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Abstract 

Influenza is a pulmonary infection triggered by a virus that produces fever. Periodic epidemics can 

be fatal. Antiviral therapy shortens the length of sickness by around one day and will need to be 

explored especially for high-risk individuals. This work was focused on discovering and 

developing novel and effective anti-influenza medicines. Neuraminidase was chosen as the major 

target due to its critical activity and importance in the life of the influenza virus. Several compounds 

were created in the first stage using pharmacophore modeling, fragment-based drug design, Breed-

Based De Novo Hybridization and 3D-QSAR (CoMFA model). The docking modeling data reveal 

that all of the designed compounds bind well to the Neuraminidase receptor in comparison with 

the clinical blockers. Moreover, each compound's pharmacokinetic profile has been verified, 

particularly its aqueous solubility, permeability, and bioavailability. The potential toxicity of each 

developed molecule was assessed using the ProTox II platform and the VEGA QSAR package. 

The atomic mobility of the generated complexes between the proposed compounds and 

Neuraminidase receptor was examined using molecular dynamics simulations performed for 100 

ns via Gromacs package. All of the data show that the formed complexes (designed 

molecules_Neuraminidase) have high biomolecular stability. Finally, the results of molecular 

docking were confirmed by MM-BPSA calculations. 

Key Word: Influenza, Neuraminidase, Pharmacophore, Molecular docking, Fragment-based drug 

design, Breed-Based De Novo Hybridization, 3D-QSAR, CoMFA, Gromacs, MM-PBSA. 



Résumé 

Influenza (la grippe) est un virus qui provoque une infection respiratoire et la fièvre. Les épidémies 

peuvent être mortelles. La période de la maladie est diminuée d'environ une journée par le 

traitement antiviral, qui devra être examiné en particulier chez les personnes à haut risque. Le but 

de ce travail était de trouver et de créer des médicaments efficaces antigrippaux. La Neuraminidase 

a été choisie comme cible principale en raison de son activité essentielle et de son impact sur la 

l'existence du virus. Dans un premier temps, plusieurs composés ont été créés à l'aide de la 

modélisation pharmacophore, de la conception de médicaments basée sur les fragments, de 

l’hybridation De Novo basée sur la race et du 3D-QSAR (modèle CoMFA). Les résultats de 

l'amarrage moléculaire indiquent que tous les composés générés se lient particulièrement au 

récepteur de la Neuraminidase par rapport aux inhibiteurs cliniques. De plus, le profil 

pharmacocinétique de chaque composé a été vérifié, notamment sa solubilité aqueuse, sa 

perméabilité et sa biodisponibilité. La toxicité potentielle de chaque molécule développée a été 

évaluée à l'aide de la plateforme ProTox II et du package VEGA QSAR. La mobilité atomique des 

complexes générés entre les composés proposés et le récepteur de la Neuraminidase a été examinée 

à l'aide de simulations de dynamique moléculaire réalisées pendant 100 ns via le package Gromacs. 

Toutes les données montrent que les complexes formés ont une grande stabilité structurelle et 

biomoléculaire. Enfin, les résultats de l'amarrage moléculaire ont été confirmés par les calculs MM-

BPSA. 

Mot clé : Influenza, Neuraminidase, Pharmacophore, Fragments, L’hybridation De Novo basée 

sur la race, 3D-QSAR, CoMFA, Gromacs, MM-PBSA. 



 الملخص

الحمى.    الأنفلونزا يسبب  التنفسي  الجهاز  في  عدوى  المضا   والأوبئة هي  العالج  قاتلة.  تكون  أن  يمكن  د  الدورية 

الذين    الأشخاصللفيروسات يقلل مدة المرض بحوالي يوم واحد ويحتاج الى اكتشاف المرض مبكرا خاصة عند  

ختيار إ. تم  الأنفلونزاكتشاف وتطوير أدوية جديدة فعالة ضد  إلديهم أمراض مزمنة وكبار السن. ركز هذا العمل على  

تم تطوير    الأولىنتشاره. في المرحلة  إالنورامينيداز كهدف عالجي بسبب أهميته ودوره الرئيسي في حياة الفيروس و

، التهجين (الشظايا)  الأجزاءالقائم على    الأدويةتصميم الفرماكوفور، تصميم    باستخدامالعديد من الجزيئات النشطة  

جميع الجزيئات  ن  أالجزيئي    الالتحام. تشير نتائج  الأبعاد  ثلاثيةالكمية بين البنية والنشاط    والعلاقة   السلالةالقائم على  

ترتبط   السريرية.  إالمصممة  بالمثبطات  النورامينيداز عند مقارنتها  قويا مع مستقبل  تم    علاوةرتباطا  ذلك،  على 

البيولوجية   للأغشيةالتحقق من الحركيات الدوائية لكل مركب مصمم، وخاصة قابليته للذوبان في الماء ونفاذيته  

باستخدام   لكل جزيء مقترح  المحتملة  السمية  تقييم  تم  أخرى  ناحية  البيولوجي. من  الحاسوبية   الأدواتوالتوافر 

المختلفة. تم فحص الحركة الذرية للمعقدات المتولدة بين الجزيئات المتقرحة ومستقبل النورامينيداز باستخدام محاكاة  

الجزيئية   أن  100  لمدة الديناميكا  الى  البيانات  أشارت جميع  ثانية عبر حزمة غروماكس،  المعقدات    نانو  جميع 

للنورامينيداز تتمتع بثبات جزيئي وهيكلي ممتاز وحركة ذرية  الفعال  المتشكلة بين الجزيئات المصممة والموقع 

 . ة_بواسون بولتزمانيئينهج الميكانيكا الجز خلالالجزيئي من  الالتحامضعيفة. أخيرا تم التأكد من صحة نتائج 

المفتاحية: الفرماكوفور،  الأنفلونزا  الكلمات  النورامينيداز،  على    الالتحام،  القائم  التصميم    الأجزاء الجزيئي، 

القائم على  (الشظايا) التصميم  البنية والنشاط    العلاقة،  السلالة،  بين  الميكانيكا  الأبعاد  ثلاثيةالكمية  ، غروماكس، 

 . _بواسون بولتزمانالجزيئية
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• LogS: Aqueous solubility. 

• Log Kp : Skin permeation. 

• MD: Molecular dynamic. 

• MDS: Molecular dynamics simulation. 

• MM-PBSA:  Molecular mechanics poisson-boltzmann surface area. 

• MW: Molecular weight. 

• NA: Neuraminidase. 

• NAI: Neuraminidase inhibitor. 

• NAIs: Neuraminidase Inhibitors. 

• NPT: Number of molecules, volume and temperature are constant. 

• NVT: Number of molecules, pressure temperature are constant. 

• Ns: Nanosecond. 

• OPLS3e: Optimized potential for liquid simulation. 

• PDB: Protein data bank. 

• PLS: Partial Least squares. 

• Ps: Picosecond. 

• QSAR: Quantitative structure activity relationship. 

• RMSD: Root-mean-square deviation. 

• RMSF: Root-mean-square fluctuation. 

• Rg: Radius of gyration. 

• SAR: Structure activity relationship. 

• SASA: Solvent accessible surface area. 

• SP: Standard precision. 

• TIP3P: Transferable intermolecular potential with 3 points. 

• WHO: World health organization 

• XP: Extra-precision. 
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1. General Introduction 

Annually, respiratory viruses affect millions of people throughout the globe, producing a 

variety of symptoms and resulting in numerous deaths [1]. Influenza is an infectious virus that 

causes seasonal outbreaks, most of which occur in the winter [2]. Moreover, the World Health 

Organization estimates that yearly influenza outbreaks affect roughly four million severe illness 

cases and almost half a million fatalities per year [3]. The flu virus is usually spread from human 

to another by coughing and sneezing. The most common modes of propagation include physical 

contact with sick persons, coming into contact with tainted products, or inhaling aerosols 

contaminated with viruses [4]. Clinical justification, laboratory tests, epidemiological data, and 

infection symptoms are routinely used to make an accurate identification of influenza [5]. In 

addition, fever and coughing are particularly important clinical indicators of influenza illness 

until testing confirms it [6]. 

Neuraminidase (NA) is a main surface tetrameric glycoprotein that is bound to the viral 

membrane by sialidase. NA's primary role is to catalyze the breaking of the biomolecule bonds 

among sialic acid and neighboring sugar stains, resulting in the emission of freshly synthesized 

virions [7]. The FDA has authorized two NA inhibitors, Oseltamivir and Zanamivir as the most 

effective medicines for anti-influenza viruses [8]. Certain naturally generated influenza 

neuraminidase transformations, including H274Y variants in H1N1 and H5N1 influenza A 

types, have shown considerable resistance to the aforementioned medications [9]. As a result, 

the discovery of antiviral medications that are active against various strains of influenza virus, 

via developing novel Neuraminidase inhibitors or by increasing the inhibitory efficacy of 

current antiviral agents, is an active research topic.  

Computer-aided drug design approaches are becoming important in the amelioration of drugs, 

particularly in the advantageous selection of potential therapeutic compounds. These computer 

programs are useful for minimizing the implementation of biological system in pharmaceutical 

studies, helping with the just design of innovative and secure compounds, and positioning 

commercial pharmaceuticals, therefore assisting medicinal scientists and pharmacologists 

throughout the drug design procedure [10, 11].  

The fundamental objective of our research is to create novel and anti-flu compounds by 

Blocking physiological function of Neuraminidase via the application of different drug design 

methodologies.  
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The thesis consists of six chapters that are thematically separated into two sections. The 

first is the bibliographic context, which includes two chapters: (i) Influenza and the vital 

function of Neuraminidase, (ii) drug design approaches employed in this work. The next part 

will concentrate on the application of drug design methodologies to generate potent and novel 

Neuraminidase inhibitors that will be useful in virology and anti-influenza medications. 

The first chapter, Influenza virus and neuraminidase will present the basic information 

related to this virus and the previous epidemics it has caused, the viral structure of 

Neuraminidase, and the major goal of exploiting Neuraminidase as a pharmacological and 

therapeutic target to develop new anti-flu treatment. 

The second chapter, Drug design strategies offers the current state of the science in 

molecular modeling approaches, with an extra focus on ligand and structure-based drug 

development. It additionally offers an introduction to the different techniques employed during 

in silico drug development, with a focus on the algorithmic functions and bioinformatics tools 

utilized in this research. 

The third chapter, Pharmacophore-based virtual screening, molecular docking and 

molecular dynamics studies for the discovery of novel Neuraminidase inhibitors reflects a 

pharmacophore based virtual screening for the aim of discovering powerful novel 

neuraminidase inhibitors. The pharmacophore model was validated by creating a 3D-QSAR 

model. By screening the PubChem database, several hit compounds were identified. A MD 

simulation investigation was carried out to confirm the biomolecular structure via Gromacs 

package. 

The fourth chapter, Discovery of novel potent drugs for influenza by inhibiting the vital 

function of neuraminidase via fragment-based drug design (FBDD) and molecular dynamics 

simulation strategies, comprises the fragment-based design, which is an efficient and rapid 

modeling method for discovering bioactive molecules. Through docking modeling, ADMET 

predictions, MDS and MM-PBSA computations, the proposed molecules formed very good 

complexes with the Neuraminidase receptor. 

The fifth chapter, Pharmacoinformatics and breed-based De Novo hybridization studies 

to develop new Neuraminidase inhibitors as potential anti-influenza agents, discusses how to 

design effective anti-influenza medications using pharmacoinformatics and bioinformatics 

methodologies. We employed breed De Novo Hybridization to develop potent anti-influenza 
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medicines. We have combined the atomic and biological features of empirical Neuraminidase 

inhibitors. 

The sixth chapter, Comparative molecular field analysis (CoMFA), molecular docking 

and ADMET study on thiazolidine-4-carboxylic acid derivatives as new Neuraminidase 

inhibitors, describes the use of 3D quantitative structure-activity relationship (3D-QSAR) 

approach on thiazolidine-4-carboxylic acid derivatives to predict novel neuraminidase 

inhibitors. 
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1. Introduction 

Influenza, which is frequently referred to as the flu, is a respiratory infection linked to 

viruses of the Orthomyxoviridae family. This particular species is composed of four seasonal 

influenza virus types (influenza viruses A, B, C, and D), which are differentiated by changes in 

the cellular glycoprotein functions and nucleoproteins. Influenza viruses can infect people, pigs, 

birds and other animals [1]. Each winter, influenza viruses cause periodic outbreaks that result 

in over 200,000 stays in hospitals and 30,000-50,000 fatalities [2]. Surprisingly, in line with 

statistics from the WHO, influenza viruses affect 5%–15% of humanity and cause 250,000–

500,000 fatalities annually, therefore being the second-leading cause of death behind acquired 

immune deficiency syndrome [3]. 

The principal glycoproteins’ surface of the flu, hemagglutinin (HA) and Neuraminidase 

(NA) characterize the virion area and function as the most important sites for these neutralizing 

antibodies. Aside from alterations caused by drift of antigenic, the NA and HA of influenza A 

viruses may appear in multiple configurations [4]. Both hemagglutinin and Neuraminidase 

collaborate by interacting with sialic acid, which has a final configuration linked to sugar 

remnants generated by glycolipids or glycoproteins at the cell membrane [5]. Neuraminidase 

plays a major function in the last phases of the infection. Neuraminidase eliminates sialic acids 

from the two cell surface receptors and newly produced NA and HA on budding virions that 

were previously sialylated as element of the host glycosylation cell processes [6]. 

The influenza M2 channel protein has become known as a significant target in the creation 

of anti-influenza drugs due to its role in viral transmission [7, 8]. When the virus penetrates 

affected cells, the tetrameric shape of the M2 protein creates a dependent on pH channel across 

the viral envelope that regulates proton permeability [9, 10]. M2 exists at approximately the 

same level as Neuraminidase and hemagglutinin but is detected at considerably lower numbers 

in the mature viral membrane, which is rich in cholesterol and sphingomyelin, since M2 is 

largely concentrated in liquid-crystalline portions of the cellular membrane over viral bud 

development [11]. Figure I. 1 depicts the viral structure of the flu. 
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Figure I. 1. Viral structure of influenza virus. 

2. Neuraminidase Morphology 

The Neuraminidase integrates as a tetramer composed of four similar polypeptides. Once 

incorporated into the viral membrane, constitutes roughly 10-20% of the number of 

glycoproteins on the virus, with around 40-50 Neuraminidase spikes and a typical virion 

dimension of 120 nm [12, 13]. The Neuraminidase could extend somewhat or substantially 

above the viral membrane than the hemagglutinin due to the dimension of the stalk area, which 

may influence the virus's total enzyme function [14, 15]. The enzyme Neuraminidase arises is 

a tetramer composed of four homologous monomers. Every monomer is made up of four special 

structural subdomains called the transmembrane zone, the cytoplasmic tail, the catalytic cap 

(head) and the base (stalk). (Figure I. 2).  

2.1 Transmembrane zone 

The Neuraminidase is included to the hydrophobic transmembrane field at N-terminal, 

which has an irregular an amino acid sequence Including residual numbers 7-29 with 

anticipated to result in an alpha helix [16]. The transmembrane zone transmits information from 

the reticulum’s endoplasmic to the apical region and facilitates interaction with rafts of lipids 

[17]. Implicating of the role of the transmembrane field involved in Neuraminidase movement 
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to the apical barrier. In without the presence of the stalk and head areas, membrane 

displacement is possible [18]. 

Figure I. 2. Neuraminidase structure and subdomains. 

Particular amino acid mutation within the transmembrane domain may result in persistent 

morphological abnormalities in the placing signal area, resulting in decreased distribution to 

the plasma membrane [18]. 

2.2 Cytoplasmic tail ambit 

The modified shape and reduced infectiousness of viruses producing Neuraminidase 

without the tail of the cytoplasm domain are assumed to be owing to an absence of association 

with the cell's membrane related matrix viral proteins [19]. The glycoprotein’s movement to 

the close membrane of the plasma is influenced by factors associated with the transmembrane 

field and intracellular tail region the [20]. In addition, the function of the domain’s tail in 

packing the surface Neuraminidase into unclear of virions remains [21].  

A total deletion of the tail segment reduced the quantity of Neuraminidase in infected 

cells by 50%. This linked to a decrease in the quantity of Neuraminidase integrated into virions, 
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implying that existing Neuraminidase was packaged efficiently. While the lack of all tail amino 

acids except the starting methionine resulted in virus with significantly reduced incorporation 

of Neuraminidase into virions, yet Neuraminidase It appeared on the surface of the plasma 

membrane at comparable quantities to wild-type virus [21, 22]. 

2.3 Catalytic head 

The catalytic head of every Neuraminidase has a box-shaped structure made up of four 

subunits as seen in Figure I. 3. Each subunit has a 6-bladed propeller design, with each one 

consisting of four oppositely b-sheets held together by disulphide bonds and linked by variable 

length loops [23]. Each subunit has a functioning catalytic site on its surface that is orientated 

towards the side rather than upwards, which is in accordance with the capacity to break sialic 

acids from surrounding glycoproteins’ membrane to avoid viral entrapment [24]. A significant 

cavity with an exceptionally large amount of charged particles in the active site along the 

perimeter distinguishes these catalytic sites [24, 25]. When the Neuraminidase head field is 

effectively separated from the residual Neuraminidase tetrameric stalk lodged in the flu, the 

catalytic functions stay active and the head domains maintain their tetrameric configuration 

upon purification [26]. 

Figure I. 3. The Neuraminidase catalytic head. 

2.4 Stalk 

Various influenza Neuraminidase stalk regions although certain fundamental properties 

of a virus are shared, the amount and arrangement of amino acid residues can differ greatly 

[27]. The size of the stalk area in certain viral subtypes is capable of having a major influence 

on specific virus features. Modified viruses that were unable to form The Neuraminidase stalk 

could multiply in the culture of tissue cells at the same titer as the original host virus [28]. 
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It was recently proposed that the restricted availability of substrate theory might not fully 

explain why stalk-deletion mutants have reduced sialidase activity, with the notion that 

grouping of NAs on the membrane’s virion would lessen any obstructing effects of neighboring 

HA. The molecular dynamics computations confirmed this viewpoint, which showed that a 

smaller stalk affects the shape and dynamics of the enzyme active region, changing its attraction 

for sialic acids [29]. 

3. Mechanism of Action of NAIs 

 The molecular structure of the Neuraminidase receptor is substantially consistent 

throughout the two kinds of influenza viruses (A and B) because of its catalytic activity, this 

renders it an important target for anti-viral therapies.[30]. The NA viral background 

crystallographic information aided in the design and manufacturing of a range of molecule 

capable of simulating the original substrate of the Neuraminidase protein and competing for 

binding to pocket [31] (Figure I. 4). Considering that these Neuraminidase blockers depend on 

the configuration of the 2,3-didehydro derivative of DANA compound, they have a stronger 

binding capacity than Neu5Ac, inhibiting organic substrate cleavage. As an outcome, 

reproductive viruses struggle to be liberated via the sialic acid sensors and accumulate on the 

surfaces of the cell that has been infected, preventing infection from spreading among non-

infected people. [32]. 

Figure I. 4. The molecular structure of NAIs. 

All of these compounds have their origins on the configuration of DANA molecule. 
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Neuraminidase inhibitors suppress influenza virus multiplication from cells that have 

been damaged, reducing infection of neighboring cells and hence limiting infection 

transmission in the respiratory system [33]. Because flu multiplication in the respiratory system 

peaks from 24 to 70 hours after symptom start, medicines that act at the period of viral 

transmission, Neuraminidase inhibitors should be provided as soon as feasible [34]. 

4. Safety of Neuraminidase Inhibitors 

Preclinical toxicology indicated that Zanamivir and Oseltamivir exhibit minimal acute 

side effects, with no significant endorgan harm seen at human-relevant dosages. 

Comprehensive carcinogenicity investigations with Zanamivir have yielded negative results, 

and investigations with Oseltamivir are ongoing, although neither medication is genotoxic or 

mutagenic. Because the vast majority of clinical research participants were adults in good health 

or those with established fundamental illnesses of moderate to average complexity, 

pharmacovigilance becomes critical if the medications grow more commonly used [35]. 

4.1. Zanamivir 

In general, injectable Zanamivir (600 mg every day for five days) or inhalation Zanamivir 

(as much as to 96 mg everyday) were tolerated well [36]. In clinical trials, the most often 

reported side effects in treatment trials seem to be related to the existing influenza (diarrhea, 

headache, nasal symptoms, cough, nausea, throat pain, nosebleeds, dizziness), and few 

happened at a rate of more than 3% [37]. Preliminary data about a therapy study for individuals 

with COPD or asthma in addition to influenza show that on day 6, Zanamivir recipients had a 

higher proportion of FEV1 increases and decreases (35% as well as 15%, correspondingly) than 

placebo recipients (25% and 6%). Just one of 78 Zanamivir-treated individuals discontinued 

medication due to a non-respiratory dispute, and there were no changes in respiratory condition 

exacerbations during therapy (14% for Zanamivir). [38]. The conclusions of the United States 

FDA, certain individuals with underlying COPD or asthma have had significant worsening in 

respiratory activity after inhaling Zanamivir. Despite influenza produces such complications, 

Individuals with chronic respiratory illnesses should be closely monitored and given fast-acting 

bronchodilators when receiving Zanamivir treatment. Patients who have reduced function of 

the lung or bronchospasm should discontinue the medicine [39].  

4.2. Oseltamivir 

To date, Oseltamivir has proven to be tolerated effectively and is unlinked with clinical 
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test problems. Doses of up to 500 mg twice day for seven days have been tried in healthy people. 

The most common side effect is mild-to-moderate nausea; vomiting is less prevalent. In most 

persons, these effects are temporary, appearing most typically after the first dosage and 

resolving in 1-2 days despite continuing medication administration [40]. Investigations on 

animals show that it is well distributed throughout the respiratory system, but no equivalent 

human research have been recorded. The administration of Oseltamivir with meals has little 

effect on bioavailability or peak plasma levels, although it appears to reduce the possibility of 

gastric discomfort. The kidney excretes Oseltamivir carboxylate by filtration and tubular 

elimination after metabolization. Administration with probenicid increases the half-life, 

indicating anionic route secretion. Advanced renal failure necessitates dose modifications [41]. 

