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Abstract

Misdiagnosis poses a significant challenge within the healthcare sector, carrying potentially
severe consequences for patients, including delayed or inappropriate treatment, unnecessary me-
dical procedures, emotional distress, financial burdens, and legal repercussions. To address this
issue, we propose the utilization of deep learning algorithms to enhance the precision of medi-
cal diagnoses. However, the development of accurate deep learning models for medical purposes
necessitates substantial quantities of top-quality data, a resource that can be challenging for
individual healthcare entities to acquire. Consequently, there is a need to aggregate data from
various sources to create a diverse dataset suitable for effective model training. Nevertheless,
the sharing of medical data across different healthcare sectors is fraught with security concerns
due to the sensitive nature of the information and stringent privacy regulations. To tackle these
complex challenges, we advocate for the adoption of Blockchain technology, which offers a se-
cure, decentralized, and privacy-centric approach to sharing locally trained deep learning models,
thereby obviating the need to exchange raw data. Our proposed technique, known as model en-
sembling, combines the strengths of multiple local deep learning models by aggregating their
weights to construct a unified global model. This global model enables accurate diagnosis of
intricate medical conditions across various locations while safeguarding patient privacy and data
integrity. Our research serves as a testament to the efficacy of this approach, achieving high
accuracy rates in the diagnosis of three diseases (accuracy of 97.44 % for the Breast Cancer,
97.14 % for the Diabetes, and 98.51 % for the Lung Cancer) that surpass those of individual
local models. Furthermore, we have successfully developed a multi-diagnosis application as an
outcome of this innovative methodology.

Keywords : Blockchain, Medical Big data, Deep Learning (DL) methods, Pattern
Recognition.
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Résumé

Le diagnostic erroné représente un défi significatif au sein du secteur de la santé, avec des
conséquences potentiellement graves pour les patients, notamment un traitement retardé ou in-
approprié, des procédures médicales inutiles, une détresse émotionnelle, des charges financières
et des conséquences juridiques. Pour faire face à ce problème, nous proposons l’utilisation d’al-
gorithmes d’apprentissage profond pour améliorer la précision des diagnostics médicaux. Cepen-
dant, le développement de modèles d’apprentissage profond précis à des fins médicales nécessite
des quantités substantielles de données de haute qualité, une ressource qui peut être difficile à
acquérir pour les entités de soins de santé individuelles. Par conséquent, il est nécessaire de re-
grouper des données provenant de diverses sources pour créer un ensemble de données diversifié
adapté à une formation efficace des modèles. Néanmoins, le partage de données médicales entre
différents secteurs de la santé est entaché de préoccupations en matière de sécurité en raison
de la nature sensible des informations et des réglementations strictes en matière de confidentia-
lité. Pour relever ces défis complexes, nous préconisons l’adoption de la technologie Blockchain,
qui offre une approche sécurisée, décentralisée et axée sur la confidentialité pour le partage de
modèles d’apprentissage profond formés localement, éliminant ainsi le besoin d’échanger des
données brutes. Notre technique proposée, appelée "model ensembling", combine les forces de
plusieurs modèles d’apprentissage profond locaux en agrégeant leurs poids pour construire un
modèle global unifié. Ce modèle global permet un diagnostic précis de conditions médicales
complexes dans divers endroits tout en préservant la confidentialité des patients et l’intégrité
des données. Notre recherche témoigne de l’efficacité de cette approche, atteignant des taux de
précision élevés dans le diagnostic de trois maladies (accuracy of 97.44 % for the Breast Cancer,
97.14 % for the Diabetes, and 98.51 % for the Lung Cancer) dépassant ceux des modèles locaux
individuels. De plus, nous avons développé avec succès une application de diagnostic multiple
en résultat de cette méthodologie innovante.

Mots-clés : Blockchain, Données médicales volumineuses, Méthodes d’apprentis-
sage profond (DL), Reconnaissance de motifs.
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 ملخص

 
ب وخيمة محتملة على المرضى، بما في ذلك العلاج يشكل التشخيص الخاطئ تحديًا كبيرًا في قطاع الرعاية الصحية، ويحمل عواق

العاطفية، والأعباء المالية، والعواقب القانونية. لمعالجة  ضطرابات المتأخر أو غير المناسب، والإجراءات الطبية غير الضرورية، والا

لك، فإن تطوير نماذج التعلم العميق هذه المشكلة، نقترح الاستفادة من خوارزميات التعلم العميق لتعزيز دقة التشخيصات الطبية. ومع ذ

الدقيقة للأغراض الطبية يتطلب كميات كبيرة من البيانات عالية الجودة، وهو مورد قد يكون من الصعب على كيانات الرعاية الصحية 

مناسبة للتدريب  الفردية الحصول عليه. وبالتالي، هناك حاجة إلى تجميع البيانات من مصادر مختلفة لإنشاء مجموعة بيانات متنوعة

الفعال على النماذج. ومع ذلك، فإن تبادل البيانات الطبية عبر قطاعات الرعاية الصحية المختلفة محفوف بالمخاوف الأمنية بسبب 

، بلوكتشاينالطبيعة الحساسة للمعلومات واللوائح الصارمة المتعلقة بالخصوصية. لمعالجة هذه التحديات المعقدة، ندعو إلى اعتماد تقنية 

ادل  التي توفر نهجًا آمنًا ولامركزيًا ومركزًا على الخصوصية لمشاركة نماذج التعلم العميق المدربة محليًا، وبالتالي تجنب الحاجة إلى تب

من خلال  البيانات الخام. تجمع تقنيتنا المقترحة، المعروفة باسم تجميع النماذج، بين نقاط القوة في نماذج التعلم العميق المحلية المتعددة

تجميع أوزانها لبناء نموذج عالمي موحد. يتيح هذا النموذج العالمي التشخيص الدقيق للحالات الطبية المعقدة عبر مواقع مختلفة مع 

حماية خصوصية المريض وسلامة البيانات. يعُد بحثنا بمثابة شهادة على فعالية هذا النهج، حيث حقق معدلات دقة عالية في تشخيص 

٪ لسرطان الرئة( والتي تتجاوز تلك الخاصة  98.51٪ لمرض السكري، و97.14٪ لسرطان الثدي، و97.44اض )دقة ثلاثة أمر

 .بالنماذج المحلية الفردية. علاوة على ذلك، نجحنا في تطوير تطبيق تشخيص متعدد كنتيجة لهذه المنهجية المبتكرة

 
 .الأنماط  على   التعرف  ،(DL)  العميق  التعلم  أساليب   ضخمة،  طبية  بيانات   بلوكتشين، :المفتاحية   الكلمات
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Chapter 1

Introduction

Healthcare, an integral aspect of our lives, is intrinsically linked to the pervasive and
intricate issue of misdiagnosis. This concern, while prevalent, serves as a poignant reminder of
the multifaceted nature of modern medical practice and its formidable challenges. Misdiagnosis,
characterized by the inaccurate identification of a medical condition, extends its influence across
a wide spectrum, impacting patients and healthcare systems in profound ways. The repercussions
encompass potential harm to patients, an escalation of healthcare costs, and a substantial strain
on medical resources, all of which contribute to a complex web of consequences. At its core, the
issue of misdiagnosis carries profound significance as it delves into matters of patient safety, the
quality of care, and the overall efficiency of healthcare delivery systems.

Misdiagnosis is a critical medical error characterized by the incorrect identification or classi-
fication of a patient’s medical condition, leading to inaccurate treatment, delayed intervention,
or the prescription of inappropriate medications. This failure to provide an accurate diagno-
sis can result from various factors, including errors in clinical judgment, misinterpretation of
medical tests, insufficient patient medical history, or inadequate communication among health-
care providers. Misdiagnosis poses substantial risks to patient safety and can have far-reaching
consequences, including physical harm, emotional distress, and increased healthcare costs, em-
phasizing the importance of improving diagnostic accuracy in healthcare systems.

Addressing the multifaceted challenge of misdiagnosis requires a multifaceted approach.
Healthcare systems around the world are increasingly turning to advanced technologies such
as Artificial Intelligence (AI) and Machine Learning (ML) to assist healthcare professionals
in achieving more accurate diagnoses. These technologies have the potential to analyze vast
datasets of medical information, detect subtle patterns, and offer evidence-based recommenda-
tions to clinicians, thus augmenting their decision-making capabilities. Furthermore, initiatives
aimed at improving healthcare education and fostering a culture of continuous learning among
healthcare professionals are crucial steps in reducing misdiagnosis rates. Continuous medical
education, interdisciplinary collaboration, and the sharing of best practices all contribute to
mitigating the risks associated with misdiagnosis.

Creating accurate deep learning models for medical diagnosis in a hospital can be a formidable
challenge, particularly when the institution does not have access to a sufficient volume of data.
The accuracy and reliability of deep learning models hinge on the availability of diverse and
extensive datasets that encompass a wide spectrum of patient demographics, medical conditions,
and variables. In cases where a hospital’s data pool is limited, the models may struggle to capture
the full complexity and variability of real-world medical scenarios. This limitation can result in
models that are prone to biases, overfitting, or generalization errors, ultimately compromising
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their diagnostic accuracy.
Furthermore, insufficient data can hinder the model’s ability to recognize rare diseases or

conditions, as it may not have encountered enough instances to learn the relevant patterns and
nuances. The lack of comprehensive data may also impede the model’s capacity to adapt to
evolving medical knowledge and practices, as it may not have access to a broad range of cases
and outcomes.

To address the complexities associated with limited data resources, hospitals often engage in
proactive measures and strategic collaborations. One prominent strategy involves fostering col-
laborative efforts with other healthcare institutions and research centers. By pooling their data
resources and collective expertise, hospitals can create more robust and comprehensive datasets
that encompass a wider array of medical conditions and patient profiles. These collaborative
endeavors not only enhance the quality of the data available for deep learning model training
but also promote a culture of knowledge sharing and interdisciplinary cooperation within the
healthcare community.

While collaborative efforts can significantly enhance the quality of healthcare research and
diagnostic capabilities, they also introduce complexities related to the protection of sensitive
patient information. One prominent concern revolves around data privacy, as healthcare institu-
tions are entrusted with vast amounts of personal and confidential patient data. The sharing of
such data necessitates stringent safeguards to ensure that individuals’ privacy rights are upheld,
and their sensitive medical information remains secure. Healthcare organizations must navigate
a labyrinth of regulatory requirements, such as the Health Insurance Portability and Account-
ability Act (HIPAA) in the United States or the General Data Protection Regulation (GDPR)
in Europe, which impose strict guidelines on data sharing and security.

Another security limitation pertains to the potential for data breaches or unauthorized access
when healthcare organizations share data. Even with stringent security measures in place, the
interconnected nature of collaborative efforts may introduce vulnerabilities that malicious actors
can exploit. The risk of data leakage or cyberattacks is a constant concern, necessitating robust
encryption protocols, access controls, and auditing mechanisms to monitor and mitigate potential
security threats.

Blockchain technology emerges as a promising solution to address the security limitations
inherent in collaborative data sharing between healthcare organizations. One of its primary
advantages lies in its decentralized and immutable nature. Blockchain enables healthcare in-
stitutions to create a secure, transparent, and tamper-proof ledger where data transactions are
recorded in a series of blocks, with each block linked to the previous one, forming a chain.
This decentralized structure eliminates the need for a central authority, reducing the risk of
data breaches or unauthorized access by malicious entities. Data stored on the blockchain is
encrypted and can only be accessed by authorized parties with the corresponding private keys,
ensuring robust access controls and data security. But the risk of data leakage remains.

In response to this critical challenge, we have devised an innovative approach that lever-
ages the potent technique of model ensembling. This method harnesses the collective strengths
of numerous localy trained deep learning models, uniting them to form a formidable and re-
silient global deep learning model. The fundamental premise underlying this approach is the
combination of the final weights from multiple local models, each meticulously trained on data
originating from specific locations or sources. This fusion culminates in the creation of a single
global model, endowed with the capacity to provide accurate predictions across a diverse spec-
trum of data inputs. The strength of this approach lies not only in its capability to enhance the
accuracy but also in its unwavering commitment to data security and privacy.
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We’ve put this innovative technique into action by creating a practical multi-disease diagnosis
application that could accurately diagnose three different diseases: Breast cancer, Lung cancer,
and Diabetes. And this application was created using local deep learning models created by three
hospitals collaboration. Two of these hospitals focused on building local artificial neural network
(ANN) models for each disease, using their own private data. They then shared these models
with the third hospital on blockchain. This third hospital had the challenging task of combining
these local models into three strong global deep learning models, one for each disease. These
global models, created by merging the expertise from different sources, were further trained
using the third hospital’s private data. The end result was a single, comprehensive diagnostic
system that embodies collaborative innovation. And, to ensure data security, we used blockchain
technology to safely share this tool among the participating hospitals.

The results of this collaborative effort show the effectiveness of our approach. The global
model for Breast cancer achieved an outstanding accuracy rate of 97.44%, outperforming the local
models by a remarkable margin of 2.7% for the first model and 2.71% for the second. Similarly,
the Lung cancer global model exhibited exceptional accuracy, soaring to 98.51%, surpassing the
local models by 2.99% for the first model and a substantial 5.97% for the second. Finally, the
Diabetes global model posted an impressive accuracy rate of 97.14%, effectively outstripping
the local models by 11.43% for the first model and 2.85% for the second. These remarkable
outcomes underscore the effectiveness of our approach in healthcare diagnostics.

The rest of the Thesis is organized as follows: Chapter 2 is a study on the previous works
focused on the same topic as this thesis with a comparison between them. Chapter 3 holds an
overview on the problem of Misdiagnosis in the healthcare sector, in addition to the effectiveness
and basics of the Deep Learning techniques. Chapter 4 presents the importance of the security
and privacy in the healthcare field, also the privacy techniques used to safeguard patient data.
Chapter 5 represents the contribution and methods developed in this project with the results
obtained.



Chapter 2

State of the Art

2.1 Introduction
In this chapter, we explore research related to our thesis to understand what others have

studied. Our goal is to evaluate the strengths and weaknesses of these earlier studies and get a
complete view of what they’ve contributed to the field. By doing this, we place our research in
the context of the larger academic landscape. As we examine these related works, we look for
similarities and differences, helping us see where our research is unique. This detailed exploration
also helps us see where our work aligns with or differs from previous studies. Additionally, we
introduce the specific diseases we’ll focus on in our research. This chapter sets the stage for our
work, building on past research while addressing its limitations to move the field forward.

2.2 Previous Works

2.2.1 A Predictive Tool for Ovarian Cancer based on Blockchain
technology

In this study [11], M. Abraham et al. have developed a new tool to predict ovarian
cancer. This tool relies on advanced technology called a CNN Siamese network, which can
identify genetic mutations linked to cancer by analyzing microscopic images of proteins. These
images were obtained from the ’Human Protein Atlas’ database.

What’s particularly exciting is that this system not only helps predict cancer but also ensures
the safe sharing of healthcare data, patient records, and cancer predictions among different
organizations and research labs. They achieve this secure sharing through a technology called
blockchain.

The tool’s performance has been tested and it showed an accuracy rate of 86%. However, it’s
essential to note that it has some limitations, such as being tested on a small number of classes
and making predictions based on unseen data, as only the model’s weights were shared. This
means there is still room for improvement and further research in this important area of cancer
prediction.

2.2.2 Framework for Diagnosing COVID-19 using X-ray Images

The swift rise in COVID-19 cases globally has posed a significant threat. To address this, a
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novel deep learning-based detection framework has been introduced to aid in the early diagnosis
of COVID-19 from chest X-ray images in this study [12] by H. Nasiri et al. This framework
utilizes the powerful DenseNet169 network to extract image features. To improve efficiency and
accuracy, the features are carefully selected using the analysis of variance (ANOVA) method,
followed by classification with eXtreme Gradient Boosting (XGBoost).

The model was trained on the ChestX-ray8 dataset and achieved remarkable accuracy rates
of 98.72% for distinguishing between COVID-19 and No-findings, as well as 92% for classifying
COVID-19, No-findings, and Pneumonia. Notably, this approach outperforms existing methods
in the field. However, it is essential to acknowledge that data privacy considerations were not
addressed in this study, highlighting the need for future research to address this crucial aspect
of healthcare data management.

2.2.3 A Blockchain-Powered Expert System for Healthcare
Emergencies

This article [13] presents the "Emotional Medical System Administrator," a predictive
system that uses audiovisual emotion patterns to identify healthcare emergencies by R. C. Aguil-
era et al. Emotion recognition helps determine if a patient needs immediate attention, reducing
costs. The system employs Convolutional Neural Networks (CNN) and Kalman filters for pat-
tern recognition, achieving up to 84.1% accuracy. Patient emotions are captured using a device
with a camera, microphone, and oscilloscope. Data is stored in a centralized database for regular
and intense emotions, with blockchain used for data security. Expanding the database can en-
hance accuracy but may slow learning. This system enhances healthcare decision-making while
prioritizing data security.

2.2.4 A Blockchain-based Deep Learning Platform for Myopia

In recent years, myopia has seen a rapid global proliferation, emerging as a substantial
public health concern. This surge has led to an increasing prevalence of high myopia among
individuals, putting them at risk of severe vision-related complications, such as myopic macular
degeneration. In response, T. E. Tan et al. have developed a deep learning-based platform
designed for myopia diagnosis in [14], capable of detecting high myopia and myopic macular
degeneration. The model comprises three deep learning algorithms rooted in ResNet-101 (CNN),
with two focused on high myopia identification and the third dedicated to diagnosing myopic
macular degeneration.

