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ABSTRACT 

 

This thesis offers an in-depth examination of optimization methods for contemporary electrical 

distribution networks, focusing on the heightened complexity introduced by distributed 

generations, network reconfiguration, and the incorporation of shunt capacitor banks. The study 

is organized into four main areas. An overview of distribution networks is presented, 

emphasizing the significant challenges in achieving efficient and reliable power delivery amid 

changing energy demands and the transition to smart grid technologies. A comprehensive 

analysis of network reconfiguration, capacitor bank placement, and distributed generation 

integration is conducted, highlighting the increasing significance of these methods when 

utilized in conjunction to enhance network performance. This has helped to situate our work 

within the existing literature and illustrate our contributions. 

A careful study of metaheuristic optimization techniques for their efficacy in addressing the 

high-dimensional, multi-objective optimization challenges typical of electrical distribution 

networks has led to the creation of a brand-new multi-objective optimization method using the 

hybrid multi-population algorithm (HMPA) for optimal network reconfiguration while 

simultaneously allocating capacitor banks and distributed generations (ONRSACD). The 

proposed method incorporates fuzzy logic to reconcile conflicting objectives, achieving an 

optimal balance between substation energy costs and equipment investments while maintaining 

operational efficiency. 

The methodology was validated through comprehensive experiments on 33-bus and 69-bus test 

systems, wherein the HMPA exhibited enhanced performance relative to other advanced 

optimization techniques. The thesis concludes by highlighting the potential of integrating 

advanced control systems, including flexible AC transmission systems (FACTS) and intelligent 

communication technologies, to improve network performance and support the transition to 

smart grids. Future research is suggested to investigate these avenues, as well as the effects of 

deregulation and real-time optimization in intricate, large-scale distribution networks. 

 

Key words: HMPA, Fuzzy logic, Radial distribution network, Capacitor banks allocation, 

Distributed generations allocation, Radial distribution network reconfiguration. 

 

 

 

 

 

 



 

RÉSUMÉ 

 

Cette thèse propose un examen approfondi des méthodes d'optimisation pour les réseaux de 

distribution électrique contemporains, en mettant l'accent sur la complexité accrue introduite 

par les générations distribuées, la reconfiguration des réseaux et l'incorporation de banques de 

condensateurs shunt. L'étude est organisée en quatre domaines principaux. Un aperçu des 

réseaux de distribution est présenté, mettant en avant les défis importants pour atteindre une 

livraison d'énergie efficace et fiable face à l'évolution des demandes énergétiques et à la 

transition vers des technologies de réseau intelligent. Une analyse complète de la 

reconfiguration du réseau, du placement des banques de condensateurs et de l'intégration de la 

production distribuée est réalisée, mettant en évidence l'importance croissante de ces méthodes 

lorsqu'elles sont utilisées conjointement pour améliorer la performance du réseau. Cela a aidé 

à situer notre travail dans la littérature existante et à illustrer nos contributions. 

Une étude approfondie des techniques d'optimisation métaheuristique pour leur efficacité à 

relever les défis d'optimisation multi-objectifs et de haute dimension typiques des réseaux de 

distribution électrique a conduit à la création d'une toute nouvelle méthode d'optimisation multi-

objectifs utilisant l'algorithme hybride à multi-populations (HMPA) pour une reconfiguration 

optimale du réseau tout en allouant simultanément des banques de condensateurs et des 

générations distribuées. (ONRSACD). La méthode proposée intègre la logique floue pour 

concilier des objectifs conflictuels, atteignant un équilibre optimal entre les coûts énergétiques 

des sous-stations et les investissements en équipements tout en maintenant l'efficacité 

opérationnelle. 

La méthodologie a été validée par des expériences approfondies sur des systèmes de test de 33 

et 69 bus, où le HMPA a montré une performance améliorée par rapport à d'autres techniques 

d'optimisation avancées. La thèse se termine en soulignant le potentiel d'intégration de systèmes 

de contrôle avancés, y compris les systèmes de transmission AC flexibles (FACTS) et les 

technologies de communication intelligentes, pour améliorer la performance des réseaux et 

soutenir la transition vers des réseaux intelligents. Des recherches futures sont suggérées pour 

explorer ces pistes, ainsi que les effets de la déréglementation et de l'optimisation en temps réel 

dans des réseaux de distribution complexes et à grande échelle. 

Mots-clés : HMPA, logique floue, réseau de distribution radial, allocation de banques de 

condensateurs, allocation de générations distribuées, reconfiguration du réseau de distribution 

radial.  
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1 
 

Introduction 

 

Electrical power systems worldwide differ in size, generation process, transmission structure, 

and load capacity. However, they exhibit the same construction and operating principles, with 

four primary components that are immediately noticeable, at first glance, generating units, 

transmission lines, transformers, and loads. The latter support four main functions, including 

energy generation, transmission, distribution, and consumption, organized according to 

different voltage levels. Substations serve as a link between them, transform power from one 

voltage to another as per guidelines, and perform operational and emergency switching and 

protection duties [1].  

The distribution network (DN) is a vital part of the power system, connecting power production 

to end users. It provides reliable and efficient power to various users, including industrial 

facilities and residential homes. However, it is the most vulnerable element due to its 

geographical distribution, diverse load requirements, and susceptibility to environmental and 

operational difficulties. Distribution networks account for 60% to 70% of total energy losses in 

electrical power systems worldwide. These losses, including technical losses from conductors 

and transformers and non-technical losses like theft and metering errors, impose a significant 

economic burden and require improvement. Therefore, distribution network optimization is a 

major issue for electricity companies and scientists alike.  

The effects of deregulation in the electrical industry have worsened the issues faced by 

distribution networks. Deregulation, which aims to foster competition and efficiency, has 

resulted in the separation of vertically integrated utilities, leading to a more intricate and 

competitive landscape. As a result, distribution network operators are now required to closely 

monitor their systems, frequently operating close to the network's technical limits. The change 

in regulations has limited planners' capacity to maintain network reliability and efficiency 

solely via conventional means. As a result, planners are increasingly using sophisticated 

methods, including network reconfiguration, the incorporation of capacitor banks (CBs), 

distributed generations (DGs), and flexible AC transmission systems (FACTS). These 

technologies have the potential to improve the performance and reliability of distribution 

networks. Reconfiguration enhances load balancing and minimizes losses, while capacitor 

banks provide reactive power assistance to sustain voltage levels. Distributed generation, 
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especially from renewable sources, provides a decentralized method of supplying electricity, 

therefore decreasing the burden on central stations. FACTS devices, in contrast, provide the 

capacity to actively manage power flows and maintain voltage stability, facilitating a more 

adaptable and effective functioning of the network. 

Recently, there has been an increasing interest in the concurrent use of network reconfiguration, 

capacitor placement, and distributed generation integration. Although each of these strategies 

has shown efficacy when used alone or in combination, their individual implementation often 

falls short of adequately addressing the whole range of issues encountered by contemporary 

DN. For example, reconfiguration on its own may improve load distribution, but it may not 

adequately address reactive power requirements or voltage stability. Similarly, the 

incorporation of DG units may decrease energy losses but may cause power quality problems 

if not accompanied by suitable reconfiguration or reactive power compensation. Strategic 

capacitor placement may improve voltage profiles, but it may not fully maximize the 

advantages of dispersed generation or network flexibility. Therefore, there is a growing 

perception that implementing all three methodologies simultaneously could lead to a more 

equitable and optimal result. By simultaneously achieving numerous goals, such as lowering 

energy expenses, improving voltage stability, and decreasing losses, this strategy enables the 

complete realization of the combined advantages of each method while also optimizing the 

investment in network infrastructure.  

Changing the configuration of a network while also allocating DGs and CBs is a tough 

combinatorial problem that includes both discrete and continuous variables. The discrete factors 

include the status of sectionalizing and tie switches, as well as where to put CBs and DGs. The 

continuous variables include the sizes of DGs and CBs. Finding the most efficient network 

structure involves evaluating all possible radial topologies, a task that is both NP-hard and 

computationally demanding. The use of meta-heuristic methods to address intricate 

optimization problems would result in premature convergence and the emergence of local 

optima. This is a result of the primary challenge associated with meta-heuristics, which is the 

need for an insufficient balance between intensification and diversity during the problem-

solving process. To improve solutions, it is necessary to use hybridized meta-heuristics that 

combine the complementary qualities of many optimization techniques. 

In order to tackle these difficulties, this research suggests a multi-objective optimization 

approach that combines network reconfiguration, capacitor placement, and distributed 
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generation deployment concurrently. The suggested technique aims to minimize two primary 

objectives: energy expenditure and capital investment in equipment. The aims mentioned are 

intrinsically contradictory, since the act of decreasing energy costs often necessitates substantial 

capital expenditure, while reducing investment costs may result in increased operating 

expenditures. 

The following is a list of the most noteworthy contributions to this dissertation: 

• This innovative study investigates the use, for the first time, of the hybrid multi-population 

algorithm (HMPA) to optimize the allocation of CBs and DGs while reconfiguring radial 

distribution networks (DNs). The purpose is to reduce the impact of conflicting goals, 

namely energy expenditure and capital investment in devices. 

• The single objective HMPA algorithm is first applied to reduce energy cost and then to 

minimize investment cost. This process establishes the upper and lower bounds of the 

membership functions associated with each objective function. 

• The fuzzy-based technique is then merged with the MOHMPA multi-objective method to 

determine the optimal compromise solution. 

• Different consumer classes' hourly load profiles are employed to accommodate load 

variations. 

• The hourly profile of the DGs' power production is considered to obtain a realistic 

simulation. 

• The optimization problem is also solved using a variety of meta-heuristics, such as AEO 

and HHO, both of which are hybrids of the HMPA algorithm, PSO, the most well-known 

metaheuristic, and MFO recently developed optimizer. Each algorithm is built inside a 

single-objective framework and then re-implemented within a multi-objective framework 

to compare its performance to the HMPA technique. 

The structure of this dissertation comprises four chapters. The first chapter offers a 

comprehensive examination of the electrical distribution network, emphasizing its significance, 

weaknesses, and the obstacles it encounters. The second chapter examines network 

reconfiguration, capacitor bank integration, and distributed generation methodologies, 

analyzing their separate and collective effects on network efficiency. The third chapter delves 

into optimization techniques applicable to distribution networks. It specifically highlights the 

use of metaheuristic approaches, which have been successful in handling intricate optimization 
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problems involving many objectives. The fourth chapter demonstrates the implementation of 

the suggested optimization method and carefully analyzes the results to demonstrate its 

effectiveness in striking a good balance between energy costs and investment costs. 
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CHAPTER 1 

Contemporary Distribution Networks: Challenges and Solutions 
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1.1. Introduction  

The contemporary distribution network (DN) plays a vital role in providing dependable and 

effective electricity to users [2] . Technological improvements and population expansion have 

modified the typical operating dynamics of electrical networks, leading to a rise in worldwide 

power demand. This chapter presents an overview of the fundamental components and 

difficulties associated with electrical DNs at the present time. The chapter specifically explores 

the evolution of the electrical grid, the characteristics and types of loads it must handle, the 

effects of deregulation, and the integration of distributed generation and battery energy storage 

systems. The chapter also explores techniques designed to minimize energy losses in the 

distribution network, highlighting the significance of maximizing network performance to 

attain sustainability and reliability objectives.  

1.2. Electrical grid evolution: implications for the distribution networks 

The electrical grid, an essential component of the economy, is undergoing a revolution that is 

as significant as the introduction of electricity itself. It supports various production methods 

and facilitates the distribution of energy. In order to tackle these difficulties, it is imperative to 

incorporate enhanced intelligence into the grid by leveraging information and communication 

technology. This gives rise to the notion of the smart grid [3]. 

Contemporary electrical grids operate based on four main segments: 

1.1. Introduction 

1.2. Electrical grid evolution: implications for distribution networks 

1.3. Electrical distribution networks: an overview 

1.4. Load characteristics and types 

1.5. Impact of deregulation  

1.6. Integration of distributed generation and battery energy storage 

1.7. Distribution network problems 

1.8. Energy loss reduction methods 

1.9. Conclusion 
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• Generation: mainly through strategically located and grid-connected large-scale power 

units. 

• Transmission: refers to the process of transporting electricity to consumption locations via 

a sophisticated and centrally controlled network. 

• Distribution: typically have radial layouts, with energy flowing in a single direction, 

serving as the intermediary between the transmission network and end customers. 

• Consumers are inactive entities that do not participate in system management. 

Despite their distinct institutions and defined roles, physical laws regulate these sectors to 

maintain a balance between production and consumption and adhere to technical limitations. 

The complete system, which aims to maximize quality and economic efficiency, is considered 

the most intricate structure ever constructed by humans. It spans millions of kilometers of lines 

and cables, includes countless connection points, operates at different voltage levels, and 

incorporates modern protection and supervision systems. 

The architecture of electrical grids, which had remained mostly unaltered for almost a century, 

underwent significant changes in the late 20th century as a result of the deregulation of power 

markets. This transition resulted in an increase in the number of stakeholders, a division of 

duties, and a decrease in collaboration among parties. Regulators simultaneously implemented 

measures to promote the use of renewable energy, which resulted in the integration of certain 

energy sources into transmission networks and others into distribution networks or directly to 

end customers. This is known as distributed generation. 

The inclusion of renewable energy sources has had a significant impact on the conventional 

functioning of transmission and distribution networks. Advanced technologies already equip 

transmission networks, which are essential for maintaining the equilibrium between production 

and consumption and guaranteeing system safety. However, distribution networks have been 

slow to embrace these technologies because of their widespread and decentralized structure. 

Traditionally, a centralized system largely constructed distribution networks to facilitate 

unidirectional energy transmission, focusing on maintaining a consistent supply and regulating 

voltage and current limitations, even during disruptions. For these reasons, their radial structure 

was economically efficient, but its initial design did not support significant distributed 

production units. 
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As the use of intermittent renewable energy sources, including solar and wind power, becomes 

more common, it requires specific management measures. The implementation of smart meters 

has had a significant impact on end users' roles. These instruments enable users to regulate their 

energy usage and aid in power system management by decreasing high-demand periods and 

offering other critical services. Consumers now have the ability to transform into energy 

producers or storage providers, allowing them to become active players in the energy system. 

Despite the use of advanced prediction methods, the sporadic nature of renewable energy 

sources hinders precise power generation forecasting. Without sufficient backup production and 

storage solutions, the unregulated generation of renewable energy has the potential to disturb 

the equilibrium between production and consumption, posing a threat to the overall security of 

the electrical system. 

The unpredictability and limited regulation of renewable energy generation are causing 

significant disruptions to the traditional functioning of electrical grids. These grids have 

traditionally relied on the precise control of conventional power sources to accommodate 

fluctuations in electricity consumption, resorting to load shedding only in rare and extreme 

circumstances. Conventional solutions are no longer sufficient with the increasing proportion 

of uncontrolled production, the unpredictable variations in consumption patterns across 

different locations and time periods, the rising number of electric and hybrid vehicles, and the 

urgent need for a reliable and efficient energy source.  

 

Criteria for comparing Current grid Smart grid 

Structure  Hierarchical, centralized  Network, decentralized 

Communication technology Simple, unidirectional  Advanced, bidirectional  

Energy management 
Responsive, relying on 

predictions 
Real-time data-driven proactive 

Dependability and resilience  Prone to regional power failures Constant monitoring 

Use of renewable energy  Restricted, mostly centralized High, mostly decentralized 

Consumption   Passive Active, proactive 

Energy efficiency  Significant losses Minimized losses  

Maintenance  Timed and manual Conditionally and automatically 

Flexibility Limited, challenging to adapt Rapid demand-supply adaptation 

Safety and Security  Electromechanical  Digital  

Costing  Fixed  Adaptable to real-time supply and demand 

Environmental impact 
Increased dependence on fossil 

fuels 
Enhanced integration of renewable energy 

Interoperability Restricted  
Seamless and effortless integration of 

diverse systems and technologies 

Table 1.1 Current grid vs. Smart grid: some comparisons 
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This is particularly true in a financially limited setting that necessitates investment optimization. 

The intelligent distribution network concept aims to tackle several technical and socioeconomic 

difficulties. Technical aims are associated with advancements and resolutions for current 

problems, whereas socio-economic objectives concentrate on integrating engaged consumers 

into the energy system and creating business models for the shift to a more intelligent grid. 

Table 1.1. illustrates the prominent characteristics of the smart grid in contrast to the current 

system [4].    

The following characteristics define the designated goals of distribution networks, which will 

impact their projected functioning. 

• Accessible: All producers can use the connection. 

• Economic: The concept of economics involves the effective use of infrastructure to reduce 

expenses. 

• Adaptable: Enhanced resource redundancy to optimize current flow and efficiently handle 

interruptions. 

• Dependable: A guarantee of consistent availability and excellence in quality. 

Due to the high financial investment required for distribution infrastructure, the difficulties in 

building new lines, and the growing intricacy involved, it is crucial to include intelligence in 

the layout and operation of DNs. Projects like Smart Grid in Europe [5] and Intelligrid [6]  in 

the USA are witnessing this phenomenon on a worldwide scale. The objective is to update the 

distribution infrastructure, which has been slower than transmission networks in embracing 

advanced technologies. 

The objectives related to technical aspects include the following: 

• Enable the seamless integration of renewable energy, electric vehicles, and energy storage 

on a wide scale, ensuring optimal economic, security, and quality conditions. 

• Improve energy efficiency to optimize energy usage and increase the electrical system's 

overall efficiency. 

• Active Consumer Integration: Involve consumers as active participants in managing the 

balance between supply and demand, decreasing high levels of consumption, and delivering 

vital services. 

• Optimal System Management: Skillfully manage the growing complexity of incoming data. 
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• Interoperability: Guarantee smooth and efficient communication and collaboration among 

different entities, including transmission and distribution networks. 

• Streamlined Management: Effectively manage the electrical system's increasing 

complexity. 

In DNs, intelligence can be defined as the incorporation of intelligent devices into the network 

that manage measurement, analysis, decision-making, action, and communication. 

Additionally, it could entail the distribution of intelligence and the reevaluation of hierarchical 

structures or decision-making procedures. To accomplish these quality goals, substantial 

expenditures will be necessary to bridge the gap between the existing level of networks and the 

envisioned smart grid as illustrated in Figure 1.1.  

Although the implementation of smart grids on a global scale is still mostly theoretical and an 

ongoing subject of study [7] , it is crucial to enhance the efficiency of current electrical 

distribution networks using the tools and technology that are already accessible. We are still in 

the early stages of developing fully operational smart grids, characterized by sophisticated 

automation, immediate data analysis, and seamless integration of dispersed energy sources. 

Therefore, it is imperative that we prioritize improving the efficiency and dependability of our 
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existing networks, guaranteeing that they are better prepared to address modern issues and 

progressively evolve into more intelligent and robust grids in the future. 

1.3. Electrical distribution networks: an overview 

1.3.1. Distribution vs. transmission networks: analysis  

Three main segments essentially categorize the electricity system: generation, transmission, and 

distribution [8]. The generation stage functions at voltage levels ranging from 11 kV to 25 kV. 

Step-up transformers raise these voltages to transmission levels between 220 kV and 765 kV to 

efficiently transport large amounts of electricity. Next, step-down transformers decrease the 

voltages to sub-transmission levels, specifically between 66 kV and 132 kV, before lowering 

to distribution levels below 33 kV. Distribution comprises two main systems: primary, which 

operates at voltages ranging from 4 kV to 33 kV, and secondary, which operates at 400 volts 

for three-phase systems and 230 volts for single-phase systems. Pictured in Figure 1.2. 

Transmission networks improve dependability and stability by creating loops that allow 

electricity to flow via multiple paths. Even in unforeseen circumstances, the interconnection of 

the power supply system ensures uninterrupted electricity. Conversely, the radial design of 

distribution networks enables a simpler and more cost-effective design.  
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This design also makes it easier to secure the network, regulate voltage, locate faults, and 

manage power flow. The distribution system's goals include reducing losses, maintaining power 

quality without harmonics or voltage fluctuations, ensuring dependability, providing cost-

effective power, and delivering secure power to consumers. The examination of the distribution 

network must take into account some important analytical factors necessary to understand its 

own weaknesses and functional characteristics.  

Distribution networks are less complex than interconnected transmission systems due to their 

radial or poorly meshed configuration. This results in cost reduction and streamlines the 

implementation of protective and control measures. Distribution lines have untransposed 

configurations and loads often display imbalances, requiring specialized analytical methods to 

handle voltage dips and power quality concerns. Distribution systems have a high resistance to 

reactance ratio, affecting voltage management. Efficient voltage control requires considering 

load directionality and variability, often requiring active management and regulation. 

Component complexity in DNs includes capacitors, regulators, distributed generating units, and 

storage systems, increasing modeling and analysis complexity. Fault analysis and protection 

are simplified due to the unidirectional flow of electricity, but the radial arrangement increases 

the likelihood of defects directly affecting service delivery. Modern analytical methods and 

real-time data processing are needed to optimize performance and dependability of smart grid 

elements, such as adjustable loads, decentralized storage, electric vehicles, and demand 

response technology.  

 

Characteristic Transmission system analysis Distribution system analysis 

Topology Interconnected  Radial or weakly meshed  

Line Transposed  Untransposed  

Load 
Balanced, constant energy 

supply 
Unbalanced, One-, two-, or three-phase configurations 

Impedance ratio 𝑋 𝑅⁄  ↗ 𝑅 𝑋⁄  ↗ 

Components Reduced number of elements 
Several components, like as capacitors, regulators, 

distributed generation, storage, and others. 

Size Reduced number of buses  High number of buses  

Fault analysis 
Symmetrical component 

analysis  

Symmetrical component analysis increases 

inaccuracies. 

Modeling of 

transformers 

Single-phase equivalent of lines 

and transformers 

Modeling of actual transformer connections: Y/Y, 

Y/Δ, Δ/Δ, etc. 

Load voltage 

dependence 
Generally, not regarded Voltage dependency of various loads 

Requirements for 

simulation 
Steady-state analysis Time series simulations 

Smart grid 

elements 
Generally, not regarded 

Controllable loads, Distributed Storage, Electric 

vehicle, demand response, etc. 

Table 1.2 Analytical disparities between transmission and distribution networks. 
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The table above illustrates how transmission and distribution networks differ in their unique 

system analysis. 

1.3.2. Power flow and short-circuit analysis methods 

Power flow analysis is an essential technique in power system design, operation, and 

optimization. It calculates the voltage magnitude, the phase angle, and the flow of actual and 

reactive power across transmission lines. This study enables engineers to evaluate the stable 

performance of the power system under various load levels and operating settings. Applications 

include operational decision-making, optimization during the design stage, control of voltage, 

reduction of power loss, placement of shunt capacitors, and distributed generation, as well as 

load balancing and reconfiguration. Load flow analysis has advanced by including renewable 

energy sources, dynamic load modeling, and machine learning approaches [9]. 

Short circuit analysis is essential for calculating the electric current passing through a power 

system when faults occur, assessing the thermal and mechanical strain on equipment, and 

configuring protection measures to ensure safety and dependability. It aids in identifying the 

suitable configurations for circuit breakers, relays, and fuses, guaranteeing that equipment can 

endure fault currents without sustaining any harm.  

 

Criteria Power flow analysis  Short circuit analysis  

Aim 
Analyze network steady-state voltage, 

current, and power. 

Calculate the electric current that occurs under 

abnormal situations and evaluate its effect on the 

system. 

Pivotal 

interest 

Power distribution, voltage regulation, 

loss mitigation 

Magnitude and direction of fault current and 

protective device settings. 

Application 

phase  

during planning and steady-state 

operation 

Mostly during design phase. 

Optimization 

Assists in optimizing the size of 

conductors and transformers, positioning 

of CBs, and integration of DGs. 

Test the equipment's ability to withstand abnormal 

conditions and ensure the level of protection 

provided is adequate. 

Results  
Bus voltages, power flows, transformer 

tap settings, system losses. 

Fault current levels, protective device settings, 

equipment stress levels. 

Complexity  

The use of iterative solutions and 

sensitivity analysis typically increases 

complexity. 

Although less intricate, it is crucial for 

guaranteeing the synchronization of safety and 

protection. 

DGs 

integration  

Evaluates the influence of DGs 

integration on voltage stability and 

power quality. 

Assesses the impact of DGs on the magnitude of 

fault currents and the effectiveness of protection 

systems. 

Main use  

Load balancing, voltage regulation, 

power loss reduction, network 

reconfiguration. 

Detecting faults, configuring protective device 

parameters, and assuring the resilience of 

equipment. 

Current 

tendencies 

Combining dynamic load modeling, 

machine learning, and smart grid 

integration. 

Highly advanced digital protection systems and 

fault current analysis with DGs 

 

Table 1.3 Comparative table of load flow and short-circuit analysis techniques 
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Fault current computation is essential for constructing protective systems, whereas system 

stability analysis evaluates the effects of faults on the stability of the system. Current 

advancements include the exploration of renewable energy sources and the use of digital 

protection systems, which necessitate more accurate and instantaneous short circuit diagnosis 

[10]. Table 1.3 provides a concise comparison of the two approaches, emphasizing their specific 

functions and uses in electrical distribution networks. 

Our project aims to enhance the efficiency of electrical distribution networks by utilizing power 

flow analysis, also known as load flow analysis. This method is best suited to power system 

optimization problems, as shown in the table above. It is crucial for understanding the stable 

functioning of power networks, particularly in radial or poorly meshed topologies, as it helps 

calculate network voltage levels, power flows, and losses.  

1.3.3. Power flow calculation techniques 

Power flow analysis in electrical networks involves various techniques, each with its own 

advantages and limitations. Table 1.4 compares the most commonly used strategies in order to 

identify the best suited method to the context of this study [11].  

The Gauss-Seidel and Newton-Raphson techniques have long been essential tools for analyzing 

and operating electrical networks. The Gauss-Seidel method, a recursive algorithm, is 

characterized by its straightforwardness and simplicity in application. The system functions by 

iteratively adjusting the voltage at each bus until it reaches a state of convergence. Although 

the approach is simple, it may exhibit sluggish convergence, particularly in large-scale systems 

with inadequate starting estimations. However, the Newton-Raphson approach is well-known 

for its strong resilience and rapid convergence characteristics. The use of a Jacobian matrix in 

an iterative manner to solve the non-linear power flow equations yields a solution that is both 

more precise and efficient in comparison to the Gauss-Seidel approach. Nevertheless, the 

computational intensity of creating and inverting the Jacobian matrix is quite high, especially 

for networks that are vast and extensively meshed. Although conventional approaches have 

played a crucial role in the historical progress of power flow analysis, their ability to handle 

current, dynamic distribution networks is limited. Therefore, it is necessary to investigate more 

sophisticated methodologies. 

Novel methodologies have been devised to overcome the constraints of conventional 

approaches and cater to the requirements of contemporary electrical DNs. The methodologies 
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mentioned are the Decoupled Load Flow (DLF) and Fast Decoupled Load Flow (FDLF) 

methods. These methods simplify the power flow equations by separating the calculations for 

real and reactive power. The FDLF approach, specifically, provides significant computational 

speed benefits and is highly suitable for large-scale networks with high R/X ratios [12]. Another 

sophisticated technique involves the use of probabilistic power flow (PPF) techniques. These 

approaches take into account the unpredictable characteristics of dispersed generation sources 

and fluctuations in demand, resulting in a more accurate evaluation of network performance in 

uncertain situations [13]. Furthermore, optimization-based methods, like the Optimal Power 

Flow (OPF) approach, enhance conventional power flow analysis by integrating economic and 

operational limitations. This allows for the efficient allocation of resources within the network 

[14]. Utilizing artificial intelligence (AI) and machine learning (ML) algorithms has improved 

power flow analysis, enabling the real-time monitoring and adaptive regulation of DNs [15]. 

These innovative procedures provide the essential means to handle the growing intricacy and 

variety of contemporary power systems, guaranteeing effective and dependable functioning. 

The Backward/Forward Sweep (BFS) method is a commonly used approach for analyzing 

power flow in radial and poorly meshed DNs. Contrary to conventional techniques like Gauss-

Seidel and Newton-Raphson, which are more appropriate for transmission networks, the BFS 

approach exploits the hierarchical arrangement of distribution systems. The technique consists 

of two primary stages: the backward sweep and the forward sweep. The backward sweep 

involves the calculation of currents, which begins at the end nodes (also known as leaf nodes) 

and proceeds towards the root node (substation). This calculation is based on the known loads 

at each node. During the forward sweep, the voltages are incrementally adjusted from the root 

node to the end nodes, using the previously computed currents. The iterative procedure 

continues until the answer reaches a certain degree of tolerance. The BFS algorithm is very 

efficient in dealing with the radial topology and unbalanced load situations that are often 

encountered in DNs. The simplicity, resilience, and computing efficiency of this method make 

it the ideal option for analyzing DNs. It allows for accurate and quick estimates of power flow, 

which are essential for real-time grid management and planning. 

The BFS technique is an optimal option for doing power flow calculations in DNs, especially 

in networks that are radial or poorly meshed. Unlike conventional techniques like Gauss-Seidel 

and Newton-Raphson, BFS specifically adapts to the unique characteristics of DNs, resulting 

in faster and more efficient convergence. In these networks, the repeated process of backward 

and forward sweeps utilizes their radial structure to effectively manage imbalanced loads and 
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changing network topologies. BFS's computational simplicity results in reduced computing 

strain and memory needs, making it well-suited for real-time applications and large-scale 

network research. Additionally, it can easily accommodate the incorporation of distributed 

generation and battery energy storage technologies, making it a very suitable option for 

effectively managing contemporary DNs [16]. 

 

Criteria  Gauss Seidel  Newton-Raphson BFS 

Suitable type 

of network 
Relevant but less 

effective in all networks 
Appropriate for meshed 

transmission networks 

Suitable for radial and poorly 

meshed distribution networks 

Speed of 

convergence 

Depending on the 

original estimate, slower 

convergence 

Swift, particularly in 

meshed systems 
Efficient and dependable for radial 

networks 

Computing 

efficiency 

Reduced processing 

requirements, but less 

effectiveness 

Intensive computational 

demands 
Extremely effective for expansive 

radial systems 

Complexity of 

implementation 

Easy, but time-

consuming 
Intricate, requires well-

chosen starting values 
Straightforward and user-friendly 

for radial networks 

Management 

of DG 
Restricted capacity 

Exhibits efficient 

performance in 

interconnected networks 

Efficiently incorporates distributed 

generation (DG) into radial 

networks 

Robustness 

Possible convergence 

concerns in huge 

systems 

Unconditioned systems 

may cause problems 

Robust, particularly when managing 

unbalanced and large-scale 

networks 

Utilization in 

DN 
Usable but not ideal 

Not well-suited, 

especially for radial 

systems 

Well-suited for radial DNs, 

particularly those with diverse load 

models and (DG). 

 

1.3.4. Structural components  

Several key structural components collectively comprise electrical DNs, ensuring the efficient 

delivery of electricity from transmission systems to end-users. Substations, which serve as 

critical nodes within the network, transform high-voltage electricity from transmission lines to 

lower voltages suitable for distribution. The DN usually begins at the substation (Fig 1.3), 

where various feeders, often numbering between 8 and 10, stretch to distribute electricity 

throughout the system. The primary essential element of any feeder is the circuit breaker, which 

functions as a safeguarding mechanism to disconnect the feeder in case of a problem. Installing 

a voltage regulator after the breaker is optional if the substation transformer has an on-load tap 

changer. The major purpose of the voltage regulator is to ensure that the distribution voltage 

remains within the specified limits, often within a range of 10% of the nominal value, as 

determined by industry standards [17]. The primary conduit of the DN, referred to as the 3-

phase mainline, divides into several secondary lines, which may operate as single-phase, two-

Table 1.4 Power flow methods: comparative analysis 
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phase, or three-phase. Protective devices such as fuses, reclosers, and sectionalizers safeguard 

these lateral lines. Reclosers are notable for their distinction from conventional circuit breakers 

in their capacity to differentiate between temporary and permanent faults. After a temporary 

fault, they automatically attempt to restore service, but if the fault turns out to be permanent, 

they isolate the faulty section [18]. Sectionalizers work in tandem with reclosers to isolate the 

specific affected portion of the network, ensuring uninterrupted service in other regions. 

Capacitor banks, whether fixed or switched, play a crucial role in providing reactive power 

support in the distribution network. Regardless of the load circumstances, the network 

continuously links fixed capacitors, while switched capacitors are only active during high 

demand and removed during lower load situations [19]. This technique enhances the network's 

voltage profile and minimizes losses.  The presence of laterals, which may include overhead 

lines or subterranean cables, characterizes the distribution system. Additionally, tie switches 

link nearby feeders. When network reconfiguration is necessary, like during maintenance or 

outages, these tie switches, normally kept in an open state, may become closed. The 

incorporation of DGs such as solar photovoltaic systems, fuel-cell batteries, and wind energy 

is converting the conventional, inactive distribution network into an energetic one. This shift 

necessitates a reassessment of current protection strategies, as the existence of various 

generating sources brings about new intricacies in system functioning and protection. As a 
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result, there is a growing need for sophisticated protection techniques and adjustable relay 

settings to guarantee the dependability and security of contemporary DNs [20]. 

The radial network is the prevailing architectural design for power distribution systems. Its tree-

shaped topology allows for the transfer of power from one bus to another without creating 

closed loops.  

However, it is important to locate the originating bus while tracing back. This network 

configuration, known as a tree structure, is the most basic and cost-effective for an electrical 

grid. However, if a fault occurs at a certain point in the network, all the lines downstream would 

experience a power outage. In a radial DN, the lateral line runs parallel to the root or main bus, 

the sub-lateral line branches out from the lateral line, and the network concludes with minor 

lines originating from the sub-lateral line. Power distribution systems often utilize radial 

network designs due to their inherent simplicity and cost-effectiveness. Typically, distribution 

transformers link the generators alone at the radial structure's beginning point (slack bus) to the 

load center. The nodes are numbered in ascending order, and uniquely numbered branches 

connect each pair of neighboring nodes. Figure 1.4 depicts a particular example of a radial DN 

[21].  

A radial DN has intrinsic flexibility, making it a strong foundation for the advancement, 

experimentation, and verification of innovative configurations, devices, control mechanisms, 

communication protocols, and security attributes. The network derives its flexibility from its 

simple design, typically consisting of a single route connecting the power supply to each 

demand. This simplicity allows for the direct execution of modifications and advancements, as 

it makes it easier to see and manage the effects of alterations. 