Table I. 1 represents NAIs used in the therapy of influenza. 

Table I. 1. Neuraminidase inhibitors used to combat the flu. 

Period Therapy Individuals 

(% with 

confirmed 

flu) 

Age group 

 (mean) 

illness's 

duration 

diminution in time to 

alleviate the symptoms of 

individuals with 

influenza (median) 

Observations Ref 

1993–1995 Nebulization 

Zanami. 10 mg 

(5 ds) 

417 (63%) 13 -32 years ≤ 48 

hours 

1 (5 vs 4) 

3 (7 vs 4 in fever) 

three days in patient treated 

for 30 hours 

[41] 

1997 Nebulization 

Zanami. 10 mg 

(5 ds) 

455 (71%) 12 -37 years ≤ 36 

hours 

1·5 (6·5 vs 5·0) 2·0 (6·5 vs 

4·5 in febrile) 

Complications and 

antibiotics were reduced in 

individuals with underlying 

illnesses (15% - 38%). 

[42] 

1996–1998 Nebulization 

Zanami. 10 mg 

(5 ds) 

777 (73%) 12 years ≤ 48 

hours 

1 (6 vs 5) fewer complications [43] 

1996–1998 Nebulization 

Zanami. 10 mg 

(5 ds) 

356 (78%) 12 years ≤ 48 

hours 

2·5 (7·5 vs 5·0) Problems and antibiotics 

were reduced (11% - 5%). 

There are no changes in 

dosage. 

[44] 

1996–1998 Oseltami. 75 

mg or 150 mg 

(5 ds) 

629 (60%) 18–65 years ≤ 36 

hours 

1·4 (4·3 vs 2·9 vs 2·9) fewer complications [44,45] 
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5. Neuraminidase mutations linked to NAI resistance. 

Several great evaluations have addressed NAI resistance [46]. Neuraminidase inhibitors 

resistance is caused by mutations that modify the configuration of the NA receptor, leading in 

reduced linking of the NA inhibitors to the NA, or by alterations in amino acids that alter the 

interactions with the medication [47]. The bulk of resistance has been detected with 

Oseltamivir, Zanamivir resistance was identified in a small number of isolates [48]. This might 

be due Zanamivir is rather tightly linked to the original substrate, nevertheless, Oseltamivir is 

also considerably more often used. There have been no reports of Laninamivir-resistant strains 

[47]. A large number of NAI mutations are produced by modifications in the NA mutation. 

Mutations to the HA gene and product might additionally reduce vulnerability to 

Neuraminidase inhibitors. These modifications reduce the requirement for NA activity (Table 

I. 2) [49]. 

Table I. 2. Resistance mutations in the Neuraminidase inhibitor [47]. 

Influenza class Transformation Lower Average Higher Hypersensitive 

H1N1 H274Y   Osel, Pera Zana 

 Q136K   Zana Osel 

 N70S  Zana  Osel 

 Y155H  Osel Zana, Pera  

 1222v/M Osel   Pera, Zana 

H5N1 V116A Pera Osel, Zanz   

 H274Y   Pera, Osel Zana 

 E119G   Pera, Zana Osel 

 D198G  Osel, Zanz  Pera 

 N294S   Osel Pera, Zana 

 S246N  Osel  Zana 
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 H252Y  Osel  Pera, Zana 

 I222L  Osel  Zana 

 I222v  Osel  Pera, Zana 

 I222M/T  Osel  Pera, Zana 

H3N2 N294S    Osel Zana 

 R292K  Zana Osel, Pera  

 E119A/D   Osel, Pera, 

Zana 

 

 E119G  Pera Zana Osel 

 E119I Zana  Osel, Pera  

 E119v   Osel Pera, Zanz 

 Q136K  Zana  Osel 

 R371K  Osel, Zana   

 D151A/D   Osel, 

Zana, Pera 

 

 

6. Creating Neuraminidase-inhibitors in future years 

Considering the limits of existing medications (for example, the resistance), novel 

therapies are required. In addition to NAIs, various medicines with other viral sites are being 

investigated as well as recent trials of alternative combination therapies [50]. Laninamivir and 

other Zanamivir analogs have been produced. With the finding of the 150 cavity, new chemicals 

that might result in better binding of the NA and hence increased effectiveness are now being 

explored [51]. As a result, NA is present on the area of virions, there is growing desire in 

discovering molecules that interact with numerous NAs on virions' surfaces. Diverse 
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preparations that may show affinity that is more binding and potentially improved 

pharmacology, along with to higher effectiveness [52]. There is additionally speculation about 

producing peramivir analogues. Furthermore, benzoic acid is a low-cost chemical ingredient 

that might be used in future NAI production. Since present NAIs are costly to create and take 

an extended period to generate, the synthesis of cheaper benzoic acid derivatives with anti-

influenza action might be very valuable in outbreaks of disease [53]. As flu resistance to present 

medicines rises, these pharmaceuticals as well as newer Neuraminidase inhibitors, will become 

increasingly relevant in the future. 
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1. Introduction 

A medication is defined as any chemical that is employed in the diagnosis, treatment, or 

prevention of disease or that aims to change the vital function of the body. Years of scientific 

research are required to discover the biochemistry of an illness for which pharmacological 

intervention is viable [1]. The research and development of novel drugs takes both resources and 

time, and it currently requires around twelve years and an average of $1.8 billion to market a novel 

medicine. In addition, the number of innovative medications that have achieved market 

authorization has decreased throughout the years. [2]. 

The design of small molecules that are able to controlling or modifying specific vital 

functions in the body that are closely associated with human illnesses is made possible by a 

comprehension of the biomolecular structural and chemical binding properties of significant drug 

targets in biologically pertinent pathways. This is done via numerous interactions with a specific 

target [3, 4]. Computer-aided drug design (CADD) refers to computer methods for identifying, 

developing, and evaluating drug and active molecules with comparable biological features [4]. The 

major components of computer-aided drug design are virtual screening, molecular docking, 

quantitative structure activity relationship, homology modeling and pharmacophore modeling [6]. 

The application of three-dimensional protein structure data in the generation of novel bioactive 

molecules, known as structure-based drug design, is a successful and effective strategy employed 

by pharmaceutical research globally [7]. This certified data may be used immediately for the 

identification of new ligands, also the improvement of lead compounds. This offers up new 

avenues for accelerating the hunt for lead molecules while reducing the number of compounds that 

must be evaluated experimentally [8]. Figure I. 1 depicts the most frequently employed drug 

design strategies. 

Figure II. 1. The most frequently employed drug design strategies. 

2. Computer-Aided Drug Design Strategies 

The primary condition for starting a CADD work requires a precise 3D configuration of the 

medicine and the protein. To produce novel lead molecules, a ligand-based (QSAR, CoMFA, 
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Pharmacophore) or structure-based (Virtual screening, docking modeling) technique can be 

employed. The particularly interesting compounds can be produced and tested for affinity and 

activity [9, 10]. The obtainability of three-dimensional structures of disease-related therapeutic 

targets allows for the examination of molecular interactions and dynamics of ligand-receptor 

binding, as well as their link with resistance mutation [11]. 

2.1. Structure-based drug design (SBDD) 

During SBDD, the generated ligands were evaluated according to their displayed 

biomolecular interactions with the enzyme receptor, which is derived from the protein structure 

[12]. As a result, the first critical step in SBDD are the choosing of a valid therapeutic target and 

the collection of structural data about it. In structural and computational biology research, the use 

of X-ray crystallography and nuclear magnetic resonance aided in the creation of a protein 

structures [13]. There are two categories of structure-based drugs design: the virtual screening 

approach and de novo approach [13, 14].  

Virtual screening approach implement accessible molecule libraries to determine molecules 

with specific biological activity to function as substitutes ligands for target or to develop molecules 

for undiscovered recognized targets with accessible configuration [15]. Following library and 

protein preparation, a docking software is used to realistically dock each molecule in the library 

into the target active site. Docking attempts for predicting the receptor-ligand complex structures 

by examining the configuration space of the ligands inside the active site of the target. After that, 

a scoring function is run to estimate the free energy of the complex and the ligand in every docking 

pose [16]. After docking and scoring, ranking molecules are examined for estimated binding 

scores, desirable physicochemical features, lead-likeness, and chemical diversity. Following post-

processing, a limited number of chosen compounds are subjected to experimental testing [17].  

The expression de novo indicates "at the start," indicating that this technology may produce 

unique molecules without the necessity for a starting reference [18]. The benefits of de novo drug 

development are creating molecules that represent original property, the creation of therapeutic 

candidates in an economical and quick way, the ability to explore larger chemical groups, and the 

possibility for innovative and better treatments. The process of synthesis of the produced 

compounds is the fundamental hurdle in de novo drug design [19, 20]. De novo design uses data 

from the three-dimensional structure of the active site to find fragments which fit the receptor well. 

These fragments should be connected using linking rules to assure synthetic availability, resulting 
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in a structurally unique ligand that be produced for more examinations [21]. Figure II. 2 illustrates 

a graphical representation of de novo drug design process and virtual screening. 

Figure II. 2. A graphical illustration of virtual screening, (A) de novo drug-design (B) 

strategies. 

2.2. Ligand-based drug design (LBDD) 

In the absence of a 3D configuration of the enzyme, data derived from a group of bioactive 

compounds inhibiting an important target might prove useful to determine the important features 

and biochemical characteristics accountable for the experimental activities. There is a presumption 

that two identical molecule structures have comparable biological responses with the target [22]. 

To create a good predictive power the ligand-based hypothesis, the molecule library must contain 

an extensive variety of concentrations [23]. In addition, pharmacophore-based and quantitative 

structure-activity relationships methodologies are the common ligand-based drug development 

approaches. 

2.2.1. Quantitative structure–activity relationship (QSAR) 

The concept of QSAR investigations posits that variations of biological activity correlate 

with structural and molecular variations in a group of compounds. To create an excellent QSAR 

model, it is necessary to follow a number of rules: (i) the bioactivity data must be large enough 

and obtained from an identical experimental process and selected in a manner in which the 
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effectiveness values are comparable; (ii) the training and test sets need to be properly chosen; (iii) 

to prevent over-fitting, the molecular descriptors of ligands shouldn't contain any autocorrelation, 

(iv) To assess its predictive power, the model needs to be evaluated either internally or externally. 

[23, 24].   

 Among the oldest and greatest known 3D-QSAR methodologies is CoMFA, which was 

developed over three decades back [25]. Numerous parameter options for are provided (as in 

CoMFA), the steric and electrostatic values are adjusted using cut-offs (± 30 kcal/mol) based on 

the location of the grid point. Following pretreatment, the data is scaled, which gives equal weight 

to all molecular descriptors and sets them on a similar platform for useful statistical analysis [26]. 

Figure II. 3 depicts an overview of QSAR modeling.  

Figure II. 3. Overview of QSAR modeling. 

2.2.2. Pharmacophore modeling 

The goal of pharmacophore modeling is to identify compounds with different structures but 

a similar three-dimensional configuration of essential interacting functional groups [27]. 

Furthermore, pharmacophore modeling (Figure II. 4) is commonly employed in the molecular 

alignment step of QSAR modeling research [23]. More importantly, characteristics that are not 

consistently observed in active molecules ought to be rendered optional or removed from the 

hypothesis. After model refining, validation is necessary to evaluate the capacity of the model and 

its predictive power with an external validation [28]. On the other hand, the generation of 

pharmacophore models via various ligands entails two important phases: (i) building the 

configuration space for every ligand in the training set to symbolize ligand configuration 

flexibility, (ii) Alignment of all compounds in the training set to discover the needed common 

characteristics to generate a pharmacophore hypothesis [29]. It is worth mentioning that ligand 

arrangement flexibility and structural alignment constitute crucial strategies and major difficulties 
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in pharmacophore modeling [30]. Considering significant progress, some major problems in 

pharmacophore modeling remain. The first challenging aspect is ligand flexibility modeling. To 

address this issue, a solution has been developed: is the pre-enumeration method, where several 

configurations of each molecule are calculated than recorded in the database [31]. 

 

 

 

 

 

 

 

 

 

 

Figure II. 4. Overview of pharmacophore modeling. 

2.2.3. BREED Based De Novo Hybridization process 

The quantity of structural data usable in inhibitor design has increased dramatically as the 

identification of enzyme-inhibitor complex configurations is now frequently occurring. However, 

as the availability of this data grows, it becomes more and more challenging to fully exploit it [32]. 

The collection of all of this data from a group of complex structures is far more challenging, and 

comparing a number of structures at the same time is nearly impossible [32]. Using the known 

features of a couple of ligands to combine different fragments from each to make an individual 

ligand is one easy way for utilizing structural knowledge [32, 33]. The newly created compound 

would be a combination two scaffolds. In addition, BREED was created to facilitate this procedure 

by employing a bond-matching and fragment-swapping algorithm analogous to that of Ho and 

Marshall [34]. As seen in Figure II. 5, the generation of two new compounds for each set of 

matching bonds between two compounds. If the original molecules are divided into two 'halves' at 

the matching bond, one new molecule is created by the first half of molecule one and the second 

half of molecule two. The remaining new compound is formed of the second half of compound 

one and the initial half of compound two [32, 33]. 
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Figure II. 5. Overview of breed based de novo hybridization strategy. 

3. ADME and drug likeness   

Potent and secure drugs show a perfectly adjusted combination of pharmacodynamics and 

pharmacokinetics, comprising excellent effectiveness, affinity and specificity towards the atomic 

target, as well as sufficient absorption, distribution, metabolism, excretion and minimal toxicity. 

The integrated optimization of these factors is a key challenge in medication development [35, 

36]. Since performing elaborate and expensive ADMET, testing processes for a significant amount 

of molecules is impracticable, in silico ADMET prediction is the alternative approach preference 

during initial drug development. The construction of excellent in silico ADMET models will make 

it possible for multiple optimizations of substance effectiveness and drug features, which is 

projected to not only enhance the general effectiveness of therapeutic candidates and thus their 

likelihood of success but also contribute to lower overall costs [37 - 39]. The technique of 

converting leads to drugs, on the other hand, is more difficult. This example becomes clear when 

we compare the variety of newly identified active substances to the number of newly authorized 

medications within the exact same time. ChEMBL, for illustration, is a collection of databases 

including a significant number of bioactive compounds retrieved from publications. The total 

variety of chemicals in ChEMBL was 629 943 in 2012, however by November 2014, it had risen 

to 1 638 394 [40]. 
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3.1. Solubility (LogS) 

Particularly evident relationship is that between solubility and lipophilicity. As a result, 

Yalkowsky and his colleagues published the experimentally obtained global solubility the formula, 

which characterizes a compound's solubility as a combination of LogP and melting point, where 

melting point quantifies the lattice energy produced on dissolution. For organic molecules, a more 

current version of this equation is [41 - 43]:  

𝐿𝑜𝑔𝑆 = 0.5 − 𝐿𝑜𝑔𝑃 − 0.01 (𝑀𝑃 − 25) 

Whereas MP indicates the melting point in degrees Centigrade. In addition, the compound's 

solubility is still reliant on LogP, and for significant LogP compounds, poor solubility might still 

show as pH dependent solubility and limited absorption. 

3.2. Lipophilicity (LogP) 

Lipophilicity is a critical metric in drug development since it influences a compound's 

solubility, permeability, potency, selectivity. The lipophilicity of organic compounds is commonly 

expressed as LogPo/w, when P represents the proportion of a compound's concentrations in a 

mixture in equilibrium of water and octanol phases [44, 45].  The total solvation Gibbs free 

energies in various phases at constant temperature (T) and pressure (P) that are predicted with 

molecular dynamics utilizing the thermodynamic methodology which used to build ab initio 

methods for LogP prediction [46]. 

LogPo/w = (ΔG (oct/sol) – ΔG (w/sol)) / 2.303 RT  

Wherever ΔG (oct/sol) reflects Gibbs' free energies for solvation of molecules in water-

saturated octanol, ΔG (w/sol) represents Gibbs' free energies for solvation of molecules in water, R 

represents the molar gas constant and T represents the temperature (298 K). Table II. 1 highlights 

the various ways for estimating LogP [46]. 
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Table II. 1. Examples for the prediction of lipophilicity. 

Methods Models Illustrations  

Ab initio models LogPo/w = (ΔG (oct/sol) – ΔG (w/sol)) / 2.303 RT GBLogP, QLogP  

 

Property-based 

methods 

Empirical models: Estimation of perturbed 

molecular orbitals, linear solvation energy 

relationship, molecular size and H-bond 

strength 

 

ABSOLV, 

SLIPPER 

Statistical-based 

models 

Developed based on numerous descriptions, 

such as topological parameters, graph 

molecular connectivity, and machine-learning 

approach, estate descriptors, 

 

MLogP, TLogP 

 

4. In silico toxicity prediction 

An immediate evaluation of a chemical structure's risky qualities is vital not only for the 

development of medicines, but also additionally for decisions made by regulatory organizations 

like the United States FDA [47].  Furthermore, because of duration, expense, and moral issues with 

animal testing, it is difficult to examine each of these molecules on experimental systems. As a 

result, in silico toxicity is quickly growing to be a vital tool for anticipating the toxicity of 

compounds that may be detrimental to animals, plants, humans and natural world [48]. The toxicity 

of drugs is directly tied to their structure. SARs have recently been used extensively in nations 

such as Europe and the United States to forecast toxicity using computers. In addition, biostatistics, 

toxicology, systems biology, computer technology and numerous other related subjects are all 

included in the in-silico toxicity framework [49]. A molecules' toxicity could be quantified using 

toxicity outcomes that include mutagenicity, carcinogenicity and a variety of other parameters. It 

may Also to be evaluated numerically, as in LD50 (lethal dosage) numbers, and in a qualitative 

manner as in binary (active or inactive) for particular kinds of cells and tests or signal areas 

including cytotoxicity, immunotoxicity, and hepatotoxicity [50]. 
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5. Molecular dynamics simulation (MDS) 

Several scientific fields, including chemical physics, biomaterials and biophysics have 

benefited greatly from MDS. This computational approach has shown to be quite helpful for the 

explained analysis of biomolecular structures, including balance with empirical information, 

optimization and prediction of experimental design of pertinent features for molecular structures 

that are costly or hard to analyze empirically [51]. 

Independent atom trajectories (configurations as a function of time) are created in MD 

simulations by simultaneous combining Newton's theorem of movement. Force fields are potential 

energy distributions that are employed to determine the atoms' shifts and then adjust their positions 

and motions at every phase of the simulation. This modeling of a protein's energy area is simple 

in theory but difficult in practice [52]. CHARMM, AMBER, and GROMOS are the three most 

common types of force fields from the numerous that available. The CHARMM 27 force field's 

energy equation is [53, 54, 55]: 

𝑉 =  ∑ 𝓀𝐵(𝑏 − 𝑏0)2  + ∑ 𝓀𝜃(𝜃 − 𝜃0)2 + ∑ 𝓀𝜙[1 − cos(𝑛𝜙 − 𝛿)

 

𝑑𝑖ℎ𝑐𝑑𝑟𝑎𝑙𝑠

 

𝑎𝑛𝑔𝑙𝑒𝑠

 

𝑏𝑜𝑛𝑑𝑠

]  

+ ∑ 𝓀𝜔(𝜔 − 𝜔)2 + ∑ 𝓀𝑢(𝑢 − 𝑢0)2

  

𝑈𝐵

 

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠

+ ∑ ℇ𝑖𝑗  ⌈(
𝑅𝑚𝑖𝑛𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝑅𝑚𝑖𝑛𝑖𝑗

𝑟𝑖𝑗
)

6

⌉ + ∑
𝑞𝑖𝑞𝑖

4𝜋𝜀0𝜀𝑟𝑖𝑗

 

𝑖>𝑗

𝑖>𝑗

𝑁𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑

 

• While V represents total potential energy. 

•  𝓀𝐵 Indicates the bond force constant, and 𝑏 − 𝑏0 signifies the distance the atom has shifted 

from equilibrium. 

• 𝓀𝜃 Represents the angle force constant, and 𝜃 − 𝜃0 denotes the angle from equilibrium 

between three attached atoms. 

• 𝓀𝜙 Indicates the dihedral force constant, 𝑛 is the function multiplicity, 𝜙 indicates the 

dihedral angle and 𝛿 represents the phase shift. 

• 𝓀𝜔 Denotes the force constant, and 𝜔 − 𝜔0 is the out-of-plane angle. 

• 𝓀𝑢 Is the relevant force constant, and 𝑢 is the distance between the 1,3 atoms in the 

harmonic potential. 

The van der Waals (VDW) energy is computed using a conventional 12-6 Lennard-jones 

potential, and the electrostatic energy is calculated using a coulombic potential. 
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The most frequent simulation packages are NAMD, CHARMM, AMBER, and GROMACS. 

These sets share fundamental characteristics but differ in their functionality and underlying 

perspectives, and it is worth noting that GROMACS is the only open source suite of the four, 

having been ported from its initial FORTRAN code to C. [56, 57, 58, 59]. Figure II. 6 depicts an 

illustration of the MD simulation approach (as implemented by the Gromacs package). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II. 6. Overview of molecular dynamics simulation via GROMACS package. 
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1. Introduction 

Since emerging influenza can start a worldwide pandemic, it still poses a severe threat to 

public health [1]. Despite regular vaccinations annually, we could provide only limited protection 

to the elderly or immunocompromised individuals. In other words, current vaccines are ineffective 

against the rapidly emerging novel influenza A subtype responsible for the 2009 pandemic [2].  

The surface of the influenza virus (IV) composes two crucial transmembrane glycoproteins, 

hemagglutinin (HA) and neuraminidase (NA) [3]. During (IV) infections, NA plays three major 

roles: it facilitates virus access to epithelial cells by degrading mucins rich in sialic acids of the 

respiratory tract, it desialilates the virion and the cytoplasmic membrane, optimizing the fusogenic 

potential of the HA, it encourages the production of new virions and inhibits their accumulation 

on the host cell surface [4].  

The application of rational drug design in CADD provides an experience and understanding 

strategy that can give significant information regarding the interaction pattern and binding affinity 

between protein and ligand (complex) [5]. One of the most common approaches is molecular 

docking, which predicts various binding modes of a drug at a specific target-binding site and 

evaluates affinity based on its own conformation and complementarity with the features detected 

in the binding pocket [6]. 

