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خصمل   

 

  هذه الدراسة تهدف لاستغلال نماذج التعلم الآلي المتقدمة في تصنيف مياه الري. بداية من تقييم جودة المياه الجوفية من خلال

IWQI   ،ثم يتطور البحث للاستفادة من نماذج التعلم الآلي القابلة للتفسير من اجل التنبؤ. يمثل هذا البحث تحولا    وتصنيفها

دقيقة لمؤشر جودة مياه   التعلم الآلي يضمن محاكاة  أكبر. تطبيق  المياه، مبرزا تحقيق كفاءة  جذريا في منهجيات تقييم جودة 

وطريقة اقتصادية محسنة لادارته. يحمل هذا العمل آثاراً كبيرة على إدارة موارد المياه، ويعود بالفائدة بشكل    IWQI  الري

خاص على الفلاحين واصحاب القرار، مما يسهم في تطور ممارسات إدارة المياه المستدامة، ويقدم وجهة نظر محورية في  

 .تقييم جودة مياه الري باستخدام التعلم الآلي

 لمياه. قتصادي، مؤشراة جودة الة، النموذج الا، تعلم الآالري، نوعية المياه الجوفية، التصنيف : الكلمات المفتاحية

 
 

 
 
 

 

 
Abstract 

 

This thesis pioneers the integration of advanced machine learning models into irrigation water 

classification. Starting from groundwater quality assessment through IWQI, and groundwater 

classification, the research evolves to leverage ML model interpretability for predictions. It 

marks a paradigm shift in water quality assessment methodologies, emphasizing potential 

efficiency gains. The application of machine learning assures accurate simulation of the 

Irrigation Water Quality Index (IWQI) and streamlined economic monitoring approach. This 

work carries substantial implications for water resource management, particularly benefiting 

farmers and decision-makers. The findings contribute to the advancement of sustainable 

water management practices, providing a transformative perspective at the intersection of 

machine learning and irrigation water quality assessment. 

Keywords: Irrigation, Groundwater quality, classification, Machine learning, Economic 

model, Water quality indices. 
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Résumé 

 

Cette thèse inaugure l’intégration de modèles avancés d’apprentissage automatique dans la 

classification de l’eau d’irrigation. Partant de l’évaluation de la qualité de l’eau souterraine 

par l’IWQI et la classification de l’eau souterraine, la recherche évolue pour exploiter l’inter- 

prétabilité des modèles d’apprentissage automatique pour les prédictions. Cela marque un 

changement de paradigme dans les méthodologies d’évaluation de la qualité de l’eau, mettant 

l’accent sur des gains d’efficacité potentiels. L’application de l’apprentissage automatique 

assure une simulation précise de l’indice de qualité de l’eau d’irrigation (IWQI) et une 

approche économique rationalisée pour la surveillance. Ce travail a des implications substan- 

tielles pour la gestion des ressources en eau, bénéficiant particulièrement aux agriculteurs et 

aux décideurs. Les résultats contribuent à l’avancement des pratiques durables de gestion de 

l’eau, offrant une perspective transformative à l’intersection de l’apprentissage automatique 

et de l’évaluation de la qualité de l’eau d’irrigation. 

mots clés : Irrigation, Qualité des eaux souterraines, Classification, Apprentissage automa- 

tique, Modèle économique, Indices de qualité de l’eau. 
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Chapter 1

General introduction

1.1 Study background

Water, a vital component for ecosystems, life, and agriculture, plays a pivotal role in biochem-
ical reactions, nutrient transport, and sustaining aquatic life. However, global freshwater
scarcity, with only 2.5% available as freshwater, poses a challenge, particularly for irrigation,
where water quality is paramount. Groundwater, constituting 30.8% of freshwater, becomes
crucial for agriculture, supplying 43% of irrigation water used globally (Siebert et al., 2010).
This study focuses on groundwater’s significance in irrigation, emphasizing the need for a
robust classification system utilizing advanced machine learning for nuanced groundwater
quality assessment.

Urbanization, industry, and climate change threaten groundwater quality, demanding
urgent attention (Ouhamdouch et al., 2019; Vrba, 1983). The global context, marked by
deteriorating groundwater quality and water scarcity challenges (Sinha Ray and Elango, 2019;
Konikow and Kendy, 2005), necessitates immediate action. To secure food production and
economic stability, maintaining groundwater quality aligned with global standards becomes
imperative (Mancosu et al., 2015; Irfeey et al., 2023). In regions like M’sila, heavily reliant
on groundwater for irrigation due to arid conditions (Siebert et al., 2010), safeguarding water
quality is crucial for agricultural sustenance.

In this scenario, machine learning emerges as a powerful tool for predicting and monitor-
ing groundwater quality (Javaid et al., 2023). AI-driven models offer innovative approaches
to understanding complex water quality dynamics, facilitating real-time monitoring and early
contamination detection (Krishnan et al., 2022). Integrating AI into groundwater studies
holds promise for sustainable water management solutions, addressing critical challenges
and ensuring judicious water resource utilization. This study navigates the complexities of
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groundwater quality assessment, contributing to both scientific understanding and practical
agricultural management in the quest for safe and sustainable irrigation water.

1.2 Research Gap

Our research is motivated by a discernible gap in the existing water quality literature, marked
by the conspicuous absence of economic considerations in prior studies. This omission
underscores a critical lacuna, as economic factors play a pivotal role in shaping the feasibility
and practicality of water quality management strategies.

Moreover, the scarcity of studies employing explainable artificial intelligence (AI) tech-
niques within the realm of water resources management highlights another notable gap. In
response, our research endeavors to pioneer the implementation of these transparent and
interpretable methods to address crucial water-related concerns. This represents a departure
from conventional approaches, as the integration of explainable AI in water quality studies
has been conspicuously underexplored.

Central to our focus is a fundamental research gap: the pursuit of heightened accuracy
in water quality assessment using a minimal set of input parameters, all while adhering to
an economic and practical framework. This specific aspect has received limited attention in
prior research endeavors, necessitating our concerted efforts to bridge this scholarly gap.

1.3 Research problem

Within the overarching discourse on the pivotal role of water, particularly groundwater,
in sustaining agricultural practices, a critical juncture emerges—a juncture delineated by
the rationalization of this thesis. As we traverse the landscape of water’s ecological and
agricultural significance, two fundamental lacunae in existing studies come into focus. The
first gap pertains to the economic considerations that have been conspicuously absent in prior
investigations concerning irrigation water quality. While the importance of water quality is
indisputable, the economic implications of adopting specific measures or technologies for
water quality assessment have been notably overlooked. This oversight raises questions about
the pragmatic feasibility of implementing water quality management strategies, especially
in contexts where financial constraints play a pivotal role in shaping agricultural practices.
Simultaneously, a second void becomes apparent—a gap in the comprehensive assessment of
a diverse array of machine learning models within the specific domain of irrigation water
quality classification. Prior research may have delved into the application of machine
learning, but a holistic evaluation of various models in the context of irrigation water
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quality remains elusive. This deficiency underscores the need for a nuanced exploration of
machine learning methodologies, discerning their efficacy, limitations, and applicability to
the intricate task of classifying irrigation water quality. The transition from these lacunae in
prior studies to the rationale behind this thesis seamlessly aligns with the exigencies of the
agricultural landscape, particularly in regions where groundwater serves as the lifeblood for
irrigation. However, as we embark on the scientific journey outlined in this thesis, it becomes
imperative to acknowledge the practical challenges faced by local farmers. The laborious
and expensive nature of traditional water quality assessment processes poses a significant
hurdle, often rendering these approaches unaffordable for the very stakeholders who rely
most on sustainable irrigation practices. Bridging this divide between scientific inquiry and
on-the-ground realities forms a pivotal aspect of the thesis’s rationale.

1.4 The rationale of the study

In essence, this thesis crystallizes around the imperative to bridge these critical gaps—integrating
economic considerations into the discourse on irrigation water quality, comprehensively
evaluating machine learning models, and addressing the pragmatic challenges faced by local
farmers. As we traverse the forthcoming chapters, this scientific inquiry endeavors not only to
contribute to the academic discourse but also to offer tangible, economically viable solutions
that resonate with the lived experiences of those intricately connected to the agricultural
landscape.

1.5 Study objectives

As we pivot from the identified gap in prior studies and the rationale behind this thesis, the
focus seamlessly transitions to the objectives that underscore the scientific pursuits of this
investigation.

The study is designed to address the nexus of machine learning abilities, economic
feasibility, and practical challenges faced by local farmers involved in the complex field of
managing irrigation water quality. The stated goals can be summarized as follows:

1. Development of Robust Machine Learning Models

(a) Development of sophisticated machine learning models suited to the complexities
of the dynamics of irrigation water quality.

(b) Constructing models with robustness, accuracy, and condition adaptability to
strengthen their usefulness in practical applications.
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2. Streamlining Irrigation Water Quality Assessment

(a) Proposing strategies to streamline the intricate process of irrigation water quality
assessment.

(b) Attempting to improve the efficacy and efficiency of the evaluation procedures in
order to guarantee accurate and timely outcomes.

3. Interpretable Machine Learning Models Through SHAP

(a) Leveraging the SHAP (SHapley Additive exPlanations) methodology to instill
interpretability into machine learning models.

(b) Enabling a clear understanding of the key variables influencing irrigation water
quality.

4. Economic Optimization of Assessment Process

(a) Innovating strategies for economically optimizing the irrigation water quality
assessment process.

(b) Striking a balance between precision and cost-effectiveness, ensuring that the
assessment protocols align with economic considerations.

5. Assessment of Study Area’s Suitability for Irrigation

(a) Conducting a comprehensive evaluation of the study area’s suitability for irriga-
tion practices.

6. Identification of Paramount Parameters

(a) Systematically identifying and prioritizing the paramount parameters influencing
irrigation water quality.

These objectives coalesce into a concerted scientific endeavor, driven by the imperative
to harmonize agricultural practices with water quality considerations, laying the groundwork
for sustainable and informed irrigation practices in the study area.

1.6 Thesis structure

The progression from these defined objectives naturally segues into the overarching structure
of the thesis. The narrative unfolds across six meticulously crafted chapters, each contributing
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uniquely to the elucidation of irrigation water quality classification. The initial chapter serves
as an introduction, casting light on the context, rationale, and objectives of the study. This
sets the stage for an exhaustive exploration in the second chapter, delving into the existing
literature to provide a robust foundation for the subsequent scientific inquiry.

Chapter three, an integral section of the thesis, elucidates the intricacies of data collection
and the machine learning models strategically employed to achieve the endeavors that
incentivized this study. Chapter four unfurls the implementation and results, navigating
through the facets of Water Quality Assessment for Irrigation Purposes, Groundwater Quality
Classification Using ML, and Groundwater Quality Prediction Using interpretable ML.

The subsequent chapter, chapter five, offers a reflective interlude, delineating the limi-
tations of the study and charting the course for future directions in this scientific endeavor.
This contemplative pause sets the stage for the concluding chapter, wherein the culmination
of findings and insights converges into a cohesive narrative.





Chapter 2

Literature review

2.1 Introduction

The literature review in water resources serves as a crucial foundation, providing a nuanced
understanding of past and present research endeavors. This introduction emphasizes the
significance of comprehending prior scholarship, particularly in water quality assessment
for irrigation. Historical milestones, such as the establishment of water quality indices and
the integration of artificial intelligence (AI) and machine learning (ML), have shaped the
evolution of methodologies in environmental studies. ML’s application in groundwater quality
classification marks a significant departure from conventional approaches, highlighting its
potential for innovative predictive models. As we delve into the literature review, historical
developments serve as guiding beacons, illuminating the trajectory of scientific efforts in
water quality assessment.

2.2 Water quality indices for quality assessment

Landwehr and Deininger (1976) undertook a meticulous exploration, presenting five distinct
water quality indices with the objective of comparison. These indices, including the arith-
metic (WQIA), multiplicative (WQIM), unweighted arithmetic (WQIU), and unweighted
multiplicative (WQIMU) indices proposed by Brown et al. (1970,1973) and an index formu-
lated by Harkins (1974) based on Kendall’s nonparametric multivariate ranking procedure,
were subjected to scrutiny. The evaluation, involving the mean ratings (on a 0 to 100 scale)
provided by 100 water experts for 20 samples from diverse U.S. rivers, demonstrated com-
mendable performance by all five indices. Notably, the unweighted multiplicative index
(WQIMU) garnered favor among experts, underscoring its efficacy (Fig. 2.1).
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Fig. 2.1 WQI historical development (Uddin et al., 2021a)

In a divergent geographic context, Chandra et al. (2017) contributed to the discourse
by assessing the water quality of Vijayawada in the Krishna district of Andhra Pradesh,
India. Employing the weighted arithmetic water quality index method, their investigation
encompassed a substantial dataset comprising approximately 380 samples collected during
pre-monsoon and post-monsoon seasons in 2014. The discerning selection of nineteen data
points from each season revealed distinctive water quality dynamics, indicating suitability
for drinking purposes in pre-monsoon conditions and a notable increase in pollution post-
monsoon.

Further enriching the spectrum of water quality indices, Singh et al. (2018) introduced
the concept of the IWQI for the Indian context. This comprehensive index, based on 12
parameters aligned with local standards, including those set by the Central Pollution Control
Board (CPCB), the Central Ground Water Board (CGWB), and FAO guidelines, categorized
water quality into five classes. Employing Saaty’s Analytic Hierarchy Process (AHP), a
multiple criteria decision analysis (MCDA) tool, the authors sought to mitigate subjectivity
in parameter weight assignment, thereby enhancing the objectivity of the assessment process.

Turning attention to Egypt’s Kafr El-Sheikh Governorate, Jahin et al. (2020) engaged in an
in-depth examination of surface water quality for irrigation. Employing multivariate statistical
tools, principal component analysis (PCA), and factor analysis (FA), the authors developed
two indices (IWQI-1 and IWQI-2) with season-based weights. This approach, aligned with
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Food and Agriculture Organization (FAO) recommendations and the National Sanitation
Foundation Water Quality Index (NSFWQI) formula, streamlined the dimensionality of the
dataset. Seven key parameters, including pH, Na+, HCO−

3 , Zn, As, NO−
3 , and B, emerged as

robust indicators, exhibiting enhanced performance when weights were determined through
PCA.

In a parallel vein, Ewaid et al. (2019) contributed a guide for irrigation water quality
(IWQG) along with user-friendly software, fashioned using Visual Basic 6, to assess water
appropriateness in Al-Gharraf Canal, southern Iraq. Grounded in FAO recommendations and
Meireles’ irrigation water quality index Meireles et al. (2010), their evaluative framework,
appraised through a dataset of 612 samples, classified the water quality of the study area as
moderately restricted, emphasizing the pragmatic utility of their developed tools.

In the pursuit of comprehending water suitability, Tyagi et al. (2020) delved into an
exploration of widely employed water quality indices. Their study encapsulated indices
such as the National Sanitation Foundation Water Quality Index (NSFWQI), Oregon Water
Quality Index (OWQI), Canadian Council of Ministers of the Environment Water Quality
Index (CCMEWQI), and the weighted arithmetic Water Quality Index. This comprehensive
examination elucidated the mathematical structures of these indices, delineated the quality
parameters integral to the evaluation process, and presented a nuanced analysis of their
respective merits and demerits.

Shifting focus to the Netravati River basin in Karnataka state, India,Sudhakaran et al.
(2020) conducted a meticulous investigation into the appropriateness of river and well water
for both drinking and irrigation purposes. Their study, spanning pre-monsoon, monsoon,
and post-monsoon seasons in 2017 across sixteen monitoring stations, employed the water
quality index proposed by Brown et al. (1970) for evaluating water adequacy for drinking.
Notably, the study revealed discrepancies in the water quality for downstream drinking
water, surpassing permissible values set by the World Health Organization (WHO). The
application of the Water Quality Index (WQI) indicated variations across seasons, attributed
to diverse factors like salt deposits, sewage, industrial waste, anthropogenic activities, and
seasonal fluctuations. Additionally, the study extended its analysis to well water, showcasing
its resilience to seasonal fluctuations. Multivariate statistical analyses, including principal
components’ analysis (PCA) and Pearson correlation, were employed to identify key pollutant
sources. The findings underscored the influence of anthropogenic activities on water quality,
emphasizing the seasonal nuances in the study area.

