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AbstractAbstract

S everal challenges in controlling nonlinear systems, represented by fuzzy Takagi-

Sugeno models, arise due to the complexity of modeling and synthesizing con-

trollers. To address these challenges, utilizing a multi-model approach proves to be an

effective strategy.This thesis explores the control of nonlinear systems represented by in-

terconnected Takagi-Sugeno fuzzy multi-models and The thorough investigation of control

strategies for nonlinear systems. We achieve this representation through nonlinear sector

decomposition, enabling us to reformulate the system as polytopes without any loss of

information.The investigation contrasts the conventional quadratic method with an ad-

vanced nonquadratic technique. The latter utilizes a line-integral Lyapunov function for

stability analysis and state feedback control. Moreover, the mean value theorem is used to

express the error dynamics in a way that reduces the conservatism of the bounded terms

assumptions. The stability conditions are formulated as Bilinear Matrix Inequalities.

To address these, we propose an iterative algorithm based on linear matrix inequalities,

which transforms the Bilinear form into a sets of linear matrix inequalities. The thesis

further delves into controlling nonlinear systems with TS fuzzy systems, particularly when

premise variables are not measurable. To demonstrate the practicality and effectiveness

of the proposed methods, It includes both numerical and practical examples to clarify the

achieved results.

Key words: Non-linear system, Takagi-Sugeno multi model, controller, Linear Matrix

Inequality, Line integral,lyapunov function, Quadratic lyapunov function..



RésuméRésumé

P lusieurs défis se posent dans le contrôle des systèmes non linéaires, représentés par

des modèles flous Takagi-Sugeno, en raison de la complexité de la modélisation et

de la synthèse des contrôleurs. Pour relever ces défis, l’utilisation d’une approche multi-

modèle s’avère être une stratégie efficace. Cette thèse explore le contrôle des systèmes

non linéaires représentés par des multi-modèles flous Takagi-Sugeno interconnectés, ainsi

qu’une investigation approfondie des stratégies de contrôle pour les systèmes non linéaires.

Nous obtenons cette représentation par décomposition sectorielle non linéaire, ce qui nous

permet de reformuler le système en polytopes sans perte d’information. L’étude compare

la méthode quadratique conventionnelle à une technique avancée non quadratique. Cette

dernière utilise une fonction de Lyapunov à intégrale linéaire pour l’analyse de stabilité

et le contrôle par retour d’état. De plus, le théorème de la valeur moyenne est util-

isé pour exprimer la dynamique des erreurs de manière à réduire le conservatisme des

hypothèses relatives aux termes bornés. Les conditions de stabilité sont formulées sous

forme d’inégalités matricielles bilinéaires. Pour y faire face, nous proposons un algorithme

itératif basé sur des inégalités matricielles linéaires, qui transforme la forme bilinéaire en

un ensemble d’inégalités matricielles linéaires.La thèse explore également le contrôle des

systèmes non linéaires avec des systèmes flous Takagi-Sugeno, en particulier lorsque les

variables de prémisse ne sont pas mesurables. Pour démontrer la praticité et l’efficacité

des méthodes proposées, elle inclut à la fois des exemples numériques et pratiques afin

d’éclaircir les résultats obtenus.

Mots-Clés: Système non linéaire, multi-modèle de Takagi-Sugeno,contrôleur,inégalités

matricielles linéaire , fonction de Lyapunov intégrale de ligne, fonction de Lyapunov

quadratique.
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General Introduction

General presentation

I n the realm of control theory, modeling a process is both an essential and founda-

tional task. A physical system can be depicted through two primary types of rep-

resentations: implicit and explicit, with the latter being more commonly utilized. These

models aim to closely mirror reality, connecting output and input variables via a state

vector that outlines the system’s evolution.

Real-world processes frequently exhibit nonlinearity, a characteristic stemming either

from the complexity of the phenomena being described or from the nature of the feedback

loops employed. This complexity necessitates the development of representation methods

tailored for linear models. Among these methods, the Takagi-Sugeno (TS) fuzzy multi-

model representation stands out. It involves deriving a set of polytopes linked through

nonlinear functions, all adhering to the convex sum property. Each sub-model within this

framework captures the behavior of the nonlinear system within a specific operational

zone. In the field of TS fuzzy models, two primary types are extensively discussed in

literature. The first type is known as coupled TS models, which can be derived through

four distinct methods. The identification approach is the first method, often applied when

the nonlinear system is challenging to describe analytically[BMR99], [Gas00]. The second

method involves linearizing the system around various operating points[MSH98], offering a

different perspective on the system’s dynamics. The third method, known as the convex

polytopic transformation or the sectors nonlinearities transformation[KTIT92],[TW04],

[Bez13], converts the system’s nonlinear terms without losing information, providing a

more accurate representation compared to the first two methods. This approach, notable

for its efficiency in preserving the integrity of the original model, will be the focus in this

thesis. Lastly, the neural approach offers an alternative by leveraging neural networks for

model approximation [EDBB10] ,[CB12].

The second category of TS fuzzy models is referred to as heterogeneous TS fuzzy multi-

3



models [Fil91]. This framework is particularly suited for complex systems that undergo

structural changes based on their operating conditions. In this setup, each sub-model op-

erates within its unique state space, evolving independently from the others. This model-

ing approach introduces a level of flexibility to the identification process, accommodating

the dynamic nature of complex systems. The activation functions, which are nonlinear,

rely on variables termed as decision variables or premise variables. These variables may

be either measurable (VDM) or non-measurable (VDNM), adding a layer of adaptability

to the model based on the availability and observability of system parameters.

However, each solution comes with its unique challenges. Within the TS-LMI frame-

work, the LMI conditions derived are clear but can lead to conservativeness. This implies

that failing to meet certain conditions doesn’t definitively mean a solution doesn’t exist.

Consequently, there is a significant push towards either ensuring the necessary conditions

are met or, at a minimum, diminishing the level of conservativeness.

Following the modeling phase, estimating the state variables of the system is a cru-

cial, if not indispensable, step for synthesizing control laws or for diagnosing industrial

processes. This estimation is carried out through a dynamic system, often referred to as

a state estimator or observer [BOU23].

The importance of fuzzy multi-models in controller design cannot be overstated. They

facilitate a more nuanced understanding of nonlinear systems, enabling the development

of controllers that can dynamically adjust to varying system states and external dis-

turbances. This adaptability is crucial for maintaining optimal performance and sta-

bility in a wide range of applications, from robotics and automotive systems to energy

management and process control in industrial settings. Furthermore, the use of fuzzy

multi-models supports the implementation of Parallel Distributed Compensation (PDC)

strategies [Ham15], which offers an alternative for systems represented by Takagi-Sugeno

multi-models. It relies on linear controllers designed for each linear subsystem, ensuring

the closed-loop stability of the nonlinear system through a common Lyapunov function

for all subsystems. These Lyapunov functions can be either quadratic or non-quadratic

in nature, leading to a set of Linear Matrix Inequalities (LMIs) that can be solved easily

with optimization tools.

The integration of fuzzy multi-models into H∞ control strategies underscores a vital

advancement in the pursuit of robustness in nonlinear system control. These models fa-



cilitate the precise delineation of a system’s behavior across various operational regimes,

thereby enabling the H∞ controllers to tailor their response to any disturbances or un-

certainties with heightened accuracy. This tailored approach ensures that the system’s

performance criteria are met, even under adverse conditions, by minimizing the worst-case

scenario’s impact on system stability and performance.

The continuous advancement of these models, and the challenges they present, high-

light the ongoing effort to refine methodologies. The primary aim is to enhance existing

capabilities and overcome the inherent conservatism found in earlier approaches. To mit-

igate this conservatism, various strategies have been devised. This thesis centers on a

particularly innovative strategy known as the Line Integral Lyapunov Function, this ap-

proach offers more flexible conditions for controller design.

Contributions

The main objective of this thesis is to improve the control process of nonlinear systems

modeled by a Takagi-Sugeno (T-S) multi-model, focusing on reducing the conservatism

of existing methods. The major contributions of this work are detailed below:

• The main contribution of this study lies in the design of a new controller for Takagi-

Sugeno fuzzy systems. Based on the differential mean value theorem and a line-

integral Lyapunov function, we propose an innovative approach that significantly

reduces the conservatism inherent in traditional methods, particularly those relying

on disagreement terms and quadratic Lyapunov functions. The effectiveness of

this method is illustrated through a series of numerical examples and a practical

application to a single-link flexible manipulator robot.

• The second contribution lies in the formulation of an iterative algorithm based on

Linear Matrix Inequalities (LMI) to solve the bilinear constraints that arise from

the combination of the mean value theorem and the line-integral Lyapunov function.

This algorithm solves these constraints using linear optimization solvers, providing

improved results compared to existing Bilinear Matrix Inequality (BMI) solvers.



Organization of the thesis

This thesis is structured into four main chapters, with each one addressing a distinct

facet of the research topic

Chapter 1:The thesis begins with an introduction, followed by a detailed review of

the current state of the art in nonlinear system control. It explores various control strate-

gies, with a particular emphasis on Input-Output Feedback Linearization, Backstepping

Control Design, and Nonlinear Adaptive Control which stands out for its robustness in

handling parameter uncertainties.

Chapter 2:This chapter thoroughly examines the multi-model methodology, shedding

light on its crucial role in capturing the complex dynamics of nonlinear systems. It

explores a variety of multi-model frameworks and their derivation methods, showcasing

their utility in modeling nonlinear systems. Central to the discussion is the emphasis on

stability analysis, with a particular focus on Lyapunov’s method for assessing stability in

both quadratic and non-quadratic contexts. Notably, the chapter delves into the stability

analysis of Takagi-Sugeno fuzzy models, laying the groundwork for securing the system’s

stability and reliability.

Chapter 3: The second chapter focuses on employing quadratic Lyapunov theory,

leading to the establishment of conditions ensuring the state error’s convergence to zero,

expressed through Linear Matrix Inequalities (LMI). This facilitates the determination

of controller gains. In the chapter’s latter half, a state feedback control law, crafted

through Parallel Distributed Compensation (PDC), is introduced to maintain the system-

controller’s stability in a closed-loop setting amidst disturbances. Additionally, the chap-

ter delves into state reconstruction involving the Differential Mean Value Theorem and

outlines the architecture of the Proportional Integral (PI) controller.

Chapter 4: This chapter introduces sophisticated techniques for designing controllers

for continuous-time nonlinear systems. It features a standout section on developing con-

trollers within the Takagi-Sugeno framework, tailored to scenarios involving unmeasurable

variables. By utilizing a line integral Lyapunov function and leveraging the differential

mean value theorem, the chapter effectively addresses state feedback controller issues.

In conclusion, the chapter demonstrates significant improvements over previous research,

emphasizing the enhanced stability offered by these controllers, which is validated through



dynamic applications .
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Chaptre 1. Control of Non-linear Systems

1.1 Introduction

This chapter provides a comprehensive exploration of control strategies for nonlinear

systems, which are essential in fields such as robotics, automotive systems, and electri-

cal machines. It examines the strengths and limitations of various control techniques,

including input-output feedback linearization and its limitations in addressing all non-

linearities. The chapter emphasizes the transformation of systems into linear equivalents

without approximation. Additionally, it discusses backstepping control design, illustrating

its systematic approach to stabilizing nonlinear systems.

Obtaining an exact model for a nonlinear system is often complex. Model inaccura-

cies can stem from uncertainties related to the process itself, such as poorly known or

difficult-to-identify parameters, the omission of certain system dynamics, or overly sim-

plified modeling choices. These inaccuracies are classified into two categories: parametric

uncertainties and neglected dynamics. The first type directly affects the model, while the

second concerns the estimation of the system’s orders.

Nonlinear adaptive control techniques are designed to address these issues. The design

of the control law takes into account a nominal model of the process as well as the

associated parametric uncertainties. The structure of the controller, whether adaptive in

nonlinear control or not, includes a nominal component (e.g., state feedback) as well as

additional elements to optimally compensate for model uncertainties.

1.2 Control of Non-linear Systems: An Overview

In the field of process control, methods can be categorized based on the nature of the

systems being controlled. The first category deals with linear stationary systems and can

be broken down into three main phases:

1.2.1 Classical Frequency Methods (1930-60)

Classical Frequency Methods, spanning roughly from the 1930s to the 1960s, represent

one of the earliest systematic approaches to control system analysis and design. These

methods focus on understanding system behavior through the frequency domain, leverag-

ing mathematical tools and graphical representations to assess stability, robustness, and
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performance. Key aspects of these methods include

1. Nyquist Criterion: A graphical method that uses the Nyquist plot, which maps the

frequency response of an open-loop system, to assess the stability of the corresponding

closed-loop system. It helps identify potential stability issues and determine gain and

phase margins.

2. Bode Plots: Named after Hendrik Bode, these plots graphically represent a system’s

frequency response in terms of magnitude and phase across a range of frequencies. They

offer insights into the system’s gain and phase characteristics, guiding design modifica-

tions.

3. Root Locus Analysis: Developed by Walter Evans, this technique helps visualize

the path of the system’s poles in the complex plane as a system parameter (typically

gain) varies. It aids in understanding how changes in gain affect stability and provides

guidelines for controller design.

4. Gain and Phase Margins: These measures quantify how much gain or phase shift

a system can tolerate before becoming unstable. Classical frequency methods use these

margins to assess the robustness of a control system.

These methods remain foundational in control engineering education due to their intuitive

visual approach to system stability and design.

1.2.2 Optimal Methods (1960s)

Optimal methods involve mathematical optimization to achieve specific objectives in

control systems:

1. State-Space Representation: An abstract mathematical model that represents the

system’s dynamics using vectors and matrices. It offers a comprehensive framework for

analyzing and controlling MIMO systems.

2.Linear Quadratic Regulator (LQR): A method that seeks to minimize a cost func-

tion representing a combination of control effort and system deviation from desired be-

havior. It leads to the derivation of optimal feedback gain matrices.

3.Kalman Filter: An optimal estimation algorithm that combines predictions from sys-

tem models with actual measurements to produce accurate estimates of system states.

This approach is used for optimal control in noisy environments. Optimal methods sig-

nificantly advance control theory by providing rigorous mathematical frameworks for de-

10
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signing controllers that meet predefined performance criteria.

1.2.3 The Renaissance of Frequency Methods (1980s)

During this period, a resurgence in interest in frequency domain methods occurred

due to their robustness to uncertainties:

1. H∞ Control: A robust control technique designed to minimize the maximum gain

of the transfer function from disturbances to outputs. It provides guaranteed per-

formance even in the worst-case scenario, making it ideal for systems with uncertain

parameters.

2. Norm-Based Analysis: This involves the use of mathematical norms like the ∞-

norm or the 2-norm to quantify the system’s robustness to disturbances, allowing

for the design of controllers that maintain stability despite uncertainties. The resur-

gence of these methods addressed the increasing need for robust control strategies

capable of handling complex real-world disturbances.

The second category includes methods tailored to nonlinear systems, which pose

unique challenges due to their nonlinear dynamics:Input-output Feedback Lineariza-

tion,Backstepping Integrator Techniques.

1.3 Input-output Feedback Linearization

This type of control (input-output feedback linearization) emerged in the 1980s [II95]

with the works of Isidori and has benefited from the contributions of differential geometry.

A large number of nonlinear systems can be partially or fully transformed into systems

exhibiting linear input-output or state-space behavior through the appropriate choice of

an endogenous nonlinear state feedback law.

When the zero dynamics are stable, it is possible to transform a nonlinear system

into a linear chain of integrators. After linearization, classical linear techniques can be

applied. This approach has often been employed to solve practical control problems, but

this technique requires that the state vector be measured and necessitates an accurate

model of the process to be controlled. Moreover, robustness properties are not guaranteed

against model parametric uncertainties.
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Indeed, this technique is based on the exact cancellation of nonlinear terms, and

hence, the presence of modeling uncertainties on the nonlinear terms leads to an imperfect

cancellation, resulting in an input-output equation that remains nonlinear.

1.3.1 Design of Feedback Linearization Controllers

The concept of input-output linearization is now very well-understood. We will demon-

strate how to achieve a linear relationship between the output y and a new input v by

making a good choice of the linearizing law. Since the equivalent model is linear, we can

ensure stable dynamics by relying on classical linear methods.

First and foremost, we consider a nonlinear system with p inputs and p outputs of the

following form:

ẋ = f(x) +
p∑
i=1

gi(x)ui (1.1)

yi = hi(x), i = 1, 2, . . . , p (1.2)

where x = [x1, x2, . . . , xn]T ∈ Rn is the state vector, u = [u1, u2, . . . , up]T ∈ Rp is the

input vector, and y = [y1, y2, . . . , yp]T ∈ Rp represents the output vector. The functions

f, gi are smooth vector fields and hi, i = 1, 2, . . . , p, are smooth functions. The objective

is to establish a linear relationship between the input and the output by differentiating

the output until at least one input appears, utilizing the following formulation:

y
(rj)
j = L

rj

f hj(x) +
p∑
i=1

Lgi

(
L
rj−1
f hj(x)

)
ui, j = 1, 2, . . . , p (1.3)

Here, Lfhj and Lgi
hj represent the i-th Lie derivatives of hj along the directions of f

and g respectively. The term rj denotes the number of derivatives needed for at least one

of the inputs to appear in the expression (1.1) of the output’s relative degree corresponding

to yj.

The total relative degree r is defined as the sum of all the individual relative degrees

obtained with the help of the above equation and must be less than or equal to the

system’s order: r = ∑p
j=1 rj ≤ n.

A system described by equation (1.1) is said to have a relative degree r if it satisfies:

Lgi
Lkfhj = 0 for 0 < k < rj − 1, 1 ≤ j ≤ p, 1 ≤ i ≤ p (1.4)
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And:

Lgi
Lkfhj 6= 0 for k = rj − 1 (1.5)

In cases where the total relative degree is equal to the system’s order, we have state-

space linearization. However, if the total relative degree is strictly less than the system’s

order, the process is called input-output linearization.

To derive the expression for the linearizing control law u that linearizes the relationship

between the input and the output, we rewrite equation (1.1) in matrix form.

[
yr1

1 · · · yrp
p

]T
= ξ(x) +D(x)u

where

ξ(x) =


Lr1
f h1(x)

...

L
rp

f hp(x)


and

D(x) =



Lg1L
r1−1
f h1(x) Lg2L

r1−1
f h1(x) · · · LgpL

r1−1
f h1(x)

Lg1L
r2−1
f h2(x) Lg2L

r2−1
f h2(x) · · · LgpL

r2−1
f h2(x)

... ... . . . ...

Lg1L
rp−1
f hp(x) Lg2L

rp−1
f hp(x) · · · LgpL

rp−1
f hp(x)


The matrix D(x) is referred to as the system’s decoupling matrix.

Assuming that D(x) is non-singular, the form of the linearizing control law is given

by:

u = D(x)−1 (−ξ(x) + v) (1.6)

Fig 1.1: Structure of State Feedback Linearization
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By substituting equation (1.6) into (1.1) , the equivalent system becomes linear and

completely decoupled in the form:

y
(rj)
j = vi (1.7)

Or more explicitly: 
yr1

1
...

yrp
p

 =


v1
...

vp

 (1.8)

This allows us to impose any stable dynamics through a well-designed new input vector

v = [v1, . . . , vp]T .

Note that the expression (1.8) represents p cascaded integrators, whose behavior may

not always be desirable.

1.3.1.1 Canonical form

Suppose the system (3.1) has relative degrees {r1, r2, . . . , rp} such that the sum r =∑p
i=1 ri equals the system’s order n. Define r functions {φ1, φ2, . . . , φp} allowing us to

express:

z = (φ1, φ2, . . . , φp, φp+1, . . . , φr)

= ([h1, Lfh1, . . . , L
r1−1
f h1, h2, . . . , L

r2−1
f h2, . . . , hp, . . . , L

rp−1
f hp])

(1.9)

Depending on the values of {r1, r2, . . . , rp}, we can distinguish two possible cases:

Case No1: r = r1 + r2 + . . .+ rp = n

In this scenario, the set of functions φk = Lk−1
f h, where 1 ≤ k ≤ ri and 1 ≤ i ≤ p,

define a diffeomorphism, such that:

φ =


φ1
...

φr

 =


[
h1, Lfh1, . . . , L

r1−1
f h1

]T
...[

hp, Lfhp, . . . , L
rp−1
f hp

]T

 (1.10)

Case No2: (r = r1 + r2 + . . .+ rp < n)

In this case, it is possible to find (n− r) other functions φk, r + 1 ≤ k ≤ n such that

φk, 1 ≤ k ≤ n is of rank n. We introduce a vector of complementary variables η such

that:
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

η1

η2
...

ηn−r


=



φr+1

φr+2

. . .

φn


In the new coordinates, the system (1.1) is written as:

ż1 = z2

ż1 = z3

...

żr1−1 = zr1

żr1 = Lr1
f h1 +

p∑
j=1

Lr1−1
gj

h1uj

żr1+1 = zr1+2

...

żr = L
rp

f hp +
p∑
j=1

Lrp−1
gj

hpuj

(1.11)

For the remaining (n − r) functions, it is difficult to provide a detailed form of the

new variables; however, we denote them generally by η̇ = ψ(z, η) + θ(z, η)u.

Regarding the output, the vector y =
[
y1 y2 . . . yp

]T
can be expressed in the new

coordinates as:

y1 = z1,

y2 = zr1+1,

...

yp = zri+...+rp−1+1.

Applying the linearizing law (1.6) to the system(1.11) , we obtain:

ż =


Ar1 . . . 0
... . . . ...

0 . . . Arn

 z +


Br1 . . . 0
... . . . ...

0 . . . Brn

u (1.12)

η = ψ(z, η) + Θ(z, η)u
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With:

Ari
=



0 1 . . . 0

0 0 . . . 0
... ... . . . ...

0 0 . . . 1

0 0 . . . 0


∈ Rri×ri , Bri

=



0
...

0

1


∈ Rr

i , Cri
=
[
1 0 . . . 0

]

And for the output:

y =


Cr1 . . . 0
... . . . ...

