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Abstract
In this thesis, we investigate the problem of incomplete data, specifically

the phenomenon of double truncation, which make working with classical
methods very hard, as truncation mean the loss of samples during the statis-
tical analysis, and leads to negative results of the study and wrong decisions.
Specifically, we focused in this thesis on estimating of the hazard function
in the case of double truncation, where estimating the hazard function es-
timator is defined in many previous work, hence we make comparison with
the hazard functions known in this case and our proposed estimator, and
thus we result that the proposed hazard function estimator is more accu-
rate through applied and theoretical comparison. In addition, a smoother
cumulative distribution function estimator was proposed, as the previously
proposed estimator of the distribution function it was not smooth and not
continuous. In this context, several methods were also proposed to obtain
the smoothing parameter for the cumulative distribution function within the
data subject to double truncation.

Résumé
Dans cette thèse, nous avons étudié le problème des données incomplètes,

en particulier le phénomène de double troncature, car la troncature signi-
fie la perte d’échantillons au cours de l’analyse statistique, ce qui affecte
négativement les résultats de l’étude. Nous nous sommes concentrés sur l’es-
timation de la fonction de risque dans le cas de double troncature, où un
estimateur de fonction de risque plus précis a été donné, et cela apparâıt en
s’appuyant sur la comparaison avec les fonctions de risque définies dans ce
cas, arrivant ainsi à la conclusion que nous estimateur de la fonction de risque
est plus précis grâce à une comparaison appliquée et théorique. Grâce à cette
recherche, un estimateur de fonction de répartition plus lisse a également été
proposé, car l’estimateur de la fonction de répartition proposé précédemment
signifiait qu’il n’était ni lisse ni continu. Dans ce contexte, plusieurs méthodes
ont également été proposées pour obtenir le paramètre de lissage de la fonc-
tion de répartition dans le cas au les données soumises à double troncature.
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GENERAL INTRODUCTION

S
tatistics is the science of collecting, analysing and describing data and is one of
the most important branches of mathematics used in various fields, including in-

dustry, technology, economics and even astronomy. Although precise methods and tools are
used to collect data, we are sometimes exposed to problems that lead to partial or total loss
of data, resulting in wrong decisions. Moreover, censoring and truncation are two types of
incomplete data, as the main difference between these two types is the amount of information
of the observation that is lost when it is partially lost (is censoring) or completely lost (is
truncation). Where both these types categories in three parts. For censoring is considered
for example in survival analysis when the observation can’t be noted from the beginning to
the end moreover when the observation can be noted from the beginning but in some part
of the trail the observation is lost this kind is know as right censoring in contrast when the
observation can’t be considered in the data from the beginning but it include before the end
of the trail and this is the second type of censoring which know as left censoring for the
last kind of censoring is considered when both the previous kind are presented in the same
trail we said that we have double censoring. Now, from the definition of truncation it can
be also divided into three categories, where the observation is included in the study is only
if it satisfies certain condition and this condition are known as the condition of truncation
limit therefore when observation can’t be included in the study because of it short amount
is consider as left truncation and when observation has big amount make it out of the trail
study is know as right truncation finally when both kinds of truncation exist in the same
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General introduction

study we said that we have double truncation, and throughout this definition we can say
that these two kinds of incomplete data make the use of classical technique of statistics more
difficult.

In the last few years, a number of researchers have developed new methods of working
with incomplete data, where this kind of data need specials mechanism. We refer researchers
to these books [[52]–[22]–[9]], which summarise many of the problems in these cases.
Throughout this thesis we focus in double truncation data, where one side truncation data is
well defined in [22][19] [25] [26] [20] [44]. In addition, double truncation data has been con-
sidered in many papers in recent years where it is used when the data is known just within
interval, for this reason Efron and Petrosian [10] establish the nonparametric likelihood in
case of double truncation, following this work many research have considered the non para-
metric likelihood as a solution for solve the problem of working with double truncation data
especially when Shen [38] proof the asymptotic properties of the nonparametric likelihood
and after that both Xiao and Hudgens [49] and de Uña-Álvarez et al., [8] gives addition
information about the NPMLE from the existing and uniqueness. After that many research
investigate the problem of define a smooth estimator where the estimator of density is given
in Moreira and Uña-Álvarez [29], additionally Moreira and Van Keilegom [32] given the se-
lector of bandwidth when the data are sampling under double truncation, hence from this
work Moreira et al., [31] provide an estimator of the hazard function for double truncation
data which is defined as convolution between the estimator giving in Efron and Petrosian
[10] and the ordinarily kernel function.
Estimating the hazard function under incomplete data has been an attractive topic and many
literature reviews have dealt with it and this show in the work of Watson and Leadbetter
[47], Tanner and Wong [42], Kim et al., [21], Efron and Petrosian [10], Shen [38], Patil et al.,
[35], recently [31] where all the research provide an estimator of the hazard function in both
cases in censoring and truncation.

In this thesis, we investigate the problem of incomplete data, specifically the phenomenon
of double truncation, which make working with classical methods very hard, as truncation
mean the loss of samples during the statistical analysis, and leads to negative results of the
study and wrong decisions. Specifically, we focused in this thesis on estimating of the hazard
function in the case of double truncation, where estimating the hazard function estimator
is defined in many previous work, hence we make comparison with the hazard functions

Univ-Biskra/MATHEMATICS: 2024 2



General introduction

known in this case and our proposed estimator, and thus we result that the proposed hazard
function estimator is more accurate through applied and theoretical comparison. In addi-
tion, a smoother cumulative distribution function estimator was proposed, as the previously
proposed estimator of the distribution function it was not smooth and not continuous. In
this context, several methods were also proposed to obtain the smoothing parameter for the
cumulative distribution function within the data subject to double truncation.

The structure of this thesis is as follows

• Chapter1 This chapter provides some concepts and definitions to make this thesis
easier to read, we give the definition of incomplete data and its categories (i.e, censoring
and truncation), in addition we define the estimator of the distribution function when
the data are censoring or truncation from one side and in the last we give definition of
the likelihood function in case of incomplete data.

• Chapter2 We focus in this chapter in double truncation data problem where we defined
the nonparametric likelihood estimator and we give the principal results and we defined
the kernel estimator of density in this case, in addition we provide a new kernel estimator
of the distribution function where we derive its asymptotic properties and also we derive
the semiparametric estimator of the distribution function.

• Chapter3 This chapter is the goal of our work in this thesis, we present in this part
the estimators of the hazard function which have defined in case of double truncation,
we defined our proposed estimator of the hazard function where we give the proprieties
of the proposed estimator and we derive its asymptotic properties.

• Chapter4 This chapter is related to the previous chapter where we present the finite
sample behavior in order to make the comparison of the existing estimators and our
proposed estimator and this by the program R.

• Chapter5 In this chapter we proposed the bandwidth selector of the distribution
function when the data are sampling under double truncation.

Univ-Biskra/MATHEMATICS: 2024 3



CHAPTER 1

CENSORING AND TRUNCATION

I
n many scientific fields, collecting and analysing data is an essential part of knowing
the results of the studies. However, sometimes we suffer with problems of the data,

because sometimes it’s impossible to collect data, and some data can’t be follow or lost. For
this reason, many research deals with these problems by discovering new novel methods to
solve these problems. In this these, we focus on a particular kind of incomplete data, thus
we initially established censoring and truncation as the two categories of incomplete data.
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Censoring and truncation

1.1 Preliminary definitions

This section provides some definitions and basics, in order to facilitate the reading of this
thesis, we assume X be continues random variable (rv) defined over the probability space
(Ω,A,F).

Definition 1 The distribution function (df) of X is defined on R by

F (x) := P (X ≤ x) =
∫ x

aX

f(z)dz,

where we have aX = inf{x : F (x) > 0} and bX = inf{x : F (x) = 1} are the left and right
ends points of the df F respectively.

Definition 2 The survival function (or the tail distribution) of X is defined on R, is also
can be consider as the opposite of the df, thus is given by

S(x) := P (X > x) =
∫ bX

x
f(z)dz.

Definition 3 The probability density function of X is a non-negative integration func-
tion defined by

f(x) := dF (x)
dx

= −dS(x)
dx

.

Definition 4 The hazard function of X is also know as instantaneous failure rate or
instantaneous hazard rate in survival analysis is defined by

h(x) := lim
δt→0

P (X ∈ [x, x+ δt[|X ≥ x)
δt

= f(x)
S(x) = −d lnS(x)

dx
.

from this definition we note that the hazard function is non negative function and doesn’t
have an upper bound, beside the rv X can take negative values.

Definition 5 The cumulative hazard function which defined as the accumulation hazard
rate of X is defined by

∆(x) :=
∫ x

aX

h(t)dt = − lnS(x).

Remark 1 We note that

S(x) := exp {−∆(x)} (1.1)

= exp{−
∫ x

aX

h(z)dz}, (1.2)

Univ-Biskra/MATHEMATICS: 2024 5



Censoring and truncation

hence, from this equation the density function is given by

f(x) := (∆(x))′ exp {−∆(x)} (1.3)

= h(x) exp{−
∫ x

aX

h(z)dz}. (1.4)

Definition 6 Let X1, X2..., Xn be n identically distributed rv’s with common distribution
function F . An estimator of the df F which called the empirical distribution function (edf)
is given by

Fn(x) = 1
n

n∑
i=1

1{Xi≤x}. (1.5)

Definition 7 The different kinds of convergence Let X1, X2..., Xn be n sequences of
rv’s with df noted by FXn , we have

• We said that Xn converge to X en law if

lim
n→∞

FXn(x) = F (x) ⇐⇒ Xn
L−−−→

n→∞
X. (1.6)

• We said that Xn converge to X en probability if

∀ϵ > 0, lim
n→∞

P (|Xn −X| > ϵ) = 0 ⇐⇒ Xn
p−−−→

n→∞
X. (1.7)

• We said that Xn converges almost surely (or converges with probability 1, or converges
strongly) at the point x, if

P ( lim
n→∞

Xn = X) = 1 ⇐⇒ Xn
as−−−→

n→∞
X. (1.8)

Theorem 1 (Central Limit Theorem) Let X1, X2..., Xn be n sequences of rv’s, and as-
sumed that is iid, hence we have

√
n(X̄n − µ

σ
) L−−−→

n→∞
N (0, 1),

where X̄ = (1/n) ∑n
i=1 Xi is the empirical mean, and (µ, σ) is the mean and the variance the

two parameters of the normal df, of course this convergence is obtained under the finite of
the variance σ2.

Univ-Biskra/MATHEMATICS: 2024 6



Censoring and truncation

1.2 Censoring

Definition 8 In the field of statistics, there are situations in which observations cannot be
followed from the beginning, the end, or both. This phenomenon is known as censoring, and it
results in incomplete data, and that creates challenges for data analysis. This section focuses
on survival analysis which is one area of statistics suffers from incomplete data, as incomplete
data make it harder to take decisions. For technical reasons, we make the assumption that
the variable of interest and the censoring variable are independent to avoid the problem in
using classical analytical techniques. Time to event is the variable of interest in survival
analysis which is a random positive variable that shows how long it will take for the event to
occur (e.g., death of patient, broken machine, etc.).
There are three types of censorship: left, right, and interval censoring.

1.2.1 Types of censoring

1.2.1.1 Right censoring

First, we define right censoring, which comes in three kinds.

1. Type I censoring (Fixed censoring)
Which is defined as time of the event is observed only if it happen before a specific
time. (e.g., in a medical trial of covid 19 in hospital, the researcher uses a fixed number
of patients to know the relationship between the covid 19 and increase in injury pres-
sure before a medication or therapies are administered, but the researcher may decide
to stop the study or announce the findings before the end of the study due to time.
In these case, all censored observations have times equal to the duration of the study
period, assuming no losses or persons withdrawals).

Now, We suppose that there is a lifetime X assumed to be iid, and a fixed censoring
time CR, we assume there is independent between X and CR. The time X be known if
and only if X is less than or equal to CR (i.e., X ≤ CR). When X is less then CR, we
said that the person is considered a survivor and their event time is censored at CR,
we have a sample of survival times X1, ..., Xn the censoring variable CR here is fixed,
so the observations defined by the pairs (T1, δ1), ..., (Tn, δn) with :

Ti = min(Xi, C
R), δi = 1{Xi≤CR},∀i = 1, ..., n.

Univ-Biskra/MATHEMATICS: 2024 7



Censoring and truncation

2. Type II censoring (Censorship waiting) is a second kind of right censoring where
the study is continues up until the first k individual fail, where k is a predefined integer
(k < n). This type is found in testing equipment life in factories where the test is run
simultaneously for each item and it ends when k fail of n, so this kind of experiment
could save time and money. It’s also true that is has an easier statistical treatment
because it consists of the k values less then n values.