To train and test the model effectively, diverse datasets from Singapore, India, Taiwan,
Russia, China, and the United Kingdom were employed. A key challenge in employing deep
learning algorithms on a global scale lies in securely exchanging data and models across various
hospitals and centers in different countries. To address this concern, blockchain technology was
integrated into the platform to enhance security and foster trust among collaborators.

Remarkably, the model exhibited impressive accuracy rates, reaching up to 91.3% for high
myopia and 96.9% for myopic macular degeneration. Comparative tests pitted the deep learning
algorithms against six human experts tasked with assessing a random set of 400 images from
external datasets. The results were telling, with the deep learning algorithms outperforming all
six experts, achieving 97.8% accuracy for myopic macular degeneration and 97.3% accuracy for
high myopia.
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Nevertheless, certain limitations warrant consideration. The algorithm can solely detect
myopic macular degeneration as a binary outcome (present or absent) and cannot ascertain its
underlying causes. Altering definitions would necessitate retraining the deep learning algorithms.
Additionally, the algorithm may struggle with very low-resolution images. Data privacy concerns
persist, as the dataset remains susceptible to sharing by collaborators.

2.2.5 A Blockchain-based Smartphone Platform for Diagnosing
Malaria

In remote rural regions with limited resources, where infectious diseases often impose a
substantial burden, there exists a significant challenge in promptly communicating test results
to healthcare professionals during the disease detection process. In response to this challenge,
this article [15] introduces an innovative smartphone-based platform designed for multiplexed
DNA malaria diagnostics by X. Guo et al. The approach involves the utilization of an affordable
paper-based microfluidic diagnostic test and harnesses the power of a Convolutional Neural
Network (CNN) to support local decision-making. Furthermore, blockchain technology plays a
pivotal role in data management and secure data connectivity.

Field testing in remote areas of Uganda has demonstrated the platform’s remarkable efficacy,
successfully detecting over 98% of cases. Beyond ensuring the secure geotagging of diagnostic
data, this technology also enables the integration of infectious disease data into surveillance
systems. To train the deep learning decision support system, a dataset comprising five categories
and 92 test images obtained from loop-mediated isothermal amplification (LAMP) diagnostic
tests was utilized.

Nonetheless, it is essential to acknowledge a security concern associated with the temporary
retention of data on the smartphone for subsequent transmission to the cloud. This aspect
warrants careful consideration to mitigate potential risks associated with data handling and
privacy.

2.2.6 Utilizing blockchain for secure data sharing within healthcare
systems

This study by R. Kumar et al. [16] introduces a novel data sharing framework named
PBDL, which combines Deep Learning (DL) techniques with Private Blockchain and smart
contracts to ensure security and efficiency. Initially, PBDL employs blockchain for registration,
verification (utilizing zero-knowledge proof), and authentication of collaborating parties before
implementing a smart contract-based consensus mechanism.

Furthermore, a pioneering DL approach is proposed, integrating Stacked Sparse Variational
AutoEncoder (SSVAE) with Self Attention-based Bidirectional Long Short Term Memory (SA-
BiLSTM), using the verified data. In this system, SA-BiLSTM plays a crucial role in identifying
and enhancing attack detection methods, while SSVAE transforms healthcare data into a new
format. Security analysis and experimentation, involving the IoT-Botnet and ToN-IoT datasets,
underscore the superior performance of the PBDL system, achieving an accuracy rate of up to
99.89% for ToN-IoT and 99.98% for IoT-Botnet.

However, to further assess its performance and scalability, it is recommended to explore a
software-defined network version of this approach.
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2.2.7 A Personal Health Record (PHR) Application built on
Blockchain Technology

Personal health records (PHRs) play a pivotal role in enhancing healthcare and pa-
tient safety by providing essential health information like allergies, medication dosages, and test
results. They prove especially valuable in emergency scenarios where patients may be incapac-
itated or suffer memory loss, thus avoiding redundant and time-consuming tests. Despite their
utility, PHRs are susceptible to security vulnerabilities that raise concerns about data integrity
and patient privacy. To address these concerns, this study [17] by J. W. Kim et al, introduces
an innovative blockchain-based PHR application designed to securely store and share personal
medical data. The application securely retrieves and encrypts patients’ personal information,
storing it on the blockchain to mitigate the risk of data tampering and fraud. Furthermore, the
study emphasizes user-centricity by developing a mobile PHR application leveraging blockchain
technology. It’s important to note that the study’s scope was constrained by limited partic-
ipant numbers and time, preventing a comprehensive evaluation of the application’s usability
and practicality.

2.2.8 A deep Learning Model for Detecting and Evaluating Sports
Injuries

To effectively detect and assess the risk of sports-related medical conditions, this research
[18] by H. Song et al. employs an optimized convolutional neural network (OCNN) designed
for categorizing sports medical data. Additionally, it incorporates the Self-Adjustment Resizing
algorithm (SAR) enhanced by the self-coding method (SCM) within the convolutional neural
network. This approach enables multi-dimensional analysis of sports medicine data and the es-
tablishment of an advanced medical data network for sports medicine using a cloud-based loop
model. The study primarily utilizes medical data provided by a professional sports laboratory.
The OCNN demonstrates an accuracy of approximately 80%. However, future research enhance-
ments should concentrate on achieving improved evaluations of sports injury data, particularly
by refining neural networks for time series data analysis.

2.2.9 A CNN model based on blockchain for assessing lung cancer’s
food quality and well-being aspects

This study [19] by M. A. Aboamer aimed to dissect the influence of various factors, includ-
ing features, filters, resolution, kernel size, epoch values, and padding value, on the accuracy of
a lung cancer prediction model that integrates CNN and Blockchain. The research also ventured
into the realm of food quality assessment.

Key findings indicated that efficient feature and filter utilization, coupled with image augmen-
tation and a substantial dataset, significantly improved CNN accuracy in lung cancer prediction
and food safety assessment. Notably, the study identified an optimal range of 10-12 epochs for
achieving an impressive 99% accuracy, with accuracy declining when surpassing this threshold.
Additionally, a correlation between image resolution and accuracy was observed, where reduced
resolution corresponded with enhanced accuracy. In summary, the model attained an impressive
overall accuracy rate of 92.5
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However, it’s essential to acknowledge potential limitations, leading the researcher to conduct
supplementary investigations that yielded varied data, highlighting the intricate nature of this
research domain.

2.2.10 Leveraging a blockchain-powered digital pathology system to
enhance diagnostic processes

The application of artificial intelligence algorithms in machine-assisted disease detec-
tion is facing growing challenges due to the increasing complexity of data collection, diagnosis,
and concerns related to storage, transmission, and security. In response, H. Subramanian et
al. the authors of this paper [20] have developed and prototyped a decentralized, secure, and
privacy-respecting digital pathology system. This system is built upon Ethereum-based smart
contracts, the nonfungible token (NFT) standard, and the Interplanetary File System for data
storage. The proposed solution, when integrated into data systems, has the potential to ac-
celerate the diagnostic process, reduce processing time, enhance service quality, and facilitate
access to specialized pathological diagnostics. Moreover, this approach can be extended to other
medical specialties requiring high-fidelity imaging and data storage.

2.2.11 Heart Disease Prediction Algorithm

A new algorithm called Sine Cosine Weighted K-Nearest Neighbor (SCA-WKNN), de-
veloped by H. Hasanova et al. [21], employs machine learning to predict heart disease. This
algorithm relies on blockchain technology for secure and tamper-resistant storage of patient
data. To assess its performance, SCA-WKNN was compared to other algorithms in terms of
accuracy, precision, recall, F-score, and root mean square error. The results demonstrated that
SCA-WKNN outperformed both W K-NN and KNN algorithms, achieving a maximum accuracy
rate difference of 4.59% and 15.61%, respectively. This innovation holds promise for enhancing
disease prediction and healthcare efficiency, but further research is necessary to fully unlock its
potential.

2.2.12 Blockchain-Based Self-Defined Access Control for Data
Security

E. A. Mantey and colleagues have introduced a fresh approach to access control, granting
users the autonomy to establish their access policies independently, devoid of the need for data
owner authorization. This innovation hinges on the implementation of an Access Control Repos-
itory (ACR) as an integral facet of an identity-based access control framework. Furthermore, the
ACR seamlessly integrates with smart contracts, which are then distributed across a Blockchain
network by data owners. This multifaceted system is meticulously crafted to fortify the security
of personal data and erect an impenetrable barrier against the potential leakage of sensitive in-
formation. Additionally, the article delves into a method for the detection of COVID-19 within
X-ray images. Leveraging the prowess of Deep Learning, Keras, and TensorFlow, this technique
has yielded remarkable outcomes, boasting an impressive accuracy range of 90-95% [22].
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As we can see, some of the works didn’t implement any protection for the healthcare data
they worked on, and some of them did use Blockchain for either store or share the data with
other healthcare organization, but still the risk that one of the collaborators may leak the data
intentionally or unintentionally outside the system. This limit is dangerous and can’t be ignored.

2.3 The Main Focus Diseases in Our Implementation
We have selected three distinct diseases as our focal points to rigorously validate the

effectiveness of our methodology and to showcase its versatility and applicability across a range
of medical conditions. These diseases serve as comprehensive test cases, allowing us to thoroughly
examine the performance, accuracy, and generalizability of our approach:

2.3.1 Breast Cancer

Breast cancer is a form of cancer that originates in the cells of the breast, primarily
affecting women. If left untreated, can infiltrate nearby tissues and potentially spread to other
parts of the body, a process called metastasis. While the exact cause of breast cancer remains
partially understood, various risk factors, including genetic, hormonal, and environmental in-
fluences, contribute to its development. Advances in medical research and treatment, coupled
with early detection methods such as mammography, clinical breast exams, and biopsies, have
significantly improved the prognosis. Treatment approaches vary but often encompass surgery,
radiation therapy, chemotherapy, hormone therapy, or targeted therapy, tailored to the individ-
ual characteristics of the cancer and the patient’s health. Regular breast cancer screenings and
self-examinations are vital for timely identification and successful management [23].

Diagnosing whether a breast cancer is malignant or benign can be a complex and challeng-
ing task due to several factors. One of the primary difficulties lies in the often subtle and
overlapping characteristics of malignant and benign breast tumors, both in clinical presentation
and medical imaging. Distinguishing between the two requires a highly accurate assessment,
and even experienced clinicians may encounter difficulties in certain cases. Additionally, there
is a need to minimize the possibility of misdiagnosis, as misclassifying a malignant tumor as
benign can have life-threatening consequences, while inaccurately categorizing a benign tumor
as malignant can lead to unnecessary and invasive treatments. Therefore, accurate diagnosis
often requires a combination of clinical expertise, advanced medical imaging techniques, and,
increasingly, the utilization of artificial intelligence and deep learning models to aid in precise
and reliable classification [24].

2.3.2 Lung Cancer

Lung cancer is a malignant and life-threatening disease that originates in the tissues of
the lungs, primarily in the cells lining the air passages. It is one of the most common types of
cancer worldwide and is often associated with long-term exposure to tobacco smoke, as well as
other environmental and genetic factors. The symptoms of lung cancer may include persistent
coughing, chest pain, shortness of breath, coughing up blood, and unexplained weight loss. Early
diagnosis and appropriate treatment are critical for improving the chances of survival, making
lung cancer a subject of significant research and medical advancements [25].
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Diagnosing lung cancer is a complex task primarily due to the disease’s asymptomatic early
stages, non-specific symptoms that overlap with other conditions, and the existence of multiple
lung cancer types with similar presentations. To establish a lung cancer diagnosis, a combination
of diagnostic tests, including imaging procedures and tissue biopsies, is often necessary, and these
tests may carry associated risks. Additionally, challenges in lung cancer screening, particularly
for individuals not considered high-risk, can hinder early detection. Moreover, determining the
precise stage of lung cancer, which is vital for treatment planning, is a multifaceted process that
necessitates various tests. Consequently, ongoing research aims to enhance early detection and
diagnostic accuracy in lung cancer, addressing these intricate diagnostic challenges [26].

2.3.3 Diabetes

Diabetes is a chronic medical condition that affects how the body processes glucose
(sugar), a crucial source of energy. There are two main types of diabetes: Type 1 and Type
2. In Type 1 diabetes, the immune system mistakenly attacks and destroys insulin-producing
cells in the pancreas, leading to a lack of insulin. Type 1 diabetes typically begins in childhood
or adolescence and requires lifelong insulin therapy for blood sugar control. Type 2 diabetes
is more common and usually develops in adulthood. In this form of diabetes, the body’s cells
become resistant to the effects of insulin, and the pancreas may not produce enough insulin to
compensate. This results in elevated blood sugar levels. Type 2 diabetes can often be managed
with a combination of lifestyle changes, dietary modifications, and, in some cases, medication or
insulin. Uncontrolled diabetes can lead to various complications, including heart disease, kidney
problems, nerve damage, and vision issues. Therefore, proper management and monitoring of
blood sugar levels are essential for individuals with diabetes [27].

Diagnosing diabetes can be challenging due to several factors. One significant difficulty arises
from the fact that diabetes, especially in its early stages, may not always exhibit noticeable
symptoms. As a result, individuals with diabetes can remain undiagnosed for an extended
period. Additionally, the symptoms of diabetes, when present, can overlap with those of other
health conditions, leading to misdiagnosis or delayed diagnosis. Moreover, there isn’t a single
definitive test for diabetes, and diagnosis often requires a combination of blood tests to measure
blood sugar levels, such as fasting glucose tests, oral glucose tolerance tests, and HbA1c tests.
Physicians must carefully interpret these results while considering a patient’s medical history
and risk factors. As a result, diagnosing diabetes necessitates a high degree of clinical suspicion,
vigilance, and an awareness of the diverse ways it can manifest, which can be a challenge for
healthcare providers [28].

2.4 Conclusion
In this chapter, we have delved into an extensive review of various research endeavors

aimed at addressing critical challenges within the healthcare industry. Our exploration has
offered valuable insights into the strengths and weaknesses of these studies. Notably, we have
observed that some research papers primarily focused on solving intricate healthcare issues but
often overlooked the crucial aspect of data security. Conversely, others recognized the significance
of safeguarding sensitive medical data and employed blockchain technology as a means to store
and share information among different healthcare organizations. While these blockchain-based
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solutions did provide a degree of security for medical data, it’s essential to acknowledge that the
risk of data leakage still looms large.

In light of these findings, it becomes evident that there exists an unmet need for compre-
hensive and foolproof data security measures in the healthcare domain. The current landscape
underscores the necessity for innovative solutions that not only harness the power of cutting-
edge technologies like blockchain but also ensure the utmost protection of patients’ confidential
information. As we move forward, it is imperative that future research endeavors place an in-
creased emphasis on data security, employing robust mechanisms that leave no room for potential
breaches. Only through such dedicated efforts we can aspire to create a healthcare ecosystem
that prioritizes patient privacy and data integrity above all else, ultimately ushering in a new
era of trust and confidence in medical data management.

Also in this chapter, we have not only conducted a comprehensive overview of the diseases
central to our study but have also delved into the intricate complexities and challenges associated
with diagnosing each of these medical conditions. By providing an extensive examination of the
diseases, we aim to offer a holistic understanding of the multifaceted nature of these health issues
and the diagnostic obstacles they present.

In the upcoming chapter, we will delve into the critical issue of misdiagnosis in healthcare,
examining the potential consequences it holds for patients and the healthcare system. We’ll also
explore the fundamental concepts of deep learning, a powerful branch of artificial intelligence,
and how it can play a role in addressing this challenge.



Chapter 3

Misdiagnosis and Deep Learning

3.1 Introduction
Misdiagnosis in healthcare is a critical issue, often leading to incorrect treatments, delayed

interventions, and patient harm. Deep learning offers promise in mitigating this risk by lever-
aging its ability to analyze vast datasets and identify subtle patterns in medical information.
Through advanced algorithms, deep learning models can enhance diagnostic accuracy, aiding
healthcare professionals in making more informed decisions. These models can process complex
medical data, such as images, genetic profiles, and patient histories, to identify diseases at earlier
stages, predict patient outcomes, and recommend tailored treatment plans. By harnessing the
power of deep learning, healthcare can substantially reduce the risk of misdiagnosis, ultimately
improving patient care and outcomes.

In this chapter we are going to present an overview on the risks of Misdiagnosis and how can
deep learning help reduce this problem, in addtion to the basic concepts of deep learning.

3.2 Misdiagnosis in Healthcare
Diagnostic mistakes happen when medical practitioners fail to accurately and promptly

describe a patient’s health problems or fail to adequately communicate that explanation to the
patient. These mistakes are described as missed chances to accurately and quickly identify a
patient’s illness while taking into account the information at hand at the moment. Diagnostic
mistakes, in general, refer to a variety of circumstances in which medical professionals may
misinterpret signs and symptoms, misread test results, or fail to notice important details. Such
mistakes could result in inaccurate or delayed diagnoses, which could affect the patient’s recovery
and general well-being. These missed chances for timely or accurate patient diagnosis can have
serious repercussions, hurting the patient’s physical health as well as their emotional well-being
and faith in the healthcare system [29].

3.2.1 Statistics in the European Union

Current figures in the European Union show an unsettling reality: 23% of its citizens have
personally or within their family personally experienced the effects of a medical misdiagnosis. In
this group, a sizeable 18% reported being a victim of a serious diagnostic error that happened in a
hospital setting, and another 11% said they had received the wrong prescription for a medication.

12
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The degree of vulnerability to diagnostic errors varies among the European Union’s member
states, according to a detailed examination. With rates of 32%, 29%, and 28%, respectively,
Latvia, Denmark, and Poland stand out as countries with a greater chance of hospital mishaps.
Similar to Estonia and Malta, Latvia and Denmark are noted as nations with higher rates of
medication errors, with rates of 23%, 21%, and 18%, respectively [30].

