. 

It is evident that MOTEO provides the best Pareto optimal front with a highly uniform 

distribution. 

     the case 6 (IEEE 30-bus)., investigate the Dual-fitness function aimed to optimize the trade-

off between the TFC and APL. According to the table 6.18, the optimal compromise solution 

achieved using the proposed MOTEO method is 828.9341 $/h for TFC and 6.1188 MW for 

APL. The figure (6.15) illustrates the optimal Pareto front generated by MOTEO in comparison 

to other techniques. These solutions obtained cover a broader range of the entire Pareto front 

and exhibit a uniform distribution. 

     The case 7 (IEEE 30-bus)., investigate the Dual-fitness function focused to optimize the trade-

off between Active Power Loss (APL) and Voltage Deviation (VD). The table 6.19 displays 

the optimal compromise solution achieved by the TEO algorithm compared to other powerful 

optimize algorithms. The best results from MOTEO are 3.7553 MW for APL and 0.71982 p.u 

for VD.  The figure (6.16) illustrates the dual-dimensional Pareto front distribution for this 

case, showing that MOTEO provides a more uniformly distributed Pareto optimal front than 

other algorithms. 

These results indicate that the present MOTEO algorithm clearly highlight its superiority over 

other methods, including the MSSA. MOTEO consistently achieved the best compromise 

solutions for all cases, providing the highest and most uniformly distributed Pareto front. It also 

covered a wider range of fitness functions studied. 

• Case-8: optimizing three fitness functions: Total fuel cost, Total emission gas, and 

active power losses (IEEE 30-bus). 

        This case aims to validate the effectiveness of the presented method by optimizing three 

fitness functions simultaneously: Total Fuel Cost (TFC), total emission gas (TEG), and total 

power losses (APL). The table (6.22) provides a summary of the optimized results for the best 

compromise solutions. The figure (6.17) illustrates the three-dimensional Pareto fronts 

achieved by the MOTEO. 
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Table. 6.22: The best compromise solutions based Three-Dimensional Pareto fronts generated by the 

MOTEO. 

PG𝐢 (MW) Best Total Fuel 

Cost 

Best Active 

Power Losses 

Best 

Emission Gas 

best compromise 

solution 

PG1 176.4878 51.9111 70.1690 113.8162 

PG2 48.8374 79.9957 71.4234 69.9688 

PG5 21.4310 49.9983 49.1068 35.1111 

PG8 21.9482 34.9973 34.6021 33.5876 

PG11 12.1969 29.9984 28.2083 24.7972 

PG13 12.0000 39.9968 33.8037 12.0000 

Total fuel cost ($/h) 802.3607 968.5297 929.7806 844.3766 

Emission gas 

(ton /h) 

0.3665 0.2216 

 

0.21929 

 

0.25262 

Active power 

losses (MW) 

9.5012 3.4976 

 

3.9134 

 

5.8808 

𝝙V (p.u) 0.6829 0.7237 0.7219 0.6690 

CPU-time (sec) 16.9921 17.2302 17.2861 37.1027 

 
Fig. 6.17: The Three-Dimensional Pareto fronts based MOTEO: Case 8. 

In this section, the Thermal Exchange Optimization (TEO) algorithm has been successfully 

adapted and applied to enhance solutions for both single and multi-objective OPF problems. it 

was implemented and validated on the standard IEEE 30-bus test system to optimize various 

fitness functions. Simulation results demonstrated that TEO can consistently produce the best 

solutions for all objective functions, with high accuracy and faster execution time than 

competitive algorithms. Additionally, the multi-objective version of TEO (MOTEO) was 

investigated for combined objective function OPF problems.  

These results showed that the method could find near-global solutions by optimizing control 

variables related to the IEEE 30-bus test system. Overall, TEO proved to be highly effective in 

solving various single and multi-objective OPF problems. 
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6.3.2. Application 2.2: electrical Algerian DZA-114 bus transmission network 

• Overview of Algeria's Electrical Network: 

Algeria's electricity network comprises three main networks: the interconnected national 

network (RIN), PIAT, and isolated southern networks (RIS). These networks rely on electric 

energy production from gases, including diesel, steam, combined cycle, and hydropower 

stations. 

The Algerian National Electricity Production Company (SPE) ensures the production of these 

networks. The Algerian Electricity Production Company (SKTM) was established in 2013 to 

build and operate these stations. RIN has 40 stations and covers the north of Algeria with 

electricity. PIAT has 28 gas turbine-interconnected power plants, covering large areas in the 

southwest. RIS is a group of isolated stations spread across 26 sites in the middle and far south 

of the Sahara, covering remote areas. The Algerian Electricity and Gas Company's 2020 report 

summarizes these networks. The figure (6.18) represents the Electrical network Algeria 

Electricity in Algeria is generated from a mix of energy sources. The country relies on natural 

gas for the majority of its electricity generation, taking advantage of its vast natural gas reserves. 

Besides, Algeria has been increasingly investing in renewable energy sources, particularly solar 

and wind power, given its abundant solar potential across the vast Saharan area and wind 

potential in certain regions [149]. 
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Fig. 6.18: Topology of the Algerian Network. 
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The table (6.23) represents the conventional power plants that make up the national electric 

power production park, with the various types of turbines and the installed capacities. 

Table. 6. 23: Conventional National Electricity Generation Plants. 

Region  Locality  Type  Installed Capacity (MW) 

 

 

Alger 

ALGER PORT TG fixed 2x36 MW 

HAMMA2 TG fixed 2x209 MW 

BAB EZZOUAR TG fixed 2x27 MW 

HAMMA TG Mobile 2x24 MW 

SEBLLETE TG Mobile 2x25 MW 

BARAKI TG Mobile 3x24 MW 

 

 

Blida 

LARBAA TG fixed 4x140 MW 

BOUFARIK1 TG fixed 4x24 MW 

BOUFARIK2 TG fixed 3x235 MW 

BOUFARIK3 TG Mobile 2x24 MW 

BENI MERED TG Mobile 2x24 MW 

Tipaza AHMER EL AIN TG Mobile 3x24MW 

Boumerdes RAS DJINET TV 4x168 MW 

Bejaia AMIZOUR TG Mobile 8x23 MW 

IGHIL EMDA TH 2x12 MW 

DARGUINAH TH 2x32,5+5,2 MW 

Oran MARSAT TV TV 5x168 MW 

 RAVIN BLANC TV 1x73 MW 

ORAN EST TG fixed 2x40 MW 

MARSET TG fixed 8x23 MW 

Rilizane RILIZANE TG fixed 3x155 MW 

Tiaret TIART1 TG fixed 4x30 MW 

TIART2 TG fixed 3x100 MW 

Naama NAAMA TG fixed 8x23 MW 

Jijel JIJEL TV 3x196 MW 

ERRAGUENE TH 1x14,4 MW 

MANSOURIAH TH 2x50 MW 

Annaba ANNABA TG Fixed 2x36 MW 

Skikda SKIKDA TV 2x131MW 

Oum El 

Bougui 

F’KRINA 1 TG Mobile 4x25 MW 

F’KIRINA2 TG Fixed 2x146 MW 

Batna AIN DJASSER 1 TG Fixed 2x126 MW 

AIN DJASSER 2 TG Fixed 2x132 MW 

AIN DJASSER 3 TG Fixed 277,5 MW 

Khenchela LABRAG TG Fixed 3x140 MW 

M’sila M’SILA 1 TG Fixed 2x23 MW 

M’SILA 2 TG Fixed 3x100 MW 
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M’SILA 3 TG Fixed 2x215 MW 

M’SILA 4 TG Mobile 12x24 MW 

El Oued EL OUED TG Mobile 8x23 MW 

Laghouat TILGHEMT 1 TG Fixed 2x100 MW 

TILGHEMT 1 TG Fixed 3x197 MW 

Hassi R’Mel H.R. NORD TG Fixed 4x22 MW 

Ghardaïa GHARDAÏA TG Fixed 2x8,5 MW 

Béchar BECHAR TG Fixed 4x6 MW 

Adrar ADRAR TG Mobile 3x15MW+2x20MW+4x25MW 

ADRAR TG Mobile 2x23 MW 

KABERTENE TG Mobile 2x23 MW 

TIMIMOUN TG Mobile 2x23MW+2x25MW 

Ouargla H.M.NORD 1 TG Fixed 5x24 MW 

H.M.NORD 2 TG Fixed 2x100 MW 

H.M.NORD 3 TG Fixed 3x220 MW 

H.M.S TG Fixed 2x16+2x20 MW 

H.M.OUEST TG Fixed 4x123 MW 

H.M.OUEST TG Mobile 4x23 MW 

OUARGLA TG Mobile 4x24 MW 

Tamanrasset IN SALEH 

ANCIENNE 

CENTRALE 

TG Fixed  

 

2x3,5 MW 

IN SALEH 

NOUVELLE 

CENTRALE 

TG Fixed 

Biskra OUMECHE2 TG Fixed 457 MW 

Total 12019 MW 

• Renewable Energies in Algeria: 

Algeria is committing to the path of renewable energies to provide comprehensive and 

sustainable solutions to environmental challenges and issues related to the conservation of fossil 

fuel energy resources. This commitment is demonstrated through the launch of an ambitious 

program for the development of renewable energies, which was adopted by the Government in 

February 2011, revised in May 2015, and designated a national priority in February 2016. 

In this section of the program, the decision was made to install renewable energy capacity of 

approximately 22 MW by 2030 for the national market. Algeria positions itself as a major player 

in the production of electricity from photovoltaic and wind sources, incorporating biomass, 

cogeneration, geothermal, and beyond 2021, solar thermal energy. These sectors will be the 
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drivers of sustainable economic development capable of stimulating a new model of economic 

growth. By 2030, 37% of the installed capacity and 27% of the electricity produced for national 

consumption will be of renewable origin. The table (6.24) represents the Development Plan for 

Renewable Energies (RE) in Algeria. The graph in figure (6.19) shows the percentage of 

renewable energy participation in Algeria [149] . 

  

Fig. 6.19: Percentage of Renewable Energy Contribution in Algeria. 

Table. 6. 24: The Development Plan for Renewable Energies (RE) in Algeria. 

Sector 1st Phase 2015-2020 2nd Phase 2021-2030 TOTAL (MW) 

Photovoltaic (MW) 3 000 10 575 13 575 

Wind (MW) 1 010 4 000 5 010 

CSP (MW) – 2 000 2 000 

Cogeneration (MW) 150 250 400 

Biomasses (MW) 360 640 1 000 

Geothermic (MW) 05 10 15 

TOTAL 4 525 17 475 22 000 

• Electricity Transportation 

The overall length of the electricity transmission network to be constructed over the period 

2021-2030 is about 20,296 km, adding to this a continuity of 12,744 km registered in the project. 

Therefore, by 2030, the total length of the electricity transmission network will reach 64,204 

km, including 15,628 km at 400 kV, 25,516 km at 220 kV, and 22,442 km at 60 kV for a power 

of 98,540 MVA. The State of the Algerian Electricity Transmission Network can be seen in the 

annex (B) 
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• Brief Description of Algerian Network DZA-114 bus:  

This section represents the study of the DZA-114 bus Algerian network very high and high 

voltage network (220 kV, 90 kV, and 60 kV), with a base power of 100 MVA and a frequency 

of 50 Hz. The system comprises 114 bus, 175 branches between it 160 lines, and 15 

transformers, 15 generators bus (Refer to the table (6.24)). The bus N° 4 (MERSAT EL 

HADJADJ 1)) represents the reference bus. The requested active and reactive powers are 3727 

MW and 2070 MVAR, respectively [150].  

The others data of the test system including the cost and emission generator coefficients, and 

output generation power boundary limits are indicated in the table (6.25). The detailed of the 

remaining network parameters can be found in Annex C.  

Table. 6.25. The cost and emission coefficients of generator of DZA-114 bus. 

bus n° 𝒂 ($/h) 𝒃 ($/MWh) 𝒄  

($/MWh) 

𝜸 .10-2 𝜷.10-4 𝜶.10-6 𝝃.10-4 𝝀.10-2 𝑷𝑮𝒊𝒎𝒊𝒏 

(MW) 

𝑷𝑮𝒊𝒎𝒂𝒙 

(MW) 

4 0 1,5000 0,0085 4.091 -5.554 6.49 2.0 2.857 135 1350 

5 0 1,5000 0,0085 2.543 -6.047 5.638 5.0 3.333 135 1350 

11 0 2,5000 0,0170 4.258 -5.094 4.586 0.01 8.0 10 100 

15 0 2,5000 0,0170 5.326 -3.55 3.38 20.0 2.0 30 300 

17 0 1,5000 0,0085 4.258 -5.094 4.586 0.01 8.0 135 1350 

19 0 2,5000 0,0170 6.131 -5.555 5.151 10.00 6.667 34.5 3450 

22 0 2,5000 0,0170 4.091 -5.554 6.49 2.0 2.857 34.5 3450 

52 0 2,5000 0,0170 2.543 -6.047 5.638 5.0 3.333 34.5 3450 

80 0 2,5000 0,0170 4.258 -5.094 4.586 0.01 8.0 34.5 3450 

83 0 2,5000 0,0170 5.326 -3.55 3.38 20.0 2.0 30 300 

98 0 2,5000 0,0170 4.258 -5.094 4.586 0.01 8.0 30 300 

100 0 2,0000 0,0030 6.131 -5.555 5.151 10.00 6.667 60 600 

101 0 2,0000 0,0030 2.543 -6.047 5.638 5.0 3.333 20 200 

109 0 2,5000 0,0170 5.326 -3.55 3.38 20.0 2.0 10 100 

111 0 2,5000 0,0170 6.131 -5.555 5.151 10.00 6.667 10 200 

• Results and discussion of the Algerian DZA-114 bus system 

To ensure a rational comparison, for all algorithms and all test cases are evaluated under 

the same conditions. The parameter settings for the investigated algorithms are provided in the 

table (6.26). the results have been validated in article [151]. 

Table. 6.26: Internal parameters settings of the algorithms. 

 Algorithm name Parameters Value 

S
in

g
le 

O
b

jectiv
e
 

All algorithms Population size 20 

Maximum iterations 200 

SSA C1 [0, 1] 

C2 Rand () 

C3 Rand () 
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FDB-AOA The standard parameters of the algorithm 

FDB-AGDE The standard parameters of the algorithm 

PSO Local-weight (C1) 1.2 

Local-weight (C2) 1.4 

Inertia-Weight (w1) 0.5 

Inertia-Weight (w2) 0.9 

GA Selection type roulette 

Crossover 0.8 

mutation 0.14 

M
u

lti-O
b

jectiv
e
 

All algorithms Population size 30 

Maximum iterations 200 

MSSA  The same parameters of single-objective 

IMOMRFO The standard parameters of the algorithm 

MOAGDE The standard parameters of the algorithm 

MOPSO c1 1.2 

c2 1.4 

Beta 0.1 

Lambda 0.9 

w 1 

wdamp 0.95 

MOGA The same parameters of single-objective 

  

For all cases, the simulation results including optimized control variables, total fuel cost, 

emission gas, active power losses, and voltage deviation for each case studied. The efficacy of 

the presented method is firstly evaluated by testing it on solving single-objective OPF problems, 

where considered as the fitness function as cases defined 1 to 4, respectively, outlined in the 

table (6.27).  

Table. 6.27: cases addressed in this research. 

case n°  fitness Functions 

case 1 Total Fuel Cost (TFC) 

case 2 Total Emission Gas (TEG) 

case 3 Active Power losses (APL) 

case 4 Voltage Deviation (VD) 

case 5 TFC and TEG simultaneously 

       case 6 TFC and APL simultaneously 

case 7 APL and VD simultaneously 

6.3.2.1. Results for single objective OPF: DZA-114 bus 

The optimization results for single objective optimal power flow of the Algerian electrical 

transmission network have been displayed in in the table (6.28). 
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Table. 6.28: The optimized-results of the SSA on solving single objective OPF: DZA-114 bus. 

Case n° Basic case Case-1 Case-2 Case-3 Case-4 

𝑷𝑮𝒊 (MW) PF Results best total fuel 

cost 

Best 

emission 

best real 

power losses 

best Voltage  

𝑷𝑮𝟒  685.7288 439.85 276.3885 635.7388 456.9045 

𝑷𝑮𝟓 300.0000 437.78 306.8064 322.6835 488.0436 

𝑷𝑮𝟗 160.0000 89.744 99.5333 79.9867 82.5101 

𝑷𝑮𝟏𝟏 60.0000 199.26 300.0000 98.3909 59.8197 

𝑷𝑮𝟏𝟓 640.0000 419.81 362.1059 920.4699 966.6086 

𝑷𝑮𝟏𝟗 100.0000 193 324.4990 225.2328 147.7499 

𝑷𝑮𝟐𝟐 60.0000 189.24 223.3329 83.2238 74.7200 

𝑷𝑮𝟓𝟐 80.0000 182.12 307.6514 60.7177 70.9815 

𝑷𝑮𝟖𝟎 100.0000 188.82 333.5935 230.2072 200.8062 

𝑷𝑮𝟖𝟑 230.0000 200.99 299.7223 136.1116 177.0300 

𝑷𝑮𝟗𝟖 100.0000 190.14 278.8932 258.0908 256.3906 

𝑷𝑮𝟗𝟗 550.0000 600 315.7833 395.4260 568.3707 

𝑷𝑮𝟏𝟎𝟏 360.0000 200 198.5963 131.3668 158.3078 

𝑷𝑮𝟏𝟎𝟗 180.0000 98.282 99.1130 61.8733 96.2336 

𝑷𝑮𝟏𝟏𝟏  200.0000 188.61 113.2864 156.9999 15.3149 

Total fuel 

cost($/h) 

20279.8971 

 

19112.3865 22449.1353 23540.5993 23285.2335 

Emission gas 

(ton /h) 

7.2270492  5.3525 4.0842 7.8162 8.2961 

Active power 

losses (MW) 

78.7290 90.6414 112.3054 69.5197 92.7918 

𝝙V (pu) 5.9640  5.5046 4.9024 4.8740 4.6443 

 Comparisons between others metaheuristic Algorithm for Single objective OPF 

(DZA-114 bus) 

• Case-1: Minimization of the total fuel cost (TFC):  

      The first test-case selected the TFC as a fitness function. The table (6.29) displays the 

simulation results the presented technique compared with other techniques. The best value of 

best total fuel cost (TFC) is 19112.3865 $/h by SSA. It is confirmed that the proposed method 

achieved a best TFC compared to other techniques. The convergence behaviors for TFC 

minimization using the SSA, and using other methods are illustrated in the figure (6.20). 

Table. 6.29: The optimized results of the presented method (SSA) with other methods: Case-1 (TFC). 

𝑷𝐺𝑖 (MW) GA PSO FDB-AEO FDB-AGDE SSA 

𝑷𝐺4  441.3542 444.7957 445.9433 450.9130 439.85 

𝑷𝐺5 98.6748 443.7174 448.1945 444.8310 437.78 

𝑷𝐺9 186.5285 99.1171 100.0000 100.0000 89.744 

𝑷𝐺11 442.5086 193.1787 185.8029 204.3595 199.26 

𝑷𝐺15 186.8243 428.6254 433.1015 431.2601 419.81 
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𝑷𝐺19 192.4012 185.2617 178.8697 190.0207 193 

𝑷𝐺22 221.6163 184.9244 186.6244 180.6828 189.24 

𝑷𝐺52 177.5782 222.9960 219.4415 219.3801 182.12 

𝑷𝐺80 182.7515 178.0932 190.8652 174.7080 188.82 

𝑷𝐺83 184.9586 177.6919 185.7325 173.3296 200.99 

𝑷𝐺98 596.4143 179.4278 163.7683 172.5920 190.14 

𝑷𝐺99 197.9487 598.6572 600.0000 600.0000 600 

𝑷𝐺101 99.6190 199.9662 200.0000 199.9982 200 

𝑷𝐺109 181.0059 99.8857 99.9969 99.9874 98.282 

𝑷𝐺111 441.3542 183.2407 181.5148 176.6913 188.61 

Total fuel cost 

($/h) 

19143.79731 19119.7233 19117.9132 19114.6005 19112.3865 

Emission gas 

(ton /h) 

5.3820 5.4199 6.3017 6.3027 5.3525 

Active power 

losses (MW) 

93.4329 

 

92.5791 

 

92.8554     91.7538 90.6414 

𝝙D (pu) 5.0269 5.0335   5.0327 5.0395 5.5046 

 
Fig. 6.20: Convergence behaviors Case-1 (TFC): DZA-114 bus. 

• Case-2: Minimization of total emission gas (TEG): DZA-114 bus 

       For the second case, the fitness function selected is the TEG. The optimized results 

provided by the presented technique (SSA) compared with others are depicted in the table 

(6.30). It is found that the proposed technique achieves also the best emission gas reduction 

with 4.0842 ton/h compared to other techniques. The convergence behaviors for TEG 

minimization using the proposed method and others methods are illustrated in the figure (6.21). 
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Table. 6.30: The optimized results of the presented method (SSA) with other methods: Case-2 (TEG).  

𝑷𝑮𝒊 (MW) GA PSO FDB-AEO FDB-AGDE SSA 

𝑷𝑮𝟒  292.9974 248.2788 258.9893 251.3234 276.3885 

𝑷𝑮𝟓 423.3632 428.5374 362.7838 355.2241 306.8064 

𝑷𝑮𝟗 85.0514 91.7722 94.4987 81.2784 99.5333 

𝑷𝑮𝟏𝟏 252.3854 276.4781 286.6390 291.9606 300.0000 

𝑷𝑮𝟏𝟓 304.7992 365.8312 441.2171 472.2324 362.1059 

𝑷𝑮𝟏𝟗 314.0827 310.9162 288.5013 293.0996 324.4990 

𝑷𝑮𝟐𝟐 304.9745 231.7692 297.5242 228.3690 223.3329 

𝑷𝑮𝟓𝟐 288.9326 295.6254 245.9000 260.7893 307.6514 

𝑷𝑮𝟖𝟎 251.6559 301.2011 263.8524 283.4866 333.5935 

𝑷𝑮𝟖𝟑 298.1651 269.7798 259.6053 277.1591 299.7223 

𝑷𝑮𝟗𝟖 280.1524 261.8819 240.5429 270.4210 278.8932 

𝑷𝑮𝟗𝟗 339.2441 354.3412 368.1259 315.3478 315.7833 

𝑷𝑮𝟏𝟎𝟏 158.2305 170.1631 168.8416 179.6355 198.5963 

𝑷𝑮𝟏𝟎𝟗 76.0399 83.0979 80.8053 94.4346 99.1130 

𝑷𝑮𝟏𝟏𝟏 164.9440 146.1378 178.9827 184.1532 113.2864 

Total fuel cost 

($/h) 

22147.14142 21881.50129 21560.9441 21879.11546 22449.13532 

Emission gas 

(ton /h) 

4.3483 4.2880 4.2794 4.1860 4.0842 

Active power 

losses (MW) 

108.0184 

 

108.8114 

 

109.8096 

 

111.9143 

 

112.3054 

 

𝝙V (pu) 5.0582 5.0403 5.0232 5.0148 4.9024 

 

Fig. 6.21: Convergence behaviors Case-2 (TEG): DZA-114 bus. 
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• Case-3: Total active power losses minimization (APL): DZA-114 bus 

 The third fitness function investigated to reduce the total active power losses. The optimal 

simulation results provided using the proposed SSA and other techniques are shown in the table 

(6.31). It should be mentioned that the best optimal solution has been obtained by the presented 

method (SSA) with a value of 69.5197 MW. The figure (6.22) shows the convergence 

characteristics for total real power loss minimization using PSO, and GA methods.  