Now, let a sample of survival times X1, ..., Xn and k > 0 be fixed. Type II censoring
is said to exist for this sample if, instead of directly observing X1, ..., Xn we observe
(T1, δ1), ..., (Tn, δn), which defined by

Ti = min(Xi, X(k)), δi = 1{Xi≤X(r)},∀i = 1, ..., n,

where X(k) is the kth–order statistics associated to X1, ..., Xn, note that if we take
X(k) = CR is equivalent to censoring type I.

3. Type III censoring (Random censoring.)
This form of censorship, where C is a random variable, is can be consider as gener-
alization of type I. We assume that we have sample of survival times X1, ..., Xn and
anther sample which is independent sample and contained a positive random variables
CR

1 , ..., C
R
n .

We said that we have censored Type III if instead of observing X1, ..., Xn we observe
the pairs (T1, δ1), ..., (Tn, δn), which given by

Ti = min(Xi, C
R
i ), δi = 1{Xi≤CR

i },∀i = 1, ..., n.

where C is censored variable.

Univ-Biskra/MATHEMATICS: 2024 8



Censoring and truncation

Figure 1.1: Right censoring data

1.2.1.2 Left censoring

The variable of interest X is considered to be left censored if it is less than a censoring variable
CL, meaning that the event of interest has already happened for the individual before that
person is observed in the study at CL. For such individuals, we know that they experienced
the event at some point prior to variable CL, but we are unsure of their precise event value.
The time X will be known if and only if X is greater than or equal to CL (i.e., X ≥ CL).

The data from a left-censored sampling scheme can be represented by pairs (T1, δ1), ..., (Tn, δn)
instead of observing X1, ..., Xn, where this pairs are defined by

Ti = max(Xi, C
L
i ), δi = 1{CL

i ≤Xi},∀i = 1, ..., n.

Univ-Biskra/MATHEMATICS: 2024 9



Censoring and truncation

Figure 1.2: Left censoring data

1.2.1.3 Mixed censored (double censored)

Now, in some study we can find both left and right censoring, in this case the lifetimes are
considered as doubly censored. The variable of interest X is said to be double censored if we
observe pairs (T1, δ1), ..., (Tn, δn) instead of observing X1, ..., Xn, where the pairs giving by

Ti = max(min(Xi, C
R
i ), CL

i ),∀i = 1, ..., n,

where

• δ = 1 the individual is survival.

• δ = 0 the individual is left censored.

• δ = −1 the individual is right censored.

Note that X will be observed if it less or equal to CR and is great or equal to CL.

1.2.1.4 Interval censoring

Interval censoring is widely used, which happens when we observe the individual just inside
the interval (CL, CR), where CL (or CR) is the left endpoints (or the rights endpoints) of
the censoring interval. This kind of censoring can happen in industrial experiments where
equipment components are routinely inspected to ensure correct operation. Interval censoring
can also be seen as a generalisation of one-sided censoring data, as left (or right) censoring
is when the left end point is 0 (or CR) and the right end point is CR (or ∞).

Univ-Biskra/MATHEMATICS: 2024 10
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Figure 1.3: Interval censoring data

Univ-Biskra/MATHEMATICS: 2024 11



Censoring and truncation

1.2.2 A guide to defining likelihood functions with censored data

It is typical that the construction of the likelihood under censored data need special mecha-
nism. Initially, we make the assumption that there are independent between the lifetime and
the censoring time. Additionally, we must take into account any knowledge came from the
observed data and provide a mathematical definition for it.

• The probability in observed time is approximately equal to the density function f(x)
of X at this time.

• From the definition of right censored observation it approximately equal to survival
function S(CR).

• From the definition of left censored observation it approximately equal to cumulative
distribution function 1 − S(C l) = F (C l).

• From the definition of interval censored observation it similarly to probability in the
interval S(L) − S(R).

The likelihood function is given by this equation

L ∝
∏
i∈d

f(xi)
∏
i∈r

S(CR
i )

∏
i∈l

(1 − S(CL
i ))

∏
i∈j

(S(CL
i ) − S(CR

i )), (1.9)

where d is set of death times, r ( or l ) is set of right ( or left) censored observations, and j

is set of interval censored observations.

Univ-Biskra/MATHEMATICS: 2024 12
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1.2.3 Techniques for estimation in the presence of right censored
data

In this part, we’ll deal into right-censored data estimation as this kinds is well-known topic,
where we’ll defined the widely used Kaplan-Meier and Nelson-Aalen estimators.
Typically, the ordinary edf F ∗

n(x) = 1/n∑n
i=1 I{Xi≤x} is commonly used when we need to

estimate the df. However this estimator can’t hold under censoring data because certain
observations cannot be observed. For this reason, Kaplan and Meier (1958) discovered the
first estimator of the df in the case of right censored data. The principle of this estimator is
around the idea that if you survive to time x, you are sure that you was been survived before
this time. For this reason, we assume that we have D distinct times x1 < x2, ..., < xD, hence
for x1 < x2 < x we gate

S(x) := P (X > x)

= P (X > x,X > x2)

= P (X > x|X > x2)P (X > x2)

= P (X > x|X > x2)P (X > x2|X > x1)S(x1),

Now, consider
pi := P (X > Ti|X > Ti−1), (1.10)

which is the conditional probability that the individual survives during the interval ]Ti−1, Ti],
where is known to have survived in the beginning of the interval.
Let ri be the number of individual who are at risk (have not yet had an event) at time
ti, and di is the number of events (e.g., deaths, disease, relapse,etc) at the same time. We
assume qi := 1−pi which represent the probability of individual had the event in the interval
]Ti−1, Ti], where is known to have survived in Ti−1. Hence the estimator of qi is given by

q̂i = di/ri.

Where

di =


0 , ifδi = 0

1 , ifδi = 1.

Similar reasoning that lead to the construction of q̂i estimator above, we arrive at the esti-
mator of p̂i
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1 − p̂i =


1

n−(i−1) , ifδi = 1

1 , ifδi = 0.

The Kaplan–Meier estimator (or the product limit estimator) for survival function
of the variable of interest is then given by

Ŝ(x) := 1 − F̂ (x) =


∏

X(i)≤x( n−i
n−(i−1))

δ(i) , ifx < X(n)

0 , ifx ≥ X(n).

The Kaplan–Meier estimator for survival function of the variable of censoring is then
given by

Ḡ(x) := 1 − Ĝ(x) =


∏

X(i)≤x( n−i
n−(i−1))

1−δ(i) , ifx < X(n)

0 , ifx ≥ X(n).

Thus, by defining the relationship between the cumulative hazard function and the survival
function ∆(x) := − lnS(x), the product limit estimators can provide us with an estimator
of the cumulative hazard function which define by ∆̂(x) := − ln Ŝ(x).
The Nelson–Aalen estimator of the cumulative hazard, is given by

∆̂(t) :=
∑
Ti≤t

di

yi

.

This both estimators can be consider as the nonparametric likelihood, in addition the asymp-
totically normality of this both estimators is well defined in the book [52].
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1.3 Truncation

Definition 9 As explained earlier, the data problems occurs when we collect observations
and therefore some observations cannot be followed from the beginning to the end, and this
is called censoring. Moreover, if some observations are lost, so that the data observation
becomes conditional, which means that the observation is only known within conditional
limits, and this leads to a change in the size of the sample, unlike the first case where the
sample size was fixed, we are in the case of truncation, which is the second part of incomplete
data.

The truncation can be divided into three parts: left, right and double truncation.

1.3.1 Types of truncation

1.3.1.1 Left truncation

This type of truncation is the most used, here we consider the left truncation limit U∗ as
a condition where the variable of interest X∗ is observed if it exceeds U∗ (i.e., U∗ ≤ X∗).
Therefore, this type of truncation does not include individuals who don’t meet the conditional
limit. (e.g., In biology, researchers measure the diameter of a bacterium so that if a bacterium
is too small, it is not taken into account and is excluded from the study or in economics when
we classifying the people’s income).
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Figure 1.4: Left truncation data

1.3.1.2 Right truncation

Now the right truncation data which is the second type of truncation. In this type we
define V ∗ as the right truncation limit where the condition of observed the data is when the
observation X∗ is less than the right truncation limit (i.e., X∗ ≤ V ∗). Furthermore, this type
of truncation takes into account the observations that are less then the threshold V . (e.g., in
astronomy, when we are interested in the study of stars, only the stars that are closed from
the earth are included in the study).
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Figure 1.5: Right truncation data

1.3.1.3 Double truncation

In the context of collected data, deleting some observations is happening under certain limit
conditions from above or below, but there is some situation where this eliminate is occurs from
the both side which we called it double truncation data. The concept of double truncation is
that the variable of interest is known in side interval (i.e., U∗ ≤ X∗ ≤ V ∗). (e.g., In medicine
studies can be so difficult or impossible that to examine every data point because there is
time factor or the trial involve measurement error, hence some values may be invalid, or not
all the information of interest might be available. For these reasons, a decision may be made
and we may not get a full result.).
Example For example, we look at this example in the report in [9], which includes companies
that failed from U∗ = 1/09/2013 to V ∗ = 31/03/2014 and this example is a special case of
double truncation data which will be defined in next chapter. Now, we assume that X∗ is
the rv represent the lifetime which has been chosen randomly in Germany, obviously if any
companies fails outside this period it will not be included in this study and this is illustrated
in the figure below, therefore the sample is formulae by U∗ ≤ X∗ ≤ V ∗, where

• U∗ is the age of the companies on 09/2013, which is the left truncated limit.

• V ∗ = U∗ + 7/12 is the age of the companies, which is the right truncated limit.
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Figure 1.6: Example of double truncation data: The data on German companies from

1.3.2 The definition of the likelihood functions with truncation
data

The concept of truncation refers to the deletion of some observations under certain conditions.
For this reason, this part of the available data is often used by a conditional distribution to
make inference on the data. Now, we define in this parts the likelihood function in the case
of truncated data, under the same assumption in the case of censoring, by

• The density function f(x) is consider as the probability observed value.

• Left truncation observations is defined by f(x)/S(U).

• Right truncation observations is defined by f(x)/(1 − S(V )).

• Interval truncation observations is defined by f(x)/(S(U) − S(V )).

Now, the likelihood function in the case of truncation data is defined by

1. For left-truncated data we define the likelihood by make this change from the likelihood
function equation (1.9)

f(xi) −→ f(xi)/S(Ui). (1.11)

S(CR
i ) −→ S(CR

i )/S(Ui). (1.12)
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2. For Right-truncated data, in this case only deaths are observed hence the likelihood
function is defined by

L ∝
∏

i

f(xi)/(1 − S(Vi)). (1.13)

1.3.3 Techniques for estimation in the presence of right trun-
cated data

Now, let consider X as the random variable (rv) of interest defined over probability space
(Ω,A,F) with an unknown distribution function (df) F . Let Y be rv of truncation with an
unknown df G∗. Due to the effect of sample selection under truncation, we observe only pairs
{(Xi, Yi)/1 ≤ i ≤ n} which satisfying the condition Xi ≤ Yi. Therefore the observed sample
size be n which is a subset of N (i.e., n ≤ N) defined as Binomial rv by n := ∑N

i=1 1{Xi≤Yi},
before that we assume α := P (X ≤ Y ) is the probability of truncation, hence by the weak
law of large numbers we have n/N p−−−→

n→∞
α. First, we define the joint df of the pairs (X∗, Y ∗)

M(x, y) := P (X∗ ≤ x, Y ∗ ≤ y|X∗ ≤ Y ∗)

= α−1P (X∗ ≤ min(x, Y ∗), Y ∗ ≤ y)

= α−1
∫ y

aY

F (min(x, z))dG(z).

The marginal df’s of the observed pairs are given by

F ∗(x) := M(x,∞) = α−1
∫ ∞

aY

F (min(x, z))dG(z) = α−1
∫ x

aX

(1 −G(z))dF (z).

G∗(y) := M(∞, y) = α−1
∫ y

aY

F (z)dG(z) = α−1
∫ y

aX

F (z)dG(z).

Note that F ∗ and G∗ can be estimated by the empirical distribution functions as in complete
data. Now, we define the Woodroofe’s nonparametric estimator of the df by

F (W )
n (x) := 1 −

∏
k:X∗

k
≤x

exp(−(nCn(X∗
k))−1),

G(W )
n (y) := 1 −

∏
k:X∗

k
≤x

exp(−(nCn(Y ∗
k ))−1),

where Cn(x) := 1
n

∑n
i=1 1{Xi≤x≤Yi}. From this approximation exp(x) ∼ 1 + x, Lynden [25]

discovers a different estimator of the distribution function under right truncation, which is
widely used. And is defined by

F (W )
n (x) :=

∏
k:X∗

k
>x

(1 − (nCn(X∗
k))−1),

G(W )
n (y) :=

∏
k:X∗

k
>x

(1 − (nCn(Y ∗
k ))−1).
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CHAPTER 2

ESTIMATION UNDER DOUBLE
TRUNCATION

C
lleced data in order for make decision and give result about study can be hard
as the data can be incomplete. For this reason, many researchers have focused

on solving this problem, since the classical technique which is widely used cannot hold up,
this has led researchers to make modifications to the classical technique to deal with these
problems, including the truncation problems, where the data are only observed in a known
interval. Where the fundamental change arises in this case by using conditional probability.

