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Abstract

This thesis focuses on the study of GARCH models for financial series, particularly those with
periodically time-varying coefficients. It explores various extensions of these models, including

logGARCH(1, 1), absolute value GARCH, and bilinear threshold GARCH, with a focus on their
theoretical properties, estimation methods, and empirical applications. The research provides insights

into stationary solutions, estimation techniques, and practical relevance, demonstrating their
effectiveness in modeling exchange rates of the Algerian Dinar against major currencies.

Keywords: Periodic logGARCH model, Periodic absolute value GARCH model, Periodic bilinear
threshold GARCH models, Strictly periodically stationary, Gaussian QML estimator, Consistency,

Asymptotic Normality.

Mathematics Subject Classification: C12; C13; 62F12; 62M10.



Résumé

Cette thèse se concentre sur l’étude des modèles GARCH pour les séries financières, en particulier ceux
avec des coefficients variant périodiquement dans le temps. Elle explore diverses extensions de ces

modèles, notamment logGARCH(1, 1), le modèle GARCH de valeur absolue et les modèles GARCH
seuil bilinéaires, en mettant l’accent sur leurs propriétés théoriques, leurs méthodes d’estimation et leurs

applications empiriques. La recherche offre des perspectives sur les solutions stationnaires, les
techniques d’estimation et la pertinence pratique, démontrant leur efficacité dans la modélisation des

taux de change du dinar algérien par rapport aux principales devises.

Mots clé : Modèle logGARCH périodique, Modèle GARCH de valeur absolue périodique, Modèles
GARCH seuil bilinéaires périodiques, Strictement périodiquement stationnaire, Estimateur QML

gaussien, Cohérence, Normalité asymptotique.

Mathematics Subject Classification : C12 ; C13 ; 62F12 ; 62M10.



 الملخص 

 

 

للسلاسل المالية، وتحديداً تلك التي تحتوي على معاملات متغيرة بانتظام  GARCHهذه الرسالة تركز على دراسة نماذج 

 GARCHونموذج  logGARCH(1, 1)ذه النماذج، بما في ذلكمع مرور الوقت. تستكشف الرسالة توسيعات مختلفة له

ذات عتبة ثنائية مع التركيز على خصائصها النظرية وأساليب التقدير والتطبيقات  GARCHلقيمة مطلقة ونماذج 

في نمذجة أسعار  التجريبية. تقدم هذه البحث رؤى حول الحلول الثابتة وتقنيات التقدير والأهمية العملية، مما يظهر فعاليتها

 رف الدينار الجزائري مقابل العملات الرئيسية.ص

 

 

ذات عتبة  GARCH، نماذج GARCHلدوري لقيمة مطلقة ، النموذج اlogGARCHالنموذج الدوري  :الكلمات المفتاحية

 غاوسي، الثبات، الطبيعة التدريجية.QMLثنائية دورية، ثابت دوري بدقة، مقدر

 62M10; 62F12; C13; C12.تصنيف مواضيع الرياضيات: 
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This thesis focuses on the Non-Linear Modeling of Certain Periodic Time Series. It consists of three
different chapters, each chapter containing a different modeling approach for time series along with sim-
ulations. To write this thesis, I underwent a five-year doctoral training program such as

Year 01 (2019-2020):

• Advanced courses in ITC and scientific research.

• Bibliographic research.

Years 02 ans 03 (2020-2022:

• Intensive research work under the supervision of a thesis advisor.

• Data collection and analysis.

• Writing scientific publications and participation in national or international conferences.
The scientific papers are entitled as following

1. On periodic logGARCH(1, 1) processes.
2. QMLE for periodic absolute value GARCH models.
3. QMLE of periodic time-varying bilinear threshold GARCH models.

Participation in national conferences

1. On periodic exponential GARCH

2. Large sample properties of Yule-Walker estimates for periodic ARCH models
3. Markov-switching threshold ARCH processes : Probabilistic structure and empirical evidence.
4. A comparative study in threshold ARCH models with periodic coefficients

Participation in international conferences

1. On estimation in periodic threshold ARCH(q) models: Gaussian QMLE approach.
2. On some probabilistic properties of GARCH(q,p) with GED innovation.

• Periodic validation of progress through research seminars and presentations.

• Teaching at the University Mentouri as a visiting lecturer.

Year 4 (2022-2023):

• Acceptation of 3 scientific papers in Journal of Siberian Federal University Mathematics and Physics
and Random Operators and Stochastic Equations.

• Teaching at the University Mentouri as a visiting lecturer.

Year 5 (2023-2024):

• Completion of the thesis.

• Preparation for the thesis defense.

• Publication of the thesis results in the following journals: Random Operators and Stochastic Equa-
tions and Journal of Siberian Federal University Mathematics and Physics

• Teaching at the University Mentouri as a visiting lecturer.
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Introduction

As the world has evolved and undergone significant changes across various sectors, banks and stock
exchanges have encountered noteworthy financial fluctuations throughout the day, week, or year. These
fluctuations are frequently depicted through specific mathematical models:

ϵt = 10r(ln(Pt) − ln(Pt−1)), t = 1, . . . N, r > 0.

In this context, two primary categories of models have emerged. The first category comprises mod-
els with random coefficients, while the second category includes models with time-varying coefficients.
The latter category, characterized by coefficients that change over time, has garnered greater attention
from researchers and analysts. These models aim to capture the dynamic nature of financial markets
and provide a more accurate representation of real-world phenomena. For the most suitable model to
characterize financial series witnessed a significant breakthrough in 1982 with Engle’s introduction of
the ARCH (Autoregressive Conditional Heteroskedasticity) model. This marked a pioneering step in
financial time series analysis, enabling the modeling of changing volatility over time. Building upon En-
gle’s work, Bollerslev [9] made substantial advancements in the ARCH model four years later, refining
and generalizing it to better accommodate the evolving dynamics of financial markets. These models,
collectively termed GARCH (Generalized Autoregressive Conditional Heteroskedasticity), have become
pivotal in comprehending and forecasting financial volatility. However, as financial markets continued
to exhibit extreme and unpredictable fluctuations, GARCH models faced limitations. Notably, they
struggled to keep pace with the rapid and volatile changes in the market. One significant limitation
was the assumption of a non-negative relationship between asset values and volatility, which didn’t al-
ways hold true in practical situations. This unrealistic assumption posed challenges in applying these
models effectively. Recognizing the practical shortcomings, financial researchers and analysts developed
more advanced iterations of the GARCH model. Notable variants include PGARCH (Power GARCH),
EGARCH (Exponential GARCH), and logGARCH (Logarithmic GARCH). These advanced models
were designed to provide a more accurate and flexible representation of financial volatility, accounting for
the complex and often asymmetric nature of market fluctuations. PGARCH model, which was intro-
duced for the first time in 1993 by Ding and all [17], is widely regarded as the most efficient model and
the optimal tool for modeling returns in financial assets and exchange rates. It is also instrumental in
analyzing seasonal financial volatility and forecasting financial time series with proven accuracy within
specific time frames. These models are non-linear and possess unique characteristics. Their role lies
in replicating crucial aspects of financial time. Through empirical studies, these models have revealed
their limitations in various scenarios, highlighting numerous shortcomings, including both positive and
negative innovations, which have an equal impact on financial volatility. This can be at odds with the
analysis of stock behavior in the stock market. Furthermore, these models struggle to effectively handle
data due to their inability to adequately account for the effects of falling prices being more influential
than rising prices, along with the challenges posed by financial leverage. It has been studied in numerous
research studies [6], [27], [13], [20], [48], [42] and [36]. The second model is ENGRACH. The EGARCH
models, introduced by Nelson [38], are designed to ensure the non-negativity of volatility and effectively
handle high values, including negative dynamics in financial data, known as "leverage effects." Nelson also
provides conditions for achieving covariance stationarity in these models under specific error distribution
specifications. However, these models have certain drawbacks, including computational complexity, chal-
lenges in model selection, sensitivity to assumptions, reduced interpretability of coefficients, and limited
predictive power for future volatility due to the dynamic nature of financial markets. Users should be
aware of these limitations and exercise caution when applying EGARCH models for specific tasks. In
this thesis, our primary objective is to investigate and scrutinize three distinct models. The ultimate goal
of this examination is to identify the model that best reflects the various fluctuations in the market while
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causing the least harm and exhibiting minimal shortcomings. The study will involve a comprehensive
analysis of these models to assess their effectiveness and practicality in capturing and explaining the
market’s ups and downs. We seek to determine which model offers the most accurate representation of
market behavior, all while minimizing any negative impacts or limitations associated with the chosen
model.
By comparing and contrasting these models, we aim to contribute to a better understanding of market
dynamics and ultimately provide insights that can be valuable for decision-makers and stakeholders in
the financial world. This research will shed light on the strengths and weaknesses of each model, allowing
us to make more informed and responsible choices when dealing with market fluctuations.
In the first chapter of the thesis, we examine the logGARCH(1, 1) model, which traces its roots back
to the logGARCHmodel, similar to the EGARCH model. It was initially discovered by Geweke [25]
in 1986 and Pantula [41]. Subsequently, a more advanced version, logGARCH(p, q), was developed by
Francq and all [21, 22, 23, 24]. This concept has gradually gained prominence in various scientific papers,
known for its ability to capture dynamic information (see Asai [4]).
Our primary focus will be on the role of this model in allowing us to handle the periodicity of information.
This periodic change in information is prevalent in most economic time series. In this section, we delve into
the implications and applications of this aspect of the model. The remainder of this chapter is structured
as follows. We start by delve into the probabilistic properties of the periodic logGARCH(1, 1) model,
establishing both necessary and sufficient conditions for strict periodic stationarity and periodic correla-
tion. Furthermore, we derive a closed-form expression for the second-order moment and establish explicit
conditions for the existence of higher-order moments. Then, we apply the standard quasi-maximum like-
lihood (QML) method to estimate the model’s unknown parameters. We give numerical illustrations to
complement the estimation method. Finally, we offer concluding remarks summarizing the key insights
and implications drawn from our analysis.
The second chapter is dedicated to the expansion of the standard Absolute Value GARCH (AV GARCH)
model into the realm of periodically time-varying coefficients, referred to as PAV GARCH. In this cat-
egory of models, parameters have the flexibility to transition between different regimes, allowing for
the incorporation of asymmetric effects within volatility modeling. Specifically, these models describe
volatility as a linear combination of the absolute value of the shock (innovation) and lagged volatility,
introducing asymmetry by manipulating the absolute value of the shock.
The primary objectives of this chapter revolve around the examination of the probabilistic properties of
the PAV GARCH model, primarily through its vector representation. We establish necessary and suffi-
cient conditions to ensure the model’s strict periodic stationarity. Additionally, we apply the standard
Quasi-Maximum Likelihood (QML) method to estimate the model’s parameters, presenting conditions
that guarantee the strong consistency and asymptotic normality of the QML estimator. To substantiate
our theoretical findings, a series of numerical experiments is conducted to demonstrate the practical rele-
vance of our approach. Lastly, we apply our model to analyze two foreign exchange rates, specifically the
Algerian Dinar against the Euro (Euro/Dinar) and the American Dollar (Dollar/Dinar). Our empirical
findings reveal that our approach not only outperforms alternative models but also fits the data effectively.
The last chapter of thesis is dedicated to enhancing the standard Bilinear Threshold GARCH(BLTGARCH)
model by introducing periodically time-varying coefficients, denoted as PBLTGARCH. These models
belong to a class where parameters can transition between different regimes, allowing for the integration
of asymmetric effects in modeling volatility. Asymmetric effects pertain to situations where the impact
of positive and negative shocks on volatility is not symmetrical. Our first major focus is on establishing
necessary and sufficient conditions for the existence of stationary solutions, but with a periodic sense in
mind. This means that we’re considering not just stationary solutions in the traditional sense, but those
that exhibit periodic behavior over time. The second significant aspect of this paper is the development
of a quasi-maximum likelihood (QML) estimation approach for the PBLTGARCH model. The QML
method is a statistical technique used to estimate model parameters by maximizing a likelihood func-
tion. We study the properties of the QML estimator, including its strong consistency and asymptotic
normality. This means we investigate how well our estimation method works and under what conditions
it provides reliable results. We specify these conditions, which include assumptions like strict stationarity
and the finiteness of moments of certain orders for the error terms. To further support the practicality
of our approach, we conduct a Monte Carlo study to illustrate how our estimation method performs in
finite-sample scenarios, where we have limited data.
Lastly, we apply our enhanced model to analyze exchange rate data between the Algerian Dinar and the
European Euro. This application demonstrates the real-world relevance and effectiveness of our model
in capturing the complexities of financial data, particularly in the context of exchange rates.
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Cyclical LogGARCH(1, 1)

Processes: Modeling and Analysis
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1.2 Stationary study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Strict periodically stationary analysis . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Moments properties of periodically correlated process . . . . . . . . . . . . 10
1.3.1 Conditions for the existence of higher moments . . . . . . . . . . . . . . . . . . 12

1.4 Estimation issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.1 Strong consistency of QMLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.2 Asymptotic normality of QMLE . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Monte Carlo experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.1 Standard log GARCH(1, 1) model . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.2 Periodic log GARCHs(1, 1) model . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.6.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.6.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.6.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

This chapter was accepted in the journal Random Operators and Stochastic Equations.
This chapter focuses on exploring the probabilistic and statistical properties of a specific type of time
series model (P − logGARCH(1, 1)). The chapter begins with a brief rationale for introducing the
P − logGARCH model, highlighting the need for a time series model that captures periodic variations in
coefficients. Subsequently, we delve into the probabilistic structure of P − logGARCH models, shedding
light on the mathematical framework that underpins these processes. One of the key objectives of
this chapter is to establish the theoretical conditions that guarantee the strict stationarity of the P −
logGARCH(1, 1) process in a periodic sense. This is a crucial aspect as it ensures that the model
remains stable and well-behaved over time. Furthermore, we delve into the examination of higher-order
moments of the solutions generated by P − logGARCH models. This analysis provides insights into the
distributional properties and statistical behavior of these processes, contributing to a more comprehensive
understanding of their characteristics. In essence, this chapter serves as a foundational exploration of
P − logGARCH models, offering theoretical insights and establishing conditions that validate their use
in modeling time series data with periodically time-varying coefficients.
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1.1. Presentation of P − log GARCH models 1

1.1 Presentation of P − log GARCH models
Let p, q > 0 and let (Ω, F , P ) be a probability space. Let (ϵt)t∈Z defined on (Ω, F , P ). If ϵt |Ft−1 ⇝ L (0, ht) ,

and

∀t ∈ Z, ϵt = ηtht and log h2
t = ω(t) +

q∑
i=1

αi(t) log ϵ2
t−i +

p∑
j=1

βj(t) log h2
t−j , 1 ≤ i ≤ q, 1 ≤ j ≤ p

where the functions ω(t), αi(t), and βj(t) are periodic in t with period s, (s ≥ 1) (i.e ∀t, k ∈ Z, ω(t) =
ω(ks + t), αi(t) = αi(ks + t) and βj(t) = βj(ks + t). Then, (ϵt)t∈Z is called a periodic logGARCH(p, q)
model (P − log GARCHs(p, q)) space of orders p and q with period s > (p ∨ q). We proceed with
the underlying assumption that the innovation sequence, denoted as (ηt)t∈Z, adheres to a specific set of
conditions that are pivotal within the context of the analysis. These conditions establish a foundational
framework for the study, ensuring that the innovations possess certain key properties.
Assumption 1.1.1. Let (ηt)t∈Z be a sequence of independent and identically distributed (i.i.d.) random
variables defined on the probability space (Ω, F , P ) with zero-mean and unit variance (i.i.d.(0, 1)). Let
Ft−1 be the σ-algebra generated by {ηt−i, ∀i ≥ 1}.

To facilitate a focused and streamlined discussion, we will direct our attention to a specific model in
the realm of time series analysis, namely P − log GARCHs(1, 1). This targeted approach enables a deeper
exploration of the properties and characteristics of this model, enhancing the precision of our analysis.
Therefore, we have

ϵt = ηtht and log h2
t = ω(t) + α(t) log ϵ2

t−1 + β(t) log h2
t−1, t ∈ Z, (1.1)

This model is recognized for its simplicity, as it can be efficiently implemented with a limited number
of parameters, making it accessible for practical applications. Moreover, it often exhibits a good fit to
observed data. It’s important to note that a high value of β(t) indicates persistent volatility, remaining
relatively stable over an extended period with gradual changes. Conversely, a high value of α(t) suggests
that volatility is characterized by frequent and abrupt fluctuations. We transform t → st + ϑ and we
set ϵst+ϑ = ϵt(ϑ), hst+ϑ = ht(ϑ) and ηst+ϑ = ηt(ϑ) and we denoted by (ϵt(ϑ)) = ϵt, ht(ϑ) = ht and
ϵt(ϑηt(ϑ) = ηt.
Therefore, the model given by (1.1) can be expressed in an equivalent form which is given as:

ϵt(ϑ) = ηt(ϑ)ht(ϑ) and log h2
t (ϑ) = ω(ϑ) + α(ϑ) log ϵ2

t (ϑ − 1) + β(ϑ) log h2
t (ϑ − 1), ∀t ∈ Z. (1.2)

Let 1 ≤ ϑ ≤ s, the ϑ − th "season" for of the cycle t and {ω(ϑ), α(ϑ), β(ϑ)} are the model coefficients at
season ϑ ∈ {1, ..., s}. For convenience and if ϑ < 0, we have ϵt(ϑ) = ϵt−1(ϑ + s), ηt(ϑ) = ηt−1(ϑ + s) and
ht(ϑ) = ht−1(ϑ + s).
The non-periodic symbols (ϵt), (ht) and (ηt) can be used interchangeably with their periodic counterparts
(ϵt(ϑ)), (ht(ϑ)) and (ηt(ϑ)). If there is no need to emphasize the seasonal aspect, the following notes on
s and (ϵt)t∈Z are hereby presented.
Remark 1.1.1. The introduction of the assumption s > (p ∨ q) aims to ensure that the process (ϵt)t≥1
in the general formulation of periodic logGARCH(p, q) demonstrates dependence through consecutive
observations within a given period.
Remark 1.1.2. In addition to the expression provided in (1.1), the process (ϵt)t∈Z can be reformulated
as follows:

ϵt = ηtht and log h2
t = ω′(t) + γ(t) log h2

t +α(t)zt−1, ∀t ∈ Z, (1.3)
which will be heavy used. On the other hand, if E

{∣∣log ϵ2
t

∣∣} < +∞, then the process
(
log ϵ2

t

)
t

admits a
first-order periodic autoregressive moving average PARMA(1, 1) representation.

log ϵ2
t = ω′′(t) + γ(t) log ϵ2

t−1 − β (t) zt−1 + zt, ∀t ∈ Z, (1.4)
where zt = log η2

t − E
{

log η2
t

}
, ω′(t) = ω (t) + E

{
log η2

t

}
, ω′′(t) = ω (t) + (1 − β (t)) E

{
log η2

t−1
}

and
γ (t) = α(t) + β(t). In addition, log η2

t can be seen as an i.i.d. white noise with zero median. Therefore,

if (ηt) is standard normal E
{

log η2
t

}
≈ −1.27035 and V ar

{
log η2

t

}
= π2

2 . The models (1.1) and (1.4)
have become appealing tools for investigating both symmetric volatility and distinct "seasonal" patterns
in modeling financial time series that exhibit a periodic rhythm. This is characterized by the probability
law governing such a series being invariant under shifts of length s.
More precisely, a process (Yt) is said to be strictly periodically stationary with period s if, for all
h, t1, t2, . . . , tn in Z and for any collection of Borel sets A1, A2, . . . , An in R. Therefore,

P (Yt1+sh ∈ A1, Yt2+sh ∈ A2, ...., Ytn+sh ∈ An) = P (Yt1 ∈ A1, Yt2 ∈ A2, ...., Ytn
∈ An) .
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1.2. Stationary study 1

Observe that when s = 1, the process is characterized as strictly stationary. In the case of a second-
order process, meaning that (Yt) ∈ L2, it is denoted as periodically correlated with a period s if both are
given as µ(l) = E {Yl} = µ(l + s), and γ(l, k) = E {YlYk} = γ(l + s, k + s). (see, for instance, Hurd and
Miamee [31]).

1.2 Stationary study
The representation (1.3) or (1.4) is not stationary within "year", since the distribution depends on what

"season" of the "year" it is. To tackle this issue, Gladyshev [28] demonstrated that by incorporating time-
varying coefficients with periodicity, it becomes feasible to integrate seasonal patterns into a multivariate
stationary process. More precisely, consider the periodic version of representation (1.3). Then,

logh2
t =

(
log h2

t (1), ...., log h2
t (s)

)′
. (1.5)

Introducing the following

bt(ϑ) =
ϑ−1∑
k=0


k−1∏
j=0

γ(ϑ − j)

Wt(ϑ − k),

where ∀ϑ = 1, ..., s, Wt(ϑ) = ω′(ϑ) + α(ϑ) zt(ϑ − 1). Now, let define the matrix M of size s × s and the
vector and the vector Bt as:

M =


0 ... 0 γ(1)
0 ... 0 γ (1) γ (2)
...

...
...

...

0 ... 0
s−1∏
ϑ=0

γ(s − ϑ)


s×s

, Bt =


bt(1)
bt(2)

...
bt(s)


s×1

.