Table. 6.31: The optimized results of the presented method (SSA) with other methods: Case-3 (APL). 

𝑷𝑮𝒊 (MW) GA PSO FDB-AEO FDB-AGDE SSA 

𝑷𝑮𝟒  439.9458 365.7657 518.9781 452.1984 635.7388 

𝑷𝑮𝟓 513.3839 599.6127 444.6349 361.8633 322.6835 

𝑷𝑮𝟗 91.6856 80.5851 61.1502 18.8524 79.9867 

𝑷𝑮𝟏𝟏 114.0715 88.1017 140.1536 184.1320 98.3909 

𝑷𝑮𝟏𝟓 944.2857 943.3121 940.0917 747.0010 920.4699 

𝑷𝑮𝟏𝟗 131.2056 185.9844 159.9486 337.7885 225.2328 

𝑷𝑮𝟐𝟐 150.4902 133.8323 153.6974 166.3049 83.2238 

𝑷𝑮𝟓𝟐 122.9086 73.6524 72.3336 236.2942 60.7177 

𝑷𝑮𝟖𝟎 273.7247 211.2281 280.4907 262.8132 230.2072 

𝑷𝑮𝟖𝟑 174.8377 163.7556 38.2410 208.1574 136.1116 

𝑷𝑮𝟗𝟖 83.7452 151.9281 198.4820 174.9177 258.0908 

𝑷𝑮𝟗𝟗 391.5079 460.5948 430.9463 237.1952 395.4260 

𝑷𝑮𝟏𝟎𝟏 173.8566 110.7522 136.3748 188.1373 131.3668 

𝑷𝑮𝟏𝟎𝟗 88.7510 74.3375 77.8514 21.7169 61.8733 

𝑷𝑮𝟏𝟏𝟏 105.3903 153.5694 144.8830 200.0000 156.9999 

Total fuel cost ($/h) 22868.33815 23056.962852 23218.00166 22649.36893 23540.5993 

Emission gas 

(ton /h) 

7.4308 7.7259 7.7117 

 

6.6203 

 

7.8162 

Active power 

losses (MW) 

72.7904 70.0121 71.2574 70.3724 69.5197 

𝝙V (pu) 4.8882 4.8860 4.8874 4.6924 4.8740 
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Fig. 6.22: Convergence behaviors Case-3 (APL): DZA-114 bus. 

• Case -4: Voltage deviation reduction (VD) 

 The voltage deviation was selected as the fitness function in this case. The table (6.32) 

represents the details of comparison between the simulation results provided by the proposed 

SSA and other techniques. It can be noticed that the SSA method achieves the best optimum 

with a value of 4.6443 p.u. Noting that the values obtained by all method are almost the same. 

The figure (6.23) illustrates the convergence characteristics for TVD minimization. 

Table. 6.32: The optimized results of the presented method (SSA) with other methods: Case-4 (VD). 

𝑷𝑮𝒊 (MW) GA PSO FDB-AEO FDB-AGDE SSA 

𝑷𝑮𝟒  458.3476 398.2230 329.3276 458.8286 456.9045 

𝑷𝑮𝟓 457.7954 508.6369 595.9885 446.0468 488.0436 

𝑷𝑮𝟗 83.9645 84.6882 82.3079 85.8415 82.5101 

𝑷𝑮𝟏𝟏 61.4709 87.2995 72.4909 86.1745 59.8197 

𝑷𝑮𝟏𝟓 992.5692 980.2919 972.6804 967.2426 966.6086 

𝑷𝑮𝟏𝟗 150.7192 145.8350 147.7946 166.1033 147.7499 

𝑷𝑮𝟐𝟐 104.7027 107.4142 126.5004 88.6974 74.7200 

𝑷𝑮𝟓𝟐 80.9465 64.8533 66.8551 67.1451 70.9815 

𝑷𝑮𝟖𝟎 220.4691 245.0874 251.2492 277.2997 200.8062 

𝑷𝑮𝟖𝟑 147.4238 202.6802 163.4654 178.6827 177.0300 

𝑷𝑮𝟗𝟖 290.5340 227.9015 285.8397 261.5302 256.3906 

𝑷𝑮𝟗𝟗 526.2594 507.2536 475.5052 481.8673 568.3707 
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𝑷𝑮𝟏𝟎𝟏 118.9333 157.7361 160.6566 150.2857 158.3078 

𝑷𝑮𝟏𝟎𝟗 87.4529 89.1487 79.4917 86.0436 96.2336 

𝑷𝑮𝟏𝟏𝟏 36.8854 13.6114 11.7098 18.2385 15.3149 

Total fuel cost ($/h) 23781.3285 23515.22777 24027.32688 23634.25748 23285.2335 

Emission gas (ton /h) 8.2190 7.9801 8.0795 7.8533 8.2961 

Active power losses 

(MW) 

91.4739 

 

93.6610 

 

94.8630 93.0275 

 

92.7918 

 

𝝙V (pu) 4.6828 4.6497 4.6506 4.6577 4.6443 

 

Fig. 6.23: Convergence behaviors Case-4 (VD): DZA-114 bus. 

6.3.2.2. The multi-objective OPF problems for the Algerian electrical network 

The multi objective version of MSSA has investigated to solve the multi-objective OPF 

problems. Three cases have been examined defined as cases (5–7), respectively, discussed in 

the table (6.27), the optimization results of the two-dimensional Pareto fronts generated by the 

proposed algorithm obtained for all cases are presented in the table (6.33). 

Table. 6.33: The optimized-results of the MSSA on solving MOOPF problem: DZA-114 bus. 

Case no Basic case Case-5 Case-6 Case-7 

𝑷𝑮𝒊 (MW) PF Results best compromise 

solution 

best compromise 

solution 

best compromise 

solution 

𝑷𝑮𝟒  685.7288 376.3970 536.2660 586.2689 

𝑷𝑮𝟓 300.0000 400.0589 428.3914 304.4923 

𝑷𝑮𝟗 160.0000 98.9196 95.9281 76.3598 

𝑷𝑮𝟏𝟏 60.0000 207.8086 153.9687 142.2449 
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𝑷𝑮𝟏𝟓 640.0000 391.3443 563.8197 904.1013 

𝑷𝑮𝟏𝟗 100.0000 219.9714 207.6193 146.9017 

𝑷𝑮𝟐𝟐 60.0000 200.4412 139.5627 101.9878 

𝑷𝑮𝟓𝟐 80.0000 211.0548 148.6944 82.0539 

𝑷𝑮𝟖𝟎 100.0000 214.4151 215.7726 224.0819 

𝑷𝑮𝟖𝟑 230.0000 248.3181 114.9111 135.5072 

𝑷𝑮𝟗𝟖 100.0000 261.1013 146.7918 217.3892 

𝑷𝑮𝟗𝟗 550.0000 514.7108 564.6631 566.5597 

𝑷𝑮𝟏𝟎𝟏 360.0000 197.6637 199.4248 179.7805 

𝑷𝑮𝟏𝟎𝟗 180.0000 98.0316 92.3123 81.1403 

𝑷𝑮𝟏𝟏𝟏  200.0000 179.0964 196.2229 72.3805 

Total fuel cost 

($/h) 

20279.8971 

 

19663.4951 19563.5713 22373.9327 

Emission gas 

(ton /h) 

7.2270492  4.6691 6.0573 7.8787 

Active power 

losses (MW) 

78.7290 92.3329 75.5289 91.0956 

𝝙V (pu) 5.9640  376.3970 4.8383 4.7301 

 Comparison between others metaheuristic Algorithm for MOOPF 

• Case-5: Optimize TFC and TEG simultaneously: DZA-114 bus 

      The objective of this case is to simultaneously optimize two fitness functions: the Total fuel 

cost (TFC) in $/h and the Total Emissions Generation (TEG) in tons/h. The table (6.34) displays 

the optimized results obtained by the MSSA compared with other algorithms. It is observed 

that the MSSA provides the best compromise solution, achieving 19663.4951 $/h for TFC and 

4.6691 tons/h for TEG. The generated Pareto fronts are illustrated in figure (6.24) 

Table. 6.34: Comparison of optimized bi-objective solution (TFC-TEG): Case-5: DZA-114 bus. 

𝑷𝐺𝑖 (MW) MO-GA MOPSO IMOMRFO MOAGDE MSSA 

𝑷𝐺4  341.1615 352.8853   351.1319    350.5236   376.3970 

𝑷𝐺5 363.6492 398.0214   412.0015    378.3374  400.0589 

𝑷𝐺9 96.2389 89.2873   99.6348     92.7290  98.9196 

𝑷𝐺11 252.0871 225.7332   240.2114   263.7530 207.8086 

𝑷𝐺15 417.1490 385.6989   409.0640   398.1910 391.3443 

𝑷𝐺19 234.1866 233.5706   236.8004   195.7241 219.9714 

𝑷𝐺22 235.6544 263.6436   186.2104     246.5597 200.4412 

𝑷𝐺52 236.6033 176.1026   223.5301   220.1493 211.0548 

𝑷𝐺80 222.8752 259.8355 193.5673   240.7137   214.4151 

𝑷𝐺83 238.2909 261.3794 265.3354     241.8408  248.3181 

𝑷𝐺98 222.5384 228.7170 253.3185    209.2535  261.1013 

𝑷𝐺99 507.5017 491.1026 514.6986    527.5233  514.7108 

𝑷𝐺101 197.3107 198.1990 197.0012    198.7246  197.6637 
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𝑷𝐺109 84.6380 95.2583 57.8604     94.5191   98.0316 

𝑷𝐺111 171.3355 162.2119 178.9214   161.5865 179.0964 

Total fuel cost ($/h) 19898.9615 20021.9075 19912.1748 19779.084 19663.4951 

Emission gas 

(ton /h) 

4.565 4.5943 4.7031 4.6428 4.6691 

Active power losses 

(MW) 

91.0495 94.6467 92.2873 

 

93.1287 92.3329 

𝝙V (pu) 4.8533 4.8659 4.8708 4.8710 4.8612 

 

Fig. 6.24: Two-dimensional Pareto fronts Case-5 (TFC-TEG): DZA-114 bus. 

• Case-6:  Optimize the TFC and APL simultaneously: DZA-114 bus 

       In this case, the Total fuel cost (TFC) in $/h and the total active power loss (APL) in MW 

are optimized simultaneously. The optimal solutions for the two-dimensional Pareto fronts 

achieved by the presented algorithm and other algorithms are illustrated in the figure (6.25). 

The table (6.35) provides the optimized tradeoff values between TFC and total APL. It is 

observed that the MSSA provides the best compromise solution, achieving 19393.7583 $/h for 

TFC and 76.1906 MW for APL. 

Table. 6.35: Comparison of optimized bi-objective solution (TFC-APL): Case-6: DZA-114 bus. 

𝑷𝑮𝒊 (MW) MOGA MOPSO IMOMRFO MOAGDE MSSA 

𝑷𝑮𝟒 514.9751 487.37 517.0511 529.8159 529.2270 

𝑷𝑮𝟓 430.7278 463.4 431.7238 415.9318 402.0877 

𝑷𝑮𝟗 98.9073 89.597 99.6688 99.9163 95.3466 
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𝑷𝑮𝟏𝟏 194.2799 163.27 163.1303 156.1016 185.3201 

𝑷𝑮𝟏𝟓 523.9212 506.5 556.3174 558.4663 525.4788 

𝑷𝑮𝟏𝟗 221.3493 203.52 210.3420 211.2837 233.0956 

𝑷𝑮𝟐𝟐 162.5432 187.42 160.6531 159.8023 170.7419 

𝑷𝑮𝟓𝟐 124.4027 144.79 144.4622 141.5681 142.7965 

𝑷𝑮𝟖𝟎 221.5734 190.65 221.1123 224.9465 183.9432 

𝑷𝑮𝟖𝟑 125.9382 185.21 173.9254 146.5160 152.2240 

𝑷𝑮𝟗𝟖 145.0677 164.89 123.2111 146.9919 141.8667 

𝑷𝑮𝟗𝟗 544.2664 534.07 526.0238 521.0945 565.6298 

𝑷𝑮𝟏𝟎𝟏 199.6169 199.55 199.9467 199.9153 199.8454 

𝑷𝑮𝟏𝟎𝟗 99.4002 99.328 89.6315 99.2346 93.5034 

𝑷𝑮𝟏𝟏𝟏 197.0861 186.03 187.0202 192.3325 183.9015 

Total fuel cost ($/h) 19484.5737 19356.5942 19581.4465 19593.5207 19393.7583 

Emission gas (ton /h) 5.7324 5.5919 5.7723 5.7777 5.8041 

Active power losses 

(MW) 

77.0554 76.6318 77.2214 76.7720 76.1906 

𝝙V (pu) 4.8363 4.8449 4.8444 4.8379 4.8475 

 
Fig. 6.25: Two-dimensional Pareto fronts Case-6 (TFC-APL): DZA-114 bus. 

• Case-7: Optimize the APL and the VD simultaneously: DZA-114 bus 

        This case focuses on analyzing the conflict between Active Power Loss (APL) in MW and 

Voltage Deviation (VD) in p.u. The table (6.36) represents depicted a comparative between 

simulation results obtained by MSSA with other metaheuristics algorithms for this case. The 

figure (6.26) illustrates the dual-dimensional Pareto fronts generated by the presented algorithm 

compared to those produced by other algorithms. 
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Table. 6.36: Comparison of optimized bi-objective solution (APL- VD): Case-7: DZA-114 bus. 

𝑷𝑮𝒊 (MW) MOGA MOPSO IMOMRFO MOAGDE MOSSA 

𝑷𝑮𝟒  652.6786 380.5321 207.7658 195.5304 586.2689 

𝑷𝑮𝟓 384.5313 556.9589 675.7647 655.5226 304.4923 

𝑷𝑮𝟗 73.5760 93.6420 78.6656 95.2020 76.3598 

𝑷𝑮𝟏𝟏 67.1284 128.8260 201.8909 151.5610 142.2449 

𝑷𝑮𝟏𝟓 886.5833 941.2603 900.4413 873.1600 904.1013 

𝑷𝑮𝟏𝟗 178.5829 144.6802 139.1205 147.5389 146.9017 

𝑷𝑮𝟐𝟐 95.5154 71.8696 126.6836 147.9902 101.9878 

𝑷𝑮𝟓𝟐 74.9736 79.2930 69.0152 89.4171 82.0539 

𝑷𝑮𝟖𝟎 334.3914 228.6215 260.2248 287.7941 224.0819 

𝑷𝑮𝟖𝟑 100.6441 110.1968 126.6351 104.1777 135.5072 

𝑷𝑮𝟗𝟖 244.9363 213.6323 205.3452 179.1073 217.3892 

𝑷𝑮𝟗𝟗 426.8000 561.6052 493.4477 555.8767 566.5597 

𝑷𝑮𝟏𝟎𝟏 156.1477 156.5885 170.2023 175.8986 179.7805 

𝑷𝑮𝟏𝟎𝟗 87.1449 66.1375 86.4081 77.6831 81.1403 

𝑷𝑮𝟏𝟏𝟏 86.1810 85.7691 78.5160 84.8655 72.3805 

Total fuel cost 

($/h) 
23897.7036 22781.2813 2324.49867 22726.789393 22373.9327 

Emission gas 

(ton /h) 

8.0973 7.9829 7.6693 

 

7.6220 7.8787 

Active power 

losses (MW) 

95.9462 92.3661 93.2611 92.5576 91.0956 

𝝙V (pu) 4.9133 4.6779 4.7412 4.7464 4.7301 

 

Fig. 6.26: Two-dimensional Pareto fronts Case-7 (APL-VD): DZA-114 bus. 
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 Discussion of The Results of the DZA-114 bus 

From improvement results of the optimization, which are mentioned in the table (6.26) (Case-

1 to 4), it is found that the proposed proved with efficiently the ability for solving the single-

objective OPF problem, can provided considerably to an optimum value when compared the 

optimized-values with the basic value for majority cases studied (without optimization).  

Case-1: As can be seen from the table (6.27), the proposed SSA is used to optimize fitness 

function contains a single goal which is the reduction of total fuel cost, the optimization 

results are presented in the table (6.29) Case-1, it can be observed that the proposed can be 

reduce the cost with a value 19112.3865 $/h compared with the other optimization methods. 

The convergence behaviors are mentioned in the figure (6.19), it can be seen that the SSA can 

be converge to the best solution. 

Case-2: The proposed SSA is used to optimize fitness function minimization of total 

Emission Gas (TEG), the optimization results are presented in the table (6.30) Case-2, it can 

be observed that the proposed can reduce the TEG with a value 4.0842 ton/h compared with 

their value with the other optimization methods. The convergence behaviors are mentioned in 

the figure (6.20), where it can be seen that the SSA can converge to the best optimal solution. 

Case-3: The reported method (SSA) is used to optimize the single fitness function OPF which 

contains the minimization of APL, the optimization results are presented in the from the table 

(6.31) Case-3, it can be observed that the proposed method can be reduced the APL with a 

value 69.5197 MW compared with others algorithms.  The convergence behaviors are 

mentioned in the figure (6.21), it can be observed that the SSA algorithm converge to the best 

optimal solution. 

Case-4: This case investigated to optimize of total Active power losses, the optimization 

results are presented in the from the table (6.32) Case-4, it can be observed that the proposed 

can be reduced the Voltage Deviation with a value 4.6443 p.u compared with others 

algorithms. The convergence behaviors are mentioned in the figure (6.22), it can be seen that 

the SSA can be converge to the optimal solution. 

Case-5: As can be seen from the table (6.34), MSSA is used to optimize a two-dimensional 

Pareto front, which incorporates both total fuel cost (TFC) and total emission gas (TEG) pairs. 

Noting the simultaneous optimization of this pair noticed, the best compromise solution with 

TFC value 19663.4951 $/h and TEG value 4.6691 ton/h, compared to the others methods, the 
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figure (6.23) shows the trade-off graphs of relationship between total fuel cost and emissions 

gas. It can be observed that the proposed algorithm is achieved the best optimal Pareto optimal 

front with a very uniform distribution compared then others algorithms. 

Case-6, the bi-objective function focused to solve are two-dimensional Pareto fronts of the total 

fuel cost associated with the real power losses, the best compromise solution of this pair 

provided by the proposed are 19393.7583 $/h of TFC value and 76.1906 MW of APL value, 

respectively, As can be seen from the table (6.35). The figure (6.24) shows the optimal Pareto 

frontiers, which obviously the relationships between this pair. These solutions evenly cover the 

whole Pareto optimal front with a highest uniformity distribution compared then others 

algorithms. Where, it can be noticed that the two functions have contradictory objectives. 

Case-7, the Pareto fronts of the bi-objectives function of real power losses with Voltage 

deviation. The table (6.36) displays the optimized-results for the best compromise solution with 

an APL value 91.0956 MW and VD value 4.7301 p.u. The figure (6.24) depicts the relationship 

between the two-dimensional Pareto Front solutions of this pair, it can be noticed that has a 

higher uniform distribution Pareto front, compared then others algorithms. 

In this part, the so-named Salp Swarm Algorithm has been presented, and its performance has 

been demonstrated for solving the OPF problems with both types single and multi-objective in 

large scale (DZA-114 bus), which can be clearly observed the highest quality and precision 

from the improvement.   

6.4. Application 3: Integration of Renewable energy and FACTS Devices 

The integration of renewable energy sources (RES) into power grids, addresses challenges such 

as voltage fluctuations and power system security. supported by FACTS devices. This part 

presents the contributes of this thesis, it deals with FACTS devices compensation with the 

presence of renewable energies. Where taken a recent stochastic optimization algorithm called 

Fitness-distance balance-based (FDB-AOA) Archimedes Optimization Algorithm in solving 

the Optimal Power Flow (OPF) problems within a recently adopted state of the electrical 

transmission grid, which is the modified IEEE 30-bus test system, validated by an article 

Erreur ! Source du renvoi introuvable.[152]; and the modified Algeria electrical network 

DZA-114 bus, validated by an article [153]; 
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It is worth noting that the satisfaction of power balance equations is crucial in ensuring the 

power flow convergence, in other words, it must be ensured the satisfaction of the equality 

constraints. The MATPOWER program is employed to calculate the dependent variables based 

on the Newton–Raphson method for power flow by taking the control variables as input. During 

the optimization process by MATLAB, The FDB-AOA algorithm used in this article has 

successfully achieved to the best results, as indicated by the comparison results obtained 

through other metaheuristics algorithms. Among the various inequality constraints, real power 

generators (excluding swing generator), taps transformer, generator bus voltages, and 

boundaries limits of each compensator’s devices are the control variables. The optimization 

approach selects a viable value that falls within the boundaries for each of these variables. 

Active power of the swing generator, line capacities, load bus voltages, and reactive power 

generators are the states and controls variables [9].  

6.4.1.  Application 3.1:  Application on the modified IEEE 30-bus test system 

A new hybrid stochastic optimization algorithm called Fitness-distance balance-based (FDB-

AOA) Archimedes Optimization Algorithm in solving the Optimal Power Flow (OPF) 

problems within a recently adopted state of the electrical transmission grid, which is the 

modified IEEE 30-bus test system.  

The system includes the integration of both conventional thermal-based generating plant units 

incorporating uncertain and intermittent renewable energy sources, particularly wind energy 

generators, along with the addition of multi-type of Flexible AC Transmission System (FACTS) 

devices into the electrical grid escalates and evens the complexity of the (OPF) problem, mainly 

due to the irregularity of their performance. Several tests/cases are performed, A stochastic 

wind energy has been modeled utilizing appropriate suitable probability density functions. The 

optimization goal takes into account the cost of thermal generation, the direct cost of scheduled 

wind power, and the penalty cost for underestimating wind power. Additionally, the locations 

and sizing of the FACTS devices are optimized to reduce the generation cost, real power losses, 

and gross cost of the adopted test system.  

 Brief Description of the adopted IEEE 30-bus test system  

This part provides an overview of the essential data related to the modified IEEE 30-bus 

electrical transmission grid, where the two thermal generators located on buses 5 and 11 have 

been substituted with wind power plant generators. Additionally, FACTS devices like thyristor-
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controlled series compensators (TCSC), thyristor-controlled phase shifters transformer 

(TCPST), and static VAR compensators (SVC) – (two of each type) are optimally placed in the 

most suitable locations, and parameter setting of the device are obtained using metaheuristic 

optimization algorithms. Those are identified and represented with dotted lines in the diagram 

displayed of the topology the test system uses in this study in the figure (6.27). The table (6.37) 

represents a detailed data of this test system [8]. 

Table. 6.37:  An overview characteristic of the adopted network: modified IEEE 30-bus test-system. 

Element quantity Details 

Buses-number  30 - 

Branches-number  41 - 

Thermal generators-number 6 Slack-Bus is 1/ 2/ 8 and 13 

capacitors-number 9 Buses number: 10 and 24 

Wind generators -number 2 Buses number: 5 and 11 

Transformer with tap changer 4 Branches number: 11- 12- 15, and 36 

TCSC  2  Branches and sizing are optimized 

TCPS  2 

SVC  2  Buses and sizing are optimized 

Total power 

demand 

Active-power - 283,4 MW 

Reactive-power - 126,2 MVAR 

Load-buses 24 - 

The voltage range of generators bus  6 [0,90–1,10] (p.u) 

The voltage range of the load bus 24 [0,95–1,1] (p.u) 

 

Fig. 6.27: Schema of the modified IEEE 30-Bus System. 
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6.4.1.1. Impact of Schedule Power and PDF Parameters on Wind Generation Costs 

The table (6.38) displays the chosen Weibull shape (𝛽),  and scale (𝛼) parameters for these 

newly implemented generators. Additionally, the total rated power value is provided for each 

wind power plant, also their cost coefficients [9]. 

