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Abstract

Deep learning methods often face challenges due to unbalanced or non-representative

data, and in many cases, data scarcity limits model effectiveness. We advocate that

improving data quality can lead to significant performance enhancements. This thesis

presents new methods for data augmentation. Our first method involves randomly create

filters to remove certain rows and columns from the original image to generate smaller,

more informative images. This method was applied to the Cats vs. Dogs dataset to train

the Basic CNN and ResNet50 models, showing improved results compared to the original

dataset. However, random filter generation can sometimes produce images that are too

similar to the originals, reducing diversity. To address this, we developed a secondary

technique incorporating a random optimization algorithm to select optimal generated im-

ages based on entropy, yielding promising results when applied to the VGG16 model.

Nevertheless, image selection remains dependent on filter quality, potentially limiting

diversity. Therefore, our third method employs a genetic algorithm to enhance filter

generation and ensure greater diversity. Additionally, we improved the architectures of

the VGG16 and VGG19 models. When applied to the Cats vs. Dogs and Chest X-ray

datasets and used to train a set of seven models (VGG16, VGG19, their enhanced ver-

sions, EfficientNet-B0, Inception-V3, and Vision Transformer), we observed promising

improvements in model performance compared to the second method. Since optimization

techniques require considerable time and resources, we proposed an alternative method

to enhance model performance without increasing data size. This approach leverages the

unique capabilities of each model to extract features by merging their outputs into a uni-

fied representation used to train a single classifier. The integrated models using VGG16,

VGG19, EfficientNet-B0, and Inception-V3 showed clear performance superiority com-

pared to each model’s individual performance.

Keywords: Deep Learning, Optimization, Image Analysis, Image Classification, Data

Augmentation.
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Résumé

Les méthodes de deep learning rencontrent souvent des défis liés à des données déséquili-

brées ou peu représentatives, et dans de nombreux cas, la rareté des données limite l’ef-

ficacité des modèles. Nous proposons que l’amélioration de la qualité des données peut

entraîner une hausse significative des performances. Cette thèse introduit des méthodes

innovantes de l’augmentation des données. La première méthode repose sur la généra-

tion aléatoire de filtres pour supprimer certaines lignes et colonnes de l’image originale,

produisant ainsi des images plus petites et informatives appliquée au dataset ”Cats vs.

Dogs” pour entraîner les modèles Basic CNN et ResNet50, elle a montré une amélioration

par rapport à la base de données d’origine. Cependant, la génération aléatoire de filtres

peut parfois produire des images trop similaires aux originales, limitant la diversité. Pour

y remédier, nous avons développé une deuxième technique intégrant un algorithme d’op-

timisation aléatoire pour sélectionner les images optimales en se basant sur leur entropie,

montrant de meilleurs résultats sur VGG16 par rapport à notre première proposition.

Cependant, la dépendance de cette méthode à la qualité des filtres générés peut encore

limiter la diversité. Ainsi, notre troisième méthode utilise une optimisation par algorithme

génétique pour améliorer la génération de filtres et garantir une plus grande diversité. Par

ailleurs, nous avons amélioré les architectures des modèles VGG16 et VGG19, et notre

approche a montré des resultats significatives sur les bases de données ”Cats vs. Dogs” et

”Chest X-ray”, en entraînant sept modèles (VGG16, VGG19, leurs versions améliorées,

EfficientNet-B0, Inception-V3, et Vision Transformer). Comme l’optimisation demande

du temps et des ressources, nous avons proposé une nouvelle méthode combinant les sor-

ties de plusieurs modèles et alimentant un classificateur . Cette approche a surpassé les

performances individuelles de chaque modèle, démontrant l’efficacité de nos contributions.

Mots-clés: Apprentissage Profond, Optimisation, Analyse d’Images, Classification

d’Images, Augmentation des Données.
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صخلم

تالاحلانمديدعلايفو،ةيليثمتلاريغوأةنزاوتملاريغتانايبلاببسبتايدحتقيمعلاملعتلابيلاسأهجاوتامًابلاغ

.ءادألايفظوحلمنيسحتىلإيدؤينأنكميتانايبلاةدوجنيسحتنأحرتقن.جذومنلاةيلاعفنمتانايبلاةردندحت

فذحلاهمادختساوتاحشرمءاشناىلعىلوألاانتقيرطدمتعت.تانايبلاةدايزلةديدجًاقرطةحورطألاهذهمدقت

ىلعةقيرطلاهذهقيبطتمت.ةلالدرثكأورغصأةديدجروصديلوتلةيلصالاةروصلانمةنيعمةدمعأوطوطخ

جئاتنلاترهظأدقو."05teNseR"و"NNCcisaB"امهنيجذومنبيردتل"sgoD.svstaC"تانايبةعومجم

ىلإاًنايحأتاحشرملليئاوشعلاديلوتلايدؤيدق،كلذعمو.ةيلصألاتانايبلاةدعاقبةنراقمجذامنلاءادأيفاًنسحت

ةينقتريوطتبانمق،ةلأسملاهذهةجلاعمل.عونتلانمللقيامم،ةيلصألاروصلانماًدجةبيرقوأةهباشمروصجاتنإ

ءانبةززعملاىلثملاةروصلارايتخالةددعتملاتاراركتلانمةدافتسالاو,يئاوشعلانيحتلاةيمزراوخلاخدابةيٍناث
ً
ىلع

جئاتن،61GGVجذومنلابيردتلتانايبلاةدعاقسفنىلعاهقيبطتدنع،ةقيرطلاهذهترهظأدقو.ايبورتنإلا

يفجتنيدقامم،تاحشرملاةدوجىلعاًدمتعمروصلارايتخاىقبي،كلذعمو.ىلوألاةقيرطلاىلعةقوفتمةدعاو

ةدوجبقلعتمروصلاةدوجنوك�لاًرظن.تانايبلاةدعاقعونتنمدّحيوةيلصألابهبشلاةديدشًاروصراركتلك

،ةفاضإكو.ربكأعونتنامضوتاحشرملارايتخانيسحتلةينيحلاةيمزراوخلاةثلاثلاانتقيرطيفانمدختسا،تاحشرملا

sgoD.sv"تانايبلادعاوقىلعانتقيرطقيبطتدنعو."91GGV"و"61GGV"امه،نيجذومنةينبنيسحتبانمق

staC"و"yar-XtsehC"61)جذامنةعبسنمةعومجمبيردتلاهمادختساوGGV91GGVنينسحملانيجذومنلاو

ةنراقمجذامنلاءادأيفدعاونسحتظحول،(remrofsnarTnoisiVو3V-noitpecnIو0B-teNtneiciffEو

نيسحتلةليدبةقيرطانحرتقاكلذل،دراوملاوتقولانمريثك�لابلطتتنيسحتلاقرطنوك�لو.ةيناثلاةقيرطلاب

تازيملاجارختسالجذومنلكلةديرفلاتاردقلانمةقيرطلاهذهديفتست.تانايبلامجحةدايزنودجذومنلاءادأ

مادختسابةجمدملاجذامنلاترهظأدقو.دحاوفنصمبيردتلمدختسُيدحومليثمتيفاهتاجرخمجمدلالخنم

61GGV91GGV0وB-tentneiciffE3وV-noitpecnTىلعجذومنلكءادأبةنراقمءادألايفاًحضاواًقوفت

.ةدح

.تانايبلاةدايزو،روصلافينصت،روصلاليلحت،نيسحتلا،قيمعلامّلعتلا:ةيحاتفملاتاملكلا
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General Introduction

1 Problem Statement

In recent years, the field of image analysis has witnessed significant advancements, driven
largely by the integration of deep learning techniques. Image analysis, which involves
extracting meaningful in formation from digital images, plays a crucial role in various
domains such as medical imaging, surveillance, remote sensing, and autonomous vehicles.
Despite progress, challenges still exist in terms of accuracy, efficiency, and generalization,
particularly when dealing with complex or high-dimensional datasets. To address these
issues, researchers have increasingly turned to deep learning and optimization methods
as powerful tools for enhancing image analysis.

Deep learning, a subset of machine learning based on artificial neural networks, has
revolutionized the way images are processed and interpreted. Convolutional neural net-
works (CNNs), in particular, have demonstrated state-of-the-art performance in tasks
such as object detection, image segmentation, and classification. The ability of deep
learning models to automatically learn hierarchical features from raw images without
the need for manual feature extraction has made them indispensable in image analysis.
However, despite their success, deep learning models often require large amounts of la-
beled data for training and are prone to overfitting, especially in cases of insufficient data
diversity. This has led to the exploration of various strategies, including data augmenta-
tion (DA) and optimization techniques, to improve model performance and robustness.

Optimization plays a fundamental role in enhancing both the efficiency and accuracy
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of image analysis tasks. Optimization algorithms are employed at multiple stages, from
fine-tuning the parameters of deep learning models to selecting the most relevant features
for improving classification or segmentation results. Traditional optimization methods,
such as gradient descent, have long been used in the training of deep neural networks.
However, the rise of metaheuristic optimization techniques, including genetic algorithms,
particle swarm optimization, and random optimization, has opened new avenues for
solving complex image analysis problems. These algorithms leverage randomness and
iterative search processes to explore a broader solution space, thereby improving the
diversity and quality of the final results.

This thesis aims to explore the intersection of deep learning and optimization in the
context of image analysis, with a particular focus on enhancing image classification and
segmentation tasks. By combining the power of deep learning with advanced optimiza-
tion techniques, we seek to improve the accuracy, efficiency, and generalization capa-
bilities of image analysis systems. The proposed approaches will be validated through
extensive experiments, demonstrating their potential to overcome existing challenges and
push the boundaries of current image analysis methods.

While these developments are very encouraging, challenges are yet to be overcome
regarding effective analysis similarity and classification of images. Moreover, coupled
with increasing the number of images, the quality and preprocessing that goes into mak-
ing image analysis models successful are critical. High-quality images with well-defined
features are likely to help a model learn better, while normalization, noise reduction, and
resizing are some of the preprocessing techniques helpful in standardizing input data for
efficient training. Proper preprocessing ensures that the model does not pay unwanted
attention to meaningless patterns, but rather meaningful ones; it also avoids variations
in image quality, lightning, or noise. Therefore, balancing quantity and quality during
data gathering is of prime importance for optimal model performance.

Several approaches can be employed to enhance the performance of deep learning
models in image analysis. These include techniques like DA, which increases training
data diversity and reduces overfitting, and transfer learning, which refines pre-existing

11



General Introduction

models for improved efficiency. Additionally, optimization methods can be used to ac-
celerate model training, while advanced network structures enable more effective com-
putation. Regularization techniques prevent overfitting by introducing controls during
training, and ensemble learning enhances robustness by integrating the predictions from
multiple models. Collectively, these strategies contribute to improved accuracy and bet-
ter generalization in image analysis tasks.

Existing DA methods, while instrumental in expanding training datasets, often face
significant challenges in maintaining image quality. Traditional techniques such as ro-
tation, flipping, and scaling may create variations that fail to accurately represent real-
world scenarios, resulting in less informative images for model training. These techniques
can inadvertently introduce artifacts or distort essential features, ultimately compromis-
ing the overall quality of the augmented data. Since deep learning models heavily rely
on high-quality labeled inputs, any inadequacy in the quality of augmented images can
lead to diminished performance on unseen data.

To address these concerns, our proposed method focuses on enhancing the input
of the CNN model (Images) by selectively choosing a specific set of pixels from the
original image for augmentation. This approach emphasizes the retention of critical
information while minimizing irrelevant details. We further enhance this pixel selection
process by integrating Random Optimization (RO) and Genetic Algorithms (GA), which
collaboratively improve the selection of the best-generated images based on quality and
diversity. The optimization of architectures like VGG16 and VGG19 also contributes
significantly to this performance boost.

The proposed method centers around the concatenation of features extracted from
multiple models, which serves as an innovative strategy to enhance model performance in
image analysis. By leveraging diverse architectures, this approach taps into the unique
strengths of each model, allowing for a richer and more comprehensive representation of
the input data.

Concatenating features from various models effectively merges different perspectives
and insights gained during feature extraction, leading to a more robust understanding
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of the underlying data patterns. This enriched feature representation can significantly
improve the classifier’s ability to differentiate between classes, especially in complex
datasets where subtle variations are critical for accurate predictions.

These improvements by our proposed methods have resulted in significantly bet-
ter performance measures that yield impressive performance on various image analysis
tasks. The incorporation of state-of-the-art techniques, such as feature concatenation
and optimization strategy, further improved the quality of generated augmented images
and showed better generalization capability on unseen data. Experiments demonstrated
the significant improvement in accuracy and robustness as compared to state-of-the-art
approaches, which signifies the successful implementation of our methodology. These
findings align with recent literature emphasizing the importance of using diverse feature
sets in model performance enhancement, particularly in deep learning. Thus, our ap-
proach constitutes a significant stride in the field and promises to serve as one of the
most promising avenues for future research and applications in image analysis.

2 Research Contributions

The primary contributions of this research include:

• Delivering a thorough literature review of the most pertinent image enhancement
DA and optimization methods in image analysis.

• Propose a novel DA technique that involves randomly cropping rows and columns
from the original image to generate augmented images.

• Enhance this technique by introducing a RO method to select the best images from
the set of augmented samples.

• Further improve the initial contribution by utilizing GA to better explore the
augmented image space and capture the most effective images, and Enhance the
VGG16 and VGG19 architectures to improve classification accuracy, leveraging the
benefits of the augmented dataset and optimization strategies.
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• Enhancing model performance is achieved by concatenating the features extracted
from the same images using different models, then feeding this combined feature
set into a classifier.

3 Thesis Organization

The structure of the thesis is outlined as follows:

• General Introduction: outlines the research motivation and identifies the research
problem. It is followed by a presentation of the thesis contributions and an overview
of the thesis structure.

• Chapter 1: offers a general overview of image analysis, with a particular focus on
image classification and, followed by a comprehensive review of DA techniques and
existing methods, along with fundamental concepts of optimization methods and
their applications in this field. Additionally, the chapter presents the datasets used
for image classification tasks, details the advanced CNN architectures employed for
feature extraction and classification, and discusses the various evaluation metrics
used to assess model performance.

• Chapter 2: outlines the proposed DA method, which involves the random selection
of rows and columns from the original image to generate new images. Additionally,
it demonstrates improvements achieved through classification using two distinct
models.

• Chapter 3: discusses the enhancement of the proposed method from Chapter 2
through the application of an RO method.

• Chapter 4: enhances the proposed method from Chapter 2 through the applica-
tion of GA and evaluates the effectiveness of this enhancement using two datasets
and seven models. Additionally, it focuses on improving the VGG16 and VGG19
architectures to further optimize performance.

14



General Introduction

• Chapter 5: presents an approach to improving model performance by concatenating
the features extracted from the same images using different models, then feeding
this combined feature set into a classifier.

• Conclusion and future works: concludes the thesis and outlines potential directions
for future research.
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Chapter 1. Fundamental Concepts and Related Work

1.1 Introduction

Image analysis is a critical area of research that applies computational methods to ex-
tract useful information from visual data. With the increasing number of digital images
in all fields, such as medicine, agriculture, security, and entertainment, there has been an
emerging need for strong analytical techniques. It covers various tasks of image analysis,
from the simple operations of filtering and enhancement to the complex processes involv-
ing segmentation, feature extraction, and classification. In recent years, deep learning
has revolutionized the field of image analysis by drastically changing the accuracy and
effectiveness of classification techniques, enabling artificial neural networks to learn large
datasets and make tremendous improvements in their performance.

Image classification is an important image analysis task. This task includes im-
age classification into predefined classes according to the contents. Image classification
has some important applications in object recognition, facial recognition, and scene un-
derstanding. However, in spite of its importance, image classification presents a large
number of challenges. The data can give rise to several problems, such as class imbal-
ance, which may result in model bias toward the classes that have higher representation.
Furthermore, the noise in the data, such as errors or incorrect labels, may lead to false
learning. The increase in dimensionality, or the number of features, further complicates
the training process. One of the most important issues is the lack of data, and it affects
the classification tasks immensely.

This chapter is organized as follows: Section 1.1 provides a general overview of image
analysis and image classification, along with the associated challenges. In Section 1.2, we
present a comprehensive review of significant areas and recent advancements in the field
of image classification. Section 1.3 offers an overview of the concept and the literature
on data augmentation. Following this, Section 1.4 discusses the challenges in the data
augmentation domain. Section 1.5 outlines existing optimization methods, while Section
1.6 describes the datasets utilized in our study. Section 1.7 focuses on the CNNs em-
ployed, highlighting our contributions to enhancing specific models. Section 1.8 details
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the evaluation metrics applied to assess the effectiveness of our methodologies. Finally,
Section 1.9 concludes the chapter by summarizing the significance of the selected tools.

1.2 Image classification

Image classification is a computer vision task that identifies the class or label of an
image. This normally involves machine learning algorithms or deep learning models that
analyze various features of the image: color, texture, shape, patterns, among others.
More specifically, it aims at the identification and classification of objects or scenes in
an image into predefined classes to interpret the visual information automatically.

Some of the key challenges that an image classification faces are as follows: data
imbalance, where some classes have a lot more samples than others, resulting in biased
predictions; noisy data with bad quality or erroneous labels; variability among images due
to differences in lighting, angles, and resolutions. In addition, the high dimensionality
and complexity of objects in image data can complicate training. Overfitting is a risk,
especially in the case of deep learning models, while adversarial attacks can undermine
model reliability; classification tasks are further complicated by limited training data
and the need for real-time processing.