In Egypt’s El-Sharkia Governorate, Abdel-Fattah et al. (2020) undertook a robust assess-
ment of the Bahr Mouise canal’s water quality. Leveraging the IWQI proposed by Meireles
Meireles et al. (2010) and employing multivariate analysis techniques, including principal
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components analysis (PCA) and agglomerative hierarchical clustering (AHC), the authors
evaluated six distinguished locations along the canal across four seasons in 2019. The IWQI
classification revealed low restrictions (class II) during summer and no restrictions (class I)
during other seasons. Concurrently, statistical-based classification demonstrated consistent
results across seasons, except for September, where IWQI and PCA methods yielded different
classifications. The study delved into the correlation between land use and land cover (LULC)
changes, normalized difference vegetation index (NDVI), and water quality. Agricultural
activities emerged as the dominant land use, with variations in NDVI attributed to changes
in crop types and growth stages. Chakravarty and Gupta (2021) conducted an exhaustive
assessment of the water quality status of the river Jatinga in south Assam, northeast India.
Employing the water quality index rating system alongside multivariate statistical analysis,
the study encompassed five sites along the river, collecting samples throughout all seasons of
2018-2019. Thirteen physiochemical parameters were scrutinized, most of which adhered to
permissible limits set by local Indian standards and World Health Organization recommenda-
tions. Utilizing the weighted arithmetic index method proposed by Brown et al. (1970), the
authors concluded that the average seasonal status of the river was excellent. Factor analysis,
facilitated by Kaiser-Meyer-Olkin (KMO) and Bartlett’s test of sphericity, unveiled three
significant pollution sources representing 91.13% of the total variance, namely anthropogenic
and organic sources (37.32%), natural sources (30.95%), and agricultural runoff (22.86%).

Rahman et al. (2021) delved into the water quality of Lake Gulshan in Bangladesh,
employing the water quality index (WQI) and multivariate statistical analysis to discern prime
pollution sources. Their study, spanning dry and wet seasons in 2018 and 2019, adhered to
the USEPA (2013) standard for surface water sampling. The National Sanitation Foundation
water quality index (NSF-WQI) and the index proposed by the Canadian Council of Ministers
of the Environment (CCME-WQI) were applied, revealing desirable water quality ratings
for both seasons. Multivariate statistical analyses, namely principal component analysis
(PCA) and positive matrix factorization (PMF), pinpointed four factors. PCA elucidated
point sources of pollution (42.32% and 38.49% in dry and wet seasons, respectively), while
PMF revealed nutrient-rich point sources and industrial waste as significant contributors. The
study emphasized water quality and diverse pollution sources, offering valuable insights for
regulatory measures.

In a broader perspective, Uddin et al. (2021b) provided a comprehensive review of
various water quality indices, offering a comparative analysis based on model structures,
components, and applications. Their work, grounded in a review of 110 studies, identified
21 commonly utilized WQI models, primarily derived from seven essential models. The
authors highlighted four fundamental processes intrinsic to WQI models: the selection of
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water quality parameters, determination of parameter sub-indices, attribution of parameter
weightings, and the aggregate function leading to the overall WQI. The conclusions drawn
emphasized the limited regional applicability, dependency on variable conditions, variability
in structural design, hindrances in result comparisons, and inherent challenges of accuracy
due to eclipsing and uncertainty. This comprehensive review provides valuable insights for
researchers and practitioners grappling with the intricacies of water quality assessment.

2.3 Machine learning elevating for water quality classifica-
tion and prediction

Dezfooli et al. (2018) addressed the challenges associated with the time and cost involved in
water sampling and laboratory analysis by proposing an innovative approach for water quality
classification in Iran’s Karoon River. Operating across eight stations and collecting 172
water samples, the study introduced machine learning models as a potential substitute for the
National Sanitation Foundation Water Quality Index (NSFWQI). Probabilistic neural network
(PNN), k-nearest neighbor (KNN), and support vector machine (SVM) were evaluated,
utilizing performance metrics such as error rate (ER), error value (EV), and accuracy (Acc).
The PNN model emerged as the most accurate, achieving 94.57% and 90.70% accuracy at the
training and testing stages, respectively. Notably, the study underscored the significant role
of fecal coliform in the water quality classification process, positioning PNN as an efficient
alternative to NSFWQI.

Ewaid et al. (2018) proposed a model leveraging multiple linear regression (MLR)
analysis to predict the water quality of the Tigris River within Baghdad. Using water quality
index values as dependent variables and twenty-three monitored water quality parameters
as independent variables, the model showcased a robust ability to forecast water quality
variations across seasons. Monthly data from ten monitoring stations were utilized, resulting
in a mean water quality index of 266 and a high model accuracy (r=0.987, r²=0.974, p<0.01).
The MLR model’s superior performance was particularly evident when incorporating water
quality index values as inputs, providing a more comprehensive understanding of water
quality dynamics.

Ahmed et al. (2019) explored the effectiveness of machine learning models for water
quality prediction in the Johor River Basin, Malaysia. Employing Adaptive Neuro-Fuzzy In-
ference System (ANFIS), Multi-Layer Perceptron Neural Networks (MLP-ANN), and Radial
Basis Function Neural Networks (RBF-ANN), the study recommended an enhanced ANFIS
model integrating a wavelet de-noising technique (WDT-ANFIS). This model surpassed oth-
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ers, exhibiting high prediction accuracy (R² values greater than or equal to 0.9) for all assessed
water quality parameters. The study employed various assessment approaches, including the
segmentation of neural network connection weights to investigate individual inputs’ prepon-
derance and scenarios considering spatial variations. The proposed model demonstrated its
applicability in predicting water quality parameters at each station and showed enhanced
performance when incorporating input values predicted at upstream stations, emphasizing
the importance of considering spatial dynamics in water quality modeling.

Bilali and Taleb (2020) conducted a comprehensive investigation into the efficiency of
eight Machine Learning (ML) models, namely Multiple Linear Regression (MLR), Artificial
Neural Network (ANN), Random Forest (RF), Decision Tree, Support Vector Regression
(SVR), Stochastic Gradient Descent (SGD), k-Nearest Neighbour (kNN), and Adaptive
Boosting (AdaBoost). Their study aimed to predict eight water quality parameters in the
Bouregreg watershed in Morocco, including Sodium Absorption Ratio and adjusted SAR
(SAR, SARa), Percentage of Exchangeable Sodium (ESP), Residual Sodium Carbonate
(RSC), percentage of Sodium (%Na), Kelly Ratio (KR), Chloride (Cl−), Magnesium Absorp-
tion Ratio (MAR), Permeability Index (PI), and total dissolved solid (TDS). To streamline
the water quality assessment process, the authors utilized only two physical parameters, EC
and pH, as inputs. The models exhibited high accuracy in predicting most parameters, with
correlation coefficients ranging from 0.56 to 0.99 during the training and validation phases.
Notably, some models faced challenges in predicting MAR and PI parameters. Generalization
attempts to Cherrate and Nfifikh watersheds highlighted the models’ effectiveness for specific
parameters in different geographical contexts.

In the work titled "A Machine Learning Approach towards Automatic Water Quality
Monitoring" by Bansal and Geetha (2020), the authors explored the effectiveness of machine
learning algorithms for water quality assessment and classification. Adopting the decision
tree algorithm and following the guidelines of the World Health Organization (WHO) as the
standard for water quality parameters, the study demonstrated the superiority of decision trees
over traditional assessment methods. With an accuracy of 98.3%, decision trees outperformed
standard water quality index formulae, which achieved an accuracy of 80.02

Bedi et al. (2020) delved into the use of three machine learning models—Artificial
Neural Network (ANN), Support Vector Machine (SVM), and XGBoost (XGB)—to predict
groundwater contamination levels from pesticides and nitrate, considering sparse data and
non-linear relationships. The dataset comprised 303 wells across 12 Midwestern states
in the USA, incorporating multiple hydrogeologic, water quality, and land use features
as independent variables. The study assessed classification performance under various
scenarios, comparing these machine learning models with regression models. Additionally,
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class imbalance mitigation techniques were tested, and game-theoretic Shapley values were
employed for model interpretability through feature importance analysis.

Lu and Ma (2020) conducted a study focusing on Gales Creek water quality, employing
hybrid decision tree-based machine learning models and establishing their efficacy in water
quality assessment. The hybrid models showcased notable effectiveness, contributing to the
broader understanding of water quality dynamics.

Singha et al. (2021) employed a deep learning (DL) model to predict groundwater quality
and conducted a comparative analysis with three additional machine learning (ML) models:
Random Forest (RF), eXtreme Gradient Boosting (XGBoost), and Artificial Neural Network
(ANN). The study involved the collection of 226 groundwater samples from an agriculturally
dense region in Chhattisgarh, India. Various physicochemical parameters were utilized
to compute the entropy weight-based groundwater quality index (EWQI). The DL model
exhibited superior performance compared to the other ML models, establishing itself as the
most realistic and accurate method for predicting groundwater quality in the examined area.

Agrawal et al. (2021) conducted a study assessing the performance of artificial intelligence
techniques, including Particle Swarm Optimization (PSO), Naive Bayes Classifier (NBC),
and Support Vector Machine (SVM), in predicting the Water Quality Index (WQI). The
authors applied PSO for optimization and utilized SVM and NBC for prediction, utilizing
groundwater quality data from Chhattisgarh, India. Among the ensemble machine learning
algorithms, PSO-NBC outperformed PSO-SVM, demonstrating high prediction accuracies
in the evaluation of water quality.

Bilali et al. (2021) explored the application of artificial intelligence models for predicting
irrigation water quality indexes in aquifer systems, utilizing physical parameters as features.
The study evaluated four models—Adaptive Boosting (AdaBoost), Random Forest (RF),
Artificial Neural Network (ANN), and Support Vector Regression (SVR)—using data from
the Berrechid aquifer in Morocco. Adaboost and RF models exhibited superior prediction
performances, while ANN and SVR models demonstrated enhanced generalization ability
and sensitivity to inputs.

Ravindran et al. (2021) delved into the utilization of deep neural networks (DNN) for
forecasting daily reference evapotranspiration (ETo) with a single input parameter. The
study emphasized the significance of feature relevance scores derived from machine learning
techniques such as random forest (RF) and extreme gradient boosting (XGBoost). The
investigation explored the feasibility of utilizing SHapley Additive exPlanations (SHAP) to
elucidate and validate feature selection approaches. Solar radiation emerged as a prominent
feature in three California Irrigation Management System (CIMIS) weather station datasets,
leading to the construction of three ETo models (DNN-Ret, XGB-Ret, and RF-Ret) with solar
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radiation as the primary input. DNN-Ret demonstrated superior performance, establishing its
efficacy in single input parameter-based ETo modeling across diverse climatic zones.

Raheja et al. (2022) conducted an investigation into the performance of three machine
learning algorithms—Deep Neural Network (DNN), Gradient Boosting Machine (GBM),
and Extreme Gradient Boosting (XGBoost)—for evaluating groundwater indices in Haryana
state, India. The study focused on two water quality indices, namely Entropy Water Quality
Index (EWQI) and Water Quality Index (WQI). Results indicated that DNN outperformed
the other models, exhibiting lower error values and better predictive capabilities for both
EWQI and WQI. The analysis identified Electrical Conductivity (EC) as the most significant
input parameter for predictions, with ’pH’ holding the least significance.

Shrivastava et al. (2022) conducted a comparative assessment of Extra Trees and Random
Forest ensemble learning techniques for groundwater quality assessment in Chhattisgarh. The
study revealed the effectiveness of both techniques in groundwater classification, emphasizing
their utility in evaluating and categorizing groundwater quality.

Nasir et al. (2022) developed seven individual classifiers to predict the Water Quality
Index (WQI), with the CATBOOST approach yielding the most favorable predictive re-
sults. This highlights the efficacy of CATBOOST in achieving comprehensive water quality
assessment.

Abuzir and Abuzir (2022) employed J48, Naïve Bayes, and Multi-Layer Perceptron
(MLP) algorithms for predicting Water Quality Classes. Despite working with a 10-feature
dataset, MLP demonstrated the highest accuracy among the algorithms, showcasing its
effectiveness in water quality class prediction. Xia et al. (2022) scrutinized the application
of Long Short-Term Memory (LSTM) and XGBoost for predicting dichloroethene (DCE)
concentrations in a pesticide-contaminated groundwater site undergoing natural attenuation.
XGBoost exhibited greater effectiveness in capturing DCE variations and performed well,
particularly with high concentration values, while LSTM demonstrated superior overall
accuracy. SHAP values provided explanations consistent with biodegradation rules in real
environmental conditions. Both LSTM and XGBoost successfully predicted DCE concen-
trations using water quality variables, with LSTM displaying better overall performance
compared to XGBoost.

Gupta and Mishra (2023) introduced an entropy-based river water quality index using
machine learning models, with logistic regression identified as the top-performing model in
their study.
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2.4 Conclusion

In conclusion, the comprehensive exploration of existing literature has illuminated key
aspects of water quality assessment and the integration of machine learning methodologies.
The synthesis of knowledge from various studies has provided valuable insights into the
complexities and challenges associated with groundwater quality evaluation for irrigation
purposes. The literature has underscored the significance of considering multiple parameters,
including conductivity, chloride (Cl– ), bicarbonate (HCO3

– ), sodium (Na+), calcium (Ca2+),
and magnesium (Mg2+), in the context of IWQI calculations. Moreover, it has revealed the
diverse array of machine learning algorithms such as LGBM, CatBoost, Extra Trees, Random
Forest, Gradient Boosting classifiers, Support Vector Machines, Multi-Layer Perceptrons, and
the K-Nearest Neighbors Algorithm that have been employed for water quality classification
in various studies. As we transition into the methods chapter, this literature review sets the
stage for the application of machine learning techniques in the assessment of groundwater
quality for irrigation. The insights gained from existing research will inform our approach
in developing a streamlined and economically viable model. The next chapter will delve
into the details of the methodology, encompassing data preparation, data preprocessing,
feature selection, model development, and evaluation. It is within this framework that we
aim to contribute to the evolving landscape of efficient and effective water quality assessment
methodologies, driven by advancements in machine learning techniques.





Chapter 3

Methodology

3.1 Introduction

The methodology chapter begins with a firm recognition of the critical research gaps identified
in existing literature, notably the absence of economic considerations and the pausity of
leveraging artificial intelligence (AI) techniques in water quality studies. Our research aims
to develop a methodological paradigm that combines accuracy, cost-effectiveness, and a
thorough analytical framework. The quantitative approach is chosen for its empirical nature,
allowing for objective measurement and analysis of numerical data to explore complex water
quality dynamics and economic factors. The research design follows a sequential framework,
beginning with theoretical underpinnings and progressing to variable identification, data
analysis, statistical methods, machine learning, and result interpretation. This deliberate
alignment with study objectives ensures the methodology’s capability to extract knowledge
and address identified research gaps effectively.

3.2 Study area and Data description

The research unfolds in the M’sila region of north-central Algeria, extending across 17,927
km², delineated spatially between longitudes 3° 22’ 13" E and 5° 9’ 9" E, and latitudes 34° 12’
58" N and 36° 2’ 9" N, as illustrated in Figure 3.1. The region exhibits a semi-arid climate,
characterized by scorching, arid summers and frigid winters, with an annual precipitation
ranging from 200 mm to 480 mm, demonstrating a partial desert influence. Land cover
distribution, depicted in Figure 6.1, delineates 70,012% as rangelands, 23.83% as bare
ground, 4.71% as crop areas, and 1.291% as construction, with the remainder comprising
trees and various water bodies.
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Fig. 3.1 The geographical location of the study area

In pursuit of a holistic understanding of groundwater quality, the Algerian Water Com-
pany’s water analysis laboratory meticulously monitored water quality over four years, from
2018 to 2022. This extensive evaluation encompassed 210 wells strategically positioned
across the study area, with a comprehensive analysis of 19 physicochemical parameters
conducted in adherence to ISO 5663 standards. Rigorous quality control standards, following
ISO 5663 guidelines for groundwater sampling and transportation, were applied during data
collection to ensure the precision and accuracy of results.