Therefore, (1.1) is equivalent to a (non unique) vector-valued AR process given by

logh2
t = M logh2

t−1 + Bt, ∀t ∈ Z. (1.6)

Therefore, we need to establish conditions on M and (Bt) such that (1.6) has a strictly stationary,
causal, and ergodic solution. Consequently,

(
log ϵt2) t will be strictly periodically stationary and period-

ically ergodic whenever
(
loght2)

t
.

For this purpose, and since the representations (1.3) and (1.6) are valid for all integer values of t, succes-
sive substitution of such representations reveals that formal series solutions to (1.3) and to (3.10) can be
given, respectively, by:

log h2
t =

∞∑
k=0

{
k−1∏
i=0

γ (t − i)
}

Wt−k, and logh2
t =

∞∑
i=0

M iBt−i. (1.7)

The challenge is to determine the conditions on α(ϑ) and β(ϑ) for all ϑ = 1, ..., s. As well as on
(ηt)t∈Z. These formal series solutions provided in (1.5) become genuine, strictly stationary solutions for
both (1.3) and (1.6). In the upcoming section, we are going to explore the conditions based on (1.6) that
ensure the existence of strictly periodically stationary (SPS) solutions for equations (1.5).

1.2.1 Strict periodically stationary analysis
In this specific section, we conduct a detailed analysis to identify and explore the conditions that

are both necessary and sufficient to ensure the strict stationarity of the models (1.7). The solution
corresponding to the equation (1.4) is termed "strictly periodic stationary (SPS)". This indicates that
the solution exhibits a pattern of periodic behavior while maintaining strict stationarity.
The key tool in studying strict stationarity in V AR(1) models (1.5) is the top-Lyapunov exponent (or the
Cauchy root test when M is not stochastic). Indeed, (ηt)t∈Z is an i.i.d process with E

{
log+ ||B1||

}
< ∞,

where ∀x > 0, log+ x = Max {log x, 0} . Now, let define γ(s) by the following way:

γ(s) = lim
n→∞

1
n

log ∥Mn∥ = log ρ (M) =
s−1∑
ϑ=0

log |γ(s − ϑ)| (1.8)

which is independent of the distribution of (ηt) contrary to the P − GARCH models.
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1.2. Stationary study 1

Now, we are in the position to state our first result. In the following proposition, we will prove that
the series logh2

t converges absolutely almost surely and is the unique causal and ergodic solution of (1.5).
It is also the unique causal, strictly periodically stationary, and periodically ergodic solution of (1.3).

Proposition 1.2.1. Let us explore the state space representation given in (1.5) that is associated with
P − LogGARCHs(1, 1) models, as described in (1.1), under the conditions outlined in 1.1.1. Assuming
that E

{
log+ ||B1||

}
< ∞, and γ(s) < 0 in (3.11). We obtain the following results

1. The series logh2
t in (1.7) converges absolutely almost surely and is the unique causal and ergodic

solution of (1.5).

2. The series log h2
t defined in (1.7) is the unique causal, strictly periodically stationary and periodically

ergodic solution of (1.3) with sup
1≤ϑ≤s

k−1∏
i=0

|γ(ϑ − i)| = O(ρk), ρ ∈ ]0, 1[, k ≥ 1.

Proof.

1. By Cauchy root test, it is not difficult to see that the series converges if and only if γ(s) < 0. More-
over, simple calculation shows that log h2

t defined in (1.7) is the unique, causal, strictly periodically
stationary and periodically ergodic solution of (1.3).

2. Immediate consequence of the convergence of the series logh2
t .

We introduce a second proposition, which directly follows from the first proposition.

Proposition 1.2.2. Let logh2
t be series converges absolutely and is the the unique causal, strictly pe-

riodically stationary and periodically ergodic solution of (3.10) and (1.3). If E
{

∥Bt∥
2
}

< +∞ and
∞∑

k=0
sup

1≤ϑ≤s

{
k−1∏
i=0

|γ(ϑ − i)|2
}

< ∞. Then,
(
log ϵ2

t

)
t
is second order periodically correlated process.

Proof. See Nelson [38].

We can deduce the following observation from the last proposition.

Remark 1.2.1. If we use the representation of (1.5) and the fact that logh2
t is second order. Additionally,

if ρ
(
M⊗2) < 1, which is equivalent to

s−1∏
ϑ=0

γ2(s−ϑ) < 1. Then, the sufficient conditions in the proposition

1.2.2 is achieved.

1.2.2 Example
For the P − log GARCHs(1, 1) model, after some tedious algebra we find that the necessary and

sufficient condition ensuring the existence of SPS solution is that
s∑

ϑ=1
log |α (ϑ) + β (ϑ)| < 0

is strictly negative. Note that when s = 1, the strictly periodically stationary condition coincide with
that of the standard log GARCH(1, 1) given by Francq et al [23] (see Example 2.1 p. 36). It is worth
noting that the existence of regimes which satisfy

log |α (ϑ) + β (ϑ)| > 0

does not preclude strict periodic stationarity.
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1.3. Moments properties of periodically correlated process 1

It is well known that for the P − GARCH type models, the strictly periodically stationary condition
entails the existence of a moment of order τ > 0 for (ϵt). The following proposition shows that this is
also the case for

∣∣log ϵ2
t

∣∣ in P − log GARCHs (1, 1) model when E
{

log+ ∣∣log η2
0
∣∣ } < ∞.

Proposition 1.2.3. Let ϵt be the strictly periodically stationary solution of (1.3). Assuming that γ(s) < 0
and E

{∣∣log η2
0
∣∣τ0}

< ∞, τ0 > 0. Then, there exist τ > 0 such that for any ϑ ∈ {1, ..., s}, we have
E
{∣∣log h2

t (ϑ)
∣∣τ} < ∞, and E

{∣∣log ϵ2
t (ϑ)

∣∣τ} < ∞.

Proof. From the definition of γ(s), there is a positive integer i0 such that log
∥∥M i0

∥∥ < 0. Let

g(t) =
∥∥M i0

∥∥t
.

Then, g is decreasing in a neighborhood of 0 because g′(0) < 0 and since g(0) = 1, it follows that there
exist τ ∈ ]0, 1[ such that

∥∥M i0
∥∥τ

< 1. Hence for any ϑ ∈ {1, ..., s}, we have

∥∥logh2
t (ϑ)

∥∥ ≤
∞∑

i=0

∥∥M i
∥∥ ∥Bt (ϑ − i)∥ .

Since τ ∈ ]0, 1[ we get

E
{∥∥logh2

t (ϑ)
∥∥τ
}

≤
∞∑

i=0

∥∥M i
∥∥τ

E {∥Bt (ϑ − i)∥τ } ≤ B (τ)
∞∑

i=0

∥∥M i
∥∥τ

,

where
B (τ) = max

1≤ϑ≤s
E {∥B0 (ϑ − i)∥τ } .

Now working with a multiplicative norm and using the above discussion, it follows that with

a =
i0−1∑
i=0

∥∥M i
∥∥τ

> 0,

and
b =

∥∥M i0
∥∥τ ∈ ]0, 1[ .

We have
∞∑

i=0

∥∥M i
∥∥τ ≤

∞∑
i=0

abi.

Hence E
{∣∣log h2

t (ϑ)
∣∣τ} < +∞. Additionally, since

E
{∣∣log ϵ2

t (ϑ)
∣∣τ} < E

{∣∣log h2
t (ϑ)

∣∣τ}+ E
{∣∣log η2

0(ϑ)
∣∣τ} < ∞,

which holds true when τ ≤ τ0.

In the upcoming sections, we will delve into the moment properties of strictly periodically stationary
(SPS) solutions for equation (1.3). This entails exploring and conducting a more detailed analysis of
how these solutions behave in terms of statistical moments, including mean, variance, and higher-order
moments, within the context of the equation (1.2) .

1.3 Moments properties of periodically correlated process
In this section, we examine the moments properties of the strictly periodically stationary solution to

P − logGARCHs(1, 1). For this purpose, we put

Zt = log h2
t , Zt = logh2

t , γ =
∏s

ϑ=1γ (ϑ) , and γϑ(r) =
∏r−1

i=1 γ (ϑ − i + 1) .

We note that for any ϑ = 1, 2, ..., s

Aϑ =
∞∑

k=0

{
k−1∏
i=0

γ (ϑ − i)
}

ω(ϑ − k) = (1 − γ)−1
γϑ(ϑ)

∑s
r=1γs(r − ϑ)ω (ϑ − r) ,

with the convention
∏y

i=xγ (i) = 1 if x > y. Let us introduce the following lemma which proves that the
periodic version of the process (Zt)t has a new representation.
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1.3. Moments properties of periodically correlated process 1

Lemma 1.3.1. Consider the model P − logGARCHs(1, 1). Then, the periodic version of the process
(Zt)t admit the following representation:

Zt (ϑ) = γϑ(ϑ)
t−1∑
τ=0

γτ
s∑

r=1
γs(r − ϑ)

{
α (ϑ − r + 1) log η2

t−τ (ϑ − r) + ω (ϑ − r + 1)
}

+ γtγϑ(ϑ)
ϑ∑

k=1
γs(k − ϑ)

{
α (ϑ − k + 1) log η2

0 (ϑ − k) + ω (ϑ − k + 1)
}

+ γtγϑ(ϑ)Z0. (1.9)

Proof. First, from the representation (1.3) of log h2
t (ϑ) it is necessary and sufficient to express in a unique

way log h2
t (ϑ) in terms of log η2

t (ϑ)and its infinite past as an infinite periodic moving average. Indeed,
since

Zt = γ (t) Zt−1 + Wt.

Then by iterating t−times, we get

Zt =
(

t∏
i=1

γ (t − i + 1)
)

Z0 +
∑t

k=1

(
k−1∏
i=1

γ (t − i + 1)
)

Wt−k+1,

or in periodic version, for all ϑ ∈ {1, ..., s}

Zt (ϑ) =
(

ϑ+ts∏
i=1

γ (ϑ − i + 1)
)

Z0 +
ts∑

k=1
γϑ(k)Wt (ϑ − k + 1) +

ϑ+ts∑
k=ts+1

γϑ(k)Wt (ϑ − k + 1) . (1.10)

By using some simple calculation, we can show that(
ϑ+ts∏
i=1

γ (ϑ − i + 1)
)

Z0 = γtγϑ(ϑ)Z0,

ts∑
k=1

γϑ(k)Wt (ϑ − k + 1) = γϑ(ϑ)
t−1∑
τ=0

γτ
s∑

r=1
γs(r − ϑ)Wt−τ (ϑ − r + 1) ,

ϑ+ts∑
k=1+ts

γϑ(k)Wt (ϑ − k + 1) = γϑ(ϑ)γt
ϑ∑

l=1
γs(l − ϑ)W0 (ϑ − l + 1) .

Now, replacing Wt by its expression and rearranging the above terms in Zt (ϑ). We get the equation
(1.9).

In the following lemma, we study the convergence in L2 of the sequence (Zt (ϑ))t defined by (1.10)
when t → ∞ for each ϑ ∈ {1, ..., s}.

Lemma 1.3.2. Assume that the condition |γ| =
s∏

i=1
|γ(i)| < 1 holds. Then the process (Zt (ϑ))t defined

by (1.10) converges in L2.

Proof. The proof follows from the propositions (1.2.2) and (1.2.1). Thus, we have

∞∑
k=0

{
k−1∏
i=0

|γ(ϑ − i)|2
}

≤

{ ∞∑
k=0

{
k−1∏
i=0

|γ(ϑ − i)|
}}2

≤ (1 − γ)−2

{
|γϑ(ϑ)|

s∑
r=1

|γs(r − ϑ)|
}2

< +∞.

This is done to arrive at the result.

We present the following proposition which is a consequence of last lemma.

Proposition 1.3.1. Consider the model P − logGARCHs(1, 1). Then, under the conditions of propo-
sitions 1.2.2 and 1.2.1, the closed form of the second moment of ϵt(ϑ), for all ϑ = 1, 2, ..., s, is given
by

E
(
ϵ2

t (ϑ)
)

= exp (Aϑ)
∞∏

k=0
E

{
exp

(
γϑ(ϑ)γk

s∑
r=1

γϑ(r)α (ϑ − r) log η2
t−k(ϑ − r − 1)

)}
.
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1.3. Moments properties of periodically correlated process 1

Proof. The proof of this proposition follows essentially the same arguments as in Sadoun and Bentarzi
[42]. By using the above lemmas: lemma 1.3.1 gives an expression of (Zt)t in term of finite series of(
log η2

t−i

)
1≤i≤n

and (ω(t − i))1≤i≤n and lemma 1.3.2 ensures the convergence in L2 of such series.
Hence, in law to the following expression

log h2
n (ϑ) = γϑ(ϑ)

∞∑
τ=0

γτ
s∑

r=1
γs(r − ϑ)α (ϑ − r) log η2

n−τ (ϑ − r − 1) + Aϑ.

This yields

h2
n (ϑ) = exp (Aϑ)

∞∏
τ=0

exp
(

γϑ(ϑ)γτ
s∑

r=1
γs(r)α (ϑ − r + 1) log η2

n−τ (ϑ − r)
)

.

Furthermore, we get

E
(
h2

n (ϑ)
)

= exp (Aϑ) E

{ ∞∏
τ=0

exp
(

γϑ(ϑ)γτ
s∑

r=1
γs(r − ϑ)α (ϑ − r) log η2

n−τ (ϑ − r − 1)
)}

,

and

E
(
ϵ2

n (ϑ)
)

= exp (Aϑ)
∞∏

τ=0
E

{
exp

(
γϑ(ϑ)γτ

s∑
r=1

γs(r − ϑ)α (ϑ − r) log η2
n−τ (ϑ − r − 1)

)}
.

Finally, the process log hn (ϑ) being periodically stationary of second-order.

Corollary 1.3.1. Let be log GARCH(1, 1) a classical model. The process (ϵn)n∈Z is a stationary in the
second-order moment if and only if |α + β| < 1. Moreover the closed forms of the second unconditional
moment E

(
ϵ2

t

)
of such process is given by

E
(
ϵ2

t

)
= exp

(
(1 − (α + β))−1

ω
) ∞∏

k=1
E
{

exp
(

α (α + β)k−1 log η2
t−k

)}
.

Proof. Straightforward and hence omitted.

1.3.1 Conditions for the existence of higher moments
This section provides the condition ensuring the existence of the m−th order moments E (ϵm

t ) and
their explicit form in terms of the parameters of the model (3.8). We first establish the following basic
result.

Lemma 1.3.3. We consider the model P − logGARCHs(1, 1) with associated state-space representation
(3.10). Let define M

(m)
i (t)′s recursively by

M
(1)
0 (t) = Bt, M

(1)
1 (t) = M,

and for m > 0
M

(m+1)
i (t) = Bt ⊗ M

(m)
i (t) + M ⊗ M

(m)
i−1 (t),

with the convention
M

(m+1)
i (t) = O.

Then, for any positive integer m the following representation holds

Z⊗m
t =

m∑
i=0

M
(m)
i (t)Z⊗i

t−1, (1.11)

and when i > m or i < 0 we get
Z⊗0

t = M
(0)
0 (t) = 1.
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1.3. Moments properties of periodically correlated process 1

Proof. The formulation (1.11) is readily apparent when m = 1. Assuming that (1.11) holds for a certain
value of m ≥ 1, therefore, we get:

Z
⊗(m+1)
t =

m∑
i=0

(
Bt + MZt−1

)
⊗ M

(m)
i (t)Z⊗i

t−1,

=
m∑

i=0

(
Bt ⊗ M

(m)
i (t)Z⊗i

t−1 + MZt−1 ⊗ M
(m)
i (t)Z⊗i

t−1

)
,

=
m∑

i=0

(
Bt ⊗ M

(m)
i (t)

)
Z⊗i

t−1 +
m∑

i=0

(
M ⊗ M

(m)
i (t)

)
Z

⊗(i+1)
t−1 ,

=
m+1∑
i=0

(
Bt ⊗ M

(m)
i (t) + M ⊗ M

(m)
i−1 (t)

)
Z⊗i

t−1,

=
m+1∑
i=0

M
(m+1)
i (t)Z⊗i

t−1.

We get the result.

The following proposition introduces the context by highlighting the importance of the P −logGARCHs

model in time series analysis, specifically in the financial domain. It establishes a crucial assumption
regarding the finite expected norm of B⊗m

t . The next proposition’s key revelation is the direct link
between the moments and the parameter ρ (M⊗m). It underscores that the existence of moments is
contingent on ρ (M⊗m) < 1, and consequently, the periodic correlation structure of log ht2 within Lm is
illuminated.
Proposition 1.3.2. Consider the model P −logGARCHs(1, 1) with associated state-space representation
(1.5). Assuming that E

{∥∥B⊗m
t

∥∥} < +∞. Then, (Zt)t admits moments up to m−order if and only if:

ρ
(
M⊗m

)
= |γ|m < 1.

Hence
(
log h2

t

)
t

is a periodically correlated process belonging to Lm.
Proof. Based on the expression provided in (1.11), it becomes readily apparent that

E
{

Z⊗m
t

}
=

m−1∑
i=0

E
{

M
(m)
i (t)Z⊗i

t−1

}
+ M⊗mE

{
Z⊗m

t−1
}

,

which admits a solution whenever
ρ
(
M⊗m

)
< 1,

or equivalently
|γ|m < 1.

The subsequent proposition serves the purpose of determining the 2m-th moment of the process denoted
as (ϵt)t∈Z. This proposition plays a crucial role in quantifying the behavior and statistical properties of
the process, shedding light on its moments up to the specified order of 2m. It is an essential step in
gaining a comprehensive understanding of the underlying dynamics of the process and its mathematical
properties.
Proposition 1.3.3. Consider the model P − logGARCHs(1, 1). Supposing that µη(2m) = E

{
η2m

t

}
<

+∞, and E
{

ηk
t

}
= 0, ∀1 ≤ k < 2m,(these conditions are obviously satisfied if ηt is a Gaussian white

noise). Then, the 2m-th moment (assuming it exists) of (ϵt)t∈Z process is given for by

E
(
ϵ2m

t (ϑ)
)

= µη(2m) exp (mAϑ)
∞∏

k=0
E

{
exp

(
mγϑ(ϑ)γk

s∑
r=1

γs(r − ϑ)α (ϑ − r + 1) log η2
t−k (ϑ − r)

)}
,

= µη(2m) exp (mAϑ)
∞∏

k=0
E
{

η
mλk(ϑ)
0

}
, (1.12)

where
λk (ϑ) = 2γϑ(ϑ)γk

∑s

r=1
α (ϑ − r + 1) γs (r − ϑ) .

Proof. This is a direct consequence of proposition 1.3.2.
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Now, we present the following Remark.

Remark 1.3.1. Proposition 1.3.3 clearly indicates that the existence of E
(
ϵ2m

t (ϑ)
)

depends on the

distribution of (ηt) t. Hence, E
(
ϵt2m (ϑ)

)
exists if and only if

∞∏
k=0

E
{

η
mλk(ϑ)
0

}
exists and is finite.

The following proposition provides a set of sufficient conditions (based on the distribution of (ηt)) for
the existence of the unconditional moments of order 2m − th of (ϵt).

Proposition 1.3.4. Consider the model P − logGARCHs(1, 1). Assume that |γ| < 1, then

1. If (ηt)t follows an i.i.d. generalized error distribution (GED) and λk (ϑ) > −1 for k ∈ N. Then
E
(
ϵ2m

t (ϑ)
)

< ∞ and is given by (1.12).

2. If (ηt)t follows an i.i.d. Student’s t(v)-distribution with degrees of freedom v > 2, 2m < v and
λk (ϑ) > −1 for k ∈ N. Then, E

(
ϵ2m

t (ϑ)
)

< ∞ and is given by (1.12).

Proof. Based on the equation (1.12), it is evident that in order for E
(
ϵ2m

t (ϑ)
)

to exist, it is imperative
that E

(
η2m

t

)
remains finite. Hence, if (ηt)t ⇝ GED, then

E
{

|ηt|λk(ϑ)
}

< +∞, for all λk (ϑ) > −1 and k ∈ N.

By contrast, if
(ηt)t ⇝ t(ϑ) with ϑ > 2.

Then
E
{

|ηt|λk(ϑ)
}

< +∞, for − 1 < λk (ϑ) < ϑ and λk (ϑ) ̸= 2.

So, if
λk (ϑ) ∈ ]−1, 2[ ,

therefore
E
{

|ηt|λk(ϑ)
}

< +∞, for each k ∈ N.

Additionally, since
∞∑

k=0

∣∣∣E {|η0|λk(ϑ)
}

− 1
∣∣∣ converges.

We obtain
∞∏

k=0
E
{

|η0|λk(ϑ)
}

converges.

Hence
E
(
ϵ2m

t (ϑ)
)

< ∞.

1.4 Estimation issues
In this section, we consider the Gaussian quasi-maximum likelihood estimator (QMLE) to estimate

the parameters in P − logGARCHs(1.1) model gathered in the vector θ′ = (ω′, α′, β′)′ ∈ Θ ⊂ R3s where
ω = (ω(1), ω(2), ..., ω(s))′ , α = (α(1), α(2), ..., α(s))′ and β = (β(1), β(2), ..., β(s))′ . The true parameter
value denoted by θ0 ∈ Θ ⊂ R3s is unknown and therefore must be estimated. For this purpose, let
ϵt = (ϵ1, ϵ2, ..., ϵN ), N = ns be an observation of the causal and strictly periodically stationary solution
of model (1.3) and let h2

t (θ) be the conditional variance of ϵt given Ft-1. The Gaussian quasi-likelihood
function of θ conditional on initial values ϵ2

0, h̃2
0(θ) is given by

L̃ns(θ) = − (ns)−1
n∑

t=1

s−1∑
ϑ=0

l̃st+ϑ(θ), (1.13)

with
l̃t(θ) = ϵ2

t

h̃2
t (θ)

+ log h̃2
t (θ),

Nonlinear Modeling of Certain Periodic Time Series 14
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where log h̃2
t (θ) is recursively defined for t ≥ 1 by

log h̃2
t (θ) = ω (t) + α (t) log ϵ2

t−1 + β (t) log h̃2
t−1(θ).