Fig 1.4: 33-node radial distribution network. adapted from [19] 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

19 20 21 22 

23 24 25 

26 27 28 29 30 31 32 33 

S-S 

S-S : Substation 

      : Load 

      : Fixed Branch 

      : Bus  

 



18 
 

Radial networks are characterized by their small times of inactivity, meaning that they can 

sustain a constant supply of power with minimum disruptions. This attribute increases the 

network's susceptibility to random elements, since the absence of extended periods of inactivity 

implies that even little variations or disruptions in the network may have quick and discernible 

impacts. The radial structure, which is characterized by a straight channel of power flow, may 

enhance the influence of these random fluctuations, thereby increasing the network's ability to 

adapt to changes in demand or generation. Distribution lines are of utmost importance when it 

comes to linking sources, loads, and energy storage devices. These lines function as pathways 

for the delivery of electricity from generating sources to consumers, and they also enable the 

incorporation of distributed energy resources, such as solar panels, wind turbines, and battery 

storage systems. The network's radial topology facilitates direct connections between these 

parts.  

 Network configuration 

Characteristic Radial Ring/loop Grid 

Cost  Affordable  Medium to expensive Costly  

Complexity 

of design 
Straightforward  

The design features a 

moderate level of 

complexity. 

Intricate 

Reliability Unreliable Moderately good. Exceedingly high level 

Safety  Basic 

More intricate due to the 

existence of multiple 

pathways. 

Highly intricate as a result of vast 

interdependencies 

Failure 

consequences 

High impact; failures can 

affect all downstream users 

Constrained to a specific 

region; alternative routes 

serve to mitigate the 

impact. 

 Minimized by the use of 

numerous emergency routes. 

Common 

applications 

Rural and suburban regions 

lower dependability 

requirements. 

Urban and suburban sites 

require greater reliability 

Highly populated metropolitan 

regions and essential infrastructure 

necessitate optimal dependability. 

 

In situations when uninterrupted service is crucial, the adoption of more intricate network 

designs and security techniques becomes necessary due to the dependability constraints of the 

radial topology, despite its cost-effectiveness and simplicity. Utilities may develop a more 

balanced strategy that fulfills both economic and reliability goals by using selected schemes, 

loop, ring, and grid networks, to overcome these restrictions. These arrangements, while more 

intricate and expensive, enhance dependability by offering numerous routes for power 

transmission and ensuring uninterrupted service even in the event of breakdowns [22]. The table 

above presents a concise comparison between the radial system and more sophisticated 

structures, highlighting the compromises between cost, complexity, and dependability. 

Table 1.5 The main differences between Radial and alternative configurations 
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1.3.5. Functional characteristics 

Electrical DN play a vital role in the efficient and dependable delivery of high-quality electricity 

to end customers. Their functional components include operation dynamics, performance 

measurements, and balance-achieving strategies, as presented below. 

A. Operational dynamics 

The operational dynamics of DNs involve the immediate processes that regulate energy 

transmission from substations to consumers, including monitoring voltage levels, adjusting 

frequencies, and managing power flows. Voltage regulation, which maintains voltage levels 

within a specified range, ensures safe and efficient network and equipment operation using 

devices such as regulators, capacitor banks, and on-load tap changers. Power quality, including 

stability, harmonic distortion, and frequency fluctuation, is crucial for equipment safety and 

optimal functioning. Harmonic filters and uninterruptible power supply (UPS) help mitigate 

issues related to inadequate power quality [23]. 

B. Metrics of performance 

Performance metrics permit to assess DNs efficiency and reliability. These metrics include the 

System Average Interruption Duration Index (SAIDI) and the System Average Interruption 

Frequency Index (SAIFI), which measure the mean length of power outages for each customer 

as well as the average number of times a client experiences a power interruption. The Customer 

Average Interruption Duration Index (CAIDI) provides a more detailed perspective on the 

process of restoring power to customers during outages. Energy Not Supplied (ENS) is a crucial 

performance indicator that quantifies the amount of energy unavailable due to interruptions, 

which is essential for understanding the economic consequences of power outages and 

strategizing network infrastructure investments [24]. 

C. Forecasting demand and managing load 

DNs need to handle different levels of demand to function effectively. Accurate demand 

forecasting and load management are crucial for maintaining a balance between energy supplied 

and needed. Machine learning methods and time series analysis permit to forecast load patterns, 

leveraging past data, weather conditions, and economic indicators. These predictions help 

utility companies prepare for high demand periods and optimize resource distribution. Load 

management strategies involve modifying network loads to maintain supply and demand 
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balance, avoiding system overload. Common techniques include demand response, which 

involves incentivizing users to decrease or shift their consumption during peak hours, and load 

shedding, which temporarily disconnects non-critical loads. Energy storage systems (ESS) are 

essential for maintaining load equilibrium, allowing surplus energy to be stored during low 

demand and released during high demand [25]. 

D. Control and supervision 

The integration of Advanced Metering Infrastructure (AMI) and Supervisory Manage and Data 

Acquisition (SCADA) systems has significantly enhanced the monitoring, management, and 

automation of distribution networks. AMI uses intelligent meters to provide real-time power 

usage information, enabling more accurate invoicing, better energy demand prediction, and 

increased efficiency. It also enables remote monitoring and control, allowing utilities to 

promptly address power outages or anomalous circumstances. SCADA, on the other hand, 

provides centralized management by gathering data from distant devices, enabling 

instantaneous monitoring, fault identification, and remote control of network components, 

enhancing operational efficiency and dependability [26]. 

E. Adjustment to regulatory framework changes and technological advances. 

DNs are constantly evolving to meet new demands, including the integration of renewable 

energy sources, adherence to emission reduction objectives, and cybersecurity in digitalized 

networks. Renewable energy sources like solar and wind often exhibit fluctuations and 

irregularities and require sophisticated prediction methods, storage technologies, and grid 

adaptability. Regulatory compliance involves ensuring reliability, electricity quality, and 

environmental impact, which drives the use of new technologies and infrastructure upgrades. 

Cybersecurity is a pressing issue as DNs adopt digital technologies like smart meters, IoT 

devices, and cloud-based management systems. Safeguarding data and thwarting cyberattack 

are essential for the secure functioning of DNs [27]. 

1.4. Load characteristics and types. 

The main goal of an electrical distribution system is to provide energy to users at their individual 

locations, guaranteeing a dependable and effective power supply. Consumer loads pertain to 

the electrical appliances and gadgets that are linked to and extract electricity from the 

distribution system. The combined loads, when added together for a community or a particular 

set of consumers, make up the total load that is linked to the DN [28]. 
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1.4.1. Categories of consumers  

Electrical DNs often categorize users based on their power usage characteristics, consumption 

patterns, and demand magnitude. Comprehending these distinct categories of users is crucial 

for efficient system design, load prediction, and energy management [29] . A detailed overview 

of consumer classes follows (Fig 1.5): 

A. Residential consumers  

• Load profile 

Residential or domestic consumers are defined as households or single dwelling units. These 

users' load profile is defined by very modest power requirements, which fluctuate based on the 

household's size, the number of active electrical devices, and lifestyle choices. Typical domestic 

loads include lights, heating, cooling, kitchen appliances, entertainment devices, and small 

household electronic gadgets. 

• Peak demand  

Residential users frequently experience the highest demand for electricity during the evening 

hours, when residents come home and use numerous appliances concurrently. During this time, 

there is typically a simultaneous need for lighting, heating or cooling, and cooking, resulting in 

a substantial surge in power use. 

• Implications for DN 

Residential users contribute to the distribution network's nighttime peak load, which requires 

careful control to ensure a reliable power supply. The presence of a diverse range of loads in 

residential areas often leads to a more equitable and predictable pattern of demand, which may 

have positive effects on the system's stability. 

B. Industrial consumers  

• Load profile  

Industrial consumers include manufacturing facilities, factories, and other extensive industrial 

enterprises. These customers exhibit significant power requirements, often ranging from several 

hundred kilowatts to several megawatts. Industrial customers' load profile is primarily 

characterized by the prevalence of heavy equipment, motors, assembly lines, and other energy-
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intensive operations. Industrial loads exhibit significant variability, which is influenced by 

production schedules, shifts, and the industry's unique characteristics. 

• Peak demand 

Industrial customers often encounter high demand during regular working hours, especially in 

the morning when activities begin and in the afternoon. Certain industrial customers may have 

two different peaks in their load curve. Moreover, some sectors, such as steel production or 

chemical processing, may need continuous operation, resulting in a consistently steady demand 

pattern. 

• Implications for DN 

Industrial users make a substantial contribution to the total load on the distribution network and 

need strong infrastructure to accommodate their high demand. Because industrial loads are 

diverse and extensive, it is critical to accurately predict and regulate the load in order to avoid 

voltage fluctuations and maintain a steady power supply. 

C. Commercial consumers  

• Load profile  

Commercial customers include several types of enterprises, including office buildings, retail 

establishments, shopping centers, hotels, and restaurants. The load profile for business users 

often lies between that of residential and industrial consumers, with power needs ranging from 

tens to hundreds of kilowatts. Primary energy demands in business environments include 

lighting, heating, ventilation, air conditioning (HVAC) systems, computers, lifts, and many 

other office equipment. 

• Peak demand 

Commercial customers often experience their highest demand during business hours, which 

typically fall between late morning and early afternoon. During this time, there is a significant 

increase in activity levels in business facilities, with several systems and devices operating 

concurrently. 

• Implications for DN  

Commercial users significantly contribute to the peak demand on the distribution network 

during the daytime, especially in metropolitan and commercial areas.   
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Commercial users often exhibit a more regular load pattern, which facilitates load control and 

energy-saving efforts. 

D. Agricultural consumers  

• Load profile  

Agricultural users mostly consist of farms and other agricultural activities that utilize electricity 

for the purpose of irrigation, pumping, and processing equipment. Agricultural consumers 

exhibit a highly fluctuating load profile, which is determined by seasonal patterns, weather 

conditions, and the need for crop irrigation. 

• Peak demand 

Agricultural loads see their highest demand during certain time periods, such as early morning 

or late evening, when irrigation systems are often in use. The demand may also reach its 

maximum during certain seasons, when irrigation or harvesting activities are at their peak. 

• Implications for DN 

Agricultural loads may lead to substantial variations in the distribution network, especially in 

rural regions where these loads are concentrated. Dynamic load control solutions are necessary 

to provide a dependable power supply and prevent system overload due to seasonal and daily 

fluctuations in agricultural demand. 

E. Municipality Consumers 

• Load profile  

Municipality customers include the public services administered by local governments, 

including street lighting, water pumping stations, sewage treatment facilities, and public transit 

networks. These loads are generally consistent but may fluctuate in magnitude based on the size 

of the municipality and the particular services offered. 

• Peak demand 

Municipal loads often reach their highest levels during non-peak hours compared to the rest of 

the power system. Street illumination reaches its peak at night, while water pumping occurs 

when there is little overall demand. Certain municipal services, such as sewage treatment, 

function without interruption, resulting in a consistent load profile. 



24 
 

 

• Implications for DN 

Municipality customers have a vital role in upholding key services, and it is important to 

prioritize their loads to ensure dependability. The consistent and unchanging character of 

municipal loads may assist in stabilizing the total demand on the distribution network, 

especially during periods of low demand. 

The expansion of the customer base within an electrical DN has a significant impact on network 

optimization. Consumers' diversification across multiple categories leads to variable load 

characteristics and peak demand periods. This makes load forecasting and resource allocation 

more complex. To attain optimal network performance, operators must deftly manage and 

prioritize these varied needs. This involves adopting techniques that consider the distinct 

consumption patterns and requirements of each consumer group. Therefore, it is essential to 

have advanced analytical tools and adaptable infrastructure that can accommodate the 

constantly changing needs. 

 

1.4.2. Load Variability and Analysis 

The inherent fluctuation of electrical loads is a key attribute of DN [17]. This unpredictability 

stems from several causes, such as changeable consumer behavior, changing weather 

conditions, and operating schedules. These oscillations are particularly noticeable at the 

consumer level, where individual consumption habits result in substantial differences in 

demand. The substation transformer aggregates these loads to reduce the impact of individual 

variations, resulting in a more stable load profile [30]. 

DN Loads 
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Industrial  

Commercial  

Agricultural   

Municipality   

Managing a diversified 

customer base  

Fig 1.5 The main load classes served by the DN and their implications 
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 Load Duration Curve   
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A. Fundamental Concepts in Load Analysis 

• Connected load  

The connected load refers to the sum of the continuous ratings of all electrical devices linked 

to the DN. This term refers to the hypothetical maximum level of demand that would occur if 

all devices were to function concurrently at their utmost capacity. Nevertheless, this situation 

is seldom achieved in real-world situations because of the sporadic and diverse use of electrical 

devices. 

• Maximum demand 

Maximum demand is the greatest documented level of electrical demand within a certain time 

period, such as daily, weekly, monthly, or annual intervals. Typically, the connected load 

exceeds the highest demand, suggesting that not all devices operate simultaneously or to their 

full capacity. Maximum demand is a critical measure for system design and operational 

efficiency because it establishes the highest level of load that the system needs to handle. 

• Demand factor 

The demand factor refers to the proportion of the highest level of demand in relation to the total 

connected load. The value of this component usually falls between the range of 0.5 and 0.8. A 

lower demand factor signifies a better level of redundancy in the system, indicating that the 

infrastructure can handle extra loads without substantial danger. On the other hand, a larger 

demand factor indicates that the system is functioning at a greater proportion of its maximum 

capacity, necessitating careful management to prevent overloading. 

B. Load behavior analysis methods 

Examining load behavior in electrical DN is critical for understanding power demand 

fluctuations over time and across various customer categories [31]. There are numerous 

methods for simulating, forecasting, and regulating load behavior that ensure efficient and 

reliable distribution network operation [32]. Here are a handful of often-used techniques. 

• Daily load curve 

A daily load curve is a visual depiction of the fluctuation in electrical demand over a 24-hour 

period, which helps to determine the times of highest and lowest demand. It assists in managing 

load distribution, such as time-of-use pricing, and in designing infrastructure to ensure that the 
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distribution system can accommodate peak loads without excessive construction. Figure 1.6 

displays one example [33]. 

• Load duration curve 

This analysis method provides a thorough examination of load patterns over a long period of 

time, such as a year, which aids in capacity planning and reliability evaluation. It ensures 

effective network support and meets demand even during peak times. 

• Time series  

Time series analysis is a statistical method used to forecast future load behavior based on 

historical data, considering factors like economic growth, weather patterns, and consumer 

behavior. It aids in predicting demand and preparing networks for peak load periods. 

• Regression method 

Regression analysis is a statistical technique that examines the connection between a dependent 

variable, such as load, and independent variables like temperature, time, or economic indicators. 

It is helpful in forecasting consumer behavior and external influences, which in turn aids in 

demand response programs and environmental impact assessment. 

• Simulation method 

Distribution networks use simulation models like Monte Carlo and agent-based models to 

forecast their load behavior. They facilitate scenario planning and risk assessment, enabling 

utilities to examine possible vulnerabilities and explore hypothetical situations. 

Fig 1.6 Daily load curve of four household user classes [31] 
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• Artificial intelligence and machine learning techniques 

Artificial intelligence (AI) and machine learning (ML) methods are becoming more prevalent 

in the study of load behavior in smart grids and big data analysis. These approaches allow for 

real-time load forecasting and anomaly identification, empowering operators to promptly 

address shifts in demand. 

Analyzing load behavior using the aforementioned methods aids in handling intricacies in 

contemporary electrical DNs, allowing utilities to predict demand, improve efficiency, and 

guarantee dependable service. 

1.5. Impact of deregulation  

The deregulation of the energy industry, also known as the liberalization of electricity markets, 

arose in the latter part of the 20th century as a reaction to the monopolistic control exerted by 

vertically integrated utilities. The motivation for this transition stemmed from the conviction 

that the introduction of competition into the electrical market would stimulate innovation, 

improve operational efficiency, and lower prices for customers. The deregulation process 

included the separation of energy production, transmission, and distribution, enabling 

independent firms to participate in the market and compete in power generation and retail 

supply [34]. 

The legislative reforms have significantly transformed the structure of electrical distribution 

networks, creating both difficulties and possibilities for those involved. A significant 

consequence of deregulation has been the implementation of competitive forces, which have 

compelled utilities to enhance operational efficiency and embrace cost-effective management 

strategies. The emergence of independent power producers and competitive retail providers has 

increased the variety of power sources and contractual arrangements that distribution network 

operators are responsible for overseeing. The expansion of different sectors has led to the 

development of complicated grid management techniques and the use of modern information 

and communication technologies to effectively manage the system's growing complexity. 

Furthermore, deregulation has caused a change in utility operations, moving away from a 

primary concentration on dependability to one that also prioritizes economic efficiency. 

Performance-based regulation and other incentive systems have accompanied the transition, 

aiming to align utility performance with consumer and regulator expectations. Investment plans 

have advanced, placing more importance on optimizing assets and using smart grid 
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technologies that improve monitoring, control, and automation capabilities. Deregulation has 

fundamentally transformed the operation and management of distribution networks. This has 

created a need for continuous adaptation and innovation in order to satisfy the ever-changing 

needs of a competitive market [35]. 

1.6. Integration of distributed generation and battery energy storage  

1.6.1. Distributed generation  

The process of generating power from sources spread out over the electrical grid, closer to its 

use, is known as distributed generation (DG). DG comprises a range of technologies, such as 

solar photovoltaic (PV) systems, wind turbines, microturbines, and small-scale hydropower 

generators. These systems have several advantages, including the reduction of transmission 

losses, improvement of energy security, and more flexibility in fulfilling local demand. In 

addition, DG may aid in the decarbonization of the energy sector by incorporating renewable 

energy sources, therefore reducing dependence on fossil fuels and mitigating greenhouse gas 

emissions. Despite this, adding DG to existing distribution networks comes with a number of 

challenges. For instance, complex grid management is necessary to manage the intermittent and 

changing nature of renewable energy sources, maintain stable voltage, and control power flow 

in both directions. Adding DG efficiently necessitates large investments in smart grid 

technology, improved grid infrastructure, and revised regulations to ensure DG's smooth 

functioning within current networks [36]. 

1.6.2. Battery storage energy system 

Battery Energy Storage Systems (BESS) play a crucial role in the modernization and 

stabilization of electrical distribution networks. BESS has the capability to store surplus energy 

produced during times of low demand and distribute it during periods of high demand, hence 

improving the reliability and efficiency of the power grid. These systems are especially 

beneficial for mitigating the sporadic characteristics of renewable energy sources like solar and 

wind. BESS technologies, such as lithium-ion, flow batteries, and advanced lead-acid batteries, 

differ in terms of their energy density, discharge rates, and lifespan costs. Integrating Battery 

Energy Storage Systems (BESS) into distribution networks has several benefits. It may 

effectively reduce power fluctuations, improve power quality, and serve as a reliable backup 

power source during outages. In addition, BESS has the capability to provide grid ancillary 

services, such as frequency regulation and voltage control. Although BESS offers advantages, 

its implementation encounters obstacles such as expensive initial investments, safety 
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considerations, and the need for well-developed regulatory and commercial frameworks that 

encourage the use of storage systems and guarantee seamless connection with the current grid 

infrastructure [37].  

1.6.3. Joint impact on the distribution network 

The integration of DG and BESS into electrical distribution networks brings a new way of 

operating and managing these networks. Collectively, these technologies have the potential to 

greatly improve the flexibility, dependability, and sustainability of the power system. When 

combined with BESS, DG, especially those derived from renewable sources, may mitigate the 

fluctuations in power production, ensuring more consistent and uninterrupted power provision. 

This synergy may also diminish the need for substantial infrastructure expenditures by 

maximizing the current grid capacity and postponing the requirement for new transmission and 

distribution lines. Even so, using both DG and BESS requires advanced grid management 

systems to keep voltage levels stable, handle complex power flows, and make sure everything 

works together safely. To effectively address concerns about tariff structures, grid connectivity 

requirements, and incentives for distributed energy resources, it is also necessary to implement 

updated regulatory frameworks. The effect of DG and BESS working together is revolutionary. 

It makes it possible for a distribution network that is more stable and adaptable, able to handle 

the changing needs of today's decentralized energy environment [38] 

 

1.7. Distribution network problems 

DNs, crucial for delivering energy from power plants to customers, face numerous challenges 

including technological, economic, and regulatory issues, each requiring comprehensive 

mitigation measures [39]. 

1.7.1. Technical challenges 

• Infrastructure deterioration 

In many countries, a significant proportion of the electrical distribution infrastructure is 

antiquated and decaying. The aged equipment is susceptible to malfunctions, resulting in 

frequent power outages and escalated maintenance expenses. The incorporation of 

contemporary technologies, such as smart grids, is imperative to augment the resilience and 

dependability of these systems [40], [41]. 
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• Power quality problems 

Fluctuations in voltage, frequency, and waveform distortions can have an impact on the 

operation of electrical equipment. The growing presence of renewable energy sources in the 

grid exacerbates power quality concerns by introducing variable and intermittent behavior. 

Advanced power electronics and real-time monitoring systems are essential for tackling these 

difficulties [42]. 

• Load management: 

The increasing need for power, fueled by population expansion and the widespread use of 

electric cars and technological gadgets, puts pressure on distribution networks. Efficient load 

management measures [43], such as demand response programs and energy storage systems, 

are essential for maintaining a balance between supply and demand and avoiding network 

overload.  

1.7.2. Economic challenges 

• Financing and capital investment 

Enhancing and expanding distribution networks need significant financial capital. Obtaining 

funding for infrastructure projects is a major obstacle, especially in areas with limited financial 

resources. Public-private partnerships and new finance methods provide viable strategies for 

overcoming the financial deficit [44]. 

• Cost of energy losses 

The presence of resistive losses in conductors and transformers in distribution networks leads 

to substantial economic expenditures. These losses may represent a significant proportion of 

the overall power produced. By using energy-efficient technology and enhancing network 

architecture, it is possible to mitigate these losses [45].  

• Structure of tariffs 

Designing fair and sustainable tariff structures that accurately reflect the actual cost of 

electricity distribution while ensuring an affordable price for consumers is a challenging task. 

The regulatory frameworks must strike a balance between the need to generate revenue and the 

objective of providing reliable and affordable electricity to all consumers [46].  
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1.7.3. Regulatory challenges  

• Government policies and regulations 

The regulatory framework significantly influences the growth and functioning of electricity 

distribution networks. Fluctuating regulations and a lack of regulatory clarity may impede 

investment and inhibit the development of new ideas and technologies. It is crucial to have well-

defined and consistent regulatory frameworks that foster competition and incentivize 

investment in contemporary technology [47].  

• Standards for network Modernization 

It is crucial to establish and enforce standards for grid modernization, which includes 

integrating smart grid technology and implementing cybersecurity measures. This is necessary 

to guarantee the resilience and security of distribution networks. It is essential for governments, 

regulatory organizations, and industry players to work together in order to create and enforce 

these standards [48]. 

• Ecological Factors 

To achieve sustainable energy systems, renewable energy sources must be included in the 

distribution network. Regulatory frameworks should facilitate this shift by encouraging the use 

of distributed energy resources, such as rooftop solar panels and community wind projects, 

while also guaranteeing the stability and dependability of the power grid [49]. 

1.8. Energy loss reduction techniques  

There are a number of strategies used to lessen the financial burden of energy loss in electrical 

DNs. Smart grid technologies like automation and sensors are part of the package. It also 

includes network architecture optimization, segmentation and redundancy, equipment 

performance enhancement via low-resistance conductors and high-efficiency transformers, and 

energy management systems (EMS). 

Smart meters and other advanced monitoring and control systems aid in the detection and 

mitigation of nontechnical losses. Enhanced security measures prevent theft and illegal meter 

manipulation. Dynamic pricing and demand response programs are two forms of demand 

management that aim to balance the load and minimize losses by encouraging customers to 

modify their usage during peak hours. 
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Limiting transmission lengths is another way that renewable and distributed energy sources, 

including wind turbines in the area and solar panels on rooftops, may help decrease losses. More 

localized energy distribution is possible with microgrids, which may function autonomously or 

in conjunction with the main grid; this further decrease transmission losses. 

Contemporary techniques, including network reconfiguration, CB and DG allocation, and the 

use of flexible AC transmission systems (FACTS). While other methods address energy loss at 

a systemic level, these strategies offer precision and adaptability, leading to a direct increase in 

network reliability and efficiency but also providing specific means to improve energy flow, 

reduce operating costs, and improve voltage profiles in more complex power distribution 

contexts. 

1.8.1. Capacitor banks integration 

CBs play a crucial role in improving power factor and reducing reactive power losses in 

distribution networks [50]. By compensating for reactive power, CBs reduce total losses, 

thereby minimizing the amount of reactive power required for network transmission. CBs play 

a vital role in regulating voltage levels to ensure the optimal operation of electrical equipment. 

By stabilizing the voltage, they lower the chance of undervoltage situations, which could lead 

to high current flow and the losses that come with it. Using capacitors to improve the power 

factor lowers the phase difference between voltage and current. This reduces the total current 

going through the network, which in turn minimizes resistive losses. CBs are most efficient 

when strategically positioned in areas with substantial demand for reactive power, particularly 

in close proximity to inductive loads. This specific kind of compensation alleviates the strain 

on the overall network. 

1.8.2. Distributed generation integration 

The integration of small-scale energy sources near the energy consumption point reduces 

transmission and distribution losses by producing power in close proximity to the load centers. 

DG supplies electricity locally during blackouts or periods of high demand, provides 

redundancy and therefore enhances the grid's reliability. The incorporation of renewable energy 

sources, such as photovoltaic panels and wind turbines, not only aids in minimizing energy loss 

but also promotes the achievement of sustainability objectives [51].  
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1.8.3. Network reconfiguration 

Network reconfiguration is the process of modifying the distribution network's topology, either 

manually or using automated methods, in order to optimize the flow of electricity and reduce 

losses [52]. Network reconfiguration may improve load distribution, mitigate overcrowding, 

and reduce losses in specific network segments. Advanced algorithms have the ability to 

determine the best possible setups in real-time by taking into account the current load 

circumstances and network factors. Automated switching devices provide rapid reconfiguration 

in response to fluctuating load patterns, enhancing network efficiency and reducing losses.  

1.8.4. Flexible AC Transmission Systems (FACTS) 

FACTS solutions improve the manageability and stability of AC transmission systems, 

resulting in reduced losses and enhanced power quality. Essential elements include static VAR 

compensators (SVCs), unified power flow controllers (UPFCs), and dynamic line rating (DLR). 

SVCs are capable of providing instantaneous adjustment of reactive power, while UPFCs allow 

for real-time manipulation of power flow. The DLR system has the capability to adapt the 

current-carrying capacity of transmission lines in response to real-time environmental 

circumstances. This feature improves efficiency and minimizes thermal losses [53]. 

1.9. Conclusion  

To summarize, this chapter has presented a thorough analysis of electrical DNs, exploring their 

organization, operation, related difficulties, and possible remedies. By comprehending the 

intricacies and challenges inherent in these systems, we provide the foundation for investigating 

sophisticated optimization strategies. The next chapter explores precise techniques like network 

reconfiguration, capacitor bank allocation, and the incorporation of distributed generation, 

focusing on their contribution to enhancing the operation of electrical DNs. 

   

 

 

 

 

 



34 
 

CHAPTER 2  

Current Advances in the Reconfiguration and Optimal Allocation 

of Capacitor Banks and Distributed Generation in Distribution 

Networks 
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2.1 Introduction 

DN losses account for a significant portion of energy consumption in power systems. Sharp 

increases in power consumption often lead to congestion in these networks, further complicated 

by competitive energy markets and strict environmental restrictions. As a result, managing 

losses in DNs has become a critical concern. In order to maximize economic results, it is critical 

to improve power quality and streamline operational efficiency. Such enhancements will 

provide a favorable atmosphere for executing loss-reduction efforts and embracing cutting-edge 

operational processes. The DN obtains a comprehensive power supply that is equivalent to its 

output minus any losses incurred during transmission. Within this particular framework, the 

main approach to improving the efficiency of DNs is to minimize power losses. 

The research community has progressively focused its attention on techniques to minimize 

losses and guarantee voltage stability in DNs in recent decades. The literature documents 

numerous approaches for minimizing losses in DNs. Some important strategies are the 

allocation of capacitors, which works best in high-voltage systems; network reconfiguration, 

which is particularly effective in low-voltage systems; and the allocation of distributed 

generation (DG), which is crucial for adding small-scale power plants like solar panels or wind 

farms to the DN. Combining these methods synergistically can further optimize the desired 

advantages. 

2.1. Introduction 

2.2. Network reconfiguration 

2.3. Capacitor banks allocation 

2.4. Distributed generation allocation 

2.5. Impacts of network reconfiguration, capacitor banks, and distributed generation on distribution network 

performance 

2.6. Simultaneous network reconfiguration, capacitor, and distributed generation allocation 

2.7. Extant literature and the proposed study 

2.8. Conclusion   
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2.2.     Network reconfiguration  

Network reconfiguration is a vital technique for improving power quality, operational 

efficiency, and reliability. It has become an economic necessity due to the increased complexity 

of DN, which is the result of a combination of factors such as demand for dependable power, 

the advent of smart grids, and the integration of DG. By manipulating and tying switches to 

modify the network design, utilities can achieve substantial improvements in network 

performance. 

2.2.1. Definition 

Network reconfiguration refers to the process of altering the overall structure of an electrical 

distribution network by manipulating switches, with the aim of maximizing certain operational 

characteristics. The primary objectives include the reduction of power losses, the equitable 

distribution of feeder loads, the enhancement of voltage profiles, and the overall improvement 

of network dependability. Modern control systems frequently carry out reconfiguration either 

statically, during off-peak hours, or dynamically in response to real-time operating situations.   

Sectionalizing and tie switches are key elements of The DN. Switches in a closed position, 

known as sectionalizing, divide the network into distinct sections. These switches allow for the 

isolation of specific areas during problem situations. Tie switches, often in the open position, 

link separate feeders together. They serve the purpose of providing alternate channels for the 

flow of electricity. 

2.2.2. Progress in Network Reconfiguration Techniques 

2.2.2.1.    Historical foundations  

The concept of network reconfiguration in distribution systems originated in 1975 with Merlin 

and Back's introduction of the "branch exchange" method [54]. This method entailed 

transforming the network into a meshed configuration and then gradually opening switches to 

revert back to a radial configuration that minimized losses. Despite being innovative, this 

system had drawbacks, namely its disregard for voltage angles and emphasis on only active 

loads represented by current sources. In 1988, authors in [55] improved the approach by 

introducing a formula that calculates changes in loss caused by load movement across feeders. 

Their approach, which allowed for efficient load balancing, proved complex in terms of 

recalculating the power flow for each possible arrangement. In 1989, the authors of [56] devised 

a more reliable technique for enhancing network reconfiguration. This method overcomes the 
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drawbacks of prior techniques by integrating operational restrictions. This study laid the 

groundwork for future research, emphasizing the importance of incorporating restrictions like 

voltage limitations, which compensators can adjust. In the 1990s and early 2000s, several 

researchers suggested new methods to address the reconfiguration problem, including authors 

in [57] who introduced genetic algorithms as a solution to deal with the combinatorial aspect 

of the problem. This represented a notable transition towards heuristic and metaheuristic 

techniques, which would become the predominant focus of research in the subsequent decades 

[58]. 

2.2.2.2.    Recent advancements  

Between 2019 and 2024, there was a significant increase in the advancement of hybrid and 

multi-objective optimization approaches. Researchers are increasingly concentrating on 

combining several metaheuristic techniques to overcome the limits of using just one method. 

Artificial intelligence (AI) and real-time optimization approaches have propelled the latest 

progress in network reconfiguration [59]. 

For instance, authors in [60] introduced a reconfiguration technique that utilizes genetic 

algorithms grounded in graph theory. Their approach integrated various objectives, including 

the minimization of voltage deviation, the reduction of losses, and the guarantee of topological 

stability. They showcased the efficacy of their approach on a typical 10-node distribution 

network, emphasizing its efficiency and potential for real-world implementation.  In a similar 

timeframe, authors in [61] employed an analytical approach to restructure the medium-voltage 

network in Bagan Siapiapi. This resulted in notable reductions in power losses and 

enhancements in voltage profiles through the establishment of an extra substation and the 

redistribution of loads.  Reference [62] hybridizes Genetic Algorithm (GA) with Particle Swarm 

optimization (PSO) and Teaching and Learning Based Optimization (TLBO) methods, within 

the DN reconfiguration process to reduce power loss during faults. The suggested approach in   

[63] is based on an adaptively adjustable fuzzy logic controller, where the membership 

functions vary based on inputs. This approach allows for a unique determination of the 

restoration sequence of loads and generators. The IEEE 118-bus system evaluates the suggested 

network reconfiguration algorithm, revealing its efficiency and practicality. Reference [64] 

presents a model of DN reconfiguration for new energy and electric vehicles (EVs), where the 

decision variables include the position of bus tie switches and the range of reactive power 

regulation. It employs a novel decision-making method called the Prevalence Effect Method 
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(PEM), as well as a multi-objective evolutionary algorithm that considers line loss and voltage 

deviation as objective functions. Authors in [65] introduce a new real-time autonomous 

dynamic reconfiguration (ADR) approach that uses a deep learning (DL) algorithm to minimize 

power loss and switch action in DNs. The suggested ADR approach involves making decisions 

based on both the historical control dataset and the current system state. The study in [66] 

introduces a novel approach to examine and clarify decisions obtained via reinforcement 

learning in the reconfiguration of distribution networks. The suggested methodology involves 

the deployment of a reinforcement learning agent to train an explanatory neural network. This 

innovative technique is effective in both the 33- and 136-bus test systems. 

The progression of network reconfiguration strategies from the early "branch exchange" 

method to the advanced AI-driven systems of today, which reflects the growing complexity and 

requirements of current DNs. Recent developments have concentrated on hybrid approaches, 

multi-objective optimization, and the integration of real-time artificial intelligence technology, 

allowing for more adaptable, efficient, and dependable power distribution systems. 

 

2.2.3. Taxonomy of methodologies   

A broad range of strategies exist for network reconfiguration, including both conventional 

optimization techniques and sophisticated metaheuristic and artificial intelligence-based 

approaches. The choice of technique is contingent upon characteristics such as the size of the 

network, its complexity, and the specific goals of the reconfiguration procedure [52], [59]. 

Figure 2.1 illustrates different methods used in DN reconfiguration.   