20



Double truncation

2.1 The definition of probability under double trunca-
tion

First, let X∗ be the variable of interest which assume to be truncated by the random variables
U∗ (i.e., left truncation limit) and V ∗ (i.e., right truncation limit). Furthermore, in all
our work we assume the independent between the variable of interest and the variables of
truncation limit. Hence the observed double truncation data is given by {(U∗

i , X
∗
i , V

∗
i ), U∗

i ≤
X∗

i ≤ V ∗
i , i = 1, 2, ..., n}. Let consider F (x) := P (X∗ ≤ x) and G(u, v) := P (U∗ ≤ u, V ∗ ≤ v)

which is the distribution and the joint distribution of X and (U, V ) respectively. Now we
consider the probability of non truncation which defined by

α := P (U∗ ≤ X∗ ≤ V ∗) (2.1)

=
∫∫

u≤v

∫ v

u
dF (x)dG(u, v) (2.2)

=
∫ ∫∫

u≤x≤v
dG(u, v)dF (x). (2.3)

Therefore, we define the probability of non-truncation conditional on the observed X∗ = x

by this formula

H(x) := P (U∗ ≤ X∗ ≤ V ∗|X∗ = x)

= P (U∗ ≤ x ≤ V ∗).

The distribution function of Xi is given by

F ∗(x) := P (X∗ ≤ x|U∗ ≤ X∗ ≤ V ∗)

= α−1P (X∗ ≤ x, U∗ ≤ X∗ ≤ V ∗)

= α−1
∫ x

aX

P (U∗ ≤ z ≤ V ∗)dF (z),

by derivation we find the density function f(x) = αP−1(U∗ ≤ x ≤ V ∗)f ∗(x), and the joint
distribution function of the truncation limit is defined by

G∗(u, v) := P (U∗ ≤ u, V ∗ ≤ v|U∗ ≤ X∗ ≤ V ∗)

= α−1P (U∗ ≤ u, V ∗ ≤ v, U∗ ≤ X∗ ≤ V ∗)

= α−1
∫ v

aV

∫ min(z2,u)

aU

(F (z2) − F (z−
1 ))dG(z1, z2),

let G1 and G1 be the marginal distribution of the truncation limits, hence the joint density
of (U∗, V ∗) is given by g(u, v) = α(F (v) − F (u−))−1g∗(u, v).
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The survival function is defined by

S(x) := P (X∗ ≥ x|U∗ ≤ X∗ ≤ V ∗)

= α−1S(x−)P (U∗ ≤ x∗ ≤ V ∗),

where S(x−) := P (X∗ ≥ x).

2.2 The construction of the likelihood function under
double truncation data

2.2.1 Nonparametric consideration in estimation

The likelihood function based on the joint density of the observed data is given by

L =
n∏

i=1
P (U∗ = ui, X

∗ = xi, V
∗ = vi|U∗ ≤ X∗ ≤ V ∗) =

n∏
i=1

P (U∗ = ui, X
∗ = xi, V

∗ = vi)
P (U∗ ≤ X∗ ≤ V ∗) ,

(2.4)
therefore, the likelihood function can be described by the formula

L =
n∏

i=1

f(xi)g(ui, vi)∫∫∫
u≤x≤v

dF (x)dG(u, v) . (2.5)

In addition, the likelihood function may be decomposed as follows

L =
n∏

i=1

f(xi)∫ vi
ui
F (dx) ×

n∏
i=1

∫ vi
ui
dF (x)g(ui, vi)∫∫∫

u≤x≤v
dF (x)dG(u, v) = L1(f) × L2(f, g). (2.6)

Now, in order to make an inference in density, Efron and Petrosian (1999) had to consider
the first part

L1(f) =
n∏

i=1
P (X∗ = xi|ui ≤ X ≤ vi) =

n∏
i=1

f(xi)∫ vi
ui
dF (x) . (2.7)

In addition, [22]show that the conditional likelihood can be treated as a classical likelihood
function, beside Shen (2010) establishes that the both parts of likelihood function L1(f) and
L2(f, g) yields the same estimator of density.
Let us now define the probability distribution function according to the truncated interval
Ri := [ui, vi]

Fi :=
∫

Ri

f(x)dx. (2.8)
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Due to truncation effects, we only regard probability mass on observed vector (x1, ..., xn), for
this reason the distribution of X∗ under the condition of regularity ∑n

i=1 fi = 1 is given by
f := (f1, ..., fn). Hence the probability of observed individual xi is defined by

Fi :=
n∑

j=1
Jijfj, (2.9)

where Jij := 1{ui≤Xj≤vi}, thus we have F = Jf where J = (Ji,j)1≤i≤n,1≤j≤n.
The log-likelihood function is given by

L1(f) = lnL1(f) =
n∑

i=1
ln fi −

n∑
i=1

ln(
n∑

k=1
Jikfk).

According to the classical method of the maximum likelihood solution we derive L1(f)

∂L1(f)
∂fi

= 1
fi

−
n∑

j=1

Jji∑n
k=1 Jjkfk

= 1
fi

−
n∑

j=1

Jji

Fj

. (2.10)

Thus,
∂L1(f)
∂fi

= 0 ⇐⇒ 1
fi

=
n∑

j=1

Jji

Fj

,∀i = 1, ..., n. (2.11)

The solution is iterative, hence Efron and Petrosian (1999) give EM algorithm for solve the
equation

1
f̂i

=
n∑

j=1
Jji

1
F̂j

, ∀i = 1, ..., n (2.12)

where F̂j = ∑n
k=1 f̂kJik. The EM algorithm is defined by

Step EP 1 : Introduce the first estimator of f(0) = (1/n, ..., 1/n) according to F(0) = Jf(0);

Step EP 2 : Calculate F(k) = Jf(k);

Step EP 3 : Repeat Step EP 2 and make k → k + 1, calculate

f̂
(k)
i =

n∑
j=1

JjiF̂
(k−1)
j , (2.13)

with respect to ∑n
i=1 f̂

(k)
i = 1;

Step EP 4 : Repeat Step EP 2 and Step EP 3 until the convergence;

The likelihood function also has another representation based on the joint truncation limit
distribution.

L =
n∏

j=1

gj

Gj

×
n∏

i=1

Gjfj∑n
i=1 Gjfj

= L1(g) × L2(g, f), (2.14)
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where Gi = ∑n
k=1 gkJki, now we consider the first part L1(g) then the maximum likelihood is

given by
1
ĝj

=
n∑

i=1
Jji

1
Ĝi

,∀j = 1, ..., n, (2.15)

where Ĝi = ∑n
k=1 ĝkJki. Shen (2010) proof that both solution of equations 2.12 and 2.15 are

the NPMLE’s of the full likelihood defined in 2.4. In addition, he show that the estimators
of F (x) and G(u, v) are given by solving the two equations

F̂ (x) = [
n∑

i=1

1
Ĝ(Xi,∞) − Ĝ(Xi, Xi)

]−1
n∑

i=1

1{Xi≤x}

Ĝ(Xi,∞) − Ĝ(Xi, Xi)
(2.16)

Ĝ(u, v) = [
n∑

i=1

1
F̂ (Vi) − F̂ (U−

i )
]−1

n∑
i=1

1{Vi≤v,Ui≤u}

F̂ (Vi) − F̂ (U−
i )
. (2.17)

Theorem 2 Let F̂NP (x) = ∑n
n=1 f̂i1{Xi≤x} and ĜNP (u, v) = ∑n

n=1 ĝi1{Ui≤u,Vi≤v} are accord-
ing to likelihood function of L1(f) and L1(g) respectively, then

1. F̂ (x) = F̂NP (x) and Ĝ(u, v) = ĜNP (u, v) are the NPMLE’s F and G respectively.

2. f̂ and ĝ are the NPMLE’s of the full likelihood L.

Proof See Shen (2010) [38].

Shen [38] show that the NPMLE can obtained be use iterative algorithm based in the two
system of equations

f̂j = [
n∑

i=1

1
Gi

]−1 1
Ĝj

, ∀j = 1, ..., n. (2.18)

ĝj = [
n∑

i=1

1
F̂i

]−1 1
F̂j

,∀j = 1, ..., n. (2.19)

Step EP 1 : Introduce the first estimator of f(0) = (1/n, ..., 1/n) according to F(0) = Jf(0);

Step EP 2 : Calculate F(k) = Jf(k) and

ĝ
(t+1)
j = [

n∑
i=1

1
F̂

(t)
i

]−1 1
F̂

(t)
j

,∀j = 1, ..., n. (2.20)

Step EP 3 : Calculate G(k+1) = JT g(k+1) and

f̂
(t+1)
j = [

n∑
i=1

1
Ĝ

(t)
i

]−1 1
Ĝ

(t)
j

,∀j = 1, ..., n. (2.21)

and make k → k + 1;
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Step EP 4 : Repeat Step EP 2 and Step EP 3 until the convergence;

The NPMLE of the distribution function can be written as the following formula

Fn(x) := α−1
n

∫ x

aF

dF ∗
n(z)

Hn(z) , (2.22)

where Hn(x) =
∫

u≤x≤v Gn(du, dv), and α−1
n =

∫ ∞
aF

(Hn(z))−1dF ∗
n(z) this both estimators are

defined in Shen (2010).

2.2.1.1 Asymptotic Properties of the NPMLE

Under the stable conditions of woodroofe (1985) and Shen (2010), the following two theorems
prove that F is consist estimator and is asymptotically normal.

Theorem 3 Let aX ∈ [0,∞) be such that F (v)−F (u) > δ > 0 for [u, v] ⊆ [aX , τ ]. Moreover,
assume that

1.
∫ τ

aX
dF (x)/G(x,∞) −G(x, x) < ∞.

2. dG(x,∞) − dG(x, x)/dF (x) is uniformly bounded on [aX , τ ]. Then the NPMLE F̂ is
uniformly consistent on [aX , τ ].

Proof See Shen (2010) [38].

Theorem 4 Let D(x) = G(x,∞)−G(x, x), D̃(x) = (x,∞)−(x, x) and D̃n(x) = G̃n(x,∞)−
G̃n(x, x). Under the assumptions (a) and (b) of Theorem 2, we assume that (c) the class of
functions F , where F consists of functions with envelop 1/D(s) is a F̃ (s)-Donsker class, and

(d)
∫ v

u

dF̃ (x)
D(x)D̃n(x)

≤ G(u, v) (2.23)

with probability tending to 1, where M(., .) is such that the class of functions with envelope
M(., .) is G̃(u, v)-Donsker. Then

√
n(F̂n(x)) − F (x)) is asymptotically normal for every

x ∈ [aF , τ ].

Proof See Shen (2010).
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2.2.2 Semiparametric consideration in estimation

In the previous section we dealt with estimation without condition on the distribution limit
G(u, v), however sometimes there is situation where the distribution of truncation limit is
assumed to be follow parametric family {G(., .; θ), θ ∈ Θ)}, where θ is a vector parameters
and Θ stands for the parametric space. Now, let us consider this definition of the probability
distributions of the truncation limit in this case

H(x; θ) := P (U∗ ≤ x ≤ V ∗; θ) (2.24)

=
∫

{u≤x≤v}
dG(u, v; θ). (2.25)

Hence, the probability of distribution function is defined by

F ∗(x; θ) := P (X∗ ≤ x|U∗ ≤ X∗ ≤ V ∗) (2.26)

= α(θ)−1
∫ x

aX

H(z; θ)dF (z), (2.27)

where

α(θ) := P (U∗ ≤ X∗ ≤ V ∗; θ) (2.28)

=
∫ bx

aX

H(z; θ)dF (z). (2.29)

The conditional likelihood function can be represented as the previous case in two parts by

L(F ; θ) := Lm(F |X; θ) × Lc(θ|U, V,X) (2.30)

=
n∏

i=1

H(Xi; θ)dF (Xi)
α(θ) ×

n∏
i=1

g(Ui, Vi; θ)
H(Xi; θ)

, (2.31)

where g(u, v; θ) is the joint density of truncation limit. In addition [39] show that an
estimator of the parameter θ is given by maximizing the conditional likelihood function
Lc(θ) = ∏n

i=1
g(Ui,Vi;θ)
H(Xi;θ) , and Lm(F |X; θ) is treated as a multinomial likelihood. Now, we

define the estimator of F (x) by

F̂ (x; θ̂) := α̂(θ̂)
∫ z

aF

H(z; θ̂)−1dF ∗
n(z) (2.32)

:= n−1α̂(θ̂)
n∑

i=1
H(Xi; θ̂)−11{Xi≤x}, (2.33)

where α̂(θ̂)−1 = n−1 ∑n
i=1 H(Xi; θ̂)−1.
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2.2.2.1 Asymptotic properties

Consider the assumption given in [39], We define this theorem

Theorem 5 • We have supaX≤x≤bX
|F̂ (x; θ̂) − F (x)| as−−−→

n→∞
0 .