Table. 6. 38: cost coefficients and PDF parameters for stochastic models of wind generators . 

Windfarm 

Number of 

buses 

Number 

of 

turbines 

Total Rated 

power, 

𝑷𝒘𝒓(MW) 

PDF-

parameters 

Price coefficients ($/MWh) 

𝛼 𝛽 Direct,𝑔𝑤𝑗  Reserve,𝐾𝑅𝑤𝑗 Penalty, 𝐾𝑃𝑤𝑗  

𝑾𝑮𝟓 (5) 25 75 9 2 1,60 3,0 1,50 

𝑾𝑮𝟏𝟏 (11) 20 60 10 2 1,75 3,0 1,50 

 

Wind frequency and Weibull fitting distributions shown in figures (6.28 (a), and 6.28 (b)) are 

acquired after 8000 Monte-Carlo scenarios run. This norm defines the design criteria for wind 

turbines and establishes the highest turbulent class IA that a turbine under which a turbine can 

be approved for operation, with a maximum yearly average wind speed at hub height of 10 m/s. 

 
Fig. 6.28 (a): Wind speed distribution for wind 

farm1 at bus 5 (𝜶 = 9, 𝜷 = 2). 

  Fig. 6.28 (b): Wind speed distribution for wind 

farm 2 at bus 11 (𝜶 = 10, 𝜷= 2). 

In order to investigate the fluctuation in generation costs of wind power, the first two study 

scenarios aim to analyze and test how the cost of generating wind power changes when the 

schedule power and PDF parameters are modified.  

• Scenario: 1 Scheduled power vs cost: modified IEEE 30-bus  

        The Weibull probability density function (PDF) parameters utilized in this test align with 

those presented in table (6.37). As well as the cost coefficients for wind power. It should be 

noted that the direct cost of wind is lower than the average cost of thermal power. Additionally, 

the penalty cost is lower than the direct cost. The scheduled power ranges from [0 to the rated 
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power] of the wind farm, and the variations of reserve, direct, penalty, and total costs are plotted 

in the figures (6.29 (a) and (b)) for the both wind farms. The total price is the summation of 

those costs associated with the scheduled power. The direct cost shows a linear relationship 

with the scheduled power. With an augmentation in the scheduled power, there is an 

accompanying elevation in the requisite spinning reserve, resulting in an upsurge in the reserve 

cost, and consequently, an escalation in the total generation cost. The penalty cost was 

appropriately reduced, but at a slower rate, with the amplification in the scheduled power. 

 

(a) WG1(bus 5)                                                                             (b) WG2(bus 11) 

Fig. 6.29: Variation of wind power cost vs scheduled power for wind generator (a) WG1, (b) WG2. 

• Scenario 2: Probability density function parameter vs cost: modified IEEE 30-bus 

         Here, the scale (𝛼) of Weibull distribution is varied while the shape parameters is constant 

(𝛽 = 2). The main goal was to see how it affects any changes in costs to the costs of wind 

power generator for a predetermined arbitrarily chosen schedule power. A scheduled power 

with value of 25 MW is fixed on the WG1 (5), while for the WG2 (11) was a 20 MW, which is 

about one-third of its installed capacity. The cost coefficients are the same as in Scenario 1. 

The figures (6.30 (a) and (b)) illustrate the cost-to-scale factor curves for wind farm 1 and 2. 

The overall minimum cost is around the middle range of scale parameters. With a rising in the 

scale parameter, the wind speeds probability also increases at their higher value. If scheduled 

power is maintained, the penalty costs increase, resulting in an increase in the overall power 

cost. After a certain value of scale parameter, the reserve cost won't go down as much is not 

significant. 
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(a) windfarm#1 (bus 5)                                                              (b) windfarm#2 (bus 11) 

Fig. 6.30: Variation of wind power cost (a) windfarm#1, (b) windfarm#2: modified IEEE 30-bus. 

 Case studies, Numerical Simulation results, discussion, and comparisons  

       Several case studies have been conducted on the electrical network, summarized in the table 

(6.39). Each optimization case study includes a maximum of 500 iterations in a single run of the 

algorithm and is repeated 20 times.  

Table. 6.39: Summary of all the cases addressed in this study: modified IEEE 30-bus. 

Case number Case explanation Equation number 

    Case 1 Minimize generation cost (𝑪gen ($/h)) Eq (4.26) 

Case 2 Minimize real power loss (𝑷Loss  (MW)) Eq (4.28) 

Case 3 Minimize gross cost (𝑪gross  ($/h)) Eq (4.32) 

This section is divided into two subsections. The first subsection of study cases aims to assess the 

effectiveness of the proposed algorithm (FDB-AOA) for determining the optimal placement and 

size of FACTS devices in the modified IEEE 30-bus system. The second subsection involves a 

comparative study, where the proposed algorithm is compared with other methods mentioned in 

the references [9], like SHADE, MSA, ABC to demonstrate the superiority of this algorithm and 

their effectiveness for solving the OPF problems.  

It is worth noting that the optimization problem involves 27 state and control variables, including 

the current settings of FACTS devices (SVC, TCSC, and TCPS). Each FACTS device has two 

control variables: one for location and one for device rating. During the optimization process, the 

allocation variable indicates either the bus or branch number depending on the FACTS device type, 

with the nearest integer value used for power flow studies. The parameter values were determined 

through extensive trials, with careful selection of population sizes and iterations. Each algorithm 
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was run independently 60 times for each case study to record the optimal outcomes and 

corresponding parameters. The table (6.40) presents the cost and emission coefficients of the 

thermal generators in the modified IEEE 30-bus system. 

Table. 6.40: Price and emission coefficients of the modified IEEE 30-bus. 

Generator Bus 𝒂 𝒃 𝒄 𝒅($/h) 𝒆(rad/MW) α β γ 𝑤 µ 

𝐓𝐆𝟏 1 0 2 0.00375 18 0.037 4.091 -5.554 6.49 0.0002 2.857 

𝐓𝐆𝟐 2 0 1.75 0.0175 16 0.038 2.543 -6.047 5.638 0.0005 3.333 

𝐓𝐆𝟖 8 0 3.25 0.00834 12 0.045 5.326 -3.55 3.38 0.002 2 

𝐓𝐆𝟏𝟑 13 0 3 0.025 13.5 0.041 6.131 -5.555 5.151 0.0001 6.667 

6.4.1.2. Optimization Results of Modified IEEE 30-bus Power System 

This section details the simulation results achieved by applying the proposed FDB-AOA algorithm 

on the modified IEEE 30-bus system. It is organized into two detailed subsections: 

A. Subsection One: Study results of FBD-AOA algorithm: modified IEEE 30-bus 

      This part is dedicated to confirming and evaluating the efficiency of the reported approach, 

FDB-AOA in solving OPF problems on the modified IEEE 30-bus system. The optimization 

results of all cases studied are tabulated, explanted, discussed and analyzed in this subsection. 

For all test cases, the simulation results include the optimal settings of control variables, total fuel 

cost, total emission gas, active power losses, gross cost, voltage deviation, and the positions and 

ratings of FACTS devices. The table (6.41) details the parameters that led to the optimization of 

the network for each objective function across all trial runs. This includes the optimized control 

variables, locations, and sizing of FACTS devices, as well as the bus and branch numbers where 

connections are specified. Specifically, it lists the buses connected to SVCs and the branch 

numbers designated for TCSC and TCPS. FACTS devices are frequently utilized in power systems 

to enhance their loading capacity, particularly in those that are operating at or close to their 

maximum capabilities. 

In Case 1, wherein the aim is to minimize the fitness function generation cost (𝑪gen ($/h) in Eq 

(4.26), the reported algorithm can be successful favorable results with a cost value of 806.9817 

$/h. Wind power plant generators are scheduled more frequently than thermal units due to their 

lower costs. However, scheduling wind generators at their maximum capacity is impractical as it 

increases reserve costs due to insufficient wind power to maintain scheduled output over long 

periods. The large inductive load means SVCs often operate at or near maximum capacity. Bus 21 

and bus 24 identified as the optimal locations for the SVCs. The optimal branches for TCSC and 



    Chapter 6: Applications and Results  

 

172 

 

TCPS are 2, 35, 9, and 14, respectively. FACTS devices are often installed in networks to enhance 

loading capability. 

In Case 2, the goal is to minimize real power loss (𝑷loss  (MW) as defined in Eq (2.28)). The 

FACTS devices’ allocation and rating is optimized to enhance the capacity of network to its 

maximum. Due to that, the proposed algorithm attained a favorable result with a real power loss 

of 1.7619 MW. The scheduling outcomes of wind generators are commonly more than those of 

thermal units due to their lower costs. In this scenario, the optimal locations for the two SVCs are 

at buses 24 and 21. Additionally, the most suitable branches for connecting the TCSC and TCPS 

are identified as branches 14, 25, 35, and 13, respectively. 

In Case 3, where the primary objective is to minimize the gross cost (𝑪gross ($/h) (Eq (2.32))). 

This objective highlights the crucial importance of combining both cost and loss considerations 

into a single objective function. One of a simple way to achieve this is the creating a cost model 

that incorporates the converted energy cost equivalent of the loss. Cost converted of power losses 

considered in this work is which is 0.10 dollars per kilowatt-hour (0.10 $/kWh). The fitness 

function of 𝑪gross can be explanted by the following expression: 

𝐶gross = 𝐶gen + 𝑃loss × 103 × 0.10,  

Here, 𝑃loss is in MW and 𝐶gen is determined as the given in equations. (9 and 5). 

The optimal gross cost achieved by the proposed method is 1104.6652 $/h. In case 3, the combined 

optimal generation cost and loss cost depend on the price coefficients for both wind and thermal 

power generators, as well as the unit price of energy. Considering both objectives together results 

in a reduced gross cost. The scheduling outcomes show wind power generators are used more than 

thermal units. The optimal locations for the two SVCs are buses 21 and 24. The best branches for 

connecting the TCSC and TCPS are numbers 25, 34, 35, and 1. 

 

Table. 6.41: the optimized results utilizing FBD-AOA: modified IEEE 30-bus. 

Control variables Min Max Case 1 Case 2 Case 3 Parameters Min Max Case 1 Case 2 Case 3 

PTG2(MW) 20 80 40.4124 24.8067 39.5208 𝐏𝐓𝐆𝟏 (MW) 50 200 134.90801 50.35643 50.0 

PWG5(MW) 0 75 49.6771 75.0000 75.0000 𝐐𝐓𝐆𝟏 (MVAr) - 20 150 2.45649 -3.78806 -1.71349 

PTG8(MW) 10 35 10.0000 35.0000 35.0000 𝐐𝐓𝐆𝟐 (MVAr) - 20 60 16.89724 8.14154 10.90263 

PWG11(MW) 0 60 41.9307 60.0000 60.0000 𝐐𝐖𝐆 (MVAr) - 30 35 24.67725 21.81749 22.43517 

PTG13(MW) 12 40 12.0000 40.0000 25.7542 𝐐𝐓𝐆𝟖 (MVAr) - 15 48.7 31.10329 30.50151 34.46611 

V1(p. u) 0.95 1.10 1.0741 1.0555 1.0599 𝑸𝐖𝐆𝟏𝟏(MVAr) - 25 30 22.82884 22.63942 21.58632 

V𝟐(p. u) 0.95 1.10 1.0592 1.0497 1.0547 𝐐𝐓𝐆𝟏𝟑 (MVAr) - 15 44.7 18.95830 26.11189 17.47834 

V𝟓(p. u) 0.95 1.10 1.0374 1.0399 1.0438 𝑪gen ($/h) 806.9817 939.2806 917.1625 

V𝟖(p. u) 0.95 1.10 1.0370 1.0451 1.0477 𝑷Loss  (MW) 5.5280 1.7631 1.8750 
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V11(p. u) 0.95 1.10 1.0905 1.0870 1.0851 𝑪gross  ($/h) 1359.7817 1115.5871 1104.6652 

V13(p. u) 0.95 1.10 1.0746 1.0825 1.0723 V-D  (p.u) 0.89944 0.90793 0.92337 

T11(p. u) 0.90 1.10 1.0285 1.0232 1.0186 Emission (ton/h) 0.21356 0.14176 0.14188 

T12(p. u) 0.90 1.10 0.9465 0.9422 0.9405 stability index 0.139333 0.135576 0.1383147 

T15(p. u) 0.90 1.10 0.9945 1.0134 1.0060  

T𝟑𝟔(p. u) 0.90 1.10 0.9644 0.9890 0.9785 

FACTS rating  FACTS placement Case 1 Case 2 Case 3 

𝝉𝑻𝐂𝐒𝐂 𝟏(%) 0 50% 25.71 50 15.43 TCSC-1 branch, (con. buses): 2, (1-3) 14, (9–10) 25, (2–5) 

𝝉𝑻𝐂𝐒𝐂 𝟐(%) 0 50% 49.81 20.94 50 TCSC-2 branch, (con. buses): 35,(25–27) 25, (10–20) 34, (25–26) 

𝚽𝑻𝑪𝑷𝑺𝟏 (deg) - 5° 5° 1.2688 4.2024 2.7135 TCPS-1 branch, (con. buses): 9, (6–7) 35, (25–27) 35, (25–27) 

𝚽𝑻𝑪𝑷𝑺𝟐 (deg) - 5° 5° 2.3059 1.3130 0.6170 TCPS-2 branch, (con. buses): 14, (9–10) 13, (9–11) 14, (9–10) 

𝑸𝑺𝑽𝑪𝟏 (MVAr) - 10 10 7.5888 9.6699 10.0000 SVC-1 bus no: 21 24 21 

𝑸𝑺𝑽𝑪𝟐 (MVAr) - 10 10 9.9955 9.9999 9.8752 SVC-2 bus no: 24 21 24 

 

The bar chart graph illustrated in the figure (6.31), represents the active power of the generators, 

excluding the slack generator, for each Case (1 to 3). Additionally, bar chart graph illustrates in 

the figure (6.32) represents the generator bus voltages and taps transformer (in p.u) for each case, 

also depicts the permissible intervals of control variables and their corresponding values for 

achieving optimal solutions for each objective function. 

 
 

Fig. 6.31: Optimal real power for all generators (excluding slack): modified IEEE 30-bus. 
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  Fig. 6.32: Voltage of generators bus and taps transformer: Cases 1 to 3. 

➢ Breakdown of several prices for all cases (1 to 3): modified IEEE 30-bus 

      The bar-chart graph presented in the figure (6.33) displays the breakdown of different costs. 

It should be noted that the penalty price for failing to utilize available wind energy is negligible, 

as the penalty price coefficient is the lowest. To reduce losses and optimize the gross cost in Cases 

2 and 3, respectively, the generators associated with buses 5, 8, and 11 operate near their maximum 

capacities due to high power demand in these areas. The increased scheduled power from the wind 

power plants generators leads to higher reserve costs for overestimating power in Cases 2 and 3. 

Direct costs, linked to the scheduled output from wind generators, also rise with increased 

scheduled power. Total wind power costs include direct, penalty, and reserve costs. In Cases 2 and 

3, thermal generator costs are lower than in Case 1 due to lower scheduled power, as illustrated in 

the table (6.42). The cost of losses is based on the unit price of energy and is lower when optimized 

effectively. 

Table. 6.42: Breakdown of several prices for each case: modified IEEE 30-bus. 

Cost Case 1 Case 2 Case 3 

Direct cost 152.87914 224.99997 224.99999 

Reserve cost 124.91548 239.62954 239.62908 

Thermal cost 510.2714 448.3690 423.6801 

Valve cost 11.1989 26.2821 28.8537 

Gross cost 1359.7817 1115.5871 1104.6652 

Penalty cost 7.716742 1.97377e-06 3.68918e-09 

Wind power cost 285.5114 464.6295 464.6296 

Loss cost 552.79912 176.3060 187.50273 
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Fig. 6.33: Breakdown of several prices for all Cases (1 to 3): modified IEEE 30-bus. 

The voltage profiles of all the case studies conducted on the modified system are illustrated in 

figure (6.34). The purpose of showcasing the profiles is to demonstrate that the algorithm has 

successfully adhered to the boundaries to critical constraints. Additionally, it is noteworthy that 

the generator's active and reactive power limitations have been met in all cases. 

 
 

Fig. 6.34: Voltage profiles buses for the all Cases (1 to 3) by FBD-AOA: IEEE 30-bus. 
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B. Subsection Two: A Comparative studied between the FDB-AOA and others methods: 

the modified IEEE 30-bus 

      This subsection conducted a comprehensive experimental study to test to evaluate the 

performance and ensure the effectiveness of the presented method on suppose a comparison study 

between the reported metaheuristic algorithm FDB-AOA with several other optimization 

algorithms such as SHADE (Success history based adaptive differential evolution), MSA (moth 

swarm algorithm), and ABC (artificial bee colony), Each of these methods is incorporated with SF 

constraint handling method. To achieve a rational comparison, the fourth algorithms are compared 

under the same parameters, 500 iterations, 60 population size through 20 independent runs. The 

rest internal parameters considered for these algorithms are mentioned in the table (6.43). 

 

Table. 6.43: Internal parameters settings of the algorithms. 

Algorithm name Parameters Value 

All algorithms Population size 60 

Maximum iterations 200 

problem dimension, 𝐷 27 

FBD-AOA C1 2 

C2 6 

C3 2 

SHADE-SF The parameters standard of algorithms 

MSA-SF Number of pathfinders 0.6 

ABC-SF Number of onlooker bees 6 

Case 1: Generation Cost (𝑪gen ($/h)): modified IEEE 30-bus 

The first case selected the Generation Cost (𝑪gen ($/h)) as a fitness function. The table (6.44) 

displays the simulation results of the presented technique compared with other techniques. It is 

confirmed that the FDB-AOA achieved the best 𝑪gen  (806.9817 $/h) compared to other 

techniques. The convergence behaviors comparison of FDB-AOA with others methods are 

illustrated in the figure (6.35). 

Table. 6.44: The optimized results of the FDB-AOA and other methods: Case 1. 

Control 

variables 

Min Max ABC-SF MSA-SF SHADE-SF FDB-AOA Parameters Min Max ABC-SF MSA-SF SHADE-SF FDB-AOA 

𝐏𝐓𝐆𝟐(𝐌𝐖) 20 80 38.4875 37.2759 40.5121 40.4124 PTG1 (MW) 50 200 134.92549 134.90792 134.90792 134.90801 

𝐏𝐖𝐆𝟓(𝐌𝐖) 0 75 48.7195 48.3873 49.7500 49.6771 QTG1 (MVAr) - 20 150 1.14695 2.57931 0.72628 2.45649 

𝐏𝐓𝐆𝟖(𝐌𝐖) 10 35 12.7807 13.0321 10.0000 10.0000 QTG2 (MVAr) - 20 60 16.57761 18.78577 14.96911 16.89724 

𝐏𝐖𝐆𝟏𝟏(𝐌𝐖) 0 60 41.0930 41.1086 41.8414 41.9307 QWG (MVAr) - 30 35 20.87681 24.70503 24.53619 24.67725 

𝐏𝐓𝐆𝟏𝟑(𝐌𝐖) 12 40 12.9148 14.1537 12.0000 12.0000 QTG8 (MVAr) - 15 48.7 32.36165 33.21619 34.20749 31.10329 

𝐕𝟏(𝐩. 𝐮) 0.95 1.10 1.0737 1.0742 1.0715 1.0741 𝑸WG11(MVAr) - 25 30 25.85017 23.56955 28.00216 22.82884 
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𝐕𝟐(𝐩. 𝐮) 0.95 1.10 1.0590 1.0591 1.0567 1.0592 QTG13 (MVAr) - 15 44.7 19.28431 17.70916 35.24207 18.95830 

𝐕𝟓(𝐩. 𝐮) 0.95 1.10 1.0383 1.0366 1.0349 1.0374 𝑪gen ($/h)   808.3748 809.0827 807.2819 806.9817 

𝐕𝟖(𝐩. 𝐮) 0.95 1.10 1.0392 1.0374 1.0350 1.0370 𝑷loss  (MW)   5.5203 5.4658 5.6109 5.5280 

𝐕𝟏𝟏(𝐩. 𝐮) 0.95 1.10 1.0962 1.0919 1.1000 1.0905 𝑪gross  ($/h)   1360.4048 1355.6432 1368.3719 1359.7817 

𝐕𝟏𝟑(𝐩. 𝐮) 0.95 1.10 1.0735 1.0722 1.0905 1.0746 VD (p.u)   0.79408 0.90787 0.82634 0.89944 

𝐓𝟏𝟏(𝐩. 𝐮) 0.90 1.10 1.0278 1.0172 0.9949 1.0285 Emission ton/h   0.21276 0.21230 0.21355 0.21356 

𝐓𝟏𝟐(𝐩. 𝐮) 0.90 1.10 0.9296 0.9168 0.9297 0.9465 stability index   0.141635 0.137062 0.1376 0.139333 

𝐓𝟏𝟓(𝐩. 𝐮) 0.90 1.10 0.9909 1.0090 1.0401 0.9945  

 𝐓𝟑𝟔(𝐩. 𝐮) 0.90 1.10 0.9764 0.9695 0.9645 0.9644 

FACTS rating  FACTS location ABC-SF MSA-SF SHADE-SF FDB-AOA 

𝝉𝑻𝐂𝐒𝐂 𝟏(%) 0 50% 03.31 49.98 49.95 25.71 TCSC-1 branch, (con. buses): 38,(27-30) 34,(25-26) 34, (25-26) 2( 6-10) 

𝝉𝑻𝐂𝐒𝐂 𝟐(%) 0 50% 49.74 25.22 26.00 49.81 TCSC-2 branch, (con. buses): 35, (25-27) 2, (1-3) 5, (2–5) 35(25–27) 

𝚽𝑻𝑪𝑷𝑺𝟏 (deg) - 5° 5° 1.0756 1.1331 1.4454 1.2688 TCPS-1 branch, (con. buses): 9, (6-7) 35, ((25-27) 35, (25–27) 9, (6–7) 

𝚽𝑻𝑪𝑷𝑺𝟐 (deg) - 5° 5° 2.5393 -1.3048 -1.3036 2.3059 TCPS-2 branch, (con. buses): 14, (9-10) 5, (2-5) 4, (3–4) 14, (9–10) 

𝑸𝑺𝑽𝑪𝟏 (MVAr) - 10 10 10.0000 5.6768 -9.1516 7.5888 SVC1 bus no: 24 19 9 21 

𝑸𝑺𝑽𝑪𝟐 (MVAr) - 10 10 9.9976 8.5451 9.9998 9.9955 SVC2 bus no: 7 24 24 24 

 

Fig. 6.35: Comparison of convergence behaviors of FDB-AOA and other methods Case 1. 

Case 2: Real power losses (𝑷loss  (MW)): modified IEEE 30-bus 

    The fitness function selected in this case is the Real power losses (𝑷loss  (MW)). The table 

(6.45) shows the simulation results of the presented technique compared with other techniques. It 

is confirmed that the FDB-AOA attained the most favorable 𝑷loss  value, reaching (1.7631 MW), 

surpassing the performance of other techniques. The convergence behaviors comparison providing 

by FDB-AOA with others methods are illustrated in the figure (6.36). 
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Table. 6.45: The optimized results of the FDB-AOA and other methods: Case 2: IEEE 30-bus. 