2.2.3.1.    Conventional methods  

DN reconfiguration is a very challenging Mixed Integer Nonlinear Programming (MINLP) 

issue to answer strictly mathematically. Within traditional methods, the issue of reconfiguration 

transforms into either a mixed integer linear programming problem (MILP) or a mixed integer 

quadratic programming (MIQP) problem. These methods significantly reduce computation 

time. However, the approximations of objective functions and restrictions may lead to 

discrepancies between the approximate network configuration and the optimal configuration in 

real networks. 
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2.2.3.2.    Heuristic methods 

The branch exchange approach entails assessing pairs of branches to permit or prohibit their 

operation depending on their effect on the target function, usually aiming to minimize power 

losses. Although it continuously maintains a radial arrangement, it is very responsive to the 

original arrangement and may need significant processing resources. Recent research has 

expanded the branch exchange approach to maximize power quality goals such as harmonic 

distortion and voltage imbalance. Conversely, a network load flow analysis using the optimum 

flow pattern approach entails closing all switches and focusing just on the resistance of lines, 

disregarding their reactance. It first identifies the branch with the lowest current, opens it, and 

recalculates the load flow to accommodate the new topology. The iterative approach continues 

until attaining a radial topology with the lowest possible losses. The original setup does not 

affect the final configuration of this approach, but the mutual influences among the loops may 

prevent it from ultimately providing the global optimum. Various improvements, such as 

addressing individual loops or utilizing global optimization techniques, can enhance the 

performance of this approach. Some other heuristic methods use optimal power flow 

techniques, such as convex relaxation and branch-and-bound solutions, to investigate the search 

space more thoroughly and improve the reconfiguration process. 

2.2.3.3.    Metaheuristic techniques  

Independent of specific issue characteristics, metaheuristic techniques are iterative algorithms 

that explore and exploit search areas to identify optimum or nearly optimal solutions. Unlike 

knowledge-based approaches, metaheuristics are versatile and can adapt to various optimization 

situations through parameter calibration. Often, we can parallelize these approaches and 

integrate them with other techniques like heuristics. Furthermore, these approaches are 

sometimes referred to as derivative-free optimization methods because they do not rely on 

derivatives. We widely use metaheuristics to address static reconfiguration difficulties. Certain 

uses of methods like discrete particle swarm optimization (DPSO), genetic algorithms (GA), 

and bat algorithms (BA) have been shown to reduce power losses and improve reliability 

metrics. Recent research has expanded the application of these techniques to dynamic 

reconfiguration challenges. This includes the integration of stochastic model predictive control 

and enhanced genetic algorithms to effectively manage dynamic scenarios that involve plug-in 

hybrid electric cars and renewable energy sources. 
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2.2.3.4.    Hybrid techniques  

Hybrid techniques combine several algorithms to improve performance and overcome the 

limitations of individual techniques, such as the trapping of local optima, sluggish convergence, 

and insufficient search space exploration. Hybrid metaheuristics methods combine, for 

example, Particle Swarm Optimization (PSO) with Shuffled Frog Leaping Algorithm (SFLA) 

to efficiently optimize static DN reconfiguration objectives such as reducing power loss and 

maintaining voltage stability. In a similar vein, hybrids based on heuristic rules, such as the 

combination of the successive branch-exchange algorithm with genetic algorithms (GA), 

provide rapid convergence and almost optimum solutions in large networks. In the context of 

dynamic reconfiguration, the integration of linearization approaches with other methodologies, 

such as the conversion of nonlinear problems into mixed-integer second-order cone 

programming (MISOCP) models solved by binary PSO and CPLEX, effectively addresses 

intricate reconfiguration problems while simultaneously decreasing computational complexity 

by utilizing clustering techniques like fuzzy c-means (FCM). 

 

 

Fig 2.1:  Taxonomy of DN reconfiguration approaches 

M
et

h
o

d
o
lo

g
y

 f
o

r 
D

N
 

R
ec

o
n

fi
g

u
ra

ti
o

n
  

 

Conventional 

Methods     

Heuristic 

Techniques    

Metaheuristic 

Methods     

Machine Learning 

Techniques     

MILP   MIQP   

ANN   

RL 



40 
 

2.2.3.5.    Machine learning techniques  

Machine learning techniques, which are a subset of artificial intelligence, enable computers to 

independently acquire knowledge and form judgments with few processing resources, making 

them well-suited for dynamic reconfiguration challenges. We can broadly classify the 

approaches into two main categories: artificial neural networks (ANN) and reinforcement 

learning (RL). Artificial neural network (ANN) techniques use linked neurons to learn from 

data and quickly create the best network configurations in real time, adapting to different load 

patterns. These techniques are based on the structure of the human brain. In contrast, 

reinforcement learning (RL) approaches include an agent that acquires optimum decision-

making skills by engaging with an environment and obtaining feedback. Reinforcement 

learning (RL) is very efficient for online reconfiguration due to its ability to react to dynamic 

settings, consistently improve tactics, and function with little computing burden, making it 

optimal for quick, real-time network modifications. 

To conclude, the goal of the static reconfiguration problem is to determine the most efficient 

network configuration for an extended duration while keeping the load and generation data 

constant. It is more important to be accurate than to be quick at computing. This implies that 

metaheuristic and hybrid metaheuristic approaches outperform classical or heuristic techniques, 

susceptible to approximations and local optima. Dynamic reconfiguration, on the other hand, 

necessitates immediate modifications, with an emphasis on speed and minimal computing 

resource use. The effectiveness of classical, hybrid, and machine learning approaches makes 

them preferred for dynamic situational analysis. Although machine learning methods need 

extensive offline training, they excel in rapidly generating optimum configurations during 

online reconfiguration, even in the face of huge and complicated network training issues. 

 

2.3.    Capacitor banks allocation 

The allocation of capacitors is essential for optimizing the performance of high-voltage DNs. 

Effective regulation of reactive power results in reduced power and energy losses, enhanced 

voltage stability, and a more favorable voltage profile across the network. In addition, 

capacitors augment power factor correction, therefore enhancing the overall efficiency and 

reliability of the system. 
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2.3.1. Capacitor allocation techniques: Historical evolution 

Voltage control and loss reduction using capacitors have been a well-established idea since the 

1940s. Initially, substations housed capacitors. Nevertheless, starting in the 1950s, there was a 

change in the prevailing pattern towards positioning capacitors in closer proximity to the loads 

on primary distribution feeders. The goal of this change was to improve capacitors' efficiency 

in reducing losses. The main contributions are as follows: In 1956, Neagle and Samson 

proposed a rule-of-thumb method for allocating capacitor storage [67]. In 1965, Schmill 

expanded the rule-of-thumb method by accounting for both switching and fixed capacitors in 

main distribution feeders characterized by changing load distributions [68]. In 1968, Dura  

devised a quantitative approach to determine the economic justification of capacitor installation 

[69]. In 1978, Bae introduced an analytical approach to determining the most effective and 

optimal amount of reactive compensation in order to achieve the greatest possible annual 

decrease in losses [70]. 

Historical approaches to capacitor allocation encountered several obstacles, including the 

assumption of restricted or simplified distribution of reactive loads, which frequently did not 

correspond to actual circumstances, and the dependence on consistent feeder wire widths, which 

resulted in errors in estimating losses. Voltage management challenges and limitations imposed 

by the maximum number of capacitors analyzed concurrently diminished the efficacy of these 

approaches. Furthermore, some approaches lacked the necessary flexibility to adapt to various 

network setups, and the solutions derived from assumptions that were not necessarily applicable 

in real-life situations. 

2.3.2.  Recent developments  

The constraints of previous methodologies prompted the emergence of more advanced 

techniques. The authors in [71] rectified the impractical assumptions of earlier methodologies 

and devised a more flexible technique that could adjust to the specific circumstances of the 

system. Furthermore, they presented the notion of managing many segments of a radial feeder 

that had varying wire diameters and distributions of reactive loads. Reference [72] devised a 

control approach and algorithm to enhance voltage regulation and remediate reactive power at 

both the substation and feeder levels. This study made a significant contribution to the 

advancement of integrated distribution control systems. The writers of [73] came up with a 

continuously controlled capacitive compensation method for primary feeders that makes 

reactive power regulation in distributed automated systems (DAS) better. 
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Notwithstanding these improvements, previous approaches failed to address specific concerns, 

such as the benefits of capacity release, the consequences of load increase, higher voltage during 

off-peak hours, and fluctuations in energy expenses. Furthermore, the techniques often 

overlook the optimum number of capacitors, their specific type (fixed or switched), and their 

typical standard size. These gaps have prompted the development of numerous analytical, 

heuristic, and evolutionary methods that consistently improve capacitor allocation 

methodology. 

The algorithm for allocating capacitors has significantly advanced from basic rule-of-thumb 

techniques to more sophisticated and flexible solutions. Although early techniques established 

the fundamental principles, contemporary methods integrate sophisticated algorithms to 

overcome the constraints of previous methods.  

2.4.    Distributed generation allocation 

In recent years, the generation and distribution of electricity have seen a notable transformation, 

mostly attributed to the growing incorporation of DG into DNs. DG typically consists of smaller 

power-generating units strategically positioned near electricity consumption locations, either 

on the demand side (near load points) or the supply side (utility side of the meter). Renewable 

energy sources like solar, wind, or biomass often construct these units, gaining prominence as 

the demand for cleaner, decentralized energy systems intensifies. 

2.4.1. DG definition, impact, and challenges 

A variety of definitions of DG exist in the literature, with its specific meaning varying based 

on aspects such as purpose (e.g. loss minimization, renewable energy integration, etc.), 

technology, location, rating, power delivery area, environmental effect, operating mode (e.g. 

off grid or grid-connected), ownership, and penetration. DG refers to the electric power 

generated from smaller demand and supply-side resources, capable of being deployed 

throughout the DN to meet the energy demands of customers. The growing use of DG is causing 

a transition of the power grid from a centralized to a decentralized structure. The need to 

incorporate renewable energy, enhance energy security, and achieve lower transmission losses 

motivates this movement. Although DG provides substantial environmental benefits by 

reducing greenhouse gas emissions and economic advantages via cost savings and decreased 

infrastructure requirements, it also presents technical challenges such as voltage control and 

power quality issues. As a result, it is critical to determine the optimal size and placement of 

DG units in order to maximize benefits while maintaining satisfactory grid performance. To 
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ensure the safe and dependable integration of DG into current distribution networks, strict 

adherence to standards such as IEEE 1547 is required [74]. 

2.4.2. Methodologies  

The evolution of the conventional energy industry into a competitive and dynamic environment 

has had a profound effect on DNs, which were formerly passive elements of the electrical grid 

[75]. Given the exponential expansion in population and industrial activity, these networks are 

currently under heightened strain as a result of the expanding disparity between electricity 

production and consumption. Implementing DG at the distribution level is an essential approach 

to tackling this problem, as it improves the capacity and dependability of the network when 

carried out with careful planning. The integration of DGs into DNs transforms them from 

passive to active, bringing new economic and technological challenges that require rigorous 

management. The appropriate placement of DG within DN not only facilitates environmental 

objectives, but also provides economic benefits to both utilities and customers, necessitating 

sophisticated approaches for optimizing power flow and preserving stability and efficiency in 

modern distribution networks. 

The allocation process commonly uses optimization methods [76] to minimize power losses, 

boost voltage profiles, improve system stability, and reduce operating expenses. These 

techniques encompass metaheuristic algorithms which are particularly suitable for managing 

the nonlinear and intricate characteristics of DG integration in DNs. In addition, several 

techniques include multi-objective strategies to reconcile trade-offs between conflicting 

objectives, such as reducing costs and minimizing environmental effects. It is important to take 

into account factors such as load demand patterns, network structure, and the intermittent nature 

of renewable energy sources when allocating resources to ensure they are resilient and efficient. 

The use of accurate modelling and simulation techniques in these methods helps to develop 

strong, efficient, and eco-friendly power distribution systems that can handle the growing use 

of DG. 

DG installations significantly change power network characteristics, calling for a range of DG 

allocation strategies to meet operational goals and limitations. These approaches' optimization 

algorithms are a common way to classify them. Analytical approaches, when coupled with basic 

or comprehensive searches, may provide accurate results; nevertheless, they are not feasible for 

large-scale networks. Given the limitations of individual metaheuristic optimization algorithms, 
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multi-objective and hybrid optimization methods are becoming more appropriate for DG 

allocation, particularly when renewable energy sources are involved. 

2.5.    Impacts of reconfiguration, capacitor banks, and distributed generation on 

distribution network performance 

Effective use of reconfiguration techniques, CBs, and DG in electrical DNs is essential for 

improving system performances. The influence of each of these elements extends to many 

facets of the network, including power losses, voltage profiles, system dependability, and 

environmental sustainability, etc. A thorough understanding of the distinct contributions and 

difficulties associated with each strategy is critical for maximizing the efficiency of 

contemporary distribution networks' design and functioning.  

 

Performance 

criterion 

Network 

reconfiguration 
CBs allocation DGs allocation 

Loss 

minimization 

By optimizing the 

network topology.  

Reduces reactive and 

overall power losses 

By producing electricity in close 

proximity to the load. 

Voltage profile 

improvement  

By minimizing voltage 

dips 

By offering active power 

assistance 

Substantial enhancement in local 

voltage profiles, albeit may need 

the use of voltage control 

devices. 

Reliability 

enhancement 

By offering other power 

routes 

By voltage stabilization 

during periods of high 

demand 

Potentially by lowering 

dependence on centralized 

generation 

Loadability 

enhancement 

By distributing load 

evenly across feeders 

By correcting power 

factor 

By providing supplementary 

electricity locally 

Environmental 

impact 

based on configuration 

objectives (neutral) 

Minimizes the need for 

spare production, 

therefore decreasing 

emissions 

decreases dependence on fossil 

fuels. 

Economic 

impact  

Minimizes operating 

expenses. 

Contributes to energy cost 

reduction by minimizing 

losses. 

Enables economic advantages by 

energy savings and potential 

profit from surplus power. 

Power quality 

improvement 
By load balancing  

By decreasing voltage 

fluctuations 

May result in power quality 

problems such as harmonics. 

Grid flexibility 

enhancement 

Through dynamic 

reconfiguration 
Modest contribution 

By offering local generation 

alternatives 

Complexity of 

implementation 

Moderate to high, 

depending on network 

size and complexity 

Low to moderate, depends 

on location strategy 

Elevated, owing to integration 

difficulties and the need for 

control 

Safety 

enhancement  

Potentially, by 

decreasing local 

overloads 

By regulating voltage 

stability 

May provide safety hazards, 

especially when dealing with the 

occurrence of islanding 

Resilience 

improvement  

by offering alternative 

power paths during 

outages 

Mainly by voltage 

stabilization  
by energy sources diversification. 

 

Table 2.1. How DN performance is impacted by reconfiguration, CBs, and DGs. 
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Table 2.1 provides a comprehensive analysis of these effects across many parameters, offering 

valuable insights into how these technologies collectively enhance the efficiency and 

adaptability of the electricity grid. Each of the three methods discussed here, regardless whether 

it pertains to network reconfiguration, capacitor installation, or DG integration, contributes in 

its own special way to improving DN performance. The following section examines the most 

recent developments in approaches that tackle the simultaneous optimization of various 

components, which is a challenging task because of their interdependencies. Efficient network 

reconfiguration shortens power flow routes, resulting in decreased losses and enhanced voltage 

stability. The provision of reactive power support by CBs is critical, as it improves the voltage 

profile and decreases the grid's reactive power demand. Meanwhile, DG units provide both loss 

reduction and voltage support by producing power in close proximity to load centers. 

Optimizing these components together enables the DN to attain exceptional performance, such 

as enhanced loadability, decreased ecological impact, and heightened operational adaptability. 

This sophisticated methodology has attracted considerable interest from both scholars and 

distribution network operators due to its capacity to provide major techno-economic advantages 

by skillfully managing the trade-offs between investment costs, operational efficiency, and 

network reliability. 

Each of the three methods discussed here, regardless whether it pertains to network 

reconfiguration, capacitor installation, or DGs integration, contributes in its own special way to 

improving DN performance. The following section examines the most recent developments in 

approaches that tackle the simultaneous optimization of various components, which is a 

challenging task because of their interdependencies. Efficient network reconfiguration shortens 

power flow routes, resulting in decreased losses and enhanced voltage stability. The provision 

of reactive power support by CBs is critical, as it improves the voltage profile and decreases 

the grid's reactive power demand. Meanwhile, DG units provide both loss reduction and voltage 

support by producing power in close proximity to load centers. 

Optimizing these components together enables the DN to attain exceptional performance, such 

as enhanced loadability, decreased ecological impact, and heightened operational adaptability. 

This sophisticated methodology has attracted considerable interest from both scholars and 

distribution network operators due to its capacity to provide major techno-economic advantages 

by skillfully managing the trade-offs between investment costs, operational efficiency, and 

network reliability.  
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2.6.    Simultaneous network reconfiguration, capacitor, and distributed generation 

allocation 

This section looks first at the impacts of these techniques when used in pairs, illustrating how 

their combined application can cause synergistic enhancements in network performance. We 

then scrutinize their concurrent application to identify the most noteworthy benefits related to 

power flow optimization, loss reduction, and voltage stability enhancement across the DN. 

Figure 2.2 illustrates the concept of the integrated use of these techniques, which, when 

combined, provide the highest potential for optimal benefits. 

2.6.1. Network reconfiguration simultaneously with DG allocation 

Optimizing reconfiguration simultaneously with DG allocation coordinates the strategic 

placement of DG units with the network topology, thereby greatly increasing the benefits of 

DNs. This method ensures the delivery of power through the most efficient pathways, thereby 

reducing losses, improving voltage stability, and enhancing system reliability. Furthermore, by 

addressing changing load patterns and incorporating renewable energy, it enhances 

adaptability, enabling the grid to adapt to current requirements. Still, this approach presents 

difficulties, such as the intricacy of resolving a multi-objective optimization problem and the 

urgency for accurate synchronization between reconfiguration and DG placement, necessitating 

sophisticated algorithms and meticulous real-time control. Notwithstanding these difficulties, 

when executed with effectiveness, this integrated strategy is essential for maximizing the 

performance, efficiency, and resilience of contemporary distribution networks. 

2.6.2.  Network reconfiguration simultaneously with CBs allocation 

The simultaneous reconfiguration and allocation of capacitors in DNs is a potent strategy that 

exploits the advantages of both approaches to enhance system performance. Network 

reconfiguration is the modification of the network topology by adjusting the status of switches 

in order to minimize power losses, achieve load distribution balance, and enhance voltage 

profiles. Capacitor allocation, on the other hand, refers to the strategic placement of CBs to 

enable reactive power support, minimize power losses, and improve voltage stability. By 

optimizing these two approaches in conjunction, the network can achieve even more significant 

reductions in power losses by incorporating the capacitors' reactive power compensation into 

the reconfiguration algorithm. This synergy not only enhances the efficiency of power delivery 

but also optimizes voltage regulation throughout the network, minimizing the requirement for 

supplementary voltage control devices. Furthermore, the implementation of simultaneous 
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optimization can improve network loadability by efficiently managing the distribution of active 

and reactive power flows, boosting the system's overall dependability. Nevertheless, the 

integration of these two methods introduces complexity to the optimization procedure because 

it necessitates sophisticated algorithms to effectively handle both the binary nature of 

reconfiguration and the continuous nature (size) of capacitor allocation. Even though it's hard, 

the strategy of concurrent reconfiguration and capacitor allocation must be used together to 

make the distribution network more reliable, stable, and efficient. 

2.6.3. Simultaneous allocation of CBs and DG 

The concurrent allocation of capacitors and DG in DNs is a sophisticated optimization 

technique useful to improve the efficiency and stability of the power system.  

Reactive power support is a common application of capacitors, as they effectively mitigate 

power losses and enhance voltage regulation by rectifying power factor fluctuations. DG units, 

such as solar panels or wind turbines, produce active electricity in close proximity to the 

electrical load centers, alleviating the strain on the transmission network and further reducing 

power losses.  By optimizing these two components in conjunction, the network gains a more 

balanced and efficient power flow since the reactive power compensation of the capacitors is 

synchronized with the active power generation of the distribution generator units. 
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distributed generation. 

 

Fig 2.2. The deployment of reconfiguration, CBs and DGs, individually and in combination, 

within a DN. 
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Implementing this integrated strategy not only reduces total power losses but also greatly 

enhances voltage profiles, increasing the network's resistance to voltage variations and 

improving power quality. Furthermore, the strategic positioning of capacitors and DGs can help 

alleviate possible problems like voltage increase or instability that may occur when DG units 

are integrated without adequate reactive power support. However, this simultaneous allocation 

necessitates advanced optimization methods, as it entails the management of the interaction 

between active and reactive power flows while taking into account distinct operational 

limitations. The effective allocation of capacitors and DG units is crucial for establishing a 

resilient, efficient, and environmentally-friendly DN, particularly in light of the increasing 

integration of renewable energy sources. 

2.6.4. Network reconfiguration simultaneously with allocation of CBs and DG 

A unified strategy for improving the performance of DNs is the simultaneous optimization of 

network reconfiguration with the allocation of CBs and DG. By aligning the reconfiguration 

process with the positions of CBs and DG units, this integrated approach enables the network 

to optimize power flows, resulting in more efficient loss reduction, increased voltage stability, 

and enhanced loadability. The simultaneous use of CBs and distributed generators manages 

both voltage regulation and power factor correction, essential for ensuring a stable and efficient 

network, particularly in the face of fluctuating load conditions. This concurrent optimization 

improves the system's adaptability and robustness by enabling it to more effectively handle 

variations in demand and supply, especially from sporadic renewable energy sources. 

Nevertheless, the intricacy of this method is remarkable, since it entails resolving a multi-

objective optimization issue that necessitates sophisticated algorithms capable of managing the 

interconnections among reconfiguration, capacitor placement, and distributed generation 

allocation. 

Throughout this section, we have described the techniques of network reconfiguration, CBs, 

and DG allocation both separately and in conjunction, emphasizing their importance and 

effectiveness in improving the efficiency of DNs. The primary objective of our study has been 

to illustrate the positive impact of each technique, together with their combined implementation, 

on enhancing different dimensions of network performance. The subsequent section provides 

an overview of recent developments and methodologies. 
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2.7.    Extant literature and the proposed study 

The crucial importance of these techniques in enhancing the operational capabilities of 

distribution networks has led to a significant focus on cost-effective methods for reconfiguring 

networks, allocating capacitor banks, and integrating distributed generations. Researchers have 

initiated a significant amount of research, introducing a variety of methodologies with distinct 

objectives to address these challenges. Certain research concentrates on individual tactics, as 

outlined in references [77] [78] [79] [80], while others investigate the integration of various 

approaches in pairs, as shown in references [81] [82]. Furthermore, there is an increasing focus 

on the simultaneous use of different techniques to optimize advantages. Utilized tactics include 

heuristic algorithms, mathematical programming, and machine learning approaches to achieve 

objectives such as improving reliability and voltage stability, decreasing power losses, and 

minimizing costs. A comprehensive analysis of existing research, as presented by the authors 

in [83] [84], highlights the exceptional results obtained by integrating various methods. 

Nevertheless, there is a scarcity of researchers that have explicitly examined and evaluated 

many techniques for optimal network reconfiguration simultaneously with the allocation of 

capacitor banks, and distributed generations (ONRSACD). Ref [85] presents a hybrid HS-

PABC method for optimum distribution network design. The approach demonstrates promising 

outcomes in reducing power loss and improving the bus voltage profile under different load 

scenarios. The work described in reference [86] presents a stochastic multi-objective model that 

integrates NSGA-II with fuzzy set theory to effectively tackle technical, economic, and 

environmental goals. The paper in reference [87] presents a multi-objective approach based on 

fuzzy-BFO (Block Forest Optimization) that aims to reduce power loss, enhance voltage 

deviation, and balance feeder loads in distribution systems. For the purpose of minimizing 

actual power loss, the work in [88] suggests the use of the LSHAD-EpSin algorithm. An 

MOPSO-MCS-based multi-objective planning model is introduced in reference [89] to 

optimize the positioning of distributed generators and capacitors in imbalanced DNs. The model 

takes into account reconfiguration and aims to minimize energy loss, energy not supplied, and 

current imbalances. The MBGWO algorithm, as described in reference [90], exhibits substantial 

energy conservation and a decrease in peak demand for both balanced and unbalanced 

distribution systems. Furthermore, the TPA algorithm introduced in reference [91] aims to 

reduce power loss and operating expenses while improving the network's voltage stability. The 

paper in reference [92] presents the QRSMA algorithm for determining the most efficient 

positioning of DGs and CBs during the restructuring of a radial distribution system. This 
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algorithm takes into account line losses, cumulative bus voltage deviation, reliability index, and 

total system cost, considering both fixed and variable loading scenarios. Optimal integration of 

renewable distributed generators and shunt capacitors is proposed in [93] using the SHADE 

optimization algorithm in conjunction with the SOE reconfiguration technique. This approach 

considers uncertainty in demand load and DG output power. The aims of this study are to 

strengthen the voltage profile, increase the probabilistic hosting capacity, and decrease power 

losses. The hybrid HSA-PABC strategy is introduced in reference [94] as a resolution to the 

planning difficulties encountered in radial power DN.  

According to the literature, it is becoming clear that the current technical trend is to 

simultaneously consider grid reconfiguration, CBs, and DGs to improve DNs operation. This 

holistic approach aims to combine the individual benefits of each technique to effectively 

address the complex issues associated with today's distribution grids, such as efficiency, 

reliability, and the incorporation of renewable energy sources.  

The tendency in optimization methodologies is clearly to hybridize metaheuristics and 

implement multi-objective optimization techniques. Various sophisticated methods exploit the 

advantages of different algorithms to efficiently study complex solution spaces while taking 

into account competing objectives such as cost, loss reduction, and voltage stability. This dual 

trend, which is part of the ongoing development of more robust and efficient DNs, emphasizes 

the growing importance of technical and methodological innovation. 

 

Reference 
Publishing 

year 

Solving 

algorithm 

Optimization 

problem 
DN uncertainty 

Objective 

function 

𝑂1 𝑂2 𝑈1 𝑈2 𝑈3 𝐶1 𝐶2 𝐶3 

[83] 2016 HS-PABC  ✓       

[84] 2017 NSGAII  ✓       

[85] 2017 BFO  ✓       

[86] 2018 LSHADE-EpSin ✓        

[87] 2019 MOPSO-MCS  ✓       

[88] 2020 TPA  ✓       

[89] 2020 MBGWO ✓   ✓ ✓  ✓  

[90] 2021 QRSMA  ✓     ✓  

[91] 2022 SHADE  ✓       

[92] 2022 HAS-PABC ✓        

Suggested 

study 
2023 HMPA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 

Table 2.2. Comparison of the published studies to the intended 

study 

 

𝑂1: Single-objective, 𝑂2: Multi-objective, 𝑈1: Multiple load models, 𝑈2: Hourly load variation, 𝑈3: Hourly DG output 

variation, 𝐶1: Annual devices investment cost minimization, 𝐶2: Annual cost of energy losses minimization, 𝐶3: Annual 

cost of energy load demand minimization. 
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As a result, this study proposes a multi-objective optimization approach that uses the hybrid 

multi-population algorithm (HMPA) to address the optimal network reconfiguration 

simultaneously with the allocation of CBs and DGs (ONRSACD) problem. Table 2.2 describes 

the characteristics of this approach and sets it apart from previous research, emphasizing the 

unique contributions of this thesis. 

2.8.    Conclusion  

A wide range of strategies, including both single and multi-objective approaches with different 

constraints, have addressed the loss reduction issue. An analysis of the methods investigated in 

the literature to reduce losses in DNs yields numerous important findings. First and foremost, 

we acknowledge network reconfiguration as the most economically efficient approach for low-

voltage DNs. Nevertheless, it requires an intricate control design and encompasses a multitude 

of switching possibilities, therefore presenting a formidable optimization issue. 

Notwithstanding its effectiveness, this approach provides restricted financial gains. 

Furthermore, by virtue of its simplicity and dependability, capacitors allocation arises as the 

most appropriate strategy for high-voltage DNs. However, this approach primarily focuses on 

reducing losses, offering minimal additional benefits. Furthermore, the allocation of DGs places 

a particular emphasis on the integration of pre-existing small-scale generating sources, such as 

standalone solar projects or wind farms, into the distribution system. Despite its outstanding 

efficiency, this approach requires advanced implementation skills and is the least dependable 

in terms of installation. Among the approaches examined in the literature, the concurrent 

implementation of these methods seems to be the most efficient strategy for improving system 

performance, capitalizing on the unique benefits of each approach.  

The subsequent Chapter looks into metaheuristic optimization techniques and their ability to 

tackle the intricate, multi-objective problems found in contemporary DNs. These algorithms 

can enhance various network features, notably the simultaneous optimization of network 

reconfiguration, and the allocation of CBs and DGs. Furthermore, it describes the hybrid multi-

population algorithm (HMPA) chosen for this study. 
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CHAPTER 3 

Metaheuristic Optimization Methods for Distribution Networks 

 

 

 

 

 

 

 

3.1 Introduction 

Optimization is a crucial element in the management and improvement of DNs, which face 

growing constraints from increasing electricity demand and the incorporation of distributed 

energy resources. In this particular setting, the traditional approach to optimization was to 

minimize power losses and guarantee voltage stability by using deterministic techniques that 

offered unambiguous solutions to rather straightforward problems. However, as DNs become 

increasingly complex and large due to technological advancements and the need for increased 

efficiency and reliability, these traditional methods have proven to be insufficient. The 

evolution has resulted in the introduction of advanced optimization methods, namely 

metaheuristic algorithms, which provide greater adaptability in managing contemporary power 

systems' non-linear, high-dimensional, and stochastic characteristics. Hybridizing these 

algorithms has made them much more useful by letting them combine the best parts of different 

approaches to solve the wide range of problems that DNs face. Furthermore, multi-objective 

optimization has become a crucial method for reconciling the frequently contradictory 

objectives of technical efficiency, economic feasibility, and environmental sustainability. The 

objective of this chapter is to offer a thorough examination of these sophisticated optimization 

techniques, emphasizing their theoretical foundations, practical implementations, and notable 

benefits compared to conventional approaches.  
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3.2 Traditional vs Metaheuristic optimization methods 

Optimization is a fundamental field in mathematics and computer science that aims to devise 

mechanisms for identifying optimal solutions to intricate problems by minimizing or 

maximizing one or more objective functions using dependent variables, which may be integers 

or real values [95]. Diverse domains such as engineering, economics, logistics, and medicine 

extensively use these optimization methods to facilitate efficient decision-making.  

Conventional optimization techniques, such as linear programming, nonlinear programming, 

and dynamic programming [96], are widely effective in solving various optimization problems. 

These methods provide benefits such as efficient use of time and assured convergence to local 

optima. However, these methods often have major flaws, like not being able to get past local 

optima, the chance of divergence, the need to deal with complicated constraints, and the fact 

that it's challenging to compute first- or second-order derivatives.  

On the other hand, metaheuristic algorithms specifically address these optimization problems 

by reducing the number of challenges that conventional approaches face. These algorithms are 

often modeled on natural phenomena or on the functions of living organisms, making them 

adaptable and capable of customization, integration, or alteration to address specific 

optimization problems. These methods are especially efficient in stochastically exploring high-

dimensional, nonlinear search spaces, providing robustness and global search capabilities. 

However, their stochastic nature does not always ensure the selection of an optimal solution 

[97]. The table 3.1 shows a comparison between traditional and metaheuristic optimization 

techniques.  

3.3 Metaheuristic algorithms  

The optimization procedure entails determining the most efficient approach to optimize the use 

of current resources while considering any preexisting limitations. The procedure has many 

stages: development of a mathematical model of the system, identification of variables and 

restrictions, establishment of an objective function, and exploration for states that maximize or 

minimize this function. Numerical optimization issues may be addressed using a range of 

tactics, including quantum-based techniques, metaheuristic approaches, and multi-objective 

methods [98]. The fundamental objective of addressing intricate optimization problems is to 

identify a feasible solution, which may then be enhanced and corrected utilizing various 

methodologies. This concept is the foundation of metaheuristic optimization algorithms, which 
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are sophisticated techniques that integrate fundamental heuristic concepts to improve the 

exploration and exploitation of the search space [99]. This space includes all possible solutions 

within the physical constraints of the system. Metaheuristics, are methods that direct and 

optimize activities via iterative processes, often by balancing global and local search strategies 

with adaptive coefficients. These algorithms are abstract and generalizable, since they do not 

depend on gradients or Hessian matrices. This characteristic makes them non-deterministic and 

capable of generating solutions that are close to optimum. Furthermore, they integrate the 

memory from prior searches to direct ongoing operations, require the customization of 

parameters to suit the particular task, and contain techniques to prevent being stuck in local 

optima, therefore enhancing overall performance. Recent research has included artificial 

intelligence elements into these algorithms to further augment their efficacy [100]. 

3.4 Metaheuristic algorithms classification 

Various factors can classify metaheuristic algorithms. An alternative categorization 

differentiates between those that draw inspiration from natural processes and those that do not.  

 

Criteria Conventional methods Metaheuristic methods 

Methodology  
Deterministic, based on mathematical 

models and exact algorithms. 
Stochastic, inspired by nature or biology 

Search domain 
Generally restricted to local search; 

depends on gradient data 

Capable of investigating extensive, non-linear, 

and high-dimensional problem domains 

Solution 

assurance 

ensures convergence to a local or global 

optimum according to the specific 

problem. 

Seeking a "good enough" answer without any 

assurance of identifying the global optimum. 

Treatment of 

constraints 

Complex managing of restrictions, 

requires precise mathematical 

formulations. 

Modular management of constraints; may 

integrate many types of constraints. 

Robustness  
Susceptible to prior conditions; prone to 

become trapped in local optima 

Enhanced robustness; more adept in 

circumventing local optima via diversification 

practices 

Complexity 
Costly to compute for large-scale or 

nonlinear problems. 

Large-scale problems are typically less 

computationally arduous. 

Flexibility  Limited; intended for specific problems 
Versatile; adaptable, combinable, and 

modifiable for diverse issues 

Application  
Ideal for well-defined, mathematically 

tractable problems 

Appropriate for intricate, ambiguous, or highly 

non-linear issues. 

Velocity of 

convergence 

May be rapid for straightforward, 

convex issues but sluggish for intricate, 

non-convex problems. 

Characterized by a generally slower 

convergence, however capable of exploring a 

wider spectrum of solutions. 

Variability of 

Solutions 

Frequently converges to a single 

solution 

Capable of producing a wide range of solutions, 

beneficial for multi-objective optimization. 

Implementation 
Demands profound mathematical 

expertise and formulation tailored to the 

issue. 

Greater ease of implementation across a range 

of challenges owing to its heuristic character. 