The characteristics of absorption, distribution, metabolism, elimination, and toxicity 

(ADMET) are essential for determining the safety and efficacy of medication candidates. It is 

necessary to execute ADMET prediction to avert medication rejections in later phases of clinical 

trials [7]. 

In this study, we have utilized in silico approaches to predict and search for new potential 

Neuraminidase inhibitors, which could be used to treat influenza infection.  
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2. Materials and Methods 

2.1 Ligand Preparation  

For this study, the biological data of a series of neuraminidase inhibitors containing twenty-

seven p-aminosalicylic acid derivatives (Table III. 1) were extracted from the available published 

research [8]. The IC50 value of each compound was converted into a pIC50 value for in silico 

analysis using the provided formula: pIC50 = -Log (IC50) [9]. The LigPrep module using 

Schrodinger software [10] optimizes the 3D structures of ligands.  

Table III .1. Compounds structures with experimental activity (*, Test set). 

 

Compounds R1 R2 R3 R4 MW pIC50 

01 Me Et NO2 NO2 327.25 5.939 

02* Me Et N=C(NH2)2 N=C(NH2)2 351.36 7.444 

03 H Et N=C(NH2)2 N=C(NH2)2 337.15 7.495 

04* Me i-Pr H H 251.28 5.274 

05 Me i-Pr H N=C(NH2)2 308.33 6.921 

06* H i-Pr H N=C(NH2)2 294.31 7.309 

07 Me n-Pr H H 251.28 5.033 

08 Me n-Pr H NO2 296.28 5.447 

09* Me n-Pr H NH2 266.29 5.899 

10 H n-Pr H N=C(NH2)2 294.31 6.143 

11 Me s-Bu H H 265.13 5.527 

12 Me s-Bu H NO2 310.31 5.799 

13* Me s-Bu H N=C(NH2)2 322.36 6.131 

14* H s-Bu H N=C(NH2)2 308.33 7.134 

15 Me n-Bu H N=C(NH2)2 322.36 7.284 

16 H n-Bu H N=C(NH2)2 308.33 7.409 

17 Me isopentyl H H 279.33 5.419 

18* Me isopentyl H NO2 324.33 5.529 

19* Me isopentyl H N=C(NH2)2 336.39 6.745 

20 H isopentyl H N=C(NH2)2 322.36 7.387 

21 Me Methylcyclopentane H N=C(NH2)2 334.37 7.032 

22 H Methylcyclopentane H N=C(NH2)2 320.34 7.252 

23 Me Cetyl (C16H33) H H 433.62 5.570 

24 Me Cetyl (C16H33) H NO2 478.62 5.727 

25* Me Cetyl (C16H33) H NH2 448.64 5.995 

26* Me Cetyl (C16H33) H N=C(NH2)2 490.68 6.059 

27 H Cetyl (C16H33) H N=C(NH2) 476.65 6.159 
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2.2 Protein Preparation 

The crystal structure of the neuraminidase protein utilized in this study was obtained from 

the Protein Data Bank (PDB ID: 5L17, in complex with Zanamivir) [11]. The structure was 

optimized and minimized utilizing the OPLS3e force field. Partial atomic charges were assigned 

at pH7.0 and potential ionization states were generated.  Then geometry refinement was carried 

out using restrained minimization so that the junction of atoms had an RMSD default value of 0.3 

A˚ [12]. 

2.3 Generation of Pharmacophore Model 

Any number of ligands with their activity value (IC50) can be employed to develop a common 

pharmacophore. The pharmacophoric model uses geometric concepts like spheres, planes, and 

vectors to depict the chemical properties of a molecule that can interact with its target protein [13]. 

Each hypothesis has certain traits, a maximum of six of which are H bond acceptor, hydrophobic, 

negatively charged, Aromatic, H-bond donor and positively charged moieties., The latter are 

typical pharmacophoric properties defined by a given chemical structure group [14]. The number 

of pharmacophoric site points was set between 4 and 6. Based on the threshold, active and inactive 

compounds have been classified as follows (Active pIC50> 6, Inactive pIC50 ˂6).  

2.4 Construction of the 3D-QSAR model 

In comparison to the pharmacophore-based alignment, an atom-based alignment was used 

to develop the QSAR model, which is more useful in explaining the structure-activity relationship 

[15]. The partial least squares (PLS) regression approach was used to create 3D-QSAR models 

[16]. The pictorial representation of the contours was used to visualize the 3D-QSAR results. The 

blue cubes represent favorable regions for activity, while the red cubes represent unfavorable 

regions [17]. In our study, 60% and 40% of the ligands were distributed to the training and test 

sets. 

2.5 Model Validation 

If the QSAR model is not tested, it may result in erroneous predictions of biological activity. 

As a result, validation of QSAR models is the most important element of QSAR investigations 

[18]. We employed external validation for this purpose. Golbraikh and Tropsha used the following 

statistical parameters of the test set to evaluate the predictive power of a QSAR model [17]: q2 > 

0.5, r2 > 0.6, (r2 − r2
0 ) / r

2 < 0.1, or (r2 – r'20) / r2 < 0.1 and 0.85 ≤ k ≤ 1.15 or 0.85  ≤  k' ≤  1.15. In 

addition, Roy and colleagues developed the new r2
m metrics as a fundamental set of validation 

parameters [19].  
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2.6 Virtual Screening and docking study 

For our study, we filtered the PubChem library by searching for compounds having 80% 

similarity (Compared to the most active compound). Then we obtained 415420 small molecules, 

imported them into the project, and prepared for screening using the LigPrep model. The screening 

of the data was completed using pharmacophore fitness and Lipinski rules. Molecular docking is 

one of the most effective drug design filtering strategies. The best orientation and interaction of 

each lead at the active site of the protein was determined by docking [20]. We applied the docking 

approach with standard precision (SP), and extra precision (XP) to verify the accuracy of the 

results obtained.  

2.7 ADMET study 

We examined ADME properties of each compound, particularly the solubility and 

absorbability, the most important factors influencing activity [21]. We studied the ADME 

properties using SwissADME [22]. The ProTox-II platform was used to estimate the potential 

toxicity [23]. Then, the lethal dose (LD50) was quantified for both active and inactive cell types in 

order to explore hepatotoxicity, immunotoxicity, and cytotoxicity [24].  

2.8 Molecular dynamics simulation 

The methodology presented in this study outlines the detailed steps for conducting molecular 

dynamics (MD) simulations of two compounds. The rational for selecting these two compounds 

(CID 70139197 and CID 44428312) was based on the best binding affinities for Neuraminidase 

and good pharmacokinetic profiles. The first step involved the selection of two compounds based 

on their high binding affinities and good pharmacokinetic profiles. To prepare the ligand and 

protein topology files, the SwissParam server was used, and the protein topology file was created 

using the CHARMM27 all-atom force field [25]. The next step involved solvating the system with 

the TIP3P water model and adding Na+ and Cl- ions to neutralize the system's charge. The solvated 

system was then subjected to energy minimization using the steepest descent minimization 

algorithm until the maximum force was less than 10.0 kJ/mol. The equilibration process was then 

carried out in two stages, namely the NVT equilibration and the NPT equilibration. During the 

NVT equilibration phase, the system was coupled with a v-rescale algorithm at 300 K with a 

coupling value of 0.1 ps and a duration of 100 ps. The NPT equilibration was then performed with 

a Berenson pressure-coupling algorithm for 100 ps and a coupling constant of 2.0 ps. After the 

equilibration process, the production MD simulation was performed for 100 ns using the Gromacs-

2022.4 package with the CHARMM27 force field [26]. 
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The MD simulation data were analyzed to gain insights into the stability, flexibility, 

compactness, and binding affinity of the protein-ligand complex. The Root Mean Square Deviation 

(RMSD) was calculated to determine the structural stability of the protein-ligand complex during 

the simulation, and the Root Mean Square Fluctuation (RMSF) was calculated to evaluate the 

flexibility of the protein residues. The radius of gyration was calculated to measure the 

compactness of the protein-ligand complex. Hydrogen bond analysis was performed to identify 

the hydrogen bonding interactions between the protein and ligand. Finally, the Molecular 

Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) calculation was performed to calculate 

the binding free energy of the protein-ligand complex. 

2.9 Method of MMPBSA Analysis 

The molecular mechanics Poisson-Boltzmann surface area (MMPBSA) method was used to 

analyze the energetic contribution of different energy components in the protein-compounds 

(4428312 and 70139197) interaction. The structures of the protein-ligand complex, receptor, and 

ligand were prepared and optimized using the molecular dynamics simulation with the Gromacs 

software. The molecular mechanics force field ff14SB was used for the protein, and the GAFF 

force field was used for the ligand. The Poisson-Boltzmann equation was used to calculate the 

solvation energy, and the nonpolar solvation energy was estimated using the surface area model. 

The energy decomposition was performed using the MMPBSA.py script of the Gromacs software. 

3. Results AND Discussion 

3.1 Pharmacophore and 3D-QSAR models 

The main objective of this study was to develop the pharmacophore of neuraminidase 

inhibitors for the influenza virus using fifteen known active and twelve inactive molecules. Then, 

using pharmacophore hypotheses, we aim to search new neuraminidase inhibitors. We chose the 

best of these hypotheses based on Survival score, Inactive score, Site, Victor, and Volume. The 

best four hypotheses are presented in Table III. 2. Survival scores with higher values improve the 

current mapping of pharmacophores with active molecules. However, the model with the highest 

inactive score can differentiate between active and inactive molecules. Very close results were 

recorded for the best four-pharmacophore hypotheses, as the survival score ranged between 6.415 

and 6.365. In addition, the inactive score ranged from 2.098 to 2.128. 
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Table III. 2. Scores of different parameters of the best hypotheses 

 

We used atom-based 3D-QSAR for all the pharmacophore hypotheses to identify and predict 

the best pharmacophore hypothesis. After this step, we found the hypothesis ADDPR_4 has a high 

R2 value for the training set (0.974), exceptional and best predictive potential (Q2, 9.05), 

outstanding Pearson-R coefficient (0.953), RMSE (0.230) and SD (0.160), (Table III. 3). 

Table III. 3. Results of the 3D-QSAR, PLS statistical analysis for the chosen Pharmacophore 

model ADDPR_4. 

 The spatial arrangement of the best pharmacophore hypothesis ADDPR_4 with their five-

pharmacophore site is shown in Figure III. 1. Based on the above, we have selected the 

pharmacophore hypothesis ADDPR_4 for the next part of the studies.  

 

Figure III. 1. (A) Pharmacophore model ADDPR_4 with their five-pharmacophore site points, 

and (B) Pharmacophore model ADRRR1 including an active molecule. 

3.2 Model Validation 

Based on the statistical analysis, we observed a high R2
pred (0.9056) value was considered to 

be a sign of excellent external predictability. The linear regression values of r2
0 and r'20 were close 

 Survival  Site  Vector  Volume  Inactive  PhaseHypo  

ADDPR_1 

ADDPR_2 

ADDPR_3 

ADDPR_4 

6.415 

6.405 

6.373 

6.365 

 

1.000 

1.000 

1.000 

1.000 

0.968 

0.968 

1.000 

1.000 

0.881 

0.871 

0.882 

0.874 

2.098 

2.099 

2.130 

2.128 

1.385 

1.384 

1.382 

1.382 

ID PLS factors  SD  R2   F  P  RMSE   Q2  Pearson-R 

ADDPR_4 1  0.387 0.796 58.8 0.942 0.29 0.851 0.949 

 2  0.249 0.921 82.4 0.850 0.26 0.878 0.949 

 3  0.188 0.958 99.4 0.890 0.25 0.891 0.951 

 4  0.165 0.970 98.1 0.903 0.23 0.904 0.995 

 5  0.160 0.974 83.5 0.897 0.23 0.905 0.953 
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to r2, and [r2-r2
0]/r

2 and [r2-r'20]/r
2 were less than 0.1. We obtained a higher value of r2

m, (0.8613). 

According to the external validation results (Table III. 4), the developed 3D-QSAR model is valid 

and could be employed to predict the activities of new inhibitors. 

Table III. 4. Results of external validation for 3D-QSAR model. 

3.3 3D-QSAR Contour Maps Analysis 

The 3D-QSAR contour map analysis was carried out to explain the diverse vital 

pharmacophoric sites. It includes H-bond donor, hydrophobic/non-polar, negative ionic, positive 

ionic, and electron-withdrawing regions on their Neuraminidase inhibition. The blue cubes show 

favorable regions for activity, and the red cubes show unfavorable regions for activity. A 

comparison was performed using the 3D-QSAR model to compare favorable and unfavorable 

regions for activity, using the most active compound (compound 3, pIC50: 7.495). Figure III. 2 

represents the correlation plot between the experimental and predicted activity of Neuraminidase 

inhibitors, illustrating the strong correlation between experimental and predicted activity. 

 

 

 

 

 

 

 

 

Figure III. 2. The plot of the correlation between the experimental and predicted activity of 

based Neuraminidase inhibitors using pharmacophore-based QSAR model of training and test 

set. 

The red zone has not been observed for hydrogen bonds; the blue cubes were localized 

around the N=C(NH2)2 groups. We observed a few red cubes near the NH of the two groups of 

N=C(NH2)2 for the hydrophobic interaction, also the blue cubes are observed around the aromatic 

ring, in all regions of the ethyl radical, methyl group, for all NH2 group, and the hydrogen atom of 

R2
pred r2 r2

0 r’20 K K' [r2-r2
0]/r2 [r2-r’20]/r2 r2

m 

0.9056 0.9088 0.9060 0.9071 0.9965 1.0020 0.0030 0.0018 0.8613 
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the aromatic ring. Only a blue area indicated for the negative ionic presented by the, C=O of the 

carboxylic acid group. In addition, the presence of the blue cubes around two NH2 of N=C(NH2)2 

group from the positively charged ionic groups, confirmed Neuraminidase inhibition. As for the 

electron-withdrawing groups, the red cubes near the carboxylic acid signified as   unfavorable area 

for inhibition activity. The appearance of blue cubes around the two N=C(NH2)2 groups in the 

most active compound contour plot revealed the preference for  the electron-withdrawing group at 

these  positions. Based on the above analysis, the QSAR model indicated that the substitution of 

different groups, such as hydrogen  bonds, positive and negative ionic, electron-withdrawing and 

hydrophobic groups, at N=C(NH2)2, C=O of carboxylic acid, hydrogen of the aromatic ring, and 

the ethyl group, play a significant role in the inhibitory activity. Substitution at the OH position of 

the carboxylic acid had no significant contribution to the inhibitory activity. A QSAR model 

visualized in the context of favorable and unfavorable effects on the most active compound is 

presented in Figure III. 3. 

 

 

  

 

 

 

 

 

 

 

 

Figure III. 3. Contour maps for 3D-QSAR model: (A) Hydrogen Bond, (B) Hydrophobic, (C) 

Negative ionic, (D) Positive ionic, (E) Electron-withdrawing, where blue cubes represent 

favorable areas and red cubes represent unfavorable areas. 

3.4 Virtual screening and docking studies 

Virtual Screening approaches play an important role in the discovery of novel bioactive 

compounds [27]. Initially, we selected the PubChem library to search for new potent 
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Neuraminidase inhibitors. We applied a similarity of 80% and the Lipinski filter to 415420 

compounds in our virtual screening process. In the next step, the pharmacophore model 

(ADDPR_4) was used to screen all the 415420 molecules. Following the screening process, all 

compounds with a fitness score more than 2.0 were subjected to docking study. Then we filtered 

to obtain 1927 compounds for the following phase. It includes docking of these hits and analysis 

of the docking scores using Glide/SP. The docking was completed with Glide tool on Maestro 11.8 

software. The details of virtual screening compounds are shown in Table III. 5. We used 

Zanamivir, clinically approved anti-influenza [28], as a reference ligand in our study. In the 

treatment of influenza, Neuraminidase inhibitors such as Zanamivir and Oseltamivir are more 

commonly used.  To estimate the inhibitory power of hits more thoroughly, we perform molecular 

docking for Oseltamivir with Neuraminidase. 

Table III. 5. All the interactions between top molecules and Zanamivir with the active site. 

CID H-Bond Distance (Å) Electrostatic Distance Hydrophobic Distance (Å) 

7013919

7 

Arg119, Arg153, 

Glu278, Glu279, 

Arg294, Arg372 

[1.6 – 2.7] 

 

 

Arg119, Asp152, 

Glu279, Arg294 

[3.7-5.0] Trp180, 

Ile224, 

Arg226 

[3.5-5.3] 

 

4442831

2 

Arg119, Arg153, 

Trp180, Glu229, 

Glu279, Arg294, 

Arg372 

[1.5 – 2.8] 

 

Arg119, Glu120, 

Asp152, Glu229, 

Glu279, Arg294 

[3.5 – 5.4] 

 

  

506047 Arg119, Arg153, 

Trp180, Glu278, 

Glu279, Arg294, 

Arg372 

[1.6 – 2.9] 

 

Arg119, Glu120, 

Asp152, Glu229, 

Glu278, Glu279, 

Arg294 

[3.2 – 5.5] 

 

  

3364666 Arg119, Arg153, 

Glu278, Arg294, 

Arg372  

[1.6 – 2.6] 

 

Arg119, Asp152, 

Glu279 

[3.7 – 5.1] 

 

  

5278285 Arg119, Glu120, 

Asp152, Arg153, 

Trp180, Glu229, 

Glu278, Arg294, 

Arg372 

[1.6 – 3] 

 

Arg119, Glu120,  

Glu229, Glu279, 

Arg294 

[4 – 5.1] 

 

   

Zanamiv

ir 

Arg119, Glu120, 

Asp152, Arg153, 

Trp180, Glu229, 

Glu278, Arg294, 

Arg372 

[1.6 – 3.1] 

 

Glu120, Glu229, 

Glu279, Arg294 

[4 – 5.1] 

 

  

Oseltami

vir 

Asp151, Glu229, 

Glu278, Glu279 

[1.7-3.1]     
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The docking score of Zanamivir and Oseltamivir complexes with Neuraminidase was -9.873 

and -6.244 kcal/mol respectively. The highest-scoring hit molecule was CID 70139197, with a 

binding energy of -11.549 kcal/mol. The second best-scored hit molecules was CID 44428312 

with a binding energy of -10.682 kcal/mol. Then it was followed by CID 506047, the third best hit 

molecule with a binding energy of -10.506 kcal/mol. Docking scores of the screened hits using 

Glide/SP, XP are represented in Table III. 6. 

Table III. 6. Docking scores of the selected hits and the Zanamivir. 

Compound Names 

CID 

SP Score (kcal/mol) XP Score (kcal/mol) Glide E Model 

70139197 

44428312 

506047 

3364666 

5278285 

Zanamivir 

-8.704 

-8.255 

-8.251 

-8.650 

-8.631 

-8.053 

-11.549 

-10.682 

-10.506 

-10.460 

-10.217 

-9.873 

-58.009 

-44.704 

-52.938 

-60.477 

-60.577 

-56.249 

Oseltamivir -5.506 -6.244 -68.653 

For the five hits molecules, we noticed similar interactions with the amino acids Arg119, 

Arg153, Arg294 and Arg372, by hydrogen bond interactions with a distance from 1.5 to 3.1 Å 

(Table 6). We also observed another interaction by hydrogen bonding between the three best 

molecules only with the amino acid Glu279. It confirms that the interaction with the amino acid 

(Glu279) plays a vital role in the inhibitory activity of Neuraminidase. Docking analysis indicated 

the best-hit molecule CID 70139197 interacted with the active site by hydrophobic interaction with 

the amino acids Trp180, Ile224, and Arg226 with a distance from 3.5 to 5.3 Å. It confirms the 

importance of this interaction for the inhibitory activity (Figure III. 4). 

 

 

 

 

 

 

Figure III. 4. The orientation of the hits molecules in the active site and hydrogen bonds and 

hydrophobic areas. 
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In general, we remarked a similarity of interactions for the five best molecules with the active 

site for electrostatic interactions observed between the hits molecules and the residues Arg119, 

Asp152, Glu279, and Arg294 (Figure III. 5). However, the molecule Zanamivir interacted with 

Glu120, Glu229, Glu279 and Arg294 amino acids from a distance of 4 to 5.1. Oseltamivir 

interacted with Asp151, Glu229, Glu278, Glu279 by hydrogen bond interactions only, at about the 

same distance (Figure III. 6). According to the results obtained by the Molecular Docking study, 

all hit molecules are more stable in the active site of Neuraminidase than Zanamivir and 

Oseltamivir. 

 

Figure III. 5. The binding interactions of the top hits with the active site of Neuraminidase, (a) 

CID 70139197, (b) CID 44428312, (c) CID 506047, (d) CID 3364666, (e) CID 5278285. 
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Figure III. 6. The binding interactions of the Zanamivir and Oseltamivir with the active site of 

Neuraminidase. 

3.5 Prediction of ADME 

The aqueous solubility and the permeability to the biological membranes are the two 

pharmacokinetic parameters responsible for optimal activity. According to SwissADME analysis, 

all hits presented consensus logPo/w values between -1.40 and 0.71 and Log S between     -0.03 and 

0.82. Therefore, the five hits molecules have the best aqueous solubility and good permeability to 

the biological membranes. The best-hit molecule (CID 70139197) and (CID 3364666) were 

estimated to have a high GI absorption, plasma proteins binding ability, good distribution, and 

acceptable elimination profile due to increased aqueous solubility. The bioavailability score for all 

hits was 0.55, more than 10%, and the predictions related to skin permeability (LogKp) showed 

values close to -10, as shown in Table III. 7. Finally, all pharmacokinetic parameters support 

Lipinski's guideline. 

Table III. 7. Pharmacokinetic and physicochemical parameters calculated by SwissADME. 