Control variables Min Max ABC-SF MSA-SF SHADE-SF FDB-AOA Parameters Min Max ABC-SF MSA-SF SHADE-SF FDB-AOA 

PTG2(MW) 20 80 38.7639 21.4021 31.1183 24.8067 PTG1(MW) 50 200 52.21472 57.5785 50.00004 50.35643 

PWG5(MW) 0 75 75.0 73.3244 74.7902 75.0000 QTG1 (MVAr) - 20 150 -3.82946 -1.97128 -1.72849 -3.78806 

PTG8(MW) 10 35 35.0 34.6582 34.2543 35.0000 QTG2 (MVAr) - 20 60 8.35354 11.71275 9.92001 8.14154 

PWG11(MW) 0 60 60.0 58.4578 57.8523 60.0000 QWG (MVAr) - 30 35 22.02555 22.07329 18.06980 21.81749 

PTG13(MW) 12 40 26.4970 39.9120 37.2154 40.0000 QTG8 (MVAr) - 15 48.7 30.14643 36.42547 30.97210 30.50151 

V1(p. u) 0.95 1.10 1.0595 1.0586 1.0495 1.0555 𝑸WG11(MVAr) - 25 30 21.89586 19.31959 28.13659 22.63942 

V𝟐(p. u) 0.95 1.10 1.0542 1.0516 1.0436 1.0497 QTG13 (MVAr) - 15 44.7 25.92275 20.41334 22.60228 26.11189 

V𝟓(p. u) 0.95 1.10 1.0437 1.0400 1.0330 1.0399 𝑪gen ($/h)   927.5848 934.6311 931.2582 939.2806 

V𝟖(p. u) 0.95 1.10 1.0473 1.0459 1.0362 1.0451 𝑷loss  (MW)   1.9089 1.9331 1.8304 1.7631 

V11(p. u) 0.95 1.10 1.0895 1.0811 1.0976 1.0870 𝑪gross  ($/h)   1104.0771 1127.9411 1114.2994 1115.5871 

V13(p. u) 0.95 1.10 1.0725 1.0702 1.0782 1.0825 VD (p.u)   0.89971 0.79076 0.87055 0.90793 

T11(p. u) 0.90 1.10 1.04 0.9700 1.0194 1.0232 Emission ton/h   0.14033 0.14408 0.14061 0.14176 

T12(p. u) 0.90 1.10 0.92 0.9904 0.9063 0.9422 stability index   0.13543415 0.1366307 0.13846 0.135576 

T15(p. u) 0.90 1.10 1.00 1.0296 0.9943 1.0134  

T𝟑𝟔(p. u) 0.90 1.10 0.98 0.9724 0.9644 0.9890 

FACTS rating  FACTS placement ABC-SF MSA-SF SHADE-SF FDB-AOA 

𝝉𝑻𝐂𝐒𝐂 𝟏(%) 0 50% 20.872 50 49.49 50 TCSC1 branch, (con.buses): 16, (12-13) 14, (9-10) 14, (9-10) 25, (2–5) 

𝝉𝑻𝐂𝐒𝐂 𝟐(%) 0 50% 17.183 25.71 5.14 20.94 TCSC2 branch, (con.buses): 14, (9-10) 25, (10-20) 25, (10-20) 34, (25–26) 

𝚽𝑻𝑪𝑷𝑺𝟏 (deg) - 5° 5° 2.5650 0.0205 -1.9365 4.2024 TCPS1 branch, (con.buses): 33, (24-25) 32, (23-24) 35, (25–27) 35, (25–27) 

𝚽𝑻𝑪𝑷𝑺𝟐 (deg) - 5° 5° 2.7192 4.1362 3.7699 1.3130 TCPS2 branch, (con.buses): 5, (2-5) 33 13, (9–11) 14, (9–10) 

𝑸𝑺𝑽𝑪𝟏 (MVAr) - 10 10 9.9362 9.9931 9.9992 9.6699 SVC1 bus no: 24 24 24 21 

𝑸𝑺𝑽𝑪𝟐 (MVAr) - 10 10 9.5065     6.6365      9.8919       9.9999  SVC2 bus no: 21     15 21 24 

 

Fig. 6.36: Comparison of convergence behaviors of FDB-AOA with others methods Case 2. 

Case 3: Gross cost (𝑪gross  ($/h)): modified IEEE 30-bus 

     The third case selected the Gross cost (𝑪gross  ($/h)) as a fitness function. The table (6.46) 

displays the optimized results of the presented method in comparison to other techniques. The 
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results confirm that the FDB-AOA achieved the best 𝑪gross (1104.6652$/h) compared to other 

techniques. The convergence behaviors comparison of FDB-AOA with others methods are 

depicted in figure (6. 37). 

Table. 6.46: The optimized results of the FDB-AOA and other methods: Case 3: IEEE 30-bus. 

Control variables Min Max ABC-SF MSA-SF SHADE-SF FDB-AOA Parameters Min Max ABC-SF MSA-SF SHADE-SF FDB-AOA 

PTG2(MW) 20 80 41.8884 44.4112 38.3339 39.5208 PTG1(MW) 50 200 50.00007 50.00005 50.01043 50.0 

PWG5(MW) 0 75 72.9342 69.7845 74.9821 75.0000 QTG1 (MVAr) - 20 150 -1.20432 -4.27402 -2.49604 -1.71349 

PTG8(MW) 10 35 33.6876 32.4757 34.9999 35.0000 QTG2 (MVAr) - 20 60 11.28142 8.65557 10.31751 10.90263 

PWG11(MW) 0 60 58.7901 60.0000 59.9799 60.0000 QWG (MVAr) - 30 35 18.83008 22.34026 22.90149 22.43517 

PTG13(MW) 12 40 28.0524 28.7138 27.0090 25.7542 QTG8 (MVAr) - 15 48.7 34.86774 30.71682 36.92161 34.46611 

V1(p. u) 0.95 1.10 1.0521 1.0571 1.0583 1.0599 𝑸WG11(MVAr) - 25 30 19.87786 22.63105 23.36909 21.58632 

V𝟐(p. u) 0.95 1.10 1.0467 1.0522 1.0530 1.0547 QTG13 (MVAr) - 15 44.7 22.40255 26.28634 15.00205 17.47834 

V𝟓(p. u) 0.95 1.10 1.0353 1.0403 1.0423 1.0438 𝑪gen ($/h) 916.96218 916.04113 918.7899 917.1625 

V𝟖(p. u) 0.95 1.10 1.0381 1.0448 1.0463 1.0477 𝑷loss  (MW) 1.9528 1.9853 1.9158 1.8750 

V11(p. u) 0.95 1.10 1.0821 1.0870 1.0842 1.0851 𝑪gross  ($/h) 1112.2435 1114.5673 1109.2887 1104.6652 

V13(p. u) 0.95 1.10 1.0776 1.0832 1.0644 1.0723 VD (p.u) 0.85247 0.90566 0.78558 0.92337 

T11(p. u) 0.90 1.10 0.9921 1.0294 1.0232 1.0186 Emission ton/h 0.14112 0.14089 0.14166 0.14188 

T12(p. u) 0.90 1.10 0.9261 0.9447 0.9300 0.9405 stability index 0.135434 0.138385 13.77242 0.1383147 

T15(p. u) 0.90 1.10 1.0042 1.0269 1.0201 1.0060  

T𝟑𝟔(p. u) 0.90 1.10 0.9694 0.9728 0.9882 0.9785 

FACTS rating       FACTS placement ABC-SF MSA-SF SHADE-SF FDB-AOA 

𝝉𝑻𝐂𝐒𝐂 𝟏(%) 0 50% 49.98% 49.83% 22.36% 0.1543 TCSC1 branch, (con.buses): 24,(19-20) 34,(25-26) 14, (9–11) 25, (2–5) 

𝝉𝑻𝐂𝐒𝐂 𝟐(%) 0 50% 26.17% 26.90% 36.28% 0.5000 TCSC2 branch, (con.buses): 7, (4-6) 2,(1-3) 30, (15–23) 34, (25–26) 

𝚽𝑻𝑪𝑷𝑺𝟏 (deg) - 5° 5° -0.6518 3.0878 0.7708 2.7135 TCPS1 branch, (con.buses): 34,(25-26) 35,(25-27) 13, (9–11) 35, (25–27) 

𝚽𝑻𝑪𝑷𝑺𝟐 (deg) - 5° 5° 2.8515 -0.7177 3.1159 0.6170 TCPS2 branch, (con.buses): 2, (1-3) 5,(2-5) 33, (24–25) 14, (9–10) 

𝑸𝑺𝑽𝑪𝟏 (MVAr) - 10 10 10.0000 9.8422 9.8557 10.0000 SVC1 bus no: 5 24 12 21 

𝑸𝑺𝑽𝑪𝟐 (MVAr) - 10 10 9.9993 10.0000 9.9951 9.8752 SVC2 bus no: 33 21 24 24 

 

Fig. 6.37: Comparison of the convergence behaviors of FDB-AOA with other methods Case 3. 
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• Discussion of The Results: modified IEEE 30-bus 

The tables (6.44, 6.45, 6.46), show the findings of the study conducted on the adopted test system 

IEEE 30-bus for various Cases achieved by the proposed FDB-AOA, and other techniques 

(SHADE-SF, MSA-SF; ABC-SF. According to the optimization results mentioned in those tables, 

it can be observed that the FDB-AOA algorithm has achieved the most satisfactory results while 

complying with all constraints. However, it is important to note that comparing the apparent 

numerical results of a constrained optimization problem is not a reliable method. Hence, it is 

crucial to verify the feasibility of the solutions. 

The simulation results clearly demonstrate the superiority of the FBD-AOA method compared to 

three other population metaheuristic algorithms. It can be observed that this technique could solve 

the single-objective OPF problem involving wind power generators and various FACTS devices 

with high efficiency. It consistently provides lower values for most test cases and competitive 

computational times compared to other algorithms. It should be mentioned that the best results 

have been achieved by FBD-AOA. excelling in terms of optimal solution, convergence, efficiency, 

and minimal execution time. 

The figures (Figs. 6.35, 6.36, 6.37), illustrate the convergence behaviors of the FBD-AOA method 

in comparison to other metaheuristic algorithms for cases 1 to 3, respectively. These diagrams 

indicate that the FBD-AOA algorithm exhibits faster convergence, following a uniform and 

systematic pattern. The SHADE-SF algorithm also converges rapidly and is a strong competitor 

in finding optimal solutions with precision similar to FBD-AOA. It performs consistently better in 

all cases compared to other algorithms. In contrast, MSA-SF and ABC-SF show irregular and 

erratic convergence, taking the longest time to reach the best solutions and often stagnating at 

various stages. For cases 2 and 3, the scheduling outcomes favor wind power plants over thermal 

units for all algorithms. The best locations and ratings for FACTS devices are detailed in the 

corresponding tables for each case. 

• Statical analyses and Robustness of the proposed Algorithm (FBD-AOA) 

         For further evaluating the effectiveness of each method, particularly the proposed algorithm 

(FBD-AOA) in solving the stochastic OPF problems considering the location and rating of the 

FATCS devices. A statistical analysis was conducted to solve various problems related to optimal 

power management. This analysis measures the robustness and efficiency across multiple 

methods. It is important to mention that the values of all variables were determined after being 

executed 20 times independently for all methods and all cases. The statistical outcomes result for 
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each case/ algorithm are displayed in table (6.47). These results are the best findings result 

achieved from running simulations, including the minimum, the maximum, the median and the 

and standard deviation (SD. dev) values. The results show that FBD-AOA consistently 

outperforms other techniques, achieving the best optimum values for most cases. In Case 1, the 

ABC-SF method performed better regarding standard deviation. Despite this, FBD-AOA 

generally delivered superior performance in other metrics like minimum, maximum, mean, and 

median values. Overall, the SHADE, MSA, and ABC methods also demonstrated competitive 

performance, outperforming most other algorithms across all cases. The figures (6.38 (a), (b), and 

(c)) illustrates a comparison between the optimized results of the three cases versus trials for all 

algorithms. It is confirmed that the results of the reported technique (FBD-AOA) clearly prove its 

accuracy and stability in solving such single-objective functions.  

Table. 6.47: The statistical results for all cases, and all methods: modified IEEE 30-bus. 

Algorithm  Case 1 Case 2 Case 3 

FDB-AOA minimum 806.9817 1.7631 1104.6652 

maximum 807.3215 1.8141 1109.5872 

Mean 807.1166 1.7812 1106.81722 

median 807.1089 1.7759 1106.7065 

SD. dev. 0.0996 0.0169 1.2142 

SHADE-SF minimum 807.2819 1.8304 1110.3699 

maximum 807.6278 1.9194 1116.0245 

Mean 807.4189 1.8546 1112.7605 

median 807.3969 1.8464 1112.4692 

SD. dev. 0.0983 0.0221 1.313725 

MSA-SF minimum 809.0827 1.9331 1114.5673 

maximum 812.6054 1.9981 1119.8187 

Mean 810.3785 1.9605 1116.4827 

median 810.0616 1.9531 1115.0533 

SD. dev. 0.9738 0.02315 2.024056 

ABC-SF minimum 808.3748 1.9089 1112.2434 

maximum 811.3024 1.9687 1116.2784 

Mean 809.2804 1.932265 1114.1049 

median 809.0374 1.9261 1113.8023 

SD. dev. 0.8339 0.02248 1.3983186 
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(a) Case 1                                                                                     (b) Case 2 

 
(c) Case 3 

Fig. 6.38: comparison between the optimized of the three cases versus trials for all proposed algorithms 
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(b) case  

 

 

(c) case 3 

Fig. 6.39: Boxplots of all algorithms for the benchmark functions cases 1-3: modified IEEE 30-bus. 

The table (6.48) represent a comparison between the results obtained by the proposed method 

with the results of the SHADE-SF method [9]. 

Table. 6.48: Comparison between the results obtained by the FDB-AOA with those of the SHADE-SF 

method. 

 Case 1 Case 2  Case 3 

FDB-AOA (500 Iterations) 806.9817 ($/h) 1. 7631 (MW) 1104.6652 ($/h) 

SHADE-SF (FES 30 000) 807.0166 ($/h) 1.7467 (MW) 1104.0771 ($/h) 
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• Discussion of results using statistical analysis: test cases 1 to 3: modified IEEE 30-

bus 

       In order to evaluate the obtained outcomes, in this subsection, boxplots corresponding to each 

of the 3 benchmark cases (cases 1-3), and each candidate algorithm. For that, the Boxplots are an 

efficient way to depict and evaluate the robustness of the presented algorithm namely FBD-AOA 

compared to other algorithms in terms of dispersion of the solutions.  

The figures (6.39 (a), (b), and (c)) illustrates the boxplot of the benchmark fitness values for the 

FBD-AOA and other algorithms such as: SHADE-SF, MSA-SF, ABC-SF. it can be concluded that 

the proposed FBD-AOA is statistically superior compared to other techniques, and exhibited 

relatively a stable search performance in all test cases for single objective functions. It is confirmed 

that the reported technique (FBD-AOA) allows achieving the best solution at a reduced SD in the 

majority of cases compared to other methods.  

This clearly proves the accuracy and stability of this algorithm. According to these preliminary 

results, it can be concluded that the proposed FBD-AOA algorithm can been saucerful used to 

solve various OPF problems. The boxplots presented in the figures indicate that, for the majority 

of cases, the boxplots of the reported method are among the narrowest and have the lowest values, 

providing further evidence of its superior performance. 

This part presents a study conducted by the OPF on the modified IEEE 30-bus transmission 

electrical network, which incorporates wind power plants generators and multi-FACTS 

equipment. The total generation cost is calculated, including direct, reserve, and penalty prices of 

wind power. The study optimizes the location and sizing of different types of FACTS controllers 

in several case studies. The outcomes of each case study validate the rationale for the combined 

goal with superiority over other algorithms. The significance of optimizing the placement and 

rating of FACTS devices is highlighted through a described/explained the examination of a real-

life scenario study. The results clearly demonstrate the superiority of the reported algorithm over 

other algorithms. 

       After having validated the proposed method on the modified electrical transmission network 

IEEE 30-bus test system, the next subsection deals the application of this proposed method (FDB-

AOA) on large scale test system which is the modified of reel Algerian electricity network DZA-

114 bus, with presence of renewable energy, also FACTS devices.  
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6.4.2. Application 3.2: The modified DZA-114 bus Algerian electric transmission network 

This part of the chapter focuses on application of the proposed algorithms for solving the single 

OPF problems. The original DZA-114-bus Algerian Electric transmission network test system is 

modified by replacing three conventional thermal power plants with renewable energy, stochastic 

wind and solar power plants. our study focuses on the implementation of two wind farms, with 

power capacities of 345 and 300 MW, and solar photovoltaic with power 100 MW. These two 

wind farms are installed in busbar set 52 and busbar set 83, and solar in busbar 109, respectively. 

Additionally, FACTS devices SVC, TCSC, and TCPS – (two of each type) are optimally placed 

in the most suitable locations. 

The system's data optimization targets include 57 variables to be optimized, including 15 active 

power values of generators, 15 voltage magnitudes of generators, and 16 tap-changer adjustments. 

The minimum and maximum operating limits of the control variables are given in the tables of 

results. The adopted objective functions are optimized using optimization algorithms such as ABC, 

MSA, SHADE, and the proposed FDB-AOA. The table (6.49) provides an overview 

characteristics of the adopted network DZA-114 bus. 

Table. 6.49: An overview characteristic of the adopted network: the modified DZA-114 bus. 

Element quantity Details 

Buses-number  114 - 

Branches-number  159 - 

Thermal generators-number 15 Slack-Bus is 4/ 5/ 

9/11/15/17/19/22/98/100/101/111 

Wind generators -number 2 Buses number: 52 and 83 

Solar generators -number 1 Buses number: 109 

Transformer with tap changer 16 Branches number: from 160 to 175 

TCSC  2  Branches and sizing are optimized 

TCPS  2 

SVC  2  Buses and sizing are optimized 

Total power 

demand 

Active-power - 3727 MW 

Reactive-power - 2070 MVAR 

Load-buses  - 

The voltage range of generators bus  15 [0,90–1,10] (p.u) 

The voltage range of the load bus 99 [0,90–1,1] (p.u) 

 Case studies, Numerical Simulation results, discussion, and comparisons  

       Several case studies have been conducted on the Algerian electrical network summarized in 

the table (6.50). In each optimization test, the algorithm runs a complete cycle with a maximum 

of iterations (400). The variable settings are carefully recorded for each case. 

file:///C:/Users/user/Downloads/new_versionpaper2-wind-FACTS-D-2%20(1).docx%23_bookmark38
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Table. 6.50: Summary of all the cases addressed in this study: the modified DZA-114 bus. 

Case number Case explanation Equation number 

    Case 1 Minimize generation cost (𝑪gen ($/h)) Eq (4.27) 

Case 2 Minimize real power loss (𝑷Loss  (MW)) Eq (4.28) 

Case 3 Minimize gross cost (𝑪gross  ($/h)) Eq (4.33) 

This section is divided into two subsections. The first set of study cases aims to assess the 

effectiveness of the proposed algorithm (FDB-AOA) for determining the optimal placement and 

size of FACTS devices in a large scale the modified DZA-114 bus Algerian electrical transmission 

network system. The second section involves a comparative study, where the proposed algorithm 

is compared with other methods mentioned in the references [10], like SHADE, MSA, ABC to 

demonstrate the superiority of this algorithm and their effectiveness for solving the OPF problems. 

Each optimization case study includes a maximum of 400 iterations conducted in a single complete 

run of the algorithm. Each case is repeated 20 times, and the best value of the objective function, 

as well as the corresponding control variable settings, are recorded. The figure (6.40) represents 

the Solution methodology. 

• Solution methodology 

 

Fig. 6.40:  Solution methodology. 
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6.4.2.1. Impact of Schedule Power and PDF Parameters on Wind Generation Costs 

The table (6.51) displays the chosen Weibull shape (𝛽),  and scale (𝛼) parameters for these newly 

implemented generators like solar and wind energy sources. Additionally, the total rated power 

value is provided for each wind power plant, also their cost coefficients. 

Table. 6.51: cost coefficients and PDF parameters for stochastic models of wind generators: the modified 

DZA-114 bus. 

Wind power generating plants Solar PV plant 

Windfarm# No. of 

turbines 

Rated 

power, 

𝑃𝑤𝑟(MW) 

Weibull 

PDF 

parameters 

Weibull 

mean, 𝑀𝑤𝑏𝑙  

Rated 

power, 

𝑃𝑠𝑟(MW) 

Lognormal 

PDF 

parameters 

Lognormal 

mean, 𝑀𝑙𝑔𝑛 

1 (bus 52) 115 345 𝛼 = 9 

 𝛽 = 2 

𝑣
= 7.976 m/s 

100 (bus 

109) 

𝜇 = 6 

𝜎 = 0.6 

𝐺 = 483 W/m2 

2 (bus 83) 100 300 𝛼 = 10 

𝛽 = 2 

𝑣
= 8.862 m/s 

Price coefficients ($/MWh) Price coefficients ($/MWh) 

Direct,𝑔𝑤𝑗  Reserve,𝐾𝑅𝑤𝑗 Penalty, 𝐾𝑃𝑤𝑗  Direct,ℎ𝑠 Reserve,

𝐾𝑅𝑠,𝑘 

Penalty, 𝐾𝑃𝑆,𝑘 

1,60 3,0 1,50 1.60 

 

3 1.5 

1,75 3,0 1,50 

Wind frequency and Weibull fitting distributions shown in figures 6.41 (a) and (b) are acquired 

after 8000 Monte-Carlo scenarios run. This norm defines the design criteria for wind turbines and 

establishes the highest turbulent class IA that a turbine under which a turbine can be approved for 

operation, with a maximum yearly average wind speed.  

  
 

Fig. 6.41 (a): Wind speed distribution for wind 

farm1 at bus 52 (𝜶 = 9, 𝜷 = 2). 

  Fig. 6.41 (b): Wind speed distribution for wind 

farm 2 at bus 83 (𝜶= 10, 𝜷=2). 

The distribution of solar irradiance or solar PV generator is illustrated by figure (6.42). The 

stochastic power-output of solar photovoltaic unit is illustrated by figures (6.43) 
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Fig. 6.42: Distribution of solar irradiance or solar PV generator at bus #109 ( 𝝁 = 𝟔, 𝝈 = 𝟎. 𝟔). 

 

Fig. 6.43: Real power distribution (MW) of solar PV at bus 109. 

A. VARIATION OF GENERATION COST OF RESs 

The scheduled power of wind and solar is varied from zero to the rated power and variation in 

direct, penalty, reserve and total cost is shown in figures (6.53, and 6.54). Moreover, with the 

increase of scheduled power, reserve cost is escalating due to large spinning reserve requirement. 

In addition, the direct cost increases linearly with the scheduled power. Whereas, the penalty cost 

decreases monotonically with the increase of scheduled power. 
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A.1. Scenario: 1 Scheduled power vs cost: modified DZA-114 bus 

        Notably, the Weibull probability density function (PDF) parameters utilized in this test align 

with those presented in the table (6.50). It should be noted that the direct cost of wind is lower 

than the average cost of thermal power. Additionally, the penalty cost is lower than the direct cost. 

The scheduled power ranges from [0 to the rated power] of the wind farm, and the variations of 

reserve, direct, penalty, and total costs are plotted in figures (6.44 (a) and (b)), and for the both 

wind farms. The total price is the summation of those costs associated with the scheduled power. 

The direct cost shows a linear relationship with the scheduled power. With an augmentation in the 

scheduled power, there is an accompanying elevation in the requisite spinning reserve, resulting 

in an upsurge in the reserve cost, and consequently, an escalation in the total generation cost. The 

penalty cost was appropriately reduced, but at a slower rate, with the amplification in the scheduled 

power. 