 

Table 3.1 Traditional and metaheuristic optimization techniques  
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One further classification distinguishes between algorithms that function on a single solution 

and those that operate on a population of solutions. Moreover, we can categorize metaheuristics 

as either deterministic or stochastic, based on their use of deterministic processes or 

randomization to generate novel answers. Furthermore, we can categorize these methods based 

on their focus on enhancing a single solution (trajectory-based) or exploring multiple options 

simultaneously (population-based). Finally, we often classify metaheuristics based on their 

search strategy, which can either prioritize local search, focusing on the immediate area of the 

existing solution, or global search, exploring the entire solution space. In contrast to 

conventional optimization methods that rely on mathematical models and assumptions, 

metaheuristics are independent of specific situations and may be adjusted to other problems 

with negligible adjustments. Metaheuristics are characterized by their ability to balance 

exploration and exploitation, the use of stochastic search to avoid local optima, iterative 

enhancement of solution quality, the demonstration of robustness in handling noisy and 

uncertain problems, the provision of flexibility through customization, and the facilitation of 

parallelism to expedite the search process and effectively solve large-scale problems. Figure 

3.1 shows metaheuristics classification according to the variety of solutions and the inspiration 

origin.  

Diverse origins, such as natural evolution, physics, swarm intelligence, and human interaction, 

motivate metaheuristic algorithms to be classified into several distinct categories [97]. 

Evolutionary algorithms, which draw inspiration from natural evolution, use concepts such as 

survival of the fittest, reproduction, and mutation to systematically enhance a population of 

candidate solutions. These include techniques such as genetic algorithms (GA), evolutionary 

programming (EP), evolution strategies (ES), and differential evolution (DE), which have 

extensive applications in several research domains. Physics-based metaheuristics are computer 

algorithms that use principles from physical laws such as gravitational forces, electromagnetic 

fields, and quantum mechanics to inform the search for optimum solutions. Notable examples 

include the gravitational search algorithm (GSA), electromagnetic field optimization (EMO), 

and evolutionary algorithms informed by quantum principles (QEA). Swarm-based algorithms, 

which draw inspiration from the collective behavior of social creatures like ants, bees, and birds, 

function by means of decentralized, self-organized systems in which individual agents engage 

in local interactions to accomplish a shared objective. Prominent algorithms under this 

classification include ant colony optimization (ACO), particle swarm optimization (PSO), and 

bee colony optimization (BCO). Furthermore, human-based algorithms integrate human 
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intellect, expertise, and input directly into the optimization process, thereby increasing the 

algorithm's capacity to effectively identify solutions of superior quality. These include 

approaches like the expert-guided evolutionary algorithm (EEA), human-guided search (HGS), 

interactive evolutionary computation (IEC), and human-in-the-loop optimization (HILO). 

Studies successfully used each type of metaheuristics to solve a wide range of difficult 

optimization problems, from engineering design to computational biology. Each type of 

metaheuristics had its own benefits.  

3.5 Comparing Metaheuristic Methods 

A comparative study of metaheuristics identifies their unique strengths and limitations in 

addressing DN optimization problems [101]. These methods, ranging from focusing on 

individual answers to concurrently investigating several alternatives, underscore the need to 

meticulously align the algorithm with the specific attributes of the issue under consideration. 

Certain metaheuristics have exceptional local search performance, quickly approaching 

solutions close to the original estimate. On the other hand, some metaheuristics excel in global 

search, thoroughly exploring the entire solution space to avoid becoming trapped in local 

optima. Although deterministic algorithms may provide quicker convergence in clearly defined 

problems, they may encounter difficulties in complicated, stochastic settings where the 

adaptability and flexibility of stochastic approaches prove more advantageous. Furthermore, 

population-based algorithms tend to provide a broader exploration of the search space, thereby 

increasing the probability of discovering a global optimum.  

Metaheuristic Optimization Methods 

Variety of the solutions   
Source of inspiration   

Fig 3.1. Classification of metaheuristic methods 
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On the other hand, methods that focus on a single solution are often more effective at improving 

a solution if it falls inside a promising area of the search space. The choice of a metaheuristic 

must also take into account computing efficiency, since some algorithms are more resource-

intensive and may require higher processing capabilities, particularly when addressing large-

scale issues. The ultimate success of a metaheuristic in optimizing a DN depends on its ability 

to successfully balance exploration and exploitation, adapt to the unique issue structure, and 

achieve high-quality solutions within an acceptable timeframe. Understanding the relative 

benefits of various metaheuristics allows them to make well-informed choices about which 

methods are most appropriate for their optimization endeavors, leading to more effective and 

reliable results in DN management. Table 3.2 compares metaheuristics with reference to search 

strategy, solution exploration, scope of optimization, computational efficiency, and 

adaptability. 

3.6 Metaheuristics hybridization 

3.6.1 The principle of Hybrid metaheuristics 

Hybrid metaheuristics are a sophisticated optimization method that integrates the advantages of 

multiple metaheuristic algorithms to overcome challenges encountered when using them 

independently [102]. The goal of hybrid metaheuristics is to use the complimentary benefits of 

various algorithms by combining the exploration capabilities of global search algorithms with 

the refining strengths of local search methods. When compared to traditional metaheuristics 

alone, this synergistic strategy makes the optimization process more resilient and flexible, and 

it can quickly move through complex, high-dimensional search spaces. The hybridization 

process can manifest itself in a variety of ways, such as mixing different algorithmic parts, using 

different approaches one after the other, or fluid switching between approaches as the needs of 

the problem change. The need to tackle more intricate optimization issues that individual 

algorithms find difficult to handle effectively motivates the advancement of hybrid 

metaheuristics, particularly in the realm of multi-objective problems where many contradictory 

criteria require concurrent optimization. As a result, hybrid metaheuristics has become a 

powerful tool for solving real-world optimization problems, offering higher efficiency, greater 

flexibility, and better convergence towards better solutions. 

3.6.2 Hybridization techniques 

The wide range of hybrid metaheuristics design and implementation reflects the various ways 

to integrate different optimization approaches to enhance performance. We can broadly classify 
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Criteria  Metaheuristic   Strengths Limitations Most suitable for 

Search 

strategy 

Trajectory -based 

Proficient in 

localized solution 

refinement 

May get ensnared in 

local optima 

Problems requiring 

exact local optimization 

Population-based 

Navigates a broader 

search domain, 

circumventing local 

optima 

Severe 

computational cost, 

sluggish 

convergence 

Problems requiring an 

exhaustive, global 

exploration of all 

potential solutions. 

Investigation 

of solutions 

Deterministic 
Rapid convergence 

predictable results  

Difficulties in 

navigating non-

linear and intricate 

areas 

Problems with a clearly 

delineated, simple 

settings 

Stochastic 

Modularity, 

circumvents local 

optima, flexible to 

variations 

Necessitates 

meticulous 

adjustment of 

settings, may exhibit 

limited speed 

Non-linearity, noise, or 

dynamic environmental 

conditions. 

Scope of 

optimization 

Local search 

Ability to fine-tune 

a specific search 

area 

Starting point may 

miss global optima. 

Problems requiring 

rigorous search in a 

decent area 

Global search 

Explores full search 

space, resists local 

optima 

Computationally 

intensive, sluggish 

start 

Applications where 

determining the global 

optimum is of utmost 

importance 

Computational 

Efficiency 

Lightness 
Fast, low resource 

consumption 

restricted capacity 

for exploration 

Small, low-complexity 

issues 

Significant needs 

for resources 

In-depth 

investigation reveals 

near- optimal 

solutions 

High computational 

cost, resource-

intensive 

Large, difficult issues 

requiring significant 

investigation 

Adaptability  

Problem-specific 

Customized to solve 

specific types of 

problems, highly 

effective 

Constrained 

applicability, may 

need tailoring 

Problems with precise 

and well-defined 

attributes 

Adaptable 

Applicable to a 

diverse array of 

problems 

May lack optimal 

efficiency for 

specialized problems  

Varieties of problem 

sets, settings with 

unpredictable dynamics 

 

these methodologies into three primary categories: sequential, parallel, and adaptive 

hybridization. Sequential hybridization is the sequential use of algorithms in a predetermined 

order, with each algorithm addressing a particular stage of the optimization process. Initially, 

we may use a global search method like a genetic algorithm to extensively explore the solution 

space. Later on, we may refine the solutions using a local search technique, such as simulated 

annealing. Conversely, parallel hybridization refers to the concurrent execution of many 

algorithms, enabling them to exchange information and cooperate throughout the optimization 

process. This approach, by harnessing the complementary qualities of many algorithms 

simultaneously, may improve search efficiency and increase the likelihood of discovering a 

Table 3.2 Comparison of metaheuristics 
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globally optimized solution. Adaptive hybridization is a flexible strategy in which the 

optimization process may alternate between many methods depending on the changing features 

of the problem. Under this approach, the system dynamically adjusts in real-time, fine-tuning 

the equilibrium between exploration and exploitation as the search advances. This hybridization 

method works particularly well for complicated, multi-objective optimization problems with a 

changing issue landscape or different strategies needed at different stages of the optimization 

process. Each of these hybridization schemes has distinct benefits and can be customized to 

accommodate specific problem domains, making hybrid metaheuristics a flexible and potent 

instrument in complex system optimization. 

Many practical domains, such as engineering design, neural network training, and multi-

objective optimization, have demonstrated the efficacy of hybrid metaheuristics. This hybrid 

methodology integrates many algorithms to exploit their respective advantages, leading to 

enhanced convergence rate, solution quality, and flexibility in handling complex problems. 

Notwithstanding their achievements, some obstacles persist, such as the intricacy of 

incorporating several algorithms, heightened processing requirements, and possible problems 

with scalability and overfitting. Potential future paths in hybrid metaheuristics include the 

advancement of adaptive and self-tuning systems, the integration of machine learning for 

autonomous strategy modifications, and the investigation of quantum computing integration to 

address increasingly intricate optimization difficulties. The objective of these developments is 

to improve the effectiveness and availability of hybrid metaheuristics for a wider range of 

applications [103]. 

3.7 Multi-objective optimization 

DN multi-objective optimization is an essential component of contemporary power system 

management, especially considering the growing intricacy and requirements imposed on these 

networks. With the increasing integration of renewable energy sources, the handling of larger 

loads, and the imposition of more stringent regulatory requirements, the necessity to optimize 

many competing goals concurrently has become vital for DNs. Multi-objective optimization 

differs from single-objective optimization in that it aims to achieve a balance among several 

objectives, including minimizing power losses, enhancing voltage stability, decreasing 

operational costs, and minimizing environmental impact. This section examines the concept, 

techniques, and practical applications of multi-objective optimization in DNs. 
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3.7.1 Principle of multi-objective optimization   

Multi-objective optimization is the simultaneous optimization of two or more competing goals. 

Divergent from conventional optimization approaches that prioritize a single criterion, multi-

objective optimization aims to discover a collection of optimum solutions, referred to as the 

Pareto front, where no one solution is better in all goals [104]. Each solution on the Pareto front 

entails a compromise between the goals, enabling decision-makers to choose the best suitable 

option according to particular priorities or operational limitations. Within DNs, the primary 

goals are to minimize power losses, optimize voltage stability, decrease greenhouse gas 

emissions, and minimize total costs. The task of balancing these goals is complex and requires 

sophisticated optimization methods that can effectively traverse vast, non-linear, and 

sometimes contradictory search spaces. 

3.7.2 Methods for Multi-Objective Optimization 

Several methodologies have emerged to address the challenges of multi-objective optimization 

in DNs. Non-dominated sorting genetic algorithm II (NSGA-II), multi-objective particle swarm 

optimization (MOPSO), and strength pareto evolutionary algorithm (SPEA) are three of the 

most notable algorithms. NSGA-II [105] is a very popular technique, renowned for its 

effectiveness in preserving variety in the solution set and its ability to converge towards the 

Pareto front. The algorithm organizes solutions according to non-domination levels, ensuring a 

well-proportioned collection of optimal solutions. Instead, MOPSO [106] builds on the usual 

particle swarm optimization method by adding techniques that keep mechanisms interesting 

and prevent them from settling too quickly on a single solution. This lets you calculate more 

than one goal. SPEA [107] uses a fitness assignment algorithm based on Pareto dominance to 

make sure that the solutions it comes up with move closer to the Pareto front while still being 

different. The multi-objective evolutionary algorithm based on decomposition (MOEA/D) 

[108] and the pareto archived evolution strategy (PAES) [109] are important ways to solve 

multi-objective optimization problems in DNs. Each approach has distinct advantages, making 

it appropriate for a wide range of challenges and operational situations. 

Increasingly, fuzzy logic has become a crucial tool in multi-objective optimization, especially 

for dealing with the uncertainties and ambiguities that are inherent in complicated real-world 

issues, such as those encountered in power DNs [110]. Fuzzy logic combines fuzzy sets and 

inference protocols to make it easier to weigh the pros and cons of different goals. This helps 

in the decision-making process with fuzzy data and unclear goals. This strategy is especially 
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beneficial in applications where conventional optimization techniques face difficulties, since it 

provides the capability to dynamically assign weights to goals and adjust to evolving 

circumstances. Different optimization techniques, such as genetic algorithms and particle 

swarm optimization, often combine with fuzzy logic to accelerate the search process, 

circumvent local optima, and enhance accuracy. Hybrid approaches have proven to be highly 

effective in applications such as distributed generation placement, power flow optimization, 

and scheduling, where it is necessary to balance many opposing requirements [111]. The use of 

fuzzy logic in multi-objective optimization improves the solutions' resilience and adaptability 

while also enabling more effective decision-making through techniques such as fuzzy Pareto 

fronts and fuzzy-based decision support schemes. The use of fuzzy logic has resulted in notable 

progress in the optimization of intricate systems, thus establishing it as an essential element in 

the development of multi-objective optimization theories. 

3.8 Distribution networks optimization: challenges and prospects 

DNs optimization encompasses several strategies, such as reconfiguring tie and sectionalizing 

switches, building new substations, updating conductors, and installing automated reclosers, 

capacitors, and DG units. Nevertheless, contemporary research typically overlooks the intrinsic 

uncertainties of the system, including changes in demand, non-dispatchable DG units, and 

variable energy prices, which are essential for developing accurate models. Furthermore, the 

construction of new substations has become more unfeasible due to environmental and 

economic constraints. This has resulted in a heightened focus on the integration of capacitors 

and DGs, an aspect often overlooked in favor of straightforward reconfiguration. Additionally, 

existing models often disregard contemporary factors such as deregulation and demand-side 

management. These models mostly rely on small-scale test systems, which restricts the 

relevance of the results to real-world, large-scale networks. Moreover, omitting crucial system 

restrictions like voltage levels, radiality, and connectivity diminishes the practical usefulness of 

many optimization solutions. In addition, it is critical to have a comprehensive strategy that 

effectively tackles technological, economic, and environmental goals in a unified manner. The 

increasing influence of plug-in cars as substantial additional traffic sources significantly 

complicates network performance, although their impacts are mostly uncharted. Despite the use 

of numerous optimization algorithms, it is critical to develop more efficient approaches that can 

overcome local optima and achieve near-global solutions. This should, in particular, focus on 

improving the variety of metaheuristics. While fine-tuning metaheuristic control settings is 

critical for achieving maximum performance, it remains a relatively unexplored field of 
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research. Although distribution system planning has made large progress, many utilities in 

developing countries still depend on experience-based techniques.  

In summary, the complexity and changing demands of modern DNs require a holistic approach 

to optimization that addresses both existing gaps and emerging challenges. The current body of 

research reveals gaps, highlighting the need for more robust, scalable, and integrated solutions 

that can effectively apply to real-world systems. As we progress, we place emphasis on the 

methodologies employed in this work. Hybrid metaheuristics are becoming increasingly 

popular as a powerful way of circumventing the problems of traditional optimization methods. 

We now look at the hybrid multi-population algorithm (HMPA), a brand-new tool for 

optimizing DNs. 

3.9 Hybrid multi-population algorithm 

The HMPA algorithm was first introduced in 2020 by [112] as a compilation of the Artificial 

Ecosystem-based Optimization (AEO) and Harris Hawks Optimization (HHO) algorithms. 

Hence, it achieves optimal efficiency by including the most advantageous features of both 

algorithms, such as the levy-fight strategy, local search mechanism, quasi-oppositional 

learning, and chaos theory. 

3.9.1 Artificial Ecosystem-based Optimization algorithm 

AEO is a population-based algorithm that draws inspiration from the energy flow seen in natural 

ecosystems [113]. It has three primary operators: production, consumption, and decomposition. 

We provide an overview of the equations for each operator below. Figure 3.2 displays the 

flowchart of the AEO. 

3.9.1.1 Production 

This operator creates a new individual by applying Equation (3.1) to the match between the best 

individual in the current population and a randomly selected individual. 

𝑁𝑒𝑤𝑋1
𝐼𝑡+1 = (1 − 𝑎) ∙ 𝐵𝑒𝑠𝑡𝑋 + 𝑎 ∙ 𝑋𝑟

𝐼𝑡                                                                                         (3.1) 

𝑎 = (1 −
𝐼𝑡

𝑀𝑎𝑥_𝐼𝑡
) ∙ 𝑟1                                                                                                                       (3.2) 

𝑋𝑟
𝐼𝑡 = 𝐿𝑏 + 𝑟 ∙ (𝑈𝑏 − 𝐿𝑏)                                                                                                                  (3.3) 
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Where 𝐵𝑒𝑠𝑡𝑋 is the best individual detected yet, 𝐼𝑡 is the current iteration; 𝑟 and 𝑟1 are random 

number vectors within the range (0,1) with dimensions Dim and one, respectively. Moreover, 

Dim is the problem’s dimension, while 𝐿𝑏 and 𝑈𝑏 are the lower and upper limits of the problem 

space, respectively. The 𝑎 is a linearly decreasing coefficient that describes the exploration or 

exploitation of 𝑁𝑒𝑤𝑋1
𝐼𝑡+1. 

3.9.1.2 Consumption 

Equations (3.4) – (3.6) correspondingly update the consumer individuals for herbivores, 

carnivores, and omnivores. 

𝑁𝑒𝑤𝑋𝑖
𝐼𝑡+1 = 𝑋𝑖

𝐼𝑡 + 𝐶 ∙ (𝑋𝑖
𝐼𝑡 − 𝑛𝑒𝑤𝑋1

𝐼𝑡+1)                                                                                     (3.4)  

𝑁𝑒𝑤𝑋𝑖
𝐼𝑡+1 = 𝑋𝑖

𝐼𝑡 + 𝐶 ∙ (𝑋𝑖
𝐼𝑡 − 𝑋𝑗

𝐼𝑡)                                                                                                 (3.5) 

𝑁𝑒𝑤𝑋𝑖
𝐼𝑡+1 = 𝑋𝑖

𝐼𝑡 + 𝐶 ∙ 𝑟2 ∙ (𝑋𝑖
𝐼𝑡 − 𝑁𝑒𝑤𝑋1

𝐼𝑡+1) + (1 − 𝑟2)(𝑋𝑖
𝐼𝑡 − 𝑋𝑗

𝐼𝑡)                                   (3.6) 

Where 𝑟2 is a random number in range (0,1), 𝑋𝑗 is a randomly selected solution from the current 

population, and 𝐶 can be calculated as follows: 

Fig.3.2: Flowchart of the basic AEO 

Start 

Set the values of the parameters 

Initialize individuals randomly 

Calculate fitness of individuals, and find 𝐵𝑒𝑠𝑡𝑋 

𝐼𝑡 < 𝑀𝑎𝑥_𝑖𝑡 

Update 𝑋1 using Eq.3.1 

𝑟𝑎𝑛𝑑 < 1 3⁄  

𝑟𝑎𝑛𝑑 < 2 3⁄  Update 𝑋𝑖  using Eq.3.4 

Update 𝑋𝑖  using Eq.3.5 Update 𝑋𝑖  using Eq.3.6 

Yes 

No 

Yes No 

No Yes 

Calculate fitness of new 𝑋𝑖 , and update 𝐵𝑒𝑠𝑡𝑋 

Update 𝑋𝑖  using Eq.3.8 

Calculate fitness of new 𝑋𝑖 , and update 𝐵𝑒𝑠𝑡𝑋 

Finish Return 𝐵𝑒𝑠𝑡𝑋 

𝑖 = 2 − 𝑛 

𝑖 = 1 − 𝑛 
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𝐶 =
1

2
∙
𝑢

𝑣
                                                                                                                                               (3.7) 

Where 𝑢 and 𝑣 are random numbers with a normal distribution. It is noteworthy that the second-

best individual belongs to the Herbivore group. 

3.9.1.3 Decomposition  

The present operator serves to model the process of decomposition within ecosystems. We use 

equation (3.8) to update individuals. 

𝑁𝑒𝑤𝑋𝑖
𝐼𝑡+1 = 𝑋𝑁

𝐼𝑡 + 𝐷 ∙ (𝑒 ∙ 𝑋𝑁
𝐼𝑡 − ℎ ∙ 𝑋𝑖

𝐼𝑡)                                                                                      (3.8) 

Where 𝑋𝑁
𝐼𝑡 is the best individual in the current iteration, 𝐷, 𝑒, and ℎ are calculated using 

equations (3.9) − (3.11). 

𝐷 = 3𝑢                                                                                                                                                   (3.9) 

𝑒 = 𝑟3 ∙ 𝑟𝑎𝑛𝑑𝑖([12]) − 1                                                                                                                (3.10) 

ℎ = 2 ∙ 𝑟3 − 1                                                                                                                                     (3.11) 

Where 𝑢 is a normally distributed random numbers, and 𝑟3 is a random number in (0,1). 

 

3.9.2 Harris Hawks optimization algorithm 

The HHO technique is a robust population-based meta-heuristic algorithm that draws 

inspiration from the intrinsic behavior of Harris' hawks [114]. The HHO model mathematically 

replicates the cognitive abilities, team composition, and hunting strategies of Harris hawks. The 

HHO algorithm has two stages: exploration and exploitation, selected according to the value 

𝐸 specified in Eq. (3.12). 

𝐸 = 2𝐸0 (1 −
𝐼𝑡

𝑀𝑎𝑥_𝐼𝑡
)                                                                                                                   (3.12) 

Where 𝐸0 is the initial energy of the prey, 𝐼𝑡 and 𝑀𝑎𝑥_𝑖𝑡 represent the current and maximum 

number of iterations, respectively. When |𝐸| ≥ 1, the exploration phase is chosen, and 

whenever|𝐸| < 1, the exploitation phase is selected. 
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3.9.2.1 Exploration stage 

The exploratory mode of HHO emulates the perching behavior shown by Harris hawks. 

Presented below is the updating equation. 

𝑁𝑒𝑤𝑋𝑖
𝐼𝑡+1 = {

𝑋𝑟
𝐼𝑡 − 𝑟1|𝑋𝑟

𝐼𝑡 − 2𝑟2𝑋𝑖
𝐼𝑡|                                       𝑞 ≥ 0.5                                

(𝐵𝑒𝑠𝑡𝑋 − 𝑋𝑚
𝐼𝑡) − 𝑟3(𝐿𝑏 + 𝑟4(𝑈𝑏 − 𝐿𝑏))        𝑞 < 0.5                               

   (3.13) 

Where, 𝑋𝑖
𝐼𝑡 is the current position of the 𝑖th solution in iteration 𝐼𝑡, 𝑁𝑒𝑤𝑋𝑖

𝐼𝑡+1 is the updated 

position of 𝑖th, 𝑋𝑟
𝐼𝑡 is a randomly chosen solution from the population, 𝑟1, 𝑟2, 𝑟3, 𝑟4 and 𝑞 are 

random numbers in (0,1), 𝐵𝑒𝑠𝑡𝑋 is the best solution found so far, 𝐿𝑏 and 𝑈𝑏 are the lower and 

upper bounds of problem space, and 𝑋𝑚
𝐼𝑡 is the average of the solutions in the current population, 

and can be determined using Eq. (3.14). 

𝑋𝑚
𝐼𝑡 =

1

𝑁
∑𝑋𝑖

𝐼𝑡                                                                                                                                 

𝑁

𝑖=1

(3.14) 

𝑁 is the number of solutions in the population. 

 

Fig.3.3 Flowchart of the basic HHO 

Start 

Set the values of the parameters 

Initialize solutions randomly 

Calculate fitness of solutions, and find 

𝐵𝑒𝑠𝑡𝑋 

𝐼𝑡 < 𝑀𝑎𝑥_𝑖𝑡 

Calculate  𝐽, and 𝐸 

|𝐸| ≥ 1 

|𝐸| < 0.5 Update 𝑋𝑖  using Eq.3.13 

 Update 𝑋𝑖  using Eq.3.19 Update 𝑋𝑖  using Eq.3.15 

Yes 

No 

Yes No 

No Yes 

Calculate fitness of new 𝑋𝑖, and update 𝐵𝑒𝑠𝑡𝑋 

Finish Return 𝐵𝑒𝑠𝑡𝑋 

𝑟 < 0.5 𝑟 < 0.5 

Update 𝑋𝑖  using Eq.3.18 Update 𝑋𝑖  using Eq.3.24 

No No Yes Yes 
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3.9.2.2 Exploitation stage  

This stage exemplifies the rapid and unexpected activity of Harris Hawks as they launch their 

attack. While hunting, Harris hawks use a range of pursuit strategies that exploit the inherent 

inclination of their prey to escape from danger. In this context, the approaches of soft besiege, 

hard besiege, soft besiege with progressive quick dives, and hard besiege with progressive rapid 

dives are viable methods for modelling aggressive behaviors. 

In HHO, two factors are used to settle on one of these four tactics. First parameter is 𝑟, which 

is an unspecified   random number inside (0,1), and the second one is 𝐸, which is determined 

by Eq. (3.12). 

• Soft besiege 

When 𝑟 ≥ 0.5, and |𝐸| ≥ 0.5, the soft besiege is selected, and the solution is updated by Eq. 

(3.15). 

𝑋𝑖
𝐼𝑡+1 = ∆𝑋𝐼𝑡 − 𝐸|𝐽 ∙ 𝐵𝑒𝑠𝑡𝑋 − 𝑋𝑖

𝐼𝑡|                                                                                              (3.15) 

∆𝑋𝐼𝑡 = 𝐵𝑒𝑠𝑡𝑋 − 𝑋𝑖
𝐼𝑡                                                                                                                         (3.16) 

𝐽 = 2(1 − 𝑟5)                                                                                                                                     (3.17) 

Where 𝑟5 is a random number within [0,1]. 

• Hard besiege  

When 𝑟 ≥ 0.5 and |𝐸| < 0.5, the hard besiege phase is used, and the solution is updated by Eq. 

(3.18).  

𝑋𝑖
𝐼𝑡+1 = 𝐵𝑒𝑠𝑡𝑋 − 𝐸|∆𝑋𝐼𝑡|                                                                                                              (3.18) 

• Soft besiege with progressive rapid dives 

When 𝑟 < 0.5 and |𝐸| ≥ 0.5, the third strategy is selected, and the solution is updated using 

Eq. (3.19). 

𝑋𝑖
𝐼𝑡+1 = {

𝑌 𝐹(𝑌) < 𝐹(𝑋𝑖
𝐼𝑡)

𝑍 𝐹(𝑍) < 𝐹(𝑋𝑖
𝐼𝑡)
                                                                                                            (3.19) 

𝑌 = 𝐵𝑒𝑠𝑡𝑋 − 𝐸|𝐽 ∙ 𝐵𝑒𝑠𝑡𝑋 − 𝑋𝑖
𝐼𝑡|                                                                                                  (3.20)   
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𝑍 = 𝑌 + 𝑆 × 𝐿                                                                                                                                    (3.21) 

𝐿𝐹(𝑥) = 0.01 ×
𝑢 × 𝜎

|𝑣|
1
𝛽

                                                                                                                    (3.22) 

𝜎 = (
Γ(1 + 𝛽) × 𝑠𝑖𝑛 (

𝜋𝛽
2
)

Γ (
1 + 𝛽
2

) × 𝛽 × 2 (
𝛽 − 1
2

)
)

1
𝛽

                                                                                          (3.23) 

Where 𝐹 is the fitness of the given solution, 𝑆 is a random vector, 𝐿 is the levy-flight function, 

𝑢 and 𝑣 are random values in (0,1), and 𝛽 is a constant value of 1.5.         

• Hard besiege with progressive rapid dives 

When 𝑟 < 0.5 and |𝐸| < 0.5, the solution is updated using the last phase, which is modeled by 

Eq. (3.24). 

𝑋𝑖
𝐼𝑡+1 = {

𝑌 𝐹(𝑌) < 𝐹(𝑋𝑖
𝐼𝑡)

𝑍 𝐹(𝑍) < 𝐹(𝑋𝑖
𝐼𝑡)
                                                                                                            (3.24) 

𝑌 = 𝐵𝑒𝑠𝑡𝑋 − 𝐸|𝐽 ∙ 𝐵𝑒𝑠𝑡𝑋 − 𝑋𝑚
𝐼𝑡|                                                                                                  (3.25) 

𝑍 = 𝑌 + 𝑆 × 𝐿                                                                                                                                    (3.26) 

Where 𝑋𝑚
𝐼𝑡, and 𝐿 are calculated using equations (3.14) and (3.22), respectively. The flowchart 

of the HHO algorithm is represented in Fig.3.3. 

 

3.9.3 Hybrid Multi-Population Algorithm 

The main challenge of meta-heuristic algorithms is to enhance and balance their exploration 

and exploitation capabilities while also devising a strategy to avoid local optima. The suggested 

HMPA addresses these issues and provides solutions for each of them. Figure 3.4 demonstrates 

a simplified representation of the HMPA. 

3.9.3.1 Multi-population technique 

The algorithm uses a novel multi-population technique to encourage a diverse array of answers. 

This technique facilitates the dispersion of solutions, exploration for sufficient space inside the 
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issue, and dynamic exchange of solutions, taking into account three sub-populations. The first 

sub-population independently investigates the entire issue space, which initially comprises 60% 

of the available alternatives. This technique greatly enhances the process of exploration. 

Equation (3.27) updates the spatial positions of the solutions in the first sub-population. This 

equation finds equal utility throughout the solution's initialization phase. 

𝑛𝑒𝑤𝑋𝑖
𝐼𝑡 = 𝐿𝑏 + 𝑟𝑎𝑛𝑑(0,1) × (𝑈𝑏 − 𝐿𝑏)                                                                                   (3.27) 

In order to optimize the effectiveness of this random search procedure, the new solution 

produced will replace the previous one only if it includes a greater level of fitness . 

 

Start  

Set the values of the parameters   Initialize solutions using Eq. 3.27 

Divide solutions into three sub-populations   Find local best of each sub-population   

Update 𝑿𝒊 using Eq. 3.27 𝒓𝒂𝒏𝒅 < 𝟎.𝟓 𝒓𝒂𝒏𝒅 < 𝟎.𝟓 

Apply greedy selection    

Generate quasi-

opposite position of  𝑿𝒊  

Apply greedy selection    

𝒎𝒐𝒅(𝑰𝒕,𝑯) == 𝟎 

Find local best    

Run CLS on the 

local best     

Transfer the local 

best to 2nd or 3rd 

sub-population    

Update 𝑿𝒊 by AEO    Update 𝑿𝒊 by HHO    Update 𝑿𝒊 by AEO    Update 𝑿𝒊 by HHO    

No     Yes     No     

Yes   

Apply greedy selection    Apply greedy selection    

𝒓𝒂𝒏𝒅 < 𝟎.𝟓 𝒓𝒂𝒏𝒅 < 𝟎.𝟓 

Update 𝑿𝒊 by LF 

method     

Yes     

Update 𝑿𝒊 by LS 

method     
Update 𝑿𝒊 by LF 

method     
Update 𝑿𝒊 by LS 

method     

Apply greedy selection    Apply greedy selection    

Find local best     Find local best    

Run CLS on the local best    Run CLS on the local best    

 𝒎𝒐𝒅(𝑰𝒕,𝑯) == 𝟎 𝒎𝒐𝒅(𝑰𝒕,𝑯) == 𝟎 

 𝑵𝑴 >𝑴𝑵𝑴  𝑵𝑴 >𝑴𝑵𝑴 

Transfer solutions with counter > 𝑻𝒉𝒓 

to 1st sub-population    

Find global best     

Transfer solutions with counter > 𝑻𝒉𝒓 to 

1st sub-population    

𝑰𝒕 < 𝑴𝒂𝒙_𝑰𝒕 Return global best     

Finish   

Yes     Yes     No     No     

1st population   2nd population   3rd population   

Yes     

Yes     

Yes     

Yes     

No     

No     

No     

No     

Yes     No     

No     

Fig.3.4 Flowchart of HMPA 



69 
 

The technique of greedy selection significantly enhances efficiency. The HMPA model 

employs this method, and its pseudo-code is shown in figure 3.5. Moreover, the optimal solution 

from the first sub-population is selected per H iterations and allocated to either the second or 

third sub-populations. Consequently, the quantity of solutions in the first sub-population 

declines while simultaneously rising in the second and third sub-populations. This phenomenon 

enhances the algorithm's exploration in the first iterations and its utilization in the latter 

iterations. However, the remaining 40% of the initial solutions are divided between two sub-

populations. Its relative positions vary depending on the local optimal solution of the sub-

population and other solutions of the corresponding sub-population.  

 

Consequently, the obtained solutions exhibit convergence on two separate areas instead of a 

singular point. Furthermore, the solutions of the second and third sub-populations include a 

counter that tally the cumulative count of unsuccessful solution updates. This parameter 

facilitates the identification of solutions that are trapped at optimal local positions.  

As a result, the solution is sent to the first sub-population to be reinitialized in each of the H 

iterations if the counter of the solution exceeds a specific threshold (𝑇ℎ𝑟) and the members of 

the sub-population (𝑁𝑀) are more than the given minimum numbers (𝑀𝑁𝑀). Adhering to a 

limited number of solutions in sub-populations is essential for the ongoing survival of such sub-

populations. The sub-populations may engage in interactions based on the exchange mechanism 

shown in Figure 3.6. The AEO or HHO approach is used to update the solutions for the second 

and third sub-populations, and their size changes dynamically. 

3.9.3.2 Quasi-oppositional learning 

 

To enhance its search capabilities, the HMPA employs the QOPP, or quasi-oppositional 

position technique.  

 

 𝑖𝑓 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑛𝑒𝑤𝑋𝑖
𝐼𝑡) < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖

𝐼𝑡) 

         𝑋𝑖
𝐼𝑡 = 𝑛𝑒𝑤𝑋𝑖

𝐼𝑡  

         𝐶𝑜𝑢𝑛𝑡𝑒𝑟(𝑖) = 0  

𝑒𝑙𝑠𝑒  

        % only for solutions of 1𝑠𝑡 ,  2𝑛𝑑 sub-populations 

        𝐶𝑜𝑢𝑛𝑡𝑒𝑟(𝑖) = 𝐶𝑜𝑢𝑛𝑡𝑒𝑟(𝑖) + 1 

𝑒𝑛𝑑 𝑖𝑓  

Fig.3.5 Greedy selection Pseudo-code  

 

Sub-population 1 Sub-population 2 Sub-population 3 
Or 

Sub-population local best 

Solutions exceeding threshold values 

Other sub-population solutions 

 
Fig.3.6 Sub-populations: Solution Exchange 

Process  
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The QOPP utilizes a learning-based methodology to enhance its search capabilities by 

generating a symmetrical solution location. Only the first sub-population autonomous solutions 

in HMPA have utilized the QOPP. Figure 3.7 shows the pseudo-code of the QOPP. 