CID MW 

(g/mol) 

Consensus 

Log Po/w 
Log S Bioavailabilit

y  

GI 

absorption 

Cytochrome 

P450 inhibitor 

Log 

Kp 

Synthetic 

accessibility 

70139197 236.27 0.71 -0.37 0.55 High No -8.71 2.39 

44428312 256.28 -0.29 -1.03 0.55 Low No -8.31 3.05 

506047 291.31 -0.87 0.80 0.55 Low No -10.77 2.97 

3364666 238.24 -1.28 0.82 0.55 High No -10.09 2.03 

5278285 326.31 -1.40 -0.03 0.55 Low No -10.06 3.64 

3.6 Prediction of Toxicity 

The toxicity of the five hits predicted by ProToxII is presented in Table III. 8. In summary, 

five distinct undesirable drug effects, such as hepatotoxicity, immunotoxicity, carcinogenicity, 

mutagenicity, and cytotoxicity, were calculated for all selected top hits to predict potential toxicity. 

In addition, all of the five hits molecules presented calculated   LD50 between 1000 and 5000 

mg/kg, which is also a toxicity class of 4 to 5, which signifies low toxicity. 
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Table III. 8.  Toxicity prediction of the top hits molecules. 

CID Hepatotoxicity Carcinogenicity Immunotoxicity Mutagenicity Cytotoxicity LD50 Class 

70139197 Inactive Inactive Inactive Inactive Inactive 1782 4 

44428312 Inactive Inactive Inactive Inactive Inactive 5000 5 

506047 Inactive Inactive Inactive Inactive Inactive 1000 4 

3364666 Inactive Inactive Inactive Inactive Inactive 3918 5 

5278285 Inactive Inactive Inactive Inactive Inactive 1517 4 

3.7 Molecular dynamics study 

The present study aimed to investigate the stability of Neuraminidase (NA) and its 

complexes with CID 70139197 and CID 44428312 through molecular dynamics (MD) 

simulations. The MD simulations were carried out for 100 ns on a GPU system, and the trajectory 

data from the production MD phase were analyzed. The root-mean-square deviation (RMSD) was 

measured in relation to the initial conformations to determine the structural stability of the protein 

and its complexes. The results indicate that the RMSD of Neuraminidase initially varied briefly, 

but it was observed to stabilize following 15 ns of simulations. The NA_CID 44428312 complex 

was shown to be stable throughout the simulation, while the NA_CID 70139197 complex achieved 

structural stability after 5 ns of simulation. The RMSD plot of Neuraminidase and its complexes 

with CID 70139197 and CID 44428312 is presented in Figure III. 7. The average RMSD of the 

NA and its complexes with CID 70139197 and CID 44428312 were found to be 0.197, 0.168, and 

0.117 nm, respectively. The RMSD analysis clearly demonstrates that the Neuraminidase and its 

complexes with CID 70139197 and CID 44428312 are stable during the simulation for 100 ns. 

These findings provide valuable insights into the structural stability of Neuraminidase and its 

complexes and can be useful for the development of novel inhibitors against influenza virus. 

Figure III. 7.  Root-mean-square deviation (RMSD) analysis of the backbone atoms of 

Neuraminidase and its complexes with CID 70139197 and CID 44428312. 
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In this study, we evaluated the root-mean-square fluctuation (RMSF) of the C-alpha atoms 

of Neuraminidase (NA) and its complexes with CID 70139197 and CID 44428312, as depicted in 

Figure III. 8. The analysis showed that the RMSF of the C-alpha atoms of most atoms of NA and 

its complexes was less than 0.25 nm, indicating low atomic mobility and structural stability. 

Notably, the NA_CID 70139197 complex displayed higher fluctuation at atoms 995 of the NA 

protein, with an RMSF value of 0.35. This observation suggests that the interaction of the ligand 

with the protein induced conformational changes and increased the dynamics of the protein at that 

specific region. The RMSF plot shows the fluctuation of each ligand atom during the simulation 

period. Both ligands exhibit a similar dynamical shift towards the binding site of Neuraminidase, 

indicating a stable interaction with the protein. 

Figure III. 8. Root-mean-square fluctuation (RMSF) of the C-alpha atoms of Neuraminidase 

(NA) and its complexes with CID 70139197 and CID 44428312. A. RMSF of the C-alpha atoms 

of NA and its complexes. B. RMSF of the atoms of CID 44428312 and CID 70139197. 

In order to evaluate the stability of Neuraminidase (NA) and its complexes with CID 

70139197 and CID 44428312 during the 100 ns simulation period, we calculated the radius of 

gyration (Rg) of each system. Rg is a measure of the compactness of a molecule and is defined as 

the root-mean-square distance between each atom in a molecule and its center of mass. A decrease 

in Rg indicates a more compact structure, while an increase in Rg indicates a more extended 

structure. In Figure III. 9, we present the Rg values for each system plotted over the course of the 

simulation period. 

We observed that the Rg values for NA_CID 44428312 and NA_CID 70139197 remained 

similar throughout the simulation, indicating a stable interaction between the ligands and the 

protein. The average Rg values for NA, NA_CID 44428312, and NA_CID 70139197 were 1.967, 

0.324, and 0.323 nm, respectively. The average Rg values of the two complexes were less than 

A B 
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0.33 nm, which indicates a stable conformation of the protein-ligand complexes during the 

simulation period. This observation is consistent with the RMSD and RMSF analyses, which also 

demonstrated the stability of the complexes. Overall, our results suggest that both CID 70139197 

and CID 44428312 form stable complexes with NA and may have potential as lead compounds 

for drug development targeting Neuraminidase. 

 

 

 

 

 

 

 

 

Figure III. 9. Radius of gyration (Rg) of Neuraminidase and its complexes with CID 44428312 

and CID 70139197. 

To gain insight into the nature of the interaction between the ligands CID 44428312 and CID 

70139197 with the Neuraminidase, we analyzed the hydrogen bond profiles of the NA_CID 

44428312 and NA_CID 70139197 complexes, as depicted in Figure III. 10. Our analysis revealed 

that the NA_CID 44428312 complex formed an average of 8.4 hydrogen bonds during the 

simulation, while the NA_CID 70139197 complex formed an average of 5.2 hydrogen bonds. 

Figure III. 10. Hydrogen bond existence map of Neuraminidase complexes with CID 44428312 

and CID 70139197 during 100 ns of simulation. 
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The higher number of hydrogen bonds in the NA_CID 44428312 complex can be attributed 

to the presence of more polar functional groups in CID 44428312 as compared to CID 70139197. 

The polar functional groups in CID 44428312, such as hydroxyl and carbonyl groups, facilitate 

the formation of hydrogen bonds with the Neuraminidase, leading to a greater number of hydrogen 

bonds being formed and a stronger binding interaction. In contrast, CID 70139197 has fewer polar 

functional groups and therefore forms fewer hydrogen bonds with the protein. These results 

suggest that the hydrogen bonding interaction plays an important role in stabilizing the NA_CID 

44428312 complex and underscores the importance of considering the chemical properties of 

ligands when designing new drugs targeting the Neuraminidase. 

3.8 MMPBSA Analysis 

3.8.1 Analysis of NA_44428312 Complex 

The results of the MMPBSA analysis showed that the total binding free energy of the 

protein-ligand complex was -56.86 kcal/mol. The energetic contributions of different energy 

components were calculated (Figure III. 11), and it was found that the van der Waals interaction 

energy (-5.35 kcal/mol) and electrostatic interaction energy (-297.52 kcal/mol) were the major 

contributors to the binding free energy. The energy contributions from the other energy 

components, such as bond, angle, dihedral, 1-4 van der Waals, and 1-4 electrostatic interactions, 

were negligible. 

Figure III. 11. Delta energy components for MMPBSA calculations for the complex 

(NA_44428312), receptor (NA) and ligand (CID 44428312). 

 



 Chapter III 

 

51 

 

3.8.2 Analysis of NA_70139197 

The results of the MMPBSA analysis revealed that the total binding free energy of the 

protein-ligand complex was -12.2 kcal/mol. This value was calculated by summing up the average 

energy values of all the energy components of the system, which were obtained from the 

MMPBSA Delta calculation (Figure III. 12). Among the energy components, VDWAALS and 

EEL contributed the most to the total binding free energy, with average energy values of -15.24 

kcal/mol and -201.1 kcal/mol, respectively. 

Figure III. 12. Delta energy components for MMPBSA calculations for the complex 

(NA_70139197), receptor (NA) and ligand (CID 70139197). 

The energy components EPB and GSOLV also made significant contributions to the total 

binding free energy, with average energy values of 189.27 kcal/mol and 204.13 kcal/mol, 

respectively. On the other hand, the energy components BOND, ANGLE, and DIHED showed 

negligible contributions to the total binding free energy, with average energy values of 0 kcal/mol 

for all three components. 

The standard deviation of the energy values showed relatively low variability among the 

energy components, with the exception of EEL, GGAS, and VDWAALS, which had standard 

deviations of 15.55 kcal/mol, 14.08 kcal/mol, and 1.6 kcal/mol, respectively. The standard error 

of the mean (SEM) of the energy values was also calculated and showed that the SEM for most 

energy components was relatively low. However, the SEM values for EEL, GGAS, and 

VDWAALS were comparatively high, indicating a relatively higher level of uncertainty in these 

energy components. 
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In conclusion, the MMPBSA analysis provided insight into the contribution of various 

energy components to the total binding free energy of the protein-ligand complex. The results 

suggest that VDWAALS, EEL, EPB, and GSOLV are the key energy components that contribute 

significantly to the binding of the ligand to the protein. These findings can potentially be used to 

guide further optimization of ligand binding affinity and drug design. 

4. Conclusion 

The pharmacophore model (ADDPR 4) for Neuraminidase inhibitors was created in this 

paper, and then we built a 3D-QSAR model and estimated its predictive power. From the maps, 

we discussed the different chemical groups that increase the inhibitory activity of Neuraminidase. 

A virtual screening using the pharmacophore (ADDPR 4) was done to look for new molecules that 

inhibit Neuraminidase. The results obtained by the docking study demonstrated the significance 

of hydrogen bonds, hydrophobic, and electrostatic interactions. In addition, the interaction with 

the Glu279 amino acid of the active site is also highly significant for inhibitory activity. The 

ADME parameters of the five hits were comparable with those of known biologically active 

compounds. We also verified the safety of the five hits molecules. Finally, the stability of the best 

two compounds with Neuraminidase was verified by MD and MM-PBSA calculations and shown 

to be highly stable complexes throughout the entire simulation time. In conclusion, the hits 

acquired via virtual database screening have offered new vital points for developing novel 

Neuraminidase inhibitors. 
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1. Introduction  

The rapid development of influenza viruses is their most notable feature. Over 500,000 

people are expected to perish annually from this influenza epidemics worldwide [1]. Influenza 

viruses are distinct from other viruses, In terms of immunological variability, seasonality, and 

effects on the general population.  All age groups can experience explosive acute respiratory illness 

outbreaks, and many people die as a result, especially the elderly and chronically ill [2]. While 

vaccination is the major way for influenza prevention, there are a number of potential situations in 

which vaccine is ineffective, and effective antiviral medications are critical [3].  

Neuraminidase inhibitors are medications that block the activity of the viral Neuraminidase 

(NA) protein. The greatest strategy to control and prevent the infection has been to block sialic 

acid receptors and limit virus-host cell connections. This limits the migration of viruses and the 

infection of new host cells [4]. Neuraminidase inhibitors have a limited bioavailability and are 

given by inhalation, which might create complications in people with respiratory illness [5].  

Structure activity relationship (SAR) elucidates that ethyl ester prodrug 

in Oseltamivir improves bioavailability. In addition, the presence of the guanidino group in 

both Zanamivir and Peramivir analogs enhances the ionic interactions with Neuraminidase 

enzyme compared to the single amine moiety. On the other hand, phosphonic acid assists as 

suitable acid bond bioisosteres for the carboxylic acid group with improved selectivity, potency, 

and bioavailability. A comprehensive summary of the SAR is presented in Figure IV. 1. 

 

 

 

 

 

 

 

 

 

 

Figure IV. 1. SAR of Zanamivir, Peramivir and Oseltamivir drugs. 



 Chapter IV 

 

57 

 

Fragment-based drug design (FBDD) is a strategy for creating active molecules from 

fragments. FBDD frequently creates a molecule from a chemical fragment with a low binding 

affinity to the target, low chemical structural complexity, and low molecular weight (less than 300 

Da) [6]. These benefits have motivated researchers to use this strategy to produce inhibitors for 

many various types of targets. In addition, with increasing numbers of compounds created using 

FBDD entering various phases of clinical testing, this approach has gained widespread acceptance 

in drug discovery [7]. 

In the present investigation, we used in silico methodologies including fragment-based drug 

design, molecular docking, ADMET, MD simulation, and MM-PBSA calculations to identify 

effective and potential Neuraminidase inhibitors that could potentially be used to treat influenza 

infection. A computational study revealed ten compounds that successfully bind to Neuraminidase. 
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2. Computational Methods 

2.1. Protein and fragments preparation 

Firstly, the Protein Data Bank was accessed to acquire the crystal structure of Neuraminidase 

with Zanamivir, which has a resolution of 2.40 Å (PDB ID: 5L17) [8]. The Protein 

PreparationWizard panel tool of the Scrödinger software suite (Maestro, v 11.8), was executed to

 prepare the protein structure [9]. Using the OPLS3e force field, the geometry has been optimized 

and reduced. At pH of 7.0, partial atomic charges were assigned and potential ionization states 

were created.  The structure was then refined via constrained minimization, so that the atom 

junction had an RMSD default value of 0.3 Å [10]. The obtained structure was subsequently 

utilized to produce a receptor grid. In the next phase, the ZINC 20 database was employed to 

extract 29,791-fragment structures (https://zinc20.docking.org/tranches/home/). Furthermore, all 

saved fragments have a molecular weight of 200 Daltons and a partition coefficient (LogP) within 

-1 and 1. The LigPrep module of Schrödinger suite v 11.8 optimizes the 3D structures of fragments 

[11]. Following this step, each fragment can be examined with the Neuraminidase receptor via 

molecular docking investigation. 

2.2. Fragment linking and molecular docking studies 

In the last decade, fragment-based drug discovery (FBDD) has emerged as an effective tool 

for identifying therapeutic leads. The method discovers small molecules that are approximately 

half the size of traditional medications [12]. SP-docking was applied to dock all 29,791 fragments 

into the prepared active site of Neuraminidase, whereas all fragments with good docking scores 

were chosen for fragment linking. Figure IV. 2 illustrates the fragment-based drug design (FBDD) 

strategy used in the present study.  

Figure IV. 2. Fragment-based drug design (FBDD) strategy. 

https://zinc20.docking.org/tranches/home/
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The "combine fragments" tool from the Schrodinger module was employed for creating 

novel molecules by combining the fragments. The combine fragment tool generally combines 

fragments by identifying the possible connections that could be constructed between them [13]. 

During direct joining, the minimum bond angle variation was set to 15 degrees, the maximum 

atom-atom distance between fragments was kept at 1, the minimum fragment centroid distance 

was kept at 2 Å and the maximum number of fragment atoms was set to 200. In addition, the tool's 

default parameters were executed, with the maximum output of the newly generated structures 

being 100. The newly formed molecules, with Zanamivir and two neuraminidase clinical inhibitors 

(Peramivir and Oseltamivir) were docked within the active site of neuraminidase via the extra 

precision (XP-docking) function of Maestro’s Glide module. The Discovery Studio Visualizer was 

used to depict the interactions established between the novel compounds and the active sites of 

Neuraminidase [14]. 

2.3 ADMET prediction 

The objective of this phase was to look at the possibilities afforded by computer-assisted 

modeling for predicting absorption, distribution, metabolism and elimination of novel molecules. 

The most important goal of in silico ADME estimation is to accurately forecast the in vivo 

pharmacokinetics of a putative therapeutic molecule in man when it exists only as a virtual form 

[15]. ADME characteristics of each new compound, with a particular focus on solubility and 

absorbability, were estimated using SwissADME [16]. The ProToxII platform was adopted to 

evaluate the toxicity of the novel molecules, which estimates the hepatotoxicity, immunotoxicity, 

carcinogenicity, mutagenicity, cytotoxicity and LD50 values [17]. VEGA-QSAR v 1.2.3 was 

also used to predict total body elimination half-life and Plasma Protein Binding and other 

important parameters [18].  

2.4 Molecular dynamic simulation 

The strategy described in this paper include the specific processes required to conduct 

molecular dynamics simulations of the top four compounds with Neuraminidase receptor. These 

four novel compounds were chosen due their exceptionally high binding affinities with active site 

of Neuraminidase. The Gromacs-2023 was used to run molecular dynamics simulations for 100 

ns on Ubuntu operating system (v 24.04). The SwissParam server was implemented to construct 

the ligand topology files, and the protein topology file was prepared using the CHARMM27 all-

atom force field [19, 20]. Each system was then solvated by TIP3P water model and Na+ and Cl- 

ions were added to neutralize the charge. The solvated system was subsequently employed to 

minimize energy using the steepest descent minimization algorithm until the maximal force was 
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less than 10.0 kJ/mol. Over the NVT equilibration process, the system was coupled using a v-

rescale algorithm at 300 K for 100 ps with a coupling value of 0.1 ps [21]. The NPT was then 

equilibrated via a Berenson pressure-coupling tool for 100 ps and a coupling constant of 2.0 ps, 

following the equilibration phases, the production MD simulation with the CHARMM27 force 

field was run for 100 ns [22]. 

To understand more about of the formed complexes with Neuraminidase receptor such as 

the stability, compactness, flexibility and binding affinity, the MD simulation details were 

analyzed. The RMSD was measured during the simulation to assess the structural stability of the 

protein-ligand complexes, and RMSF is used to evaluate the flexibility of the protein residues. The 

Rg was calculated to evaluate the protein-ligand complexes compactness. During 100 ns of 

simulation, hydrogen bond analysis was executed to look for the hydrogen bonding established 

between the protein and ligand. In addition, solvent accessible surface area (SASA) were 

calculated to assess the stability of Neuraminidase and their four complexes. Finally, The Grace 

software have been utilized for examining the simulation trajectories [23]. 

2.5 MM-PBSA Calculations 

In the current study, we examined the binding energy of the four new compounds and 

Zanamivir within Neuraminidase receptor. The binding free energy (ΔGbind) analysis was 

performed using the molecular mechanics Poisson-Boltzmann surface area (MM- PBSA) approach 

included in the gmx_mmpbsa package [24]. The binding-free energy must have been calculated as 

follows: [25] 

ΔGbind = Gcomplex – (Gprotein + Gligand) 

Where ΔGbind is the total binding energy of the complex, Gcomplex is the binding energy of native 

protein, and Gligand is the binding energy of ligand. 

2.6 Reaction Based Enumeration 

Another Schrödinger process is reaction-based enumeration, which use a retro-synthesis 

approach to determine the synthetic route of any chemical compounds [26]. The reaction-based 

enumeration phase requires each of the best four designed Neuraminidase inhibitors as inputs.  

This generative phase analyzes the input molecules retro-synthetically, followed by combinatorial 

synthesis of the ensuing reaction pathways [27]. In addition, all routes for each input designed 

molecule are enumerated using commercially reactant. 

3. Results and Discussion 

3.1. Fragment-based drug design and molecular docking  
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In order to generate novel Neuraminidase inhibitors that combine the physicochemical 

features of various fragments obtained from the ZINC 20 library, fragment-based drug design 

(FBDD) approach was adopted. Following the preparation of 29,791 fragments via the LigPrep 

module, the Glide standard precision algorithm (SP-docking) was utilized to dock them within 

active site of Neuraminidase. Immediately following the SP-docking process, the best 270 

fragments attended docking scores greater than -7.6 kcal/mol. In the next phase, these top 

fragments are joined employing Schrödinger's "combine fragments panel" to generate 100 new 

compounds. The molecule hits and Zanamivir, and two other clinical Neuraminidase inhibitors 

(Peramivir and Oseltamivir), were prepared using the LigPrep module with the identical settings 

to evaluate their inhibitory power via extra precision algorithm (XP-docking) of Glide. Figure IV. 

3 shows the chemical structures of the 10 best-discovered molecules via fragment-based drug 

design (FBDD) methodology with constituent fragments. 

Figure IV.  3. Chemical compositions of the top 10 compounds identified through the fragment-

based drug design process and their constituent fragments. 
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Figure IV. 4 briefly compares the SAR of the best five hybrids with the Zanamivir drug and 

highlights the crucial functional group in the drug-target interactions. Removing or displacing the 

hydroxyl group in compounds 4 and 5 would diminish the affinity. In addition, compounds 4 and 

5 disclosed lower affinity after replacing the amine side chains with triazole and pyrazole, 

respectively. 

Figure IV. 4. Summary of structure-activity relationships of the best five hit inhibitors. 

Peramivir and Oseltamivir are currently assess as a combined therapy for severe influenza 

virus infections in people [28]. The discovered 10 molecules reflect higher docking scores 

(between -14.626 and -13.813 Kcal/mol) than Zanamivir, Peramivir, and Oseltamivir (-9.848, -

8.848, and -6.326 Kcal/mol, respectively). The amino acids Arg119, Glu120, Asp152, Glu278, 

Arg294, Arg372, and Tyr406 compose the active site of Neuraminidase [29]. The first information 

acquired by docking investigation, demonstrates that the 10 new compounds have interacted with 

the active site of Neuraminidase. Furthermore, nine hydrogen bonds are formed by the best 

molecule (Molecule 01) with the amino acids Arg119, Glu120, Asp152, Trp180, Glu229, Glu278, 
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Glu279, Arg294 and Arg372 over a distance of 1.54 to 3.03 Å, Which specifies the important role 

of the hydrogen bond interaction for the inhibitory activity of vital function of Neuraminidase. The 

second molecule (Molecules 02), established ten hydrogen bond with the amino acids Arg119, 

Glu120, Asp152, Arg153, Trp180, Glu229, Glu278, Glu279, Arg294 and Arg372 at a distance 

between 1.59 and 2.99 Å.  With two additional amino acids Ans296 and Tyr406, the third molecule 

(Molecule 03) interacts via the same mode as the second molecule. 

The fourth molecule (Molecule 04) specifically interacts with the Neuraminidase receptor 

by forming eleven hydrogen bonds with the amino acids Arg119, Glu120, Asp152, Arg153, 

Trp180, Glu229, Glu278, Glu279, Arg294, Arg372, and Tyr406, and by interacting 

hydrophobically with Arg153 and Arg226 at a distance among 1.58 and 5.02 Å. The rest-generated 

compounds have the same interactions with the active site of Neuraminidase as the top four 

molecules. The results of the molecular interactions are summarized in Table IV. 1. Our findings 

on the molecular interactions formed by the ten designed molecules and Neuraminidase receptor 

are agree with results reported by Gracy Fathima and colleagues [31]. 