•
√
n(F̂ (.; θ̂) − F (.)) converges weakly to a mean zero Gaussian process with covariance

A(x, y) = W T (x)I−1(θ)W (y)+Σ(x, y) for x ≤ y. Where I(θ) is the Fisher information
matrix given by

I(θ) = E[(∂ logG(U, V ; θ)/H(X; θ)
∂θ

)(∂ logG(U, V ; θ)/H(X; θ)
∂θ

)T ], (2.34)

and

W (s) =
∫ bX

aX

∂H(z; θ)/∂θ
H(z; θ) (F (s) − 1{z≤s})dF (z), (2.35)

where

Σ(x, y) = ωθα(θ)[S(y)
∫ x

aX

(ωθH(z; θ))−1dF (z) (2.36)

− F (x)(S(y))
∫ y

aX

(ωθH(z; θ))−1dF (z)], (2.37)

and ω =
∫ bX

aX
H(z; θ)−1dF (z).

Proof See [39].

Theorem 6 Now consider θ̂ the solution of the maximum likelihood given by

∂logLc(θ̂)
∂θ

= 0. (2.38)

We find

√
n(θ̂ − θ) → N (0, I(θ)−1), (2.39)

in law, where I(θ) = E[(∂2 log g(Ui,Vi;θ)/H(Xi;θ)
∂2θ

)].

Proof See [28].
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2.2.3 Bootstrap method

Now, in this part we consider method which addressed for the finite sample for define the
NPMLE which is define in [27], hence we follow the same process as in completed data in
order for small sample in order to provide an approximation of the NPMLE Fn, we look at
the simple bootstrap, which is more consistent than the obvious bootstrap. The bootstrap
procedure is defined as in completed data for b = 1...B we defined U boot

i , Xboot
i , V boot

i is consider
as simple resample where in each observation Ui ≤ Xi ≤ Vi we putting weight 1/n, and we
repeat this procedure for B, thus we define F̂ boot which is computed for b = 1, ..., n, hence
F̂ boot

1 (x), F̂ boot
2 (x), ..., F̂ boot

b (x) can consider empirical distribution.

2.2.4 Particular case of double truncation: Fixed-Length

In this part, we discuss special case when the rv of right truncation limit is given by this
formula V = U + d, where d > 0 is deterministic(ie., is not random) this situation is find in
many situation in this case the likelihood function is given by

L =
n∏

i=1

f(xi)g1(ui)∫
(
∫ u+d

u dF (x))g1(u)du
(2.40)

where g1 is the density function of the rv of left truncation limit. Following the same proce-
dure as before, the likelihood function can now be decomposed into

L =
n∏

i=1

f(xi)∫ vi−d
ui

dF (x)
×

n∏
i=1

(
∫ vi−d

ui
dF (x))g(ui)∫

(
∫ u+d

u dF (x))g1(u)du
= L1(f) × L2(f, g). (2.41)

Hence, we find

L1(f) =
n∏

i=1
P (X∗ = xi|ui ≤ X ≤ Ui + d) =

n∏
i=1

f(xi)∫ vi+d
ui

dF (x)
. (2.42)

In order to define the likelihood in this case we use the last formula as before without modeling
the right truncation limit.
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2.3 Kernel density estimator

Let us now consider the smooth way to define the density estimators for double truncated
data given in [29], which is given by the following equation

fb(x) := (Kb ∗ Fn)(x) = αn
1
n

n∑
i=1

Hn(Xi)−1Kb(x−Xi). (2.43)

And the semiparametric kernel density estimator is given by

fb,θ̂(x) := (Kb ∗ Fθ̂)(x) = αθ̂

1
n

n∑
i=1

Hθ̂(Xi)−1Kb(x−Xi), (2.44)

where Kb(x) = (1/b)K(x/b) which is the kernel or weight function, and b is the bandwidth.

2.3.1 Asymptotic properties

In addition, in order to study the asymptotic properties of this estimators we define artificial
estimators based on the true distribution of αn and Hn(x) and this hold true under the
conditions of convergence of Shen (2010) of αn and Hn(x), hence both estimators given in
2.43 and 2.44 have the same artificial estimator given by

f̃b(x) := α
1
n

n∑
i=1

H(Xi)−1Kb(x−Xi). (2.45)

Theorem 7 1. If K is bounded on a compact support, b is such that ∑∞
i=1 exp(−νbn) < ∞

for each ν > 0, H is continuous at x, and x is a Lebesgue point of f , then f̃b(x) as−−−→
n→∞

f(x).

2. If, in addition to the conditions in part 1, K is an even function, b = o(n−1/5), H−1f

has a second derivative which is bounded in a neighbourhood of x, and f(x) > 0, then

(nb)−1/2(f̃b(x) − f(x)) L−−−→
n→∞

N (0, αH(x)−1f(x)R(k)), (2.46)

where R(k) :=
∫
K2(x)dx.

Proof For 1, let f ∗
0,b(x) = αH(x)−1f0,b(x) and f0,b(x) is the kernel estimator of density

which define for completed data and hence we have f ∗
0,b(x) p−−−→

n→∞
αH(x)−1f(x).

Under the condition that K is contained in [−a, a], we gate

|f̃b(x) − f ∗
0,b(x)| ≤ αf ∗

0,b(x) sup
x−ab≤y≤x+ab

|H(y)−1 −H(x)−1|,

Univ-Biskra/MATHEMATICS: 2024 29



Double truncation

hence supx−ab≤y≤x+ab |H(y)−1 −H(x)−1| → 0 and this by the continuity of G at x.
For 2 we follow this same procedure in [12] we gate

(nb)−1/2(f̃b(x) − E(f̃b)(x)) N−−−→
n→∞

N (0, αH(x)−1f(x)R(k)), (2.47)

hence, we use the Taylor expansion we find E(f̃b(x)) − f(x) = O(b2). For nb5 → 0, then we
complete the proof.

Now, in order to determine the equation for the bias and the variance, we will based on the
assumption of the classical approach as follows

H 1 The kernel function satisfies: K(t) > 0,
∫
K(t) = 1,

∫
tK(t) = 0,

∫
t2K(t) < ∞, and∫

K(t)2dt < 0.

H 2 The bandwidth b = bn satisfies: b → 0 and nb → ∞ when n → ∞.

H 3 The functions f and H−1f are twice continuously differentiable around x.

Through the conditions listed above, we find

E(f̃(x)) = f(x) + 1
2b

2f”(x)µ2(K) + o(b2) (2.48)

V ar(f̃(x)) = 1
nb
αH(x)−1f(x)R(K) + o((nb)−1). (2.49)

Now, we look at the asymptotic formula of MSE of the estimator, which define by

AMSE(f̃(x)) := 1
4b

4f”2(x)µ2
2(K) + 1

nb
αH(x)−1f(x)R(K). (2.50)

Thus, the asymptotic formula of MISE is given by

AMISE(f̃) :=
∫
MSE(f̃)(x)dx = 1

4b
4R(f”)µ2

2(K) + 1
nb
αR(K)

∫
H(x)−1f(x)dx. (2.51)

In accordance with the classical method, we minimize the formula of AMISE(f̃) in order to
get the asymptotically optimal bandwidth which define by

bAMISE := [αR(K)
∫
H(x)−1f(x)dx

R(f”)µ2
2(K) ]−1/5n−1/5. (2.52)
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2.3.2 Selection of optimal bandwidth for kernel density estimator

In this section, we consider the method of obtaining the optimal bandwidth for density when
the data is sampling under double truncation which is defined in [32]. The proposed methods
can be readily adapted to the nonparametric case, although in this section we restrict our
attention to the semiparametric estimator.

2.3.2.1 Normal reference as method for define bandwidth

Now, in order for define the optimal bandwidth which give in 2.52 we need to estimate the
unknown values in this formula, and as in the classical way given in [34], we assume that the
distribution follows the normal distribution N (µ, σ), therefore by this assumption we find
R(f ′) = 0.375/(σ5√π), and we take Gaussian kernel we find

bAMISE = (0.375α
∫
H−1(z)f(z)dz)1/5σn−1/5. (2.53)

However, this estimator suffers from the problem of smoothing and is therefore reduced to

bAMISE = (0.375α
∫
H−1(z)f(z)dz)1/5IQRn−1/5, (2.54)

where IQR is the interquartile range of normal distribution, thus the bandwidth of type
normal reference is given by

bNR = (0.375αθ̂

∫
H−1

θ̂
(z)dFθ̂(z))

1/5 min(σ̂, 0.795IQR)n−1/5, (2.55)

for the parameter σ is can be estimated by

σ̂ = αθ̂

∫
(z − µ̂θ̂)

2H−1
θ̂

(z)dF ∗(z), (2.56)

and µ̂θ̂ is defined by

σ̂ = αθ̂

∫
zH−1

θ̂
(z)dF ∗(z). (2.57)

For the interquartile range is given by IQR = F−1
θ̂

(0.75) − F−1
θ̂

(0.25).

Univ-Biskra/MATHEMATICS: 2024 31



Double truncation

2.3.2.2 Plug in method

In the previous part, we defined an easy way to find bandwidth. However, this method
works well under the assumption of normality, so we need to use a more precise and more
flexible method. We note that the estimation of the formula define in 2.52 need to estimate
R(f (r)(x)) =

∫
f (r)(z)2dz = (−1)r

∫
f (2r)(z)f(z)dz, for this reason let study function of the

form

ψr =
∫
f (r)(x)f(x)dx (2.58)

= E(f (r)(x)), (2.59)

then, we estimated this expression by

ψ̂r(g) = α̂n−1
n∑

i=1
f̂ (r)(Xi)(H(Xi))−1

= α̂2n−2g−r−1
n∑

i=1

n∑
j=1

L(r)(Xi −Xj

g
)(H(Xi))−1(H(Xj))−1,

where g and L are the bandwidth and kernel function respectively, and are defined under
the same condition in [34] and [45] for completed data case. Hence by simply calculations
we find the bandwidth given by

gAMISE = [−αk!Lr(0)
∫
(H(z))−1dF (z)

ψr+kµk(L)n ]1/r+k+1 (2.60)

Now, rewrite the formula of optimal bandwidth the definition of ψ4 as

bAMISE = [αR(k)
∫
(H(z))−1dF (z)
ψ4µ2(K)2 ]1/5n−1/5. (2.61)

Hence, we estimate α
∫
(H(z))−1F (dz) and ψ2. we defined the direct plug-in by this formula

b̂DP I = [ α̂
∫
Ĥ(z)−1dF̂ (z)

ψ̂4(g)µ2(K)2
]1/3n−1/3. (2.62)

However this formula keep depend to the bandwidth g. For this cause we use g by making
use of formula 2.60 with r = 4 we gate

gAMISE = [−α2L4(0)
∫
(H(z))−1dF (z)

ψ6µ2(L)n ]1/7

Now, we need estimation of this bandwidth formula necessitates an estimator of ψ4, which
need again the selection of an appropriate bandwidth. Then we use anther use the normal
reference rule for estimate ψ as in completed data we fined

ψr = (−1)r/2r!
(2σ)r+1(r/2)!(π)1/2 , (2.63)
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we estimated then we gate

ψ̂NR
r = (−1)r/2r!

(2σ̂)r+1(r/2)!(π)1/2 . (2.64)

In actuality, the number of steps that will be included in this iterative process must be
decided. Hence, we will work with l = 0, 1, 2. To summarize, for l = 1 the procedure contain
this steps.

1. Calculate ψ̂NR
6 = (−1)36!

(2σ̂)7(3)!(π)1/2 .

2. Calculate ψ̂4(g1)

g1 = [− α̂2L(4)(0)
∫
Ĥ(z)−1dF̂ (z)

ψ̂NR
6 µ2(L)n

]1/7. (2.65)

3. The bandwidth is

b̂DP I = [− α̂R(k)
∫
H(z)−1dF̂ (z)

ψ̂4(g1)µ2(K)2
]1/5n−1/5. (2.66)

Now, the two-stage plug-in bandwidth selector is given by

1. Calculate ψ̂NR
8 = (−1)48!

(2σ̂)9(4)!(π)1/2 .