3.2.2 Statistics in the U.S.A

The number of misdiagnoses that occur each year among Americans seeking outpatient
medical care services is close to 12 million, or almost 1 in every 20 patients. According to
studies, of the 12 million incidents of misdiagnosis, between 10% and 20% involve individuals
with serious medical disorders, with 44% of those patients having cancer kinds that were mis-
diagnosed. The situation is made more serious by the fact that breast, thyroid, and prostate
cancer are the cancers that are misdiagnosed the most frequently. Furthermore, 28% of these
misdiagnosed instances are considered to be life-threatening or life-altering, which results in un-
needed treatments, higher healthcare expenses, and stress on the afflicted people’s physical and
mental health. Unfortunately, in the worst-case instances, a misdiagnosis may potentially be
fatal. Additionally, getting a second opinion in the U.S. medical system reveals startling statis-
tics. Incredibly, 66% of patients who get a second opinion have their original diagnosis changed,
illustrating the prevalence of misdiagnosis. 21% of people who seek a second opinion have their
diagnosis completely changed, underscoring the degree of diagnostic uncertainty present in the
healthcare system. Only 12% of patients are fortunate enough to have their initial diagnosis con-
firmed, highlighting the importance of getting a second opinion as a vital preventative measure
against misdiagnosis. This last causes a new type of harm to the patient, not only physically
and emotionally, but also financially[30].

3.2.3 Deep Learning Effectiveness

In the effort to prevent misdiagnosis, the utilization of dependable and accurate diagnos-
tic methods becomes paramount, particularly in intricate and challenging cases. Deep learning,
as a revolutionary technology in the field of artificial intelligence, holds immense potential to
significantly mitigate the occurrence of misdiagnosis. By processing vast volumes of medical
data and discerning intricate patterns and correlations that may elude human specialists, deep
learning algorithms can play a pivotal role in revolutionizing the diagnostic process. The in-
tegration of deep learning in healthcare can yield substantial benefits, particularly in complex
scenarios where traditional diagnostic approaches may fall short. Through its ability to analyze
diverse patient data, including medical images, clinical records, and genetic information, deep
learning can uncover unusual patterns indicative of specific diseases or conditions. As a result,
medical professionals can obtain more accurate and precise diagnoses, significantly reducing the
risk of misdiagnosis and its associated negative consequences [31].

3.3 Deep Learning Basics
Deep neural networks draw inspiration from the hierarchical organization of human brains,

where they gradually learn simpler features and then process them into more abstract represen-
tations [32, 33]. A typical deep neural network, known as a feedforward network, comprises an
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input layer, multiple hidden layers, and an output layer. In the simplest form of deep architec-
ture, the multi-layer perceptron (MLP) network, the output is computed directly by passing the
input data through consecutive layers of the model. Within each neuron of the hidden layers,
a weighted sum of the previous layer’s outputs is subjected to a nonlinear activation function,
producing the neuron’s output. The basic architecture of a deep neural network is represented in
Fig.1. The hierarchical nature of representation learning in deep learning enables it to discover
meaningful but abstract correlations and patterns in large datasets [34]. Figure 2.1 represents
the basic architecture of a Neural Network.

Figure 3.1 – Basic Architecture of a Neural Network [1]

Using input data, a deep learning system performs a specified task without the need for ex-
plicit programming or hard-coding for a predetermined result. Instead, because these algorithms
repeatedly modify and adapt their underlying design, they are referred to as "soft-coded" algo-
rithms. During this ongoing modification, referred to as training, the algorithm is given samples
of the input data together with the expected results. The algorithm adjusts its configuration
throughout the training phase to deliver the intended results accurately with the training data
in addition to generalizing its understanding and performing well with new, previously unknown
information [35]. Effective generalization is a key component of deep learning processes. The
"learning" component of deep learning is analogous to the training phase. It can involve con-
tinual progress and "lifelong" learning, similar to how humans learn from novel situations and
failures, and is not restricted to a finite initial adaption. Deep learning algorithms essentially
go through an iterative and flexible learning process, improving their performance and skills
over time by being exposed to a variety of data. Due to their versatility and capacity to ad-
just to shifting settings, they are extremely useful tools in contemporary artificial intelligence
applications [36].

3.3.1 Deep Neural Network Architectures

3.3.1.1 Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANNs) form the fundamental building blocks of deep learning
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structures [37]. A standard feedforward neural network comprises an input layer, several hidden
layers, and an output layer. Within the hidden layers, each neuron receives inputs weighted
accordingly, applies an activation function, and then transmits the outcome to the subsequent
layer [38, 39, 40].

In mathematical terms, in the case of a basic feedforward ANN featuring a solitary hidden
layer, the output of each neuron can be expressed as follows:

Outputi = σ

(
n∑

j=1

wij · Inputj + bi

)
Where:
— Outputi is the output of the ith neuron.
— σ is the activation function.
— wij is the weight between the ith neuron’s input j and the jth neuron’s output.
— Inputj is the output of the jth neuronin the previous layer.
— bi is the bias term of the ith neuron.

3.3.1.2 Recurrent Neural Networks (Unidirectional RNN)

Unidirectional Recurrent Neural Networks (RNNs) are specifically crafted to handle se-
quential data, with each neuron in the hidden layer receiving inputs not only from the preceding
layer but also from its own output in the preceding time step [41]. This unique architecture
allows the network to retain temporal information and capture patterns in sequential data [42].

The hidden state ht of a unidirectional RNN at time step t can be represented by the following
equation:

ht = RNN_Cell(Inputt, ht−1)

Where:
— RNN_Cell is the RNN cell that combines the current Inputt and the previous hidden

state ht−1 to compute the new hidden state ht.

3.3.1.3 Recurrent Neural Networks (Bidirectional RNN)

Bidirectional Recurrent Neural Networks (RNNs) are an advanced version of unidirec-
tional RNNs designed to handle sequential data in two directions, both forward and backward
[43]. By doing so, they capture information from both previous and future time steps, enhancing
their ability to understand temporal patterns in the data [44].

The hidden state ht of a bidirectional RNN at time step t can be represented as:

ht = RNN_Cell_Forward(Inputt, ht−1) +RNN_Cell_Backward(Inputt, ht+1)

Where:
— RNN_Cell_Forward is the RNN cell for the forward pass.
— RNN_Cell_Backward is the RNN cell for the backward pass.
— ht−1 is the previous hidden state in the forward pass.
— ht+1 is the next hidden state in the backward pass.
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3.3.1.4 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are specifically tailored for processing image and
spatial data. These networks employ convolutional layers, which utilize filters to extract distinc-
tive features from the input data [45, 46]. Subsequently, pooling layers are applied to decrease
spatial dimensions, and fully connected layers are utilized for tasks like classification or regression
[47].

The output of a CNN’s convolutional layer can be represented as:

Outputi = σ

(
n∑

j=1

wij ∗ Inputj + bi

)
Where:
— Outputi is the output of the ith feature map in the convolutional layer.
— σ is the activation function.
— wij is the convolutional filter’s weight.
— Inputj is the input data or a feature map from a previous layer.
— bi is the bias term of the ith feature map.

3.3.1.5 Autoencoders (AEs)

The Autoencoder (AE) is a model designed to facilitate feature learning and reduce dimen-
sionality. It employs an encoder to convert input data into a lower-dimensional representation
and a decoder to reconstruct the original input based on this compressed representation [48, 49].

The encoder function f and the decoder function g can be represented as follows:

Encoder:

h = f(Input)

Decoder:

Reconstructed_Input = g(h)

Where:
— h is the lower-dimensional representation (latent space).
— f is the encoder function.
— g is the decoder function.

3.3.1.6 Stacked Autoencoders

A stacked autoencoder is an advanced version of the AE, comprising several layers of
encoders and decoders, which results in the formation of a deep architecture [50].

The output of a stacked autoencoder’s encoder function f can be represented as:

h = f (L)
(
f (L−1)

(
. . .
(
f (1) (Input)

)))
Where:
— f (L) is the encoder function for the Lth layer.
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3.3.1.7 Variational Autoencoders (VAEs)

A Variational Autoencoder (VAE) is an enhanced version of the AE that incorporates prob-
abilistic encoding into the latent space. This integration enables the model to perform sampling
within the latent space, facilitating the generation of new data [51].

The encoder function f and decoder function g of a VAE can be represented as:

Encoder:

h, µ, σ = f(Input)

Decoder:

Reconstructed_Input = g(Sample(µ, σ))

Where:
— h is the lower-dimensional representation (latent space).
— µ is the mean of the latent space distribution.
— σ is the standard deviation of the latent space distribution.
— f is the encoder function.
— g is the decoder function.
Figure 2.2 represents the architectures of each model explained earlier.

3.3.2 Overfitting and Underfitting

When training machine learning models, overfitting and underfitting are two frequent issues.
They relate to how successfully a model extrapolates from the training set of data to fresh or
unknown data.

3.3.2.1 Overfitting

When a deep learning model learns the training data too thoroughly, overfitting happens.
This causes the model to collect noise and random fluctuations rather than the underlying
patterns or relationships in the data. Because the model has effectively memorized the training
data instead of learning to make generalizations, it performs very well on the training data
but poorly on fresh, unknown data. very complicated models with several parameters, a low
training error but a large validation or test error, and models that are very sensitive to slight
perturbations in the training data are all indications of overfitting [52].

3.3.2.2 Underfitting

On the other side, underfitting happens when a machine learning model is too basic to
accurately represent the underlying patterns in the training data. Because the model hasn’t
learnt enough about the structure of the data, it performs poorly on both the training data
and new, unseen data. High training error and high validation or test error are indicators of
underfitting [53].

Figure 2.3 represents the types of fitting in a deep learning model.
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Figure 3.2 – Deep Neural Network Architectures [2]
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Figure 3.3 – Overfitting and Underfitting [3]

3.3.3 Regularizations in Deep Learning

Regularization is a crucial deep learning approach that enhances neural network robust-
ness, prevents overfitting, and improves generalization. When a model learns to fit the training
data too closely, overfitting happens. This captures noise and leads to subpar outcomes on un-
observed data. Regularization techniques impose restrictions or penalties on the model during
training in order to promote more basic models and lessen the chance of overfitting [54, 55].

3.3.3.1 L1 Regularization (Lasso Regularization)

L1 regularization, a widely employed technique in the realm of deep learning, plays a
pivotal role in enhancing the generalization capabilities of neural networks by incorporating
an additional term into the loss function during the training process. The primary objective
of this regularization method is to combat the issue of overfitting, which often arises when
the model becomes excessively complex and fits the training data too closely, resulting in poor
performance on unseen data. The distinctive characteristic of L1 regularization lies in the penalty
term it introduces, which is intricately linked to the absolute values of the model’s weights.
Specifically, it imposes a constraint on these weights by adding a penalty proportional to the
absolute magnitudes of the weights. This penalty term effectively encourages certain weights
to become precisely zero, essentially driving a selection process among the model’s features.
Consequently, it fosters sparsity within the model, allowing it to focus on the most relevant
features while disregarding less significant ones [56].

3.3.3.2 L2 Regularization

L2 regularization stands as a fundamental and widely adopted technique within the domain
of deep learning, wielding the power to enhance the performance and generalization capabilities
of neural networks. Its overarching goal is to tackle the notorious issue of overfitting, the
introduction of a penalty term that is intricately linked to the squares of the model’s weights.
This penalty term plays a crucial role during the training process, as it imposes a constraint
on the magnitude of the model’s weights. By proportionately penalizing the square values of
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these weights, L2 regularization encourages the model to favor small weight values. In doing so,
it effectively deters the model from becoming overly reliant on any single feature or becoming
overly complex, thereby mitigating the risks associated with overfitting [57].

3.3.3.3 Dropout

The dropout technique is a remarkable innovation in the realm of neural network training
that has revolutionized the way we approach deep learning. Implemented during each forward
and backward pass of the training process, dropout introduces an element of controlled random-
ness by selectively omitting a random subset of neurons within the neural network. This strategy
has profound implications for the model’s performance, as it effectively disrupts the intricate
co-dependencies and intricate interactions that can develop among neurons during training.
The primary motivation behind dropout is twofold: to combat overfitting and to deter the co-
adaptation of neurons. By randomly deactivating neurons, dropout introduces an element of
uncertainty into the training process, forcing the model to be more robust and adaptive. This,
in turn, mitigates overfitting by ensuring that the model doesn’t rely too heavily on any specific
set of neurons or features [58].

3.3.3.4 Batch Normalization

Batch normalization, a pivotal technique in deep learning, brings a sophisticated layer of
complexity and effectiveness to the training of neural networks. It operates by normalizing the
activations of each layer within a mini-batch during the training process, a seemingly simple yet
highly impactful strategy. This normalization plays a multifaceted role in the optimization of
neural networks, with far-reaching implications for their overall performance and stability. One of
the primary benefits of batch normalization lies in its capacity to stabilize the training process
itself. Deep neural networks often exhibit the challenge of vanishing or exploding gradients,
which can impede convergence and hinder effective learning. Batch normalization counteracts
this issue by rescaling and shifting the activations within each mini-batch, effectively reducing
the magnitude of gradients, thereby facilitating smoother and more efficient training [59, 60].

3.3.3.5 Early Stopping

The concept of early stopping represents a strategic and highly effective approach in deep
learning. This technique revolves around the continuous monitoring of the model’s performance
on a separate validation dataset during the training process. Instead of allowing the model to
train until it converges fully, early stopping intervenes by terminating the training process when
a noticeable rise in the validation error occurs. This proactive measure is taken to ensure that
the model reaches its optimal generalization capacity, thereby preventing it from overfitting the
training data [61, 62].

3.3.4 Combination of Deep Learning Models

One effective strategy for enhancing the performance, robustness, and generalization of
deep learning models is combining them. This method is referred to as model ensembling.
Combining deep learning models can be done in a variety of ways, each with advantages and
uses.
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3.3.4.1 Transfer Learning

Transfer learning encapsulates a powerful paradigm that leverages the wealth of knowledge
gained in one specific context or task to enhance performance in another, often closely related
context or task. At its core, transfer learning adheres to the premise that models aren’t isolated
entities but rather dynamic reservoirs of information and expertise. When a model is exposed
to and trained on a specific task, it not only acquires the ability to tackle that task but also
accumulates a wealth of knowledge, patterns, and insights that can transcend the confines of its
initial application. Transfer learning capitalizes on this notion, enabling models to repurpose and
adapt the acquired knowledge to new, analogous problems, thereby streamlining the learning
process and amplifying their effectiveness [63].

Pre-trained Models Deep learning’s transfer learning strategy is intricately entwined
with the utilization of pre-trained models, which serve as the bedrock for knowledge transfer and
enhancement of model performance. These pre-trained models represent neural networks that
have undergone rigorous training on vast and diverse datasets, typically tailored to a specific
task, such as image classification or natural language processing. The extensive training and
fine-tuning of these models equip them with a rich understanding of the underlying patterns and
intricacies of their designated domain [64].

3.3.4.2 Architectural Combinations

In deep learning, architectural combinations involve the artful fusion of diverse neural
network designs or layers to create intricate and highly specialized models. The essence of archi-
tectural combinations lies in their capacity to innovate and push the boundaries of what deep
learning models can achieve. By strategically integrating various neural network components,
practitioners can craft models that are not only more powerful but also more adaptable and ver-
satile. These combinations are not bound by rigid rules; instead, they encourage creativity and
experimentation, allowing researchers and engineers to tailor models to the unique requirements
of specific tasks or problem domains. [65, 66].

3.3.4.2.1 Model Ensembles Model ensembles present an intriguing and highly effective
strategy for enhancing the performance and generalization capacity of predictive models. This
approach goes beyond the confines of a single model by harnessing the collective wisdom and di-
versity of multiple models, which are typically of the same architecture but initialized differently
or trained on distinct subsets of data. The overarching goal of ensemble learning is to mitigate
the common pitfalls of overfitting while simultaneously improving the robustness and reliability
of predictions. [65].

3.3.4.2.2 Bagging Bagging, short for Bootstrap Aggregating, amplifies model perfor-
mance and foster robust generalization. This ingenious process entails the creation of multiple
instances of the same base model, each trained using a distinct and randomly selected subset of
the training data. The key innovation behind bagging lies in its ability to harness the diverse
perspectives and insights that these independently trained models bring to the table, ultimately
leading to more accurate and stable predictions [67].
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3.3.4.2.3 Boosting Boosting offers a compelling approach to model building that tran-
scends the limitations of individual weak learners. At its core, boosting is designed to cre-
ate a robust and high-performing model, often referred to as a strong learner, by ingeniously
combining the collective wisdom of multiple weak learners—models that exhibit only marginal
improvements over random guessing. However, the true power of boosting lies not just in the
amalgamation of these modestly performing models but also in its dynamic and iterative ap-
proach to model improvement [68]

3.3.4.2.4 Stacking Stacking represents a powerful methodology for synthesizing the col-
lective wisdom of multiple base models into a highly proficient and accurate final prediction
model. At its core, stacking introduces an innovative layer into the ensemble paradigm: a meta-
learner. This meta-learner is tasked with learning how to effectively integrate the predictions
generated by the diverse array of base models. In essence, stacking orchestrates an ensemble of
ensembles, each contributing its unique perspective and expertise to the final prediction, with
the meta-learner acting as the conductor of this harmonious orchestration [69].

3.3.4.2.5 Voting Voting presents a versatile and reliable strategy for amalgamating pre-
dictions from an array of models, including classifiers and regressors. These techniques play
a pivotal role in harnessing the collective intelligence of multiple models and leveraging their
combined insights to make more robust and accurate predictions. The crux of voting techniques
revolves around the concept of aggregating the individual predictions of these models, either
through averaging or majority voting, depending on whether the task at hand is regression or
classification. [70].