Finally, the 10 designed molecules form highly stable complexes with the active site of 

Neuraminidase compared to Zanamivir and the clinical inhibitors (Peramivir and Oseltamivir). 

These optimistic findings are beneficial to researchers working on developing new and potent anti-

influenza medications. Figure IV. 5 illustrates the interactions of the ten designed compounds and 

Zanamivir within Neuraminidase receptor. All newly designed compounds were selected for 

ADMET and molecular dynamics simulation examinations. 
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Table IV. 1. Docking results of the designed inhibitors and reference ligands. 

 

 

 

 Molecule XP Score (Kj/mol) H-bond Distance Hydrophobic Distance 

 

Molecule 01 

 

-14.626 

 

Arg119, Glu120, Asp152, 

Trp180, Glu229, Glu278, 

Glu279, Arg294, Arg372 

 

[1.54 - 3.03] 

 

- 

 

- 

 

Molecule 02 

 

-14.617 

 

Arg119, Glu120, Asp152, 

Arg153, Trp180, Glu229, 

Glu278, Glu279, Arg294, 

Arg372 

 

[1.59 - 2.99] 

 

- 

 

- 

 

Molecule 03 

 

-14.514 

Arg119, Glu120, Asp152, 

Arg153, Trp180, Glu229, 

Glu278, Glu279, Arg294, 

Asn296, Arg372, Tyr406 

 

[1.61 - 3.07] 

 

- 

 

- 

 

Molecule 04 

 

-14.341 

Arg119, Glu120, Asp152, 

Arg153, Trp180, Glu229, 

Glu278, Glu279, Arg294, 

Arg372, Tyr406 

 

[1.58 - 2.87] 

Arg153, 

Arg226 

[2.04 ; 5.02] 

 

Molecule 05 

 

-14.112 

Arg119, Glu120, Asp152, 

Trp180, Glu229, Glu278, 

Glu279, Arg294, Arg372, 

Tyr406 

 

[1.66 - 2.87] 

 

- 

 

- 

 

Molecule 06 

 

-13.890 

Arg119, Asp152, Trp180, 

Glu229, Glu278, Glu279, 

Arg294, Arg372, Tyr406 

 

[1.63 - 1.97] 

 

Arg153 

 

[5.34] 

 

Molecule 07 

 

-13.890 

Arg119, Glu120, Asp152, 

Trp180, Glu229, Glu278, 

Glu279, Arg294, Arg372, 

Tyr406 

 

[1.66 - 2.56] 

 

- 

 

 

 

- 

 

Molecule 08 

 

-13.865 

Arg119, Glu120, Asp152, 

Arg153, Trp180, Glu229, 

Glu278, Arg294, Arg372, 

Tyr406 

 

[1.54 - 2.82] 

 

Arg226 

 

[5.73] 

 

Molecule 09 

 

-13.861 

Arg119, Glu120, Asp152, 

Arg153, Trp180, Glu229, 

Glu278, Glu279, Arg294, 

Arg372 

 

[1.54 - 2.82] 

 

- 

 

- 

 

Molecule 10 

 

-13.813 

Arg119, Glu120, Asp152, 

Trp180, Glu229, Glu278, 

Glu279, Arg294, Arg372, 

Tyr406 

 

[1.62 - 2.83] 

 

Ala248 

 

[4.10] 

 

Zanamivir  

-9.848 

Arg119, Asp152, Arg153, 

Trp180, Glu229, Glu278, 

Arg294, Arg372, 

 

[1.72 - 2.77] 

 

- 

 

- 

Peramivir -8.848 Arg119, Asp152, Arg153, 

Trp180, Glu229, Glu279, 

Arg294, Arg372, 

 

[1.14 - 2.71] 

 

Ile224 

 

[4.39] 

 

Oseltamivir -6.326 Asp152, Glu278, 

Glu279, Arg294, Arg372, 

[1.79 - 3.17] - - 
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Figure IV. 5. 2D diagram of the designed inhibitors and Zanamivir within Neuraminidase 

receptor. 
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3.2. ADMET and bioavailability 

The solubility and permeability to biological membranes comprises two of the most essential 

pharmacokinetic characteristics. For each designed compounds, we calculated the partition 

coefficient (LogP) and aqueous solubility (LogS). According to the SwissADME details, the hit 

molecules had LogP values ranging from -4.22 to -1.66, showing the ability of these 10 molecules 

to permeate the biological membranes (good distribution). In terms of the solubility in water 

(LogS), the designed compounds are extremely soluble in aqueous milieu, and aiding 

gastrointestinal absorption (good absorption), with LogS values ranging from 1.58 to 3.42. 

However, due to this solubility, renal elimination will be simple and quick (elimination efficacy). 

Table IV. 2, combines the pharmacokinetic features computed employing the SwissADME 

website. The generated compounds had the same bioavailability score (0.55), confirming the 

favorable pharmacokinetic profiles (good absorption and distribution). The ten compounds 

permeated the skin, having Logkp values ranging from -13.80 to -11.37 cm/s, indicating tissue 

affinity for the molecules developed. In addition, with the exception of molecule 4, the molecule 

hits follow Lipinski's rule. Furthermore, none of the proposed compounds inhibits the activity of 

liver enzymes (Cytochromes P450). Finally, in order to estimate the inhibitory activity of designed 

molecules in vitro and in vivo, their synthesis in a chemical laboratory will be very simple 

(synthetic accessibility values between 3.32 and 4.71). 

Table IV. 2. ADME features of newly designed compounds and drug-like characteristics. 

The ProToxII results (Table IV. 3) reveal that all of the compounds generated are safe. The 

prediction of hepatotoxicity, carcinogenicity, Immunotoxicity, Mutagenicity and Cytotoxicity for 

the novel designed Neuraminidase inhibitors was inactive, indicating no toxicity for these 

molecules. The predicted LD50 values vary from 300 to 3000 mg/kg, while the toxicity classes 

Molecule MW 
(g/mol) 

LogP LogS 
(ESOL) 

Bioavailability 

Score 
CYP450 

inhibitors 

LogKp 
cm/s 

Synthetic 

accessibility 

Lipinski 

Molecule 01 318.37 -2.30 2.55 0.55 No -12.42 3.51 Yes 

Molecule 02 304.34 -2.60 2.76 0.55 No -12.47 3.40 Yes 

Molecule 03 354.34 -3.28 2.95 0.55 No -13.48 4.71 Yes 

Molecule 04 322.26 -4.22 3.42 0.55 No -13.80 4.48 No 

Molecule 05 326.39 -2.49 1.96 0.55 No -12.11 3.99 Yes 

Molecule 06 310.29 -2.91 3.05 0.55 No -12.88 3.91 Yes 

Molecule 07 260.33 -2.25 2.16 0.55 No -11.37 3.32 Yes 

Molecule 08 331.37 -3.23 2.54 0.55 No -12.57 3.48 Yes 

Molecule 09 300.31 -3.16 2.31 0.55 No -12.06 3.80 Yes 

Molecule 10 331.45 -1.66 1.58 0.55 No -11.35 3.91 Yes 
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ranging from 03 to 05. These findings supported the notion that the designed compounds can be 

promising new Neuraminidase inhibitors candidates. 

Table IV. 3. Evaluation of safety profiles and Predicted LD50 of newly designed molecules. 

 

Using VEGA QSAR, we examined the Developmental Toxicity model, Skin Irritation, 

Plasma Protein Binding, Hepatic Steatosis, and Total Body Elimination Half-Life to properly 

assess probable the potential toxicity (Table IV. 4). All compounds had plasma protein binding 

values ranging from -1.288 to 0.401. Furthermore, none of the designed Neuraminidase inhibitors 

contributes to hepatic steatosis. In addition, because their total body elimination half-life ranges 

between 0.910 and 2.538 hours, renal elimination of these molecules will be very simple. 

Table IV. 4. Evaluation of safety profiles of the designed Neuraminidase inhibitors using VEGA 

QSAR. 

 

 

 

Molecule Hepatotoxicity Carcinogenicity Immunotoxicity Mutagenicity Cytotoxicity LD50(mg/kg) class 

Molecule 01 Inactive Inactive Inactive Inactive Inactive 1800 04 

Molecule 02 Inactive Inactive Inactive Inactive Inactive 1800 04 

Molecule 03 Inactive Inactive Inactive Inactive Inactive 500 04 

Molecule 04 Inactive Inactive Inactive Inactive Inactive 2700 05 

Molecule 05 Inactive Inactive Inactive Inactive Inactive 300 03 

Molecule 06 Inactive Inactive Inactive Inactive Inactive 3000 05 

Molecule 07 Inactive Inactive Inactive Inactive Inactive 2000 04 

Molecule 08 Inactive Inactive Inactive Inactive Inactive 2000 04 

Molecule 09 Inactive Inactive Inactive Inactive Inactive 1500 04 

Molecule 10 Inactive Inactive Inactive Inactive Inactive 2700 05 

Molecule Developmental 

Toxicity model 

Skin Irritation 

 

Plasma Protein 

Binding 

Hepatic 

Steatosis 

Total body 

elimination half-

life (hour) 

Molecule 01 Non-Toxicant NON-Sensitizer -0.9323 Inactive 1.436 

Molecule 02 Non-Toxicant NON-Sensitizer -1.0059 Inactive 1.209 

Molecule 03 Non-Toxicant NON-Sensitizer -0.9572 Inactive 2.261 

Molecule 04 Non-Toxicant NON-Sensitizer -1.0477 Inactive  0.910 

Molecule 05 Non-Toxicant NON-Sensitizer -1.0705 Inactive 2.538 

Molecule 06 Non-Toxicant NON-Sensitizer -0.9082 Inactive 1.805 

Molecule 07 Non-Toxicant NON-Sensitizer -1.288 Inactive 2.484 

Molecule 08 Non-Toxicant NON-Sensitizer -1.195 Inactive 1.077 

Molecule 09 Non-Toxicant NON-Sensitizer -1.0392 Inactive 1.100 

Molecule 10 Non-Toxicant NON-Sensitizer 0.401 Inactive 1.100 
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3.3 Molecular dynamic simulation (MDS) 

At this phase, the top four designed Neuraminidase (NA) inhibitors (Molecule 01_04) and 

Zanamivir were selected for molecular dynamics simulation investigation. MD simulation is a 

crucial tool to examine the dynamic stability, and development of intermolecular interactions of 

docked protein-ligand complexes in the discipline of drug design via computational strategies 

(Sanjay et al., 2020). We ran the simulation for 100 ns in order to evaluate the stability of each 

system, by computing the root mean square deviation (RMSD), root mean square fluctuations 

(RMSF), radius of gyration (Rg), hydrogen bond (H-bond) formed between the designed 

molecules with Neuraminidase receptor, and solvent available surface area (SASA). 

3.3.1 RMSD and RMSF analysis 

The RMSD values of the generated molecules (Molecule 01–04) within the Neuraminidase 

receptor are an estimation of their stability. This metric indicates the change in atomic locations 

with respect to their original beginning positions, reflecting the magnitude of molecular 

configuration modifications during the simulation. The average RMSD values of NA_Molecules 

01-04 complexes were determined and compared to NA_Zanamivir complex, and were found to 

be between 0.116 and 0.254 nm, while the average RMSD of NA_Zanamivir complex is 

equivalent to 0.174 nm. On the other hand, the average RMSD of Neuraminidase alone was 0.191 

nm as shown in Figure IV. 6. 

Figure IV. 6. The relative stability of the designed inhibitors with Neuraminidase receptor based 

on average root-mean-square deviation (RMSD). 
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The RMSD analysis revealed a small deviation in the NA_Molecule 01 complex that 

continually grew up to 15 ns, followed by a constant atomic movement until 38 ns, before 

significantly increasing up to 73 ns and stabilizing after 86 ns. Likewise, for the NA_Molecule 02 

complex, a slight deviation is noticed between 0 ns and 30 ns and stays rather stable for the 

remainder of the simulation time (30 to 100 ns). The average RMSD for backbone atoms of 

NA_Molecule 03, NA_Molecule 04 complexes had been 0.172 and 0.116 nm, suggesting that the 

Molecules 03, 04 establish very stable complexes within Neuraminidase receptor during 100 ns of 

simulation, and they also reflect the aptitude of remaining identified molecules to cause minor 

conformational changes along the interactions with Neuraminidase receptor during 100 ns of 

simulation. This shows that the binding of molecules 03 and 04 to the active site of Neuraminidase 

generated specific modifications in the residues that define the binding site, suggesting relaxation 

in comparison to the initial X-ray structure utilized in simulations. In addition, the trajectory's 

visual examination supports the stability of each system. It's worth noting that the RMSD curves 

for all protein complexes were within the acceptable range. The results of this study provide light 

on the fundamental stability of Neuraminidase in the presence of the proposed inhibitors and could 

prove crucial in the generation of new inhibitors against influenza virus. 

The root mean square fluctuation (RMSF) is a measure of the residual mobility of amino 

acids. If the amino acid residues have higher RMSF values, this signifies that the active site is 

unstable. However, a stable receptor is indicated by low RMSF values of amino acid residues [31]. 

The average RMSF values of Neuraminidase and its complexes was found to be less than 0.128 

nm, demonstrating the small molecular mobility and structural stability. Moreover, they were able 

to form stable interactions with the Neuraminidase receptor. The overall average RMSF values of 

Neuraminidase amino acid residues has been calculated for Molecule 01-04 and Zanamivir and 

were 0.110, 0.110, 0.128, 0.102 and 0.136 nm respectively (Figure IV. 7).   

Figure IV. 7. The relative stability of the designed inhibitors with Neuraminidase receptor based 

on root-mean-square fluctuations (RMSFs). 
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Particularly, the NA_Molecule 01 and NA_Molecule 04 complexes attended higher 

fluctuation at atoms 1000 and 5890 of Neuraminidase protein, with an RMSF value of one nm. 

The RMSF values of each system, including NA, displayed some changes, which indicated a 

dynamical change from their original configuration. Furthermore, the fluctuation profiles of the 

every system were identical with that of the Neuraminidase alone, indicating the stability of the 

four complexes.  This finding implies that the interaction of Molecules 01 and 04 with the active 

site of Neuraminidase caused a structural transformation. Ultimately, the privilege of RMSF study 

sheds light on the dynamics of the Neuraminidase and its complexes with the proposed 

compounds, which could potentially be used to the design of possible Neuraminidase inhibitors. 

3.3.2 Radius of Gyration (Rg) Analysis 

Radius of gyration is a measure of structural compactness and stability. The average radius 

of gyration values of the Neuraminidase complexed with Zanamivir and the designed compounds 

(Molecule 01-04) are 1.980, 2.020, 2.020, 1.999, 1.997 and 1.980 nm respectively. In addition, the 

similarity of these values indicates the stability of each designed molecule within Neuraminidase 

receptor with the absence of the structural change. Consequently, the majority of proposed 

compounds formed compact and stable complexes with the Neuraminidase receptor when 

compared to the therapeutic inhibitor of Neuraminidase (Zanamivir). The current finding is 

compatible with the RMSD and RMSF investigations, which also revealed the stability of these 

systems. We provided the Rg values for each system plotted over 100 ns of simulation in Figure 

IV. 8. 

Figure IV. 8. Radius of gyration (Rg) of Neuraminidase and its complexes with Molecule 01-10, 

including Zanamivir. 
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3.3.3 Hydrogen Bonds Analysis 

In this stage, hydrogen bonds constructed between Neuraminidase receptor and the designed 

molecules (01-04) can be used for evaluating the stability of the formed complexes. The number 

of hydrogen bonds during 100 ns was computed and plotted in Figure IV. 9.  

Figure IV. 9. Number of hydrogen bonds formed during 100 ns of simulation between NA, 

designed molecules and Zanamivir. 

Throughout 100 ns of simulation, the NA_Molecule 04 complex had an average hydrogen 

bond number of 14.24, following that, the NA_Zanamivir complex attended an average hydrogen 

bonds of 14.09. NA_Molecule 01-03 complexes showed average H-bonds of 12.71, 13.05, and 

14.03, respectively. This finding suggests that the hydrogen bonds generated between the active 

site of Neuraminidase and the developed molecules were dynamic in composition. The lack of a 

hydrogen bond between Neuraminidase receptor and the two molecules (Molecule 01 and 02) may 

be due to the interaction of solvent molecules with the binding sites, which weakens the hydrogen 

bond. The H-bonds analysis reflects the stability of designed molecules with the active site of 

Neuraminidase, and a bigger number of hydrogen bonds is seen in the Molecule 04.  

3.3.4 Solvent accessible surface area (SASA) analysis 

Solvent Accessible Surface Area predicts the dynamics changes that take place over the time 

of the interactions. The average SASA value for NA_Zanamivir complex was 162.38 nm2 (Figure 

IV. 10). While the average SASA values of NA_Molecule 01-04 complexes were 163.22, 158.57, 

160.45 and 159.42 nm2 respectively. These computations identified that the NA_Molecule 02 

complex was the least impacted by the water solvent throughout the molecular dynamic 

simulations, followed by the NA_Molecule 04 complex, indicating that these complexes are 

considerably more stable in nature than the remainder of the investigated complexes.  
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Finally, this similarity helps to explain the behavior of designed Neuraminidase inhibitors 

within the active site of Neuraminidase as well as the creation of a stable binding during 

interactions. Table IV. 5 illustrates the average values collected via MDS study for all formed 

complexes. 

Figure IV. 10. Solvent accessible surface area (SASA) for all complexes during 100 ns of 

simulation. 

Table IV. 5.  The average values collected via MDS, including RMSD, RMSF, Rg, H-bonds and 

SASA. 

 

3.4. MM-PBSA analysis 

The binding free energy of NA_Zanamivir complex and the four complexes (Neuraminidase 

Molecule 01-04) were calculated via Gromacs software using molecular dynamics trajectories and 

the MM-PBSA method. The calculated total binding free energy comprises the van der Waals 

interactions (ΔEVDW), electrostatic interactions (ΔEEEL), non-polar interactions in a solvated 

system (ΔEPB), non-polar contribution of repulsive solute-solvent interactions to the solvation 

Complex Average RMSD 

(nm) 

Average RMSF 

(nm) 

Average Rg  

(nm) 

Average H-bonds 

(nm) 

SASA 

(nm2) 

NA_Molecule 01 0.254 0.110 2.020 12.71 163.22 

NA_Molecule 02 0.252 0.110 2.002 13.06 158.57 

NA_Molecule 03 0.172 0.128 1.999 14.03 160.45 

NA_Molecule 04 0.166 0.102 1.997 14.24 159.42 

NA_Zanamivir 0.174 0.136 2.005 14.09 162.38 

NA 0.191 0.071 1.980 - 202.32 
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energy (ΔENPOLAR), total gas phase molecular mechanics energy (ΔGGAS), and total solvation 

energy (ΔGSOLV). The purpose of this investigation was to confirm the affinity of the designed 

compounds for the Neuraminidase receptor. Furthermore, a higher affinity for Neuraminidase 

produces a higher negative binding energy. All the generated compounds form more stable 

complexes with the active site of Neuraminidase than the clinical inhibitor Zanamivir. The total 

binding energies of the four complexes were found between -107.85 and -83.50 KJ/mol (Table 

IV. 6), whereas the NA_Zanamivir complex has a binding free energy of -65.63 KJ/mol.  

Table IV.  6. Table representing the ΔEVDW, ΔEEEL, ΔEPB, ΔENPOLAR, ΔGGAS, ΔGSOLV and binding 

energy for Neuraminidase_Molecule 01-04 and Zanamivir complexes. 

Finally, in this phase the electrostatic interactions are the most important contributors to 

binding energy. The graphic representation of each calculated total binding energy is shown in 

Figure IV. 11. 

Figure IV. 11. Graphic representation of total binding energies of the five systems. 

All of these outcomes are in line with previous investigations, particularly the docking study, 

since the proposed compounds form exceptionally stable complexes with Neuraminidase and are 

capable of inhibiting its vital function. Additionally, snapshots of all four complexes were 

Protein-Ligand 

Complexes 

ΔEVDW 

(KJ/mol) 

ΔEEEL 

(KJ/mol) 

ΔEPB 

(KJ/mol) 

ΔENPOLAR 

(KJ/mol) 

ΔGGAS 

(KJ/mol) 

ΔGSOLV 

(KJ/mol) 

ΔTOTAL 

(KJ/mol) 

NA_Molecule 01 -4.21 -607.36 531.53 -3.46 -611.57 528.07 -83.50 

NA_Molecule 02 -2.35 -646.29 544.45 -3.31 -648.64 541.14 -107.50 

NA_Molecule 03 -2.58 -547.85 460.35 -3.64 -550.43 456.71 -93.71 

NA_Molecule 04 -1.06 -570.97 467.41 -3.22 -572.04 464.19 -107.85 

NA_Zanamivir -17.04 -306.72 261.63 -3.49 -323.76 258.13 -65.63 
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collected every 30 ns (30 ns, 60 ns, 100 ns). The binding poses of every complex prove their 

stability over 100 ns of simulation (Figure IV. 12). 

Figure IV. 12. Binding poses of the four complexes (NA_Molecule 01-04) over 100 ns of 

simulation. 

3.5 Reaction Based Enumeration 

At this point, we predicted the synthetic route of the proposed Neuraminidase inhibitors 

(Molecule 01-04) via reaction-based enumeration. The reaction enumeration tool revealed that the 

amide coupling and alkylation reactions were possible to be used to synthesize the four generated 

compounds. Figure IV. 13, depicts the synthetic route of the proposed compounds (Molecule 01-

04) obtained through reaction-based enumeration process. 
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Figure IV. 13. Predicted synthetic pathway of the four designed Neuraminidase inhibitors 

(Molecule 01-04). 