3.9.3.3  Chaotic local search strategy 

The chaotic local search (CLS) method investigates the vicinity of a solution in order to identify 

potential regions suitable for exploration. Therefore, this approach enhances the potential for 

exploitation. Furthermore, incorporating chaos theory improves the technique's efficacy. The 

HMPA framework only applies the CLS approach to the local best sub-populations, examining 

the immediate vicinity of the optimal solutions, thereby reducing the overall execution time. 

The CLS process uses Equation 3.28 to calculate a novel local best solution. 

𝑛𝑒𝑤 𝐵𝑒𝑠𝑡𝑋 = 𝐵𝑒𝑠𝑡𝑋 + (𝐶𝑉𝑘+1 − 0.5) × (𝑋𝑟1
𝐼𝑡 − 𝑋𝑟2

𝐼𝑡 )                                                           (3.28) 

𝑋𝑟1
𝐼𝑡  and 𝑋𝑟2

𝐼𝑡  are solutions chosen randomly from the associated sub-population, while 𝐶𝑉𝑘+1 is 

the chaotic value that the chaotic map produces. The HMPA uses the piecewise map shown in 

figure 3.8, a conventional chaotic map that generates random values in the range of (0,1). Figure 

3.9 depicts the CLS approach's pseudo-code. The suggested CLS technique generates a new 

local best, after which the greedy selection mechanism maximizes efficiency.  Below is a 

mathematical representation of the piecewise chaotic map. 

 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝐷 

        𝑂𝑝𝑋𝑖,𝑗
𝐼𝑡 = 𝐿𝑏 + 𝑈𝑏 − 𝑋𝑖,𝑗

𝐼𝑡   

         𝐶𝑗 = (𝐿𝑏𝑗 +𝑈𝑏𝑗) 2⁄   

        𝑖𝑓 𝑋𝑖,𝑗
𝐼𝑡 < 𝐶𝑗 

             𝑄𝑂𝑝𝑋𝑖,𝑗
𝐼𝑡 = 𝐶𝑗 + (𝑂𝑝𝑋𝑖,𝑗

𝐼𝑡 − 𝐶𝑗) × 𝑟𝑎𝑛𝑑(0,1) 

        𝑒𝑙𝑠𝑒 

             𝑄𝑂𝑝𝑋𝑖,𝑗
𝐼𝑡 = 0𝑝𝑋𝑖,𝑗

𝐼𝑡 + (𝐶𝑗 −𝑂𝑝𝑋𝑖,𝑗
𝐼𝑡  ) × 𝑟𝑎𝑛𝑑(0,1) 

        𝑒𝑛𝑑 𝑖𝑓   

𝑒𝑛𝑑 𝑓𝑜𝑟  

Fig.3.7 QOPP's pseudo-code 

𝐷 : Problem dimension ; 𝑄𝑂𝑝𝑋𝑖
𝐼𝑡 : 𝑋𝑖

𝐼𝑡Quasi-opposite position  

 

Fig.3.8 The piecewise distribution map 
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𝐶𝑉𝑘+1 =

{
  
 

  
 
𝐶𝑉𝑘

𝑃
                                        0 ≤ 𝐶𝑉𝑘 ≤ 𝑃

𝐶𝑉𝑘−𝑃

0.5−𝑃
                                 𝑃 ≤ 𝐶𝑉𝑘 ≤ 0.5

1−𝑃−𝐶𝑉𝑘

0.5−𝑃
                0.5 ≤ 𝐶𝑉𝑘 ≤ 1 − 𝑃    

1−𝐶𝑉𝑘

𝑃
                      1 − 𝑃 ≤ 𝐶𝑉𝑘 ≤ 1      

              ; 𝑃 = 0.4                                  (3.29)  

 

3.9.3.4 Levy flight function 

The levy-fight (LF) random walk function is initially introduced by the HHO algorithm to 

enhance the algorithm's performance by optimizing exploitation. This concept has been 

employed in numerous advanced algorithms and is utilized in an innovative manner in the 

HMPA, as illustrated in Figure 3.10. While the second command increases the probability of 

exploitation, the first one accelerates convergence in the LFF. Moreover, LF is the solution to 

Equation (3.22). 

3.9.3.5 Local search strategy 

The LS local search mechanism efficiently explores the space between sub-population solutions 

to provide more precise identification of superior ones and enhance the quality of the HMPA 

search. Equation 3.30 below describes the LS approach. 

𝑋𝑖
𝐼𝑡+1 = {

𝑋𝑖
𝐼𝑡 + 𝜇 ∙ (𝑋𝑖

𝐼𝑡 − 𝑋𝑗
𝐼𝑡)            𝛿 < 𝐶𝑃2

𝑋𝑖
𝐼𝑡 + 𝜇 ∙ (𝐵𝑒𝑠𝑡𝑋 − 𝑁𝑋)   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

        ;    𝐶𝑃2 = 0.5                                       (3.30) 

Where 𝐶𝑃2 is a control parameter with a value of 0.5 and 𝑁𝑋 is a solution vector generated by 

Eq. (3.27), where 𝜇 is a coefficient between (−𝐿, 𝐿), L and 𝛿 are random numbers in (0, 1), and 

𝑋 is a randomly selected solution from the sub-population. Figure 3.11 displays the LS pseudo-

code of the HMPA. 
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3.10 Conclusion 

This chapter has undertaken a general analysis of the evolution and application of metaheuristic 

optimization techniques in the specific domain of DNs. Initially, the analysis has focused on 

the significant advantages of metaheuristics in effectively addressing the complex and non-

linear nature of contemporary optimization problems. The categorization and comparison of 

different metaheuristic algorithms provided valuable insights into their individual advantages 

and constraints, highlighting the possibility of hybrid approaches to improve performance and 

robustness. The exploration of multi-objective optimization has highlighted the adaptability of 

metaheuristics to reconcile competing objectives, which is necessary in the dynamic setting of 

DNs. Finally, the difficulties and potential advantages of using these techniques in DNs were 

described, leading to the proposal of the hybrid multi-population algorithm (HMPA) as a very 

promising approach for efficiently optimizing these networks.  

Building on the insights gained from exploring metaheuristic optimization methods, the next 

chapter focuses on a more specific application: optimal network reconfiguration simultaneously 

with the allocation of CBs and DGs (ONRSACD), aiming to maximize techno-economic 

benefits by improving system reliability, reducing losses and optimizing investment costs. 

Integrating advanced optimization techniques with practical network management strategies, 

this holistic approach can significantly improve the operational efficiency and economic 

viability of distribution systems. 

 

𝑓𝑜𝑟  𝑘 = 1 𝑡𝑜 𝐾 

    Update 𝐶𝑉 using Eq.71 

    Select 𝑋𝑟1
𝐼𝑡  and 𝑋𝑟2

𝐼𝑡  randomly from the sub-population  

    Generate new local best using Eq. 70 

    Apply the greedy selection mechanism 

𝑒𝑛𝑑 𝑓𝑜𝑟. 

Fig. 3.9 Chaotic local search (CLS) method 

𝑓𝑜𝑟  𝑖 = 1 ∶  𝑁 

    Update 𝑋𝑖
𝐼𝑡 using Eq. 72 

    Apply greedy selection mechanism 

𝑒𝑛𝑑. 

Fig. 3.11 Local search (LS) strategy  

𝑖𝑓 𝐶𝑃1 < 𝜌 

   𝑋𝑖
𝐼𝑡+1 = 𝑋𝑖

𝐼𝑡 × 𝐿𝐹   

𝑒𝑙𝑠𝑒 

    𝑋𝑖
𝐼𝑡+1 = 𝑋𝑖

𝐼𝑡 + 𝐿𝐹 

𝑒𝑛𝑑 𝑖𝑓. 

Fig. 3.10 Levy-flight (LF) mechanism  
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CHAPTER 4 

Optimal Network Reconfiguration Simultaneously with the 

Allocation of Capacitor Banks and Distributed Generations in a 

radial distribution network  

 

 

 

 

 

 

 

4.1 Introduction  

This chapter explores sophisticated techniques and practical research to enhance the efficiency 

of radial distribution networks by reconfiguring the network simultaneously with strategically 

allocating CBs and DG units. The chapter is organized into two separate yet cohesive parts. 

In the first section, we present and discuss our research contributions on new optimization 

techniques for determining the optimal location and sizing of CBs and network reconfiguration 

under varying load conditions throughout the day, highlighting the importance of adapting 

optimization strategies to hourly load variations to improve the operational performance of 

distribution systems. 

The second part of this chapter introduces the fundamental technique of the strategy we 

propose, namely the multi-objective optimization framework based on the hybrid multi-

population algorithm (HMPA). The first step is to provide a comprehensive description of the 

optimization problem, including all the objectives and constraints arising from the complex 

interaction of the placement of DGs resources, the allocation of CBs, and the reconfiguration 

of the network. A detailed analysis of the results follows this step, demonstrating how HMPA 

Contents 

4.1 Introduction 

4.2 Optimal capacitor allocation based on hourly load variation 

4.3 Distribution Network Reconfiguration Based on Hourly Load 

4.4 A Reappraisal 

4.5 Concurrent reconfiguration and allocation of capacitor banks and distributed generation. 

4.6 Conclusion 
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effectively optimizes the DN in a balanced manner, thereby enhancing its technical and 

economic performance. 

4.2 Optimal capacitor allocation based on hourly load variation. 

In order to tackle the difficult task of determining the optimal placement and size of shunt CBs 

in a radial distribution system, this application presents the use of three newly developed 

optimization techniques: Equilibrium Optimizer (EO) [115], Gorilla Troops Optimization 

(GTO) [116], and African Vultures Optimization Algorithm (AVOA) [117]. The main goal is 

to enhance the DN efficiency by catering to hourly demand fluctuations while obeying specified 

cost limitations, as well as equality and inequality restrictions. IEEE 33-bus and 69-bus standard 

radial distribution networks are used as benchmark test systems to evaluate the efficiency of 

these optimization techniques.  

The experimental process starts by selecting the most appropriate candidate buses for capacitor 

installation, a step informed by the study of the voltage profile of the test networks. By 

prioritizing these crucial nodes, the research guarantees that the optimization efforts are targeted 

in areas where they are most likely to result in substantial improvements in system performance. 

Following this, the algorithms EO, AVOA, and GTO are implemented on the selected candidate 

buses in order to ascertain the most efficient allocation of shunt capacitors. 

The outcomes derived from these optimization techniques are then submitted to a comparison 

study, in which the algorithms' performance is assessed using important criteria such as solution 

quality and convergence properties. This comparison method allows for the determination of 

the most efficient optimization tool among the three, therefore offering significant insights into 

their individual advantages and constraints [118].  

4.2.1 Problem formulation 

4.2.1.1 Objective function  

For load flow calculation, backward/forward sweep method is used [119]. The objective 

function is to minimize total annual cost and is defined by:  

𝑚𝑖𝑛 𝐶𝑇𝑜𝑡 = 𝐶𝑒𝑛𝑒𝑟𝑔𝑦 × (∑∑𝑅𝑒 {(𝐼𝑏𝑟𝑡
𝑖)
2
× 𝑍𝑖}

𝑛𝑏𝑟

𝑖=1

24

𝑡=1

) × 𝑁𝑑𝑎𝑦 + 𝐶𝑐𝑏 ×∑𝑄𝑐𝑏,𝑘

𝑛𝑐𝑏

𝑘=1

                   (4.1) 
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Where, 𝐶𝑡𝑜𝑡 is the total annual cost ($/year), 𝐶𝑐𝑏 is the purchase cost ($/KVAR), 𝑡 is the hour in 

a day, 𝐼𝑏𝑟𝑡
𝑖   is the current flowing through the branch 𝑖 at time 𝑡 (ℎ), 𝑄𝑐𝑏,𝐾 is the reactive power 

of the capacitor bank 𝑘, 𝐶𝑒𝑛𝑒𝑟𝑔𝑦 is the average energy cost ($/KWh), 𝑛𝑏𝑟 is the network number 

of branches, 𝑛𝑐𝑏 is the number of capacitor banks, 𝑁𝑑𝑎𝑦 = 365.  

The purpose is to minimize the total annual cost while upholding equality and inequality 

constraints.    

4.2.1.2 Equality Constraints 

The power balance equations describe these constraints as follows:  

𝑃𝑠𝑢𝑏 =∑𝑃𝑙𝑜𝑠𝑠,𝑖

𝑛𝑏𝑟

𝑖=1

+∑𝑃𝑙𝑜𝑎𝑑,𝑗

𝑁𝑏

𝑗=1

                                                                                                         (4.2) 

𝑄𝑠𝑢𝑏 +∑𝑄𝑐𝑏,𝑘

𝑛𝑐𝑏

𝑘=1

=∑𝑄𝑙𝑜𝑠𝑠,𝑖

𝑛𝑏𝑟

𝑖=1

+∑𝑄𝑙𝑜𝑎𝑑,𝑗

𝑁𝑏

𝑗=1

                                                                                 (4.3) 

Where 𝑃𝑠𝑢𝑏 and 𝑄𝑠𝑢𝑏 are real and reactive substation power respectively,  𝑃𝑙𝑜𝑎𝑑,𝑗 and 𝑄𝑙𝑜𝑎𝑑,𝑗 

are real and reactive load demands at bus 𝑗 respectively, 𝑁𝑏 is the number of buses.    

4.2.1.3 Inequality Constraints 

3. Bus voltage limits 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑚𝑎𝑥                                                                                                                                (4.4)  

4. Reactive power limits  

 

𝑄𝑐𝑏,𝑚𝑖𝑛 ≤ 𝑄𝑐𝑏,   𝑘 ≤ 𝑄𝑐𝑏,𝑚𝑎𝑥                                                                                                              (4.5)  

5. Total compensation  

∑ 𝑄𝑐𝑏,𝑘
𝑛𝑐𝑏
𝑘=1 ≤ ∑ 𝑄𝑙𝑜𝑎𝑑,𝑗

𝑁𝑏
𝑗=1                                                                                                                  (4.6)  

6. Line capacity limits  

𝐼𝑛,𝑖 ≤ 𝐼𝑚𝑎𝑥,𝑖     ;    𝑖 = 1,… , 𝑛𝑏𝑟                                                                                                        (4.7)  

 

4.2.2 Tests and results 

This method looks into the problem of optimal allocation of shunt CBs by using the MATLAB 

programming language to run the EO, AVOA, and GTO algorithms and find the best spot and 

size for CBs in a radial DN. The method employs IEEE 33-node (Figure 4.1) and 69-node 
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(Figure 4.5) test systems to assess the effectiveness of these optimization tools. For a detailed 

account of their specifications, see [120]. 

An objective function directs the optimization process, aiming to minimize the overall cost 

associated with the installation of CBs. To accomplish this, we solely assess designated 

candidate buses for capacitor placement, selecting them based on the system's voltage profile. 

This analysis reveals that buses with low voltage magnitudes are the most prominent areas for 

intervention. To faithfully replicate the dynamics of actual distribution systems, the study 

includes a 24-hour load profile for each test system. By including hourly fluctuations in load 

demand into the optimization algorithms, this method guarantees the generation of more 

realistic and efficient solutions for the allocation of CBs. 

The following values are applied:  

𝐶𝑐𝑏 = 3$ 𝐾𝑉𝐴𝑅⁄ , 𝐶𝑒𝑛𝑒𝑟𝑔𝑦 = 0.06$ 𝐾𝑊ℎ⁄ ,    𝑄𝑐𝑏,𝑚𝑖𝑛 = 0,   𝑄𝑐𝑏,𝑚𝑎𝑥 = 150 𝐾𝑉𝐴𝑅,   

 𝑉𝑚𝑖𝑛 = 0.95 𝑝. 𝑢, 𝑉𝑚𝑎𝑥 = 1.05 𝑝. 𝑢, 𝑉𝑠𝑢𝑏 = 12.66 𝐾𝑉  

Results obtained for each test system are shown and reviewed below.      

 

4.2.2.1 Results for the 33-node test feeder 

This study carried out the optimization procedure with a defined maximum iteration count of 

(T = 100) and a constant population size of 100. Nine buses specifically identified as voltage-

sensitive were considered for shunt capacitor installation.  

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

19 20 21 22 

23 24 25 

26 27 28 29 30 31 32 33 

  

Fig.4.1. The 33-node radial distribution network with voltage-sensitive buses in red 
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These buses are highlighted in red on the schematic shown in Figure 4.1. Figure 4.2 displays 

the load fluctuation over a 24-hour period, providing a comprehensive understanding of the 

changing demand within the network.  

As a means of demonstrating the effects of these fluctuations, Figure 4.3 displays the voltage 

profiles for each hour, using 24 different colors to differentiate the hourly changes. The 

presented visualization effectively illustrates the fluctuations in voltage profiles resulting from 

the dynamic load conditions experienced throughout a day. 

 

Fig 4.2. Annual daily average load variation for IEEE 33-node system  

Fig 4.3.  Hourly bus voltages of uncompensated and compensated 33-node system.  
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In comparison to the uncompensated system, the study demonstrates a significant improvement 

in the voltage profiles at each hour for the compensated system due to the strategic placement 

of capacitors at the chosen buses. This enhancement highlights the efficacy of strategically 

positioning capacitors to stabilize voltage levels across the network when subjected to different 

load circumstances. 

For a comprehensive analysis of the outcomes derived from various optimization strategies, 

refer to Table 4.1. This table presents the ideal positions and dimensions of the shunt capacitors 

as determined by each approach.  

 

Comparison Criteria  Base case 
Techniques 

AVOA GTO EO 

Optimal location and size (KVAR) 

of capacitors 
_ 

Bus Size Bus Size Bus Size 

13 

14 

15 

18 

31 

32 

33 

150 

100 

50 

100 

150 

150 

150 

13 

14 

16 

18 

31 

32 

33 

150 

100 

100 

50 

150 

150 

150 

13 

14 

15 

18 

31 

32 

33 

150 

150 

50 

50 

150 

150 

150 

Net injected (KVAR) _ 850 850 850 

Minimum voltage (pu) 0.9037 0.9290 0.9284 0.9279 

Energy loss (KWh) 3567.7170 2626.5164 2626.1586 2624.7184 

Energy loss reduction (%) _ 26.3810 26.391 26.4314 

Annual cost of energy loss ($/year) 78133.0034 57520.7112 57512.8754 57481.3348 

Capacitors cost ($/year) _ 2550 2550 2550 

Total annual cost ($/year) 78133.0034 60070.7112 60062.8754 60031.3348 

Net savings ($/year) _ 18062.2922 18070.128 18101.6686 

Net savings (%) _ 23.1173 23.1273 23.1677 

 

The results clearly demonstrate that all suggested optimization methods surpass the 

uncompensated system, attaining greater quality of voltage regulation and overall network 

performance. Among the implemented algorithms, the EO demonstrated superior performance 

not only in important comparative criteria like voltage enhancement and loss reduction but also 

in its ability to converge, as demonstrated by the convergence curve in Figure 4.4. This finding 

indicates that EO is highly efficacious in rapidly converging to a superior quality solution, 

thereby establishing it as an auspicious instrument for optimizing capacitor placement in DNs. 

 

Table 4.1. Optimal locations and sizes for 33-node: comparative study 
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4.2.2.2 Results for the IEEE 69-node system 

The optimization procedure, with a maximum iteration count of T = 200 and a population size 

of 200, addressed the complexity of the larger test system. This scenario included identifying 

and selecting 18 voltage-sensitive buses for shunt capacitor installation. The schematic in 

Figure 4.5 marks these buses in blue. Figure 4.6 illustrates the load fluctuation over a 24-hour 

period, offering a detailed depiction of the changing demand distributed throughout the network 

throughout the day. To further clarify the effects of these fluctuations, Figure 4.7 displays the 

voltage profiles for each hour, using 24 different colors to highlight the variations in voltage 

levels resulting from hourly load changes. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 19 27 

69 68 

67 66 

53 54 55 56 57 58 59 60 61 62 63 64 65 

52 51 

47 48 49 50 

28 29 30 31 32 33 34 35 

36 37 38 39 40 41 42 43 44 45 46 

  

Fig 4.5. The 69-bus radial distribution 

network with voltage-sensitive buses in blue  

Fig 4.4.  Convergence characteristics of the optimization algorithms for IEEE 33-node system.  
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The analytical findings demonstrate a significant improvement in the voltage profiles 

throughout each hour for the compensated system, where capacitors are strategically positioned 

at the best buses that have been determined. The observed improvement is substantial in 

comparison to the uncompensated system, therefore illustrating the efficacy of appropriate 

allocation of capacitors in augmenting voltage stability given fluctuating load circumstances. 

Fig 4.6. Annual daily average load variation for IEEE 69-node system  

Fig 4.7.  Hourly bus voltages of uncompensated and compensated 69-node system.  

Fig 4.8.  Convergence characteristics of the optimization algorithms for 69-bus system.  
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Table 4.2 provides an extensive analysis of the outcomes derived from each of the suggested 

optimization methods. This table outlines the optimal positions and dimensions of the shunt 

capacitor banks as established by each strategy. 

Analysis unequivocally demonstrates that all optimization methods provide better results 

compared to the uncompensated system, resulting in improved voltage regulation and overall 

system performance. Significantly, the EO stands out as the most efficient among the 

algorithms that were evaluated, with the highest rates of improvement in voltage and decrease 

in loss across many comparison criteria. Moreover, the convergence capacity of the EO is 

emphasized in Figure 4.8, which showcases its remarkable efficiency in quickly achieving an 

ideal solution. These results highlight the potential of EO as a very effective technique for 

optimizing the positioning of capacitors in large-scale distribution networks, providing both 

excellent precision and computational efficiency. 

 

Criteria Base case 
Techniques 

AVOA GTO EO 

Optimal location and size 

(KVAR) of capacitors 
_ 

Bus Size Bus Size Bus Size 

20 

21 

59 

61 

62 

64 

65 

100 

150 

150 

150 

150 

150 

150 

20 

24 

26 

59 

61 

62 

64 

65 

150 

50 

50 

150 

150 

150 

150 

150 

20 

21 

24 

59 

61 

62 

64 

65 

150 

50 

50 

150 

150 

150 

150 

150 

Net injected (KVAR) _ 1000 1000 1000 

Minimum voltage (pu) 0.9091 0.9238 0.9238 0.9238 

Energy loss (KWh) 3597.8344 2500.9128 2501.2352 2500.7103 

Energy loss reduction (%) _ 30.4883 30.4794 30.4940 

Annual cost of energy loss 

($/year) 
78792.5748 54769.9915 54777.0518 54765.5574 

Capacitors cost ($/year) _ 3000 3000 3000 

Total annual cost ($/year) 78792.5748 57769.9915 57777.0518 57765.5574 

Net savings ($/year) _ 21022.5833 21015.523 21027.0174 

Net savings (%) _ 26.6809 26.6719 26.6865 

 

4.3 Distribution Network Reconfiguration Based on Hourly Load 

This experiment tests the EO, AVOA, and GTO algorithms to identify the optimal network 

reconfiguration that reduces the annual cost of energy losses over a 24-hour period while 

Table 4.2. Optimal sites and sizes of capacitors for 69-node feeder: comparative table 
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accounting for hourly load fluctuations. We perform simulations on the 69-node radial 

distribution test system to determine the strategy that offers the highest level of efficiency and 

performance [121]. 

4.3.1 Problem formulation 

4.3.1.1 The objective function 

The goal is to locate open switches in the DN that provide a radial configuration that reduces 

annual energy losses cost. Below is the formulation of the objective function:  

min(𝑜𝑓) = 𝑚𝑖𝑛(𝐶𝐸𝑙𝑜𝑠𝑠)                                                                                                                    (4.8)  

 The annual energy loss cost is determined using the following basic equation: 

𝐶𝐸𝑙𝑜𝑠𝑠 = 𝐶𝑒𝑛𝑒𝑟𝑔𝑦 ∙ (∑∑(𝑅𝑖 ∙ 𝐼𝑏𝑟𝑖
𝑡)

𝑁𝑏𝑟

𝑖=1

24

𝑡=1

) ∙ 𝑁𝑑𝑎𝑦                                                                              (4.9) 

 

Where, 𝐶𝑒𝑛𝑒𝑟𝑔𝑦 is the average energy cost (0.06 $/Kwh), 𝑡 is the hour in a day, 𝑅𝑖 is the resistance 

of the branch 𝑖, 𝐼𝑏𝑟𝑖
𝑡 represents the electric current passing through branch 𝑖 at a given time 𝑡(ℎ), 

while 𝑁𝑏𝑟 denotes the total number of branches and 𝑁𝑑𝑎𝑦 = 365  

The optimization approach yields a network reconfiguration that meets the following constraints:  

 

4.3.1.2 Equality constraints  

An essential limitation is represented by the active power balance equation: 

𝑃𝑠𝑢𝑏 =∑𝑃𝑙𝑜𝑠𝑠,𝑖

𝑛𝑏𝑟

𝑖=1

+∑𝑃𝑙𝑜𝑎𝑑,𝑗

𝑁𝑏

𝑗=1

                                                                                                      (4.10) 

Where 𝑃𝑠𝑢𝑏 is real substation power, 𝑃𝑙𝑜𝑎𝑑,𝑗 is real load demand at bus 𝑗, 𝑁𝑏 is the number of 

buses. 

4.3.1.3 Inequality constraints 

Bus voltage boundaries: The equation below shows the constraints on the magnitudes of voltage 

at each bus. 
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𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑚𝑎𝑥  , 𝑖 = 1,2, … ,𝑁𝑏𝑢𝑠                                                                                          (4.11) 

With,  𝑉𝑚𝑖𝑛 = 0.95 𝑝. 𝑢 , 𝑉𝑚𝑎𝑥 = 1.05 𝑝. 𝑢 

Line current flow limits: It is crucial to consistently maintain all currents flowing through the 

lines within their prescribed thresholds. 

𝐼𝑛 ≤ 𝐼𝑛
𝑚𝑎𝑥   , 𝑛 = 1,2, . . 𝑁𝑏𝑟                                                                                                             (4.12) 

Radiality limitations: When reconfiguring, closing a tie switch (OS) causes one of the 

previously closed switches to open. This operation maintains the network's radial structure, 

preventing loops and isolated nodes, and supplies electricity to all linked loads. Radiality testing 

is achieved thanks to the Depth First Search Tree (DFS) technique [122]. The following 

equation must be satisfied: 

 {
2 ≤ 0𝑆𝑖 ≤ 𝑁𝑏𝑟 + 𝑁𝑡𝑠  ; 𝑖 = 1,2, … ,𝑁𝑡𝑠

𝑂𝑆𝑖 ≠ 𝑂𝑆𝑗  ; 𝑖, 𝑗 𝜖{1,2, … , 𝑁𝑡𝑠} ;  𝑖 ≠ 𝑗      
                                                                                 (4.13) 

Where, 𝑁𝑡𝑠 is the number of tie switches. 

 

4.3.2 Tests and results 

The simulations were constructed using the MATLAB programming environment to optimize 

the reconfiguration of the DN. The backward/forward sweep method, a commonly used 

approach to analyze load flow in a radial DN, was employed to perform the power flow 

calculations required to assess the effectiveness of the reconfiguration alternatives.  

The proposed optimization techniques are evaluated using the 69-node radial distribution 

system as the benchmark test case. Figure 4.9 illustrates the basic topology of this system. The 

network comprises 68 closed branches, as well as seven lateral lines and five open switches, 

allowing adaptability for reconfiguration. 

 The system functions using power levels of 100 MVA and 12.66 kV, with a maximum active 

power capacity of 3.8 MW and a maximum reactive power capacity of 2.69 MVAr. 
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The optimization procedure is carried out with a maximum iteration limit of T = 150, 

guaranteeing a comprehensive exploration of the solution space  

 

Item Base case EO AVOA GTO 

Open switch 69, 70, 71, 72, 73 48, 12, 10, 14, 60 60, 10, 14, 12, 58 9, 12, 14, 58, 60 

Daily energy losses 4167.9735 1331.6203 1514.8506 1779.2039 

Daily energy losses 

reduction (%) 
- 68.0511 63.6549 57.3124 

𝑉𝑚𝑖𝑛  𝑝𝑢 0.9090 0.9905 0.9904 0.9904 

𝐶𝐸𝑙𝑜𝑠𝑠  ($/𝑦𝑒𝑎𝑟) 91278.6196 29162.4845 33175.2281 38964.5654 

Net savings ($/year) - 62116.1351 58103.3915 52314.0542 

Net savings (%) - 68.0511 63.6549 57.3124 

 

Furthermore, the population size for each method is established at 50, thus striking a balance 

between the need for effective computing and the necessity for precise solutions. This 

arrangement enables the algorithms to investigate a broad spectrum of possible network 

reconfigurations while keeping the computing burden somewhat reasonable.  

This network reconfiguration approach incorporates the hourly fluctuation in load demand. 

Figure 4.11 displays the load characteristics of the test system throughout a 24-hour period. 

Figure 4.12 displays the convergence curves of the strategies under consideration.  

Table 4.3. Optimal network reconfiguration in a 69-node system: A Comparison     

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 19 27 

69 

68 

67 
66 

53 54 55 56 57 58 59 60 61 62 63 64 65 

52 
51 

47 48 49 50 

28 29 30 31 32 33 34 35 

36 37 38 39 40 41 42 43 44 45 46 

S-S 

Fig 4.9. The basic configuration of the 69-node system 

 S-S: Substation 

       : Switchable branches 
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The EO algorithm's preemptive achievement of the optimum solution over competing 

algorithms demonstrates its rapid convergence. 

Figure 4.13 shows the voltage profiles for each hour, visually representing fluctuations in 

network demand using 24 different colors. The hourly intervals of the reconfigured system 

show a noticeable increase in the voltage profile, indicating a significant deviation from the 

characteristics specified in the base case.  

An increase in 𝑉𝑚𝑖𝑛 from 0.9090 per unit (pu) to 0.9905 pu demonstrates the observed 

improvement.  Table 4.3 presents a comprehensive comparison of the various results obtained 

using the proposed methods for efficient network reconfiguration. The tabulated data clearly 

demonstrates the superior quality of the results obtained using the specified methods compared 

to the status pre-reconfiguration. The empirical data clearly show that the EO approach 

produces the most optimal results.  

The EO approach exhibits a higher capacity to control network energy losses, resulting in a 

substantial decrease from 4167.9735 kWh to 1331.6203 kWh, indicating a remarkable 

reduction rate of 68%. The efficacy of EO in reducing energy losses within the distribution 

network is further shown by its superior performance compared to the other optimization 

approaches assessed in this experiment. 

The EO algorithm produces an optimal network reconfiguration that achieves the lowest yearly 

energy loss costs, reducing them significantly from 91,278.62 $ per year to 29,162.48$ per year.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 19 27 

69 

68 

67 
66 

53 54 55 56 57 58 59 60 61 62 63 64 65 

52 
51 

47 48 49 50 

28 29 30 31 32 33 34 35 

36 37 38 39 40 41 42 43 44 45 46 

S-S 

Fig 4.10. Optimal reconfiguration of a 69-node system to minimize annual energy losses cost. 
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Fig. 4.11. Annual daily average load variation for 69-node system 

Fig. 4.12.  Convergence characteristics of the optimization algorithms  

Fig. 4.13.  Hourly bus voltages before and after reconfiguration by EO algorithm  
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The significant decrease in energy loss expenses clearly demonstrates the algorithm's potential 

to surpass other optimization techniques that were evaluated, establishing it as the most efficient 

instrument for attaining cost-effective network operation. Furthermore, the EO algorithm 

achieves the greatest net savings, totaling 62,116.14 $ annually. These figures indicate a net 

savings rate of 68%, which significantly surpasses the savings attained by other methods. The 

total results highlight the exceptional performance of the EO approach in providing optimal 

network reconfiguration options in terms of both energy efficiency and cost-effectiveness, 

surpassing most competing approaches by a significant margin. 

4.4 A Reappraisal 

The outcomes derived from these two applications, namely the optimal allocation of capacitor 

banks and the optimal network reconfiguration, not only demonstrate the smooth 

implementation of the used optimization methods but also emphasize their capacity to produce 

high-quality solutions. Indeed, the three algorithms used, EO, AVOA, and GTO, exhibited 

strong and consistent performance in both cases. Nevertheless, it is clear that the EO algorithm 

has proven to be the best approach, continuously achieving the most ideal outcomes in 

comparison to other methods, especially in terms of reducing energy losses and improving cost 

effectiveness. 

The next section of this chapter focusses on the complex problem of simultaneously optimizing 

network reconfiguration and the allocation of CBs and DG units. In light of the complex and 

diverse characteristics of this issue, a more advanced methodology is necessary. Thus, we 

provide an innovative solution approach tailored specially to tackle the complexities of 

concurrent optimization. In order to achieve this objective, we have chosen the Hybrid Multi-

population Algorithm (HMPA), which, by virtue of its intrinsic design features, exceeds the 

capabilities of the EO algorithm [112]. The selection of HMPA is driven by its hybrid 

architecture, which integrates the advantages of many populations, thus improving the 

capacities to explore and exploit spaces. This feature enables the HMPA to efficiently 

circumvent local optima and attain near-global solutions with enhanced dependability. 

The capacity of HMPA to achieve a balance between global search and local refining further 

supports its selection over EO, making it particularly suitable for simultaneously optimizing 

network reconfiguration, capacitor allocation, and DG placement. Therefore, with this 

technique, we want to propose a more complete and efficient solution to the complicated issue 

of distribution network optimization, beyond the performance constraints of the EO algorithm. 
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4.5 Concurrent reconfiguration and allocation of capacitor banks and distributed 

generation 

4.5.1 Key stages of the suggested methodology                                                                                                                                                                                                                                                                                                                                                                     

This part of the experimental protocol presents the hybrid multi-population algorithm (HMPA) 

as a solution to achieve the dual goals of minimizing the annual substation energy costs (𝐶𝐸𝑠𝑢𝑏) 

and investment costs for devices (𝐶𝐷) while maintaining all operational constraints within 

acceptable limits. The optimisation procedure focusses on the optimal network reconfiguration 

while simultaneously allocating CBs and DG (ONRSACD) problem in the radial DN [123]. 

This approach is tested on the 33-node and 69-node radial distribution networks and accounts 

for hourly variations in load demand and distributed generation output. 

Many variables, such as the time of day, weather conditions, and the nature of users (residential, 

commercial, or industrial), impact the substantial variations in energy demand that the 

distribution system encounters throughout the day. The fluctuating demand poses a complicated 

problem for network operators, who need to meticulously handle network reconfiguration and 

the positioning of CBs and DG in order to enhance system performance. It is crucial to 

coordinate and carry out these actions as concurrently as feasible to accommodate the 

fluctuating energy demands and avoid unnecessary rises in both energy expenses and capital 

expenditures. 