0 . . . Cr2

 z (3.15)

1.3.1.2 Design of The Virtual Input v

The vector v is often designed according to the control objectives in order to ensure

the tracking of the envisioned path and must satisfy the following conditions:

vj = y
(rj)
dj

+ krj

(
y

(rj−1)
dj

− y(rj−1)
j

)
+ . . .+ k1

(
ydj
− yj

)
1 ≤ j ≤ p (1.13)

Where the vectors {ydj
, y

(1)
dj
, . . . , y

(rj−1)
dj

, y
(rj)
dj
} define the imposed reference trajectories

for the different outputs. If the ki are chosen such that the polynomial: srj + krj−1s
rj−1 +

. . .+k2s+k1 = 0 is a Hurwitz polynomial (possesses roots with negative real parts), then

we can show that the error ej(t) = ydj
(t)− yj(t) satisfies:

lim
t→∞

ej(t) = 0.

The closed-loop linearized system is depicted in Figure (1.2) below:

Fig 1.2: Structure of State Feedback Linearization
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1.3.2 Feedback Linearization for Three-Phase PWM AC-DC

Converter:

Let’s recall that the dynamic equations of the three-phase PWM AC-DC converter

’Statcom’ in the (d-q) reference frame are as follows:


did = −R

L
id + wiq

1
L

(ed − vd)

diq = −R
L
iq + wid

1
L

(eq − vq)

dvdc = − 2
3Cvdc

(edid − eqiq)− vdc

CRch

(1.14)

If we define x as the state vector and u as the control vector, we can express the system

of equations (1.14) in the suggested form to apply the theory of input-output feedback

linearization as follows:

ẋ = f(x) + g(x)u (1.15)

With

[
id iq vdc

]T
, u =

ud
uq

 =

(ed − vd)

(eq − vq)



f(x) =


f1(x)

f2(x)

f3(x)

 =


−R
L
id + wiq

−R
L
iq + wid

− 2
3Cvdc

(edid − eqiq)− vdc

CRch

 (1.16)

and

g(x) =


1
L

0

0 1
L

0 0

 (1.17)

Our goal is to ensure that the voltage across the capacitor vdc follows a reference vdcref ,

maintain a unity power factor, and minimize harmonics in the lines. To achieve this, we

apply input-output feedback linearization theory, ensuring complete decoupling between

the controls and the outputs. In this context, we select the output variables as the current

id and the voltage across the capacitor vdc.
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The desired objective (unity power factor, harmonic minimization, and regulation of

the voltage vdc) leads us to impose idcref , while the voltage vdc must follow its reference,

which can be a step or any trajectory defined by vdcref .

Remark:

The current iq acts as a regulator for the capacitor voltage.

To derive the linearizing control law, we calculate the relative degree of the output y,

which is the number of times we need to differentiate the output to reveal at least one

input.

a) The output id:

Giveny1 = id = h1(x), then:

∇h1 =
[
1 0 0

]
(1.18)

When we differentiate it with respect to time, we get

ẏ1 = ḣ1(x) = ∂h1(x)
∂x

∂x

∂t
= ∂h1

∂x
ẋ = ∂h1

∂x
(f(x) + g(x)u)

ẏ = Lfh1(x)Lgh1(x).u

= f1 + g1ud

(1.19)

Since the input ud appears in expression (1.19), we stop. For this output, note that

the relative degree r1 = 1

a) The output vdc:

Given y2 = vdc = h2(x), then:

∇h2 =
[
0 0 1

]
(1.20)

If we differentiate y2 with respect to time, we find

ẏ2 = Lfh2(x)Lgh2(x).u+ f3 + 0.u

= Lfh2(x)Lgh2(x) = F3

(1.21)

The Lie derivative of h2(x) with respect to g is zero (Lgh2(x) = 0), which forces us to

differentiate it a second time
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ÿ2(x) = ḧ2(x) = d(ẏ2)
dt.

= d(Lfh2)
dt.

ÿ2(x) = L2
fh2(x)LgLfh2(x).u

(1.22)

with

L2
fh2(x) = 2

3Cνdc
(edf1 + eqf2)−

{ 2
3Cνdc

(edid + eqiq) + 1
CRch

}
f3 (1.23)

LgLfh2(x) =
[ 2ed
3LCνdc

2eq
3LCνdc

]
(1.24)

Observe that f1, f2, and f3 are functions given by (1.16).

The relative degree with respect to y2 is r2 = 2. Thus, the total relative degree of the

system is r = r1 + r2 = 3 . Since r = n = 3, the system is exactly linearizable, where n is

the order of the system.

From (1.21) to (1.22), we obtain the input-output relation of the system as follows:

d

dt
[y1, ẏ2]T = ζ(x) +D(x).u (1.25)

Where

ζ(x) =
[

2
3Cνdc

(edf1 + eqf2)−
{

f1

3Cνdc
(edid + eqiq) + 1

CRch

}
f3
]

(1.26)

and

D(x) =

 1
L

1
L

2ed

3LCνdc

2eq

3LCνdc

 (1.27)

D:represents the decoupling matrix

If (3L2Cvdc), then the matrix D is invertible. Hence, the linearizing control law that

relates the new internal inputs (v1, v2) to the real inputs (ud, uq) is expressed as follows

ud
uq

 = D−1

−ζ +

v1

v2


 (1.28)

By substituting expression (1.28) into (1.25), we obtain a completely decoupled linear

system in the form

d

dt

y1

ẏ2

 =

v1

v2

 (1.29)
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To impose steady-state behavior on the error (desired objective), the new internal

inputs (v1, v2) must be designed to ensure


lim
t→∞

id = 0

lim
t→∞

νdc = νdcref

(1.30)

In the general case, for a trajectory tracking problem, we have


v1 = k1(idref − id) + d(idref )

dt

v2 = k2(νdcref − νdc) + k3
{
d(νdref )

dt
− d(νdc)

dt

}
+ d2(νdcref )

dt2

(1.31)

Our goal is to keep the voltage vdc constant with a unity power factor, so we enforce[Yac04]

v̇dcref = v̈dcref = i̇dref = 0 (1.32)

Thus 
v1 = k1(idref − id)

v2 = k2(vdcref − vdc)− k3
d(vdc)
dt

(1.33)

The control gains are calculated based on the desired poles, which are located at

−1200± j1200 for current control, and −500 and −400± j300 for voltage control, respec-

tively. The block diagram of the closed-loop linearized system is depicted in the following

figure, from which we derive the gains [LLL98]


k1

k2

k3

 =


24× 102

125× 106

7× 105

 (1.34)

Fig 1.3: Structure of State Feedback Linearization
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Fig 1.4: Structure of State Feedback Linearization

According to the figures (1.5)and (1.6) , it is observed that the voltage vac follows the

reference, and the current of the line does not contain harmonics and is in phase with the

voltage of the source. From what has been obtained, it can be seen that the relationship

between the output id and idref is represented by an integrator, whereas the relationship

between vdc and its reference is represented by a double integrator.
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Fig 1.7: The harmonic spectrum of the line current

And according to the previous figures, it can be observed that the input-output lin-

earization technique can eliminate the issue of ripple caused by the opening and closing

of switches, and make the input-output system linear at all points, and that this system

will be equivalent to an integrator

1.3.3 Feedback Linearization for Permanent Magnet Synchronous

Motor

Let us recall that the dynamic equations of the PMSM in the d-q reference frame are:

did
dt

= − R
Ld
id + Lq

Ld
pωriq + 1

Ld
ud

diq
dt

= − R
Lq
iq −

Ld
Lq
pωrid −

Φv

Lq
pωr + 1

Lq
uq

dωr
dt

= 3p
2J (Φviq + (Ld − Lq)idiq)−

1
J
TL −

B

J
ωr

(1.35)

The load torque TL does not appear in these equations as it is considered a disturbance.

The system of equations is rewritten in the form suggested for the application of input-

output linearization as follows

ẋ = f(x) + g1(x) · ud + g2(x) · uq (1.36)

Where the state vector xand the input vector u are

x =
[
id iq ωr

]T
etu =

[
ud uq

]T
(1.37)
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With

f(x) =


f1(x)

f2(x)

f3(x)

 =


− R
Ld
id + Lq

Ld
pωriq

− R
Lq
iq − Ld

Lq
pωrid − Φv

Lq
pωr

3p
2J (Φviq + (Ld − Lq)idiq)− B

J
ωr

 (1.38)

and

g1(x) =


1
Ld

0

0

 , g2(x) =


0
1
Lq

0

 (1.39)

The objective is to ensure speed regulation of the motor while maintaining maximum

torque operation (where the d-component of the stator currents id is forced to remain

zero at all times). To achieve this, input-output linearization is applied to the model,

which ensures total decoupling between the inputs and outputs. In this case, the outputs

must be the rotor speed(wr) and the current (id)

y1 = id et y2 = ωr (1.40)

These two outputs must follow the trajectories imposed on them. The maximum

torque operation strategy leads us to impose idref = 0, while the speed must follow its

reference, which can be a step or any other trajectory defined by wref.

For the first output (id), we have

y1 = id = h1(x), ∇h1 =
[
1 0 0

]
(1.41)

By differentiating it with respect to time, we will have

ẏ1 = Lfh1(x) + Lg1h1(x)ud + Lg2h1(x)uq

= ∂h1

∂x
· f(x) + ∂h1

∂x
· g1(x) · ud + ∂h1

∂x
· g2(x) · uq

= − R
Ld
id + Lq

Ld
pωriq + 1

Ld
ud

(1.42)

Thus, the input ud appears in the expression (1.42). We stop here and note, for this

output, a relative degree r = 1.

For the second output, we have
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y2 = ωr = h2(x), ∇h2 =
[
0 0 1

]
(1.43)

By differentiating it once, we have

ÿ2 = L2
fh2(x) + Lg1(Lfh2(x)) · ud + Lg2(Lfh2(x)) · uq

= Λ(Ld − Lq)iqf1(x) + Λ(Φ,+(Ld − Lq)id)f2(x)− B

J
f3(x)+

Λ(Ld − Lq)
Ld

iqud + Λ(Φν + (Ld − Lq)id)
Lq

uq

(1.44)

Λ = 3p
2J (1.45)

Where f2(x) and f3(x) are given by (1.38). The two inputs ud and uq appear in (1.42)

and the relative degree is therefore (r2 = 2). The total relative degree is r = r1 + r2 =

n = 3 and thus we have achieved an exact linearization.(No internal dynamics need to be

considered).

By combining the expressions (1.42) and (1.44), we obtain the following form

[
ẏ1 ÿ2

]T
= ζ(x) +D(x) · u (1.46)

Where

ζ(x) =

Lfh1(x)

L2
fh2(x)

 =


− R
Ld
id + Lq

Ld
pωriq

Λ(Ld − Lq)iqf1(x) + Λ(Φν + (Ld − Lq)id)f2(x)− B
J
f3(x)

 (1.47)

And

D(x) =

 1
Ld

0
Λ(Ld−Lq)

Ld
iq

Λ(Φv+(Ld−Lq)id)
Lq

 (1.48)

The matrix D(x) is invertible if the following condition is satisfied

det[D(x)] = Λ(Φv + (Ld − Lq)id)
LσLd

6= 0 or Φv 6= (Lq − Ld)id (1.49)

Therefore, the linearizing control law that ensures decoupling is expressed byud
uq

 = D(x)−1


v1

v2

− ζ(x)
 (1.50)
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Where

D(x)−1 =

 Ld 0
−(Ld−Lq)iqLq

(Φv+(Ld−Lq)id)
Lq

Λ(Φv+(Ld−Lq)id)

 (1.51)

Substituting expression (1.50) into (1.46) yields a fully decoupled linear system of the

form:

[
ẏ1 ÿ2

]T
=
[
v1 v2

]T
(1.52)

The new inputs (v1, v2) must be designed to ensure that

lim
t→∞

y1 = idref and lim
t→∞

y2 = ωref (1.53)

To achieve this, pole placement is employed. In the general case, for a trajectory

tracking problem, we have:

v1

v2

 =

 kd · (idref − id)

¨ωref + kw1( ˙ωref − ω̇r) + kw2(ωref − ωr)

 (1.54)

But if the imposed trajectory is a step, then we have ¨wref = ˙wref = 0, and expression

(1.54) becomes

v1

v2

 =

 kd · (idref − id)

−kw1ω̇r + kw2(ωref − ωr)

 (1.55)

The block diagram of the linearized closed-loop system is represented by the following

figure 1.8

Fig 1.8: Structure of State Feedback Linearization
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It has been decided to impose the following poles (−10,−0.125,−4000)so that the

closed-loop system is stable and its response does not exhibit any overshoot. The controller

gains are then [Kad00]:


k1

k2

k3

 =


15

500

4000

 (1.56)

Figure 1.9 shows the speed profile, which perfectly follows its reference speed of 100

rad/s, achieved very quickly with an acceptable response time. After applying a load

torque of 5 N.m at t = 0.25 s, a slight overshoot is observed, after which the speed returns

to its reference value. A similar observation is made during the reversal of the reference

speed, where it is noted that the motor speed follows the reference speed, albeit with the

presence of oscillations during the transient phase.
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Fig 1.9: rotor speed wr

1.4 Backstepping control

In this section, we provide a brief summary of the well-known backstepping control

method in the control theory literature [Kha02], [KKK95]. The backstepping control
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approach is a recursive design technique that associates the selection of a control Lya-

punov function with the development of a feedback controller, ensuring global asymptotic

stability for strict feedback systems [Kok92], [KA01].

For the design of an integrating backstepping controller, we consider the following

control system:

ξ̇ = F (ξ) +G(ξ)η (1.57.a)

η̇ = v. (1.57.b)

In the system defined by (1.57), the state vector is X = (ξ, η) ∈ Rn+1, and the control

input is v ∈ R. The objective is to design a backstepping control law v such that X(t)→ 0

as t→∞. We assume that both F and G are known functions, continuously differentiable

on Rn, with the conditions F (0) = 0 and G(0) = 0.

Figure 1.10 illustrates the block diagram of the control system (1.57). The system can be

interpreted as a cascade of two components, where the first is an integrator.

Fig 1.10: Backstepping control design for the control system (1.57)

In the subsystem (1.57.a), we treat η as a virtual controller. We assume the exis-

tence of a smooth feedback control law η = ϕ(ξ) with ϕ(0) = 0, such that ξ = 0 is an

asymptotically stable equilibrium point for the first system.

ξ̇ = F (ξ) +G(ξ)ϕ(ξ). (1.58)

We also assume the existence of a Lyapunov function V1(ξ) that satisfies the inequality

∂V1

∂ξ
[F (ξ) +G(ξ)ϕ(ξ)] ≤ −W (ξ). (1.59)

where W (ξ) is positive definite on Rn.

By adding and subtracting G(ξ)ϕ(ξ) on the right-hand side of (1.57.a), we can express
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the control system (1.57) in the following form:

ξ̇ = [F (ξ) +G(ξ)ϕ(ξ)] +G(ξ)[η − ϕ(ξ)] (1.60a)

η̇ = v. (1.60b)

We now define a change of variables

y = η − ϕ(ξ) (1.61)

The output y can also be interpreted as the error between the state η and the pseudo-

control ϕ(ξ).

Therefore, one of the design objectives in the backstepping control procedure is to find υ

such that y(t)→ 0 as t→∞.

If we express the initial system (1.60) in the (ξ, y) coordinates, we obtain:

ξ̇ = [F (ξ) +G(ξ)ϕ(ξ)] +G(ξ)y (1.62a)

ẏ = v − ϕ̇(ξ). (1.62b)

Since F,G, and ϕ are known, we can express ϕ̇(ξ) as follows:

ϕ̇(ξ) = ∂ϕ

∂ξ
[F (ξ) +G(ξ)η]. (1.63)

We set

u = v − ϕ̇(ξ). (1.64)

The transformed system (1.62) can then be expressed as follows:

ξ̇ = [F (ξ) +G(ξ)ϕ(ξ)] +G(ξ)y, (1.65a)

ẏ = u. (1.65b)

The transformed system (1.65) has the same structure as the original control system

(1.57). The key advantage of the transformed system (1.65) is the following important

observation:

When the input is zero, the first subsystem (1.65a) is asymptotically stable at ξ = 0.

In the backstepping control design, the control Lyapunov function V1(ξ) is used to stabilize

the overall control system (1.65).

Next, we consider the total Lyapunov function for the original system (1.57), which is

given by:
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V (ξ, η) = V1(ξ) + 1
2 y

2 = V1(ξ) + 1
2 [η − ϕ(ξ)]2. (1.66)

Next, we show that V (ξ, η) is a positive definite function on Rn+1.

Since V1(ξ) is a positive definite function, it follows directly that

V1(ξ) ≥ 0 for all ξ ∈ Rn and V1(ξ) = 0⇐⇒ ξ = 0. (1.67)

From (1.66) and(1.67) ;it is immediate that V (ξ, η) ≥ 0 for all(ξ, η) ∈ Rn+1.

Next, we will demonstrate that

V (ξ, η) = 0 ⇐⇒ (ξ, η) = (0, 0) (1.68)

Let (ξ, η) = (0, 0). Then ξ = 0 and η = 0. This implies that V1(0) = 0 and ϕ(0) = 0.

Hence, V (ξ, η) = 0. Next, suppose that V (ξ, η) = 0. Since V is a sum of two nonnegative

numbers, it is immediate that

V1(ξ) = 0 and η − ϕ(ξ) = 0. (1.69)

Since V1 is a positive definite function, ξ = 0. Since ϕ(0) = 0, we must have η = 0.

Therefore, (ξ, η) = (0, 0).

Thus, we have established that V is a positive definite function on Rn+1.

Next, we compute the derivative of the candidate Lyapunov function V as follows:

V̇ = ∂V1

∂ξ
[F (ξ) +G(ξ)ϕ(ξ)] + ∂V1

∂z
G(ξ)y + yv

≤ −W (ξ) + ∂V1

∂z
G(ξ)y + yu.

(1.70)

We select the backstepping control law u as

u = −∂V1

∂z
G(ξ)− ky (k > 0) (1.71)

Substituting (1.71) into the inequality in(1.70), we obtain

V̇ ≤ −W (ξ)− ky2.

Hence, by Lyapunov stability theory [Kha02], we deduce that (ξ, η) = (0,0) is an asymp-

totically stable equilibrium for the original system (1.57)

From (1.64),we know that u = v − ϕ̇(ξ).
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Therefore, the required backstepping control law is expressed as:

v = u+ ϕ̇(ξ) = ∂ϕ

∂ξ
[F (ξ) +G(ξ)η]− ∂V1

∂z
G(ξ)− k[ξ − ϕ(ξ)] (k > 0). (1.72)

The above backstepping calculations are summarized in the following result:
Theorem 1.4.1:

Consider the control system (1.57) defined on Rn+1 with smooth vector fields F

and G with F (0) = 0 and G(0) = 0. Let η = φ(ξ) be a stabilizing state feedback

law for the subsystem (1.57.a), where φ(0) = 0. Suppose that V1(ξ) is a Lyapunov

function such that
∂V1

∂ξ
[F (ξ) +G(ξ)ϕ(ξ)] ≤ −W (ξ) (1.73)

where W (ξ) is positive definite on Rn.Then the backstepping control law

v = u+ ϕ̇(ξ) = ∂ϕ

∂ξ
[F (ξ) +G(ξ)η]− ∂V1

∂z
G(ξ)− k[ξ − ϕ(ξ)] (k > 0) (1.74)

Stabilizes the equilibrium (ξ, η) = (0, 0) of the system (1.57) with the total Lyapunov

function

V (ξ, η) = V1(ξ) + 1
2 [η − ϕ(ξ)]2. (1.75)

Next, we examine the backstepping control design for a general system of the form

ξ̇ = F (ξ) +G(ξ)η, (1.76a)

η̇ = α(ξ, η) + β(ξ, η)u (1.76b)

We define the control input u as

u = 1
β(ξ, η) [v − α(ξ, η)]. (1.77)

Substituting (1.77) into (1.76),we get

ξ̇ = F (ξ) +G(ξ)η,

η̇ = v.
(1.78)

The design process of the backstepping controller, which is inherently recursive, de-

pends on the system’s equations having a particular triangular structure, often referred
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to as the pure-feedback form. This structural condition is crucial for the successful appli-

cation of backstepping methods in control design [LK97].

η̇1 = F0(ξ) +G0(ξ)η1

η̇2 = F1(ξ, η1) +G1(ξ, η1)η2
...

˙ηk−1 = Fk−1(ξ, η1, . . . , ηk−1) +Gk−1(ξ, η1, . . . , ηk−1)ηk
η̇k = Fk(ξ, η1, . . . , ηk) +Gk(ξ, η1, . . . , ηk)u

(1.79)

where ξ, η1, η2, . . . , ηk ∈ R are the states and u ∈ R is the control input. In (1.79)F0, F1,

. . . , Fk, G0, G1, . . . , Gk are known smooth functions. It is noted that in the strict feedback

form (1.79), ξ̇i depends only on the states ξ, η1, . . . , ηi.

In most cases, the feedback linearization method used to stabilize the strict feedback

control system (1.79) may result in the cancellation of important nonlinear terms. How-

ever, the standard backstepping control design offers greater flexibility compared to the

feedback linearization approach, as it does not require the final input-output dynamics to

be a linear system. The backstepping control design is a recursive process, and by apply-

ing Lyapunov stability theory, a Lyapunov function is constructed for the entire system

(1.79).