3.3.4.2.6 Weight Averaging Weight averaging is a strategic approach to enhance the
generalization and overall performance of neural network models. It emerges as an invaluable tool
when faced with scenarios where multiple models of similar architectures have been meticulously
trained, each encapsulating its unique learning experiences and insights. The goal of weight
averaging is to leverage the collective knowledge embedded in these diverse models, ultimately
yielding predictions that exhibit superior accuracy and robustness. [71].

3.3.4.2.7 Multi-Modal Architectures Multi-modal architectures represent a cutting-
edge and innovative approach in the field of artificial intelligence. These architectural marvels
are meticulously designed to handle data emanating from multiple diverse sources or modalities,
bridging the gap between various forms of information representation. A quintessential example
of multi-modal architecture involves seamlessly integrating text and graphics into a single model,
fostering a holistic understanding of input data that transcends the boundaries of traditional
unimodal approaches [72].

3.4 Conclusion
In this chapter, we’ve taken a good look at the various risks linked to misdiagnosis in

healthcare. We’ve stressed how these risks can seriously affect patients, not just physically but
also mentally. This underlines the vital need for precise medical diagnosis. At the same time,
we’ve pointed out how deep learning methods can help deal with these issues, making diagnoses
more accurate by using data-driven insights.
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The next chapter will focus on the complex field of securing medical data. We’ll explore
how healthcare data security is closely connected to protecting patient privacy, ensuring data
accuracy, and following strict data protection laws and legal rules. This balancing act between
improving medical diagnosis and keeping patient records safe highlights the intricate and diverse
challenges faced in modern healthcare.



Chapter 4

Security and Privacy in Healthcare

4.1 Introduction
Security and privacy concerns in healthcare are paramount, given the sensitive nature of

patient data. Blockchain technology offers a compelling solution by establishing a decentralized,
tamper-proof, and transparent ledger for securely managing medical information. Through
encryption and smart contracts, blockchain ensures data integrity and access control, allowing
patients to grant and revoke consent for data sharing, enhancing transparency and accountability.
This robust framework strengthens data security, prevents unauthorized access, and mitigates
the risk of breaches, addressing critical concerns in healthcare security and privacy.

In this Chapter we present a summary of the most privacy threatening risks related to medical
data and the possible solutions that have been offered over the years until the use of blockchains.

4.2 Security and Privacy Challenges in Healthcare
Because healthcare organizations deal with extremely sensitive patient information, secu-

rity and privacy issues are of utmost concern. To keep patients’ trust and adhere to numerous
rules like the Health Insurance Portability and Accountability Act (HIPAA) in the United States,
it is essential to safeguard patient data and ensure the security and privacy of healthcare systems.
Several of the major security and privacy issues in healthcare are listed below:

4.2.1 Data Breaches

The escalating frequency of data breaches in the healthcare sector has ignited growing
concerns and highlighted the profound repercussions that can ensue from such security lapses.
These breaches represent a concerning trend wherein cybercriminals relentlessly target health-
care organizations in their quest to access patient records. Within these records, a treasure trove
of sensitive data awaits, including not only the obvious medical histories and insurance informa-
tion but also critical identifiers such as Social Security numbers. The aggregation of this highly
confidential information makes healthcare establishments prime targets for cybercriminals seek-
ing to exploit vulnerabilities for malicious purposes. The consequences of these healthcare data
breaches are far-reaching and multifaceted. Financial fraud emerges as one of the immediate
and severe repercussions, as cybercriminals often use stolen information to perpetrate fraudu-
lent activities, ranging from unauthorized financial transactions to the creation of fake identities
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for illicit purposes. The fallout from such fraudulent activities can be financially devastating
for both the individuals whose data has been compromised and the healthcare organizations
involved [73].

4.2.2 IoT Vulnerabilities

The proliferation of Internet of Things (IoT) devices in the healthcare sector, including
medical equipment and wearable technology, has ushered in a new era of innovation and patient
care. However, this surge in connectivity also raises a critical concern - the emergence of novel
attack vectors. The sheer volume and diversity of these IoT devices have led to a complex
security landscape, characterized by a wide range of vulnerabilities that hackers can potentially
exploit. Unlike traditional medical equipment, many IoT healthcare gadgets may not have robust
security safeguards in place, leaving them alarmingly susceptible to malicious intrusions [74].

4.2.3 Lack of Standardization

Security and privacy practices in the healthcare sector stand at a critical juncture where
standardization remains a pressing concern. The vast and intricate web of healthcare providers,
each operating within its unique ecosystem, results in a lack of uniformity in data protection mea-
sures. This variance in security procedures across different healthcare organizations has profound
implications for the confidentiality and integrity of patient data. One significant contributing
factor to the lack of standardization is the inherent complexity of healthcare operations. Vari-
ous healthcare entities, such as hospitals, clinics, insurance providers, and research institutions,
handle patient data differently, each governed by distinct regulatory frameworks and operational
requirements. This diversity in organizational structure and objectives makes it challenging to
enforce consistent security and privacy practices across the entire healthcare landscape [75].

4.2.4 Third-Party Vulnerabilities

The increasing reliance on third-party vendors within the healthcare industry has ushered
in a new era of operational efficiency and technological advancement. Healthcare companies often
turn to these vendors to avail themselves of a wide array of services, ranging from cloud storage
solutions to Electronic Health Records (EHR) systems, which streamline and enhance patient
care. However, this extensive integration of external services into the healthcare ecosystem
brings with it a host of security and privacy considerations, as patient data is entrusted to these
vendors. The potential consequences of security issues or data breaches on the part of these
third-party providers loom large and encompass a myriad of intricate challenges. One of the
central concerns surrounding third-party vendors in healthcare is the security of patient data.
The sensitivity and confidentiality of medical records and personal health information make
them prime targets for cybercriminals. If a third-party vendor were to experience a security
breach or data leak, the ramifications could be devastating, potentially resulting in the exposure
of patients’ private medical histories, treatment plans, and sensitive personal details. Such
breaches not only jeopardize patient trust but also carry legal and regulatory consequences for
healthcare organizations that entrusted their data to these vendors [76].
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4.2.5 Compliance Challenges

Healthcare providers operate in a global landscape governed by a complex web of regula-
tory frameworks that aim to ensure the privacy and security of patient data. These regulations
span continents and nations, with each region having its unique set of compliance requirements.
In the United States, healthcare providers must adhere to the Health Insurance Portability and
Accountability Act (HIPAA), which sets stringent standards for the safeguarding of patient in-
formation. Meanwhile, in Europe, the General Data Protection Regulation (GDPR) imposes its
own set of rigorous data protection rules. Navigating this intricate regulatory terrain poses a
formidable challenge for healthcare organizations as they strive to deliver efficient and uninter-
rupted healthcare services while simultaneously upholding compliance with these multifaceted
regulations. The complexity of healthcare regulations extends far beyond mere data protection.
These regulations encompass a wide range of requirements, including those related to data ac-
cess and consent, breach notification, record-keeping, and patient rights. Ensuring compliance
in all these dimensions demands meticulous attention to detail, robust data management sys-
tems, and rigorous staff training programs. Moreover, the dynamic nature of healthcare, with its
continuous evolution in technologies and practices, introduces an additional layer of complexity.
Healthcare providers must not only maintain compliance with existing regulations but also adapt
swiftly to new regulatory updates and emerging cybersecurity threats. This ongoing commit-
ment to compliance often necessitates substantial investments in cybersecurity infrastructure,
ongoing audits, and the cultivation of a culture of data privacy and security within healthcare
organizations [77, 78].

4.2.6 Patient Consent and Data Access

One of the paramount challenges in modern healthcare revolves around the delicate balance
between respecting patient privacy and ensuring efficient, timely, and secure access to medical
records. Healthcare providers are tasked with the formidable responsibility of not only delivering
effective care but also safeguarding sensitive patient information, ensuring that only authorized
individuals, including healthcare professionals directly involved in a patient’s treatment, have
access to these critical records. This balance extends to the core of patient-doctor relationships,
where trust and confidentiality are foundational. Patients entrust healthcare providers with
their most personal and sensitive information, including medical histories, treatment plans, and
diagnostic results. Maintaining the confidentiality of this data is not just a legal requirement
but also an ethical imperative, as breaches of trust can have profound repercussions on patient
well-being and the healthcare provider-patient relationship [79].

4.2.7 Data Encryption

The imperative to encrypt patient data, both in transit and at rest, stands as a foun-
dational pillar of modern healthcare cybersecurity. Encryption serves as a robust safeguard,
rendering sensitive medical information unreadable and inaccessible to unauthorized parties.
While the benefits of encryption are undeniable, the practical implementation of this critical
security measure in healthcare settings can be rife with complexities and challenges, particularly
when striving to maintain the seamless operation of healthcare procedures.The implementation
of encryption involves not only the deployment of encryption algorithms but also the develop-
ment of comprehensive encryption strategies that align with the specific needs and intricacies of
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healthcare workflows. One of the primary challenges lies in striking the right balance between
robust data protection and uninterrupted healthcare operations. Encrypting data in transit,
such as when it is transmitted between medical devices and electronic health records (EHR)
systems, must not introduce significant latency or disrupt the real-time nature of patient care.
Similarly, encrypting data at rest within EHR databases or on portable storage devices, like
laptops or tablets, necessitates strategies that do not compromise the timely retrieval of patient
information when needed [80].

4.2.8 Emerging Technologies

The advent of transformative technologies like telemedicine and AI-based diagnosis tools
has ushered in a new era of healthcare delivery, marked by increased accessibility and enhanced
diagnostic capabilities. However, alongside these innovations come a host of intricate security
and privacy concerns that demand meticulous attention. Safeguarding the privacy of AI-driven
health advice and ensuring the security of remote patient consultations represent paramount
challenges in the ever-evolving landscape of modern healthcare. Telemedicine, which enables
remote patient consultations and treatments, brings with it a unique set of security challenges.
The transmission of sensitive patient data across digital channels necessitates robust encryption
and secure communication protocols to protect against data breaches and unauthorized access.
Additionally, healthcare organizations must implement stringent access controls and authentica-
tion mechanisms to verify the identity of both patients and healthcare providers participating in
virtual consultations. AI-based diagnosis tools, while revolutionizing medical decision-making,
introduce privacy concerns related to the handling of patient data. These tools often rely on vast
datasets, including patient health records, medical images, and genetic information. Protecting
the privacy of patients within these datasets is of utmost importance, requiring rigorous data
anonymization and de-identification techniques to prevent the inadvertent disclosure of personal
information. Moreover, healthcare organizations must ensure that AI systems comply with data
protection regulations such as GDPR in Europe and HIPAA in the United States [81].

4.3 Solutions for Security and Privacy in Healthcare
In order to handle diverse risks and weaknesses, security and privacy in healthcare ne-

cessitate a multifaceted strategy. Various approaches and techniques to improve security and
privacy in healthcare include the following:

4.3.1 Access Control and Authentication

For the protection of private patient information and to maintain the integrity of health-
care systems, effective access control and strong authentication mechanisms are indispensable.
The following are some of the most common access control and authentication techniques used
by healthcare organizations:

4.3.1.1 Role-Based Access Control (RBAC)

Role-Based Access Control (RBAC) is a widely used approach to managing and control-
ling access to computer systems, networks, and applications. RBAC is a security model that
assigns permissions and access rights to users based on their roles and responsibilities within an
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organization. Instead of granting permissions to individual users, RBAC groups users into roles
and assigns permissions to those roles, simplifying access management and enhancing security
[82].

The cornerstone of access control strategies in the healthcare industry is role-based access
control (RBAC), a robust and widely adopted framework that meticulously assigns permissions
and access rights based on the specific roles and responsibilities of healthcare personnel within
an organization. In this meticulously designed system, the fundamental principle is to align ac-
cess privileges with job functions, ensuring that each user, whether they are physicians, nurses,
administrative staff, or IT professionals, is granted access only to the data and systems that are
directly pertinent to their respective tasks and responsibilities. By doing so, RBAC significantly
reduces the risk of unauthorized access to sensitive patient information, critical medical records,
and other confidential data, thereby bolstering the overall security posture of healthcare insti-
tutions and ensuring compliance with stringent data protection regulations such as the Health
Insurance Portability and Accountability Act (HIPAA) in the United States. This fine-grained
access control not only safeguards patient privacy but also enhances operational efficiency by
streamlining data access management and minimizing the potential for human error in granting
or revoking access permissions [83].

Limits Role-based access control has some security limitations:
— RBAC frequently uses centralized access control systems, which leaves them open to single

points of failure as well as malicious attacks.
— RBAC demands confidence in the central authority in charge of access control, which is

vulnerable to misuse or mistakes.
— RBAC systems may struggle with interoperability between different organizations and

platforms.
Figure 3.1 represents the mechanism of Role-based access control.

4.3.1.2 Multi-Factor Authentication (MFA)

Multi-Factor Authentication (MFA), also known as Two-Factor Authentication (2FA), is
a security mechanism that requires users to provide two or more separate forms of identification
before gaining access to a system, application, or account. MFA adds an extra layer of secu-
rity beyond the traditional username and password combination, making it more difficult for
unauthorized individuals to access sensitive information [84].

Implementing multi-factor authentication (MFA) for accessing healthcare systems and pa-
tient data is a critical step toward enhancing the security and integrity of sensitive medical
information. MFA goes beyond the traditional username and password model, adding an extra
layer of protection by requiring users to provide multiple forms of identification before grant-
ing access. This multifaceted approach not only strengthens the overall security posture but
also significantly reduces the risk of unauthorized access and data breaches. In the case of
healthcare, where the confidentiality of patient records is paramount, MFA serves as a robust
safeguard against potential threats, ensuring that only authorized personnel can access critical
medical data. This can involve various authentication factors, such as something the user knows
(a password), something the user has (a mobile device or smart card), and something the user is
(biometric data like fingerprint or facial recognition). By requiring this combination of factors,
MFA creates a formidable barrier against cyberattacks and unauthorized intrusions, thereby
safeguarding the privacy and well-being of patients while bolstering compliance with stringent
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Figure 4.1 – Role-Based Access Control (RBAC) [4]

healthcare data protection regulations like the Health Insurance Portability and Accountability
Act (HIPAA) in the United States [85].

Limits Multi-Factor Authentication has some security limitations:
— MFA systems may rely on centralized servers for authentication data, making them sus-

ceptible to single points of failure and data breaches.
— Users must trust MFA service providers with their sensitive data.
— MFA often involves sharing personal information with third parties.
Figure 3.2 represents the mechanism of Multi-Factor Authentication.

Figure 4.2 – Multi-Factor Authentication (MFA) [5]
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4.3.2 Data Encryption

Data encryption is the process of converting plain, readable data (often referred to as
plaintext) into an unreadable format (ciphertext) using encryption algorithms and cryptographic
keys. The primary purpose of data encryption is to secure sensitive information during storage
or transmission, making it difficult for unauthorized parties to access, interpret, or tamper with
the data [86].

Ensuring the security and privacy of patient data in healthcare settings necessitates a com-
prehensive approach that includes robust encryption measures both at rest and in transit. En-
crypting patient data at rest involves safeguarding it when it is stored in databases, servers,
or other storage solutions. Strong encryption algorithms, such as Advanced Encryption Stan-
dard (AES) with appropriate key lengths, can be meticulously implemented to render the data
unreadable to unauthorized individuals. Additionally, a well-structured key management sys-
tem is crucial to securely generate, store, and manage encryption keys, preventing potential
breaches resulting from compromised keys or weak key protection. Encrypting patient data in
transit is equally vital, especially when transmitting information over networks, whether within
a healthcare facility or across the internet. Transport Layer Security (TLS) or Secure Sockets
Layer (SSL) protocols can be employed to establish secure connections and encrypt data during
transmission. These protocols not only protect data from eavesdropping and interception but
also ensure the integrity of the data, making it resistant to tampering during transit [87].

Limits
— Traditional encryption relies on centralized authorities for key management and verifica-

tion, which can be vulnerable to breaches or misuse.
Figure 3.3 represents the mechanism of Data Encryption.

Figure 4.3 – Data Encryption

4.3.3 Secure Communication

4.3.3.1 Virtual Private Networks (VPNs)

A Virtual Private Network (VPN) is a technology that creates a secure and encrypted
connection, often referred to as a "tunnel," over a less secure network, such as the internet. The
primary purpose of a VPN is to enhance online privacy, security, and anonymity by routing the
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internet traffic through a remote server or network, making it appear as if the connection is
originating from that server or network [88].

Leveraging Virtual Private Networks (VPNs) to ensure the security of data transmission over
public networks is a fundamental strategy in safeguarding sensitive information. VPNs establish
a secure and encrypted communication channel, effectively creating a virtual tunnel through
which data can safely traverse public networks. This technology not only shields data from
unauthorized access but also offers several additional layers of protection. By encrypting data
packets and encapsulating them within the VPN tunnel, VPNs employ encryption algorithms
like the aforementioned Advanced Encryption Standard (AES) to obfuscate data, rendering it
virtually impossible for malicious actors to intercept or eavesdrop on sensitive information [89].

Limits Virtual Private Networks has some security limitations:
— VPNs rely on centralized servers, requiring trust in the VPN service provider.
— VPN security can be compromised if the devices or endpoints connecting to the VPN are

themselves insecure or compromised.
Figure 3.4 represents the mechanism of Virtual Private Networks.