4. Conclusion 

The present research employed a fragment-based drug design (FBDD) process to develop 

effective drugs for influenza by inhibiting the biological function of Neuraminidase. The highest-

scoring fragments were selected for fragment linking for generating novel Neuraminidase 

inhibitors. We were able to acquire ten new neuraminidase inhibitors at the conclusion of the 

design process. The docking outcomes proved that the ten proposed compounds form extremely 

stable complexes with the neuraminidase receptor when compared to the clinical Neuraminidase 

inhibitors (Zanamivir, Peramivir, and Oseltamivir). The analysis of pharmacokinetics and 

potential toxicity reveals that the ten compounds have favorable pharmacokinetic profiles. The 

molecular dynamics simulation for 100 ns demonstrated that the top four molecules (Molecule 01-

04) were highly stable within Neuraminidase receptor. Furthermore, MM-PBSA calculations 
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displayed that these complexes were more stable throughout the simulation time compared to the 

NA_Zanamivir complex. All of these findings verified the strong affinity between the proposed 

compounds and the active site of Neuraminidase. This finding will aid in the creation of effective 

Neuraminidase inhibitor medications for the treatment of influenza, and it may provide researchers 

with an opportunity to investigate these compounds for the treatment of influenza infection. 
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1. Introduction 

Influenza virus infection, an acute respiratory ailment. It frequently manifests in global 

outbreaks and epidemics, primarily coinciding with the winter season. Substantial quantities of 

influenza viral particles are discernible within the respiratory excretions of afflicted individuals 

[1, 2]. Managing influenza continues to pose challenges, demanding a comprehensive 

understanding of available pharmaceuticals and the viability of combination treatments. Effective 

drug selection hinges on factors including patient age, overall health, and heightened susceptibility 

to potential complications [3]. Currently, the FDA has approved just two classes of medications 

for the treatment of different influenza strains and subtypes: matrix-2 (M2) protein ion channel 

blockers (such as Amantadine and Rimantadine) and Neuraminidase (NA) inhibitors (such as 

Zanamivir and Oseltamivir) [4].  

Neuraminidase (NA) is a glycoprotein present on the surface of influenza viruses, 

particularly those of the A and B types. It plays a critical role in the viral life cycle and contributes 

to the virus's ability to infect and spread within a host organism. One of the key functions of 

Neuraminidase is related to the virus's escape from infected cells and its spread to new cells. This 

is particularly evident during the late stages of viral replication and is related to its enzymatic 

activity [5]. NAIs are now the most frequently recommended anti-influenza drugs. They have been 

demonstrated to be effective in accelerating virus clearance, shortening clinical illness period, and 

reducing hospital stay and death [6, 7].  

In this manuscript, we conducted an in silico study using a BREED-based de novo 

hybridization strategy to generate novel Neuraminidase inhibitors. Using structural information 

and the known positions of two ligands, the BREED De Novo method reconstructs fragments from 

each ligand to create a new ligand [8]. Via a bond-matching and fragment-swapping system similar 

to Ho and Marshall [9]. 

The current study aimed to estimate the pharmacokinetic properties, the potential toxicity, 

and we investigate the stability of complexes by dynamics simulation and MM-PBSA calculation 

for newly breed Neuraminidase inhibitors molecules. 
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2. Materials and Methods 

2.1 Breed De Novo Hybridization Approach 

In this step, we used Maestro software (Maestro, version 11.8, 2018, Schrödinger, New 

York, NY, USA). In breed-based de novo drug design, co-crystalized compounds from diverse 

PDB structures or well-known inhibitors against a particular target must be used [8]. Numerous 

Neuraminidase inhibitors from the literature were gathered for this investigation (Figure V. 1) 

[10]. The LigPrep module, which created the low-energy ligand conformer using the OPLS3e 

force field [11], optimized the 3D structures of 30 compounds. Diverse fragments were produced 

from these structures using the run.\fragment_molecule.py program at the Schrödinger PowerShell 

command line with the appropriate input and output folders.  

 

 

 

 

 

 

 

 

 

Figure V. 1. Breed-based de novo hybridization strategy. 

The fragments were docked into the active site of the receptor using SP docking, and the 

best-scoring fragments were combined using the Breed Ligand Creation Panel [8]. A breed panel, 

utilizing three different settings, hybridized the molecule. It should be recalled that two bonds must 

be of the same order to start and maintain the hybridization (geometry) of the bonded atoms in the 

new molecule. Additionally, the atoms at the bond ends need to be close to one Å of another [8]. 

According to Pierce et al. [8], the angle between the bond vectors of two bonds cannot be greater 

than 15°. The first half of molecule one and the second half of molecule two combine to form a 

new molecule if the initial molecules are divided in half at the matching bond. The other new 

molecule is created by joining the first half of molecule two and the second half of molecule one. 

The atom types, sites, and bonds of the new molecules are identical to those of the corresponding 
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atoms [9]. The procedure for drug discovery, in general, is a difficult challenge for organic 

chemists due to the complexity of the pharmacophore feature that increases the properties and 

efficiency of a drug [12]. Chemists commonly use their specialized knowledge and carry out 

compound tweaking by hand by adding and removing functional groups. Nevertheless, chemists 

must carry out each alteration step by hand even if they use methods that forecast the ideal 

chemical attributes. Every iteration of this process might take many hours, and there might still be 

no promising candidate medication [8]. The breed-based de novo hybridization approach used in 

this investigation is shown in Figure V. 2. 

Figure V. 2. The structures of compounds utilized in this research. 
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2.2 Molecular Docking Study 

The crystal structure of Neuraminidase with Zanamivir was downloaded from the Protein 

Data Bank (PDB ID: 5L17) with a resolution of 2.40 Å and zero mutations [13]. The “protein 

preparation wizard” in Maestro 11.8 was used to prepare proteins. Hydrogen was added following 

verification of the chemical accuracy. 

The process of energy minimization was used to create a protein with a lower energy state 

with the help of the OPLS3e force field (optimized potential for liquid simulation) [14]. The grid 

was constructed using the default box dimension in the SP-docking study. For extensive analysis 

and validation of the de novo drug design results, XP docking was employed to study the 

interactions of the new breed of molecules and the active site of Neuraminidase. 

Finally, we docked two clinical Neuraminidase inhibitors (Peramivir and Oseltamivir) as 

supplementary reference ligands in the active site of Neuraminidase to estimate the inhibitory 

activity of the breed molecules. 

2.3 ADMET Prediction 

ADMET properties are a very helpful drug discovery approach [15]. The experimental 

determination of drug candidate pharmacokinetic properties is time-consuming. We investigated 

the ADMET properties of each breed of molecule, focusing on solubility and permeability to 

biological membranes, which are two of the most important factors influencing the activity using 

SwissADME [16]. The ProTox-II platform was used to evaluate the potential toxicity [17]. To 

study hepatotoxicity, immunotoxicity, and cytotoxicity, the lethal dosage (LD50) was determined 

for both active and inactive cell types [18]. 

2.4 Molecular Dynamic Simulation 

In this phase, we conducted molecular dynamic (MD) simulations for all breed 

molecules. The first process consisted of identifying compounds with high binding affinities 

for Neuraminidase and good ADMET properties. The Gromacs-2022.4 package and the 

CHARMM27 force field were used to execute the production MD simulation for 100 ns [19]. 

The SwissParam server was employed for generation of the ligand topology files [20]. Each 

system was then solvated with the TIP3P water model, and Na+ and Cl− ions were introduced 

to neutralize the charge [19]. Using the steepest descent-minimization technique, the solvated 

system was then utilized to minimize energy until the maximal force was less than 10.0 

kJ/mol. The equilibration process was then divided into two phases: NVT and NPT 

equilibrations. The system was coupled with a v-rescale algorithm at 300 K for 100 ps with a 



 Chapter V 

 

84 

 

coupling value of 0.1 ps during the NVT equilibration phase. The NPT was then equilibrated 

for 100 ps using a Berenson pressure-coupling strategy with a coupling constant of 2.0 ps 

[21]. 

The commands gmx rms, gmx rmsf, gmx gyrate, gmx hbond, and gmx sasa were used 

to determine the various parameters for each system. The root-mean-square deviation 

(RMSD) was used to quantify the structural stability of the protein‒ligand complex, and the 

flexibility of the protein residues was assessed using the root-mean-square fluctuation 

(RMSF) [22]. During 100 ns of simulation, the radius of gyration (Rg) was calculated to assess 

the compactness of the protein‒ligand complex, hydrogen bond analysis was performed to 

determine the protein‒ligand hydrogen bonding interactions, and the solvent-accessible 

surface (SASA) area was computed to assess the overall stability of each system. In addition, 

we conducted free-energy landscape analysis, which involves calculating and diagonalizing 

the covariance matrix [23]. Grace software was employed to visualize the simulation 

trajectories [24]. 

2.5 Binding Free Energy 

For the molecular mechanics Poisson–Boltzmann surface area (MM-PBSA), the protocol 

implemented in the g_mmpbsa package was used to perform the analysis of the binding free energy 

(ΔG bind) [25]. The MM-PBSA calculation provides a quantitative prediction of the interactions 

between proteins and ligand compounds. The binding free energy was calculated as follows: 

ΔGbind = Gcomplex − (Gprotein + Gligand) 

Where ΔG bind is the total binding energy of the complex, G complex is the binding energy of 

the native protein, and G complex is the binding energy of the ligand. 

2.6 Reaction-Based Enumeration 

Reaction-based enumeration is another Schrödinger tool that predicts the synthetic pathway 

of any compound using a retro-synthetic approach [26]. The current study used reaction-based 

enumeration to establish the synthetic route of the final breed compounds. 
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3. Results 

3.1 Breed-Based De novo and Molecular Docking Approaches 

A breed-based de novo strategy was employed in the current investigation to develop new 

Neuraminidase inhibitors. A total of 282 different fragments were generated from thirty potent 

Neuraminidase inhibitors using the Schrödinger PowerShell command 

“run.\fragment_molecule.py”. We initially docked all the generated fragments (282) in the active 

site of Neuraminidase using SP docking. Figures V. 3 and V. 4 show all fragments with docking 

scores greater than −6 Kcal/mol, while Table V. 1 reveals the SP docking scores of the top 

fragments. Compounds 28, 17, 11, 9, 21, 4, 5, 3, and 29 produced high-scoring fragments (between 

−7.002 and −8.700 Kcal/mol) with the Neuraminidase receptor. The breed de novo hybridization 

approach has now progressed toward fully automating the design process, which could 

significantly accelerate the procedure and produce better results [27]. The top fragments (with 

docking scores greater than −6.0) were selected for the breed de novo hybridization process. 

Subsequently, all 67 novel breed compounds, including Zanamivir and clinical Neuraminidase 

inhibitors (Oseltamivir and Peramivir), were selected for SP rather than the process of XP docking 

into the active site of Neuraminidase. The best breed molecules, with breed scores between 7.886 

and 15.623, were as follows: Breed 1 was obtained through hybridization of comp17 (frag5) and 

comp4 (frag13); Breed 2 was obtained through hybridization of comp28 (frag3) and comp17 

(frag7); Breed 3 was obtained through hybridization of comp28 (frag3) and comp17 (frag12); 

Breed 4 was obtained through hybridization of comp28 (frag3) and comp9 (frag1); Breed 5 was 

obtained through hybridization of comp28 (frag3) and comp11 (frag13); Breed 6 was obtained 

through hybridization of comp28 (frag3) and comp11 (frag17); and Breed 7 was obtained through 

hybridization of comp28 (frag3) and comp11 (frag16), as illustrated in Figure V. 5. 
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Figure V. 3. Structures of the best fragments. 
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Figure V. 4. Breed generation of top-scoring compounds from different fragments. 
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Figure V. 5. The binding interactions of the seven new breed molecules, Zanamivir, Peramivir, 

and Oseltamivir within the active site of Neuraminidase. 
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Table V. 1. SP docking results for the best fragments. 

Fragment 
SP-Score 

(kcal/mol) 
Fragment 

SP-Score 

(kcal/mol) 
Fragment 

SP-Score 

(kcal/mol) 

Comp28 (Frag3) −8.700 Comp5 (Frag15) −7.085 Comp26 (Frag5) −6.425 

Comp28 (Frag1) −8.425 Comp17 (Frag1) −7.055 Comp6 (Frag8) −6.370 

Comp17 (Frag12) −8.030 Comp17 (Frag7) −7.048 Comp18 (Frag9) −6.264 

Comp11 (Frag16) −7.897 Comp3 (Frag8) −7.030 Comp16 (Frag10) −6.117 

Comp9 (Frag1) −7.679 Comp29 (Frag1) −7.002 Comp18 (Frag12) −6.166 

Comp17 (Frag5) −7.661 Comp25 (Frag2) −6.960 Comp12 (Frag17) −6.144 

Comp28 (Frag2) −7.654 Comp29 (Frag3) −6.883 Comp26 (Frag1) −6.135 

Comp11 (Frag14) −7.409 Comp11 (Frag13) −6.883 Comp5 (Frag13) −6.073 

Comp11 (Frag17) −7.296 Comp29 (Frag2) −6.743 Comp15 (Frag7) −6.042 

Comp21 (Frag6) −7.287 Comp7 (Frag8) −6.518 Comp10 (Frag1) −6.031 

Comp4 (Frag13) −7.263 Comp18 (Frag7) −6.464 Comp3 (Frag6) −6.012 

Antivirals are essential to the control and prevention of influenza. Oseltamivir and Zanamivir 

are the only Neuraminidase inhibitor medications that are now licensed globally. Recently, 

laninamivir and Peramivir gained permission in Japan [28]. To know more about how breed 

molecules inhibit the vital function of the Neuraminidase of influenza virus, we docked 

Oseltamivir and Peramivir into the Neuraminidase receptor. The results obtained indicate that the 

seven new breed compounds had binding affinity values between −10.529 and −11.867 kcal/mol, 

and the binding affinity value of reference molecules (Zanamivir) was −9.848 kcal/mol, while the 

clinical inhibitors Peramivir and Oseltamivir had binding affinity values of −8.844 and −6.326 

kcal/mol, respectively. These results demonstrate that the seven breed molecules formed very 

stable complexes with the active site of Neuraminidase. The docking modeling results and the 

breed score are presented in Table V. 2. The important information we obtained from this study 

is that hydrogen-bonding interactions are responsible for inhibitory activity. The amino acids in 

the active site of Neuraminidase that interacted with the seven types of molecules via hydrogen 

bonds were Arg119, Trp180, and Glu278. The best molecule (Breed 1) interacted with the amino 

acids Asp152, Arg226, and Glu226 at a distance between 1.61 and 3.33 Å; on the other hand, the 

reference molecule (Zanamivir) interacted with the amino acids Asp152, Glu229, Glu278, Glu279, 

and Arg372 at a distance between 1.50 and 4.15 Å. This result indicates that the interaction with 

the amino acids Arg226 and Glu226 plays a very important role in inhibiting the vital function of 

Neuraminidase. Similar to hydrogen bonds formed between molecules (Breed 2–Breed 7) with 

amino acids Arg119, Trp180, and Glu278, other hydrogen bonds with amino acids Glu120, 

Arg153, Arg194, Glu229, Glu279, and Arg372, with distances ranging from 1.22 to 5.98 Å, 

formed stable complexes with the Neuraminidase receptor compared to Neuraminidase with 

Zanamivir, Peramivir, and Oseltamivir complexes. Figure 4 shows the binding interactions of the 

seven tested molecules, Zanamivir, Peramivir, and Oseltamivir, with Neuraminidase inhibitors. 
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Table V. 2. Docking results of the breed molecules and Zanamivir, Peramivir, and Oseltamivir 

with the Neuraminidase receptor. 

Molecules Breed Score SP-Score XP-Score H-Bond Interactions Distance 

Breed 1 15.623 −8.799 −11.867 Arg119, Asp152, Trp180, Arg226, Glu226, Glu278, Arg294, Arg372. 1.61–3.33 

Breed 2 11.080 −8.372 −10.804 Arg119, Glu120, Arg153, Trp180, Glu229, Glu278, Glu279, Arg294, Arg372. 1.57–5.98 

Breed 3 9.952 −8.316 −10.791 Arg119, Asp152, Arg153, Trp180, Glu229, Glu278, Glu279, Arg294, Arg372. 1.48–3.99 

Breed 4 13.604 −8.278 −10.765 Arg119, Asp152, Arg153, Trp180, Glu229, Glu278, Glu279, Arg294, Arg372. 1.50–4.91 

Breed 5 7.886 −8.457 −10.706 Arg119, Asp152, Arg153, Trp180, Arg194, Glu229, Glu278, Glu279, Arg372. 1.22–3.81 

Breed 6 8.298 −7.949 −10.628 Arg119, Asp152, Arg153, Trp180, Glu229, Glu278, Glu279, Arg294, Arg372. 1.48–3.99 

Breed 7 10.740 −7.890 −10.529 Arg119, Arg152, Arg153, Trp180, Glu229, Glu278, Arg294, Arg372. 1.57–4.15 

Zanamivir - −7.610 −9.848 Arg119, Arg152, Arg153, Trp180, Glu229, Glu278, Glu279, Arg294, Arg372. 1.50–4.15 

Peramivir - −7.370 −8.844 Arg119, Glu120, Asp152, Arg153, Trp180, Glu229, Glu279, Arg294, Arg372. 1.55–4.39 

Oseltamivir - −5.588 −6.326 Asp152, Glu229, Glu278, Glu279, Arg294, Arg372. 1.50–4.15 

3.2 ADMET Prediction 

The physicochemical characteristics of a compound have a major effect on its 

pharmacokinetics in the body, and a firm understanding and accurate prediction of these properties 

are critical for successful drug discovery [28, 29]. We estimated the pharmacokinetic properties 

for the seven breed molecules (Table V. 3), in particular, the most important parameters, such as 

LogP, solubility, permeability, and bioavailability, to ensure that the seven breed molecules would 

reach the biological target (Neuraminidase). 

Table V. 3. Pharmacokinetic and physicochemical parameters for the seven breed molecules. 

Molecules 
MW 

(g/mol) 

Log S 

(ESOL) 

Consensus 

Log P 

Cytochrome P450  

Inhibitors 
Bioavailability Score 

Log Kp 

cm/s 

Synthetic  

Accessibility 

Breed 1 366.40 0.77 −1.55 No 0.55 −11.38 3.60 

Breed 2 365.39 −1.18 −0.40 No 0.17 −9.02 3.79 

Breed 3 351.36 −0.83 −0.74 No 0.17 −9.31 3.19 

Breed 4 409.48 −2.28 0.24 No 0.17 −8.41 3.78 

Breed 5 379.41 −1.42 −0.13 No 0.17 −8.85 3.46 

Breed 6 365.39 −1.07 −0.43 No 0.17 −9.08 3.35 

Breed 7 351.36 −0.83 −0.59 No 0.17 −9.24 3.24 

The seven breed molecules had molecular masses below 410 g/mol, which facilitated the 

intestinal absorption of these molecules by oral administration. Second, the partition coefficients 

(LogP) of the breed molecules were between −2.28 and 0.77. These results clearly show the 

affinity of these molecules toward biological membranes and confirm the good distribution of 

these substances in the body. For aqueous solubility, all the breed molecules were soluble in 

aqueous media (including the intracellular medium), and the LogS (ESOL) values were between 
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−0.74 and 0.24. Because of this aqueous solubility, the breed molecules would be easily eliminated 

through the kidneys. The bioavailability score for Breed 1 was 0.55, while the rest of the breed 

molecules had the same bioavailability score (0.17). The seven breed molecules did not inhibit the 

vital function of hepatic enzymes (cytochrome P450), such as CYP 1A2, CYP 2C19, CYP 2C9, 

CYP 2D6, and CYP 3A4, and they also had Log Kp (skin permeation) values between −8.41 and 

−11.38. Ultimately, the synthesis of these seven breed molecules in the chemical laboratory is 

quite simple for in vitro and in vivo research. 

The results obtained by ProToxII (Table V. 4) show that all the breed molecules were safe. 

The predicted LD50 for the top molecules (Breed 1) was 1098 mg/kg and the toxicity class was 4, 

while the rest of the breed molecules (Breeds 2–7) had LD50 values between 3200 and 4000 mg/kg 

and the same toxicity class (class 5). According to the results obtained by the molecular docking 

and the ADMET study, seven breed molecules (Breeds 1–7) were selected for simulation 

investigation of their molecular dynamics [28,30]. 

Table V. 4. Toxicity prediction of breed molecules. 

Molecules Cytotoxicity Carcinogenicity Mutagenicity Immunotoxicity Toxicity Class LD50 (mg/kg) 

Breed 1 Inactive Inactive Inactive Inactive 4 1098 

Breed 2 Inactive Inactive Inactive Inactive 5 3200 

Breed 3 Inactive Inactive Inactive Inactive 5 3200 

Breed 4 Inactive Inactive Inactive Inactive 5 4000 

Breed 5 Inactive Inactive Inactive Inactive 5 3200 

Breed 6 Inactive Inactive Inactive Inactive 5 3200 

Breed 7 Inactive Inactive Inactive Inactive 5 3200 

3.3 Study of Molecular Dynamics 

Molecular dynamic simulation (MDS) [28] was employed to examine the physical 

movements of the Neuraminidase (NA) and its complexes (Breeds 1–7) during 100 ns of 

simulations. The root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), 

radius of gyration (Rg), hydrogen bonds (H-bonds), and solvent-accessible surface area (SASA) 

were calculated to assess the stability of the Neuraminidase and its seven complexes (Breeds 1–

7). 

3.3.1 RMSD and RMSF Analysis 

The RMSD is a factor used to determine the equilibration, protein flexibility, and average 

distance between backbone atoms of a protein [28]. The RMSD plot for the backbone atoms of the 

Neuraminidase (NA) and its complexes with Breeds 1–7 is displayed in Figure V. 6. The results 

indicated that the RMSD of the Neuraminidase was stable during 100 ns of simulation, while the 

NA_Breed 7 complex attained structural stability after 15 ns of simulation. 
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Figure V. 6. Root-mean-square deviation (RMSD) profile of the backbone atoms of 

Neuraminidase and its complexes with Breeds 1–7. 

The rest of the complexes were very stable during the simulation period. The average RMSD 

values for the NA and its complexes with Breed 1, Breed 2, Breed 3, Breed 4, Breed 5, Breed 6, 

and Breed 7 were 0.148, 0.149, 0.131, 0.135, 0.166, 0.172, 0.172, and 0.148 nm, respectively. 

Finally, the RMSD analysis indicated that the MD trajectories were generally stable during the 

100 ns of simulation and were able to help in the development of new influenza virus inhibitors. 

