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Introduction

In light of global market volatility, there has been increased scrutiny towards conventional

risk assessment methods like standard deviation, due to their limitations in e¤ectively

addressing rare but severe events. This criticism has spurred a quest for improved meth-

odologies capable of handling these rare events with signi�cant impacts. A common query

arising from this context is: How extreme might adverse outcomes become if they were

to materialize. The problem lies in how to model these rare phenomena and accurately

estimate their e¤ects. In such a situation it seemsessential to rely on a well founded

methodology. Extreme Value Theory (EVT) o¤ers the essential principles for statistically

modeling such occurrences and calculating extreme risk measures. Risk measures serve

as crucial instruments for investors and �nancial entities to make well-informed choices

regarding investments and risk mitigation tactics. These measures are widely utilized,

tailored for various objectives and audiences. The correct risk measures depend on pur-

pose. This is why there are so many good and equally e¤ective risk measures to assess

and manage risks.

Risk measures are mathematically derived from the distribution function (df) F or its tail

counterpart F ; where

F (x) = P (X � x) and F (x) = 1� F (x); x 2 R:

This formulation enables the quanti�cation of risk by analyzing the behavior of the random

variable (r.v) X relative to its distribution.

1



Introduction

Graphical tools (boxplots, time series plots, QQ-plots,...) provide evidence that �nan-

cial and actuarial datasets include extreme values which are due to market �uctuations.

The existence of such extremes makes the probability distributions decay very slowly to-

wards the x-axis. In other words, the tails of these datasets are of heavy type. The

class of heavy-tailed distributions (also known as Pareto-type or Pareto-like distribu-

tions) o¤ers very appropriate statistical models in situations of rare events that could

have negative impacts. They have important practical applications in various �elds such

as insurance, �nance, hydrology and telecommunications. The models of Pareto, Burr

and Fréchet are perfect examples (of such distributions) that are commonly used in illus-

trative simulations. For full details on heavy-tailed distributions and their applications,

we refer to the excellent textbooks of [Embrechts et al.(1997)], [Beirlant et al.(2004)],

[de Haan and Ferreira(2006)], [Reiss and Thomas(2007)] and [Resnick(2007)].

In statistical analyses related to many real world applications the observations are not

necessarily fully available. Data is often missing in research in economics, medical sciences,

social sciences and other �elds of study. In other words, the variable of interest is usually

randomly censored or truncated. In this case, we talk of incomplete data whose treatment

requires speci�c techniques as described in, for instance, [Klein and Moeshberger(2003)].

The di¤erence between truncation and censoring lies in the nature of the incomplete data

and the way they are handled in the analysis. In truncation, the exact value of the variable

of interest is not known for the cases that fall beyond the boundary, no note is recorded

when a value exceeds a bound, due to some restriction of the study. In censoring, the

censored value is known, but the exact value of the variable of interest is not known for the

cases that fall beyond the boundary, a note is recorded documenting which bound had been

exceeded and the value of that bound. In this thesis, we are only interested in estimation

in the case of random right censored data. Examples of sets of censored data with apparent

heavy tails can be found in, for instance, [Einmahl et al.(2008)], [Gomes and Neves(2011)],

[Reynkens et al.(2017)] and [Beirlant et al.(2018)]. Finally, it is worthmentioning that,

2



Introduction

in the case of complete data, the modelling of distribution tails have got a great deal

of interest in the last three decades, while the analysis of extreme values of randomly

censored and/or truncated data is a relatively new research topic.

For complete datasets, many di¤erent estimation of risk measures has got a great deal of in-

terest by several authors. For instance, [Jones and Zitikis(2003)] and [Jones and Zitikis(2007)]

introduced empirical estimators for risk measures and related quantities and

[Kaiser and Brazauskas(2006)] discussed con�dence interval estimation of various risk meas-

ures. For large losses, evaluating and/or estimating risk measures become more crucial

for insurance companies. Among the works that were done on this subject, we can cite

the papers of [Necir et al.(2007)] and [Necir and Meraghni(2009)] who focused on the es-

timation of a particular insurance premium, namely the Proportional Hazard Premium

(PHP). [Necir et al.(2010)], [Lala Bouali et al.(2021)] and [Goegebeur et al.(2022)] pro-

posed asymptotically normal estimators for the Conditional Tail Expectation (CTE) in

the case of Pareto-like distributions. The estimation of risk measures and insurance premi-

ums for randomly right censored data will be the primary focus of Chapter 4.

In this thesis, we present well-known risk measures and their estimations for right censored

data, speci�cally in the context of managing high-risk situations. The following is an

outline of the �ve chapters that comprise this work:

� Chapter 1 : Risk measures.

In the �rst section, we review the fundamental concepts and characteristics of risk meas-

ures. The second section covers the most common principles for premium calculation,

highlighting some of their essential properties. In the third section, we introduce widely

used risk measures, including Value at Risk (VaR), the CTE, Conditional Tail Moment

(CTM), and Tail Value at Risk (TVaR). Finally, the last section presents distortion risk

measures.

3
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� Chapter 2 : Extreme value analysis.

This Chapter presents important and useful results in the �eld of the extreme value ana-

lysis. We begin by reviewing essential concepts from elementary probability and statistics.

Next, we explore the fundamental result of the extreme value distribution. Afterwards, we

introduce an important class within EVT known as heavy-tailed distributions. Following

this, we interest on the extreme value index and the most commonly used Hill estimator.

� Chapter 3 : Incomplete data.

The third chapter provides an overview of incomplete data and reviews fundamental con-

cepts in survival data analysis. In Section 1, we introduce the basic concepts of lifetime

data. Section 2 discusses the characteristics of truncated and censored data, which can

be further classi�ed into three categories: right censoring (right truncation), left censoring

(left truncation), and interval censoring (interval truncation). In Section 3, we present

nonparametric estimators, speci�cally the Kaplan-Meier and Nelson-Aalen estimators, as

this thesis focuses on data that are randomly right censored.

� Chapter 4 : Estimation of large risk measures under censorship.

This Chapter o¤ers a review of estimation of risk measures and insurance premiums in the

context of random right censored heavy-tailed losses, highlighting methodologies tailored

to these complex data structures. The starting point will be a reminder about the tail

index estimators in censoring situation. Afterwards, we present estimates of currently

available risk measures and insurance premiums, including: VaR, mean, PHP, CTM and

our proposed estimator for the CTE. The estimation procedure for the CTE is evaluated

through a simulation study and applied to two real datasets of insurance losses and Aids

survival time.

4
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� Chapter 5 : Asymptotic distribution of the CTE estimator.

In the �nal chapter, we aim to establish the asymptotic distribution of the CTE estimator

in the context of randomly right censored heavy-tailed data. We begin by presenting

our main result: the asymptotic normality of the proposed estimator, accompanied by

a comprehensive proof of this �nding. Subsequently, we compile some results that are

essential to our analysis in the Appendix.

Lastly, it is worth mentioning that the R statistical analysis software is employed for data

manipulation tasks, including graphical representations and numerical calculations.

5



Chapter 1

Risk measures

Risk measures are statistical and mathematical tools that quantify risk by analyzing the

distribution of potential outcomes, represented through a r.v. Their purpose is to evaluate

and quantify potential losses associated with decisions, actions, or investments. Following

this assessment, organizations can implement control measures to mitigate or eliminate

identi�ed risks, facilitating informed decision-making and e¤ective risk management. Risk

measures are essential for various �elds, including �nance, insurance, engineering, en-

vironmental sciences and project management. For thorough details on risks and their

measures, we refer, for instance, to the books of [Denuit et al.(2005)], [Kaas et al.(2008)]

and [Klugman et al.(2019)].

1.1 Basic concepts

Let X be a r.v de�ned over a probability space (
;F ; P ) ; where:

� 
 represents the set of all possible scenarios,

� F is a tribe (or �-algebra),

� P is a probability measure.

6



Chapter 1. Risk measures

De�nition 1.1.1 A risk represents the possibility of the occurrence of an event or out-

come.

In simple terms, the risk X is a r.v that represents the likelihood of an event occurring at

some point in the future, typically focusing on negative or undesirable consequences.

Remark 1.1.1 In this thesis, the risk variable is treated as a positive r.v, which can

represent either potential losses (in the context of insurance and �nance) or survival time,

where it re�ects the risk of survival duration in medical or reliability studies.

To better understand and interpret this risk, one relies on risk measures.

De�nition 1.1.2 A risk measure R is a function that assigns numerical values to the

outcomes of a risk X:

This description demonstrates that, when it exists, the statistical moments such as ex-

pectation, variance, standard deviation, skewness and kurtosis are risk measures. For

instance, in the context of insurance, when measuring the level of risk using standard

deviation, which is calculated as the square root of the variance, a higher variance shows

a higher risk and a higher loss and a low variance shows a lower loss. While these meas-

ures are simple and easy to compute, they assume that losses are normally distributed,

which may not always be the case in reality, especially in the presence of heavy-tailed or

non-normal distributions.

1.1.1 Properties of risk measures

Theoreticians have described a number of properties that a risk measure may possess or

lack, as discussed by [Artzner et al.(1997)]. Additionally, [Artzner et al.(1999)] proposed

the properties that a reasonable risk measure must satisfy and developed the concept of

coherent risk measurements. These desirable characteristics enhance the e¤ectiveness of

risk measures in evaluating and managing �nancial risk, making them essential tools for

7



Chapter 1. Risk measures

investors and �nancial institutions. By comprehensively understanding these properties,

practitioners can make informed choices about which risk measures best align with their

speci�c risk management objectives and requirements. Some desirable properties of risk

measures include:

Coherent risk measure

A coherent risk measure is a function that satis�es certain properties and axioms related

to risk assessment. A risk measure R is said to be coherent if, for any two positive risks

X and Y and for any positive constant c; it satis�es the four fundamental properties:

Positive homogeneity : R (cX) = cR (X) ; this implies that doubling the exposure to

a particular risk necessitates a doubling of the risk measure.

Translation invariance : R (X + c) = R (X) + c ; i.e., the risk measure for a given risk

remains unchanged when a constant amount is added to the risk. This property ensures

that the risk measure is not a¤ected by shifting the origin of the risk.

Monotonicity : if X � Y =) R (X) � R (Y ) ; this property indicates that the risk

measure increases as the risks increases. This implies that, if one risk is greater than

another, then its risk measure will also be greater.

Sub-additivity : R (X + Y ) � R (X)+R (Y ) ; which means that, the risk of combining

two portfolios (such as, company shares, investments and premiums) cannot be greater

than the risk of combining the two risks separately.

This property supports the idea that diversi�cation reduces risk, as it allows for the com-

bination of di¤erent portfolios to mitigate potential losses. For example, if two portfolios

have risks of 11% and 7%; subadditivity guarantees that the risk of holding both portfo-

lios together will not exceed 18%: This encourages investors to diversify their portfolios,

thereby potentially reducing their exposure to extreme losses.

8



Chapter 1. Risk measures

Monetary and convex risk measure

Convex risk measures are an important class of risk measures in �nancial and actuarial

contexts. They extend the concept of coherent risk measures by relaxing some of the

coherence properties, particularly focusing on convexity. [Föllmer and Schied(2002)] and

[Chen and Hu(2018)] presented and studied convex risk measurement concepts.

De�nition 1.1.3 (Monetary risk measure) A risk measure R is said to be monetary

if it is monotonicity and translation invariance.

De�nition 1.1.4 (Convex risk measure) A convex risk measure is a function R that,

for any X and Y , satis�es the following properties:

1. Convexity: R (�X + (1� �)Y ) � �R (X) + (1� �)R (Y ) ; 8� 2 [0; 1] ;

2. Monetary.

Remark 1.1.2

� All coherent risk measures are convex, but not all convex measures are coherent.

� A convex risk measure is coherent if and only if it is additionally positive homogen-

eous (see [Chen and Hu(2018)]).

Additive comonotone and Law-invariant risk measure

De�nition 1.1.5 A risk measure R is additive comonotonic, if

R (Y1 + Y2) = R (Y1) +R (Y2) ;

for any comonotonic vector (Y1; Y2) :

De�nition 1.1.6 A functional R is called a law-invariant risk measure, if for all risks X

and Y; we have

X
d
= Y =) R (X) = R (Y ) :

9



Chapter 1. Risk measures

1.2 Premium calculation principles

In insurance, a premium is a positive real number that represents the amount of money

that an individual or business pays to an insurance company for insurance policy (coverage

against potential risks). The premium is calculated based on various factors such as the

type of coverage, the amount of coverage needed, the individual�s age, personal informa-

tion, and location. In actuarial science, the development of premium principles was the

�rst use of risk measures. In order to determine the amount a policyholder should pay

for insurance coverage. On the other hand, these principles are functions that assign a

real number to the risk, which represents the premium. For more details, we refer, for in-

stance, to [Bühlmann(2007)], [Kaas et al.(2008)], [Montserrat(2014)] and [Dickson(2016)].

In this section, the principles of premium calculation are discussed from a mathematical

viewpoint, and various desirable properties for premium principles are considered. There

are several premium principles used in insurance pricing, and the speci�c formula for each

one varies. These principles are based on mathematical and statistical concepts and are

used to ensure that the premiums charged are fair and adequate to cover the associated

risks. Next, we will denote by �(X) the premium that an insurer charges to cover a risk

X: When we refer to a risk X; what we mean is that claims from this risk are distributed

as the r.v X: Below, we provide the most common premium principles in insurance world.

1.2.1 Some premium principles

Net premium: It is also known as the mean value principle, which is the simplest

premium principle and is equal to the expectation of the claim (risk) size variable. In this

principle, the premium rate is set equal to the expected value of the risk. The mean value

principle can be represented as:

�(X) = E [X] ;

10
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where E [X] is the expected value of the risk. This principle is based on the idea that the

insurer expects to make a pro�t from the premiums paid by the policyholders, and the

premium rate should be set in such a way that it covers the expected costs of the insurer.

Expected value principle: The risk loading can be imposed by the insurer on the net

risk premium. This principle with safety is de�ned by

�(X) = (1 + �)E [X] ; � � 0;

where � is the loading coe¢ cient (or the surcharge factor). The loading coe¢ cient accounts

for various factors such as risk assessment, administrative costs, and pro�t margin.

Variance principle: This principle takes into account the variance of the claim size

variable and is used to calculate the premium based on the variability of the potential

losses. Its formula is given by

�(X) = E [X] + �V ar (X) ; � � 0;

where V ar (X) is the variance of the risk X: This principle incorporates the safety sur-

charge factor � in order to face random deviations of the r.v losses or loss rates. We may

again refer � as the relative security loading which is, in this case, proportional to the

variance.

Exponential principle: This premium principle is calculated using exponential utility,

it is de�ned by

�(X) =
1

�
log (E [exp (�X)]) ; � > 0;

where � is the risk aversion parameter, and E [exp (�X)] is the expected value of the claim

size variable under the exponential utility function.

Esscher principle: It is calculated using the Esscher transform, this principle is calcu-

lated as follows:

11
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�(X) =
E [X exp (�X)]

E [exp (�X)]
; � > 0;

where � is the risk aversion parameter. Esscher premium is a principle that used to adjust

the premium for the risk aversion of the insured.

Wang distortion functional principle: This principle is based on distortion risk meas-

ures and calculates the premium as the expected value of the loss distribution transformed

by a distortion function g; which is de�ned in 1.4.1. This principle can be expressed as

follows:

�(X) =

Z +1

0

g
�
F (x)

�
dx:

Proportional hazards premium principle: It is grounded in the proportional haz-

ards model, denoted as PHP, a widely used framework in survival analysis. This model

examines how multiple variables in�uence the time until a speci�ed event occurs. This

principle is de�ned as

�(X) =

Z +1

0

�
F (x)

�1=%
dx;

where % � 1 represents the distortion parameter or the risk aversion index. For % = 1;

�(X) =

Z 1
0

F (x) dx = E [X]. In insurance pricing, the hazard rate is transformed into

a premium by the use of the PHP principle (see, [Wang(1995)]).

Each principle has its own properties and applications, and the choice of principle may

depend on the speci�c characteristics of the risks being insured. For more details of the

properties of premium principles, see [Reich(1986)].

1.2.2 Properties of premium principles

There are several desirable properties for premium calculation principles. In the following

we include most of its basic properties. Since the premium principle is a particular case

of a risk measure, it shares many desirable characteristics. Therefore, we brie�y mention

the basic properties of premium calculation principles include:

12
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� Coherence: It is the most important property, and it requires that the premium cal-

culation principle satis�es the following four conditions:

1� Sub-additivity: For any two risks X and Y the premium for the sum of X and Y is

less than or equal to the sum of the premiums for X and Y separately.

2� Positive homogeneity: The premium for a risk is non-negative.

3�Translation invariance: The premium for a risk remains unchanged when the loca-

tion of the risk is shifted.

4�Monotonicity: It means that the premium increases as the risk increases.

We refer to [Montserrat(2014)], which analyzed the four properties necessary to meet

the coherency criterion of the net premium principle, expected value principle, variance

principle, exponential premium principle, Esscher premium principle and Wang distortion

functional principle.

� Convexity: It is another important property, which ensures that the premium calcula-

tion principle is stable.

� Law invariance: if premiums for two risks with the same distribution are equal.

� Additivity: if the premium assigned to the sum of two independent risks is the sum

of the premiums that are assigned to each risk separately. [Gerber(1974)] introduced the

concept of an additive premium calculation principle.

� Comonotonicity: It requires that the premium for a portfolio of risks is equal to the

sum of the premiums for each individual risk.

There are many other desirable properties for premium principles, these properties are

some of the most basic and important ones. However, not all principles satisfy all prop-

erties, and insurers may choose the most suitable principle based on their speci�c needs

and objectives.

Remark 1.2.1 Premium calculation principles and risk measures are related but distinct

concepts. While premium principles focus on determining the appropriate charges for in-

surance coverage based on assessed risks, while risk measures quantify the uncertainty as-
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sociated with potential outcomes, such as losses from insurance claims. Both are essential

for e¤ective �nancial management in insurance.

1.3 Usual risk measures

The usual risk measures have been developed to assess risk in various contexts, particularly

in actuarial science and �nance. These measures are designed to capture di¤erent risk

characteristics and align with speci�c applications. However, a key motivation behind

their development is the need to address extreme losses that traditional measures fail to

capture e¤ectively.

In this section, we provide the most commonly used risk measures, which serve as found-

ational tools in describing and evaluating risk, particularly in the presence of heavy-tailed

distributions and rare but signi�cant events.