1.4.1 Numerical Application



ẋ1 = x2
1 − x3

1 + x2

ẋ2 = x3

ẋ3 = u

xeq(0, 0, 0) (1.80)

It is necessary to determine u in a way that ensures xeq is asymptotically stable (AS)

1: consider φ0(x1) = −x2
1 − x1

let v = 1/2x2
1 =⇒ v̇ = x1ẋ1 = −x4

1 − x2
1 < 0

2: consider 
ẋ1 = x2

1 − x3
1 + x2

ẋ2 = x3

(1.81)

φ1(x1, x2) = −k (ζ − φ0(x1)) + ∂φ0

∂η
(f(η) + g(η)ζ)− ∂v

∂η
· g(η) (1.82)
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η = x1 and ζ = x1

f = x2
1 − x3

1 and g = 1

φ1(x1, x2) = −k
(
x2 + x2

1 + x1)
)

+ (−2x1 − 1)
(
x2

1 − x3
1 + x2

)
− x1 (1.83)

v1 = 1
2x

2
1 + 1

2[ζ − φ0(x1)]2 (1.84)

3: consider 

ẋ1 = x2
1 − x3

1 + x2

ẋ2 = x3

ẋ3 = u

(1.85)

ẋ1

ẋ2

 =

x2
1 − x3

1 + x2

0

+

0

1

x3

ẋ3 = u We define

η1 =

ẋ1

ẋ2

 , f1 =

x2
1 − x3

1 + x2

0

 , g1 =

0

1

 , ζ1 = x3

The control law

φ1(x1, x2) = −k1 (ζ1 − φ1(x1, x2)) + ∂φ1

∂η1
(f1 + g1ζ1)− ∂v1

∂η1
· g1 (1.86)

∂v1

∂η1
g1 =

[
∂v1
∂x1

∂v1
∂x2

] 0

1

 = ∂v1

∂x2

u = −k (x3 − φ1(x1, x2)) + ∂φ1

∂x1

(
x2

1 − x3
1 + x2

)
+ ∂φ1

∂x2
x3 −

∂v1

∂x2
(1.87)

1.4.2 Backstepping for Three-Phase PWM AC-DC Converter

To apply the backstepping control technique to the static compensator, we need to

put our system into a ’strict-feedback’ form. To do this, we will apply Lie theory after a

suitable choice of output variables.

The desired objective is to force the voltage vdc to track its reference value and maintain

the current id at zero.
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To achieve this objective using the backstepping technique, we will choose the output

variables as follows: 

y1 = h1(x) = vdc

y2 = Lfh1(x)

y3 = id

(1.88)

Applying Lie theory, we find :
ẏ1

ẏ2

ẏ3

 =


Lfh1 + Lg1h1ud + Lg2h1uq

L2
fh1 + Lg1Lfh1ud + Lg2Lfh1uq

Lfh2 + Lg1h2ud + Lg2h2uq

 (1.89)

with
Lfh1(x) = 2

3Cνdc
(edid + eqiq)−

νdc
CRch

Lg1h1 (x) = Lg2h1 (x) = 0

L2fh1(x) = 2 (edf1(x) + eqf2(x))
3Cvdc

−
{

2 (edid + eqiq)
3Cv2

dc

+ 1
CRch

}
f3

Lg1Lfh1(x) = 2ed
3LCνdc

Lg2Lfh1(x) = 2eq
3LCνdc

Lfh2(x) = −R
L
id + wiq

Lg1h2 (x) = 1
L

Lg2h2(x) = 0

We can write the system (1.89) in the following form:



ẏ1 = y2

ẏ2 = L2fh1 + Lg1Lfh1ud + Lg2Lfh1uq

ẏ3 = Lfh2 + Lg1h2ud + Lg2h2uq

(1.90)

If we choose new control inputs, the system (1.90) can be written as two subsystems,

where the first subsystem is in strict-feedback form [TC99]

Subsystem 01: 
ẏ1 = y2

ẏ2 = L2f̄h1 + ud

(1.91)
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Subsystem 02:

ẏ3 = Lf̂h2 + uq (1.92)

Such that

ud
uq

 =

Lg1Lf̃h1ud + Lg2Lf̃h1uq

Lg1h2ud + Lg2h2uq

 (1.93)

The compact form of the model is

ẏ = A (x) +B (x)U (1.94)

To achieve good transient performance [ZW02], a linear reference model is defined as:

ẏm = kmym +Bmuref
ẏm1

ẏm2

ẏm3

 =


0 1 0

−km1 km2 0

0 0 km1




ym1

ym2

ym3

+


0 0

km1 0

0 km3


vdc∗
i∗d

 (1.95)

Now, we will define the error variables as follows:

e =


e1

e2

e3

 =


y1 − ym1

y2 − ym2

y3 − ym3

 (1.96)

We use the following transformation

Ũ =

ũd
ũq

 =

ud + km1ym1 + km2ym2 − km1vdc
∗

uq + km3ym3 − km3i
∗
d

 (1.97)

Then the error differential equations are:

ė = A (x) +B(x)Ũ (1.98)

With

A (x) =


e2

L2f̃h1

Lf̃h2

 , B(x) =


0 0

1 0

0 1


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The step 01:

We choose the state e2 as the virtual input for the first equation of system (1.98), hence,

the first backstepping variable is chosen as:

z1 = e1 (1.99)

The virtual input is defined by:

z2 = α1e2 (1.100)

With α is a stabilizing function. z2 is a new state variable.

Then the z1 system can be written in the form:

ż1 = α1 + z2 (1.101)

The stabilizing function α(x)

α(x) = −k1z1 (1.102)

So ż1 = −k1z1 + z2

The Lyapunov function of the z1 system is

V1 = 1
2z

2
1

V̇1 = z1ż1

= −k1z
2
1 + z1z2

(1.103)

With k1 > 0, it is the feedback gain, hence the z1 system is now stable.

The step 02:

The dynamics of z2 are described by the following equation:

ż2 = −ė2 + α̇(x)

= L2
f̄h1 + ũd + α̇(x)

(1.104)

Then the Lyapunov function of the z2 system is

V2 = V1 + 1
2z

2
2

V̇2 = V̇1 + 1
2z2

2

= V̇1 + ż2z2

= (−k1z
2
1 + z1z2) + ż2z2

= −k1z1
2 + z2(z1 + ż2)
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V̇2 = −k1z
2
1 + z2(z1 + L2

f̄h1 + ũd + α̇)

= −k1z
2
1 + z2(z1 + L2

f̄h1 + ũd +−k1ż1)

= −k1z
2
1 + z2(z1 + L2

f̄h1 + ũd − k1z1 + z2)

(1.105)

The step 03:

In the third step, a Lyapunov function must be generated to stabilize the third equation

of (1.98). To do this, we take

ż3 = Lf̃h2(x) + ũq (1.106)

Defining a Lyapunov function v3(z3) such that:

V3(z3) = 1
2z

2
3 (1.107)

Finally, to design the backstepping controller for the system, we define an augmented

Lyapunov function v(z1, z2, z3), such that

V (z1, z2, z3) = V2(z1, z2) + V3(z3)

So
V̇ (z1, z2, z3) = −k1z

2
1 + z2(z1 + L2f̃h1 + ũd − k1z1 + z2)

+ z3(Lf̃h2 + ũq)
(1.108)

For V̇ ≤ 0 to hold, the second and third terms must be equal to −k2z2 and −k3z3

respectively, hence
z1 + L2

f̄h1 + ũd − k1z1 + z2 = −k2z2

Lf̄h2 + ũq = −k3z3

(1.109)

Then the control inputs are :

ũd = −z1 − L2
f̄h1 + k1z

2
1 − k1z2 − k2z2

ũq = −Lf̃h2 − k3z3

(1.110)

To obtain the actual control inputs ud and uq, we use equations (1.97) and (1.93)

Figures (1.11),(1.12) represent the responses of the voltage vdc, the current, and the

line-to-line voltage of the backstepping control applied to the three-phase PWM AC-DC

converter. From these figures, we can observe that the vdc follows its reference, and the

power factor is nearly unity.
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Fig 1.12: Line current and voltage
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Fig 1.13: The harmonic spectrum of the line current

1.4.3 Backstepping for Permanent Magnet Synchronous Motor

In this section, we have demonstrated the implementation of backstepping control in

the PMSM engine. This approach is designed to maintain the same overall structure of

vector control, as depicted in Figure 1.14, while ensuring regulation and limitation of

currents.[LK97]

Fig 1.14: Overall structure of the speed control of the PMSM using backstepping
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The model written in the following form:
did
dt

diq
dt

dω
dt

 =


−Rs

Ld
id + ωrLq

Ld
iq

−Rs

Lq
iq − ωrLd

Lq
id − ωrφv

Lq

3
2
pφv

J
iq − p(Lq−Ld)

J
idiq − f

J
ω

+


1
Ld

0 0

0 1
Lq

0

0 0 −1
J




Vd

Vq

TL

 (1.111)

can be rewritten in the following form:



did
dt

= −Rs
Ld
id + Ld

Lq
ωriq + 1

Ld
vd

diq
dt

= −Rs
Lq
iq − Ld

Lq
ωrid − φv

Lq
ωr + 1

Lq
vq

dω
dt

= −pφv

J
iq − p(Lq−Ld)

J
idiq − 1

J
TL

(1.112)

The core idea behind backstepping control is to render the overall system as a cas-

cade of stable subsystems of order one, in the sense of Lyapunov stability, which confers

qualities of robustness and global asymptotic stability. The objective is to control the

speed by choosing the time derivatives did
dt

and diq
dt

as the subsystem expressions and id

and iq as intermediate variables (the stator currents). Based on these variables (id and

iq), the voltage control inputs (vd and vq) required to achieve the desired speed control

and overall system stability are calculated.

Fig 1.15: Internal structure of the backstepping control block

The step 01:

Since direct current is a control variable, its desired value and its regulation error are

defined by
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idref = 0

e1 = idref − id

ωr = ω.p

(1.113)

Based on equations (1.112)and(1.113) , the error dynamics equations are:

ė1 = idref − id

ė1 = idref + R

Ld
id −

Ld
Lq
ωriq −

1
Ld
vd

(1.114)

Since the objective requires error e1 to converge to zero and also demands that the

current be regulated and limited, we employ the Lyapunov function V1, which in a sense

represents the error energy

V1 = 1
2e

2
1 (1.115)

The derivative of the function is expressed as follows, based on equations (1.113) and

(1.114):

V̇1 = e1ė1

V̇1 = e1

(
idref + R

Ld
id −

Ld
Lq
ωriq −

1
Ld
vd

) (1.116)

To ensure that the derivative of the criterion is always negative, the derivative of V1

must take the form V̇1 = −k1e
2
1 introduced by the backstepping method, thus leading to:

V̇1 = e1

(
k1e1 + R

Ld
id −

Ld
Lq
ωriq −

1
Ld
vd

)
= −k1e

2
1 (1.117)

This equation allows us to define the voltage control signal vd of the subsystem to

ensure Lyapunov stability and force the current id to follow its reference idref = 0. The

reference voltage vdref is obtained as follows:

vdref = Ld

(
k1e1 + R

Ld
id −

Ld
Lq
ωriq

)
(1.118)

The step 02:

Given that the rotor speed is the primary modulating variable, we define its specified

trajectory using a reference value and regulation error

41



Chaptre 1. Control of Non-linear Systems

e2 = ωref − ω

ė2 = ω̇ref − ω̇

ė2 = ω̇ref −
(
p (Ld − Lq)

J
id + pφv

J

)
iq −

f

J
ω − 1

J
Cr

(1.119)

Our objective demands that the error e converge to zero. This is achieved by selecting

b as the virtual control in equation (1.119).

The extended Lyapunov function will be defined as:

V2 = V1 + 1
2e

2
2

V2 = 1
2[e2

1 + e2
2]

(1.120)

By choosing V̇2 to be negative semi-definite such that

V̇2 = −k1e
2
1 − k2e

2
2 ≤ 0 (1.121)

We obtain

k2e2 + ω̇ref −
(
p (Ld − Lq)

J
id + pφv

J

)
iq + f

J
ω + 1

J
TL = 0 (1.122)

Considering that the time derivative of the desired current idref = 0 , which leads

to defining the required control action for the desired current derivative idref in order to

determine the desired voltage vdref

iqref =
(
k2e2 + f

J
ω + 1

J
TL + ω̇ref

)(
J

pφv

)
(1.123)

The step 03:

This step allows determining the reference voltage for the overall system (1.112), with

the new control objective being the current, considered as a virtual control input at this

stage. A new regulation error is defined as

e3 = iqref − iq (1.124)

Thus, the dynamic equations for the error, based on the system (1.112), are

ė3 = iqref − iq

ė3 = iqref + R

Lq
iq −

Ld
Lq
ωrid −

φf
Lq
ωr −

1
Lq
vq

(1.125)
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Since the objective requires this error to also converge to zero, and also requires that

the current be regulated and limited, we use the following extension of the Lyapunov

function

V3 = V1 + V2 + 1
2e

2
3V3 = 1

2[e2
1 + e2

2 + e2
3] (1.126)

The derivative of the function is written as follows

V̇3 = V̇1 + V̇2 + e3ė3

V̇3 = V̇1 + V̇2 + e3

[
i̇qref + R

Lq
iq −

Ld
Lq
ωrid −

φf
Lq
ωr −

1
Ld
vq

] (1.127)

By choosing the derivative of V̇3 to be negative semi-definite such that

V̇3 = −k1e
2
1 − k2e

2
2 − k3e

2
3 ≤ 0 (1.128)

We obtain

V̇3 = −k1e
2
1 − k2e

2
2 + e3ė3 = −k1e

2
1 − k2e

2
2 − k3e

2
3e3ė3 = −k3e3e3ė3 = −k3e3 (1.129)

and [
˙iqref + R

Lq
iq −

Lq
Ld
ωrid −

φf
Lq
ωr −

1
Ld
vq

]
= −k3e3 (1.130)

From this, we deduce the final control law vdref :

The currents isd and isq are represented in Figures 1.17 and 1.18, respectively.The speed

profile 1.16 perfectly follows its reference speed of 100 rad/s, which is reached very quickly

with an acceptable response time. After applying a load torque of 5 N.m at t=0.25 s, a

slight overshoot is observed, and then the speed returns to its reference value. A similar

observation is made during the reversal of the reference speed, where it is noted that

the motor speed follows the reference speed with the presence of oscillations during the

transient phase.
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1.5 Nonlinear Adaptive Control

1.5.1 Matching Conditions:

Consider the following ideal system:

ẋ = f(x) +
p∑
i=1

gi(x)ui (1.131)

Where f , gi for i = 1, 2, . . . , p are smooth functions and f(0) = 0. This same system,

subject to uncertainties in the parameters, is written as:

ẋ = f(δ, x) +
p∑
i=1

gi(δ, x)ui (1.132)

Where f(δ, x), gi(δ, x) for i = 1, 2, . . . , p are also smooth functions. Assuming the un-

certain system has the same dimension as the ideal system and shares the same inputs

(controls), we then have:

∆f = f(δ, x)− f(x), ∆gi = gi(δ, x)− gi(x) for i = 1, 2, . . . , p (1.133)
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If the system (1.131) is linearizable, then there must exist a transformation that converts

it into a controllable canonical form, thus facilitating pole placement. For the uncertain

system to be linearized while remaining in a controllable canonical form, it is necessary

for the error between the uncertain model and the ideal model to satisfy the triangularity

condition.

1.5.2 Theorem (Triangularity Condition):

Consider the uncertain system (3.b) where the nominal model (3.a) is linearizable

by state feedback with Kronecker indices k1, k2, . . . , kp. The uncertain system is also

linearizable if the ∆f , ∆g1, ∆g2, ...

1.5.3 Steps in the design of an adaptive controller:

The design of the adaptive controller takes place in two phases. In the first phase,

we develop a non-adaptive controller using the nominal model (δ = 0). In the second

phase, we aim to estimate the vector of uncertain parameters by adopting an appropriate

adaptation law [Kad00].

• First step: Consider a multivariable dynamic system described by:

ẋ = f(x, δ) +
p∑
i=1

gi(x, δ)ui (1.134)

Where:

f(x, δ) = f0(x) + ∆f(x, δ), gi(x, δ) = gi(x) + ∆gi(x, δ) (1.135)

where ∆f(x, δ) and ∆gi(x, δ) represent the parts produced by the uncertain parameters.

f0(x), gi(x) are the functions of the nominal model:

ẋ = f0(x) +
p∑
i=1

gi(x)ui (1.136)

We start by considering the nominal case represented by the model (1.136). The design

procedures for the corresponding controller are the same as those given in the previous

chapter. The model (1.136) is linearizable if there exists a region U around 0 such that

for all x ∈ U and for all δ ∈ Bδ, there exists a change of variables:

xi = Li−1
f φj(x, δ) for j = 1, . . . , p, i = 1, . . . , ri (1.137)
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where ri is the relative degree corresponding to output i, and a linearizing law u =

D(x)−1(−ζ(x) + v) transforms the system (1.136) into canonical form. Consider the

following dynamic expression

z =


Ar1 . . . 0
... . . . ...

0 . . . Arp

 z +


Br1 . . . 0
... . . . ...

0 . . . Brp

 v (1.138)

where each Ari
is a matrix of the form

Ari
=



0 1 . . . 0

0 0 . . . 0
... ... . . . ...

0 0 . . . 1

0 0 . . . 0


∈ Rri×ri (1.139)

and each Bri
is a column vector:

Bri
=



0

0
...

1


∈ Rri (1.140)

And the function ζ(x) is given by:

ζ(x) =


Lri
f h1(x)

...

L
rp

f hp(x)

 (1.141)

The matrix D(x), defining the coupling between the inputs and outputs, is

D(x) =



Lg1L
r1−1
f h1(x) Lg2L

r1−1
f h1(x) . . . LgpL

r1−1
f h1(x)

Lg1L
r2−1
f h2(x) Lg2L

r2−1
f h2(x) . . . LgpL

r2−1
f h2(x)

... ... . . . ...

Lg1L
rp−1
f hp(x) Lg2L

rp−1
f hp(x) . . . LgpL

rp−1
f hp(x)


(1.142)

The matrix D(x) is the decoupling matrix, which must be non-singular, and ri indicates

all the associated relative degrees. Subsequently, we assign the new input v a dynamics

determined by the selected control strategy.
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• Second step:

In the second step, it is necessary to determine how to apply the controller designed for the

nominal case, taking into account the constraints associated with uncertain parameters.

It is also crucial to assess how far this new controller can maintain its performance. We

consider the nonlinear system (1.134) with Lgh(x) 6= 0 for any vector x, such that

f(x) =
n1∑
i=1

θ
(1)
i (t)fi(x) (1.143)

g(x) =
n2∑
j=1

θ
(2)
j (t)gj(x) (1.144)

where θ(1)
i for i = 1, . . . , n1 and θ

(2)
j for j = 1, . . . , n2 are the unknown parameters,

and fi(x), gj(x) are known functions over time. Our estimate for f and g is:

f̃(x) =
n1∑
i=1

θ̃
(1)
i (t)fi(x) (1.145)

g̃(x) =
n2∑
j=1

θ̃
(2)
j (t)gj(x) (1.146)

where θ̃(1)
i (t) and θ̃

(2)
j (t) represent the estimates of the parameters θ(1)

i (t) and θ
(2)
j (t),

respectively, consequently, the linearization law (1.142) is replaced by

u = D̃(x)−1(−ζ̃(x) + v) (1.147)

Where

ζ̃(x) =


(Lr1

f h1)est(x)
...

(Lrp

f hp)est(x)

 (1.148)

D̃(x) =


(Lg1L

r1−1
f h1)est(x) · · · (LgpL

r1−1
f h1)est(x)

... . . . ...

(Lg1L
rp−1
f hp)est(x) · · · (LgpL

rp−1
f hp)est(x)

 (1.149)

And

(Lrk
f hk)est =

n1∑
i=1

θ̃
(1)
i Lrk

f hk k = 1, . . . , p (1.150)

(Lgk
Lri−1
f )est =

n2∑
j=1

θ̃
(2)
j (LgkjL

ri−1
f hi) i = 1, . . . , p, k = 1, . . . , p (1.151)
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If we define θn ∈ Rn1+n2 as the nominal vector of the parameters (θ(1), θ(2)), θ(t) ∈

Rn1+n2 , and ψ as the error vector between the nominal value and the estimated value

such that

ψ = [ψ(1) ψ(2)] = [θ̃ − θn] = [θ̃(1)
i − θ

(1)
in θ̃

(2)
j − θ

(2)
jn ] (1.152)

If we substitute equation (1.147) into (1.148) after a lengthy calculation, we obtain

y = v + ψ(1)Tw(1) + ψ(2)Tw(2) (1.153)

with

w(1) = −



Lr1
f1h1
...

Lr1
fn1h1
...

L
rp

f1hp
...

L
rp

fn1hp



(1.154)

and

w(2) =



Lg11L
r1−1
f h1 · · · Lgp1L

r1−1
f h1

... . . . ...

Lg1n2L
r1−1
f h1 · · · Lgpn2L

r1−1
f h1

... . . . ...

Lg11L
rp−1
f hp · · · Lgp1L

rp−1
f hp

... . . . ...