2. Calculate ψ̂6(g1)

g1 = [− α̂2L(4)(0)
∫
Ĥ(z)−1dF̂ (z)

ψ̂NR
8 µ2(L)n

]1/9. (2.67)

3. Calculate ψ̂4(g1)

g2 = [− α̂2L(4)(0)
∫
Ĥ(z)−1dF̂ (z)

ψ̂6(g1)µ2(L)n
]1/7. (2.68)

4. The bandwidth is

b̂DP I;2 = [− α̂R(k)
∫
H(z)−1dF̂ (z)

ψ̂4(g2)µ2(K)2
]1/5n−1/5. (2.69)
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2.3.2.3 Cross-validation method for selecting optimal bandwidth

Now, we are going to look at another method, which is different from the previous two
methods in that it is based on the exact form of MISE =

∫
E(fb(z) − f(z))dz. Hence we

have
MISE(fb) := E(ISE(fb)) = E(

∫
(fb(z) − f(z))2dz), (2.70)

by simplification as in completed data where minimize MISE(fb) with respect to b is equiv-
alent to minimize

MISE(fb) −
∫
f(z)2dz = E(

∫
f 2

b (z)dz − 2
∫
fb(z)f(z)dz). (2.71)

Let us now consider the estimator of the density that covers all the data excluding the
observation Xi by this formula

fb;−i(x) = (kb ∗ Fn;−i)(x) = αn;−i
1

n− 1
∑
i ̸=j

Hn;−i(Xj)−1Kb(x−Xj), (2.72)

where Hn;−i(.) is an estimator of H(.), since observation Xi is not included. Hence we have

LSCV (b) =
∫
f 2

b (z)dz − 2αn;−i
1
n

n∑
i=1

fb(Xi)Hn;−i(Xi)−1. (2.73)

Therefore, we minimise this formula with respect to b in order for define the optimal band-
width, we find

b̂LSCV = argminb{
∫
f 2

b (z)dz − 2αn;−i
1
n

n∑
i=1

fb(Xi)Hn;−i(Xi)−1}. (2.74)

2.3.2.4 Bootstrap method for selection an optimal bandwidth

Now we look at the smoothed bootstrap which provide consist bandwidth. The bootstrap
procedure is defined as in the completed data for b = 1...B we gate

1. Let Xboot
b,i be an iid sample from fθ, g, where g is chosen to be well b̂DP I,2, and let

U boot
b,i , V boot

b,i , i = 1, .., n, be an i.i.d. sample from Gn. We repeated this step until the
condition of observed data U boot

b,i ≤ Xboot
b,i ≤ V boot

b,i .

2. Now, we define θ̂ and f boot
b,θ̂

(x) be the estimators based on the bootstrap sample defined
in step 1.

Now we define
BMISE(b) = B−1

B∑
b=1

∫
(f boot

b,θ̂boot(x) − fg,θ̂(x)d)2x, (2.75)
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which as B is big it close to

MISEboot(b) = Eboot[
∫

(f boot
b,θ̂boot(x) − fg,θ̂(x)d)2x]. (2.76)

Hence

b̂boot = argminbBMISE(b). (2.77)

2.4 Kernel estimation of the cumulative distribution
function

In the previous section, the definition of nonparametric kernel density of [29] is given by

fb(x) :=
∫
kb(x− t)dFn(t)

= αn
1
n

n∑
i=1

kb(x−Xi)Hn(Xi)−1.

And the semiparametric kernel density estimator is defined by

fb,θ̂(x) := (Kb ∗ Fθ̂)(x) = αθ̂

1
n

n∑
i=1

Hθ̂(Xi)−1Kb(x−Xi), (2.78)

since, now we want a smoother estimate of the distribution, as we have defined the cured
estimates of the df in 2.2, we should integrate the density estimators in both cases, for define
the nonparametric estimator of df which given by

Fb(x) :=
∫ x

aX

fb(z)dz

= αn
1
n

n∑
i=1

Hn(Xi)−1
∫ x

aX

kb(t−Xi)dt

= αn
1
n

n∑
i=1

Hn(Xi)−1W (x−Xi

b
),

and the semiparametric estimator of df by

Fb;θ̂(x) :=
∫ x

aX

fb;θ̂(z)dz

= αθ̂

1
n

n∑
i=1

Hθ̂(Xi)−1
∫ x

aX

kb(t−Xi)dt

= αθ̂

1
n

n∑
i=1

Hθ̂(Xi)−1W (x−Xi

b
),
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where W (t) =
∫ t

aX
k(x)dx is the cumulative kernel function.

Now, in order to define the asymptotic properties of our estimators, we provide the pseudo-
estimator F̃b(t) = α

n

∑n
i=1 H(Xi)−1W (x−Xi

b
), where this estimator based on the true value of

α and H(Xi) and this hold true under the theorem define in 2 for both kinds of estimators
nonparametric and the semiparametric. Moreover, we assume that the kernel and bandwidth
satisfied the regularity assumptions as in [29] and [33], hence based on the true value of α
and H we find this results in next section.

2.4.1 Asymptotic properties

In the next part we give the asymptotic mean and variance, in addition to the consistency
and the asymptotic normality of the estimator of the kernel distribution function.

H 1 The kernel function satisfies: K(t) > 0,
∫
K(t) = 1,

∫
tK(t) = 0,

∫
t2K(t) < ∞, and∫

K(t)2dt < 0.

H 2 The bandwidth b = bn satisfies: b → 0 and nb → ∞ when n → ∞.

H 3 The functions F and H−1F are twice continuously differentiable around x.

Theorem 8 Now, under the assumption given before and assuming that H is have symmetric
support on [−1, 1], we have

E(F̃b(x)) = F (x) + b2

2 F
′′(x)µ2(K) + o(b2). (2.79)

V ar(F̃b(x)) = n−1αH(x)−1{F (x)[1 − F (x)] + bf(x)[J(k)] + o(b)}, (2.80)

where J(k) =
∫ 1

−1 W
2(z)dz − 1.

Proof The proof follows as in completed data and this in consider of the condition of
regularity see [15] for more details.

The asymptotic mean integrated squared error of the estimator of distribution function is
defined by

AMISE(F̃b) =
∫
AMSE(F̃b(x))dx

= b4

4

∫
f ′(x)2

dxµ2(K)2 + n−1α
∫
H(x)−1{F (x)[1 − F (x)]

+ bf(x)[J(k)]dx}.
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Then the asymptotically optimal bandwidth can be obtained by

bAMISE = [(1 −
∫ 1

−1 W
2(z)dz)α

∫
H(x)−1f(x)dx∫

f ′(x)2dxµ2(K)2
]1/3n−1/3. (2.81)

Since, there is unknown quantities in this expression it cannot be used in practise for this
reason we provide the bandwidth selector for the df under double truncation in the last
chapter.

Theorem 9 Let K be a kernel function whose satisfied 0 < k(x) and bounded with
∫
k(x) =

1, lim
x→∞

|xk(x) = 0|, and b → 0 with increasing n. Then our estimators is asymptotic unbiased
and consists.

Proof Based on the theorem of density under double truncation defined in [29] and the
inequality instantly which based on fubini theorem lead to the first part of the theorem.

|EF̃b(x) − F (x)| = |E
∫
f̃b(x) − f(x)dx|

≤
∫
E|f̃b(x) − f(x)|dx

Hence from [29] we can find that E|f̃b(x) − f(x)| −−−→
n→∞

0 which leads to result of the part 1.
Now for proof the consist of our estimators it results from the the first part of the theorem
and the mean square error (MSE)

MSE(F̃b(x)) = V ar(F̃b(x)) + (EF̃b(x) − F (x))2

hence as n → ∞ the proof is completed.

Theorem 10 If K satisfies K(x) < M < ∞ on a compact support, h is such that∑ exp(−νhn) <
+∞ for each ν > 0 H is continuous at x, x is a Lebesgue point of F if K is an even function,
b = o(n−1/3), H−1F has a second derivative which is bounded in a neighbourhood of x, and
F (x) > 0, then

(n)1/2(F̃b(x) − F (x)) L−−−→
n→∞

N(0, αH−1(x)F (x)S(x)).

Proof Let start by define,
F ∗

b (y) = 1
n

n∑
i=1

W (x−Xi), (2.82)

which is the kernel estimator of the df and based on the true value of α and H and under
the stable regularity conditions given in [38]. Therefore the proof is follow the theorem 6
of Watson and Leadbetter(1964) [48] who proof the asymptomatic normality of the kernel
estimator of the df.
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CHAPTER 3

HAZARD FUNCTION FOR DOUBLY
TRUNCATED DATA

E
stimation under double truncation has been an attractive topic and many scien-
tific papers and researches dealt with this topic. For this reason, in this chapter

we try to identify the special mechanisms that should be used in the estimation in order to
minimize the impact of truncation, and we focus in particular on estimation of the hazard
function.
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Hazard function

3.1 The NPMLE of Hazard function

Now, to define the hazard function based on defining of the NPMLE given in 2.2, first let
consider X is the variable of interest which is suppose to be observed just inside known
interval, then the observed data is defined by {(Ui, Xi, Vi)i = 1, ..., n/Ui ≤ Xi ≤ Vi}. Let
fi is the distribution probability on Xi, i = 1, ..., n, and Let Gi is the joint distribution
probability on (Ui, Vi), i = 1, ..., n respectively. Hence the NPMLE in this case is given by

L =
n∏

j=1
fjgj/

n∑
i=1

Figi = L1(f) ∗ L2(f, g), (3.1)

where Fi = ∑n
k=1 fkπi,k, and πi,k = 1{Ui≤ Xk≤ Vi} is the indicator function, Efron and

Patrson (1999) consider the first parts which is given by L1(f) = ∏n
j=1 fj/Fi, thus the NPMLE

of (f1, f2, ..., fn) is defined by

f̂j = (
n∑

i=1
πi,e(1/F̂i))−1,∀j = 1, ..., n, (3.2)

as F̂i = ∑n
k=1 f̂kπi,k, thus the estimator of the hazard function in this case is defined by

ĥj = f̂j/1 − F̂j is given by this formula

ĥj = (
n∑

i=1
1{Ui≤ Xj≤ Xi} +

n∑
i=1

πi,j
Ŝ(Vi)
F̂i

)−1,∀j = 1, ..., n, (3.3)

where Ŝ(Vi) = ∑n
j=1 f̂j1{Xj>Vi} is the curde estimator of the survival function when X = Vi.

Lemma 1 We have
ĥ(Xj) = f̂j∑n

k=1 f̂k1{Xk≥Xj}
. (3.4)

Proof Let consider h̃(X(j)) = (F̂ (X(j)) − F̂ (X(j−1)))/(1 − F̂ (X(j−1))), j = 1, ..., n, we can
write

F̂ (X(j)) − F̂ (X(j−1)) = (
n∑

i=1

1{Ui≤ X(j)≤ Vi}

F̂ (Vi) − F̂ (U−
i )

)−1. (3.5)

Then
h̃(X(j)) = ((

n∑
i=1

1{Ui≤ X(j)≤ Vi}){
1 − F̂ (X(j−1))
F̂ (Vi) − F̂ (U−

i )
})−1. (3.6)

And
ĥ(X(j)) = ((

n∑
i=1

1{Ui≤ X(j)≤ Xi} + 1{Ui≤ X(j)≤ Vi}){
1 − F̂ (Vi)

F̂ (Vi) − F̂ (U−
i )

})−1. (3.7)
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Note that to proof this lemma we proof h̃(X(j)) = ĥ(X(j)) for j = 1, ..., n in more simplification
we need to proof this equation

n∑
i=1

1{Ui≤ X(j)≤ Xi} = ((
n∑

i=1
1{Ui≤ X(j)≤ Vi}){

F̂ (Vi) − F̂ (X(j−1))
F̂ (Vi) − F̂ (U−

i )
}). (3.8)

Now, to continue proving, we need to use induction on i.

• For j = 1, we have F̂ (X(j−1)) = F̂ (X(0)) = 0 and 1{Ui≤ X(1)≤ Xi} = 1 for i = 1, ..., n we
note that F̂ (U−

i ) = 0. We can now see that ∑n
i=1 1{Ui≤ X(1)≤ Xi} = ∑n

i=1 1{Ui≤ X(1)} =∑n
i=1 1{Ui≤ X(1)≤ Vi}, therefore, our conclusion is that the assertion is true.

• For j = k, we have
n∑

i=1
1{Ui≤ X(k)≤ Xi} = ((

n∑
i=1

1{Ui≤ X(k)≤ Vi}){
F̂ (Vi) − F̂ (X(k−1))
F̂ (Vi) − F̂ (U−

i )
}). (3.9)

Now, we need to proof this equation i.e.,
Part 1︷ ︸︸ ︷

n∑
i=1

1{Ui≤ X(k+1)≤ Xi} = ((
n∑

i=1
1{Ui≤ X(k+1)≤ Vi}){

F̂ (Vi) − F̂ (X(k))
F̂ (Vi) − F̂ (U−

i )
})︸ ︷︷ ︸

Part 2

. (3.10)

Note that part 2 is equivalent to

((
n∑

i=1
(1{Ui≤ X(k)<X(k+1)≤ Vi} + 1{X(k)<Ui≤ X(k+1)≤ Vi})){

F̂ (Vi) − F̂ (X(k))
F̂ (Vi) − F̂ (U−

i )
}). (3.11)

= ((
n∑

i=1
(1{Ui≤ X(k)≤ Vi} − 1{Ui≤ X(k)≤ Vi≤X(k+1)} + 1{X(k)<Ui≤ X(k+1)≤ Vi})){

F̂ (Vi) − F̂ (X(k))
F̂ (Vi) − F̂ (U−

i )
}).