By combining activities of network reconfiguration and optimal placement of CBs and DGs in 

a unified approach, the proposed methodology offers an effective strategy for improving both 

the operational efficiency and economic performance of the DN. This simultaneous 

optimization not only enhances the management of line switches and network states, but also 

ensures the optimal sizing and placement of devices, leading to more cost-effective and reliable 

network operation. Figure 4.14 provides a visual depiction of the overall structure of the study, 

highlighting the key elements of this optimization framework. Because of the inherent cost 

trade-offs, 𝐶𝐸𝑠𝑢𝑏 and 𝐶𝐷 are mutually incompatible, implying that achieving of one target 

automatically prevents the fulfillment of the other. This study is notable for addressing this 

issue and proposing an approach that promotes an ideal equilibrium between the two. 
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The aim is to determine the most efficient distribution of resources while maintaining the 

integrity of both objectives, thereby ensuring that trade-offs are controlled so as to reduce total 

expenditure. To attain this goal, it is essential to identify the minimum costs (𝐶𝐸𝑠𝑢𝑏_𝑚𝑖𝑛 and 

𝐶𝐷𝑚𝑖𝑛) that correspond to the lowest total yearly spending (𝐸𝑥𝑝𝑡𝑜𝑡_𝑚𝑖𝑛) in a three-step 

optimization process:  

• Step 1: Minimizing 𝐶𝐸𝑠𝑢𝑏 results in the minimum energy loss cost (𝐶𝐸𝑙𝑜𝑠𝑠_𝑚𝑖𝑛), the 

minimum cost for the energy load (𝐶𝐸𝑙𝑜𝑎𝑑_𝑚𝑖𝑛), but also the maximum investment cost 

(𝐶𝐷𝑚𝑎𝑥). This stage is associated with the implementation of the single objective function 

1 (𝑂𝐹1). 

• Step 2: Minimizing 𝐶𝐷 results in the maximum energy loss cost (𝐶𝐸𝑙𝑜𝑠𝑠_𝑚𝑎𝑥) and the 

maximum of the energy load cost (𝐶𝐸𝑙𝑜𝑎𝑑_𝑐𝑜𝑠𝑡). This stage pertains to the realization of the 

single objective function 2 (𝑂𝐹2). 

• Step 3: Optimize the overall cost of yearly expenses related to attaining the multi-objective 

function 3 (𝑂𝐹3). The values acquired in the previous phases are used, following a suitable 

strategy suggested for this purpose, to establish the boundary values of the membership 

functions. These values serve as inputs to the fuzzy process, enabling the achievement of 

the highest degree of satisfaction (𝐷𝑆𝑚𝑎𝑥) in terms of minimizing the total yearly cost.  

The study used various optimization techniques, including artificial ecosystem optimization 

(AEO), Harris Hawks Optimization (HHO), particle swarm optimization (PSO), and moth-

flame optimization (MFO), to solve the ONRSACD problem.  

Optimization approach 

Equality and inequality constraints 

Best solution 

compromise 
             DN data 
Hourly Load profile 
Hourly DG output profile 

     DN      CBs   DGs   OSs 

Single objective function 

𝑂𝐹1 = 𝑚𝑖𝑛(𝐶𝐸𝑠𝑢𝑏) 

Single objective function 

𝑂𝐹2 = 𝑚𝑖𝑛(𝐶𝐷) 

Fuzzy multi-objective 

function 
𝑂𝐹3 = 𝑚𝑎𝑥(𝐷𝑆) 

HMPA, AEO, HHO, PSO, MFO 

 

 𝐶𝐸𝑙𝑜𝑠𝑠_𝑚𝑎𝑥 
𝐶𝐸𝑙𝑜𝑎𝑑_𝑚𝑎𝑥 
𝐶𝐷𝑚𝑖𝑛 

𝐶𝐸𝑙𝑜𝑠𝑠_𝑚𝑖𝑛 
𝐶𝐸𝑙𝑜𝑎𝑑_𝑚𝑖𝑛 
𝐶𝐷𝑚𝑎𝑥 

MOHMPA, MOAEO, 

MOHHO, MOPSO, MOMFO 
 

𝑫𝑺𝒎𝒂𝒙 

Algorithms 

Fig 4.14.  Main components of the proposed approach 
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The algorithms were implemented in single-objective mode and then extended to multi-

objective models, i.e. MOHMPA, MOAEO, MOHHO, MOPSO and MOMFO. The single-

objective implementations focused on optimizing specific criteria, while the multi-objective 

implementations aimed to deal with complex trade-offs between conflicting objectives. 

Comparing the performance of these algorithms in the two contexts enabled a comprehensive 

evaluation of their effectiveness in solving the ONRSACD problem. The multi-objective 

implementations were developed within the framework of the fuzzy multi-objective function, 

which takes into account the inherent trade-offs between energy costs and capital expenditure, 

resulting in a more balanced and efficient solution. 

4.5.2 Optimization problem formulation 

The main goal of the network reconfiguration issue, along with the optimal allocation of CBs 

and DG, is to simultaneously reduce energy prices and investment expenditures. This intricate 

optimization problem involves many objective functions, each representing different elements 

of the system's performance, along with an ensemble of necessary equality and inequality 

constraints. These restrictions ensure that the suggested solutions not only meet the network's 

technical and operational criteria, but also meet cost considerations. A complex issue of this 

nature necessitates a refined optimization strategy that carefully balances the often-conflicting 

goals in order to find a solution that is both economically efficient and technically achievable. 

4.5.2.1 Single objective functions 

A. Substation energy cost reduction 

The first objective function is to minimize the yearly cost of active energy supplied by the 

substation. It is expressed as follows: 

𝑂𝐹1 = 𝑚𝑖𝑛(𝐶𝐸𝑠𝑢𝑏)                                                                                                                          (4.14) 

Where: 

𝐶𝐸𝑠𝑢𝑏 = 𝐶𝐸𝑙𝑜𝑠𝑠 + 𝐶𝐸𝑙𝑜𝑎𝑑                                                                                                               (4.15) 

• The annual cost of active energy losses  

𝐶𝐸𝑙𝑜𝑠𝑠 =
1

𝑁𝑦𝑟
(365𝐾𝐸𝑠𝑢𝑏 ∙ ∑ 𝑃𝑊𝑚 ∙ 𝐸𝑙𝑜𝑠𝑠

𝑁𝑦𝑟

𝑚=1

)                                                                         (4.16) 

• The annual cost of active energy load demand  
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𝐶𝐸𝑙𝑜𝑎𝑑 =
1

𝑁𝑦𝑟
(365𝐾𝐸𝑠𝑢𝑏 ∙ ∑ 𝑃𝑊𝑚 ∙ 𝐸𝑙𝑜𝑎𝑑

𝑁𝑦𝑟

𝑚=1

)                                                                       (4.17) 

• Daily active energy losses  

𝐸𝑙𝑜𝑠𝑠 =∑∑𝑃𝑙𝑜𝑠𝑠(𝑛)ℎ

𝑁𝑏𝑟

𝑛=1

24

ℎ=1

                                                                                                                (4.18) 

• Daily reactive energy losses 

𝐸𝑄𝑙𝑜𝑠𝑠 =∑∑𝑄𝑙𝑜𝑠𝑠(𝑛)ℎ

𝑁𝑏𝑟

𝑛=1

24

ℎ=1

                                                                                                            (4.19) 

 

• Power loss in lines 

Figure 4.15 presents a simple radial DN line model. 

𝑃𝑙𝑜𝑠𝑠(𝑗, 𝑗 + 1)ℎ = (
𝑃2(𝑗, 𝑗 + 1)ℎ + 𝑄

2(𝑗, 𝑗 + 1)ℎ

|𝑉𝑗|ℎ
2 ) ∙ 𝑅(𝑗, 𝑗 + 1)                                          (4.20) 

𝑄𝑙𝑜𝑠𝑠(𝑗, 𝑗 + 1)ℎ = (
𝑃2(𝑗, 𝑗 + 1)ℎ + 𝑄

2(𝑗, 𝑗 + 1)ℎ

|𝑉𝑗|ℎ
2 ) ∙ 𝑋(𝑗, 𝑗 + 1)                                          (4.21) 

Where 

𝑃𝑙𝑜𝑠𝑠(𝑗, 𝑗 + 1)ℎ = 𝑃𝑙𝑜𝑠𝑠(𝑛)ℎ , 𝑄𝑙𝑜𝑠𝑠(𝑗, 𝑗 + 1)ℎ = 𝑄𝑙𝑜𝑠𝑠(𝑛)ℎ  

 

• Daily active energy load demand 

𝐸𝑙𝑜𝑎𝑑 =∑ ∑ 𝑃𝑙𝑜𝑎𝑑(𝑗)ℎ

𝑁𝑏𝑢𝑠

𝑗=2

24

ℎ=1

                                                                                                             (4.22) 

The worth factor [124]. as defined in Equation 4.23, is a crucial tool for cost analysis, combining 

inflation and interest rates to provide a precise financial picture over time. It helps in assessing 

𝑉𝑗+1 
𝑉𝑗 

𝑗 𝑗 + 1 

𝑃(𝑗, 𝑗 + 1) + 𝐽𝑄(𝑗, 𝑗 + 1) 

𝑅(𝑗, 𝑗 + 1) + 𝐽𝑋(𝑗, 𝑗 + 1) 

𝑃𝑙𝑜𝑎𝑑(𝑗 + 1) + 𝐽𝑄𝑙𝑜𝑎𝑑(𝑗 + 1) 
Fig.4.15 Line model of the radial DN 
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future costs' present value, enabling informed comparisons, and aiding in strategic financial 

planning by emphasizing the impact of inflation and interest rates on investment choices. 

𝑃𝑊 =
1 + 𝑖𝑛𝑓𝑅

1 + 𝑖𝑛𝑡𝑅
                                                                                                                               (4.23) 

B. Device investment cost minimization  

The objective function aims to reduce yearly expenses related to device installation and 

maintenance, considering both initial costs and long-term operational costs. The function 

considers factors like device longevity, maintenance frequency, and resource allocation 

effectiveness. Technical and operational constraints, performance criteria, reliability 

requirements, and environmental factors also influence the optimization process. The goal is to 

find a cost-efficient solution that balances initial expenditure with long-term viability, ensuring 

optimal device performance and minimizing expenses. This objective function is described as 

follows:  

𝑂𝐹2 = 𝑚𝑖𝑛(𝐶𝐷)                                                                                                                                (4.24) 

Where:  

𝐶𝐷 = 𝐶𝑄𝐶𝐵 + 𝐶𝐷𝐺 + 𝐶𝑇𝑆                                                                                                                 (4.25) 

• Total CBs investment cost 

𝐶𝐼𝐶𝐵 = 𝐶𝑄𝐶𝐵 + 𝐶𝐹𝐶𝐵                                                                                                                          (4.26) 

• Total annual cost of CBs reactive power 

𝐶𝑄𝐶𝐵 =∑𝐾𝑄𝐶𝐵 ∙ 𝑄𝐶𝐵𝑖

𝑁𝑐𝑏

𝑖=1

                                                                                                                   (4.27) 

• Total fixed cost of CBs 

𝐶𝐹𝐶𝐵 = 𝑁𝑐𝑏 ∙ 𝐾𝐹𝐶𝐵                                                                                                                            (4.28) 

• Annual DGs investment cost 

𝐶𝐷𝐺 = 𝐴𝑈𝐷𝐺 ∙ 𝐶𝐼𝐷𝐺 + 𝐶𝑀𝐷𝐺                                                                                                              (4.29) 

• Total installation cost of DGs 

𝐶𝐼𝐷𝐺 = 𝐾𝐼𝐷𝐺 ∙ ∑ 𝑃𝐷𝐺𝑖

𝑁𝑑𝑔

𝑖=1

                                                                                                                    (4.30) 



93 
 

• Annual operation and maintenance cost of DGs 

𝐶𝑀𝐷𝐺 =
1

𝑁𝑦𝑟
(365 𝐾𝐸𝐷𝐺 ∙ ∑ ∑∑𝑃𝑊𝑚 ∙ 𝑃𝐷𝐺𝑖,ℎ

24

ℎ=1

𝑁𝑑𝑔

𝑖=1

𝑁𝑦𝑟

𝑚=1

)                                                           (4.31) 

• Annual TSs investment cost 

𝐶𝑇𝑆 = 𝐴
𝑈𝑇𝑆 ∙ 𝐶𝐼𝑇𝑆 + 𝐴

𝑈𝑅𝐶𝑆 ∙ 𝐶𝐼𝑅𝐶𝑆 + 𝐶𝑀𝑇𝑆𝑅𝐶𝑆                                                                            (4.32) 

𝐴𝑈 =
𝑖𝑛𝑡𝑅

1 − (1 + 𝑖𝑛𝑡𝑅)−𝑈
         ;     𝑈 ∈ [𝑈𝐷𝐺   𝑈𝑇𝑆    𝑈𝑅𝐶𝑆]                                                   (4.33) 

• Total installation cost of TSs 

𝐶𝐼𝑇𝑆 =∑𝐿𝑇𝑆𝑖 ∙ 𝐾𝑇𝑆

𝑁𝑡𝑠

𝑖=1

                                                                                                                        (4.34) 

• Total installation cost of remote-controlled switches (RCS) 

𝐶𝐼𝑅𝐶𝑆 = 2 ∙ 𝑁𝑡𝑠 ∙ 𝐾𝑅𝐶𝑆                                                                                                                      (4.35) 

• Annual operation and maintenance cost of TSs and RCS 

𝐶𝑀𝑇𝑆𝑅𝐶𝑆 =∑𝐿𝑇𝑆𝑖 ∙ 𝐾𝑀𝑇𝑆 + 2 ∙ 𝑁𝑡𝑠 ∙ 𝐾𝑀𝑅𝐶𝑆

𝑁𝑡𝑠

𝑖=1

                                                                             (4.36) 

The annuity factor 𝐴𝑈 [125] is a method used to calculate the annual investment cost of devices 

in electrical distribution networks. It converts a lump-sum investment cost into an equivalent 

annual expense over the asset's useful life, allowing for a more transparent comparison of 

investment options. This method also considers interest rates and asset depreciation, ensuring 

accurate representation of both initial costs and continuous economic consequences throughout 

the device's operational lifespan.  

The annuity factor also aids in evaluating the financial feasibility of investments in different 

economic situations, such as fluctuations in interest rates or inflation. This approach allows for 

a more strategic assessment of capital expenditures in electrical distribution networks, 

considering both current and future currency depreciation.  

The annuity factor enhances financial planning by providing a reliable foundation for evaluating 

investment alternatives, ensuring the selection of the most economically efficient and 

financially viable options for long-term infrastructure development. 
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4.5.2.2 Fuzzy multi-objective function  

The aim is to determine the optimal compromise between the aforementioned competing 

expenses. This is described in the following:  

min𝑀𝑂𝐹 = [𝐶𝐸𝑙𝑜𝑠𝑠, 𝐶𝐸𝑙𝑜𝑎𝑑, 𝐶𝐷]                                                                                                  (4.37) 

Equation 4.37 describes an integrated multi-objective optimization technique that addresses 

three crucial objectives in the global objective function. The fuzzy multi-objective optimization 

problem requires the definition of a membership function (μ) [126] for each objective function, 

which specifies the maximum and minimum values of the function. The objective is to 

maximize the degree of satisfaction (DS) in order to determine the most favorable trade-off 

solution. In this particular context, it is of utmost importance to meticulously ascertain and 

modify the range in which the membership functions operate, as this directly impacts the 

potential values of the objective functions. Adjustments of this nature are critical for achieving 

equilibrium between exploration and exploitation in the solution space, fostering variety in the 

obtained solutions and enabling significant compromises between conflicting goals. 

 

To fully utilize the exploratory and exploitative capabilities of each optimization algorithm, this 

research does not establish predefined upper and lower limits for membership functions. 

Alternatively, the optimization algorithms dynamically establish these limits, following the 

approach illustrated in Figure 4.16. This approach exploits the inherent tensions among the 

various goals and aims to find a middle ground between reducing investment expenses and 

optimizing operating effectiveness. For example, decreasing capital expenditures generally 

improves efficiency, but this enhancement has the drawback of increased energy expenditure 

at substations due to higher energy loss costs. On the other hand, prioritizing the reduction of 

substation energy requirements can result in increased equipment investment.  

 

 

The proposed method dynamically balances these competing objectives, ensuring that the 

optimization process takes into account both short-term and long-term cost implications while 

balancing capital investment and operational efficiency trade-offs. 

 

When implementing the objective function 𝑂𝐹1, each algorithm generates the most efficient 

network configuration and also estimates the optimal allocation of DGs and CBs.  
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An optimal solution to the ONRSACD problem is obtained by minimizing the cost of the energy 

supplied by the substation, symbolized as 𝐶𝐸𝑠𝑢𝑏 while simultaneously increasing the 

investment cost for the required equipment, denoted as 𝐶𝐷. Following optimization, the 

resultant value of 𝐶𝐷 is assigned to 𝐶𝐷𝑚𝑎𝑥, reflecting the highest equipment investment 

required in this specific setup. 

 

According to Eq. (4.15), the substation's total energy cost is divided into two primary 

components: energy loss cost 𝐶𝐸𝑙𝑜𝑠𝑠 and the load demand cost 𝐶𝐸𝑙𝑜𝑎𝑑. In order to assign the 

outcomes to their respective minimum values i.e., 𝐶𝐸𝑙𝑜𝑠𝑠_𝑚𝑖𝑛 and 𝐶𝐸𝑙𝑜𝑎𝑑_𝑚𝑖𝑛 , the algorithm 

endeavors to minimize these components individually as part of the optimization process. 

Under the current network configuration and allocation of DGs and CBs, these minimum values 

represent the lowest achievable costs for energy losses and load demand.  

 

The algorithm's approach, as depicted in Figure 4.16, guarantees that the energy supplied by 

the substation is optimized for cost efficiency by minimizing the losses incurred and the cost 

associated with meeting the network's load demand, despite the increase in investment costs. 

The trade-offs inherent in the optimization process are underscored by the meticulous balance 

between managing increased equipment investment and minimizing operational energy costs. 

This reflects the overarching objective of achieving an economically efficient solution for 

network reconfiguration.  

𝑂𝐹1 = 𝑚𝑖𝑛 (𝐶𝐸𝑠𝑢𝑏)  𝑂𝐹2 = 𝑚𝑖𝑛 (𝐶𝐷)  

𝐶𝐸𝑠𝑢𝑏_𝑚𝑖𝑛 = 𝐶𝐸𝑙𝑜𝑠𝑠
𝑚 + 𝐶𝐸𝑙𝑜𝑎𝑑

𝑚  𝐶𝐷𝑚𝑎𝑥 𝐶𝐷𝑚𝑖𝑛 𝐶𝐸𝑠𝑢𝑏_𝑚𝑎𝑥 = 𝐶𝐸𝑙𝑜𝑠𝑠
𝑀 + 𝐶𝐸𝑙𝑜𝑎𝑑

𝑀  

𝐶𝐸𝑙𝑜𝑠𝑠
𝑀 ≥ 𝐶𝐸𝑙𝑜𝑠𝑠_𝑏𝑎𝑠𝑒_𝑐𝑎𝑠𝑒 

No 

𝐶𝐸𝑙𝑜𝑠𝑠_𝑚𝑎𝑥 = 𝐶𝐸𝑙𝑜𝑠𝑠
𝑀  

𝐶𝐸𝑙𝑜𝑎𝑑_𝑚𝑎𝑥 = 𝐶𝐸𝑙𝑜𝑎𝑑
𝑀  

𝐶𝐸𝑙𝑜𝑠𝑠_𝑚𝑎𝑥 = 𝐶𝐸𝑙𝑜𝑠𝑠_𝑏𝑎𝑠𝑒_𝑐𝑎𝑠𝑒 

Yes 𝐶𝐸𝑙𝑜𝑠𝑠_𝑚𝑖𝑛 = 𝐶𝐸𝑙𝑜𝑠𝑠
𝑚  

𝐶𝐸𝑙𝑜𝑎𝑑_𝑚𝑖𝑛 = 𝐶𝐸𝑙𝑜𝑎𝑑
𝑚  

𝑂𝐹3 = 𝑚𝑎𝑥 (𝐷𝑆)  

Fig.4.16 The strategy of setting maximum and minimum limits 

for fuzzy membership functions 

1 
𝜇𝐶𝐸_𝑙𝑜𝑠𝑠 

𝐶𝐸𝑙𝑜𝑠𝑠_𝑚𝑖𝑛 𝐶𝐸𝑙𝑜𝑠𝑠_𝑚𝑎𝑥 

1 
𝜇𝐶𝐸_𝑙𝑜𝑎𝑑 

𝐶𝐸𝑙𝑜𝑎𝑑_𝑚𝑖𝑛 𝐶𝐸𝑙𝑜𝑎𝑑_𝑚𝑎𝑥 

1 
𝜇𝐶𝐷 

𝐶𝐷𝑚𝑖𝑛 𝐶𝐷𝑚𝑎𝑥 
The yearly energy loss 

cost membership function 
The annual energy load demand 

cost membership function 

 

The annual devices cost 

membership function 

Or 
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Furthermore, the algorithm generates a solution to the ONRSACD problem that decreases the 

equipment investment cost (𝐶𝐷) when addressing the objective function 𝑂𝐹2. However, this 

often results in an increase in the substation's energy cost (𝐶𝐸𝑠𝑢𝑏), potentially surpassing its 

value in the base case scenario. The primary cause of the increase in 𝐶𝐸𝑠𝑢𝑏 is the energy loss 

cost (𝐶𝐸𝑙𝑜𝑠𝑠), as the load demand cost (𝐶𝐸𝑙𝑜𝑎𝑑) cannot surpass the base case's measured cost. 

Operational limits typically fix or restrict load demand costs, while changes in the network 

configuration are more susceptible to energy losses. 

 

Given that the maximum possible value of 𝐶𝐸𝑠𝑢𝑏_𝑚𝑎𝑥 is the sum of two components 𝐶𝐸𝑙𝑜𝑠𝑠
𝑀  and 

𝐶𝐸𝑙𝑜𝑎𝑑
𝑀  the algorithm assigns the value of 𝐶𝐸𝑙𝑜𝑎𝑑

𝑀  to 𝐶𝐸𝑙𝑜𝑎𝑑_𝑚𝑎𝑥 . For the energy loss 

component, the algorithm compares 𝐶𝐸𝑙𝑜𝑠𝑠
𝑀  with the cost of the base case energy losses. If 𝐶𝐸𝑙𝑜𝑠𝑠

𝑀  

exceeds the base case energy loss cost, the algorithm retains the base case value as 𝐶𝐸𝑙𝑜𝑠𝑠_𝑚𝑎𝑥 

ensuring that the maximum possible energy loss cost does not exceed the predefined threshold 

set by the base case scenario. 

 

As a result, attaining objective function 𝑂𝐹1 enables the derivation of 𝐶𝐷𝑚𝑎𝑥, 𝐶𝐸𝑙𝑜𝑠𝑠_𝑚𝑖𝑛 and 

𝐶𝐸𝑙𝑜𝑎𝑑_𝑚𝑖𝑛. Conversely, realizing objective function 𝑂𝐹2 facilitates the deduction of 

𝐶𝐷𝑚𝑖𝑛, 𝐶𝐸𝑙𝑜𝑠𝑠_𝑚𝑎𝑥 and 𝐶𝐸𝑙𝑜𝑎𝑑_𝑚𝑎𝑥 values.  

These contrasting outcomes underscore the inherent tradeoffs between managing energy supply 

costs and minimizing equipment investment. Often, optimizing one objective leads to an 

increase in the other. This dual-objective framework guarantees that the algorithm maintains or 

minimizes operational energy costs across the network while simultaneously reducing capital 

expenditures. 

The fuzzy multi-objective optimization is then formulated as follow. 

𝑂𝐹3 = max(𝐷𝑆)                                                                                                                               (4.38) 

Where:  

𝐷𝑆 = min(𝜇𝐶𝐸𝑙𝑜𝑠𝑠 , 𝜇𝐶𝐸𝑙𝑜𝑎𝑑 , 𝜇𝐶𝐷)                                                                                                   (4.39)  

The membership functions exhibiting fuzziness adhere to the scheme depicted in Figure 4.16 

and follow the subsequent formulation: 
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𝜇𝐶𝐸𝑙𝑜𝑠𝑠 =

{
 

 
1  ;   𝐶𝐸𝑙𝑜𝑠𝑠 ≤ 𝐶𝐸𝑙𝑜𝑠𝑠_𝑚𝑖𝑛                                                                                                      

𝐶𝐸𝑙𝑜𝑠𝑠_𝑚𝑎𝑥 − 𝐶𝐸𝑙𝑜𝑠𝑠
𝐶𝐸𝑙𝑜𝑠𝑠_𝑚𝑎𝑥 − 𝐶𝐸𝑙𝑜𝑠𝑠_𝑚𝑖𝑛

;  𝐶𝐸𝑙𝑜𝑠𝑠_𝑚𝑖𝑛 < 𝐶𝐸𝑙𝑜𝑠𝑠 < 𝐶𝐸𝑙𝑜𝑠𝑠_𝑚𝑎𝑥                            (4.40)

0  ;           𝐶𝐸𝑙𝑜𝑠𝑠 ≥ 𝐶𝐸𝑙𝑜𝑠𝑠_𝑚𝑎𝑥                                                                                             

 

𝜇𝐶𝐸𝑙𝑜𝑎𝑑 =

{
 

 
    1  ;   𝐶𝐸𝑙𝑜𝑎𝑑 ≤ 𝐶𝐸𝑙𝑜𝑎𝑑_𝑚𝑖𝑛                                                                                

𝐶𝐸𝑙𝑜𝑎𝑑_𝑚𝑎𝑥 − 𝐶𝐸𝑙𝑜𝑎𝑑
𝐶𝐸𝑙𝑜𝑎𝑑_𝑚𝑎𝑥 − 𝐶𝐸𝑙𝑜𝑎𝑑_𝑚𝑖𝑛

;  𝐶𝐸𝑙𝑜𝑎𝑑_𝑚𝑖𝑛 < 𝐶𝐸𝑙𝑜𝑎𝑑 < 𝐶𝐸𝑙𝑜𝑎𝑑_𝑚𝑎𝑥                     (4.41)

  0  ;       𝐶𝐸𝑙𝑜𝑎𝑑 ≥ 𝐶𝐸𝑙𝑜𝑎𝑑_𝑚𝑎𝑥                                           

 

𝜇𝐶𝐷 =

{
 

 
    1  ;                𝐶𝐷 ≤ 𝐶𝐷𝑚𝑖𝑛                                                                                                          
𝐶𝐷𝑚𝑎𝑥 − 𝐶𝐷

𝐶𝐷𝑚𝑎𝑥 − 𝐶𝐷𝑚𝑖𝑛
;  𝐶𝐷𝑚𝑖𝑛 < 𝐶𝐷 < 𝐶𝐷𝑚𝑎𝑥                                                                   (4.42)

  0  ;       𝐶𝐷 ≥ 𝐶𝐷𝑚𝑎𝑥                                                                                                                 

 

 

In this way, each algorithm endeavors to attain the highest level of satisfaction within the 

predetermined parameters of its membership function. The total annual expenditure cost is then 

used to compare the results of the various methods, as outlined in Eq. 4.43. Consequently, the 

evaluation of the various methods is completed. This comparison allows for a comprehensive 

assessment of each algorithm's cost efficiency, ensuring the selection of the solution that best 

balances the competing objectives. 

𝐸𝑥𝑝𝑡𝑜𝑡 = 𝐶𝐸𝑠𝑢𝑏 + 𝐶𝐷                                                                                                                      (4.43) 

4.5.2.3 Constraints 

Each of the objective functions reported above is bound by constraints specified in equations 

(4.44) - (4.55).  These constraints must be consistently met throughout the day, taking into 

consideration fluctuating hourly load and distributed generation (DG) output.  

A. Equality constraints  

The equations for power balance arise from the classic concept of energy conservation. These 

considerations apply to the whole system, including both active and reactive power 

components. The equations establish that the aggregate power input into the system, 

encompassing contributions from both DGs and CBs, is equivalent to the aggregate power 

consumption, including power losses. Expressed in the following manner:  

𝑃𝑠𝑢𝑏 +∑𝑃𝐷𝐺𝑖

𝑁𝑑𝑔

𝑖=1

= ∑ 𝑃𝑙𝑜𝑎𝑑(𝑗)

𝑁𝑏𝑢𝑠

𝑗=1

+∑𝑃𝑙𝑜𝑠𝑠(𝑛)

𝑁𝑏𝑟

𝑛=1

                                                                       (4.44) 
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𝑄𝑠𝑢𝑏 +∑𝐶𝐶𝐵𝑖

𝑁𝑐𝑏

𝑖=1

= ∑ 𝑄𝑙𝑜𝑎𝑑(𝑗)

𝑁𝑏𝑢𝑠

𝑏=𝑗

+∑𝑄𝑙𝑜𝑠𝑠(𝑛)

𝑁𝑏𝑟

𝑛=1

                                                                      (4.45) 

 

B. Inequality constraints:  

• Voltage limits  

The following formula determines the limitations on the magnitudes of voltage on all buses. 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑗 ≤ 𝑉𝑚𝑎𝑥       ;       𝑗 = 1,2, … ,𝑁𝑏𝑢𝑠                                                                                 (4.46) 

With, 𝑉𝑚𝑖𝑛 = 0.95 𝑝𝑢,    𝑉𝑚𝑎𝑥 = 1.05 𝑝𝑢                       

• Line current flow limitations 

It is necessary to consistently maintain all currents transmitted in the lines within their allowed 

limits. 

𝐼𝑛 ≤ 𝐼𝑛
𝑚𝑎𝑥        ;    𝑛 = 1,2, … ,𝑁𝑏𝑟                                                                                                 (4.47) 

• CBs sizing and location constraints 

The reactive power and location of CBs must be generated in respect of the constraints below: 

𝑄𝐶𝐵_𝑚𝑖𝑛 ≤ 𝑄𝐶𝐵𝑖 ≤ 𝑄𝐶𝐵_𝑚𝑎𝑥   ;      𝑖 = 1,2, … , 𝑁𝑐𝑏                                                                      (4.48) 

With,  𝑄𝐶𝐵_𝑚𝑖𝑛 = 0,    𝑄𝐶𝐵_𝑚𝑎𝑥 = 1000 𝑘𝑣𝑎𝑟 

𝑄𝐶𝐵𝑖 = 𝑆 ∙ 𝑄0                                                                                                                                      (4.49) 

∑𝑄𝐶𝐵𝑖

𝑁𝑐𝑏

𝑖=1

≤ 𝑀𝐴𝑄                                                                                                                                (4.50) 

2 ≤ 𝐿𝑂𝐶𝐶𝐵𝑖 ≤ 𝑁𝑏𝑢𝑠  ,            𝑖 = 1,2, … ,𝑁𝑐𝑏                                                                             (4.51) 

With,  𝐿𝑂𝐶𝐶𝐵𝑖 ≠ 𝐿𝑂𝐶𝐶𝐵𝑗 ;       𝑖, 𝑗 ∈ {1,2, … , 𝑁𝑐𝑏};     𝑖 ≠ 𝑗 

• DGs constraints 

This study examines photovoltaic (PV) distributed generations (DGs) that inject active power 

into the electrical distribution network. These DGs share technical characteristics like power 

capacity, efficiency, and operational behavior. To ensure optimal integration, constraints such 

as network stability, voltage limits, line capacity, and power flow restrictions must be 

considered. The location and size of DGs must be strategically chosen to avoid overloading the 

network and minimize energy losses. Accurate forecasting of DG output and system reliability 
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must also be considered, considering variations in solar irradiance, seasonal fluctuations, and 

weather conditions. The active power and location of DGs must be provided according to the 

following constraints: 

𝑃𝐷𝐺𝑚𝑖𝑛 ≤ 𝑃𝐷𝐺𝑖 ≤ 𝑃𝐷𝐺𝑚𝑎𝑥   ;    𝑖 = 1,2, … , 𝑁𝑑𝑔                                                                           (4.52) 

With, 𝑃𝐷𝐺𝑚𝑖𝑛 = 100 𝑘𝑤  , 𝑃𝐷𝐺𝑚𝑎𝑥 = 1000 𝑘𝑤 

∑𝑃𝐷𝐺𝑖

𝑁𝑑𝑔

𝑖=1

= 𝑃𝑅 ∙ 𝑀𝐴𝑃 ;    0.1 ≤ 𝑃𝑅 ≤ 0.6                                                                                   (4.53) 

2 ≤ 𝐿𝑂𝐶𝐷𝐺𝑖 ≤ 𝑁𝑏𝑢𝑠 ;          𝑖 = 1,2, … , 𝑁𝑑𝑔                                                                              (4.54) 

With,  𝐿𝑂𝐶𝐷𝐺𝑖 ≠ 𝐿𝑂𝐶𝐷𝐺𝑗   ;       𝑖, 𝑗 ∈ {1,2, … , 𝑁𝑑𝑔};     𝑖 ≠ 𝑗  

• Switch opening and radiality constraints 

The reconfiguration process involves adjusting tie switches (TSs) and open switches (OSs) 

while adhering to radiality check constraints. This ensures the network remains free of loops, 

simplifying power flow analysis and fault isolation. The Depth-First Search (DFS) algorithm 

manages this process by systematically traversing the network, identifying potential cycles, and 

ensuring power is supplied without violating the radial structure. Maintaining a radial 

configuration is crucial for protection coordination, fault detection, and service restoration. The 

reconfiguration process, guided by the DFS algorithm, optimizes power flows, reduces energy 

losses, improves voltage profiles, and balances load across the network. These adjustments 

enhance the efficiency and reliability of the electrical distribution system while ensuring 

operational constraints, such as thermal limits and voltage stability, are not compromised. 

Strategic reconfiguration of TSs and OSs can improve the integration of distributed generation, 

optimize the network's response to load and generation fluctuations, and achieve cost savings 

through more efficient energy distribution. The overall process is governed by the following 

formulas. 

2 ≤ 𝑂𝑆𝑖 ≤ 𝑁𝑏𝑟 + 𝑁𝑡𝑠       ;    𝑖 = 1,2, … ,𝑁𝑡𝑠                                                                            (4.55) 

With,  𝑂𝑆𝑖 ≠ 𝑂𝑆𝑗;       𝑖, 𝑗 ∈ {1,2, … ,𝑁𝑡𝑠};     𝑖 ≠ 𝑗 

With, number of loops = 0 and number of isolated nodes = 0 
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4.5.2.4 HMPA implementation for solving the ONRSACD problem 

The Hybrid Multi-Population Algorithm (HMPA) is implemented to tackle the ONRSACD 

problem, with the primary goal of achieving a balance between minimizing energy costs and 

reducing equipment investment expenditures. The HMPA is particularly well-suited for this 

complex, multi-objective optimization problem due to its ability to handle conflicting 

objectives, explore diverse solutions across multiple populations, and effectively combine 

exploration and exploitation strategies. 