Lg1n2L
rp−1
f hp · · · Lgpn2L

rp−1
f hp



(1.155)

If ζ̃(x) defined by (1.148) is different from zero, we can define the parameter adaptation

law using the gradient method and the control u as follows:

u = D̃(x){−ζ̃(x) + v} (1.156)

ψ = −γW T e (1.157)

The adaptive controller ensures that the error between the outputs and their refer-

ences tends toward zero, but it does not do so for the estimation error of the uncertain

parameters [Yac04], [Kad00].
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1.5.4 Nonlinear Adaptive Control for Three-Phase PWM AC-

DC Converter:

In this section, we design a nonlinear adaptive controller that ensures the regulation

of the voltage νdc across the capacitor terminals with respect to the variation in the load

Rch. To do this, we begin by designing a controller based on the input-output linearization

technique applied to the nominal model, and then we calculate the adaptation law that

will allow us to estimate the load resistance Rch. Let us recall that the dynamic equations

of the three-phase PWM AC-DC converter are:

did
dt

= −R
L
id + wiq + 1

L
(ed − νd)

diq
dt

= −R
L
iq − wiq + 1

L
(eq − νq)

dνdc

dt
= 2

3Cνdc
(edid + eqiq)− νdc

CRch

(1.158)

The system (1.158) is written in the form of state equations as follows

ẋ = f(x) + g.u (1.159)

With 
x =

[
id iq νdc

]T
u = [(ed − vd) (eq − vq)]T

Our system satisfies the triangularity conditions, which can be written in the following

form

ẋ = fn(x) + δfδ(x) + g(x)u (1.160)

Where

fn(x) =


−R
L
id + wiq

−R
L
iq − wid

2
3Cνdc

(edid + eqiq)− νdc

CRchnom

 (1.161)

fδ(x) =


0

0

−vdc

c

 (1.162)
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g(x) =


1
L

(ed − vd)
1
L

(eq − vq)

0

 (1.163)

With δ representing the error between the inverse of the actual value Rch and the

inverse of its nominal value such that:

δ = 1
Rch

− 1
Rchnom

(1.164)

a- The non-adaptive version:

As we saw in the previous chapter, we can determine the linearizing control law without

adaptation (where δ = 0 is the nominal case). It is worth mentioning that our objective

is to force the voltage νdc to follow its trajectory and to regulate id in order to achieve a

unit power factor with minimized harmonics in the lines. By applying the input-output

linearization theory, we obtain:

d

dt
[y1ẏ2]T = ζ(x) +D(x).u (1.165)

With

y =

y1

y2

 =


id

vdc

 (1.166)

And

ζ(x) =

 f1

2
3Cvdc

(edf1 + eqf2)−
{

2
3Cv2

dc
(edid + eqiq) + 1

CRCD

}
f3

 (1.167)

D(x) =

 1
L

0
2ed

3LCvdc

2eq

3LCvdc

 (1.168)

Where 

f1 = −R
L
id + wiq

f2 = −R
L
iq − wid

f3 = 2
3Cνdc

(edid + eqiq)− νdc

CRch
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The linearizing control law is thereforeud
uq

 = D−1

−ζ +

v1

v2


 (1.169)

Where (v1, v2) are the new control inputs designed to ensure the tracking of the voltage

νdc and the regulation of the current id, such that:

ν1 = k1(idref − id)

ν2 = k2(νdcref − νdc)− k3
d(νdc)
dt

(1.170)

b- The adaptive version:

In this section, we will design a nonlinear adaptive controller to control the outputs

y, taking into account the variation in the load Rch, such that:

y =

y1

y2

 =


id

vdc


The system (1.158) can be written in the following form

ẋ = f(x) + g(x).u (1.171)

such that

f(x) = ∑n1
i=1 θ

(1)
i fi(x), g(x) = ∑n2

j=1 θ
(2)
j gj(x)

Where

f(x) =


f1(x)

f2(x)

f3(x)

 =


−R
L
x1 + wx2

−R
L
x2 − wx1

2
3Cx3

(edx1 + eqx2)

+



0

0

0

−x3
C


.θ (1.172)

g =



1
L

0

0 1
L

0 0


(1.173)
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And

θ = 1
Rch

The variable θ is unknown, so it must be replaced by its estimate θ̃, while f will be

replaced by its estimate f̃ , such that:

f̃(x) =


−R
L
x1 + wx2

−R
L
x2 − wx1

2
3Cx3

(edx1 + eqx2)

+


0

0

−x3
C


.θ̃ (1.174)

Consequently, the control law (1.169) is replaced by:

ud
uq

 = D̃−1

−ζ̃ +

v1

v2


 (1.175)

With ζ̃ representing the estimate of ζ:

ζ̃(x) =

 f1

2
3Cνdc

(edf1 + eqf2)−
{

2
3Cν2

dc
(edid + eqiq)

}
f3

+

 0

−f3
C

 θ̃ (1.176)

Now, to obtain the adaptation law of the parameter, we will define the parameter error

vector ψ, such that:

ψ = θ̃ − θn (1.177)

With θn being the nominal value of the parameter. Using equation (1.154), we obtain:

ẏ = v + ψW (1.178)

With

W =

 0
f3
C

 (1.179)

The vector v is defined in the previous chapter such that:

v1 = k1(idref − id)

v2 = k2(νdcref − vdc)− k3
d(vdc)
dt

(1.180)
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The parameter adaptation law and the control law are obtained

ψ̇ = −γW T e (1.181)

u = D̃−1

− ζ̃ +
v1

v2

 (1.182)

−γ :represents the adaptation gain

Fig 1.19: Block diagram of the nonlinear adaptive control

We implemented a nonlinear adaptive controller in the Matlab/Simulink software en-

vironment to evaluate the stability and tracking performance. Figure (1.20) illustrates

the response of the voltage νdc with an ideal linearizing control, that is, without an adap-

tation law, applied to a three-phase AC-DC converter with PWM. Figures (1.20-1.23)

show the responses of the voltage vdc, the current, and the voltage of a phase line, as well

as the estimation of the load resistance, when a nonlinear adaptive control is applied to

the three-phase converter. It is observed that the load resistance changes abruptly from

25Ω to 45Ω after 25Ω at times t = 0.15s and t = 0.45s, respectively.
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Fig 1.20: The response of the voltage without adaptation law (effect of the load)
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Fig 1.21: The response of the voltage with the adaptation law (Rch = 1.8 Rchnom)
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Fig 1.22: The line current and voltage.
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Fig 1.23: Estimation of the load resistance (Rch = 1.8Rchnom).

56



Chaptre 1. Control of Non-linear Systems

To evaluate the robustness of the controller against variations in the system parame-

ters, we examined the variation of the load resistance Rch = Rchnom to Rch = 1.8Rchnom ,

as shown in Figures (1.21)and (1.23) . The results obtained demonstrate the effectiveness

of this control technique, although a slight instantaneous variation in the voltage νdc is

observed. However, the steady-state error is eliminated thanks to the effectiveness of the

adaptation laws.

Fig 1.24: The harmonic spectrum of the line current

1.6 Conclusion

The chapter presents a detailed study of nonlinear system control strategies. It covers

several techniques, including input-output feedback linearization and backstepping control

design, applied to a three-phase AC-DC converter with pulse width modulation (PWM)

and a permanent magnet synchronous motor (PMSM). The results of nonlinear control

simulations show that these techniques are effective for tracking and regulation problems,

achieving a unit power factor. However, their main disadvantage is their sensitivity to

variations in system parameters.

In the second part of the chapter, an adaptive nonlinear control strategy is developed

for the same type of converter. Simulation results indicate that these control strategies

outperform other techniques. They stand out for their robustness to parameter uncer-

tainties, achieving an almost unit power factor and significantly reducing ripple in the

line current and the voltage across the capacitor
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2.1 Introduction

This chapter centers on the multi-model approach, a powerful methodology for mod-

eling complex nonlinear systems. This approach involves the creation of multiple models,

each tailored to capture the system’s behavior within specific operational zones. These

individual models are then ingeniously woven together to form a comprehensive represen-

tation that excels in accurately characterizes the nonlinear system.

We explore various multi-model structures, such as coupled, decoupled, and hierarchi-

cal configurations, shedding light on their distinctive features and applications. Addition-

ally, we navigate the methods used to obtain these multi-models, delving into techniques

including identification, linearization, neural approaches, and the intriguing sector non-

linearity approach.

Furthermore, this chapter dedicates itself to the analysis of dynamic system stability,

placing a particular emphasis on the rigorous examination of the stability of Takagi-

Sugeno fuzzy systems. Our journey through this chapter will equip you with a profound

understanding of the multi-model approach, its diverse structures, the methodologies

employed in its implementation, and its role in ensuring the stability of complex dynamic

systems, Particularly focusing on the stability analysis of Takagi-Sugeno fuzzy systems.

2.2 Modeling with Multi-Model Approaches

Multi-models excel at replicating complex dynamic behaviors in diverse systems. They

are highly effective for modeling systems using empirical data, enabling precise state es-

timation and effective control. With intriguing mathematical features, multi-models sim-

plify the extension of analytical techniques from linear to nonlinear systems, eliminating

the need for in-depth nonlinearity analysis[Ham12] .

In the realm of literature, dynamic systems are commonly depicted using models in the

following form:
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 ẋ = f(x(t), u(t))

y = h(x(t))
(2.1)

In these equations, f and h represent differentiable functions that can be either linear

or nonlinear.

Additionally, we have the following variables:

- x(t) = [x1, x2, . . . , xn]T ∈ Rn, which is the state vector.

- u(t) = [u1, u2, . . . , um]T ∈ Rm, representing the input variable.

- y ∈ Rny is the measurement vector.

Under certain conditions applied to the functions f and g, the previous system can be

reformulated in a quasi-linear form as shown below:

 ẋ(t) = A(x(t))x(t) +B(x(t))u(t)

y(t) = C(x(t))x(t) +D(x(t))u(t)
(2.2)

Here, A(·) ∈ Rnx×nx, B(·) ∈ Rnx×nu, C(·) ∈ Rny×nx, and D(·) ∈ Rny×nu are matrices

known as the dynamics, control, observation, and direct action matrices, respectively.

HighWeak

High

Modèle LTI
•

•
Non-linear model
•

Multi-models
•

Ideal model for control

Precision

Complexity

Fig 2.1: Complexity and precision of the representation of non-linear systems

The Multi-Model (MM) approach is extensively employed in modeling nonlinear sys-

tems. Various terminologies, essentially synonymous, are used to describe this model

type, as illustrated in Figure (2.2) . These include the Multi-Model [MSJ], the Fuzzy

60



Chaptre 2. State of the Art for Multi-models Approach

Takagi-Sugeno Model [TS85], and the Polytopic Linear Model [Ang01], among others.

Central to this approach is the integration of sub-models into a comprehensive system

model. This integration is facilitated through a weighting function, often referred to as

the activation function. This function represents a convex combination of the subsystems,

effectively contributing to the overarching system model[BOU23].

Fig 2.2: Multiple model structure
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2.2.1 Operating space

This is a vector space in which the system’s variables evolve.

2.2.2 Operating zone

The functioning areas represent the validity domains of local models, where each

domain is defined around an operating point [Kso99]. These domains may be either

disjoint in validity or overlapping, as shown in Figure (2.3)

Fig 2.3: Schematic diagram of the multi-model approach

a)- Non-linear system , b− c)- Multi-models representation

In cases where the validity domain is disjoint, the activation functions can only take

values of 0 or 1. At any given moment, only one model is valid, and the others are null.

This type of partitioning is common in systems with multiple configurations or modes

of operation, and the model obtained is called ’piecewise affine’ [SSPP23, Ham12]. The

other situation that can also be encountered in a multi-model description is when the

validity domains overlap or have common areas. This overlap is due to the substitution of

sharply defined activation functions with those having a softer slope. In this case, these

functions become continuously differentiable functions, where the slope determines the

speed of transitioning from one model to another[Ham15, Ham12]

2.2.3 Sub-model

It is the representation of the nonlinear system’s behavior in a particular operating

zone.
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2.2.4 Premise variable

Also known as the decision variable ξ(t) , it is a vector variable that is characteristic

of the system and is involved in the weighting functions µ(t). This variable may include

one or more internal or external variables of the system. These variables can either be

measurable, such as measurable state variables or system input signals, or they can be

unmeasurable

2.2.5 Activation function

This function determines the activation degree of the associated local sub-model. De-

pending on the area where the system operates, this function indicates the varying degree

of contribution of the corresponding local model to the overall model. It facilitates a

gradual transition from this model to the neighboring local models. These functions are

dependent on the decision variables.

hi(ξ(t)) = µi(ξ(t))
r∑
i=1

µi(ξ(t))
(2.3)

Activation functions can be constructed either from functions with discontinuous deriva-

tives, such as triangular or trapezoidal functions, or from functions with continuous deriva-

tives, such as Gaussian functions. They are selected to satisfy the following convex sum

properties:


0 ≤ hi(ξ(t)) ≤ 1
r∑
i=1

hi(ξ(t)) = 1

Activation functions that are constructed based on an exponential law are frequently

utilized in continuous cases [ACMR04]

2.2.6 Multi-model

The multi-model approach is based in the decomposition of a system’s dynamic be-

havior into distinct operating zones, each of which is characterized by its correspond-

ing subsystem. Depending on the region in which the system operates, each subsystem
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makes varying contributions to the approximation of the overall system behavior. Typi-

cally, within a specific operating zone, the system exhibits homogeneous dynamic behav-

ior.Consequently, the contribution of each subsystem to the comprehensive model, which

can be conceptualized as a convex combination of all subsystems, is determined by a

weighting function [Nag10]

2.3 Multi-Model Structures

The representation of a non-linear system using a multi-model approach can take

various forms. A state-based representation of these sub-models provides a concise and

versatile means of highlighting them. This multi-model state representation offers the

advantages of being compact and straightforward compared to presenting the system

as an input/output regression equation. Furthermore, when synthesizing control laws

or constructing non-linear observers, such a description of the system is often essential

[Orj08].

The choice of multi-model representation for a non-linear system depends on factors

such as whether segmentation occurs based on input or output variables (i.e., measurable

state variables) and the nature of coupling between local models associated with different

operating zones. Generally, three primary multi-model structures exist:

• coupled structure

• decoupled structure

• hierarchical structure

1. Coupled structure :also referred to as the Fuzzy TS fuzzy system, expresses the

state vector as a weighted combination of local model states. This structure is widely

adopted due to its common usage and can be readily derived without information loss

using non-linear sector transformations[Ham15][Nag10].

2. Decoupled structure, also known as Local Multi-Models: In this structure, the

system’s representation assumes the presence of local models that operate independently,

allowing for separate state vectors. This concept was introduced by Filev[Fil91] , who de-

veloped the idea of interpolating decoupled state sub-models. Each sub-model maintains
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its distinct state space, evolving independently of other sub-models [Mar16] .



ẋi(t) =
r∑
i=1

hi(ξ(t))(Aixi(t) +Biu(t))

yi(t) = Cixi(t) + Eiu(t)

y(t) =
r∑
i=1

hi(ξ(t))yi(t)

(2.4)

3. Hierarchical structure: While the multi-model approach has demonstrated

success in diverse fields like control and diagnosis, it encounters limitations when applied

to systems with a high number of variables or increased dimensionality. As the number

of variables grows, the quantity of local models increases exponentially. To illustrate,

consider a multi-model with a single output and n variables, each associated with m

activation functions; such a system would involve mn local models [Akh04] .

2.4 Basic Concepts of T-S Fuzzy systems

Takagi-Sugeno (TS) models have been the subject of numerous studies since their

introduction in 1985 by Takagi and Sugeno [TS85] . These models belong to the class

of convex polytopic systems and allow for the extension of certain concepts from linear

system control to the case of nonlinear affine control systems.

Historically rooted in fuzzy formalism, more recent methods for obtaining TS models,

such as sector nonlinearity decomposition, enable the exact representation of a nonlinear

system within a compact space of its state variables. As a result, a TS model can be equiv-

alently expressed as a Quasi-Linear Parameter-Varying (Quasi-LPV) model, represented

as a collection of linear dynamics (polytopes) interpolated by a set of nonlinear functions

(satisfying convex sum properties). Numerous research efforts have been dedicated to this

class of systems [Jab11] .

2.5 T-S Fuzzy model construction approaches

In the literature, there are three approaches for transforming an affine nonlinear control

model into a T-S model. These approaches aim to represent complex nonlinear systems

over a wide operating range. These different approaches are as follows:
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2.5.1 The Approach by Identification

By representing a nonlinear system in a multi-model form, the problem of identifying

nonlinear systems is reduced to identifying the subsystems defined by linear local models

and activation functions. Numerical optimization methods are then employed to estimate

these parameters.

For parameter estimation, several numerical optimization methods can be used, de-

pending on the available a priori information. These methods typically involve minimizing

the discrepancy function between the estimated multi-model output ŷ(t) and the mea-

sured system output ym(t) [CB12],[Ham15].

2.5.2 The Approach by linearisation

The fundamental idea of this approach is to linearize the nonlinear system around a

carefully chosen set of operating points, resulting in a defined number of Linear Time-

Invariant (LTI) models. Creating a Takagi-Sugeno (T-S) representation in this context

involves interconnecting these LTI models using carefully selected nonlinear membership

functions, such as Gaussians, triangles, trapezoids, etc. This concept is discussed in

Bouarar’s work [Bou09].

Consider a nonlinear system characterized by the following equations:

 ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t))
(2.5)

where x(t) ∈ <nx , u(t) ∈ <nu , and y ∈ <ny denote the state, input, and output

measurement vectors, respectively. The functions f and g are continuous and nonlinear,

belonging to R2n. This nonlinear system can be represented by a multi-model, comprising

several local linear or affine models. These models are derived by linearizing the nonlinear

system around different operating points (xi, ui) ∈ Rn × Rm [Gas00], [Oud08]:


ẋm(t) =

r∑
i=1

hi(ξ(t))(Aixm(t) +Biu(t) +Di)

ym(t) =
r∑
i=1

hi(ξ(t))(Cixm(t) + Eiu(t) +Ni)
(2.6)
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with the coefficients given by:

Ai = ∂f(x, u)
∂x

|(x,u)=(xi,ui) , Bi = ∂f(x, u)
∂u

|(x,u)=(xi,ui)

Ci = ∂h(x, u)
∂x

|(x,u)=(xi,ui) , Ei = ∂h(x, u)
∂u

|(x,u)=(xi,ui)

Di = f(xi, ui)− Aix−Biu , Ni = h(xi, ui)− Cix− Eiu

The number of local models (r) is influenced by the desired accuracy of the model, the

complexity of the nonlinear system, and the chosen structure of the activation function.

2.5.3 The Neural Approach

The neural approach to constructing multiple models offers a robust solution for repre-

senting complex systems, especially when an initial general model is not readily available.

This methodology leverages input-output signals and neural classification techniques to

partition data into distinct classes, effectively determining the required number of models.

The classification results are further refined using Kohonen self-adaptive networks and the

fuzzy K-means method, enhancing the granularity of data understanding.

These refined classifications are then associated with models, often linear, correspond-

ing to each dataset. Additionally, the approach calculates the validity or coefficient of

each model at various operating points, resulting in a versatile and resilient multiple model

representation. This process plays a pivotal role in the fields of machine learning and data

analysis, enabling the effective handling of the complexity and variability found in large

datasets.[EDBB10][CB12]

2.5.4 The Nonlinear Sector Approach.

In this subsection, we describe the three methods for obtaining a coupled multi-model

structure from a non-linear model.
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Local sector non linearity.

Fig 2.4: Non-linear sectors

We can represent the system stated in Equation (2.7) as an LPV form given by Equa-

tion (2.5):


ẋ(t) = A(s(t))x(t) +B(s(t))u(t)

y(t) = C(s(t))x(t) + E(s(t))u(t)
(2.7)

Let us define k as the count of nonlinear functions within the system of Equation

(2.7). These functions are present in the state matrices A(.), B(.), C(.), and E(.), and

they typically depend on the state x and the input u, symbolized as ξi(t) for i = 1, ..., k.

If we consider a compact set C for the variables ξ(t), the nonlinearities are constrained

as per the bounds provided in [Bez13], shown in Equation (3.22):

ξi(t) ∈ [ξi,2, ξi,1], for i = 1, . . . , k. (2.8)

The nonlinearity ξi can be reformulated as in Equation (2.9):

ξ(t) = Fi,1(ξi(t))ξi,1 + Fi,2(ξi(t))ξi,2, (2.9)

where the terms are defined as in Equation (2.10):
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

ξi,1 = max{ξi(t)}

ξi,2 = min{ξi(t)}

Fi,1(ξi(t)) = ξi(t)−ξi,2
ξi,1−ξi,2

Fi,2(ξi(t)) = ξi,1−ξi(t)
ξi,1−ξi,2

(2.10)

Activation functions µi(ξ(t)) derive from Fi,1(ξ(t)) and Fi,2(ξi(t)), as illustrated in

Equation (2.11):

µr(ξ(t)) =
2k∏
i=1

Fi,σi
r
(ξi(t)). (2.11)

Here, we have r = 2k sub-models. The indices σir (with r = 1, ..., 2k and i = 1, ..., k)

take values 1 or 2, indicating which partition of the sub-model i (either Fi,1 or Fi,2) is

used to define sub-model r. The connection between the sub-model number i and the

indices σir is described by Equation (2.12):

i = 2n−1σ1
i + 2n−2σ2

i + . . .+ 20σni − (21 + 22 + . . .+ 2n−1). (2.12)

We obtain matrices Ai, Bi, and Ci by substituting ξi(t) with ξi,σr
i
in A(ξ(t)), B(ξ(t)),

and C(ξ(t)), as shown in Equation(2.7).

This yields the T-S system in Equation (2.13):


ẋ(t) =

r=2k∑
i=1

hi(s(t))(Aix(t) +Biu(t))

y(t) =
r=2k∑
i=1

hi(s(t))Cix(t)
(2.13)

This multi-model structure correlates with the number of nonlinear terms in the initial

system. A potential downside of this approach is the proliferation of local models and

the challenges in accessing the decision variables of the weighting functions. Nevertheless,

from a structural perspective, all the sub-models within this multi-model maintain the

same dimensionality, using a single state vector. Thus, the complexity of each sub-model

remains constant, regardless of the system’s complexity across different operational zones.

However, there is a risk of over-parameterization with this multi-model, potentially lead-

ing to unnecessary complexity, as noted in [Ham12].
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Example 1.1

Let’s examine the following nonlinear system: Let’s consider a system where the states

x1(t) and x2(t) are each bounded within the interval [−1, 1]. The system’s dynamics can

then be expressed as:

ẋ(t) =

 −1 x1(t)x2
2(t)

(3 + x2(t))x2
1(t) −1

x(t) +

0

1

u(t) (2.14)

where x(t) = [x1(t), x2(t)]T and the elements x1(t)x2
2(t) and (3 + x2(t))x2

1(t) introduce

nonlinearity. To manage this, we define:

ξ1(t) = x1(t)x2
2(t) and ξ2(t) = (3 + x2(t))x2

1(t),

which allows us to rewrite the system as:

ẋ(t) =

 −1 ξ1(t)

ξ2(t) −1

x(t).

Next, we determine the boundaries of ξ1(t) and ξ2(t), given the constraints on the

states:

ξ1max = 1, ξ1min = −1,

ξ2max = 4, ξ2min = 0.

These nonlinear elements can be parameterized linearly as:

ξ1(t) = M1(ξ1(t)) · ξ1max +M2(ξ1(t)) · ξ1min,

ξ2(t) = N1(ξ2(t)) · ξ2max +N2(ξ2(t)) · ξ2min,

with the conditions that M1(ξ1(t)) +M2(ξ1(t)) = 1 and N1(ξ2(t)) +N2(ξ2(t)) = 1.

The membership functions are then defined as:

M1(ξ1(t)) = ξ1(t) + 1
2 , M2(ξ1(t)) = 1− ξ1(t)

2 ,

N1(ξ2(t)) = ξ2(t)
4 , N2(ξ2(t)) = 4− ξ2(t)

4 .

These functions correspond to "Positive," "Negative," "Big," and "Small," respectively.