1.3.1 Value at Risk

The VaR is a commonly used risk management tool, particularly in the banking and

�nancial sectors. The evolution of VaR as a risk management tool took place over several

decades, with its modern usage and recognition emerging in the early 1990s. The VaR is

popular in the �nancial industry due to its simplicity and widespread use.

De�nition 1.3.1 The VaR of a r.v X; for a security level t 2 (0; 1), is the t-order quantile

of the distribution of X: The VaR is de�ned as

V aR (t) = Q (t) = F (t) := inf fx : F (x) � tg :

The quantile function corresponding to F is also called the generalized inverse of F:

Remark 1.3.1 It is important to note that if the df F is strictly increasing (monotonic)

and continuous, it becomes a bijective function. In this scenario, we have F�1 (t) = F (t) :
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The VaR represents the maximum potential loss (worst anticipated loss) over a speci�ed

time period at a given security level. In other words, the VaR provides a threshold for the

worst-case scenario. In the context of risk management, security levels help risk managers

determine the reliability of their risk assessments. A high security level indicates that the

risk analysis is likely to produce accurate and consistent results (i.e., a greater level of

certainty in the risk assessment or prediction), while a low level suggests that the analysis

may be less reliable. Commonly, security levels are set at 90%; 95%; or 99%:

Example 1.3.1 A VaR of one million US$ for one day at the 95% security level implies

that there is a 5% chance of experiencing a loss greater than one million US$ over the

speci�ed time period.

Remark 1.3.2 The VaR is incoherence measure because it does not satisfy the sub-additivity

(see [Artzner et al.(1999)]).

An example showing the incoherence of the VaR can be found in [Klugman et al.(2019)],

page 44:

To solve the problem of incoherence VaR, the CTE is introduced as an average of the risk

values exceeding the VaR threshold.

1.3.2 Conditional Tail Expectation

The CTE, also known as Expected Shortfall (ES), provides a more comprehensive pic-

ture of the risk by considering the magnitude of extreme losses. It has gained popularity

among �nancial institutions and regulators, especially after the 2008 �nancial crisis high-

lighted the shortcomings of VaR. Unlike VaR, which focuses on the question "how bad can

things get?", CTE measures the average expected outcome (such as a loss or detriment)

if things do get bad, o¤ering a more thorough understanding of worst-case scenarios (see

[Tasche(2002)]).
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De�nition 1.3.2 The CTE represents the mean of the risk values which exceeds a given

VaR. In other words, if E jXj <1; we have

CTE(t) := E [X j X > V aR (t)] ; 0 < t < 1: (1.1)

Remark 1.3.3

1. The CTE provides information on the tail of distribution of X beyond the VaR. It

is known as the average of extreme risks.

2. By de�nition, we have, for every security level t 2 (0; 1) ; CTE(t) � V aR (t) ; for

any risk X:

3. The CTE is a coherent risk measure only when the underlying distribution of X is

continuous (see, [Acerbi and Tasche(2002)]).

In addition to the CTE, we have the CTM, which extends the analysis by incorporating

higher-order moments of the upper tail, o¤ering a deeper understanding of extreme data

behavior.

1.3.3 Conditional Tail Moment

Introduced by [Methni et al.(2014)], the CTM is a risk measure that provides a tool

through which a wide range of risk measures can be written as functions of it.

De�nition 1.3.3 The CTM represents the moment, of order � > 0; of the loss distribution

above the VaR at level t 2 (0; 1) : Speci�cally, it is de�ned as follows:

CTM�(t) := E
�
X� j X > V aR (t)

�
: (1.2)

Remark 1.3.4 Note that, for � = 1; the CTM coincides with the CTE.
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Other existing risk measures include:

� The Conditional Tail Variance (CTV): measures the conditional variability of X

given X > V aR (t) and indicates how far away the events deviate from CTE (t) : The

formula of the CTV, for a level t 2 (0; 1) ; is given by

CTV (t) := E
�
(X � CTE (t))2 j X > V aR (t)

�
:

� The Conditional Tail Skewness (CTS): is de�ned as

CTS (t) :=
E [X3 j X > V aR (t)]

(CTV (t))3=2
:

For more details on these measures, we refer to [Valdez(2005)], [Cai and Tan(2007)] and

[Hong and Elshahat(2010)].

1.3.4 Tail Value at Risk

The TVaR is a key risk measure used to assess potential extreme adverse outcomes. If

the VaR represents the maximum loss when an event of a given probability occur, then

the TVaR represents the expected value of the additional potential losses beyond that

threshold.

De�nition 1.3.4 The TVaR, for a security level t 2 (0; 1) associated with risk X; is

de�ned as follows:

TV aR (t) :=
1

1� t

Z 1

t

V aR (s) ds:

In medical research, the TVaR can be utilized to measure the average expected survival

time of patients who survive beyond a speci�c time frame. For example, if a study indicates

that patients receiving a certain treatment achieve the highest survival time, at the level

95%, of 5 years (i.e., V aR (0:95) = 5 years), the TVaR can provide insights into the average
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survival time for those who exceed this 5 year period. This information helps clinicians

better understand the long-term outcomes and prognosis for this patient population.

Remark 1.3.5 The TVaR and the CTE are the same if the distribution of the risk X is

continuous.

1.4 Distortion risk measures

Distortion risk measures are a vital category of risk assessment tools in the insurance

and �nance sectors, designed to evaluate and manage risk by transforming the probability

distribution of potential losses. These measures adjust the underlying probability distri-

bution to emphasize higher-risk outcomes, thus providing a more nuanced view of risk

than traditional measures (see, for instance, [Amarante et al.(2023)]).

De�nition 1.4.1 (Distortion function) A function g : [0; 1] ! [0; 1] is a distortion

function if it is non-decreasing with g (0) = 0 and g (1) = 1:

De�nition 1.4.2 We de�ne the distortion risk measure as follows:

Rg (X) =

Z 1

0

F (1� s) dg (s) :

Another common representation of distortion risk measures can be given as:

Rg (X) =

Z +1

0

g
�
F (x)

�
dx�

Z 0

�1

�
1� g

�
F (x)

��
dx:

The main distortion risk measures are summarized in Table 1.1, where v is a constant that

ranges from 0 to 1:
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Risk measure Distribution function
VaR g(x) = I [x � v]
TVaR g(x) = min fx=v; 1g
Proportional Hazard g(x) = xv

Dual Power g(x) = 1� (1� x)1=v
Gini g(x) = (1 + v)x� vx2
Transformation exponentielle g(x) = (1� v) = (1� v)

Table 1.1: The main risk measures by distortion.

1.4.1 Wang risk measure

Wang�s risk measure is a coherent risk measure that is de�ned by the Wang transform

function, which is a distortion function. It is a speci�c application of distortion risk meas-

ures within the insurance context, using a particular distortion function. The coherence

of this risk measure is a consequence of the concavity of the Wang transform function.

The concept of a distortion function was proposed by [Wang(1996)] to create a family of

risk measures known as distortion risk measures.

The distortion function in Wang�s risk measure is mathematically expressed as:

g (x) = �
�
��1 (x) + !

�
;

where � represents the standard normal df, ��1 is the inverse standard normal df and

! 2 R is the risk aversion parameter.

This form of the distortion function re�ects the adjustment of probability weights based

on the normal distribution, ensuring a consistent and coherent risk evaluation framework.

1.4.2 Spectral measures

[Acerbi(2002)] introduced spectral risk measures, which generalize risk measures such as

VaR and CTE. Unlike VaR, which assigns zero weight to losses beyond a certain quantile,

and CTE, which applies a constant weight in the tail region, spectral risk measures utilize

a risk aversion function to assign varying weights to potential losses. This allows for a
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more accurate representation of an individual�s or institution�s risk preferences by giving

larger weights to higher losses.

De�nition 1.4.3 A spectral function (or risk aversion function) is de�ned as a func-

tion � : [0; 1] ! R+ that is non-decreasing and satis�es the normalization conditionR 1
0
� (x) dx = 1.

De�nition 1.4.4 The spectral risk measure for a r.v X is expressed as:

R� (X) =

Z 1

0

F (x)� (x) dx:

This formulation allows for a weighted average of potential losses, where worse outcomes

are typically assigned greater weights, re�ecting the risk aversion of the decision-maker.

Remark 1.4.1

� The spectral measurements are coherent.

� Spectral measures can be characterized as the measurements of the concave distortion

function g; where � = g
0
:

� Wang measure is a spectral measure if and only if ! � 0:
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Extreme value analysis

Extreme value analysis, also known as EVT, is a statistical methodology used to estim-

ate the probability of events that are rarest compared to any previously observed. EVT

provides a mathematical and probabilistic foundation on which it is possible to build stat-

istical models to predict the size and frequency of these rare phenomena. For full details,

we refer to the excellent textbooks of [Embrechts et al.(1997)], [Reiss and Thomas(2007)],

[Beirlant et al.(2004)] and [de Haan and Ferreira(2006)].

2.1 Basic concepts

Let X be a continuous r.v de�ned on a probability space (
;F ; P ) :

De�nition 2.1.1 (Tail quantile functions) A function denoted by U; known as the tail

quantile function, is de�ned as follows:

U (z) = Q(1� 1=z) =
�
1=F

� 
(z); 1 < z <1:

De�nition 2.1.2 (Empirical df) Let X1; X2; :::; Xn be a sample of size n � 1 from a

r.v X: The empirical df of the sample (X1; X2; :::; Xn) is de�ned as follows:
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Fn(x) :=
number of elements in the sample � x

n
(2.1)

=
1

n

nX
i=1

1 fXj � xg ; 8x � 0;

where 1 fBg is the indicator function of the event B:

Remark 2.1.1 The empirical tail function of the sample (X1; X2; :::; Xn) is de�ned by

F n (x) = 1� Fn(x) :=
1

n

nX
i=1

1 fXj > xg ; 8x � 0:

This estimator possesses several important convergence properties, including: Glivenko-

Cantelli for almost sure uniform convergence, asymptotic normality,...

De�nition 2.1.3 The empirical quantile function of a sample (X1; X2; :::; Xn) is de�ned

as follows:

Qn(s) = F
 
n (s) := inf fx 2 R : Fn(x) � sg ; 0 < s < 1:

The empirical tail quantile function is de�ned as:

Un (z) = Qn(1� 1=z); 1 < z <1:

De�nition 2.1.4 (Arithmetic sum and mean) Let (X1; X2; :::; Xn) be a sample of the

r.v X: For any integer n � 1; the arithmetic sum and the empirical mean are respectively

de�ned as follows:

Sn :=
nX
i=1

Xi and Xn := Sn=n:

Theorem 2.1.1 (Laws of large numbers) Let (X1; X2; :::; Xn) be a sample from a r.v

X; with a �nite expected value (i.e., E jXj <1) : Then we have

weak law : Xn
P! �; as n!1;

strong law : Xn
a:s! �; as n!1;
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where � := E [X] :

Theorem 2.1.2 (Central limit theorem ) If (X1; X2; :::; Xn) are independent and identic-

ally distributed (iid) random variables (r.v�s) with expected value E [Xi] = � and �nite

variance V ar (Xi) = �
2; then

1p
n

�
Sn � n�
�

�
D! N (0; 1) ; as n!1:

The proof of this Theorem could be found, for instance, in [Saporta(1990)], page 66:

2.1.1 Order statistics

Since order statistics provide valuable insights into the tail distribution (speci�cally the

right tail), they have gained increasing importance in EVT. For further information, see

[David and Nagaraja(2004)].

De�nition 2.1.5 Let X1; X2; :::; Xn be a sample of size n � 1 from a r.v X: The series

arranged in increasing orders of the r.v�s X1; X2; :::; Xn is referred to as the order statistics

of this sample. They are generally denoted by X1:n; X2:n; :::; Xn:n:

For r = 1; 2; :::; n; the r.v Xr:n is called the rank order statistic of rank r or r-th or-

der statistics. The r.v�s X1:n and Xn:n represent the smallest and largest observations,

respectively, where

X1:n := min (X1; X2; :::; Xn) and Xn:n := max (X1; X2; :::; Xn) ;

Order statistics distribution

Proposition 2.1.1 (Distribution of X1:n and Xn:n) The probability distribution of the

r.v�s X1:n and Xn:n are given by their respective distribution functions (df�s)

FX1:n(x) = 1� [F (x)]n and FXn:n(x) = [F (x)]
n; x 2 R:
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Proof 2.1.1 We have that

FX1:n(x) = P (X1:n � x) = 1� P (X1:n > x):

It is clear that the event (X1:n > x) is equivalent to (X1 > x;X2 > x; :::; Xn > x); thus,

FX1:n(x) = 1� P (X1 > x;X2 > x; :::; Xn > x);

which by the independence of the r.v�s Xi; becomes

FX1:n(x) = 1� P (X1 > x):P (X2 > x):::P (Xn > x):

Finally, we reach a conclusion based on the equidistribution of observations, leading to the

following expression:

FX1:n(x) = 1� [P (X1 > x)]
n = 1� [F (x)]n:

The corresponding result for the maximum can also be derived using the same principle.�

Proposition 2.1.2 (Distribution of Xr:n) In general, for 1 � r � n; the df of the r-th

order statistic is given by:

FXr:n(x) =

nX
i=r

n!

i!(n� i)!F
i(x)[1� F (x)]n�i; x 2 R:

Proof 2.1.2 Let x 2 R be �xed. To say that the event (Xr:n � x) occurs is equivalent to

stating that among the variables X1; X2; :::; Xn; at least r of them are smaller than x: In

other words, we have

Xr:n � x()
nX
j=1

1 fXj � xg � r;
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which implies

P (Xr:n � x) = P
 

nX
j=1

1 fXj � xg � r
!
:

On the other hand, we have that
Pn

j=1 1 fXj � xg follows a binomial distribution with

parameters n and F (x). Thus we have, for i = 1; 2; :::; n;

P

 
nX
j=1

1 fXj � xg = i
!
=

n!

i!(n� i)!F
i(x)[1� F (x)]n�i:

The result is obtained by taking the sum from i = r to n: �

Remark 2.1.2 The representation of the empirical df Fn in terms of order statistics is

given by:

Fn(x) =

8>>>><>>>>:
0 if x < X1:n;

i

n
if Xi:n � x < Xi+1:n; for i = 1; 2; :::; n� 1;

1 if x � Xn:n:

(2.2)

Equation (2:2) implies that

Qn(s) = Xi:n; for
i� 1
n

< s � i

n
; i = 1; 2; :::; n:

Note that, for 0 � z � 1; Qn(z) = X[nz:n]; where [nz] denotes the integer part of nz:

2.2 Extreme value distribution

EVT is used to model the maxima (or minima) of r.v�s in a manner analogous to how the

central limit theorem is employed to model the sum of r.v�s. The fundamental concept

of EVT is that when the distribution of the maximum is appropriately normalized, the

limiting distribution can only be one of three possible types: the Gumbel distribution, the

Fréchet distribution, or the Weibull distribution. These distributions are widely used in
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various �elds, including �nance, environmental science, and engineering, to model extreme

events and assess tail risks. In this section, we interest on the result of limiting distribution

of a suitably normalized maximum.

2.2.1 Domains of attraction

Domains of attraction are groups of probability distributions that share similar tail beha-

viors. These domains of attraction help in understanding the behavior of extreme events in

di¤erent types of data. The maximum domains of attraction is associated with the beha-

vior of tail probabilities and the convergence of rescaled maxima to a limiting distribution.

Here we introduce the notion of maximum domains of attraction.

De�nition 2.2.1 (Maximum domain of attraction) A df F; is said to be in the max-

imum domain of attraction of the extreme value distribution H
; denoted as F 2 D (H
) ;

if there exist sequences of constants, an > 0 and bn 2 R such that

lim
n!1

P

�
Xn:n � bn

an
� x

�
= lim

n!1
F n (anx+ bn) = H
 (x) ; 8x 2 R; (2.3)

where H
 is a non-degenerate df and 
 2 R:

Remark 2.2.1 The parameter 
 is called the tail index, the extreme value index or the

shape parameter.

The distribution function H
 is known as the Generalized Extreme Value (GEV) distri-

bution. The GEV distribution is a family of continuous probability distributions that

includes the three fundamental types of extreme value distributions as special cases. It is

widely used to model the maxima of long (�nite) sequences of r.v�s and to assess tail risks

in various applications.

A key �nding in EVT, the Fisher-Tippett theorem, often called the Gnedenko theorem (see

[Fisher and Tippett(1928)] and [Gnedenko(1943)]), characterizes the limiting distribution
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of the maximum. The theorem is essential in EVT because it provides a way to identify

the limiting distribution of the maximum and to estimate the tail probabilities of the

distribution. The Fisher-Tippett-Gnedenko theorem is summarized as follows :

Theorem 2.2.1 Let (X1; X2; :::; Xn) be a sequence of iid r.v�s with df F: Assume that there

exist two normalizing sequences an > 0 and bn 2 R; and a non-degenerate df H satis�es

(2:3) : Then the limiting distribution H belongs to one of the following three classe:

Fréchet (
 > 0) : �
 (x) =

8><>: exp (�x�
) x > 0;

0 x � 0:
Gumbel (
 = 0) : �
 (x) = exp (� exp (�x)) ; x 2 R:

Weibull (
 < 0) : 	
 (x) =

8><>: 1 if x > 0;

exp (� (�x
)) if x � 0:

The sketch of the proof can be found, for instance, on page 122 of [Embrechts et al.(1997)].

Figure 2.1 illustrates the three forms of the limiting df�s.

Figure 2.1: Density and distributions of extreme value distributions
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To unify the three families into a single framework, [Jenkinson(1955)] and [Von Mises(1936)]

developed the family of GEV distributions as follows:

De�nition 2.2.2 The GEV distribution combines the Gumbel, Fréchet and Weibull fam-

ilies, which is de�ned as

H
 (x) :=

8><>: exp
�
� (1 + 
x)�1=


�
if 
 6= 0;

exp (� exp (�x)) if 
 = 0;

for 
 2 R and 1 + 
x > 0; where 
 is the shape parameter that governs the tail behavior

of H
 (x) :

We present the three extreme value distributions in terms of the GEV distribution H
 as

follows :

�
 (x) = H1=
 (
 (x� 1)) ; x > 0;

�
 (x) = H0 (x) ; x 2 R;

	
 (x) = H�1=
 (
 (x+ 1)) ; x < 0:

2.2.2 Limit distributions

Let x� be the right (or upper) endpoint of the df F; where x� = sup fx 2 R : F (x) < 1g :

Since FXn:n(x) = [F (x)]
n; it follows that Xn:n

P! x�; as n!1:

Depending on the sign of 
; the limiting distributionH of the normalized sample maximum

can be characterized by:

1. Fréchet type: if 
 > 0; the right endpoint of the distribution is in�nity (x� = +1) :

This domain of attraction corresponds to heavy-tailed distributions, which include

the Pareto, Burr, log-gamma, inverse gamma, Fréchet, and Cauchy distributions.