Figure 4.4 – Virtual Private Networks (VPNs) [6]

4.3.3.2 Secure Socket Layer (SSL)/Transport Layer Security (TLS)

Secure Socket Layer (SSL) and Transport Layer Security (TLS) are cryptographic proto-
cols used to secure communication over computer networks, especially the internet. They provide
a layer of security by encrypting data transmissions and ensuring the integrity and authenticity
of the exchanged information. Both SSL and TLS are cryptographic protocols designed to estab-
lish secure connections over computer networks. While SSL was the original protocol, TLS has
become the industry standard for secure communication due to its improved security features
and ongoing development. Users often encounter TLS in the form of "HTTPS" in web browser
URLs, indicating that the website is using TLS to secure the connection and protect sensitive
data [90].
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Implementing SSL/TLS (Secure Sockets Layer/Transport Layer Security) protocols to se-
cure web-based communication is a crucial practice in today’s healthcare landscape, where the
exchange of sensitive information between users and healthcare systems occurs continuously.
These protocols establish a robust and encrypted communication channel, thereby fortifying the
security of data transmission and safeguarding it against interception, unauthorized access, or
tampering. SSL/TLS, with its layers of encryption and authentication mechanisms, offers a
multi-faceted security approach that extends far beyond mere data encryption. One key aspect
of SSL/TLS is its ability to ensure the authenticity of the websites and healthcare systems users
interact with. Through the use of digital certificates issued by trusted Certificate Authorities
(CAs), SSL/TLS verifies the legitimacy of the server, creating a secure foundation for data ex-
change. This trust model not only protects users from phishing attacks and man-in-the-middle
attacks but also enhances their confidence in the privacy and security of their interactions with
healthcare portals, online patient records, and telehealth platforms [91].

Limits
— Older SSL/TLS versions may have vulnerabilities that can be exploited by attackers.
— SSL/TLS relies on trusted certificate authorities (CAs). If a CA is compromised or issues

a fraudulent certificate, it can lead to security breaches.
— SSL/TLS alone cannot prevent phishing attacks where users are tricked into visiting

malicious sites with valid certificates.
— Some SSL/TLS configurations may not provide perfect forward secrecy, meaning that

past traffic could be decrypted if private keys are compromised.
Figure 3.5 and 3.6 represents the mechanisms of Secure Socket Layer and Transport Layer

Security.

Figure 4.5 – Secure Socket Layer (SSL) [7]

4.3.4 Digital Signatures

A digital signature is a cryptographic technique used in the digital world to provide authen-
tication, data integrity, and non-repudiation (meaning the signer cannot deny the authenticity
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Figure 4.6 – Transport Layer Security (TLS) [8]

of their signature). It allows individuals or entities to sign electronic documents or messages
to verify their identity and ensure that the content has not been altered since it was signed.
Digital signatures rely on a key pair—comprising a private key, known only to the owner, and
a public key, shared with others. When digitally signing a document or message, the owner
uses their private key to generate a unique signature based on the content and the private key
itself. Verification can be performed by anyone possessing the public key, ensuring the content’s
integrity and confirming the signature’s authenticity. Additionally, digital signatures offer au-
thentication, as trust in a specific public key implies trust in digital signatures generated with the
corresponding private key, enhancing the overall security and reliability of digital transactions
and communications [92].

Leveraging digital signatures for verifying the authenticity and integrity of electronic health-
care records is a pivotal component of modern healthcare information management systems.
These sophisticated cryptographic techniques offer a comprehensive solution to the ever-growing
challenge of safeguarding electronic health data. Digital signatures serve as a robust mechanism
not only for ensuring data remains unaltered but also for establishing the legitimacy of health-
care records and their associated transactions. One of the key advantages of digital signatures
lies in their ability to uniquely bind the identity of the sender or creator of a healthcare record to
the document itself. This means that when a healthcare professional digitally signs a patient’s
medical history or a treatment plan, it not only confirms the document’s integrity but also veri-
fies the origin, allowing healthcare providers and patients to trust the source of the information
[93].

Limits
— Digital signatures rely on the security of private keys. If a private key is compromised, it

can lead to unauthorized signing and data manipulation.
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— Trust in the certificate authority (CA) is essential. If the CA is compromised or issues
fraudulent certificates, it can undermine trust in digital signatures.

— While digital signatures provide strong evidence of the signer’s identity, there may still
be challenges in proving non-repudiation in legal contexts.

— Vulnerabilities in software used for signing can be exploited by attackers, compromising
the integrity of signatures.

Figure 3.7 represents the mechanism of Digital Signatures.

Figure 4.7 – Digital signature [9]

4.3.5 Secure Cloud Storage

Cloud storage refers to the online storage of data on remote servers hosted and managed
by cloud service providers. Instead of storing data on a local hard drive or physical storage
device, cloud storage enables users and organizations to store and access their files, documents,
photos, videos, and other data over the internet [94].

Safeguarding the confidentiality, integrity, and availability of healthcare data in cloud storage
solutions is of paramount importance in the digital age of healthcare information management.
The responsibility lies not only in the adoption of cloud technology but also in ensuring that these
cloud storage solutions meet and exceed stringent security standards and regulatory compliance
requirements. An integral facet of this strategy involves the encryption of data stored in the
cloud, a practice that serves as a potent defense against unauthorized access and data breaches.
By encrypting healthcare data at rest in the cloud, organizations can ensure that even if a
breach were to occur, the stolen information would remain indecipherable to malicious actors,
significantly mitigating the impact of potential security incidents [95].

Limits
— Cloud storage providers have access to user data, raising privacy concerns and reliance

on the provider’s security measures.
— Cloud storage is still vulnerable to breaches, and if the provider’s security is compromised,

it can result in unauthorized access to stored data.
— Meeting industry-specific compliance regulations (e.g., HIPAA, GDPR) can be complex

in the cloud, requiring careful configuration and management.



CHAPTER 4. SECURITY AND PRIVACY IN HEALTHCARE 35

— Malicious or negligent actions by employees or cloud service provider staff can pose secu-
rity risks.

4.3.6 Blockchain Technology

Blockchain is an innovative and transformative decentralized and distributed digital ledger
technology that has revolutionized the way transactions are recorded and managed. It operates
across a network of multiple computers, often referred to as nodes, where each node maintains
a copy of the entire blockchain. This network structure is designed to guarantee the utmost
security, transparency, and immutability of data. The term "blockchain" itself aptly describes
its architecture, as it’s composed of a series of individual transactions that are grouped together
into blocks. These blocks are then linked together, forming a chronological chain of blocks that
extends back to the very first transaction, creating an unbroken and tamper-resistant ledger.
This inherent design ensures that once data is recorded on the blockchain, it becomes virtually
impossible to alter, providing a robust foundation for a wide range of applications beyond its
initial use in cryptocurrencies. Blockchain’s decentralized nature, cryptographic security, and
transparency make it a promising technology with far-reaching potential in industries such as
finance, supply chain, healthcare, and more [96].

4.3.6.1 Blockchain Architecture

Figure 3.8 represents an overview of the typical elements found in a blockchain:

Figure 4.8 – The Chain Architecture of The Blockchain [10]

4.3.6.1.1 Block Header: A fundamental component within the architecture of a blockchain
network is the block header, an integral part of distinguishing and identifying specific blocks
within the broader blockchain. This block header undergoes a repetitive hashing process, gen-
erating the proof of work required for miners to earn rewards for their contributions to the
network’s security and transaction verification. The blockchain itself comprises an array of di-
verse block types, each serving as a container for recording transaction data, thereby ensuring
the transparency and integrity of all network activities. These blocks, while inherently unique,
are further distinguished by their individual block headers, with the block header hash playing
a pivotal role in this identification process [97].

Within the block header resides a wealth of metadata, encompassing critical information that
defines the block’s attributes. Among these essential elements are the 4-byte blockchain version
number, offering insights into the specific protocol version in use. The 32-byte representation
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of the previous block’s hash links each block chronologically, contributing to the blockchain’s
immutability. Meanwhile, the 32-byte Merkle root facilitates efficient data verification by sum-
marizing transaction details. The timestamp, another 4-byte component, records when the block
was added to the blockchain, ensuring a chronological order of transactions. The difficulty tar-
get, also 4 bytes in length, signifies the level of complexity miners must overcome to add a new
block to the chain, maintaining network security. Lastly, the 4-byte miner nonce, an essential
component, introduces an element of randomness into the block header, influencing the outcome
of the proof of work process. In aggregate, this comprehensive 80-byte block header encapsu-
lates vital data and metadata, enabling the blockchain to operate as an unalterable ledger of
transactions while preserving the security and integrity of the network [97].

4.3.6.1.2 Hash of the previous block header: The hash of the previous block header
plays a pivotal role in the security and immutability of the blockchain. This hash, derived
through cryptographic algorithms, serves as a digital fingerprint of the preceding block’s entire
content, encapsulating all its data and metadata. This cleverly designed linkage mechanism
creates a continuous and unbroken chain of blocks, with each block securely bound to its pre-
decessor. The result is a tamper-resistant structure where any alteration to the data within a
single block would necessitate changes to all subsequent blocks, making the blockchain highly
resistant to unauthorized modifications [97].

4.3.6.1.3 Version: A version number within the context of a blockchain serves as a vital
reference point for participants in the network, facilitating the understanding of protocol-wide
modifications and updates. As blockchain ecosystems continually evolve and adapt to meet
the demands of various industries and applications, the version number becomes a beacon of
clarity amidst the ever-changing landscape. It allows developers, users, and stakeholders to
identify which iteration of the blockchain protocol is in use, enabling them to assess compatibility,
understand the features and improvements introduced in newer versions, and make informed
decisions about network participation [98].

4.3.6.1.4 TimeStamp: The timestamp in a blockchain’s block structure is a succinct yet
indispensable piece of data that is meticulously serialized and preserved within each individual
block. Its core function extends far beyond the mere recording of chronological events; rather, it
serves as an invaluable tool for precisely marking the moment at which the block underwent the
complex process of mining and validation within the network. By embedding this timestamp,
the blockchain not only offers a historical record of events but also establishes a secure and
auditable timeline of transactions and block creation. This temporal dimension plays a pivotal
role in maintaining the transparency and accountability of the blockchain, enabling participants
to track the sequence of activities and ensuring the integrity of data over time [98].

4.3.6.1.5 Difficulty target: The difficulty target is a crucial parameter within the blockchain
ecosystem, serving as a dynamic mechanism that adjusts the level of complexity miners face when
undertaking the intricate task of solving a block. This dynamic adjustment of difficulty is a fun-
damental feature of blockchain technology, carefully calibrated to ensure the network’s stability
and security. It functions by regulating the computational effort required to validate transac-
tions and add a new block to the chain. Miners must continually adapt to this ever-changing
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difficulty target, making blockchain a resilient and self-regulating system. By increasing or de-
creasing the difficulty based on network conditions, the blockchain remains robust, thwarting
attempts to compromise its security and ensuring the equitable participation of miners in the
validation process[97].

4.3.6.1.6 Nonce: A nonce serves as a critical piece of the puzzle, integral to the process of
securing and validating transactions within the blockchain. Miners embark on a computational
quest to discover this nonce, and the miner who successfully unveils the answer reaps the well-
deserved rewards, typically in the form of the block reward. This block reward is a testament
to the miner’s dedication and computational prowess, marking the culmination of their efforts
as they contribute to the blockchain’s stability and security [98].

4.3.6.2 Blockchain Concepts

Blockchain is a complex and multifaceted technology that encompasses various key con-
cepts and principles. Here are some fundamental blockchain concepts:

4.3.6.2.1 Blockchain technology Within the captivating realm of blockchain technol-
ogy, every transaction, whether it has already transpired or is poised to occur imminently, is
meticulously documented within the public ledger known as the blockchain. This historical
repository of transactions is aptly named a "blockchain" because it takes the form of an un-
broken and ever-growing chain of individual blocks. The unceasing expansion of this ledger is
made possible by the diligent efforts of miners, who dedicate computational resources to solve
intricate mathematical puzzles, thereby securing and validating transactions. As a testament to
the blockchain’s chronological integrity, each newly mined block seamlessly integrates into the
existing chain, following a predetermined order. This methodical and linear addition of blocks
ensures the blockchain’s continuity, providing a robust and immutable foundation for recording
and preserving a comprehensive history of transactions, a feature that has far-reaching implica-
tions across diverse applications and industries [99].

4.3.6.2.2 Miners A Miner is an individual equipped with the requisite computer hard-
ware and specialized software, primed for the validation of fresh blockchain transactions prior
to their incorporation into the ever-expanding blockchain ledger, assumes the esteemed role of a
"blockchain miner." These miners, often comprising a network of participants, engage in a dy-
namic and competitive endeavor that relies on the application of a cryptographic hash method.
This method is the cornerstone of their operation, serving as the key to unlocking the most
optimal solution to a complex mathematical puzzle that stands as a gatekeeper to the validation
process. The competition among miners for this solution is intense, demanding not only com-
putational power but also an intricate understanding of the cryptographic principles at play. As
they vie to decipher this puzzle, miners contribute to the blockchain’s security, integrity, and
transparency [100].

4.3.6.2.3 Consensus Miners play a critical role in blockchain networks, using "consen-
sus" mechanisms to add new data records. In public blockchains like Bitcoin, Proof-of-Work
(PoW) is a well-known consensus method. PoW involves solving complex mathematical puzzles
in a process referred to as "mining." The first miner to solve the puzzle can add a block to
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the chain and receive a Bitcoin reward. Transactions are stored across the decentralized net-
work of miners, and the consensus algorithm ensures transaction verification and confirmation.
This collaborative process underpins blockchain’s security and transparency, enabling various
applications beyond cryptocurrencies [10].

4.3.6.2.4 Smart Contracts A smart contract is a self-executing contract with its terms
and conditions directly encoded in code. These contracts automatically execute when predefined
conditions are met, running on decentralized blockchain networks, which ensures transparency,
security, and immutability. They eliminate the need for intermediaries, are transparent and
verifiable by all network participants, and once deployed, are tamper-resistant. Smart contracts
find applications beyond financial transactions, being used in supply chain management, legal
agreements, healthcare, voting systems, and more. Ethereum is a prominent platform for cre-
ating and executing smart contracts, revolutionizing automation, trust, and efficiency across
various industries [99].

4.3.6.3 Types of Blockchain

There are 3 main types of Blockchain:

4.3.6.3.1 Public Blockchain Public blockchains represent revolutionary decentralized
networks that are accessible to all, fostering an extraordinary level of inclusiveness and trans-
parency. These blockchain networks, epitomized by cryptocurrencies such as Bitcoin and Ethereum,
extend an invitation to anyone to partake in their ecosystem, facilitating the validation of trans-
actions and unfettered access to the entire ledger. The absence of a central authority overseeing
access, a hallmark of their permissionless nature, paves the way for trustless interactions and
establishes a foundation of robust security through decentralization [101].

4.3.6.3.2 Private Blockchain Private blockchains are different from public ones. They’re
designed for specific groups or organizations and offer a lot of control and privacy. Only certain
people or organizations can join these networks, and there’s usually a central authority or a
group that manages access. Private blockchains are often used for things like managing supplies
or sharing sensitive information among trusted partners. While they’re not as decentralized as
public blockchains, this controlled setup helps them follow rules and customize solutions for spe-
cific business needs. Private blockchains are a secure and efficient way to streamline processes
within closed groups or organizations [101].

4.3.6.3.3 Consortium Blockchain Combining decentralization and limited access, con-
sortium blockchains stand as a compromise between public and private blockchains. They are
controlled by a number of organizations that work together to uphold the blockchain network,
frequently from within a single industry or sector. Consortium blockchains strive to achieve a
balance between openness and governance, making them suited for situations where several en-
tities must communicate information while trust is divided among a set group. While retaining
some degree of control over network operations, this kind of blockchain can increase transparency
and efficiency. In fields like supply chain tracking, where several stakeholders require real-time
insight into shared data, consortium blockchains are being used more frequently [101].
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4.4 File Sharing methods Through Blockchain
File sharing methods through blockchain leverage the unique capabilities of blockchain

technology to enhance the security, transparency, and efficiency of sharing files and data. Here
are some key approaches to file sharing through blockchain:

4.4.1 Decentralized File Sharing Platforms

Decentralized file sharing platforms enable users to share files directly with one another
without relying on centralized intermediaries like cloud storage providers. These platforms
use distributed networks of nodes to store and manage files, ensuring data availability and
redundancy. Users can access and share files securely, with the blockchain providing transparency
and auditability. Examples include Filecoin and InterPlanetary File System (IPFS) [102].

4.4.2 Smart Contracts for File Sharing

Smart contracts play a pivotal role in automating and enforcing file sharing agreements
on the blockchain. Users can create contracts that specify the terms of file sharing, such as
access conditions and payment details. When these conditions are met, the smart contract
automatically executes the file transfer and any associated payments. This approach ensures
trust and eliminates the need for intermediaries in file sharing arrangements [103].

4.4.3 Blockchain-based Content Platforms

Blockchain-based content platforms are emerging as alternatives to traditional content-
sharing websites. Content creators can upload their work to blockchain-based platforms, where
they retain control and ownership of their content. Blockchain technology helps in tracking
content usage, ensuring fair compensation through microtransactions, and protecting against
unauthorized copying or distribution [104].