Utilizing these, the original system is described by a Takagi-Sugeno fuzzy model with the

following rules:
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• If ξ1(t) is "Positive" and ξ2(t) is "Big," then ẋ(t) = A1x(t).

• If ξ1(t) is "Positive" and ξ2(t) is "Small," then ẋ(t) = A2x(t).

• If ξ1(t) is "Negative" and ξ2(t) is "Big," then ẋ(t) = A3x(t).

• If ξ1(t) is "Negative" and ξ2(t) is "Small," then ẋ(t) = A4x(t).

Each rule is associated with a system matrix Ai, and the overall dynamics are repre-

sented by the weighted sum of these individual linear systems:

ẋ(t) =
4∑
i=1

hi(ξ(t))Aix(t),

where hi(ξ(t)) are the weighting functions derived from the membership functions.

This concise representation captures the essence of the nonlinear dynamics within the

specified state space region.

Let’s consider a system where the states x1(t) and x2(t) are each bounded within the

interval [-1 1].

Avec

A1 =

−1 1

4 −1

 , A2 =

−1 1

0 −1

 , A3 =

−1 −1

4 −1

 , A4 =

− −1

0 −1

 , (2.15)

The results of the fuzzy and real model simulation for x1(0) = [0.5 0.5] and x2(0) =

[0.1 0.1] with u = 0 are presented in Figure (2.5) . It is evident that the two models

are identical.This example clearly demonstrates that the nonlinear system (2.14) can be

represented exactly by a Takagi-Sugeno type fuzzy model.
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Fig 2.5: States evolution of T-S fuzzy model and real model

2.6 Stability analysis of nonlinear Systems

Lyapunov’s method provides a lens through which to view the stability of dynami-

cal systems by considering their energy-like properties. We define the system’s energy

through a positive-definite function, V (x(t)), as a function of the state x. This function,

often representing a norm or metric, is crucial for deducing stability. The stability is

inferred by analyzing the sign of the time derivative of V (x(t)) within a certain vicin-

ity of the equilibrium point. The essence of Lyapunov’s stability theorem is that for an

autonomous continuous-time system ẋ = f(x), if there exists a function that satisfies pre-

defined conditions, then the system’s equilibrium at the origin is globally asymptotically

[Aou12].

Definition 1 A function V (x) : Rn → R that is continuously differentiable is deemed

a candidate Lyapunov function if it fulfills the following:

1. V (x) is positive definite with V (0) 6= 0 for x 6= 0.

2. V̇ (x) < 0 for all x 6= 0.
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3. V (x)→∞ as ‖x‖ → ∞.

Lyapunov theory empowers us to determine the necessary conditions for stability. How-

ever, the level of conservatism in these conditions depends on the chosen form of V (x).

The selection, dictated by the system under study and the targeted stability objectives,

falls into one of two categories: quadratic or non-quadratic Lyapunov functions [AGH07].

2.6.1 Stability in the Sense of Lyapunov

The quadratic Lyapunov function is pivotal in the domain of stability analysis, con-

trol mechanisms, and state estimation within Takagi-Sugeno (TS) fuzzy systems. Its

prevalence in literature underscores its significance. Works ranging from the early stud-

ies by Takagi and Sugeno in 1992 to more recent research highlight the fundamental

role that these quadratic functions play. They serve as a key tool in managing the in-

tricacies of TS fuzzy models, enabling the construction of robust control strategies and

reliable estimations of system states. The depth of research, as cited by numerous schol-

ars [[TS92],[Kru06],[WTG96], reflects the ongoing advancement and refinement of these

methods in the field.

2.6.1.1 Lyapunov first method

The Indirect Method of Lyapunov, often termed the First Method, is instrumental

in assessing the stability of equilibrium points within dynamical systems. This method

hinges on the linearization of the system’s equations around an equilibrium point, denoted

as x̄. Specifically, the Jacobian matrix A, derived as

A = ∂f

∂x

∣∣∣∣∣
x̄

,

captures the system’s local behavior. The eigenvalues λi(A) of this matrix are then

scrutinized. An equilibrium point x̄ is deemed exponentially stable if all the eigenvalues

exhibit negative real parts, formally stated as Re(λi(A)) < 0. Conversely, the presence of

any eigenvalue with a positive real part, Re(λi(A)) > 0, signifies that the equilibrium is

inherently unstable.

This approach, while straightforward in application, offers only a snapshot of the

system’s stability. It fails to provide insights into the extent of the system’s basins of
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attraction or its behavior in the nonlinear regime beyond the vicinity of the equilibrium.

As such, while the Indirect Method is a useful preliminary tool, it is often supplemented

by other analyses for a comprehensive stability evaluation [Zer11].

2.6.1.2 Lyapunov second method

Lyapunov’s second method, known as the Direct Method, is pivotal in the realm of

dynamical systems for assessing the stability of equilibrium points. This approach employs

a specially crafted positive definite function, typically designated as V (x(t)), referred to

as the Lyapunov function. For an equilibrium point to be considered stable, this function

must exhibit a decrease along the trajectories of the system and remain positive definite

within the system’s basin of attraction. Despite being more universally applicable than

the indirect method, finding a suitable Lyapunov function is often a more intricate task

[Zer11, Cha02].

Criteria for Local and Asymptotic Stability: To ascertain the local stability of

a system described by equation (2.5), one must identify a continuous and differentiable

Lyapunov function V (x(t)), and define a neighborhood V0. Within this vicinity, the

following conditions should hold:

• For every state x within V0, the condition V (x(t)) > 0 must be satisfied, indicating

positive definiteness.

• The time derivative of V , given by V̇ (x(t)) = dV (x(t))
dt

= ∂V (x(t))
∂x

ẋ(t), should not

exceed zero, ensuring that V is non-increasing along trajectories.

If the Lyapunov function not only remains positive but also strictly decreases over time

(V̇ (x(t)) < 0), then it is considered a strict Lyapunov function, confirming the system’s

asymptotic stability at the origin.

Defining Exponential Stability: The origin is regarded as an exponentially stable

equilibrium point for the system outlined in equation (2.5) under the presence of a Lya-

punov function V (x(t)) that satisfies certain growth conditions. Precisely, for constants

α, β, γ > 0; p ≥ 0, and within a neighborhood V0, the function V should comply with the

following:

• It must be bound between two radial unbounded functions of x: for all x, α ‖ x ‖p≤

V (x(t)) < β ‖ x ‖p.
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• The time derivative of V should satisfy V̇ (x(t)) < −γV (x(t)), implying an expo-

nential decay.

2.6.2 Choice of the Lyapunov Function

The cornerstone of the Lyapunov stability method is the appropriate selection of the

Lyapunov function. The choice is guided by the characteristics of the system under study,

such as whether it is a linear system, a piecewise continuous system, a system with delays,

or an uncertain linear system. In this thesis, our focus is on the exploration of stability

through both quadratic and non-quadratic Lyapunov functions.

2.6.2.1 Quadratic Lyapunov Functions

Quadratic Lyapunov functions represent the quintessential choice for assessing the

stability of linear systems and are defined as:

V (x(t)) = x(t)TPx(t) with P = P T > 0 (2.16)

In this context, P is a positive definite matrix, and identifying such a matrix is tan-

tamount to discovering a quadratic Lyapunov function. When employing a multi-model

approach, the convex nature of the problem formulation assists in deriving a suitable func-

tion, if one exists. Nevertheless, this method’s primary limitation is that it often yields

overly conservative stability conditions, as documented in the literature [TW04, Cha02].

2.6.2.2 Polyquadratic Lyapunov approach

Polyquadratic Lyapunov functions offer a versatile approach to stability analysis by

interpolating between multiple quadratic functions. These functions are particularly ef-

fective for systems that are not adequately described by a single quadratic Lyapunov

function. Among various forms, the Fuzzy Lyapunov Function (FLF) stands out for

its widespread use and robustness, as documented in the literature [MPA09, BGM13,

HHH24].

The standard representation of an FLF is given by:

V (x(t)) = xT (t)P (ξ(t))x(t) (2.17)
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where the matrix P (ξ(t)) is constructed as a convex combination of several matrices:

P (ξ(t)) =
r∑
i=1

hi(ξ(t))Pi (2.18)

Here, Pi ∈ Rn×n are symmetric and positive-definite matrices, and hi(ξ(t)) represent

the membership functions (MFs) of the Takagi-Sugeno (TS) fuzzy system. These mem-

bership functions are designed to fulfill the convex sum property, ensuring that the sum

of all hi(ξ(t)) equals one at any given time t, which guarantees a consistent fusion of the

individual quadratic matrices.

Importantly, if each Pi is replaced by a singular matrix P , the function reverts to the

classical quadratic Lyapunov function. This adaptability allows for a seamless transition

from general to specific stability assessments, enabling a more comprehensive exploration

of system dynamics that might be missed by a purely quadratic analysis.

2.6.2.3 Parametric Affine Lyapunov Functions

For systems characterized by time-varying parameters, parametric affine Lyapunov

functions are often employed:

V (x(t)) = x(t)TP (θ)x(t) (2.19)

with the matrix P (θ) defined as:

P (θ) = P0 +
r∑
i=1

θiPi > 0

These systems can typically be described by:

ẋ(t) = A(θ)x(t) (2.20)

where A(θ) is a matrix composed similarly to P (θ), accommodating uncertain but

bounded parameter variations. This class of Lyapunov functions, less conservative than

their quadratic counterparts, takes into account parameter variations and provides results

whose quality is contingent upon the compatibility of the chosen Lyapunov function with

the nature of the system [Cha02].
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2.6.2.4 Piecewise Continuous Lyapunov Functions

These functions can be either piecewise continuous linear or quadratic and are suitable

for analyzing the stability of fuzzy control systems. They have been successfully applied

to various types of fuzzy systems, as shown in:

V (x(t)) = max (V1(x(t)), . . . , Vi(x(t)), . . . , Vn(x(t))) (2.21)

with each Vi(x(t)) being a positive definite quadratic form:

Vi(x(t)) = x(t)TPix(t), Pi > 0 (2.22)

This approach has demonstrated advantages over the quadratic functions in terms of

conservativeness when applied to linear time-variant systems [BEGFB94, Cha02].

2.6.2.5 Line Integral Lyapunov Functions

For the analysis and design of fuzzy control systems, the line integral Lyapunov func-

tion stands out due to its capacity to form stability conditions without the need for time

derivative computations of the membership functions. Proposed as an efficient tool, this

type of function is given by:

V (x(t)) = 2
∫

Γ(0,x)
g(ω̄)dω̄ (2.23)

where g(x) represents a force field and the integral computes the work done along a

path Γ(0, x) from the origin to x. The conditions for this function to be a valid Lyapunov

candidatesuch as being smooth, positive definite, and radially unbounded?are dependent

on its path independence:

For equation(2.23) to be considered as a suitable Lyapunov candidate function (as

defined in Definition 1), it is essential that the associated curvilinear integral demonstrates

path independence, a prerequisite highlighted in [GGB+09]. Let’s denote J(x) by the

vector [J1(x), . . . , Jn(x)]T . To establish the path independence of equation (2.23) , a

particular (2.24) provides both necessary and sufficient conditions. This eduation is crucial

in ensuring the integral maintains a consistent value across different paths in the state

space, a fundamental criterion for a function’s qualification as a valid Lyapunov candidate.
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∂gi(x)
∂xj

= ∂gj(x)
∂xi

for all i, j (2.24)

Relying on the lemma, Rhee andWon[RW06] demonstrated that the Lyapunov Integral-

Like Function (LILF), as given in equation (2.23) , can be shown to be path-independent

by imposing a specific structure on the function J(x). This structure is represented as

follows:

J(x) =
r∑
i=1

hi(x)Pi (2.25)

where each matrix Pi is defined as:

Pi =



d1,1
αil

p1,2 · · · p1,n

p1,2 d2,2
αil
· · · p2,n

... ... . . . ...

p1,n p2,n · · · dn,nαil


(2.26)

with dj,jαil
representing the diagonal elements and pj,k the off-diagonal elements in each

Pi.

The distinction between Fuzzy Lyapunov Functions (FLF) and Lyapunov Integral-

Like Functions (LILF) is evident in their matrix formulations. In FLF, the entire matrix

Pi can vary according to fuzzy rules, where as in LILF, only the diagonal elements are

subject to change. This difference is highlighted when comparing equations(2.17) and

(2.23).

For example, consider the fuzzy rules defined as:

IF ξ1(t) is F 1
αi1

and . . . ξl(t) is F l
αil
. . . and ξq(t) is F q

αiq

THEN ẋ(t) = Aix(t) +Biu(t), ∀i ∈ {1, . . . , r}
(2.27)

The modifications to Pi are determined by the fuzzy sets in these IF-THEN rules. For

instance, if a premise variable appears in the same fuzzy set across different rules, the

corresponding diagonal elements of Pi for that variable will be identical. However, if a

variable xj(t) belongs to different sets in rules k and w, the jth diagonal elements of Pk
and Pw will differ.
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For nonlinear systems where nonlinearities depend on several premise variables, the

matrix A(x) in the system dynamics might include terms like cos(x1x3), complicating the

application of the structure (2.25). For example:


ẋ1

ẋ2

ẋ3

 =


x1 2 −3x2

sin x2 −1 −2 cosx1

cos(x1x2) 0 2


︸ ︷︷ ︸

A(x)


x1

x2

x3



In contrast, for systems where nonlinearities depend on a single premise variable, the

structure(2.25) can be achieved, as demonstrated in the following system:

ẋ1

ẋ2

 =

cosx2 2

−1 x1


︸ ︷︷ ︸

A(x)

x1

x2



In this case, the system’s nonlinearities each depend on a single premise variable,

allowing the structure (2.25) to be met by setting: The matrix Pi is defined as:

Pi =

di1,1 p1,2

p1,2 di2,2



2.6.3 Sum relaxation

The Takagi-Sugeno Linear Matrix Inequality (TS-LMI) framework often yields in-

equalities involving convex sums with membership functions (MFs) that encapsulate non-

linearities. To transform these inequalities into a Linear Matrix Inequality (LMI) form,

the nonlinear elements must be eliminated. This conversion is challenging, leading to the

development of various sum relaxation techniques to facilitate the creation of LMIs.

We highlight several lemmas that provide conditions under which certain inequalities

are satisfied.

Lemma 2.6.1:[TS94] For i, j = 1, . . . , r and hi, hj > 0, the inequality
r∑
i=1

r∑
j=1

hihjΥij < 0 (2.28)

is satisfied if:

Υii < 0, ∀i = 1, . . . , r (2.29)
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and

Υij + Υji < 0, ∀i, j = 1, . . . , r, i 6= j (2.30)

Lemma 2.6.2:[TANY01] For the same initial conditions, the inequality holds if:

2
r−1∑
i=1

Υii + Υij + Υji < 0, ∀i, j = 1, . . . , r, i 6= j (2.31)

Lemma 2.6.3:[XQ03] If we have:

Υii > Ξii, ∀i = 1, . . . , r (2.32)

and

Υij + Υji > Ξij + Ξji, ∀i, j = 1, . . . , r, i < j (2.33)

with the matrix Ξ defined as:

Ξ =



Ξ11 Ξ12 . . . Ξ1r

Ξ21 Ξ22 . . . Ξ2r
... ... . . . ...

Ξr1 Ξr2 . . . Ξrr


> 0 (2.34)

then the inequality is satisfied.

Notably, Xiaodong and Qingling’s[XQ03] relaxation method is the least conservative,

though it increases computational complexity due to additional decision variables. Tuan

et al.’s[TANY01] method, in contrast, offers a compromise between conservatism and

computational efficiency.

2.7 Stability analysis of T-S fuzzy systems

The stability of nonlinear systems has been extensively studied, with Lyapunov’s the-

ory serving as a cornerstone. The central premise of this theory posits that if there exists

a function with an energy-like form that dissipates over time, it will converge towards an

equilibrium point. Within this framework, the Lyapunov function acts as a metric for

gauging the proximity of state variables to the equilibrium point.

The challenge of this approach lies in the determination of suitable Lyapunov functions.

Yet, two predominant families of Lyapunov functions exist: quadratic and non-quadratic.

This thesis investigates the stability of systems through both quadratic and non-quadratic

Lyapunov functions, offering insights into their application and effectiveness.
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2.7.1 Quadratic stability analysis

Quadratic stability analysis is a method used to assess the stability of a nonlinear

system by verifying if a quadratic Lyapunov function can be found for the system. If

such a function exists and satisfies certain conditions, then the system is said to be

quadratically stable. To analyze the stability of autonomous Takagi-Sugeno (T-S) fuzzy

models, we focus on the system described as follows:

ẋ =
r∑
i=1

hi(ξ)Ai(t)x (2.35)

Here, ẋ represents the time derivative of the state vector x, while hi(ξ) are the fuzzy

membership functions, and Ai(t) are system matrices corresponding to each fuzzy rule.

The time derivative of the quadratic Lyapunov function, which satisfies the stability

conditions, along the trajectories of our system (2.35), is presented by:

V̇ (x(t)) = ẋT (t)Px(t) + xTPẋ(t) < 0 (2.36)

than

V̇ (x(t)) = x(t)T
(

r∑
i=1

hi(ξ(t))(Ai(t)TP + PAi(t))
)
x(t) < 0 (2.37)

Here, P is a symmetric positive-definite matrix that ensures the Lyapunov function’s

validity for our system. This expression is a critical component in establishing the stability

criteria for the fuzzy model in question.

Here’s a simplified version of a theorem related to quadratic stability[TS92]:
Theorem 2.7.1:

Let Ai(t) be a time-varying matrix that is bounded for all t. If there exists a

constant, symmetric, positive-definite matrix P such that for all t, the following

LMI holds:

ATi (t)P + PAi(t) < 0 i = 1, . . . , r (2.38)

Then the system described by ẋ(t) = Ai(t)x(t) is quadratically stable.

2.7.2 Non-quadratic stability analysis

Our stability analysis employs nonquadratic Lyapunov functions, specifically piecewise

continuous and polyquadratic types, to adapt to the intricate nature of nonlinear systems.
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This allows for a nuanced approach to understanding the stability of complex nonlinear

systems

1:Non-quadratic stability independent of time derivatives membership func-

tions To address the complexities arising from the inclusion of time derivatives of

membership functions in stabilization conditions, the strategies proposed in [RW06] and

[Gue14] suggest utilizing a Lyapunov function that is defined through a curvilinear inte-

gral, indicated in equation (2.24) .

Remarkably, as elucidated in [RW06], by harnessing the gradient theorem (referenced

as Lemma 5.3.1 in the Appendix) and adopting the structure presented in equation (2.24)

for the LILF, it is feasible to extract a stability condition devoid of the membership

functions’ time derivatives, as shown in equation (2.39)

V̇ (x) = ẋ>
(

r∑
i=1

hi(x)Pi
)
x+ x>

(
r∑
i=1

hi(x)Pi
)
ẋ < 0 (2.39)

Utilizing approaches from [RW06] , we can now examine the global stability of Takagi-

Sugeno (TS) fuzzy systems through a Lyapunov Integral-Like Function (LILF) that is

independent of the time derivatives of membership functions. This advancement signifi-

cantly simplifies the stability analysis within a non-quadratic framework.

To delineate the stability conditions for the TS fuzzy system as outlined in system

(2.35), it is imperative to consider the following lemma.

Lemma1::the membership functions for fuzzy rules are shown to comply with a spec-

ified inequality (2.40). This inequality sets a constraint on the maximum number of fuzzy

rules that can be active simultaneously, which is denoted by η.

r∑
i=1

h2
i (x)− 2

(η − 1)

r∑
i=1

∑
j>i

hi(x)hj(x) ≥ 0 (2.40)

where 1 < η ≤ r.

Additionally, the foundational stability conditions originating from a LILF are sum-

marized in an ensuing theorem.

Theorem 2.7.2:

The autonomous TS fuzzy system, referenced as (2.35), attains global asymptotic

stability when positive matrices Pi (defined in(2.26) and a positive scalar X exist.

This is contingent upon the satisfaction of two inequalities, indexed as(2.41) and
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(2.42), which constrain the matrices in relation to X and n, the latter being the

cap on the number of active fuzzy rules at once, where 1 < n ≤ r.

PiAi + ATi Pi + (n− 1)X < 0, ∀i ∈ {1, ..., r}, 1 < s < r (2.41)

PiAj + ATj Pi + PjAi + ATi Pj − 2X < 0, i < j (2.42)

where n represents the maximum number of simultaneously active fuzzy rules

(1 < n ≤ r).

In an effort to reduce the conservatism found in the stability conditions originally

proposed by [RW06], [Gue14] has presented a set of new, more flexible conditions. These

updated conditions are outlined in the theorem that follows.
Theorem 2.7.3:

For the autonomous T-S fuzzy system, defined in equation (2.35), to be considered

globally asymptotically stable, it is necessary that there exist matrices Pi that are

positive (referenced in equation (2.26)), and matrices Uz, and Vz, which meet the

following criteria:

Sii < 0, for each i ∈ {1, . . . , r} (2.43)
2

r − 1Sii + Sij + Sji < 0, for all distinct pairs (i, j) ∈ {1, . . . , r}2 (2.44)

where

Sij =

 UiAi + ATi U
T
j (*)

Pi + ViAi − UT
j −Vj − V T

j

 , (2.45)

(*) denotes terms that are to be specified.