Data scarcity presents a significant challenge in deep learning, often impeding model
performance and generalization capabilities. To address this issue, several effective
strategies have been developed, including Data Augmentation (DA)is a technique [1]
such as rotation, scaling, flipping, cropping, and color adjustments can artificially in-
crease the size and diversity of the dataset, helping the model generalize better. DA
creates variations of the existing images to simulate a larger dataset. Transfer learning
Utilizing pre-trained models on large datasets and fine-tuning them on smaller datasets
can be highly effective. Transfer learning leverages the knowledge gained from large-scale
datasets to improve performance on specific tasks with limited data [2]. Synthetic data
aims to generate synthetic data using techniques such as Generative Adversarial Net-
works (GANs) or other data generation methods that can supplement the real dataset.
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Synthetic data can help cover scenarios that may not be present in the real data [3]. Semi-
supervised learning combines a small amount of labeled data with a larger amount of
unlabeled data allowing the model to learn from both. Semi-supervised learning methods
can help improve performance by leveraging the additional information in the unlabeled
data [4]. Few-shot learning approaches are designed to train models to recognize new
classes with very few examples. Techniques such as meta-learning and metric learning
enable models to learn from limited data efficiently [5]. Data synthesis and augmentation
including using 3D models or simulation environments, can create diverse and realistic
training examples that supplement real-world data [6]. Crowdsourcing engaging the
crowd to label data can help quickly expand the dataset. Crowdsourcing platforms can
gather and label large volumes of images, although it requires careful quality control [7].
Applying regularization methods such as dropout [8], weight decay, or early stopping
during training can help prevent overfitting and improve generalization when working
with small datasets. Ensemble methods that Combine predictions from multiple models
trained on the same data can improve overall performance. Ensemble methods can help
mitigate the effects of limited data by leveraging the diversity of multiple models [9].
These solutions can be used individually or in combination to address the challenges
posed by limited data in image analysis tasks.

1.3 Data Augmentation

Data analysis is a technique used to increase a dataset’s size and diversity by creating
modified versions of existing data samples. This is achieved through various transforma-
tions applied to the original data, which helps improve the robustness and generalization
ability of machine learning models.

DA is applied to different types of data, such as images [10–13], audio [14, 15], and
time series [16].

In image analysis, DA involves applying operations to images to produce variations
that retain the original label but introduce new insights or features, Wong et al. [17] and

19



Chapter 1. Fundamental Concepts and Related Work

0

Cropping Flipping Rotation

Scaling Shearing Translation

Geometric 

Transformations

Figure 1.1: Examples of images generated by applying GT

Semenoglou et al. [18] divide the proposed methods of data augmentation into two main
categories: classical and deep learning-based.

1.3.1 Classic approaches

Classic DA techniques are typically used in traditional image processing and machine
learning workflows:

Geometric Transformations (GT): Geometric transformation in image process-
ing refers to manipulating an image’s spatial properties, such as:

• Rotation: Rotating images by various angles.

• Scaling: Resizing images to different scales.

• Translation: Shifting images horizontally or vertically.

• Cropping: Extracting random or centered portions of images.

• Flipping: Horizontally or vertically flipping images.

• Shearing: Applying geometric distortions to simulate perspective changes.

Figure 1.1 illustrates examples of images transformed through various geometric tech-
niques. These transformations, such as rotation, scaling, and translation, aim to enhance
the visual diversity of the dataset. By simulating different perspectives and orientations,
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Figure 1.2: Example of images obtained by applying CBA

these modifications improve the robustness of deep learning models, enabling them to
better handle variations they might encounter in real-world applications.

Color and Brightness Adjustments (CBA): CBA involves modifying an image’s
color balance and light intensity to enhance its visual appearance or meet specific analysis
requirements.

• Brightness Adjustment: Altering the brightness of images.

• Contrast Adjustment: Changing the contrast levels of images.

• Color Jittering: Modifying color properties such as saturation, hue, and exposure.

• Channel Shifting: Adjusting the intensity of color channels.

Figure 1.2 illustrates examples of images obtained after applying various color and
brightness adjustment techniques. These modifications are intended to enhance the
visual diversity of the dataset, improving the robustness of deep learning models by sim-
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Figure 1.3: Example of Images Obtained by Applying Noise and Distortion

ulating different lighting conditions and color variations that the model might encounter
during real-world applications.

Noise and Distortion: Noise and distortion can be strategically applied to create
new images by introducing controlled random variations and systematic alteration, such
as:

• Noise Injection: Adding random noise to images.

• Blur: Applying blurring effects to simulate out-of-focus conditions.

• Distortion: Introducing random distortions or warps to images.

Figure 1.3 displays an example of images obtained by applying noise and distortion
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techniques. These adjustments are used to simulate real-world imperfections, such as
random pixel variations and image degradation.

DA has attracted considerable research, following a review of the most important
proposed methods. In a recent approach proposed by Paschali et al. [19], both affine
and projective transformations are applied randomly on training dataset images. The
technique underwent a thorough evaluation of the complex tasks of breast tumor clas-
sification from mammograms and fine-grained skin lesion classification from poor data.
However, the method has some limitations, including a high computational cost due to
the use of GANs, which require significant resources and lengthy training times. Ad-
ditionally, the quality of the generated data can vary, potentially limiting the model’s
performance if the synthetic data lacks sufficient diversity. The approach is also complex
to implement and heavily dependent on hyperparameter tuning, making it challenging
to achieve optimal results.

Random Image Cropping and Patching (RICAP) is another DA technique proposed
by Takahashi et al. [20]. This method involves randomly selecting and cropping four
images from the training dataset, then patching these cropped portions together to form
a new composite training image. The cropped regions from each of the four images are
combined, with each segment contributing a part of the final image. During this process,
the class labels are adjusted according to the area proportions of the crops, ensuring
that the new training image represents a mixture of the classes from the original images.
RICAP effectively increases the variability of the training samples by exposing the model
to mixed samples, thus helping to improve its robustness and generalization ability. This
approach is particularly useful in scenarios where the dataset is limited, as it allows the
model to learn from a broader set of variations in the input data.

Elgendi et al. [21] tested how geometric augmentations used in recent papers affected
the ability to detect COVID-19. Moreover, they evaluated the performance of 17 deep-
learning algorithms with and without geometric augmentations. This method relies on
geometric augmentations, which may not capture the full variability of medical imaging
data. Moreover, it may not generalize to other medical tasks or datasets, and it requires
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substantial computational resources, challenging its practical use in clinical settings.
Howard et al. [22] discuss the use of various photometric modifications, including

random color jittering, which involves changing the brightness, contrast, and saturation
of images. In the research of Zhang et al. [23], they introduce the Mixup augmentation
technique, which involves the linear interpolation of pairs of images and their corre-
sponding labels to generate new training examples. By blending images and labels,
Mixup encourages the model to learn from a wider range of samples, thereby enhancing
generalization and robustness. The paper provides theoretical analysis and empirical
validation of Mixup across various deep learning tasks, including image classification
and object detection. However, it lacks extensive exploration of Mixup’s impact across
diverse datasets or domains, thus restricting its applicability. Although Mixup demon-
strates improved model performance in various tasks, its superiority over traditional
augmentation methods may not be consistent. Moreover, the paper overlooks potential
challenges like handling class imbalances and computational overhead during training,
limiting its comprehensive evaluation.

Yen et al. [24] introduce a novel DA methodology known as CutMix. This tech-
nique amalgamates Cutout and Mixup augmentation approaches. CutMix involves the
random selection of rectangular patches from two images during training and their re-
placement, promoting simultaneous learning from original and amalgamated regions.
This method enhances feature learning and localization, thereby improving the gener-
alization and robustness of CNNs. Experimental results across various computer vision
tasks and datasets demonstrate the superiority of CutMix over other augmentation tech-
niques in terms of accuracy and robustness. This technique offers an innovative approach
to DA by blending images through overlapping patches. While this technique demon-
strates improved model performance and feature localization in various computer vision
tasks, it faces several limitations. These include dependency on image overlap, potential
information loss during mixing, increased training complexity, and domain specificity.
Addressing these limitations would enhance the applicability and robustness of CutMix
across different datasets and domains.

24



Chapter 1. Fundamental Concepts and Related Work

The second group, however, includes photometric modification, the significant meth-
ods are color jittering, grayscaling, filtering, illumination perturbation, noise addition,
vignetting, contrast adjustment, random erasing, etc. They change the RGB channels
by changing pixel colors into new values. The color jittering technique employs a variety
of manipulations, including inversion, addition, subtraction, and multiplication. Chen et
al. [25] used a GridMask method involving the deletion of specific regions within the input
image, introducing a grid-like pattern that obscures portions of the data. By strategi-
cally removing information in this grid-based manner, the augmentation technique aims
to enhance the robustness and generalization capabilities of machine learning models,
particularly in the context of image classification. This method may remove important
features, introduce artificial artifacts, vary in effectiveness across different datasets and
tasks, and incur significant computational overhead, posing challenges for widespread
implementation.

Another approach presented by Zhong et al. [26] employs a method called Random
Erasing which selects a rectangular section within an image during training and replaces
its pixels with random values. This process introduces training images with varying
levels of occlusion.

Many other methods have combined elements from both kinds of techniques. Among
them, Kim et al. [27] proposed a method for generating new training images. Their
approach includes image pre-processing steps, such as background removal and target
extraction, while maintaining the original object size ratio. It also involves color per-
turbation, considering predefined similarities between the original and generated images,
GT, and transfer learning. However, it relies on accurate initial segmentation for effec-
tive background removal and target extraction, which can be challenging in complex or
varied backgrounds. While color perturbation and GT aim to enhance dataset diversity,
their impact on model performance across different domains varies. Additionally, the
method’s computational complexity, involving multiple augmentation steps, may hinder
scalability in resource-limited settings.

25



Chapter 1. Fundamental Concepts and Related Work

1.3.2 Deep learning-based DA approaches

Deep learning approaches for DA have evolved to include more sophisticated and auto-
mated methods, leveraging the power of neural networks to generate new training data
or to optimize the augmentation process. Here are some notable deep learning-based DA
techniques:

Generative Adversarial Networks (GANs) consist of a generator and a discrim-
inator that collaborate to create realistic images. The generator aims to produce images
that closely resemble the training data, while the discriminator works to differentiate
between real and generated images. This dynamic allows GANs to augment datasets by
generating synthetic samples that are similar to the original data, ultimately providing a
more diverse and robust training set. Antreas et al. [28] introduce DA GANs (DAGANs).
The goal of DAGANs is to address the challenge of limited data in machine learning,
particularly for training deep neural networks. DAGANs use GANs to generate aug-
mented samples for a given dataset. The key idea is to train a GAN model that, given
an input sample, can generate new variations of that sample that are different yet still
belong to the same class. This helps to improve the diversity of training data without
explicitly collecting more real-world data. By using DAGANs, the authors demonstrate
improvements in training classifiers, especially in few-shot learning scenarios where data
is scarce. The proposed approach enhances the generalization capability of models by
enriching the training data with more variations, which can help improve performance
on unseen data.

Variational Autoencoders (VAEs) encode input images into a latent space and
subsequently decode them to generate new, similar images. This approach is particu-
larly useful for creating slightly altered versions of existing images, thereby enhancing
the variability within the dataset and allowing for a more diverse set of training samples.
Kingma et al. [29] introduce the concept of Variational Autoencoders (VAEs), which
combine the principles of variational inference and deep learning to perform generative
modeling. The authors present a novel approach for training latent variable models,
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enabling efficient inference and generation of data. The VAE framework encodes input
data into a lower-dimensional latent space and then decodes it to reconstruct the original
data, allowing for the generation of new samples by sampling from the learned latent
distribution. The work has significantly influenced the field of generative models and has
applications in various domains, including image generation and semi-supervised learn-
ing.

Hou et al. [30] propose VA-GAN, a novel approach that combines Variational Au-
toencoders (VAEs) with GANs for visual anomaly detection. The VA-GAN framework
is designed to effectively model the distribution of normal attributes in visual data while
simultaneously detecting anomalies based on deviations from this distribution. By lever-
aging the strengths of both VAEs and GANs, VA-GAN is capable of generating realistic
samples and identifying abnormal instances, making it a powerful tool for applications
in surveillance, quality control, and medical imaging. The paper presents experimental
results demonstrating the effectiveness of VA-GAN in improving anomaly detection per-
formance compared to existing methods.

Neural Style Transfer: it is a technique that applies the visual style, including
textures and colors, of one image to another while preserving the content of the target
image. This approach facilitates the creation of images that exhibit different appearances
but maintain the same underlying structure, ultimately increasing the variability within
the dataset. Gatys et al. [31] introduce a neural algorithm for artistic style transfer that
leverages deep CNNs. The core idea is to separate the content and style of images. The
authors used a pre-trained CNN(specifically, VGG-19) to extract feature representations
of both the content image and the style image. The algorithm defines a loss function that
combines content loss (which measures the difference between the generated image and
the content image) and style loss (which measures the difference between the generated
image and the style image). Style is represented using Gram matrices that capture the
correlations between different filter responses at various layers of the network.
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Huang et al. [32] propose a method for arbitrary style transfer that allows for real-time
applications by introducing Adaptive Instance Normalization (AdaIN). This technique
modifies the content features extracted from a content image by adapting them to the
statistics of the style features from a style image. The AdaIN process involves normalizing
the content features and then scaling and shifting them using the mean and variance of
the style features. This allows the model to effectively apply the style of any given image
to the content of another in a single forward pass, significantly speeding up the style
transfer process compared to previous methods that required iterative optimization.

AutoAugment: it employs reinforcement learning to identify optimal combinations
of augmentation operations and their respective magnitudes. This approach automates
the discovery of effective augmentation strategies, significantly reducing the time required
for manual tuning and enhancing the efficiency of the DA process. Cubuk et al. [33]
present AutoAugment, a framework that employs reinforcement learning to automate
the discovery of effective DA strategies for deep learning models. By using a reinforce-
ment learning controller, the method systematically learns augmentation policies from a
diverse search space, including transformations like rotation and color adjustments. The
study shows that models trained with these learned policies significantly outperform
those using standard augmentations on benchmark datasets such as CIFAR-10 and Im-
ageNet, enhancing model robustness and generalization. AutoAugment effectively saves
time and improves performance by uncovering effective strategies that may not be read-
ily apparent to human designers.

RandAugment: it is a simplified version of AutoAugment that reduces the search
space by randomizing the selection of augmentation operations, optimizing only two pa-
rameters: the number of transformations applied and their magnitude. This approach
decreases computational overhead while still providing the advantages of diverse aug-
mentations, making it an efficient alternative for enhancing training datasets. Augment
is a practical DA technique introduced by Cubuk et al [34]. This method simplifies
the augmentation process by randomizing the selection of operations applied to training
data, optimizing only two parameters: the number of transformations and their magni-
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tudes. By doing so, RandAugment significantly reduces computational overhead while
maintaining the effectiveness of diverse augmentations, achieving state-of-the-art per-
formance on various benchmarks. The foundational concepts behind RandAugment are
rooted in earlier works such as AutoAugment, which utilized reinforcement learning to
discover optimal augmentation strategies.

Population-Based Augmentation (PBA) is an advanced DA technique designed
to enhance the robustness and performance of machine learning models, particularly in
the context of deep learning. As proposed by Lim et al. [35], PBA aims to optimize the
augmentation process by treating it as a search problem, where different augmentation
strategies are explored and evaluated to find the most effective combination for improving
model accuracy.

Adversarial Training for DA focuses on generating adversarial examples—slight
modifications of input images aimed at misleading models—and utilizing these examples
to enhance the model’s robustness and generalization. This technique is particularly
useful in situations with limited training data or when models are susceptible to adver-
sarial attacks. Key methods include generating adversarial examples using algorithms
like the Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD),
and incorporating these examples into the training dataset to help the model learn to
differentiate between normal and adversarial samples.
The study of Madry et al. [36] focuses on enhancing machine learning models’ robustness
by incorporating adversarial examples into the training process. By introducing slight
perturbations to the original data, this technique aims to expose models to challenging
variations, which improves their ability to generalize to unseen data. The study demon-
strates that integrating these adversarial examples leads to significant improvements
in model performance across various tasks and datasets, ultimately bolstering defenses
against adversarial attacks. For more details, you can refer to the paper itself or related
works on adversarial training and DA strategies.

Goodfellow et al [37] explore the phenomenon of adversarial examples—inputs to ma-
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chine learning models that have been intentionally perturbed to cause misclassification.
The authors provide a theoretical framework to understand why neural networks are sus-
ceptible to these subtle alterations, proposing that adversarial examples arise from the
linearity of neural network models in high-dimensional spaces. They also discuss meth-
ods to generate adversarial examples, such as the Fast Gradient Sign Method (FGSM),
and emphasize the implications of these findings for the robustness of machine learning
systems. It highlights the need for new training methodologies, including adversarial
training, to enhance model resilience against such attacks. This work has significantly
influenced subsequent research in adversarial machine learning.

Self-Supervised Learning (SSL) for DA leverages unlabeled data to train models
to extract valuable features by solving pretext tasks, such as predicting image rotations or
distinguishing different augmentations of the same image. This approach enables models
to learn from the inherent patterns in data without requiring extensive labeled datasets,
making it particularly useful in scenarios where labeled data is scarce. Key methodologies
include contrastive learning frameworks like SimCLR, which maximizes the similarity
between augmented views of the same data instance, and Momentum Contrast (MoCo),
which enhances scalability in SSL. These techniques have shown significant success in
various applications, including computer vision tasks like image classification and object
detection.