A Gaussian QML estimator of θ is defined as any measurable solution θ̂N

θ̂N = Arg min
θ∈Θ

(
L̃N (θ)

)
, (1.14)

In view of the strong dependency of h̃2
t (θ) on initial values ϵ2

0, let’s denote h̃2
0(θ) as l̃t(θ) for t ≥ 1. It

is important to note that
(
l̃t(θ)

)
t ≥ 1 is neither strictly periodically stationary nor periodically ergodic.

Therefore, it is appropriate to replace the sequence
(
l̃t(θ)

)
t≥1 with its strictly periodically stationary and

periodically ergodic version. Hence, we elaborate on an approximate version:

Lns(θ) = − 1
ns

n∑
t=1

s−1∑
ϑ=0

lst+ϑ(θ).

The likelihood (1.3) is then computed with

lt(θ) = ϵ2
t

h2
t (θ) + log h2

t (θ).

As already pointed by Francq and all [24], when some observations are equal to zero or are so close
to zero, θ̂N cannot be evaluated. Hence, a lower bound for the |εt|′ s is however imposed. 10−8 is often
proposed as a well lower bound leaving unchanged the numerical illustration. Moreover, Sucavvat [45]
have proposed four solutions for this situation among them, to treat zeros as missing values and hence
an estimates issue may remedy the problem.

Note that the proofs of certain theorems are, by now, standard and follow from similar arguments
used in demonstrating the strong consistency and asymptotic normality of the P − GARCH models (see
Aknouche and Guerbyenne [2] and/or for asymmetric log −GARCH Francq and all in [24]. The main
aim here is to reveal the basic assumptions and to quantify the asymptotic distribution of our model.
Hence, given several similarities between certain steps of the proof in the above references, we provide
proofs only when it seems pertinent to us, and we refer to the above reference for further details.

1.4.1 Strong consistency of QMLE

To study the strong consistency and the asymptotic normality of QML estimator, we need to introduce
some notations. Let B denote the log operator. For all ϑ ∈ {1, ..., s} we consider the polynomials

aϑ(z) = α0(ϑ)zi,

bϑ(z) = 1 − β0(ϑ)zj .

Let γ(s)(θ0) be the Lyapunov exponent defined in (1.8) evaluated at θ0. Consider the following regularity
assumptions:

A1. θ0 ∈ Θ and Θ is compact.

A2. γ(s) (θ0) < 0 and ∀ θ ∈ Θ,
∏s−1

ϑ=1
|β (s − ϑ)| < 1.

A3. E
{∣∣log ϵ2

t

∣∣} < ∞.

A4. The process
(
η2

t

)
t

has a nondegenerate distribution with E
{

η2
0
}

= 1 and E
{∣∣log η2

0
∣∣τ0}

< ∞ for
some τ0 > 0.

A5. |α0(ϑ)| + |β0(ϑ)| ≠ 0 for all ϑ ∈ {1, ..., s}.

Several observations can be noted. Assumptions A1, A2, and A5 closely resemble the prerequisites for
ensuring the consistency of the QMLE in PGARCH models (as described by Aknouche and Guerbyenne
[2]). Assumption A4 is introduced to aid in identification.
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We can now present our initial outcome.

Theorem 1.4.1. Let
(

θ̂N

)
be a sequence of QMLE satisfying (3.14). Then, under the assumptions

A1-A5, almost surely (a.s.), θ̂N → θ0 as N → ∞.

Proof. We will establish the following intermediate results:

(i) lim sup
N→∞ θ∈Θ

∣∣L̃N (θ) − LN (θ)
∣∣ = 0 a.s.

(ii) If h2
t (θ) = h2

t (θ0) a.s. then θ = θ0.

(iii) If θ ̸= θ0, then
∑s

ϑ=1 Eθ {lst+ϑ(θ)} >

s∑
ϑ=1

Eθ0
{lst+ϑ(θ0)}.

(iv) For any θ ̸= θ0 there a neighborhood V(θ) such that lim inf
N→∞

inf
θ∗∈V(θ)

(
L̃N (θ∗)

)
>

s∑
ϑ=1

Eθ0
{lϑ(θ0)}

a.s. The proof follows essentially the same arguments as Francq and Zakoïan [22] and Bibi and
Aknouche [6]. (i) Iterating (1.3) that for almost all trajectories

sup
θ∈Θ

∣∣log h2
t (θ) − log h̃2

t (θ)
∣∣ ≤ ρtK,

where K > 0 and ρ ∈ ]0, 1[. Moreover,

1
t

log
∣∣∣∣ 1
h2

t (θ) − 1
h̃2

t (θ)

∣∣∣∣ = −1
t

t−2∑
j=0

{
j−1∏
i=0

γ(t − i)
}

Wt−j−1

+ 1
t

log
∣∣∣∣∣exp

{
−

t−2∏
i=0

γ(t − i) log h2
1(θ)

}
− exp

{
−

t−2∏
i=0

γ(t − i) log h̃2
1(θ)

}∣∣∣∣∣ .
The first component on the right-hand side of the given equation converges almost surely to zero
(thanks to Cesàro’s lemma). In contrast, the second component converges to − log

∣∣∣∏s

ϑ=1
γ(s − ϑ)

∣∣∣ <

0 (utilizing the mean value theorem). We get

1
t

log
∣∣∣∣ 1
h2

t (θ) − 1
h̃2

t (θ)

∣∣∣∣ ≤ ρtK.

Then, the first point is proved.

To prove (ii), suppose that

log h2
t (θ) = log h2

t (θ0), a.s for some t.

Then (
α0,ϑ (B)
β0,ϑ(B) − αϑ (B)

βϑ(B)

)
log ϵ2

st+ϑ =
(

ω(ϑ)
β0(B) − ω0(ϑ)

β0,ϑ(B)

)
, for all 1 ⩽ ϑ ⩽ s.

where the polynomials α0,ϑ (z) = α0 (ϑ) z, αϑ (z) = α (ϑ) z,βϑ(z) = 1 − β (ϑ) z and β0,ϑ(z) =
1 − β0 (ϑ) z. So, by Assumption A2, the polynomial βϑ(z) is invertible.

Let et be any random variable σ (ηt−j , j > 1) −measurable. If α0,ϑ (B)
β0,ϑ(B) ̸= αϑ (B)

βϑ(B) , for some ϑ ∈

{1, ..., s} . Then, there exists some periodic coefficient c(ϑ) such that:

c(ϑ) log ϵ2
st+ϑ + est+ϑ−1 = 0, a.s,

which is equivalent to
c(ϑ) log η2

st+ϑ + c(ϑ) log h2
st+ϑ + est+ϑ−1 = 0.

The independence between ηt and
{

h2
t , et−1

}
and Assumption A4, implies that c(ϑ) = 0 for all ϑ,

which leads to a contradiction. Hence, α0 (ϑ) = α (ϑ) , β0,ϑ(z) = βϑ(z), ∀ |z| ⩽ 1 and ω(ϑ) = ω0(ϑ)
for all ϑ. The proofs of point (iii) as well as that of point (iv) are identical to those given by
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Aknouche and all [2] for the PGARCH model. We now complete the proof of Theorem 1.4.1. In
view of assertions (i)-(iv), the proof of the theorem is completed by using the compactness of Θ.
Indeed, for any neighborhood V(θ0) of θ0, we have:

lim
N→∞

sup inf
θ̃∈V(θ0)

{
− 1

N
L̃N (θ̃)

}
≤ lim

N→∞

{
− 1

N
LN (θ0)

}
= lim

N→∞

{
− 1

N
L̃N (θ0)

}
=
∑s

ϑ=1
Eθ0

{lϑ (θ0)} .

(1.15)
The compact Θ is recovered by a union of a neighborhood V(θ0) of θ0 and the set of neighborhoods
V(θ), θ ∈ Θ\V(θ0), where V(θ) fulfills the assertion (iv). Therefore, there exists a finite sub-covering
of Θ by V(θ0),V(θ1),...,V(θk) such that

inf
θ̃∈V(θ0)

{
− 1

N
LN (θ̃)

}
= min

i∈{1,...,k}
inf

θ̃∈Θ∩V(θ
i
)

{
− 1

N
L̃N (θ̃)

}
.

From (1.15) and assertion (iv), the latter relation shows that θ̂N ∈ V(θ0) for N sufficiently large,
which complete the proof of the theorem.

Now, we wish to highlight some key insights, background information, or important considerations in
the following Remark.
Remark 1.4.1. From assumptions A1-A5, it is clear that the above result remains true for the particular
periodic logARCH case, i.e., when β (ϑ) = 0 for all ϑ.

1.4.2 Asymptotic normality of QMLE

To show the asymptotic normality of θ̂N , the following additional assumptions are made.

A6. θ0 ∈
0
Θ where

0
Θ denotes the interior of Θ and k4 = E

{
η4

t

}
< ∞.

A7. There exists δ > 0 such that E
{

exp
(
δ
∣∣log η2

0
∣∣)} < ∞.

Condition A6. is a crucial assumption to obtain the asymptotic normality of QMLE, since it allows to
validate the first-order condition on the maximizer of the log-likelihood function, while the Condition
A7. is necessary for the existence of the limiting covariance matrix of the QMLE. The second main
result of this section is the following.
Theorem 1.4.2. Consider the P −log GARCHs (1, 1) model (3.6) . Then, under the conditions A1.-A7.,
as N → ∞ we have

√
N
(

θ̂N − θ0

)
⇝ N (O, Σ (θ0)) where Σ (θ0) = (κ − 1) J−1 with J is a positive

definite and non-singular matrix given by

J :=
s∑

ϑ=1
Eθ0

{
∂ log h2

ϑ (θ0)
∂θ

∂ log h2
ϑ (θ0)

∂θ′

}
.

The proof of Theorem 1.4.2 rest classically on a Taylor series expansion of ∂LN

∂θ
(θ) around θ0, i.e.,

O = (N)− 1
2

N∑
t=1

∂lt

(
θ̂N

)
∂θ

= (N)− 1
2

N∑
t=1

∂lt (θ0)
∂θ

+
(

(N)−1
N∑

t=1

∂2lt (θ∗)
∂θ∂θ′

)
(N)

1
2
(

θ̂N − θ0

)
where θ∗ is such that ∥θ∗ − θ∥ ≤

∥∥∥θ̂N − θ
∥∥∥. The gradient vector

∂ log h2
st+ϑ (θ)

∂θ
and Hessian matrix

∂2 log h2
st+ϑ (θ)

∂θ∂θ′ are given by

∂ log h2
st+ϑ (θ)

∂θ
= ∂ω (ϑ)

∂θ
+ ∂α (ϑ)

∂θ
log ϵ2

st+ϑ−1 + ∂β (ϑ)
∂θ

log h2
st+ϑ−1 (θ) + β(ϑ)

∂ log h2
st+ϑ−1 (θ)
∂θ

= e (ϑ) + e (ϑ + s) log ϵ2
st+ϑ−1 + e (ϑ + 2s) log h2

st+ϑ−1 (θ) + β(ϑ)
∂ log h2

st+ϑ−1 (θ)
∂θ

∂2 log h2
st+ϑ (θ)

∂θ∂θ′ =
(

e (ϑ + 2s)
∂ log h2

st+ϑ−1 (θ)
∂θ′

)′

+ e (ϑ + 2s)
∂ log h2

st+ϑ−1 (θ)
∂θ′ + β(ϑ)

∂2 log h2
st+ϑ−1 (θ)

∂θ∂θ′


(3.4)

where e (j) denotes a 3s × 1 unit vector whose entries are all zeros except the one in the j row. Again,
we will split the proof of Theorem 1.4.2 into several intermediate results gathered in following lemma.
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Lemma 1.4.1. Under the conditions A1.−A7., we have

1. (N)− 1
2

N∑
t=1

∂lt (θ0)
∂θ

⇝ N (O, (κ − 1) J) as N → ∞,

2.

∥∥∥∥∥∥
N∑

t=1

∂2lt

(
θ̃N

)
∂θ∂θ′ − J

∥∥∥∥∥∥ converges a.s. to 0 for any consistency estimate θ̃N of θ0 and J is invertible,

3. (N)− 1
2

∥∥∥∥∥ N∑
t=1

∂lt (θ0)
∂θ

−
N∑

t=1

∂l̃t (θ0)
∂θ

∥∥∥∥∥ converges a.s. to 0 as N → ∞.

Proof. Let us prove the point 1. Indeed, we have

∂Lns(θ)
∂θ

= − (ns)−1
n∑

k=1

{
s∑

ϑ=1

(
1 −

ϵ2
st+ϑ

h2
st+ϑ(θ)

)
∂ log h2

st+ϑ(θ)
∂θ

}
= (ns)−1

n∑
k=1

{
s∑

ϑ=1

(
1 − η2

st+ϑ

) ∂ log h2
st+ϑ(θ)

∂θ

}
.

Since log h2
t is independent of η2

t with E
{

η2
t

}
= 1, the central limit theorem for the martingale difference∑s

ϑ=1
(
1 − η2

st+ϑ

) ∂ log h2
st+ϑ(θ)

∂θ
applies whenever (1 − k4)

∑s
ϑ=1 E

{
∂ log h2

st+ϑ(θ)
∂θ

∂ log h2
st+ϑ(θ)

∂θ′

}
ex-

ists. For any θ ∈
0
Θ, the random vector

∂ log h2
st+ϑ (θ)

∂θ
is strictly periodically stationary solution of

the first equation in (3.4), the Assumption A2. entails that
∂ log h2

st+ϑ (θ)
∂θ

is a linear combination of

log ϵ2
st+ϑ−1 and log h2

st+ϑ−1(θ). Proposition 1.3.3 and 1.3.4 ensures that, for any m > 0 there exists a

neighborhood V of θ0 such that E

{
sup

ϑ

∣∣log h2
st+ϑ(θ)

∣∣m} < +∞ for all ϑ ∈ {1, ..., s} and log ε2
st+ϑ admit

moment of any order. Thus, for any m > 0 there exists V such that E

{
sup

V

∥∥∥∥∂ log h2
st+ϑ(θ)

∂θ

∥∥∥∥m
}

< +∞.

We turn to prove the point 2. Then, we have

∂2lst+ϑ (θ)
∂θ∂θ′ =

(
1 −

η2
st+ϑh2

st+ϑ (θ0)
h2

st+ϑ (θ)

)
∂2 log h2

st+ϑ(θ)
∂θ∂θ′ +

η2
st+ϑh2

st+ϑ (θ0)
h2

st+ϑ (θ)
∂ log h2

st+ϑ(θ)
∂θ

∂ log h2
st+ϑ(θ)

∂θ′ . (3.5)

From (3.4) and by Assumption A2., we get

∂2 log h2
st+ϑ (θ)

∂θ∂θ′

=
∞∑

k=0

{∏k−1

i=0
β (ϑ − i)

}((
e (ϑ − k + 2s)

∂ log h2
st+ϑ−k−1 (θ)

∂θ′

)′

+ e (ϑ − k + 2s)
∂ log h2

st+ϑ−k−1 (θ)
∂θ′

)
.

Since, we can always choose a neighborhood V such that sup
ϑ

∥∥∥∥∂ log h2
st+ϑ−k−1 (θ)

∂θ′

∥∥∥∥ ∈ Lm. This entails

that
∂2 log h2

st+ϑ (θ)
∂θ∂θ′ is integrable. Moreover, Cauchy-Schwarz inequality applied on the right-hand side

of (3.5) yield the integrability of sup
ϑ

∂2lst+ϑ (θ)
∂θ∂θ′ Hence, sup

ϑ

∥∥∥∥∥∥
∂2Lt

(
θ̂N

)
∂θ∂θ′ − E

{
∂2lt (θ)
∂θ∂θ′

}∥∥∥∥∥∥ → 0 a.s. The

invertibility of J follows by the same arguments as in Francq and Zakoian [22]. Finally, we prove point
3 from (3.4). We have

∂ log h2
st+ϑ (θ)

∂θ
−

∂ log h̃2
st+ϑ (θ)

∂θ
= e (ϑ + 2s)

(
log h2

st+ϑ (θ) − log h̃2
st+ϑ (θ)

)
+ β (ϑ)

(
∂ log h2

st+ϑ (θ)
∂θ

−
∂ log h̃2

st+ϑ (θ)
∂θ

)
.

So, it can be shown that under A2., there exists ρ ∈ ]0, 1[ and K > 0 such that∥∥∥∥∥∂ log h2
st+ϑ (θ)

∂θ
−

∂ log h̃2
st+ϑ (θ)

∂θ

∥∥∥∥∥ ≤ Kρt, for all ϑ ∈ {1, ..., s} .

Point 3 easily follows.
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1.5 Monte Carlo experiment
In this section, we describe the performance of the finite sample properties of the QMLE of the un-

known vector θ of parameters involved in P −logGARCHs(1, 1) model based on Monte Carlo experiments.
To this end, we simulate T = 500 replications for different moderate sample sizes n ∈ {100, 200, 400}
via some innovations processes. For instance, standardized innovations N (0, 1), Student t(5) and GED
with shape parameter τ = 1 (Laplace distribution). These innovations are nondegenerated and satisfies
of course the assumption A4.

Remark 1.5.1. Let introduce the probability distribution function

F (x) = dFµ,σ,τ (x) =
exp

{
− 1

2
∣∣x−µ

σ

∣∣1/τ
}

2τ+1σΓ (τ + 1) dx,

where µ, σ and τ are respectively the location, scale and shape parameters belonging to R, ]0, ∞[ and in
]0, ∞[.

The GED is a symmetrical unimodal member of the exponential family with the probability distribution
function F (x). It incorporates a variety of distributions, for instance, Normal Distribution for τ = 0.5,
double exponential or Laplace distribution for τ = 1. The kurtosis of such distribution is

K = Γ (τ) Γ (5τ)
{Γ (3τ)}2 .

Therefore, as τ increased the density gets flatter, while when τ → 0 the distribution inclines towards the
uniform. The standardized version is obtained by setting

µ = 0 and σ =
√

2−2τ Γ (τ) /Γ (3τ).

(See Marin [37] and Nelson [38]).

Additionally, we deduce the following Remark.

Remark 1.5.2. It is worth noting that all odd moments of GED clearly vanish by symmetry. Meanwhile,
the even moments µk (τ) are given by

µk (τ) = 2kτ σk Γ (τ (k + 1))
Γ (τ) .

Furthermore, since |Γ (x)| is bounded when x ∈ [1, 2] , then µk (τ) is bounded if the shape parameter
τ ∈

[
1

k+1 , 2
k+1

]
.

We conclude this section with the following.

Remark 1.5.3. The t(v) is a unimodal and symmetric distribution with density

fµ,β,v (x) =
Γ( v+1

2 )

Γ
(v

2

)√
vβπ

(1 + (x − α)2

βv
)
−

(
v + 1

2

)
,

where α, β and v are the location, scale and shape parameters. Hence for standardization it is required
that mean(t(v)) = α = 0, Var

(
t(v)
)

= βv

v − 2 = 1 thus β = v − 2
v

, v > 2.

The parameter vector θ adheres to strict periodic stationarity, detailed at the end of each table.
Empirical results, produced using MATLAB scripts, provide insights into model performance. The tables
present the average parameter estimates across N simulations, with columns displaying the results. To
evaluate the Quasi Maximum Likelihood Estimator (QMLE) performance, we furnish the root mean
square error (RMSE) for each θ̂n(i), where i = 1, ..., s (enclosed in brackets). Moreover, we incorporate
the asymptotic distributions of θ̂n(ϑ), where ϑ = 1, ..., s, across the N simulations, accompanied by
boxplot summaries, aligned with the corresponding table
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1.5. Monte Carlo experiment 1

1.5.1 Standard log GARCH(1, 1) model
Our initial practical illustration, aiming to elucidate our theoretical analysis, involves the standard
log GARCH(1, 1) model. The parameter vector for this model is denoted as θ = (ω, α, β)′, chosen
to subject the condition γ = log |α + β| < 0. The outcomes of our simulations, conducted under various
innovations in accordance with two distinct Models, are detailed in Table 1.1.
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Table 1.1: Results of estimating the log GARCH(1, 1) according to different innovations

The asymptotic distribution of the sequences (
√

n(θ̂n(i) −θ(i)))n≥1), i = 1, ..., 3 followed by their
boxplot summary associated to different innovations of Model(1) of Table 1.1 are shown in Figure 1.1.
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Figure 1.1: Top panels: the asymptotic distribution of
√

n(θ̂n(i) −θ(i)) associated to Normal (red curve),
GED (bleu curve) and Student (blackline curve). Bottom panels: Boxplot summary of θ̂n(i), i = 1, ..., 3
(1 for Normal, 2 for GED and 3 for Student) according to Model(1) of Table 1.1.
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1.5. Monte Carlo experiment 1

Now, a few comments can be made: By inspecting the results presented in table 1.1 for model(1)
and model(2), it becomes apparent that the performance of the Quasi Maximum Likelihood Estimator
(QML) is significantly less robust under t(5). and GED innovations compared to N (0, 1). Moreover, a
general trend emerges where the root mean square error (RMSE) associated with diverse innovations
tends to diminish with increasing sample sizes. This trend is visually reinforced by the asymptotic distri-
bution plots in figure 1.1, revealing fatter tails (positive kurtosis or leptokurtic) for these distributions.
Additionally, figure 1.1, depicting boxplots of the QMLE outcomes under various innovations, under-
scores noteworthy dissimilarities in elementary statistics, with N (0, 1) exhibiting fewer outliers compared
to other innovations.