The laboratory employed cutting-edge equipment and methodologies for analysis. Spec-
trophotometry determined elemental composition, while instruments such as ADWA AD1020
pH meter, Hach HQ14D EC meter, and HACH-TL2300 turbidity meter gauged physico-
chemical properties. Further, titration methods were used for Total Hardness (TH) and
chloride, bicarbonate, magnesium, and calcium ion concentrations. Sodium and potassium
measurements utilized a flame photometer (Jenway PFP7), and sulfate ions were quantified
using a spectrophotometer (HASH/Dr/4000). Adhering to strict quality assurance and control
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Fig. 3.2 Land cover distribution of the study area

protocols, procedural blank measurements, sample spiking, and duplicate observations were
employed to detect and rectify potential errors.

Table 3.1 provides a statistical overview of the integrated water quality parameters. The
assessment employed various indices, including the Irrigation Water Quality Index Meireles
et al. (2010), Sodium Adsorption Ratio (SAR), Magnesium Adsorption Ratio (MAR), Soluble
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Sodium Percent (SSP), Permeability Index (PI), and Kelly’s Ratio (KR), to comprehensively
evaluate water quality for irrigation purposes.

This rich dataset, derived from meticulous monitoring and analysis, serves as a linchpin
for unraveling the intricacies of groundwater conditions in the M’sila region. It assumes
pivotal importance for future land-use planning and effective resource management strategies.

Table 3.1 Descriptive Statistics of Water Quality Parameters

mean std min max

pH 7.36 0.37 6.08 9.30
Na+ (mg/l) 116.74 72.51 3 450
K+ (mg/l) 5.24 2.73 0.80 18
Ca2+ (mg/l) 177.32 86.09 0 544
Mg2+ (mg/l) 90.52 44.82 0 238.14
Turbidity (NTU) 6.19 15.54 0.01 147
TDS (mg/l) 829.77 344.72 193 1895
T (°C) 21.14 4.97 8.30 34.40
TAC (°F) 107.14 98.80 3.20 400
Conductivity (µs/cm) 1979.97 989.72 426 8970
Total Hardness (°F) 349.87 376.83 0 1800
Cl¯ (mg/l) 186.50 148.20 0 942.88
HCO3

– (mg/l) 337.78 109.85 0 976
NH4

+ (mg/l) 0.06 0.33 0 5
SO4

– 2 (mg/l) 629.90 255.71 100 1600
NO3

– (mg/l) 33.32 111.50 0 2379
NO2

– (mg/l) 0.04 0.23 0 5
Fe+2 (mg/l) 0.03 0.09 0 0.72
PO4

– 3 (mg/l) 0.03 0.05 0 0.10

3.3 Water quality parameters

Groundwater pH

pH is a crucial parameter indicating the acidity or alkalinity of water, ranging from 0 to 14,
with 7 as neutral. Groundwater pH influences the solubility and mobility of nutrients and
metals, affecting both water quality and its suitability for irrigation and consumption. Low
pH can increase the dissolution of metals such as aluminum, iron, and manganese, potentially
leading to toxicity and contamination. Conversely, high pH can cause the precipitation of
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essential nutrients like phosphorus, iron, and zinc, reducing their availability and leading
to deficiencies. Additionally, groundwater pH affects microbial activity and geochemical
processes, influencing carbonate equilibria, mineral dissolution, and overall water chemistry.

Conductivity (EC)

Conductivity in groundwater refers to its ability to conduct electric current, influenced by
dissolved solids like salts, minerals, and metals. It is measured in microsiemens per centimeter
(µS/cm) or millisiemens per centimeter (mS/cm). Conductivity indicates water salinity and
dissolved solids content, with high conductivity suggesting high salinity or dissolved solids,
potentially impacting water taste and quality. Conversely, low conductivity may signify
purity and freshness. Soil conductivity mirrors salt accumulation and leaching, affecting
fertility and structure. High soil conductivity can reduce fertility, while low conductivity may
impact moisture and nutrient retention. It also affects osmotic pressure and water balance in
plants, with high conductivity reducing water availability and low conductivity increasing it.

Phosphate (PO4
3 – )

Phosphate is a vital nutrient present in groundwater that can lead to eutrophication, charac-
terized by excessive algal growth. This phenomenon diminishes dissolved oxygen levels,
reduces light penetration, and decreases biodiversity in water bodies. Moreover, it heightens
the risk of harmful algal blooms (HABs) and cyanotoxins. Phosphorus also influences
the soil phosphorus cycle, impacting its adsorption, desorption, and availability for plants.
Essential for plant energy metabolism and nucleic acid synthesis, phosphorus deficiency can
significantly impact plant growth, yield, and quality.

Hardness (TH)

Hardness in groundwater refers to the concentration of calcium and magnesium ions, im-
pacting its suitability for irrigation. High levels of hardness can lead to scaling, corrosion,
and reduced efficiency of irrigation systems. It also affects soil texture, aggregation, and
cation exchange capacity, influencing soil structure, fertility, and water retention crucial for
irrigation. Furthermore, hardness influences plant cell wall stability, enzyme activity, and
nutrient availability, essential for plant growth, photosynthesis, and stress response.
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Alkalinity (TAC)

Alkalinity in groundwater refers to its ability to neutralize acids. It impacts the pH, buffering
capacity, and stability of water, as well as the solubility and toxicity of metals and nutrients.
High alkalinity can elevate the pH and decrease the solubility of metals and phosphorus,
affecting aquatic life and plant growth. Moreover, it influences soil pH, buffering capacity,
and nutrient availability, impacting soil microbial activity, nutrient cycling, and plant uptake.
Elevated alkalinity may raise soil pH and decrease the availability of essential nutrients like
iron, zinc, and manganese, leading to plant deficiency and chlorosis.

Sodium (Na+)

Sodium, a prevalent cation in groundwater, can impact its taste and salinity, influencing
its suitability for irrigation purposes. Elevated sodium levels can increase water salinity
and osmotic pressure, affecting water balance and potentially causing toxicity in plants and
animals. Moreover, sodium can alter soil dispersion, permeability, and sodicity, thereby
impacting soil physical, chemical, and biological characteristics. High sodium content may
lead to soil particle dispersion, reducing soil porosity, infiltration, and aeration. Additionally,
sodium affects osmotic potential, water uptake, and sodium toxicity in plants, potentially
reducing water availability and causing sodium accumulation and tissue injury in plants.

Nitrate (NO3
– ) and Nitrite (NO2

– )

Nitrate and nitrite, forms of nitrogen, are indicators of pollution from fertilizers, sewage, or
animal waste in groundwater used for irrigation. Their presence can impact water quality
and safety for both drinking and agricultural purposes. Elevated levels of nitrate and nitrite
pose health risks such as methemoglobinemia in infants and cancer risk in adults. Moreover,
they contribute to eutrophication, hypoxia, and harmful algal blooms in water bodies. In
agricultural contexts, they affect the soil nitrogen cycle, leading to increased nitrification
and leaching, which in turn reduces soil nitrogen retention and enhances groundwater
contamination. Furthermore, they influence plant nitrogen metabolism and protein synthesis,
potentially causing nitrate accumulation and toxicity in plant tissues.

Potassium (K+)

Potassium is a vital nutrient for plant growth but can contribute to salinity issues in ground-
water used for irrigation. It may come from rock weathering, fertilizer leaching, organic
matter, or seawater intrusion. Elevated potassium levels can raise groundwater salinity and
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osmotic pressure, impacting plant and animal water balance and toxicity. Additionally, it
affects soil cation balance, fertility, and structure. Removal methods include reverse osmosis,
ion exchange, or dilution techniques.

Magnesium (Mg2+)

Magnesium is a vital mineral for human and animal health, yet it can lead to hardness and
scaling issues in groundwater used for irrigation. It occurs naturally through the dissolution
of minerals like dolomite and magnesite or can be introduced by human activities such
as mining and industrial processes. Elevated levels of magnesium contribute to increased
hardness and scaling in groundwater, impacting the corrosion, clogging, and efficiency of
pipes and appliances. Moreover, it influences the soil magnesium cycle, affecting plant
growth, yield, and quality. Techniques like softening, ion exchange, or chemical precipitation
can be employed to mitigate magnesium levels in groundwater.

Calcium (Ca2+)

Calcium, a vital mineral for human and animal health, can pose challenges in groundwater
used for irrigation due to its potential to cause hardness and scaling. It naturally occurs
in groundwater through the dissolution of minerals like calcite and gypsum, or it can be
introduced by human activities such as mining and industrial processes. Elevated calcium
levels can exacerbate groundwater hardness and scaling issues, impacting the efficiency and
durability of pipes, boilers, and appliances. Additionally, calcium influences the soil calcium
cycle and availability, affecting plant growth, yield, and quality. Methods like softening, ion
exchange, or chemical precipitation can be employed to mitigate calcium-related issues in
groundwater used for irrigation.

Bicarbonates (HCO3
– )

These anions play a crucial role in groundwater equilibrium and buffering. They stem from
various sources including the dissolution of carbon dioxide, carbonates, and bicarbonates, as
well as biological processes like photosynthesis and decomposition. Bicarbonates impact
groundwater pH, alkalinity, and salinity, along with the solubility and availability of certain
metals and nutrients. Moreover, they affect soil carbonate equilibrium, pH, and salinity,
influencing soil microbial activity, nutrient cycling, and plant uptake. Bicarbonates can be
mitigated through acidification, aeration, or reverse osmosis techniques.
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Sulfate (SO4
2 – )

Sulfate, an anion involved in groundwater oxidation processes, can originate from vari-
ous sources such as sulfates, sulfides, and biological processes like sulfate reduction and
denitrification. Its presence affects groundwater quality for drinking, irrigation, and indus-
trial uses, causing a bitter taste, pipe corrosion, and impacting soil sulfur availability and
plant metabolism. Sulfate removal methods include biological denitrification, ion exchange,
reverse osmosis, or dilution.

Chloride (Cl– )

Chloride, an anion found in groundwater, impacts its salinity, conductivity, and taste. It
originates from salt dissolution, including sodium chloride or calcium chloride, and human
activities like road salt application, industrial processes, and wastewater discharge. Elevated
chloride levels increase groundwater salinity and osmotic pressure, affecting water balance
and toxicity in plants and animals. It also influences soil chloride cycle, leaching, and
accumulation, impacting soil fertility and structure. Chloride removal methods include
reverse osmosis, ion exchange, or distillation.

3.4 Water quality indices

3.4.1 The irrigation water quality index (IWQI)

The evaluation of water quality suitability for irrigation purposes in this study hinges on the
adoption of the Irrigation Water Quality Index (IWQI). This index, as per Meireles et al.
(2010), is a mathematical representation that consolidates multiple water quality parameters
into a singular value, providing a comprehensive assessment. Key parameters influencing
water quality, identified through factorial analysis and principal component analysis (PCA),
include SAR, Electrical Conductivity (EC), Bicarbonates (HCO−

3 ), Chloride (Cl−), and
Sodium (Na+).

The IWQI calculation involves multiplying the quality measure parameter, qi, by the
corresponding assigned weights, Wi, for each parameter. The determination of qi values
adheres to Equation (3.1), incorporating limit values proposed by Ayers and Westcot (1985):

qi = qi.max −
(
(xi j − xin f )×qi.amp

xamp

)
(3.1)
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Here, qi.max signifies the upper value for the relevant qi class, xi j denotes the measured
value of the corresponding parameter, xin f represents the lower limit of the parameter’s class,
qi.amp is the amplitude of the class, and xamp signifies the amplitude of the parameter’s class.
To derive the overall IWQI, Equation (3.2) is applied:

IWQI =
5

∑
1
(qi ×Wi) (3.2)

The assigned weights, Wi, are outlined in Table 4.1.

Table 3.2 Weights (Wi) of IWQI parameters

Parameters Wi

EC 0.211
Na+ 0.204

HCO−
3 0.202

Cl− 0.194
SAR 0.189

These weights (Wi) play a crucial role in the summation process, providing a nuanced
and weighted evaluation of the water quality parameters to ascertain the overall IWQI.

3.4.2 Sodium Adsorption Ratio (SAR)

The Sodium Adsorption Ratio (SAR) serves as a pivotal index in delineating the impact of
sodium ions on the soil, providing insights into potential sodium hazards Wilcox (1955).
SAR, as computed through Equation (3.3), encapsulates the ratio of sodium ions (Na+) to
the square root of the average of calcium (Ca2+) and magnesium (Mg2+) concentrations,
where concentration values are expressed in meq/l.

SAR =
Na+√

Ca2++Mg2+

2

(3.3)

3.4.3 Soluble Sodium Percent (Na%)

The quantification of Soluble Sodium Percent (Na%) plays a pivotal role in the assessment
of irrigation water quality, providing insights into soil permeability. Na%, computed through
Equation (3.4), represents the percentage of sodium (Na+) and potassium (K+) relative to
the total cation concentrations, including calcium (Ca2+) and magnesium (Mg2+), with
concentrations expressed in meq/l.
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Na% =
(Na++K+)×100

Ca2++Mg2++Na++K+
(3.4)

3.4.4 Potential Salinity (PS)

Potential Salinity (PS) provides a valuable metric in water quality assessment, calculated
through Equation (3.5). This equation involves the summation of chloride (Cl−) concentra-
tions with half of sulfate (SO2−

4 ) concentrations, with concentrations expressed in meq/l.

PS =Cl−+
SO2−

4
2

(3.5)

3.4.5 Permeability Index (PI)

The Permeability Index (PI), pioneered by Doneen (1964), stands as a crucial metric in
determining the suitability of irrigation water by assessing its impact on soil permeability.
Computed through Equation (3.6), the PI involves the multiplication of the sum of sodium
(Na+) and the square root of bicarbonate (HCO−

3 ) by 100, divided by the total cation
concentrations, including calcium (Ca2+), magnesium (Mg2+), and sodium (Na+), with
concentrations expressed in meq/l.

PI =
(Na++

√
HCO−

3 )×100

Ca2++Mg2++Na+
(3.6)

3.4.6 Magnesium Adsorption Ratio (MAR)

The Magnesium Adsorption Ratio (MAR), an influential indicator, is calculated considering
the concentrations of magnesium (Mg2+) and calcium (Ca2+), as depicted in Equation (3.7).
The MAR signifies the percentage of magnesium relative to the total of magnesium and
calcium concentrations, with concentrations expressed in meq/l.

MAR =

(
Mg2+

Mg2++Ca2+

)
×100 (3.7)

3.4.7 Kelly’s Ratio (KR)

Kelly’s Ratio (KR), a fundamental parameter in water quality assessment, is computed using
Equation (3.8). The ratio involves dividing sodium (Na+) concentrations by the sum of
calcium (Ca2+) and magnesium (Mg2+) concentrations, with concentrations expressed in
meq/l.
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KR =
Na+

Ca2++Mg2+ (3.8)

These indices collectively offer nuanced insights into diverse aspects of water quality,
facilitating a comprehensive evaluation tailored for irrigation purposes.

3.5 Hydrochemical Facies Characterization using Piper
Diagram

In the pursuit of comprehensively characterizing the hydrochemical facies of groundwater,
this study employs the Piper diagram as a powerful tool. Originating from the seminal
work of Piper (1944), the Piper diagram serves as a graphical representation facilitating the
identification of hydrochemical facies and the elucidation of the predominant cations and
ions within water samples.

The hydrochemical facies are discerned based on the abundance of key constituents,
specifically calcium (Ca2+), magnesium (Mg2+), sodium (Na+), bicarbonates (HCO−

3 ),
carbonates (Cl−), and sulfate (SO2−

4 ) within the water samples Piper (1944). The conceptual
framework involves plotting two triangles: one delineates calcium (Ca) and magnesium (Mg)
as "alkaline earths," with sodium (Na) represented as "alkali"; the second triangle represents
sulfate (SO2−

4 ) and chloride (Cl−) as "strong acids," and bicarbonates (HCO3−) as "weak
acid." Additionally, a diamond consolidates the outcomes from both triangles.

To ascertain the hydrochemical facies, a systematic approach is applied. For each sample,
a perpendicular line is drawn from its point in each triangle towards the diamond. The
intersection of these lines determines the position of ions in the diamond, unveiling the
hydrochemical facies in alignment with the spatial distribution of the samples on the diagram.
This method provides a nuanced understanding of the hydrochemical composition, offering
valuable insights into the origins and characteristics of the groundwater under investigation.