SimCLR is a framework designed for contrastive learning (SimCLR) by Chen et
al. [38] is a framework designed for contrastive learning that emphasizes the importance
of DA in self-supervised representation learning. It operates by generating multiple
augmented views of the same image and training a neural network to maximize agreement
between these views while minimizing agreement with views from different images. The
process utilizes a simple architecture with a projection head, making it straightforward
to implement and efficient for learning useful visual features from unlabeled data (Chen
et al., 2020).

Momentum Contrast (MoCo) proposed by Heet et al. [39] introduces a method for
unsupervised visual representation learning by maintaining a dynamic dictionary of en-
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coded features. This dictionary allows the model to contrast current input features
against a larger set of previous representations, thereby improving the robustness of the
learned features. The momentum encoder mechanism helps to keep the representations
consistent over time, facilitating more stable learning from unlabelled data.

Swapping Assignments between Views (SwAV) proposed by Caron et al. [40] and
focuses on learning visual features by contrasting cluster assignments rather than direct
representations. The method employs a clustering approach, where it encourages similar
images to share cluster assignments, thereby enhancing feature learning through the
self-supervised framework. This allows SwAV to efficiently learn rich visual features
without requiring labeled datasets, making it a powerful tool for various computer vision
tasks. The cutout technique, introduced by DeVries et al. [41] is a straightforward
regularization method that involves randomly masking square regions of input images
during training. However, the cutout technique may obscure critical image features,
potentially impacting model performance. Additionally, while it aids in regularization,
it could introduce unnatural patterns that might bias learning outcomes. Its effectiveness
may vary across different datasets and tasks beyond image classification, which limits its
applicability. Moreover, the computational resources required for implementing Cutout
on large datasets can be significant, posing practical challenges for widespread adoption.

Mixup is a DA technique proposed by Zhang et al. [42] that enhances the general-
ization capabilities of deep learning models, particularly in image classification tasks.
The method involves creating new training samples by taking linear combinations of two
randomly chosen images and their corresponding labels

CutMix is a DA technique introduced by Yun et al. [24] that enhances the training
of neural networks by combining images and their labels. Instead of merely blending
two images, CutMix involves cutting out a patch from one image and pasting it onto
another. This is accompanied by an adjustment of the labels based on the proportion of
each image in the mixed sample.

Neural Augmentation Networks (NANs) are advanced techniques in DA that
utilize neural networks to generate new training samples, enhancing the diversity of
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datasets. By creating augmented data that retains the semantic content of the original
images while introducing variations, NANs help improve model robustness and general-
ization, particularly in scenarios with limited data. This approach not only addresses
issues like overfitting but also enhances performance against adversarial attacks.

Xie et al. [43] introduces a framework for DA that leverages consistency training,
where a model is trained to produce similar predictions for augmented versions of
the same input. The authors propose using unsupervised methods to generate diverse
augmentations, ultimately improving model robustness and generalization capabilities.
Their approach demonstrates that consistent predictions across augmented data can sig-
nificantly enhance performance, especially in tasks with limited labeled data.

AutoAugment, proposed by Cubuk et al. [33, 44], is a reinforcement learning-based
method that automates the discovery of effective data augmentation (DA) policies. By
searching for optimal combinations of augmentations that maximize model performance,
AutoAugment alleviates the manual effort involved in data preprocessing. The method
employs a reinforcement learning controller to select the best transformations and their
magnitudes, optimizing techniques such as rotation and color jitter to enhance classifica-
tion performance on validation sets. Experimental results demonstrate significant accu-
racy improvements across various benchmark datasets, including CIFAR-10, CIFAR-100,
and ImageNet, underscoring the potential of automated augmentation in deep learning
workflows.

Population-based Augmentation (PBA), proposed by Ho et al. [45], utilizes population-
based training to dynamically adjust augmentation policies throughout the training pro-
cess. This approach optimizes both the type and magnitude of augmentations, varying
them over time to enhance model performance. PBA leverages evolutionary strategies
to optimize augmentation schedules, adapting them to the current state of the model
during training. By improving upon static augmentation strategies, PBA reduces the
reliance on large validation sets typically required for policy optimization.

RandAugment, introduced by Cubuk et al. [34], simplifies the AutoAugment ap-
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proach by reducing the number of search parameters involved in the augmentation pro-
cess. Instead of searching for optimal augmentation policies, RandAugment randomly
selects augmentation operations and focuses on optimizing just two hyperparameters:
the number of operations and their magnitude. This simplification of the search space
leads to a reduction in the computational cost required to find effective augmentations
while still retaining performance improvements. As a result, RandAugment has demon-
strated competitive results on datasets such as CIFAR-10 and ImageNet, Improving the
diversity of the training dataset for better generalization of machine learning models.
This is achieved through various optimization techniques, such as Genetic Algorithms,
which optimize the selection and combination of augmentation techniques like rotation,
flipping, scaling, or color jittering. Additionally, AutoAugment, a reinforcement learn-
ing approach, learns optimal augmentation policies to enhance model robustness. By
employing these strategies, optimizing DA with AutoAugment significantly improves
generalization in image classification tasks.

Genetic Algorithms have been effectively employed to optimize image augmentation
techniques by evolving a population of augmentation strategies over multiple genera-
tions. These strategies encompass a range of transformations, including scaling, flipping,
and brightness adjustments. The Genetic Algorithms search for augmentation param-
eters that yield the best classification performance, utilizing selection, mutation, and
crossover to explore diverse augmentation strategies. This approach can significantly en-
hance performance, particularly when integrated with deep learning models, as the GA
efficiently identifies augmentation policies that generalize better on the training data.
The methodology is discussed in detail in [46].

1.4 Challenges and Difficulties

Data augmentation techniques enhance model performance in image analysis; however,
each category has its limitations
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1.4.1 Limitations of traditional approaches

Geometrical transformation (GA) methods of DA carry a lot of significance in terms of
enriching machine learning models’ training spaces. However, GT, such as rotation or
deformation, can affect changes in meaning, particularly for domains with high positional
and orientational sensitivity, such as computer vision. The consequence of this may be
undesirable distortions. Some of the algorithms for transformation rely on parameters
[46], [47]. Insufficient tuning of the parameters may lead to unrealistic or unnecessary DA,
which results in an adverse effect on quality training. GT is resource-intensive, especially
for large datasets. It leads to high costs in terms of training time and computation. The
effectiveness of these methods could vary depending on data forms, such as structured
data.

This loss of semantic information introduced by photometric variations in brightness,
contrast, or hue can influence object interpretation in recognition applications where it
may be critical. This limits generalization because models become sensitive to the varia-
tions that these modifications introduce, which negatively affect real-world performance.
The models are less robust to substantial changes in initial lighting. Photometric modifi-
cations require deep domain expertise because inappropriate settings result in unrealistic
or biased scenes. Complex photometric modifications carry a computational overhead,
hence affecting the training speed of the models. On the other hand, this may be very
useful for allowing the model to better generalize in DA, this cropping off a part of the
image may provide robustness by allowing it to learn and extract the pattern when parts
or regions are occluded or missing pieces, learn from the surrounding regions of a miss-
ing part. Besides, the generation of new images with different subsets of missing pixels
keeps the training data variable, not dependent on specific features or specific spatial
configurations of pixels
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1.4.2 Limitations of deep learning-based approaches

Deep learning-based approaches to data augmentation face several limitations, including
high computational costs that require substantial resources for training and inference.
Their complexity can also pose challenges, necessitating specialized expertise for effec-
tive implementation. Furthermore, these methods risk overfitting, as they may produce
synthetic data that fails to accurately represent real-world scenarios. Lastly, the success
of deep learning-based augmentation is heavily reliant on the quality and quantity of the
original training data, which can limit their effectiveness if the data is inadequate.

In addition to methods proposed to address data scarcity in classification, optimiza-
tion is essential for boosting model accuracy. This process can involve enhancing image
quality or creating more diverse data points through techniques like noise reduction,
which improve the robustness of input features and support better classification perfor-
mance. Additionally, directly optimizing model parameters, such as through hyperpa-
rameter tuning or fine-tuning layers in deep learning models, is a standard approach for
increasing accuracy and robustness, particularly in deep learning applications

1.5 Optimization methods

Optimization can be defined as trying to find the best solution out of a set of feasible so-
lutions by either maximizing or minimizing a given objective function. This is achieved
by making systems or decisions as effective as possible. Optimization can take many
classifications. The most common techniques in solving optimization problems include
techniques such as gradient descent and evolutionary algorithms. This is a very impor-
tant process in operations research, economics, engineering, and machine learning, where
the procedure improves performance, trims costs, and makes improved decisions.
Optimization methods can be broadly categorized into different approaches, each suited
for specific problems. Optimization methods can be broadly categorized into different
approaches, each suited for specific problems. In the following subsection, we will explore
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these optimization methods in detail, examining their characteristics.

1.5.1 Exact methods

Exact optimization methods are techniques designed to find the optimal solution to a
problem, ensuring the best outcome according to a defined objective function. In the
following, we present an overview of the most prominent methods.
Linear Programming (LP): is a mathematical optimization technique used to find
the best outcome in a mathematical model whose requirements are represented by linear
relationships. It involves maximizing or minimizing a linear objective function, subject
to a set of linear constraints.
Integer Programming (IP): employing branch and bound and cutting planes for
problems with integer constraints.
Dynamic Programming (DP): is a method for solving complex optimization problems
by breaking them down into simpler overlapping subproblems. It solves each subproblem
only once and stores the results, avoiding the need to recompute them.
Branch and bound: it is an algorithm for solving discrete optimization problems,
especially in integer programming. It explores the solution space by dividing it into
subproblems, evaluating each with bounds, and discarding suboptimal ones to avoid un-
necessary searches.
Constraint Programming: which focuses on satisfying constraints rather than opti-
mizing an objective.

1.5.2 Heuristic and metaheuristic methods

Heuristic and Metaheuristic methods are approximation techniques used to find near-
optimal solutions for complex optimization problems when exact methods are impractical
due to time or computational constraints. In the following, we present an overview of
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the most prominent methods.
Rndom Optimization (RO): introduced by Anderson et al. [48], encompasses a variety
of optimization techniques that operate without the need for gradient information. This
characteristic makes these methods particularly effective for handling non-continuous or
non-differentiable functions.
Genetic Algorithms (GA) introduced by Sampson [49] Mimic natural selection by
generating populations of potential solutions and applying crossover, mutation, and se-
lection to evolve better solutions.
Differential Evolution (DE) introduced by Storn [50] uses population-based opti-
mization where differences between randomly selected pairs are added to generate new
candidate solutions.
Simulated annealing: presented by Kirkpatrick et al. [51] Inspired by the annealing
process in metallurgy, it explores the solution space by probabilistically accepting worse
solutions initially to escape local minima.
Tabu search: is a technique proposed by Glover et al. [52] Uses memory structures to
avoid revisiting recently explored solutions, enhancing the search for optimal results in
complex spaces.

Swarm intelligence

• Ant Colony Optimization (ACO): presented by Dorigo et al. [53] Inspired by
the behavior of ants searching for paths between their colony and food sources,
used for solving discrete optimization problems.

• Artificial Bee Colony (ABC): Simulates the foraging behavior of bees, useful
in both continuous and discrete optimization.

• Particle Swarm Optimization (PSO): proposed by Kennedy et al. [54]Simu-
lates the social behavior of birds or fish, where particles move through the solution
space, influenced by their best-known positions and the group’s best position.

• Crow Search Algorithm: it is a nature-inspired metaheuristic optimization
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method based on the intelligent behavior of crows, specifically their habit of storing
food in hidden places and the tendency to follow other crows to discover their food
locations. It was introduced by Askarzadeh et al. [55] and has been used for solving
various continuous and discrete optimization problems.

• The Firefly Algorithm (FA): it is a bio-inspired optimization technique intro-
duced by Yang et al. [56], which simulates the flashing behavior of fireflies to solve
complex optimization problems across various domains such as engineering, com-
puter science, and data analysis.

• Lion Optimization Algorithm (LOA): it a method proposed by Yazdani [57]
is a nature-inspired metaheuristic optimization technique that simulates the social
behaviors and hunting strategies of lions. Developed to solve complex optimization
problems

Gradient-Based methods:

introduced by Cauchy et al. [58] iteratively adjusts parameters in the direction of the
negative gradient to minimize a cost function, with variants such as Stochastic Gradient
Descent (SGD), Mini-batch Gradient Descent, and Adam. Newton’s Method, on the
other hand, uses second-order derivatives to identify points where the gradient equals
zero, providing faster convergence but requiring the computation of the Hessian matrix.

Gradient-Free Optimization

• Genetic Programming (GP): Proposed by Koza et al. [59], GP is a technique
that evolves programs or functions to address complex problems, making it partic-
ularly valuable in scenarios where gradients are difficult or impossible to compute.

• Bayesian optimization: This is a probabilistic model-based approach commonly
employed for hyperparameter tuning. It utilizes a probabilistic model of the func-
tion being optimized, allowing each evaluation step to be informed by previous
results and thereby improving the efficiency of the search process.
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Machine learning-based optimization

• Reinforcement Learning (RL): Initially proposed by Watkins et al. [60], RL en-
ables agents to learn decision-making strategies through interactions with their en-
vironment. This approach is particularly effective for optimizing complex decision-
making processes across various applications.

• Neural Architecture Search (NAS): Introduced by Zoph et al. [61], NAS lever-
ages optimization techniques to automate the search for optimal neural network
architectures, thereby enhancing model performance and reducing the need for
manual design.

1.5.3 Convex optimization

This approach focuses on optimizing convex functions over convex sets, ensuring that
any local minimum is inherently a global minimum due to the problem’s structure. It is
particularly suited for problems characterized by well-defined mathematical properties,
making it a versatile tool across various domains. The comprehensive framework for
convex optimization was extensively detailed by Boyd et al. in their foundational work
[62].

1.5.4 image optimization-based classification

Image classification-based optimization leverages optimization techniques to enhance the
accuracy and efficiency of classifying images into predefined categories.

Khan et al. [63] presents an innovative methodology for the classification of optical
coherence tomography (OCT) images, integrating deep learning techniques with ant
colony optimization (ACO). This research introduces a hybrid model that effectively
combines the feature extraction prowess of deep learning networks with the optimization
capabilities of ACO, resulting in enhanced classification accuracy. The findings suggest
that this approach surpasses conventional image classification methods, highlighting its
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considerable potential to advance diagnostic effectiveness in medical imaging.
Lee et al. [64] review various swarm intelligence algorithms, including particle swarm

optimization and ant colony optimization, along with their applications in image clas-
sification and other image processing tasks. The paper discusses the performance and
improvement strategies of these algorithms in the context of image segmentation, match-
ing, and feature extraction.
Yong et al. [65] present a new optimization technique that has been developed to improve
the efficiency and performance of deep neural networks during training, which has been
called Gradient Centralization. GC centralizes gradients by subtracting their mean dur-
ing backpropagation, which stabilizes and accelerates optimization. The authors have
shown that this scheme leads to an improved convergence rate, reduced oscillation during
training, and better generalization for many deep-learning models. They further validate
the empirical effectiveness of GC on various applications through extensive experimen-
tation, including image classification tasks. This work emphasizes GC as a simple yet
powerful technique that easily integrates with most existing training pipelines to further
raise performance.
Sadeghi et al. [66] propose a new multi-objective binary chimp optimization algorithm
with the aim of elevating feature selection processes. This approach seeks to optimize the
multi-objectives comprising feature relevance and classification accuracy that are very
essential for model performance improvement. This approach is then applied to Syn-
thetic Aperture Radar image classification as an example, showing clearly the elevated
effectiveness of the choice of features from high-dimensional complex datasets. This work
has shown a remarkable improvement in classification performance along with compu-
tational efficiency by incorporating an optimized feature set into deep learning models.
They further demonstrate, through a series of extensive experiments, that the method
outperforms the current feature selection methods; hence, the work represents valuable
insights into remote sensing and image analysis.
Ling et al. [67] offers two new methods to enhance image detection for autonomous driv-
ing. Receptive Field Attention Convolution enriches feature capture by adjusting the
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receptive field, while a triplet attention mechanism focuses on the target object, con-
text, and background. These two together will lower the barrier of real-time detection
by raising both the accuracy and efficiency. It follows that the experimental results on
benchmark datasets show significant improvements compared to existing state-of-the-art
methods, further guaranteeing safe and reliable autonomous vehicle operations.

1.6 Experimental Datasets

To evaluate the effectiveness of our proposed methods, we conducted experiments on two
challenging datasets: the Cats vs. Dogs dataset [68] and the Chest X-ray dataset [68].
These datasets were selected for their distinct classification difficulties: differentiating
between cats and dogs in the first dataset, and distinguishing between normal and pneu-
monia conditions in the second.

1.6.1 Cats vs. Dogs dataset

The Cats vs. Dogs dataset is a widely used benchmark in computer vision, aimed at
binary image classification tasks involving cats and dogs. It comprises 24,989 images,
categorized into two classes: cats and dogs. The dataset is partitioned into 19,998 images
for training, 2,496 for testing, and 2,495 for validation, with a balanced representation
of both classes. This dataset presents significant challenges due to the high variability
within each class and the visual similarities between the two, making it an excellent test
for assessing the precision of classification models.

1.6.2 Chest X-ray dataset

The Chest X-ray dataset is a critical resource for medical image analysis, consisting of
5,856 Chest X-ray images labeled into two classes: NORMAL and PNEUMONIA. It is
divided into 5,216 training images (1,341 in the NORMAL class and 3,875 in the PNEU-
MONIA class) and 624 testing images (234 NORMAL and 390 PNEUMONIA). This
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THE CATS VS.
DOGS DATASET

Cats                  Dogs NORMAL             PNEUMONIA

THE CHEST X-RAY
DATASET

Figure 1.4: Sample images from the two datasets used.

dataset presents a substantial challenge as the visual distinctions between normal and
pneumonia-infected lungs can be subtle, requiring a model with strong feature extraction
capabilities. All X-ray images were obtained as part of routine clinical care and were
sourced from retrospective cohorts of children aged one to five years (some examples in
Figure 1.4).