2. Gumbel type: if 
 = 0; with the right endpoint x� can be either �nite or in�nite. This

type includes distributions such as Gaussian, log-normal, exponential, and gamma

distributions. In this category, we encounter �nitely-tailed distributions.
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3. Weibull type: if 
 < 0; the right endpoint of the distribution is �nite with x� = �1=
:

This domain of attraction corresponds to light-tailed distributions, including the

Weibull, Beta (a; b) and uniform distributions.

2.3 Heavy-tailed distributions

In probability theory and statistics, heavy-tailed distributions are those whose tails are

not exponentially bounded, meaning they have heavier tails than the exponential distri-

bution. In other words, a heavy-tailed distribution decays more slowly toward zero than

the exponential distribution, which results in a greater concentration of extreme values.

Any distribution with heavier tails than the normal distribution is occasionally referred

to as heavy-tailed (see [Bryson(1974)], [El Adlouni et al.(2007)] and [Cohen et al.(2020)]).

In numerous applications, the right tail of a distribution is particularly signi�cant, even

when the distribution features a heavy left tail, a heavy right tail, or both. This focus

arises from the fact that the right tail is often associated with rare and extreme events

that can have signi�cant consequences. In this thesis, we focus speci�cally on the right

tail of the distribution.

De�nition 2.3.1 The distribution of a r.v X with df F is said to have a heavy right tail

if the expected value of the exponential function is in�nite, speci�cally:

E
�
e�X
�
=

Z +1

�1
e�xdF (x) =1; for all � > 0:

Remark 2.3.1 If E
�
e�X
�
<1; the df F is said to be a light-tailed distribution.

Such distributions have thinner tails than an exponential distribution and tend to zero

more rapidly than the exponential.
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De�nition 2.3.2 The kurtosis coe¢ cient K is a statistical measure used to assess whether

a dataset exhibits heavy tails compared to a normal distribution. It is de�ned as follows:

K := E
"
(X � �)4

�

#
=
�4
�22
;

where �n = E [(X � E [X])n] represents the nth central moments.

For a distribution to be considered heavy-tailed, its kurtosis must be greater than that of

the normal distribution (i.e., K > 3):

Theorem 2.3.1 For any df F; the following statements are equivalent:

� F is a heavy-tailed distribution.

� The tail distribution of F is heavy-tailed.

Proof 2.3.1 See Theorem 2:6; in [Foss et al.(2011)], page 8:

A prominent subclass of heavy-tailed distributions is the class of regularly varying distri-

butions. Their properties are extensively utilized in analyzing the behavior of estimators

within the domain of extreme value analysis. For further details, refer to the works of

[Bingham et al.(1987)] and [Mikosch(1999)].

2.3.1 Regularly varying functions

De�nition 2.3.3 (Regularly varying function) A measurable function V : R+ ! R+

is said to be regularly varying (at in�nity) with index & 2 R; denote V 2 RV (&) ; if

lim
v!1

V (vx)

V (v)
= x& ; for all x > 0:

Here, & is called the variation exponent or the index of regular variation.
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Remark 2.3.2 (Slowly varying function) If & = 0; a measurable function L is said to

be slowly varying (at in�nity) if

lim
v!1

L(vx)

L(v)
= 1; for any x > 0:

Example 2.3.1

� The functions x& ; x& log(1 + x) and (x log (1 + x))& are regularly varying functions

with index & 2 R:

� The functions log (x+ 1) and log (log (1 + x)) are slowly varying functions.

� The functions sin (x+ 2) ; exp (x) and exp (log (x+ 1)) are not regularly varying

functions.

Next, we will present some important characteristics of regularly varying functions.

Proposition 2.3.1

� A regularly varying function V with index & 2 R; can be expressed in the form

V (x) = x&L(x):

� If V is a regularly varying function with index &; then V �1 is also regular varying,

but with index (1=&) :

� If V is a regularly varying function with index &; then V (1=x) is regular variation

with index (�&) :

Proposition 2.3.2 (Potter�s inequalities) Suppose that V 2 RV (&) ; where & 2 R:

Then, for any small � > 0; there exists a value v0 = v0 (�) such that for v > v0 and x � 1;

we have

(1� �)x&�� � V (vx)

V (v)
� (1 + �)x&+�: (2.4)
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Proof 2.3.2 See [Resnick(2007)], Proposition 2:6; page 32:

Proposition 2.3.3 (First order regular variation condition) If F is a heavy-tailed

df, then the following statements are equivalent:

1. F regularly varying at in�nity with index (�1=
)

lim
v!1

F (vx)

F (v)
= x�1=
; x > 0:

2. Q (1� s) regularly varying at zero with index (�
)

lim
s!0

Q(1� sx)
Q(1� s) = x

�
; x > 0:

3. U regularly varying at in�nity with index 


lim
v!1

U(vx)
U(v)

= x
; x > 0:

To investigate the asymptotic normality of tail index estimators, a �rst order condition for

regularly varying functions is often inadequate. Consequently, a second order condition is

necessary, as it facilitates weak approximations of statistics derived from EVT.

De�nition 2.3.4 (Second order regular variation condition) If F satis�es one of

the following equivalent conditions, we say that it is second order regularly varying at

in�nity:

(i) There exists a parameter � � 0 and a function A; which tends to zero and does not

change sign near in�nity, such that for any x > 0; we have

lim
v!1

F (vx)=F (v)� x�1=

A (v)

= x�1=

x� � 1
�

:
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(ii) There exists a parameter � � 0 and a function A�; which tends to zero and does not

change sign near zero, such that for all x > 0; we have

lim
s!0

Q(1� sx)=Q(1� s)� x�

A� (s)

= x�

x
� � 1
�

:

(iii) There exist some parameter � � 0 and a function A��; which tends to zero and does

not change sign near zero, such that for any x > 0; we have

lim
v!1

U(vx)=U(v)� x

A�� (v)

= x
1
x� � 1
�

: (2.5)

If � = 0; then (x� � 1) =� is interpreted as log x: The constant � serves as a second order

parameter that controls the speed of convergence of the �rst order condition. The functions

A; A� and A�� are regularly varying, with the relationships:

A (v) = A��
�
1=F (v)

�
and A� (v) = A�� (1=v) :

They play a role in controlling the rate of convergence in �rst order regular variation

conditions 1; 2 and 3; respectively.

The second order regular variation condition is satis�ed by a subclass of heavy-tailed

distributions known as the "Hall class", as introduced by [Hall(1982)]. This class is very

important in the discussion of the estimators of a positive tail index.

2.3.2 Hall�s class

De�nition 2.3.5 We say that F belongs to the set of Hall�s models if it can be expressed

in the following form:

F (x) = lx�1=

�
1 +mx�=
 + o

�
x�=


��
; as x!1; (2.6)
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where m 2 Rn f0g and l > 0:

This class includes some of the most common distributions, such as Fréchet, Student,

Pareto-like distributions, Burr, GEV, generalized Pareto distributions, among others. We

can reformulate (2:6) in terms of the functions Q and U as follows:

Q(1� s) = l
s�

�
1 + 
l�ms�� + o

�
s��
��
; as s! 0;

and

U(x) = l
x
 (1 + 
ml�x� + o (x�)) ; as x!1:

Note that in the Hall model, we have A (x) = m
�x�=
; A�� (x) = m
�l�x� as x ! 1;

and A� (s) = m
�l�s��; as s! 0:

2.4 Extreme value index

One important parameter in EVT that is essential for describing the right tail behavior

of a df and determining its decay rate is the extreme value index. It is employed to eval-

uate the probability of events that are more extreme than any previously observed. More

speci�cally, a high tail index indicates a signi�cant probability of extreme events. Estim-

ating the tail index is crucial to comprehending and predicting rare and extreme events

in various domains, such as �nance, engineering, and environmental sciences. Numer-

ous methods are available in the literature for estimating tail indices, among which Hill�s

estimator ([Hill(1975)]), the moment estimator ([Dekkers et al.(1989)]) and Pickand�s es-

timator ([Pickands(1975)]). Each of these techniques o¤ers unique advantages and can be

applied depending on the speci�c characteristics of the data. Those estimators are based

on the largest order statistics Xn�k:n � ::: � Xn:n; where k = kn is an intermediate integer
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sequence that depends on n and satis�es:

1 < k < n; k !1 and k=n! 0; as n!1: (2.7)

The statistic Xn�k:n is then said to be intermediate order statistic. The estimator from

Hill is the most widely used due to its attractive asymptotic properties and computational

simplicity. The calculation of this estimator depends on the selection of the optimal

number k of extreme values, which will be denoted by kopt: This choice a¤ects the accuracy

of the estimation. Next, we will present the algorithm for determining this optimal number

after de�ning the Hill estimator for the tail index 
:

2.4.1 Hill�s estimator

The estimate of 
 (
 > 0) provided by B. Hill in [Hill(1975)] is the most well-known

method for estimating a positive tail index. The Hill estimator of 
, denoted by b
(Hill); is
determined by:

b
(Hill) = b
(Hill) (k) := 1

k

kX
i=1

log
Xn�i+1:n

Xn�k:n
:

The Hill estimator is consistent for the tail index; however, it is important to note that

obtaining accurate estimates requires using a su¢ ciently large value of k: However, a value

of k that is too large can result in a biased estimate. Thus, selecting an optimal value of k

is essential to obtain accurate estimates of the tail index. Another limitation of the Hill es-

timator is that it is restricted to estimating the positive extreme value index, which limits

its applicability in certain contexts. Additionally, when 
 moves beyond 0:5; Hill estimator

may exhibit substancial bias. This in�uences the related estimations may fail to approach

the theoretical value for realistic scenarios. These limitations highlight the need for care-

ful consideration when using the Hill estimator for tail index estimation in heavy-tailed

distributions, and the potential for alternative methods or adjustments to address these

issues. Among these alternative methods are those proposed by [Kim and Kim(2015)]
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and [Németh and Zempléni(2020)]. The asymptotic behavior of the estimator was not

examined by [Hill(1975)]. [Mason(1982)] established the weak consistency of b
(Hill): Ad-
ditionally, [Deheuvels et al.(1988)] demonstrated the strong consistency by providing an

optimal rate of convergence for a suitably selected sequence kn: Under certain additional

conditions on the df F; the asymptotic normality was established in a number of papers,

including [Davis and Resnick(1984)] and [Csörg½o and Mason(1985)] .

The following theorem summarizes the asymptotic properties of Hill�s estimator.

Theorem 2.4.1 Assume that F 2 D
�
�1=


�
; 
 > 0 and k satisfying (2:7) : Then we have

(i) Weak Consistency:

b
(Hill) P! 
; as n!1:

(ii) Strong consistency: if k= log log n!1 as n!1; then

b
(Hill) a:s! 
; as n!1:

(iii) Asymptotic normality: Assume that F satis�es (2:5) : If
p
kA�� (n=k) ! � 2 R; as

n!1; then

p
k
�b
(Hill) � 
� D! N

�
�

1� � ; 

2

�
; as n!1:

It is important to highlight that the most commonly used extreme quantile, Q(1 � s);

as s ! 0; is the one proposed by [Weissman(1978)]. This is outlined in the following

de�nition:

De�nition 2.4.1 The Weissman estimator is de�ned as follows:

bQ(1� s) := Xn�k+1:n +

�
k

ns

�b
(Hill)
; s! 0:
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Further insights into the properties of this estimator can be found in [Weissman(1978)]

and [de Haan and Ferreira(2006)].

Weissman�s estimation method extends Hill�s technique to provide more accurate estimates

of extreme quantiles in heavy-tailed distributions. The method focuses on using available

data about the extreme values already present in the distribution to improve the estima-

tion of tail behavior. By combining order statistics with an estimator for the tail index,

Weissman enhances the ability to model the behavior of extreme events more accurately,

making it a powerful tool for risk assessment and managing extreme events in heavy-tailed

distributions.

Now, we address the selection of the number k of upper order statistics.

2.4.2 Optimal sample fraction selection

As previously stated, the estimators of 
 are computed using the optimal number kopt

of upper order statistics which determines where the distribution tail really starts. In

the literature, several algorithms and adaptive procedures are allocated to obtaining

reliable estimates, such as [Dekkers and Dehaan (1993)], [Drees and Kaufmann(1998)],

[Cheng and Peng(2001)] and [Danielson et al.(2001)]. The selection of the k is not a

straightforward operation, because one must deal with one of two scenarios:

� If k is too small the estimation variance becomes too large.

� If too many observations are used in the estimation procedure, i.e., if k is very large,

a large bias appears.

Thus, choosing between bias and variace requires compromise. Generally, to get a good

estimates for 
 (and other estimators that depend on the optimal sample fraction kopt);

we have to extract the k highest observations from a r.v, which represents a very small

fraction of the entire sample (i.e. satisfying (2:7)):
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Numerous studies in the analytical method focus on selecting k to minimize the asymp-

totic mean squared error of the adopted semiparametric estimator (see, for example,

[Hall(1982)], [de Haan and Peng (1998)]). Additionally, there are graphical and numerical

techniques for determining the optimal value of k: One notable approach is the algorithm

proposed by [Reiss and Thomas(2007)], page 121; which de�nes this critical number as

follows:

kopt := argmin
1�k�n

(
1

k

kX
i=1

i�
���b
(Hill) (i)�median�b
(Hill) (1) ; :::; b
(Hill) (k)����) ; (2.8)

where 0 � � � 0:5. For a discussion on the choice of the constant �; one should consult

[Neves and Fraga Alves(2004)].
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Incomplete data

It is common in the analysis of lifetime data, such as survival analysis, reliability engin-

eering, and insurance, to encounter incomplete data, which can manifest as two distinct

events: truncation and censoring. Incomplete data often arise from study design or ob-

servational limitations. Key sources include attrition, where participants drop out of lon-

gitudinal studies before an event of interest occurs, and delayed entry, where participants

enter a study after its commencement. Additionally, selective reporting may occur when

researchers choose not to report all outcomes measured in a study.

Ignoring truncation or censoring during data analysis can lead to biased estimates of pop-

ulation parameters and complicate the analytical process. When the sample no longer

accurately represents the entire population, the validity of the �ndings may be comprom-

ised, resulting in erroneous conclusions. Proper statistical methods are essential to account

for these issues and ensure reliable and unbiased results. For more details, we may cite the

books of [Cohen(1991)], [Meeker and Escobar(1998)] and [Klein and Moeshberger(2003)].

Next, we will present an overview of essential de�nitions related to lifetime data.
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3.1 Lifetime data

De�nition 3.1.1 (Survival time) We de�ne survival time as a positive r.v that repres-

ents the time elapsed until the occurrence of a speci�c event of interest.

Example 3.1.1 Survival time encompasses various durations, including the time until

death, the interval from the initiation of treatment to the observed response, and the time

to failure of a system or component. In the context of insurance, it refers to the time until

the occurrence of a speci�c event, such as �ling an insurance claim, the occurrence of a

covered incident, or exceeding a prede�ned �nancial loss threshold.

3.1.1 Survival time distributions

If the r.v X is non-negative and has a continuous df F , then one of �ve corresponding

functions can be employed to characterize its probability distribution. It is worth noting

that, the df F and tail function F ; are introduced here in the context of survival analysis.

Cumulative distribution function

The cumulative distribution function (cdf), denoted as F , represents the probability of an

event occurring before a speci�ed time x (the likelihood of dying before time x); i.e.,

F (x) = P (X � x) = P (X < x); x � 0:

Survival function

The survival function, denoted as F ; represents the probability of surviving at least until

a speci�ed time x; i.e.,

F (x) = P (X � x) = 1� F (x):
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Density function

For a �xed value of x; the density function f represents the probability of dying within a

small time interval immediately following x: If the cdf F has a derivative at point x; then

f is de�ned for all x � 0 as follows:

f(x) :=
dF (x)

dx
= lim

dy!0

P (x < X < x+ dy)

dy
:

Hazard function

The hazard function, denoted by h; for a �xed x; quanti�es the instantaneous risk of death

in a small time interval following x; given that an individual has survived up to time x: It

is de�ned as:

h(x) := lim
dy!0

P (x < Y < x+ dy=Y > x)

dy
:

Cumulative hazard function

The cumulative hazard function, denoted by �; represents the total accumulated risk up

to time s and is de�ned as:

� (s) :=

Z s

0

h(x)dx =

Z s

0

dF (x)

F (x)
:

Remark 3.1.1 These functions have the following relationships:

1.

h(x) = lim
dy!0

�
F (x)� F (x+ dy)

dyF (x)

�
= �d logF (x)

dy
:

2.

� (x) = � logF (x): (3.1)
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3.

f(x) = F (x)h(x):

3.2 Censorship and truncation

In the following we consider the notations X; C and T; which are used to model the

censored and truncation data, where

� Xj denotes the variable of the interest for the j-th subject,

� Cj denotes the censoring or truncation threshold for the j-th subject,

� Tj represents the observed variable for the j-th subject.

3.2.1 Censoring

De�nition 3.2.1 Censorship refers to situations where the value of an observation is only

partially known.

In other words, the variable of interest X; is said censored by a variable or a value of

censorship, denoted by C; if sometimes observe C instead of X: For instance, in a medical

research, individuals may leave the study (called dropout) so we only observe their leaving

time instead of the actual death time.

In this subsection, we present the di¤erent categories and types of censored data, accom-

panied by illustrative examples.

Right censoring

An observation is considered right censored if a subject exits the study before the event

occurs, or if the study concludes prior to the event�s occurrence. Hereafter, we present

examples illustrating the contexts in which right censored data can occur and how it is

observed.
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� In insurance, censorship occurs when a claim amount exceeds the insurer�s policy limit.

For instance, if policyholders have a limit of C; any loss above this limit is reported as

exactly C: Thus, the insurance loss is right censored if it exceeds C; which is the maximum

payout. In such cases, especially smaller insurance companies may need to purchase excess-

of-loss reinsurance from larger �rms.

� In medicine, right censoring occurs when a study concludes before the event of interest,

such as death, is recorded, or when a subject exits the study prior to experiencing the

event. This means that the full survival times are unknown; only that the survival time

exceeds the observation period. For example, in a clinical trial to study the e¤ect of

treatments on stroke occurrence, the study may end after 5 years, patients who have not

experienced a stroke by that time are considered right censored.