2:Non-quadratic stability based on piecewise continuous functions

When compared to the quadratic form (2.16), the stability conditions derived from

piecewise continuous functions (2.21) are found to be less restrictive. The pioneering

work in this area is credited to [JRA99], who delineated the stability conditions for affine

TSF models, expressed as:

ẋ(t) =
r∑
i=1

hi(ξ(t))(Aix(t) + ai), (2.46)

articulated through the formalism of Linear Matrix Inequalities (LMIs). Utilizing the
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function described in Equation (2.22) yields the results that follow:
Theorem 2.7.4:

A Takagi-Sugeno fuzzy system is asymptotically stable if, for each i ∈ {1, . . . , r},

there exist positive definite matrices Pi with Pi = P T
i , and non-negative scalars

γijk, such that for all (i, j) ∈ I2, the following matrix inequality is satisfied:

ATi Pj + PjAi +
r∑

k=1
γijk(Pj − Pk) < 0. (2.47)

Example 2

This example focuses on analyzing the stability of an autonomous TS fuzzy system

(2.35) by comparing two methods: the use of a quadratic Lyapunov function and a line

integral Lyapunov function, which is the central topic of this thesis

A1 =

 −0.7 −a+ 2

1.4b+ a −10

 , A2 =

 −4 −a+ 2

−0.2b+ a −10

 , (2.48)

w1
i (xi) =



1
2(1− sin(xi)), for |xi| ≤ π

2

0, for xi > π
2

1, for xi < −π
2

(2.49)

w2
i (xi) = 1− w1

i (xi). (2.50)

Where
h1(x) = w1

1(x1)w1
2(x2)

h3(x) = w1
2(x1)w1

1(x2)
(2.51)

Proof:

The theorem (2.7.2) is proven by employing a line integral Lyapunov function, which is

defined as follows:

The time derivative of (2.23) is:

V̇ (t) = xT

 r∑
i=1

r∑
j=1

hi(x)hj(x)(PiAj + ATj Pi)
x (2.52)

V̇ (t) = xT

 r∑
i=1

h2
i (x)(PiAi + ATi Pi) + 2

r∑
i=1

∑
j>i

hi(x)hj(x)Q
x (2.53)
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Where

2Q = (PiAj + ATj Pi + PjAi + ATi Pj) (2.54)

Informed by theorem (2.7.2), equation(2.53) is subsequently expressed as:

V̇ (x) ≤ xT
(

r∑
i=1

h2
i (t)(ATi Pi + PiAi + (n− 1)Q)

)
x (2.55)

Fig 2.6: Stability region of theorems 2.7.1 and 4.2.1.

Employing the Yalmip toolbox along with the mosek solver enabled us to examine

the stability regions for a range of values of a and b. Figure (2.6) displays the stability-

assured region when applying the Line integral Lyapunov function technique as detailed

in [RW06] and cited as theorem (2.7.2), denoted by (o). It also compares this with

the regions corresponding to the conventional Lyapunov function approach of theorem

(2.7.2), marked by (*). Upon analysis, it becomes clear that Theorem (2.7.2) offers a set

of stability conditions that are more lenient than those of Theorem (2.7.1).
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2.8 Conclusion

The multi-model approach effectively maps nonlinear system’s behaviors, pinpointing

their responses within distinct operational zones. This methodology, with its array of

structures and derivation techniques, enriches the landscape of nonlinear system modeling.

Stability analysis, a crucial aspect of this domain, ensures that models not only perform

but persist under varied conditions. In this chapter, we explore Lyapunov’s stability

analysis, delving into both quadratic and non-quadratic stability within the realm of

Takagi-Sugeno fuzzy models techniques imperative for the system’s steadfastness. In

sum, the multi-model methodology stands as a cornerstone in the modeling of nonlinear

systems, shedding light on the intricacies of complex system operations.
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3.1 Introduction

The control of industrial systems typically assumes that all states are available at every

instant. However, due to technological and economic constraints, measuring these states

is often impractical in many applications. As a result, state reconstruction for unmea-

sured variables becomes essential. Traditional control laws, while effective for many linear

systems, often fail to provide robust performance in nonlinear systems. These methods

struggle to handle the complexities and unpredictability inherent in nonlinear dynamics.

As a result, more advanced control strategies are needed to ensure stability and robustness
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in such systems

This chapter provides a comprehensive overview of the mathematical tools and con-

cepts discussed in this thesis, which are vital for the design and analysis of advanced

control systems. A primary focus is the challenge of developing controllers for nonlinear

systems, particularly those characterized by Takagi-Sugeno type multi-models.After in-

troducing the problem, we will outline the proposed approach for control design synthesis

in Section (3.3.3). These algorithms are advantageous due to their cost-efficiency, adapt-

ability, and ease of implementation. Various methodologies for state feedback control and

PDC (Parallel Distributed Compensation) controllers for systems described by Takagi-

Sugeno multi-models have been explored, as discussed in [BMMR16] and [Orj08]. Our

approach utilizes the Mean Value Theorem (MVT) [Zem07] [Pha11] and applies trans-

formations through nonlinear sectors. This method formulates the controller design as a

convex combination of the derivatives of the nonlinear functions. Notably, the necessary

gain to ensure control convergence can be efficiently determined through Linear Matrix

Inequalities (LMIs), which are processed using optimization techniques.

3.2 Stabilization of T-S Fuzzy System

During the last few years, extensive research has been conducted to explore the sta-

bility and stabilization of multi-models in the Takagi-Sugeno type by controllers. These

are based on the second Lyapunov method so as to lead, where possible, to a formula-

tion in terms of linear matrix inequalities. The most widespread stabilization is based on

control law types such as Parallel Distributed Compensation (PDC) [WTG96], [TIW98],

and its derivatives like Proportional PDC (PPDC) [EL02], as well as the command law

type known as division and Fusion Compensation (CDF) [GVDB99],[PKP01]. When the

system state is not available, output feedback stabilization may be considered. In this

context, three approaches are distinguished:

• Static Output Feedback

This type of controller is particularly straightforward and helps minimize online

computation costs [Cha02], [NTHB07], [Tah09].
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• Dynamic Output Feedback

Dynamic output feedback control improves controller performance by incorporating

specifications related to the desired closed-loop dynamics. It is noted, however, that

this approach can be conservative due to the emergence of cross terms within the

LMIs [Yon09], [GBM09], [ZGM08].

• Observer-Based Output Feedback

This type of controller involves the introduction of an observer to estimate unmea-

sured state variables, allowing a static state feedback control law to stabilize the

system [GKVT06], [CEH07].

3.2.1 Stabilization using PDC Technique

The PDC (Parallel Distributed Compensation) approach is utilized to develop a control

law for systems described by multi-models. The significant advantage of these controllers

is their possession of the same interconnection structure as the multi-models from which

they are derived. This feature allows for the extension of some linear system control

theories to nonlinear systems. Figure (3.1)illustrates the concept of the PDC regulator.

Fig 3.1: Principle of the PDC Controller.

For systems(2.4) , the implementation of the PDC controller is realized in the following
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manner: If z1 is M1, ..., zp is Mp, then:

u(t) = −Fix(t) (3.1)

Finally, the controller takes the form:

u(t) = −
n∑
i=1

hi(ξ(t))Fix(t) (3.2)

with Fi ∈ Rm×n representing the controller gains. The synthesis of the PDC corrector

then consists of determining the state feedback gains Fi. The system (2.4) controlled by

a PDC controller (3.2) , is then written as:

ẋ(t) =
 n∑
i=1

n∑
j=1

hi(ξ(t))hj(ξ(t))(Ai −BiFj)
x(t) (3.3)

Here we distinguish between the cross terms i and j, and the non-cross terms (only i).

The aim of the PDC command is found in the non-cross terms. The cross terms are

consequently undesirable terms that we want to minimize as much as possible according

to the norm [Bla01].

ẋ(t) =
 n∑
i=1

h2
i (ξ(t))Gii +

n∑
i=1

∑
j 6=i

hi(ξ(t))hj(ξ(t))
Gij +Gji

2

x(t) (3.4)

With

Gij = (Ai −BiFj), for i < j, i, j = 1, 2, . . . , n (3.5)

Several relaxations of system (3.3) have been proposed in the literature. Hence, based

solely on the relaxations of Tanaka [TW04].
Theorem 3.2.1:

The equilibrium of the continuous-time Takagi-Sugeno model (3.3) is asymptotically

stable if there exists a positive definite matrix P > 0 satisfying:

GT
iiP + PGii < 0 (3.6)

(
Gij +Gji

2

)T
P + P

(
Gij +Gji

2

)
< 0, ∀i < j (3.7)

for all i, j = 1, 2, . . . , n, except for pairs (i, j) such that ∀t, hi(ξ(t))hj(ξ(t)) = 0.

The development of a PDC controller involves determining the regulator gains that

satisfy conditions (3.7),
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Utilizing conditions(3.7) allows for a reduction in the conservatism of the results since

it is not mandatory for all the cross sub-models to be stable.

In this context, a change of the bijective variables is necessary in order to convert the

problem into LMI’s.

X = P−1 and Mi = FiX

Equation (3.7) can be rewritten in the form:

X − (AiX −BiMi)TX−1(AiX −BiMi) > 0

X − 1
2(AiX + AjX −BiMj −BjMi)TX−1

(AiX + AjX −BiMj −BjMi) > 0

(3.8)

By using Schur’s complement [BEGFB94], inequality (3.8) can be converted into LMI

form:

 X (AiX −BiMi)T

AiX −BiMi X

 ≥ 0 (3.9)

and

 X 1
2(AiX + AjX −BiMj −BjMi)T

1
2(AiX + AjX −BiMj −BjMi) X

 ≥ 0 (3.10)

The controller gains are given by:

Fi = MiX
−1 (3.11)

Numerical exemple:

In this subsection, we demonstrate the proposed method using a Single-Link Flexible

Joint Robot example.Let’s consider a continuous-time T-S fuzzy system with r = 2n = 2

given by [EHRBB22]

A1 =



0 1 0 0

−48.6 −1.25 48.6 0

0 0 0 1

1.95 0 −2.28 0


, A2 =



0 1 0 0

−48.6 −1.25 48.6 0

0 0 0 1

1.95 0 −2.16 0


(3.12)
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B1 = B2 =



0

21.6

0

0


, (3.13)

The weighting functions, which depend on x3from the state vector x are specified as

follows: 
h1(ξ(t)) = ξ(t) + 0.2172

1.2172 ,

h2(ξ(t)) = 1− h1(ξ(t))
(3.14)

To stabilize the Joint Robo at its equilibrium point, we use a control law given by:

u(t) = −
2∑
i=1

µi(z(t))kix(t)

The resolution of the LMIs in Theorem (3.2.1) has given us the following results:

P =



35.4163 6.2339 −21.8199 4.1308

6.2339 1.5584 −3.9757 0.8419

−21.8199 −3.9757 18.4953 −2.0374

4.1308 0.8419 −2.0374 1.0244



K1 =
[
0.8129 0.4509 0.0245 0.4110

]
K2 =

[
0.8520 0.4588 0.0194 0.1536

]
The results of the simulation are illustrated in the figures that follow
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Fig 3.2: State evolution of T-S fuzzy model under PDC control law obtained via Theorem

3.2.1
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Fig 3.3: Control law evolution with gains obtained via Theorem 3.2.1

Figure (3.2), respectively illustrate the evolution of the state variables x1 ,x2, x3,
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x4;these graphs demonstrate a rapid stabilization of the system: the augmented system

reaches stability at the origin in approximately 2 seconds. The stability conditions, as

outlined in LMIs (3.6) and(3.7), are fulfilled. This implies that the fuzzy control system,

comprising the fuzzy model and the Parallel Distributed Compensation (PDC) controller,

achieves global asymptotic stability. Figure (3.3) demonstrates the performance of the

fuzzy control system under the same initial conditions depicted in Figure (3.2)

3.3 Controller Synthesis via DMVT Approach

In tackling the challenge of controller design within nonlinear systems, the application

of the Mean Value Theorem (MVT) stands out as a pivotal technique, offering a strategic

path through the complexities inherent in such systems. This approach is deeply rooted

in the fundamental calculus principle of the MVT, providing a profound framework for

understanding and regulating system dynamics across varied conditions. Unlike tradi-

tional controller design methodologies, which often presume that all system states can be

directly controlled or influenced, real-world scenarios frequently reveal that only a subset

of these states is accessible for manipulation. In this context, the MVT approach shines by

enabling precise and effective control strategies, even for systems with partially inaccessi-

ble states. This method sidesteps the limitations of linearization and oversimplification,

which can degrade the efficacy of control efforts. The subsequent sections will delve into

the detailed mechanics, practical implementations, and the strengths and weaknesses of

employing this strategy in the realm of nonlinear systems.

3.3.1 Problem statement

A controller acts as a dynamic mechanism that adjusts a system’s state, either asymp-

totically or exponentially, by utilizing the system’s inputs, outputs, and understanding of

its dynamic model. This process aims to influence the behavior of the system to achieve

desired outcomes, ensuring stability and optimal performance based on predefined crite-

ria.

Let’s examine a nonlinear system characterized by the ensuing format:
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
ẋ(t) =

r∑
i=1

hi(x(t))(Aix(t) +Biu(t))

y(t) = Cx(t)
(3.15)

Where x(t) ∈ Rn, u(t) ∈ Rp, and y(t) ∈ Rm respectively denote the state vector, input

vector, and output vector. Ai ∈ Rn×n, Bi ∈ Rn×p, and C ∈ Rm×n are the appropriate

matrices. hi(x(t)) represent the activation functions.

The proposed control law structure is in the form of

u(t) = −K(x− xc) (3.16)

The state error is defined as e(t) = x(t) − xc(t), with K signifying the controller gain.

Considering system (3.15) and the control law (3.16),The dynamics of the state error are

given by:

ė(t) =
r∑
i=1

hi(x(t))(Aix(t)−BiKx(t)) (3.17)

To simplify the dynamics of the state error (3.17) into two components, it is necessary

to apply a transformation to the system (3.15):
ẋ(t) = A0x(t) +B0u(t) +

r∑
i=1

hi(x(t))(Āix(t) + B̄iu(t))

y(t) = Cx(t)
(3.18)

where 

A0 = 1
r

r∑
i=1

Ai

B0 = 1
r

r∑
i=1

Bi

Āi = Ai − A0

B̄i = Bi −B0

(3.19)

Here, A0 and B0 denote the average matrices of Ai and Bi, respectively. Consequently,

the state error dynamics (3.17) can be reformulated as:

ė(t) = (A0 −B0K)e(t) +
r∑
i=1

hi(x(t))(Āix(t) + B̄iu(t)) (3.20)

Our objective is to guarantee the asymptotic convergence of the state error to zero.

For this purpose, formulating stability conditions as Linear Matrix Inequalities (LMIs) is

essential to determine the static gain K, as shown in equation (3.17)
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3.3.2 Differential Mean value theorem

In this segment, we explore the application of the finite difference method, commonly

referred to as the Differential Mean Value Theorem (DMV T ), applicable to both scalar

and vectorial functions. This methodology enables the representation of the nonlinear

dynamics associated with estimation errors in the form of a Linear Parameter-Varying

(LPV ) system. This approach will be pivotal in the next stage of our discussion.

It is essential to first establish the following definitions

Lemma 3.4.1:(Scalar DMVT)[Pha11]

Consider a smooth function f(x) : Rn → R on the closed interval [a, b]. Then, there

exists some C in the open interval (a, b) such that:

f(a)− f(b) = df(x)
dt

∣∣∣∣
C
× (a− b) (3.21)

Lemma 3.4.2:(Canonical basis).)[ZBB05]

Consider the vector function f : Rn → Rm such that f(x) = [f1(x), f2(x), . . . , fi(x), . . . , fm(x)]T ,

where fi : Rn → R is the i-th component of f(x). Define the set Es as: es(i) = [0, .., 0, 1, 0, . . . . , 0], pour i = 1, 2, . . . , s

Es = es(i)
(3.22)

By using the definition ofEs, the function f(x) can be rewritten in the form of:

f(x) =
q∑
i=1

eq(i)fi(x) (3.23)

Lemma 3.4.3 (DMVT for Vector Functions.)[Ham15]

Let f(x) ∈ Rn → Rn be a differentiable function. Consider the interval [a, b] ∈ Rn, with

in which there exists a constant c in the open interval (a, b). We define the convex set

Co(x, y) such that:

f(a)− f(b) = ∇f(c)(a− b) (3.24)

By applying Lemma 3.3.2 to equation (3.23), we arrive at a modified form of the Dif-

ferentiable Mean Value Theorem (DMVT).
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Theorem 3.3.1:

Modified DMVT for Vector Functions [Ham15]

Let f(x) ∈ Rn → Rn be a continuous function on the interval [a, b] ∈ Rn and

differentiable in Co(a, b). There exists a vector c ∈ Co(a, b) with ci 6= a and ci 6= b

for i = 1, . . . , n, such that [Pha11]:

f(a)− f(b) =
 n,n∑
i,j,k=1

Hijk(cj)δij

 (a− b) (3.25)

Such that

Hypothesis : Assuming that the function f(x) is Lipschitz continuous, its derivatives are

bounded within specified limits. This boundedness allows for the application of equations

(2.10)and (2.11)

δij ≤ δij = ∂fi
∂xj

∣∣∣∣∣
ci

< δij (3.26)

where

δij = min ∂fi
∂xj

∣∣∣∣∣
ci

, and δij = max ∂fi
∂xj

∣∣∣∣∣
ci

(3.27)

Any manifestation of nonlinearity can be characterized by the following expression:

δij =
2∑

k=1
Λk
ijσijk (3.28)

where σij1 = δij and σij2 = δij 
A1
ij =

δij − δij
δij − δij

,

A2
ij = δij − δij

δij − δij

(3.29)

2∑
k=1

Λk
ij(ci) = 1; 0 ≤ Λk

ij(ci) ≤ 1 for k = 1, 2 (3.30)

By applying Lemma 3.3.2, Equation 4.44 can be reformulated as follows:

n∑
i=1

n∑
j=1

en(i)eTn (j) ∂fi
∂xj

(ci) =
n∑
i=1

n∑
j=1

2∑
k=1

λkij(ci)Hijσijk =
n∑
i=1

n∑
j=1

Hijδij (3.31)

In the above, Hij are zero matrices where the (i, j) element is equal to 1, with Hij =

en(i)T en(j).
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3.3.3 Controller Design

In the present discussion, our main emphasis is on designing a static controller specifi-

cally for a designated class of systems, as described in equation (3.15). We have modified

the dynamics of the state error, originally detailed in equation (3.20), to enhance its

clarity and applicability. The revised formulation is provided below

ė(t) = (A0 −BK)e(t) + Φ(x(t), u(t))− Φ(xc(t), u(t)) (3.32)

Where 
Φ(x(t), u(t)) =

r∑
i=1

hi(x(t))(Āix(t) + B̄iu(t))

Φ(xc(t), u(t)) =0
(3.33)

To solve this problem, we use the modified mean value theorem (3.3.2) and the ap-

proach of transformation by nonlinear sectors, which allows us to express the dynamics

of the state error in the form of an autonomous T-S system

In this context, we have a vector c(t) in the set (G, (x, xc)) such that:

Φ(x(t), xc(t), u(t)) = Φ(x(t), u(t)) (3.34)

Φ(x(t), u(t)) =
 n∑
i=1

n∑
j=1

en(i)eTn (j)∂Φi(ci(t))
∂xj

|x̂i<ci<xi

 (x(t)− xc(t)(t)) (3.35)

By exploiting the approach of transformation by nonlinear sectors to rewrite the quan-

tities ∂Φi(ci(t))
∂xj

in the form of sums as follows:

∂Φi(ci(t))
∂xj

=
n∑
i=1

n∑
j=1

Hijδij(ci) (3.36)

Thus, the dynamics of the state error (3.32) can be represented by:

ė(t) =
A0 −B0K +

n∑
i=1

n∑
j=1

2∑
k=1

HijΛk
ijδijk(ci)

 e(t) (3.37)

For simplicity, we define:

q∑
i=1

hi(x)Ai =
n∑
i=1

n∑
j=1

2∑
k=1

HijΛk
ijδijk(ci) (3.38)

Xi = A0 −B0K +Ai (3.39)
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The dynamics of the state estimation error can then be represented as follows:

ė(t) =
( q∑
i=1

hi(x(t))Xi(t)
)
e(t) with q = 2(n)2 (3.40)

The weighting functions hi(x) depend on the products of Λ1
ij and Λ2

ij, ensuring that

they uphold the subsequent convex property:
q∑
i=1

hi(x) = 1, 0 ≤ h(x) ≤ 1, ∀i = 1, . . . , q (3.41)

The weighting functions hi(x) depend on the products of Λ1
ij and Λ2

ij, ensuring that

they uphold the subsequent convex property:
q∑
i=1

hi(x) = 1, 0 ≤ hi(x) ≤ 1, ∀i = 1, . . . , q (3.42)

The matrices Ai are constants derived from the parameters σijk. To compute the sub-

model matrices Ai, we begin by approximating the final summation in equation(3.38)

with a Jacobian matrix. This is achieved by taking the partial derivative of the nonlinear

function f presented in equationeq (3.18). Thus, we have [NKMS21] :

q∑
i=1

hi(x)Ai =


∂f1
∂x1

· · · ∂f1
∂xn

... . . . ...
∂fn

∂x1
· · · ∂fn

∂xn

 =


δ11 · · · δ1n
... . . . ...

δn1 · · · δnn

 (3.43)

Following this, we replace each element of the Jacobian matrix of f(x) with the re-

spective upper or lower limit as prescribed by equation(4.42). This process is crucial for

determining the components of the sub-model matrices.

In line with Hypothesis(3.3.2) , the parameters δij are constrained within a specified

convex set Fn,n, which is characterized by a set of 2n2 vertices, as defined by [MHS+23]:

νFn,n =
{

Ω = (Ω11, . . . ,Ω1n, . . . ,Ωnn) : Ωij ∈ {Ωij,Ωij}
}

In a broader context, it is crucial to note that the number of sub-model matrices Ai
matches q = 2n2 precisely when each element Ωij within the Jacobian matrix of f is

neither zero nor constant. Conversely, when certain elements are presumed to be either

constant or zero, the quantity of sub-models is reduced to below 2n2 [NKMS21].

Equation (3.40) describes an autonomous system within the framework of LPV (Linear

Parameter Varying) theory. Given this, established stability results for multi-models
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that incorporate both measurable and non-measurable decision variables are applicable

[THW03][Ich09].

The primary objective is to ascertain the gain K that guarantees the asymptotic

convergence of the state error to nil.

This is predicated on a quadratic Lyapunov function of the form:

V (e(t)) = eT (t)Pe(t) / P = P T > 0 (3.44)

Theorem 3.3.2:

The state error converges asymptotically to zero if there exists a symmetric and

positive definite matrix P in Rn×n and a matrixM in Rn×m, such that the following

linear matrix inequalities are satisfied:

PA0 + PAi −BN + AT0 P +ATi P −NTBT < 0 (3.45)

The convergence of the controller, as indicated in equation (3.17), hinges on the pres-

ence of a symmetric matrix P and a gain matrix M that conform to the requirements of

equation (3.40). Once these matrices are established, the observer’s gain can be accurately

calculated using the specified equation.