1.7 Experimental Deep Learning Architectures

In our study, we employ seven prominent models: Basic CNN, ResNet-50, VGG16,
VGG19, Inception-V3, Vision Transformer (ViT), and EfficientNet-B0—to train on the
aforementioned datasets.
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Figure 1.5: Architecture of a basic CNN model.

1.7.1 Basic CNN

First, we used a simple CNN architecture designed for binary image classification with
an input shape of 32×32 pixels and 3 color channels (RGB). As illustrated in Figure 1.5,
the architecture includes two convolutional feature extraction layers interspersed with
dropout layers to mitigate overfitting. A max-pooling layer downsamples the feature
maps, reducing dimensionality while preserving essential information. The flattened
layer converts the 2D feature maps into a 1D vector, followed by a fully connected layer
that learns complex patterns. Finally, the output layer predicts probabilities for two
classes, enabling effective binary image classification.

1.7.2 ResNet50

ResNet50, short for Residual Network with 50 layers, is a deep CNN architecture intro-
duced by Kaiming He et al. [69]. ResNet50 is renowned for its innovative use of residual
connections, which address the problem of vanishing gradients in deep networks. These
residual connections allow the network to learn identity mappings, enabling the con-
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struction of very deep networks without suffering from performance degradation.

1.7.3 VGG16 and VGG19

VGG16 and VGG19 [70] are well-established CNNs designed for image classification and
recognition tasks. VGG16 consists of 16 weight layers, including 13 convolutional layers
and 3 fully connected layers, while VGG19 is a deeper variant with 19 weight layers, com-
prising 16 convolutional layers and 3 fully connected layers. Both architectures follow a
consistent design principle, utilizing small 3x3 convolutional filters stacked in series to
increase the depth of the network. This approach allows the models to capture intricate
patterns and hierarchical features from input images. After each convolutional layer, a
ReLU activation function is applied to introduce non-linearity. Max-pooling layers are
strategically placed between the convolutional blocks to downsample the feature maps,
reducing spatial dimensions while preserving critical information.

As an additional step in our research, we enhanced the structure of the two models
we utilized, namely VGG16, and VGG19 (Section 1.7). This adjustment followed numer-
ous experiments. These enhancements significantly bolstered the models’ performance,
yielding better results.

1.7.4 The enhanced VGG16 and VGG19

The transition from convolutional layers to fully connected layers enables the network
to synthesize the learned features into high-level representations for classification. The
final softmax layer outputs class probabilities. The primary distinction between VGG16
and VGG19 is their depth—VGG19 includes three additional convolutional layers, which
enable it to capture more complex and nuanced features, potentially improving classifi-
cation performance, particularly in datasets with subtle visual differences. Both models
are recognized for their simplicity and ability to generalize well across a range of com-
puter vision tasks.
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Figure 1.6: The modified architecture of the VGG16 model.

We enhanced the standard VGG16 and VGG19 architectures by incorporating addi-
tional fully connected layers to increase their capacity for feature learning. Specifically,
we introduced fully connected layers with 1024 and 512 units, respectively, followed by
a dropout layer with a rate of 0.2 to prevent overfitting. Afterward, another set of fully
connected layers with 256 and 128 units, respectively, was added, each accompanied by
a dropout layer with a rate of 0.5. Finally, a fully connected layer with 64 units was
appended to the network structure, as depicted in Figures 1.6 and 1.7. This refined
architecture was the result of extensive experimentation, and the configuration was se-
lected based on its superior performance in our tests.

1.7.5 Inception-V3

Inception-V3 [71] is a CNN designed for efficient image analysis and object detection, with
a focus on balancing model complexity and computational efficiency. Its architecture is
built around Inception modules, which enable the network to capture features at multiple
scales by applying convolutional filters of varying sizes (1x1, 3x3, and 5x5) within the
same layer. This multi-scale approach allows the model to extract both fine and coarse
features from the input image, promoting a richer feature representation.

A key innovation of Inception-V3 is the use of 1x1 convolutions for dimensionality re-
duction. By reducing the number of input channels before applying larger convolutional
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Figure 1.7: The modified architecture of the VGG19 model.

filters, the network significantly lowers its computational cost while maintaining perfor-
mance. Inception-V3 consists of 48 layers, including convolutional layers, max-pooling
layers, and fully connected layers, and processes input images of size 299x299 pixels.

Despite its depth and complexity, Inception-V3 is designed to be parameter-efficient,
with fewer than 25 million parameters compared to the 60 million in AlexNet [72].
This efficiency allows the network to be both deeper and wider, facilitating the learn-
ing of complex patterns while keeping the model relatively lightweight. Furthermore,
Inception-V3 has been extensively trained on large-scale datasets such as ImageNet, and
its pre-trained weights enable effective transfer learning, making it a highly versatile and
powerful model for a wide range of computer vision tasks, including image classification
and object detection.

1.7.6 The Vision Transformer (ViT)

The Vision Transformer (ViT), introduced by Dosovitskiy et al. [73], represents a ground-
breaking shift in computer vision by adapting transformer architecture, traditionally used
in natural language processing, to image data. Unlike conventional CNNs, ViT divides
images into sequences of fixed-size patches, which are then treated similarly to tokens in
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a transformer model. Through self-attention mechanisms, ViT captures global depen-
dencies between these patches, enabling it to model relationships across the entire image.
This approach allows for highly effective feature extraction, with the self-attention layers
capturing both local and long-range dependencies. ViT has shown competitive perfor-
mance across a variety of tasks, including image classification and object detection, often
surpassing traditional CNN-based architectures. Its flexibility in handling different input
sizes and its strong ability to model complex spatial relationships make ViT a versatile
and promising model for advancing computer vision techniques.

1.7.7 EfficientNet-B0

EfficientNet-B0, introduced by Tan et al. [74], is an exceptionally efficient CNN designed
to optimize performance while minimizing computational costs. It achieves this through
depthwise separable convolutions, which reduce the number of parameters and computa-
tions required without sacrificing accuracy. EfficientNet-B0 employs a compound scaling
method that uniformly scales the network’s width, depth, and resolution, ensuring opti-
mal efficiency across varying computational budgets. The architecture starts with a stem
convolution and progresses through several blocks of depthwise separable convolutions,
totaling approximately 28 layers. The final layers include global average pooling and
a fully connected classification layer that produces the final predictions. By balancing
efficiency and performance, EfficientNet-B0 offers state-of-the-art results across multiple
image classification tasks while remaining computationally economical, making it ideal
for resource-constrained environments.

1.8 Evaluation Metrics

In deep learning, evaluating a model’s performance is crucial to ensure its effectiveness
and reliability. Several metrics are used to assess different aspects of the model’s ability to
make correct predictions. Below are short descriptions and formulas for some commonly
used metrics:
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Predicted Positive Predicted Negative
Actual Positive TP FN
Actual Negative FP TN

Table 1.1: Confusion matrix

1.8.1 Confusion matrix

The confusion matrix (Table 1.1)is a table used to describe the performance of a classi-
fication model. It compares the actual target values with those predicted by the model.
The matrix is particularly useful for visualizing the performance of a model and calcu-
lating various metrics.

A typical confusion matrix for binary classification is structured as follows:
Where:

• TP = True Positives: The model correctly predicts the positive class.

• TN = True Negatives: The model correctly predicts the negative class.

• FP = False Positives: The model incorrectly predicts the positive class.

• FN = False Negatives: The model incorrectly predicts the negative class.

1.8.2 Accuracy

Accuracy quantifies the proportion of correctly classified instances over the total number
of instances, serving as a key metric in classification tasks. It is defined in Equation
(1.1).

Accuracy =
TP + TN

TP + TN + FP + FN
(1.1)

1.8.3 Error rate

The error rate indicates the proportion of misclassified instances out of the total in-
stances, acting as the complement to accuracy. It is formally expressed in Equation
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(1.2).

Error Rate = FP + FN

TP + TN + FP + FN
(1.2)

Alternatively:
Error Rate = 1− Accuracy (1.3)

1.8.4 Recall

Recall, also known as sensitivity or true positive rate, measures the proportion of actual
positives that are correctly identified by the model. It is formally defined in Equation
(1.4).

Recall = TP

TP + FN
(1.4)

1.8.5 F1 score

The F1 Score is the harmonic mean of precision and recall, providing a balance between
them. It is particularly useful when the class distribution is imbalanced. It is defined as
shown in Equation (1.5).

F1 Score = 2× Precision× Recall
Precision+ Recall

(1.5)

Where:
Precision =

TP

TP + FP
(1.6)

1.9 Conclusion

In conclusion, this chapter has presented the fundamental concepts of image analysis,
image classification and optimization, highlighting their essential role in improving model
performance. We also provided an overview of existing methods, showcasing their diver-
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sity and effectiveness in addressing the challenges in the field. In the upcoming chapter,
we will explore a comprehensive study on DA, highlighting the proposed methods and
recent advancements in this field. We will also discuss the tools utilized in our research,
including datasets, models, and metrics employed to evaluate the results obtained.
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2.1 Introduction

In this chapter, we introduce a novel, DA method that utilizes random filters to generate
new images to add more images to the dataset, enhancing the training process. Each
filter determines which pixels to retain from the original image, resulting in a new image
with fewer pixels. The idea behind this method is that the most essential details in an
image are frequently located in a more minor part.
The experimental results reveal that training the Basic CNN and ResNet50 separately
with both versions of the Cats vs. Dogs dataset—namely, the original and augmented
datasets created using the proposed approach—leads to improved performance. This
enhancement is specifically due to the training of the models on the augmented dataset.
This chapter is divided into four sections. Section 2.1 presents an introduction. The
proposed methods are detailed in Section 2.2. Section 2.3 focuses on the experimental
validation, including the challenges of the proposed method. Finally, Section 2.4 con-
cludes the chapter by summarizing the key findings of the study.

2.2 Proposed Method

Our contribution proposed in [75] involves selecting a subset of pixels from specific rows
and columns of an image to generate new images. To streamline this process during
implementation, we employ a technique that crops certain rows and columns using ran-
domly generated filters while preserving the remaining parts to form a new image. This
method is influenced by two key factors that significantly impact the results: the number
of selected pixels and the positions of the chosen rows and columns. The objective is
to enrich the dataset by generating new images that differ from the originals, thereby
diversifying the data and mitigating overfitting. While the proposed method focuses on
the random selection of preserved pixels, we denote it as RS (for Random Selection).

In contrast to the random erasing DA method proposed by Zhong et al. [26], which
alters pixel values without changing the image size, and the cutout method by DeVries
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Initial filter Generated filter

Calculate μ1  and  μ2

Figure 2.1: Filter generation process.

et al. [41], which masks a region of the image potentially losing crucial information, our
approach selectively crops non-adjacent rows and columns. This ensures the retention
of important information from various regions of the image while also creating smaller
images, reducing the overall memory requirements of the augmented dataset.

By selecting specific pixels, our method identifies key regions in images (representative
regions), which helps improve the classification process. For each image in the original
dataset, we generate multiple filters corresponding to the number of new images to be
created. Each filter is a matrix of the same dimensions as the image, initialized with
zeros. We then select certain rows and columns according to equations (2.1) and (2.2),
setting their pixel values to 1 (as described in Algorithm 2.1). These values of 1 represent
the pixels that will be retained in the new image, while the zeros indicate the regions to
be cropped (as described in Algorithm 2.2).

To create a new image, the given image is first converted into a pixel matrix, which
is then processed alongside the corresponding filter. Pixels matching positions with a
value of 1 in the filter are selected and preserved in the new image matrix. The final
step involves converting this matrix back into an image format for storage.

As illustrated in Figure 2.1, after calculating µ1 and µ2, the pixels to be retained and
transformed into 1 to create the new image are displayed in green, while the pixels to be
removed and marked as 0 are displayed in red.
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The original
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The augmented
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Figure 2.2: Outline of the RS Method.

Each filter generates a new image, which is then stored in the database. These newly
created images, along with the original training images, will be used to train the CNN.
The process of the proposed method is depicted in Figure 2.2. It is important to note
that during the testing phase, only the original images are used for validation.

The number of selected pixels from the original image determines the resolution of
the newly created image. We define the following terms:

• n represents the number of rows, and m the number of columns in the original
image.

• Li and Cj are the indices of the rows and columns in the original image, respectively.

• F is an n×m matrix, referred to as a filter, where all values are initially set to 1.

• µ1 and µ2 denote the number of rows and columns in the target image, as calculated
by equations (2.1) and (2.2).

• P1 and P2 represent the probability of selecting a particular row or column.

• N indicates the resolution of the target image.
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Therefore:

µ1 = dP1ne (2.1)

µ2 = dP2me (2.2)

N = µ1 × µ2 (2.3)

Let X and Y be discrete random variables. The probability functions f(X) and f(Y )

can be expressed as follows:

f(Li) = P1(X = Li) (2.4)

and:
f(Cj) = P2(Y = Cj) (2.5)

Such as:

∑n
i=1 f(Li) = 1,

∑m
i=1 f(Ci) = 1

Therefore:

The values of all pixels corresponding to the selected rows and columns in F are set
to 1, indicating the pixels that will be preserved from the original image.

Utilizing the filter F enables the generation of a distinct new image each time from
the same original image. The steps for creating a filter for a given image are illustrated
in Algorithm 2.1. In Figure 2.3 an illustrative example of the proposed method demon-
strates the use of two different filters to generate two new images from the same original
image.

55



Chapter 2. Random Pixel Selection through Image Cropping for Data Augmentation
and Classification

Figure 2.3: An example of the RS method using two filters

Algorithm 2.1 Creating a new filter F
Designate rows Li and columns Cj using Equation (2.4) and (2.5)
Compute µ1 as the number of rows in the target image
Compute µ2 as the number of columns in the target image
Generate a random vector VRn containing indices of selected rows
Generate a random vector VCn containing indices of selected columns
for i = 1→ µ1 do

x = VRn[i] {x is the row index of the selected pixel}
for j = 1→ µ2 do
y = VCn[j] {y is the column index of the selected pixel}
F [x][y] = 1 {Select the pixel to preserve}

end for
end for
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Figure 2.5: wo images with different sizes and appearances were generated using dis-
tinct filters.

Figure 2.4: Illustration of cropping lines and columns to generate a new image.

By selecting various indices and different numbers of rows and columns using a ran-
domly generated filter in each iteration (with each filter being unique), we can diversify
the resulting images.

Algorithm 2.2 outlines the process of generating new images by applying various
filters. Figure 2.4 provides an example of cropping rows and columns to create a new
image. Figure 2.5 demonstrates that the newly generated images vary due to the appli-
cation of different filters.
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Algorithm 2.2 Generation of new images using a given filter F .
Open the image as an array
Retrieve the dimensions of the image, n and m
Generate a new filter using Algorithm 1
Initialize k = 0
for i = 1 to n do

Set h = 0 /* k and h represent the indices of rows and columns in the new image,
respectively.*/
for j = 1 to m do

if F[i][j] == 1 then
newImage[k][h] = image[i][j] /* Retain the same pixel from the original im-
age*/
h = h+ 1

end if
end for
k = k + 1

end for
Save newImage /*Add the new image to the original dataset*/

2.3 Results and Discussion

In this section, we employed two versions of the dataset: the original dataset, referred to
as Orig−Db, and the augmented dataset created using my proposed method, designated
as RS −Db.

In this experiment, we carried out two tests using different numbers of examples from
the same database, each with two distinct models. First, we employed a subset of the
Kaggle Cats vs. Dogs dataset, as outlined in Subsection 1.6.1. From the original dataset
of 24,000 samples, we selected a total of 10,000, which included 8,000 for training (4,000
images of cats and 4,000 images of dogs) and 2,000 for testing (1,000 images of cats and
1,000 images of dogs). This subset was utilized to train the model detailed in Subsection
1.7.1.

Table 2.1 presents the results obtained from training the Basic CNN mentioned above,
comparing the performance using both the RS−Db and the Orig−Db. The two versions
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Table 2.1: Results of training the Basic CNN on two versions of the Cats Vs Dogs
dataset, using different numbers of examples.

Dataset Dataset size Accuracy Error
Orig −Db X 73.65% 1.5937
RS −Db 3X 75.35% 1.6027
RS −Db 5X 77.05% 1.6072

Figure 2.7: Rise in accuracy with an increase in training data size.

of the datasets utilized for training are defined as follows: Orig − Db for the original
dataset and RS − Db for the dataset augmented using the RS method. Based on the
results obtained, we observe that increasing the size of the RS−Db by three times (from
the original size X) led to a 1.7% increase in accuracy (from 73.65% with the Orig−Dbto
75.35% with the RS-Db). The error increase was minimal, at just 0.0135%. In contrast,
when the dataset size was equal to X, the accuracy improved by 3.4% (from 73.65%
with the Orig−Db to 77.05% with the RS−Db when increased to five times), while the
error rose by less than 0.009%. This indicates that the RS method effectively identifies
the most significant areas of the images (representative regions) by selecting a subset of
pixels from the original image.

As illustrated in the curves Figures 2.7 and 2.8, accuracy increases significantly with
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Figure 2.8: Rise in error with an increase in training data size.

Table 2.2: Accuracy obtained from training the ResNet50 model over 30 epochs using
the two versions of the Cats vs. Dogs dataset.