� In reliability studies within electrical engineering (or mechanics), an engine is considered

right censored if it is lost to follow-up (for example, if an engine is taken out for mainten-

ance or inspection before it breaks down) or if the study concludes before it experiences a

breakdown.

� In sociology, when analyzing the duration of marriages, right censoring occurs when a

couple withdraws from the study or when the study concludes before a divorce takes place.

Left censoring

Left censoring occurs when the event of interest has already taken place before data

collection begins or the study commences. In such cases, we only know the upper limit of

the time at which the event occurred. Below are some examples of left censoring:

� In insurance claims, left censoring occurs when the event of interest, such as the onset

of a disease or a signi�cant life event, happens before an individual enrolls in an insurance

plan or before a study begins. For instance, if an insurance company is studying the e¤ects

of car accidents on long-term health and a participant had an accident in 2017 but did

not enroll until 2020; their health data related to that accident would be left censored.
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Since the accident occurred prior to enrollment, any claims or health issues arising from

it would be excluded from the study, resulting in incomplete data on the impact of car

accidents on health.

� In medical study, some patients may have already experienced the event of interest before

the study begins, and their event time is unknown. For example, in a study examining the

onset of diabetes, researchers track participants over 4 years. If a participant was diagnosed

with diabetes before the study began, their exact diagnosis date would be unknown. This

represents left censoring, as the event occurred prior to enrollment. Consequently, any

health data related to their diabetes before joining the study would be excluded, potentially

skewing the results regarding diabetes incidence and e¤ects in the population.

� In reliability engineering, left censored data pertains to items that have already failed

prior to the commencement of a study. For instance, in a study assessing the lifespan of

light bulbs, some bulbs may have failed before the study began. As a result, the exact

failure times for these bulbs are left censored, leading to incomplete data regarding their

performance and potentially a¤ecting the overall analysis of bulb longevity.

Mixed Censoring

Mixed censoring occurs when data are subject to both types of censoring, meaning that

some values are left censored because they fall below a certain threshold, while others are

right censored because they exceed a speci�c limit.

As an example of this type in the �eld of insurance, recorded compensation amounts for

insured losses may be subject to mixed censoring due to coverage policies. For instance,

in vehicle insurance:

compensation is not provided for losses below 500$; as the policyholder must cover them.

Consequently, their exact values are not recorded. The insurance company does not pay

more than 20000$; even if the actual loss exceeds this amount. Therefore, all values above

this threshold are recorded as equal to it. In this case, the recorded data do not re�ect
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the true values of some losses but rather classify them within a speci�c range, leading to

mixed censoring.

Interval censoring

Interval censoring occurs in statistical analysis when the exact timing of an event is not

known, but it is known to fall within a speci�c interval. This situation often arises in

survival analysis and clinical studies where observations are conducted at discrete time

points. For instance, a subject may have had two tests for Human Immunode�ciency

Virus (HIV), where the �rst test result was negative (not infected), and the second test

result was positive (infected). In such cases, determining the exact time of HIV infection

is based on periodic blood tests, which cannot be conducted continuously. As a result, the

exact time at which the subject became infected with HIV (the event of interest) occurred

after the �rst test and before the second test. This makes the subject interval censored

within the time interval between the two tests.

Type I censoring (�xed censorship)

Type I censoring, also known as �xed censoring, occurs in statistical studies when the

observation period is predetermined, and any subjects or items that have not experienced

the event of interest by the end of this period are right censored. This means that re-

searchers know the event has not occurred up to a certain time, but they do not know

when it will happen.

An example of Type I censoring can be found in a clinical trial studying the e¤ectiveness

of a new cancer treatment. Suppose researchers follow patients for a maximum of 2 years.

If a patient has not experienced disease progression or death by the end of the 2 year

period, their data is right censored at that time point. While it is known that these

patients survived for at least 2 years, their exact survival times beyond that point remain

unknown.
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Type II censoring (failure censoring)

In Type II censoring, an experiment continues until a speci�ed number r (1 � r � n) of

failures occurs among the subjects being tested. Once this number of failures is reached,

the experiment concludes, and any remaining subjects that have not failed are considered

right censored. This means that while the exact failure times for the observed failures are

recorded, the exact failure times for the remaining subjects are unknown but are known

to exceed the time at which the last failure occurred. In other words, let Xj:n and Tj:n

represent the order statistics of the variables Xj and Tj; respectively. The censored data

is denoted as Xr:n and we observe the following variables:

Tj:n =

8><>: Xj:n if j � r;

Xr:n if j > r:

For instance, if a reliability test involves 80 units and the goal is to observe 30 failures,

the test will continue running until 30 units have failed. At that point, the test ends, and

the remaining 50 units are right censored.

This type of censoring is particularly useful when the goal is to study the characteristics

of failures among a �xed number of subjects rather than observing all subjects for a �xed

period.

Random censorship (type III censoring)

In random censoring, the censoring times are independent of the event times. This means

that the time at which data is censored does not provide any information about the

likelihood of the event occurring at that time.

Each subject in a study has a failure time and a censoring time. The observed outcome

is the minimum of these two times. If a subject�s failure time occurs after their censoring

time, they are considered right censored. In other words, we say that Xj is right censored

by Cj if, for 1 � j � n; instead of observing the values of Xj directly, we observe a pair
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of values (Tj; �j) de�ned as follows:

Tj := min (Xj; Cj) and �j := 1 fXj � Cjg ; (3.2)

where �j serves as the censorship indicator. Speci�cally:

�j =

8><>: 0 if the individual is censored (i.e. Tj = Cj) ;

1 if the event is observed (i.e. Tj = Xj) :

In Chapter 4, Subsection 4.6.2, we present two examples of real-world datasets exhibiting

random right censoring: one related to insurance losses and the other concerning survival

times in AIDS patients.

The �gure 3.1 illustrates the di¤erent categories of censored data.

Figure 3.1: A representative example of the censored data cases
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3.2.2 Truncation

In survival analysis, truncation occurs when only individuals who have experienced the

event of interest are observable, which is often a result of the study�s design. This means

that only results above (or below) the truncation limit can be observed, leading to data

loss and creating a truncated sample.

There are three di¤erent types of truncation, as follows:

Right truncation

Right truncation occurs when only individuals whose variable of interest falls below a

certain threshold are observable, while those exceeding this threshold remain unobserved.

In other words, a random variable is said to be right truncated if its exact value is known

for all cases below a speci�c threshold but unknown for cases above it. Speci�cally, this

means that the value of X is known when X < C but remains unknown when X � C:

An example of right truncation is the timing of the appearance of primary teeth in infants,

speci�cally the two bottom front teeth, which typically emerge between 6 and 8 months of

age. In this case, we have right truncated data because infants whose teeth appear after

8 months are not included in the analysis.

Left truncation

Left truncation occurs when individuals with values below a certain threshold are excluded

from the study. In this context, only individuals whose variable of interest exceeds this

threshold are observed. This means that the variable of interest is observable only if it

exceeds a certain limit (i.e., X is observable only when X > C):

Example 3.2.1 In a clinical trial testing a new medication for hypertension, left trunca-

tion occurs when only patients who are diagnosed with high blood pressure after the age

of 40 are included in the study. If a patient is diagnosed at age 38 and starts treatment

before turning 40; they are excluded from the trial.
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Interval truncation (doubly truncation)

Interval truncation, also referred to as doubly truncation, occurs when observations are

only recorded within a speci�ed range, leading to the exclusion of values outside that

range.

Example 3.2.2 When using a mercury thermometer with a measurement range of �40�C

to +80�C; any temperature readings outside this range cannot be recorded. Consequently,

temperatures below �40�C and above +80�C are not observed, resulting in interval trun-

cation for values outside this speci�ed range.

[Lynden-Bell(1971)] proposed a nonparametric estimation of the df of X within the frame-

work of the truncation model,along with its asymptotic properties. The strong law and

asymptotic normality were further examined by [Woodroofe (1985)].

Remark 3.2.1 Truncation is distinct from censoring, as in truncation, observations never

result in values outside a given range, and values outside the range are never seen or

recorded if they are seen, while in censoring, a note is recorded documenting which bound

(upper or lower) had been exceeded and the value of that bound.

It is necessary to choose appropriate estimation techniques that are una¤ected by missing

values. Below, we present the nonparametric methods for censored data that are central

to the focus of this thesis.

3.3 Nonparametric estimators

In this section, we introduce the main estimators that are crucial for analyzing randomly

censored data: the Kaplan-Meier estimator for the df and the Nelson-Aalen estimator for

the cumulative hazard function.
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3.3.1 Kaplan-Meier estimator

The Kaplan-Meier estimator, also known as the product limit estimators or nonparametric

maximum likelihood, was introduced by [Kaplan and Meier(1958)]. It is a nonparametric

statistical tool used to estimate the survival function from lifetime data, particularly in

the context of censored observations. The Kaplan-Meier estimator is widely utilized across

various �elds, providing valuable insights into the duration that an event may continue

before another event occurs (such as death or failure). In medical research, it is often em-

ployed to measure the proportion of patients who survive for a speci�ed period after treat-

ment. For further insights into its real-world applications, we refer to [Goel et al.(2010)]

and [Etikan et al.(2017)].

Next, we present the formula for the Kaplan-Meier estimator. Let X and C be two

independent r.v�s de�ned on a probability space (
;F ; P ) ; with continuous df�s F and G;

respectively. The Kaplan-Meier estimators of the df�s F and G; denoted as bFn and bGn;
are de�ned as follows:

bFn (x) :=
8>><>>:
1�

Q
Tj:n�x

�
1�

�[j:n]
n� j + 1

�
for x < Tn:n;

1 for x � Tn:n:
(3.3)

and

bGn (x) :=
8>><>>:
1�

Q
Tj:n�x

�
1�

1� �[j:n]
n� j + 1

�
for x < Tn:n;

1 for x � Tn:n:
(3.4)

where T1:n � T2:n � ::: � Tn:n represents the order statistics associated with the sample

(T1; T2; :::; Tn) and �[1:n]; �[2:n]; :::; �[n:n] denotes the corresponding concomitant values, sat-

isfying �[j:n] = �i for i such that Tj:n = Ti: We denote by H the cdf of the observed T 0s,

which is de�ned as follows:

H (x) := 1� (1� F (x)) (1�G (x)) : (3.5)
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The key requirement for using the Kaplan-Meier estimator is the ordered nature of ob-

served values, allowing for a clear distinction between censored observations and events.

Whether these values represent time, �nancial losses, or any other ordered continuous

variable, the estimator remains valid as long as the ordering and censoring information

are properly accounted for. However, it is essential to emphasize that the Kaplan-Meier

estimator is speci�cally tailored to address random right censoring scenarios, which aligns

with its core theoretical foundation and practical application.

Remark 3.3.1 The estimators (3:3) and (3:4) are rewritten as follows:

bFn (x) :=
8>><>>:
1�

Y
Tj:n�x

�
n� j

n� j + 1

��[j:n]
for x < Tn:n;

1 for x � Tn:n;

bGn (x) :=
8>><>>:
1�

Y
Tj:n�x

�
n� j

n� j + 1

�1��[j:n]
for x < Tn:n;

1 for x � Tn:n;

Remark 3.3.2 If X1; X2; :::; Xn are not censored, the df F can be estimated by Fn; as

given in (2:1) :

The Kaplan-Meier estimator has properties analogous to those of the empirical df. For

more information, see the book by [Shorack and Wellner(2009)].

3.3.2 Nelson-Aalen estimator

The Nelson-Aalen estimator, introduced by [Nelson(1972)] and generalized by [Aalen(1978)],

is a nonparametric estimator of the cumulative hazard function. The estimator is useful

for imputing variables that depend on survival time, and it can be used to estimate the

cumulative number of expected events. The method requires that the observations are

independent, and the censoring must be independent. According to the independence
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hypothesis between X and C; we obtain the following equalities:

H (x) = H(0) (x) +H(1) (x) ;

where

H(0) (x) := P (T � x; � = 0) =
Z x

0

F (y) dG (y) ;

and

H(1) (x) := P (T � x; � = 1) =
Z x

0

G (y) dF (y) :

For x � 0; we can express the cumulative hazard function as follows:

� (x) =

Z x

0

dH(1)(y)

H(y)
:

The Nelson-Aalen estimator for � is given by

�n (x) =

Z x

0

dH
(1)
n (y)

Hn(y)
:=

8>><>>:
nX

Tj:n�x

�[j:n]
n� j + 1 if x < Tj:n;

1 if x � Tj:n;

where Hn and H
(1)
n represent respectively the empirical df of H and the empirical coun-

terpart of H(1); based on the sample Tj; 1 � j � n; which are de�ned by

Hn (x) :=
1

n

nX
i=1

1 fTj � xg

and

H(1)
n (x) :=

1

n

nX
i=1

�j1 fTj � xg :

Remark 3.3.3 By utilizing the relationship de�ned in (3:1) and the Kaplan-Meier estim-

ator, we can derive another estimator of the df F; known as the Breslow estimator (see
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[Breslow and Crowley(1974)]). This estimator is de�ned as follows:

bFNAn (x) :=

8>><>>:
1�

Y
Tj:n�x

exp

�
�

�[j:n]
n� j + 1

�
for x < Tn:n;

1 for x � Tn:n:
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Estimation of large risk measures

under censorship

Estimating risk measures is crucial for quantifying and managing risk across various �elds,

including survival analysis, reliability, and insurance. The selection of an appropriate es-

timator is vital and depends on the data�s characteristics and the underlying distribution.

In this chapter, we review estimators available in the literature for some of the risk meas-

ures introduced in Chapter 1, as well as for insurance premiums such as the net premium

(which corresponds to the mean) and a reinsurance premium calculated using the PHP.

The focus is on the case of randomly right censored and heavy-tailed distributions. We will

mainly focus on the CTE estimator that we recently introduced in [Guesmia et al.(2024)],

which represents the central part of our reseach work. We will reserve the end of the

chapter for a detailed discussion on this topic. However, �rst, we need to discuss the fon-

damental issue of estimating tail indices within the framework of random right censorship.

4.1 Tail index estimators

In the censorship framework, the tail index is estimated using various methods, which is rel-

evant for understanding the distribution of extreme values in various datasets. The �rst to
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mention the subject are [Beirlant et al.(1996)] in Section 2:7 and [Reiss and Thomas(2007)]

in Section 6:1; but without asymptotic results. Thereafter, [Beirlant et al.(2007)] and

[Einmahl et al.(2008)] were proposed new classes of estimators for the extreme value in-

dex when the data are subject to random censorship. These estimators are based on the

order statistics of the censored data and are designed to be consistent and asymptotically

normal. [Einmahl et al.(2008)] adapted di¤erent estimators for 
1 to the case where the

data are censored by a random threshold and proposed a uni�ed method to establish their

asymptotic normality. Their estimators are based on a standard estimator of the tail in-

dex divided by the estimator of the proportion of uncensored data among the largest k

observations of T 0s:

b
(�;c)1 :=
b
(�)bp ;

where b
(�) can be any estimator that is not adapted to censoring and bp := (1=k) kX
i=1

�[n�i+1:n]

is the estimate of the proportion p of upper non-censored observations, with p := 
2= (
1 + 
2) :

Example 4.1.1 Hill�s estimator of 
1; adapted for censored data, is then de�ned as fol-

lows:

b
(c)1 :=

Pk
i=1 (log Tn�i+1:n � log Tn�k:n)Pk

i=1 �[n�i+1:n]
: (4.1)

Along with [Beirlant et al.(2007)] and [Einmahl et al.(2008)], a large number of studies,

have shown interest in the tail index in the case of random censorship. The particular

formulas of these estimators may change depending on the distribution and the method

being taken into account. [Worms and Worms(2014)] presented new approaches for es-

timating the tail index in the context of randomly censored samples, particularly for

heavy-tailed distributions. [Beirlant et al.(2016)] and [Beirlant et al.(2018)] proposed a

new bias reduced estimator of the tail index for censored Pareto-type data. Additionally,

[Beirlant et al.(2019)] introduced a new class of estimators which encompasses earlier pro-

posals given in [Worms and Worms(2014)] and [Beirlant et al.(2018)], which were shown

to have good bias properties compared with the maximum likelihood estimator proposed
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in [Beirlant et al.(2007)] and [Einmahl et al.(2008)]. See also [Brahimi et al.(2015a)],

[Brahimi et al.(2015b)], [Brahimi et al.(2018)], [Bladt et al.(2021)] and

[Worms and Worms(2021)] for other papers on the subject.

Example 4.1.2 To see the performance of the adapted Hill estimator, given in (4:1) ; as

a function of the number k of upper order statistics, we carry out a simulation study based

on 100 samples of size n = 2000 from Fréchet model with parameter 
1; de�ned by

F (x) = exp(�x�1=
1); for x > 0;

censored by another variable of Fréchet of parameter 
2 = p
1=(1� p): We choose 0:5 as a

value for the tail index 
1: For the proportion p; we take 0:40; and 0:60; that is, we allow

the percentage of censoring in the right tail of X to be 60% and 40%:
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Figure 4.1: Bias (left panel) and MSE (right panel) of b
(c)1 based on 100 samples of size
2000 for 
1 = 0:5 as a functions of the number k of upper order statistics

Figure 4.1 illustrates the absolute bias (Bias) and the mean squared error (MSE) of b
(c)1
as a function of the number k of upper order statistics. We observe that the bias and the
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MSE of b
(c)1 decrease as the percentage of censoring diminishes. On the other hand, we

note that for a large value of k the bias increases signi�cantly.

4.2 Estimating the VaR

We recall that the VaR is the quantile function Q corresponding to df F: Therefore, the

nonparametric estimator of the VaR is de�ned by substituting Q(s) with its empirical

counterpart under random censorship, represented as Qn(t) := inffx : Fn(x) � tg for

0 < t < 1: From the de�nition of Kaplan-Meier estimator of Fn; we obtain

[V aR(t) = Qn(t) = Ti:n for wi�1 < t � wi; (4.2)

where wi = 1 �
Qi
j=1

�
1� �[j:n]= (n� j + 1)

�
; i = 1; :::; n (we agree that w0 = 0): The

Kaplan-Meier estimator is a widely used method for estimating quantiles from censored

data (see [Hong et al.(2013)]), as it is nonparametric and does not require any assumptions

about the underlying distribution.