          
(a) WG1(bus 52)                                                                             (b) WG2(bus 83) 

Fig. 6.44: Variation of wind power cost vs scheduled power for wind generator (a) WG1(52), (b) WG2(83). 

 

A.2. Scenario 2: Probability density function parameter vs cost: modified DZA-114 bus 

         Here, the scale (𝛼) of Weibull distribution is varied while the shape parameters is constant 

(𝛽 = 2). Our goal was to see how it affects any changes in costs to the costs of wind power 

generator for a predetermined arbitrarily chosen schedule power. A scheduled power with value 

of 345 MW is fixed on the WG1 (52), while for the WG2 (83) was a 300MW. figures (6.45 (a) 

and (b)), illustrate the cost-to-scale factor curves for wind farm 1 and 2. The overall minimum 

cost is around the middle range of scale parameters. With a rising in the scale parameter, the wind 

speeds probability also increases at their higher value. If scheduled power is maintained, the 

penalty costs increase, resulting in an increase in the overall power cost. After a certain value of 

scale parameter, the reserve cost won't go down as much is not significant. 
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(a) windfarm#1 (bus 52)                                                              (b) windfarm#2 (bus 83) 

Fig. 6.45: Variation of wind power cost vs Weibull scale parameter (𝜶) 

 (a) windfarm#1(52), (b) windfarm#2( 83). 

Similar to wind power, cost variations of solar power over/ under-estimation are plotted against 

schedule power in figures (6.46, and 6.47). Yearly operating and maintenance cost for solar PV 

power plant is almost in similar range of that of onshore wind power plant [37]. Therefore, for our 

study purpose the direct, penalty and reserve cost coefficients for solar PV are assumed to be ℎ𝑠 =

1.6 , 𝐾𝑅𝑠,𝑘 = 3, and 𝐾𝑃𝑆,𝑘=1.5, respectively. Other related solar PV parameters are discussed in 

Section 3.1. With the selected PDF parameters for solar irradiance, the total solar power cost is 

not monotonically increasing. Indeed, the minimum cost is reported somewhere around 15 MW of 

scheduled power.

 

Fig. 6.46: Variation of solar power cost vs 

scheduled power for solar generator SG:109. 

 

Fig. 6.47: Variation of solar power cost vs 

lognormal mean for solar generator SG:109.
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6.4.2.2. Optimization Results of Modified DZA-114 bus Power System 

This section presents the simulation results obtained by applying the proposed algorithm FDB-

AOA to the Algerian electrical network DZA-114 bus. It is subdivided into two subsections, 

detailed as follows: 

A. Subsection One: Experimental Results for the proposed FDB-AOA 

As a first, we start by the study of the effectiveness of the presence of renewable energy and 

FACTS devices in the electrical network Algerian DZA-114 bus, for all cases there are three 

scenarios. By applying the proposed algorithm FDB-AOA the simulation results of the presented 

technique. The basic case refers to the scenario where renewable energy sources are not taken into 

account; that is, all power generation is sourced from traditional power plants. In this scenario, the 

lowest recorded values of active power at bus locations #52, #83, and #109 are 34.5 MW, 30 MW, 

and 10 MW, respectively [10]. 

B. Scenario 1: without renewable energy and FACTS Devices 

C. Scenario 2: with presence of renewable energy sources 

D. Scenario 3: with presence of renewable energy and FACTS Devices 

In the following resents the optimization of the Algerian electricity network.  

- Case-1: Generation Cost (𝑪gen ):  

this case selected the Generation Cost (𝑪gen ($/h)) as a fitness function. the simulation results of 

the presented technique. for three scenarios, the simulation results of the presented technique. for 

all scenarios, by applying the proposed metaheuristic Approach have been represent in the table 

(6.52). The convergence behaviors comparison of FDB-AOA with other methods are illustrated 

in figure (6.48) for the three scenarios. 

Table. 6.52: Solution of optimal power flow case 1 for DZA-114 bus system:  Case-1. 

Control variables Min Max scenario 1 scenario 2 scenario 3 Parameters Min Max scenario 1 scenario 2 scenario 3 

PTG5(MW)  135 1350     556.1998 465.9248  461.9142 PTG1 (MW) 135 1350 374.24865 474.42740 518.48258 

PTG11(MW)  10 100      93.8256 99.9910      99.5614 QTG4 (MVAr) -20 400 345.53355  232.37749  335.88404 

PTG15(MW)  30 300     291.5430 228.0022     238.1138 QTG5 (MVAr) -20 200 165.86197  198.64986  144.92563 

PTG17(MW) 135 1350     424.1314 508.9761     358.7840 QTG11 (MVAr) -50 100 97.08369  91.17042  56.34043 

PTG19(MW) 34.5 345     147.5310 80.2968     148.5362 QWG15(MVAr) 0 100 23.02280  50.95361  86.54041 

PTG22(MW) 34.5 345     266.7542 200.3255     198.7597 QTG17 (MVAr) 0 400 389.76445  396.78095    365.17593 

PWG52(MW) 0 345     228.4193 233.8165     249.7531 QTG19 (MVAr) 0 60 30.37808  51.51982  54.99395 

PTG80(MW) 34.5 345     274.9511 129.4540     125.2871 QTG22 (MVAr) 0 50 42.75701  49.93567  45.88815 

PWG83(MW) 0 300     196.9859 299.9909     299.1754 QWG52(MVAr) 0 50 40.76992  49.73146  37.09840 
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PTG98(MW) 30 300     103.2280 116.5992     166.0966 QTG80 (MVAr) 0 60 41.82416  59.05195  56.98448 

PTG100(MW) 60 600     510.8764 599.9638     595.6483 QWG83(MVAr) -50 200 171.56755  97.84903  152.74855 

PTG101(MW) 20 200     191.7231 199.9889     191.6375 QTG98 (MVAr) 0 50 20.38886  48.51327  39.19980 

PSG109(MW) 0 100      92.3840 99.9916      99.1559 QTG100 (MVAr) 0 270 200.59274  269.57622  203.49547 

PTG111(MW)  10 200      57.4832 63.9715      57.9883 QTG101 (MVAr) -50 200 110.52414  40.19253  45.64993 

V4(p. u) 0.90 1.10      1.0218  1.0396      1.0407   QSG109 (MVAr) -50 100 44.41023  24.58844  33.25297 

V𝟓(p. u) 0.90 1.10      1.0138  1.0346      1.0321   QTG111 (MVAr) -50 155 51.85276  41.05474  68.95389 

V11(p. u) 0.90 1.10      1.0108  1.0337      1.0053        

V15(p. u) 0.90 1.10      1.0088  1.0334      1.0458        

V17(p. u) 0.90 1.10      1.0188 1.0616      1.0231        

V19(p. u) 0.90 1.10      0.9877 1.0380      0.9743  𝑪gen ($/h) 17512.661 16661.1543 16630.4160 

V22(p. u) 0.90 1.10      1.0014 1.0223      1.0010  𝑷loss  (MW) 83.2848 74.7202 81.8940 

V52(p. u) 0.90 1.10      1.0195 1.0427      1.0004  𝑪gross  ($/h) 25841.1395 24133.17627 24819.8208 

V𝟖𝟎(p. u) 0.90 1.10      0.9879  1.0239      0.9969  VD (p.u) 3.00517 3.16939 3.42089 

V83(p. u) 0.90 1.10      1.0297 1.0618      1.0436  Emission (ton/h) 3.90787 5.49336 5.27087 

V𝟗𝟖(p. u)  0.90 1.10      1.0163 1.0690      1.0333  stability index 0.351785 0.330046 0.343555 

V𝟏𝟎𝟎(p. u)  0.90 1.10      1.0406  1.0949      1.0557  Thermal gen cost ($/h) 17383.60353 15661.8799 15508.59516 

V𝟏𝟎𝟏(p. u) 0.90 1.10      1.0252  1.0489      1.0195  Valveff cost ($/h) 129.05748 66.057318 77.188664 

V𝟏𝟎𝟗(p. u) 0.90 1.10      1.0526  1.0341      1.0264  Fuelvlv cost ($/h) 17512.6610 15727.9372 15585.7838 

V111(p. u) 0.90 1.10      1.0173  1.0528      1.0976  Tgen cost ($/h) 17383.60352 16595.0969 16553.22729 

T80−88(p. u) 0.90 1.10      0.9060  0.9286      0.9073  Wind cost ($/h)  761.8061 889.9099 

T81−90(p. u) 0.90 1.10      0.9429  1.0427      1.0209  Solar cost ($/h)  171.4110 154.7223 

T86−93(p. u) 0.90 1.10      0.9506  0.9411      0.9474        

T42−41(p. u) 0.90 1.10      0.9426  0.9326      1.0246        

T58−57(p. u) 0.90 1.10      0.9886  0.9877      0.9816        

T𝟒𝟒−𝟒𝟑(p. u) 0.90 1.10      0.9480  1.0288      0.9707        

T60−59(p. u) 0.90 1.10      0.9157  0.9623      0.9777        

T64−63(p. u) 0.90 1.10      0.9148  0.9812      0.9335         

T72−71(p. u) 0.90 1.10      0.9387  0.9769      0.9654         

T𝟏𝟕−𝟏𝟖(p. u) 0.90 1.10      1.0011  1.0323      0.9706        

T21−20(p. u) 0.90 1.10      0.9261  0.9995      0.9331        

T27−26(p. u) 0.90 1.10      0.9487  0.9111      1.0332        

T28−26(p. u) 0.90 1.10      1.0072  0.9511      1.0122        

T31−30(p. u)  0.90 1.10      1.0305  1.0699      1.0667        

T48−47(p. u)  0.90 1.10      0.9606  1.0103      0.9604   

 

 

 T𝟕𝟔−𝟕𝟒(p. u) 0.90 1.10      1.0383 0.9256      1.0199  

FACTS rating   FACTS location  scenario 3 

𝝉𝑻𝐂𝐒𝐂 𝟏(%) 0 50%   20.31 TCSC1 branch, (con. buses): 99 (73-67) 

𝝉𝑻𝐂𝐒𝐂 𝟐(%) 0 50%   17.58 TCSC2 branch, (con. buses): 148 (93-91) 

𝚽𝑻𝑪𝑷𝑺𝟏 (deg) - 5° 5°   4.5384 TCPS1 branch, (con. buses): 142 (99-102) 

𝚽𝑻𝑪𝑷𝑺𝟐 (deg) - 5° 5°   4.0411 TCPS2 branch, (con. buses): 122(87-99) 

𝑸𝑺𝑽𝑪𝟏 (MVAr) - 10 10   9.0334 SVC1 bus no: 89 

𝑸𝑺𝑽𝑪𝟐 (MVAr) - 10 10   6.2498 SVC2 bus no: 57 
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Fig. 6.48: Convergence behaviors comparison: Case-1: modified DZA-114 bus. 

Case-2: Real power losses (𝑷loss  (MW)):  

    The fitness function selected in this case is the Real power losses (Ploss (MW)). The table 

(6.53) shows the simulation results of the presented technique FDB-AOA without renewable 

energy, with renewable energy, and with renewable energy and Facts devices attained the most 

favorable 𝑷loss  (MW) value, reaching (62.9773 MW). The convergence behaviors comparison 

providing by FDB-AOA are illustrated in figure (6.49).  

Table. 6.53: The optimized results of FDB-AOA: Case-2: DZA-114 bus. 

Control variables Min Max scenario 1 scenario 2 scenario 3 Parameters Min Max scenario 1 scenario 2 scenario 3 

PTG5(MW)  135 1350 227.6195      366.8473 402.8842 PTG1 (MW) 135 1350 776.94508 554.07576 548.31218 

PTG11(MW)  10 100 97.1474      99.8166     99.9092 QTG4 (MVAr) -20 400 276.40207    293.14102 239.08457 

PTG15(MW)  30 300 179.4398      186.1784 190.5300 QTG5 (MVAr) -20 200  187.91008  155.12602 192.84516 

PTG17(MW) 135 1350 468.5123      605.3354 622.8335 QTG11 (MVAr) -50 100  87.45018  77.27976 97.36909 

PTG19(MW) 34.5 345 137.1819      154.8844 112.6113 QWG15 (MVAr) 0 100  37.27993  79.23104 84.72056 

PTG22(MW) 34.5 345 204.5337      178.8048 165.3513 QTG17 (MVAr) 0 400  375.94974  397.13757 359.40523 

PWG52(MW) 0 345 213.3829      187.7838 170.6650 QTG19 (MVAr) 0 60  51.63688  60.21428 59.30509 

PTG80(MW) 34.5 345 306.8478      284.3871 272.0978 QTG22 (MVAr) 0 50  36.30840  48.74670 49.30335 

PWG83(MW) 0 300 223.5767      202.3720 217.5344 QWG52 (MVAr) 0 50  39.85477  47.64316 48.75215 

PTG98(MW) 30 300 207.5762      224.2241 233.4851 QTG80 (MVAr) 0 60  53.29295  57.08695 59.46096 

PTG100(MW) 60 600 406.9653      359.1122 353.8170 QWG83 (MVAr) -50 200  94.84307  152.42058 185.75001 

PTG101(MW) 20 200 199.8173      194.1877 199.9756 QTG98 (MVAr) 0 50  35.43100  45.24280 37.24732 
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PSG109(MW) 0 100 49.5848      96.8825     99.9767 QTG100 (MVAr) 0 270  251.87183  159.30657 94.50227 

PTG111(MW)  10 200 95.4606      97.2468     99.9941 QTG101 (MVAr) -50 200  50.16684  31.08290 41.19205 

V4(p. u) 0.90 1.10 1.0649      1.0263  1.0734 QSG109 (MVAr) -50 100  47.78152  22.48069 31.47764 

V𝟓(p. u) 0.90 1.10 1.0554      1.0168   1.0687 QTG111 (MVAr) -50 155  15.94389  49.71556 41.05888 

V11(p. u) 0.90 1.10 1.0547      1.0122  1.0709       

V15(p. u) 0.90 1.10 1.0481      1.0242  1.0763       

V17(p. u) 0.90 1.10 1.0656      1.0539  1.0609       

V19(p. u) 0.90 1.10 1.0168      1.0216   1.0281       

V22(p. u) 0.90 1.10 1.0184      1.0264   1.0217 𝑪gen ($/h) 22819.4358 19968.7342 19992.0372 

V52(p. u) 0.90 1.10 1.0168      1.0457   1.0237 𝑷loss  (MW) 67.5911 65.1388 62.9773 

V𝟖𝟎(p. u) 0.90 1.10 1.0425      1.0073   1.0151 𝑪gross  ($/h) 29578.55070 26482.61763 26289.76718 

V83(p. u) 0.90 1.10 1.0666      1.0406   1.0522 VD(p.u) 3.73560 2.45509 3.35010 

V𝟗𝟖(p. u)  0.90 1.10 1.0750      1.0365   1.0380 Emission (ton/h) 6.92042 5.22653 5.34579 

V𝟏𝟎𝟎(p. u)  0.90 1.10 1.0966      1.0486   1.0440 stability index 0.3202137 0.3479633 0.3315744 

V𝟏𝟎𝟏(p. u) 0.90 1.10 1.0602      1.0187   1.0320 Thermal gen cost ($/h) 22685.22184 17928.24419 17954.18881 

V𝟏𝟎𝟗(p. u) 0.90 1.10 1.0821      0.9975   1.0461 Valveff cost ($/h) 134.213933 106.25916 106.82048 

V111(p. u) 0.90 1.10 1.0109      1.0880   1.0719 Fuelvlv cost ($/h) 22819.4358 18034.5034 18061.0093 

T80−88(p. u) 0.90 1.10 1.0025      0.9005   0.9841 Tgen cost ($/h) 22685.22184 19862.47507 19885.21670 

T81−90(p. u) 0.90 1.10 0.9630      0.9003   0.9495 Wind gen cost ($/h)  1643.0102 548.31218 

T86−93(p. u) 0.90 1.10 0.9824      0.9018   0.9304 Solar gen cost ($/h)  291.2207 239.08457 

T42−41(p. u) 0.90 1.10 0.9232      0.9133   0.9572       

T58−57(p. u) 0.90 1.10 1.0025      0.9160   0.9696       

T𝟒𝟒−𝟒𝟑(p. u) 0.90 1.10 0.9967      0.9563   0.9900       

T60−59(p. u) 0.90 1.10 1.0181      0.9299   0.9747       

T64−63(p. u) 0.90 1.10 1.0101      0.9407   0.9122       

T72−71(p. u) 0.90 1.10 0.9489      0.9069   0.9625       

T𝟏𝟕−𝟏𝟖(p. u) 0.90 1.10 1.0126      0.9965   1.0278       

T21−20(p. u) 0.90 1.10 0.9988      0.9853   1.0148       

T27−26(p. u) 0.90 1.10 0.9963      1.0652   0.9870       

T28−26(p. u) 0.90 1.10 0.9932      0.9121   0.9702       

T31−30(p. u)  0.90 1.10 1.0846      1.0352   1.0938       

T48−47(p. u)  0.90 1.10 0.9371      0.9391   0.9844  

 

 

 T𝟕𝟔−𝟕𝟒(p. u) 0.90 1.10 1.0208      1.0557 1.0655 

FACTS rating   FACTS location  scenario 3 

𝝉𝑻𝐂𝐒𝐂 𝟏(%) 0 50%   38.50 TCSC1 branch, (con. buses): 75 (29-39) 

𝝉𝑻𝐂𝐒𝐂 𝟐(%) 0 50%   49.27 TCSC2 branch, (con. buses): 21 (9-3) 

𝚽𝑻𝑪𝑷𝑺𝟏 (deg) - 5° 5°   3.8151 TCPS1 branch, (con. buses): 134 (98-97) 

𝚽𝑻𝑪𝑷𝑺𝟐 (deg) - 5° 5°   3.0398 TCPS2 branch, (con. buses): 101 (29-26) 

𝑸𝑺𝑽𝑪𝟏 (MVAr) - 10 10   9.9608 SVC1 bus no: 34 

𝑸𝑺𝑽𝑪𝟐 (MVAr) - 10 10   5.6624 SVC2 bus no: 81 
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Fig. 6.49: Convergence behaviors comparison: Case-2: modified DZA-114 bus 

Case 3: Gross cost (𝑪gross  ($/h)):  

     The third case selected the Gross cost (𝑪gross  ($/h)) as a fitness function. The table (6.54) 

displays the optimized results of the presented method FDB-AOA achieved the best 

𝑪gross (23784.4379 $/h) compared to the obtained results with the presence and absence of RES. 

The convergence behaviors comparison of the three scenarios for the third case by FDB-AOA are 

depicted in figure (6.50).  

Table. 54: The optimized results by FDB-AOA: Case-3: modified DZA-114 bus. 

Control variables Min Max scenario 1 scenario 2 scenario 3 Parameters Min Max scenario 1 scenario 2 scenario 3 

PTG5(MW)  135 1350 785.1830     447.1735 473.2426 PTG1 (MW) 135 1350 298.07441 472.56968 482.15441 

PTG11(MW)  10 100 77.2254      98.5127 99.0198 QTG4 (MVAr) -20 400 334.59475  380.89797 314.50688 

PTG15(MW)  30 300      121.6791     215.0994 195.0887 QTG5 (MVAr) -20 200 162.74499  92.13344 134.80142 

PTG17(MW) 135 1350      628.9116     461.8681 513.7074 QTG11 (MVAr) -50 100 60.27126  96.93216 89.83804 

PTG19(MW) 34.5 345      105.7152     156.2468 79.5261 QWG15 (MVAr) 0 100 67.28885  22.13463 85.84978 

PTG22(MW) 34.5 345      188.4839     190.5059 201.8655 QTG17 (MVAr) 0 400 404.30547  393.81528 391.55670 

PWG52(MW) 0 345      198.9683     227.8482 228.4906 QTG19 (MVAr) 0 60 56.10315  58.56292 57.18597 

PTG80(MW) 34.5 345      248.5958     135.3215 139.0835 QTG22 (MVAr) 0 50 44.39879  45.67603 32.02381 

PWG83(MW) 0 300      242.4486     299.6609 299.8989 QWG52 (MVAr) 0 50 45.90259  48.14397 47.81613 

PTG98(MW) 30 300      89.2866     125.0556 105.7301 QTG80 (MVAr) 0 60 27.86978  58.19586 57.02977 

PTG100(MW) 60 600      494.1318     596.8551 598.1138 QWG83 (MVAr) -50 200 174.12187  192.50057 123.92047 

PTG101(MW) 20 200      138.8126     199.1522 199.1147 QTG98 (MVAr) 0 50 9.85596  41.34431 49.45380 

PSG109(MW) 0 100      86.4573      99.3665     99.5515 QTG100 (MVAr) 0 270 230.09519  152.12191 145.12235 

PTG111(MW)  10 200      98.8897      76.5413     83.3527 QTG101 (MVAr) -50 200 16.27542  42.15751 50.77294 

V4(p. u) 0.90 1.10      1.0458        1.0135  1.0790 QSG109 (MVAr) -50 100 60.63561  47.20379 32.84909 

V𝟓(p. u) 0.90 1.10      1.0411        0.9968  1.0703 QTG111 (MVAr) -50 155 40.26622  52.33044 53.07069 

V11(p. u) 0.90 1.10      1.0122        1.0104  1.0706       

V15(p. u) 0.90 1.10      1.0361       0.9900  1.0810       
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V17(p. u) 0.90 1.10      1.0429       1.0368  1.0585       

V19(p. u) 0.90 1.10      0.9912       0.9833  1.0346       

V22(p. u) 0.90 1.10      1.0065       1.0002  1.0211 𝑪gen ($/h) 16424.8653 16527.1571 16690.3918 

V52(p. u) 0.90 1.10      1.0333       1.0207  1.0737 𝑷loss  (MW) 75.8633 74.7775 70.9405 

V𝟖𝟎(p. u) 0.90 1.10      0.9815       1.0152  0.9854 𝑪gross  ($/h) 24011.1955 24004.9105 23784.4379 

V83(p. u) 0.90 1.10      1.0300       1.0634  1.0258 VD (p.u) 3.00685 3.03252 3.33075 

V𝟗𝟖(p. u)  0.90 1.10      1.0146       1.0378  1.0326 Emission (ton/h) 3.41392 5.21041 5.52862 

V𝟏𝟎𝟎(p. u)  0.90 1.10      1.0426       1.0582  1.0429 stability index 0.3376246 0.3576617 0.3106125 

V𝟏𝟎𝟏(p. u) 0.90 1.10      1.0016       1.0270  1.0312 Fuelvlv cost ($/h) 16424.8653 15515.9205 16690.3918 

V𝟏𝟎𝟗(p. u) 0.90 1.10      1.0887       1.0651  1.0489 Thermal gen cost ($/h) 16296.91091 15416.79127 15623.1771 

V111(p. u) 0.90 1.10      1.0226       1.0814  1.0851 Tgen cost ($/h) 16424.8655 16428.02788 16622.3903 

T80−88(p. u) 0.90 1.10      0.9066       0.9122  0.9003 Valveff cost ($/h) 127.954593 99.129267 68.001462 

T81−90(p. u) 0.90 1.10      0.9683       0.9115  0.9067 Wind gen cost ($/h)  797.7281 761.5114 

T86−93(p. u) 0.90 1.10      0.9220       0.9098  0.9030 Solar gen cost ($/h)   213.5085 237.7017 

T42−41(p. u) 0.90 1.10      0.9266       0.9482  1.0075       

T58−57(p. u) 0.90 1.10      1.0219       0.9045  0.9165       

T𝟒𝟒−𝟒𝟑(p. u) 0.90 1.10      0.9080       1.0866  0.9385       

T60−59(p. u) 0.90 1.10      0.9221       0.9687  0.9279       

T64−63(p. u) 0.90 1.10      0.9615       0.9494  0.9166       

T72−71(p. u) 0.90 1.10      0.9619       0.9779  0.9790       

T𝟏𝟕−𝟏𝟖(p. u) 0.90 1.10      1.0022       1.0085  1.0299       

T21−20(p. u) 0.90 1.10      1.0006       0.9973  1.0072       

T27−26(p. u) 0.90 1.10      0.9932       0.9810  0.9421       

T28−26(p. u) 0.90 1.10      1.0201       1.0782  0.9664       

T31−30(p. u)  0.90 1.10      1.0517       1.0586  1.0091       

T48−47(p. u)  0.90 1.10      0.9439       0.9657  0.9473  

 

 

 T𝟕𝟔−𝟕𝟒(p. u) 0.90 1.10      0.9471      1.0990   0.9965 

FACTS rating   FACTS location  scenario 3 

𝝉𝑻𝐂𝐒𝐂 𝟏(%) 0 50%   47.45 TCSC1 branch, (con. buses):  73 (26-34) 

𝝉𝑻𝐂𝐒𝐂 𝟐(%) 0 50%   44.120 TCSC2 branch, (con. buses):  133 (100-97) 

𝚽𝑻𝑪𝑷𝑺𝟏 (deg) - 5° 5°   4.4120 TCPS1 branch, (con. buses):  88 (52-30) 

𝚽𝑻𝑪𝑷𝑺𝟐 (deg) - 5° 5°   4.0727 TCPS2 branch, (con. buses):  90 (40-41) 

𝑸𝑺𝑽𝑪𝟏 (MVAr) - 10 10   7.6360 SVC1 bus no:  96 

𝑸𝑺𝑽𝑪𝟐 (MVAr) - 10 10   8.7643 SVC2 bus no:  81 

 
Fig. 6.50: convergence behaviors comparison: Case-3: modified DZA-114 bus. 
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 Analysis of the results with presence of RESs and FACTS devices: modified DZA-

114 bus. 