K = NP−1. (3.46)

Proof of Theorem:

The proof of the theorem utilizes a quadratic Lyapunov function, defined as:

V (e(t)) = e(t)>Pe(t), where P = P> > 0. (3.47)

This establishes that the estimation error asymptotically converges to zero under two key

conditions: 
V (e(t)) > 0,

V̇ (e(t)) < 0.
(3.48)

Given that the matrix P is positive definite, the first condition naturally holds for all

e(t) 6= 0. However, it is still necessary to confirm the second condition, namely

V̇ (e(t)) < 0.
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To do this, we consider the derivative of V (e(t)) over time:

V̇ (e(t)) = e(t)>
( q∑
i=1

hi(x(t))(A0 −BK +Ai)
)>

P+P
( q∑
i=1

hi(x(t))(A0 −BK +Ai)
)
e(t).

(3.49)

Since the term∑q
i=1 hi(x(t))Xi(t) represents an affine function, we can apply the convexity

principle as outlined in [BV97]

(A0 −BK +Ai)TP + P (A0 −BK +Ai) =⇒ V̇ (e(t)) < 0 (3.50)

We can simplify the controller’s gain equation by introducing a variable substitution

N = KP . Doing so reveals that equation(3.50) is effectively the same as(3.45) . Conse-

quently, we express the controller’s gain as K = NP−1.

3.4 Improvement of dynamic performances

The approach of placing poles in a chosen region of the plane is called D-stability.

Definition 1. (Région LMI).

A region of the complex plane D is an LMI region when it can be expressed in the

following form:

D = {z ∈ C : α + zβ + z̄βT < 0} (3.51)

The exponential convergence of the observer (2.3) will be established under the prin-

ciple of pole placement in a desired LMI region. This latter must be defined as follows:

• Limitation of the imaginary parts of the eigenvalues: |<e(z)| > α

To minimize the exponential convergence rate, we define the characteristic function of the

LMI region D as follows:

D = {z ∈ C : fD(z) = α + z + z̄ < 0} (3.52)

• Limitation of gain amplitude: Radius r

The setting of the natural frequency allows for the limitation of the amplitude of the

observation gain

D = {z ∈ C : fD(z) =

−r z

z̄ −r

 < 0} (3.53)
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• Minimization of damping: Angle θ

To ensure minimal damping,fD must be defined as follows:

D = {z ∈ C : fD(z) =

 (z + z̄)sin(θ) (z − z̄)cos(θ)

−(z − z̄)cos(θ) (z + z̄)sin(θ)

 < 0} (3.54)

3.4.1 Pole Placement

The placement of the eigenvalues of the state observer in a region (D) of the complex

plane figure (3.4) must be considered in order to take into account the dynamic perfor-

mance of the observer.

Theorem 3.4.1:

The error asymptotically approaches zero with pole placement in a region D of

the complex plane, provided there exists a symmetric and positive definite matrix

P ∈ Rn×n and a matrixM ∈ Rn×m such that the following matrix linear inequalities

are satisfied:

PA0 + PAi −BN + AT0 P +ATi P −NTBT + αP < 0 (3.55) −rP PA0 + PAi −BN

AT0 P +ATi P −NTBT −rp

 < 0 (3.56)

 G̃1cos(θ) G̃2sin(θ)

−G̃2sin(θ) G̃1cos(θ)

 < 0 (3.57)

with  G̃1 = PA0 + PAi −BN + AT0 P +ATi P −NTBT

G̃2 = PA0 + PAi −BN − AT0 P −ATi P +NTBT
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3.4.1.1 H∞ Performance Criterion:

Up to now, we have considered the case of a proportional control law for nonlinear

systems. The major drawback of this control structure is its inability to guarantee zero

static errors when the process is subject to nonzero external disturbances.

Our objective in this section is to extend the stabilization conditions outlined in theorem

3.4.1 to the class of nonlinear systems that are affected by unknown inputs.

The Proportional-Integral (PI) controller based on the DMVT approach differs from the

traditionally used PI controller. This distinction arises from how the integral action is

utilized.

a/Problem Formulation

Considering the class of T-S multi-model systems subject to disturbances, which are

represented as follows:


ẋ(t) =

8∑
i=1

hi((z(t))(Aix(t) +Biu(t)) +Dw(t))

y(t) = Cix(t)
(3.58)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rp represents the input vector, and y(t) ∈ Rm

is the output vector. The matrices Ai ∈ Rn×n, Bi ∈ Rn×p, and C ∈ Rm×n are known

appropriate matrices, and w(t) ∈ Rl is the vector of unknown inputs.
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The error state vector is expressed as follows:

e(t) = x(t)− xr(t) (3.59)

Where xrrepresents the stepwise reference state, with the dynamics of the state error(if

xr(t) = 0) described by the following expression:

ė(t) = ẋ(t) (3.60)

Thus, the dynamics of the error for the multi-model system (3.58) can be represented in

the following form:

ė(t) =
8∑
i=1

hi((z(t))(Aix(t) +Biu(t)) +Dw(t)) (3.61)

b/H∞ Control Synthesis:

In this portion, we will develop an H∞ controller that ensures both the closed-loop

stability of system (3.58) and the convergence of the tracking error (3.59) , while also

mitigating the impact of external disturbances.

Definition 2. An H∞ criterion is written as follows:
∫ ∞

0
ēT (t)ē(t)dt ≤ γ2

∫ ∞
0

w̄T (t)w̄(t)dt (3.62)

where γ is the desired rate of attenuation for external disturbances.

The new control law u(t), based on observer performance under the H∞ criterion, is

given by:

u(t) = −Kec(t)−K ′
∫
ec(t) dt (3.63)

such that K and K ′ are the gains of the PI controller that need to be designated.
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Fig 3.5: State feedback control structure with integral action

Taking into account the T-S fuzzy framework detailed in (3.64) and the proportional-

integral controller introduced in (3.65) , they can be articulated as augmented configura-

tions in the forms below:


ẋa(t) = ∑r

i=1 hi(xa(t)) (Aai xa(t) +Ba
i u(t) +Da

iw
a(t))

y(t) = Caxa(t)
(3.64)

where

Aai =

A0 0

I 0

 , Ba
i =

B
0

 et Da
i =

Ai D

0 0


and

Ka
i =

[
K K ′

]
(3.65)

Let’s consider the dynamics of the state error in the augmented system, which can be

defined as:

ėa(t) = ẋa(t)

We can describe the dynamics of this error,ėa(t) , using the following expression:

ėa(t) =
r∑
i=1

hi(xa(t)) (Aai −Ba
iK

a
i )ea(t) +Da

iw
a(t)) (3.66)

In this context, we have previously assumed certain conditions. Based on these, we

determine the gain matrices Ka
i for the proportional-integral controller to ensure the

system’s stability, even when wa(t) is not zero.
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Theorem 3.4.2:

If there exists a positive scalar γ > 0, and symmetric and positive definite matrices

X,N such that the following matrix inequalities are sufficient:
AaiX +XAai

T −Ba
iNi −NT

i B
a
i
T Da

i X

Da
i
T −γ2I 0

X 0 −I

 < 0 (3.67)

then, the closed-loop system (3.58) is asymptotically stable and the H∞ perfor-

mance (3.62) is guaranteed via the state feedback control law (3.63).

The controller gains are given by:

Ka
i = NiX

−1 (3.68)

Proof of Theorem:

The analysis of this controller’s convergence centers on its asymptotic stability, with a

particular focus on the Proportional-Integral (PI) controller. The goal is to ascertain the

appropriate gain Ka
i which ensures that the state error, , achieves asymptotic stability

lim
t→∞

ea(t) = 0 (3.69)

To assess the convergence of the state estimation error, we apply a quadratic Lyapunov

function, as detailed in Equation (2.16). Over time, as we approach infinity, this error

is expected to diminish to zero. Convergence criteria, encapsulated by Linear Matrix

Inequalities (LMIs), are established using the same quadratic Lyapunov function:

V (ea(t)) = eaT (t)Pea(t), where P = P T > 0. (3.70)

We verify asymptotic stability when:

V̇ (ea(t)) < 0. (3.71)

The Lyapunov function’s derivative is expressed as:

V̇ (ea(t)) = ėaT (t)Pea(t) + eaT (t)P ėa(t). (3.72)
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Upon integrating the insights from equation (3.66) with equation (3.72), we deduce

the following results

V̇ (ea(t)) = eaT (t)
(
AaTi −KaT

i BaT
i

)
Pea(t) + waT (t)DaT

i Pea(t) + eaT (t)P ((Aai −Ba
iK

a
i )ea(t))

+ eaT (t)PDa
i (t)wai (t)

(3.73)

V̇ (ea(t)) = eaT (t)
(
(AaTi −KaT

i BaT
i )P + P (Aai −Ba

iK
a
i )
)
ea(t) + waT (t)DaT

i Pea(t)

+ eaT (t)PDa
i (t)wai

(3.74)

Considering the assumptions previously mentioned, the functionwa(t) is bounded.

This is supported by Lemma 1:

‖ea(t)‖2 < γ‖wa(t)‖2 (3.75)

V̇ (t)− γ2waTwa =

 ea
wa


T AaTi P + PAai − PBa

iK
a
i −KaT

i BaT
i P + I PDa

i

−DaT
i P −γ2I


 ea
wa

 < 0

(3.76)

Based on the Schur complement, equation(3.76) can be reformulated as follows:
P−1[PAai + Aai

TP ]P−1 − PBa
iN −NTBa

i
TP P−1PDa

i P−1

Da
i
TPP−1 −γ2I 0

I 0 −I

 < 0 (3.77)

The preceding equation can be expanded as follows:
AaiX +XAai

T −Ba
iNi −NT

i B
a
i
T Da

i X

Da
i
T −γ2I 0

X 0 −I

 < 0 (3.78)

The controller gain has been determined as follows:

Ka
i = NiX

−1 (3.79)
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3.5 Conclusion

In this chapter, several complementary control methods are proposed, including the

integration of the Mean Value Theorem (MVT) with nonlinear sector transformations.

Furthermore, the MVT is employed to express the error dynamics in a manner that mini-

mizes the conservatism inherent in the assumptions about bounded terms.These methods

are based on Lyapunov’s quadratic theory and are formulated as linear matrix inequali-

ties (LMIs), which can be solved using convex optimization tools.The second part of the

chapter emphasizes stabilizing nonlinear systems using Takagi-Sugeno multi-models. It

introduces two main stabilization techniques. The first approach uses PDC controllers,

developed through the MVT technique. The second approach involves designing robust

control based on H∞ performance. This section clearly demonstrates the effectiveness of

the robust H∞ with MVT controller in minimizing the impact of disturbances.
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4.1 Introduction

The preceding chapters established a basic framework for analyzing stability and for-

mulating stabilisation in nonlinear systems, particularly in the context of multi-model

frameworks. The main approach revolved around employing Lyapunov’s quadratic func-

tions. Although these functions provide useful insights and techniques, their results tend

to be on the conservative side, which may restrict their use in some cases. To address

this constraint, the current chapter shifts the focus to a new approach by exploring a

different category of functions non-quadratic Lyapunov functions, especially those based

on curvilinear integrals (LILF).

At the outset of our discussion in the seconde chapter, we highlighted the comparative

benefits of adopting LILF over the standard non-quadratic Lyapunov functions (NQLF).

The primary advantage of LILF lies in its ability to circumvent the appearance of deriva-
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tives of membership functions, thereby facilitating a global analysis of the entire state

space of the considered model. However, it has been noted that existing research often

presents BMI (Bilinear Matrix Inequalities) conditions for stabilization in more general

cases [RW06].

In this chapter, our objective is to broaden the scope of the existing findings by

eliminating certain constraints, leading to more relaxed LMI (Linear Matrix Inequality)

conditions. Our approach, which is inspired by the study [IMRM12], introduces an inno-

vative strategy for achieving LMI conditions. This strategy is situated within the realm of

non-quadratic controller law synthesis using a LILF (Lyapunov functions involving curvi-

linear integrals) framework, as detailed in[HHBT23] . Central to this approach is the

belief that the stability of a T-S (Takagi-Sugeno) system can be consistently guaranteed

and upheld.

This chapter further delves into the practical application of these theoretical concepts

in its subsequent sections, focusing on numerical examples. Initially, we will thoroughly

investigate the realm of innovative control design tailored for nonlinear systems. These

designs are specifically structured within the Takagi-Sugeno fuzzy system framework and

give particular attention to non-measurable decision variables. Building on this founda-

tion, we then shift to establishing a set of relaxed yet comprehensive conditions, based

on LMIs, for implementing state feedback controller conditions. Our methodology not

only presents promising prospects but also furnishes examples that address challenges

previously highlighted in [RW06]. In the latter half of this chapter, we delve deeply into

the practical application of the methodologies discussed, with a focus on control systems

designed for state feedback conditions. Our discussion encompasses systems characterized

by the Takagi-Sugeno framework, covering both systems that use non-measurable decision

variables.

4.2 Stabilization of TS Fuzzy Systems via LILF

In the next section, we will explore in detail the design aspects of our proposed con-

troller.A key element of this design is the utilization of the Mean Value Theorem. Addi-

tionally, our approach distinctively features a non-quadratic Lyapunov function, with a

specific focus on the Line Integral Lyapunov Function (LILF).The combination of these
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essential mathematical principles is fundamental to our objective of developing an effective

controller.

4.2.1 Design of the Proposed Control System

To enhance the stability conditions in control design, specifically for state feedback

controllers, without the need for bilinear matrix inequalities (BMI), a novel Lyapunov

function candidate is introduced. This function, in the form of a line-integral along a

trajectory from the origin to the current state, is explored for its effectiveness in the

stability and stabilization of TSF systems. This proposed function, as a specific in-

stance of the classical Quadratic Lyapunov Function (QLF), offers more flexible stabil-

ity conditions. A notable implementation of this concept is presented by the authors

in[HHBT23], where they propose a state feedback controller gain for nonlinear systems .

This approach employs convex structures paired with a non-quadratic Lyapunov function

[HHT24], enhancing robustness against sensor noise. Further expanding on this, Maalej

et al. [MKB17]introduced an innovative method for designing state feedback control in

nonlinear systems, particularly those characterized by Takagi-Sugeno fuzzy systems with

non-measurable premise variables.

We have developed a methodical strategy for controller design, specifically for the

nonlinear system detailed by (3.1). Here is a synopsis of the structure we suggest:

u = −
 q∑
j=1

hj(cj)Pj

−1

k(x− xc) (4.1)


ẋ =

r∑
i=1

hi(x)

Aix−Bi

 q∑
j=1

hj(cj)Pj

−1

k(x− xc)


y = Cx

(4.2)

For the essential transformation as indicated in subsection 3.3.1 and equation (3.19) ,

we define the following matrices:

A0 = 1
r

r∑
i=1

Ai, B0 = 1
r

r∑
i=1

Bi (4.2)

As a result, the TSF system, which is delineated by equations (3.15 ) and(4.2) , can
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be reformulated as follows
ẋ = A0x+B0u+

r∑
i=1

hi(x)(Āix+ B̄iu)

y = Cx

(4.3)

Additionally, the observer’s structure is outlined by the equations:


ẋ = A0x−B0

 q∑
j=1

hj(cj)Pj

−1

K(x− xc) +
r∑
i=1

hi(x)

Āix− B̄i

 q∑
j=1

hj(cj)Pj

−1

K(x− xc)


y = Cx

(4.4)

We aim to find the appropriate controller gain, denoted as K, that ensures the dy-

namics state of the system stabilize over time, ideally reaching zero as time approaches

infinity.

When we integrate equations (4.2) and(4.3) into equation (4.4), the resulting equation

is:

ẋ =

A0 −B0

 q∑
j=1

hj(cj)Pj

−1

K

x+ φ(x, xc) (4.5)

Here, the term φ(x, xc, u) is defined as:

φ(x, xc) = B0

 q∑
j=1

hj(cj)Pj

−1

Kxc +
r∑
i=1

hi(x)

Āix− B̄i

 q∑
j=1

hj(cj)Pj

−1

K(x− xc)


(4.6)

By invoking Theorem 3.3.2 , it leads us to conclude that there is a function c within

the range [x, xc], which meets the following condition (for more detailssee see Assumption

in annexe (4.3))

φ(x, xc) = ∂φ(c)
∂x

x (4.7)

and

φ(x, xr) =
n∑
i=1

n∑
j=1

ei(n)ej(T )∂φj
∂xi

∣∣∣∣∣
ci

× x (4.8)

Consequently, the dynamics of the state can be succinctly expressed as follows:
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ẋ =

A0 −B0

 q∑
j=1

hj(cj)Pj

−1

K +
n∑
i=1

n∑
j=1

en(i)eTn (j)∂φj
∂xi

∣∣∣∣∣
ci

x (4.9)

ẋ =

−B0

 q∑
j=1

hj(cj)Pj

−1

K +
q∑
i=1

hi(ci)Ai

x (4.10)

To comprehensively describe the dynamics of the state , we define the matrix δij as:

δij = Ai −B0P
−1
j K.

ẋ =
q∑
i=1

q∑
j=1

hi(ci)hj(cj)δijx (4.11)

Lemma 4.2: [Tanaka et al. [TIW98]]

Let s represent the maximum number of fuzzy rules that can be activated at the same

time. It is given that s satisfies the constraint 1 ≤ s ≤ r. Under these conditions, the

membership functions of the fuzzy rules adhere to the inequality:

(s− 1)
r∑
i=1

h2
i (x)− 2

r∑
i=1

∑
j>i

hi(x)hj(x) ≥ 0. (4.12)

This inequality is valid for any value of x

The conditions for stabilization convergence are now presented in the following theo-

rem.

Theorem 4.2.1:

The TS fuzzy system, detailed in (4.3), with fuzzy controller (4.1) attains asymp-

totic stability provided there are positive definite matrices Pi and X > 0 that satisfy

the Linear Matrix Inequalities (LMIs) for each i, j ranging from 1 to q.

Pi > 0 (4.13)

ATi Pi + PiAi −KTBT −BK + (S − 1)X < 0 i = j (4.14)

ATi Pj + PjAi −KTBT −BK +ATj Pi + PiAj −KTBT −BK ≤ 2X i < j

(4.15)

Proof:

Take into account the LILF

V (x) = 2
∫
l(0,x)

fT (θ)dθ (4.16)
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The time derivative of V (x) is described by:

V̇ (x) = xT
q∑
j=1

hj(cj)Pjx+ xT
q∑
j=1

hj(cj)Pjẋ (4.17)

then

V̇ (x) =
q∑
i=1

q∑
j=1

hi(ci)hj(cj)xTMijx (4.18)

V̇ (x) = xT

 q∑
i=1

hi(c)Mii + 2
q∑
i=1

q∑
j>i

hi(c)hj(c)X
x (4.19)

with

Mii = ATi Pi + PiAi −KTBT −BK (4.20)

and

2X = ATi Pj + PjAi −KTBT −BK +ATj Pi + PiAj −KTBT −BK (4.21)

Therefore, applying Lemma (4.2.1) allows us to reformulate equation (4.22) in the

following way:

V̇ (x) = xT
( q∑
i=1

h2
i (ci)Mii + (S − 1)X

)
x (4.22)

For all x 6= 0⇒ V (x) < 0

4.2.2 Enhanced of The Controller Performance

In this subsection, we delve into the initial D-stability conditions, originally introduced

for linear systems by Chilali and Gahinet in 1996 [Gah96]. Building upon this foundation,

Peaucelle et al. further developed these concepts in 2000 [PABB00], extending their ap-

plication to uncertain linear systems, particularly those represented in convex polytopic

forms. Their primary goal was to reduce the conservatism associated with Linear Matrix

Inequality (LMI) conditions in linear systems. Further advancements in this area, espe-

cially pertaining to Takagi-Sugeno (T-S) fuzzy systems, have been documented in various

studies, including those by [Ass14], [SBAT22], and [BLL+15].

Moreover, the research by Toulotte et al. in 2008 [TDGB08] introduced specialized

LMI constraints. These constraints are specifically associated with certain regions, en-

compassing decay rate, conical sector, and circle, and were integrated into the conven-

tional stabilization criteria for uncertain systems, as noted in [Che17]. Building on the

D-stability concept from [Gah96], we describe the requirement to position the poles of the
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ith subsystem within the shaded region shown in Fig(3.4). This positioning is articulated

through Linear Matrix Inequalities (LMIs) in the following Lemma.

Lemma 4.2:[RW06] A condition for the D-stability of the T-S model, as indicated in

(4.28), is the existence of matrices Pj satisfying Pj = P T
j > 0, in addition to matrices Q

and K, which together must comply with the established Linear Matrix Inequality (LMI)

criteria:

Γki + (η − 1)Q < 0, ∀i ∈ {1, . . . , r} and k ∈ {1, 2, 3} (4.23)

Γij + Γji − 2Q < 0, ∀(i, j) ∈ {1, . . . , r}2 and i < j (4.24)

with

Γ1
ii = Gii +GT

ii + αiPi < 0,

Γ2
ii =

sin θ (Gii +GT
ii)

cos θ (Gii −GT
ii)

 < 0,

Γ3
ii =

−rPj Gii

GT
ii −rPj

 < 0,

where

Gii = (Ai + A0)Pi −BK

4.2.3 Simulation Examples

In this subsection, we explore two illustrative examples that highlight the potential

and robustness of our proposed observer design for continuous TS fuzzy systems. The

performance of the various techniques was evaluated using the MATLAB/Simulink envi-

ronment.The first example facilitates a direct comparison between the conservativeness of

our proposed line integral Lyapunov function (2.23) and the traditional quadratic func-

tion (2.16). This comparison is designed to illuminate the subtleties and benefits of each

approach. Following this, our second example adopts a more practical perspective. Here,

we demonstrate the numerical simulation applicability of our methodology by outlining

its implementation in the design of an observer for a significant engineering challenge: a

flexible joint robot. This not only showcases the merits of our design but also underscores

its utility in complex systems.
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Numerical Example 1

Let’s explore the following non-linear mode.