Dataset Dataset size Accuracy Error
Orig −Db X 85.68% 0.6834
RS −Db 4X 88.93% 0.3479

the size of the augmented data, while the error rises only gradually. This demonstrates
the effectiveness of the proposed method for DA. We further assessed our approach by
training the ResNet-50 Convolutional Neural Network, as outlined in Subsection 1.7.2.
This training utilized both the original Cats vs. Dogs dataset, described in Section 1.6
of the same chapter, and the augmented dataset created using the RS method.

Table 2.2 presents the results obtained from training the ResNet-50 using both the
Orig −Db and the RS-Db. The obtained results indicate that when the RS −Db was
increased factor of 4 (4X, X is the size of the original dataset), accuracy improved by
3.25%, rising from 85.68% with the Orig−Db to 88.93% with the RS-Db. Additionally,
the error decreased by 0.3355%. These results demonstrate that the RS method generates
diverse images that differ from one another by selecting a subset of pixels from the original
image, thereby enriching the original dataset.
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RS method

Original image
500x313

New image 1
400x250

New image 2
250x156

New image 3
250x156

Figure 2.9: Example of newly obtained images by varying the number of se-
lected pixels.

To demonstrate that the filter allows for image variation even when the output images
have the same resolution, we applied our method to an image from the utilized dataset.
Figure 2.9 displays three images generated from the original image (with a resolution of
500 x 313 pixels) using three different filters. Each image is distinct from the original
and from one another. New Image 1 (with a resolution of 400 x 250 pixels) differs in
resolution from the other two (New Image 2 and New Image 3), while New Image 2 and
New Image 3 have the same resolution (with a resolution of 250 x 156 pixels) but differ
in appearance.”

Challenges of the proposed method The randomness involved in generating fil-
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ters, particularly when selecting the number and positions of pixels to retain for creating
new images, can result in new images that are too similar to the original. This lack of
variation stems from the possibility that the random process may frequently preserve
pixel arrangements that closely resemble the original image, thus limiting the potential
for meaningful alterations. As a consequence, the augmented dataset may not exhibit
the desired level of diversity, which is crucial for improving model robustness and reduc-
ing overfitting.

2.4 Conclusion

In this chapter, we developed a new method based on selecting a set of pixels from
the original image to create a new, smaller image using filters. The experiments we
conducted yielded promising results. However, the random selection of pixels in the
filters can sometimes generate images that are too similar or nearly identical to the
original ones, which limits the diversity of the dataset. Consequently, this reduces the
potential improvement in model performance.
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3.1 Introduction

In Chapter 2, we proposed a method based on the random generation of filters, allowing
for the selection of a set of pixels within an image to create new images. However, this
approach may generate images that are too similar to the original, due to the random
generation of numbers and the selection of pixel positions to preserve in the filter, thus
limiting the diversity of the augmented dataset. To overcome this limitation, in this
chapter, we introduce RO, a class of algorithms that leverage randomness in their search
mechanisms to solve complex problems. Our study focuses on selecting the most distinct
image from those generated by our previous method [75], relying on entropy to quantify
the content dissimilarity between the generated images and the original one, thereby
enhancing the diversity and richness of the training dataset. Our approach using RO,
like other optimization techniques, relies on iterative processes and a fitness function
to guide the search for optimal solutions. In each iteration, a new set of potential
solutions is generated and evaluated using the fitness function, which quantifies how well
each solution performs according to predefined criteria. The process repeats, gradually
refining the solutions over multiple iterations until the best outcome is identified. our
approach utilizes the RS method to generate a set of solutions in each iteration, selecting
the best one according to the fitness function. Entropy is used to measure the degree
of change in the generated images, with the most altered image, relative to the original,
being chosen and added to the augmented dataset.

The experimental results demonstrate that the enhancement of the RS method,
through the use of RO and the entropy as a criterion for selecting the best images
among the generated ones, significantly improves the model’s performance.

This chapter is structured into four main sections. Section 3.1 introduces the study,
outlining its objectives and scope. Section 3.2 explains the process of RO, while Section
3.4 delves into the concept of entropy. The proposed methods are thoroughly detailed in
Section 3.4. Section 3.5 presents the experimental validation, emphasizing the challenges
encountered during the implementation of the proposed approach. Finally, Section 3.6
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summarizes the key findings and conclusions drawn from this research.

3.2 Random Optimization Method

RO techniques employing random sampling for performing a search in the solution space
of hard optimization problems are usually successfully applied to high-dimensional or
non-convex or combinatorial problems, where other methods fail, or where objective
functions are not differentiable. Using a variety of techniques to balance the exploration-
exploitation trade-off in finding optimal or near-optimal solutions, they are global op-
timization methods used for avoiding local minima. RO is often less computationally
intensive compared to exhaustive searches, hence valuable in such fields as engineering,
machine learning, and operations research.

RO techniques have emerged recently as a strong tool in image analysis, particularly
in tasks related to segmentation, classification, and feature extraction. This is achieved
by the use of random strategies for exploring large solution spaces, improving convergence
speed and the quality of solutions.

Algorithm 3.3 RO algorithm
Initialize:
Define the objective function f(x) to be optimized (minimized or maximized).
Set an initial solution xbest (can be random or pre-defined).
Define the number of iterations N or stopping criterion.
Define the search space.
for i = 1 to N do

Generate a random candidate solution xnew within the search space.
Evaluate the objective function f(xnew).
if f(xnew) > f(xbest) then

Update xbest = xnew.
end if

end for

return xbest as the optimal solution.

Algorithm 3.3 outlines the process of the random selection method. Mohapatra et
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al. [76] presents a new variant of the Golden Jackal Optimization algorithm. It would
integrate random opposition-based learning into the GJO algorithm to enhance the abil-
ity of the GJO algorithm to handle hard optimization problems. Since opposition-based
learning involves the evaluation of not only current solutions but also their opposites
during the process of optimization, it would be expected to result in fast convergence
and better solutions.

3.3 Entropy

Entropy is one of the important concepts related to information theory, thermodynamics,
and in many more areas of science and engineering. In information theory, the entropy
of a random variable is one that measures the uncertainty or randomness of the random
variable. It denotes the amount of information contained in the message or the extent
of disorder in a system. Mathematically, entropy H(X) of a discrete random variable X
is defined as:

H(x) = −
∑
x

P (x) · log2(P (x)) (3.1)

where P (xi) is the probability of occurrence of each possible outcome xi of the random
variable.

Algorithm 3.4 Entropy calculation
1: Input: A probability distribution P = {p1, p2, . . . , pn} where pi is the probability

of event i
2: Output: Entropy H
3: Initialize entropy H = 0
4: for each probability pi in P do
5: if pi > 0 then
6: Update entropy: H ← H − pi log2(pi)
7: end if
8: end for
9: RETURN: Entropy H
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Algorithm 3.4 details the steps involved in calculating entropy, outlining the process of
iterating through a probability distribution and applying the entropy formula (Equation
(3.1)).

Applications include quantifying the complexity and information content of images,for-
which it has become a useful metric in a wide range of applications. Entropy could be
used as a means of assessing image quality, where higher entropy would be indicative
of detailed and complex images, and lower entropy would suggest simplicity and uni-
formity. The entropy in texture analysis helps in distinguishing different textures that
could assist in classification and segmentation tasks. It also finds application in feature
extraction fo retaining important information with reduced dimensionality and in adap-
tive thresholding, where the local entropy can dynamically adapt thresholds to perform
better binarization due to the changes in lighting. These applications show the versatility
and importance of entropy in developing and enhancing image processing and analysis
techniques.

Sparavigna et al. [77] conveys the uses of entropy concerning image analysis. It
explains how the entropy measures are applied to various tasks such as segmentation,
enhancement, and classification. This paper identifies the role of entropy in capturing the
essential information content of images so that superior analysis and processing methods
may be developed.

Espinosa et al. [78] introduces the EspEn graph (EspEn Graph for the Spatial Analy-
sis of Entropy in Images), which is developed to show the spatial distribution of entropy
values across image pixels. What is meant here is to further facilitate the understanding
of entropy as an image analysis and processing concept, with a graphical graph showing
patterns and structures that may not be so apparent with other methods.

3.4 Proposed Method

This research seeks to enhance the RS technique by integrating an RO method. The
proposed approach facilitates the selection of the most appropriate image from a set of α

68



Chapter 3. Random Optimization and Entropy-Based DA for Image Classification
and Analysis ”ROEDA”

images generated from the original images using the RS method (α present the population
size), with the selection criterion based on entropy to ensure optimal choices. This
procedure is repeated multiple times, with β representing the number of iterations. Our
goal is to increase dataset diversity, thereby improving the model’s learning capability.
The overall process of our newly proposed approach is illustrated in Figure 3.1.

In this study, we utilize entropy as the criterion for selecting the most suitable gen-
erated images. Shannon entropy, as illustrated by Equation (3.1) (Section 3.4, provides
a quantitative measure of information disorder. After calculating the entropy for both
the original and generated images, we analyze the variance between their entropy val-
ues. This variance serves as an indicator of dissimilarity between the images, with a
greater difference reflecting more significant disparities in their information content. By
comparing the entropy values of the two images, we can assess their divergence in terms
of randomness, complexity, or information richness. A marked contrast in entropy in-
dicates a substantial difference in the patterns or structures represented in the images.
In our study, we specifically selected images that differ from the original to enhance the
diversity of the augmented dataset.

The calculation of entropy for each generated image entails analyzing the RGB color
channels individually and then combining the results to derive the overall entropy of
the image. In the context of digital photographs, probabilities are estimated from the
image histogram. The combined histogram of the three color channels creates a 3D
histogram, with each axis representing the intensity values for the respective channels.
The intensity values of the Red, Green, and Blue channels are denoted as P (x, y, z),
which represents the joint probability mass function. The entropy of an RGB image is
described by Equation (3.2).

H(x, y, z) = −
∑
x

∑
y

∑
z

P (x, y, z) · log2(P (x, y, z)) (3.2)

Here, x, y, and z represent the respective intensities of the Red, Green, and Blue
channels, while P (x, y, z) denotes the joint probability mass function for the three chan-
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nels. To account for the varying resolutions of the generated images, we normalize the
calculated entropy for each new image by dividing it by its corresponding resolution NR,
as shown in Equation (3.3).

H(x, y, z) = H(x, y, z)/NR (3.3)

∆i = H(img)−H(imgi), i = 1, . . . ,m (3.4)

The procedural steps of our proposed method, illustrated in Figure 3.1, consist of a
series of actions. The process begins by opening the original image img to extract its
dimensions and calculate its entropy, denoted as H(img). Next, a set of α filters F is
generated using Algorithm 2.1 (Chapter 2; Section 2.2), resulting in images imgifori =
1, ..., α, created according to Algorithm 2.2 presented in Chapter 2. For each generated
image imgi, its entropy is calculated, followed by the computation of ∆i between img

and imgi using Equation (3.4). The optimal image that maximizes ∆ is selected from
the generated set, and this process of generating filters and creating the corresponding
images is repeated until the desired number of images, denoted as β, is achieved. Finally,
the selected images are integrated into the augmented dataset. This entire process is
performed for each image in the original dataset until all images have been augmented.
An example of the resulting images produced by applying the proposed approach is shown
in Figure 3.1. Algorithm 3.5 summarizes the steps of ROEDA. Figure 3.1 presents an
example of images generated using the ROEDA method.

71



Chapter 3. Random Optimization and Entropy-Based DA for Image Classification
and Analysis ”ROEDA”

The original image

New image 2New image 1 New image 4

Proposed approach

New image 3

Figure 3.2: Examples of the resulting images generated using the ROEDA method.

3.5 Results and Discussion

In this work, we utilized the Kaggle Cats vs. Dogs dataset, described in Subsection 1.6.1,
to train the VGG16 model, described as well in the same chapter ( Subsection 1.7.3).

Table 4.5 presents a detailed comparison of VGG16’s performance across various
versions of the Cats vs. Dogs dataset after training for 30 epochs. The datasets ana-
lyzed include the original dataset (Orig−Db), the dataset augmented using the random
selection method (RS − Db), and the dataset augmented with the proposed approach
(ROEDA−Db).

Using the original dataset, Orig−Db achieved an accuracy of 92.03%, while RS−Db

slightly improved this figure to 92.07%. Notably, the ROEDA−Db demonstrated a more
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Algorithm 3.5 Generating new images with the ROEDA method.
Input: img, α, β {β represents the number of generations; α denotes the number of
images generated in each iteration.}
Open img
Calculate H(img)
for j = 1 to β do

for i = 1 to α do
Generate filter Fi {Refer to Algorithm 2.1}
Create image imgi
Calculate H(imgi)
Calculate ∆i = H(img)−H(imgi)

end for
Identify the maximum value of ∆
Select the optimal image
Insert imgi into the augmented dataset

end for
Output: The β best generated images

Table 3.1: Comparative analysis of the VGG16 application utilizing the many up-
graded versions of Cats vs Dogs.

Dataset version Dataset Size Accuracy
Orig −Db Original Size (x) 92.03%
RS −Db 4x 92.07%
ROEDA−Db 4x 92.23 %

substantial enhancement, reaching an accuracy of 92.23%. This represents an improve-
ment of 0.16% over RS −Db and 0.20% over Orig −Db, highlighting the effectiveness
of the proposed augmentation approach.

Tables 3.2, 3.3, and 3.4 indicate that the proposed approach exhibits superior classi-
fication performance. Furthermore, it effectively maintains a balanced class distribution
while preserving the overall high performance of the classification model for the Cats vs.
Dogs task.

Challenges of the Proposed methodology The proposed method using RO and
entropy for DA has several limitations. Its effectiveness depends on randomness, which
may lead to suboptimal filters if not adequately explored. While aiming to enhance

73



Chapter 3. Random Optimization and Entropy-Based DA for Image Classification
and Analysis ”ROEDA”

Table 3.2: The accuracy metrics for training VGG16 were evaluated using Orig −Db

Class Precision Recall F1-Score Support
Cat 0.93 0.91 0.92 1249
Dog 0.91 0.93 0.92 1247

Accuracy 0.92 - - 2496
Macro avg 0.92 0.92 0.92 2496
Weighted avg 0.92 0.92 0.92 2496

Table 3.3: The accuracy metrics for training VGG16 were evaluated using RS −Db.

Class Precision Recall F1-Score Support
Cat 0.91 0.95 0.93 1249
Dog 0.95 0.90 0.93 1247

Accuracy 0.93 - - 2496
Macro avg 0.93 0.93 0.93 2496
Weighted avg 0.93 0.93 0.93 2496

Table 3.4: The accuracy metrics for training VGG16 were evaluated using ROEDA −
Db.

Class Precision Recall F1-Score Support
Cat 0.91 0.94 0.92 1249
Dog 0.93 0.91 0.92 1247

Accuracy 0.92 - - 2496
Macro avg 0.92 0.92 0.92 2496
Weighted avg 0.92 0.92 0.92 2496
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diversity, the quality of generated synthetic images may not match the original dataset,
potentially introducing noise. There is also a risk of overfitting if certain patterns are
favored too strongly. Additionally, the method can be sensitive to hyperparameters, com-
plicating implementation, and biases in generated images may not accurately represent
the original dataset’s diversity. Addressing these limitations is essential for improving
its effectiveness in various machine-learning scenarios.

3.6 Conclusion

This work presents a new DA technique that combines RO with entropy-based selection.
The proposed method generates a diverse array of synthetic images, significantly ex-
panding the training dataset for machine learning models, especially in computer vision
applications. Experimental results demonstrate notable enhancements in classification
performance, resulting in improved model accuracy and robustness. These findings un-
derscore the practical advantages of the proposed DA approach, illustrating its potential
to optimize model training through the integration of RO and entropy-driven image se-
lection.
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4.1 Introduction

In Chapter 2, we introduced a novel data augmentation method based on the random
generation of filters to create new images. While this approach showed promise, the
inherent randomness in filter generation can lead to augmented images that closely re-
semble the originals, limiting the dataset’s diversity. To address this limitation, we
enhanced the method by incorporating random optimization based on entropy to se-
lect the best images from the generated set as presented in Chapter 3. However, the
augmentation’s effectiveness still largely depends on the quality of the generated filters,
which may result in images that are insufficiently distinct from the originals, potentially
reducing the dataset’s diversity and negatively impacting model performance.

In this chapter, we use GA to identify the most effective filters used for generating
new augmented images. This approach enables us to enrich the dataset with diverse and
representative new images. The GA initiates with a set of random filters and refines
them through genetic operators, ultimately identifying the optimal filters that produce
maximally distinct images. The key contributions of our approach include (i) The iden-
tification of significant pixels within the original image to be preserved. This process
enhances the deep-learning model’s accuracy when applied to the generated images. In
contrast to the conventional method presented by Nouara et al. [79] presented in chapter
2, which randomly removes rows and columns from the original image (Subsection 4.2.1),
potentially yielding both improved and degraded results, our newly proposed approach
employs a GA (Subsection 4.2.2) to systematically identify images with non-contiguous
deletions of rows and columns, increasing the likelihood of obtaining the best possible
images. (ii) Merge more contextually meaningful images extracted from the original im-
age to create the most significant composite (Subsection 4.2.3). This merging process is
achieved by utilizing the GA crossover operator.

This chapter is structured into four sections. Section 4.1 offers an introduction to
the topic. Section 4.2 provides an in-depth explanation of the proposed methods. In
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Section 4.3, the focus shifts to the experimental validation, emphasizing the challenges
encountered with the proposed approach. Lastly, Section 4.4 concludes the chapter by
summarizing the key findings of the study.