1.5.2 Periodic log GARCHs(1, 1) model
The second example of our Monte Carlo experiment is devoted to estimate the periodic P−log GARCHs(1, 1)
model with s = 2 .i.e., ϵt = ηtht and

log h2
2t+ϑ (ϑ) = ω (ϑ) + α (ϑ) log ϵ2

2t+ϑ (ϑ − 1) + β (ϑ) log h2
2t+ϑ (ϑ − 1) .

This situation is raised in modelling some daily returns when we suspect the so-called ”Monday effect”
(opening price) of day-of-the week seasonality (see for instance Franses and Raap (2000)). The vec-
tor of parameters to be estimated is thus θ = (ω′, α′, β′)′ where ω′ = (ω(1), ω(2)), α′ = (α(1), α(2))
and β′ = (β(1), β(2)), are chosen to ensure the the strict periodic stationarity condition of our model. To
this end, we suggest that log |α(1) + β(1)| + log |α(2) + β(2)| < 0. So, the results of simulation according
to two models are given in Table 1.2 below.
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Table 1.2: Results of estimating the P − log GARCH2(1, 1) according to different innovations
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1.5. Monte Carlo experiment 1

The asymptotic distribution of the sequences (
√

n(θ̂n(i) −θ(i)))n≥1), i = 1, ..., 6 followed by their
boxplot summary associated to different innovations of Model(1) of Table 1.2 are shown in Figure 1.2.
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Figure 1.2: Top panels: the asymptotic distribution of
√

n(θ̂n(i) −θ(i)) associated to Normal (red curve),
GED (bleu curve) and Student (blackline curve). Bottom panels: Boxplot summary of θ̂n(i), i = 1, ..., 6
(1 for Normal, 2 for GED and 3 for Student) according to Model(1) of Table 1.2.
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1.6. Case study 1

1.5.3 Comments
A concise analysis of the Monte Carlo experiment results reveals the following:

1. Table 1.2 showcase parameter estimates for the P − log GARCHs(1, 1) model with s = 2, fitted
using Model 1 and Model 2. The estimations, based on 500 independent simulations with various
innovations, indicate that the performance of the Quasi Maximum Likelihood Estimator (QML)
associated with N (0, 1) and GED innovations is relatively subpar compared to t(5) innovations. This
trend persists even when varying the degree of freedom v for t(v) (results not presented here). In
general, it is evident that the parameters for these models are well-estimated, showing no significant
deviations across three types of error innovations: N (0, 1), t(5), and GED. However, some estimates
have moderately high standard deviations, attributed to the relatively small sample size n.

2. Regarding the asymptotic kernel distribution of
√

n(θ̂n(i) − θ(i)) for i = 1, . . . , 6, as illustrated in
figure 1.2, it is apparent that the P − log GARCH2(1, 1) model generates kernels with significantly
flatter

3. Notably, assumptions A1 to A5 crucial for ensuring consistency are clearly satisfied. Additionally,
the conditions A6 and A7, necessary for establishing asymptotic normality, are also met. More-
over, upon examining the boxplots presented in figure 1.2, it becomes evident that the elementary
statistics of the Quasi Maximum Likelihood Estimator (QMLE) exhibit significant differences un-
der various innovations. Specifically, the t(5) distribution displays fewer outliers compared to the
others, as expected due to the fatter tails of the t(5) distribution.

1.6 Case study
In recent decades, many researchers addressed the question of day-of-the-week seasonality in returns and
volatility. In particular, it was observed that in many stock markets, the Monday returns are often lower
than those of other days, this is referred to as the Monday effect (see for instance Franses and Paap [20].
In this section, we consider the series of the daily exchange rates of the Algerian Dinar with respect to
European currency (Euro) denoted by y

(e)
t and the American Dollar denoted by y

(d)
t .

1.6.1 Data description

We consider returns series r
(e)
t = 100×(log

(
y

(e)
t

)
−log

(
y

(e)
t−1

)
) and r

(d)
t = 100×(log

(
y

(d)
t

)
−log

(
y

(d)
t−1

)
)

of daily exchange rates of Algerian dinar with respect to the Euro and the Dollar. The observation cover
the period from January 3, 2000 to September 29, 2011. Since there are some weeks comprise less than
five observations (due to legal holidays), we remove the entire weeks with less than five data available
rather than estimating the “pseudo-missing” observations by an ad-hoc method. Thus, the final length
of transformed data is 3055 observations uniformly distributed on 611 weeks. The elementary statistics
in data are summarized in Table 1.3 below

Series mean median mode skewness kurtosis JBtes LB(Q(12),Q(24))
y

(e)
t 88.61181 91.09945 69.7347 -0.518144 2.132958 232.4666 104 × (3.6065, 7.0724)

y
(d)
t 73.45113 73.12610 79.9396 -0.600469 3.764200 258.0098 104 × (3.5888, 7.0054)

Table 1.3: Summary Statistics for daily spot prices y
(e)
t and y

(d)
t .

In Table 1.3 the difference between means, medians and modes implies that the series are not sym-
metric. The high kurtosis computed in these series, being leptokurtic, implies that the distribution of
the series have fatter tails, and a more sensitive peak around the mean, when compared to the normal
distribution. JBtes (Jarque-Bera test) and LB(Q(12), Q(24)) for normality and autocorrelation tests
show that both returns are neither normally distributed nor serially correlated for the instance 12 and
24 lags. Moreover, the results shown in Table 1.4 examine the effect of heteroscedasticity in the series(

r
(e)
t

)
and

(
r

(d)
t

)
.
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r
(e)
t r

(d)
t

lags 10 15 20 25 10 15 20 25
ARCH (text) statistics 152.3993 200.3745 244.6458 266.6962 245.6729 249.3297 344.0355 346.1818
Critical value 18.3070 24.9958 31.4104 37.6525 18.3070 24.9958 31.4104 37.6525

P − value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 1.4: ARCH effect test of daily returns
(

r
(e)
t

)
and

(
r

(d)
t

)
.

The results of Table 1.4 can be summarized as: since the p-value is less than 0.05, the ARCH statistics
is greater than the critical value at 95% confidence level. These imply that there is a strong evidence
for rejecting the null hypothesis of no ARCH effect. The rejection indicates the existence of ARCH
effects in the returns series and therefore the variance of such a returns is not constant. The test was
implemented in MATLAB with “archtest” function for the returns. Figure 1.3 displays the plots of the
series (yt) and its returns (rt) corresponding to foreign exchange of EUR/DZD (series superscripted by
(e)) and those corresponding to USD/DZD (series superscripted by (d)).
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Figure 1.3: Left panel displays the series yt and rt corresponding to EUR/DZD. Right panel display
similar series correspont to USD/DZD.

Figure 1.4 displays the sample autocorrelations functions (ACF ) of the series (rt)t≥1,
(
r2

t

)
t≥1 and

(|rt|)t≥1 computed at 30 lags.
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Figure 1.4: Top panel: Sample autocorrelations of returns associated to Euro superscripted by (e) .
Bottom panel: Sample autocorrelations of returns associated to dollar superscripted by (d) .

From Figure 1.4, we can see that the log returns (rt) show no evidence of serial correlation, but
the squared and absolute returns are positively autocorrelated. Also, the decay rates of the sample
autocorrelations of

(
r2

t

)
and (|rt|) appear to be violated compared with the correlation associated to an

ARMA process suggesting possibly a non linear behavior for modelling purpose.

1.6.2 Modeling
The P − log GARCHs (1, 1) and its competitor P − EGARCHs (1, 1) model are used to depict more

stylized facts for some financial series. These models are particular models from: ϵt = ηtht and
log h2

t = ω(t) + µ (t) gt (ηt−1) + β(t) log h2
t−1, t ∈ Z, where gt (ηt) is well defined function of ηt and

some periodic parameters ω(t), µ(t), α(t), γ(t) and β(t). For example setting gt (ηt−1) = α(t)ηt−1 +
γ(t) (|ηt−1| − E {|ηt−1|}) yield an extension of EGARCH (1, 1) model proposed by Nelson [38] to the
periodic one. On the other hand, setting gt (ηt−1) = α(t) log η2

t−1 = α(t)
(
log ϵ2

t−1 − log h2
t−1
)

we obtain
the periodic log GARCHs (1, 1). For ease of exposition, we suppose that µ (t) = 1 for all t ∈ Z, i.e.,

ϵt = ηtht and log h2
t = ω(t) + α(t)ηt−1 + γ(t) (|ηt−1| − E {|ηt−1|}) + β(t) log h2

t−1, t ∈ Z

where ω(t), α(t), γ(t) and β(t) are defined in a similar way as in periodic log GARCHs (1, 1). Additionally,
for any ϑ = 1, ..., s, α(ϑ) is the leverage effect parameter whenever it is negative and

s∏
ϑ=1

|β (ϑ)| < 1 to

ensure the strict periodic stationarity condition. We propose a Sunday and Monday effect on price of the
Dinar against the Euro and Dollar, i.e. when the parameters ω(t), α(t), γ(t) and β(t) are defined as in
Model(2). The tables below establish the estimation of P − log GARCH2 (1, 1) and P −EGARCH2 (1, 1)
models fitted on

(
r

(e)
t

)
and

(
r

(d)
t

)
. The column P − value gives the p − values of the Wald test for the

nullity of the components of the vector θ.
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The first results of parameters estimation and the estimated standard deviation (results displayed
into brackets) when the innovation is N (0, 1) are presented in Table 1.5

N (0, 1)
P −log GARCH2(1,1)︷ ︸︸ ︷

ω α β P − value

P −EGARCH2(1,1)︷ ︸︸ ︷
ω α γ β P − value

r
(e)
t

0.0942
(0.0234)
0.0174

(0.0236)

0.0152
(0.0036)
0.0176

(0.0052)

1.0377
(0.0828)
0.9088

(0.0371)

0.0000

0.0928
(0.0911)
−0.2664
(0.0495)

−0.0263
(0.0141)
0.0191

(0.0095)

0.1399
(0.0218)
0.1563

(0.0210)

1.0702
(0.0498)
0.9407

(0.0290)

0.0000

r
(d)
t

0.0729
(0.0317)
0.0371

(0.0251)

0.0390
(0.0034)
0.0048

(0.0053)

0.7832
(0.0250)
1.0566

(0.0262)

0.0000

−0.0660
(0.0698)
0.0649

(0.0638)

0.0061
(0.0154)
0.0307

(0.0142)

0.2177
(0.0233)
0.2962

(0.0183)

0.7509
(0.0171)
1.1500

(0.0174)

0.0000

Table 1.5: Parameters estimation of P − log GARCH2 (1, 1) and P − EGARCH2 (1, 1) models fit to(
r

(e)
t

)
and

(
r

(d)
t

)
according to N (0, 1) innovation.

The plots the squared returns and the estimated volatilities associated to N (0, 1) innovation are
showed in Figure 1.5 below.
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Figure 1.5: Dark blue: squared returns, light red: volatilities estimates according to P −
log GARCH2 (1, 1) (left) and to P − EGARCH2 (1, 1) (right) models with N (0, 1) innovation.
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The second results of parameters estimation of the series
(

r
(e)
t

)
and

(
r

(d)
t

)
according to P −

log GARCH2 (1, 1) and P − EGARCH2 (1, 1) when the innovation is t(5) are presented in 1.6.

t(5)

P −log GARCH2(1,1)︷ ︸︸ ︷
ω α β P − value

P −EGARCH2(1,1)︷ ︸︸ ︷
ω α γ β P − value

r
(e)
t

0.0920
(0.0881)
0.0065

(0.0590)

0.0309
(0.0086)
0.0342

(0.0081)

1.0107
(0.0959
0.9265

(0.0553)

0.0000

0.0146
(0.0793)
−0.0631
(0.0538)

−0.0044
(0.0335)
0.0267

(0.0235)

0.1960
(0.0543)
0.2034

(0.0469)

1.0126
(0.0806
0.9826

(0.0522)

0.0000

r
(d)
t

0.0772
(0.1118)
0.1087

(0.0786)

0.1247
(0.0147)
0.0691

(0.0146)

0.8637
(0.0393)
0.9126

(0.0287)

0.0000

−0.0849
(0.0907)
−0.0225
(0.0705)

0.0231
(0.0438)
0.0831

(0.0315)

0.6098
(0.0712)
0.3734

(0.0495)

0.9109
(0.0311)
1.0462

(0.0240)

0.0000

Table 1.6: Parameters estimation of P − log GARCH2 (1, 1) and P − EGARCH2 (1, 1) models fitted on(
r

(e)
t

)
and

(
r

(d)
t

)
according to t(5) innovation.

The plot the squared returns and the estimated conditional variance (regarded as an estimate of({
r

(∗)
t

}2
)

) associated to t(5) innovation are shown in 1.6 below.
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Figure 1.6: Dark blue: squared returns, light red: volatilities estimates according to P −
log GARCH2 (1, 1) (left) and to P − EGARCH2 (1, 1) (right) models with student innovation.
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1.6. Case study 1

GED

P −log GARCH2(1,1)︷ ︸︸ ︷
ω α β P − value

P −EGARCH2(1,1)︷ ︸︸ ︷
ω α γ β P − value

r
(e)
t

0.0877
(0.1407)
−0.0514
(0.0846)

0.0298
(0.0078)
0.0363

(0.0061)

0.9957
(0.0830)
0.9341

(0.0533)

0.0000

0.0068
(0.0815)
−0.1574
(0.0599)

−0.0056
(0.0537)
0.0329

(0.0378)

0.2523
(0.0872)
0.2655

(0.0767)

1.0119
(0.0988)
0.9821

(0.0636)

0.0000

r
(d)
t

0.0617
(0.1126)
0.0418

(0.0780)

0.1105
(0.0119)
0.0533

(0.0117)

0.8479
(0.0314)
0.9470

(0.0243)

0.0000

−0.0620
(0.0989)
−0.0269
(0.0799)

0.0428
(0.0660)
0.0992

(0.0502)

0.7254
(0.1056)
0.4716

(0.0742)

0.8741
(0.0350)
1.0696

(0.0290)

0.0000

Table 1.7: Parameters estimation of P − log GARCH2 (1, 1) and P − EGARCH2 (1, 1) models fit to(
r

(e)
t

)
and

(
r

(d)
t

)
according to GED innovation.

The third results of parameters estimation of the series
(

r
(e)
t

)
and

(
r

(d)
t

)
according to P−log GARCH2 (1, 1)

and P − EGARCH2 (1, 1) models when the innovation is GED are presented in the 1.7.

The plots the squared returns and the estimated volatilities (regarded as an estimate of
({

r
(∗)
t

}2
)

)
associated to GED innovation are showed in 1.7 below.
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Figure 1.7: Dark blue: squared returns, light red: volatilities estimates according to P −
log GARCH2 (1, 1) (left) and to P − EGARCH2 (1, 1) (right) models with GED innovation.
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The top-Lyapunov exponent associated to estimated volatilities r̂
(e)
t and r̂

(d)
t noted γ

(5)
e and γ

(5)
d re-

spectively according to P −log GARCH2 (1, 1) and P −EGARCH2 (1, 1) models with different innovations
are summarized in Table 1.8 below.

Series
P −log GARCH2(1,1)︷ ︸︸ ︷

N (0, 1) t(5) GED

P −EGARCH2(1,1)︷ ︸︸ ︷
N (0, 1) t(5) GED

− γ
(5)
e 0.1266 0.1808 0.3241 0.0478 0.0275 0.0306

− γ
(5)
d 0.1226 0.2011 0.1188 0.1536 0.0511 0.0673

Table 1.8: The top-Lyapunov exponent associated to r̂
(e)
t and r̂

(d)
t according to

The above table shows clearly that the estimated volatilities r̂
(e)
t and r̂

(d)
t are strictly periodically

stationary. However, the zone of strictly periodically stationary for P − log GARCH2 (1, 1) model fitted
to
(

r̂
(e)
t

)
is less restrictive when the innovation is GED, contrary to that fitted on

(
r̂

(d)
t

)
when the

zone becomes more interesting. On the other hand, the zone of strictly periodically stationary for P −
EGARCH2 (1, 1) model fitted to r̂

(e)
t and/or r̂

(d)
t is more large when the innovation is t(5).

1.6.3 Comments
Tables 1.5, 1.6 and 1.7 display the estimation of P −log GARCH2 (1, 1) and P −EGARCH2 (1, 1) models
fitted to daily returns

(
r

(e)
t

)
and

(
r

(d)
t

)
according to N (0, 1), t(5) and GED innovations. For all models,

the persistence parameters β (ϑ), ϑ = 1, 2 are very high in contrary to the intercept parameters ω (ϑ),
ϑ = 1, 2 which are closed to zeros. Moreover, the null hypothesis H0 :θ=O is statistically significant
rejected at the 99% confidence level. This significance confirms that there is evidence of the existence
of an effect ARCH. Additionally, from Table 1.8, the estimated models satisfy also the assumptions
A1.−A7. used to show, the consistency and asymptotic normality. Furthermore, the negativity of
parameters α (ϑ) , ϑ = 1, 2 in P − EGARCH2(1, 1) implies the presence of leverage effect. So, according
to this criterion the P − EGARCH2(1, 1) is preferred for the

(
y

(e)
t

)
t

series. Figure 1.5, 1.6 and 1.7

represent the plots of the volatilities (plots in red) estimates of the series of returns
(

r
(e)
t

)
and

(
r

(d)
t

)
according to P − log GARCH2 (1, 1) (left panels) and P − EGARCH2 (1, 1) (right panels) models with
different innovations and compared with the appropriate squared returns (plots in blue). We can see
from these plots that the estimated volatilities according to different innovations move together. It also
demonstrates that a large piece of returns (positive or negative) leads to a high volatility and a small
piece of returns leads to a low volatility, indicating volatility clustering. In particular, the period between
2000 and 2002 is characterized by low volatility levels compared to the period between 2009 and 2010
for both series. In addition, a high volatility cluster beginning in 2005 is observed and is mainly due to
the global financial crisis. After this period of uncertainty, a cluster of low volatility is observed during
3 years. Other high volatility cluster is detected and could be related to the devaluation of the Dinar.
Finally, the conditional volatility seems to be more stable after 2010. Our empirical results demonstrate
that P − log GARCH2 (1, 1) is able to capture very large volatilities of the series

(
r

(e)
t

)
observed for

instance from 2009 to 2010 for all innovations unless maybe for the GED innovation. On the other hand,
the P −EGARCH2 (1, 1) model fitted to

(
r

(d)
t

)
and/or

(
r

(e)
t

)
do not capture exactly the same empirical

properties.
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Chapter 2
Quasi Maximum Likelihood

Estimation for Periodic Absolute
Value GARCH Models
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This chapter was published by Slimani and all [43] in the journal Random Operators and Stochastic
Equations.
The primary objectives of this chapter encompass the examination of the probabilistic characteristics of
the PAV GARCH model through its vector representation. We delve into the exploration of the necessary
and sufficient conditions that ensure strict stationarity in a periodic sense for the PAV GARCH model.
The second aim of this article is to apply the standard quasi-maximum likelihood (QML) method for
parameter estimation within the model. Consequently, we establish conditions that guarantee both strong
consistency and asymptotic normality for the QML estimator of the model’s parameters. Subsequently,
we provide a series of numerical experiments to illustrate the practical relevance of our theoretical findings.
Finally, we apply our model to the analysis of two foreign exchange rates: the Algerian Dinar against
the European currency Euro (Euro/Dinar) and the American currency Dollar (Dollar/Dinar). Our
empirical work demonstrates that our approach not only outperforms but also fits the data effectively.
Before we proceed, we will introduce some notations and definitions.
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2.1. Periodic AV GARCH model and state-space representation 2

2.1 Periodic AV GARCH model and state-space representation
Definition 2.1.1. Let (Ω, F , P ) be a probability space. The process (εn)n∈Z is called a periodic AV GARCHs(p, q)
process with period s > 0 abbreviated by (PAV GARCHs(p, q)) if

εn = hnen and hn = α0 (sn) +
q∑

i=1
αi (sn) |εn−i| +

p∑
j=1

βj (sn) hn−j , (2.1)

where |εn| = ε+
n + ε−

n with ε+
n = max (εn, 0) , ε−

n = min (εn, 0) .

Let introduce ∆ (k) as:

∆ (k) : = {sn + k, n ∈ Z, s > 0} , k ∈ Z,

with that refers to the state or “season” of the periodic cycle at time n. We put the set S = {1, ..., s} and
we define sn as:

sn : =
s∑

k=1
kI∆(k) (n) .

In equation (2.1), (sn)n represents a periodic sequence consisting of positive integers. This sequence op-
erates within a finite state space. The innovation sequence (en)n∈Z is assumed to adhere to the following
condition.

Assumption 2.1.1. Let (en)n∈Z be a sequence of independent and identically distributed (i.i.d.) random
variables defined in probability space (Ω, F , P ). These random variables possess zero mean and unit vari-
ance. Additionally, it’s essential to note that ek is independent of (εn) for all instances where k is greater
than n.