The implementation of HMPA begins by generating several initial populations, each 

representing a potential configuration of the distribution network, including the placement of 

DGs and CBs. Each population focuses on optimizing key elements of the problem, such as 

network reconfiguration, DG placement, or CB allocation, allowing for parallel exploration of 

the solution space while maintaining diversity among potential solutions. Throughout the 

optimization process, HMPA leverages cross-population interactions to exchange information 

and enhance the overall search process. This hybridization approach allows the algorithm to 

escape local optima, ensuring that it effectively navigates the highly non-linear and multi-modal 

nature of the ONRSACD problem. Additionally, adaptive mechanisms within HMPA adjust 

key parameters dynamically, such as crossover and mutation rates, to maintain a balance 

between intensifying the search around promising solutions and exploring new regions of the 

solution space. 

The implementation also includes a radiality check for each network configuration to ensure 

that the radial structure of the distribution network is preserved. This is achieved through the 

DFS algorithm, which verifies that no closed loops are formed, maintaining the simplicity and 

reliability of the radial topology. Furthermore, the algorithm evaluates each candidate solution 

based on the overall annual expenditure cost, including energy losses, substation energy costs, 

and investment costs for equipment. The HMPA assigns different objective functions to the 

populations to address these conflicting objectives, ensuring a comprehensive exploration of 

the trade-offs between energy and investment costs. 

The HMPA’s dynamic balance of exploration and exploitation, combined with its multi-

population structure, makes it a robust tool for solving the ONRSACD problem. The result is 

an optimal or near-optimal configuration of the distribution network, with strategic placement 

of DGs and CBs that maximizes techno-economic benefits while adhering to operational 

constraints. 



101 
 

 

 

 

Input: Read the system data. 

Output: Optimal parameters of OS, CB and DG. 

Initialization:  

% Assign the parameters of the HMPA 

𝑁𝑝𝑜𝑝: Number of populations 

𝑀𝑎𝑥_𝑖𝑡: Maximum number of iterations  

% Problem initializing  

1. Define the objective function 𝑓(�⃗�); 𝑓(�⃗�) ∈ {𝑂𝐹1, 𝑂𝐹2, 𝑂𝐹3}; �⃗� = [𝑥1, … , 𝑥𝐷] 

2. Set the lower bound (𝐿𝑏⃗⃗⃗⃗⃗) and upper bound 𝑈𝑏⃗⃗⃗⃗⃗⃗  vectors of control variables. 

3. A population of 𝑁𝑝𝑜𝑝 individuals is represented by a matrix: 

𝑋𝐼𝑡 = [�⃗�1
𝐼𝑡, �⃗�2

𝐼𝑡 , … , �⃗�𝑁𝑝𝑜𝑝
𝐼𝑡 ]

𝑇
=

[
 
 
 
 
𝑥1,1
𝐼𝑡      𝑥1,2

𝐼𝑡           …        𝑥1,𝐷
𝐼𝑡

𝑥2,1
𝐼𝑡      𝑥2,2

𝐼𝑡           …       𝑥2,𝐷
𝐼𝑡

⋮           ⋮               ⋱          ⋮    
𝑥𝑁𝑝𝑜𝑝,1
𝐼𝑡  𝑥𝑁𝑝𝑜𝑝,2

𝐼𝑡    …     𝑥𝑁𝑝𝑜𝑝,𝐷
𝐼𝑡

]
 
 
 
 

                                             (4.56)                                                                            

Each �⃗�𝑖(𝑖 = 1, … , 𝑁𝑝𝑜𝑝) represents a solution vector of the ONRSACD problem variables and 

is expressed as follows: 

 

{
�⃗�𝑖 = [

𝑂𝑆1, … , 𝑂𝑆𝑁𝑡𝑠, 𝐿𝑂𝐶𝐷𝐺,1, … , 𝐿𝑂𝐶𝐷𝐺,𝑁𝑑𝑔, 𝑃𝐷𝐺,1, … , 𝑃𝐷𝐺,𝑁𝑑𝑔,

𝐿𝑂𝐶𝐶𝐵,1, … , 𝐿𝑂𝐶𝐶𝐵,𝑁𝑐𝑏, 𝑄𝐶𝐵,1, … , 𝑄𝐶𝐵,𝑁𝑐𝑏, 𝑃𝑅
] ;                                                  (4.57) 

 𝑖 = 1,… ,𝑁𝑝𝑜𝑝                                                                                                                                                             

  

                

In the HMPA each individual of the population is randomly initialized using the 𝑢𝑛𝑖𝑓𝑟𝑚𝑑 

function: 

�⃗�𝑖 = 𝑢𝑛𝑖𝑓𝑟𝑚𝑑(𝐿𝑏, 𝑈𝑏); 𝑖 = 1, … , 𝑁𝑝𝑜𝑝                                                                                    (4.58) 

 

4. Check for limits and constraints violation and 

repairing 

5. For each solution vector run power flow 

computation and compute the objective function 

value 

6. Divide the population into three sub-populations as 

explained in section 3.9.3.1 

7. Find the local best of each sub-population and set 

the current iteration 𝐼𝑡 = 1 

% Main loop: 

8. 𝑊ℎ𝑖𝑙𝑒 (𝐼𝑡 < 𝑀𝑎𝑥_𝐼𝑡) 𝑑𝑜 

% For 𝑠𝑢𝑏_𝑝𝑜𝑝1 

9. Update �⃗�𝑖 in 𝑠𝑢𝑏_𝑝𝑜𝑝1 using the 𝑢𝑛𝑖𝑓𝑟𝑚𝑑 

function as follows: 

�⃗�𝑖 = 𝑢𝑛𝑖𝑓𝑟𝑚𝑑(𝐿𝑏, 𝑈𝑏); 𝑖 = 1,… , 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠𝑢𝑏_𝑝𝑜𝑝1) 
10. Check for limits constraints violation and repairing 

11. For each solution vector run power flow 

computation and compute the objective function 

value 

39. Check for limits and constraints violation and 

repairing 

40. For each solution vector run power flow 

computation and compute the objective 

function value. 

% For sub_pop3 

41. 𝐹𝑜𝑟 𝑖 = 1: 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠𝑢𝑏_𝑝𝑜𝑝3) 
42. 𝐼𝑓 𝑟𝑎𝑛𝑑 <  0.5 

43. Update �⃗�𝑖 in 𝑠𝑢𝑏_𝑝𝑜𝑝3 by AEO 

44. 𝐸𝑙𝑠𝑒 

45. Update �⃗�𝑖 in 𝑠𝑢𝑏_𝑝𝑜𝑝3 by HHO 

46. 𝐸𝑛𝑑 𝑖𝑓 

47. Check for limits and constraints violation and 

repairing.  

48. For each solution vector run power flow 

computation and compute the objective 

function value.   

49. Apply the greedy selection 

50. 𝐼𝑓 𝑟𝑎𝑛𝑑 < 0.5 

The pseudo-code of the HMPA for ONRSACD problem 
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12. Apply the greedy selection 

13. Generate quazi-opposite position of �⃗�𝑖 in 

𝑠𝑢𝑏_𝑝𝑜𝑝1 

14. Check for limits and constraints violation and 

repairing 

15. For each solution vector run power flow 

computation and compute the objective function 

value. 

16. Apply the greedy selection 

17. Find the local best in 𝑠𝑢𝑏_𝑝𝑜𝑝1 

18. Run CLS on the local best of 𝑠𝑢𝑏_𝑝𝑜𝑝1 

19. Check for limits and constraints violation and 

repairing 

20. For each solution vector run power flow 

computation and compute the objective function 

value 

% For 𝑠𝑢𝑏_𝑝𝑜𝑝2 

21. 𝐹𝑜𝑟 𝑖 = 1: 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠𝑢𝑏_𝑝𝑜𝑝2) 
22. 𝐼𝑓 𝑟𝑎𝑛𝑑 < 0.5 

23. Update �⃗�𝑖 in 𝑠𝑢𝑏_𝑝𝑜𝑝2by AEO 

24. 𝐸𝑙𝑠𝑒 

25. Update �⃗�𝑖 in 𝑠𝑢𝑏_𝑝𝑜𝑝2 by HHO 

26. 𝐸𝑛𝑑 𝑖𝑓 

27. Apply the greedy selection 

28. 𝐼𝑓 𝑟𝑎𝑛𝑑 < 0.5 

29. Update �⃗�𝑖 in 𝑠𝑢𝑏_𝑝𝑜𝑝2 by LF method 

30. 𝐸𝑙𝑠𝑒 

31. Update �⃗�𝑖 in 𝑠𝑢𝑏_𝑝𝑜𝑝2 by LS method 

32. 𝐸𝑛𝑑 𝑖𝑓 

33. Check for limits and constraints violation and 

repairing 

34. For each solution vector run power flow 

computation and compute the objective function 

value. 

35. Apply the greedy selection 

36. 𝐸𝑛𝑑 𝑓𝑜𝑟 

37. Find the local best in 𝑠𝑢𝑏_𝑝𝑜𝑝2 

38. Run CLS on the local best of 𝑠𝑢𝑏_𝑝𝑜𝑝2 

51. Update �⃗�𝑖 in 𝑠𝑢𝑏_𝑝𝑜𝑝3 by LF method 

52. 𝐸𝑙𝑠𝑒 

53. Update �⃗�𝑖 in 𝑠𝑢𝑏_𝑝𝑜𝑝3 by LS method 

54. 𝐸𝑛𝑑 𝑖𝑓 

55. Check for limits and constraints violation and 

repairing. 

56. For each solution vector run power flow 

computation and compute the objective 

function value 

57. Apply the greedy selection 

58. 𝐸𝑛𝑑 𝑓𝑜𝑟  
59. Find the local best in 𝑠𝑢𝑏_𝑝𝑜𝑝3 

60. Run CLS on the local best of 𝑠𝑢𝑏_𝑝𝑜𝑝3 

61. 𝑖𝑓 𝑚𝑜𝑑(𝐼𝑡, 𝐻) == 0 

62. % For 𝑠𝑢𝑏_𝑝𝑜𝑝1 

63. Find the local best in 𝑠𝑢𝑏_𝑝𝑜𝑝1 

64. 𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.5 

65. Transfer the local best of 𝑠𝑢𝑏_𝑝𝑜𝑝1 to 

𝑠𝑢𝑏_𝑝𝑜𝑝2 

66. 𝐸𝑙𝑠𝑒 

67. Transfer the local best of 𝑠𝑢𝑏_𝑝𝑜𝑝2 to 

𝑠𝑢𝑏_𝑝𝑜𝑝3 

68. 𝐸𝑛𝑑 𝑖𝑓 

69. % For 𝑠𝑢𝑏_𝑝𝑜𝑝2 

70. 𝐼𝑓 𝑙𝑒𝑛𝑔ℎ𝑡(𝑠𝑢𝑏_𝑝𝑜𝑝2) > 𝑀𝑁𝑀     

        % 𝑙𝑒𝑛𝑔ℎ𝑡(𝑠𝑢𝑏_𝑝𝑜𝑝2) = 𝑁𝑀 

71. Transfer solution in 𝑠𝑢𝑏_𝑝𝑜𝑝2 with 

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 >  𝑇ℎ𝑟 to 𝑠𝑢𝑏_𝑝𝑜𝑝1 

72. 𝐸𝑛𝑑 𝑖𝑓 

73. 𝐼𝑓 𝑙𝑒𝑛𝑔ℎ𝑡(𝑠𝑢𝑏_𝑝𝑜𝑝3) > 𝑀𝑁𝑀  

         % 𝑙𝑒𝑛𝑔ℎ𝑡(𝑠𝑢𝑏_𝑝𝑜𝑝3) = 𝑁𝑀 

74. Transfer solution in 𝑠𝑢𝑏_𝑝𝑜𝑝3 with 

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 > 𝑇ℎ𝑟 to 𝑠𝑢𝑏_𝑝𝑜𝑝1 

75. 𝐸𝑛𝑑 𝑖𝑓  

76. Find the global best solution of the three sub-

populations  

77. 𝐼𝑡 = 𝐼𝑡 + 1 

78. 𝐸𝑛𝑑 𝑤ℎ𝑖𝑙𝑒  

79. Return the global best solution. 

 

 

4.5.3. Simulation results and discussions 

The suggested methodology is evaluated using IEEE 33-bus and IEEE 69-bus balanced radial 

DNs. The fundamental architecture and parameters of these networks are shown in Figures 20, 

24, and Table 4.4, respectively.  All algorithms are executed using the MATLAB program. 

Calculation of power flow is accomplished using the backward/forward sweep method. 
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Parameters  33-bus system 69-bus system 

𝐸𝑃𝑙𝑜𝑠𝑠 (KWh/24h) 3663.178 3941.021 

𝐸𝑄𝑙𝑜𝑠𝑠  (KWh/24h) 2480.2467 1790.2355 

𝑉𝑚𝑖𝑛  (24h) 0.9045 0.9091 

𝑉𝑚𝑎𝑥  (24h) 1 1 

OS 33,34,35,36,37 69, 70, 71, 72, 73 

TS Length 

(Km) 

Branch  33 34 35 36 37 69 70 71 72 73 

length 4 8 10 6 5 5 8 7 8 8 

Annual expenditures ($/year) 1180267.8255 1213261.6093 

Location of different customers 

Residential 1 to 7, 12 to 18, 28 to 32 
1 to 15, 19,23,25 to 29, 49,50,53 to57, 60 to 

63, 51, 52,36 to 41,45,46 

Industrial 19 to 22 68, 69, 33 to 55, 66,67 

Commercial 10, 11, 24, 26 22, 24, 30 to 32, 42 

Educational institution 8, 25, 27 16, 17, 18, 58, 59, 43 

Sanatorium 9, 23, 33 20, 21, 47, 48 

 

 

 

Algorithm Parameter Value  

HMPA 

𝑇𝐻𝑟  100 

𝐻  5 

𝑀𝑁𝑀  10 

𝑘  10 

𝐶𝑃1 and 𝐶𝑃2 0.5 

𝜌, 𝛿 and 𝐿 𝑟𝑎𝑛𝑑  

AEO 
𝑟1, 𝑟2and 𝑟 𝑟𝑎𝑛𝑑  

ℎ 2 × 𝑟𝑎𝑛𝑑 − 1  

HHO 

𝑟1, 𝑟2, 𝑟3, 𝑟4, and 𝑞 𝑟𝑎𝑛𝑑  

𝐸0  (−1,1) 

𝐽  2 × (1 − 𝑟𝑎𝑛𝑑) 

MFO 

Spiral constant 1 

Converge constant -1 to -2 

Number of flames 𝑁 − 𝑙 ×
𝑁−1

𝑇
  

PSO 

𝑊𝑚𝑎𝑥   0.9 

𝑊𝑚𝑖𝑛  0.2 

𝐶1 and 𝐶2 2 

𝑣𝑚𝑎𝑥   𝑣𝑚𝑎𝑥 = (𝑈𝑏 − 𝐿𝑏) × 0.2 

𝑣𝑚𝑖𝑛  𝑣𝑚𝑖𝑛 = −𝑉𝑚𝑎𝑥   

 

 

Table 4.5. Algorithms parameters  

Table 4.4. Test systems parameters  
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Figure 4.17 illustrates the use of many hourly profiles in this research to enhance realism and 

account for hourly load fluctuations. These profiles include five different load ranges: 

residential, commercial, industrial, educational institution, and health sector-related. The 

proposed approach additionally considers the hourly fluctuations in DG outputs, as seen in 

Figure 4.18. Table 4.5 presents the parameter values corresponding to each method in their 

respective settings. These settings are the default parameters recommended by the authors in 

the original research. Drawing from reference [110], the present work has established a 

predetermined threshold of 1000 for the maximum number of iterations (𝑀𝑎𝑥_𝐼𝑡) and 50 for 

the population (𝑁𝑝𝑜𝑝). 

Fig.4.17. The hourly variations of different categories of loads. 

Fig.4.18.  The hourly variations of DG output. 
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4.5.3.1. The 33-bus network 

The single-line diagram of this test system is shown in Fig.4.23. It includes 32 normally closed 

branches, three laterals, and five normally OSs with 𝑀𝐴𝑃 = 3.7𝑀𝑊 and 𝑀𝐴𝑄 = 2.3𝑀𝑉𝐴𝑟 at 

the base values 100 𝑀𝑉𝐴 and 12.66 𝐾𝑉.    

A. Objective function 1 

Table 4.6. illustrates the ONRSACD problem's outcomes for the 33-bus test system, with an 

emphasis on 𝐶𝐸𝑠𝑢𝑏 reduction. The HMPA algorithm effectively reduces 𝐶𝐸𝑠𝑢𝑏 from 

1180267.82 $/year in the base case to 876276.0539 $/year after optimization. In addition, the 

algorithm accomplishes a minimum 𝐸𝑠𝑢𝑏 of 53814.1334 kWh over a 24-hour period, as well as 

a minimum 𝐶𝐸𝑙𝑜𝑠𝑠 of 19129.77 $/year and a minimum  𝐸𝑙𝑜𝑠𝑠 of 1174.80 kWh over 24 hours. 

As compared to the results achieved by AEO, HHO, MFO, and PSO, these optimized values 

are lower, proving that the HMPA algorithm performs better in this case.  

Additionally, the HMPA algorithm generates the maximum annual equipment investment cost 

𝐶𝐷 of 584310.92$/year. The algorithm has made a strategic investment decision, justifying an 

increase in capital expenditure through a substantial reduction in the operational energy cost 

𝐶𝐸𝑠𝑢𝑏. The algorithm achieves overall cost effectiveness by balancing this trade-off. 

Figure 4.19. displays the convergence curves for all the optimization techniques examined. It 

is evident that the HMPA algorithm exhibits a faster convergence rate compared to the other 

approaches, therefore emphasizing its effectiveness in achieving an optimum solution.  

Fig.4.19. Convergence curves for 𝑂𝐹1_33_bus DN  
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OS 

 𝐿
𝑂
𝐶
𝐷
𝐺
 

DG Size 
(KW) 𝐿

𝑂
𝐶
𝐶
𝐵
 

CB Size 
(KVAR) 

𝐸𝑙𝑜𝑠𝑠  
(KWh) 

𝐸𝑄𝑙𝑜𝑠𝑠 
(KVARh) 

 

PR 

 

𝐸𝑠𝑢𝑏  
(KWh/24h) 

𝐸𝑙𝑜𝑎𝑑  
(KWh/24h) 

𝐶𝐷 
($/year) 

𝐶𝐸𝑠𝑢𝑏 
($/year) 

𝐶𝐸𝑙𝑜𝑎𝑑 
($/year) 

𝐶𝐸𝑙𝑜𝑠𝑠 
($/year) 

B
as

e 
ca

se
 33 

    3663.178 2480.2467  72482.9692 68819.7912  1180267.82 1120618.9014 59648.9241 

34 

35 

36 

37 

H
M

P
A

 8 5 573.8255 14 50 

1174.8032 903.8917 0.59992 53814.1334 52639.3302 584310.9207 876276.0539 857146.2856 19129.7682 

13 10 285.7581 15 300 

28 13 214.1905 30 800 

32 31 705.4216 22 200 

7 3 449.5179   

A
E

O
 

32 16 151.8069 6 250 

1253.0252 912.1887 0.59969 53898.7207 52645.6954 514385.0117 877653.4202 857249.9332 20403.487 

7 9 316.4295   

28 32 577.5352 30 450 

10 23 575.1418 31 450 

34 12 606.9235 22 200 

H
H

O
 

11 18 398.7243 11 300 

1540.5755 1093.1602 0.59994 54179.455 52638.8795 460968.6093 882224.7253 857138.9472 25085.7781 

7 29 652.0512 24 200 

34 31 419.2135 27 250 

28 33 610.5358 13 250 

36 8 148.251 25 400 

M
F

O
 

28 15 482.1752 9 200 

1829.2652 1338.9798 0.59881 54498.6457 52669.3805 492888.3947 887422.2283 857635.6061 29786.6222 

33 19 219.6897 13 50 

36 23 345.5892 25 250 

14 26 623.4503 31 400 

8 8 553.6701 18 450 

P
S

O
 

6 7 667.3822 3 200 

1630.32 1695.7176 0.59894 54296.108 52665.7879 583859.3616 884124.2291 857577.1062 26547.1229 

28 15 264.1126 28 300 

8 19 397.0561 21 150 

12 25 441.4293 30 450 

30 23 455.0892 16 300 

 

 

 

Table 4.6. Optimization outcomes for 𝑂𝐹1_33-bus DN 
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Furthermore, although the HMPA, AEO, and HHO approaches all yield positive results in terms 

of decreasing substation energy costs 𝐶𝐸𝑠𝑢𝑏 and its related components (i.e. 𝐸𝑙𝑜𝑠𝑠, 𝐶𝐸𝑙𝑜𝑠𝑠, and 

𝐸𝑠𝑢𝑏 ) in comparison to the base case scenario, the main objective of the HMPA algorithm is to 

minimize 𝐶𝐷. Thus, although the 𝐶𝐸𝑠𝑢𝑏 and its associated elements have been enhanced, the 

decrease in 𝐶𝐸𝑠𝑢𝑏 is not completely optimal, as it reflects the compromise between limiting 

capital expenditures and lowering operating expenses. 

 

Figure 4.20 displays the convergence curves for all optimization techniques. The HMPA 

method distinguishes itself by demonstrating a notably accelerated convergence compared to 

the other algorithms, characterized by a smooth and stable curve that ensures steady 

advancement towards the best solution. These results illustrate the effectiveness of the HMPA 

approach in rapidly identifying a cost-efficient solution, therefore establishing it as a pragmatic 

option for real-time optimization challenges. 

 

Figures 4.22 and 4.23 depict the voltage profile and network topology, respectively, of the 

optimum solution obtained using the HMPA technique. Despite the focus on decreasing CD, 

the network structure emphasizes the redesigned topology that reduces losses and boosts 

operating efficiency, while the voltage profile displays a better and more stable distribution of 

voltage levels throughout the network. 

B. Objective function 2 

 

Table 4.7 includes the results of the ONRSACD optimization problem, which was designed to 

reduce the equipment investment cost 𝐶𝐷 of the 33-node test system. The HMPA method yields 

an optimal solution with a minimum 𝐶𝐷 value of 584,310.92 $/year, significantly lower than 

the results from other algorithms including AEO, HHO, MFO, and PSO. HMPA is a highly 

effective approach for addressing this specific objective due to its superior performance in 

attaining the lowest investment cost among these methods. 

 

Furthermore, although the HMPA, AEO, and HHO approaches all yield positive results in terms 

of decreasing substation energy costs 𝐶𝐸𝑠𝑢𝑏 and its related components (i.e. 𝐸𝑙𝑜𝑠𝑠, 𝐶𝐸𝑙𝑜𝑠𝑠, and 

𝐸𝑠𝑢𝑏 ) in comparison to the base case scenario, the main objective of the HMPA algorithm is to 

minimize 𝐶𝐷. Thus, although the 𝐶𝐸𝑠𝑢𝑏 and its associated elements have been enhanced, the 
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decrease in 𝐶𝐸𝑠𝑢𝑏 is not completely optimal, as it reflects the compromise between limiting 

capital expenditures and lowering operating expenses.  

Figure 4.20 displays the convergence curves for all optimization techniques. The HMPA 

method distinguishes itself by demonstrating a notably accelerated convergence compared to 

the other algorithms, characterized by a smooth and stable curve that ensures steady 

advancement towards the best solution. These results illustrate the effectiveness of the HMPA 

approach in rapidly identifying a cost-efficient solution, therefore establishing it as a pragmatic 

option for real-time optimization challenges. 

 

Figures 4.22 and 4.23 depict the voltage profile and network topology, respectively, of the 

optimum solution obtained using the HMPA technique. Despite the focus on decreasing CD, 

the network structure emphasizes the redesigned topology that reduces losses and boosts 

operating efficiency, while the voltage profile displays a better and more stable distribution of 

voltage levels throughout the network. 

 

Finally, Table 4.10 presents a thorough commercial evaluation of the costs associated with the 

device used in the execution of the HMPA algorithm. This study provides meaningful insights 

into the financial viability of the optimized network topology, demonstrating the equilibrium 

between initial investment expenses and long-term operating cost reductions. The findings 

highlight the practical use of the HMPA approach, not only in reducing 𝐶𝐷, but also in 

guaranteeing a financially feasible solution that is in line with the distribution network's techno-

economic objectives. 

Fig.4.20.  Convergence curves for 𝑂𝐹2_33-node DN 
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𝐿
𝑂
𝐶
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DG Size 
(KW) 𝐿

𝑂
𝐶
𝐶
𝐵

 

C
B

 S
iz

e 
(K

V
A

R
) 

𝐸𝑙𝑜𝑠𝑠 
(KWh) 

𝐸𝑄𝑙𝑜𝑠𝑠 
(KVARh) 

PR 
𝐸𝑠𝑢𝑏  

(KWh/24h) 
𝐸𝑙𝑜𝑎𝑑  

(KWh/24h) 

𝐶𝐷 

($/year) 

𝐶𝐸𝑠𝑢𝑏 

($/year) 

𝐶𝐸𝑙𝑜𝑎𝑑 

($/year) 

𝐶𝐸𝑙𝑜𝑠𝑠 
($/year) 

B
as

e 
ca

se
 33 

    3663.178 2480.2467  72482.9692 68819.7912  1180267.8255 1120618.9014 59648.9241 

34 

35 

36 

37 

H
M

P
A

 

33 9 92.5536 11 50 

2714.2079 1779.4547 0.1 71533.999 66647.1613 48693.0373 1129437.6232 1085241.1412 44196.4819 

34 20 39.4605 17 50 

35 26 72.3369 22 50 

36 30 114.7061   

37 18 52.5399 5 50 

A
E

O
 

34 8 72.7394 33 100 

2560.1527 1686.6469 0.1 71379.9439 66122.6047 48707.0511 1118387.5277 1076699.5853 41687.9424 

35 12 83.499   

36 19 56.5625 9 50 

37 27 84.813 30 50 

33 20 73.8994 28 50 

H
H

O
 

14 13 93.3195 32 50 

11845.9269 10544.6942 0.1001 80665.7181 66581.3551 102291.4345 1277061.3376 1084169.5929 192891.7446 

34 17 70.4633 15 50 

35 25 63.5345 21 50 

37 30 87.7943 29 50 

33 4 56.7475   

M
F

O
 

36 3 53.4820 16 50 

7180.729 5402.8063 0.11961 73814.3453 66633.6162 103698.0064 1201947.1305 1085020.5815 116926.5489 

34 9 143.2355 9 50 

3 15 57.2880 10 50 

35 29 101.1066 21 50 

33 11 89.2493 23 100 

P
S

O
 

33 4 74.5054 11 50 

2637.2575 1726.2303 0.10201 68705.6568 66068.3992 49683.4056 1118760.4076 1075816.9379 42943.4697 

34 17 76.9928 13 50 

35 18 80.5198 21 50 

36 28 51.942 31 50 

37 2 95.0197 10 50 

Table 4.7. Optimization outcomes for 𝑂𝐹2_33-node  



110 
 

C. Objective function 3 

In accordance with the approach outlined in Section 4.5.2.2, Table 4.8 displays the boundary 

values of the membership functions for each algorithm. The boundary values play a critical role 

in determining the bounds within which the membership functions work, therefore impacting 

the compromises between competing goals throughout the optimization procedure. Table 4.9 

provides a summary of the outcomes of the fuzzy multi-objective ONRSACD optimization 

problem on the 33-bus test system. In order to achieve an ideal trade-off between 𝐶𝐸𝑙𝑜𝑠𝑠, 𝐶𝐸𝑙𝑜𝑎𝑑, 

and 𝐶𝐷, the optimization procedure seeks to reduce three conflicting cost components. As 

described in Equation (4.43), the compromise solution is determined by the minimal value of 

the total yearly spending 𝐸𝑥𝑝𝑡𝑜𝑡. 

 

Objective 

function 
Limits  HMPA AEO HHO MFO PSO 

𝑂𝐹1 

𝐶𝐸𝑠𝑢𝑏_𝑚𝑖𝑛 876276.0539 877653.4202 882224.7253 887422.2283 884124.2291 

𝐶𝐸𝑙𝑜𝑎𝑑_𝑚𝑖𝑛  8574146.2856 857246.9332 857138.9472 857635.6061 857577.1062 

𝐶𝐸𝑙𝑜𝑠𝑠_𝑚𝑖𝑛  19129.7682 20403.487 25085.7781 29786.6222 26547.1229 

𝐶𝐷𝑚𝑎𝑥 584310.9207 514385.0117 460968.6093 492888.3947 583859.3616 

𝑂𝐹2 

𝐶𝐷𝑚𝑖𝑛 48693.0373 48707.0511 102291.4345 103698.0064 49683.4056 

𝐶𝐸𝑠𝑢𝑏_𝑚𝑎𝑥 1129437.6232 118387.5277 1277061.3376 1201947.1305 1118760.4076 

𝐶𝐸𝑙𝑜𝑎𝑑_𝑚𝑎𝑥  1085241.1412 1076699.5853 1084169.5929 1085020.5815 1075816.9379 

𝐶𝐸𝑙𝑜𝑠𝑠_𝑚𝑎𝑥  44196.4819 41687.9424 59648.9241 59648.9241 42943.4697 

 

The MOHMPA (Multi-Objective Hybrid Multi-Population Algorithm) technique attains the 

minimum expense 𝐸𝑥𝑝𝑡𝑜𝑡 value of 1319627.56 $/year. The acquired outcome is notably inferior 

to those achieved by the other algorithms, namely MOAEO, MOHHO, MOMFO, and MOPSO. 

The MOHMPA approach clearly demonstrates better performance by not only reducing the 

overall spending but also more precisely balancing the trade-offs between the opposing goals, 

leading to reduced additional costs compared to the other techniques.  

Figure 4.21 depicts the convergence curves for all the applied techniques. The MOHMPA 

approach exhibits accelerated convergence, efficiently achieving an optimum solution ahead of 

the other algorithms.  

 

Table 4.8. Membership functions limits for 𝑂𝐹3_33-node 
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A smooth and steady curve distinguishes the convergence of the approach, indicating its 

effective navigation of the solution space and avoidance of oscillations or premature 

convergence. The voltage profile and network architecture of the optimal solution determined 

using the MOHMPA approach are shown in Figures 4.22 and 4.23, respectively.   

The voltage profile across the network exhibits enhanced voltage stability, with minimal 

deviations from nominal values, ensuring the redesigned network operates within acceptable 

voltage thresholds. The analysis of the network topology reveals an optimal arrangement that 

maximizes energy efficiency and improves power dispersion, resulting in a further reduction in 

operating expenses. 

 

Fig.4.22. Voltage profile for the 33-node before and after ONRSACD via the HMPA      

Fig.4.21. Convergence curves for 𝑂𝐹3_33-node DN  
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 OS 

𝐿
𝑂
𝑐 𝐷
𝐺

 

DG Size 
(KW) 

𝐿𝑂𝐶𝐶𝐵  
CB Size 
(KAVAR) 

𝐸𝑙𝑜𝑠𝑠  
(KWh) 

𝐸𝑄𝑙𝑜𝑠𝑠  
(KVARh) 

PR 
𝐸𝑠𝑢𝑏  

(KWh/24h) 
𝐸𝑙𝑜𝑎𝑑  

(KWh/24h) 
𝐶𝐷 

($/year) 
𝐶𝐸𝑠𝑢𝑏 
($/year) 

𝐶𝐸𝑙𝑜𝑎𝑑  
($/year) 

𝐶𝐸𝑙𝑜𝑠𝑠 
($/year) 

B
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e 
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se
 33 

    3663.178 2480.2467  72482.9692 68819.7912  1180267.8255 1120618.9014 59648.9241 

34 

35 

36 

37 

M
O

H
M

P
A

 7 14 53.1741 23 200 

1857.9718 1346.553 0.3391 61532.0161 59674.0442 317678.2789 1001949.2798 971695.2165 30254.0633 

28 25 293.2804 13 250 

35 31 393.1728 2 50 

36 12 289.704 21 150 

14 7 230.4134 28 100 

M
O

A
E

O
 7 10 214.3326 17 100 

1775.2361 1263.484 0.30913 62257.3945 60482.1584 319344.5141 1013760.8938 984854.0478 28906.8459 

36 14 258.9413 18 100 

11 23 225.052 8 100 

28 33 261.9412 15 150 

34 29 188.1671 32 250 

M
O

H
H

O
 7 3 194.3982 7 300 

2280.6713 1721.2869 0.30995 62740.9544 60460.2830 303491.4492 1021634.8837 984497.8432 37137.0405 

11 2 259.5294 12 50 

28 23 174.9691 30 100 

36 25 231.86 28 100 

35 15 290.6908 22 150 

M
O

M
F

O
 14 10 147.8886 16 100 

2753.0238 2989.5618 0.27805 64073.6884 61320.6646 344833.9532 1043336.3003 998507.7645 44828.5358 

29 14 305.3902 6 150 

7 17 221.7556 22 100 

33 25 76.6929 26 150 

37 29 281.2101 9 150 

M
O

P
S

O
 7 3 225.0345 10 150 

2350.3506 2404.9605 0.42407 61820.6599 59470.3093 498679.7492 1006649.3782 968377.7232 38271.655 

28 4 200.9303 30 550 

13 6 887.6029 22 100 

21 13 522.9601 18 150 

31 11 338.8826   

𝑬𝒙𝒑𝒕𝒐𝒕 ($/year) 

Base case MOHMPA MOAEO MOHHO MOMFO MOPSO 

1180267.8255 1319627.559 1333105.408 1325126.333 1388170.2536 1505329.127 

Additional expenditures exceeding the base case 𝑬𝒙𝒑𝒕𝒐𝒕 ($/year) 

MOHMPA MOAEO MOHHO MOMFO MOPSO 

139359.7335 152837.5825 144858.5075 207902.4281 325061.3015 

Table 4.9. Fuzzy multi-objective optimization results for 𝑂𝐹3_33-node 
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Table 4.10 displays a comprehensive commercial cost analysis of the devices used in the 

MOHMPA algorithm's final solution. The present study emphasizes the financial viability of 

the optimized network by demonstrating that the algorithm not only reduces 𝐸𝑥𝑝𝑡𝑜𝑡 but also 

guarantees that the capital expenditure needed for network reconfiguration and device 

placement is economically efficient. The findings emphasize the MOHMPA approach's 

capacity to provide a strong and economically feasible solution, effectively managing both 

technical efficiency and financial factors. 