(3.12)
Hence

=

A︷ ︸︸ ︷
((

n∑
i=1

( 1{Ui≤ X(k)≤ Vi}{
F̂ (Vi) − F̂ (X(k−1))
F̂ (Vi) − F̂ (U−

i )
} −

n∑
i=1

(1{Ui≤ X(k)≤ Vi}{
F̂ (X(k)) − F̂ (X(k−1))
F̂ (Vi) − F̂ (U−

i )
}︸ ︷︷ ︸

B

−

C︷ ︸︸ ︷
n∑

i=1
1{Ui≤ X(k)≤ Vi≤X(k+1)}{

F̂ (Vi) − F̂ (X(k))
F̂ (Vi) − F̂ (U−

i )
} +

n∑
i=1

1{X(k)<Ui≤ X(k+1)≤ Vi})){
F̂ (Vi) − F̂ (X(k))
F̂ (Vi) − F̂ (U−

i )
}))︸ ︷︷ ︸

D

.

Since the assertion holds for j = k, we gate

(A) =
n∑

i=1
( 1{Ui≤ X(k)≤ Xi}). (3.13)
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Now, we note that F̂ (X(k)) − F̂ (X(k−1)) = (∑n
i=1

1{Ui≤ X(k)≤ Vi}

F̂ (Vi)−F̂ (U−
i ) )−1. We find B = 1. We

note that F̂ (Vi) = F̂ (X(k)), as X(k) ≤ Vi < X(k+1), then C = 0. And F̂ (X(k)) =
F̂ (U−

i ) =, as X(k) < Ui ≤ X(k+1), then D = ∑n
i=1 1{X(k)<Ui≤ X(k+1)≤ Vi}.

By simplification of part 2 of equation 3.10 we find is equal to
n∑

i=1
( 1{Ui≤ X(k)≤ Xi}) − 1 +

n∑
i=1

1{X(k)<Ui≤ X(k+1)≤ Vi}. (3.14)

Hence the part 1 of equation 3.10 is given by
n∑

i=1
1{Ui≤ X(k+1)≤ Xi} =

n∑
i=1

( 1{Ui≤ X(k)≤ Xi}) +
n∑

i=1
1{X(k)<Ui≤ X(k+1)≤ Xi} (3.15)

−
n∑

i=1
1{Ui≤X(k)≤ Xi≤ X(k+1)}. (3.16)

By equivalent of this two equations we find
n∑

i=1
1{X(k)<Ui≤ X(k+1)≤ Xi} −

n∑
i=1

( 1{Ui≤ X(k)≤ Xi≤ X(k+1)}) =
n∑

i=1
1{X(k)<Ui≤ X(k+1)≤ Vi}−1 .

(3.17)

We have
n∑

i=1
1{X(k)<Ui≤ X(k+1)≤ Vi}−1 =

n∑
i=1

1{X(k)≤ Ui≤ X(k+1)≤ Xi} +
n∑

i=1
1{X(k)<Ui≤ X(k+1)≤ Vi}.

(3.18)

We have 1{X(k)<Ui≤ X(k+1)≤ Vi} = 0,∀i = 1, ..., n., we result that ∑n
i=1 1{X(k)<Ui≤ X(k+1)≤ Vi} =

0, and this give us ∑n
i=1( 1{Ui≤ X(k)≤ Xi≤ X(k+1)}) = 1 thus the proof is finished.
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3.2 The smooth estimator of hazard function

In this section, we consider the smooth estimator of the hazard function which is defined in
[31] by this formula

hb(x) :=
∫
kb(x− z)∆n(dz) =

∫
kb(x− z) dFn(z)

1 − Fn(z−) ,

where Fn is Efron and Patrson estimator’s of the distribution function given in 2.2, and
kb(z) = (1/b)k(z/b) is the kernel function and b is the ordinal bandwidth with classical con-
dition of regularity.
Now, for the evaluation of the asymptotic behavior of the this estimator we define an asymp-
totically equivalent estimator by

h̃b(x) := α
n∑

i=1
kb(x−Xi)

H(Xi)−1

1 − F (Xi)
. (3.19)

Theorem 11 1. If K is bounded on a compact support, b is such that ∑∞
i=1 exp(−νbn) <

∞ for each ν > 0, H is continuous at x, and x is a Lebesgue point of f , then h̃b(x) as−−−→
n→∞

h(x).

2. If, in addition to the conditions in part 1, K is an even function, b = o(n−1/5), H−1/(1−
F )h has a second derivative which is bounded in a neighborhood of x, and h(x) > 0,
then

(nb)−1/2(h̃b(x) − h(x)) L−−−→
n→∞

N (0, αH(x)−1(1 − F (x))−1h(x)R(k)), (3.20)

where R(k) :=
∫
K2(x)dx.

Proof For 1, let h̃∗
0,b(x) = αH(x)−1

1−F (x)f0,b(x) and f0,b(x) is the kernel estimator of density which
define for completed data and is consist estimator i.e., f ∗

0,b(x) p−−−→
n→∞

f ∗(x).
under the condition that K is contained in [−a, a], we have

|h̃b(x) − h∗
0,b(x)| ≤ αf ∗

0,b(x) sup
x−ab≤y≤x+ab

| H(y)−1

1 − F (y) − H(x)−1

1 − F (x) |,

hence supx−ab≤y≤x+ab |H(y)−1 − H(x)−1| is converge to zero and this by the continuity of G
at x.
For 2 we follow this same procedure in [12] we gate

(nb)−1/2(h̃b(x) − E(h̃b(x)) L−−−→
n→∞

N (0, α H(x)−1

1 − F (x)h(x)R(k)), (3.21)

hence, we use the Taylor expansion we find E(h∗
b(x)) − h(x) = o(b2). For nb5 → 0, then we

complete the proof.
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Now, in order to define the bias and variance we need the list of assumptions below

H 1 The kernel function satisfies: K(t) > 0,
∫
K(t) = 1,

∫
tK(t) = 0,

∫
t2K(t) < ∞, and∫

K(t)2dt < 0.

H 2 The bandwidth b = bn satisfies: b → 0 and nb → ∞ when n → ∞.

H 3 The functions h and H−1/(1 − F )h are continuously differentiable twice around x.

Assuming regularity of the kernel and bandwidth, the mean and variance, we gate

E(h̃(x)) = h(x) + 1
2b

2h”(x)µ2(K) + o(b2) (3.22)

V ar(h̃(x)) = 1
nb
α
H(x)−1

1 − F (x)h(x)R(K) + o((nb)−1). (3.23)

Now, the formula of MSE of the estimator, is given by

AMSE(h̃(x)) := 1
4b

4h”2(x)µ2
2(K) + 1

nb
α
H(x)−1

1 − F (x)h(x)R(K). (3.24)

Hence, the asymptotic formula of MISE is given by

AMISE(h̃) :=
∫
MSE(h̃)(x)dx = 1

4b
4R(h”)µ2

2(K) + 1
nb
αR(K)

∫ H(x)−1

1 − F (x)h(x)dx. (3.25)

Thus, the asymptotically optimal bandwidth is defined by

bAMISE := [αR(K)
∫
H(x)−1(1 − F (x))−1h(x)dx
R(h”)µ2

2(K) ]−1/5n−1/5. (3.26)
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3.3 The proposed estimator

In this section, we are going to provide a new estimator of hazard function. Of course, as we
know the hazard function is defined by

h(x) = f(x)
1 − F (x) . (3.27)

Thus, our proposed estimator is based on the estimation of the denominator and numerator
of 3.27. Where an estimator of f(x) is given in [29] by

fn(x) =
∫
kb(x− t)dFn(t)

= αn

n

n∑
i=1

kb(x−Xi)H(Xi)−1,

and Fn is defined in [10] by

Fn(x) = αn

∫ x

aX

H(z)−1dF̃n(z). (3.28)

Now, our proposed estimator is given by this formula

ĥ(x) = f̂(x)
1 − F̂ (x−)

. (3.29)

We note that we have this approximation 1
1−x

∼ 1 + x is for small x > 0, so by simplification
we find an alternative estimator of the hazard function

ĥ(x) = f̂(x)(2 − Ŝ(x−)). (3.30)

From Shen [38] we have

Ŝ(x−) − S(x) = F (x) − F̂ (x−) = op(n)−2, (3.31)

hence, for this reason we can say that this both estimators ĥ(x) = f̂(x)(2 − Ŝ(x)) and
h̃(x) = f̂(x)(2 − S(x−)) are equivalent. Thus, for given the asymptotic properties of the
alternative estimator we use the asymptotic equivalent estimator

E(h̃(x)) = f(x)(2 − S(x)) + 1
2b

2f”(x)(2 − S(x))µ2(K) + o(b2). (3.32)

For the bias we note that f(x)(2 − S(x)) ∼ h(x), then we find

bias(h̃(x)) = 1
2b

2f”(x)(2 − S(x))µ2(K) + o(b2). (3.33)

And
V ar(h̃(x)) = (nb)−1(2 − S(x))αH(x)−1h(x)R(k) + o((nb)−1). (3.34)
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Now, the AMSE is defined by

AMSE(h∗(x)) = 1
4b

4f”2(x)(2 − S(x))2µ2
2(K) (3.35)

+ (nb)−1αR(k)(2 − S(x))H(x)−1h(x), (3.36)

and AMISE =
∫
AMSE(h∗(x))dx which is given by

AMISE(h∗) = 1
4b

4µ2
2(K)R(f”(2 − S)) (3.37)

+ 1
nb
αR(k)

∫
(2 − S(x))H(x)−1h(x)dx. (3.38)

The optimal bandwidth is defined by

bAMISE = {αR(k)
∫
(2 − S(x))H(x)−1h(x)dx
R(f”(2 − S))µ2

2(K) }1/5n−1/5. (3.39)
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3.4 Asymptotic properties of the proposed estimator

In this part, we investigate the strongly consist and the asymptotic normality of our proposed
estimator

Theorem 12 1. We assume that regularity condition given in [29] and [38] are satisfied,
hence we have

(nb)−1(ĥ(x) − h(x)) L−−−→
n→∞

N(0, S(x)−2αH(x)−1f(x)R(k)). (3.40)

2. We assume that the condition still hold, then we gate

ĥ(x) ps−−−→
n→∞

h(x). (3.41)

Proof 1. We note that from Moreira [29] in theorem 2, we can say that

(nb)−2(f̃(x) − f(x)) L−−−→
n→∞

N(0, (αH(x)−1f(x)R(k)). (3.42)

In addition, we have this simplifaction

ĥ(x) − h(x) = {ĥ(x) − h(x)} + {ĥ(x) − h(x)}( Ŝ(x−)
S(x) − Ŝ(x−)

S(x) )

= {ĥ(x) − h(x)} + { f̂(x)
S(x) − h(x)Ŝ(x−)

S(x) }

− {ĥ(x) − h(x)}( Ŝ(x−)
S(x) − 1 + 1)

= f̂(x) − h(x)Ŝ(x−)
S(x) − {ĥ(x) − h(x)}( Ŝ(x−) − S(x)

S(x) )

= 1
S(x){f̂(x) − h(x)Ŝ(x−) + h(x)S(x) − h(x)S(x)}

− {ĥ(x) − h(x)}( Ŝ(x−) − S(x)
S(x) )

= 1
S(x){f̂(x) − h(x){Ŝ(x−) − S(x)} − h(x)S(x)}

− {ĥ(x) − h(x)}( Ŝ(x−) − S(x)
S(x) )

= 1
S(x){f̂(x) − h(x){Ŝ(x−) − S(x)} − f(x)}

− {ĥ(x) − h(x)}( Ŝ(x−) − S(x)
S(x) ).

(3.43)
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Now, we note that Ŝ(x−) −S(x) = F (x) − F̂ (x−) = op(n)−2 and this given by [38] who
proof the uniform consistency and the asymptotically normality in Theorem 3 and 2 of
the NPMLE given in section 2.2, hence we gate

ĥ(x) − h(x) = 1
S(x){f̂(x) + op(n)−2 − f(x)} + op(n)−2. (3.44)

Finally f̃ is asymptotically equivalent withf , hence we can find the result.

2. For the proof of the strongly consist we follow the same simplification as in part 1 of
the proof and we confide our results by the consist of density given in [29].