Now, by transforming n = st + υ and by setting εst+υ = εt (υ) , hst+υ = ht (υ) and est+υ = est+υ (υ) ,
the model (2.1) is rewritten in the following periodic version:

εt (υ) = ht (υ) et (υ) and ht (υ) = α0 (υ) +
q∑

i=1
αi (υ) |εt (υ − i)| +

p∑
j=1

βj (υ) ht (υ − j) , (2.2)

where the coefficients α0 (υ) , αi (υ) and βj (υ) with i ∈ {1, ..., q} and j ∈ {1, ..., p} are positive with
α0 (υ) > 0 for any υ ∈ S.

In the equation (2.2), the notation εt (υ) (and similarly et (υ) and ht (υ)) refers to εt (or et and ht

during the υ-th "season" within the cycle t). To simplify, εt (υ) = εt−1 (υ + s) , ht (υ) = ht−1 (υ + s) and
et (υ) = et−1 (υ + s) , if υ < 0.

The non-periodic notations υt, et and ht can be used interchangeably with their periodic counterparts
εt (υ) , et (υ) and ht (υ) whenever there’s no specific emphasis on seasonality required.

Remark 2.1.1. Beside the representation (2.2), the model PAV GARCHs(1.1) can be rewritten as

εt (υ) = ht (υ) et (υ) and ht (υ) = α0 (υ) + g(υ) (et (υ − 1)) ht (υ − 1) , (2.3)

where g(υ) (et (υ − 1)) = α1 (υ) |et (υ − 1)| + β1 (υ) and the coefficients α0 (υ) , α1 (υ) and β1 (υ) are
positive with α0 (υ) > 0 for any υ ∈ S.

2.1.1 State-space representation
In this section, we delve into a pivotal aspect of this chapter. Our primary objective here is to

explore and determine a causal solution to address the problem we have been examining. In essence, we
are investigating a resolution that not only provides answers but also pinpoints the causes and factors
contributing to our problem. This process involves a comprehensive analysis to uncover the underlying
causes and their interrelationships, enabling us to identify effective solutions.
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We start by defining for each υ ∈ S the r = (q + p)−random vectors as

et (υ) :=
(

α0 (υ) |et (υ)| , O
′

(q−1), α0 (υ) , O′
(p−1)

)′
, εt (υ) := (|εt (υ)| , ..., |εt (υ − q + 1)| , ht (υ) , ..., ht (υ − p + 1))′

,

q−vector as:
α1:q (υ) := (α1 (υ) , ..., αq (υ))′

,

and p−vector by:
β1:p (υ) := (β1 (υ) , ..., βp (υ))′

and r × r−random matrix in the following way

Mυ(et(υ)) =


α1:q−1 (υ) |et (υ)| αq (υ) |et (υ)| β1:p−1 (υ) |et (υ)| βp (υ) |et (υ)|

I((q−1)×(q−1)) O((q−1)×1) O(q−1)×p)
α1:q−1 (υ) αq (υ) β1:p−1 (υ) βp (υ)
O(p−1)×q I((p−1)×(p−1)) O(p−1)×1


r×r

. (2.4)

The equation (2.2) can be reformulated and expressed in a state-space form. This state-space represen-
tation is given as:

εt (υ) = Mυ (et (υ)) εt (υ − 1) + et (υ) . (2.5)

The equation (2.5) shares the same defining equation as independent periodic distribution (i.p.d) random
coefficient autoregressive models recently introduced by Aknouche and Guerbyenne [2]. In this section,
our main focus lies in seeking a causal solution for the equation (2.5). In other words, we aim to find
the solution (εt)t for model (2.1), where εt is a measurable function of et−i for all i ≥ 0. To achieve this,
we employ an iterative approach by applying equation (2.5) a total of s times, resulting in the following
transformation:

εt (s) =
{

s−1∏
υ=0

Ms−υ (et (s − υ))
}

εt−1 (s) +
s∑

k=1

{
s−k−1∏

υ=0
Ms−υ (et (s − υ))

}
et (k) .

We put ε (t) = εt (s), therefore the last equation can be rewritten as

ε (t) = H (et) ε (t − 1) + η (et) , (2.6)

where
et = (et (s) , et (s − 1) , ..., et (1))′

,

and

H (et) =
{

s−1∏
υ=0

Ms−υ (et (s − υ))
}

, η (et) =
s∑

k=1

{
s−k−1∏

υ=0
Ms−υ (et (s − υ))

}
et (k) .

However, equations akin to (2.6) have been thoroughly examined in the existing literature, as exemplified
by Bougerol and Picard [11, 12], along with the extensive references cited therein.

2.1.2 Strict periodic stationarity
In this section, we establish the necessary conditions to demonstrate the strict stationarity of the

model presented by the equation (2.6). The existence of a causal solution for the equation (2.1) is
essentially equivalent to the existence of a causal solution for (2.6). This equivalence is quite apparent:
any causal solution for the (2.1) leads. Through the transformation provided by (2.5) to a causal solution
for equation (2.6) and vice versa. In other words, each component of a stationary solution of the dual
process (( ε′

t(1), . . . , ε′
t(s))t∈Z (as detailed by Gladyshev [28]) is one of the solutions to the equation (2.6)).

In the following section, we explore the necessary and sufficient conditions required to ensure the strict
stationarity of the models presented in the equation (2.6). The corresponding solution of the equation
(2.5), known as strictly periodic stationary (SPS), is the primary focus of our investigation. Our key tool
in studying the strict stationarity of the equation (2.6) lies in the top Lyapunov exponent, denoted as
γ

(s)
L (H), associated with the sequence of random matrices (Ht)t defined within the equation (2.6) and

expressed as:

γ
(s)
L (H) := inf

t >0

1
t
E

log

∥∥∥∥∥∥
t−1∏
j=0

H
(
et−j

)∥∥∥∥∥∥

 a.s.= lim

t→∞

1
t

log

∥∥∥∥∥∥
t−1∏
j=0

H
(
et−j

)∥∥∥∥∥∥
 . (2.7)
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The final portion of the above equation can be readily demonstrated through the application of Kingman’s
subadditive ergodic theorem ( see Kingnaan [34]). Additionally, the existence of γ

(s)
L (H) is ensured by

the fact that
Elog+ ∥H(et)∥ ≤ E∥H(et)∥ < +∞,

where log+(x) = max(log x, 0), for any x > 0.

2.1.3 Example
For the PAV GARCHs(1, 1) model, after some tedious algebra we find that the necessary and sufficient

condition ensuring the existence of SPS solution is that
s∑

ϑ=1
E {log {a1 (υ) |e0| + β1 (υ)}} < 0

is strictly negative. It is worth noting that the existence of regimes which satisfy

E {log {a1 (υ) |e0| + β1 (υ)}} > 0

does not preclude strict periodic stationarity.

Theorem 2.1.1. The solution of (2.6) is represented by the series:

ε (t) =
∑
k≥1


k−1∏
j=0

H
(
et−j−1

) η
(
et−k−1

)
+ η

(
et−1

)
. (2.8)

This solution exists if and only if the top Lyapunov exponent γ
(s)
L (H) is strictly negative, the series

(2.8) converges absolutely almost surely, and it constitutes the unique ergodic solution process for (2.6).
Consequently, the equation (2.5) becomes a strictly periodic stationary (SPS) process and possesses a
causal solution in the form of the series:

εt (υ) =
∑
k≥0


k−1∏
j=0

Mυ−i (et (υ − i))

 et (υ − k) . (2.9)

This series also converges absolutely almost surely, and the process (εt (υ))t ∈ Z is established as the
unique, causal, SPS, and periodically ergodic solution to Equation (2.1).

In the following theorem we built a condition on γ
(s)
L (H) in order to find a positive δ.

Theorem 2.1.2. Assuming that γ
(s)
L (H) < 0. Then, there is δ > 0 such that E(hδ

t ) < ∞, and E(|εt|δ) <
∞, ∀t.

Proof. see Slimani and all [43].

In the context of the PAV GARCHs(1, 1) model, two critical observations shed light on the behavior
of this stochastic process.

Proposition 2.1.1. For PAV GARCHs(1.1), the following assertions hold.

1. If γ
(s)
L (H) > 0, almost surely ht → +∞ at an exponential rate, i.e., ρtht → +∞, and ρtε2

t →
+∞, as t → +∞, for any ρ > e−γ

(s)
L

(Γ).

2. If γ
(s)
L (H) = 0, in distribution ht → +∞, and ε2

t → +∞ as t → +∞.

Proof. The proof some results by Slimani and all [43]. First, perform s iterations of the equation (2.3)
to obtain the following equality:

ht (υ) = α0 (s − k)
{

s−1∑
i=0

{
k−1∏
i=0

g(s−i) (et (s − i − 1))
}}

+
{

s−1∏
i=0

g(s−i) (et (s − i − 1))
}

ht (0) . (2.10)
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Now, we put

ω (et (1)) = α0 (s − k)
{

s−1∑
i=0

{
k−1∏
i=0

g(s−i) (et (s − i − 1))
}}

,

c (et (0)) =
{

s−1∏
i=0

g(s−i) (et (s − i − 1))
}

,

h (t + 1) = ht (s)

and rewriting (2.10) as
h (t + 1) = c (et (0)) h (t) + ω (et (1)) ,

with et (l) = (est+l, ..., est+s−1) . Note that c(et(0)) represents a sequence of independent and identically
distributed (i.i.d.) non-negative random variables, and they are also independent of h(k) for any k < t.
Using this notation, the proof essentially follows the same rationale as outlined Francq and Zakoïan
[22].

2.2 QML estimation
In this section, we lay out a set of essential hypotheses. These hypotheses serve as the foundation upon

which we establish the conditions necessary to rigorously demonstrate the convergence of our estimations.

Let define the following vectors:

α′ :=
(
α′

0, α′
1, ..., α′

q

)
, β′ :=

(
β′

1, ..., β′
q

)
, θ′ (υ) := (α0 (υ) , α1 (υ) , ..., αq (υ) , β1 (υ) , ..., βp (υ)) , υ ∈ S,

with
α′

i := (αi (1) , ..., αi (s)) , β′
k

:= (βk (1) , ..., βk (s)) , for all 0 ≤ i ≤ q, 1 ≤ k ≤ p.

We present the following quasi-maximum likelihood estimator (QMLE) for the PAV GARCHs parameter
gathered in vector

θ′ :=
(
α′, β′) :=

(
θ′ (1) , ..., θ′ (s)

)
∈ Θ ⊂]0, +∞[s×[0, +∞[s(q+p).

The true parameter value denoted by θ′
0 :=

(
α′

0, β′
0

)
∈ Θ ⊂]0, +∞[s×[0, +∞[s(q+p). Since the value of

underlineθ′
0 is unknown, it becomes imperative to estimate it. To achieve this, we examine a specific

realization: {ε1, ..., εn; n = sN} , from the unique causal SPS and PE solution of (2.2). Let h2
t (θ) be

the conditional variance of εt given Ft−1. The Gaussian likelihood function of θ ∈ Θ conditional on
initial values ε0, ..., ε1−q, h0, ..., h1−p is given by

L̃n (θ) =


n∏

t=1

1(
2πh̃2

t (θ)
) 1

2

 exp
{

−
n∑

t=1

ε2
t

2h̃2
t (θ)

}
, (2.11)

where h̃2
t (θ) is recursively defined as

t ≥ 1, h̃t (θ) = α0 (t) +
q∑

i=1
αi (t) |εt−i| +

p∑
j=1

γj (t) h̃t−j (θ) .

A QMLE of θ is defined by; For any measurable solution θ̂

θ̂n = Arg max
θ∈Θ

L̃n (θ) = Arg min
θ∈Θ

(
Ĩn (θ)

)
, (2.12)

where (ignoring the constants)

Ĩn (θ) = (sN)−1
N∑

t=1

s−1∑
υ=0

l̃st+υ (θ) , with l̃t (θ) = ε2
t

h̃2
t (θ)

+ log h̃2
t (θ) .
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In view of the strong dependency of h̃t (θ) on initial values ε0, ..., ε1−q, h0, ..., h1−p.
(
l̃t (θ)

)
t ≥1 is not a

SPS nor a periodically ergodic (PE) process. Therefore, it will be more convenient to work with an
unobserved SPS and PE version In (θ) of the likelihood (2.11) i.e,

In (θ) = (sN)−1
N∑

t=1

s−1∑
υ=0

lst+υ (θ) , with lt (θ) = ε2
t

h2
t (θ) + log h2

t (θ) .

In the upcoming sections, we will provide the conditions that guarantee the strong consistency and
asymptotic normality of θ̂. Our approach draws substantial inspiration from Aknouche and Bibi [1].

2.2.1 Strong consistency of QMLE

This section plays a crucial role in our chapter as it is dedicated to the construction of necessary
hypotheses. These hypotheses are instrumental in demonstrating the convergence of our estimators, a
fundamental aspect of our research. Let’s take into account the following assumptions regarding regular-
ities.
B0. θ0 ∈ Θ and Θ is a compact subset of Rs(1+q+p).
B1. Let L denote the lag operator and consider the polynomials

A0,υ (z) =
q∑

i=1
α0,i (υ) zi,

B0,υ (z) = 1 −
p∑

i=1
β0,i (υ) zi,

with the convention A0,υ (z) = 0 if q = 0 and B0,υ (z) = 1 if p = 0, for all υ ∈ {1, ..., s}.
B2. If p > 0, A0,υ (z) have no common roots with B0,υ (z) for all υ. Moreover, A0,υ (1) ̸= 0 and
α0,q (υ) + β0,p (υ) ̸= 0 for all υ ∈ S.

B3. γ
(s)
L (H0) < 0 where γ

(s)
L (H0) is the top-Lyapunov exponent associated with the random matrix

H (et) evaluate under the true value θ0 and

ρ

(
s∏

υ=1
Aυ

)
< 1, with Aυ =

(
β1:p−1 (υ) βp (υ)

I(p−1) O (p−1)

)
.

B4. (et)t∈Z is non-degenerate and P (et > 0) ∈ (0, 1) .

We assume the compactness of Θ to leverage various results from real analysis. Assumption B2 is
crucial for ensuring identifiability, while assumption B3 not only guarantees the existence of a finite
moment for the true value θ0 but also establishes the presence of a strong, positive solution (SPS) and a
partial equilibrium (PE) solution for the model in the equation (2.2), as well as ensuring causality in the
solution of ht(θ). Additionally, assumption B4 is introduced to facilitate identifiability and also to ensure
that the process (εt) has positive and negative values with positive probabilities. These assumptions in
place, we are now prepared to present our first significant result.

Theorem 2.2.1. Let
(

θ̂N

)
be a sequence of QMLE satisfying (2.12). Then, under 2.1.1 and the

assumptions B0-B4, θ̂N → θ0 almost surely (a.s.) when N → ∞.

To prove Theorem 2.2.1, we formulate the following technical assertions gathered in the next lemma.

Lemma 2.2.1. Under Assumptions B0-B4, we obtain

1. lim sup
N→∞ θ∈Θ

∣∣L̃sN (θ) − LsN (θ)
∣∣ = 0 a.s.

2. There exists t ∈ Z such that ht(θ) = ht(θ0) a.s. ⇒ θ = θ0.

3.
s∑

ϑ=1
Eθ0

{lst+ϑ(θ0)} < ∞ and if θ ̸= θ0. Then

s∑
ϑ=1

Eθ {lst+ϑ(θ)} >

s∑
ϑ=1

Eθ0
{lst+ϑ(θ0)} .
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For any θ ̸= θ0 there a neighborhood V(θ) such that

a.s.lim inf
N→∞

inf
θ∗∈Θ

(
L̃sN (θ∗)

)
>

s∑
ϑ=1

Eθ0
{lϑ(θ0)} .

Proof. The proof follows essentially the same arguments as in Aknouche and Bibi [1].

In the upcoming section, we provide the asymptotic normality of θ̂n.

2.2.2 Asymptotic normality of QMLE

In order to establish the asymptotic normality of θ̂n, we introduce the following additional assumptions:

B5. θ0 ∈ Θ̊, with Θ̊ denotes the interior of Θ.

B6. 1 < κ = E
{

e4
t

}
< ∞.

Assumption B5 is indispensable for the Quasi Maximum Likelihood Estimator (QMLE) and supports
the validation of the first-order condition for maximizing the log-likelihood. On the other hand, Assump-
tion B6 is essential for the existence of the asymptotic covariance matrix for the QMLE. The second key
result in this section is as follows:

Theorem 2.2.2. Suppose that (εt, t ∈ Z) is generated by the equations (2.2). Then, under the assump-
tions B0-B6 we obtain

√
sN
(

θ̂sN − θ0

)
⇝ N

(
O, (κ − 1) J−1) as N → ∞,

where the matrix J given by

J :=
s∑

υ=1
Eθ0

{
∂2lst+ϑ

∂θ∂θ′ (θ0)
}

=
s∑

υ=1
Eθ0

{
1

h2
st+υ (θ0)

∂hst+υ

∂θ
(θ0) ∂hst+υ

∂θ′ (θ0)
}

.

The proof of Theorem 2.2.2 rests classically on a Taylor series expansion of ∂LsN

∂θ
(θ) , around θ0

which is given by:

O = (sN)
−

1
2

sN∑
t=1

∂lt
∂θ

(θ̂sN ) = (sN)
−

1
2

sN∑
t=1

∂lt
∂θ

(θ0) +
(

(sN)−1
sN∑
t=1

∂2lt

∂θ∂θ′ (θ∗)
)

(sN) 1
2

(
θ̂sN − θ0

)
,

where the coordinates of θ∗ are between the corresponding entries of θ̂sN and those of θ0. The theorem
will follow straightforwardly. To achieve this, we establish the following intermediate results, which are
presented in the following lemma.

Lemma 2.2.2. Under assumptions B0-B6, we obtain

1.
s∑

υ=1
Eθ0

{
sup
θ∈Θ

∥∥∥∥∂lst+ϑ

∂θ
(θ0)∂lst+ϑ

∂θ′ (θ0)
∥∥∥∥
}

< ∞ and
s∑

υ=1
Eθ0

{
sup
θ∈Θ

∥∥∥∥∂2lst+ϑ

∂θ∂θ′ (θ0)
∥∥∥∥
}

< ∞.

2. J is invertible and
s∑

υ=1
V arθ0

{
∂lst+ϑ

∂θ
(θ0)

}
= (κ − 1)J.

3. There is a neighborhood V (θ0) of θ0 such that

s∑
υ=1

Eθ0

 sup
θ∈V(θ0)

∥∥∥∥ ∂3lst+ϑ

∂θi∂θj∂θk
(θ0)

∥∥∥∥
 < ∞, ∀ i, j, k ∈ {1, ..., s(1 + q + p)} .

4. p lim
∥∥∥∥∥(sN)− 1

2

N∑
t=1

s∑
υ=1

(
∂l̃st+ϑ

∂θ
(θ0) − ∂lst+ϑ

∂θ
(θ0)

)∥∥∥∥∥ = 0.
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5. p lim sup
θ∈V(θ0)

∥∥∥∥∥(sN)−1
N∑

t=1

s∑
υ=1

(
∂2 l̃st+ϑ

∂θ∂θ′ (θ0) − ∂2lst+ϑ

∂θ∂θ′ (θ0)
)∥∥∥∥∥ = 0

6. (sN)− 1
2

sN∑
t=1

∂lt
∂θ

(θ0)⇝ N (O, (κ − 1) J) as N → ∞ and almost surely

lim
n→∞

(
(sN)−1

sN∑
t=1

∂2lt

∂θ∂θ′ (θ̃)
)

= J.

Proof. see Francq and Zakoïan [21] and Bibi [5] .

Remark 2.2.1. The asymptotic properties of Quasi Maximum Likelihood Estimator (QMLE) are also
valid for the specific periodic integrated AV GARCH model derived from the PAV GARCHs model when
the parameters are constrained to be on the boundary of the second-order periodic stationarity domain.
This is attributed to the strict inclusion of the latter domain within the strict stationarity one.

2.3 Monte Carlo experiment
This section evaluates the finite sample properties of the Quasi Maximum Likelihood Estimator (QMLE)

for unknown parameters in the PAV GARCHs(1, 1) model through Monte Carlo experiments. With 500
replications across varying sample sizes n ∈ {1000, 2000, 3000}, we consider innovations like standardized
normal, Student t(5), and Generalized Exponential Distribution (GED) (see Remarks 1.5.3,1.5.2 and
1.5.1). The parameter vector θ adheres to strict periodic stationarity, detailed at the end of each table.
Empirical results, produced using MATLAB scripts, provide insights into model performance. The tables
present the average parameter estimates across N simulations, with columns displaying the results. To
evaluate the Quasi Maximum Likelihood Estimator (QMLE) performance, we furnish the root mean
square error (RMSE) for each θ̂n(i), where i = 1, ..., s (enclosed in brackets). Moreover, we incorpo-
rate the asymptotic distributions of θ̂n(ϑ), where ϑ = 1, ..., s, across the N simulations, accompanied by
boxplot summaries, aligned with the corresponding table.

2.3.1 Standard AV GARCH model
Our initial practical illustration, aiming to elucidate our theoretical analysis, involves the standard

AV GARCH(1, 1) model. The parameter vector for this model is denoted as θ = (a0, α1, β1)′, chosen to
subject the condition

γL = E {log {a1 |e0| + β1}} < 0.