4.2 Proposed Method

Our novel approach consists of two key stages. The first stage utilizes the RS method
proposed in [75] and detailed in Chapter 2 to create a diverse set of initial filters using
Algorithm 2.1. This method is designed to generate filters that capture a wide range
of features from the input data. In the second stage, a GA is employed to refine these
filters, selecting the optimal ones that promote a high level of diversity. This optimization
process enhances the quality of the filters by prioritizing those that most effectively
contribute to the variation within the dataset. Finally, synthetic images are generated
using the selected filters, which are then integrated into the training dataset, thereby
improving the robustness and accuracy of the machine-learning models. Algorithm 4.6
outlines the key steps involved in the GA process, detailing its sequence of operations
for optimization.

Algorithm 4.6 Genetic algorithm
Initialize population P with random solutions
Evaluate fitness for each individual in P
while termination condition not met do

Select parents from P based on fitness
Perform crossover to create offspring
Apply mutation to offspring
Evaluate fitness of offspring
Replace P with offspring

end while
return the best solution found
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4.2.1 Generate filters

The selection of rows and columns to be included or excluded is accomplished through
the use of filters. A filter is defined as a matrix that matches the dimensions of the
original image, consisting solely of binary values: 0 and 1. Here, a value of 0 indicates
the pixels to be discarded, while a value of 1 indicates the pixels to be retained from the
original image. The total count of 1s in the filter determines the resolution of the new
image to be generated, with this resolution being randomly predetermined before filter
creation. Initially, we generate a set of filters for each original image, where each filter
produces a unique new image.

The random selection of pixels to preserve, along with the stochastic positioning of
the value of 1 within the filter, facilitates the generation of a diverse array of images.

To create a new image using a specific filter, we iterate through both the filter and
the original image, retaining the original image pixels that correspond to the value 1 in
the filter (see Algorithm 2.2 ,2, Section 2.2). The resulting image is then incorporated
into the augmented dataset for training the deep learning model.

Conversely, the current approach advances the RS method by incorporating a GA
to identify optimal and meaningful images from a broad range of potentially generated
options. Furthermore, instead of indiscriminately removing all pixels within the selected
rows or columns, this method selectively eliminates specific elements while retaining
critical information contained within designated regions. Figure 4.1 illustrates the overall
framework of the proposed approach.

As illustrated in Figure 4.1, our approach begins with the application of the RS
method to generate an initial population of filters for each image in the original training
dataset. These filters are then converted into vector form for compatibility with the GA.
The primary goal of employing the GA is to identify the most optimal filters that prevent
the removal of continuous segments of pixels represented by zeros. This is essential to
ensure that we do not eliminate contiguous areas that may contain significant features
within the image while maintaining distinctiveness among the selected filters.
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0 1 1
0 1 1
0 0 0

Chromosome

Flatten

Chromosome
represented as

a vector
0 1 1 0 1 1 0 0 0

Figure 4.2: A simplified example illustrating the representation of a filter as a chromo-
some in vector form.

Through a series of iterative generations, we create individual images based on each
filter in the final population. These newly generated images are subsequently incorpo-
rated into the original dataset, enhancing the diversity and richness of the training data
for deep learning models. In the following sections, we will provide a comprehensive
overview of our proposed approach.

4.2.2 Application of GA

Chromosomes

The filter, consisting of n rows and m columns, is converted into a chromosome repre-
sented as a vector of size R = n×m, as illustrated in Figure 4.2.

Initial population

GA is applied to each image in the original dataset, starting with an initial population
composed of a collection of filters. The creation of these filters is executed according to
Algorithm 2.1 (2, Section 2.2), a key contribution of our work presented in Chapter 2.
Each filter is represented as a matrix of the same dimensions as the original image to be
augmented, consisting of rows and columns filled with 1 and 0. The primary objective
is to selectively choose pixels from the original image to construct a refined version.

In this context, a value of 1 in the filter indicates that the corresponding pixel in
the original image is preserved, while a value of 0 signifies its removal. A filter F
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with dimensions n × m is generated randomly based on predetermined probabilities
that designate which columns and rows will be retained (1) or eliminated (0). These
probabilities determine the specific values and locations of 0 and 1 within the filter.
The total count of retained pixels within the filter F defines the new resolution of the
generated image, as calculated using Equations (2.3) (Chapter 2; Section 2.2).

The process of filter creation is detailed in Algorithm 2.1, as presented in Chapter 2.
This algorithm specifies how the positions of the selected within the filter are determined
through a random generation process, ensuring variability and diversity in the resulting
filters.

Algorithm 2.1 (Chapter 2, Section 2.2) outlines the filter creation process. It describes
how the filter’s positions are selected through a random generation mechanism, ensuring
variability and enhancing the diversity of the filters produced.

Fitness function

The selection of candidates for the subsequent stage of the GA relies on the fitness
function. In our methodology, the quality of an individual is evaluated based on the
total number of 1s and 0s, as well as their distribution within the filter. The quantities
of 1s and 0s in the filter represent the resolution of the resulting image and play a crucial
role in determining its quality. Specifically, a higher count of zeros corresponds to an
increased fitness value, while a lower count of ones is associated with a decreased fitness
value.

The arrangement of these values within the filter significantly impacts image quality.
When the position of a 1 coincides with a cluster of pixels in the original image that
conveys meaningful information, the generated image exhibits high quality. Conversely,
a misalignment of these positions leads to diminished image quality, establishing a direct
correlation between the placement of 1s and 0s in the filter and the resultant image
quality.

To quantitatively assess the quality of each individual within a given population, we
propose a novel fitness function, as outlined in Equation (4.1).
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f(x) =

∑R−2
i=0 1A(xi, xi+1)

θ
, θ = N(R−N) (4.1)

Where: 

xi represents a gene i of the individual x

N :represents the total number of 1

in the individual x

R :represents the dimention of the individual x

(R−N) :represents the total number of 0

in the individual x

The function defined in Equation (4.2), denoted as f , accepts an element from the
set of filters as its input and produces a positive real number (R+) as its output. f : Filters→ R+

x 7→ f(x)
(4.2)

Significant regions within an image are formed by the juxtaposition and conjunction
of pixel sets. When a generated filter contains a contiguous set of zeros at the same
positions as important pixels, the removal of these pixels results in the loss of critical
information in the generated image. This implies that contiguous zeros in a filter may
correspond to vital areas in the original image, and their elimination compromises the
integrity of the generated image. Therefore, it is crucial to select filters with fewer
contiguous zeros. By minimizing the number of contiguous zeros in the chosen filter, we
can effectively minimize the fitness function.

The fitness function f(x), as presented in Equation (4.1), is derived from the indicator
function detailed in Equation (4.3). This indicator function operates on a set E and
assesses whether any element in E belongs to a subset F of E. 1F : E→ {0, 1}

x→ 1F (x)
(4.3)
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The indicator function is equal to 1 inside the set F and 0 outside, as illustrated in
Equation (4.3). In our research, the evaluation of an individual is done considering the
number of successive zeros. The indicator function will be redefined in Equation (4.4). 1A : F→ {0, 1}

(xi, xi+1) 7→ 1A(xi, xi+1)
(4.4)

Where

• F is the filter

• A = {(xi, xi+1) | xi = xi+1 = 0, i = 0, R− 2} denotes the set of consecutive gene
pairs that have a value of 0.

The total number of 1s in the filter represents the resolution of the resulting image
generated when the filter is applied. In a given population, the proposed fitness for
each individual is computed using Algorithm 4.7. The indicator function assesses the
occurrence of consecutive zeros in the filter. When minimizing the fitness function, a
preference is given to high-resolution filters, while maximizing the function prioritizes
the selection of filters with lower resolution.

Algorithm 4.7 Calculating the fitness score.
Input: Individual x
Initialize Sum← 0 {Variable to accumulate the sum of contiguous zeros}
for i = 1 to R do

Sum← Sum+ 1A(xi) {Update Sum based on the indicator function}
end for
f(x)← Sum

θ
{Calculate fitness based on the sum of contiguous zeros}

Output: f(x)

To clarify the proposed fitness function, we generate two populations based on an
original image with a resolution of R = 10. Population 1 consists of filters, all having
the same new resolution of N = 4, as illustrated in Figure 4.3. In contrast, Population
2 includes filters with varying resolutions: two filters have a new resolution of N = 5,
while the other two possess a resolution of N = 6, as shown in Figure 4.4.
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Figure 4.3: Fitness function evaluation with images of uniform resolution.
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Figure 4.4: Computation of the fitness function with images of varying resolutions.
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Table 4.2: Fitness evaluation for individuals with varying resolutions.

xi

∑R−1
k=0 1A(xk) f(xi) N R−N

x1 03 0.120 5 5
x2 04 0.160 5 5
x3 02 0.083 6 4
x4 03 0.125 6 4

Table 4.1: Evaluating the fitness function for individuals sharing the same resolution
within a population.

xi

∑R−1
k=0 1A(xk) f(xi) N R−N

x1 01 0.041 4 6
x2 02 0.083 4 6
x3 03 0.125 4 6
x4 04 0.208 4 6

We computed the objective function for the two populations, with the results pre-
sented in Tables 4.1 and 4.2.

Table 4.1 illustrates that both the indicator function and the proposed function in-
crease concurrently as the adjacency of zeros rises, and vice versa. To maintain diversity
among the images generated from the original image (Resolution R = 10), we generate
filters with varying resolutions (see Figure 4.4).

Interestingly, Table 4.2 shows that two filters, x1 and x4, with distinct resolutions,
exhibit identical values for the indicator function: 1A(x1) = 1A(x4).

This raises the question of which filter to choose: the low-resolution filter x1 or the
high-resolution filter x4? The proposed fitness function, as detailed in Equation (4.1),
normalizes the indicator function using the factor θ = N(R − N). It accounts for the
number of occurrences of both 1s and 0s in each filter, as these vary from one filter to
another. In this case, the values of the proposed fitness function for the two filters differ,
with f(x1) < f(x4). As shown in Table 4.2, filter x1 has a lower adjacency of zeros
compared to filter x4. Thus, filter x1 will be selected for the next step.
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Figure 4.5: Ascending order of fitness values based on the proposed fitness function.

Selection

This step is essential as it allows us to select the fittest individuals for genetic operations.
We utilized the ranking technique to identify new individuals within a specific genera-
tion (population) of GA. This technique is widely recognized for arranging individuals
based on their fitness in either ascending or descending order. In our study, we chose
a descending order, meaning that individuals with higher fitness values are more likely
to be selected. For instance, in Figure 4.5, individuals x1 and x3 are selected from the
population. Figure 4.5 demonstrates how the ranking technique organizes individuals
based on their respective fitness values.
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1 1 0 0 1 0 0 10 1 1 0 1 1 1 1

1 1 0 0 10 1 1 1 10 0 1 1 0 1

Figure 4.6: Illustration of the crossover operator in action.

Crossover

The crossover operator creates new offspring by combining the genetic information of two-
parent individuals according to a specified crossover rate, defined in the range ∈ [0, 1].
In our approach, we employ a two-point crossover operator with a user-defined rate.
Two random points, denoted as P1 and P2, are generated within the interval [1, R]. The
procedure for executing the two-point crossover is detailed in Algorithm 4.8.

Algorithm 4.8 Two-Point crossover algorithm
1: Input: Parents X1, X2

2: Input: Crossover rate r
3: Generate two random points P1, P2 such that 1 ≤ P1 < P2 ≤ R
4: rand← random number in [0, 1]
5: if rand ≤ r then
6: O1 ← Concatenate X1[1 : P1], X2[P1 + 1 : P2], X1[P2 + 1 : R]
7: O2 ← Concatenate X2[1 : P1], X1[P1 + 1 : P2], X2[P2 + 1 : R]
8: else
9: O1 ← X1

10: O2 ← X2

11: end if
12: Output: Offspring O1, O2

Figure 4.6 illustrates a simplified example of the crossover operator. This operator
produces new offspring with unique resolutions. In Figure 4.7, we demonstrate the
crossover of two individuals, x1 and x2, at two distinct points. The individuals x1 and
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1 1 0 0 1 0 1 1

X1
NR=62.5%

1 1 0 1 1 1 1 1

X2
NR=87.5%

1 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1

X3
NR=62.5%

X4
NR=75%

Figure 4.7: Alteration of resolution by the crossover operator.

x2 correspond to different new resolutions of 62.5% and 87.5%, respectively, indicating
the percentage of pixels retained from the original image in the generated images. The
resulting offspring, x3, maintains the same resolution of 62.5% as x1, but features a
different pixel distribution. In contrast, x4 exhibits a completely new resolution of 57%,
which differs from both x1 and x2. .

As we can see, this ensures diversity among the resulting individuals, guaranteeing a
wide range of newly generated images that are different from each other.

Mutation operator

The mutation operator is a crucial genetic operation that introduces random alterations
to one or more genes or chromosomal segments within a population, as detailed in Algo-
rithm 4.9. This operation is essential for maintaining genetic diversity, thereby preventing
the GA from becoming trapped in local optima. In our approach, we apply the mutation
operator to a single gene, denoted as g where g ∈ [1, R], altering its value. This process
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1 1 0 0 1 0 0 1

1 1 0 1 1 0 0 1

Figure 4.8: Illustration of the mutation operator’s effect.

consistently generates new individuals. Figure 4.8 illustrates the effect of the mutation
operator.

Algorithm 4.9 Mutation algorithm
Require: Individual X, Mutation rate rm, Problem constraints
Ensure: Mutated individual X ′

X ′ ← X {Initialize the mutated individual as a copy of the original}
for each gene g in X ′ do

p← random value in [0, 1]
if p ≤ rm then
g ← random value within the specified problem constraints
Update gene g in X ′

end if
end for
return X ′ {Return the mutated individual}

Replacement

This is the final step of GA, where the newly generated population replaces the previous
generation. The aforementioned steps are iteratively repeated until the stopping criterion
is met.

4.2.3 Image generation

The final population consists of filters that will be utilized to generate new images. The
creation of each new image corresponding to a filter in the final population involves
simultaneously traversing both the filter and the original image. During this process,
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NEW IMAGE1 NEW IMAGE2 NEW IMAGE3 NEW IMAGE4

PROPOSED APPROACH

Figure 4.9: Examples of generated images utilizing the proposed approach with the
Cats vs. Dogs dataset.

only the pixels of the original image that correspond to a value of 1 in the filter are
preserved.

Figures 4.9 and 4.10 showcase new images generated from the final population. These
images not only differ from the original but also exhibit variations in size and appearance,
highlighting the diversity achieved through the proposed approach.

4.3 Results and Discussion

To demonstrate the effectiveness of our proposed method, we conducted experiments on
two datasets: Cats vs. Dogs and Chest X-rays, as described in Section 1.6.

In our work, we tested and compared the training results obtained by applying the
pre-trained models presented in Subsection 1.7.3, 1.7.5, 1.7.7, 1.7.6. In this work, as an
additional contribution to our research, we refined the architectures of the two models we
used, specifically VGG16 and VGG19, as outlined in Section 1.7.4. These adjustments
were made after extensive experimentation and have significantly improved the models’
performance, leading to better results.
We utilized the original datasets, the datasets generated using the method proposed in
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Figure 4.10: Examples of generated images utilizing the proposed approach with the
Chest X-ray dataset.

Chapter 2, as well as those generated using our new approach.
The three versions of the datasets used for training are defined as follows: Orig−Db

represents the original dataset, RS−Db corresponds to the dataset augmented with the
RS method, and PA−Db refers to the dataset enhanced using the proposed approach.

Table 4.3 presents a comparison of training results for three versions of the Cats vs.
Dogs dataset—Orig−Db, RS−Db, and PA−DB—using both the original and modified
VGG16 and VGG19 architectures. The table includes accuracy and test error rates for
each dataset version and architecture.

The modified VGG16 and VGG19 architectures consistently outperform their original
counterparts in terms of accuracy across all dataset versions. Notably, for the PA−DB

version, the modified VGG16 architecture achieves a 0.52% improvement in accuracy
compared to the original VGG16, while the modified VGG19 architecture shows a 0.27%
accuracy gain over the original VGG19. However, the test error rates of the modified
VGG16 and VGG19 architectures are slightly higher than those of the original versions
for the RS −Db and PA−Db versions.

These findings suggest that the modified VGG16 and VGG19 architectures are more
effective in classifying images of cats and dogs, particularly for the PA−Db version.

The impact of different DA techniques was further evaluated through additional
experiments.
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Table 4.3: Comparison of the results achieved through training the three versions of
Cats vs. Dogs datasets: Orig −Db; RS −Db and PA −Db for each version using the
original and the modified VGG16 and VGG19 architectures.

Dataset Model Accuracy Test errors
versions
Orig −Db

VGG16
92.55% 19.78%

RS −Db 92.59% 17.87%
PA−Db 92.91% 20.11%

Orig −Db Modified 91.71% 21.36%
RS −Db 92.63% 21.82%
PA−Db VGG16 93.47% 18.16%

Orig −Db
VGG19

91.07% 21.45%
RS −Db 91.39% 20.42%
PA−Db 92.11% 21.88%

Orig −Db Modified 90.18% 27.18%
RS −Db 92.30% 31.01%
PA−Db VGG19 92.38% 20.52%

During the experiments, a comprehensive 30-epoch training process was applied to
each model—VGG16, VGG19, Inception-V3, and EfficientNet-B0—using the datasets
mentioned above, while a 50-epoch training period was allocated for the ViT model.
Each dataset was augmented using both the RS method and our proposed method.
Subsequently, each model was trained on three distinct versions of each dataset.