3.6 Data Preprocessing

Data preparation is a critical step in our study that is intended to improve the caliber and
performance of our machine learning models. This complex procedure begins with thor-
ough data cleaning, which includes finding and fixing any anomalies or mistakes that could
jeopardize the dataset’s integrity. The numerical features are then standardized using normal-
ization procedures, which guarantee consistent scales and lessen the impact of magnitude
differences between variables. A careful imputation method is used to deal with missing
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values, completing any gaps in the dataset while maintaining the statistical characteristics
of the original distribution. Simultaneously, feature selection techniques are used to find
and keep the most useful variables, eliminating unnecessary or redundant characteristics
that could cause noise in the models. The main aim of our classification challenge is to
classify each water sample according to the intervals that Meireles et al. (2010) recommends.
The process involves calculating the IWQI values for every sample and then classifying
them into five groups ranging from 0 to 5. The IWQI intervals of 0–40, 40–55, 55–70,
70–85, and 85–100 are defined by these classes, which enable a more detailed depiction
of the water quality levels. Recognizing the potential ramifications of imbalanced data on
the efficacy of machine learning algorithms, we strategically employ the Synthetic Minority
Over-sampling Method (SMOTE). This technique addresses the disproportionality in class
distribution by oversampling minor classes, thereby fostering a more equitable representation
in the dataset. Such preprocessing endeavors collectively fortify the robustness and reliability
of our subsequent machine learning models, laying a solid foundation for the forthcoming
analytical phases (García et al., 2014).

The dataset collected for our study underwent a comprehensive array of preprocessing
steps, meticulously orchestrated to ensure the requisite quality and appropriateness for subse-
quent modeling and analysis endeavors. The following methodologies were systematically
applied:

3.6.1 Feature Relabeling

Erroneously written or mislabeled features were systematically identified and rectified to
uphold consistency and precision in the dataset. This procedure involved a meticulous
verification of feature names, with necessary relabeling implemented to guarantee accurate
representation.

3.6.2 Missing Value Imputation

Addressing the issue of missing data in our dataset necessitated the application of sophis-
ticated imputation methodologies. To this end, the K-nearest neighbors (KNN) imputer,
tailored with a designated k value of 5, emerged as the method of choice. This advanced
imputation technique draws upon the collective knowledge embedded in the five closest
neighbors of each missing data point. By calculating the average based on the available local
data patterns, the KNN imputer effectively imputes missing values, ensuring a data-driven
and contextually sensitive approach to rectifying gaps in our dataset.
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3.6.3 Outliers Detection and Handling

Outliers within the dataset were discerned by establishing lower and upper bounds using
statistical quantiles, specifically the first quartile (Q1) and third quartile (Q3). Data points
falling below (Q1 - 1.5 * Interquartile Range (IQR)) or above (Q3 + 1.5 * IQR) were
classified as outliers. Addressing these outliers involved their removal from the dataset or the
application of pertinent data transformation techniques to mitigate their potential influence
on subsequent analyses.

3.6.4 Data Partitioning

A pivotal phase in our methodology involved the judicious splitting of the dataset into two
fundamental components, denoted as X and y. This segregation was predicated on the inherent
demarcation between independent variables, constituting the water quality parameters and
designated as model inputs (X), and the dependent variable, epitomizing the IWQI and
assuming the role of the model’s output (y). Such a meticulous separation was instrumental
in facilitating a clear distinction between the input features and the target variable throughout
the ensuing modeling phase.

To execute this partitioning strategy, we employed the train_test_split functionality from
the scikit-learn library. This methodological choice ensured a seamless and randomized
allocation of data, attributing 80% for training purposes and reserving the remaining 20%
for subsequent testing (Fig. 3.3). Such a division into training and testing subsets served as
a robust foundation for training our machine learning models and subsequently evaluating
their performance on unseen data.

Cross validation subsequently is a robust resampling technique used in machine learning
to assess the predictive performance and generalizability of a model. By partitioning the
available dataset into complementary subsets, the method systematically trains the model
on one subset while validating it on another. This process, repeated across multiple folds,
ensures that each data point is used for both training and evaluation. Consequently, cross
validation provides a comprehensive estimate of model performance, mitigating issues related
to overfitting and variance. Common implementations include K-fold cross validation, where
the data is divided into K equally sized folds, and repeated K-fold cross validation.

This standardized practice aligns with established conventions in the field, ensuring the
reliability and generalizability of our model outcomes.
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Fig. 3.3 Train test split and Cross validation

3.6.5 Data Standardization

To ensure uniformity and avert potential biases stemming from disparate scales, feature
values in X underwent standardization using the StandardScaler from the sklearn library.
This standardization process transformed the data to possess a mean of 0 and a standard
deviation of 1, preserving the relative relationships between features while enhancing the
comparability of their magnitudes.

Through these meticulously executed data pretreatment processes, the dataset was
cleansed, missing values were imputed, outliers were addressed, and the data was primed for
subsequent modeling and analysis. These preprocessing steps were integral to enhancing the
reliability and accuracy of the results derived from our machine learning models.

3.7 Correlation analysis

Within the framework of this study, a thorough correlation analysis was conducted to examine
the complex interactions between various water quality measures and the IWQI. Finding
which water quality metrics showed strong correlations with the IWQI was the main goal,
along with determining the direction and intensity of linear connections between variables.
Pearson Correlation Coefficient: The Pearson correlation coefficient made it easier to assess
linear correlations between continuous variable pairs. This statistical metric, which produces
values between -1 and +1, is used to quantify the degree of linear correlation between two
variables. A positive correlation is indicated by a positive coefficient, which also suggests
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that both variables are increasing at the same time. A negative correlation, on the other hand,
indicates a negative coefficient and implies an inverse relationship in which one variable
tends to drop as the other rises. A coefficient of 0 signifies the absence of linear correlation.To
ascertain the statistical significance of correlations, established standards articulated by Chan
(2003) and Dancey and Reidy (2007) were rigorously applied. This analytical approach
aligns with best practices in correlation analysis, ensuring the robustness and reliability of
our findings.

Heatmap Visualization:In enhancing the interpretability of the correlation matrix and
delineating the vigor of associations between water quality parameters and the IWQI, a
heatmap emerged as a pivotal visualization tool. The heatmap, characterized by a color-
coded matrix, imparted a visual representation where deeper hues denoted more robust
positive correlations, while lighter tones signified either weaker or negative correlations.
This graphical representation facilitated an expeditious and intuitive appraisal of the intricate
relationships existing among various variables. The incorporation of a heatmap aligns with
established practices in exploratory data analysis, contributing to the clarity and accessibility
of our correlation findings.

3.8 Feature Engineering

3.8.1 Feature Generation

In the field of data engineering, one important aspect was creating additional features
to strengthen the analytical base. Important water quality indicators were methodically
calculated, including the SAR, KR, MAR, and PI. These indices were created by combining
current water quality indices, which resulted in the creation of new characteristics. The
purpose of this enhancement was to capture more complex relationships between the IWQI
and the water quality parameters. It was intended for the inclusion of these derived indices to
improve the dataset’s level of detail, which in turn would improve the accuracy and predictive
power of the machine learning models we used in our research (Duboue, 2020).

3.8.2 Recursive Feature Elimination with Cross-Validation (RFECV)

We implemented Recursive Feature Elimination with Cross-Validation (RFECV) in order
to find the best possible feature set for our predictive models. This method creates a
dynamic feature selection mechanism by combining cross-validation with Recursive Feature
Elimination (RFE). Iteratively removing features from the dataset, utilizing the features
that are kept, iteratively refines the model, and uses cross-validation to evaluate prediction
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performance. What makes RFECV unique is its inherent ability to choose the ideal feature
count that both maximizes prediction accuracy and preserves model parsimony. This method
recognizes the fine balance between model complexity and performance and is in line with
current feature optimization approaches.

3.8.3 Permutation Importance (PI)

To determine each feature’s relative importance in our prediction models, we used Permu-
tation Importance (PI). This approach, which was proposed by Breiman (2001), provides
a quantitative assessment of the impact of shuffling a particular feature’s values on the
overall performance of the model. The relative importance of each feature is revealed by
systematically permuting the feature values and evaluating the resulting drop in model accu-
racy or other specified assessment criteria. Features that exhibit a stronger influence on the
model’s performance under shuffling are given greater weight. By outlining the significance
of features in predicting the irrigation water quality index and assisting in the thoughtful
selection and interpretation of features, the use of PI fulfills its purposes.

3.8.4 Mutual Information (MI)

In our study, we employed Mutual Information (MI), a statistical method designed to quantify
the extent of information shared between two variables. MI serves as a robust metric to
ascertain the degree of interdependence and information exchange between distinct variables
in our analytical framework.

3.9 ML models

The present study integrates various machine learning models, each tailored to fulfill distinct
tasks encompassing prediction and classification. Both regression and classification aspects
of these models are judiciously employed to address the overarching objectives of our
investigation. The utilization of both classifier and regressor components within each model
is a deliberate choice, strategically aligned with the multifaceted nature of our research
inquiry.

3.9.1 Random forest

Introduced by Breiman (2001), Random Forest is a well-known ensemble learning technique
that is regarded as a versatile and powerful algorithm that performs well in both classification
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Fig. 3.4 The architecture of the random forest model

and prediction tasks. Random Forest is stands out in improving prediction accuracy and
reduce overfitting in decision tree algorithms.

In the context of classification, Random Forest demonstrates its superiority, by building
an ensemble of decision trees, each trained on a random selection of features and data
instances (Fig. 6.2). Intentionally introducing diversity during training results in a diverse
group of trees that together generate a strong classifier. The results from each decision tree
are combined during prediction to get a final classification. Combining different decision
trees allows Random Forest to manage intricate relationships in the data and be resilient to
overfitting, which is a typical problem in machine learning. For regression tasks, the Random
Forest regressor employs a similar ensemble approach. Every decision tree is trained on
bootstrap samples, which are obtained from the original dataset. The various projections of
these trees are combined by the regressor, usually by average, to forecast the target variable.
This methodology works very well with non-linear correlations, therefore it can be applied to
situations where there are complex interactions between the target variable and the input data.
The capacity of the Random Forest regressor to offer a feature importance measure is one of
its distinguishing characteristics (Amit and Geman, 1997). This characteristic makes feature
selection easier and provides information about the relative impact of various input elements
on the predictions made by the model. The technique is suitable for scalability and efficiency
in real-world applications due to its parallelizability and robustness in handling huge and
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complicated datasets. Hyperparameters like the number of trees in the forest, maximum tree
depth, and features taken into account for splitting at each node must be carefully evaluated
in order to maximize speed. Through this fine-tuning, the Random Forest model is able
to function at its best, producing results that are dependable and precise in a variety of
applications.

3.9.2 Extra Trees

Extra Trees is a machine learning ensemble learning method that is an enhanced form of
the Random Forest paradigm. With unique feature selection and separation processes, the
Extra Trees methodology differs from its predecessor, the Random Forest, and is specifically
tailored for classification and prediction problems. In the context of classification, the
Extra Trees Classifier distinguishes itself by using an original feature selection method.
The Extra Trees Classifier goes one step farther than the Random Forest method, which
chooses a random subset of features and determines the best split. To find the best split
for every decision tree, it uses a random threshold in addition to selecting a random subset
of characteristics. This divergence results in a significant decrease in computation time,
rendering the Extra Trees Classifier a viable substitute that may attain superior accuracy in
some situations in contrast to Random Forest.

The integration of Extra Trees in classification tasks involves the construction of an
ensemble of decision trees, each employing the aforementioned feature selection and separa-
tion mechanisms. During prediction, the output of these individual trees is amalgamated to
produce a final classification. The accelerated computation, stemming from the distinctive
approach to feature selection, positions the Extra Trees Classifier as a compelling choice
for scenarios where rapid and accurate classification is imperative. In prediction tasks, the
Extra Trees regressor employs a comparable approach. It makes use of the same cutting-edge
feature selection method, producing a collection of unique decision trees. The outputs of
these trees are combined to produce the final forecast, guaranteeing a strong and trustworthy
model that can handle complex relationships in the data. With its distinct feature selection
strategy, the Extra Trees approach makes a significant contribution to the field of ensemble
learning. It provides a sophisticated and effective substitute that is especially well-suited for
situations in which computational speed is crucial without sacrificing predictive accuracy.

3.9.3 Gradient Boosting Classifier

The concept of gradient boosting, initially introduced by Friedman (2001), has evolved into
a versatile and widely applicable machine learning algorithm capable of addressing both
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classification and regression tasks. Rooted in the iterative minimization of a targeted loss
function, gradient boosting operates by consecutively training additional estimators within
the sequence. Decision trees function as the basic building blocks of the gradient boosting
technique in the domains of classification and regression. A new estimator, usually a decision
tree, is introduced to the growing sequence at each iteration (Fig. 6.3). The main goal of this
iterative procedure is to gradually reduce the initial loss function, improving the predictive
power of the model with each new addition.

Fig. 3.5 The architecture of the gradient boosting trees model (Deng et al., 2021)

Gradient boosting integration in classification problems is contingent upon decision
trees’ collective contribution to the ensemble. Collectively, these carefully chosen trees that
have been trained to maximize the classification objective improve the model’s predictive
accuracy. Gradient boosting’s iterative structure guarantees a continuous improvement in the
model’s ability to discern patterns and relationships within the data. In the same way, gradient
boosting in regression problems uses decision trees to create an ensemble that performs
exceptionally well in continuous result prediction. Gradient boosting creates an intricate
understanding of intricate linkages within the data by iteratively adding additional trees and
fine-tuning the model depending on the underlying loss function. The utility of gradient
boosting extends beyond its versatility; it is particularly effective in scenarios where intricate
relationships, non-linear patterns, and nuanced dependencies are prevalent. As an ensemble
learning method, gradient boosting continues to be a cornerstone in the machine learning
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toolkit, offering a robust and adaptable solution for a diverse array of predictive modeling
challenges.

3.9.4 XGBoost

XGBoost, an ensemble learning technique, has established its prominence in various machine
learning problems, encompassing regression tasks (Chen and Guestrin, 2016). Operating
within the gradient boosting framework, XGBoost amalgamates the predictions of multiple
weak learners, often represented as decision trees, to craft a robust and accurate predictive
model (Fig. 6.4).

Fig. 3.6 The architecture of the extreme gradient boosting trees model

XGBoost is based on the progressive production of decision trees, each of which is
designed to correct the mistakes made by its predecessors. One noteworthy aspect of its
methodology is the inclusion of a unique regularization technique known as the "regularized
learning objective." This method is deliberately used to reduce overfitting, improving the
model’s ability to generalize and its resistance to data-related noise. Scalability and efficiency
are two of XGBoost’s key characteristics. XGBoost is designed to manage large datasets
with high-dimensional features with ease, making it a suitable option for solving challeng-
ing real-world problems. In this situation, using "approximate tree learning" is essential
since it significantly speeds up training while maintaining predicted accuracy. Performance
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adjustment of XGBoost is enabled by a collection of hyperparameters that are optimized
using cross-validation. In order to balance model complexity with predictive accuracy, these
parameters—which include the learning rate, number of trees (iterations), tree depth, and
regularization parameters—are essential. A notable characteristic of XGBoost is that it offers
a feature importance measure, which gives researchers information about how important
each feature is in relation to the other within the prediction model.