The outcomes of our simulations, conducted under various innovations in accordance with two distinct
Models, are detailed in Table 2.1

N (0, 1) t(5) GED

n

︷ ︸︸ ︷
α̂0 α̂1 β̂1

︷ ︸︸ ︷
α̂0 α̂1 β̂1

︷ ︸︸ ︷
α̂0 α̂1 β̂1

1000 1.0162 0.4996 0.2445 1.0232 0.4997 0.2423 1.0119 0.4962 0.2474
(0.0206) (0.0018) (0.0040) (0.0267) (0.0034) (0.0061) (0.0263) (0.0044) (0.0064)

2000 1.0024 0.4980 0.2508 1.0083 0.5002 0.2476 1.0090 0.4963 0.2476
(0.0098) (0.0009) (0.0020) (0.0146) (0.0016) (0.0032) (0.0134) (0.0021) (0.0031)

3000 1.0012 0.5000 0.2502 1.0056 0.5022 0.2472 1.0064 0.4971 0.2488
(0.0062) (0.0006) (0.0013) (0.0091) (0.0012) (0.0020) (0.0091) (0.0013) (0.0022)

Model(1) : θ = (1.00, 0.50, 0.25)′

1000 1.0145 0.4485 0.1443 1.0217 0.4483 0.1413 1.0074 0.4451 0.1492
(0.0200) (0.0018) (0.0059) (0.0247) (0.0033) (0.0079) (0.0233) (0.0043) (0.0079)

2000 1.0020 0.4475 0.1511 1.0047 0.4495 0.1491 1.0070 0.4461 0.1476
(0.0094) (0.0009) (0.0028) (0.0140) (0.0016) (0.0045) (0.0122) (0.0021) (0.0042)

3000 1.0006 0.4496 0.1507 1.0030 0.4517 0.1483 1.0045 0.4468 0.1492
(0.0061) (0.0006) (0.0019) (0.0086) (0.0011) (0.0028) (0.0085) (0.0013) (0.0030)

Model(2): θ = (1.00, 0.45, 0.15)′

Table 2.1: Results of estimating the AV GARCH(1, 1) according to different innovations
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The asymptotic distribution of the sequences (
√

n(θ̂n(i) −θ(i)))n≥1), i = 1, ..., 3 followed by their
boxplot summary associated to different innovations of Model(1) of Table 2.1 are shown in Figure 2.1.
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Figure 2.1: Top panels: Asymptotic kernels distribution of
√

n(θ̂n(i) −θ(i)). Bottom panels: Box plot
summary of θ̂n(i), i = 1, ..., 3 associated to Normal (blue curve), GED (green curve) and Student (red
curve) innovations according to Model (1) of Table 2.1.

Through a comprehensive analysis of the outcomes presented in table 2.1 for model (1) and model (2),
it becomes apparent that the performance of the Quasi Maximum Likelihood Estimator (QML) is sig-
nificantly less robust under t(5). and GED innovations compared to N (0, 1). Moreover, a general trend
emerges where the root mean square error (RMSE) associated with diverse innovations tends to dimin-
ish with increasing sample sizes. This trend is visually reinforced by the asymptotic distribution plots
in figure(1) (Top panels), revealing fatter tails (positive kurtosis or leptokurtic) for these distributions.
Additionally, figure(1) (Bottom panels) , depicting boxplots of the QMLE outcomes under various in-
novations, underscores noteworthy dissimilarities in elementary statistics, with N (0, 1) exhibiting fewer
outliers compared to other innovations.

2.3.2 Periodic AV GARCH model
The second example of our Monte Carlo experiment is devoted to estimate the periodic AV GARCHs(1, 1)
model with s = 2 .i.e., ϵt = ηtht and

h2t+υ (ϑ) = α0 (υ) + α1 (υ) ϵ2t+υ (υ − 1) + β1 (υ) h2t+υ (υ − 1) .

This situation is raised in modelling some daily returns when we suspect the so-called ”Monday effect”
(opening price) of day-of-the week seasonality (see for instance Franses and Paap [20]. The vector of
parameters to be estimated is thus θ = (α′

0, α′
1, β′

1)′ where α′
0 = (α0(1), α0(2)), α′

1 = (α1(1), α1(2)), β′
1 =

(β1(1), β1(2)), are chosen to ensure the SPS condition of our model. To this end, we suggest that

2∑
ϑ=1

E {log (a1 (ϑ) |e0| + β1 (ϑ))} < 0.

So, the results of simulation according to two models are given in Table 2.2 below.
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N
(0

,1
)

t (
5)

G
E

D
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Table 2.2: Results of estimating the PAV GARCH2(1, 1) according to different innovations

Nonlinear Modeling of Certain Periodic Time Series 41



2.3. Monte Carlo experiment 2

The asymptotic distribution of the sequences (
√

n(θ̂n(i) −θ(i)))n≥1), i = 1, ..., 6 associated to different
innovations of Model (1) of Table 2.2 are shown in Figure 2.2.
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Figure 2.2: Top panels: Asymptotic kernels distribution of
√

n(θ̂n(i) −θ(i)). Bottom panels: Boxplot
summary of θ̂n(i), i = 1, ..., 6 associated to Normal (blue curve), GED (green curve) and Student (red
curve) innovations according to Model (1) of Table 2.2.

2.3.3 Comments
A brief examination of the results from our Monte Carlo experiments reveals the following: Tables 2.1

and 2.2 provide parameter estimates for the PAV GARCHs(1, 1) model with s = 2, fitted to Model(1)
and Model(2), generated through 500 independent simulations with different innovations. First and
foremost, it is evident that the performance of the Quasi Maximum Likelihood Estimator (QML) is
notably weaker when applied to t(5) and GED innovations compared to N (0, 1). In general, it is clear
that the parameters associated with these models are well-estimated, with no significant deviations in
estimate values observed for the three different innovation errors: N (0, 1), t(5), and GED. Notably,
some estimates have moderate standard deviations. In table 2.2, the model was simulated following a
PAV GARCH2(1, 1) model, where the parameters of the five regimes in model(1) satisfy the condition

E {log (a1(ϑ) |e0| + β1(ϑ))} < 0, for ϑ = 1, ..., 2.

In Table 2.2, the second regimes in Model(2) are explosive in the sense that

E {log (a1(ϑ) |e0| + β1(ϑ))} > 0,

but the Strong Periodic Stationary (SPS) property of the model is ensured. The results, in general, align
satisfactorily with the asymptotic theory. In Figure 2.2, regarding the asymptotic kernels distribution
of

√
n(θ̂n(i) − θ(i)) for i = 1, ..., 6, it is apparent that the PAV GARCH2(1, 1) model produces flatter

("platykurtic") kernels. It’s noteworthy that the assumptions A1 - A5 required for consistency are
clearly satisfied. Furthermore, the assumptions A6 and A7 needed for asymptotic normality are also
met. Lastly, the boxplots displayed in Figure 2.2 reveal substantial dissimilarities in the elementary
statistics of QMLE under different innovations, with N (0, 1) showing fewer outliers compared to the
others.
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2.4 Application
In this section, we apply our model for modelling the foreign exchange rates of Algerian Dinar with

respect to European currency (EUR/DZD) denoted by y
(e)
t and the American Dollar (USD/DZD)

denoted by y
(d)
t already analyzed by Hamdi and Souam [29] via a mixture periodic GARCH models. We

consider returns series

r
(e)
t = 100 × (log

(
y

(e)
t

)
− log

(
y

(e)
t−1

)
) and r

(d)
t = 100 × (log

(
y

(d)
t

)
− log

(
y

(d)
t−1

)
),

of daily exchange rates of Algerian dinar against the Euro. The observation cover the period from January
3, 2000 to September 29, 2011. Since there are some weeks comprise less than five observations (due to
legal holidays), we remove the entire weeks with less than five data available rather than estimating the
“pseudo-missing” observations by an ad-hoc method. Thus, the final length of transformed data is 3055
observations uniformly distributed on 611 weeks. Figure 2.3 displays the plots of the series (yt) and its
returns (rt) corresponding to foreign exchange of EUR/DZD (series superscripted by (e)) and those
corresponding to USD/DZD (series superscripted by (d)).
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Figure 2.3: Left panel displays the series yt and rt corresponding to EUR/DZD. Right panel display
similar series correspont to USD/DZD.

The elementary statistics in data are summarized in Table 2.3 below

Series mean median mode skewness kurtosis JBtes LB(Q(12),Q(24))
y

(e)
t 88.61181 91.09945 69.7347 −0.518144 2.132958 232.4666 104 × (3.6065, 7.0724)

y
(d)
t 73.45113 73.12610 79.9396 −0.600469 3.764200 258.0098 104 × (3.5888, 7.0054)

Table 2.3: Summary Statistics for daily spot prices y
(e)
t and y

(d)
t .

In Table 2.3 the difference between means, medians and modes implies that the series are not sym-
metric. The high kurtosis computed in these series, being leptokurtic, implies that the distribution of
the series have fatter tails, and a more sensitive peak around the mean, when compared to the normal
distribution. JBtes (Jarque-Bera test) and LB(Q(12), Q(24)) for normality and autocorrelation tests
show that both returns are neither normally distributed nor serially correlated for the instance 10 and
25 lags. Moreover, the results shown in Table 2.4 examine the effect of heteroscedasticity in the series(

r
(e)
t

)
and

(
r

(d)
t

)
.

Nonlinear Modeling of Certain Periodic Time Series 43



2.4. Application 2

r
(e)
t r

(d)
t

lags 10 15 20 25 10 15 20 25
ARCH statistics 152.3993 200.3745 244.6458 266.6962 245.6729 249.3297 344.0355 346.1818
Critical value 18.3070 24.9958 31.4104 37.6525 18.3070 24.9958 31.4104 37.6525
P − value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 2.4: ARCH effect test of daily returns
(

r
(e)
t

)
and

(
r

(d)
t

)
.

The results of Table 2.4 can be summarized as: since the p−value is less than 0.05, the ARCH
statistics is greater than the critical value at 95% confidence level. These imply that there is a strong
evidence for rejecting the null hypothesis of no ARCH effect. The rejection indicates the existence of
ARCH effects in the returns series and therefore the variance of such a returns is not constant. The test
was implemented in MATLAB with “archtest” function for the returns. Figure 2.4 displays the sample
autocorrelations functions (ACF ) of the series (rt)t≥1,

(
r2

t

)
t≥1 and (|rt|)t≥1 computed at 30 lags.
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Figure 2.4: Top panel: Sample autocorrelations of returns associated to Euro superscripted by (e) .
Bottom panel: Sample autocorrelations of returns associated to dollar superscripted by (d) .

From Figure 2.4, we can see that the log returns (rt) show no evidence of serial correlation, but
the squared and absolute returns are positively autocorrelated. Also, the decay rates of the sample
autocorrelations of

(
r2

t

)
and (|rt|) appear to be violated compared with the correlation associated to an

ARMA process suggesting possibly a non linear behavior for modelling purpose.

2.4.1 Modeling
The first attempt will be modeling the series (rt)t≥1 by a standard AV GARCH(1, 1) model and the

second attempt is to look for a model able to cover the day-of -week seasonality in return (rt) (see for
instance Franses and Paap [20]). So, in order to analyze the seasonality, we fitted the following simple
PAV GARCH5(1, 1) model for each series or equivalently. Hence, we estimate its volatility process (ht)t≥1
through five periodic effects,

rt = htet and ht = α0 (t) + α1 (t) |rt−1| + β1 (t) ht−1 (14)
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The parameters estimates of volatility AV GARCH (1, 1)
(

(ĥ(s)
t )t≥1

)
and the parameters estimates

of five-regimes (intra-day) of (ĥ(p)
t )t≥1 to model (14) according to EUR/DZD and USD/DZD when the

innovation is N (0, 1) are presented in Table 2.5

N (0, 1)

EUR/DZD︷ ︸︸ ︷
α̂0 α̂1 β̂1

USD/DZD︷ ︸︸ ︷
α̂0 α̂1 β̂1

(ĥ(s)
t )t≥1 - 0.0024

(0.0014)
0.0607

(0.0096)
0.9491

(0.0085)
0.0050

(0.0047)
0.1213

(0.0359)
0.8959
(0.0390)

Days α̂0 α̂1 β̂1 α̂0 α̂1 β̂1

Sunday 0.0001
(0.0292)

0.0444
(0.0215)

1.0657
(0.0941)

0.0233
(0.0252)

0.0250
(0.1252)

0.9006
(0.0691)

Monday 0.0002
(0.0452)

0.0895
(0.0297)

0.9827
(0.1102)

0.0036
(0.0405)

0.1144
(0.0868)

0.8965
(0.3345)

(ĥ(p)
t )t≥1 Tuesday 0.0098

(0.0317)
0.0783

(0.0034)
0.8701

(0.1082)
0.0001

(0.0110)
0.1159

(0.0539)
0.8957

(0.0789)

Wednesday 0.0027
(0.0356)

0.0413
(0.0160)

0.8757
(0.0947)

0.0070
(0.0192)

0.1127
(0.0884)

0.8972
(0.0396)

Thursday 0.0029
(0.0264)

0.0677
(0.0179)

0.940
(0.0826)

0.0138
(0.0417)

0.1148
(0.0716)

0.8984
(0.0443)

Table 2.5: Parameters estimation of AV GARCH (1, 1) and PAV GARCH (1, 1)5 models fit to
EUR/DZD and USD/DZD according to N (0, 1) innovation.

The plots of the squared returns and the estimated volatilities according to AV GARCH (1, 1) and
PAV GARCH (1, 1)5 associated to N (0, 1) innovation are showed in Figure 2.5 below.
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Figure 2.5: Blue: squared returns, Red: volatilities estimates according to AV GARCH(1, 1) and Black :
volatilities estimates PAV GARCH5(1, 1) according to EUR/DZD(top) and USD/DZD(bottom) with
innovation N (0, 1).
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The second results of parameters estimates of volatility AV GARCH (1, 1)
(

(ĥ(s)
t )t≥1

)
and PAV GARCH (1, 1)5(

(ĥ(p)
t )t≥1

)
according to EUR/DZD and USD/DZD when the innovation is t(5) are presented in Table

2.6

t(5)

EUR/DZD︷ ︸︸ ︷
α̂0 α̂1 β̂1

USD/DZD︷ ︸︸ ︷
α̂0 α̂1 β̂1

(ĥ(s)
t )t≥1 - 0.0024

(0.0012)
0.0642

(0.0086)
0.9485

(0.0076)
0.0007

(0.0003)
0.2161

(0.0287)
0.8438
(0.0203)

Days α̂0 α̂1 β̂1 α̂0 α̂1 β̂1

Sunday 0.0030
(0.0432)

0.2329
(0.0549)

0.7132
(0.0969)

0.0001
(0.0295)

0.2882
(0.1484)

0.9194
(0.2909)

Monday 0.1037
(0.0534)

0.2179
(0.0526)

0.7024
(0.1310)

0.0001
(0.0499)

0.2104
(0.0892)

0.8351
(0.2877)

(ĥ(p)
t )t≥1 Tuesday 0.0165

(0.1246)
0.1226

(0.0420)
0.8459

(0.0690)
0.0014

(0.0446)
0.2224

(0.0531)
0.7563

(0.3071)

Wednesday 0.0012
(0.0527)

0.1177
(0.0468)

0.9914
(0.3911)

0.0011
(0.0421)

0.1807
(0.0816)

0.8222
(0.3003)

Thursday 0.1115
(0.0403)

0.2914
(0.0618)

0.6970
(0.0744)

0.0009
(0.0228)

0.2450
(0.0534)

0.8529
(0.2232)

Table 2.6: Parameters estimation of AV GARCH (1, 1) and PAV GARCH (1, 1)5 models fit to
EUR/DZD and USD/DZD according to t(5) innovation.

The plots of the squared returns and the estimated volatilities according to AV GARCH (1, 1) and
PAV GARCH (1, 1)5 associated to t(5) innovation are showed in Figure 2.6 below.
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Figure 2.6: Blue: squared returns, Red: volatilities estimates according to AV GARCH(1, 1) and Black :
volatilities estimates PAV GARCH5(1, 1) according to EUR/DZD(top) and USD/DZD(bottom) with
innovation
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The third results of parameters estimates of volatility AV GARCH (1, 1)
(

(ĥ(s)
t )t≥1

)
and PAV GARCH (1, 1)5(

(ĥ(p)
t )t≥1

)
according to EUR/DZD and USD/DZD when the innovation is GED are presented in Ta-

ble 2.7

GED

EUR/DZD︷ ︸︸ ︷
α̂0 α̂1 β̂1

USD/DZD︷ ︸︸ ︷
α̂0 α̂1 β̂1

(ĥ(s)
t )t≥1 - 0.0025

(0.0013)
0.0668

(0.0091)
0.9480

(0.0077)
0.0013

(0.0009)
0.1905

(0.0365)
0.8645
(0.0261)

Days α̂0 α̂1 β̂1 α̂0 α̂1 β̂1

Sunday 0.0778
(0.0443)

0.1723
(0.0754)

0.8355
(0.1196)

0.0015
(0.0450)

0.3099
(0.868)

0.8759
(0.2382)

Monday 0.0001
(0.0339)

0.2463
(0.0982)

0.8165
(0.1130)

0.0037
(0.0483)

0.2165
(0.0609)

0.7748
(0.2581)

(ĥ(p)
t )t≥1 Tuesday 0.0285

(0.0464)
0.2209

(0.0834)
0.7945

(0.1182)
0.0003

(0.0741)
0.2995

(0.1215)
0.7240

(0.3979)

Wednesday 0.0063
(0.0278)

0.1807
(0.0794)

0.7761
(0.0784)

0.0003
(0.0665)

0.2169
(0.1051)

0.8402
(0.3763)

Thursday 0.0276
(0.0362)

0.2151
(0.0933)

0.7853
(0.1171)

0.0065
(0.0080)

0.2998
(0.0859)

0.8473
(0.1265)

Table 2.7: Parameters estimation of AV GARCH (1, 1) and PAV GARCH (1, 1)5 modelsfit to
EUR/DZD and USD/DZD according to GED innovation.

The plots of the squared returns and the estimated volatilities according to AV GARCH (1, 1) and
PAV GARCH (1, 1)5 associated to GED innovation are showed in Figure 2.7 below.
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ĥ
(p)
t

ĥ
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Figure 2.7: Blue: squared returns, Red: volatilities estimates according to AV GARCH(1, 1) and Black :
volatilities estimates PAV GARCH5(1, 1) according to EUR/DZD(top) and USD/DZD(bottom) with
innovation GED.
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2.4.2 Comments
In Tables 2.5, 2.6 and 2.7, we present the estimation results for AV GARCH (1, 1) and PAV GARCH5 (1, 1)

models according to N (0, 1), t(5) and GED innovations, reflect some characteristics of ”spurious” GARCH

effects. In particular, the components of α̂0 are close to zeros will that the components of β̂1 are close
to ones with moderate RMSE. Figures 2.5, 2.6 and 2.7 represents the plots of the volatilities estimates
according to AV GARCH (1, 1) model (plots in red) and PAV GARCH5 (1, 1) model (plots in black) with
different innovations associated to Euro and dollar and compared with the appropriate squared returns
(plots in blue). We can see from these plots reveal synchronized movements of estimated volatilities for
different innovations and highlight volatility clustering, where large returns lead to high volatility and
vice versa. Notably, periods of low volatility are observed between 2000 and 2002 and after 2010, while
high volatility clusters coincide with the global financial crisis and other economic events.
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This chapter was published by Slimani and all [44] in the journal Journal of Siberian Federal University.
Mathematics and Physics.
this chapter has made significant contributions to the field of time series analysis and financial modeling.
The establishment of necessary and sufficient conditions for the existence of stationary solutions, coupled
with the introduction of a quasi-maximum likelihood (QML) estimation approach for the PTBLTGARCH
model, enhances our understanding of the model’s behavior. The Markovian representation of the PTBL-
GARCHs model, along with the delineation of conditions for a Strict Periodic Stationary (SPS) solution,
constitutes a notable advancement. Section 3 provides a comprehensive examination of the strong con-
sistency and asymptotic normality of the Quasi-Maximum Likelihood Estimator (QMLE), underscoring
the robustness of the proposed methodology. Numerical demonstrations in Section 4, including a Monte
Carlo study, showcase the finite-sample properties of the QMLE. Moreover, the practical application of
the model to analyze exchange rates between the Algerian Dinar and the European Euro in Section 5
adds real-world relevance and insights. The chapter concludes in Section 6, summarizing key findings
and contributions, thereby consolidating its significance in the realm of financial econometrics.
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Let (Ω, F , P ) be a probability space and let the innovation process (et, t ∈ Z) be a sequence independent
and identically distributed with zero mean and unit variance (i.i.d (0, 1)) defined on the same probability
space. We define the time-varying coefficients ”volatility”process (ht, t ∈ Z) satisfy the recursion

h2
t = α0 (t) +

q∑
i=1

αi (t) ε2
t−i +

p∑
j=1

βj (t) h2
t−j , (3.1)

where (αi (t) , 0 ≤ i ≤ q) and (βj (t) , 0 ≤ j ≤ p) are non negative periodic functions with period s with
α0 (t) > 0.

Generally, by PGARCHs process, we mean a discrete-time strictly stationary process (εt, t ∈ Z),Z =
{0, ±1, ±2, ...} defined on some probability space (Ω, F , P ) and satisfying the factorization

εt = htet. (3.2)

The study, conducted by Rodriguez and Ruiz [46], investigated five prominent models utilized for
modeling time-invariant asymmetric volatility processes with a leverage effect. These models encompass
the Generalized Quadratic ARCH (GQARCH), Threshold GARCH (TGARCH), GJR-GARCH (GJR),
Exponential GARCH (EGARCH), and Asymmetric Power GARCH (APGARCH) models. Given their
significance in modeling, forecasting, and capturing volatility asymmetry, these models prove suitable for
addressing leverage effects. Additionally, a noteworthy inclusion in this exploration is the Bilinear Thresh-
old GARCH (BLTGARCH) model, recently introduced by Choi and all [15], featuring time-invariant
coefficient volatility processes.

h2
t = α0 +

q∑
i=1

(
αiε

+2
t−i + βiε

−2
t−i

)
+

d∑
k=1

(
bkε+

t−k + ωkε−
t−k

)
ht−k +

p∑
j=1

γjh2
t−j , (3.3)

where ε+
n = max (εn, 0) , ε−

n = min (εn, 0) , ε+2
n = (ε+

n )2
, ε−2

n = (ε−
n )2

, and d = p ∧ q.