The regularity assumptions we make are as follows. In order to define the asymptotic vari-
ances and mean of the proposed estimator:

H 1 The kernel k is symmetric, positive function and satisfies
∫
k(t)dt = 1,

µ2(k) =
∫
t2k(t)dt < ∞, and R(k) =

∫
k2(t)dt < ∞.

H 2 The bandwidth sequence b = bn satisfied b → 0, bn → ∞ as n → ∞.

H 3 The functions h(x) and h(x)H(x)−1S−1(x) are twice continuously differentiable around
x.

Theorem 13 Under the assumption of regularity list defined before, the mean and variance
are given by

E(ĥ(x)) = h(t) + 1
2b

2f”(x)
S(x) µ2(K) + o(b2), (3.45)

and
V ar(ĥ(x)) = (nb)−1S(x)−1αH(x)−1h(x)R(k) + o((nb)−1). (3.46)

Proof We follow the same preceding simplification for the proof as before, and we confine
the result to the bias and variance of density which is defined in[29].

The AMSE is given by

AMSE(ĥ(x)) = 1
4b

4f”2(x)
S2(x) µ

2
2(K) + nb−1S(x)−1αH(x)−1h(x)R(k), (3.47)

then we have AMISE(ĥ) =
∫
AMSE(ĥ(x))dx

AMISE(ĥ) = 1
4b

4(R(f”/S))µ2
2(K) + (nb)−1αR(k)

∫
S(x)−1H(x)−1h(x)dx. (3.48)

The optimal bandwidth is given by

bAMISE = {αR(k)
∫
S(x)−1H(x)−1h(x)dx
R(f”/S)µ2

2(K) }1/5n−1/5. (3.49)
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CHAPTER 4

SIMULATION

D
ouble truncation is one of the major challenges in data analysis, which happing
when the observations are lost. For this reason, many researchers have focused on

solving this problem, in this thesis we have introduced many technical and works in order to
solve the problems that connected to truncation especially estimation of the hazard function.
Now, to evaluate our solution we introduce simulation with the program R.
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4.1 Simulation data

To investigate the estimator’s behavior over a finite sample, we run five models with varying
truncation percentages. We perform 1000 Monte Carlo trials using five different types of
estimators, in order to define the bias and root mean square error RMSE of each estimator.
And from the strong law of large numbers we have n/N → α.

• ĥ1(x) = f̂(x)
1−F̂ (x−) is our proposed estimator where F̂ is Efron and Patrson estimators’.

• ĥ2(x) = f̂(x)
1−Fb(x) is our proposed estimator where F is estimated by the kernel function

and we take the cumulative kernel is Tukey integer kernel.

• ĥ3(x) is estimator of hazard function given in [31].

• ĥ4(x) is estimator of hazard function which is cured estimator given in section 2.2.

• ĥ5(x) = f̂(x)(2 − Ŝ(x−)) where Ŝ is the survival function.

Model 1 The tables are simulation for model where we assume X follow Weibull distribution
with (2, 1) and the truncation limit is

1. we assume that and U from U(0, 1) and V = U + 0.25

2. we assume that and U from U(−1, 1) and V = U + 0.75

3. we assume that and U from U(−1/3, 1) and V = U + 1.5

Model 2 The tables are simulation for model where we assume X follow exponential distri-
bution with λ = 2 and the truncation limit is

1. we assume that and U from U(−1/3, 1) and V = U + 1.25

2. we assume that and U from U(−1, 1) and V = U + 0.75

Model 3 The table is simulation for model where we assume X follow exponential distribu-
tion with λ = 1/2 and the truncation limit is

1. we assume that and U from U(−1, 1) and V = U + 0.75

Model 4 The table is simulation for model where we assume X follow Pareto distribution
with (0.5, 1) and the truncation limit is

1. we assume that and U from U(0, 1) and V = U + 0.75
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Model 5 The table is simulation for model where we assume X follow normal distribution
with (0, 1) and the truncation limit is

1. we assume that and U from U(0, 1) and V = U + 0.75.

α̂ ≈ 0.2
n 50 150 250 500
bAMISE 9.590787e-05 1.643863e-05 1.217965e-05 4.411124e-06

Table 4.1: bAMISE is by normal reference for the distribution function for model 1.1

α̂ ≈ 0.2
n ĥ1 ĥ2 ĥ3 ĥ4 ĥ5

bias 50 -0.4987343 -1.551871 -1.404262 -1.400402 -0.4948653
RMSE 0.6883872 1.993602 1.514685 1.507872 0.6794141
bias 150 -0.4103777 -1.592309 -1.282785 -1.276606 -0.4038327
RMSE 0.7480329 2.073556 1.433679 1.423864 0.7239803
bias 250 -0.4155057 -1.603536 -1.295201 -1.288407 -0.429192
RMSE 0.8166817 2.139318 1.447967 1.437386 0.7909527
bias 500 -0.3864767 -1.615672 -1.295543 -1.288407 -0.4337807
RMSE 0.6112144 2.036588 1.448258 1.437386 0.6413404

Table 4.2: The bias and RMSE for the distribution function for model 1.1

α̂ ≈ 0.3
n 50 150 250 500
bAMISE 0.0006845909 2.615753e-05 5.406701e-05 1.735596e-06

Table 4.3: bAMISE is by normal reference for the distribution function for model1.2
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α̂ ≈ 0.3
n ĥ1 ĥ2 ĥ3 ĥ4 ĥ5

bias 50 -1.000838 -1.81778 -1.637239 -1.633883 -0.9674744
RMSE 1.316571 2.346835 1.814636 1.805315 1.261369
bias 150 -1.02246 -1.84628 -1.643964 -1.636491 -1.005916
RMSE 1.423244 2.382401 1.87008 1.857571 1.39499
bias 250 -1.152154 -1.892539 -1.73594 -1.730323 -1.149207
RMSE 1.01155 2.399303 2.39929 1.966733 1.516165
bias 500 -1.08678 -1.890453 -1.696052 -1.689128 -1.107132
RMSE 1.012587 2.398503 1.540688 1.941393 1.501335

Table 4.4: The bias and RMSE for the distribution function for model 1.2

α̂ ≈ 0.8
n 50 150 250 500
bAMISE 0.002905115 0.0002536418 0.0001298252 3.82446e-05

Table 4.5: bAMISE is by normal reference for the distribution function for model1.3

α̂ ≈ 0.8
n ĥ1 ĥ2 ĥ3 ĥ4 ĥ5

bias 50 -1.306149 -1.891511 -1.865144 -1.851915 -1.199085
RMSE 1.650882 2.45611 2.05168 2.033896 1.55546
bias 150 -1.790735 -1.979969 -2.288248 -2.278835 -1.750873
RMSE 2.224652 2.561692 2.541543 2.526473 2.185148
bias 250 -1.709965 -1.987548 -2.221494 -2.210388 -1.692169
RMSE 2.164187 2.547219 2.498999 2.482699 2.139623
bias 500 -1.782657 -2.020467 -2.289813 -2.279496 -1.800552
RMSE 2.314576 2.593274 2.620787 2.605093 2.329907

Table 4.6: The bias and RMSE for the distribution function for model 1.3

4.2 Analyze the results

Through our simulation we can see that the percentage of truncation is fixed in each model
where it is not affected by the sample size in each model, but the effect of changing the
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α̂ ≈ 0.5
n 50 150 250 500
bAMISE 0.001905903 0.0002235539 6.899066e-05 1.750927e-05

Table 4.7: bAMISE is by normal reference for the distribution function for model2.1

α̂ ≈ 0.5
n ĥ1 ĥ2 ĥ3 ĥ4 ĥ5

bias 50 -1.554278 -1.573753 -1.996503 -1.991573 -1.545449
RMSE 1.67521 1.681753 1.996565 1.996565 1.646042
bias 150 -1.521073 -1.566264 -1.998557 -1.991696 -1.530431
RMSE 1.620257 1.650866 1.998561 1.992434 1.613236
bias 250 -1.490832 -1.543618 -1.999164 -1.99171 -1.513274
RMSE 1.62075 1.659437 1.999165 1.99245 1.622201
bias 500 -1.477657 -1.539427 -1.999556 -1.990368 -1.507373
RMSE 1.57804 1.630695 1.999556 1.991127 1.594828

Table 4.8: The bias and RMSE for the distribution function for model 2.1

α̂ ≈ 0.4
n 50 150 250 500
bAMISE 0.0002263451 2.89504e-05 9.324716e-06 2.075316e-06

Table 4.9: bAMISE is by normal reference for the distribution function for model2.2

truncation limit model make the percentage of truncation different. Moreover, from the
analysis of each estimator we find that our proposed estimator is more stable where is give
the smallest value of rmse then the other estimators, and of course we can see that the
three estimators h1, h2, h5 are so close from the results then the two others. In addition, as
n increases, all the estimators behave well and the optimal bandwidth of the distribution
function becomes more stable.
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α̂ ≈ 0.4
n ĥ1 ĥ2 ĥ3 ĥ4 ĥ5

bias 50 -1.158746 -1.185233 -1.999556 -1.987973 -1.14011
RMSE 1.396928 1.405667 1.999556 1.988755 1.37798
bias 150 -1.117092 -1.170076 -1.997897 -1.987973 -1.127265
RMSE 1.33942 1.359977 1.997898 1.988755 1.322894
bias 250 -1.284083 -1.337228 -1.999287 -1.990167 -1.305629
RMSE 1.455126 1.486857 1.999287 1.990947 1.45848
bias 500 -1.31128 -1.364975 -1.999494 -1.99062 -1.337663
RMSE 1.439125 1.480825 1.999494 1.991394 1.454306

Table 4.10: The bias and RMSE for the distribution function for model 2.2

α̂ ≈ 0.2
n 50 150 250 500
bAMISE 0.001828573 4.353783e-05 1.149797e-05 3.043753e-06

Table 4.11: bAMISE is by normal reference for the distribution function for model3

α̂ ≈ 0.2
n ĥ1 ĥ2 ĥ3 ĥ4 ĥ5

bias 50 0.00965931 -0.1761755 0.1865518 -0.4972997 -0.4925952
RMSE 0.265063 0.3202854 0.4905645 0.4973049 0.4956071
bias 150 0.05419744 0.1921511 0.09718899 -0.4985292 -0.4917938
RMSE 0.1435797 0.3831946 0.1625938 0.4985293 0.4948693
bias 250 0.1323443 0.07666908 0.1164615 -0.4989891 -0.4904571
RMSE 0.1674689 0.3454693 0.1598307 0.4989891 0.4935912
bias 500 0.07045756 0.06168726 0.05378868 -0.4996259 -0.4904571
RMSE 0.2337028 0.2516658 0.2339528 0.4996259 0.4935912

Table 4.12: The bias and RMSE for the distribution function for model 3
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Tables

α̂ ≈ 0.4
n 50 150 250 500
bAMISE 0.0005144181 6.356409e-05 2.598838e-05 5.136123e-06

Table 4.13: bAMISE is by normal reference for the distribution function for model4

α̂ ≈ 0.4
n ĥ1 ĥ2 ĥ3 ĥ4 ĥ5

bias 50 -0.18512351 0.1086684 -1.126538 -0.5658987 -0.6027465
RMSE 0.9881321 0.4914275 1.183836 0.6129755 0.643658
bias 150 -0.5880179 0.2376235 -1.066797 -1.058288 -0.5762382
RMSE 0.6233867 0.7298765 1.125536 1.123233 0.6127834
bias 250 -0.5916553 0.2107076 -1.053169 -1.043707 -0.591513
RMSE 0.6147742 0.80411293 1.113373 1.109953 0.6138889
bias 500 -0.5788424 0.2200688 -1.030481 -1.021248 -0.5829258
RMSE 0.61113 0.8277529 1.094053 1.09041 0.6148102

Table 4.14: The bias and RMSE for the distribution function for model 4

α̂ ≈ 0.2
n 50 150 250 500
bAMISE 0.0004492293 0.0007347708 0.000527055 0.0002630326

Table 4.15: bAMISE is by normal reference for the distribution function for model5
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Tables

α̂ ≈ 0.2
n ĥ1 ĥ2 ĥ3 ĥ4 ĥ5

bias 50 -0.5532868 -1.016369 -0.9659516 -0.944781 -0.5392192
RMSE 0.735375 1.100765 1.046705 1.024815 0.6881205
bias 150 -0.5667239 -1.13382 -0.9734247 -0.9491034 -0.5622836
RMSE 0.7487492 1.351328 1.0666091 1.043343 0.7183722
bias 250 -0.5929445 -1.14138 -1.000867 -0.9764933 -0.6070306
RMSE 0.7898498 1.375191 1.098716 1.076008 0.771149
bias 500 -0.587167 -1.157865 -1.049023 -1.030998 -0.663146
RMSE 0.7892744 1.390444 1.156076 1.1383 0.8429926

Table 4.16: The bias and RMSE for the distribution function for model 5
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CHAPTER 5

ON OPTIMAL BANDWIDTH SELECTION

K
ernel estimation is a method to obtain a smooth estimator, however, this method
has the problem of the selected nice bandwidth, as this bandwidth controls the

degree of smoothness. For this reason in this chapter we investigate the problem of define
bandwidth for the distribution function in the presence of double truncation data. Where
we had defined both nonparametric and semiparametric estimators in the previous chapter.
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Optimal bandwidth selector for the distribution function

5.1 Kernel smoothing estimation of the distribution
function

Now, we will concentrate on the definition of the method of the chosen bandwidth of the
distribution function, as the data are collected under double truncation. Let us therefore
start by giving the definition of the nonparametric and the semiparametric of the df, the
nonparametric estimator is given by

Fb(x) :=
∫ x

aX

fb(z)dz

= αn
1
n

n∑
i=1

Hn(Xi)−1
∫ x

aX

kb(t−Xi)dt

= αn
1
n

n∑
i=1

Hn(Xi)−1W (x−Xi

b
),

and the semiparametric estimator of df is defined by

Fb;θ̂(x) :=
∫ x

aX

fb;θ̂(z)dz

= αθ̂

1
n

n∑
i=1

Hθ̂(Xi)−1
∫ x

aX

kb(t−Xi)dt

= αθ̂

1
n

n∑
i=1

Hθ̂(Xi)−1W (x−Xi

b
),

Now, under the assumption given in the previous chapter we have

E(F̃b(x)) = F (x) + b2

2 F
′′(x)µ2(K) + o(b2). (5.1)

V ar(F̃b(x)) = n−1αH(x)−1{F (x)[1 − F (x)] + bf(x)[J(k)] + o(b)}, (5.2)

where J(k) =
∫ 1

−1 W
2(u)du− 1.