3.9.5 Categorical Boosting (Catboost)

CatBoost, a state-of-the-art gradient boosting methodology introduced by Prokhorenkova
et al. (2018), stands out as an advanced solution tailored for efficient handling of categorical
data, rendering it particularly adept for classification and regression tasks. The nomenclature
"Category Boosting" encapsulates its primary focus and has contributed to its widespread
adoption, driven by its stellar performance and user-friendly attributes. A distinctive and
pivotal trait of CatBoost lies in its innate ability to manage categorical variables seamlessly,
obviating the need for explicit encoding or preprocessing. This is made possible through the
implementation of the innovative "ordered boosting" method, a mechanism that inherently
incorporates information from categorical features. This strategic approach negates the
necessity for conventional techniques like one-hot encoding or label encoding. This feature
proves invaluable when dealing with datasets exhibiting a mix of numerical and categorical
attributes, a commonplace scenario in numerous real-world applications (Dorogush et al.,
2018). Operating within the framework of gradient boosting, akin to other algorithms like
XGBoost and LightGBM, CatBoost iteratively trains a sequence of decision trees. Each
tree aims to rectify errors introduced by its predecessors, thereby enhancing predictive
accuracy. Crucially, CatBoost integrates ordered boosting and feature importance estimations
during training, effectively addressing the nuances associated with categorical features and
augmenting model performance. In the context of regularization, CatBoost incorporates the
"ordered boosting" technique, strategically implemented to mitigate the risk of overfitting.
This regularization strategy ensures that the model learns from less significant features,
reducing susceptibility to overfitting in the presence of noisy data. CatBoost’s most notable
characteristics is its computational efficiency, which is defined by memory economy and
the capacity to manage massive datasets with millions of records and thousands of features
without sacrificing processing speed. This feature makes CatBoost a compelling option for
working with high-dimensional, real-world data relevant to environmental research and water
resources.
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3.9.6 LightGBM (LGBM)

A novel gradient boosting system called LightGBM offers a sophisticated way to manage
large-scale machine learning workloads, especially when large datasets are involved. Light-
GBM was introduced with the intention of improving accuracy and efficiency. It does this by
utilizing unique methodologies in conjunction with tree-based learning techniques. Gradient-
Based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB): As a preventative
precaution against overfitting, LightGBM combines the GOSS technique with EFB supple-
mentary features. GOSS contributes to a more efficient learning process by maximizing the
sampling process by keeping examples with significant gradients. By grouping exclusive
characteristics together, EFB improves regularization and guards against relying too much on
any one feature during model training. This further refines the technique. Histogram-based
Gradient Boosting (HGB): LightGBM utilizes Histogram-based Gradient Boosting (HGB) to
increase the productivity of tree-building procedures. By converting categorical variables into
histograms, this method expedites the process of making decisions during the construction
of trees. Adopting HGB results in significant gains in processing efficiency, which makes
LightGBM especially good at managing big datasets. Effectiveness and Straightforward
Assistance for Categorical Features: LightGBM has the unusual advantage of being able to
examine large datasets faster than traditional tree-based learning algorithms. This acceler-
ated performance is essential in situations when handling big amounts of data is necessary.
Furthermore, LightGBM provides direct support for categorical attributes, eliminating the
need for pre-processing steps such as one-hot encoding and other pre-processing procedures.
This improves the model’s overall efficiency in addition to streamlining the workflow.

3.9.7 Support Vector Machine (SVM)

Support Vector Machines (SVM), introduced by Vapnik et al. (1996), represent a powerful
machine learning paradigm extensively applied in both classification and regression domains.
At its core, SVM operates on the principle of identifying the optimal hyperplane to effectively
separate two classes of data. This optimization is achieved by concurrently minimizing
empirical classification errors and maximizing the geometric margin (Fig. 6.6).

The distinguishing feature of SVM lies in its efficacy, surpassing traditional methods,
and its ability to address overfitting challenges. By emphasizing the geometric margin
between classes, SVM not only facilitates accurate classification but also enhances general-
ization performance. This is particularly advantageous when dealing with complex datasets
characterized by intricate decision boundaries.
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Fig. 3.7 The optimal hyperplane of SVM model

In classification tasks, SVM excels at discerning the optimal hyperplane that maximizes
the margin between different classes, ensuring robust and accurate predictions. Additionally,
SVM demonstrates notable resilience in scenarios where the dataset may exhibit noise or
overlapping patterns. Its adaptability to nonlinear relationships is enhanced through the
utilization of kernel functions, allowing SVM to operate effectively in high-dimensional
spaces.

For regression applications, SVM leverages its inherent capacity to handle complex
relationships by formulating a hyperplane that best captures the underlying structure of
the data. This results in a predictive model that is not only accurate but also adept at
accommodating intricate patterns in the dataset.

The optimum separation hyperplane is found based on solving the following optimization
problem :

Minimize:
1
2

w2 +C
n

∑
i=1

ξi (3.9)

Subject to :yi(wT
φ(xi)+b ≥ 1−ξi),

ξi ≥ 0,∀i ∈ {1, ...,n}
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Maximize: − 1
2

n

∑
i=1

n

∑
j=1

yiy jαiα jK(xi,x j)+
n

∑
j=1

α j (3.10)

Subjet to: αi ≥ 0, ∀i ∈ {1, ...,n}
n

∑
i=1

αiyi = 0 (3.11)

where : w is a normal vector, 1
2w2 is the regularization factor, C is the error penalty factor,

b is a bias, ξ is the error function, xi is the input vector, n is the number of elements in the
training data set, φ(xi) is a feature space, ξi are the training phase parameters that should be
optimized K(xi,x j): is known as the kernel function.

SVM has various kernel functions, some of which are listed below:

Linear kernel: K(xi,x j) = xT
i x j (3.12)

Polynomial Kernel: K(xi,x j) = (γxT
i x j + r)d,γ > 0 (3.13)

Radial Basis (RBF): (xT
i x j) = exp(−γ ∥ xi − x j ∥2),γ > 0 (3.14)

Sigmoid Kernel: K(xi,x j) = tanh(γxT
i x j + r) (3.15)

Where: xi and x j are the inputs, γ is the regularization factor. Selecting a suitable kernel
and particular parameters such as γ , C, and ξ can increase the model’s efficiency.

3.10 Performance evaluation metrics

Within the fields of data engineering and machine learning, model performance evaluation is
a crucial aspect of determining how effective an algorithm is. In particular, when it comes
to classification and prediction tasks, choosing the right metrics is crucial. Metrics for
performance evaluation act as the quantitative criteria by which models’ overall predictive
power, accuracy, and robustness are measured. IIn this context, the judicious choice of
metrics aligns with the inherent objectives of classification and prediction endeavors. From
recall and precision to more comprehensive measurements like the F1 score and area under
the Receiver Operating Characteristic (ROC) curve, these metrics cover a wide range of
factors. Every metric provides a different perspective on how well the model differentiates the
classes, shedding light on the complex interactions between true positives, false positives, true
negatives, and false negatives. In addition to being a tool for evaluating model accuracy, the
addition of performance evaluation metrics in classification and prediction tasks also acts as a
roadmap for further model development and refinement. The development and modification
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of these metrics play a crucial role in improving the dependability and interpretability of
classification and prediction models as researchers delve deeper into the complexities of
machine learning applications. The following sections will provide an in-depth exposition to
the utilized metrics for both tasks, classification and prediction.

3.10.1 Root Mean Squared Error (RMSE)

One commonly used and important statistic in the field of regression model evaluation
in machine learning and data engineering is the Root Mean Squared Error (RMSE). It
functions as a measurable indicator, painstakingly documenting the differences between
predicted and actual values to clarify the accuracy and dependability of regression models.
The power of RMSE is its ability to extract the average residual magnitude and reveal the
total effect of model predictions deviating from actual results. The vertical gaps between
the model’s projected values and the corresponding actual values are represented by these
residuals, which stand for the residual errors. By combining these disparities into a single,
all-encompassing metric, RMSE provides a logical illustration of the overall correctness of
the model. Mathematically, the computation of RMSE involves the square root of the mean
of the squared differences between predicted and actual values. Due to the methodological
approach’s natural emphasis on squared disparities, greater errors are magnified and made
more noticeable during the evaluation process (Eq. 3.16). As such, RMSE not only measures
the magnitude of prediction errors but also provides a subtle focus on the importance of larger
errors in affecting the overall performance of the model. In its interpretive context, lower
RMSE values indicate higher model accuracy since they reflect smaller prediction errors.
Higher RMSE values, on the other hand, are associated with greater differences between
expected and actual values, which denotes less model precision.

RMSE =

√
1
n

n

∑
i=1

(yi − yp)2 (3.16)

3.10.2 Mean Absolute Error (MAE)

In essence, MAE shares a common objective with Root Mean Squared Error (RMSE) by
encapsulating the model’s predictive accuracy, albeit through a distinct computational lens.
Unlike RMSE, MAE adopts an approach of calculating the absolute differences between
predicted and actual values without squaring these discrepancies. This characteristic imparts
a particular resilience to extreme outliers, as MAE treats all errors uniformly, prioritizing
their magnitudes over directional considerations.
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Mathematically, MAE manifests as the average magnitude of these absolute errors
(Eq. 3.17), offering a concise representation of the model’s precision. Lower MAE values
are indicative of superior model performance, denoting a reduced average magnitude of
prediction errors. On the contrary, higher MAE values reflect a larger average magnitude of
errors, suggesting a diminished precision in the model’s predictions.

MAE, akin to RMSE, emerges as a fundamental tool for researchers and practitioners
engaged in refining regression models. By gauging the average magnitude of errors without
the amplifying effect of squared differences, MAE complements the evaluation landscape,
providing a well-rounded perspective on the predictive capabilities of regression models.

MAE =
1
n

√
n

∑
i=1

|yi − yp| (3.17)

3.10.3 Accuracy

Accuracy quantifies the proportion of correctly predicted instances among the total instances
in the dataset. As a dimensionless quantity, accuracy provides a clear and intuitive measure
of a model’s ability to discern and classify data points accurately. It is particularly relevant in
classification tasks, where the goal is to assign data points to specific categories or classes.

Mathematically, accuracy is computed as the ratio of correctly predicted instances to the
total number of instances (Eq. 3.18), yielding a value between 0 and 1. A perfect predictive
model attains an accuracy of 1, signifying that all predictions align precisely with the ground
truth. Conversely, an accuracy score of 0 suggests that the model fails to make correct
predictions.

Accuracy, while seemingly straightforward, is a crucial metric that demands attention,
especially in scenarios where class imbalances exist. In such cases, a high accuracy score
may not necessarily indicate a model’s robustness, as it might disproportionately reflect the
performance on the majority class while neglecting the minority class.

R2 = 1− ∑
n
i=1(yi − yp)

2

∑
n
i=1(yi − ym)2 (3.18)

3.10.4 Precision and Recall

Model performance is evaluated using precision and recall, two critical measures in machine
learning, especially when it comes to classification tasks. These metrics are vital resources
for researchers navigating the intricate world of data engineering because they offer subtle
insights into a model’s capacity to produce correct predictions within particular classes.
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3.10.4.1 Precision

Precision, a metric with profound implications, delineates the accuracy of positive predictions
made by a model. Specifically, it quantifies the ratio of true positives to the sum of true
positives and false positives (Eq. 3.19). In essence, precision gauges the model’s capability
to precisely identify instances belonging to a positive class, minimizing the inclusion of false
positives in its predictions. A precision score of 1 indicates a perfect precision, signifying
that every positive prediction made by the model is indeed accurate.

Precision =
T P

T P+FP
(3.19)

3.10.4.2 Recall

Contrasting precision, recall, also known as sensitivity or true positive rate, captures the
model’s ability to identify all positive instances within the dataset. It represents the ratio
of true positives to the sum of true positives and false negatives (Eq. 3.20), providing an
understanding of the model’s sensitivity to positive instances. A recall score of 1 indicates
that the model successfully identifies all positive instances without missing any.

Recall =
T P

T P+FN
(3.20)

Achieving a balanced assessment of classification models requires an understanding of
the dynamic interaction between precision and recall.

3.10.5 F1 Score

The F1 score is mathematically formulated as the harmonic average of precision and recall
(Eq. 3.21). This strategic choice of the harmonic mean, as opposed to the arithmetic mean,
ensures that the F1 score adeptly considers both precision and recall, giving equal weight to
their contributions. The F1 score ranges from 0 to 1, where a score of 1 signifies an ideal
balance between precision and recall, and a score of 0 implies a lack thereof. The F1 score is
especially useful in situations when finding a balance between recall and precision is crucial.
For example, the F1 score offers a nuanced view of a model’s efficacy in classification tasks
with imbalanced datasets, when one class greatly dominates the other. It acts as a resort for
researchers negotiating the fine balance needed to maximize recall and precision at the same
time, guaranteeing the stability and dependability of machine learning models in real-world
settings.
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F1-score = 2× Precision×Recall
Precision+Recall

(3.21)

3.10.6 ROC Curve and AUC-ROC

An informative tool that provides a nuanced view of the interaction between true positive
rate (sensitivity) and false positive rate is the Receiver Operating Characteristic (ROC) curve.
When investigating the model’s performance across different threshold values and revealing
the complex trade-offs prevalent in classification tasks, this graphical depiction becomes
especially relevant.

3.10.6.1 ROC Curve Plotting

Over a range of threshold values, the true positive rate is carefully plotted against the false
positive rate in the ROC curve (Eq. 3.22 and Eq. 3.23). This graphic representation offers a
thorough summary of a model’s discriminatory capacity and shows how well it can discern
between positive and negative instances. The trajectory of the curve provides a dynamic
representation of the model’s performance and indicates how sensitive the model is to changes
in the decision threshold.

3.10.6.2 Area Under the Curve (AUC-ROC)

The Area Under the Curve (AUC), or more particularly AUC-ROC, is integral to the ROC
curve and measures the classification model’s overall performance. The likelihood that the
model will accurately distinguish between positive and negative cases is reflected in the
AUC-ROC. A model that performs better at discriminating across a range of threshold values
has a higher AUC-ROC score.

3.10.6.3 Interpretation and Significance

A thorough grasp of the underlying trade-offs in classification tasks is made possible by
the ROC curve and AUC-ROC. A model that successfully strikes a balance between sensi-
tivity and specificity and achieves an AUC-ROC score near 1 is considered to have robust
performance. On the other hand, a model with an AUC-ROC value of about 0.5 indicates
performance that is equal to random chance.

True positive rate =
T P

T P+FN
(3.22)
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false positive rate =
FP

FP+T N
(3.23)

While:
TP: True positives.
TN: True negatives.
FP: False positives.
FN: False negatives.

3.11 SHAP (SHapley Additive exPlanations)

In the field of machine learning model interpretability, the SHAP (SHapley Additive exPlana-
tions) technique is a cutting-edge tool that lays out a roadmap for removing the many layers
of ambiguity that surround prediction algorithms (Lundberg and Lee, 2017).

3.11.1 Philosophy and Foundation

SHAP aims to discern the contributions of each feature to the prediction outcome. It is
based on cooperative game theory. Taking cues from Shapley values—a notion that was first
presented to allocate rewards equitably among participating players—the technique attempts
to allocate fair values to every variable by assessing how each feature affects the model’s
predictions. Essentially, SHAP aims to clarify the opaque internal mechanisms of machine
learning models, adding a level of clarity and understanding (Biecek and Burzykowski,
2021).

3.11.2 Elucidating Predictive Outputs

Essentially, SHAP assigns a portion of the result to each feature in order to deconstruct the
intricate ensemble of variables affecting a prediction. It provides a sophisticated knowledge
of the relative significance of distinct features in influencing predictions by closely examining
the "black box" nature of machine learning models. This deconstruction is essential in
understanding the individual contribution of the features utilized in the training phase.

3.11.3 Interpretability Across Models

One of SHAP’s main advantages is that it is not dependent on any particular model (model-
agnostic). This means that it may be used with a wide range of machine learning models,
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such as support vector machines, decision trees, and neural networks. Because of its
universality, SHAP is useful for a wide range of machine learning applications and promotes
interpretability regardless of the model architecture.

3.11.4 Contributions Visualized

The method’s prowes is further revealed by the sophisticated visuals it creates. SHAP
results are converted into easily understood visuals that show how each feature influences
the model’s prediction. These visual aids give end users and data scientists alike a clear
understanding of the variables influencing model outcomes.

3.12 Adopted Methodology

In response to this identified gap, our study introduces a methodologically robust framework
that strategically incorporates considerations of water consumers’ affordability. A key
innovation lies in the utilization of Mutual Information (MI) and other techniques as a
feature selection strategy. This approach ensures precision in water quality assessment while
simultaneously aligning with economic considerations. By integrating affordability into the
assessment process, our methodology enhances the real-world applicability of water quality
studies.

The selection of LightGBM, Catboost, Extra Trees, and Random Forest classifiers is
grounded in their proven accuracy and efficiency across diverse scenarios. This methodologi-
cal choice is not arbitrary; rather, it is a deliberate step toward advancing the understanding
of effective machine learning tools tailored for water quality assessment. The study’s dis-
tinctive contribution lies in delving into the intersection of machine learning and economic
considerations, thereby adding a novel dimension to the existing discourse in water quality
research.

Having meticulously examined the existing literature, pinpointing crucial gaps in the cur-
rent discourse on water quality assessment, our study is poised to transcend these limitations
through a carefully designed methodology. As we navigate from the comprehensive review
of prior research to the upcoming methodology chapter, it becomes evident that our research
is uniquely positioned to address the identified gaps.
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3.13 Conclusion

The methods employed in this study, ranging from the selection of machine learning mod-
els to the utilization of feature selection techniques and performance metrics, have been
meticulously designed to achieve the overarching goals of groundwater quality assessment
for irrigation purposes. The adoption of advanced machine learning algorithms, including
LGBM, CatBoost, Extra Trees, Random Forest, Gradient Boosting classifiers, Support Vector
Machines, Multi-Layer Perceptrons, and the K-Nearest Neighbors Algorithm, reflects a
thoughtful consideration of diverse methodologies to ensure a comprehensive evaluation.