This chapter addresses the fundamental issue of non-stationarity in BLTGARCH models. In these
models, the parameters exhibit periodicity with a period denoted by “s”. Consequently, we introduce a
periodic BLTGARCH(q,d,p) model, called PBLTGARCHs, defined by equation (3.2).

h2
t = α0 (t) +

q∑
i=1

(
αi (t) ε+2

t−i + βi (t) ε−2
t−i

)
+

d∑
k=1

(
bk (t) ε+

t−k + ωk (t) ε−
t−k

)
ht−k +

p∑
j=1

γj (t) h2
t−j . (3.4)

In (3.4), the functions (αi (t) , 0 ≤ i ≤ q) , (βi (t) , 1 ≤ i ≤ q) , (bk (t) , 1 ≤ k ≤ d) , (ωk (t) , 1 ≤ k ≤ d) and
(γj (t) , 1 ≤ j ≤ p) are periodic with period s ≥ 1. Moreover, (αi (t) , 0 ≤ i ≤ q) , (βi (t) , 1 ≤ i ≤ q),
(γj (t) , 1 ≤ j ≤ p) are non negative sequences with α0 (.) > 0, except the functions (bk (t) , 1 ≤ k ≤ d),
(ωk (t) , 1 ≤ k ≤ d) which have values in (−∞, +∞) .

So, by transforming t into t → st + υ and setting εt (υ) = εst+υ,ht (υ) = hst+υ, and et (υ) = est+υ.

The equation (3.4) has an equivalent periodic form, given as:

h2
t (υ) = α0 (υ) +

q∑
i=1

(
αi (υ) ε+2

t (υ − i) + βi (υ) ε−2
t (υ − i)

)
(3.5)

+
d∑

k=1

(
bk (υ) ε+

t (υ − k) + ωk (υ) ε−
t (υ − k)

)
ht (υ − k) +

p∑
j=1

γj (υ) h2
t (υ − j) .

In (3.5), the notation εt (υ) refers to εt during the υ − th ”season” υ ∈ S = {1, ..., s} of cycle t, and for the
convenient we set εt (υ) = εt−1 (υ + s) , ht (υ) = ht−1 (υ + s) and et (υ) = et−1 (υ + s) , if υ < 0. The
non-periodic notations (εt) , (et) and (ht) will be used interchangeably with their periodic counterparts
(εt (υ)), (et (υ)) and (ht (υ)) whenever emphasizing seasonality is not required. It is important to note
that since h2

t represents the conditional variance of εt given information up to time t − 1, the positivity
of the functions (αi (t) , 0 ≤ i ≤ q), (βi (t) , 1 ≤ i ≤ q) and (γj (t) , 1 ≤ j ≤ p) ensures the positivity of h2

t

in the PTGARCHs model. However, this does not hold true in PBLTGARCHs, even when bk (·) ≥ 0
and ωk (·) ≥ 0, due to the penultimate term in the quation (3.5). Therefore, the positivity of h2

t needs
to be studied on a case-by-case basis (see Nelson [39]). For the sake of simplicity, we assume throughout
this chapter that
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Assumption 3.0.1. Almost surely (a.s), h2
t > 0.

Remark 3.0.1. The PBLTGARCHs(q, d, p) model encompasses various other models, including:

1. Standard BLTGARCH(q, d, p): This model is obtained by assuming s = 1 ( see Choi and all [15]).

2. Periodic TGARCHs(p, q): This model is obtained by setting bk (υ) = ωk (υ) = 0 for υ ∈ S ( see
Bibi [5]).

3. Periodic BLGARCHs(q, d, p): This model is obtained by setting αi (υ) = βi (υ) and bk (υ) =
−ωk (υ) for υ ∈ S ( see Bibi and Ghezal [7]).

3.1 Probabilistic properties of PBLTGARCHs(p, q, d)
Similar to numerous time series models, the derivation of an equivalent Markovian representation for

equations (3.2) to (14) proves advantageous, streamlining the analytical process. To achieve this, we
introduce a vector denoted by r, with a dimensionality of r = (p + 2q + 2d).

ε′
t :=

(
h2

t , ..., h2
t−p+1, ε+2

t , ε−2
t , ..., ε+2

t−q+1, ε−2
t−q+1, hte

+
t , hte

−
t , ..., ht−d+1e+

t−d+1, ht−d+1e−
t−d+1

)
,

H ′
0 :=

(
1, O′

(r−1)

)
, H ′

1 :=
(

O′
(p), 1, −1, O′

(r−p−2)

)
,

and
η

t
(et) := α0,p+1 (t) e+2

t + α0,p+2 (t) e−2
t + α0,r−2d+1 (t) e+

t + α0,r−2d+2 (t) e−
t + α0,1 (t) ,

in which the j − th entry of α0,j (t) is α0 (t) and all other elements are 0.

We obtain the following state-space representation ε2
t = H ′

1εt and h2
t = H ′

0εt. We obtain

εt = At (et) εt−1 + η
t
(et) , t ∈ Z. (3.6)

Such that
At (et) := A1 (t) e+2

t + A2 (t) e−2
t + A3 (t) e+

t + A4 (t) e−
t + A5 (t) ,

where (Aj (t) , 1 ≤ j ≤ 5) are appropriate r×r−periodic matrices easily obtained and uniquely determined
by

{αi (t) , βi (t) , bk (t) , ωk (t) , γj (t) , 1 ≤ i, k, j ≤ q ∨ p} .

Now, by iteratively applying equation (3.6) a total of s times, we obtain the following equation:

ε(t+1)s = H (et) εts + η (et) , t ∈ Z. (3.7)

Since, we have et+1 =
(
e(t+1)s, ..., est+1

)′
,

H (et) =
{

s−1∏
j=0

A(t+1)s−j

(
e(t+1)s−j

)}
, η (et) =

s−1∑
k=0

{
s−1∏
j=0

A(t+1)s−j

(
e(t+1)s−j

)}
η(t+1)s−k

(
e(t+1)s−k

)
.

Put εts = ε (t) (if there is no confusion). Then, the equation (3.7) has a new form

ε (t) = H
(
et−1

)
ε (t − 1) + η

(
et−1

)
, t ∈ Z. (3.8)

It’s important to note that H (et) represents a sequence of independent and identically distributed
(i.i.d.) random matrices, which are independent of ε (k) for k ≤ t, while η (et) is a sequence of i.i.d.
vectors. Consequently, the existence of what is referred to as strictly periodically stationary (SPS)
and periodic ergodic (PE) solutions in equations (3.2) to (3.5) is equivalent to the existence of strictly
stationary and ergodic solutions in equation (3.8). This connection is given by Bougerol and Picard [12],
and also examined by Horst [30].

ε (t) =
∑
k≥1

{
k−1∏
i=0

H
(
et−i−1

)}
η
(
et−k−1

)
+ η

(
et−1

)
. (3.9)
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The formation of a distinctive, strictly stationary, and ergodic solution of the equation (3.8) hinges on
the requirement that the top Lyapunov exponent γ(H) aligns with the strictly stationary and ergodic
sequence of random matrices.

H = (H (et) , t ∈ Z) .

This condition holds if and only if

γ (H) := inf
t >0

1
t
E

log

∥∥∥∥∥∥
t−1∏
j=0

H
(
et−j−1

)∥∥∥∥∥∥

 a.s.= lim

t→∞

1
t

log

∥∥∥∥∥∥
t−1∏
j=0

H
(
et−j−1

)∥∥∥∥∥∥
 . (3.10)

The condition that γ(H) < 0 is crucial to ensure the existence of a strictly stationary and ergodic
solution. Fortunately, the assurance of γ(H) can be established based on the following rationale: The
expectation of the positive logarithm of the norm of H(et), denoted as log+ ∥H(et)∥, is bounded, such that
E
[
log+ ∥H(et)∥

]
≤ E [∥H(et)∥] < ∞. Here, log+(x) represents the function that takes the maximum of

log(x) and 0. Moreover, the right-hand side of the equation (3.10) can be rigorously justified by employing
Kingman’s subadditive ergodic theorem [34].

In the following theorem we are going to ensure that the equation. (3.8) admits a unique, strictly
stationary, causal and ergodic solution given by the series (3.9) and the equations (3.5) (3.2) have unique
SPE and PE. unique, SPS

Theorem 3.1.1. Assuming γ (H) corresponding to PBLTGARCHs(q, d, p) models is strictly negative.
Then, the equation. (3.8) admits a unique, strictly stationary, causal and ergodic solution given by the
series (3.9). Therefore, the equation. (3.5) and hence (3.2) admits a unique, SPS causal and PE solution
given by

h2
t = H ′

0εt,

or
εt = et

{
H ′

1εt

} 1
2 ,

where εt is given by the series equation (3.9).

We deduce the following result.

Corollary 3.1.1. If γ (H) < 0 and E{|e0|2δ} < ∞ for some δ > 0. Then, there is δ∗ ∈]0, 1] such that
E(hδ∗

t ) < ∞ and E(εt
δ∗) < ∞.

Proof. The proof follows essentially the same arguments as in Bibi and Ghezal [8].

Remark 3.1.1. Aknouche and Guerbyenne [2], the others have studied the conditions ensuring the
existence and the uniqueness of SPS and PE solution of equations (3.2) and (3.5) using directly the
equation (3.6) by showing that

inf
t >0

1
t
E

log

∥∥∥∥∥∥
ts−1∏
j=0

Ats−j (ets−j)

∥∥∥∥∥∥

 . (3.11)

This is a sufficient condition for that the equation (3.6) has a unique, causal, SPS and PE solution
given by

εt =
∑
k≥1

{
k−1∏
i=0

At−i (et−i)
}

η
t−k

(et−k) + η
t
(et) . (3.12)

Bibi and Ghezal [8] have shown that the series equations (3.9) and (3.12) coincide a.s. whenever the
condition equation (3.11) holds true.

Remark 3.1.2. It’s essential to emphasize that the condition γ
(s)
L (H) < 0 ensures a form of global

stability for the model (3.6). However, when γ
(s)
L (H) ≥ 0, the model (3.6) is regarded as unstable, and

consequently, it lacks a strictly periodically stationary (SPS) solution. To illustrate this, let’s consider
the PBLAARCHs(1.1) model, which is defined by

εt (υ) = ht (υ) et (υ) ,
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and
h2

t (υ) = α0 (υ) + α1 (υ)
∣∣e2

t (υ − 1)
∣∣h2

t (υ − 1) + b1 (υ) |et (υ − 1)| ht (υ − 1) .

It is straightforward to demonstrate that

γ
(s)
L (H) = E

(
log
(

s−1∏
υ=0

(∣∣α1 (υ)
∣∣e2

0
∣∣+ b1 (υ) |e0|

∣∣))) ≥ 0.

Therefore, the presence of certain, albeit not all, "stable regimes" is established. (i.e.,
E
{

log
(∣∣α1 (υ)

∣∣e2
0
∣∣+ b1 (υ) |e0|

∣∣)} < 0) does not guarantees the existence of SPS solution. More gener-
ally we have the following convergence of the volatility to infinity for PBLAARCHs(1, 1) process encom-
passing (3.7).

3.1.1 Example
For the PBLTGARCHs(1, 1, 1) model, after some tedious algebra we find that the necessary and

sufficient condition ensuring the existence of SPS solution is that
s∑

υ=1
E
{

log
{∣∣α1 (υ) e+2

0 + β1 (υ) e−2
0 + b1 (υ) e+

0 + ω1 (υ) e−
0 + γ1 (υ)

∣∣}}
is strictly negative. It is worth noting that the existence of regimes which satisfy

E
{

log
{∣∣α1 (υ) e+2

0 + β1 (υ) e−2
0 + b1 (υ) e+

0 + ω1 (υ) e−
0 + γ1 (υ)

∣∣}} > 0,

does not preclude strict periodic stationarity.

3.2 QML estimation
In this section , we consider the quasi-maximum likelihood estimator (QMLE) for estimating the

parameters of PBLTGARCHs model gathered in vector

θ′ =
(

θ1, ..., θs(1+2q+2d+p)

)
:=
(
α′, β′, b′, ω′, γ′) ∈ Θ ⊂ Rs(1+2q+2d+p),

where α′ :=
(
α′

0, α′
1, ..., α′

q

)
, β′ :=

(
β′

1, ..., β′
q

)
, b′ :=

(
b′

1, ..., b′
d

)
, ω′ := (ω′

1, ..., ω′
d) , γ′ :=

(
γ′

1, ..., γ′
p

)
with α′

i := (αi (1) , ..., αi (s)) , β′
i

:= (βi (1) , ..., βi (s)) , b′
k := (bk (1) , ..., bk (s)) ω′

k := (ωk (1) , ..., ωk (s)) ,
γ′

j
:= (γj (1) , ..., γj (s)) , ∀0 ≤ i ≤ q, 1 ≤ k ≤ d, 1 ≤ j ≤ p. The true parameter value denoted by

θ0 ∈ Θ ⊂ Rs(1+2q+2d+p) is unknown and therefore it must be estimated. For this purpose, consider a
realization {ε1, ..., εn; n = sN} from the unique, causal, SPS and PE solution of (3.2) and (3.5) and let
h2

t (θ) be the conditional variance of εt given Ft−1where

Ft := σ(ετ ; τ ≤ t).

The Gaussian log−likelihood function of θ ∈ Θ conditional on some initial values ε0, ..., ε1−q, h0, ..., h1−p

which are generated by equations (3.2)-(3.5) is given up to an additive constant by

L̃Ns (θ) = − (Ns)−1
N∑

t=1

s−1∑
υ=0

l̃st+υ (θ) , (3.13)

with
l̃t (θ) = ε2

t

h̃2
t (θ)

+ log h̃2
t (θ) ,

where h̃2
t (θ) is recursively defined, for t ≥ 1 by

h̃2
t (θ) = α0 (t) +

q∑
i=1

(
αi (t) ε+2

t−i + βi (t) ε−2
t−i

)
+

d∑
k=1

(
bk (t) ε+

t−k + ωk (t) ε−
t−k

)
h̃t−k (θ) +

p∑
j=1

γj (t) h̃2
t−j (θ) .

A QMLE of θ is defined as any measurable solution θ̂Ns of

θ̂Ns = Arg max
θ∈Θ

L̃Ns (θ) = Arg min
θ∈Θ

(
−L̃Ns (θ)

)
. (3.14)

Nonlinear Modeling of Certain Periodic Time Series 53



3.2. QML estimation 3

Given the pronounced dependency of h̃2
t (θ) on initial values ε0, ..., ε1−q, h0, ..., h1−p, the sequence(

l̃t (θ)
)

t ≥ 1 does not exhibit strictly periodically stationary (SPS) or periodically ergodic (PE) proper-
ties. Therefore, it is more convenient to operate with an unobserved SPS and PE version. Consequently,
we use an approximate version

L̃Ns = − (NS)−1
s−1∑
v=0

lst+υ (θ) ,

of the likelihood (3.13), while

lt (θ) = ε2
t

h2
t (θ) + log h2

t (θ) .

Before exploring the remarks, it’s essential to note Bibi and Ghezal’s [7] and Bibi’s [5] research
on Quasi-Maximum Likelihood Estimation (QMLE) for periodic time-varying bilinear BLGARCH
models. Their work forms the basis for our analysis of the asymptotic properties of QMLE in the
PBLTGARCHs(p, q, d) model, shedding light on our model’s distinct features and contributions in the
realm of time series modeling.

Remark 3.2.1. Bibi and Ghezal [7] have established the Quasi-Maximum Likelihood Estimator (QMLE)
for periodic time-varying bilinear BLGARCH models, specifically when αi (t) = βi (t) and bk (t) =
−ωk (t). It is therefore worthwhile to extend the investigation of the asymptotic properties of the QMLE
to the PBLTGARCHs(p, q, d) model.

Remark 3.2.2. Bibi [5] explored the asymptotic properties of the QMLE for a broad category of periodic
PTGARCH models (bk = ωk = 0, 1 ≤ k ≤ d). However, it’s important to note that their class of models
does not encompass the one we have proposed.

In the next section, we provide conditions that guarantee both the strong consistency and asymptotic
normality of θ̂. Our methodology draws significant inspiration from Aknouche and Bibi [1] and Francq
and Zakoïan [22].

3.2.1 Strong consistency of QMLE

Consider the following regularities assumptions:

C0. θ0 ∈ Θ and Θ is a compact subset of Rs(1+2q+2d+p).
C1. Let L denote the lag operator and consider the polynomials

A0,υ (z) =
q∑

i=1
α0,i (υ) zi, B0,υ (z) =

q∑
i=1

β0,i (υ) zi,

H0,υ (z) =
d∑

k=1
b0,k (υ)

[
zk, zk

]
, D0,υ (z) =

d∑
k=1

ω0,k (υ)
[
zk, zk

]
,

C0,υ (z) = 1 −
p∑

i=1
γ0,i (υ) zi,

where
[
Lk, Lk

] [
ht, ε+

t

]
= ht−kε+

t−k, and
[
Lk, Lk

] [
ht, ε−

t

]
= ht−kε−

t−k with the convention A0,υ (z) = 0,
B0,υ (z) = 0, ifq = 0, H0,υ (z) = 0, D0,υ (z) = 0, if d = 0, and C0,υ (z) = 1, if p = 0, ∀υ ∈ {1, ..., s} .
C2. If p > 0, A0,υ (z) , B0,υ (z) , H0,υ (z) , and D0,υ (z) , have no common roots with C0,υ (z). Moreover,

A0,υ (1) + B0,υ (1) + H0,υ (1) + D0,υ (1) ̸= 0

and
α0,q (υ) + β0,q (υ) + |b0,d (υ)| + |ω0,d (υ)| + γ0,p (υ) ̸= 0, ∀ υ ∈ S.

C3. γ(H (θ0)) < 0 with H (θ0) instead of H to emphasize that the unknown parameter is θ0 and ∀θ ∈ Θ,

sup
θ∈Θ

γ (|Ω|) < 0,
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where γ (|Ω|) is the Lyapunov exponent associated with the random matrices (|Ω| , t ∈ Z)

|Ω| =

 ζ1:p−1 (et) γp (t) +
∣∣e+

t−pbp (t)
∣∣+
∣∣e+

t−pωp (t)
∣∣

I(p−1) O (p−1)


with

ζ1:p (et) =
(
γ1 (t) +

∣∣e+
t−1b1 (t)

∣∣+
∣∣e−

t−1ω1 (t)
∣∣ , ..., γp (t) +

∣∣e+
t−pbp (t)

∣∣+
∣∣e+

t−pωp (t)
∣∣)′

.

C4. (et)t∈Z is non degenerate and P (et ̸= 0) > 0.

The compactness of Θ is a crucial assumption, facilitating the use of real analysis results. Assumption
C2 is vital for model identifiability, while C3 ensures the existence of strictly periodically stationary
(SPS) and periodically ergodic (PE) solutions in Equation (3.7), along with finite moments. Additionally,
C3 guarantees a causal solution for ht (θ).
Assumption C4 is introduced primarily for identifiability purposes and it further ensures that the process
(εt) takes both positive and negative values with a positive probability. These foundational assumptions
in place, we can now proceed to state our initial result. This result forms the basis for further exploration
and analysis.

Theorem 3.2.1. Consider a sequence (θ̂Ns), where each element is a (QMLE). We assume that the
assumption C0-C4 are are verified. Then, θ̂Ns exhibits strong consistency, meaning that as N tends to
infinity, θ̂Ns converges to θ̂0. This convergence forms a fundamental property underpinning the robustness
of our estimators.

To validate the assertions outlined in theorem 3.2.1, we undertake a systematic process, progressively
establishing specific technical assertions. These crucial assertions are encapsulated within the subse-
quent lemma, serving as the foundational building blocks upon which the theorem relies. Through this
meticulous approach, we clarify the underpinnings of our theorem, thereby ensuring its credibility and
rigor.

Lemma 3.2.1. Under the assumptions C0-C4, we can establish the following properties:

1. lim sup
N→∞ θ∈Θ

∣∣L̃Ns(θ) − LNs(θ)
∣∣ = 0 a.s.

2. There is t ∈ Z such that h2
t (θ) = h2

t (θ0) a.s. ⇒ θ = θ0.

3.
s∑

v=1
Eθ0

{lst+v(θ0)} < ∞. If θ ̸= θ0. Then,
s∑

v=1
Eθ {lst+v(θ)} >

s∑
ϑ=1

Eθ0
{lst+v(θ0)} .

4. For any θ ̸= θ0 there a neighborhood V(θ) such that a.s.

lim inf
N→∞

inf
θ̃∈Θ

(
L̃sN (θ̃)

)
>

s∑
ϑ=1

Eθ0
{lv(θ0)} .

Proof. The proof follows essentially the same arguments by Aknouche and Bibi [1].

3.2.2 Asymptotic normality of QMLE

To establish the asymptotic normality of θ̂Ns, we introduce the following supplementary assumptions:

C5. θ0 ∈ Θ̊, where Θ̊ denotes the interior of Θ.