4.5 Blockchain and healthcare
Within healthcare systems, blockchain networks serve as a transformative force, rev-

olutionizing the storage and exchange of vital patient data among an extensive network of
stakeholders that encompass hospitals, diagnostic laboratories, pharmaceutical companies, and
healthcare professionals. The applications of blockchain technology in this context extend far
beyond mere data management; they possess the remarkable capacity to pinpoint critical errors,
including those with life-threatening implications, within the intricate tapestry of the medical
industry. This transformative potential translates into a multifaceted enhancement of the health-
care ecosystem, marked by elevated levels of efficiency, security, and transparency in the exchange
of sensitive medical information across various sectors. By harnessing the power of blockchain,
healthcare institutions can embark on a journey of knowledge acquisition and data-driven in-
sights, fostering advancements in the analysis and treatment of patients’ health conditions. This
technological innovation not only propels the healthcare industry forward but also holds the
promise of improved patient outcomes and a more responsive and interconnected healthcare
landscape [105].
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4.6 Conclusion
In this chapter, we’ve conducted a comprehensive overview of the significant privacy risks

associated with medical data, delving into the potential consequences of these risks. We’ve ex-
plored various solutions proposed over the years to address these privacy threats, culminating
in the transformative role of blockchain technology. Our investigation has revealed the remark-
able ability of blockchain to surmount the limitations inherent in prior solutions, emerging as a
powerful safeguard for medical data privacy.

The next chapter will take a closer look at our method, emphasizing the important con-
nection between advanced deep learning models and blockchain technology. We’ll explain how
our approach, which relies on these advanced tools, effectively safeguards healthcare data from
privacy breaches and vulnerabilities. This doesn’t just enhance data protection; it also improves
the accuracy of medical diagnoses.



Chapter 5

The proposed method and the
implementation

5.1 Introduction
This chapter provides a thorough explanation of our research approach, focusing on

two main aspects: our deep learning models and the security features provided by blockchain
technology. We’ll break down our approach step by step better understanding. First, we’ll
explain the deep learning models we used, including how they’re designed, how we trained them,
and how we prepared the data for them. Then, we’ll dive into the world of blockchain technology
and its security benefits. We’ll talk about how blockchain uses encryption and smart contracts
to control who can access data. Also we will talk about the Multi-Diagnosis application.

5.2 Proposed method
In the healthcare field, ensuring the security of data and protecting people’s privacy are

top priorities when developing deep learning models for medical diagnosis. The risks associated
with data leaks or breaches can have serious consequences for patients and healthcare providers.
To tackle this issue, we propose a new method that relies on Blockchain technology, a secure
way to share locally trained deep learning models without exposing sensitive patient data.

Our approach involves using Blockchain to create a safe and decentralized network for sharing
these locally trained models. This means that private patient information remains confidential
and is not accessible to unauthorized parties.

In addition to enhancing security, our method improves the overall performance of the global
deep learning model through a technique called model ensembling. By combining the knowledge
from locally trained models, we can create a more accurate diagnostic model that is less prone
to making mistakes. This is especially crucial in medical diagnosis, where even small errors can
have serious consequences for patients.

In summary, our proposed method provides a unique solution to the challenge of developing
deep learning models for medical diagnosis while safeguarding the security and privacy of patient
data. By utilizing Blockchain technology and model ensembling, we achieve better performance
and stronger data protection, ultimately benefiting both patients and healthcare providers.

An overview of the proposed method is represented in Figure 5.1.

41
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Figure 5.1 – Overview of our method

As we can see in Figure 5.1, each collaborator hospital trains a local deep learning model
using its private data then shares it using blockchain except for the last hospital that is going to
build the global model, the last hospital obtains the local models of the other hospitals from the
blockchain, extracts their final weights, and uses them to train the global model on its private
data. In the end, this last shares the global model back to the previous Hospitals.

5.3 Implementation
Suppose that there are three hospitals, each with a substantial amount of patient data

that could potentially be combined used to create a powerful deep learning model. However,
due to the sensitive nature of patient data, it’s essential to guarantee the privacy and security of
these data during the development process. To tackle this challenge, a solution is to construct
local deep learning models within the first two hospitals using their own private data. Then,
these models can be shared with the third hospital via blockchain technology which (The third
hospital) creates the the final global model. In this case, we focused on three different diseases:
Breast cancer, Lung cancer, and Diabetes, and each disease has two local models developed
within Hospital 1 and Hospital 2. Blockchain technology provides a secure and unchangeable
platform that enables data sharing while upholding privacy, security, and data integrity. By
utilizing blockchain, hospitals can safely exchange their locally created models without violating
patient data privacy, and they can be certain that the deep learning models remain unaltered.

Hospital 3 retrieves the final weights of both model 1 and model 2 for each disease, merge these
weights, and employ them to train a final global model using their private data. Through the
utilization of locally trained models from various hospitals, this overarching model can acquire
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knowledge from a broader spectrum of data, which enhances its accuracy and precision. This
process is referred to as model ensembling.

In the end, Hospital 3 develops a multi-diagnosis application by utilizing these global models.

5.3.1 Datasets

To validate our method we used 3 different datasets.

5.3.1.1 Breast Cancer Wisconsin (Diagnostic) DataSet

The Breast Cancer Wisconsin (Diagnostic) dataset [106, 107] holds significant importance
in the deep learning field, particularly in the development of models related to breast cancer
diagnosis. This dataset, which we examined during our evaluation, is accessible via the Kaggle
repository and was sourced from UCI Machine Learning. It contains 569 instances, each including
an ID number, 30 features, a binary class denoting whether the cancer is malignant or benign,
and an empty attribute, summing up to a total of 33 attributes.

Data for this dataset was procured by analyzing fluid samples from patients with solid breast
cancer, employing Xcyt, a user-friendly and effective graphic computer software program. Xcyt
computed 10 features for each cell sample using a curve-fitting technique. These features were
subsequently employed to calculate the mean value, extreme value, and standard error for each
characteristic, resulting in a 30-dimensional real-valued vector for each image in the dataset.
This dataset plays a crucial role in the enhancement of breast cancer diagnosis accuracy by
furnishing a substantial and varied pool of data for training and testing models.

The comprehensive set of features and binary class labels within the Breast Cancer Wiscon-
sin (Diagnostic) dataset renders it an indispensable resource for deep learning researchers and
practitioners dedicated to advancing the domain of cancer diagnosis.

5.3.1.2 Lung Cancer Prediction Dataset

The Lung Cancer Data, accessible on data.world [108] and Kaggle [109], originates from
the Cancer Data Health Program (CDHP), an organization dedicated to granting access to
publicly available cancer data. CDHP gathers data from diverse sources, including the National
Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) program, and offers
it for research purposes. This database is a collection of 1000 instances with 23 attributes,
furnishing insights into symptoms, risk factors, and potential lung cancer diagnoses.

For medical researchers and practitioners, this database stands as an invaluable resource
in comprehending and addressing this disease. The attributes contained within the database
encompass a wide spectrum of factors that could influence an individual’s susceptibility to lung
cancer. These encompass demographic particulars like age, gender, and smoking history. A
notable feature of the database is the classification of risk levels into categories of Low, Medium,
and High. This categorization provides crucial information about the gravity of an individual’s
lung cancer risk, aiding medical professionals in formulating targeted interventions and treatment
strategies.

In addition to the risk level categories, each entry in the database carries a unique index num-
ber and patient ID. Altogether, this database emerges as an indispensable tool, enriching medical
research and practice by offering comprehensive insights into the factors contributing to lung
cancer risk and facilitating the development of effective prevention and treatment approaches
against this devastating ailment.
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5.3.1.3 Diabetes UCI Dataset

The dataset for early-stage diabetes risk prediction holds substantial value for both re-
searchers and healthcare professionals dedicated to enhancing the early identification and pre-
vention of diabetes. This dataset encompasses clinical and demographic information from 520
individuals who underwent diabetes screening at Sylhet Diabetes Hospital in Bangladesh.

Within this dataset, 16 variables offer crucial insights, including the patient’s age, gender,
and diabetes-related symptoms, all of which serve as pivotal indicators for assessing the risk of
diabetes. This dataset’s wealth of information provides a foundation for constructing machine
learning models capable of accurately predicting the risk of early-stage diabetes.

Identifying individuals at risk of developing diabetes in its early stages empowers healthcare
practitioners to initiate preventive measures, thereby reducing the likelihood of complications
and enhancing overall patient well-being. Furthermore, this dataset presents a valuable resource
for researchers investigating novel diagnostic methods and treatments for diabetes.

It’s important to note that this dataset is publicly accessible through the UCI Machine
Learning Repository [110] and Kaggle [111], and it has gained widespread utilization in research
endeavors focused on diabetes risk prediction. This underscores its pivotal role as an invaluable
asset within the scientific community.

5.3.2 Preparation of the Datasets

We consider a scenario involving three hospitals, and our objective is to implement the
procedure depicted in Figure 5.1. To accomplish this, it becomes essential to partition the
dataset into three separate datasets, all sharing an identical structure. The subsequent actions
are applied to each of these three datasets.

We initiate the process by loading the CSV file ’data.csv’ into the dataset variable, utilizing
the csv.reader() function. Subsequently, we extract and remove the header row from the dataset
variable. To introduce randomness into the dataset, we apply the random.shuffle() function,
effectively shuffling the order of the rows. Determining the size of each portion is achieved by
dividing the total row count by 3 and storing this result in the part_size variable.

Following this, we generate three distinct CSV files for each respective part using the open()
function and incorporate the header row into each file via the csv.writer() function. For the
purpose of partitioning the dataset into these three parts, we employ a for loop that iterates
through the shuffled dataset. Each row is directed to the appropriate part’s CSV file based on
its index, which is accomplished using the csv.writer() function. Consequently, the initial part
receives the first part_size rows, the subsequent part receives the subsequent part_size rows,
and the final part accommodates the remaining rows.

In conclusion, the provided code concludes this process by closing the three newly created
CSV files, freeing up system resources. As a result, we now have three distinct CSV datasets,
all possessing identical structures for each disease category. Table 5.1 furnishes information on
instance counts and characteristics for each dataset section following the division process. Figure
5.2 represents the code for splitting data.

Clearly, Parts 1 and 2 encompass 189 instances along with 30 features, whereas Part 3 includes
191 instances, resulting in a total of 569 instances in the Breast cancer dataset. Notably, we
have excluded the ID and Unnamed features from all datasets as they are deemed unnecessary
(Code in Figure 5.3). Additionally, we have undertaken a transformation of the "diagnosis"
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Figure 5.2 – Splitting Data Code

Figure 5.3 – Dropping unnecessary features Code
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Table 5.1 – Information on Different Parts of the Datasets for Three Diseases
Disease Dataset Parts Instances Features

Breast Cancer
Part 1 189 30
Part 2 189 30
Part 3 191 30

Lung Cancer
Part 1 333 23
Part 2 333 23
Part 3 334 23

Diabetes
Part 1 173 16
Part 2 173 16
Part 3 174 16

column values, which represent the class, by converting "B" and "M" to binary values of 0 and
1, respectively (Conversion Code in Figure 5.4).

Figure 5.4 – Converting Class Values to Binary Values Code

As for the Lung cancer dataset, Parts 1 and 2 consist of 333 instances and 23 features,
while Part 3 consists of 334 instances, summing up to a total of 1000 instances. Similarly, we
have removed the Patient ID and Index features as they do not hold relevance for any of the
datasets. Moreover, the "Level" column values, signifying the class, have been converted into
integer values of 0, 1, and 2, corresponding to "Low," "Medium," and "High."

Furthermore, within the Diabetes dataset, Parts 1 and 2 are comprised of 173 instances and
16 features, whereas Part 3 encompasses 174 instances, resulting in a total of 520 instances.
Here, we have transformed all the features values from "Yes" and "No" into binary values of 1
and 0, respectively.

Following these data preparations, each dataset segment is segregated into two distinct
groups: one group contains the independent variables (referred to as X), while the other group
contains the dependent variable (referred to as Y). Subsequently, the dataset is divided into
two subsets, one for training and the other for testing, a process facilitated by the use of the
train_test_split function. Finally, the data undergoes standardization, accomplished by utiliz-
ing the StandardScaler object from scikit-learn. This scaling procedure ensures that the dataset’s
features exhibit an average of 0 and a variance of 1 (The code is in Figure 5.5).

5.3.3 Deep Learning Models

An Artificial Neural Network (ANN) is a machine learning model inspired by the function-
ing of the human brain. It comprises interconnected nodes that receive, process, and generate
output data. The training of an ANN involves a process known as backpropagation, which fine-
tunes the connection weights between nodes in the network. ANN has found effective applications
in diverse fields including image recognition, natural language processing, speech recognition,
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Figure 5.5 – Train test split + Standardization Code

and financial forecasting. Numerous renowned scientists and researchers have contributed to its
development, and ongoing research efforts are dedicated to advancing this technology [112].

In our research, we constructed two variations of Artificial Neural Networks (ANNs). One
was designed for binary classification, applied in cases involving Breast Cancer and Diabetes
Classification. The second type was tailored for categorical classification, specifically for Lung
Cancer, where it categorizes data into three distinct classes.

5.3.3.1 Binary Classification ANN (Breast Cancer and Diabetes)

The Artificial Neural Network (ANN) model was constructed using the Keras library’s
Sequential() function. This model initialization involves creating an empty sequence of layers.
Subsequently, two dense layers were incorporated into the model using the add() function. The
first dense layer comprises 30 neurons utilizing the Rectified Linear Unit (ReLU) activation func-
tion, and the input layer is automatically included with its dimensions specified by the variable
’number_features’. Following this, a BatchNormalization layer was added post the initial dense
layer. Batch normalization is a technique that enhances the training of deep neural networks by
standardizing the inputs in each batch to have zero mean and unit variance, contributing to the
reduction of overfitting and improved generalization.

Additionally, a Dropout regularization layer was introduced after BatchNormalization with
a rate of 0.5. This Dropout layer randomly sets 50% of the neuron outputs to zero during
training, which aids in mitigating overfitting. The second dense layer was added similarly with
30 neurons, accompanied by the inclusion of another BatchNormalization and Dropout layers.

Finally, an output layer was appended, featuring a single neuron and sigmoid activation
function tailored for binary classification. The model was then compiled, utilizing the Adam
optimizer and binary cross-entropy loss function. An accuracy metric was also defined to monitor
the model’s performance during the training process.

To safeguard against overfitting, callbacks were configured to monitor the validation loss
during training. Specifically, training would halt if the validation loss did not decrease for 25
consecutive epochs.
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This model underwent training using the fit() function, with a batch size set to 32 and a
total of 100 epochs. The previously defined callbacks were passed to the fit() function to oversee
the model’s performance during training. For the Code please refer to Figure 5.6.

The mathematical explanation is as follows:
- Notation: Let us define the following notation used in the equations:
— x: the input vector of size number_features
— W (i): the weight matrix of layer i
— b(i): the bias vector of layer i
— z(i): the linear combination of the inputs and weights of layer i
— a(i): the output (activation) vector of layer i
— p(i): the dropout probability of layer i
— BN (i): the batch normalization transformation of layer i
— ypred: the predicted output of the network
- Equations: The equations for each layer are as follows:
Input layer:
There is no equation for the input layer, as it just passes the input vector x to the first hidden

layer.
First hidden layer:

z(1) = W (1)x+ b(1)

a(1) = ReLU(z(1))

a(1)
′
= BN (1)(a(1))

a(1)
′′
= Dropout(a(1)

′
, p(1))

where ReLU(z) = max(0, z) is the rectified linear unit activation function, BN(a) is the
batch normalization transformation, and Dropout(a, p) randomly drops out a fraction p of the
activations a during training to prevent overfitting.

Second hidden layer:

z(2) = W (2)a(1)
′′
+ b(2)

a(2) = ReLU(z(2))

a(2)
′
= BN (2)(a(2))

a(2)
′′
= Dropout(a(2)

′
, p(2))

Output layer:

ypred = σ(W (3)a(2)
′′
+ b(3))

where σ(z) = 1
1+e−z is the sigmoid activation function.

During training, the network is trained to minimize the binary cross-entropy loss function
L(y, ypred) using the Adam optimizer. The loss function is defined as:

L(y, ypred) = −[y log(ypred) + (1− y) log(1− ypred)]
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where y is the true label (0 or 1), and ypred is the predicted output of the network.
The accuracy metric is calculated as the percentage of correctly classified examples in the

validation set.

Figure 5.6 – Binary Classification Model Code

5.3.3.2 Categorical Classification ANN (Lung Cancer case)

The construction of the Artificial Neural Network (ANN) model entails employing the
Sequential() function to establish an initial empty layer sequence that will constitute the model’s
architecture. This architecture takes shape by adding two dense layers to the model through the
use of the add() function.

The first dense layer is comprised of 30 neurons, employing the Rectified Linear Unit (ReLU)
activation function, and the input dimension is automatically integrated, determined by the
’number_features’ variable. To enhance model robustness, a BatchNormalization layer is intro-
duced following the initial dense layer. This layer serves to normalize the inputs, effectively re-
ducing overfitting and promoting better generalization. To further combat overfitting, a Dropout
regularization layer is implemented post-BatchNormalization, with a 0.5 rate. During training,
this Dropout layer randomly deactivates 50% of neuron outputs.

The second dense layer follows the same pattern, featuring 30 neurons, with additional Batch-
Normalization and Dropout layers incorporated afterward. For multi-class classification, an
output layer housing 3 neurons with a softmax activation function is appended.

Upon defining the model’s architecture, it is compiled using the Adam optimizer and cat-
egorical cross-entropy loss function. Additionally, an accuracy metric is specified to track the
model’s performance during training.

To prevent overfitting, the model is equipped with callbacks that monitor validation loss
during training. If the validation loss remains unchanged for 10 consecutive epochs, training is
halted as a precautionary measure against overfitting.

Subsequently, model training is executed using the fit() function, with a batch size set to 32
and a total of 37 epochs. The previously configured callbacks are provided to the fit() function
for performance monitoring. The training history is stored within the ’history’ object. For the
Code please refer to Figure 5.7.
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The mathematical explanation is as follows:
- Notation:
Let us define the following notation used in the equations:
— num_classes: the number of output classes
The equations for layer 1 and 2 are the same as the binary classification.
The output layer is as follows:
Output layer:

ypred = softmax(W (3)a(2)
′′
+ b(3))

where softmax(z) = ez∑num_classes
i=1 ezi

is the softmax activation function for multi-class classi-
fication.