In EVT, estimating the VaR is directly linked to the accurate modeling and estimation

of the quantile function Q (1� s) ; where s = 1 � t: As s ! 0, the VaR corresponds to

the extreme quantiles of the distribution. Consequently, extreme quantile estimation is

the process of estimating the tail probabilities of a distribution, which are associated with

rare events.

When data are subject to random censoring, several estimators have been proposed for

extreme quantile estimation of heavy-tailed random variables. Noteworthy contributions

include the works of [Beirlant et al.(2007)], [Einmahl et al.(2008)], [Bladt et al.(2021)] and

[Worms and Worms(2021)]. Hereafter, we present the estimates to the extreme quantiles,

of Weissman-type (see, [Weissman(1978)]), for randomly censored data. We suppose that

lim
v!1

F (vx)

F (v)
= x�1=
1 : (4.3)
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If we take v = h = hn := H (1� k=n) in the relation of (4:3) ; we deduce that F (x) is

equivalent to F (h) (x=h)�1=
1 as x ! 1: Here H (s) := inf fx : H (x) � sg ; 0 < s < 1;

denotes the quantile function or the generalized inverse of H: Replacing h by its empirical

counterpart Tn�k:n yields a Weissman-type estimator to the tail F (x) ; for large x; as

follows: bF (x) � � x

Tn�k:n

��1=b
(c)1
F n (Tn�k:n) :

From (3:3) ; we have F n (Tn�k:n) =
Qn�k
i=1

�
1� �[i:n]= (n� i+ 1)

�
: Thus, we get

bF (x) � � x

Tn�k:n

��1=b
(c)1 n�kY
i=1

�
1�

�[i:n]
n� i+ 1

�
: (4.4)

From (4:4) ; we de�ne a Weissman-type estimator to Q(1�s), denoted by bqs; for randomly
censored data, as follows:

bqs := s�b
(c)1 Tn�k:n n�kY
i=1

�
1�

�[i:n]
n� i+ 1

�b
(c)1
; as s! 0: (4.5)

The convergence in distribution of the extreme quantile estimator bqs is established in
Theorem 1 of [Goegebeur et al.(2023)].

4.3 Estimating the mean

The mean (net premium) of the r.v X with df F is de�ned by

� = E [X] :=

Z 1
0

xdF (x) =

Z 1
0

F (x) dx:

In the censorship case, the nonparametric estimator of �; denoted as b�n; is referred to as
the Kaplan-Meier integral, which was introduced by [Stute(1995)]. It is de�ned as follows:

b�n = nX
i=1

Ti:nWi:n;
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where

Wi:n :=
�[i:n]

n� i+ 1

i�1Y
j=1

�
n� j

n� j + 1

��[j:n]
: (4.6)

[Stute(1995)] established the central limit theorem under random censorship, which is

satis�ed provided that

Z 1
0

x2�2 (x) dH(1) (x) <1 and
Z 1
0

x

�Z x

0

dG (z)

H (z)G (z)

�1=2
dF (x) <1; (4.7)

where � (x) := exp
�Z x

0

dH(0) (z) =H (z)

�
with H(j); j = 0; 1; being de�ned in (5:9) :

However, this seems constraining for some class of heavy-tailed distributions. Indeed,

[Soltane et al.(2015)] showed that, for Pareto models, one of the conditions above (or

both) is not met for tail indices satisfying 
2=(1 + 2
2) < 
1 < 1: [Soltane et al.(2015)]

de�ned an alternative estimator, which is given in De�nition 4.3.1.

De�nition 4.3.1 The semiparametric estimator of the mean, denoted as b�; is de�ned as
follows:

b� := n�kX
i=2

�[i:n]
n� i+ 1

i�1Y
j=1

�
n� j

n� j + 1

��[j:n]
Ti:n +

n�kY
j=1

�
n� j

n� j + 1

��[j:n] Tn�k:n
1� b
(c)1 :

More recently, [Kouider et al.(2024)] introduced an alternative estimator for the mean

within the same context and established its asymptotic normality. The proposed estimator

relies on a threshold parameter z; which divides the data into two segments: values less

than or equal to z and those greater than z. The tail df of F is assumed to start at some

threshold z with z ! +1: The proposed estimator, denoted by cM , is de�ned as
cM :=

1

n

nX
i=1

Ti:n�[i:n]

1� bGn (Ti�1:n)1 fTi:n � x;x � zg+
z
�
1� bFn (z)�
1� b
(KIB)1

where b
(KIB)1 is the shape paramete estimator proposed by [Kouider et al.(2023)].
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4.4 Estimating the PHP

The PHP estimation in the context of randomly right censored losses is a statistical method

used to estimate the excess-of-loss reinsurance premium when the risks are randomly right-

censored. Excess-of-loss reinsurance is a speci�c type of reinsurance where the ceding

company is compensated for losses that exceed a speci�ed limit. [Soltane et al.(2016)]

focus on this topic, discussing the estimation of the PHP of loss under random censoring

and the asymptotic normality of the proposed estimator under mild conditions. This

method is particularly relevant in the context of insurance premium principles and risk

assessment.

The PHP of risk for the layer from retention level R � 0 to in�nity is de�ned as

�% (R) :=

Z 1
R

�
F (x)

�1=%
dx;

where % � 1. The estimator of �% (R) ; denoted by b�% (R) ; is de�ned as follows:
b�� (R) := %R

1=b
(c)1 � %

�
R

Tn�k:n

��1=�%b
(c)1 �
n�kY
i=1

�
1�

�[i:n]
n� i+ 1

�1=%
:

4.5 Estimating the CTM

In the context of extreme losses, [Goegebeur et al.(2023)] proposed the estimator

\CTM � (t) :=
1�

1� b
(c)1 � �
0@ Tn�k:n

(1� t)b
(c)1
n�kY
i=1

�
1�

�[i:n]
n� i+ 1

�b
(c)1 1A�

;

where � > 0; as an estimator for the CTM, which is de�ned in (1:2) : The authors also

proved its asymptotic normality in the case of censorship.

Based on Remark 1.3.4, we introduce an estimator of the CTE (i.e., when � = 1) for
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extreme risks. This estimator is denoted as \CTM1 (t) and is de�ned as follows:

\CTM1 (t) :=
Tn�k:n

(1� t)b
(c)1 �1� b
(c)1 �
n�kY
i=1

�
1�

�[i:n]
n� i+ 1

�b
(c)1
:

Example 4.5.1 To assess the performance of the \CTM1 (t), we conduct a simulation

study based on 1000 samples of size n drawn from a Burr distribution with parameters


1 = 0:4 and � = 0:25, given by F (x) = 1�
�
1 + x1=�

���=
1
; censored by a Fréchet variable

with parameter 
2: For the proportion p; we take 0:50; 0:70 and 0:90: We take two levels

0:99 and 0:999: To select the optimal number of top statistics kopt; we apply the adaptive

algorithm of [Reiss and Thomas(2007)]: The notations bias and rmse respectively stand

for the absolute value of the bias and the root of the mean squared error of \CTM1 (t) : The

simulation results are summarized in Table 4.1.

CTM1 (t) 10:516 (t = 0:99) 26:415 (t = 0:999)
p = 0:50

n \CTM1 (t) bias rmse \CTM1 (t) bias rmse
1000 12:474 1:958 10:339 35:009 8:594 27:160
2000 11:905 1:389 4:704 31:609 5:194 18:055

p = 0:70
1000 11:038 0:522 4:110 28:561 2:146 14:084
2000 10:775 0:259 2:463 28:100 1:685 10:221

p = 0:90
1000 10:663 0:147 2:838 26:203 0:212 10:950
2000 10:564 0:049 1:985 26:338 0:077 7:463

Table 4.1: \CTM1 based on 1000 right-censored samples of size n from Burr model censored
by Fréchet model for 
1 = 0:4
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4.6 Estimating the CTE

In this section, we de�ne our estimator for the CTE under randomly right censored heavy-

tailed data. Since the df F is continuous, we readily get

CTE (t) =
1

1� t

Z 1

t

Q(s)ds; (4.8)

which, to be well de�ned, requires that the index 
1 be less than 1: This could be easily

checked for Pareto�s model de�ned by F (x) = 1� x�1=
1 ; x � 1:

To construct our estimator, that will be denoted by [CTE (t) ; we start by writing CTE (t)

as the sum of

CTE1;n (t) :=
1

1� t

Z wn�k

t

Q(s)ds and CTE2;n (t) :=
1

1� t

Z 1

wn�k

Q(s)ds;

where wn�k = Fn (Tn�k:n) = 1 �
Qn�k
i=1

�
1� �[i:n]= (n� i+ 1)

�
: From Lemma (5:3:5), we

have wn�k
P! 1; as n!1:

We divided the domain of the estimator into two parts to enhance accuracy: the �rst

part handles moderate values using traditional methods, while the second part focuses on

extreme values, applying specialized techniques suitable for tail data. In the �rst integral,

we replace Q(s) by its empirical counterpart under random censorship Qn(s); that is

de�ned in (4:2) ; to obtain an estimator

[CTE1;n (t) :=
1

1� t

Z wn�k

t

Qn(s)ds;

for CTE1;n (t) :

A change of variables in CTE2;n (t) yields

CTE2;n (t) =
1

1� t

Z 1�wn�k

0

Q(1� s)ds: (4.9)
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By substituting Q(1 � s) with bqs; as de�ned in (4:5) ; in (4:9) ; we obtain the following
after integration:

[CTE2;n (t) :=
Tn�k:n

(1� t)
�
1� b
(c)1 �

n�kY
i=1

�
1�

�[i:n]
n� i+ 1

�
;

which serves as an estimator for CTE2;n (t) : Finally, by adding [CTE2;n (t) to [CTE1;n (t)

we obtain the estimator of the CTE, for every t 2 (0; 1) ; as follows:

[CTE (t) :=
1

1� t

Z wn�k

t

Qn(s)ds+
Tn�k:n

(1� t)
�
1� b
(c)1 �

n�kY
i=1

�
1�

�[i:n]
n� i+ 1

�
: (4.10)

We present our main result in Chapter 5, Section 5.1, which is the asymptotic normality

of our estimator and was proven in Section 5.2.

Below, we present the graphs and numerical results of the simulation study which we

conducted to check the performance of our estimation procedure of the CTE of randomly

censored heavy-tailed data.

4.6.1 Simulation study

We carry out a simulation study to illustrate the performance of our estimator, through

two sets of data from Burr and Fréchet models. We consider the following four censoring

scenarios with a combination of tail indices and censorship proportions.

� scenario 1: Burr (
1; �) censored by Burr (
2; �):

� scenario 2: Fréchet (
1) censored by Fréchet (
2):

� scenario 3: Burr (
1; �) censored by Fréchet (
2):

� scenario 4: Fréchet (
1) censored by Burr (
2; �):
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We �x � = 1=4 and we choose 0:3 and 0:5 as values for the tail index 
1: For the proportion

p; we take 0:50; 0:70 and 0:90: Additionally, we consider two levels for t : 0:90 and 0:95:

In each case, we generate 1000 independent replicates of samples (of X and C) of sizes

n = 1000; 1500 and 2000: Our overall results are computed as the empirical means of the

results that are obtained through all repetitions.

De�ning the nonparametric estimator

The nonparametric estimator ]CTE (t) of the CTE at level t is obtained by substituting

Qn (s) for Q(s) in formula (4:8) : In other words, we have

]CTE (t) :=
1

1� t

Z 1

t

Qn (s) ds; 0 < t < 1:

Changing variables in equation (4:8) yields the alternative following form to the CTE,

CTE (t) =
1

1� t

Z 1
Q(t)

xdF (x) =

Z 1
0

x

1� t1 fQ (t) < xg dF (x) :

Now, we use Kaplan and Meier df estimator Fn (x) and the corresponding quantile function

estimator Qn (t) to propose, in the spirit of the construction in [Stute(1995)] (page 423).

An alternative formulation for the nonparametric estimator of the CTE, is given by:

]CTE (t) =
nX
i=1

Wi:n' (Ti:n) ;

where Wi:n is de�ned in (4:6) and

' (Ti:n) :=
Ti:n
1� t1 fQn (t) < Ti:ng :

The simulation results regarding the performance of [CTE (t) are summarized in Tables

4.2-4.9. For each censoring scenario, we have two tables corresponding to the di¤erent

values of the extreme value index. Those pertaining to the comparison (where we only
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consider the censoring scheme of Senario 1 with 
1 = 0:5) between [CTE (t) and ]CTE (t)

are given in Tables 4.11 and 4.12. Graphically, we illustrate the behavior of the estimator

[CTE (0:9) ; as a function of the number k of upper order statistics, in Figures 4.2, 4.3, 4.4

and 4.5 corresponding to 
1 = 0:3; 
1 = 0:5; 
1 = 0:6 and 
1 = 0:8 respectively.

Conclusion

In light of the simulation results, we may conclude that:

1. regardless of the censoring scenario, the biases and rmse�s in Tables 4.2-4.9 indicate

that the estimation accuracy increases for:

� larger sample size.

� minor censoring percentage.

� lower security level t:

� smaller tail index value.

2. Figures 4.2, 4.3, 4.4 and 4.5 show the in�uence of the censoring proportion and the

extreme value index on the estimation results.

3. After a great number of trials, we found that, as the value of 
1 moves beyond 1=2; our

estimation procedure gives unsatisfactory results mainly when the censoring proportion is

high as it could be seen in Figures 4.4 and 4.5. This is con�rmed by the results of Table

4.10, where we only consider the situation of weak censoring (p = 0:90) :

4. The results of Tables 4.11 and 4.12 show that our (semiparametric) estimator [CTE (t)

performs better then the nonparametric ]CTE (t) ; especially for larger sample sizes.

4.6.2 Case studies

Our estimation procedure is applied to sets of real data, namely losses of an insurance

company in the United States and survival time of Aids patients in Australia.
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t 0:90 0:95
CTE (t) 2:834 3:500

n [CTE (t) bias rmse [CTE (t) bias rmse
p = 0:50

1000 2:972 0:139 0:591 3:813 0:313 1:288
1500 2:955 0:121 0:425 3:745 0:245 0:805
2000 2:937 0:103 0:397 3:677 0:176 0:633

p = 0:70
1000 2:863 0:029 0:310 3:552 0:052 0:521
1500 2:848 0:014 0:231 3:540 0:040 0:406
2000 2:845 0:011 0:200 3:538 0:037 0:352

p = 0:90
1000 2:847 0:013 0:176 3:513 0:013 0:319
1500 2:840 0:007 0:154 3:509 0:009 0:265
2000 2:836 0:002 0:121 3:505 0:005 0:221

Table 4.2: CTE estimates based on 1000 right censored samples of size n from scenario 1
with 
1 = 0:3

Insurance loss

The data, collected by the Insurance Services O¢ ce, Inc., are available, under the name

"loss", in the package copula of the statistical software R. The data�le, which is made

up with two main variables, namely the loss (indemnity payment) and the ALAE (al-

located loss adjustment expenses), was processed by several authors as, for instance,

[Frees and Valdez(1998)], [Klugman and Parsa(1999)] and [Denuit et al.(2006)], who were

interested in modeling the joint distribution of the couple loss-ALAE. In our study, we

focus on the �rst variable consisting of 1500 observations, of which 34 are censored. The

censoring variable is de�ned by the values of the policy limit pertaining to each loss. The

censorship occurs when the size of the loss exceeds this limit. In insurance, a policy limit,

speci�c to each contract, is upper-bounded by a maximum claim amount that a company

could pay (see [Denuit et al.(2006)]). A summary of the elementary statistics related to

the loss can be found in Table 4 of [Frees and Valdez(1998)]. The heavy-tailed nature of

the data is checked through two empirical criteria. First, we compute the sample variance
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t 0:90 0:95
CTE (t) 2:832 3:498

n [CTE (t) bias rmse [CTE (t) bias rmse
p = 0:50

1000 2:946 0:113 0:610 3:765 0:267 1:141
1500 2:922 0:090 0:459 3:664 0:166 0:747
2000 2:917 0:085 0:356 3:638 0:140 0:596

p = 0:70
1000 2:847 0:015 0:291 3:540 0:042 0:523
1500 2:846 0:014 0:245 3:532 0:034 0:408
2000 2:845 0:012 0:204 3:527 0:029 0:346

p = 0:90
1000 2:840 0:008 0:224 3:513 0:015 0:367
1500 2:838 0:006 0:175 3:512 0:014 0:294
2000 2:833 0:001 0:146 3:504 0:006 0:261

Table 4.3: CTE estimates based on 1000 right censored samples of size n from scenario 2
with 
1 = 0:3

of the available (uncensored) loss values and we �nd an extremely large value (in billions).

Second, we plot the (ordered) claim amount and their boxplot in Figure 4.6 which clearly

shows the existence of extremes in the dataset.

By applying the adaptive algorithm of [Reiss and Thomas(2007)], we �nd the optimal

sample fraction kopt = 52: The corresponding estimates of 
1 and p are b
(c)1 = 0:63 and

bp = 0:77: The VaR�s of levels 0:90 and 0:95 are respectively equal to 100000 and 200000
US$ and the means of the losses which exceed these amounts are estimated to be 349522

and 562686 US$ respectively.

Aids survival time

The data, known as Australian Aids data, are provided by Dr P.J. Solomon and the Aus-

tralian National Centre in HIV Epidemiology and Clinical Research. The data�le is avail-

able under the name "Aids" in the package MASS of the statistical softwareR. They consist

of medical observations on 2843 patients (among whom 2754 are male), diagnosed with
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t 0:90 0:95
CTE (t) 2:834 3:500

n [CTE (t) bias rmse [CTE (t) bias rmse
p = 0:50

1000 2:982 0:149 0:591 3:784 0:284 1:053
1500 2:951 0:118 0:469 3:723 0:223 0:865
2000 2:947 0:114 0:409 3:683 0:183 0:638

p = 0:70
1000 2:862 0:029 0:297 3:559 0:059 0:577
1500 2:854 0:021 0:262 3:556 0:055 0:451
2000 2:853 0:019 0:204 3:536 0:036 0:372

p = 0:90
1000 2:839 0:006 0:218 3:488 0:012 0:371
1500 2:837 0:003 0:165 3:512 0:012 0:294
2000 2:832 0:002 0:147 3:510 0:010 0:255

Table 4.4: CTE estimates based on 1000 right censored samples of size n from scenario 3
with 
1 = 0:3

Aids in Australia before July 1st; 1991: Of these patients, 1761 have died, while the remain-

ing survival times are right-censored. In this study, we only consider male patients due to

the small number of women (89 patients). In the literature, these data were analyzed with

di¤erent prospects by several authors like, for instance, [Ripley and Solomon(1994)] and

[Venables and Ripley(2002)] (pages 379-385), [Einmahl et al.(2008)], [Ndao et al.(2014)]

and [Stup�er(2016)]. Recently, [Goegebeur et al.(2019)] investigated and described the

conditional distribution using survival data of AIDS patients. To check the heavy-tailed

nature of the data, we proceed as we did for the insurance loss dataset. On the one hand,

the value of the sample variance is around 130000; which is very high and on the other

hand, Figure 4.7 clearly indicates that extreme survival times do exist among the data.