C6. κ4 = E
{

e4
t

}
< ∞.

C7. For all υ ∈ S, bi (υ) e+
t (υ) + ωi (υ) e−

t (υ) + γi (υ) ≥ 0, almost surely, for i = 1, ..., p.

Assumption C5 plays a crucial role in the Quasi-Maximum Likelihood Estimator (QMLE) by facilitating
the validation of the first-order condition for maximizing the log-likelihood. Meanwhile, Assumption C6
is vital for ensuring the existence of the asymptotic covariance matrix of the QMLE. Additionally, C7
guarantees the positivity of h2

t and provides the basis for bounding various derivatives of h2
t .
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Our second primary result in this section is as follows:

Theorem 3.2.2. Assuming that (εt, t ∈ Z) is generated by the equations 3.7, under the fulfillment of
Assumptions C0.-C7., we obtain the following:

√
Ns
(

θ̂Ns − θ0

)
⇝ N

(
O, (κ4 − 1) J−1) as N → ∞,

where the matrix J given by

J :=
s∑

υ=1
Eθ0

{
∂2lst+ϑ

∂θ∂θ′ (θ0)
}

=
s∑

υ=1
Eθ0

{
1

h4
st+υ (θ0)

∂h2
st+υ

∂θ
(θ0)

∂h2
st+υ

∂θ′ (θ0)
}

.

Proof. The proof of the theorem 3.2.2 rests classically on a Taylor series expansion of ∂LsN

∂θ
(θ) around

θ0 which is given by

O = (Ns)− 1
2

Ns∑
t=1

∂lt
∂θ

(θ̂Ns) = (Ns)− 1
2

Ns∑
t=1

∂lt
∂θ

(θ0) +
(

(Ns)−1
Ns∑
t=1

∂2lt

∂θ∂θ′ (θ̃)
)

(Ns) 1
2

(
θ̂Ns − θ0

)
.

where the coordinates of θ̃ are between the corresponding entries of θ̂Ns and those of θ0.

Now, we prove the intermediate results gathered in the next lemma.

Lemma 3.2.2. Under assumptions A0-A6, we have:

(a)
s∑

υ=1
Eθ0

{
sup
θ∈Θ

∥∥∥∥∂lst+υ

∂θ
(θ0)∂lst+v

∂θ′ (θ0)
∥∥∥∥
}

< ∞ and
s∑

υ=1
Eθ0

{
sup
θ∈Θ

∥∥∥∥∂2lst+v

∂θ∂θ′ (θ0)
∥∥∥∥2}

< ∞.

(b) J is invertible and
s∑

υ=1
V arθ0

{
∂lst+v

∂θ
(θ0)

}
= (κ4 − 1)J.

(c) There is a neighborhood V (θ0) of θ0 such that
s∑

υ=1
Eθ0

 sup
θ∈V(θ0)

∥∥∥∥ ∂3lst+ϑ

∂θi∂θj∂θk
(θ0)

∥∥∥∥
 < ∞, for all

i, j, k ∈ {1, ..., s(1 + 2q + 2d + p)} .

(d) p lim
∥∥∥∥∥(Ns)− 1

2

N∑
t=1

s∑
υ=1

(
∂l̃st+ϑ

∂θ
(θ0) − ∂lst+ϑ

∂θ
(θ0)

)∥∥∥∥∥ = 0.

(e) p lim sup
θ∈V(θ0)

∥∥∥∥∥(Ns)−1
N∑

t=1

s∑
υ=1

(
∂2 l̃st+ϑ

∂θ∂θ′ (θ0) − ∂2lst+ϑ

∂θ∂θ′ (θ0)
)∥∥∥∥∥ = 0.

(f) (Ns)− 1
2

sN∑
t=1

∂lt
∂θ

(θ0)⇝ N (O, (κ4 − 1) J) as N → ∞ and almost surely lim
N→∞

(
(Ns)−1

Ns∑
t=1

∂2lt

∂θ∂θ′ (θ̃)
)

a.s=

J.

Proof. The proof follows essentially the same arguments by Francq and Zakoïan [22] and Aknouche and
Bibi [1].

3.2.3 Example
Let us apply the foregoing results to the PBLTARCHs (1, 1) generated by (3.2) with

h2
st+υ (θ) = α0 (υ)+

q∑
i=1

(
αi (υ) ε+2

st+υ−1 + βi (υ) ε−2
st+υ−1

)
+

d∑
k=1

(
bk (υ) ε+

st+υ−1 + ωk (υ) ε−
st+υ−1

)
hst+υ−1 (θ) .

It is not difficult to see that a sufficient condition for the SPS solution for PBLTARCHs (1, 1) is

s−1∏
υ=0

(∣∣α1 (υ) e+2
0 + β1 (υ) e−2

0 + b1 (υ) e+
0 + ω1 (υ) e−

0
∣∣) < 1.

We suppose that
θ0 =

(
α′

(0), β′
(0), b′

(0), ω′
(0)

)′
.

Nonlinear Modeling of Certain Periodic Time Series 56



3.3. Monte Carlo experiment 3

Belong to some compact Θ, then θ̂Ns is however strongly consistent. Moreover, if θ ∈ Θ̊, then from
Theorem 3.2.2, θ̂Ns is asymptotically Gaussian with mean O and asymptotic variance–covariance matrix
given by

J = diag{Jυ, 1 ≤ υ ≤ s} withJυ = Eθ0

{
1

h4
st+υ

Συ, Σ′
υ

}
,

where
Συ = (Σ1υ, Σ2υ, Σ3υ, Σ4υ, Σ5υ) ,

and
Σ1υ =

∂h2
st+υ

∂α0 (υ) (θ0) , Σ2υ =
∂h2

st+υ

α1 (υ) (θ0) ,

Σ3υ =
∂h2

st+υ

β1 (υ) (θ0) , Σ4υ =
∂h2

st+υ

b1 (υ) (θ0) , Σ5υ =
∂h2

st+υ

ω1 (υ) (θ0) , for each υ ∈ S.

In the works of Chan [14] and Jensen and Rahbak [32], the groundwork has been established for the
consistency and asymptotic normality of the Quasi-Maximum Likelihood Estimator (QMLE) in non-
stationary time-invariant GARCH models. Their findings are particularly applicable when γ(H (θ0) ≥ 0.
Consequently, there is significant potential to extend the asymptotic properties of QMLE to encompass
situations where all regimes demonstrate explosive behavior in the context of PBLTGARCHs.

3.3 Monte Carlo experiment
In this section, we evaluate the finite sample properties of the Quasi-Maximum Likelihood Estimator

(QMLE) for unknown parameters in the BLTGARCHs(1, 1, 1) model using Monte Carlo experiments.
To achieve this, we conducted 500 replications with varying sample sizes, specifically n ∈ {1000, 3000},
and employed two different distributions for innovations: the standard normal distribution N (0, 1) and
the Student’s t distribution with 5 and 15 degrees of freedom. The parameter vector θ was carefully
chosen to satisfy the strict periodically stationary condition. All empirical results were obtained through
the implementation of custom scripts in the MATLAB computing language.
In the tables below, each column represents the average of parameter estimates across the N simulations.
To assess the performance of the QMLE, we report the Root Mean Square Error (RMSE) for each
θ̂n(i), with the results presented in brackets. Additionally, the asymptotic distributions of θ̂n(ϑ), where
ϑ ranges from 1 to s, are displayed for each N simulation, accompanied by a summary in the form of
boxplots following the respective table.

3.3.1 Standard BLTGARCH model
The first example illustrating our theoretical analysis is the standard BLTGARCH(1, 1, 1) model, its
vector of parameters θ = (α0, α1, β1, b1, ω1, γ1)′ is chosen to subject the condition

γL = E
{

log
∣∣α1e+2

0 + β1e−2
0 + b1e+

0 + ω1e−
0 + γ1

∣∣} < 0.

The results of simulation according to two models for θ are given in table 3.1
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Table 3.1: Average and RMSE of 500 simulations of QMLE for standard BLTGARCH(1, 1, 1).
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The overlaying of asymptotic distribution of the kernels associated to the sequences
(√

n
(

θ̂n(i) − θ(i)
))

n≥1
,

i = 1, ..., 6 for different innovations according to model(1) of Table 3.1 are shown in Figure 3.1
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Figure 3.1: Top panels: the asymptotic distribution of
√

n(θ̂n(i) −θ(i)) associated to Normal (red curve),
t(5) (bleu curve) and t(15) (blackline curve). Bottom panels: Boxplot summary of θ̂n(i), i = 1, ..., 6 (1 for
Normal, 2 for t(5) and (3) for t(15)) according to Model(1) of Table 3.1.

Several observations can be drawn from the results presented in table 3.1 and the accompanying figures
in figure 3.1. Firstly, it is evident that the performance of the Quasi Maximum Likelihood Estimation
(QMLE) associated with innovations following a t(5) distribution is notably poorer compared to those
following a N (0, 1) distribution. This highlights the sensitivity of the estimation method to the choice
of the underlying distribution. Secondly, there is a consistent trend of decreasing Root Mean Square
Error (RMSE) as the sample size increases. This implies that larger sample sizes tend to yield more
accurate parameter estimates. Additionally, the top panel of Figure 3.1 indicates that the asymptotic
variance associated with t(5) innovations is slightly higher than that of N (0, 1) innovations. Furthermore,
the bottom panels of figure 3.1, represented by boxplots, reveal substantial differences in the statistical
characteristics of the QMLE results, particularly that the N (0, 1) distribution exhibits fewer outliers
compared to t(5). These insights emphasize the importance of both the choice of distribution for the
innovations and the sample size in the context of QMLE performance.

3.3.2 Periodic BLTGARCH model
The second example of our Monte Carlo experiment here is devoted to estimate the periodic BLTGARCHs(1, 1, 1)
model with s = 2 according to standard N (0, 1) and student t(5) as innovations distributions. The
vector of parameters to be estimated is thus θ = (α′

0, α′
1, β′

1, b′
1, ω′

1, γ′
1)′ where α′

0 = (α0(1), α0(2)),
α′

1 = (α1(1), α1(2))′, etc... are subjected to two models Model(1) and Model(2). The results of simula-
tion according to two models(1) and (2) are given in Table 3.2 below.
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Table 3.2: Average and RMSE of 500 simulations of QMLE for PBLTGARCH2(1, 1, 1).

The overlaying of asymptotic distribution of the kernels associated to the sequences
(√

n
(

θ̂n(i) − θ(i)
))

n≥1
,

i = 1, ..., 12 according to model(1) of Table 3.2 are shown in Figure3.2
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Figure 3.2: Top panels: the asymptotic distribution of
√

n(θ̂n(i) −θ(i)) associated to Normal (red curve),
t(5) (bleu curve) and t(15) (blackline curve). Bottom panels: Boxplot summary of θ̂n(i), i = 1, ..., 12 (1
for Normal, 2 for t(5) and (3) for t(15)) according to Model(1) of table 3.2.

3.3.3 Comments
Upon analyzing the outcomes of the Monte Carlo experiment outlined in Table 3.2, several observa-

tions can be made: The table furnishes parameter estimates for the PBLTGARCHs(1, 1, 1) model with
s = 2, fitted to two distinct scenarios: Model(1) and Model(2), utilizing innovations generated from the
standard N (0, 1) distribution and the Student’s t distribution with 5 and 15 degrees of freedom respec-
tively. These estimates are derived from 500 independent simulations. Primarily, it is evident that the
performance of the Quasi-Maximum Likelihood Estimates (QMLE) associated with the t(5) innovations
and t(15) innovations is notably inferior when compared to those obtained from the standard N (0, 1)
distribution. Overall, the model parameters are accurately estimated, showing minimal deviations in
estimated values when using either the N (0, 1) or t(5) and t(15) innovations. Additionally, many of the
estimated values exhibit moderate standard deviations. The results presented in Table 3.2 pertain to
a PBLTGARCHs(1, 1, 1) model with parameters specifically chosen for Model(1) and Model(2). In
Model(1), the parameters for the first regime are such that

E
{

log
∣∣α1 (ϑ) e+2

0 + β1 (ϑ) e−2
0 + b1 (ϑ) e+

0 + ω1 (ϑ) e−
0 + γ1 (ϑ)

∣∣} < 0, for ϑ = 1, ..., 2.

In Model (2), the parameters for the second regime are chosen such that

E
{

log
∣∣α1 (2) e+2

0 + β1 (2) e−2
0 + b1 (2) e+

0 + ω1 (2) e−
0 + γ1 (2)

∣∣} > 0.

However, it is worth noting that the SPS property of the model is maintained.

3.4 Empirical Application
To assess the efficacy of our proposed model on real financial time series, we employ it to characterize

the foreign exchange rates of the Algerian Dinar against the Euro, denoted as yt. This financial dataset,
previously investigated by Hamdi and Souam [29] using a mixture of periodic GARCH models, We
consider returns series

(rt = 100 × (log (yt) − log (yt−1)))t≥1

of daily exchange rates of Algerian dinar against the Euro. The observation cover the period from January
3, 2000 to September 29, 2011. Since there are some weeks comprise less than five observations (due to
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legal holidays), we remove the entire weeks with less than five data available rather than estimating the
“pseudo-missing” observations by an ad-hoc method. Thus, the final length of transformed data is 3055
observations uniformly distributed on 611 weeks. Figure 3.3 displays the plots of the series (yt) and its
returns (rt).
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Figure 3.3: The plots of the series(yt) , squaared rt and absolute (rt).

Some elementary statistics of the series (yt)t≥1 and its returns (rt)t≥1, squared return
(
r2

t

)
t≥1 absolute

return (|rt|)t≥1.

Series Means Std.Dev Median Skewness Kurtosis
yt 88.6118 11.5755 91.0995 −0.5181 2.1330
rt 0.0118 0.5043 0.0123 0.3536 8.9678
r2

t 0.2543 0.7193 0.0652 16.1027 464.3694
|rt| 0.3575 0.3557 0.2554 2.6956 18.4307

Table 3.3: Elementary statistics of the series (yt)t≥1 , (rt)t≥1,
(
r2

t

)
t≥1 and (|rt|)t≥1.

The Table 3.3 presents statistical summary of the series (yt)t≥1 , (rt)t≥1,
(
r2

t

)
t≥1 and (|rt|)t≥1 with

summary measures of normality test results. The return (rt)t≥1 exhibits non-zero skewness and leptokur-
tic while

(
r2

t

)
t≥1 and (|rt|)t≥1 exhibits significant skewness and kurtosis, indicating that their distribution

is more peaked with a thicker tails than normal distribution. Moreover, the results shown in Table 3.3
examine the effect of heteroscedasticity in the series (rt)t≥1

lags 10 15 20 25
ARCH statistics 152.3993 200.3745 244.6458 266.6962

Critical value 18.3070 24.9958 31.4104 37.6525
P − value 0.0000 0.0000 0.0000 0.0000

Table 3.4: ARCH effect test of daily returns (rt).

The results of Table 3.4 can be summarized as: since the p−value is less than 0.05, the ARCH statistics
is greater than the critical value at 95% confidence level. These imply that there is a strong evidence for
rejecting the null hypothesis of no ARCH effect. The rejection indicates the existence of ARCH effects in
the returns series and therefore the variance of such a returns is not constant. The test was implemented
in MATLAB with “archtest” function for the returns. Figure(6) displays the sample autocorrelations
functions (ACF ) of the series (rt)t≥1,

(
r2

t

)
t≥1 and (|rt|)t≥1 computed at 40 lags.

Figure 3.4, depicts the sample autocorrelations functions of the series (rt)t≥1 ,
(
r2

t

)
t≥1 and (|rt|)t≥1,

one can observe that (rt)t≥1 show no evidence of serial correlation, but the
(
r2

t

)
t≥1 and (|rt|)t≥1 are

positively autocorrelated.
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Figure 3.4: The ACF of the returns and of their squared and absolute series

3.4.1 Modeling with standard BLTGARCH model
The first attempt will be modeling the series (rt)t≥1 by a standard BLTGARCH(1, 1, 1) model. The
parameters estimates of volatility (ĥ(s)

t )t≥1 to BLTGARCH(1, 1, 1) with their RMSE are given in Table
3.5 below.

Parameters α̂0 α̂1 β̂1 b̂1 ω̂1 γ̂1(
ĥ

(s)
t

)
t≥1

0.0007 0.0304 0.0591 0.0276 0.0283 0.9540
(0.0005) (0.0176) (0.0224) (0.0439) (0.0430) (0.0175)

Table 3.5: Parameters estimates and their RMSE of the volatilities (ĥ(s)
t )t≥1.

The plot of the estimated volatility (ĥ(s)
t )t≥1 and the squared return are showed in Figure 3.5 below.
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ĥ
2(s)
t

r2t

Figure 3.5: Dark blue: squared returns, light red: volatilities estimates according to Standard
BLTGARCH(1, 1, 1) (left) and to Periodic BLTGARCH5(1, 1, 1) (right)
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3.4.2 Modeling with PBLTGARCH model
The second attempt is to look for a model able to cover the day-of -week seasonality in return (rt) (see
for instance Franses and Paap [20]). So, in order to analyze the seasonality, we fitted the following simple
PBLTGARCH5(1, 1, 1) model for each series or equivalently. Hence, we estimate its volatility process
(h2

t )t≥1 through five periodic effects, rt = htet and

h2
t = α0 (t) +

(
α1 (t) r+2

t−1 + β1 (t) r−2
t−1
)

+
(
b1 (t) r+

t−1 + ω1 (t) r−
t−1
)

ht−k + γ1 (t) h2
t−1 (14)

The parameters estimates of five-regimes (intra-day) of (ĥ(p)
t )t≥1 and their RMSE according to model

(14) are given in Table 3.6 .

days α̂0 α̂1 β̂1 b̂1 ω̂1 γ̂1
Sunday 0.0001 0.0145 0.0032 0.0165 0.0520 1.1826

(0.0320) (0.0329) (0.0812) (0.0926) (0.1234) (0.1894)
Monday 0.0010 0.0082 0.0419 0.0685 0.0831 1.0009

(0.0296) (0.0563) (0.0588) (0.2913) (0.1429) (0.1326)
Tuesday 0.0001 0.0015 0.0376 0.1162 0.0318 0.8504

(0.0289) (0.0651) (0.0171) (0.0611) (0.0662) (0.1156)
Wednesday 0.0025 0.0869 0.0648 0.0659 0.1768 0.7941

(0.0142) (0.0322) (0.0345) (0.1136) (0.0951) (0.0955)
Thursday 0.0002 0.0082 0.0645 0.0909 0.0229 0.9803

(0.0160) (0.0799) (0.1260) (0.2751) (0.3544) (0.2810)

Table 3.6: Parameters estimates and their RMSE of the volatilities (ĥ(p)
t ).

The plots of estimated volatilitie (ĥ(p)
t )t≥1 and the squared return are showed in Figure 3.6 below.
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Figure 3.6: Dark blue: squared returns, light red: volatilities estimates according to Standard
BLTGARCH(1, 1, 1) (left) and to Periodic BLTGARCH5(1, 1, 1) (right)
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comments

Now, a few comments can be made: In Table 3.5 and Table 3.6 , it is clearly seen that the components
of α̂0 are close to 0 will that the components of γ̂1 are close to 1 with moderate RMSE. Additionally,
Figure 3.5 and Figure 3.6 represent the plots of the volatilities estimates (plots in red) according to
(ĥ(s)

t )t≥1 and (ĥ(p)
t )t≥1 and compared with the appropriate

(
r2

t

)
t≥1 (plots in blue). Moreover, it seems

that it is very difficult to distinguish between the volatilities (ĥ(s)
t )t≥1 and (ĥ(p)

t )t≥1 except perhaps that
the volatilities (ĥ(p)

t )t≥1 is more fluctuated than (ĥ(s)
t )t≥1.
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3.5 Conclusion
In this thesis we were interested in Nonlinear Modeling of Certain Periodic Time Series:

• The first chapter: Beside the probabilistic structure and the conditions ensuring the existence of
higher-order moments, this paper studies also the asymptotic properties of the quasi-maximum like-
lihood estimators of P − logGARCHs(1, 1) model. So, in the first part we have given the necessary
and sufficient conditions for the existence of strictly periodically stationary solution followed by its
moment properties of such a model. This chapter presents for the second part, the strong consis-
tency and the asymptotic normality of the QML estimator under mild conditions. The theoretical
results are illustrated in third part by a Monte Carlo experiment through some usual innovations.

• The second chapter: In this chapter we established some probabilistic and statistical properties
of the PAV GARCH(p, q) model. So, we have given the necessary and sufficient conditions for the
existence of a strictly periodically stationary solution based on the negativity of the top-Lyapunov
exponent. Moreover, this chapter presents the strong consistency and the asymptotic normality of
the QME under mild conditions. Finally, the theoretical results are illustrated by a Monte Carlo
experiment through some usual innovations and an application to the exchange rate of Algerian
Dinar against the European currency (Euro) and the the American currency (Dollar) showing its
performance and its efficiency.

• The third chapter: In this chapterr, we focus on the theoretical and asymptotic properties of the
PBLTGARCH(q, d, p) model. Indeed, for the first part, we have given the necessary and sufficient
conditions for the existence of a strictly periodically stationary solution based on the negativity of
the top-Lyapunov exponent. This chapter presents for the second part, the strong consistency and
the asymptotic normality of the QML estimator under mild conditions. The theoretical results
are illustrated in third part by a Monte Carlo experiment through some usual innovations and an
application to the exchange rate of Algerian Dinar against the European currency (Euro) showing
its performance and its efficiency.
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