During training, the network is trained to minimize the categorical cross-entropy loss function
L(y, ypred) using the Adam optimizer. The loss function is defined as:

L(y, ypred) = −
num_classes∑

i=1

yi log(ypredi)

where y is the true label (one-hot encoded vector) and ypred is the predicted output of the
network.

The accuracy metric is calculated as the percentage of correctly classified examples in the
validation set.

Figure 5.7 – Binary Classification Model

Table 5.2 is a summary of the models equations.

5.3.4 Model Ensembling method

Model ensembling is a valuable technique in machine learning that combines multiple
models trained on the same dataset to create a more accurate global model. These models are
trained on different data subsets or using various algorithms, allowing them to capture different
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Table 5.2 – Table of Equations

Equation Binary Classification Categorical Classification

First Hidden Layer

z(1) = W (1)x+ b(1)

a(1) = ReLU(z(1))

a(1)
′
= BN (1)(a(1))

a(1)
′′
= Dropout(a(1)

′
, p(1)

z(1) = W (1)x+ b(1)

a(1) = ReLU(z(1))

a(1)
′
= BN (1)(a(1))

a(1)
′′
= Dropout(a(1)

′
, p(1)

Second Hidden Layer

z(2) = W (2)a(1)
′′
+ b(2)

a(2) = ReLU(z(2))

a(2)
′
= BN (2)(a(2))

a(2)
′′
= Dropout(a(2)

′
, p(2)

z(2) = W (2)a(1)
′′
+ b(2)

a(2) = ReLU(z(2))

a(2)
′
= BN (2)(a(2))

a(2)
′′
= Dropout(a(2)

′
, p(2)

Output Layer ypred = σ(W (3)a(2)
′′
+ b(3)) ypred = softmax(W (3)a(2)

′′
+ b(3))

Loss Function L(y, ypred) = −[y log(ypred) + (1−
y) log(1− ypred)

L(y, ypred) =

−
∑num_classes

i=1 yi log(ypredi)

aspects of the problem and make unique predictions. Ensembling helps reduce overfitting, where
a model becomes too complex and fits the training data closely but struggles with new data.
By using multiple models, ensembling ensures that each model learns different patterns in the
data, improving the generalization performance of the final model [113].

In our context, the process of model ensembling involves training the first two artificial neural
networks (ANNs) at each hospital using the initial two parts of the datasets for each disease.
The third ANN then learns from the collective knowledge of these initial two models, resulting
in a notable enhancement in the overall accuracy of the ensemble model. Once the initial two
models are trained, their saved files are sent via blockchain to the third hospital, responsible
for amalgamating the knowledge from both models. To achieve this, the weights of each model
are extracted using the get_weights() method and stored in separate variables. These weights
are subsequently combined by iterating through each weight set and performing element-wise
addition and division. A list comprehension is utilized to apply the operation (w1 + w2) / 2.0
to each pair of weights obtained from the zip() function. The resulting combined_w variable
comprises a list of combined weights that can be utilized to initialize the third neural network
model. Figure 5.8 represents the code of the model emsembling method.

Note: It’s important to note that the execution of the models was carried out using the
Google Colab NVIDIA Tesla T4 GPU (Parallel execution).

5.3.5 Ethereum Blockchain

The Ethereum blockchain technology represents a revolutionary advancement that has
taken the blockchain concept to an entirely new dimension. It stands as a decentralized and
distributed digital ledger system, garnering widespread attention owing to its flexibility and
adaptability. While Ethereum shares a technological foundation with Bitcoin, it diverges in
significant ways that make it distinct. One noteworthy distinction lies in Ethereum’s utilization
of a Turing-complete programming language. This empowers developers to craft intricate and
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Figure 5.8 – Model Ensembling Code

advanced decentralized applications (dApps) capable of executing a wide array of tasks. In
contrast, Bitcoin was primarily conceived as a digital currency and possesses limited capabilities
in comparison.

Solidity, the Turing-complete programming language employed by Ethereum, serves as a ro-
bust instrument that empowers developers to compose smart contracts. These smart contracts
are self-automated agreements designed to trigger automatically when specific conditions are
fulfilled. They constitute a pivotal component of the Ethereum ecosystem, possessing bound-
less possibilities for application across diverse industries like finance, real estate, supply chain
management, and numerous others [114].

5.3.6 IPFS

IPFS (InterPlanetary File System) is an innovative technology with the aim of transform-
ing the way we store and distribute files online. IPFS operates as a decentralized protocol and
network, facilitating the storage and retrieval of files in a distributed manner, eliminating the
dependence on centralized servers. This approach ensures that files are not confined to a sin-
gle location, bolstering resilience against failures, censorship, and other security concerns. The
architecture of IPFS relies on a peer-to-peer network, fragmenting files into smaller segments
and distributing them across a network of nodes. This methodology guarantees that users can
retrieve files from multiple nodes, resulting in swifter and more efficient file transfers. Addition-
ally, IPFS adopts a content-addressed system where each file is uniquely identified by a hash.
This enables files to be located and fetched from any node within the network, ensuring easy
accessibility and sharing across various platforms and devices. IPFS has already gained signif-
icant traction within the tech community and found applications in various domains, including
decentralized social networks, distributed file storage systems, and blockchain-based solutions.
As the internet continues to evolve, IPFS holds the potential to emerge as a critical infrastruc-
ture component that fosters a genuinely decentralized and open web [115].

Our Implementation

To begin, hospital 1 and hospital 2 initiate the process by uploading their models to IPFS.
They achieve this by constructing an array named "fileUploads," containing an object that rep-
resents the file set for upload. This object encompasses both the file’s path and its content, which
undergo encoding into base64 format through the utilization of the "fs" library. Concurrently,
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we have established an asynchronous function named "uploadToIpfs," responsible for the actual
file upload to IPFS. This function is supplied with the "fileUploads" array as an argument,
utilizing it to define the Application Binary Interface (ABI) for the uploaded file. Subsequently,
the uploadToIpfs function is invoked, resulting in the generation of a hash representing the file’s
location on IPFS [116]. The code is in Figure 5.9. The execution is in Figure 5.10.

Figure 5.9 – Model Upload on IPFS Code

Figure 5.10 – Model Upload on IPFS Execution

Now that we have the IPFS link where the model is stored, we proceed to transmit it via
the Blockchain to the third hospital. The Solidity smart contract is designed to manage a link,
allowing the creator to set the link and a predefined receiver to retrieve it. It includes state
variables to store the Ethereum addresses of the contract creator and predefined receiver, as
well as a private variable for storing the link data. The constructor initializes these addresses,
with the contract creator being the deployer of the contract. The contract employs two modi-
fiers, "onlyCreator" and "onlyPredefinedReceiver," to restrict access to certain functions. The
"setLink" function allows the creator to set the link data, while the "getLink" function permits
the predefined receiver to retrieve the link data. This contract enforces a strict access control
mechanism, ensuring that only the creator can set the link, and only the predefined receiver can
access it, making it suitable for secure link sharing on the Ethereum blockchain [116].

The Code of the smart contract is in Figure 5.11. The execution in represented in Figure
5.12

Ultimately, the third hospital develops a multi-diagnosis application utilizing the global
models it has generated and reciprocally shares it with hospital 1 and hospital 2 through the
blockchain, employing the same method as before.
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Figure 5.11 – Smart contract Code

Figure 5.12 – Sending Link On Blockchain Execution

Note: The process of training the local models, uploading them, and transmitting the hash
of their IPFS locations is carried out by authorized entity from hospital 1 for local model 1 of each
disease and by authorized entity from hospital 2 for local model 2 of each disease. Hospital 3,
similarly, has an authorized entity who retrieves the hash values from the blockchain, downloads
the models, employs them in constructing the global model for each disease, develops the multi-
diagnosis application, and subsequently distributes it back to hospital 1 and 2 through the
blockchain.

Within the Ethereum network, charges are applied both for data storage on the blockchain
and for conducting transactions. The purpose of these fees is to prevent network abuse and ensure
the efficient allocation of resources. the computational work required to execute a transaction
or smart contract is quantified using a unit known as "gas." These expenses are settled in ETH,
which is the native cryptocurrency of the Ethereum network.

Since all data submitted to the blockchain is permanently retained on every network node,
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storing data on the Ethereum blockchain can incur significant costs. The gas fees linked to this
data storage are directly related to the volume of data being stored.

In the physical world, the prices of gas are determined by the interplay of supply and demand,
closely influenced by factors such as market conditions, miner activity, and network congestion.

Reducing transaction expenses and enhancing scalability necessitates careful monitoring of
these costs and the consideration of alternative scaling strategies or layer-two solutions, such as
sidechains or state channels. IPFS represents one option for cost reduction.

In order to calculate the amount of Ether (ETH) utilized in an Ethereum network transaction,
it is essential to consider both the gas consumed and the gas price.

1. Gas Consumption: The total computational work performed during a transaction is
denoted by the gas used. It is contingent on the transaction’s type, the actions executed, and
the interactions between contracts. You can ascertain the gas used value through either the
transaction receipt or by querying an Ethereum blockchain explorer.

2. Gas Price: The gas price is denominated in Gwei, signifying the cost for each unit of
gas (1 ETH = 1,000,000,000 Gwei). The quantity of ETH paid for each unit of gas consumed is
contingent upon the prevailing gas price. Typically, users specify this price when submitting a
transaction, and it may vary based on the network and the user’s preferences [117].

By multiplying the gas consumed by the gas price, then dividing the outcome by 1,000,000,000,
we can ascertain the amount of Ether expended in the transaction.

Etherused = Gas used×Gas price
1,000,000,000

For example, if the gas used is 21,000 and the gas price is 10 Gwei:
Etherused = 21,000×10

1,000,000,000
= 0.00021ETH

5.4 Complexity Calculation
This section offers a comparison of the complexity levels between the ANN models, specifically

comparing ANN1/ANN2 and ANN3.

5.4.1 Binary classification

5.4.1.1 ANN1/ANN2

The code analysis reveals the following complexities:
Time Complexity:
— Model creation: O(1).
— First layer: O(num_features * 30).
— Batch Normalization and Dropout: O(1).
— Second layer: O(302).
— Output layer: O(30).
— Compilation of the model: O(1).
— Early Stopping callback: O(1).
— Model training: O(100 * N).
Space Complexity:
— First layer: O(num_features * 30 + 30).
— Batch Normalization and Dropout: O(30).
— Second layer: O(302 + 30).
— Output layer: O(30 + 1).
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— Early Stopping callback: O(1).
— Model training: O(1).
The total time complexity of the code is O(number_features * 30 + 302 + 100 * N).
The total space complexity of the code is O(number_features * 30 + 302 + 31).

5.4.1.2 ANN3

Time Complexity:
— Model creation, First 2 layers, Batch Normalization, Dropout, Output layer, Model com-

pilation, Early Stopping callback, Training are the same as ANN1/ANN2.
— Extracting the weights: O(1).
— Creating combined weights: O(total number of weights).
— Setting combined weights to the model: O(total number of weights).
Space Complexity:
— Model creation, First 2 layers, Batch Normalization, Dropout, Output layer, Model com-

pilation, Early Stopping callback: O(same as ANN1/ANN2).
— Extracting the weights: O(total number of weights).
— Creating combined weights: O(total number of weights).
— Setting combined weights to the model: O(total number of weights).
The total time complexity of the code is O(number_features * 30 + 30 + 302 + total number

of weights + 100 * N).
The total space complexity of the code is O(number_features * 30 + 302 + 30 + 31 + total

number of weights + 1).

5.4.2 categorical classification

5.4.2.1 ANN1/ANN2

Here’s a summary of the code’s complexities:
Complexities shared with the binary classification model:
— Model creation.
— First 2 layers.
— Batch Normalization.
— Dropout.
— Early Stopping Callback.
Complexities specific to this model:
— Output layer: Time complexity O(30 * 3), space complexity O(30 * 3 + 3).
— Training: Time complexity O(37 * N), space complexity O(1).
The total time complexity of the code is O(number_features * 30 + 302 + 30 * 3 + 37 * N).
The total space complexity of the code is O(number_features * 30 + 302 + 30 * 5 + 3 + 1).

5.4.2.2 ANN3

Complexities shared with the binary classification model:
— Model creation.
— First 2 layers.
— Batch Normalization.
— Dropout.
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— Compilation.
— Early Stopping Callback.
Complexities specific to this model:
— Output layer: Time complexity O(30 * 3), space complexity O(30 * 3 + 3).
— Training: Time complexity O(37 * N), space complexity O(1).
The total time complexity of the code is O(number_features * 30 + 302 + 30 * 3 + 37 * N).
The total space complexity of the code is O(number_features * 30 + 302 + 30 * 5 + 3 + 1).

5.5 Environment and Libraries
To implement our method, we use the following environment and libraries:
— Environnement: Google Colab.
— Libraries: Numpy, Matplotlib, Pandas, Os, Keras, Sklearn, Seaborn, Streamlit.
— Programming language: Python.

5.5.1 Google Colab

Google Colab (short for Google Colaboratory) is a cloud-based programming environment
known for its popularity among data scientists, machine learning practitioners, and researchers.
It offers a Jupyter Notebook-like interface for running Python code. It has several notable
features and advantages:

1. No Setup Required: Google Colab operates entirely in the cloud, eliminating the need
to install any software or establish a local development environment. Access is provided via a
web browser, making it highly accessible.

2. Free GPU Access: Colab offers free access to Graphics Processing Units (GPUs) and,
occasionally, Tensor Processing Units (TPUs). This is particularly valuable for tasks demanding
substantial computational power, such as deep learning and extensive data analysis.

3. Jupyter Notebook Integration: Colab seamlessly supports Jupyter notebooks, a
favored tool within the data science and machine learning communities. Users can create, edit,
and execute Jupyter notebooks directly within Colab.

4. Collaboration: Google Colab facilitates real-time collaboration on shared notebooks
among multiple users. It allows for collaborative work on code projects and data analysis.

5. Cost-Efficiency: Colab is offered as a free service, making it a cost-effective choice for
those who require cloud-based computing resources.

6. Pre-installed Libraries: The environment comes equipped with a comprehensive set
of pre-installed Python libraries and packages commonly employed in data science and machine
learning, thus streamlining the development process.

7. Google Drive Integration: Users can effortlessly save and access their Colab notebooks
within Google Drive, offering storage and backup convenience.

8. Markdown Support: Colab includes support for Markdown cells, permitting users to
incorporate formatted text, images, and explanations alongside their code.

9. Code Execution: Colab facilitates cloud-based code execution, enabling resource-
intensive tasks to be executed without taxing local machines. Users can schedule long-running
operations and leave them running in the cloud.

10. Data Access: Importing data from various sources, including Google Drive and Google
Sheets, is straightforward via Colab’s built-in functions.
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In summary, Google Colab is a versatile and potent tool for a range of programming and
data science tasks. It offers a cloud-based alternative to local development environments and
boasts numerous features conducive to collaborative work and efficient data analysis [118].

5.5.2 Google Colab Hardware Configurations

— RAM Capacity: 12.7GB.
— Disk: 107.7GB.
— GPU: NVIDIA Tesla T4.

5.5.3 Programming Language

Python, created by Guido van Rossum in 1991, is a widely-used programming language
known for its simplicity and readability. It offers features like ease of use, interpreted nature,
dynamic typing, code indentation, a rich standard library, cross-platform compatibility, high-
level abstraction, open-source availability, extensibility, and a vibrant community. Python’s
extensive ecosystem includes tools for data science, machine learning, web development, and
scripting. Its readability and versatility have made it popular among developers, making it a
valuable choice across various domains, from software development to scientific research [119].

5.5.3.1 Libraries

Numpy: NumPy is a fundamental Python library for numerical and scientific comput-
ing, offering versatile arrays and a comprehensive suite of mathematical functions for efficient
data manipulation. It enables the creation of multi-dimensional arrays, supports various math-
ematical operations, including broadcasting for array compatibility, and provides powerful in-
dexing and slicing capabilities. NumPy’s integration with other libraries like SciPy, pandas, and
Matplotlib enhances its utility in data analysis, scientific research, and data visualization. Its
efficiency, thanks to its C and Fortran implementations, makes it a preferred choice for numer-
ical tasks, and it is indispensable in fields such as data science, machine learning, physics, and
engineering [120].

Matplotlib: Matplotlib is a widely-used Python library for creating versatile and high-
quality data visualizations and plots. It offers a plethora of customization options, supports
various plot types, and can generate publication-ready graphics. Whether used through its
convenient ‘pyplot‘ interface or its more advanced object-oriented approach, Matplotlib is an
essential tool for creating static, interactive, or animated visualizations in fields such as data
analysis, scientific research, and data presentation. Its seamless integration with other Python
libraries and active user community make it a go-to choice for anyone needing to visualize data
in Python [121].

Pandas: Pandas is a widely-used Python library for data manipulation and analysis, offering
essential data structures like DataFrames and Series to simplify working with structured data.
It excels in data cleaning, preprocessing, and transformation, enabling users to handle missing
data, merge datasets, and perform powerful data aggregation. Pandas supports various data
input/output formats, making it versatile for reading and writing data from diverse sources.
With efficient time series analysis capabilities and seamless integration with data visualization
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libraries, Pandas is indispensable for data scientists, analysts, and researchers seeking to explore,
clean, and analyze data efficiently in Python [122].