Analogous steps as those in the insurance example above lead to kopt = 211; b
(c)1 = 0:75

and bp = 0:35: The respective VaR�s (i.e., maximum survival time) of levels 0:90 and 0:95

are estimated to be approximately 5 and 7 years and the estimates of the mean of survival

times exceeding these thresholds are about 18 and 31 years repectively.
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t 0:90 0:95
CTE (t) 2:832 3:498

n [CTE (t) bias rmse [CTE (t) bias rmse
p = 0:50

1000 2:933 0:101 0:544 3:751 0:253 1:036
1500 2:919 0:086 0:405 3:673 0:174 0:849
2000 2:893 0:061 0:341 3:632 0:133 0:638

p = 0:70
1000 2:849 0:017 0:277 3:526 0:028 0:513
1500 2:847 0:014 0:240 3:523 0:025 0:431
2000 2:841 0:009 0:199 3:515 0:017 0:356

p = 0:90
1000 2:839 0:006 0:174 3:517 0:018 0:313
1500 2:829 0:003 0:143 3:512 0:014 0:269
2000 2:833 0:001 0:126 3:507 0:009 0:233

Table 4.5: CTE estimates based on 1000 right censored samples of size n from scenario 4
with 
1 = 0:3

t 0:90 0:95
CTE (t) 6:321 8:943

n [CTE (t) bias rmse [CTE (t) bias rmse
p = 0:50

1000 7:192 0:871 5:118 10:518 1:575 8:956
1500 6:756 0:435 3:190 10:133 1:190 6:924
2000 6:650 0:329 1:837 9:614 0:671 3:854

p = 0:70
1000 6:555 0:233 2:172 9:426 0:483 3:695
1500 6:425 0:104 1:698 9:140 0:197 2:591
2000 6:416 0:094 1:108 9:045 0:101 1:899

p = 0:90
1000 6:395 0:074 1:628 9:058 0:115 2:033
1500 6:360 0:039 1:169 9:024 0:081 1:536
2000 6:338 0:017 0:667 9:005 0:062 1:301

Table 4.6: CTE estimates based on 1000 right censored samples of size n from scenario 1
with 
1 = 0:5
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t 0:90 0:95
CTE (t) 6:271 8:907

n [CTE (t) bias rmse [CTE (t) bias rmse
p = 0:50

1000 7:277 1:006 4:067 10:555 1:648 9:807
1500 7:020 0:749 3:324 10:528 1:621 7:041
2000 6:996 0:725 2:346 10:063 1:156 3:888

p = 0:70
1000 6:590 0:319 2:391 9:608 0:701 5:003
1500 6:513 0:242 1:365 9:238 0:332 2:779
2000 6:488 0:217 1:114 9:306 0:399 2:151

p = 0:90
1000 6:386 0:115 1:267 9:121 0:214 2:283
1500 6:366 0:095 0:976 9:117 0:210 1:867
2000 6:354 0:083 0:785 9:028 0:121 1:458

Table 4.7: CTE estimates based on 1000 right censored samples of size n from scenario 2
with 
1 = 0:5

t 0:90 0:95
CTE (t) 6:321 8:943

n [CTE (t) bias rmse [CTE (t) bias rmse
p = 0:50

1000 6:985 0:663 5:743 10:162 1:219 8:385
1500 9:149 0:206 4:032 9:743 0:800 5:393
2000 6:518 0:197 2:763 9:546 0:603 3:797

p = 0:70
1000 6:538 0:217 1:749 9:285 0:341 3:334
1500 6:498 0:176 1:599 9:165 0:222 2:374
2000 6:409 0:088 1:100 9:071 0:128 1:857

p = 0:90
1000 6:403 0:082 1:113 9:142 0:198 2:132
1500 6:383 0:062 0:888 9:051 0:108 1:856
2000 6:336 0:014 0:759 9:017 0:074 1:391

Table 4.8: CTE estimates based on 1000 right censored samples of size n from scenario 3
with 
1 = 0:5
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t 0:90 0:95
CTE (t) 6:271 8:907

n [CTE (t) bias rmse [CTE (t) bias rmse
p = 0:50

1000 7:616 1:345 5:233 10:854 1:948 9:542
1500 6:977 0:706 2:629 10:631 1:724 8:542
2000 6:960 0:689 2:337 10:234 1:328 4:177

p = 0:70
1000 6:683 0:413 2:028 9:711 0:805 4:529
1500 6:516 0:245 1:369 9:371 0:465 2:705
2000 6:472 0:201 1:079 9:293 0:386 2:106

p = 0:90
1000 6:362 0:091 1:125 9:093 0:186 1:940
1500 6:337 0:066 0:823 9:085 0:178 1:569
2000 6:303 0:032 0:689 9:057 0:150 1:364

Table 4.9: CTE estimates based on 1000 right censored samples of size n from scenario 4
with 
1 = 0:5


1 0:6 0:8
CTE 9:951 31:548

n [CTE bias rmse [CTE bias rmse
1000 10:502 0:550 5:633 22:791 8:756 244:359
1500 10:289 0:338 2:915 37:652 6:105 142:360
2000 10:230 0:279 2:087 34:807 3:259 136:389

Table 4.10: CTE estimates based on 1000 right censored samples of size n from scenario
3 with p=0.90 and t=0.90
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t 0:90
CTE (t) 6:321

n [CTE (t) bias rmse ]CTE (t) bias rmse
p = 0:50

1000 6:878 0:557 4:941 3:879 2:442 3:059
1500 6:806 0:485 3:127 4:121 2:201 2:700
2000 6:791 0:470 2:084 4:237 2:084 2:510

p = 0:70
1000 6:568 0:246 1:695 5:509 0:812 1:840
1500 6:483 0:161 1:302 5:648 0:674 1:831
2000 6:443 0:122 1:029 5:699 0:622 1:182

p = 0:90
1000 6:428 0:106 1:089 6:217 0:105 1:485
1500 6:386 0:064 0:864 6:221 0:101 1:129
2000 6:367 0:045 0:674 6:22 0:101 0:885

Table 4.11: Comparison results between [CTE (t) and ]CTE (t) based on 1000 right cen-
sored samples of size n from scenario 1 with 
1 = 0:5

t 0:95
CTE (t) 8:943

n [CTE (t) bias rmse ]CTE (t) bias rmse
p = 0:50

1000 10:483 1:540 8:512 3:955 4:988 5:753
1500 10:086 1:143 6:206 4:364 4:580 5:346
2000 9:788 0:845 4:472 4:724 4:219 4:957

p = 0:70
1000 9:471 0:528 4:343 7:090 1:853 3:116
1500 9:284 0:341 2:231 7:494 1:449 2:559
2000 9:075 0:132 1:924 7:515 1:428 2:349

p = 0:90
1000 9:169 0:225 2:095 8:627 0:316 2:105
1500 9:056 0:113 1:561 8:641 0:302 1:686
2000 9:023 0:080 1:360 8:674 0:269 1:633

Table 4.12: Comparison results between [CTE (t) and ]CTE (t) based on 1000 right cen-
sored samples of size n from scenario 1 with 
1 = 0:5
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Figure 4.2: Plots of CTE estimator (based on 100 samples of size 2000) for 
1 = 0:3
and t = 0:9 as functions of the number k of upper order statistics. The horizontal line
represents the true value of CTE
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Figure 4.3: Plots of CTE estimator (based on 100 samples of size 2000) for 
1 = 0:5
and t = 0:9 as functions of the number k of upper order statistics. The horizontal line
represents the true value of CTE
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Figure 4.4: Plots of CTE estimator (based on 100 samples of size 2000) for 
1 = 0:6
and t = 0:9 as functions of the number k of upper order statistics. The horizontal line
represents the true value of CTE
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Figure 4.5: Plots of CTE estimator (based on 100 samples of size 2000) for 
1 = 0:8
and t = 0:9 as functions of the number k of upper order statistics. The horizontal line
represents the true value of CTE
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Figure 4.6: Plots of the ordered amounts (left) and boxplot (right) of insurance losses
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Chapter 5

Asymptotic distribution of the CTE

estimator

This chapter examines the asymptotic normality of our proposed CTE estimator, as

presented in (4:10), in the case of a randomly censored heavy-tailed distribution, and

provides a complete proof of this result.

We suppose both F and G are heavy-tailed or equivalently that F and G are regularly

varying at in�nity. That is, there are two tail indices 
1 > 0 and 
2 > 0; such that for any

x > 0; we have

lim
v!1

F (vx)

F (v)
= x�1=
1 and lim

v!1

G(vx)

G(v)
= x�1=
2 : (5.1)

Let H denote the df of T; then the independence of X and C yields that the survival

function of H is equal to the product of the tails of F and G: That is, we have H = F �G;

which yields that H is also heavy-tailed, with extreme value index 
 := 
1
2= (
1 + 
2) :

We also assume that both F and G belong to the Hall�s models (see [Hall(1982)]). These

models are de�ned, as x !1; by

F (x) = l1x
�1=
1

�
1 +m1x

�1=
1 (1 + o (1))
�
;

G (x) = l2x
�1=
2

�
1 +m2x

�2=
2 (1 + o (1))
�
;

(5.2)
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where mi 2 R; li > 0 and �i < 0; i = 1; 2: The latter are called second-order parameters

of df�s F and G respectively. From (5:2) ; we infer that H belongs to Hall�s class as well.

That is

H (x) = lx�1=

�
1 +mx�=
 (1 + o (1))

�
; as x!1; (5.3)

where l := l1l2; � := min (�1; �2) and

m := m11 f�1 < �2g+m21 f�1 > �2g+ (m1 +m2)1 f�1 = �2g :

In the sequel, we use the representation K (x) := K (1)�K (x) ; x > 0; for any function

K:

Before we present our main result, it is important to note that the asymptotic normality of

[CTE (t) is established under the same conditions as those outlined by [Soltane et al.(2015)].

Indeed, in our context, since CTE (t) may be rewritten as
R1
Q(t)

xdF (x) =(1 � t); the in-

tegrals in (4:7) become of the form

I1 :=
1

1� t

Z 1
Q(t)

x2�2 (x) dH(1) (x) and I2 :=
1

1� t

Z 1
Q(t)

x

�Z x

0

dG (z)

H (z)G (z)

�1=2
dF (x) :

(5.4)

In Lemma (5:3:1) ; we will show that, in the case of Pareto-like distributions, the contrary

of (4:7) ; i.e. I1 or I2 are in�nite, is also satis�ed under the condition 
2=(1+2
2) < 
1 < 1:

5.1 Main result

Weak approximations of EVT based statistics are achieved in the second-order framework.

Thus, it seems quite natural to suppose that df�s F and G satisfy the well-known second-

order condition of regular variation, which specify the convergence rates in (5:1) : That is,

we assume that there exist two constants �j � 0 and two functions Aj; j = 1; 2; tending
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to zero and not changing sign near in�nity, such that for any x > 0; we have

lim
v!1

F (vx)=F (v)� x�1=
1
A1 (v)

= x�1=
1
x�1=
1 � 1

1�1

; (5.5)

and

lim
v!1

G(vx)=G(v)� x�1=
2
A2 (v)

= x�1=
2
x�2=
2 � 1

2�2

; (5.6)

where Ai (v) = mi
i�iv
�i=
i ; i = 1; 2:

Theorem 5.1.1 Assume that the second-order conditions of regular variation (5:5) and

(5:6) hold, with 0 < 
1 < 
2 and 
2=(1 + 2
2) < 
1 < 1: Let k = kn be an integer

sequence satisfying (2:7) and h = hn := H�1(1 � k=n) be such that
p
kA1 (h) ! � 2 R

and
p
khF (h)!1; as n!1: Then, for any �xed t 2 (0; 1); we have

p
k
�
[CTE (t)� CTE (t)

�
hF (h)

(1� t) D! N
�
�; �2

�
; as n!1;

where

� = � (�; p; 
1; �1) :=
�

(1� 
1)

�
1

(1� 
1) (1� p�1)
+

1

(
1 + �1 � 1)

�
; (5.7)

and

�2 = �2 (p; 
1) :=
2p
21 (1� 3p+ 3p2 + 2p
1 � 4p2
1 + p2
21)
(1� 
1)2 (1� p+ p
1) (1� 2p+ 2p
1)

(5.8)

+
2
21 (1� p)
(1� 
1)3

+

21

p (1� 
1)4
:

Remark 5.1.1 The assumptions of Theorem 5.1.1 are justi�ed in this remark. The con-

dition
p
kA1 (h) ! � is a standard requirement of extreme value theory needed in the

computation of the asymptotic bias. The hypothesis
p
khF (h)!1 makes the rest term

OP (1=k) ; in the asymptotic representation (5:15) of Kaplan-Meier estimator, negligible.

The assumption 
1 < 
2 is required so that the term (5:33) ; in the �rst integral in (5:14) ;

78



Chapter 5. Asymptotic distribution of the CTE estimator

be independent of the level t: This will be useful in the computation of the asymptotic vari-

ance �2: In terms of the censorship proportion, this hypothesis is equivalent to p > 1=2:

Remark 5.1.2 Note that if � = 0; then the limiting distribution in Theorem 5.1.1 is

centered.

Remark 5.1.3 In practice, � and �2 are computed by replacing the parameters by their

respective estimates in formulas (5:7) and (5:8) :

5.2 Proof

First, we de�ne, for j = 0; 1; the following very crucial subdistribution functions:

H(j) (v) := P (T � v; � = j) ; v � 0; (5.9)

and their sample counterparts

H(j)
n (v) :=

1

n

nX
i=1

1 fTi � v; �i = jg : (5.10)

Then, we have H (v) = H(0) (v) + H(1) (v) and H (v) = H
(0)
(v) + H

(1)
(v) : The same

equalities hold empirically. For i = 1; :::; n; let

Ui := �iH
(1) (Ti) + (1� �i)

�
� +H(0) (Ti)

�
; with � := H(1) (1) ;

be iid (0; 1)-uniform r.v�s (see [Einmahl and Koning(1992)]). The uniform empirical df

and the uniform empirical process based on U1; :::; Un are respectively denoted by

Ln (s) : =
1

n

nX
i=1

1 fUi � sg and �n (s) :=
p
n (Ln (s)� s) ; 0 � s � 1:
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The empirical processes

�(j)n (v) :=
p
n
�
H
(j)

n (v)�H(j)
(v)
�
; j = 0; 1; (5.11)

may be represented, almost surely, by a uniform empirical process. Indeed,

[Deheuvels and Einmahl(1996)] state that almost surely

H(0)
n (v) = Ln

�
H(0) (v) + �

�
� Ln (�) ; for 0 < H(0) (v) < 1� �;

and

H(1)
n (v) = Ln

�
H(1) (v)

�
; for 0 < H(1) (v) < �:

Then, it readily checked that, almost surely, we have

�(1)n (v) = �n (�)� �n
�
� �H(1)

(v)
�
; for 0 < H

(1)
(v) < �;

and

�(0)n (v) = ��n
�
1�H(0)

(v)
�
; for 0 < H

(0)
(v) < 1� �:

Our proof highly relies on the famous Gaussian approximation due to [Csörg½o et al.(1986)]

in Corollary 2:1: There exists a sequence of Brownian bridges fBn (s) ; 0 � s � 1g on the

probability space (
;F ; P ), such that, for every 0 � ! < 1=4;

sup
1=n�s�1

n! j�n (1� s)�Bn (1� s)j
s1=2�!

= OP (1) : (5.12)

For the increments �n (�)��n (� � s) ; we will need an approximation of the same type as

(5:12). Following analogous arguments as those used in the proofs of assertions (2:2) and

(2:8) of Theorems 2:1 and 2:2 respectively in [Csörg½o et al.(1986)], we may show that, for
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every 0 < � < 1 and 0 � ! < 1=4; we have

sup
1=n�s��

n! j[�n (�)� �n (� � s)]� [Bn (�)�Bn (� � s)]j
s1=2�!

= OP (1) : (5.13)

The Gaussian processes

Bn (v) := Bn (�)�Bn
�
� �H(1)

(v)
�
; for 0 < H

(1)
(v) < �;

and

B�n (v) := Bn (v)�Bn
�
1�H(0)

(v)
�
; for 0 < H

(0)
(v) < 1� �;

will be critical to our requirements.