Feature selection techniques, such as Mutual Information, were strategically utilized
to identify the most influential parameters contributing to the variability of the dataset.
This approach not only optimized model efficiency but also ensured economic viability by
reducing the number of input parameters without compromising classification accuracy.

Performance metrics, encompassing ROC-AUC, precision-recall, F1 score, and accuracy,
were chosen with precision to evaluate the models rigorously. The incorporation of water
quality indices, particularly the IWQI, provided a robust reference for classification, aligning
the machine learning models with real-world applicability in the context of irrigation.

The next chapter will transition seamlessly from the methodologies employed to the
comprehensive exploration of results and discussions. Through an in-depth analysis of
the outcomes, we aim to unveil critical insights into groundwater quality dynamics, the
efficacy of machine learning models, and their implications for water resource management.
The results and discussions chapter will further contribute to the evolving understanding of
efficient and economically viable water quality assessment methodologies, building upon the
foundations laid in the literature review and methods chapters.





Chapter 4

Water Quality Assessment For Irrigation
Purposes

4.1 Introduction

This section represents a comprehensive endeavor aimed at conducting a holistic evaluation
of water quality specifically tailored for irrigation purposes. This preliminary assessment
stands as a crucial prerequisite, laying the groundwork for more intricate phases of research,
particularly the application of Machine Learning (ML) models for classification and pre-
diction in subsequent stages. To attain the objectives of this water quality assessment for
irrigation, a set of well-established water quality indices has been judiciously employed.
The key water quality indices utilized in this assessment encompass the Irrigation Water
Quality Index (IWQI), Sodium Adsorption Ratio (SAR), Soluble Sodium Percent (Na%),
Potential Salinity (PS), Permeability Index (PI), Magnesium Adsorption Ratio (MAR), and
Kelly’s Ratio (KR). This diverse set of indices collectively enables a nuanced understanding
of various facets of water quality, each index addressing specific parameters critical for
irrigation suitability.

Additionally, this assessment integrates a hydrochemical characterization of the water
samples within the study area. This complementary analysis provides insights into the
inherent chemical composition of the water, enriching the understanding of the contextual
factors influencing water quality. The amalgamation of these indices and hydrochemical
characterizations forms the basis for a robust and multidimensional evaluation of water quality,
essential for informing subsequent phases of research and decision-making in agricultural
and environmental domains.
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4.2 Methods

The holistic assessment of water quality for irrigation in this study is grounded in a multi-
faceted approach. Central to this evaluation is the utilization of various indices, notably the
Irrigation Water Quality Index, SAR, MAR, Na%, Permeability Index (PI), and KR. These
indices collectively contribute to a comprehensive analysis, offering insights into different
facets of water quality relevant to irrigation purposes.

Furthermore, to achieve a thorough characterization of the hydrochemical facies of
groundwater, the study employs the Piper diagram as a robust tool. This diagram serves as
a valuable instrument in elucidating the intricate relationships between different chemical
components in groundwater, contributing to a nuanced understanding of the hydrochemical
composition. Together, these methodologies establish a robust framework for the holistic
assessment of water quality, encompassing both quantitative indices and graphical represen-
tations to provide a comprehensive overview for informed decision-making in water resource
management and agricultural sustainability.

4.3 Results and discussion

The quality of irrigation water is inherently dynamic, intricately influenced by a myriad of
constituents that emanate from the surrounding environment, with the soil type exerting a
particularly profound impact. These constituents collectively constitute the quality parameters
of irrigation water, meticulously cataloged in Table 4.1. The foundation of water quality
evaluation rests upon a comprehensive understanding of prevalent soil-related challenges. In
this context, the research delves into salinity hazards, water infiltration rates, ion toxicity,
and various other issues of diverse typologies (Ayers and Westcot, 1985). These soil-related
predicaments serve as pivotal metrics in the holistic assessment of water quality, shaping the
criteria for quantitative analysis. To rigorously quantify these hazards, the research adopts a
battery of criteria, each designed to unravel specific facets of the water quality landscape.
Noteworthy indices employed for this purpose include the Irrigation Water Quality Index
(IWQI), SAR, Na%, PS, Permeability Index (PI), MAR, and KR. Detailed statistical insights
pertaining to each index are meticulously presented in Table 6.1. The synergistic application
of these indices serves as the linchpin for a nuanced understanding of irrigation water quality,
elucidating not only the presence of specific contaminants but also their potential impact on
soil, crops, and overall agricultural sustainability.
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Table 4.1 Statistical characteristics of water quality parameters

mean std min max

T (°C) 21.14 4.97 8.30 34.40
pH 7.36 0.37 6.08 9.30
Conductivity (µs/cm) 1979.97 989.72 426 8970
Turbidity (NTU) 6.19 15.54 0.01 147
TDS (mg/l) 829.77 344.72 193 1895
TAC (°F) 107.14 98.80 3.20 400
HCO3

– (mg/l) 337.78 109.85 0 976
Total Hardness (°F) 349.87 376.83 0 1800
Ca2+ (mg/l) 177.32 86.09 0 544
Mg2+ (mg/l) 90.52 44.82 0 238.14
Cl¯ (mg/l) 186.50 148.20 0 942.88
NO2

– (mg/l) 0.04 0.23 0 5
NH4

+ (mg/l) 0.06 0.33 0 5
SO4

– 2 (mg/l) 629.90 255.71 100 1600
NO3

– (mg/l) 33.32 111.50 0 2379
Fe+2 (mg/l) 0.03 0.09 0 0.72
PO4

– 3 (mg/l) 0.03 0.05 0 0.10
Na+ (mg/l) 116.74 72.51 3 450
K+ (mg/l) 5.24 2.73 0.80 18

4.3.1 Salinity hazard

The salinity hazard emerges as a paramount concern in irrigated regions, as emphasized
by De Paz et al. (2004). The deleterious consequences stemming from salt accumulation
manifest in water scarcity for plants, inducing symptoms akin to those observed in plants
facing drought conditions Ayers and Westcot (1985). In this intricate interplay between soil
and water quality, electrical conductivity (EC) assumes significance, representing the sum of
anions or cations and standing as a proxy for dissolved solids Wilcox (1955).

Within the ambit of this study, the assessment of the salinity hazard hinges on the meticu-
lous evaluation of EC and Total Dissolved Solids (TDS). Table 4.1 presents a comprehensive
overview, indicating that EC values ranged from 426 to 8970 µs/cm, while TDS values
spanned from 193 to 1895 mg/l, with mean values of 1979.97 µs/cm and 829.77 mg/l, re-
spectively. Employing the TDS classification proposed by Allison and Richards (1954), a
predominant 82.98% of water samples are deemed fit for use with moderate restrictions, as
delineated in Table 4.2. In alignment with the Wilcox standard based on EC, 85.04% of water
samples are classified as severely saline (Table 4.2).
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Table 4.2 Standard values of water quality parameters with
samples percentage and classes (Ayers et al., 1985).

WQ parameter Range Parameter
Class

Samples
percent-
age

pH 6.5-8.4 NR 97.73
Conductivity < 700 NR 3.49

700-3000 MR 11.17
> 3000 SR 85.04

TDS < 450 NR 17.02
450-2000 MR 82.98
> 2000 SR 0.00

Total Alkalinity < 150 NR 3.82
150-300 MR 31.36
> 300 SR 68.26

Na+ < 70 NR 25.16
70-200 MR 66.67
> 200 SR 8.18

Mg2+ < 140 NR 85.50
140-355 MR 13.74
> 355 SR 0.00

Ca2+ 0-400 NR 97.14
> 400 R 2.86

HCO3
– < 90 NR 0.19

90-500 MR 94.10
> 500 SR 5.33

Cl– < 140 NR 44.93
140-350 MR 40.34
> 350 SR 14.34

Total Hardness 0-6 S 0.00
6-12 MH 0.00
12-18 H 0.00
> 18 VH 99.62

NO3
– < 5 NR 24.29

5-30 MR 47.14
> 30 SR 28.37

PO4
– 3 0-2 NR 100.00

> 2 R 0.00
Fe2+ < 0.5 NR 99.62

0.5-1.5 MR 0.37
> 1.5 SR 0.00

Note: The acronyms in the Table stand for: NR:No Restriction,
MR:Moderate Restriction, SR:Severe Restriction, R:Restriction, S:Soft,
MH:Moderate Hard, H:Hard, VH:Very Hard.
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This result suggests that there is a demonstrable risk that using the water from the study
area for irrigation may raise the salinity levels in agricultural areas. Because of the complex
relationship between soil quality and water supplies, irrigation management must be done
carefully, and salinity measures are important tools for making well-informed decisions

4.3.2 pH

The role of pH in water quality is pivotal, especially in the context of irrigation, where the
physicochemical properties of water significantly influence soil health and plant growth. The
pH values, as delineated in Table 4.1, exhibit a range from 6 to 9, with a mean value of 7.36.
These values serve as fundamental indicators, guiding our understanding of the suitability
of water for irrigation purposes. In adherence to the guidelines established by the FAO-UN
Ayers and Westcot (1985), which provide a robust framework for water quality assessment,
the majority of the samples, precisely 97.73%, are classified as safe for use without any
restriction (Table 4.2). This classification aligns with the overarching goal of ensuring optimal
conditions for agricultural productivity, where pH serves as a barometer of the water’s acidity
or alkalinity. The pH levels within this permissible range promote a soil condition that is
favorable to microbial activity and nutrient availability, two critical components of plant
growth. The research yielded subtle insights that go beyond numerical numbers, providing
light on the practical implications for sustainable irrigation techniques. Using water with a
pH that is suited to the area reduces the likelihood of soil erosion and prolongs the life of
farming landscapes. As a result, the pH component of water quality assessment becomes
essential to the comprehensive effort to maximize irrigation effectiveness while maintaining
soil health.

4.3.3 Total Hardness

Total hardness, a parameter reflective of the concentration of calcium (Ca2+) and magnesium
(Mg2+) ions in water samples, is a crucial determinant in irrigation water quality assessment.
The comprehensive analysis of water samples, detailed in Table 4.1, reveals an average total
hardness value of 349.87 French degrees, with a maximum value reaching 1800 French
degrees. The classification provided by EPA Gold Book (1986) categorizes the majority of
the water samples within the very hard class (Table 4.2).

The high total hardness values observed pose potential challenges for sustained agricul-
tural practices. According to Ewaid et al. (2019), prolonged use of such water can lead to
the clogging of irrigation equipment, a consequence of the precipitation of minerals within
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the water. Additionally, foliar staining problems may arise, impacting the overall aesthetic
quality of crops and potentially affecting market value.

Understanding the total hardness of irrigation water is integral to devising effective
water management strategies. This knowledge allows for the implementation of preventive
measures to mitigate equipment damage and optimize irrigation efficiency. The nuanced
insights gained from assessing total hardness underscore its significance as a key parameter
in the broader framework of irrigation water quality evaluation.

4.3.4 Ions Concentration

The presence of ions, encompassing sodium, calcium, magnesium, potassium, chloride,
and bicarbonates, holds paramount significance in both soil and water, as their uptake in
substantial quantities can detrimentally impact crop yields. Maintaining a delicate balance
is imperative, as even at lower concentrations, these ions have the potential to induce crop-
related issues. In this study, a meticulous analysis of ion concentrations in water samples
was conducted, and the findings are meticulously presented in Table 4.1.

For cations such as Na+, K+, Ca2+, Mg2+, and Fe2+, concentrations exhibited variations
spanning from 3, 0.8, 0, 0, and 0 mg/l to 450, 18, 544, 238.14, and 0.72 mg/l, respectively,
with mean values of 116.74, 5.24, 177.32, 90.53, and 0.03 mg/l, correspondingly. On the
anionic front, Cl– , HCO3

– , NO3
– , and PO4

– 3 ranged from 0 to 942.88, 976, 2379, and 0.1
mg/l, with average values of 186.5, 337.78, 33.32, and 0.03 mg/l, respectively.

To gauge the appropriateness of ion concentrations, this research employed standard
values as outlined in Table 4.2. Concerning cations, a substantial majority of water samples
were categorized as non-restricted for Fe2+, Ca2+, and Mg2+, with percentages of 99.62%,
97.14%, and 85.50%, respectively. As for anions, Cl– , HCO3

– , and NO3
– witnessed

40.34%, 94.10%, and 47.14%, respectively, falling within the moderately restricted class
(MR). Notably, PO4

– 3 demonstrated 100% adherence to the non-restricted class.
A comprehensive evaluation of water quality extends beyond a sole focus on ion concen-

trations, as this approach may fall short in unveiling issues arising from intricate interactions
among water constituents. Recognizing this limitation, the study incorporates water quality
indices to provide a more nuanced understanding of the overall water quality scenario. In
the ensuing sections, the Water Quality Index (WQI) will be employed as a robust tool to
undertake a thorough assessment of water quality.

In pursuit of a visual representation of the chemical composition of water samples, the
study adopts the Stiff diagram, as illustrated in Figure 6.2. This diagram serves as a graphical
representation of the mean values of major cations and anions observed over the span of
four years (2019-2022). The Stiff diagram offers a swift and insightful overview of the
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variations in mean values of the most prevalent ions. This visualization not only facilitates a
comprehensive understanding of the water chemistry but also aids in identifying patterns and
trends, contributing to a more holistic interpretation of irrigation water quality.

Fig. 4.1 Stiff diagram: a) Stiff diagram of 2019, b) Stiff diagram of 2020; c) Stiff diagram of
2021, d) Stiff diagram of 2022

4.3.5 Total Alkalinity

Prior to delving into the results of the Water Quality Index (WQI), it is imperative to
underscore the significance of the total alkalinity parameter (TAC) in the context of irrigation
water quality. TAC serves as a pivotal descriptor of water’s capacity to stabilize pH levels,
gauged by the presence of bicarbonates (HCO3

– ), carbonates (CO3
2 – ), and hydroxides

(OH– ). The influence of TAC on crops is multifaceted, manifesting as ion imbalances and
nutritional complications at elevated levels (>300 °F), while at lower levels (<3 °F), the water
may lack the capability to neutralize acidity effectively. As delineated in Table 4.1, TAC
spans a range from 3.2 to 400 °F, with an average value of 107.14 °F. Strikingly, 68.26%
of the examined samples fall into the category of severely restricted water for irrigation
use (SR). This categorization implies an anticipation of nutrient deficiencies in areas where
irrigation with such water is prevalent. An ameliorative measure proposed to address this
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issue involves the injection of acids into the water. The ubiquity of HCO3
– , as expounded in

the preceding section, may offer insights into the origins of water alkalinity.

4.3.6 Water quality indices

The subsequent discussion entails the interpretation of the outputs generated by the water
quality indices employed in this study.

4.3.6.1 Irrigation Water Quality Index (IWQI)

The Irrigation Water Quality Index (IWQI) has long been recognized as a potent instrument
for succinctly characterizing the status of water quality, condensing extensive groundwater
quality data into a singular representative value (Uddin et al., 2021b). The IWQI categorizes
irrigation water into five classes based on its impact on both irrigated plants and soil, as
detailed in Table 4.3.

Table 4.3 Classification of irrigation water according to IWQI

WQI Class Samples
percentage
(%)

Recommendations for
soil

Recommendations for
plant

85-100 No restric-
tion (NR)

0.00 Can be employed for
most type of soils with
low salinity and sodicity
problems

Safe for the majority of
plants

70-85 Low restric-
tion (LR)

8.24 Can be employed in
light soil textures or
moderate permeability

risky to salt sensitive
plants

55-70 Moderate
restriction
(MR)

44.06 Can be employed in
soils with moderate to
high permeability

Plants with moderate
salt sensitivity

40-55 High re-
striction
(HR)

41.95 Can be employed in soil
of high permeability

plants with moderate to
high salt sensitivity

0-40 Severe
restriction
(SR)

5.75 Avoid its use Plants with low salt sen-
sitivity

In light of the classification criteria, the water samples underwent the following catego-
rization: 44.06% were assigned to the Moderate Restriction class (MR), indicating limitations
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on their use for irrigating plants with moderate salt sensitivity. Concurrently, 41.95% of
the collected samples fell within the High Restriction range (HR), imposing constraints on
groundwater utilization for plants with high to moderate salt sensitivity and high permeability.
A mere 8.24% of the water samples attained classification as Low Restricted water (LR),
permitting irrigation for a broad spectrum of plants except those sensitive to salt.