The asymptotic mean integrated squared error of this estimator is given under the regu-
larity conditions by

AMISE(F̃b) =
∫
AMSE(F̃b(x))dx

= b4

4

∫
f ′(x)2

dxµ2(K)2 + n−1α
∫
H(x)−1{F (x)[1 − F (x)]

+ bf(x)[J(k)]dx}.

Then the asymptotically optimal bandwidth can be obtained by

bAMISE = [(1 −
∫ 1

−1 W
2(u)du)α

∫
[H(x)]−1f(x)dx∫

f ′(x)2dxµ2(K)2
]1/3n−1/3. (5.3)
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Optimal bandwidth selector for the distribution function

5.1.1 Normal reference bandwidth for the cumulative kernel dis-
tribution function

Now, as in the previous chapter on density function estimation, in order to facilitate the
calculation of the undefined values in 5.3, we assume that the distribution of the variable of
interest follows a normal distribution, so that this method is one of the simplest, although
it suffers from some problems, especially when the variable of interest is far from normal
distribution. Hence by this assumption we find R(f ′) = 1/4σ3√π

bNR = [4
√
π(1 −

∫ 1
−1 W

2(u)du)α
∫
H(x)−1dF ((x))

µ2(K)2 ]1/3n−1/3σ

= [4
√
π(1 −

∫ 1
−1 W

2(u)du)α2 ∫
H(x)−2dF ∗(x)

µ2(K)2 ]1/3n−1/3σ̂,

where F ∗ can by estimated by the ordinary empirical distribution function. In addition σ̂ is
estimated as in density case and α and H(x) as in [38].
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5.1.2 Plug in method

We note that ∫
F”2(x)dx =

∫
f ′2(x)dx,

hence by integration by parties we find∫
F”2(x)dx = −

∫
f”(x)f(x)dx.

Now, through the same steps as the kernel estimation we first define

ψr =
∫
f (r)(x)f(x)dx

= E(f (r)(x)),

then we estimate this expression by

ψ̂r(g) = α̂n−1
n∑

i=1
f̂ (r)(Xi)H(Xi)−1

= α̂2n−2g−r−1
n∑

i=1

n∑
j=1

L(r)(Xi −Xj

g
)H(Xi)−1H(Xj)−1.

Now, by similar calculations as done [32], we find

gAMISE = [−αk!Lr(0)
∫
H(x)−1f(x)dx

ψr+kµk(L)n ]1/r+k+1.

Thus, rewrite the formula of optimal bandwidth the definition of ψ2 as

bAMISE = [−(1 −
∫ 1

−1 W
2(u)du)α

∫
H(x)−1f(x)dx

ψ2µ2(K)2 ]1/3n−1/3. (5.4)

Then we estimate α,
∫
H(x)−1f(x)dx and ψ2. In order for find the direct plug-in

b̂DP I = [−(1 −
∫ 1

−1 W
2(u)du)α̂2 ∫

H(x)−2dF ∗(x)
ψ̂2(g)µ2(K)2

]1/3n−1/3. (5.5)

We follow the same procedure in [32] we find g with r = 2

gAMISE = [−α2L2(0)
∫
H(x)−1f(x)dx

ψ4µ2(L)n ]1/5

We find that the process is regressive in the sense that we keep needing unknown values and
for this reason we use normal reference rule for estimate ψ as in completed data we gate

ψr = (−1)r/2r!
(2σ)r+1(r/2)!(π)1/2 , (5.6)

which is estimated by

ψ̂NR
r = (−1)r/2r!

(2σ̂)r+1(r/2)!(π)1/2 (5.7)
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We work with the same steps l = 0, 1, 2 e.g., l = 1 the procedure is defined by

1. Calculate ψ̂NR
4 .

2. Calculate ψ̂2(g1)

g1 = [− α̂2L(2)(0)
∫
H(x)−1f̂(x)dx

ψ̂NR
4 µ2(L)n

]1/5 (5.8)

3. The selected bandwidth is

b̂DP I = [−(1 −
∫ 1

−1 W
2(u)du)α̂2 ∫

H(x)−2dF ∗(x)
ψ̂2(g1)µ2(K)2

]1/3n−1/3. (5.9)

In addition, and follow the density procedure we define the two-stage plug-in bandwidth
selector by

1. Calculate ψ̂NR
6 .

2. Calculate ψ̂4(g1)

g1 = [− α̂2L(4)(0)
∫
Ĥ(z)−1dF̂ (z)

ψ̂NR
6 µ2(L)n

]1/7. (5.10)

3. Calculate ψ̂2(g2)

g2 = [− α̂2L(2)(0)
∫
Ĥ(z)−1dF̂ (z)

ψ̂4(g1)µ2(L)n
]1/5. (5.11)

4. The bandwidth is

b̂DP I;2 = [−(1 −
∫ 1

−1 W
2(u)du)α̂2 ∫

H(x)−2dF ∗(x)
ψ̂2(g2)µ2(K)2

]1/3n−1/3. (5.12)
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5.1.3 Cross-validation method for define the optimal bandwidth

In completed data, cross-validation is widely used as a method to define an interesting band-
width. Now in this part we define the method for gate bandwidth for df when the data are
sampling under double truncation, for this reason let consider the integrated squared error
ISE which define by

ISE(Fb) =
∫

(Fb(t) − F (x))2S(x)dF (x), (5.13)

where S is a non negative weight function, thus the mean integrated squared error MISE is
defined by as in [1] for complete data by

MISE(Fb) = E(α
∫

(Fb(t) − F (x))2S(x)H(x)−1dF ∗(x)). (5.14)

Now, we note that this formula can be approximate by

ASE(Fb) = n−1α
∑

((Fb(Xi) − F (Xi))2S(Xi)H(Xi)−1. (5.15)

However, this formula is not useful in practice because it contains unknown values and, in
order to solve this problem, we need to estimate the unknown values F , α and H(x). Hence
we gate the formula of leave-none-out estimator given by

LNO(b) = n−1αn

∑
((Fb(Xi) − Fn(Xi))2S(Xi)Hn(Xi)−1, (5.16)

and the cross-validation formula define by

CV (b) = n−1αn

∑
((F̂b;−i(Xi) − Fn(Xi))2S(Xi)Hn(Xi)−1, (5.17)

where Fb;−i(x) = αn;−i
1

n−1
∑

i ̸=j Hn;−i(Xj)−1W ((x−Xj/b)) is kernel estimator of the df where
Xi is excluded. We have CV and LNO are asymptotic equivalent. The bandwidth that
minimizes the criterion is chosen in either case.
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5.1.4 Bootstrap bandwidth selection

The bootstrap procedure is defined as in completed data for b = 1...B we defined

1. Let Xboot
b,i be an i.i.d. sample from Fθ, g , where g is chosen to be b̂DP I well), and let

U boot
b,i , V boot

b,i , i = 1, ..., n, be an i.i.d. sample from Gn. We repeated this step until the
condition of observed data U boot

b,i ≤ Xboot
b,i ≤ V boot

b,i .

2. we define θ and F boot
b,θ̂

(x) be the estimators based on the bootstrap sample defined in
step 1.

Now we define
BMISE(b) = B−1

B∑
b=1

∫
(F boot

b,θ̂boot(x) − dFg,θ̂(x))2 (5.18)

which as B big it close to

MISEboot(b) = Eboot
∫

(F boot
b,θ̂boot(x) − dFg,θ̂(x)d)2 (5.19)

Hence b̂boot = argminBMISE(b).
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GENERAL CONCLUSION

T
hroughout this thesis, we have defined a new estimator of the hazard function
when the data is sampled under double truncation. Estimating the hazard func-

tion has been an attractive topics in sense that this function plays an important role in
medicine and economics where it is used to know the probability of the risk, therefore we
showed that our proposed estimator of this function give better results by simulation and the
asymptotic properties of the proposed estimator is well defined.

Our proposed estimator is based in estimating the denominator and numerator by estima-
tors defined in previous work and showed good behavior and also give very good simulation
results. In addition in this thesis, we introduced a new smooth estimator of the distribution
function which is purely nonparametric beside a semiparametric estimator and we defined the
asymptotic properties of this estimators and also we use it in estimating of the denominator
of the hazard function.

In order to evaluate our proposed estimators we use Monte Carlo simulation with differ-
ent kind of distribution as the well know heavy-tailed distributions Weibull beside the Parto
distribution, the Gaussian and exponential distribution etc. The simulation proof that our
estimator has good behavior in all cases for the small and big percentage of truncation then
the other existing estimators.

1



General conclusion

In the last chapter, we finish our work by introduce bandwidth selector of the distribu-
tion function for double truncation, where we defined the well know methods for define the
bandwidth for example the plug in, cross validation and normal reference etc.

In our future work, we will investigate estimation in the quntile function, where the
estimation under double truncation need special techniques to reduce the effect of truncation.
In addition, in all this work we have not taken into account the small sample size, where
under double truncation this situation needs a more robust estimator to give an attractive
result. Moreover, this work does not deal with the situation for estimating hazard function
as the variables of the truncation limit assume to follow parametric family, in another word,
the semiparametric estimator of the hazard function when the data are subject to double
truncation data which is consider in our future work.
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Abstract
In this thesis, we investigate the problem of incomplete data, specifically

the phenomenon of double truncation, which make working with classical
methods very hard, as truncation mean the loss of samples during the statis-
tical analysis, and leads to negative results of the study and wrong decisions.
Specifically, we focused in this thesis on estimating of the hazard function
in the case of double truncation, where estimating the hazard function es-
timator is defined in many previous work, hence we make comparison with
the hazard functions known in this case and our proposed estimator, and
thus we result that the proposed hazard function estimator is more accu-
rate through applied and theoretical comparison. In addition, a smoother
cumulative distribution function estimator was proposed, as the previously
proposed estimator of the distribution function it was not smooth and not
continuous. In this context, several methods were also proposed to obtain
the smoothing parameter for the cumulative distribution function within the
data subject to double truncation.

Résumé
Dans cette thèse, nous avons étudié le problème des données incomplètes,

en particulier le phénomène de double troncature, car la troncature signi-
fie la perte d’échantillons au cours de l’analyse statistique, ce qui affecte



négativement les résultats de l’étude. Nous nous sommes concentrés sur l’es-
timation de la fonction de risque dans le cas de double troncature, où un
estimateur de fonction de risque plus précis a été donné, et cela apparâıt en
s’appuyant sur la comparaison avec les fonctions de risque définies dans ce
cas, arrivant ainsi à la conclusion que nous estimateur de la fonction de risque
est plus précis grâce à une comparaison appliquée et théorique. Grâce à cette
recherche, un estimateur de fonction de répartition plus lisse a également été
proposé, car l’estimateur de la fonction de répartition proposé précédemment
signifiait qu’il n’était ni lisse ni continu. Dans ce contexte, plusieurs méthodes
ont également été proposées pour obtenir le paramètre de lissage de la fonc-
tion de répartition dans le cas au les données soumises à double troncature.
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