In this research, we calculated the root-mean-square fluctuation (RMSF) of the Neuraminidase 

(NA) and its complexes with Breeds 1–7, as shown in Figure V. 7. This study showed that more 

flexibility during the molecular dynamic simulation was shown by higher RMSF values, whereas 

good stability of the complex was reflected by lower RMSF values. The analysis revealed that the 

average RMSF for the Neuraminidase and its complexes was less than 0.123 nm. The average 

RMSD for the Neuraminidase was 0.106 nm, while Neuraminidase complexes (NA Breeds 1–7) 

had average RMSF values that ranged from 0.100 to 0.123 nm, demonstrating the structural 

stability and little atomic movement of the Neuraminidase and its complexes. On the other hand, 

the NA Breed 1–7 complexes had higher fluctuations at atoms 450, 1000, 5400, and 5800 of the 
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Neuraminidase protein, with RMSF values ranging between 0.4 and 0.6 nm. These findings 

indicate that the interactions of the breed molecules with the Neuraminidase caused 

conformational changes and increased the protein dynamics in those particular regions. The results 

obtained (Table V. 5) indicate that these breed molecules (Breeds 1–7) with the active site of the 

Neuraminidase form good, stable complexes [23]. 

 

Figure V. 7. Root-mean-square fluctuation (RMSF) of the C-alpha atoms of Neuraminidase 

(NA) and its complexes with Breeds 1–7. 

Table V. 5. The average values of various parameters, including RMSD, RMSF, Rg, and H-

bonds. 

Complex 
Average RMSD 

(nm) 

Average RMSF 

(nm) 

Average Rg 

(nm) 

Average HB 

(nm) 

SASA 

(nm2) 

NA_Breed 1 0.149 0.105 1.998 9.428 158.812 

NA_Breed 2 0.131 0.109 2.009 12.444 158.835 

NA_Breed 3 0.135 0.110 2.000 9.196 157.379 

NA_Breed 4 0.166 0.115 1.991 9.018 156.121 

NA_Breed 5 0.172 0.100 2.003 11.057 157.397 

NA_Breed 6 0.172 0.106 1.998 9.964 156.429 

NA_Breed 7 0.148 0.123 2.002 12.064 159.806 

NA 0.148 0.106 2.003 - 160.245 
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3.3.2 Radius of Gyration (Rg) 

We estimated the radius of gyration (Rg) of each system to assess the stability of the 

Neuraminidase and its complexes (NA_Breed 1–7) during the 100 ns simulation (Figure V. 8). In 

general, the greater the Rg was, the less compact the Neuraminidase_Breed 1–7 complexes were. 

During the MD simulation, Rg was employed to determine whether the complexes were stably 

folded or unfolded. The average Rg value of the Neuraminidase was determined to be in the range 

of 2.003 nm. Moreover, the average Rg values of NA_Breed 1, NA_Breed 2, NA_Breed 3, 

NA_Breed 4, NA_Breed 5, NA_Breed 6, and NA_Breed 7 complexes were 1.998, 2.009, 2.000, 

1.991, 2.003, 1.998, and 2.002 nm, respectively. As previously stated, if a protein maintained a 

relatively constant value of Rg throughout the MD simulation, it was considered to be stably 

folded; if its Rg changed over time, it was considered to be unfolded [31, 32]. Overall, our results 

suggest that all the tested molecules formed stable complexes with NA and were able to inhibit 

the vital function of the Neuraminidase. 

 

Figure V. 8. Radius of gyration (Rg) of Neuraminidase and its complexes with Breeds 1–7. 

3.3.3 Hydrogen Bonding Analysis 

We analyzed the hydrogen bond profiles of the seven complexes to obtain a better 

understanding of the interaction between the breed molecules and Neuraminidase, as shown in 

Figure V. 9. The formation of hydrogen bonds between a ligand and a receptor is necessary for 
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the ligand‒protein complex to be stable [33]. Our analysis revealed that the NA_Breed 2 and 

NA_Breed 7 complexes formed averages of 12.444 and 12.064 hydrogen bonds during the 

simulation. The rest of the complexes formed average hydrogen bonds of between 9 and 11. The 

existence of more polar groups in the breed molecules (Breed 2 and Breed 7) made it possible to 

form more hydrogen bonds with the active site of the Neuraminidase, in addition to having a strong 

binding interaction. The rest of the complexes, on the other hand, had some less polar groups and, 

thus, formed fewer hydrogen bonds with the Neuraminidase receptor. This research indicates that 

hydrogen-bonding interaction is essential in the stabilization of the breed molecule with 

Neuraminidase. 

 

Figure V. 9. Map of hydrogen bond existence of Neuraminidase complexes with Breeds 1–7. 

3.3.4 Solvent-Accessible Surface Area (SASA) 

A greater SASA value shows that the protein volume is expanding, and a low fluctuation is 

observed over the simulation duration [29]. The average SASA values of all systems were 158.812, 

158.835, 157.379, 156.121, 157.397, 156.429, and 159.806 nm2 for NA_Breed 1, NA_Breed 2, 

NA_Breed 3, NA_Breed 4, NA_Breed 5, NA_Breed 6, and NA_Breed 7, respectively, and 

160.245 nm2 for the Neuraminidase (Figure V. 10). All of these findings suggest that the seven 

complexes were stable over 100 ns of simulation [28]. 
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Figure V. 10. Solvent-accessible surface area (SASA) for Neuraminidase and its complexes 

during 100 ns of simulation. 

3.4 MM-PBSA Analysis 

The binding free energy of the seven complexes (Neuraminidase_Breed 1–7) was estimated 

using the MM-PBSA approach applied in Gromacs using MD trajectories. The van der Waals 

interactions (ΔEVDW), electrostatic interactions (ΔEEEL), nonpolar interactions in a solvated system 

(ΔEPB), nonpolar contribution of repulsive solute–solvent interactions to the solvation energy 

(ΔENPOLAR), nonpolar contribution of attractive solute–solvent interactions to the solvation energy 

(ΔEDISPER), total gas-phase molecular mechanics energy (ΔGGAS), and total solvation energy 

(ΔGSOLV) are all included in the total binding free energy. The total binding energies of the seven 

complexes were found to be within an acceptable range of between −76.06 and −34.96 KJ/mol. 

Table V. 6 shows the MM-PBSA results. With reference to binding affinity with Neuraminidase, 

the NA_Breed 7 complex showed the lowest binding free energy and the highest binding affinity 

(−76.06 KJ/mol). The binding free energies for NA_Breed 1, NA_Breed 2, NA_Breed 3, 

NA_Breed 4, NA_Breed 5, and NA_Breed 6 were −55.00, −74.55, −47.61, −44.89, −34.96, and 

−42.48 KJ/mol, respectively. These free energy calculations confirmed the molecular docking 

result, demonstrating that these breed molecules interacted with the active site of Neuraminidase 

positively and could be used for the development of new Neuraminidase inhibitors. 

 



 Chapter V 

 

97 

 

Table V. 6. Table representing the ΔEVDW, ΔEEEL, ΔEPB, ΔENPOLAR, ΔEDISPER, ΔGGAS, ΔGSOLV, and 

binding energy for Neuraminidase_Breed 1–7 complexes. 

Protein‒Ligand 

Complexes 

ΔEVDW 

(KJ/mol) 

ΔEEEL 

(KJ/mol) 

ΔEPB 

(KJ/mol) 

ΔENPOLAR 

(KJ/mol) 

ΔEDISPER 

(KJ/mol) 

ΔGGAS 

(KJ/mol) 

ΔGSOLV 

(KJ/mol) 

ΔTOTAL 

(KJ/mol) 

NA_Breed 1 −11.61 −385.46 319.53 −25.45 47.99 −397.07 342.07 −55.00 

NA_Breed 2 −15.34 −400.88 320.91 −29.39 50.15 −416.22 341.67 −74.55 

NA_Breed 3 −12.39 −363.90 306.55 −27.48 49.61 −376.28 328.67 −47.61 

NA_Breed 4 −17.29 −347.68 297.99 −29.23 51.32 −364.97 320.08 −44.89 

NA_Breed 5 −19.90 −328.15 290.05 −29.25 52.29 −348.05 313.10 −34.96 

NA_Breed 6 −24.00 −338.25 297.31 −28.89 51.35 −362.25 319.77 −42.48 

NA_Breed 7 −10.87 −407.23 321.76 −28.41 48.69 −418.10 342.04 −76.06 

 

Gibbs free-energy landscapes were also produced using the first two PCs to differentiate the 

conformational modes of the Neuraminidase and its complexes (NA Breeds 1–7). The Gibbs free-

energy landscapes examined the orientation of the backbone atom fluctuation in Neuraminidase 

and Neuraminidase complexes (NA Breeds 7–1) from the MD trajectory. The Gibbs energy 

landscape plot following 100 ns of simulation, with the extracted structures from low-energy 

regions for each system, is shown in Figure V. 11. The results demonstrate that the NA had a 

Gibbs free energy of 0–14.4 KJ/mol, while the NA_Breed 1–7 complexes had Gibbs free energies 

of 0–14.2, 0–14.4, 0–14, 0–15.6, 0–12.9, 0–15, and 0- 14.1 KJ/mol, respectively. 

The blue, cyan, and green areas of the plot represent low-energy states with extremely stable 

protein conformations, whereas the red area represents a high-energy conformation. The energy 

landscape had numerous distinct minima that represented metastable structural states separated by 

a modest energy barrier. The binding of all breed molecules produced the most metastable 

conformational designs, with regional minima dispersed to approximately two to three areas of the 

energy landscape. In comparison to Neuraminidase alone, the smaller and more concentrated blue 

minimal-energy regions in NA_Breed 1, NA_Breed 2, and NA_Breed 3 imply extremely stable 

complexes. Furthermore, the structures (Neuraminidase conformations) were found to be similar 

for all systems. The results demonstrate that the seven types of molecules formed very stable 

complexes with Neuraminidase. 

 

 

 

 

 



 Chapter V 

 

98 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure V. 11. The Gibbs energy landscape maps over 100 ns of simulations for (A) NA, (B) 

NA_Breed 1, (C) NA_Breed 2, (D) NA_Breed 3, (E) NA_Breed 4, (F) NA_Breed 5, (G) 

NA_Breed 6, and (H) NA_Breed 7, with the extracted structures from the low-energy areas (in 

blue). 

3.5 Reaction-Based Enumeration 

At this step, we used reaction-based enumeration to predict the synthetic pathways of the 

breed molecules (Breeds 1–7). It is another Schrödinger tool for predicting the synthetic pathway 

of every molecule using a retro-synthetic methodology. The reaction enumeration tool showed that 
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the amide coupling, ether, and Mitsunobu reactions could be utilized to synthesize all of the breed 

molecules, as described in Figure V. 12.  
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Figure V. 12. Predicted synthetic pathways of all the breed molecules (Breeds 1–7). 

4. Discussion 

Neuraminidase is a key target in virology and the development of potent anti-influenza 

medicines. By inhibiting the biological activity of Neuraminidase, the influenza virus is prevented 

from moving to further uninfected host cells and is eliminated. The primary objective was to create 

prospective novel compounds with anti-influenza activity that is more effective than existing anti-

influenza drugs (Zanamivir, Oseltamivir, and Peramivir). Compared with the inhibitory power of 

clinical Neuraminidase inhibitors, all seven designed molecules bound effectively to the 

Neuraminidase receptor, where the proposed molecules attached to other amino acids forming the 

active site, such as Asp152 and Arg372, which explains the good inhibitory activity of the 

proposed molecules. The contribution of 2-amino-1-(2-methylthiazolidin-3-yl) ethanone, 2-

methoxybutane, 2-methoxypropane, methoxycyclopentane, 1-methoxy-3-methylbutane, 1-

methoxybutane, and 1-methoxypropane groups via the interaction of hydrogen bonds can again 

explain the good inhibitory activity of the developed molecules against Neuraminidase. However, 

these chemical groups had different functions, and they interacted effectively with the essential 

amino acids that composed the active site, showing that the suggested compounds had a high 

affinity for the Neuraminidase receptor. As pharmacokinetic profiles, the proposed molecules had 

good permeability toward the membrane bilayer (LogP between −1.55 and 0.24) and good aqueous 

solubility, which allowed the solubilization of these molecules in the intracellular medium. The 

hepatic metabolism of the designed compounds was quick and did not produce toxic substances, 

and no inhibition of cytochrome P450, such as CYP 3A4, was observed. Because of their high 
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water solubility (LogS between −2.28 and 0.77), all of the designed compounds would be quickly 

removed by the kidneys at the nephron level. In terms of potential toxicity, we found no evidence 

of any toxicity produced by any of the proposed compounds. All of the aforementioned results 

indicate that their pharmacokinetic profile is optimal. When we examined the stability of the 

designed molecules within the Neuraminidase receptor using molecular dynamics simulations, we 

clearly saw insignificant atomic mobility and the continuation of structural stability. During 100 

ns of simulation, the seven proposed compounds had average RMSD values ranging from 0.131 

to 0.172 nm. In addition, the average RMDF was between 0.1 and 0.123 nm. For the validation of 

the molecular docking results, the MM-PBSA calculations were in line with the molecular docking 

study, indicating that all of the molecules proposed formed more stable complexes with the 

Neuraminidase active site, with binding free energies between −76.06 and −34.96 KJ/mol. At the 

molecular level, Gibbs free-energy landscapes again showed the small dynamic shift of the 

Neuraminidase and its complexes, which confirms the extent of structural stability and the 

preservation of the initial configuration of all these complexes. Through the experimental 

examination, our outcomes indicate that the proposed compounds can be synthesized in a chemical 

laboratory, and it is worth noting that all of the proposed molecules are simple to manufacture 

using traditional mechanisms. This will make it easier to evaluate and estimate the effectiveness 

of the designed compounds to inhibit the biological function of Neuraminidase in vitro and in vivo. 

The results of this study will possibly help researchers in the development of anti-influenza 

medications and virology. 

5. Conclusions 

Developing new Neuraminidase inhibitors is vital for combating evolving flu strains, 

enhancing treatment options, reducing resistance, and safeguarding global public health against 

influenza outbreaks. The objective of this research was to identify novel inhibitor molecules 

against the Neuraminidase of influenza. To develop novel Neuraminidase inhibitors, we used a 

breed-based de novo approach. According to the docking studies, seven breed molecules (Breeds 

1–7) demonstrated high stability within the Neuraminidase receptor compared to the clinical 

Neuraminidase inhibitors (Zanamivir, Oseltamivir and Peramivir). On the other hand, to reach the 

pharmacological target, the pharmacokinetics of the seven breed compounds were investigated, 

and the results show that they have excellent pharmacokinetic profiles, such as bioavailability and 

permeability toward biological membranes. The molecular dynamics simulations for 100 ns 

revealed that the seven breed molecules (Breeds 1–7) were particularly stable in the active site of 

Neuraminidase. In addition, MM-PBSA computations demonstrated that the complexes were very 

stable throughout the duration of the simulation. This research can contribute to the development 
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of novel and potent Neuraminidase inhibitor drugs for the treatment of influenza and could give 

researchers the opportunity to examine these breed molecules for the treatment of influenza and 

its symptoms. Finally, the future of Neuraminidase inhibitors for the flu involves improved 

efficacy, reduced resistance, and personalized treatments, aiding in better management and 

prevention of influenza outbreaks. 
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1. Introduction 

Influenza is a respiratory disease caused by the Orthomyxoviridae virus family. Every year, 

influenza viruses generate seasonal epidemics that mostly affect the adult population. 10-30% of 

sick people are hospitalized, and 3-15% die [1]. Influenza symptoms include a sudden onset of 

high temperature, aching muscles, headache, severe exhaustion, a nonproductive cough, a sore 

throat, and a runny nose [2]. The variation of influenza viruses can develop in a pandemic, posing 

a major danger to public health [3]. Neuraminidase (NA) is a glycoprotein located in the envelope 

of the influenza virus that plays a critical role in the process of infecting and spreading amongst 

human host cells [4]. Neuraminidase is an important target of drug design for the treatment of 

influenza infections because to its involvement in viral propagation and it’s largely preserved 

active site [5]. Neuraminidase inhibitors (NAI) represent the only extensively approved class of 

antiviral medications used for the treatment and prevention of seasonal influenza [6]. Oseltamivir 

is widely utilized, whereas Zanamivir, Peramivir, and Laninamivir are used in fewer nations 

concurrently [7]. NAIs are the most often given anti-influenza medications nowadays, they have 

been shown to be beneficial in speeding viral clearance, lowering clinical disease duration, and 

decreasing hospital stay and death [8]. 

Computer-Aided Drug Design (CADD) is the process of using computer methods and 

resources to design and identify novel potential pharmaceutical drugs [9]. A QSAR is simply a 

mathematical equation that is derived from a set of molecules with a known activity using 

computational techniques. A variety of statistical approaches and computed molecular descriptors 

may be employed to identify the exact form of the relationship between structure and activity, and 

this relationship is subsequently employed to predict the activity of new compounds [10, 11]. 

QSAR investigations are based on the notion that changes in bioactivity are related with structural 

and molecular variation in a group of molecules [12]. The three-dimensional quantitative structure-

activity relationship is one of the most successful and valuable strategies for the development and 

design of potent medications (3D-QSAR) [13]. 

The goal of this study was to design new Neuraminidase inhibitors for the treatment of 

influenza. The goals of this research are to develop new Neuraminidase inhibitors for the treatment 

of influenza. In a 3D-QSAR study based on a series of biologically active thiazolidine-4-

carboxylic acid derivatives, we used comparative molecular field analysis (CoMFA) to find a 

statistically significant relationship between the three-dimensional structure of the molecules and 

their biological activity. After designing these molecules, we performed a docking study to arrange 

them in the active site of Neuraminidase based on their stability. To identify the molecules with 
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the best pharmacological properties, the compounds identified were also subjected to in silico 

absorption, distribution, metabolism, elimination, and toxicity (ADMET) property testing. We 

used ProToxII to assess the potential toxicity of all proposed molecules. Finally, we provided a 

reaction mechanism for the synthesis of each of these proposed compounds for future research into 

Neuraminidase inhibitors. 
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2. Materials and Methods 

2.1 Experimental Databases 

A set of twenty-five thiazolidine-4-carboxylic acid derivatives reported by Asadollah, M et 

al and Yu. L et al were chosen for molecular modelling studies [13, 15]. Thiazolidine-4-carboxylic 

acid is a cyclic sulphur amino acid with a molecular structure similar to proline, hence the name 

thioproline. The thiazolidine-4-carboxylic acid sulfhydryl group is essential in metabolism as an 

antioxidant protector and in detoxification processes [16]. Inhibitory activity was provided as IC50 

values, which were then converted to pIC50 values [pIC50 = -log (IC50)] and used in 3D-QSAR 

experiments. All experimental data were divided into two categories. a training set for model 

generation and a test set for external evaluation of model accuracy; the training set contains twenty 

molecules and the test set contains five molecules. The variability of bioactivity rates and 

biological properties was also taken into account when randomly partitioning the training and test 

sets [17]. (Table VI. 1). 

2.2 Structure Preparation and Alignment 

The SYBYL-X 2.0 software suite (Certara Enhances SYBYL-X Drug Design and Discovery 

Software Suite) was used to construct and optimise the structures of the twenty-five compounds 

with energy minimization [18]. The tripos standard force field was used, and a condition of 0.01 

kcal/(mol) in Gasteiger-Hückel charge atomic partial was established. The tripos standard force 

field was used, and a condition of 0.01 kcal/(mol) in Gasteiger-Hückel charge atomic partial was 

established [19, 20]. Molecular alignment is the most sensitive component, and it has a significant 

impact on 3D-QSAR models [21]. The structures that have been minimised and aligned are used 

to create the 3D-QSAR model. 

2.3 Generation of 3D-QSAR by CoMFA 

Our goal was to develop a predictive 3D-QSAR model using comparative molecular field 

analysis (CoMFA). The CoMFA method is a useful 3D-QSAR tool that has been used successfully 

in several medicinal chemistry studies. One of the significant advantages of this approach is its 

immediate application in the examination of any structure-dependent biological characteristics 

[21]. The CoMFA theory states that differences in a target property between chemicals are 

frequently associated with changes in the noncovalent fields that surround those structures. These 

fields, which are the electrostatic (Coulombic) and steric (Lennard-Jones) fields, are computed at 

regular intervals within a predetermined area [23]. Steric and electrostatic descriptors were 
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generated using a tripos force field and an ordered divergence grid of 2  Å with a cutoff energy 

value of 30 kcal/mol [24]. All other parameters have been reset to their default settings. 

Table VI. 1. A Tabular analysis of relationship between structures of compounds and 

experimental Activity. 

 

Compound R1 R2 pIC50 

01 C6H5– H 4.672 

02 (2-OH)C6H5– H 4.695 

03 (2-COOH)C6H5– H 4.742 

04 (4-CN)C6H5– H 4.631 

05 (2-NO2)C6H5– H 4.648 

06 (2-OH, 3-CH3O)C6H5– H 4.91 

07 C4H3O– H 4.366 

08 C6H5– ClCH2CO– 5.123 

09 (2-OH)C6H5– ClCH2CO– 5.234 

10 (2-COOH)C6H5– ClCH2CO– 4.971 

11 (4-CN)C6H5– ClCH2CO– 5.063 

12 (2-NO2)C6H5– ClCH2CO– 5.116 

13 (2-OH, 3-CH3O)C6H5– ClCH2CO– 5.101 

14 C4H3O– ClCH2CO– 4.889 

15 C6H5– PhCH2CO– 5.917 

16 (2-OH)C6H5– PhCH2CO– 6.187 

17 (2-COOH)C6H5– PhCH2CO– 5.717 

18 (4-CN)C6H5– PhCH2CO– 5.607 

19 (2-OH, 3-CH3O)C6H5– PhCH2CO– 5.79 

20 C4H3O– PhCH2CO– 5.539 

21 C6H5– NH2CH2CO– 6.276 

22 (2-OH)C6H5– NH2CH2CO– 6.678 

23 (2-COOH)C6H5– NH2CH2CO– 6.553 

24 (2-OH, 3-CH3O)C6H5– NH2CH2CO– 6.854 

25 C4H3O– NH2CH2CO– 6.009 

2.4 PLS analysis and Validations 

PLS regression is a well-established multivariate method that has been widely used in a 

variety of chemical fields [25]. A PLS model was built for the training set, and the model was 

validated using the remaining test set. To be trustworthy and predictive, 3D-QSAR models should 

be validated by producing correct predictions for external data sets that were not used in the 
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model's development [10]. PLS can assess complex structure-activity data more realistically and 

efficiently determine how molecular structure affects biological activity [26]. As a result, we 

estimate the mode's predictive power using external validation. A QSAR model is predictive, 

according to Golbraikh and Tropsha, if the following conditions are met [27]. 