Conversely, 5.75% of the analyzed water samples found themselves in the Severe Re-
striction class (SR), severely limiting groundwater usage to plants with low salt sensitivity.
Notably, no samples were categorized in the non-restricted category. This classification
provides an insight into the suitability of water for irrigation purposes, taking into account
both the specific salt sensitivity of plants and the permeability of the soil.

Table 4.4 Groundwater classification based on WQI

Index Range Class Samples
percentages

SAR < 10 excellent 100.00
(Richards,
1954)

10-18 good 0.00

18-26 doubtful 0.00
> 26 unsuitable 0.00

Na% < 20 excellent 25.95
(Eaton,
1950)

20-40 good 67.72

40-60 permissible 6.01
60-80 doubtful 0.32
> 80 unsuitable 0.00

KR < 1 suitable 98.73
(Kelley,
1940)

> 1 unsuitable 1.27

PI > 75 suitable 0.32
(Doneen,
1964)

25-75 good 85.44

< 25 unsuitable 14.24
MAR < 50 suitable 60.00
(Raghunath,
1987)

> 50 unsuitable 40.00

PS < 3 suitable 1.19
(Doneen,
1954)

> 3 unsuitable 98.81
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4.3.6.2 Sodium Adsorption Ratio (SAR)

Table 4.5 Statistical characteristics of water quality indices

mean std min Q1 Q2 Q3 max

SSP 24.31 10.00 0.73 18.88 24.54 30.16 60.42
SAR 1.86 1.02 0.04 1.27 1.75 2.21 5.89
PI 36.84 11.08 9.93 30.45 36.95 43.78 77.46
KR 0.35 0.20 0.01 0.23 0.33 0.44 1.59
PS 11.57 5.74 2.04 7.17 10.90 14.05 34.68
Na% 25.00 10.07 0.98 19.57 25.32 30.86 61.93
MAR 45.84 10.45 2.57 42.43 47.66 51.27 76.03

The prevalence of sodium ions in the study area underscores the imperative need to
scrutinize potential sodicity issues, leading to the application of the SAR index. SAR emerges
as a pivotal diagnostic tool specifically designed to assess the hazard of sodicity within the
water utilized for irrigation. The Sodium Adsorption Ratio is calculated by determining the
ratio of sodium concentration to the combined concentrations of magnesium and calcium.
This ratio serves as a fundamental indicator of the propensity for soil sodification, offering
valuable insights into the potential challenges associated with sodium accumulation in
the soil. Upon analyzing the results presented in Table 6.1, it is evident that SAR values
within the study area range from 0.04 to 5.89 meq/l, with an average SAR value of 1.86
meq/l. This quantification unveils the sodium proportion relative to magnesium and calcium
concentrations, providing a nuanced perspective on the sodicity hazard. Notably, based on
the established standard values of SAR delineated in Table 4.4, the findings indicate that
100% of the water samples fall within the category of excellent water quality in terms of
SAR. This classification implies that the water is well-suited for irrigation purposes without
posing adverse effects on soil structure or compromising the growth of sodium-sensitive
crops. The discerned excellence in SAR values underscores the suitability of the water for
sustaining agricultural practices and emphasizes its compatibility with crops that exhibit
sensitivity to sodium levels. This is based on the sole reliance on SAR values, albeit not
satisfactory, to achieve the overarching goal of the study, i.e., a comprehensive evaluation of
the water quality. This drives the research further to explore more water quality indices as
they provide a multifaceted analysis.
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4.3.6.3 Sodium Percent (Na%)

The Sodium Percent (Na%) index serves as a valuable metric for assessing the influence
of sodium on the overall quality of irrigation water. This index provides insights into the
relative concentration of sodium concerning magnesium, calcium, and potassium, offering a
nuanced perspective on the water’s suitability for irrigation purposes. The categorization of
irrigation water quality based on Na% values is detailed into five classes, namely excellent,
good, permissible, doubtful, and unsuitable, as outlined in Table 4.4. Within the study area,
the Na% values exhibit a range from 0.98 to 61%, with a calculated mean value of 25%
(refer to Table 6.1). The distribution of Na% values indicates that 25.95%, 67.72%, and
6.01% of the water samples fall into the categories of excellent, good, and permissible,
respectively. A marginal 0.32% of groundwater samples are classified as doubtful, signifying
a slight uncertainty in the water quality for irrigation. Importantly, no water sample is
relegated to the unsuitable category, affirming a general appropriateness for agricultural use.
Understanding the relationship between Sodium SAR and Na% is essential to comprehending
the whole effect of water on soil structure. Combining the Na% and SAR assessments
offers a synergistic viewpoint that show the absence of sodicity problems and supports the
thoroughness of the water quality study.

4.3.6.4 Kelly’s Ratio (KR)

Kelly’s Ratio (KR) stands as a pivotal index in the comprehensive evaluation of water
quality for irrigation purposes, providing valuable insights into the potential sodicity hazards
associated with the water samples. This index categorizes water quality into two distinct
classes based on its calculated value. Specifically, if the KR value is less than 1, the water
is deemed suitable, whereas a value exceeding 1 renders the water unsuitable for irrigation
(refer to Table 4.4). In the context of the study area, the analysis of KR values reveals a
range from 0.01 to 1.59 meq/l, with a computed average value of 0.35 meq/l (refer to Table
6.1). The outcome of the KR index assessment underscores the favorable quality of the
groundwater in the study area. Notably, a substantial 98.73% of the water samples fall within
the suitable range, attesting to their compatibility with irrigation needs. Only a minimal
1.27% of the samples are categorized as unsuitable, signifying a minor proportion with
potential concerns. This work’s findings collectively affirm that the groundwater quality in
the study area predominantly aligns with the criteria for suitability in terms of the sodicity
hazard.
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4.3.6.5 Permeability Index (PI)

The transition from assessing sodicity hazards through indices such as Na%, SAR, and KR is
complemented by the incorporation of the Permeability Index (PI). This index serves as a
valuable tool in furthering the comprehensive evaluation of water quality, offering insights
into the water’s impact on soil permeability, a critical aspect in irrigation water quality
assessment.

The Permeability Index categorizes water quality into three distinct classes: suitable,
good, and unsuitable, as outlined in Table 4.4. In the specific context of the study area, the PI
values for the examined water samples span a range from 9.93 to 77.46%, with a calculated
average value of 36.84% (refer to Table 6.1).

The results derived from the PI assessment indicate that a significant majority, precisely
85.44% of the water samples, fall within the classification of good water quality. This suggests
a favorable soil permeability outcome associated with the majority of the groundwater in
the study area. However, it is noteworthy that 14.24% of the water samples are categorized
as unsuitable, signifying potential concerns regarding soil permeability for this subset of
samples. Interestingly, a minor proportion, only 0.32% of the samples, are classified as
suitable, indicating a limited subset with optimal soil permeability characteristics.

The inclusion of the Permeability Index (PI) enriches the water quality assessment
framework, offering a nuanced understanding of soil permeability dynamics.

4.3.6.6 Magnesium Adsorption Ratio (MAR)

Magnesium Adsorption Ratio (MAR) is used to complement the the prior assessment of
the sodicity and the infiltration hazards. This index plays a key role in further elucidating
the intricacies of water quality concerning magnesium concentrations, contributing valuable
insights into the suitability of irrigation water for the study area. Within the study area, MAR
values exhibit a diverse spectrum, ranging from 2.57 to 76.03%, with a computed average
value of 45.84% (see Table 6.1). The MAR classification schema, which stratifies water
quality into suitable and unsuitable categories, reveals that 60% of the examined samples fall
within the suitable classification, signifying optimal magnesium concentrations for irrigation
purposes. In contrast, 40% of the samples are categorized as unsuitable, indicating a subset
with magnesium concentrations that may pose challenges in the context of irrigation water
quality. A more complex understanding of the consequences of magnesium for the interaction
between soil and water is offered by the addition of the MAR to the array of assessment
indicators. The MAR contributes to a better understanding of magnesium’s involvement in
irrigation water quality by distinguishing between appropriate and inappropriate categories.
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4.3.6.7 Potential Salinity (PS)

Extending the evaluation beyond sodicity hazards and infiltration rate assessments, the focus
now converges on the quantification of salinity hazards, a crucial facet in understanding the
overall water quality for irrigation purposes. In this endeavor, the Potential Salinity (PS)
parameter takes center stage, providing valuable insights into the salinity-related challenges
that may be encountered in the study area.

The computation of Potential Salinity, as delineated by the equation (3.6), yields values
ranging from 2.04 to 34.38 meq/L, encapsulating a diverse range of salinity levels within the
examined water samples. The average PS value is calculated at 11.57 meq/L, indicative of
the general salinity conditions prevalent in the study area.

Upon classification, the results underscore the salinity challenges faced, with an over-
whelming majority of the water samples, amounting to 98.81%, falling within the unsuitable
class. This classification highlights the potential impediments posed by salinity, emphasizing
the need for targeted interventions and management strategies to mitigate the impact of
salinity hazards on irrigation practices.

4.3.7 Hydrochemical Characterization of the Water Samples

As the investigation progresses from hazard quantification to a more nuanced exploration, an
integral aspect involves the hydrochemical characterization of the groundwater samples. To
unravel the intricate composition of the water and gain insights into its hydrochemical facies,
the study adopts the Piper diagram as a powerful tool in this endeavor. The Piper diagram
(Fig 6.3), pioneered by Piper (1944), stands as a graphical representation that unravels the
hydrochemical facies and origins of predominant cations and ions in the water samples.
The diagram categorizes key components, including calcium (Ca2+), magnesium (Mg2+),
sodium (Na+), bicarbonates (HCO3

– ), Chloride (Cl– ), and sulfate (SO4
– 2), providing a

comprehensive depiction of the hydrochemical composition. The methodology, as proposed
by Piper (1944), involves plotting two triangles. The first triangle encapsulates calcium
(Ca2+) and magnesium (Mg2+) as "alkaline earths" and sodium (Na+) as "alkali." The second
triangle encompasses sulfate (SO4

– 2) and chloride (Cl– ) as "strong acids" and bicarbonates
(HCO3

– ) as "weak acid." A diamond synthesizes the outcomes of the two triangles, offering
a holistic view of the hydrochemical facies. The positional assignment of ions within the
diagram is pivotal for deciphering the hydrochemical facies. By drawing perpendicular lines
from the sample point in each triangle towards the diamond, the intersection of these lines
determines the ion’s position within the diamond.
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Fig. 4.2 Pipper diagram

Upon careful analysis of the Piper diagram output, the study reveals compelling insights.
The prevalence of alkaline earths (Ca2+ and Mg2+) surpasses that of alkalies (Na+ and K+).
Furthermore, the dominance of strong acids (SO4

– and Cl– ) over weak acids (CO3
– 2 and

HCO3
– ) is evident in the majority of the water samples. The diamond plot underscores a

notable trend, with no cation-anion pairs exceeding 50%. Consequently, the dominant hydro-
chemical type emerges as mixed, followed by the calcium chloride facies type (Ca2++Cl– ).
Essentially, the Piper diagram’s ability to allow hydrochemical characterisation adds a layer
of sophistication to our comprehension of water composition. It offers important information
about the dominant hydrochemical facies and directs future decisions for the management of
water resources.
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4.4 Discussion

Following the analysis of groundwater samples against established quality standards, several
deviations from recommended values were observed. In this discussion, we delve into
the underlying causes of these deviations, shedding light on the factors contributing to the
observed results.

High Salinity

In the semi-arid study area, groundwater exhibits high salinity, as evidenced by elevated
EC and TDS. This salinity is primarily attributed to evaporation, particularly in shallow
aquifers, compounded by the presence of hypersaline lakes. Minerals like gypsum, halite, and
carbonate rocks contribute to groundwater salinity due to the area’s geological composition.
Salinity is further increased by irrigation return flow, leaching salts from soil and fertilizers,
and mixing with irrigation water, often higher in salinity than native groundwater. Industrial
and agricultural wastewater also introduce various salts and chemicals, including chlorides,
sulfates, nitrates, phosphates, and metals, into groundwater.

High Hardness, Total Alkalinity, and Bicarbonate

Elevated levels of hardness, total alkalinity, and bicarbonate in groundwater indicate the
presence of calcium, magnesium, and carbonate ions. These ions originate from the dis-
solution of carbonate rocks, facilitated by increased soil carbon dioxide levels, leading to
carbonic acid formation, pH reduction, and enhanced carbonate solubility. Organic matter
degradation, exacerbated by livestock overgrazing, can further elevate groundwater hardness
and alkalinity by introducing organic matter and nutrients, stimulating microbial activity, and
carbonate precipitation. Industrial, agricultural, and livestock activities can also introduce
calcium-magnesium-bicarbonate-rich sources, impacting the carbonate system with diverse
organic and inorganic compounds.

4.5 Conclusion

In conclusion, this comprehensive study underscores the imperative of employing diverse
classification indices to attain a holistic comprehension of irrigation water quality. The
meticulous analysis of key parameters, including EC and TDS, has revealed that an alarming
majority, exceeding 85% of the water samples, falls within the category of severe saline
water. Consequently, prudent water management strategies, possibly involving treatment
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processes, are recommended to avert salinity-related challenges, such as diminished crop
yields. The investigation into water hardness indicates that a substantial proportion of the
sampled water manifests as very hard, signaling a potential risk of clogging in water network
equipment upon prolonged utilization of the groundwater from the study area. Regarding
cations concentrations, iron (Fe), calcium (Ca), and magnesium (Mg) conform within the
standard limits. However, stringent restrictions on water usage are imperative due to elevated
concentrations of sodium (Na+). Conversely, concerning anions, while phosphate (PO4

– )
concentrations adhere to permissible levels, chloride (Cl– ), bicarbonate (HCO3

– ), and nitrate
(NO3

– ) surpass the prescribed limits, leading to a classification of water samples under the
category of moderate restriction.

The assessment of water alkalinity through the Total Alkalinity parameter designates the
water as severely restricted, necessitating mineral acid injection to counteract potential crop
nutrient deficiencies arising from heightened alkalinity. IWQI highlights the severity of the
water quality situation, with over 90 of the analyzed samples falling within the categories of
moderately to highly restricted, signifying challenges for the normal growth of crops with
moderate to low salt sensitivity.

Nevertheless, a nuanced interpretation emerges when considering additional indices such
as SAR, Na%, KR, Permeability Index (PI), and MAR, which collectively categorize the
majority of water samples as of good to excellent quality for irrigation purposes. Expect-
edly, PS classifies the water samples under the unsuitable category, necessitating careful
consideration.

Furthermore, the hydrochemical facies, elucidated through the Piper diagram analysis,
delineates a nuanced water composition. The prevalence of alkaline earths over alkalies and
the dominance of strong acids over weak acids are discerned. The mixed type emerges as the
dominant hydrochemical facies, followed by the calcium chloride facies type.

In light of these findings, it is imperative for relevant authorities and institutions to
acknowledge the substantial implications of incessant groundwater utilization in the study
area. Urgent attention to treatment measures before water application is crucial to circumvent
potential agricultural and environmental repercussions. The synthesis of insights from
diverse indices and hydrochemical characterization furnishes a comprehensive foundation
for informed decision-making in water resource management.