ẋ1(t)

ẋ2(t)

 =

 x1(t)− 5 −4

0.2(x1(t) ∗ b− x2(t)) + x2(t) ∗ a −x2(t)


x1(t)

x2(t)

+

0

1

u(t) (4.25)

y(t) =

1 0

0 1


x1(t)

x2(t)


The T-S fuzzy model is given as the following form:

ẋ(t) =
2∑
i=1

hi(x)(Aix(t) +Biu(t)) (4.26)

Utilizing the technique of sector nonlinearity, the T-S fuzzy model can be depicted in

the subsequent manner:
ẋ = A0x+B0u+

r∑
i=1

hi(x)(Aix+Biu)

y = Cx

(4.27)

where the Ai matrices are given as follows :

A1 =

 −12 −4

0.2(7b− 6) + 6a −6

 , A2 =

 −12 −4

0.2(7b− 1) + a −1



A3 =

 −6 −4

0.2(b− 6) + 6a −6

 A4 =

 −6 −4

0.2(b− 1) + a −1



A0 =

0 4

0 0

 , B1 = B2 =

0

1

 , C =

1 0

0 1


The dynamics of state error can be characterized as follows:

ẋ =
4∑
i=1

4∑
j=1

hi(ci)hj(cj)
(
Ai −BP−1

j K
)
x (4.28)

Ai =

 −2x1(t)− 5 0

0.4b1x1(t)− (0.2− a2)x2(t) −2x2(t)− (0.2− a1)x1(t)


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h1(t) = x1(t)− 1
6

h2(t) = 7− x1(t)
6

h3(t) = x2(t)− 1
5

h4(t) = 6− x2(t)
5

The intervals a ∈ [0, 50] and b ∈ [0, 80] define the range of values utilized to assess the

feasible regions for the problems based on Linear Matrix Inequalities (LMIs), as explored

in Theorems 2.7.1 and 4.2.1.

Figure 4.1 presents a comparative analysis of the stability regions obtained from the

Linear Matrix Inequalities (LMIs) associated with the conventional Lyapunov function

described in Theorem 2.7.1, against the non-quadratic constraints delineated in Theo-

rem 4.2.1. The comparative results evidently confirm that the non-quadratic Lyapunov

functions introduced herein yield less conservative outcomes than their classical quadratic

counterparts, thereby signifying an advancement in reducing the conservativeness of the

stabilization problem through the adoption of non-quadratic Lyapunov functions, as ad-

vocated by the current study.
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Fig 4.1: Comparison of the feasibility fields on parameter space a× b obtained via

Theorems 2.7.1 “∗” and 4.2.1 “�”.

Remark: When the parameters a and b are assigned values of 5 and 40 respectively,

the stabilization criteria outlined in Theorem 2.7.1 are not met. This indicates that

achieving a stable controller with these values is not feasible using conventional methods.

However, employing Theorem 4.2.1 offers a resolution to the stabilization issues, aligning

them within the constraints of linear matrix inequalities.

By employing the LMI control toolbox in MatLab, we conducted a stability analysis

for various combinations of parameters a and b. Figure 4.1 offers a comparative view of

the feasibility fields derived from Theorems 2.7.1 and 4.2.1. The findings are revealing.

Theorem 2.7.1 yields 17 feasible solutions, which represent 9.09% of the total. In contrast,

Theorem 4.2.1 presents a remarkable 130 solutions, or 69.51%. This stark difference

underlines the broader feasibility scope of Theorem 4.2.1 compared to Theorem 2.7.1.

Such a difference highlights the significant decrease in conservatism brought about by

the LMI conditions introduced in our study, especially when compared to the traditional

quadratic function approach.

To gain a deeper understanding of the complexities involved in these LMI-based con-
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ditions, we have detailed their computational aspects in Table (4.1). Our examination

focuses on three critical factors in conditions based on inequalities: the total number of

constraints (C), the sum of decision variables (V), and, importantly, the ratio between

these two elements. This ratio is crucial as it indicates the computational intensity of the

process. It highlights a key trade-off: higher complexity often leads to results that are

less conservative, striking a balance between computational demand and the precision of

outcomes.

Table 4.1: Performance evaluation indicators.

Method Feasibility % Nb of dec.var.(V) Nb of LMIs (C) n = V/C

Theorem 2 9.09 % 1 5 0.2

Theorem 3 69.51 % 5 15 0.33

For the specific case where a = −10 and b = −60, Theorem 4.2.1 yields a single vi-

able solution. This solution is encapsulated in the state-feedback control law detailed in

equation (4.1), with the gain matrices structured in accordance with linear matrix inequal-

ity constraints. Furthermore, implementing Theorem 3.3.2 with this model successfully

produces a robust solution, complete with extended controller and observer gains.

The control gain is presented as follows:

K =
[
−0.0669 0.3807

]

The observer gain can be given as follows:

L =

 0.4295 −0.3219

−0.3219 0.5488


For detailed insights into the observer structure, refer to the annex (for more details

see Annex (4.3)).

The positive definite matrices can be obtained as :

P1 =

0.0003 0.0009

0.0009 0.0045

 , P2 =

0.0003 0.0009

0.0009 0.0045

 , P3 =

0.0005 0.0009

0.0009 0.0032



P4 =

0.0005 0.0009

0.0009 0.0045

 , X =

 0.0002 −0.0006

−0.0006 0.0210


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Initially, we set the conditions as x0(t) = [0 0] and x̂0(t) = [0 1]. The simulation’s

results, which illustrate the closed-loop state trajectories, are shown in Figure 4.2.

Figure 4.6 suggests that system stability can be achieved by increasing the values of

the monitoring system and controller gains.

Fig 4.2: State evolution of T-S fuzzy model under control law obtained via Theorem 4.2.1.
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Fig 4.3: Control law evolution with gains obtained via Theorem 4.2.1

Example 2:Application to Single-Link Flexible Joint Robot

In this part , we exhibit the application of our formulated strategy, tailored for T-S

fuzzy systems moderated by a state feedback controller. Our objective is to demonstrate

the practicality and efficiency of this strategy. For this purpose, a comprehensive simu-

lation is conducted. This simulation involves a single-link flexible joint robot, details of

which are graphically presented in Figure 4.4.
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Fig 4.4: Schematic Representation of a Single-Link Flexible Joint Robotic Manipulator

Figure 4.4 depicts the foundational schematic of the single-link manipulator with a

flexible joint. The corresponding dynamic model is delineated in Equations as follows

[UMR+20]:

Iq̈1 +MgL sin(q1) +K(q1 − q2) = 0 (4.29)

Jq̈2 −K(q1 − q2) = τ (4.30)

Here, q1 represents the angular position of the link, and q2 denotes the angular position of

the motor. The parameters I and J are the inertias of the link and the motor, respectively.

The term M signifies the mass of the link, g is the acceleration due to gravity, L is the

distance from the mass to the pivot point, K is the spring stiffness constant, and τ is the

applied torque on the motor shaft.

To facilitate analysis, the system is often expressed in the state space form. Hence,

the nonlinear dynamic model of the single-link robotic manipulator with a flexible joint,

encapsulated by equations (4.29 , 4.30) is transposed into the state-space representation.

a/Takagi-Sugeno Model Design:

The nonlinear model for a single-link flexible joint robot arm is encapsulated by the

equations below [KWP07]:
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

θ̇m(t) = ωm(t)

ω̇m(t) = k
Jm

(θl(t)− θm(t))− Bv

Jm
ωm(t) + Kt

Jm
u(t)

θ̇l(t) = ωl(t)

ω̇l(t) = − k
Jl

(θl(t)− θm(t))− mgh
Jl

sin(θl(t))

(4.31)

In these equations, Jm denotes the motor’s inertia, Jl represents the controlled link’s

inertia, m stands for the mass of the link, h indicates the center of mass, g is the grav-

itational acceleration, k is the spring constant, Bv is the coefficient of viscous friction,

and Kt is the gain of the amplifier. Table 4.2 [EHRBB22] provides the values for these

parameters.

Table 4.2: System parameters used in simulations

Parameter Meaning Value

Jm Motor inertia 3.7× 10−3Kg ·m2

Jl Link inertia 9.3× 10−2Kg ·m2

h Link length 1.55× 10−2m

m Pointer mass 2.04× 10−1Kg

k Torsional spring constant 1.8× 10−1N ·m · rad−1

Bv Viscous friction coefficient 4.6× 10−3N ·m · s−1

Kt Amplifier gain 8× 10−2N ·m · V −1

The state vector x(t) and the output vector y(t) are respectively defined as x(t) =

[θm(t) ωm(t) θl(t) ωl(t)]T andy(t) = [θm(t) ωm(t)]T , where x1(t) denotes the motor’s

angular rotation, x2(t) is the motor’s angular velocity, x3(t) represents the link’s angular

position, and x4(t) signifies the link’s angular velocity. The dynamics described by system

(4.31) are thus formulated.


ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(4.32)
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where

A =



0 1 0 0

− k
Jm
−Bv

Jm

k
Jm

0

0 0 0 1

− k
Jl

0 − k
Jl
− mgh

Jl
sin(x3) 0


, B =



0
Kt

Jm

0

0


In developing the T-S fuzzy model for a single-link flexible joint robot, we introduce

the premise variable defined as:

ξ(t) = sin(x3)
x3

(4.33)

where x3 is constrained to the interval
[
−π

2 , 0
]
. Given that there is one nonlinearity

(n = 1), the overall model is composed of r = 2n = 2 sub-models.

Subsequently, the single-link flexible joint robot system, designated as (4.31), is char-

acterized using the Takagi-Sugeno (T-S) fuzzy model:
ẋ(t) = ∑2

i=1 µi(ξ(t))(Aix(t) +Biu(t))

y(t) = Cx(t)
(4.34)

The matrices Ai and Bifor each sub-model have been computed and are presented

below:

A1 =



0 1 0 0

−48.6 −1.25 48.6 0

0 0 0 1

1.95 0 −2.28 0


, A2 =



0 1 0 0

−48.6 −1.25 48.6 0

0 0 0 1

1.95 0 −2.16 0


, (4.35)

B1 = B2 =



0

21.6

0

0


, (4.36)


µ1(ξ(t)) = ξ(t) + 0.2172

1.2172 ,

µ2(ξ(t)) = 1− ξ(t)
1.2172

(4.37)

By solving the Linear Matrix Inequality (LMI) presented in equation of theorem 4.2.1,

we obtain a feasible solution. This solution yields the subsequent matrices for the positive

definite conditions and the control law, which are specified as follows:
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P1 =



0.1010 −0.1546 0.0664 −0.1400

−0.1546 2.0511 0.0478 −0.3945

0.0664 0.0478 0.0951 −0.1071

−0.1400 −0.3945 −0.1071 0.7661


, P2 =



0.0966 −0.1546 0.0664 −0.1400

−0.1546 1.9427 0.0478 −0.3945

0.0664 0.0478 0.1029 −0.1071

−0.1400 −0.3945 −0.1071 0.7661



X =



0.1093 0.1895 0.0205 −0.0370

0.1895 1.5220 0.0854 0.0073

0.0205 0.0854 0.0464 −0.0039

−0.0370 0.0073 −0.0039 0.1748


, K =

[
0.0419 0.4082 0.0605 − 0.0791

]

b/Simulation Validation and Discussion:

To validate the controller design, the simulations have been achieved by using MAT-

LAB/Simulink. In Table 4.2, all of the parameters are given which are used in simulations.

The initial conditions set for the simulations specify that x(1) = 0.5, x(2) = 0.8, x(3) =

0.8, x(4) = 0.5

These features emphasize the reliability and robustness of the proposed fuzzy controller,

showcasing its capability to handle the FJR’s complex dynamics with precision. The con-

troller’s in figure accuracy in navigating intricate behaviors demonstrates its effectiveness.

This underscores the controller’s potential in ensuring precise and stable operation within

such dynamic environments.

In control systems, convergence to zeros signifies that the system’s output methodically

decreases and stabilizes at zero over time
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Fig 4.5: State evolution of T-S fuzzy model under control law obtained via Theorem 4.2.1.
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Fig 4.6: Control law evolution with gains obtained via Theorem 4.2.1
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4.3 Conclusions

This chapter delves into advanced strategies for designing controllers for continuous-

time nonlinear models, surpassing current standards in modern research. A significant

advancement discussed is the controller design based on non-measurable premises. This

innovative approach adeptly applies a convex reinterpretation of the model, specifically

focusing on its Takagi-Sugeno Fuzzy (TSF) framework.

A subsequent set of solutions explores scenarios involving unmeasurable premises.

Here, the challenge of state feedback control is transformed into a more manageable

convex problem. This transformation is facilitated by the use of a line integral Lyapunov

function combined with the differential mean value theorem.

In conclusion, a critical aspect emphasized in this chapter is the stability criteria

for these controllers. The use of a line integral Lyapunov function has significantly re-

duced conservatism, enhancing the reliability of these controllers and highlighting their

exceptional relevance. To support this argument, the chapter presents simulations and

comparative results, offering a compelling demonstration of the effectiveness and efficiency

of these innovative approaches
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General Conclusion

This thesis addresses the challenge of modeling and controlling nonlinear systems

through the application of fuzzy multi-model representations. In our exploration of mod-

eling, we have chosen to focus on the Takagi-Sugeno (T-S) method for its straightfor-

wardness, especially in terms of analyzing stability, developing observers and controllers.

Multi-model systems can be categorized into two primary structures based on the unifor-

mity of the state vector across sub-models. The first type is the decoupled multi-model,

and the second is the Takagi-Sugeno fuzzy multi-model. This latter approach has spurred

significant advancements in several areas of automation, including identification, state

estimation, and control. The opening chapter iexplores control strategies for nonlinear

systems, focusing on techniques like input-output feedback linearization and backstepping

control design. It addresses the challenges of obtaining accurate models due to parametric

uncertainties and neglected dynamics. Nonlinear adaptive control methods are discussed

as solutions to compensate for model inaccuracies by incorporating nominal models and

adjusting for uncertainties. Following this, the second chapter delves into the multi-

model approach, elucidating the underlying concepts and principles it rests on. The heart

of the thesis, embodied in the third and fourth chapters, tackles the challenge of stabiliz-

ing nonlinear systems through their multi-model representations. The focus of the third

chapter is on the quadratic stabilization of nonlinear systems based MVT approches, using

Takagi-Sugeno (TS) multi-models that originate from nonlinear sectors. The interest of

recent research has pivoted to crafting robust controllers for nonlinear systems depicted

by TS fuzzy models.In the pivotal fourth chapter, we ventured into uncharted territo-

ries, marking the zenith of our research contributions. Here, the spotlight was on the

innovative design of controllers, engineered for robust stabilization in the face of external

disturbances or unidentified inputs. A significant hurdle was the inherent conservatism of

previous models within the TS-LMI framework, often leading to overly cautious designs.

Our approach was to confront this conservatism directly, aiming to diminish its impact

and pave the way for the creation of more efficient and less restrictive controller designs
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for TS representations.

We explored two main avenues: one involving the use of standard quadratic Lyapunov

functions, and the other delving into non-quadratic alternatives. The former approach

relies on leveraging multiple convex combinations to achieve stabilization, whereas the

latter explores the innovative use of line-integral Lyapunov functions. These methodolo-

gies collectively offered more flexible and less stringent conditions for controller design,

providing a marked improvement over previous methodologies.

Further enriching our investigation, we ventured into the realm of H∞ performance

design. This addition not only expanded our research scope but also added depth to

our contributions, presenting a comprehensive exploration of controller design in various

scenarios.

To connect theoretical insights with dynamical applications, our thesis is enriched

with illustrative examples. The examples demonstrate the effectiveness of our methods,

guiding readers from abstract concepts to concrete implementations in future work. The

core takeaway from our research is unequivocal: advanced automation techniques are

crucial in the field of control and diagnosis, hinting that we are merely beginning to

uncover the full spectrum of possibilities.

An intriguing aspect of using the line integral Lyapunov function (LILF) is the re-

quirement for Lyapunov matrices to have off-diagonal elements. This need arises from

the path-independent nature of LILF, presenting both a challenge and an opportunity for

innovation. Investigating ways to mitigate the constraints of path independence could be

fruitful, potentially facilitating the development of advanced higher-order systems.

Exploring fault detection and diagnosis methods based presents another fertile ground

for research.

Additionally, the development of fault-tolerant control strategies tailored for nonlinear

systems, especially those characterized by Takagi-Sugeno (TS) multi-models, stands out

as a vital area for future inquiry

• An intriguing aspect of using the line integral Lyapunov function (LILF) is the

requirement for Lyapunov matrices to have off-diagonal elements. This need arises

from the path-independent nature of LILF, presenting both a challenge and an

opportunity for innovation. Investigating ways to mitigate the constraints of path

independence could be fruitful, potentially facilitati.ng the development of advanced



higher-order systems.

• Additionally, the development of fault-tolerant control strategies tailored for non-

linear systems, especially those characterized by Takagi-Sugeno (TS) multi-models,

stands out as a vital area for future inquiry



Annex

Table 4.3: Different simulation Converter Parameters

Parameter Value Description

Vs 220V Supply voltage

fs 50HZ Supply frequency

FPWM 50HZ PWM carrier frequency

R 2mΩ Line resistance

L 1mH Line inductor

C 660 µF Output capacitor

RL 25Ω load resistance

Table 4.4: PMSM parameters

Parameter Value Description

R 1.4Ω stator resistance

Ld 0.0066H direct axe Inductance d

Lq 0.0058H quadrature axe Inductance q

f 0.0003881 N.m.s/rad friction coefficient

J 0.00176 Kg.m2 Moment of inertia

φ 0.1564 Wb lux linkage

P 3 Number of pole pairs

N 1000 tr/min rated speed

LMI Tools

LMI methods are based on formulating a given problem as an optimization problem

with a linear objective and constraints in the form of Matrix Linear Inequalities (LMI).

An LMI constraint in a vector x ∈ Rm is of the form
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F (x) = F0 +
m∑
i=1

xiFi ≥ 0 (4.38)

where the symmetric matrices Fi = F T
i ∈ RN×N , i = 1, · · · ,m, are given.

Schur’s complement

Consider three matrices R(x) = RT (x), Q(x) = QT (x) and S(x) affine with respect to

the variable x. The following LMIs are equivalent:

 Q(x) S(x)

ST (x) R(x)

 > 0,

R(x) > 0, Q(x)− S(x)R−1(x)ST (x) > 0,

Q(x) > 0, R(x)− ST (x)Q−1(x)S(x) > 0.

Observer structure [MIM23]

For the nonlinear system described by Equation 1.90, we have formulated a systematic

approach to designing the observer. Below is a summary of the proposed framework
˙̂x =

r∑
i=1

hi(x̂)(Aix̂+Biu) +
 q∑
j=1

hj(x̂;Cj)Pj

−1

L0(y − ŷ)

y = Cx̂

(4.39)

In accordance with the crucial transformation outlined in Subsection 3.3.1 and equa-

tion 3.19, we specify the following matrices

A0 = 1
r

r∑
i=1

Ai, B0 = 1
r

r∑
i=1

Bi (4.2)

Thus, the Time-Scale Formulation (TSF) system, as depicted by equations 1.90 and

4.39, is articulated as follows:
ẋ = A0x+B0u+

r∑
i=1

hi(x)(Āix+ B̄iu)

y = Cx

(4.3)

Additionally, the observer’s structure is outlined by the equations:
˙̂x = A0x̂+B0u+

r∑
i=1

hi(x̂)(Āix̂+ B̄iu) +
 q∑
j=1

hj(x̂;Cj)Pj

−1

L0(y − ŷ)

y = Cx̂

(4.4)



To describe the dynamics of the estimation error, denoted by e = x − x̂, we refer to

the equations that follow:

We aim to find the appropriate observer gain, denoted as L0, that ensures the dynamics

of the estimation error stabilize over time, ideally reaching zero as time approaches infinity.

When we integrate equations (4.3) and (4.4) into equation (4.5), the resulting equation

is:

ė =

A0 −

 q∑
j=1

hj(cj;Pj)
−1

L0C

 e+ φ(x, x̂, u) (4.6)

Here, the term φ(x, x̂, u) is defined as:

φ(x, x̂, u) =
r∑
i=1

hi(x)(Āix+ B̄iu) +
r∑
i=1

hi(x̂)(Āix̂+ B̄iu) (4.7)

Applying Theorem 3.3.2, we deduce the existence of a function c within the range

[x, x̂], satisfying:

φ(x)− φ(x̂) = ∂φ(c)
∂x

(x− x̂) (4.8)

and

φ(x)− φ(x̂) =
n∑
i=1

n∑
j=1

ei(n)ej(T )∂φj
∂xi

∣∣∣∣∣
ci

× (x− x̂) (4.9)

Consequently, the dynamics of the state estimation error can be expressed as:

ė =

A0 −

 q∑
j=1

hj(cj;Pj)
−1

L0C +
n∑
i=1

n∑
j=1

en(i)eTn (j)∂φj
∂xi

∣∣∣∣∣
ci

 e (4.10)

ė =

A0 −

 q∑
j=1

hj(cj;Pj)
−1

L0C +
q∑
i=1

hi(ci)Ai

 e (4.40)

To comprehensively describe the dynamics of the state estimation error, we define the

matrix δij as: δij = Ai + A0 − P−1
j L0C.

ė =
q∑
i=1

q∑
j=1

hi(ci)hj(cj)δije (4.41)

Assumption

Considering that the function φ(x, u)is Lipschitz continuous, it ensures that its derivatives

are bounded. Hence, this allows us to use equation (2.9 )



δij ≤ δij = ∂φi
∂xj

∣∣∣∣∣
ci

< δij (4.42)

where

δij = min ∂φi
∂xj

∣∣∣∣∣
ci

, and δij = max ∂φi
∂xj

∣∣∣∣∣
ci

(4.43)

Any manifestation of nonlinearity can be characterized by the following expression:

δij =
2∑

k=1
Λk
ijσijk (4.44)

where σij1 = δij and σij2 = δij 
A1
ij =

δij − δij
δij − δij

,

A2
ij = δij − δij

δij − δij

(4.45)

2∑
k=1

Λk
ij(ci) = 1; 0 ≤ Λk

ij(ci) ≤ 1 for k = 1, 2 (4.46)
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