The actual starting point of the proof is to rewrite the estimator [CTE (t) into another

(equivalent) form. A change of variables and an integration by parts in (4:8) ; yield

(1� t)CTE (t) = (1� t)Q(t) +
Z 1
Q(t)

F (x)dx;

which we decompose the sum of

Ln;1(t) := (1� t)Q(t) +
Z h

Q(t)

F (x)dx and Ln;2 :=
Z 1
h

F (x)dx:

By a change of variables in Ln;2; that does not depend on t; we have

Ln;2 = hF (h)

Z 1
1

F (hx)

F (h)
dx;

which, according to the well-known Karamata theorem (see, for instance, page 363 in

[de Haan and Ferreira(2006)]), is equivalent, for 0 < 
1 < 1; to hF (h)
1= (1� 
1), as

n!1: The di¤erence between the CTE and its estimator is decomposed as

(1� t)
�
[CTE (t)� CTE (t)

�
=
�
L̂n;1(t)� Ln;1(t)

�
+
�
L̂n;2 � Ln;2

�
;
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where

L̂n;1(t) := (1� t)Qn(t) +
Z Tn�k:n

Qn(t)

F n(x)dx and L̂n;2 :=

̂
(c)
1

1� 
̂(c)1
Tn�k:nF n(Tn�k:n):

It is easy to check that

L̂n;1(t)� Ln;1(t) =
Z Tn�k:n

Qn(t)

�
F n(x)� F (x)

�
dx�

Z h

Tn�k:n

F (x)dx (5.14)

+

Z Q(t)

Qn(t)

F (x)dx+ (1� t) (Qn(t)�Q(t)) :

By Proposition 5 together with equation (4:9) in [Csörg½o(1996)], we have, for any real

number x � Tn�k:n;

F n(x)� F (x)
F (x)

=

Z x

0

d
�
H
(1)

n (v)�H(1)
(v)
�

H (v)

�
Z x

0

Hn (v)�H (v)
H
2
(v)

dH
(1)
(v) +OP

�
1
k

�
;

(5.15)

which, after integrating the �rst integral by parts, becomes

F n(x)� F (x)
F (x)

=
H
(1)

n (x)�H(1)
(x)

H (x)
�
�
H
(1)

n (0)�H(1)
(0)
�

+

Z x

0

H
(1)

n (v)�H(1)
(v)

H
2
(v)

dH (v)�
Z x

0

Hn (v)�H (v)
H
2
(v)

dH
(1)
(v)

+OP

�
1

k

�
:

By combining (5:9) and (5:10) with the de�nition (5:11) of the processes �(j)n (v) ; we get

p
n
�
Hn (v)�H (v)

�
= �(1)n (v) + �(0)n (v) :

On the other hand, by the classical central limit theorem, we have
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H
(1)

n (0)�H(1)
(0) = OP

�
n�1=2

�
:

Therefore, we have

F n(x)� F (x)
F (x)

=
1p
n

�
(1)
n (x)

H (x)
+

1p
n

Z x

0

�
(1)
n (v)

H
2
(v)

dH (v)

� 1p
n

Z x

0

�
(1)
n (v) + �

(0)
n (v)

H
2
(v)

dH
(1)
(v)

+OP

�
1

k

�
+OP

�
n�1=2

�
:

Now, we consider the following decomposition

p
k
�
L̂n;1(t)� Ln;1(t)

�
hF (h)

=
7X
i=1

Jn;i;

with

Jn;1 := dn

Z Tn�k:n

Qn(t)

�
(1)
n (x)

H (x)
F (x)dx;

Jn;2 := dn

Z Tn�k:n

Qn(t)

(Z x

0

�
(1)
n (v)

H
2
(v)

dH (v)

)
F (x)dx;

Jn;3 := �dn
Z Tn�k:n

Qn(t)

(Z x

0

�
(1)
n (v) + �

(0)
n (v)

H
2
(v)

dH
(1)
(v)

)
F (x)dx;

Jn;4 := �dn
p
n

Z h

Tn�k:n

F (x)dx;

Jn;5 := dn
p
n

Z Q(t)

Qn(t)

F (x)dx;

Jn;6 := dn
p
n (1� t) (Qn(t)�Q(t)) ;

and

Jn;7 :=
�
OP
�p
n=k

�
+OP (1)

�
dn

Z Tn�k:n

Qn(t)

F (x)dx;
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where dn :=
p
k=n=

�
hF (h)

�
: For the last term Jn;7; we check that it tends to zero in

probability. To this end, we write it into the sum of

J
(1)
n;7 := OP

�
1p

khF (h)

�Z Tn�k:n

Qn(t)

F (x)dx and J (2)n;7 := OP (dn)
Z Tn�k:n

Qn(t)

F (x)dx;

We have
R Tn�k:n
Qn(t)

F (x)dx < E [X] and by the assumption
p
khF (h) ! 1; we obtain

J
(1)
n;7 = oP (1) ; as n!1: On the other hand, from Lemma 3 in [Hua and Joe(2011)], the

second-order conditions (5:5)-(5:6) yield that, for some positive constants v1 and v2; we

have

F (x) � v1x�1=
1 and G(x) � v2x�1=
2 ; as x!1: (5.16)

Hence H(x) � v1v2x�1=
; as x ! 1; and therefore H�1 (1� s) � (v1v2)
 s�
; as s ! 0:

It follows that h � (v1v2)
 (k=n)�
 ; as n!1: Thus

dn � v�11 (v1v2)

+
=
1 (k=n)1=2+
�
=
1 ; as n!1: (5.17)

Since 1=2 + 
 � 
=
1 > 0 (by assumption we have 
2=(1 + 2
2) < 
1 < 1); then

dn ! 0; as n!1: (5.18)

and therefore J (2)n;7 = oP (1) ; as n!1: Consequently, we have

Jn;7 = oP (1) ; as n!1: (5.19)

Now, we examine the �rst term Jn;1: We start by applying the Gaussian approximation

(5:13) ; we get, for a �xed real number 0 � ! < 1=4;
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Jn;1 = dn

Z Tn�k:n

Qn(t)

Bn (x)

H (x)
F (x)dx

+OP (n
�!) dn

Z Tn�k:n

Qn(t)

h
H
(1)
(x)
i1=2�!

H (x)
F (x)dx;

(5.20)

provided that 1=n � H
(1)
(x) < �: Indeed, we have Tn�k:n=h

P! 1; as n ! 1 (see, for

instance, Theorem 2.1 in [Brahimi et al.(2015a)]), that is, for a �xed 0 < � < 1; the prob-

ability of the set Sn (�) := fjTn�k:n=h� 1j � �g is close to 1; for su¢ ciently large n: Since

H
(1)
is a non-increasing function, then, in Sn (�) ; we have H

(1)
((1 + �)h) � H(1)

(Tn�k:n) :

From Lemma 4:1 in [Brahimi et al.(2015a)], we infer that H
(1)
(x) � pH (x) ; as x ! 1;

therefore H
(1)
((1 + �)h) � pH ((1 + �)h) ; as n ! 1: Since H is regularly varying at

in�nity with index �1=
 and H (h) = k=n; thus H
(1)
((1 + �)h) � p (1 + �)�1=
 k=n; as

n ! 1: Hence, we have H(1)
((1 + �)h) � 1=n; for all large n; i.e., H

(1)
(Tn�k:n) � 1=n:

On the other hand, we have Qn (t) > 0; for any �xed t 2 (0; 1) ; then we get

H
(1)
(Qn (t)) < H

(1)
(0) = H(1) (1) = �:

Consequently, we have 1=n � H(1)
(x) < �; for any Qn (t) � x � Tn�k:n and all large n:

Next, we show that the second part of (5:20) tends to zero in probability. To this end, we

have, for 0 < t < 1;

Z Tn�k:n

Qn(t)

h
H
(1)
(x)
i1=2�!

H (x)
F (x)dx �

Z Tn�k:n

0

h
H
(1)
(x)
i1=2�!

H (x)
F (x)dx:

Note that H
(1) � H; then

Z Tn�k:n

0

h
H
(1)
(x)
i1=2�!

H (x)
F (x)dx �

Z Tn�k:n

0

F (x)�
H (x)

�1=2+! dx;
which, in the set Sn (�) ; is not greater than

R (1+�)h
0

�
F (x)=

�
H (x)

�1=2+!�
dx:
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From Lemma 5.3.3, we conclude that

n�!dn

Z Tn�k:n

Qn(t)

h
H
(1)
(x)
i1=2�!

H (x)
F (x)dx! 0; as n!1;

for any �xed 0 � ! < 1=4: Hence, we may write that

Jn;1 = dn

Z Tn�k:n

Qn(t)

Bn (x)

H (x)
F (x)dx+ oP (1) ; as n!1:

By Lemma 5.3.2, we have

Jn;1 = dn

Z Tn�k:n

0

Bn (x)

H (x)
F (x)dx+ oP (1) ; as n!1;

which, according to [Soltane et al.(2015)] (pages 15-16); may be rewritten as

Jn;1 = dn

Z h

0

Bn (x)

H (x)
F (x)dx+ oP (1) ; as n!1: (5.21)

The same arguments as the above lead to

Jn;2 = dn

Z h

0

"Z x

0

Bn (v)

H
2
(v)
dH (v)

#
F (x)dx+ oP (1) ; (5.22)

and

Jn;3 = �dn
Z h

0

"Z x

0

B�n (v)

H
2
(v)
dH

(1)
(v)

#
F (x)dx+ oP (1) : (5.23)

For the term Jn;4; equation (4:18) in [Soltane et al.(2015)] says that

Jn;4 = 


r
n

k
B�n (h) + oP (1) : (5.24)
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Now, we treat the �fth term Jn;5; which, by a change of variables, becomes

Jn;5 = dn
p
nQ (t)F (Q (t))

Z 1

Qn(t)=Q(t)

F (xQ (t))

F (Q (t))
dx:

This may be split into the sum of

J
(1)
n;5 := dn

p
nQ (t)F (Q (t))

Z 1

Qn(t)=Q(t)

�
F (xQ (t))

F (Q (t))
� x�1=
1

�
dx;

and

J
(2)
n;5 := dn

p
nQ (t)F (Q (t))

Z 1

Qn(t)=Q(t)

x�1=
1dx:

By using the uniform inequality relative to regularly varying functions to the second-

order, given in Proposition 4 in [Hua and Joe(2011)], we have, for all su¢ ciently large n

and 0 < � < 1;

����F (xQ (t))=F (Q (t))� x�1=
1A�1 (Q (t))
� x�1=
1 x

�1=
1 � 1

1�1

���� � �x�1=
1+�; x � 1; (5.25)

where A�1 (v) � A1 (v) ; as v !1: We apply the inequality (5:25) to J (1)n;5; to get

J
(1)
n;5 = dn

p
nQ (t)F (Q (t))A�1 (Q (t))

Z 1

Qn(t)=Q(t)

x�1=
1
x�1=
1 � 1

1�1

dx+ oP (1) ;

which, after integration, becomes

J
(1)
n;5 = dn

p
nQ (t)F (Q (t))A�1 (Q (t)) f� (1)� � (Qn (t) =Q (t))g+ oP (1) ;

where

� (s) :=

�
�1 + 
1 + s

�1=
1 � 
1s�1=
1 � 1
�
s(
1�1)=
1

�1 (1� 
1) (
1 + �1 � 1)
;
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is clearly a continuously di¤erentiable function. Then by using Taylor�s expansion, we get

J
(1)
n;5 = �dnF (Q (t))A�1 (Q (t))�0 (�n (t))

p
n (Qn (t)�Q (t)) + oP (1) ;

where �n (t) lies between Qn (t) =Q (t) and 1: Lemma 3:3 in [Tse(2005)] says that

sup
0<t0�t�t1<1

p
n jQn (t)�Q (t)j = O

�p
log log n

�
; (5.26)

with probability one. On the other hand, both F (Q (t)) and �0 (�n (t)) are bounded, for

any t 2 (0; 1) ; and A�1 (Q (t)) � A1 (Q (t)) = O (1) : Then, we can write that

lim
n!1

sup
0<t0�t�t1<1

���J (1)n;5��� = lim
n!1

���dnO �plog log n���� ;
By using Lemma 5.3.4, we end up with J (1)n;5 = oP (1) ; as n!1:

For the term J
(2)
n;5; we apply Taylor�s expansion to the function s !

R s
0
x�1=
1dx on the

interval (Qn (t) =Q (t) ; 1) : From (5:26) ; we deduce that Qn (t) =Q (t)
P! 1; as n!1; and

we get

J
(2)
n;5 = �dn (1 + oP (1))F (Q (t))

p
n (Qn (t)�Q (t)) :

By similar arguments to those used for J (1)n;5; we obtain J
(2)
n;5 = oP (1) ; as n!1: Therefore,

we have

Jn;5 = oP (1) ; as n!1: (5.27)

For the term Jn;6; we note that (1� t) = F (Q (t)) ; then we have

Jn;6 = dnF (Q (t))
p
n (Qn (t)�Q (t)) ;

which resembles to J (2)n;5: Hence

Jn;6 = oP (1) ; as n!1: (5.28)
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Finally, we gather the approximations (5:21) ; (5:22) ; (5:23) and (5:24) with the asymptotic

negligibilities (5:19) ; (5:27) and (5:28) ; to get

p
k
�
L̂n;1(t)� Ln;1(t)

�
hF (h)

= dn

Z h

0

Bn (x)

H (x)
F (x)dx

+ dn

Z h

0

"Z x

0

Bn (v)

H
2
(v)
dH (v)

#
F (x)dx

� dn
Z h

0

"Z x

0

B�n (v)

H
2
(v)
dH

(1)
(v)

#
F (x)dx

+ 


r
n

k
B�n (h) + oP (1) :

(5.29)

Next, recall that

L̂n;2 � Ln;2 =

̂
(c)
1

1� 
̂(c)1
Tn�k:nF n(Tn�k:n)� hF (h)

Z 1
1

F (hx)

F (h)
dx:

[Soltane et al.(2015)] showed (in pages 18; 19) that

p
k
�
L̂n;2 � Ln;2

�
hF (h)

=

1

1� 
1

r
k

n

(Z h

0

Bn (x)�
H (x)

�2dH (x)� Z h

0

B�n (x)�
H (x)

�2dH(1)
(x)

)
+

r
n

k

�
1

p (1� 
1)2
Z 1
1

x�1B�n (hx) dx

�
B�n (h)�

1

p (1� 
1)2
Bn (h)

�
+

p
kA1 (h)

(1� 
1)

�
1

(1� p�1) (1� 
1)
+

1

(
1 + � � 1)

�
+ oP (1) :

(5.30)

Finally, by adding (5:30) to (5:29) ; we get

p
k
�
[CTE (t)� CTE (t)

�
hF (h)

(1� t) =
5X
i=1

Mni +Rn + oP (1) ;
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where

Mn1 := dn

Z h

0

Bn (x)

H (x)
F (x)dx; Mn2 := dn

Z h

0

"Z x

0

Bn (v)

H
2
(v)
dH (v)

#
F (x)dx;

Mn3 := �dn
Z h

0

"Z x

0

B�n (v)

H
2
(v)
dH

(1)
(v)

#
F (x)dx;

Mn4 :=

1

(1� 
1)

r
k

n

(Z h

0

Bn (x)�
H (x)

�2dH (x)� Z h

0

B�n (x)�
H (x)

�2dH(1)
(x)

)
;

Mn5 :=

r
n

k

�
1

p (1� 
1)2
Z 1
1

x�1B�n (hx) dx�

1

p (1� 
1)2
Bn (h)

�
;

and

Rn :=

p
kA1 (h)

(1� 
1)

�
1

(1� p�1) (1� 
1)
+

1

(
1 + � � 1)

�
:

An integration by parts in the term Mn2 yields

Mn2 = dn

Z h

0

�Z 1
x

F (v)dv

�
Bn (x)

H
2
(x)
dH (x)

�
p
k=n

hF (h)

Z 1
h

F (x)dx

(Z h

0

Bn (x)�
H (x)

�2dH (x)
)
:

For the second term inMn2, we use equation (B:1:9) in TheoremB:1:5 in [de Haan and Ferreira(2006)],

page 363, to obtain
R1
h
F (x)dx=

�
hF (h)

�
! 
1= (1� 
1) : By applying the same technique

to Mn3; we get

p
k
�
[CTE (t)� CTE (t)

�
hF (h)

(1� t) =
4X
i=1

Nni +Rn + oP (1) ; (5.31)

where Nn1 and Nn4 are exactly the same as Mn1 and Mn5 respectively and

Nn2 := dn

Z h

0

�Z 1
x

F (v)dv

�
Bn (x)

H
2
(x)
dH (x) ;
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Nn3 := �dn
Z h

0

�Z 1
x

F (v)dv

�
B�n (x)

H
2
(x)
dH

(1)
(x) :

The decomposition (5:31) leads to the asymptotic normality of our estimator [CTE (t) : The

following formulas, obtained from the covariance structure presented in [Csörg½o(1996)],

page 2768;

8>>>><>>>>:
E [Bn (u)Bn (v)] = min

�
H
(1)
(u) ; H

(1)
(v)
�
�H(1)

(u)H
(1)
(v) ;

E [B�n (u)B
�
n (v)] = min

�
H (u) ; H (v)

�
�H (u)H (v) ;

E [Bn (u)B
�
n (v)] = min

�
H
(1)
(u) ; H

(1)
(v)
�
�H(1)

(u)H (v) :;

(5.32)

will be, in addition to L�Hôpital�s rule, very useful in the computation of the variance �2 of

the limiting distribution. We have H
(1)
(x) � pH (x) and, in view of (5:16), we can easily

show that k=n = H (h) � v1v2h
�1=
: After performing a straightforward calculation, we

�nd, as n!1;

E [Nn1]
2 ! 2p3
21

(1� p+ p
1) (1� 2p+ 2p
1)
;

E [Nn2]
2 ! 2p
21

(1� 
1)2 (1� p+ p
1) (1� 2p+ 2p
1)
;

E [Nn3]
2 ! 2p2
21

(1� 
1)2 (1� p+ p
1) (1� 2p+ 2p
1)
;

E [Nn4]
2 ! 
21

p (1� 
1)4
; 2E [Nn1Nn4]! � 2p
21 (1� p)

(1� 
1)2 (1� p+ p
1)
;

2E [Nn1Nn2]! � 4p2
21
(1� 
1) (1� p+ p
1) (1� 2p+ 2p
1)

;

2E [Nn1Nn3]!
4p3
21

(1� 
1) (1� p+ p
1) (1� 2p+ 2p
1)
;

2E [Nn2Nn3]! � 4p2
21
(1� 
1)2 (1� p+ p
1) (1� 2p+ 2p
1)

;

2E [Nn2Nn4]!
2
21 (1� p)

(1� 
1)3 (1� p+ p
1)
; 2E [Nn3Nn4]! 0:
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Consequently, we infer that
p
k
�
[CTE (t)� CTE (t)

�
(1� t) =

�
hF (x)

�
is asymptotically

Gaussian with bias � := limn!1Rn; which can be obtained easily since
p
kA1 (h) ! �;

and variance �2 := limn!1E
�P4

i=1Nni
�2
: This completes the proof. �

5.3 Appendix

Lemma 5.3.1 Assume that F and G satisfy the second order conditions (5:5) and (5:6)

with 
2=(1+ 2
2) < 
1 < 1: Then one of the integrals I1 or I2 de�ned in (5:4) are in�nite.

Proof 5.3.1 First, note that the constraint 
1 < 1 is due to the de�nition of the CTE.

For 0 < t < 1; we have

I1 �
Z 1
c

x2�2 (x) dH(1) (x) ;

where c is a large real number such that c > Q(t): Note that dH(1) (x) = G (x) dF (x) and

dH(0) (x) = F (x) dG (x) ; therefore

� (x) = exp

�Z x

0

dH(0) (z) =H (z)

�
=

1

G (x)
:

It follows that

I1 �
Z 1
c

x2
dF (x)

G (x)
;

which, by a change of variables, may be rewritten as

I1 � c2
F (c)

G (c)

Z 1
1

x2
G (c)

G (cx)

dF (cx)

F (c)
:

By applying Potter�s inequalities (2:4) to F and G; which are regularly varying at in�nity

with respective indices �1=
1 and �1=
2; we have, for any small � > 0 and x � 1

Z 1
1

x2
G (c)

G (cx)

dF (cx)

F (c)
� 1� �
1 + �

(�+ 1=
1)

Z 1
1

x(1=
2)�(1=
1)+1dx:
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Since 
2=(1+ 2
2) < 
1; then (1=
2)� (1=
1)+ 2 > 0 and
Z 1
1

x(1=
2)�(1=
1)+1dx is in�nite.