      This part is dedicated to confirming and evaluating the efficiency of the reported approach, 

FDB-AOA in solving OPF problems on the modified Algerian electric transmission network DZA-

114 bus. The optimization results of all cases studied are summarized, explanted, discussed and 

analyzed are provided in the table (6.55). As well as the details of the parameters that resulted in 

the optimization of the adopted network, for each objective function. Which including the 

optimized results of control variables, including the locations and sizing of FACTS device 

optimized, as well as the busses and branch numbers where connections are specified as means, 

the buses where connected the SVCs, and branch numbers where connection are designated for 

TCSC and TCPS, all these are mentioned in the table (6.55). 

In Case-1, wherein the aim is to optimize the fitness function generation cost (𝑪gen ($/h) in eq. 

(2.27)), the reported algorithm can be successful favorable results with a cost value of 16630.4160 

$/h. The Bus 89 and bus 57 are identified as the optimal locations for the two SVCs in this case. 

The branches numbers for TCSC and TCPS, as applicable in this optimization case are 99,148, 

142, and 122, respectively, that are frequently certainly operating at or near in their middle 

capabilities. FACTS devices are often installed in networks to enhance loading capability. 

In Case-2, wherein the objective is the minimization of real power loss (𝑷loss  (MW) in eq. (2.28)), 

both the FACTS devices allocation and rating is optimized in a way to enhance loading capacity a 

maximum of network. Due to that, the proposed algorithm can be attained a favorable result with 

a real power loss of 62.9773 MW. The scheduling outcomes of wind generators are commonly 

more than the thermal units due to their less cost.  

The optimal locations for the two SVCs in in this case are the buses 34 and 81. While the best 

favorable branches numbers for connecting the TCSC and TCPS in this optimization case are 75, 

21, 134, and 101, respectively, FACTS devices are frequently utilized in power systems to enhance 

their loading capacity. 

In Case-3, where the primary objective is to minimize the gross cost (𝑪gross ($/h) (eq.(2.33))). This 

objective highlights the crucial importance of combining both cost and loss considerations into a 

single objective function. One of a simple way to achieve this is the creating a cost model that 

incorporates the converted energy cost equivalent of the loss.  

The best optimum value of the gross cost achieved by the proposed method is 23784.4379 $/h. It 

is well-established that in case 3, the optimal cost of generation, when combined with the cost of 

losses, depends on the price coefficients for both wind and thermal power generator units, as well 
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as the unit price of energy. Nevertheless, when both objectives are considered together, it results 

in a reduced gross cost (𝑪gross ). The optimal locations for the two SVCs in in this case are the 

buses 96 and 81. Also The best favorable branches numbers for connecting the TCSC and TCPS 

in this optimization case are 73, 133, 88, and 90, respectively. 

Table. 6.55: the optimized results of the adopted test system for all cases utilizing FBD-AOA for the 

scenario three:  modified DZA-114 bus. 

Control variables Min Max Case1  Case 2 Case 3 Parameters Min Max Case1  Case 2 Case 3 

PTG5(MW)  135 1350  461.9142 402.8842 473.2426 PTG1 (MW) 135 1350 518.48258 548.31218 482.15441 

PTG11(MW)  10 100      99.5614 99.9092 99.0198 QTG4 (MVAr) -20 400  335.88404 239.08457 314.50688 

PTG15(MW)  30 300      238.1138 190.5300 195.0887 QTG5 (MVAr) -20 200  144.92563 192.84516 134.80142 

PTG17(MW) 135 1350      358.7840 622.8335 513.7074 QTG11 (MVAr) -50 100  56.34043 97.36909 89.83804 

PTG19(MW) 34.5 345      148.5362 112.6113 79.5261 QWG15 (MVAr) 0 100  86.54041 84.72056 85.84978 

PTG22(MW) 34.5 345      198.7597 165.3513 201.8655 QTG17 (MVAr) 0 400  365.17593 359.40523 391.55670 

PWG52(MW) 0 345      249.7531 170.6650 228.4906 QTG19 (MVAr) 0 60  54.99395 59.30509 57.18597 

PTG80(MW) 34.5 345      125.2871 272.0978 139.0835 QTG22 (MVAr) 0 50  45.88815 49.30335 32.02381 

PWG83(MW) 0 300      299.1754 217.5344 299.8989 QWG52 (MVAr) 0 50  37.09840 48.75215 47.81613 

PTG98(MW) 30 300      166.0966 233.4851 105.7301 QTG80 (MVAr) 0 60  56.98448 59.46096 57.02977 

PTG100(MW) 60 600      595.6483 353.8170 598.1138 QWG83 (MVAr) -50 200  152.74855 185.75001 123.92047 

PTG101(MW) 20 200      191.6375 199.9756 199.1147 QTG98 (MVAr) 0 50  39.19980 37.24732 49.45380 

PSG109(MW) 0 100      99.1559 99.9767 99.5515 QTG100 (MVAr) 0 270  203.49547 94.50227 145.12235 

PTG111(MW)  10 200      57.9883 99.9941 83.3527 QTG101 (MVAr) -50 200  45.64993 41.19205 50.77294 

V4(p. u) 0.90 1.10      1.0407   1.0734 1.0790 QSG109 (MVAr) -50 100  33.25297 31.47764 32.84909 

V𝟓(p. u) 0.90 1.10      1.0321   1.0687 1.0703 QTG111 (MVAr) -50 155  68.95389 41.05888 53.07069 

V11(p. u) 0.90 1.10      1.0053  1.0709 1.0706       

V15(p. u) 0.90 1.10      1.0458  1.0763 1.0810       

V17(p. u) 0.90 1.10      1.0231  1.0609 1.0585       

V19(p. u) 0.90 1.10      0.9743  1.0281 1.0346       

V22(p. u) 0.90 1.10      1.0010  1.0217 1.0211 𝑪gen ($/h)   16630.4160 19992.0372 16690.3918 

V52(p. u) 0.90 1.10      1.0004  1.0237 1.0737 𝑷loss  (MW)   81.8940 62.9773 70.9405 

V𝟖𝟎(p. u) 0.90 1.10      0.9969  1.0151 0.9854 𝑪gross  ($/h)   24819.82080 26289.76718 23784.4379 

V83(p. u) 0.90 1.10      1.0436  1.0522 1.0258 Thgen cost ($/h)   15508.59516 17954.18881 15623.1771 

V𝟗𝟖(p. u)  0.90 1.10      1.0333  1.0380 1.0326 Valveff cost ($/h)   77.188664 106.8204807 68.0014615 

V𝟏𝟎𝟎(p. u)  0.90 1.10      1.0557  1.0440 1.0429 Wind cost ($/h)   889.9099 1628.5291 761.5114 

V𝟏𝟎𝟏(p. u) 0.90 1.10      1.0195  1.0320 1.0312 Solar cost($/h)   154.7223 302.4988 237.7017 

V𝟏𝟎𝟗(p. u) 0.90 1.10      1.0264  1.0461 1.0489 Fuelvlv cost ($/h)   15585.7838 18061.0093 16690.3918 

V111(p. u) 0.90 1.10      1.0976  1.0719 1.0851 VD (p.u)   3.42089 3.35010 3.33075 

T80−88(p. u) 0.90 1.10      0.9073  0.9841 0.9003 Emission (ton/h)   5.27087 5.34579 5.52862 

T81−90(p. u) 0.90 1.10      1.0209  0.9495 0.9067 stability index   0. 3435543 0.3315744 0.3106125 

T86−93(p. u) 0.90 1.10      0.9474  0.9304 0.9030 tgen cost ($/h)   16553.22730 19885.21670 16622.3903 

T42−41(p. u) 0.90 1.10      1.0246  0.9572 1.0075       

T58−57(p. u) 0.90 1.10      0.9816  0.9696 0.9165       

T𝟒𝟒−𝟒𝟑(p. u) 0.90 1.10      0.9707  0.9900 0.9385       

T60−59(p. u) 0.90 1.10      0.9777  0.9747 0.9279       

T64−63(p. u) 0.90 1.10      0.9335   0.9122 0.9166       

T72−71(p. u) 0.90 1.10      0.9654   0.9625 0.9790       

T𝟏𝟕−𝟏𝟖(p. u) 0.90 1.10      0.9706  1.0278 1.0299       

T21−20(p. u) 0.90 1.10      0.9331  1.0148 1.0072       

T27−26(p. u) 0.90 1.10      1.0332  0.9870 0.9421       

T28−26(p. u) 0.90 1.10      1.0122  0.9702 0.9664       

T31−30(p. u)  0.90 1.10      1.0667  1.0938 1.0091       

T48−47(p. u)  0.90 1.10      0.9604  0.9844 0.9473  

 

 

 T𝟕𝟔−𝟕𝟒(p. u) 0.90 1.10      1.0199  1.0655   0.9965 
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FACTS rating   FACTS location Case1  Case 2 Case 3 

𝝉𝑻𝐂𝐒𝐂 𝟏(%) 0 50% 20.31 38.50 47.45 TCSC1 branch, (con. buses): 99 (73-67) 75 (29-39) 73 (26-34) 

𝝉𝑻𝐂𝐒𝐂 𝟐(%) 0 50% 17.58 49.27 44.120 TCSC2 branch, (con. buses): 148 (93-91) 21 (9-3) 133 (100-97) 

𝚽𝑻𝑪𝑷𝑺𝟏 (deg) - 5° 5° 4.5384 3.8151 4.4120 TCPS1 branch, (con. buses): 142 (99-102) 134 (98-97) 88 (52-30) 

𝚽𝑻𝑪𝑷𝑺𝟐 (deg) - 5° 5° 4.0411 3.0398 4.0727 TCPS2 branch, (con. buses): 122(87-99) 101 (29-26) 90 (40-41) 

𝑸𝑺𝑽𝑪𝟏 (MVAr) - 10 10 9.0334 9.9608 7.6360 SVC1 bus no: 89 34 96 

𝑸𝑺𝑽𝑪𝟐 (MVAr) - 10 10 6.2498 5.6624 8.7643 SVC2 bus no: 57 81 81 

The bar chart graph illustrated in the figure (6.51), represents the active power of the generators, 

excluding the slack generator, for scenario three (with presence of renewable energy and facts 

devices) for each case (1 to 3).  

 
 

Fig. 6.51: Optimal real power for all generators (excluding slack) for Cases 1 to 3: modified DZA-114 bus. 

Additionally, bar chart graph illustrates in the figures 6.52 (a) and (b) represent the generator bus 

voltages and taps transformer (in p.u) for each case, also depicts the permissible intervals of control 

variables and their corresponding values for achieving optimal solutions for each objective 

function. 
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(a) 

  

(b)  

Fig. 6.52: Optimal voltage of generators bus (a), and taps transformer (b) for Cases 1 to 3: DZA-114 bus. 

 Breakdown of several costs for all cases (1 to 3) (modified DZA-114 bus) 

      The bar-chart graph presented in figure (6.53) displays the breakdown of different costs. It 

should be noted that the penalty cost is the lowest cost in all instances of the wind’s energy 

generators. The increased scheduled power from the wind and solar power plants generators results 

in higher reserve costs for overestimating power plants in the cases 2 and 3. As the direct costs are 

related to the scheduled output power from the wind generator, they increase with the scheduled 
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power. The total cost of wind or solar power plants generators is the total of direct, penalty, and 

reserve costs. As illustrated in the table (6.56), owing to the lowest scheduled power of the thermal 

generators in first case. 

Table. 6.56: Breakdown of several prices for each case (modified DZA-114 bus). 

Cost Case 1 Case 2 Case 3 

Direct cost wind 491,128394 843,955385 407,561285 

Reserve cost wind 293,118927 764,512962 216,661296 

Penalty cost wind  105.662542 20,0607665 137.28885 

Wind power cost 889,9099 1628,5291 761,5114 

Direct cost Solar 92,781251 159,9906 133,36426 

Reserve cost solar 38,472212 134.729515  91,97931 

Penalty cost solar  23,4688098 7,7786593 12,35812 

Solar power cost 154,7223 302,4988 237,7017 

Loss cost 8189,4 6297,73 7094,05 

Thermal cost 15508,59516 17954,18881 15623,1771 

Valve cost 77,188664 106,8204807 68,0014615 

Generation Cost 16630,416 19885,2167 16690,3918 

Tgen cost 16553,2273 19992,0372 16622,3903 

Gross cost 24819,8208 26289,76718 23784,4379 

 

Fig. 6.53: Breakdown of several prices for all Cases-(1 to 3): modified DZA-114 bus. 

The voltage profiles of load bused of all the case studies conducted on the modified system are 

illustrated in figure (6.54). The purpose of showcasing the profiles is to demonstrate that the 

algorithm has successfully adhered to the boundaries to critical constraints. Additionally, it is 

noteworthy that the generator's active and reactive power limitations have been met in all cases. 
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Fig. 6.54: Voltage profiles buses of the modified DZA-114 bus for test cases (Cases-1 to 3) by FBD-AOA. 

A. Subsection Two: A comparative studied between the FDB-AOA and other methods  

      This subsection conducted a comprehensive experimental study to evaluate the performance 

of the presented metaheuristic algorithm FDB-AOA with several other optimization algorithms 

such as SHADE-SF, MSA-SF, and ABC-SF. To achieve a rational comparison, the fourth 

algorithms are compared under the same parameters, 400 iterations, 60 population size. The rest 

internal parameters considered for these algorithms are mentioned in table. (6.49) The 

optimizations results are given in below. 

Case.1: Generation Cost (𝑪gen ($/h)) 

The Generation Cost (𝑪gen ($/h)) is selected as a fitness function for this case. The table (6.57) 

displays the results of the presented technique compared with other techniques. It is confirmed that 

the FDB-AOA achieved the best 𝑪gen   with a value of 16747.7449 $/h compared to other 

techniques (SHADE-SF, MSA-SF; ABC-SF). The convergence behaviors comparison of FDB-

AOA with other methods are illustrated in figure (6.55). 

Table. 6.57: The optimized results of the FDB-AOA and other methods: Case.1 (modified DZA-114 bus). 

Control variables Min Max FDB-AOA SHADE ABC MSA Parameters Min Max FDB-AOA SHADE ABC MSA 

PTG5(MW)  135 1350  461.9142 538.9198 490.0732  473.5571 PTG1 (MW) 135 1350 518.48258 477.49608 476.82729 596.30831 

PTG11(MW)  10 100      99.5614 99.9389      99.9014      93.6510 QTG4 (MVAr) -20 400  335.88404 309.85633 289.21022 368.36070 

PTG15(MW)  30 300      238.1138 224.0488      239.0153      228.0677 QTG5 (MVAr) -20 200  144.92563 195.19286 190.09565 135.33789 
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PTG17(MW) 135 1350      358.7840 434.4517      503.7204      352.1022 QTG11 (MVAr) -50 100  56.34043 92.59276 78.25370 52.11805 

PTG19(MW) 34.5 345      148.5362 80.3767      80.6871      102.9520 QWG15(MVAr) 0 100  86.54041 29.79417 37.21500 60.33796 

PTG22(MW) 34.5 345      198.7597 204.7490      200.7788      194.3059 QTG17 (MVAr) 0 400  365.17593 352.25180 397.40099 389.03531 

PWG52(MW) 0 345      249.7531 240.9844      232.0702      254.9589 QTG19 (MVAr) 0 60  54.99395 47.05665 41.89765 34.94793 

PTG80(MW) 34.5 345      125.2871 132.0247      134.3207      150.2361 QTG22 (MVAr) 0 50  45.88815 35.39275 49.51342 15.46222 

PWG83(MW) 0 300      299.1754 299.9546      299.9946      294.5519 QWG52(MVAr) 0 50  37.09840 49.88547 34.97520 49.97637 

PTG98(MW) 30 300      166.0966 126.5678      119.5938      106.4810 QTG80 (MVAr) 0 60  56.98448 51.39960 54.42825 27.95688 

PTG100(MW) 60 600      595.6483 599.6502      599.6821      586.0254 QWG83(MVAr) -50 200  152.74855 159.38383 105.75656 108.16399 

PTG101(MW) 20 200      191.6375 199.9482      199.9422      189.7541 QTG98 (MVAr) 0 50  39.19980 17.74394 20.94143 49.78633 

PSG109(MW) 0 100      99.1559 99.9987      99.9529      96.3634 QTG100 (MVAr) 0 270  203.49547 217.30301 225.06597 269.33981 

PTG111(MW)  10 100      57.9883 51.4510      33.3685      90.2828 QTG101 (MVAr) -50 200  45.64993 70.85441 89.04905 105.52876 

V4(p. u) 0.90 1.10      1.0407   1.0520      1.0622      1.0349   QSG109 (MVAr) -50 100  33.25297 30.61340 31.86033 20.67804 

V𝟓(p. u) 0.90 1.10      1.0321   1.0469      1.0565      1.0244   QTG111 (MVAr) -50 155  68.95389 68.01699 68.01100 38.73528 

V11(p. u) 0.90 1.10      1.0053  1.0387      1.0450      0.9909   

V15(p. u) 0.90 1.10      1.0458  1.0382      1.0521      1.0290   

V17(p. u) 0.90 1.10      1.0231  1.0260      1.0571      1.0156 𝑪gen ($/h) 16630.4160 16753.9977 16880.2514 16919.2878 

V19(p. u) 0.90 1.10      0.9743  0.9837      1.0080      0.9706 𝑷loss  (MW) 81.8940 83.5606 82.9285 82.5977 

V22(p. u) 0.90 1.10      1.0010  0.9784      1.0162      0.9597 𝑪gross  ($/h) 24819.82080 25110.0601 25173.09738 25179.05623 

V52(p. u) 0.90 1.10      1.0004  1.0141      1.0222      1.0361 thgencost 15508.59516 15742.4560 15909.54576 15790.5721 

V𝟖𝟎(p. u) 0.90 1.10      0.9969  1.0077      1.0064      0.9892  Valveff cost 77.188664 80.5606 80.23501 72.07355 

V83(p. u) 0.90 1.10      1.0436  1.0534      1.0451      1.0322  Wind cost 889.9099 793.1042 781.4825 793.7280 

V𝟗𝟖(p. u)  0.90 1.10      1.0333  1.0343      1.0500      1.0396  Solar cost 154.7223 137.8773 108.9881 262.9141 

V𝟏𝟎𝟎(p. u)  0.90 1.10      1.0557  1.0630      1.0726      1.0659  Fuelvlv cost 15585.7838 15823.0162 15989.78077 15862.6457 

V𝟏𝟎𝟏(p. u) 0.90 1.10      1.0195  1.0306      1.0558      1.0398  VD (p.u) 3.42089 3.24299 3.50660 3.38145 

V𝟏𝟎𝟗(p. u) 0.90 1.10      1.0264  1.0249      1.0613      0.9986 Emission (ton/h) 5.27087 5.60252 5.62912 5.68678 

V111(p. u) 0.90 1.10      1.0976  1.0968      1.0852      1.0556  stability index 0. 3435543 0.32203 0.325409 0.35514 

T80−88(p. u) 0.90 1.10      0.9073  0.9178      0.9416      0.9699  Tgen cost ($/h) 16553.22730 16673.43709 16800.01638 16847.21424 

T81−90(p. u) 0.90 1.10      1.0209  0.9396      0.9501      0.9290         

T86−93(p. u) 0.90 1.10      0.9474  0.9104      0.9770      0.9496         

T42−41(p. u) 0.90 1.10      1.0246  1.0227      0.9139      0.9301         

T58−57(p. u) 0.90 1.10      0.9816  0.9088      0.9780      0.9335         

T𝟒𝟒−𝟒𝟑(p. u) 0.90 1.10      0.9707  0.9973      0.9378      0.9315          

T60−59(p. u) 0.90 1.10      0.9777  0.9687      0.9860      0.9268         

T64−63(p. u) 0.90 1.10      0.9335   0.9298      0.9163      0.9116         

T72−71(p. u) 0.90 1.10      0.9654   0.9311      1.0218      0.9357          

T𝟏𝟕−𝟏𝟖(p. u) 0.90 1.10      0.9706  1.0489      1.0254      1.0465         

T21−20(p. u) 0.90 1.10      0.9331  1.0055      1.0137      0.9624         

T27−26(p. u) 0.90 1.10      1.0332  1.0457      0.9887      0.9641         

T28−26(p. u) 0.90 1.10      1.0122  0.9019      0.9871      0.9757         

T31−30(p. u)  0.90 1.10      1.0667  1.0496      1.0785      0.9792         

T48−47(p. u)  0.90 1.10      0.9604  1.0444      1.0648      1.0441   

T𝟕𝟔−𝟕𝟒(p. u) 0.90 1.10      1.0199  1.0731      0.9182      0.9635  

FACTS rating  FACTS location FDB-AOA SHADE ABC MSA 

𝝉𝑻𝐂𝐒𝐂 𝟏(%) 0 50%  20.31  32.37 32.30 31.29 TCSC1 branch, (con. buses): 99 (73-67) 27 (17-27) 145 (94-82) 22 (13-12) 

𝝉𝑻𝐂𝐒𝐂 𝟐(%) 0 50%      17.58  40.78 31.79 07.35 TCSC2 branch, (con. buses): 148 (93-91) 73 (26-34) 16 (10-11) 27 (17-27) 

𝚽𝑻𝑪𝑷𝑺𝟏 (deg) - 5° 5°  4.5384   4.2979 4.3875 3.8571 TCPS1 branch, (con. buses): 142 (99-102) 19 (6-3) 102(73-66) 51 (18-37) 
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𝚽𝑻𝑪𝑷𝑺𝟐 (deg) - 5° 5°      4.0411 4.8353 2.7084 3.7475 TCPS2 branch, (con. buses): 122(87-99) 129 (80-84) 142 (99-102) 104 (63-65) 

𝑸𝑺𝑽𝑪𝟏 (MVAr) - 10 10  9.0334  9.4969 7.6969 5.4119 SVC1 bus no: 89 18 102 93 

𝑸𝑺𝑽𝑪𝟐 (MVAr) - 10 10      6.2498  7.1977 7.0490 9.3457 SVC2 bus no: 57 89 84 54 

 

Fig. 6.55: convergence behaviors comparison of FDB-AOA with other methods: Case.1: DZA-114 bus. 