The comparative analysis presented in Table 4.4 aims to evaluate the effectiveness of
our proposed method in preserving essential features across various augmentation levels.
This analysis compares model performance on the RS −Db and PA−Db, focusing on
accuracy and test errors. For VGG16, the PA−Db dataset improves accuracy by 0.84%
and reduces test errors by 3.66%. VGG19 shows a slight accuracy increase of 0.08%
with PA − Db, alongside a significant reduction in test errors by 10.49%. Inception-
V3 experiences a minor accuracy improvement of 0.12% with PA − Db, but a slight
increase in test errors by 2.04%. The ViT model sees a notable accuracy gain of 1.25%
and a minor reduction in test errors by 0.15% with PA −Db. EfficientNet-B0 benefits
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Table 4.4: Comparison of results from training the three versions of the Cats vs. Dogs
dataset—Orig −Db, RS −Db, and PA−Db—using the five selected models.

Dataset Model Accuracy Test errorsversion
Orig −Db

VGG16
91.71% 21.36%

RS −Db 92.63% 21.82%
PA−Db 93.47 %(+0.84) 18.16%

Orig −Db
VGG19

90.18% 27.18%
RS −Db 92.30% 31.01%
PA−Db 92.38% (+0.08) 20.52%

Orig −Db
Inception-V3

97.75% 10.53%
RS −Db 97.91% 10.27%
PA−Db 98.03% (+0.12) 12.31%

Orig −Db
ViT

72.44% 53.99%
RS −Db 77.36% 47.00%
PA−Db 78.61% (+1.25) 46.85%

Orig −Db
EfficientNet-B0

96.67% 13.08%
RS −Db 97.92% 07.90%
PA−Db 98.40% (+0.48) 06.70%
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Figure 4.11: The accuracy curves for training the VGG16 model across three versions
of the Cats vs. Dogs dataset: Orig −Db, RS −Db, and PA−Db.

from a 0.48% accuracy improvement and a 1.20% reduction in test errors with PA−Db.
Overall, PA−Db consistently enhances model accuracy and generally reduces test errors,
with the most significant improvements observed in the ViT and EfficientNet-B0 models,
although Inception-V3 shows a slight increase in test errors.

As illustrated in Figure 4.11, the accuracy curve reflects the performance of the
machine learning model across the three versions of the Cats vs. Dogs dataset during
training, highlighting the progression of accuracy over time. Notably, the curve for the
PA−Db dataset begins to rise from the third epoch, reaching a peak before stabilizing.
This curve exhibits greater stability and balance compared to the last two curves, which
can be attributed to the higher quality of data utilized during the training process.

These findings underscore the effectiveness of our augmentation strategy, indicat-
ing a significant enhancement in the model’s performance. The consistent improvement
in accuracy from the original dataset to the augmented versions emphasizes the posi-
tive impact of augmentation on the model’s classification capabilities. Importantly, our
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Table 4.5: Comparison of results obtained from applying the VGG16 model on the
Cats vs. Dogs dataset and its various augmented versions.

Dataset Dataset Accuracy Test
version size errors(%)
Orig −Db Original Size (x) 91.71% 21.36%
RS −Db 4x 92.63% 21.82%

6x 92.95% 19.92%
PA−Db 4x 93.47% 18.16

with the size (4x) (+0.84%) (-3.66%)
with the size (6x) (+0.52%) (-1.76%)

proposed approach, represented by the PA − Db, achieves the highest accuracy when
compared to the RS −Db (RS Method), further demonstrating the superior quality of
the images generated from the PA−Db.

The results summarized in Table 4.5 reveal significant differences among the datasets.
The Orig − Db shows a loss function of 21.36%, indicative of higher prediction errors.
In contrast, the RS − Db presents a slightly higher loss of 21.82% compared to the
Orig −Db, suggesting an increase in errors.

In contrast, the PA − Db demonstrates a lower loss function of 18.16%, outper-
forming both the original and randomly augmented datasets. This indicates a potential
enhancement in model performance, characterized by fewer prediction errors. Moreover,
the model’s training with high-quality images enables it to effectively identify samples
that contain significant information.

Moreover, we developed an augmented version of the RS −Db dataset by increasing
its size by a factor of 6 (resulting in a dataset size of 6x, assuming the original dataset size
is x). We then compared this version with PA−Db, which was augmented by a factor
of 4. Notably, PA−Db, augmented by a factor of 4, achieved an accuracy that is 0.52%
higher than the RS −Db augmented by a factor of 6, while also demonstrating a 1.76%
reduction in error. This highlights the superiority of our proposed method in attaining
higher accuracy with fewer examples, as it effectively selects the most informative images
from the generated set.
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Figure 4.12: The accuracy curves illustrate the training performance of the VGG16
model on two versions of the Cats vs. Dogs dataset: RS − Db, which was augmented
by a factor of six, and PA−Db, augmented by a factor of four.
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Table 4.6: Analysis of the confusion matrix derived from training VGG16 with the
Orig −Db.

Precision Recall F1-Score Support
Cat 0.88 0.96 0.92 1249
Dog 0.96 0.87 0.91 1247
Accuracy 0.92 2496
Macro Avg 0.92 0.92 0.92 2496
Weighted Avg 0.92 0.92 0.92 2496

Table 4.7: Analysis of the confusion matrix derived from training VGG16 with the
RS −Db.

Precision Recall F1-Score Support
Cat 0.92 0.92 0.92 1249
Dog 0.92 0.92 0.92 1247
Accuracy 0.92 0.92 0.92 2496
Macro Avg 0.92 0.92 0.92 2496
Weighted Avg 0.92 0.92 0.92 2496

In Figure 4.12, the accuracy curve emphasizes the outstanding performance of PA−
Db augmented by a factor of four. Notably, the accuracy curve for PA − Db exhibits
greater stability during training compared to the RS−Db augmented by a factor of six.
This difference can be attributed to the superior quality of the data in PA−DB, further
underscoring the reliability and effectiveness of our proposed method in enhancing model
learning.

The results obtained from the confusion matrices, as shown in Tables 4.6, 4.7, and 4.8,
consistently exhibit strong performance, with accuracy, precision, recall, and F1-Score

Table 4.8: Analysis of the confusion matrix derived from training VGG16 with the
PA−Db.

Precision Recall F1-Score Support
Cat 0.92 0.95 0.93 1249
Dog 0.95 0.91 0.93 1247
Accuracy 0.93 2496
Macro Avg 0.93 0.93 0.93 2496
Weighted Avg 0.93 0.93 0.93 2496
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Figure 4.13: Confusion matrix generated from training VGG16 using Orig −Db.

values consistently ranging between 0.92% and 0.93%. Notably, Table 4.8 illustrates
the performance of the proposed approach, demonstrating slightly enhanced precision,
recall, and F1-Score for both Cat and Dog categories compared to the results in Tables
4.6 and 4.7.

The confusion matrices presented in Figure 4.13, Figure 4.14, and Figure 4.15 illus-
trate the model’s classification performance across three dataset versions. Notably, the
model exhibited a higher number of classification errors for both categories when trained
on the RS−Db compared to the Orig−Db. In contrast, utilizing the PA−Db resulted
in a reduction of classification errors for both categories relative to the other dataset ver-
sions. These errors stem from the inherent challenges posed by the substantial similarity
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Figure 4.14: Confusion matrix generated from training VGG16 using RS −Db.
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Figure 4.15: Confusion matrix generated from training VGG16 using PA−Db.
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between the cat and dog classes.

(a) (b) (c) (d)

Figure 4.16: Heatmaps from EfficientNet-B0 trained on three dataset versions.

In our research, we utilize heat maps to visually depict data distributions and high-
light key areas of interest within images from the three versions of the dataset. Heat
maps [80] are powerful tools in deep learning, particularly in CNN, as they create vi-
sual explanations for image classification predictions. A heat map effectively identifies
and emphasizes critical regions within an input image that significantly contribute to
predicting a specific class. By employing a color gradient (e.g., transitioning from blue
for low importance to red for high importance), the heat map visually represents the
intensity of activation across these regions. This method provides valuable insights into
the model’s specific areas of focus, greatly enhancing the interpretability of its decision-
making process. The ability of heat maps to highlight influential image regions makes
them indispensable for understanding and validating the reasoning behind CNN predic-
tions.

To further demonstrate the efficacy of our method in generating significant images
that identify important classification regions, Figure 4.16 displays three heat maps of
the same image (shown in Figure 4.16a), each predicted by EfficientNet-B0 trained with
different versions of the Cats vs. Dogs dataset. Figure 4.16b specifically shows the heat
map generated by EfficientNet-B0 when trained on Orig −Db. This heat map features
a cat with a gradient overlay running vertically across the image, transitioning from red
on the left edge to violet on the right edge through orange, yellow, green, and blue.
Notably, the gradient overlay does not emphasize distinctive cat features such as the
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mouth or nose. The heat map in Figure 4.16c highlights significant activation around
the cat’s face but lacks focus on distinct features. In contrast, the model trained with
PA−Db demonstrates strong activation around the mouth and nose regions of the cat’s
face, indicating that the model focuses on these areas to identify the cat, as shown in
Figure 4.16d. This suggests the high quality of the images used for training, as they
contain important details.

To underscore the effectiveness of our image augmentation approach, we conducted
extensive model training using the three versions of the Cats vs. Dogs datasets (Orig−
Db, RS − Db, and PA − Db). When assessing our proposed approach, two additional
models (VGG19, Inception V3, Vision Transformer, and EfficientNet-B0) were trained on
the different dataset versions. The outcomes of our experiments are summarized in Table
4.9. Remarkably, leveraging the VGG19 model, our approach consistently achieves the
highest accuracy of 92.38%, surpassing the randomly augmented dataset by 0.08%, along
with a noteworthy reduction in error by 10.49%. Meanwhile, the Inception V3 model at-
tains an accuracy of 98.03%, exceeding the accuracy of the randomly augmented dataset
by 0.12%. The EfficientNet-B0 model demonstrates an impressive accuracy of 98.40%,
reflecting a 0.48% improvement over the randomly augmented dataset and a significant
error reduction of 29.51%. Finally, the Vision Transformer (ViT) model achieves an
accuracy of 78.61%, improving by 1.25% compared to the randomly augmented dataset
and reducing errors by 0.15%. Collectively, these findings emphasize the robustness and
efficacy of our proposed image augmentation strategy.

In this study, we compared the performance of our proposed method against other
established techniques. We augmented the Cats vs. Dogs dataset four times using various
methods: RS [79], Cutout [41], MixUP [23], CutMix [24], geometric transformations [81],
and our approach. Each version of the augmented dataset was then trained separately
using the EfficientNet-B0 model for 30 epochs.

The results shown in Table 4.9 and illustrated in Figure 4.17 demonstrate that our
method significantly outperforms traditional data augmentation techniques. The supe-
rior accuracy and reduced error rate achieved by our approach indicate its effectiveness
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in enhancing the model’s performance on the Cats vs. Dogs dataset when utilizing
EfficientNet-B0. These findings suggest that the innovative strategies employed in our
method yield a more robust and generalizable augmentation framework, ultimately lead-
ing to improved model training and overall performance.

Table 4.9: Comparison of our method with other approaches utilizing the Cats vs.
Dogs dataset and EfficientNet-B0.

Method Accuracy Error
RS 97.92% 07.90%
Cutout 97.86% 08.14%
MixUp 95.99% 19.40%
CutMix 97.80% 08.10%
GT 97.46% 09.47%
Our method 98.40% 06.70%
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Figure 4.17: Comparison of accuracy and Error for different methods using the Cats vs
Dogs dataset and EfficientNet-B0.
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Table 4.10: Comparison results were achieved by training the Chest X-ray dataset’s
three versions: the Orig − Db, the RS − Db, and the PA Db. Each dataset is trained
with various models.

Dataset Model Accuracy Test errorsversion
Orig −Db

VGG16
72.44% 1.78%

RS −Db 75.00% 1.25%
PA−Db 79.81% (+4.81) 1.00% (-0.25)
Orig −Db

VGG19
73.40% 215.30%

RS −Db 79.17% 176.66%
PA−Db 82.05% (+2.24) 68.47% (-108.19)
Orig −Db

Inception-V3
89.58% 58.31%

RS −Db 89.74% 78.92%
PA−Db 90.71% (+0.970) 54.92% (-24.00)
Orig −Db

EfficientNet-B0
89.90% 50.95%

RS −Db 89.26% 65.88%
PA−Db 93.91% (+4.65) 36.37% (-29.51)
Orig −Db

ViT
70.05% 63.19%

RS −Db 79.48% 48.44%
PA−Db 80.89% (+1.41) 52.04% (-03.60)

Like the Cats vs. Dogs dataset, we applied augmentation techniques to enhance the
Chest X-ray dataset, utilizing both the RS method and our proposed approach. Following
this preprocessing step, we trained the below models: VGG16, VGG19, Inception V3,
EfficientNet-B0, and ViT. The outcomes of these training sessions are detailed in Table
4.10, showcasing the results for each model individually.

Table 4.8 presents a comparative analysis of the results obtained from training VGG16,
VGG19, and Inception-V3 on three versions of the Chest X-ray dataset: Orig − Db,
RS −Db, and PA −Db. VGG16, when trained with the dataset augmented using the
proposed method, achieved the highest accuracy of 79.81%, representing a notable im-
provement of 4.81% over the RS Method. Additionally, the proposed method reduced
test errors to 1.00%, indicating a decrease of 0.25% compared to the RS method.
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For VGG19, the proposed approach yielded an accuracy of 82.05%, surpassing both
the original and RS − Db. Moreover, the method significantly reduced test errors by
108.19%, achieving 68.47%. The Inception-V3 model also benefited from the proposed
method, attaining a higher accuracy of 90.71%, with a marginal improvement of 0.97%
over the RS −Db. Importantly, this approach led to a 24.00% reduction in test errors,
bringing them down to 54.92%.

The results for EfficientNet-B0 demonstrate that our method achieved the highest
accuracy of 93.91%, exceeding both the original and RS −Db models. Additionally, the
proposed approach notably reduced test errors by 29.51%. With the ViT model, our
method achieved an accuracy of 80.89%, showing a marginal improvement of 1.41% over
RS −Db, along with a 3.60% reduction in test errors.

Table 4.10 illustrates that the proposed augmentation method consistently outper-
forms the RS method across different models, highlighting its effectiveness in enhancing
model performance.

Limitations of our methodology While GA is a powerful optimization tool, it
presents several challenges due to its stochastic nature, which can result in unpredictable
outcomes and complicate the reproducibility of experiments. GA typically requires nu-
merous iterations, leading to high computational costs, and demands careful tuning
of genetic operators. Furthermore, they may encounter difficulties in navigating high-
dimensional search spaces, increasing the risk of becoming trapped in local optima. An-
other limitation is that GA often requires a substantial amount of data to perform
effectively, which may not always be available. Additionally, the selection of appropri-
ate fitness functions is critical; poorly defined fitness criteria can hinder the algorithm’s
ability to converge on optimal solutions. Therefore, caution and thorough evaluation are
essential when employing GA for data augmentation.
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4.4 Conclusion

This work introduces a novel DA method that leverages GA. The results demonstrate the
method’s robustness and effectiveness in enhancing model learning. By integrating GA
into the image generation process, we can strategically select optimal images that contain
critical information. This approach optimizes both image selection and augmented data
generation, resulting in significant improvements in model performance. Our method
emphasizes not only the quantity but also the quality of the generated images.
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5.1 Introduction

In the previous three chapters (Chapters 2, 3 and 4), we proposed three data augmenta-
tion methods to enhance the model’s performance in image classification. In this chapter,
we introduce a new deep ensemble learning method that leverages the strengths of ex-
isting models to improve classification tasks.

Ensemble deep learning is employed to address the limitations of individual models
in complex tasks such as image classification. Single models may struggle with gen-
eralization, robustness, and accuracy, particularly in the face of variable data and the
risk of overfitting, which can impair consistent performance across diverse scenarios By
leveraging the strengths of multiple models, ensemble deep learning enhances overall
performance, increases accuracy, and bolsters resilience to errors, making it a more de-
pendable approach for challenging classification problems

Ensemble deep learning integrates multiple neural networks to enhance the overall
performance and robustness of models. Various techniques have been developed for this
purpose, each offering unique advantages. One widely utilized method is Bagging [82],
which aims to reduce variance by combining predictions from multiple models trained
on different subsets of the training data. Another prominent approach is Boosting [83],
where models are trained sequentially, with each model focusing on correcting the errors
of its predecessor. To make final predictions, a secondary model (the meta-model or
level-1 model) combines the outputs of several base models (level-0 models) trained on
the same dataset. This advanced ensemble technique is referred to as stacking or stacked
generalization, which leverages the strengths of diverse models, enabling the meta-model
to optimally combine their predictions [84]. Furthermore, the Bag of Tricks method
incorporates multiple deep learning models using various techniques to enhance perfor-
mance. Bayesian ensembles [85] offer an alternative strategy by employing Bayesian
methods to sample from the posterior distribution of model parameters, resulting in a
robust ensemble. Additionally, multi-head ensembles, where a single network is trained
with multiple output heads on different subsets of data or tasks, enrich the landscape of
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ensemble learning in deep learning.
Our method utilizes the outputs from multiple CNN models (Subsection 5.3.1). By

concatenating these outputs (Subsection 5.3.2), we harness the complementary strengths
and perspectives captured by different models (Subsection 5.3.3).

This chapter is organized into five sections. Section 5.1 provides a general introduc-
tion to the fundamental concepts of ensemble deep learning. Section 5.2 reviews existing
approaches in this field. Section 5.3 offers a detailed explanation of the proposed meth-
ods. In Section 5.4, we focus on experimental validation, highlighting the challenges
encountered with the proposed approach. Section 5.5 outlines the challenges associated
with the proposed method. Finally, Section 5.6 summarizes the key findings of the study
and concludes the chapter.