By noting that c2F (c) =G (c) > 0; we infer that, for any 0 < t < 1; I1 is in�nite when the

couple (
1; 
2) is in the range

R1 :=

�
0 < 
1; 
2 <1 :


2
1 + 2
2

< 
1

�
:

For the second integral I2; the same reason as for I1 and the fact that F (z) � 1 yield

I2 �
Z 1
c

x

 Z x

0

dG (z)

F (z)G
2
(z)

!1=2
dF (x) �

Z 1
c

x

�
1

G (x)
� 1
�1=2

dF (x) :

For c < x <1; we have
q
1�G (x) >

q
1�G (c): Hence, we end up with

I2 �
q
1�G (c)

Z 1
c

xq
G (x)

dF (x) ;

which is equal to

c
F (c)

q
1�G (c)q
G (c)

Z 1
1

x

s
G (c)

G (cx)

dF (cx)

F (c)
:

By similar arguments as those used to show that I1 = 1; we �nd that I2 = 1 when the

tail indices belong to

R2 :=

�
0 < 
1; 
2 <1 :

2
2
1 + 2
2

< 
1

�
:

Finally, the union of both ranges is

R1 [R2 =
�
0 < 
1; 
2 <1 :


2
1 + 2
2

< 
1

�
:
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Lemma 5.3.2 Suppose that 
1 < 
2; then we have

Jn;1 = dn

Z Tn�k:n

0

Bn (x)

H (x)
F (x)dx+ rn;

where dn = (k=n)
1=2 =

�
hF (h)

�
and

rn := �dn
Z Qn(t)

0

Bn (x)

H (x)
F (x)dx = oP (1) ; as n!1: (5.33)

Proof 5.3.2 Observe that

E

�����
Z Qn(t)

0

Bn (x)

H (x)
F (x)dx

����� �
Z Qn(t)

0

E jBn (x)j
F (x)

H (x)
dx

�
Z 1
0

E jBn (x)j
F (x)

H (x)
dx:

From the �rst result of (5:32) ; we have E jBn (v)j �
q
H
(1)
(v): Moreover, we have

H
(1)
(v) � H (v) ; hence

Z 1
0

E jBn (x)j
F (x)

H (x)
dx �

Z 1
0

F (x)q
H (x)

dx:

Let c > 0 be a large real number, then

Z 1
0

F (x)q
H (x)

dx >

Z 1
c

F (x)q
H (x)

dx:

By using (5:16) we may write

Z 1
c

F (x)q
H (x)

dx �
�
v1v
�1
2

�1=2 Z 1
c

x
1
2

�
� 1

1
+ 1

2

�
dx;

where the latter integral is in�nite when 
1 � 
2: Therefore, under the condition 
1 < 
2;

we �nd that
R Qn(t)
0

�
Bn (x) =H (x)

�
F (x)dx < 1: From (5:18) ; we have dn ! 0; then we
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get rn = oP (1) ; as n!1;

Lemma 5.3.3 Under the assumptions of Lemma 5.3.1, we have, for any �xed 0 < � < 1

and 0 � ! < 1=4;

n�!dn

Z (1+�)h

0

F (x)�
H (x)

�1=2+! dx! 0; as n!1;

where dn = (k=n)
1=2 =

�
hF (h)

�
:

Proof 5.3.3 Since H (h) = k=n; then we have

n�!dn

Z (1+�)h

0

F (x)�
H (x)

�1=2+! dx = k�!
�
H (h)

�1=2+!
hF (h)

Z (1+�)h

0

F (x)�
H (x)

�1=2+! dx:
Now k�! ! 0; thus it su¢ ces to show that the limit, as n!1; of

' (h) :=

�
H (h)

�1=2+!
hF (h)

Z (1+�)h

0

F (x)�
H (x)

�1=2+! dx;
is �nite. By using (5:16) ; we show that

hF (h)�
H (h)

�1=2+! � v3h1�1=
1+(1=2+!)=
; as n!1;

where v3 := v1 (v1v2)
�(1=2+!) ; for some positive constants v1 and v2: It follows that

' (h) �
Z (1+�)h

0

F (x)=
�
H (x)

�1=2+!
v3h1�1=
1+(1=2+!)=


dx; as n!1:

For the purpose of applying L�Hôpital�s rule, we �rst have to verify that both

Z (1+�)h

0

F (x)=
�
H (x)

�1=2+!
dx and h1�1=
1+(1=2+!)=
;
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tend to in�nity, as n!1: It is obvious that

Z (1+�)h

0

F (x)�
H (x)

�1=2+! dx � Z (1+�)h

h

F (x)�
H (x)

�1=2+! dx;
which, by a change of variables, equals h

R (1+�)
1

F (hx)=
�
H (hx)

�1=2+!
dx: Since h ! 1

and x! F (x)=
�
H (x)

�1=2+!
is regularly varying at in�nity with index (1=2 + !) =
�1=
1;

then, by using Potter�s inequalities (2:4) ; we get

Z (1+�)

1

F (hx)�
H (hx)

�1=2+! dx � (1� �)Z (1+�)

1

x
1=2+!


� 1

1
��
dx;

which is equal to

(1� �) (1 + �)
1=2+!


� 1

1
+1��

(1=2 + !) =
 � 1=
1 + 1� �
=: b (�) > 0:

Thus, we have
R (1+�)h
0

F (x)=
�
H (x)

�1=2+!
dx � b (�)h; which tends to 1; as n ! 1: As

for the quantity h1�1=
1+(1=2+!)=
; we note that the assumption 
2=(1 + 2
2) < 
1 implies

that 
�
=
1+1=2 > 0 and then 
�
=
1+1=2+! = (1=
) (1� 1=
1 + (1=2 + !)=
) > 0:

By taking into account that h!1; we infer that h1�1=
1+(1=2+!)=
 !1; as n!1: Now,

we are in position to apply L�Hôpital�s rule to compute limn!1 ' (h) : That is

lim
n!1

' (h) � 1

(1� 1=
1 + (1=2 + !)=
)
lim
n!1

F ((1 + �)h)=
�
H ((1 + �)h)

�1=2+!
v3h�1=
1+(1=2+!)=


:

Once again, by using (5:16) ; we write

F ((1 + �)h)�
H ((1 + �)h)

�1=2+! � v3 ((1 + �)h)�1=
1+(1=2+!)=
 ; as n!1:

It follows that

lim
n!1

F ((1 + �)h)=
�
H ((1 + �)h)

�1=2+!
v3h�1=
1+(1=2+!)=


= (1 + �)�1=
1+(1=2+!)=
 ;
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which is indeed �nite, as sought.

Lemma 5.3.4 Assume that 
2=(1 + 2
2) < 
1; then we have

dn
p
log log n = o (1) ; as n!1;

where dn = (k=n)
1=2 =

�
hF (h)

�
:

Proof 5.3.4 For the proof of this lemma, we will need a result that we state in the pro-

position below. First note that, for any � > 0; n��
p
log log n ! 0; as n ! 1: On the

other hand, from Proposition 5.3.1, the sample fraction k is such that k = [b2n�] ; where

0 < � := 2
`= (2
`+ 1) < 1: Then, from (5:17) ; we may write that, as n!1;

n�dn � v�11 (v1v2)

+
=
1 n� (b2n

�=n)1=2+
�
=
1

=
v�11 (v1v2)


+
=
1 b
(1=2+
�
=
1)
2

n(1��)(1=2+
�
=
1)��
;

for some positive constants v1 and v2: Let us take � such that 0 < � < (1� �) (1=2 + 
 � 
=
1) ;

thus n(1��)(1=2+
�
=
1)�� ! 1; as n ! 1; because 0 < � < 1 and 1=2 + 
 � 
=
1 > 0

(under the assumption 
2=(1 + 2
2) < 
1): Consequently, we get dn
p
log log n ! 0; as

n!1:

Proposition 5.3.1 Suppose that F and G belong Hall�s class. Then we have

k =
�
b2n

2
`=(2
`+1)
�
;

where ` := min (`1; `2) ; `i := ��i=
i > 0; i = 1; 2 and

b2 :=

�

1

2`b21p
2

�1=(2
`+1)
;

for some real constant b1 = b1 (l;m; 
; `; p) :
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Proof 5.3.5 We will follow the same approach that was applied to determine the optimal

number of upper order statistics used in the estimation of the shape parameter of complete

heavy-tailed data. The selection of this crucial number was extensively studied in EVT (see,

for instance, [Beirlant et al.(2004)], page 123 and page 77 in [de Haan and Ferreira(2006)]).

According to [Hall and Welsh(1985)], if X were not censored, then the optimal sample

fraction would have been k =
�
dn2�1=(2�1�1)

�
; where d = d(l1;m1; 
1; �1) > 0:

In the case of random censorship, [Beirlant et al.(2016)] showed the following Gaussian

approximation:

p
k
�

̂
(c)
1 � 
1

�
=

1p
p
N (0; 1) +AB

�

̂
(c)
1

�
; as n!1;

where AB
�

̂
(c)
1

�
= b1 (k=n)


` is the asymptotic bias. The corresponding asymptotic mean

squared error (amse) is equal to

amse (k) := E1

�

̂
(c)
1 � 
1

�2
=

21
pk
+ b21 (k=n)

2
` ;

where E1 stands for the asymptotic expectation. Our goal is to look for the k-value that

minimizes the quantity above. After di¤erentiation and calculation, we get the desired

result.

Lemma 5.3.5 Assume that Tn�k:n
P!1; as n!1: Then we have wn�k

P! 1; as n!1:

Proof 5.3.6 Note that wn�k = Fn (Tn�k:n) : We have, from assertion (1:7) of Theorem 2

in [Csörg½o(1996)],

sup
x�Tn�k:n

����Fn (x)� F (x)1� F (Tn�k:n)

���� = Op� 1p
k

�
;

which implies that

sup
x�Tn�k:n

����(1� Fn (x))� (1� F (x))1� F (Tn�k:n)

���� = op (1) ; as k !1:
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For x = Tn�k:n we have

����F n (Tn�k:n)� F (Tn�k:n)F (Tn�k:n)

���� = op (1) ; as k !1;

thus ����F n (Tn�k:n)F (Tn�k:n)
� 1
���� = op (1) ; as k !1:

This means that
F n (Tn�k:n)

F (Tn�k:n)

P! 1:

Consequently, we get

F n (Tn�k:n) = (1 + op (1))F (Tn�k:n) :

Since Tn�k:n
P!1; thus F (Tn�k:n)

P! 0; then we get F n (Tn�k:n)
P! 0: Therefore

Fn (Tn�k:n)
P! 1:
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Conclusion

In this thesis, we utilize extreme value theory along with survival analysis to estimate the

risk measure Conditional Tail Expectation (CTE), allowing for a comprehensive assess-

ment of extreme risks despite data scarcity and the presence of censoring.

To tackle the challenges presented by random right censored and heavy-tailed datasets in

estimating risk measures, we dedicate �ve chapters to proposing an asymptotic normal

estimator of CTE, which are appended to an introduction.

Our �ndings have signi�cant implications for real-world applications, particularly in in-

surance and healthcare, o¤ering valuable tools for managing extreme risks, safeguarding

against rare but devastating events, and improving decision-making processes. The use

of Value at Risk (VaR), CTE, and estimators like Hill and Weissman can help analyze

heavy-tailed data and estimate extreme losses across multiple �elds. Below, we outline

how these results can be applied within the contexts of insurance and healthcare, with the

potential for expansion to include �nance:

Managing extreme risks in insurance and healthcare: insurance companies and the health-

care sector face signi�cant challenges in estimating extreme losses or outcomes caused by

rare but impactful events, whether they are natural disasters or assessing survival prob-

abilities for patients su¤ering from severe illnesses such as AIDS. By using heavy-tailed

distributions and risk measures like VaR and CTE, along with statistical estimators such

as Hill and Weissman, it becomes possible to achieve accurate estimates of extreme risks

and outcomes. This enables better resource allocation strategies, more precise �nancial

reserves, and the development of e¤ective policies to address exceptional events.

Expanding to other �elds like �nance: the methodologies and results developed in this

study, though applied primarily in insurance and healthcare, can be extended to other

�elds such as �nance. In particular, risk assessment in �nancial markets, especially in

times of economic crises, could bene�t from these tools to predict extreme losses and

ensure better �nancial planning and risk management.

100



Conclusion

To further enhance our �ndings, future work could focus on studying bias reduction and

robustness in our proposed estimator, as well as implementing kernel methods for estim-

ation purposes.
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Appendix: Abbreviations and

notations

Abbreviations and notations that is largely con�ned to sections or chapters is mostly

excluded from the list below:

CTE conditional tail expectation

CTM or CTM� conditional tail moment

cdf cumulative distribution function

df or df�s distribution function(s)

D (H
) domain of attraction of H


EVT extreme value theory

E [X] mathematical expectation of X

exp exponential function

F distribution function

Fn empirical distribution functionbFn Kaplan-Meier estimator

F survival function, tail of F

F�1 inverse function of F

f probability density

g distorsion function

h hazard function
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Appendix: Abbreviations and notations

i.e. in other words (or which means)

iid independent and identically distributed

inf (A) in�mum of set A

kopt optimal number of upper order statistics

L slowly varying function

log logarithm function

max (A) (or min (A)) maximum of A (or minimum of A)

n integer number greater than 1

N (0; 1) standard normal law

N (�; �2) Gaussian distribution of parameters � 2 R and �2 > 0

P probability measure

PHP proportional hazards premium

Q or F quantile function, generalized inverse of F

Qn or F n empirical quantile function

R risk measure

R set of real numbers

R+ set of positive real numbers

rmse root mean squared error

r.v or r.v�s random variable(s)

RV (&) regularly varying at in�nity with the index &

Sn arithmetic sum

sup (A) supremum of set A

t security level

TV aR tail value at risk

U tail quantile function

Un empirical tail quantile function

V aR value at risk

V ar (X) mathematical variance of X
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X r.v de�ned on (
;F ; P ) ; population

Xn empirical mean

(X1; X2; :::; Xn) sample of size n from X

(X1:n; X2:n; :::; Xn:n) order statistics pertaining to (X1; X2; :::; Xn)

Xi:n i-th order statistic (i = 1; :::; n)

[x] integer part of real number x

j:j absolute value

1 fBg indicator function of set B

(
;F ; P ) probability space

� cumulative hazard function

�n Nelson-Aalen estimator


 extreme value index

D! convergence in distribution

d
= equality in distribution

P! convergence in probability

a:s�! convergence almost sure

:= equality in de�nition

� f (x) � g (x) as x! x0 : f (x) =g (x)! 1 as x! x0

o (:) f (x) = o (g (x)) as x! x0 : f (x) =g (x)! 0 as x! x0

O (:) f (x) = O (g (x)) as x! x0 : 9M > 0; jf (x) =g (x)j �M as x! x0

op (:) converges to 0 in probability

Op (:) be bounded in probability
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 ملخص
 تطبيق مفهومين أساسيين للإحصاء الرياضي، وهما تحليل البقاء ونظرية القيمهو  الأطروحة هذه من الهدف

 غير حوادث وقوع احتمال لقياس عنها غنى لا أدوات متطرفةال القيم نظرية توفر، لتقدير مقاييس المخاطر. متطرفةال

ِّرًا اقترحنا لقد. كاملة غير بيانات وجودحتى في  بدقة، المخاطر لتقدير أساسي مطلب وهو عادية،  أهم لأحد مُقد 

 اليمين عشوائيًا من والخاضعة للرقابة الثقيل الذيل ذات للبيانات الشرطي الذيل توقع التي تسمى المخاطر مقاييس

من البيانات تم تقييم إجراء التقدير هذا من خلال دراسة محاكاة وتطبيقه على مجموعتين ي. المقاربة طبيعتها وأنشأنا

.ر التأمين ووقت بقاء مرضى الإيدزخسائل حقيقيةال  

 كابلان مقدر هيل؛ مقدر الثقيلة؛ الذيول ؛متطرفةال القيم الشرطي؛ الذيل التقارب الطبيعي؛ توقع :الكلمات المفتاحية

للخطر. المعرضة القيمة المخاطر؛ مقاييس العشوائية؛ الرقابة ماير؛  

Abstract 
 The objective of this thesis is to apply two fundamental concepts of mathematical statistics, 

namely survival analysis and extreme value theory, to the estimation of risk measures. Extreme 

values theory provides indispensable tools for measuring the probability of unusual incidents 

occurring, which is a basic requirement for accurate risk estimation, even in the presence of 

incomplete data. We proposed an estimator of one of the most important measures of risk 

called the conditional tail expectation of data that are heavy-tailed and randomly censored to the 

right and we established its asymptotic normality. This estimation procedure is evaluated 

through a simulation study and applied to two real datasets of insurance losses and survival 

time of AIDS patients. 

Keywords : Asymptotic normality ; Conditional tail expectation ; Extreme values ; Heavy-tails ; 

Hill estimator ; Kaplan-Meier estimator ; Random censoring ; Risk measures ; Value at Risk. 

Résumé 

L'objectif de cette thèse est d'appliquer deux concepts fondamentaux de la statistique 

mathématique, à savoir l'analyse de survie et la théorie des valeurs extrêmes, à l'estimation des 

mesures de risque. La théorie des valeurs extrêmes fournit des outils indispensables pour 

mesurer la probabilité d'occurrence d'incidents inhabituels, ce qui est une exigence de base 

pour une estimation précise du risque, même en présence de données incomplètes. On a 

proposé un estimateur d'une des mesures de risque les plus importantes appelée espérance 

conditionnelle da la queue de données à queue lourde et censurées aléatoirement à droite et 

on a établi sa normalité asymptotique. Cette procédure d'estimation est évaluée par une étude 

de simulation et appliquée à deux ensembles de données réels de pertes d'assurance et de 

temps de survie des patients atteints du SIDA. 

Mots Clés : Normalité asymptotique ; Espérance conditionnelle de la queue ; Valeurs extrêmes 

; Queues lourdes ; Estimateur de Hill ; Estimateur de Kaplan-Meier ; Censure aléatoire ; 

Mesures de risque ; Valeur à risque. 
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