Case.2: Real power losses (𝑷loss  (MW)) 

The second case selected the  𝑷loss  (MW) as a fitness function. The table (6.58) displays the 

simulation results of the presented technique compared with other techniques. It is confirmed that 

the FDB-AOA achieved the best 𝑷loss  (62.9773 MW) compared to other techniques (SHADE-SF, 

MSA-SF; ABC-SF). The convergence behaviors comparison of FDB-AOA with other methods 

are illustrated in figure (6.56). 

Table. 6.58: The optimized results of the FDB-AOA other methods: Case.2: modified DZA-114 bus. 

Control variables Min Max FDB-AOA SHADE ABC MSA Parameters Min Max FDB-AOA SHADE ABC MSA 

PTG5(MW)  135 1350 402.8842 216.5239 487.0914 480.4214 PTG1 (MW) 135 1350 548.31218 767.03375 484.22350 459.69134 

PTG11(MW)  10 100 99.9092 99.9935 99.7103 96.2446 QTG4 (MVAr) -20 400 239.08457  340.29247   305.19403 298.71951 

PTG15(MW)  30 300 190.5300 171.5344 162.1131 221.9652 QTG5 (MVAr) -20 200 192.84516  117.38470   144.37988 161.85600 

PTG17(MW) 135 1350 622.8335 519.7239 633.2669 560.4151 QTG11 (MVAr) -50 100 97.36909  98.18325    87.20060 98.08329 

PTG19(MW) 34.5 345 112.6113 97.9139 79.8163 98.8742 QWG15 (MVAr) 0 100 84.72056  59.44041    82.20170 45.33002 

PTG22(MW) 34.5 345 165.3513 196.9078 170.9805 200.7081 QTG17 (MVAr) 0 400 359.40523  398.56038   378.98776 389.66075 

PWG52(MW) 0 345 170.6650 199.2492 208.7638 214.2172 QTG19 (MVAr) 0 60 59.30509  56.33806    55.72201 36.24781 

PTG80(MW) 34.5 345 272.0978 286.8486 244.5910 253.1673 QTG22 (MVAr) 0 50 49.30335  42.31354    44.65099 40.59195 

PWG83(MW) 0 300 217.5344 189.0960 257.4898 255.4150 QWG52 (MVAr) 0 50 48.75215  47.16564    44.09602 48.96663 

PTG98(MW) 30 300 233.4851 228.5471 208.0473 171.0998 QTG80 (MVAr) 0 60 59.46096  49.08598    52.01037 49.70409 
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PTG100(MW) 60 600 353.8170 422.8559 388.9435 420.9639 QWG83 (MVAr) -50 200 185.75001  176.70218   149.13659 202.52337 

PTG101(MW) 20 200 199.9756 199.4018 198.5795 198.5371 QTG98 (MVAr) 0 50 37.24732  29.25648    38.63531 25.19186 

PSG109(MW) 0 100 99.9767 98.9315 99.8342 98.1511 QTG100 (MVAr) 0 270 94.50227  71.72491    126.05650 99.37776 

PTG111(MW)  10 200 99.9941 97.8332 71.6467 65.6489 QTG101 (MVAr) -50 200 41.19205  65.45632    62.10014 72.90781 

V4(p. u) 0.90 1.10 1.0734 1.0733 1.0807 1.0808 QSG109 (MVAr) -50 100 31.47764  38.34423    25.68086 21.58998 

V𝟓(p. u) 0.90 1.10 1.0687 1.0585 1.0727 1.0732 QTG111 (MVAr) -50 155 41.05888  50.83579 51.35409 46.79738 

V11(p. u) 0.90 1.10 1.0709 1.0700 1.0723 1.0780        

V15(p. u) 0.90 1.10 1.0763 1.0614 1.0790 1.0719      

V17(p. u) 0.90 1.10 1.0609 1.0636 1.0700 1.0713 𝑪gen ($/h) 19992.0372 20797.1811 18961.1326 18434.5115 

V19(p. u) 0.90 1.10 1.0281 1.0611 1.0348 1.0281 𝑷loss  (MW) 62.9773 65.3943 68.0976 68.5202 

V22(p. u) 0.90 1.10 1.0217 1.0537 1.0304 1.0351 𝑪gross  ($/h) 26289.76718 27336.61321 25770.88824 25286.52957 

V52(p. u) 0.90 1.10 1.0237 1.0679 1.0503 1.0526 Thermal gen cost 17954.18881 18741.23330 17225.93154 16843.11680 

V𝟖𝟎(p. u) 0.90 1.10 1.0151 0.9867 1.0027 1.0236 Valveff cost 1.068204807 92.7313118 117.06180 8.83950321 

V83(p. u) 0.90 1.10 1.0522 1.0253 1.0421 1.0689 Wind cost ($/h) 1628.5291 1670.0712 1421.3127 1326.5574 

V𝟗𝟖(p. u)  0.90 1.10 1.0380 1.0236 1.0445 1.0480 Solar cost ($/h) 302.4988 293.1453 196.8266 176.4423 

V𝟏𝟎𝟎(p. u)  0.90 1.10 1.0440 1.0243 1.0502 1.0581 Fuelvlve cost ($/h) 18061.0093 18833.9646 17342.9933 16931.5118 

V𝟏𝟎𝟏(p. u) 0.90 1.10 1.0320 1.0318 1.0419 1.0492 VD (p.u) 3.35010 3.97003 3.45029 3.64093 

V𝟏𝟎𝟗(p. u) 0.90 1.10 1.0461 1.0639 1.0397 1.0333 Emission (ton/h) 5.34579 6.34547 5.34734 5.05545 

V111(p. u) 0.90 1.10 1.0719 1.0907 1.0774 1.0656 stability index 0.3315744 0.327453 0.327141 0.321904 

T80−88(p. u) 0.90 1.10 0.9841 0.9122 0.9288 0.9458 Tgen cost ($/h) 19885.21670 20704.44978 18844.07084 18346.11651 

T81−90(p. u) 0.90 1.10 0.9495 0.9019 0.9817 1.0017        

T86−93(p. u) 0.90 1.10 0.9304 0.9506 0.9533 0.9391        

T42−41(p. u) 0.90 1.10 0.9572 0.9471 1.0280 0.9646        

T58−57(p. u) 0.90 1.10 0.9696 0.9135 0.9588 0.9401        

T𝟒𝟒−𝟒𝟑(p. u) 0.90 1.10 0.9900 0.9365 0.9847 0.9564        

T60−59(p. u) 0.90 1.10 0.9747 0.9332 0.9675 0.9782        

T64−63(p. u) 0.90 1.10 0.9122 0.9187 0.9535 0.9778        

T72−71(p. u) 0.90 1.10 0.9625 0.9215 1.0024 1.0066        

T𝟏𝟕−𝟏𝟖(p. u) 0.90 1.10 1.0278 0.9869 1.0166 1.0074        

T21−20(p. u) 0.90 1.10 1.0148 0.9892 0.9907 1.0218        

T27−26(p. u) 0.90 1.10 0.9870 0.9072 1.0210 1.0060        

T28−26(p. u) 0.90 1.10 0.9702 0.9673 0.9235 0.9655        

T31−30(p. u)  0.90 1.10 1.0938 1.0443 1.0420 1.0398        

T48−47(p. u)  0.90 1.10 0.9844 0.9390 0.9997 0.9554  

 T𝟕𝟔−𝟕𝟒(p. u) 0.90 1.10 1.0655 0.9991 0.9750 1.0557 

FACTS rating  FACTS location FDB-AOA SHADE ABC MSA 

𝝉𝑻𝐂𝐒𝐂 𝟏(%) 0 50% 38.50 48.31 43.51 45.32 TCSC1 branch, (con. buses): 75 (29-39) 105(63-65) 43 (42-48) 58 (20-24) 

𝝉𝑻𝐂𝐒𝐂 𝟐(%) 0 50% 49.27 48.38 47.94 36.64 TCSC2 branch, (con. buses): 21 (9-3) 83 (52-59) 118 (85-86) 146 (92-93) 

𝚽𝑻𝑪𝑷𝑺𝟏 (deg) - 5° 5° 3.8151 2.5214 4.8841 3.1110 TCPS1 branch, (con. buses): 134 (98-97) 151 (90-93) 104 (63-65) 139 (86-81) 

𝚽𝑻𝑪𝑷𝑺𝟐 (deg) - 5° 5° 3.0398 4.3985 3.3182 4.1016 TCPS2 branch, (con. buses): 101 (29-26) 98 (73-62) 57 (20-24) 120 (87-106) 

𝑸𝑺𝑽𝑪𝟏 (MVAr) - 10 10 9.9608 9.3775 7.2050 8.1585 SVC1 bus no: 34 53 67 23 

𝑸𝑺𝑽𝑪𝟐 (MVAr) - 10 10 5.6624 7.1792 7.7152 6.9602 SVC2 bus no: 81 70 97 38 
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Fig. 6.56: convergence behaviors comparison of FDB-AOA with other methods: Case.2: DZA-114 bus. 

Case 3: Gross cost (𝑪gross  ($/h)) 

     The third case selected the Gross cost (𝑪gross  ($/h)) as a fitness function. The table 6.59 

displays the optimized results of the presented method in comparison to other techniques. The 

results confirm that the FDB-AOA achieved the best 𝑪gross (23784.4379 $/h) compared to other 

techniques. The convergence behaviors comparison of FDB-AOA with others methods are 

depicted in figure (6. 66) 

Table. 6.59: The optimized results of FDB-AOA and other methods: Case. 3: modified DZA-114 bus. 

Control variables Min Max FDB-AOA SHADE ABC MSA Parameters Min Max FDB-AOA SHADE ABC MSA 

PTG5(MW)  135 1350 473.2426 476.5727 443.0489 467.4584 PTG1 (MW) 135 1350 482.15441 477.56039 492.58392 473.89319 

PWG11(MW)  10 100 99.0198 99.7445 96.2477 99.9737 QTG4 (MVAr) -20 400 314.50688 265.20673 331.84960 262.58356 

PTG15(MW)  30 300 195.0887 180.1873 208.0076 194.6639 QTG5 (MVAr) -20 200 134.80142 154.88931 166.37637 198.56899 

PTG17(MW) 135 1350 513.7074 493.1712 481.5080 501.1064 QTG11 (MVAr) -50 100 89.83804 100.84045 27.54206 80.68442 

PTG19(MW) 34.5 345 79.5261 127.4308 131.1930 79.7581 QWG15 (MVAr) 0 100 85.84978 87.75769 89.60024 64.35724 

PTG22(MW) 34.5 345 201.8655 199.1092 203.4023 218.6722 QTG17 (MVAr) 0 400 391.55670 399.04556 364.92110 340.57340 

PTG52(MW) 0 345 228.4906 224.5311 222.1924 231.0796 QTG19 (MVAr) 0 60 57.18597 54.91076 57.25248 59.61231 

PTG80(MW) 34.5 345 139.0835 158.8363 153.4486 123.7811 QTG22 (MVAr) 0 50 32.02381 42.94807 48.82714 49.93701 

PTG83(MW) 0 300 299.8989 299.3286 299.2134 299.8456 QTG52 (MVAr) 0 50 47.81613 45.05219 35.70953 49.04622 

PTG98(MW) 30 300 105.7301 102.4363 96.9475 138.0027 QWG80 (MVAr) 0 60 57.02977 55.12649 45.04753 59.54183 

PTG100(MW) 60 600 598.1138 589.6002 595.6271 599.9839 QTG83 (MVAr) -50 200 123.92047 189.90921 145.09359 165.11487 

PTG101(MW) 20 200 199.1147 198.3855 198.8700 199.9860 QTG98 (MVAr) 0 50 49.45380 25.15690 36.47609 48.99188 

PWG109(MW) 0 100 99.5515 99.0812 98.8367 99.9918 QTG100 (MVAr) 0 270 145.12235 120.39054 147.90570 168.26670 

PTG111(MW)  10 200 83.3527 72.4732 77.5456 71.4464 QTG101 (MVAr) -50 200 50.77294 62.91134 73.96189 56.48094 

V4(p. u) 0.90 1.10 1.0790 1.0574 1.0650 1.0231 QWG109 (MVAr) -50 100 32.84909 21.45933 47.72023 39.59099 

V𝟓(p. u) 0.90 1.10      1.0703 1.0501      1.0584  1.0182 QTG111 (MVAr) -50 155 53.07069 54.87773 50.65877 53.01622 

V11(p. u) 0.90 1.10      1.0706 1.0574      1.0173  1.0092        
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V15(p. u) 0.90 1.10      1.0810 1.0593      1.0695  1.0186        

V17(p. u) 0.90 1.10      1.0585 1.0614      1.0551  1.0298        

V19(p. u) 0.90 1.10      1.0346  1.0399      1.0380  1.0125        

V22(p. u) 0.90 1.10      1.0211  1.0313      1.0428 1.0188 𝑪gen ($/h) 16690.3918 16643.5552 16660.0668 16670.7031 

V52(p. u) 0.90 1.10      1.0737  1.0641      1.0535 1.0378 𝑷loss  (MW) 70.9405 71.4485 71.6728 72.6431 

V𝟖𝟎(p. u) 0.90 1.10      0.9854  1.0025      0.9917 1.0098 𝑪gross  ($/h) 23784.4379 23788.4049 23827.344 23935.0162 

V83(p. u) 0.90 1.10      1.0258  1.0530      1.0361 1.0556 VD(p.u) 3.33075 3.10562 3.08080 2.49612 

V𝟗𝟖(p. u)  0.90 1.10      1.0326  1.0332      1.0353 1.0419 Emission (ton/h) 5.52862 5.39482 5.36394 5.45689 

V𝟏𝟎𝟎(p. u)  0.90 1.10      1.0429  1.0487      1.0488 1.0608 stability index 0.3106125 0.322490 0.325193 0.351117 

V𝟏𝟎𝟏(p. u) 0.90 1.10      1.0312  1.0334      1.0418 1.0328 Fuelvlv cost ($/h) 16690.3918 16571.05277 15661.71471 15671.2293 

V𝟏𝟎𝟗(p. u) 0.90 1.10      1.0489  1.0137      1.0886 1.0531 Wind cost ($/h) 761.5114 809.5844 782.2763 803.0148 

V111(p. u) 0.90 1.10      1.0851  1.0846      1.0795 1.0807 Solar cost ($/h) 237.7017 198.9534 216.0758 196.4590 

T160(p. u) 0.90 1.10      0.9003  0.9009      0.9271 0.9060 Thermal cost ($/h) 15623.1771 15635.0174 15567.5389 15586.15500 

T161(p. u) 0.90 1.10      0.9067  1.0068      0.9083  0.9233 Valveff cost ($/h) 68.0014615 72.50239 94.1761243 85.0742719 

T162(p. u) 0.90 1.10      0.9030  0.9438      0.9018  0.9250 Tgen cost ($/h) 16622.3903 16498.55038 16565.8907 16585.62881 

T163(p. u) 0.90 1.10      1.0075  0.9530      0.9506  1.0028        

T164(p. u) 0.90 1.10      0.9165  0.9282      0.9164  0.9429        

T165(p. u) 0.90 1.10      0.9385  0.9702      1.0215  0.9276        

T166(p. u) 0.90 1.10      0.9279  0.9489      0.9323  0.9477        

T167(p. u) 0.90 1.10      0.9166  0.9645      1.0219  0.9886        

T168(p. u) 0.90 1.10      0.9790  0.9640      0.9539  0.9634        

T169(p. u) 0.90 1.10      1.0299  1.0234      0.9882  0.9716        

T170(p. u) 0.90 1.10      1.0072  0.9568      0.9568  0.9706        

T171(p. u) 0.90 1.10      0.9421  0.9283      0.9603  0.9372        

T172(p. u) 0.90 1.10      0.9664  1.0154      0.9781  0.9518        

T173(p. u)  0.90 1.10      1.0091  1.0153      1.0139  1.0299        

T174(p. u)  0.90 1.10      0.9473  0.9283      1.0154 0.9700  

 T𝟏𝟕𝟓(p. u) 0.90 1.10      0.9965 1.0551      1.0764 1.0067 

FACTS rating  FACTS location FDB-AOA SHADE ABC MSA 

𝝉𝑻𝐂𝐒𝐂 𝟏(%) 0 50% 0.0778 0.1293 0.3425 49.41 TCSC1 branch, (con. buses): 73 (26-34) 18 (11-42) 148 (93-91) 96 (54-55) 

𝝉𝑻𝐂𝐒𝐂 𝟐(%) 0 50% 0.4745 0.1293 0.2945 35.90 TCSC2 branch, (con. buses): 133(100-97) 98 (73-62) 121 (87-82) 48 (96-98) 

𝚽𝑻𝑪𝑷𝑺𝟏 (deg) - 5° 5° 4.4120 4.9337 4.6378 4.5334 TCPS1 branch, (con. buses): 88 (52-30) 146 (92-93) 42 (44-42) 20 (9-2) 

𝚽𝑻𝑪𝑷𝑺𝟐 (deg) - 5° 5° 4.0727 3.3507 4.2100 2.5304 TCPS2 branch, (con. buses): 90 (40-41) 40 (75-74) 91 (40-50) 136 (87-100) 

𝑸𝑺𝑽𝑪𝟏 (MVAr) - 10 10 7.6360 7.2551 7.1167 9.3509 SVC1 bus no: 96 34 38     53    

𝑸𝑺𝑽𝑪𝟐 (MVAr) - 10 10 8.7643 5.4359 9.9745 8.8460 SVC2 bus no: 81 68     68     67 
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Fig. 6.57: Convergence behaviors comparison of FDB-AOA and other methods: Case.3: DZA-114 bus. 

 Discussion of the results 

The tables (6.57, 6.58, 6.59), show the findings of the study conducted on the modified DZA-114 

bus for various cases. According to the optimization results mentioned in those tables, it can be 

observed that the FDB-AOA algorithm has achieved the most satisfactory results while complying 

with all constraints. However, it is important to note that comparing the apparent numerical results 

of a constrained optimization problem is not a reliable method. Hence, it is crucial to verify the 

feasibility of the solutions. 

These simulation results clearly demonstrated the superiority of the presented method ( FBD-

AOA) when compared to the three other population metaheuristic algorithms. It can be observed 

that this technique could solve the single-objective OPF problem involved both the wind power 

generators, and multi-types of FACTS devices, with high efficiency. It also provides considerably 

lower value for the majority of test cases analyzed, without forgetting the competitive 

computational times of the FBD-AOA compared to other algorithms. It should be mentioned that 

the best results have been achieved by FBD-AOA among the comparative methods. As seen, the 

FBD-AOA has the best performance in terms of optimal solution, convergence, and efficiency 

with a minimum execution time. 

The figures (Figs. 6.55, 6.56, 6.57), illustrate the convergence behaviors of the FBD-AOA method 

in comparison to other metaheuristic algorithms for cases 1 to 3, respectively. These diagrams 



    Chapter 6: Applications and Results  

 

209 

 

indicate that the FBD-AOA algorithm exhibits faster convergence, following a uniform and 

systematic pattern. SHADE-SF converges also rapidly when seeking the optimal solution, it could 

be a good competitor in finding of the optimum solution, as well as convergence and precision to 

the FBD-AOA. It has been shown to have regular and superior performance in all cases when 

compared to other algorithms. Of the other algorithms, specifically MSA-SF and ABC-SF, exhibit 

irregular and erratic convergence, often requiring the longest time to reach the final solution (the 

best optimum). They stagnate at various stages for extended periods while searching for viable 

and superior candidates. The scheduling outcomes of wind power plants generators are more than 

the thermal units for the case 2 and 3 for all algorithms, the best favorable locations and rating for 

all uses FACTS devices are mentioned in are detailed in the corresponding tables related for each 

case.  

• Comparison between literature review  

Comparison between the results obtained by the proposed method with those of the Slim Mould 

Optimizer method from the literature review [10]. 

Table. 6.60: Comparison between the results obtained by the proposed method with literature revue  for 

the modified DZA-114 bus. 

 generators cost 

without valve ($/h) 

Total generation 

cost ($/h) 

Power losses 

(MW) 

 
FDB-AOA with renewable energy 16595.0969 16661.1543 62.9773 

FDB-AOA with renewable energy 

and FACTS devices  
16553.22730 16630.4160 65.1388 

Slim Mould Optimizer Method [10] 16693.11   65.90 

6.5. Conclusion  

This chapter present the application and results of our work, a recent robust optimization 

algorithm-inspired from the algorithm has been suggested for provide an optimization problem 

related to the  electrical fields, like firstly we applied on the estimation of the PV parameters of 

PV panels as a first Part, in the second part, a recent robust optimization algorithm-inspired from 

the algorithm has been suggested for provide  optimal-solution of the OPF problem in the modified 

IEEE 30-bus test system and Algerian electrical network DZA-114 bus. Uncertainty nature of both 

solar and wind energy sources has been modelled based on the Weibull and lognormal PDFs 

distribution. Numerical results of FDB-AOA are compared with the obtained results by others 

algorithm like the SHADE, ABC, and MSA technique with the superiority of feasible solutions 
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method. The results revealed that the FDB-AOA significantly gives a superior solution, while 

ensuring the feasibility of solutions, where outperformed the others methods in the base case and 

other sub-cases whatever the constraints of test system. The results suggest that the proposed FDB-

AOA can be successfully applied to solve highly nonlinear problems. The findings of this 

document are likely to be beneficial to researchers. 

Therefore, the proposed algorithm-based FDB-AOA is an excellent and highly recommended 

technique for the stochastic OPF problem, since it more Recent even in the case of practical 

electrical network. 
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General conclusion 

 

The primary objective of this thesis is to improve the efficiency of electrical networks by 

integrating various Flexible AC Transmission Systems (FACTS) using intelligent optimization 

method like metaheuristic methods. The first objective of this thesis is the solving of the single 

and multi-objective optimization of optimal power flow (OPF) using a recent intelligent 

optimization approach. To achieve this goal, a robust optimization method so called thermal 

exchange optimization approach is used for solve these challenges The optimization is conducted 

by using FDB-AOA, FDB-AEO, SSA, PSO, and GA algorithms. The simulation was carried out 

on the IEEE 30-bus test system. Before testing the multi- objective version of the proposed 

metaheuristic method (TEO), the OPF problem was compared with other powerful multi-objective 

methods. This comparison showed that the proposed method quickly converges, for the majority 

of cases, by obtained a best value of the fitness function, with a reduced execution time. After than 

the SSA algorithm was conducted to solve the OPF with both types is large scale which is the reel 

Algerian electric transmission network DZA-114 bus. The results confirmed their efficiency in 

solving the single and multi-objective OPF in large scale. The second objective, which represent 

the contribution of this thesis, where applied a recent hybrid optimization algorithm named FDB-

AOA for solving the single objective of OPF problems in the hybrid electrical network, with 

consideration of the integration of stochastic renewable energy and intelligent compensation 

system which are the FACTS devices. Optimization approaches have been successfully applied to 

find the best location and sizing of FACTS devices, with a best optimal control variables of the 

medium-sized (IEEE 30-bus) with stochastic wind power plants, also in large-scale test systems 

as well the practical power system which is the reel electric transmission network Algerian DZA-

114 bus incorporate stochastic wind and solar power plants. From the results found, it can be seen 

that metaheuristic methods are well suited for determining the optimal values of the powers 

generated by the interconnected plants to achieve the lowest possible cost as well as the best profit. 