 

Device cost 𝑂𝐹1 𝑂𝐹2 𝑂𝐹3 

CBs cost 

𝐶𝐼𝐶𝐵 ($) 4675 4100 5375 

𝐶𝑄𝐶𝐵  ($/year) 675 100 375 

𝐶𝐹𝐵𝐶  ($) 4000 4000 5000 

DGs cost  

𝐶𝐷𝐺 ($) 291444.4349 48593.0373 164734.3082 

𝐴𝑈𝐷𝐺 ∙ 𝐶𝐼𝐷𝐺 ($/year) 97872.7177 16318.4883 55320.9892 

𝐶𝑀𝐷𝐺 ($/year) 193571.7172 32274.5489 109413.319 

TSs cost 

𝐶𝑇𝑆 ($/year) 292191.4857 0 152568.9707 

𝐴𝑈𝑇𝑆 ∙ 𝐶𝐼𝑇𝑆 ($/year) 251576.923 0 129600.2330 

𝐴𝑈𝑅𝐶𝑆 ∙ 𝐶𝐼𝑅𝐶𝑆 ($/year) 22614.5626 0 13568.7376 

𝐶𝑀𝑇𝑆𝑅𝐶𝑆 ($/year)  18000 0 9400 

Table 4.10. The device commercial cost analysis for the HMPA final solution (33-node)  
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Fig.4.23. The 33-bus DN configuration before and after the ONRSACD via the HMPA  
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4.5.3.2. The 69-bus network 

Figure 4.28 displays the single-line diagram of the test system. The system consists of 68 

usually closed branches, seven lateral branches, and five OSs. The system's fundamental values 

are 100 MVA and 12.66 KV, with a MAP of 3.8 MW and a MAQ of 2.69 MVAr. The load and 

line data of the test network are provided in reference [120]. 

A. Objective function 1 

Table 4.11 presents the results of implementing the ONRSACD optimization problem on the 

69-bus test system. The goal was to reduce 𝐶𝐸𝑠𝑢𝑏. The HMPA optimization methods 

successfully reduced the 𝐶𝐸𝑠𝑢𝑏 from 1213261.61 $/year in the base case to 900212.25 $/year. 

The HMPA has achieved a minimum 𝐸𝑠𝑢𝑏 of 55284.11 kWh over a 24-hour period, a minimum 

𝐶𝐸𝑙𝑜𝑠𝑠 of 20275.36 $/year, and a minimum 𝐸𝑙𝑜𝑠𝑠 of 1,245.16 kWh/24h, in addition to this 

substantial cost reduction. These optimized values outperform those obtained using the AEO, 

HHO, MFO, and PSO methods. 

HMPA adopts a balanced approach, in contrast to other methods that prioritize minimizing 

𝐶𝐷 (equipment investment cost) but produce suboptimal results with respect to 𝐶𝐸𝑠𝑢𝑏 and its 

related components (i.e. 𝐸𝑙𝑜𝑠𝑠, 𝐶𝐸𝑙𝑜𝑠𝑠, and 𝐸𝑠𝑢𝑏). It ensures that the investment in devices does 

not result in disproportionate expenditure by prioritizing the minimization of the primary 

objective function 𝐶𝐸𝑠𝑢𝑏 while maintaining a relatively modest 𝐶𝐷.  

 

Fig.4.24 Converge curves for 𝑂𝐹1_69-node 
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70 

71 

72 

73 

H
M

P
A

 14 17 661.4727 4 100 

1245.1565 1013.6986 0.59891 55284.1105 54038.954 615088.4149 900212.2511 879936.8934 20275.3576 

54 57 788.5808 9 500 

60 47 181.2781 27 150 

12 43 302.8224 59 300 

10 48 342.5979 56 550 

A
E

O
 

45 64 621.4114 42 100 

1520.6375 1129.8184 0.59966 55538.9384 54018.3008 615460.4215 904361.7108 879600.5908 24761.1199 

4 14 758.9384 47 350 

20 9 310.7519 15 450 

10 48 387.6257 65 150 

60 28 200.8691 7 550 

H
H

O
 

14 8 217.3014 4 600 

1417.5933 1016.514 0.59864 55463.9676 54046.3743 614979.7593 903140.9333 880057.7213 23083.212 

60 20 201.8393 6 50 

12 40 1035.1218 27 50 

10 25 175.6173 62 100 

48 5  645.8498 10 850 

M
F

O
 

9 18 726.8669 12 350 

2352.66 1947.2008 0.59984 56366.1239 54013.4639 615547.5456 917831.0878 879521.8285 38309.2593 

60 59 213.4039 51 500 

45 36 902.3793 53 250 

18 32 229.4594 55 100 

58 29 208.1534 16 400 

P
S

O
 

15 15 282.2496 24 300 

2771.8959 1947.0828 0.5966 56874.8244 54102.9285 613936.0981 926114.4523 880978.6149 45135.8374 

8 32 565.0055 3 350 

45 45 479.0225 53 200 

42 40 464.0322 50 300 

60 19 477.6302 29 450 

 

Table 4.11. Optimization results for 𝑂𝐹1_69-bus 
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HMPA achieves an optimal balance between costs and network performance through an 

efficient trade-off between capital investment and operational savings, outperforming other 

methods. 

Figure 4.24 depicts the convergence curves of all the optimization techniques employed. The 

exceptional convergence velocity of the HMPA algorithm allows it to achieve the optimal 

solution much faster than alternative approaches. 

The HMPA convergence curve is characterized by a uniform and steady progress toward the 

optimal solution, devoid of unpredictable variations or premature convergence. This 

underscores HMPA's capacity to efficiently and comprehensively explore the solution space. 

Figures 4.27 and 4.28 illustrate the voltage profile and network structure, respectively, that 

correspond to the optimal solution achieved by the HMPA approach. The voltage profile 

exhibits enhanced voltage stability throughout the network, with fewer deviations from the 

nominal values, ensuring that the system functions within acceptable voltage thresholds. The 

network structure analysis reveals an optimal topology that minimizes inefficiencies and 

maximizes power flow distribution, resulting in a reduction in operational expenses. 

Table 4.15 presents a comprehensive commercial cost analysis of the devices used in HMPA's 

final solution. This analysis emphasizes the financial viability of the optimized configuration, 

illustrating that the algorithm effectively reduces 𝐶𝐸𝑠𝑢𝑏without necessitating extravagant 

capital expenditure, rendering the solution economically and technically optimal. The findings 

underscore the efficacy of HMPA in providing an economically viable solution for the 69-bus 

test system. 

B. Objective function 2 

Table 4.12 shows the results of the ONRSACD optimization problem for the 69-node test 

system, with the explicit objective of lowering the equipment investment cost CD. The HMPA 

algorithm generates an optimal solution by limiting the CD value to a minimum of 49883.37 

$/year. This outcome much surpasses the results achieved with the other algorithms, such as 

AEO, HHO, MFO, and PSO, highlighting the superior effectiveness of HMPA in reducing 

capital costs 
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Aside from minimizing CD, HMPA also achieves the highest overall solution quality when 

assessed across several key performance indicators. It not only reduces the substation energy 

cost 𝐶𝐸𝑠𝑢𝑏 but also minimizes 𝐸𝑠𝑢𝑏, 𝐶𝐸𝑙𝑜𝑠𝑠, and 𝐸𝑙𝑜𝑠𝑠. These enhancements in operational 

efficiency demonstrate HMPA's ability to balance the trade-offs between capital investment 

and network performance optimization. The algorithm's ability to produce lower costs and 

higher performance across various metrics makes it the most effective solution to the 

ONRSACD problem. 

Figure 4.25 shows the comparative benefit of the HMPA approach in terms of convergence 

speed compared to other optimization strategies. The HMPA algorithm consistently achieves 

convergence to the best solution at a faster rate compared to other methods. It exhibits a smooth 

and steady development without premature convergence or excessive oscillations. The 

accelerated convergence of HMPA enables the identification of solutions of superior quality 

within a shorter time domain, thus establishing its practicality and reliability as a tool for 

addressing real-time or large-scale optimization problems. 

Figures 4.27 and 4.28, which illustrate the voltage profile and network configuration of the 

optimal solution, offer further insights into the performance of HMPA. The voltage profile 

shown in Figure 4.27 represents an enhanced and consistent voltage distribution across the 

network. This ensures that the system functions within acceptable voltage thresholds, therefore 

improving the overall reliability and safety of the network.  

Fig.4.25. Convergence curves for 𝑂𝐹2_69-bus DN  



118 
 

 
 OS 

𝐿
𝑂
𝐶
𝐷
𝐺

 

DG 

Size 

(KW) 𝐿
𝑂
𝐶
𝐶
𝐵

 

C
B

 S
iz

e 
(K

V
A

R
) 

𝐸𝑙𝑜𝑠𝑠 
(KWh) 

𝐸𝑄𝑙𝑜𝑠𝑠 
(KVARh) 

𝑃𝑅 
𝐸𝑠𝑢𝑏 

(KWh/24h) 
𝐸𝑙𝑜𝑎𝑑 

(KVARh/24h) 
𝐶𝐷 

($/year) 
𝐶𝐸𝑠𝑢𝑏 
($/year) 

𝐶𝐸𝑙𝑜𝑎𝑑 
($/year) 

𝐶𝐸𝑙𝑜𝑠𝑠 
($/year) 

B
as

e 
ca

se
 69 

    3941.021 1790.2355  74509.1936 70568.1725  1213261.6093 1149088.4620 64173.1473 

70 

71 

72 

73 

H
M

P
A

 

71 26 75.0303 30 50 

2788.498 1338.8333 0.10004 70595.5652 67807.0671 49883.3680 1149534.5057 1104128.3291 45406.1766 

72 53 32.9858   

70 63 28.4846 44 100 

69 59 104.2759 37 50 

73 32 139.5409 20 100 

A
E

O
 

73 23 119.844 49 50 

61382.0336 42927.5125 0.10006 129188.6287 67806.5951 156995.2116 2103627.7020 1104120.6439 999507.0581 

70 47 103.8877 25 50 

37 51 28.8207 33 50 

72 66 52.6411 48 50 

12 26 75.1889 19 50 

H
H

O
 

70 26 118.4371 4 50 

7819.8225 5457.6551 0.10009 75625.6204 67805.7979 95321.8575 1231440.8127 1104107.6619 127333.1508 

9 45 33.0301 8 50 

72 47 98.8032 54 50 

71 56 53.9295 68 100 

73 30 76.2923   

M
F

O
 

11 61 69.97633 40 50 

94544.1914 42936.0066 0.10789 162134.8308 67590.6393 185280.6627 3420791.1012 1100604.1536 2320186.9475 

69 25 107.0593 32 50 

70 8 120.6514 27 50 

54 59 54.32351 44 50 

73 5 58.11795 33 100 

P
S

O
 

7 19 81.2405 18 100 

94557.8957 42940.7395 0.10854 162789.7876 68231.8918 300857.1309 16054757.0211 1111045.9126 14943711.1084 

18 36 77.0535   

39 42 90.8089 26 100 

43 49 66.4451 41 50 

70 62 97.0627 42 50 

 

 

Table 4.12. Optimization results for 𝑂𝐹2_69-bus DN 
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The improved network topology shown in Figure 4.28 demonstrates an efficient layout that 

reduces energy losses while preserving the radial structure required for both successful power 

distribution and fault isolation. 

Moreover, Table 4.15 offers a comprehensive analysis of the commercial costs associated with 

the devices utilized in HMPA's final solution. The commercial study demonstrates the solution's 

financial feasibility, showing that HMPA not only reduces operating expenses and capital 

expenditures but also ensures the long-term sustainability and cost-efficiency of the network's 

infrastructure investment. HMPA demonstrates its suitability as the most resilient and 

economically viable approach for addressing the ONRSACD problem in the 69-node test 

system by achieving optimum outcomes in terms of both performance and cost. 

 

C. Objective function 3 

The strategy defined in Section 4.5.2.2 yielded the boundary values of the membership 

functions for each optimization method, as shown in Table 4.13. These membership functions 

are essential in the fuzzy multi-objective optimization process since they establish the range in 

which each objective function performs. This technique guarantees that the optimization 

process well manages the competing goals, directing the algorithms to discover compromise 

solutions. 

Table 4.14 shows the results of the fuzzy multi-objective ONRSACD optimization problem that 

was run on the 69-bus DN test system.  

 

Objective 

function 
Limits  HMPA AEO HHO MFO PSO 

𝑂𝐹1 

𝐶𝐸𝑠𝑢𝑏_𝑚𝑖𝑛 900212.2511 904361.7108 903140.9333 917831.0878 926114.4523 

𝐶𝐸𝑙𝑜𝑎𝑑_𝑚𝑖𝑛 879936.8934 879600.5908 880057.7213 879521.8285 880978.6149 

𝐶𝐸𝑙𝑜𝑠𝑠_𝑚𝑖𝑛 20275.3576 24761.1199 23083.212 38309.2593 45135.8374 

𝐶𝐷𝑚𝑎𝑥 615088.4149 615460.4215 614979.7593 615547.5456 613936.0981 

𝑂𝐹2 

𝐶𝐷𝑚𝑖𝑛  49883.3680 156995.2116 95321.8575 185280.6627 300857.1309 

𝐶𝐸𝑠𝑢𝑏_𝑚𝑎𝑥  1149534.5057 2103627.7020 1213440.8127 3420791.1012 16054757.0211 

𝐶𝐸𝑙𝑜𝑎𝑑_𝑚𝑎𝑥  1104128.3291 1104120.6439 1104107.6619 1100604.1536 1111045.9126 

𝐶𝐸𝑙𝑜𝑠𝑠_𝑚𝑎𝑥  45406.1766 64173.1473 64173.1473 64173.1473 64173.1473 

 

Table 4.13. Membership functions limits for 𝑂𝐹3_69-bus DN  
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This optimization aims to minimize three competing costs: 𝐶𝐸𝑙𝑜𝑠𝑠, 𝐶𝐸𝑙𝑜𝑎𝑑, and 𝐶𝐷. The goal is 

to find a compromise solution that yields the minimum total annual expenditure, 𝐸𝑥𝑝𝑡𝑜𝑡, as 

defined in Equation 4.43 

We examined all the algorithms, and MOHMPA produced the lowest 𝐸𝑥𝑝𝑡𝑜𝑡 of 

1440069.41$/year. This outcome surpasses the performance of competing multi-objective 

algorithms such as MOAEO, MOHHO, MOMFO, and MOPSO by a considerable margin. The 

results indicate that MOHMPA is superior to the other optimization techniques because it 

achieves a reduced overall expenditure while minimizing new financial burdens. 

Furthermore, MOHMPA's higher convergence rate emphasizes its superior performance. 

Figure 4.26 displays the convergence graphs for all algorithms, indicating that MOHMPA 

attains the optimal solution more quickly than the other methods. The method exhibits smooth 

and persistent convergence, indicating its effective exploration of the solution space, 

unencumbered by local optima. The aforementioned attributes render MOHMPA very efficient 

in addressing complex multi-objective situations, as it adeptly manages many competing goals 

while prioritizing the reduction of total costs. 

 

 

Fig.4.26 Convergence curves for 𝑂𝐹3_69-node 
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1826.6237 1499.9072 0.29525 64246.3916 62419.7678 393920.9165 1046148.4918 1016404.8811 29743.6106 

60 35 72.6435 13 200 

12 42 233.3802 20 150 

9 55 355.1297 66 200 

72 54 123.9937 47 50 

M
O

A
E

O
 14 58 368.166 62 250 

2593.3969 1879.8811 0.27583 65548.9193 62955.5223 454057.0983 1067358.0472 1025128.7763 42229.2709 

60 50 263.1628 16 100 

57 20 87.10927 59 250 

45 69 211.1232 2 50 

9 7 119.0131 65 100 

M
O

H
H

O
 72 19 312.166 15 150 

2769.1439 2272.0234 0.3067 64872.778 62103.634 399640.1565 1056348.1798 1011257.1544 45091.0254 

10 37 143.5017 23 250 

14 64 320.9339 31 50 

60 9 222.1546 48 300 

18 58 167.1582 68 100 

M
O

M
F

O
 59 9 227.7144 59 100 

2831.9392 2155.5024 0.28651 65492.9095 62660.9702 459362.6076 1066446.0178 1020332.4712 46113.5466 
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M
O

P
S

O
 69 21 351.6332 10 100 

2588.986 3194.7435 0.30417 64762.5119 62173.5258 422751.8864 1054552.6759 1012395.2291 42157.4468 

20 35 205.3619 29 150 

49 23 144.0624 63 200 

45 2 275.2403 16 350 

60 24 179.9897 18 50 

𝑬𝒙𝒑𝒕𝒐𝒕 ($/year) 

Base case MOHMPA MOAEO MOHHO MOMFO MOPSO 

1213261.6093 1440069.408 1521415.1455 1455988.336 1525808.6255 1477304.5624 

Additional expenditures exceeding the base case 𝑬𝒙𝒑𝒕𝒐𝒕 ($/year) 

MOHMPA MOAEO MOHHO MOMFO MOPSO 

226807.7987 308153.5362 242726.7267 312547.0162 264042.9531 

Table 4.14. Fuzzy multi-objective optimization results for 𝑂𝐹3_69-bus DN 
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Figures 4.27 and 4.28 depict the voltage profile and network architecture of the optimum 

solution generated by MOHMPA, respectively. The voltage profile demonstrates improved 

voltage stability across the network, with few deviations from the expected values, ensuring 

safe and effective power distribution. The optimized network configuration enhances 

performance via reduced energy losses and streamlined power flows, therefore facilitating the 

overarching objective of decreasing 𝐸𝑥𝑝𝑡𝑜𝑡. 

 

Device cost  𝑂𝐹1 𝑂𝐹2 𝑂𝐹3 

CBs cost  

𝐶𝐼𝐶𝐵 ($) 5800 4150 5400 

𝐶𝑄𝐶𝐵  ($/year) 800 150 400 

𝐶𝐹𝐵𝐶  ($) 5000 4000 5000 

DGs cost 

𝐶𝐷𝐺 ($) 297726.2998 49733.3680 16770.0589 

𝐴𝑈𝐷𝐺 ∙ 𝐶𝐼𝐷𝐺 ($/year) 99982.2903 16701.4336 49288.2444 

𝐶𝑀𝐷𝐺 ($/year) 197744.0095 33031.9343 97481.8144 

TSs cost 

𝐶𝑇𝑆 ($/year) 316562.1151 0 246750.8576 

𝐴𝑈𝑇𝑆 ∙ 𝐶𝐼𝑇𝑆 ($/year) 274447.5524 0 213459.2074 

𝐴𝑈𝑅𝐶𝑆 ∙ 𝐶𝐼𝑅𝐶𝑆 ($/year) 22614.5626 0 18091.6501 

𝐶𝑀𝑇𝑆𝑅𝐶𝑆 ($/year)  19500 0 15200 

 

Lastly, Table 4.15 offers a thorough commercial cost analysis of the devices employed in the 

final MOHMPA solution.  

Table 4.15. Device commercial cost analysis for the HMPA final solution (69-node DN) 

Fig.427. Voltage profile for the 69-node DN before and after ONRSACD via HMPA        
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This analysis emphasizes the financial viability of the optimized configuration, demonstrating 

that the MOHMPA method not only reduces operational and investment costs, but also 

guarantees that capital expenditures on network devices are within economically viable limits. 

The results confirm that MOHMPA provides a cost-effective and balanced solution, obtaining 

superior performance in both technical and economic metrics. 

 

 

4.6 Conclusion  

This chapter focuses on the experimental component of our thesis and provides a full description 

of the empirical procedure. The methodology includes two fundamental experiments. In the 

first experiment, we apply three modern optimization techniques, namely Equilibrium 

Optimizer (EO), African Vultures Optimization Algorithm (AVOA), and Gorilla Troops 

Optimization (GTO), to solve the optimal capacitor banks allocation and optimal DN 

reconfiguration problems. The results show that all three approaches are effective and fairly 

simple to implement. Nevertheless, the EO approach slightly outperforms the other two in terms 
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of solution quality. This is the first time these techniques have been used in this particular field, 

introducing a new methodology to the domain. 

The second experiment employs the HMPA approach to solve the ONRSACD problem, 

marking the first instance of its use in this particular setting. The decision to use HMPA over 

EO was based on a thorough literature review, which included comparison studies conducted 

by HMPA and EO developers. These studies demonstrated that HMPA yielded better outcomes. 

HMPA's demonstrated capacity to effectively address larger and more intricate optimization 

problems justifies its selection as the prime choice for the ONRSACD issue, making it 

especially suitable for the goals of this work. 

This chapter describes a new multi-objective optimization approach to solve the ONRSACD 

problem. The objective is to optimize the techno-economic advantages while ensuring 

compliance with operational limitations. The suggested methodology utilizes the HMPA 

method to establish an optimal balance between opposing costs, including substation energy 

cost (𝐶𝐸𝑠𝑢𝑏) and device investment cost (𝐶𝐷). The single-objective HMPA method first 

optimized the reduction of 𝐶𝐸𝑠𝑢𝑏, then proceeded to minimize 𝐶𝐷. The optimization process 

follows an original, adapted strategy to ensure that maximizing one target would not impede 

the achievement of the other. This step permits the establishment of upper and lower limits for 

the membership functions linked to each objective function. 

The second step integrated a fuzzy-based approach with the multi-objective MOHMPA method 

to identify an optimal compromise solution. To adapt to load variations, the proposed approach 

considered different hourly load profiles for various consumer groups, including residential, 

commercial, industrial, educational institutions, and healthcare facilities. In addition, it 

incorporated the hourly profile of distributed generation power outputs to enhance reliability 

and precision and conducted a comprehensive series of tests on both the 33-bus and 69-bus 

distribution test systems. 

Advanced metaheuristic algorithms, such as ecosystem-based optimization (AEO), Harris-

Hawkins optimization (HHO), particle swarm optimization (PSO), and moth-flame 

optimization (MFO), were used to explore the optimization problem in depth. We implemented 

these algorithms in both single-objective and multi-objective frameworks. We conducted a 

thorough performance evaluation to compare these approaches with the HMPA algorithm. The 

findings highlighted that HMPA exhibited superior efficiency and convergence speed compared 
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to the other algorithms. Furthermore, its performance showed improvement as the complexity 

of the system rose. Furthermore, the MOHMPA algorithm demonstrated its superiority and 

efficacy by providing an optimal compromise option that reduced the overall yearly cost while 

incurring minimal additional costs. 
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CONCLUSIONS AND OUTLOOK 

 

 

The present thesis has thoroughly examined the optimization problem that is inherent in 

contemporary electrical distribution networks, with a specific emphasis on improving 

operational efficiency and economic feasibility. Categorized into four chapters, the work 

gradually cultivated a profound comprehension of the theoretical underpinnings and 

sophisticated optimization methods necessary for resolving intricate issues in distribution 

systems. 

The first chapter encompassed a comprehensive examination of electrical distribution networks, 

with a specific emphasis on their key role in providing stable and reliable electricity to 

consumers. In particular, it scrutinized how distribution systems have evolved with the 

integration of distributed generation, renewable energy sources, and the increasing complexity 

resulting from smart grid technology. This chapter established a theoretical basis for 

comprehending the operational and optimization difficulties encountered by modern networks, 

namely the need to achieve a satisfactory balance between efficiency, cost, and reliability. 

The second chapter examined fundamental methods for improving network performance, 

emphasizing network reconfiguration, optimal capacitor banks, and distributed generation 

allocation. The analytical evaluation of these techniques focused on their growing capacity to 

enhance voltage profiles, minimize energy losses, and optimize the overall functioning of the 

network when implemented simultaneously. The chapter highlighted the need to incorporate 

optimization approaches to address the increasing intricacy of contemporary distribution 

networks, where operational limitations and economic demands require more advanced 

solutions. 

Metaheuristic optimization approaches, which have become prevalent in solving complex 

optimization problems, are the focus of the third chapter. We studied them carefully to 

determine their effectiveness in tackling the complex, multi-objective challenges of power 

distribution grids. This chapter demonstrates that by tailoring these algorithms to the specific 

needs of distribution networks, we can enhance their effectiveness. This chapter has laid the 

foundations for the development of a more sophisticated hybrid multi-objective optimization 

technique. 



127 
 

In the fourth chapter, we introduce the hybrid multi-population algorithm (HMPA), a new 

multi-objective optimization method that optimizes network rearrangement and capacitor bank 

and generator distribution (ONRSACD). This approach aimed to maximize techno-economic 

benefits while respecting operational limits, successfully reconciling competing objectives such 

as substation energy cost and device capital cost. We first used the single-objective HMPA 

approach to reduce these costs in accordance with an adaptive approach that manages the 

conflict between the objectives and ensures that optimizing one objective does not compromise 

the other. The algorithm can therefore define its own lower and upper limits for the membership 

functions linked to each objective function. 

We included a fuzzy-based model in the multi-objective HMPA method (MOHMPA) in order 

to improve the optimization process and better manage trade-offs between competing 

objectives. We evaluated the effectiveness of this multi-objective method on test distribution 

systems with 33 and 69 nodes. The results show that MOHMPA outperforms other methods, 

namely MOAEO, MOHHO, MOPSO, and MOFMO when it comes to the quality of the 

solutions and the speed of convergence. Extensive testing, including varying load profiles 

between different groups of consumers and dynamic generation from dispersed generation 

units, verified the proposed methodology. In the end, the MOHMPA offered an optimal 

compromise solution, making it possible to obtain the lowest overall annual cost with little 

additional expenditure. 

To sum up, this thesis improves the optimization of electrical distribution networks by 

combining techniques like network reconfiguration, capacitor bank positioning, and distributed 

generation with cutting-edge metaheuristic optimization algorithms. This study presents a new 

multi-objective method that is a strong way to solve optimization problems in distribution 

networks while keeping a balance between cost-effectiveness and operational efficiency. 

Prospects for the Future 

Building on the findings of this study, we have identified several potential avenues for future 

research: 

1. Expansion into larger and more intricate systems: 

The present thesis primarily examined 33-bus and 69-bus test systems. However, future 

research should explore the potential application of the suggested optimization approach to 

larger and more intricate distribution networks. Real-world networks are greatly more complex, 
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encompassing larger quantities of buses, feeders, and dispersed energy resources. Empirical 

evaluation of the proposed multi-objective HMPA on larger networks would yield significant 

insights into its scalability, performance, and possible constraints in managing heightened 

complexity. 

2. Dynamic Reconfiguration and Real-Time Optimization 

An area of potential development in this study is the adaptation of the proposed HMPA method 

for real-time optimization and dynamic network reconfiguration. Given the considerable 

variability of renewable energy sources such as solar and wind, the ability to undertake real-

time reconfiguration according to the current grid conditions would improve the network's 

resilience and efficiency. Implementing a real-time, adaptive optimization framework that 

utilizes Hybrid Multi-Population Algorithm (HMPA) could allow operators to promptly and 

effectively react to fluctuations in demand, generation, and fault conditions, guaranteeing 

consistent and optimal performance. 

3. Energy Storage Systems (ESS) Integration: 

Further investigation has the potential to improve the existing model by integrating Energy 

Storage Systems (ESS) into the optimization framework. Advanced Energy Storage Systems 

(ESS) can significantly contribute to grid operations stabilization by storing surplus energy 

during periods of low demand and releasing it when required. Future research could improve 

the integration of intermittent renewable energy by finding the best ways to use distributed 

generators (DGs), capacitor banks, and energy storage systems (ESS). This would make the 

network more stable and cost-effective as a whole. 

4. Integration of FACTS systems 

The integration of Flexible AC Transmission Systems (FACTS) with network reconfiguration 

and distributed generation (DG) is a highly valuable and promising area of study. The FACTS 

devices, including Static VAR Compensators (SVCs) and Static Synchronous Compensators 

(STATCOMs), provide sophisticated control features that can improve voltage stability, power 

flow management, and the overall flexibility of telecom networks. Future research can 

investigate the synergistic effects of integrating FACTS with reconfiguration and DG placement 

to optimize network performance, namely in terms of delivering higher power quality, 

minimizing losses, and increasing system reliability. 
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Incorporating FACTS into the optimization framework may afford enhanced precision in 

regulating network parameters, so facilitating improved management of reactive power and 

voltage levels throughout the network. Implementing this integrated strategy would enhance 

the robustness and effectiveness of distribution systems, especially as networks integrate greater 

proportions of renewable energy sources. Adopting such a viewpoint would improve the study's 

progress by effectively addressing the technical and economic obstacles encountered in 

contemporary power systems. 

5. HMPA-Machine-Learning Hybridization: 

The integration of machine learning (ML) models with metaheuristic optimization algorithms 

presents a promising avenue for research. For instance, by analyzing past data, we can train 

machine learning models to forecast the most efficient setups. This prediction can then guide 

the optimization process and accelerate convergence. By integrating predictive analytics into 

the optimization framework, this hybrid approach has the potential to provide faster and more 

precise solutions. This would reduce computational time and improve the algorithm's 

adaptability to changing network conditions. 

 

6. Integration of Environmental and Social Goals 

Although the main emphasis of this thesis was on techno-economic optimization, future 

research could broaden the scope to encompass environmental and social goals. Potential 

additions to the multi-objective framework include reducing carbon emissions, maximizing 

renewable energy integration, and optimizing network configurations to minimize social 

disruptions such as power outages. Implementing such improvements would synchronize the 

optimization process with sustainability objectives, offering a more comprehensive approach to 

network management. 

7. Practical Application and Real Case Studies 

Future research should prioritize applying the optimization approach to real-world distribution 

networks in order to verify the practical usefulness of the proposed HMPA method. Engaging 

in partnerships with utility companies to apply the suggested algorithm to real distribution 

systems would offer valuable experiential knowledge regarding possible obstacles and 

improvements. By applying real-world case studies, we can identify operational limitations that 
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simulation settings may not fully account for, thereby ensuring the approach's resilience in real-

life scenarios. 

8. Demand response program integration 

The integration of demand response (DR) programs into the optimization framework is a 

promising subject for further investigation. Demand response (DR) programs provide 

consumers with incentives to modify their energy usage in accordance with grid conditions, 

enhancing the stability of the network. The integration of Demand Response (DR) with HMPA 

would provide a more flexible method for load management, enhancing the efficiency of both 

the supply-side (generation and storage) and the demand-side of the distribution network. 

9. Deregulation integration 

The deregulation of the electrical distribution sector is a crucial subject for further study, 

particularly when integrated with network reconfiguration, distributed generation, and FACTS 

systems. Deregulation brings about market-oriented competition in the energy industry, 

enabling greater flexibility in energy pricing, the establishment of independent power 

producers, and the decentralization of decision-making activities. This transition has the 

potential to generate both advantageous prospects and challenges for distribution network 

administration and enhancement. 

In deregulated environments, research may focus on the impact of market-driven factors on the 

positioning and functioning of distributed generators (DGs), strategies for reconfiguring 

networks, and the use of Flexible Alternating Current Transmission System (FACTS) devices. 

In a deregulated market, the optimization of these components must take into account not just 

technical limitations but also economic aspects, including volatile energy prices, contractual 

arrangements, and regulatory adherence. By integrating these technologies in a deregulated 

environment, we can achieve novel approaches to optimize efficiency and reduce operational 

expenses, thereby fostering the development of more sustainable and competitive energy 

distribution models. 

The adoption of this research approach would yield significant insights into the dynamic power 

distribution landscape and the emerging optimization issues in deregulated markets. 

10. Automated communication and information systems integration for preparing distribution 

networks for smart grid operations. 
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The integration of intelligent communication and information systems is a critical research area, 

particularly in the context of preparing distribution networks for smart grid deployment. 

Intelligent power grids depend significantly on sophisticated communication technologies, 

including Internet of Things (IoT) devices, real-time data analysis, and machine-to-machine 

communication, to facilitate dynamic and immediate regulation of the power system. Future 

studies can concentrate on improving the responsiveness, flexibility, and efficiency of 

distribution networks by integrating these intelligent systems with network reconfiguration, 

placing distributed generations, and FACTS devices. 

Real-time monitoring, predictive analytics, and automated decision-making enabled by these 

intelligent systems can significantly enhance the performance of optimization algorithms. The 

incorporation of communication technologies would facilitate more precise regulation of power 

distribution, energy storage systems, and load management activities. Furthermore, intelligent 

systems can enhance overall system reliability and resilience by facilitating better coordination 

between distributed energy resources and the main grid. 

Adopting this viewpoint would greatly enhance the progress of smart grids, as the combination 

of optimization methods and intelligent systems can lead to more flexible, robust, and 

environmentally friendly energy networks. Furthermore, it corresponds with the worldwide 

progression towards digitizing the power industry, establishing it as a progressive and 

influential field of study. 
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Appendix 

 

Hour 
DG output 

(pu) 

Load type 

Residential 

(pu) 

Industrial 

(pu) 

Commercial 

(pu) 

Educational 

institution 

(pu) 

Sanatorium 

(pu) 

1 0 0.67885 0.54444 0.54 0.61 0.65 

2 0 0.68816 0.56666 0.54 0.58 0.6 

3 0 0.61767 0.58888 0.55 0.54 0.58 

4 0 0.63912 0.50111 0.56 0.54 0.56 

5 0 0.66202 0.65555 0.562 0.56 0.56 

6 0.05 0.62115 0.80111 0.56 0.57 0.58 

7 0.1 0.62089 0.99999 0.57 0.65 0.65 

8 0.29 0.70498 1 0.6 0.76 0.76 

9 0.5 0.84366 0.95555 0.63 0.84 0.87 

10 0.69 0.77659 0.93333 0.68 0.9 0.95 

11 0.9 0.92763 0.95555 0.73 0.96 0.99 

12 0.96 1 0.90111 0.78 0.99 1 

13 1 1 0.88888 0.82 0.99 0.99 

14 0.96 0.98635 0.92222 0.86 1 1 

15 0.85 1 0.92222 0.90 0.99 1 

16 0.53 0.97917 0.99999 0.93 0.98 0.98 

17 0.3 0.81203 0.96666 0.96 0.96 0.96 

18 0.1 0.75653 0.95555 0.99 0.94 0.96 

19 0.03 0.71154 0.66666 1 0.93 0.93 

20 0 0.59684 0.52222 0.98 0.92 0.92 

21 0 0.58988 0.50155 0.94 0.92 0.92 

22 0 0.59879 0.48888 0.85 0.89 0.93 

23 0 0.7623 0.52011 0.77 0.71 0.88 

24 0 0.70429 0.53222 0.66 0.65 0.71 

 

 

 

 

 

 

 

 

 

 

 

Table.4.16. The hourly load and DG output variations data. 
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