OS: The ‘os‘ library in Python provides essential functionalities for interacting with the op-
erating system. It enables users to perform a wide range of system-related tasks, including file
and directory operations, environment variable manipulation, process management, path manip-
ulation, permissions handling, and file information retrieval. Whether you need to create, delete,
or navigate directories and files, modify environment variables, start and manage processes, or
work with file paths in a platform-independent way, the ‘os‘ library serves as a crucial tool for
system-level operations and system-related tasks in Python programs [123].

Keras: Keras is a user-friendly, high-level deep learning library in Python, widely adopted
for its simplicity and flexibility. It offers an intuitive API for designing, training, and evaluat-
ing neural networks, abstracting the complexities of deep learning frameworks. Keras supports
multiple backends, making it adaptable to various underlying frameworks like TensorFlow and
Theano. With modularity and extensibility, users can customize and create their neural network
components. It covers a broad spectrum of neural network types, including CNNs and RNNs,
and provides pre-trained models for quick adoption. Keras is favored by the deep learning
community for its accessibility and seamless integration with other machine learning tools, mak-
ing it a top choice for developing and deploying neural networks across diverse applications [124].

Sklearn: Scikit-learn, often referred to as sklearn, is a Python machine learning library
renowned for its versatility and simplicity. It provides a rich collection of machine learning algo-
rithms, tools for data preprocessing, feature selection, and model evaluation. With a consistent
API, it offers a user-friendly experience for experimenting with various algorithms. Scikit-learn
supports diverse tasks such as classification, regression, clustering, and dimensionality reduction,
making it suitable for a wide range of machine learning applications. Its seamless integration with
other scientific Python libraries, hyperparameter tuning capabilities, and features like pipelines
for structured workflows make it a go-to choice for both beginners and experts in the field of
machine learning and data analysis [125].

Seaborn: Seaborn is a Python data visualization library that builds upon Matplotlib to
simplify the creation of informative and visually appealing statistical graphics. It specializes in
a wide range of statistical plots, offering simplicity and ease of use with built-in styles and color
palettes that enhance plot aesthetics. Seaborn excels in visualizing complex datasets, especially
categorical data, and integrates seamlessly with Pandas DataFrames. Its features include facet
grids for multidimensional exploration, support for custom color palettes, and statistical estima-
tion within plots. With an emphasis on both functionality and aesthetics, Seaborn is a valuable
tool for data professionals seeking to visually explore, understand, and communicate insights
from their data [121].

Streamlit: Streamlit is a Python library that simplifies the creation of web applications for
data science and machine learning. It offers an incredibly user-friendly and intuitive API, en-
abling data scientists and developers to turn data scripts into interactive web apps with minimal
effort. Streamlit provides a wide range of widgets for user interaction and integrates seamlessly
with popular data visualization libraries. It’s well-suited for rapid prototyping, allowing users
to quickly iterate on data-driven apps and share insights in real-time. Streamlit’s deployment
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options make it accessible to a wide audience, and its active community and ecosystem offer nu-
merous extensions and resources for enhancing app functionality, making it a powerful tool for
creating interactive data applications without the need for extensive web development expertise
[126].

5.6 Conclusion
In this chapter we explained the contribution of this thesis underlining the potential power

that came from combining the Deep Learning technology with the Blockchain technology for
building a robust system that enables hospitals and healthcare providers to make collaborations
for improving the healthcare sector without compromising the data privacy of the patients.



Chapter 6

Results and Discussion

6.1 Introduction
This chapter provides the results of applying our research on three types of diseases

(Breast cancer, Lung cancer, and diabetes) proving that our research is reliable in terms of
security and accuracy.

The results shown by each model are represented in Tables 5.2 to 5.4, and Figures 6 to 17.

6.1.1 Breast Cancer

Table 5.2 displays the outcomes achieved by training three Artificial Neural Network
(ANN) models with the breast cancer dataset, showcasing metrics such as Accuracy, Precision,
Recall, and F1-score. Additionally, Figures 5.13, 5.14, and 5.15 illustrate graphical representa-
tions of the Training vs. Validation Accuracy and loss for each ANN model. Figure 5.16 provides
a comparative analysis of the results obtained from these models, while Figure 5.17 presents a
confusion matrix depicting the performance of the 3rd model that made predictions on a dataset
consisting of 39 instances.

The matrix comprises two rows and two columns. The first row pertains to instances classified
within the Malignant class, and the second row pertains to instances classified within the Benign
class. The first column contains instances predicted as positive by the model, while in the second
column the instances predicted as negative.

In this case, the confusion matrix shows that:
There are 22 instances that belong to the Malignant class, and the model accurately predicted

all of them (i.e., correctly identified as Malignant). There are 16 instances that belong to the
Benign class, and the model accurately predicted all of them (i.e., correctly identified as Benign).
One instance that belongs to the Malignant class was, however, predicted as Benign by the model
(i.e., incorrectly classified as Benign). There are no instances from the Benign class that were
mistakenly predicted as Malignant by the model (i.e., no false Malignant predictions).

Table 6.1 – Breast Cancer Results
Accuracy Precision Recall F1-score

ANN 1 94.74% 100% 90% 95%
ANN 2 94.73% 100% 86% 92%
ANN 3 97.44% 100% 94% 97%
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Figure 6.1 – Training vs Validation Accuracy and Loss of ANN 1

Figure 6.2 – Training vs Validation Accuracy and Loss of ANN 2

Figure 6.3 – Training vs Validation Accuracy and Loss of ANN 3
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Figure 6.4 – Comparison between the 3 Models

Figure 6.5 – Confusion Matrix of the third ANN
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6.1.2 Lung Cancer

Table 5.3 displays the outcomes achieved by training three Artificial Neural Network
(ANN) models using the Lung cancer dataset, showcasing metrics such as Accuracy, Precision,
Recall, and F1-score. Furthermore, Figures 5.18, 5.19, and 5.20 illustrate graphical representa-
tions of Training vs. Validation Accuracy and loss for each ANN model. Figure 5.21 provides
a comparative analysis of the results obtained from these models, while Figure 5.22 presents
a confusion matrix depicting the performance of the third model that made predictions on a
dataset consisting of 67 instances.

The matrix is structured with three rows and three columns. The initial row pertains to in-
stances classified under the "low" class, the second row corresponds to instances in the "medium"
class, and the third row represents instances categorized as "high" class. In parallel, the first
column denotes instances predicted as "low" by the model, the second column signifies instances
predicted as "medium," and the third column designates instances predicted as "high."

In this case, the confusion matrix shows that:
There are 16 instances within the "low" class, and the model accurately predicted all of them,

signifying true positives for the "low" category. In the "medium" class, there are 23 instances,
all of which the model correctly identified, demonstrating true positives for the "medium" class.
Within the "high" class, there exist 27 instances, all of which the model accurately classified,
representing true positives for the "high" class. One instance originally classified as "medium"
was incorrectly predicted as "low" by the model, resulting in a false negative for the "medium"
class. There are no instances that were truly categorized as either "low" or "high" classes but
were misclassified as "medium" or "low/high." Thus, there are no instances of false positives.

Table 6.2 – Lung Cancer Results

Accuracy Precision Recall F1-score
ANN 1 95.52% 90% 100% 95%
ANN 2 92.54% 91% 100% 95%
ANN 3 98.51% 94% 100% 97%

Figure 6.6 – Training vs Validation Accuracy and Loss of ANN 1
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Figure 6.7 – Training vs Validation Accuracy and Loss of ANN 2

Figure 6.8 – Training vs Validation Accuracy and Loss of ANN 3

Figure 6.9 – Comparison between the 3 Models
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Figure 6.10 – Confusion Matrix of the third ANN

6.1.3 Diabetes

Table 5.4 showcases the outcomes achieved through the training of three Artificial Neu-
ral Network (ANN) models using the Diabetes dataset, presenting metrics such as Accuracy,
Precision, Recall, and F1-score. Additionally, Figures 5.23 5.24, and 5.25 illustrate graphical
representations of Training vs. Validation Accuracy and loss for each individual ANN model.
Figure 5.26 provides a comparative analysis of the results obtained from these models, while
Figure 5.27 presents a confusion matrix depicting the performance of the third model that made
predictions on a dataset comprising 35 instances.

The matrix consists of two rows and two columns. The initial row pertains to instances
categorized as part of the positive class, while the subsequent row is associated with instances
classified within the negative class. The primary column indicates instances predicted as positive
by the model, while the secondary column represents instances predicted as negative.

In this case, the confusion matrix shows that:
There are 16 instances in the positive class, all of which the model accurately predicted

(referred to as true positives). There are 18 instances in the negative class, all of which the model
correctly predicted (referred to as true negatives). One instance originally from the positive class
was incorrectly predicted as negative by the model (referred to as a false negative). No instances
from the negative class were erroneously predicted as positive by the model (no false positives).

Table 6.3 – Diabetes Results
Accuracy Precision Recall F1-score

ANN 1 85.71% 71% 91% 80%
ANN 2 94.73% 93% 92% 94%
ANN 3 97.14% 100% 94% 97%

The evaluation of the global models produced by the third hospital in contrast to the local
models generated by hospitals 1 and 2 underscores the merit of our methodology. The findings
clearly demonstrate that the global models have surpassed all of the local models in terms of
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Figure 6.11 – Training vs Validation Accuracy and Loss of ANN 1

Figure 6.12 – Training vs Validation Accuracy and Loss of ANN 2

Figure 6.13 – Training vs Validation Accuracy and Loss of ANN 3
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Figure 6.14 – Comparison between the 3 Models

Figure 6.15 – Confusion Matrix of the third ANN
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accuracy, precision, recall, and F1-score across all diseases. This underscores that our strategy
of combining models from various origins and utilizing them to construct a unified global model
has resulted in a notable enhancement in the precision and effectiveness of disease diagnosis.

The findings also indicate that hospitals can derive substantial advantages from embrac-
ing our approach to developing global models. This would empower hospitals to harness the
combined knowledge and proficiency of multiple institutions, leading to enhanced accuracy and
effectiveness in disease diagnosis. Moreover, implementing such methodology can contribute to
lowering the expenses and time associated with data collection and analysis, while simultane-
ously elevating the standard and precision of diagnoses and preserving the confidentiality of
patient information.

6.2 Application Overview
Following the completion of training the global models, the third hospital proceeds to

develop a multi-diagnosis application using these models. It’s crucial to highlight that the scalers,
which were adjusted using the dataset, should also be saved to facilitate their application to new
data for predictive purposes.

The application is constructed using the Streamlit library, which facilitates the straight-
forward development of interactive data applications. The code imports the pre-trained deep
learning models with the scalers of each disease category. Users can choose the specific disease
they wish to predict from a dropdown menu and subsequently fill out a form with relevant
feature values for that particular disease. Upon form submission, the input data undergoes
preprocessing using the corresponding scaler, and the processed data is subsequently inputted
into the pre-trained Artificial Neural Network (ANN) model to estimate the probability of the
disease. Finally, the application presents the prediction results to the user. Figures 5.28, 5.29,
5.30 and 5.31 represent an overview of the application interfaces and features.

Figure 6.16 – Selection of the disease

Figure 5.29 shows the interface of the selected disease with the corresponding form.
Figure 5.30 shows the interface after inputting the symptoms of the patient that will be used

in the prediction after clicking the predict button.
After clicking the predict button the prediction result will be shown in the bottom of the

interface as represented in Figure 5.31.
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Figure 6.17 – Interface of the selected disease

6.3 Conclusion
The resuls in this chapter showed the efficacy of this approach, achieving high accuracy

rates in the diagnosis of three diseases (accuracy of 97.44 % for the Breast Cancer, 97.14 % for
the Diabetes, and 98.51 % for the Lung Cancer) that surpass those of individual local models.
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Figure 6.18 – Inputting data

Figure 6.19 – Showing the result



Chapter 7

Achievements and Conclusions

In summary, this thesis presents a comprehensive and in-depth exploration of the inter-
section between advanced computer learning methodologies and the security of digital records,
particularly in the healthcare sector. The research thoroughly investigates how integrating so-
phisticated artificial intelligence models with secure data storage mechanisms can revolutionize
medical diagnostics and data protection. Specifically, we have delved into the application of deep
learning models in improving the accuracy of disease diagnosis while simultaneously employing
blockchain technology to ensure the confidentiality and integrity of sensitive medical records.

The study begins by reviewing existing literature on similar works, analyzing how previous
researchers have approached the combination of machine learning and data security in healthcare.
Through our extensive review, we identified that many previous works have fallen short in
effectively securing medical data. While some methodologies partially ensured data security,
they still exhibited significant vulnerabilities related to data leakage, which could expose patient
records to unauthorized access and breaches. This major limitation highlighted the pressing need
for a more robust and resilient system that could provide a seamless blend of high-performance
predictive analytics and airtight data security.

Our research proposes a novel approach that addresses these gaps by utilizing a federated
learning strategy, where multiple local deep learning models are trained independently within dif-
ferent healthcare institutions. These locally trained models are then aggregated to form a global
deep learning model without ever requiring the actual patient data to be exchanged between
entities. This method not only enhances the predictive performance of the deep learning model
but also ensures that sensitive patient information remains protected from potential breaches or
unauthorized access.

To demonstrate the feasibility and effectiveness of our approach, we successfully developed
and implemented a Multi-Diagnosis application capable of accurately diagnosing three differ-
ent diseases. The application was built upon a global deep learning model, which was created
by aggregating multiple local models trained on diverse datasets from different healthcare or-
ganizations. The results of our experiments demonstrated that the global model significantly
outperformed the individual local models, showcasing improved accuracy, robustness, and gen-
eralization capabilities.

A key contribution of our study is the implementation of blockchain technology as a foun-
dational security measure. Instead of exchanging raw patient data across different institutions,
only the locally trained deep learning models are shared and aggregated, thereby mitigating the
risk of data leakage and unauthorized access. Blockchain ensures that the data-sharing pro-
cess remains transparent, verifiable, and immutable, thus fostering trust among collaborating
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healthcare organizations while maintaining the highest standards of data privacy.
Furthermore, the methodology we introduced is not confined solely to the healthcare domain

but has broad applicability across multiple industries where secure data-sharing mechanisms
are critical. The principles underlying our approach can be seamlessly adapted to fields such
as finance, e-commerce, autonomous vehicle technology, cybersecurity, and other domains that
require robust data privacy measures while leveraging the immense power of deep learning for
data-driven decision-making and predictive analytics. By integrating blockchain technology
with federated deep learning, our methodology provides a universal solution that preserves data
privacy without compromising the performance and reliability of machine learning applications.

Building upon the success of our study, there are several directions for future research and
development that can further enhance the applicability, efficiency, and security of our proposed
approach.

One of the foremost future endeavors is to scale our methodology to national and even
global datasets. The current study has demonstrated the effectiveness of our method using
a limited dataset; however, its true potential can be realized by collaborating with national
healthcare organizations to test it on significantly larger datasets. This would allow us to
comprehensively assess the benefits and privacy-preserving capabilities of our approach in real-
world scenarios involving vast amounts of heterogeneous medical records. By expanding the
scope of our study, we aim to showcase the transformative potential of our method to healthcare
stakeholders, policymakers, and institutions, thereby encouraging widespread adoption in large-
scale healthcare systems.

Another crucial aspect we intend to address in future research is the challenge of dataset
heterogeneity. Given that data collected from different healthcare institutions often vary in
structure, format, and scale, directly integrating them into a unified deep learning framework
poses significant challenges. To overcome this, we plan to develop an advanced data normaliza-
tion method that can intelligently standardize disparate datasets while preserving their intrinsic
characteristics. This will ensure seamless compatibility between various data sources, thereby
enhancing the effectiveness and efficiency of our federated learning model. The development of
such a robust normalization technique will not only streamline data preprocessing but also en-
hance the accuracy and reliability of the predictive model, making it more adaptable to diverse
medical datasets.

Additionally, we aim to refine and expand the functionalities of our Multi-Diagnosis applica-
tion to improve its usability and accessibility. Currently, the application requires manual entry
of patient information through a form-based interface. While this approach is functional, it may
not be the most efficient for large-scale usage in healthcare facilities. To address this limitation,
we will enhance the application by integrating a feature that allows users to upload patient data
in Excel format. This will significantly improve efficiency by enabling bulk data entry, thereby
reducing the time and effort required for inputting medical records. Moreover, incorporating
automated data extraction and validation mechanisms will ensure the accuracy and consistency
of the input data, further strengthening the application’s reliability.

Beyond these improvements, we also recognize the potential of incorporating additional se-
curity measures, such as homomorphic encryption and differential privacy, into our framework.
These advanced cryptographic techniques will provide an additional layer of protection, ensur-
ing that even if data is intercepted or accessed unlawfully, it remains incomprehensible and
unusable by unauthorized entities. By continuously enhancing our methodology with state-of-
the-art security techniques, we strive to set new benchmarks for privacy-preserving deep learning
applications.
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Furthermore, the scalability of our approach will be a key area of focus. As more orga-
nizations and institutions adopt our methodology, the computational demands of aggregating
numerous deep learning models will increase. To address this challenge, we plan to explore dis-
tributed computing techniques, such as edge computing and cloud-based federated learning, to
optimize the efficiency and scalability of our approach. By leveraging decentralized computing
architectures, we can ensure that our model aggregation process remains seamless, even when
dealing with extensive and complex datasets.

In conclusion, this thesis not only lays a strong foundation for integrating deep learning
with secure digital record-keeping in healthcare but also paves the way for future advance-
ments in privacy-preserving collaborative learning techniques. The potential applications of our
methodology extend far beyond the healthcare sector, offering a revolutionary framework for any
industry that prioritizes data security and intelligent analytics. Through continuous refinement
and expansion of our approach, we aspire to drive significant progress in both machine learning
and data security, ultimately contributing to a safer and more efficient digital ecosystem.
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