A critical analysis on the both obtained and reported results was presented, and approved the 

feasibility of solutions. The application of some optimization methods has given encouraging 

results as they allow improving the efficiency of electrical networks in terms of production cost 

reduction, emission gas reduction, loss reduction, and reduction of voltage deviation at the load 

bus levels.  

As perspectives, we propose: 

 1. To extend this study to consider the modeling and integration of the FACTS devices system 

to improve the security of transport networks, especially in case of overload and fault. 
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 2. To consider the techno-economic impact of the integration of renewable sources, namely, 

solar energy and wind energy on the quality of the electrical energy of the Algerian eclectic 

network. 

3. To consider the effect of the integration of renewable sources on electrical network stability. 

4. To apply recent metaheuristic algorithms for solving the OPF with both types (single and 

multi-objectives OPF) on the recent version of the Algeria electrical transmission network, with 

integration of renewable energies and FACTS Devices. 
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Annex A: Data of IEEE 30-bus test system  

Table (A.1): node data (IEEE 30- bus test system) 

Qmax  Qmin  

QD   

(MVAR)  

PD 

(MW)  

QG 

(MVAR)  

PG 

(MW)  

V Angle 

(Deg)  

VModule 

(pu)  

N° 

du JB  
0 0 0 0 0 176.8535 0 1.06 1 

50 -40 12.7 21.7 50 48.4212 0 1.043 2 

0 0 1.2 2.4 0 0 0 1 3 

0 0 1.6 7.6 0 0 0 1 4 

40 -40 19 94.2 37 21.756 0 1.01 5 

0 0 0 0 0 0 0 1 6 

0 0 10.9 22.8 0 0 0 1 7 

40 -10 30 30 37.3 22.7234 0 1.01 8 

0 0 0 0 0 0 0 1 9 

0 0 2 5.8 19 0 0 1 10 

24 -6 0 0 16.2 11.9796 0 1.082 11 

0 0 7.5 11.2 0 0 0 1 12 

24 -6 0 0 10.6 11.3208 0 1.071 13 

0 0 1.6 6.2 0 0 0 1 14 

0 0 2.5 8.2 0 0 0 1 15 

0 0 1.8 3.5 0 0 0 1 16 

0 0 5.8 9 0 0 0 1 17 

0 0 0.9 3.2 0 0 0 1 18 

0 0 3.4 9.5 0 0 0 1 19 

0 0 0.7 2.2 0 0 0 1 20 

0 0 11.2 17.5 0 0 0 1 21 

0 0 0 0 0 0 0 1 22 

0 0 1.6 3.2 0 0 0 1 23 

0 0 6.7 8.7 4.3 0 0 1 24 

0 0 0 0 0 0 0 1 25 

0 0 2.3 3.5 0 0 0 1 26 

0 0 0 0 0 0 0 1 27 

0 0 0 0 0 0 0 1 28 

0 0 0.9 2.4 0 0 0 1 29 

0 0 1.9 10.6 0 0 0 1 30 

 

Table (A.2): line data (IEEE 30-bus test system) 

Tap  

Susceptance 

(p.u.) 

Reactance 

(p.u.) 

Resistance 

(pu) 

Line 

designation N° of line 

1 0.0264 0.0575 0.0192 1 -2 1 

1 0.0204 0.1652 0.0452 1 -3 2 

1 0.0184 0.1737 0.057 2 -4 3 

1 0.0042 0.0379 0.0132 3 -4 4 

1 0.0209 0.1983 0.0472 2 -5 5 

1 0.0187 0.1763 0.0581 2 -6 6 
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1 0.0045 0.0414 0.0119 4 -6 7 

1 0.0102 0.116 0.046 5 -7 8 

1 0.0085 0.082 0.0267 6 -7 9 

1 0.0045 0.042 0.012 6 -8 10 

0.978 0 0.208 0 6 -9 11 

0.969 0 0.556 0 6 -10 12 

1 0 0.208 0 9 -11 13 

1 0 0.11 0 9 -10 14 

0.932 0 0.256 0 4 -12 15 

1 0 0.14 0 12 -13 16 

1 0 0.2559 0.1231 12 -14 17 

1 0 0.1304 0.0662 12 -15 18 

1 0 0.1987 0.0945 12 - 16 19 

1 0 0.1997 0.221 14 -15 20 

1 0 0.1923 0.0824 16 -17 21 

1 0 0.2185 0.1073 15 -18 22 

1 0 0.1292 0.0639 18 -19 23 

1 0 0.068 0.034 19 - 20 24 

1 0 0.209 0.0936 10 -20 25 

1 0 0.0845 0.0324 10 -17 26 

1 0 0.0749 0.0348 10 -21 27 

1 0 0.1499 0.0727 10 -22 28 

1 0 0.0236 0.0116 21 -23 29 

1 0 0.202 0.1 15 -23 30 

1 0 0.179 0.115 22 -24 31 

1 0 0.27 0.132 23 -24 32 

1 0 0.3292 0.1885 24 -25 33 

1 0 0.38 0.2544 25 -26 34 

1 0 0.2087 0.1093 25 - 27 35 

0.968 0 0.396 0 28 -27 36 

1 0 0.4153 0.2198 27 -29 37 

1 0 0.6027 0.3202 27 -30 38 

1 0 0.4533 0.2399 29 - 30 39 

1 0.0214 0.2 0.0636 8 -28 40 

1 0.065 0.0599 0.0169 6 -28 41 
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Annex B: The Algerian electrical transmission network 

The following tables provide an overview of the state of the Algerian electricity transmission 

network (lines, power transformers, and substations) in service of the GRTE electrical network by 

region up to December 31, 2018. 

Table (B.1): The State of the Algerian Electricity Transmission Network 

 Alger 

Capital 

Alger 

Centre 

Annaba Oran Sétif Hassi 

messaoud 

TOTAL 

Overhead lines  

400 kV 0 1084,97 833,46 640,55 568,47 998,80 4126,25 

400 kV exploits 

on 220 kV 

0 0 0 316 98 217,5 631,5 

220kV 147,93 2247,62 1619,01 3287,23 2958,57 3502,11 13762,47 

150 kV 0 0 22,05 0 50,33 0 72,38 

90 kV 0 0 566,71 / 0 0 566,21 

60 kV 256,57 2092,5 1407,71 3264,07 2041,49 773,12 9835,46 

Total lines 404,50 5426,59 4448,44 7518,25 5716,49 5663,03 29177,72 

Underground 

cables 

 

400 kV 0 0 0 0 3,16 0,76 3,92 

220 kV 38,43 15,11 7,17 12,35 2,10 3,35 78,51 

60 kV 189,47 47,65 38,44 85,01 22,82 0,90 387,29 

Total Cables 227,90 62,76 45,61 97,36 28,08 4,92 466,63 

Total General 632,40 650489,35 4594,05 7615,61 5744,94 5668 29644,35 

Table (B.2): Inventory of lines in (Km) by voltage level 

 Alger 

Capital 

Alger 

Centre 

Annaba Oran Setif Hassi 

Messaoud 

Total 

Transformer  

400/220 kV 0 10 6 5 6 5 33 

220/30 kV 0 0 1 0 3 26 30 

220/60/11 kV 23 39 33 45 43 14 197 

60/30 kV 69 96 80 136 109 32 522 

HT/MT/MT kV 8 8 3 15 1 0 35 
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Total TR 100 153 123 201 162 78 817 

Table (B.3): Numbers of power transformer  

 Alger 

Capital 

Alger 

Centre 

Annaba Oran Setif Hassi 

Messaoud 

Total 

Mobile Cabin  

220/30 kV / 1 2 3 7 15 28 

60/30 et 60/10 kV 15 16 17 17 21 6 92 

Total CM 15 17 19 20 28 21 120 

Table (B.4): Numbers of mobile Cabin 

 Alger 

Capital 

Alger 

Centre 

Annaba Oran Setif Hassi 

Messaoud 

Total 

Posts  

400/220 kV 0 4 3 2 3 4 16 

220/60 kV 0 6 5 7 11 3 39 

220/30 kV 0 0 2 0 2 14 18 

220/60/30kV 4 10 9 12 9 4 48 

60/30 et 60/10 kV 27 31 30 51 38 12 189 

HT/MT/MT 1 5 1 5 1 0 13 

 

60 kV 

400 kV 0 1 0 0 2 0 3 

220 kV 0 2 1 2 1 3 9 

Total 39 59 51 79 67 40 335 

Annex C: Data of Algerian Network 114 bus system  

Table (C.1): Node data (Algerian Network 114 bus system) 

QD (MVAR) 

 

PD (MW) 

 

Angle (Deg) 

 

Magnitude (pu) 

 

Bus N° 

 
0 0 0 1 1 

17 36 0 1 2 

31 64 0 1 3 

94 125 0 1.0773 4 

250 335 0 1 5 

37 78 0 1 6 

26 55 0 1 7 

24 50 0 1 8 

19 40 0 1 9 

21 42 0 1 10 

47 96 0 1 11 
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15 31 0 1 12 

6 13 0 1 13 

0 0 0 1 14 

65 136 0 1 15 

0 0 0 1 16 

0 0 0 1.0682 17 

0 0 0 1 18 

5 11 0 1 19 

9 14 0 1 20 

52 70 0 1 21 

25 42 0 1 22 

11 23 0 1 23 

36 60 0 1 24 

8 17 0 1 25 

26 55 0 1 26 

0 0 0 1 27 

0 0 0 1 28 

18 37 0 1 29 

15 30 0 1 30 

0 0 0 1 31 

24 40 0 1 32 

14 29 0 1 33 

14 29 0 1 34 

16 33 0 1 35 

8 17 0 1 36 

5 11 0 1 37 

10 20 0 1 38 

10 20 0 1 39 

10 21 0 1 40 

32 53 0 1 41 

0 0 0 1 42 

18 31 0 1 43 

0 0 0 1 44 

6 12 0 1 45 

0 0 0 1 46 

10 21 0 1 47 

0 0 0 1 48 

6 13 0 1 49 

2 4 0 1 50 

1 1 0 1 51 

27 56 0 1 52 

8 16 0 1 53 

10 21 0 1 54 

9 18 0 1 55 

20 33 0 1 56 

21 35 0 1 57 

0 0 0 1 58 

17 36 0 1 59 

0 0 0 1 60 
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13 27 0 1 61 

11 22 0 1 62 

29 49 0 1 63 

0 0 0 1 64 

5 11 0 1 65 

21 35 0 1 66 

5 10 0 1 67 

5 11 0 1 68 

10 20 0 1 69 

3 7 0 1 70 

22 36 0 1 71 

0 0 0 1 72 

22 36 0 1 73 

0 0 0 1 74 

0 0 0 1 75 

6 12 0 1 76 

3 7 0 1 77 

7 13 0 1 78 

7 14 0 1 79 

107 157 0 1 80 

0 0 0 1 81 

36 75 0 1 82 

51 70 0 1 83 

34 46 0 1 84 

22 45 0 1 85 

0 0 0 1 86 

15 32 0 1 87 

22 46 0 1 88 

17 34 0 1 89 

9 18 0 1 90 

21 44 0 1 91 

5 10 0 1 92 

0 0 0 1 93 

23 48 0 1 94 

17 35 0 1 95 

0 0 0 1 96 

20 42 0 1 97 

6 13 0 1 98 

50 105 0 1 99 

16 33 0 1.0773 100 

24 50 0 1.0818 101 

16 34 0 1 102 

32 66 0 1 103 

9 18 0 1 104 

0 0 0 1 105 

31 64 0 1 106 

37 65 0 1 107 

11 22 0 1 108 

18 37 0 1.0818 109 
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6 13 0 1 110 

56 94 0 1.0909 111 

12 24 0 1 112 

11 23 0 1 113 

12 24 0 1 114 

Table (C.2): Node data (Algerian Network 114 bus system) 

Tap  

Susceptance 

(mΩ) 

Reactance 

(Ω) 

Resistance 

(Ω) 

Line designation N° of 

line to from 

1.0000 0.0626 19.5050 4.1140 1 2 1 

1.0000 0.0901 27.9750 5.9050 1 6 2 

1.0000 0.0733 24.1030 6.7760 6 2 3 

1.0000 0.2017 62.6780 13.2620 42 4 4 

1.0000 0.3045 5.8830 6.7280 42 4 5 

1.0000 0.0996 7.6470 1.5970 3 4 6 

1.0000 0.0607 9.1480 1.3550 3 5 7 

1.0000 0.0407 6.0980 0.8710 4 5 8 

1.0000 0.1058 32.8150 6.9700 7 4 9 

1.0000 0.0200 6.5340 1.8390 16 15 10 

1.0000 0.0213 6.9700 1.9840 3 16 11 

1.0000 0.0066 2.1780 0.6290 14 16 12 

1.0000 0.0938 30.4440 8.2760 42 8 13 

1.0000 0.1357 42.1080 8.9060 4 8 14 

1.0000 0.1105 34.3160 7.2600 7 10 15 

1.0000 0.1676 52.0780 11.0350 11 10 16 

1.0000 0.1153 35.8160 7.5990 6 7 17 

1.0000 0.1256 39.0100 8.2280 42 11 18 

1.0000 0.1508 48.9810 13.9390 3 6 19 

1.0000 0.0913 13.7460 2.0330 2 9 20 

1.0000 0.1928 29.0400 4.2590 3 9 21 

1.0000 0.3686 114.4660 24.2480 12 13 22 

1.0000 0.3413 105.9960 22.4580 13 10 23 

1.0000 0.0364 11.8100 3.1460 21 17 24 

1.0000 0.0417 13.4550 3.5330 21 17 25 

1.0000 0.1095 35.4290 9.5350 72 17 26 

1.0000 0.2072 11.4710 2.2260 27 17 27 

1.0000 0.1275 15.0520 2.9520 31 17 28 

1.0000 0.1541 4.2590 0.8230 28 31 29 

1.0000 0.1085 35.1870 9.5830 64 17 30 

1.0000 0.1271 41.6720 11.6160 44 21 31 

1.0000 0.0812 12.2450 1.7910 31 60 32 

1.0000 0.0409 12.7290 2.7100 60 21 33 

1.0000 0.0901 27.9750 5.9050 44 60 34 

1.0000 0.0886 27.5400 5.8560 44 58 35 

1.0000 0.1570 48.7390 10.3090 101 72 36 

1.0000 0.1345 41.7690 8.8570 58 72 37 

1.0000 0.1091 33.9280 7.1630 75 58 38 

1.0000 0.1364 42.3980 8.9540 107 75 39 
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1.0000 0.0054 1.2580 0.2900 74 75 40 

1.0000 0.1341 43.7050 12.0030 42 44 41 

1.0000 0.1345 41.8180 8.8570 42 44 42 

1.0000 0.1624 24.4900 3.5820 48 42 43 

1.0000 0.0506 7.6470 1.2100 44 48 44 

1.0000 0.2457 76.3270 16.1660 101 107 45 

1.0000 0.0971 31.6540 8.6150 97 64 46 

1.0000 0.0798 26.1360 7.3570 96 72 47 

1.0000 0.1064 34.8480 9.8250 98 96 48 

1.0000 0.0110 3.3880 0.7260 95 96 49 

1.0000 0.0472 5.0290 1.0440 22 18 50 

1.0000 0.0417 4.4390 0.9220 37 18 51 

1.0000 0.0278 2.9590 0.6160 22 37 52 

1.0000 0.0472 0.2770 0.2090 26 19 53 

1.0000 0.0472 0.2770 0.2090 26 19 54 

1.0000 0.0028 0.4540 0.0680 34 19 55 

1.0000 0.0361 10.5980 4.8530 18 20 56 

1.0000 0.0167 5.0040 1.3540 24 20 57 

1.0000 0.0167 4.9000 1.3250 24 20 58 

1.0000 0.0139 4.2410 1.1480 29 20 59 

1.0000 0.0167 5.5010 1.5410 35 20 60 

1.0000 0.0194 5.9000 1.6490 29 35 61 

1.0000 0.0278 8.5140 2.5490 32 20 62 

1.0000 0.0139 4.1110 1.2310 32 22 63 

1.0000 0.0083 2.8760 0.8600 24 22 64 

1.0000 0.0083 2.8760 0.8600 24 22 65 

1.0000 0.0083 2.8760 0.8600 30 23 66 

1.0000 0.0056 1.6450 0.4900 36 23 67 

1.0000 0.0111 3.2870 0.9830 30 36 68 

1.0000 0.0083 2.4660 0.7380 18 33 69 

1.0000 0.0083 2.8760 0.8600 33 32 70 

1.0000 0.0056 1.8610 0.5000 25 26 71 

1.0000 0.0083 2.1890 0.5900 25 24 72 

1.0000 0.0056 1.1450 0.1760 34 26 73 

1.0000 0.0944 0.5690 0.4280 26 29 74 

1.0000 0.0111 2.9520 0.4540 39 29 75 

1.0000 0.0056 1.1050 0.1690 34 38 76 

1.0000 0.0417 12.3370 5.6050 73 18 77 

1.0000 0.0333 10.9010 3.0740 73 18 78 

1.0000 0.0222 6.9880 1.8290 18 62 79 

1.0000 0.0306 7.7830 3.1430 52 20 80 

1.0000 0.0306 7.8010 3.1500 52 20 81 

1.0000 0.0417 11.0270 4.2770 59 54 82 

1.0000 0.0139 3.6500 1.2960 59 52 83 

1.0000 0.0500 14.7530 4.4170 51 57 84 

1.0000 0.0556 16.4380 4.9180 77 57 85 

1.0000 0.0194 6.4370 3.3730 53 52 86 

1.0000 0.0194 6.4370 3.3730 54 53 87 

1.0000 0.0250 6.4400 2.5990 30 52 88 
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1.0000 0.0361 11.3330 5.7560 70 71 89 

1.0000 0.0222 5.8430 2.1100 41 40 90 

1.0000 0.0444 13.1220 4.8350 50 40 91 

1.0000 0.0444 13.1510 3.9350 69 71 92 

1.0000 0.0250 7.8480 4.3340 68 70 93 

1.0000 0.0417 12.3300 3.6900 46 43 94 

1.0000 0.0417 12.8020 7.4410 43 51 95 

1.0000 0.0500 14.3860 4.3060 55 54 96 

1.0000 0.0694 20.5490 6.1490 43 55 97 

1.0000 0.0167 4.9320 1.4760 62 73 98 

1.0000 0.0861 25.2250 1.0490 67 73 99 

1.0000 0.0417 12.8480 5.9330 67 68 100 

1.0000 0.0944 0.5690 0.4280 26 29 101 

1.0000 0.0639 20.7070 5.8430 66 73 102 

1.0000 0.0278 8.2190 2.4590 66 63 103 

1.0000 0.0222 6.7000 2.0050 65 63 104 

1.0000 0.0222 6.7000 2.0050 65 63 105 

1.0000 0.0417 12.3300 3.6900 54 56 106 

1.0000 0.0500 14.3860 4.3060 56 57 107 

1.0000 0.0500 14.3860 4.3060 56 57 108 

1.0000 0.0500 14.3860 4.3060 50 47 109 

1.0000 0.0139 4.1110 1.2310 46 47 110 

1.0000 0.0389 10.0580 4.0610 66 67 111 

1.0000 0.0528 15.2100 4.5540 41 49 112 

1.0000 0.0333 0.1980 0.1510 78 19 113 

1.0000 0.0833 0.5000 0.3780 79 19 114 

1.0000 0.0194 6.5380 1.8470 61 59 115 

1.0000 0.0056 2.1780 0.6160 46 45 116 

1.0000 0.1161 36.0580 7.6470 87 85 117 

1.0000 0.1023 31.7990 6.7280 86 85 118 

1.0000 0.0727 22.6030 4.7920 81 85 119 

1.0000 0.0771 23.9580 5.0820 106 87 120 

1.0000 0.0413 12.8740 2.7100 82 87 121 

1.0000 0.1878 60.4520 15.5850 99 87 122 

1.0000 0.0955 29.6690 6.2920 105 103 123 

1.0000 0.1256 39.0100 8.2760 101 105 124 

1.0000 0.0110 3.3880 0.7260 104 105 125 

1.0000 0.1531 47.5770 10.0670 106 103 126 

1.0000 0.1587 52.0300 14.6650 82 81 127 

1.0000 0.1667 54.6440 15.4400 82 80 128 

1.0000 0.0998 32.7180 9.2440 84 80 129 

1.0000 0.0267 8.7120 2.4680 83 84 130 

1.0000 0.0998 32.7180 9.2440 83 82 131 

1.0000 0.1558 28.9430 4.9370 98 100 132 

1.0000 0.2436 36.7360 5.3720 97 100 133 

1.0000 0.0671 21.6830 5.8560 97 98 134 

1.0000 0.1696 52.7080 11.1800 100 99 135 

1.0000 0.0217 33.5900 4.9370 100 87 136 

1.0000 0.1419 21.3930 3.1460 84 100 137 
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1.0000 0.1624 24.4900 3.5820 80 84 138 

1.0000 0.1217 18.3440 2.6620 81 86 139 

1.0000 0.0855 28.0720 7.8890 99 98 140 

1.0000 0.0853 26.4750 5.6140 102 101 141 

1.0000 0.0853 26.4750 5.6140 102 99 142 

1.0000 0.2436 36.7360 5.3720 101 99 143 

1.0000 0.1897 61.7100 17.2790 94 98 144 

1.0000 0.0409 12.7290 2.7100 82 94 145 

1.0000 0.1225 33.1090 13.1540 93 92 146 

1.0000 0.0257 8.6990 2.4620 91 93 147 

1.0000 0.0335 10.8700 3.0700 91 93 148 

1.0000 0.0639 19.4400 6.2860 89 90 149 

1.0000 0.1099 33.2100 10.9670 89 88 150 

1.0000 0.0837 25.8280 15.0010 93 90 151 

1.0000 0.1364 42.3980 8.9540 110 103 152 

1.0000 0.1364 42.3980 8.9540 112 110 153 

1.0000 0.3085 95.7840 20.2800 114 103 154 

1.0000 0.1091 33.9280 7.1630 108 109 155 

1.0000 0.2855 88.7170 18.7790 107 109 156 

1.0000 0.1395 43.3660 9.1960 114 112 157 

1.0000 0.2184 67.8570 14.3750 111 112 158 

1.0000 0.1256 38.0910 8.0830 111 113 159 

1.0300 0 151.9760 5.9530 88 80 160 

1.0300 0 70.2770 3.0010 90 81 161 

1.0300 0 35.9130 0.5810 93 86 162 

1.0300 0 35.9130 0.5810 41 42 163 

1.0300 0 35.9130 0.5810 57 58 164 

1.0300 0 50.9650 1.4040 43 44 165 

1.0300 0 24.9740 0.6780 59 60 166 

1.0300 0 33.8800 0.9200 63 64 167 

1.0300 0 35.9130 0.5810 71 72 168 

1.0300 0 24.9740 0.6780 18 17 169 

1.0300 0 25.4100 0.7740 20 21 170 

1.0300 0 71.8260 1.1620 26 27 171 

1.0300 0 71.8260 1.1620 26 28 172 

1.0300 0 23.9580 0.3390 30 31 173 

1.0300 0 35.9130 0.5810 47 48 174 

1.0300 0 161.656 4.308 74 76 175 