R2
pred > 0.6,    [r2 – r2

0] / r
2 < 0.1,    [r2 – r’2

0] / r
2 < 0,   and    0.85 <k < 1.15 or 0.85 <k’ < 1.15 

Roy and Paul developed the term r2
m to verify the external predictability of the chosen model [27]. 

An r2
m value greater than 0.5 may be interpreted as indicating good external predictability. 

The 3D-QSAR model was also validated using a Y-randomization test, which eliminates 

chance correlations between dependent and independent variables [28]. If the randomised models' 

correlation coefficient values R2 and Q2 are less than the original non-randomized model's R2 and 

Q2, we can be confident that the QSAR models are robust and not the result of random correlation 

[29]. 

2.5 Molecular Docking 

Molecular docking is a computational tool for determining the structure of a protein-ligand 

interaction automatically [30]. The true docking process, on the other hand, is so adaptable that 

receptors and ligands must adjust their conformation to match each other well [31]. This technique 

has been widely used in the drug design research sector in recent years, and it also significantly 

increases efficiency and lowers research costs [32]. One of the most famous molecular docking 

software packages, AutoDock Vina, combines a fast stochastic conformational search method with 

accurate and well-rated force-field-based and empirical scoring systems [33, 34]. The structure of 

Neuraminidase was obtained from the RCSB database (PDB Id: 4ks2) Influenza Neuraminidase 

in complex with an antiviral compound (1SJ) [35] as shown in the Figure VI. 1. In 1999, the Food 

and Drug Administration (FDA) approved Oseltamivir as a Neuraminidase inhibitor [36]. As a 

second reference ligand, we docked Oseltamivir into the Neuraminidase protein pocket. The 

receptors were then processed with UCSF Chimera 1.16 to remove non-standard residues before 

being docked using AutoDock Vina 1.1.2 [37]. The AUTOGRID system, which calculates ligand 

binding energy with their receptor, was used to define the three-dimensional grid [38]. The active 

site is located at coordinates (x = -23.4893 Å, y = 20.7720 Å, and z = -9.6124 Å), and the grid size 

is x = 26.4819, y = 25.6602, and z = 24.2547. The docking results were visualised using the Biovia 

discovery studio visualizer [39]. 
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Figure VI. 1. Binding interaction illustration of Neuraminidase in complex with 1SJ. 

2.6 Prediction of ADMET Properties 

Following the molecular docking of the designed compounds for influenza Neuraminidase 

inhibition, the absorption, distribution, metabolism, and elimination are estimated using the 

SwissADME web server [40]. Furthermore, the ProToxII-II VEGA QSAR platforms were used to 

assess potential toxicity [41, 42].  

3. Results and Discussions 

3.1 Molecular alignment of dataset 

Molecular alignment is one of the most important factors influencing the performance of 

3D-QSAR approaches [43]. The database was aligned for this phase using SYBYL-X 2.0 software, 

with the most active compound (compound 24, pIC50 = 6.780) serving as the structural template 

for the other compounds' alignment. Figure VI. 2 shows the alignment of all molecules in the 

database (training and test set). 

Figure VI. 2.  The alignment of all molecules in the database. 
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3.2 3D-QSAR Model and Validations 

The comparative molecular field method is used to establish a quantifiable link between the 

3D structure of the compounds and their biological activity. Table VI. 2 shows the statistical 

results of the PLS analysis for the CoMFA model. This CoMFA model has an extremely high R2 

value of 0.997, the optimal number of components of 5, and an F-value of 883.433. Furthermore, 

the built model had a cross validated coefficient of Q2 of 0.708, with a very small standard error 

of estimation (SEE) of 0.050. The significant R2 and Q2 values, as well as the low SEE value, 

suggest that the CoMFA model developed is stable and has excellent predictive power. 

Table VI. 2. Statistical parameters of partial Least Squares (PLS) analysis on the comparative 

molecular field analysis (CoMFA) model. 

Model Q2 R2 SEE F N Fraction 

      Steric Electrostatic 

CoMFA 0.708 0.997 0.050 883.433 5 0.412 0.588 

Second, Table VI. 3 shows the results of the CoMFA model's external validation. A high 

R2pred value greater than 0.6 indicates that the CoMFA model has good predictive power, and an 

R2m value of 0.778 indicates that the model has good predictive ability. Also, all values of r2
0 and 

r’2
0 are close to r2, [r2-r2

0]/r
2 and [r2-r’2

0]/r
2 have values very less than 0.1. 

Table VI. 3.  Assessing the predictive performance by statistical parameters of external 

validation for the comparative molecular field analysis (CoMFA) model. 

The PLS results and the external validation show that the CoMFA model is reliable and 

statistically significant. The actual and predicted pIC50 values, as well as the residual values 

determined by the CoMFA model, are shown in Table S2. Figure VI. 3, depicts the excellent 

correlation between actual and predicted activity, demonstrating the 3D-QSAR model's superior 

predictive ability. 

 

 

R2
pred r2 r2

0 r’20 K K’ [r2-r2
0]/r2 [r2-r’20]/r2 r2

m 

0.674 0.957 0.922 0.955 1.016 0.982 0.036 0.001 0.778 
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Figure VI. 3. The plot of the correlation between the experimental and predicted activity using 

3D-QSAR model of training and test set. 

3.3 CoMFA Contour Map 

The collected data were used to illustrate the favorable and unfavorable regions during which 

the structural changes of the compound result in an increase or decrease in biological activity for 

this critical phase. The steric and electrostatic contour maps generated by CoMFA modelling for 

the most active compound are shown in Figure VI. 4. The green contours represent areas where 

bulky groups have a positive influence on Neuraminidase inhibitory activity, whereas the yellow 

contours represent areas where bulky groups have a negative influence on inhibitory activity. 

Steric contour maps show the spatial volume of substituted groups in a variety of locations. 

Because of the presence of bulky groups in advantageous locations, it is possible that the steric 

effect influences the inhibitory activity of compounds 22, 23, and 24. 
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Figure VI. 4. CoMFA contour plot of compound binding to target: Visualization of (A) Steric 

and (B) Electrostatic Fields. Blue and green regions are favorable for inhibitory activity, red 

and yellow green regions are unfavorable for inhibitory activity. 

The blue contours indicate locations where electronegative groups positively influence 

Neuraminidase inhibitory activity, whereas the red contours indicate locations where 

electronegative groups negatively influence inhibitory activity. The contour map shows the 

presence of two large blue contour maps located between the nitrogen and sulphur atoms of the 

thiazolidine ring, as well as medium-sized contours near the aromatic ring. This helps to explain 

the higher activity of compound 24 with a methoxy group near the aromatic ring and the 

thiazolidine's NH2CH2CO- radical. This demonstrates that electronegative groups in these zones 

enhance the inhibitory activity of influenza virus. From these observations, it can be explained 

why the inhibitory activity of the best compounds to inhibit the vital function of Neuraminidase. 

3.4 Design for New Neuraminidase Inhibitors 

This study's primary goal is to develop new anti-influenza thiazolidine inhibitors. The 

CoMFA model contour map analysis provides useful information on structural properties for 

improving Neuraminidase inhibitory activity. Figure VI. 5 depicts the collection of all orientations 

obtained from the CoMFA contour map, which proved to be a dependable and effective 

optimization strategy for the design of novel thiazolidines with high-predicted inhibitory activity. 

Using a comparative molecular field, we created six (Th1-Th6) novel anti-influenza thiazolidine 

derivatives. Six molecules were optimized and aligned, with the most active compound acting as 

a structural template. Table VI. 4 summarizes the chemical structures and predicted pIC50 values 

of the novel compounds proposed. All six proposed compounds have higher predictive pIC50 

values than the most active molecule (predictive pIC50 = 6,780 for the most active compound). 

These molecules can be thoroughly investigated. Finally, as shown in Figures VI. 6 and VI. 7, we 

proposed a reaction mechanism for synthesizing these new molecules. 
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Figure VI. 5. Structural characteristics derived from CoMFA contour Map: Analysis of 

favorable and unfavorable regions for inhibitory activity. Blue and green regions are favorable 

for inhibitory activity, red and yellow green regions are unfavorable for inhibitory activity. 

 

Figure VI. 6. Proposed reaction: General form and chemical equations. 
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Figure VI. 7. Proposed general mechanism for synthesizing the six compounds: Insights into 

reaction pathways and synthetic strategies. 
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Table VI. 4. Structures and pIC50 values of novel molecules predicted by the CoMFA model. 

Compound Chemical structures pIC50 predictive 

CoMFA 

 

 

 

Th1 
 

 

 

 

7.036 

 

 

 

Th2 
 

 

 

 

7.638 

 

 

 

Th3 
 

 

 

 

7.090 

 

 

 

Th4 
 

 

 

 

7.211 

 

 

 

Th5 
 

 

 

 

7.347 
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Th6 
 

 

 

 

7.223 

3.5 Molecular docking 

We performed molecular docking for the six designated molecules (Th1-Th6) to gain a better 

understanding of how the molecules obtained by 3D-QSAR inhibit the vital function of influenza 

virus Neuraminidase, as well as the binding energy and types of interactions. Furthermore, we 

docked Oseltamivir with Neuraminidase to get a better estimate of the inhibitory efficacy of the 

proposed compounds (as another reference molecule). The docking modelling results for all 

proposed molecules and the Neuraminidase inhibitor are presented in Table VI. 5, and their types 

of interactions with the Neuraminidase active site are shown in Figure VI. 8. The results show 

that the designed compounds have binding affinity values ranging from -6.6 to -7.5 kcal/mol, while 

the binding affinity value of the reference compound (1SJ) is -6.6 kcal/mol, and the binding affinity 

value of Oseltamivir into Neuraminidase is -6.6 kcal/mol. The interaction of the reference 

molecule (1SJ) and Oseltamivir with the active site of Neuraminidase is depicted in Figure VI. 9. 

Th1, Th2, Th4, Th5, and Th6 have lower binding affinities than the reference molecule, indicating 

that this molecule is significantly more stable in the active site of Neuraminidase. All of the 

molecules, including the reference compound, interacted with the amino acids Glu119, Asp151, 

Glu276 and Glu277 via Salt Bridge and Attractive Charge interactions.  

We observed a similarity of interaction for the two molecules with the highest binding 

affinity (Th2 and Th6), which interact with the amino acids Glu119, Trp178, Asp227, Glu277, and 

Tyr406. The reference molecule only interacts with the active site via a conventional hydrogen 

bond formed by the amino acids Asp151, Glu276 and Tyr406. It should be noted that conventional 

hydrogen bond interaction with the amino acids Glu119, Trp178, and Asp227 is critical for 

inhibiting the vital function of Neuraminidase. The designed molecules Th1, Th2, Th4, Th5, and 

Th6 demonstrate significant binding to the active site of Neuraminidase, confirming the 3D-QSAR 

model's good predictive power. Finally, our findings regarding the interactions between the six 

proposed molecules and the active site of Neuraminidase agree with the findings of Gracy Fathima 

Selvaraj et al [44]. 
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Table VI. 5. Binding interactions and affinity values of six Neuraminidase inhibitors within the 

active site. 

Ligand Binding affinity 

(Kcal/mol) 

Conventional 

Hydrogen Bond 

Salt Bridge Attractive Charge 

Th1 -7.1 Asp151 Glu277 Asp151, Glu276, 

Glu277 

Th2 -7.5 Asp277, Trp178, 

Glu277, Tyr406 

Glu277 Asp151, Glu276, 

Glu277 

Th3 -6.6 Glu276, Glu277, 

Tyr347, Tyr406 

Asp151, Glu277 Glu119, Asp151, 

Glu277 

Th4 -7.0 Asp151, Glu277, 

Tyr406 

- - 

Th5 -6.9 Ala246, Tyr406 Asp151, 

Glu119, Glu277 

Asp151, Glu119, 

Glu277 

Th6 -7.5 Glu119, 

Trp178,Tyr406 

Glu277 Asp151, Glu277 

1SJ ref -6.6 Asp151, Glu276, 

Tyr406 

Glu277 Glu277 

Oseltamivir -6.6 Tyr406 - Asp151, Glu119, 

Glu277 
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Figure VI. 8. Insights into ligand binding modes: Interactions of six designed compounds with 

Neuraminidase active site. 

Figure VI. 9. Comparative analysis of ligand binding modes: Interactions of 1SJ and 

Oseltamivir with Neuraminidase 
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3.6 ADMET and bioavailability prediction 

This study was conducted to determine the critical pharmacokinetic parameters for the six 

designated molecules. The results obtained by SwissADME are shown in Table VI. 6. All the 

molecules have LogP values between -1.30 and 0.06, these values indicate that all the molecules 

designed have good permeability towards biological membranes. For aqueous solubility, the six 

molecules have Log S values between -1 and 0, which means that all the molecules are easily 

soluble in aqueous media, according to these two parameters all the compounds have a good 

distribution. The six designed molecules (Th1–Th6) were estimated in silico using the five rules 

of Lipinski. It was that all molecules follows the Lipinski's rule. For the interactions with hepatic 

cytochrome P450, we did not record any interaction with them, which means that both molecules 

have a good metabolism. Another important parameter to quantify the pharmacokinetics of these 

designated molecules is the bioavailability score, the six molecules have the same bioavailability 

score (0.55), this value indicates that all the molecules will reach the blood circulation by the oral 

route (That is, both molecules are well absorbed.). For elimination, due to the aqueous solubility 

of six proposed compounds, they are readily eliminated renally. Also good LogKp (skin 

permeation) values between -10.94 and -8.55. Finally, all the proposed molecules are moderately 

easy to synthesize (the six molecules have synthetic accessibility values lower than 4.75). 

Table VI. 6. ADME properties of newly designed compounds: Evaluation of drug-like 

characteristics. 

Compound MW 

(g/mol) 

Consensus 

Log P 

Log S CYP3A4 

inhibitor 

Lipinski Bioavailability 

Score 

Log Kp 

(cm/s) 

Synthetic 

accessibility 

Th1 424.47 -1.07 -1.25 No Yes 0.55 -10.00 4.76 

Th2 364.42 -0.56 -0.35 No Yes 0.55 -10.32 4.39 

Th3 398.43 -1.30 -0.85 No Yes 0.55 -10.19 4.63 

Th4 382.41 0.06 -2.13 No Yes 0.55 -8.55 4.53 

Th5 378.38 -1.29 0.05 No Yes 0.55 -10.94 4.31 

Th6 361.40 -1.07 0.15 No Yes 0.55 -10.84 4.32 

For a quick assessment of drug-likeness, a bioavailability radar is provided. The 

Bioavailability radar takes into account six physicochemical properties. Lipophilicity, size, 

polarity, solubility, flexibility, and saturation are the parameters involved. For all molecules to be 

drug-like compounds, the bioavailability radar graph must be contained within a pink area. If the 

graph is in this pink area, the molecule has a drug-like compound. The bioavailability radar plots 

of the six compounds are shown in Figure VI. 10. Th2 and Th4 are pharmaceutical candidates. 

Although there is a small deviation from area at the point of polar feature, Th1, Th3, Th5, and Th6 

molecules are on the verge of being considered as drug candidates. These findings indicate that all 

molecules have very good bioavailability profiles. 
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Figure VI. 10. Assessing Drug-like properties: Bioavailability radar graphs of six designed 

molecules. 

We calculated the potential toxicity of these new molecules. Table VI. 7, displays the 

ProToxII results. We found no evidence of toxicity caused by the designed compounds, whether 

it was Hepatotoxicity, Carcinogenicity, Immunotoxicity, Mutagenicity, or Cytotoxicity. With 

LD50 predictive values ranging from 230 to 8000 mg/kg and toxicity classes ranging from 2 to 4. 

We conclude that the molecules proposed using 3D-QSAR are both safe and pharmacologically 

active. 

Table VI. 7. Evaluation of safety profiles: Toxicity prediction of newly designed compounds. 

Compound Hepatotoxicity Carcinogenicity 

 

Immunotoxicity Mutagenicity 

 

Cytotoxicity Predicted 

LD50 

(mg/kg) 

Class 

Th1 Inactive Inactive Inactive Inactive Inactive 230 3 

Th2 Inactive Inactive Inactive Inactive Inactive 8000  

Th3 Inactive Inactive Inactive Inactive Inactive 900 4 

Th4 Inactive Inactive Inactive Inactive Inactive 900 4 

Th5 Inactive Inactive Inactive Inactive Inactive 900 4 

Th6 Inactive Inactive Inactive Inactive Inactive 900 4 

We estimated Mutagenicity (Ames test) model (CAESAR) 2.1.14, Developmental Toxicity 

(CAESAR) 2.1.8, Skin Irritation (CONCERT/Kode) 1.0.0, Plasma Protein Binding (- LogK, 

IRFMN) 1.0.0, P-Glycoprotein activity model (NIC) 1.0.1, and finally total body elimination half-

life (QSARINS) 1.0.1 using VEGA QSAR. All of the obtained results are shown in Table VI. 8. 

4
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All predictions show that the six designed compounds are not mutagenic or toxic to development. 

Aside from that, none of these molecules causes skin irritation or infection. All molecules had 

plasma protein binding values ranging from -0.3285 to -0.0484. Furthermore, none of the six 

proposed compounds interacts with P-Glycoprotein, which is found on the surface of biological 

cells. Furthermore, because their total body elimination half-life ranges between 1.533 and 2.837 

hours, renal elimination of these molecules will be simple. The predicted toxicity study results 

show that all six proposed compounds are both safe and pharmacologically active.  

Table VI. 8. All the results obtained from VEGA QSAR. 

Compound Mutagenicity 

(Ames test) 

Developmental 

Toxicity 

Skin Irritation Plasma Protein 

Binding 

P-Glycoprotein 

activity 

Total body 

elimination half-life 

(hour) 

Th1 Non-Mutagenic Non-Toxicant Non-Sensitizer -0.3285 Non Active 2.124 

Th2 Non-Mutagenic Non-Toxicant Non-Sensitizer -0.099 Non Active 2.296 

Th3 Non-Mutagenic Non-Toxicant Non-Sensitizer -0.2242 Non Active 1.959 

Th4 Non-Mutagenic Non-Toxicant Non-Sensitizer -1.1011 Non Active 2.837 

Th5 Non-Mutagenic Non-Toxicant Non-Sensitizer -0.0484 Non Active 1.865 

Th6 Non-Mutagenic Non-Toxicant Non-Sensitizer -0.2455 Non Active 1.533 

 

4. Conclusion  

A 3D-QSAR analysis of 25 thiazolidine-4-carboxylic acid derivatives was constructed in 

this study. This analysis was carried out by creating a 3D-QSAR model using the CoMFA 

methodology. The derived 3D-QSAR models were validated using an external validation 

technique. We proposed six novel compounds with predicted inhibitory activity (pIC50) greater 

than the most active compound based on the information provided by the contour maps. All of the 

proposed compounds are more stable in the active site of Neuraminidase than the reference 

molecule; however, Oseltamivir is more stable in the active site of Neuraminidase (as second 

reference molecule). The molecular docking analysis confirms the 3D-QSAR model's excellent 

prediction ability. Furthermore, we investigated the pharmacokinetic profile and potential toxicity 

of the six proposed compounds, and the results showed that each molecule follows Lipinski's rule 

and can be considered pharmacologically active and safe. We also presented a reaction mechanism 

for synthesizing these chemicals in order to conduct experimental research on their ability to 

suppress the critical function of Neuraminidase and assess their efficacy in vitro and in vivo. 
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General Conclusion 

The influenza virus infects the nose, throat and lungs. It can cause mild to severe disease 

and, in extreme cases, death. The easiest approach to avoiding flu is to obtain a flu vaccine every 

year. In this study, we combined multiple computational and bioinformatics techniques for drug 

discovery to create a new and effective treatment for influenza and its consequences. 

Pharmacophore-based virtual screening, 3D-QSAR, fragment-based drug design, breed De Novo 

hybridization, molecular docking, ADMET investigations, molecular dynamics simulations and 

MM-PBSA calculations are the approaches that were applied. 

Generally, in comparison to the clinical inhibitors (Zanamivir, Oseltamivir and Peramivir) 

all of the proposed compounds bind strongly  to Neuraminidase and form extremely stable 

complexes with it. At the pharmacokinetics level, the developed compounds have very good 

pharmacological profiles such as bioavailability, solubility, permeability, interactions with P-

Glycoprotein and total body elimination half-life. On other hand, the proposed compounds were 

quickly metabolized in the liver and did not create toxic compounds, and no inhibition of 

cytochrome P450 such as CYP 3A4 was found. Furthermore, we assessed the potential toxicity 

(Mutagenicity, Developmental Toxicity, Hepatotoxicity, Immunotoxicity and Cytotoxicity) of 

such compounds and found that it was within an acceptable range. 

Another critical consideration is the molecular stability of the proposed molecules within the 

Neuraminidase receptor. Following the interpretation of molecular dynamics simulation data and 

evaluation of RMSD, RMSf, Rg, H-bonds, SASA, and MM-PBSA calculations for each proposed 

molecule, we concluded the great stability of the formed complexes between the designed 

molecules and the active site of Neuraminidase, and we clearly saw insignificant atomic shift and 

the continuation of structural stability. During 100 ns of simulation, the findings validate the 

biomolecular structural stability of the proposed molecules within the Neuraminidase receptor. 

Finally, we provided a chemical mechanism for synthesizing some of the proposed 

compounds in order to test their inhibitory activity in vitro and in vivo. These findings could play 

a role in the creation of new and powerful neuraminidase inhibitor for the treatment of influenza, 

as well as provide researchers with the chance to investigate these created compounds for the 

treatment of flu and its complications. 