5.2 Related Work

Combining features from diverse models in ensemble deep learning enhances model diver-
sity and performance [86]. This approach leverages the unique strengths of each model,
leading to improved overall efficiency and robustness while maintaining the integrity of
the original architectures. In this section, we review relevant research on these tech-
niques.

Mungoli et al. [87] propose a method that integrates extracted features at multiple
levels within the neural network architecture. They utilize adaptive fusion layers to
combine features from various stages of the network, including early, middle, and late
layers. However, this approach is hindered by several limitations, including increased
computational complexity, uncertain scalability to larger datasets, a heightened risk of
overfitting, and implementation challenges.

Dong et al. [88] present a method aimed at enhancing the classification accuracy of
White Blood Cells (WBCs) by fusing features extracted from multiple CNN. Their pro-
cess involves feature fusion across different layers or stages of the CNNs to capture both
low-level and high-level information, significantly improving classification performance.
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Nonetheless, this method faces limitations such as increased computational demands,
reliance on high-quality and abundant data, and challenges in implementation.

Lin et al. [89] propose a feature fusion approach to improve COVID-19 detection
by combining features extracted from multiple deep learning models applied to chest
X-ray images. This method aims to create a more robust representation, enhancing
classification accuracy compared to utilizing features from individual models. However,
the effectiveness of this technique may depend on the quality and diversity of the deep
learning models employed. If the models lack sufficient diversity or calibration, the fusion
may not yield significant performance improvements. Additionally, this approach may
require substantial computational resources and careful tuning of fusion strategies to
achieve optimal results.

Liao et al. [90] introduce the Coordinate Feature Fusion Network (CFFN), which en-
hances fine-grained image classification by integrating features from different network lay-
ers through a multi-scale feature fusion mechanism. While CFFN improves the model’s
discriminative power and classification accuracy, it also increases computational com-
plexity, resulting in longer training and inference times. Furthermore, it necessitates
careful tuning of the fusion strategy and network parameters, complicating practical im-
plementation.

Feature fusion techniques across different layers of CNNs face several challenges,
including increased computational complexity and longer training and inference times.
Their scalability to larger datasets is often uncertain, coupled with risks of overfitting and
implementation hurdles. In contrast, our proposed method streamlines the fusion process
by concentrating solely on combining the final outputs of the CNNs. This approach
reduces computational demands by eliminating the need for multi-layer integration, thus
circumventing some of the challenges associated with complex feature fusion. By focusing
on the final outputs, we mitigate the risks related to overfitting and enhance scalability.
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Figure 5.1: Overview of the proposed methodology.

5.3 Proposed Methodology

Initially, we extract feature vectors from multiple CNNs, each specifically designed to
capture distinct information from the input data. By leveraging the strengths of these
diverse CNN models, our proposed approach presents a novel method for enhancing clas-
sification performance. The extracted feature vectors are then concatenated to create
a unified representation, which serves as input for a final classifier. This concatenated
representation integrates the varied feature sets learned by the different models, enrich-
ing the information available for classification and enhancing both the accuracy and
robustness of the system. Figure 5.1 illustrates the proposed methodology, outlining the
sequential steps of the approach, which are further elaborated in the subsections below.

5.3.1 Feature extraction using CNN

Initially, we extract feature vectors from multiple CNNS, each specifically designed to
capture distinct information from the input data. By leveraging the strengths of these
diverse CNN models, our proposed approach presents a novel method for enhancing clas-
sification performance. The extracted feature vectors are then concatenated to create a
unified representation, which serves as input for a final classifier. This concatenated rep-
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resentation integrates the varied feature sets learned by the different models, enriching
the information available for classification and enhancing both the accuracy and robust-
ness of the system.

fi,j = (W ∗X)i,j + b (5.1)

where fi,j is the feature map value at position (i, j), W is the convolutional filter, X
is the input image, and b is the bias.

Through the application of convolutional filters, pooling layers, and non-linear acti-
vation functions, CNN effectively extract vital features, including edges, textures, and
more intricate patterns. The pooling operation, which simplifies the feature map by
diminishing its spatial dimensions, is mathematically represented by Equation (5.2).

pi,j = max
(i,j)

(fi′,j′) (5.2)

where pi,j denotes the value of the pooled feature map at position (i, j), derived from
applying max pooling to a local region of the feature map f. The term max(i,j)(fi′,j′)
represents the maximum value within that specified region.

The activation function, typically a Rectified Linear Unit (ReLU), is then applied to
each element of the feature map, as expressed in Equation (5.3)

ReLU(fi,j) = max(0, fi,j) (5.3)

where ReLU(fi,j) represents the activated value at position (i, j) in the feature map
after applying the ReLU function.

This process enables CNNs to capture a wide range of features and representations
from the input image. The diversity in model architectures ensures that each model
extracts distinct aspects of these features in unique ways.

To derive the final feature vector from a CNN, the process can be mathematically
represented as follows: Let X be the input image, X ∈ RH×W×C where:
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• H is the height of the input image,

• W is the width of the input image,

• C is the number of channels (e.g., 3 for RGB).

The CNN applies a series of convolutional layers Ci(·) and pooling layers Pi(·) to the
input image. After L layers, the feature maps can be represented by Equation (5.4).

F = PL(CL(. . .P1(C1(X)))) (5.4)

where:

• F ∈ RH′×W ′×D is the output tensor,

• H ′ and W ′ are the spatial dimensions of the feature maps,

• D is the number of feature maps.

The output tensor F is flattened into a 1D vector V as presented by the Equation
(5.5).

V = Flatten(F) ∈ RH′W ′D (5.5)

5.3.2 Concatenation of feature vectors

After employing multiple CNNs to extract features from an input image, we combine
these extracted features by concatenating their corresponding flattened vectors. This
concatenated vector integrates the diverse representations learned by the different mod-
els, providing a more holistic and comprehensive feature set that captures a wider range
of characteristics from the input image. The resulting vector is mathematically repre-
sented by Equation (5.6).

Vconcat = [V1;V2; . . . ;VN ] (5.6)
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where [V1;V2; . . . ;VN ] denotes the concatenation of the vectors V1,V2, . . . ,VN using
CNN1, CNN2, ...., CNNN .

The concatenation process is detailed in Algorithm 5.10.

Algorithm 5.10 Vectors concatenation
Input: Vconcat, Vi, i = 1, . . . , N
for j = 1 to length(Vi) do

Vconcat[k]← Vi[j]
k ← k + 1

end for

5.3.3 Classification

In our approach, we employ the fully connected classifier (FC) introduced in Chapter 1;
Section 1.7, Susection 1.7.4. This classifier consists of layers that effectively reduce the
dimensionality of the feature space while enhancing pattern recognition, as demonstrated
in Equation (5.7).

y = Classifier(Vconcat) (5.7)

where y is the classification output of the classifier.
The used classifier begins with 1024 neurons, followed by layers containing 512, 256,

128, and 64 neurons. To mitigate overfitting and promote generalization, dropout rates
of 0.2 and 0.5 are applied. The final fully connected layer integrates the features into
a compact representation, mapping the high-dimensional space to distinct classes for
accurate predictions. An illustrative depiction of the classifier is shown in Figure 5.2.
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FC: 1024

FC: 512

Dropout: 0.2

FC: 256
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Dropout: 0.5

FC: 64

Figure 5.2: The used classifier.

Algorithm 5.11 provides a detailed outline of the proposed method.

Algorithm 5.11 Combining CNN outputs for image classification
Input: Dat: Dataset, A: Set of the used CNN models
Output: Classified image.
for each image X in Dat do

for each CNNi in A do
Pass X through CNNi to get Vi

Concatenate Vi into Vconcat {using Algorithm 5.10}
end for

end for
Classification
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5.4 Experimental Results

To validate the proposed approach, we conducted extensive experiments utilizing the
widely recognized Cats vs. Dogs dataset (refer to Chapter 1, Section 1.6). In this ex-
perimental phase, we selected several CNN architectures renowned for their effectiveness
in various image classification tasks, including VGG16 and VGG19 (Chapter 1, Sec-
tion 1.7; Subsection 1.7.3), Inception-V3 (Chapter 1, Section 1.7; Subsection 1.7.5), and
EfficientNet-B0 (Chapter 1, Section 1.7; Subsection 1.7.7). In this context, the symbol
’+’ signifies concatenation; for example, ”VGG16 + VGG19” represents the combination
of the feature vectors extracted from both VGG16 and VGG19. This methodology allows
us to leverage the strengths of multiple models to enhance classification performance.

Table 5.1: Comparative analysis of classification performance across various combined
CNN models.

The used models Accuracy Error
VGG16 91.71% 21.36%
VGG19 90.18% 27.18%

VGG16 + VGG19 93.75% 19.05%
Inception-V3 97.75% 10.53%

Inception-V3 + VGG19 97.96% 09.97%
Inception-V3 +VGG16 98.12% 04.96%

Inception-V3 + VGG16 + VGG19 98.48% 04.50%
EfficientNetB0 96.67% 13.08%

EfficientNetB0 + Inception-V3 98.32% 12.07%

When comparing the results from combined models with those from individual models
in Table 5.1, it is evident that the combined models significantly outperform their single
counterparts. By integrating features from multiple models, these combinations achieve
higher accuracy and lower error rates than any individual model.

For instance, the VGG16 + VGG19 model attains an accuracy of 93.75% and an error
rate of 19.05%. This represents an improvement of +2.04% in accuracy and a reduction
in error of -2.31% compared to VGG16, as well as an accuracy increase of +3.57% and
a lower error rate of -8.13% relative to VGG19.
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Similarly, the Inception-V3 + VGG19 model reaches an accuracy of 97.96% with an
error rate of 9.97%. Here, the accuracy differs by +0.21% and the error rate decreases
by -0.56% when compared to Inception-V3, while demonstrating an accuracy boost of
+7.78% and a drop in error rate of -17.21% compared to VGG19.

The Inception-V3 + VGG16 model achieves an accuracy of 98.12% and an error rate
of 4.96%, showing a difference of +0.37% in accuracy and a decrease of -5.57% in error
rate compared to Inception-V3, alongside an improvement of +6.41% in accuracy and a
reduction of -16.40% in error rate relative to VGG16.

When combining Inception-V3 with both VGG16 and VGG19, the results yield an
accuracy of 98.48% and an error rate of 4.50%. This indicates an accuracy improvement
of +0.73% and a reduction in error of -6.03% compared to Inception-V3, along with
an increase of +6.77% in accuracy and a decrease of -16.8% in error rate compared to
VGG16, and a further accuracy improvement of +8.30% with a reduction of -22.68% in
error rate compared to VGG19.

Lastly, the EfficientNetB0 + Inception-V3 model achieves an accuracy of 98.32% and
an error rate of 12.07%. This shows an accuracy increase of +1.65% and a decrease in
error of -1.01% compared to EfficientNetB0 while reflecting an accuracy improvement of
+0.57% and an increase in error rate of +1.54% when compared to Inception-V3.

These results indicate that combining models leads to substantial improvements in
performance, with the combined models achieving overall higher accuracy and lower
error rates. Figure 5.3 illustrates that integrating multiple models results in superior
performance, with the best-performing combinations reaching an accuracy of 98.48% and
reducing the error rate to 4.50%. In contrast, individual models show lower accuracy
rates, with some performing significantly worse than the combined models.

5.5 Challenges of Concatenation Method

Concatenating outputs from multiple CNN models for a classifier presents several chal-
lenges: increased computational complexity, risk of overfitting, difficulties in selecting

118



Chapter 5. Enhancing Image Classification with Ensemble Deep Learning through
Deep Feature Concatenation

VG
G1
6

VG
G1
9

VG
G1
6 +

VG
G1
9

Inc
ep
tio
n-V

3

Inc
ep
tio
n-V

3 +
VG

G1
9

Inc
ep
tio
n-V

3 +
VG

G1
6

Inc
ep
tio
n-V

3 +
VG

G1
6 +

VG
G1
9

Effi
cie
ntN

etB
0

Effi
cie
ntN

etB
0 +

Inc
ep
tio
n-V

3
0

20

40

60

80

100

120

91
.7
1

90
.1
8

93
.7
5

97
.7
5

97
.9
6

98
.1
2

98
.4
8

96
.6
7

98
.3
2

21
.3
6

27
.1
8

19
.0
5

10
.5
3

9.
97

4.
96

4.
5 13

.0
8

12
.0
7

Pe
rc
en
ta
ge
s

Accuracy Error

Figure 5.3: Comparison of classification performance, showing accuracy and error rates
for different CNN models and their combinations.
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compatible models, reduced scalability, and limited interpretability. These factors need
careful management to maximize the benefits of this method.

5.6 Conclusion

Our approach of concatenating outputs from multiple CNN models has significantly
enhance classification performance. Experimental results demonstrate that this method
improves accuracy and reduces error rates compared to single-model approaches. The
highest performance was achieved by combining more than two models, confirming the
effectiveness of utilizing multiple models to improve robustness and generalization. This
promising strategy paves the way for advances in image classification and has broad
implications for applications in computer vision and machine learning.
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1 Summary and key findings

In this thesis, our primary objective is to advance the field of image analysis, especially
in image classification, by proposing a novel data augmentation method, followed by two
enhancements using optimization techniques. We also proposed an additional method
to enhance model performance by employing ensemble deep learning.

Our first contribution is based on the random selection of rows and columns from a
given image to create new images. The second contribution introduces an enhancement
using RO, while the third utilizes GA. Additionally, we have refined two CNN architec-
tures used in the experimental phase. The fourth contribution involves concatenating
features extracted using multiple CNN models to enhance model performance.

Building on the existing body of literature, this study investigates advanced ap-
proaches for enhancing image analysis, particularly in the domain of DA. These meth-
ods enable the generation of compact images that maintain high semantic value, thereby
improving the overall effectiveness of image analysis tasks. We further leverage the ar-
chitecture and features of existing models to enhance image analysis performance and
improve classification accuracy.

Despite the variety of existing and proposed methods for augmenting data, they rely
on making changes to the image without affecting its size. These modifications may alter
the value or position of pixels, resulting in the loss of important information that plays
a crucial role in the effectiveness of image analysis tasks.

The classification results demonstrated an enhancement in accuracy when training
both versions of a portion of the Cats vs. Dogs dataset (the original dataset and the
dataset augmented using the RS method) utilizing a basic CNN. Similar improvements
were observed when training the VGG16 model on both versions of the entire Cats vs.
Dogs dataset.

In our proposed technique ROEDA, we integrated RO into our initial contribution
(RS), which facilitated the selection of the most effective images generated by the RS
model. The results indicated a significant improvement compared to the RS method. Ad-
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ditionally, when training the VGG16 model on three different versions of the dataset—the
original dataset, the dataset augmented using RS, and the dataset augmented using
ROEDA noticeable enhancements in classification accuracy were observed.

The use of GA to enhance the RS method has yielded promising results. To evaluate
the effectiveness of this innovative approach (GA-based method), we utilized two distinct
datasets: the Cats vs. Dogs dataset and the Chest X-ray dataset. For the testing
phase, we employed three versions of each dataset: the original dataset, the dataset
augmented using the RS method, and the dataset augmented with our proposed method.
All three versions of each dataset were used to train seven CNN models: VGG16, VGG19,
Inception-V3, EfficientNet-B0, ViT, and the enhanced versions of VGG16 and VGG19.
The findings demonstrate that our GA-based proposal effectively captures critical areas
of information, facilitating improved model learning. This enhancement significantly
boosts the model’s performance, particularly in classification tasks.

To demonstrate the effectiveness of the GA-based method, we trained the VGG16
model using two versions of the Cats vs. Dogs dataset. The first version was augmented
from the original dataset by a factor of 6 using the RS method, while the second version
was augmented with the GA-based method by a factor of 4. The results indicated that the
second version, which utilized fewer examples, achieved superior performance compared
to the first version. This finding substantiates that our method enhances image quality
by selecting the most significant and representative information regions.

The exploitation of capabilities extracted from existing models in image classification
allowed us to propose a new method aimed at enhancing the performance of the models
for the same task. It is based on a technique that concatenates the features obtained
from each model in one feature vector to pass to a classifier.

This approach involves selecting high-performing models in image classification, specif-
ically VGG16, VGG19, Inception-V3, and EfficientNet-B0. We utilize each model indi-
vidually to extract features from the images. These features are then concatenated and
passed to a classifier. As a result, we achieve significantly better outcomes compared to
the individual models.
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In conclusion, our proposed methods utilize advanced data augmentation techniques,
particularly by integrating optimization strategies such as RO and GA. These innovative
approaches aim to generate new images that retain high semantic value while enhanc-
ing classification performance. By focusing on the most informative and representative
regions of the dataset, our techniques improve image quality and ensure that essential
information is preserved, ultimately increasing the effectiveness of image analysis tasks.
Additionally, we propose an ensemble deep learning method to leverage the strengths of
existing models in image classification by concatenating their features, which will then
be used for classification.

2 Future work

In future work, we aim to expand the application of our proposed methods across diverse
domains. Specifically, we will explore their utility in fields such as medical image analysis,
where accurate image classification can significantly impact diagnosis and treatment
outcomes, as well as in object detection for autonomous vehicles, where precision is
critical. By systematically applying our augmentation strategies, we expect to enhance
the performance and robustness of machine learning models in these areas. Additionally,
we plan to investigate how these optimization methods can be tailored to meet the unique
challenges of different domains, ensuring that the generated augmented data retains high
semantic value and improves model learning. This exploration will provide valuable
insights into the versatility of our approach and its potential to drive advancements in
various applications of image analysis.

Furthermore, it is important to note that the proposed methods require significant
resources and time for execution. To address this, we intend to utilize a distributed
system to share tasks, which will enable us to gain efficiency and reduce processing
time.
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