Chapter 5

ML-Based Irrigation Water Quality
Classification

5.1 Introduction

In this pivotal section of the thesis, the focus transitions towards pioneering advancements in
the integration of machine learning methodologies dedicated to the nuanced classification of
groundwater quality, specifically tailored for irrigation purposes. The overarching objective
is to harness the transformative potential of machine learning techniques to distill actionable
insights from groundwater data, facilitating informed decision-making in agriculture and
water resource management. The imperative evaluation of water quality stands as a linchpin
for safeguarding both environmental integrity and human well-being. Despite the consid-
erable strides made in employing machine learning for assessing water quality, there exists
a research gap concerning its application in the classification of groundwater devoted for
irrigation. Particularly noteworthy is the scarce literature exploring the efficacy of utilizing
machine learning with a reduced set of input parameters while still achieving satisfactory
classification outcomes. This study embarks on addressing this research gap by meticulously
investigating the feasibility of employing machine learning for the classification of groundwa-
ter designated for irrigation purposes. A distinctive facet of this research lies in its endeavor
to achieve robust classification outcomes using a minimalistic set of input parameters. The
methodology involves the development of machine learning models that simulate the Irri-
gation Water Quality Index (IWQI) and an economic model, with a deliberate emphasis on
optimizing the number of inputs to maximize accuracy. To elucidate the diverse landscape
of machine learning classifiers, eight algorithms were meticulously selected for evaluation.
These include the LightGBM classifier, CatBoost, Extra Trees, Random Forest, Gradient
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Boosting classifiers, Support Vector Machines, Multi-Layer Perceptrons, and the K-Nearest
Neighbors Algorithm. Two distinct scenarios were contemplated to assess the classification
performance. The first scenario utilized six inputs, encompassing conductivity, chloride
(Cl– ), bicarbonate (HCO3

– ), sodium (Na+), calcium (Ca2+), and magnesium (Mg2+). The
second scenario reduced the input parameters to three, namely total hardness (TH), chloride
(Cl– ), and sulfate (SO4

2 – ), judiciously selected based on the Mutual Information (MI) results.
This innovative investigation aims to advance the field of machine learning applications in
water quality assessment while also providing a pragmatic framework for optimizing inputs,
which will increase the effectiveness and scalability of irrigation-specific groundwater quality
classification models.

5.2 Data Preprocessing

In our study, the data preprocessing phase plays a pivotal role in refining the dataset to
ensure the quality and effectiveness of subsequent machine learning models. A series of
essential steps, including data cleansing, normalization, missing value imputation, and feature
selection techniques, are systematically implemented. To address missing data values, the
KNN imputer is employed, utilizing the K-nearest neighbors algorithm with a specified k
value of 5. This imputation technique calculates the average values from the five nearest
neighbors to fill missing data points, ensuring a robust and data-driven approach to handle
incomplete records. The subsequent classification task assigns classes based on Meireles’
recommended classes, wherein IWQI values for each water sample are determined and
corresponding class values are assigned. These class values range from 0 to 5, representing
IWQI intervals of 0–40, 40–55, 55–70, 70–85, and 85–100, respectively. To mitigate potential
negative impacts associated with unbalanced data on machine learning algorithms, the
Synthetic Minority Over-sampling Method (SMOTE) is employed to oversample the minor
classes. SMOTE facilitates the generation of synthetic instances within the minority class,
addressing imbalances and enhancing the overall robustness and generalization capabilities
of the models. The careful execution of these preprocessing steps lays the foundation for
subsequent machine learning analyses, ensuring the reliability and accuracy of the models.

5.3 Correlation Analysis of Parameters

Correlation analysis stands as a pivotal step in machine learning, facilitating the identi-
fication of key features and the development of robust predictive models. This analysis
entails evaluating pairwise correlations among irrigation water quality parameters, assigning
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values within the range of -1 to +1. The investigation discerns a high positive correlation
between conductivity and several variables, including (SO4

2–), (Na+), (Mg2+), and (Ca+2)
(Fig. 5.1). This observation implies a potential presence of multicollinearity, which can have
ramifications on both model stability and interoperability.

Fig. 5.1 Correlation Heatmap of the parameters used as inputs

Moreover, positive correlations are observed among (SO4
2–), conductivity, (Ca+2),

(Mg2+), and (Na+), indicating interdependencies among these parameters. Conversely,
a weak correlation is identified between (HCO3

– ) and other parameters. However, relying
solely on these correlations may not be adequate to pinpoint the most influential parame-
ters contributing to the dataset’s variability. To address this limitation, mutual information
analysis (MI) is employed to identify the most influential parameters systematically. This
approach offers a more nuanced understanding of the dataset, ensuring a comprehensive
evaluation of parameter significance beyond the scope of traditional correlation measures
(Fig. 5.2 ). In tandem with correlation analysis, pairplots are utilized to visually comprehend
the relationships between input parameters (refer to Fig. 5.3). This graphical representation
aids in identifying patterns, trends, outliers, and potential non-linear relationships. The
x-axis corresponds to parameters from the first scenario, while the y-axis represents parame-
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ters from the second scenario, providing a comprehensive visual overview of the dataset’s
interparameter relationships.

Fig. 5.2 Features importance ranking based on MI

5.4 Methodology

The methodology employed in this study represents a meticulous and systematic approach
designed to achieve the overarching goal of developing robust machine learning models for
the classification of groundwater quality tailored for irrigation purposes. Dataset Splitting
and Parameter Selection The dataset was partitioned into training and testing sets utilizing an
80–20% split, ensuring a comprehensive yet independent assessment of model performance.
The simulation of the Irrigation Water Quality Index (IWQI) was initially performed using
six key parameters. Subsequently, a judicious reduction of input parameters to three—total
hardness (TH), chloride (Cl– ), and sulfate (SO4

2 – )—was executed through the Mutual
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Information approach (Fig. 6.1). This reduction aimed at optimizing model efficiency
without compromising classification accuracy.

Fig. 5.3 Pairwise Relationship Plots of Input Variables in Two Scenarios

Cross-Validation for Robustness To fortify the robustness and generalization capabilities
of the developed models, cross-validation was employed. Specifically, Repeated K-Fold
Cross-Validation (cv=RepeatedKFold (n_splits=10, n_repeats=3)) was implemented. This
technique ensures that the models are trained and tested across various subsets of the dataset,
mitigating the risk of overfitting and enhancing their capacity to handle diverse data patterns.
Hyperparameter Tuning GridSearch, a systematic and exhaustive hyperparameter tuning
technique, was deployed to optimize the performance of the machine learning models.
This involved an exhaustive search through a predefined hyperparameter grid to identify
the most effective configuration for achieving superior classification results. The ultimate
hyperparamters setting is highlighted in the Table 5.1.

5.5 Model Evaluation Metrics

The evaluation of model performance was conducted based on a comprehensive set of
metrics, including accuracy, precision, recall, and F1-score. These metrics provide a nuanced
understanding of the model’s classification prowess, addressing aspects of correctness,
completeness, and trade-offs between precision and recall. Benchmarking against Diverse
Models for Robust Comparison The results obtained from the developed models were
rigorously compared with those of various machine learning models. This comparative
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Table 5.1 The optimal hyperparameters for the ML models.

Random Forest Extra Trees GBoost

n_estimators= 1030 n_estimators=170 n_estimators= 100
criterion=’gini’ criterion=’gini’ min_samples_split= 4
min_samples_split= 2 min_samples_split=2 learning_rate= 0.1
min_samples_leaf= 1 min_samples_leaf=1 min_samples_leaf= 2

max_features="sqrt"

XGBoost Catboost LGBM

n_estimators= iterations=992 learning_rate= 0.1
learning_rate= learning_rate=0.313 n_estimators= 631
gamma=
reg_alpha=
reg_lambda=
base_score=

analysis aimed to discern the best-performing model for the classification of groundwater
samples. The overarching goal is to contribute insights that inform the selection of an optimal
machine learning approach for accurately and efficiently classifying groundwater quality for
irrigation purposes developed in our study.

5.6 Results And Discussion

5.6.1 First Scenario

The evaluation of machine learning models in simulating the Irrigation Water Quality Index
(IWQI) using six parameters—conductivity, chloride (Cl– ), bicarbonate (HCO3

– ), sodium
(Na+), calcium (Ca2+), and magnesium (Mg2+)—revealed nuanced performances across
various classifiers. The LightGBM (LGBM) classifier emerged as the top-performing model,
achieving the highest accuracy of 91.16% in accurately classifying IWQI based on the speci-
fied parameters. Following closely, the CatBoost classifier demonstrated notable accuracy,
recording a score of 90.91The Extra Trees, Random Forest, and Gradient Boosting classifiers
also exhibited commendable performances, achieving accuracy scores of 90.62%, 89.72%,
and 88.38%, respectively. Despite slightly reduced accuracy scores, the Support Vector
Machines (SVM), Multi-Layer Perceptrons (MLP), and K-Nearest Neighbors Algorithm
(KNN) classifiers still showcased acceptable performances. To assess the overall value of the
classifiers, a weighted average of precision and recall scores was computed. The results high-
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lighted the superiority of the LGBM, CatBoost, and Extra Trees classifiers, with weighted
precision scores of 91.41%, 91.16%, and 90.99%, respectively. Similarly, the weighted recall
scores for these classifiers were 91.16%, 90.91%, and 90.73%, underscoring their robustness
in minimizing false positives and false negatives. F1 scores, which provide a balanced
measure of precision and recall, were computed for each model, further substantiating their
overall performance. Additionally, the area under the ROC curve (ROC-AUC) was employed
as a metric to assess the models’ ability to distinguish between positive and negative classes.
The results, summarized in Table 5.2, revealed high ROC-AUC values ranging from 89.33%
to 98.64%, affirming the classifiers’ accuracy in correctly classifying instances across both
positive and negative classes.

Table 5.2 Performance Evaluation of Machine Learning Models under both scenarios

First scenario

ROC_AUC precision recall F1 Accuracy

LightGBM Classifier 0.9864 0.9141 0.9116 0.9108 0.9116
CatBoost Classifier 0.9859 0.9116 0.9091 0.9075 0.9091
Extra Trees 0.9844 0.9099 0.9073 0.9020 0.9062
Random Forest 0.9836 0.8990 0.8972 0.8956 0.8972
Gradient Boosting 0.9775 0.8878 0.8838 0.8830 0.8838
SVM 0.9680 0.8717 0.8658 0.8647 0.8658
MLP 0.9590 0.8707 0.8642 0.8572 0.8629
KNN 0.8933 0.8413 0.8409 0.8368 0.8409

Second scenario

Extra Trees 0.9627 0.8683 0.8647 0.8630 0.8647
Random Forest 0.9567 0.8442 0.8405 0.8393 0.8405
CatBoost Classifier 0.9567 0.8499 0.8471 0.8449 0.8405
SVM 0.9466 0.8408 0.8380 0.8353 0.8380
KNN 0.8919 0.8415 0.8377 0.8351 0.8377
LightGBM Classifier 0.9566 0.8394 0.8348 0.8346 0.8348
Gradient Boosting 0.9553 0.8354 0.8322 0.8283 0.8308
MLP 0.9394 0.8084 0.7952 0.7909 0.7902

Visual representation of the models’ performance was provided through confusion matri-
ces (Fig. 6.4), offering insights into accurate and inaccurate classifications across various
classes. The matrices presented true positive, false positive, false negative, and true negative
values, essential for determining precision, recall, and F1 scores for each class. A compre-
hensive evaluation, including precision, recall, F1 score, and accuracy values, is presented in
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Table 5.2 and Figure (Fig. 6.3). These findings collectively emphasize the robust performance
of the selected machine learning models in simulating the IWQI for groundwater quality
assessment in the first scenario.

Fig. 5.4 Performance of the ML models in the 2 scenarios: a) First scenario, b) Second
scenario

5.6.2 Second Scenario

In the second scenario, the study aimed to minimize model input parameters by employing
mutual information (MI) to identify the most influential factors contributing to the dataset’s
variability. Following the MI analysis, a subset of three parameters—total hardness (TH),
chloride (Cl– ), and sulfate (SO4

2–)—was selected as input for the machine learning models.
The model’s performance under these specified conditions underwent a comprehensive
evaluation using various metrics, as detailed in Table (5.2), alongside corresponding values
for each machine learning (ML) model. The Extra Trees classifier demonstrated superior
performance, achieving an accuracy score of 86.47%, outperforming other models. Following
closely were the Random Forest (RF) and CatBoost classifiers, each attaining an accuracy
score of 84.05%. SVM, K-Nearest Neighbors (KNN), and LightGBM (LGBM) models
exhibited accuracy scores of 83.80%, 83.77%, and 83.48%, respectively. The Gradient
Boosting and Multi-Layer Perceptrons (MLP) classifiers concluded with accuracy scores of
83.08% and 79.02%, respectively. Assessing the F1 score, the Extra Trees classifier emerged
as the top performer with a score of 86.30%, closely followed by CatBoost, RF, and SVM
classifiers with F1 scores of 84.49%, 83.93%, and 83.53%, respectively. Other classifiers
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Fig. 5.5 Confusion matrices of the ML models for the first scenario: a) CatBoost classifier, b)
Extra Trees Classier, c) Multilayer perceptrons classifier, d) Gradient Boosting classifier, e)

LGBM classifier, f) Random Forest classifier, g)KNN classifier, h)SVM classifier

exhibited F1 scores ranging from 79.09% to 83.77%. Emphasizing the importance of the F1
score in assessing classification models due to its ability to account for both false positives
and false negatives, the values are presented in Table 5.2 along with precision and recall
values. ROC AUC values, ranging from 93.94% to 96.27%, were obtained, indicating the
substantial ability of all employed models to accurately identify and categorize instances of
both positive and negative classes. The confusion matrices for each classifier, illustrated in
Fig.6.6, provide a visual representation of their performance in classifying instances across
various classes. These results underscore the effectiveness of the Extra Trees classifier in
achieving accurate groundwater quality classification for irrigation purposes with a reduced
set of input parameters.
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Fig. 5.6 Confusion matrices of the ML models for the second scenario: a) CatBoost classifier,
b) Extra Trees Classier, c) Multilayer perceptrons classifier, d) Gradient Boosting classifier,

e) LGBM classifier, f) Random Forest classifier, g)KNN classifier, h)SVM classifier

5.7 Discussion

Our study, exploring machine learning applications for water quality assessment, aligns
with valuable insights derived from recent literature. The adopted feature selection strategy
resonates with findings from studies such as Sadat-Noori et al. (2014) work , which under-
scores the preponderant role of chloride in driving water quality changes. Similarly, Nasir
et al. (2022) emphasized total hardness (TH) as a significant contributor to water quality,
corroborating our focus on this parameter. The utilization of LightGBM, CatBoost, Extra
Trees, and Random Forest classifiers in our study showcased the efficiency and accuracy of
these models in various contexts, echoing similar observations found in the literature. In the
realm of groundwater quality prediction, Kumar (2022) geostatistical analyses, employing
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gradient boosting and extra trees classifiers, align with our use of Extra Trees for multiclass
classification. Shrivastava et al. (2022) comparative analysis further supports our choice
of Extra Trees and Random Forest for efficient groundwater classification in multiclass
scenarios. Furthermore, Nasir et al. (2022) findings, highlighting CATBOOST as highly
predictive, reinforce our conclusion about the efficacy of CATBOOST in achieving high
classification accuracy. These consistent observations across various studies strengthen the
reliability and generalizability of our machine learning-based approach for groundwater
quality assessment tailored specifically for irrigation purposes.

While our study aligns with existing literature, there are notable distinctions that set us
apart from prior research endeavors. Unlike the work conducted by Dezfooli et al. (2018),
which achieved high accuracy (90.70%) with only three water quality parameters using a
Probabilistic Neural Network (PNN), our study focuses on physiochemical parameters with
an emphasis on an economically oriented approach. This deliberate choice of a subset of
parameters aims to reduce costs and labor associated with water quality assessment. In
contrast to studies that incorporate biological parameters, such as fecal coliform, in their
comprehensive analyses, our research strategically prioritizes physiochemical parameters.
Despite the potential for higher accuracy achieved through the inclusion of additional pa-
rameters, our emphasis on economic considerations sets us on a distinct path. Our approach
prioritizes efficiency and cost-effectiveness in water quality suitability assessment, aligning
with the practical constraints often encountered in real-world applications. This distinct facet
of our research contributes to the feasibility and scalability of implementing machine learning
techniques in groundwater quality assessment tailored for irrigation purposes (Zegaar et al.,
2023).

5.8 Conclusion

In the exploration of groundwater quality assessment for irrigation purposes, this section
delved into the comprehensive evaluation of machine learning models, utilizing a dataset
spanning the years 2018 to 2022 from various locations within the Msila region. Anchored
in the Irrigation Water Quality Index (IWQI), the benchmark for classification, a diverse
ensemble of machine learning models underwent meticulous scrutiny, employing robust
performance metrics including ROC-AUC, precision-recall, F1 score, and accuracy.

The array of machine learning models considered encompassed the LGBM classifier, Cat-
Boost, Extra Trees, Random Forest, Gradient Boosting classifiers, Support Vector Machines,
Multi-Layer Perceptrons, and the K-Nearest Neighbors Algorithm. The evaluation revealed
that the models exhibited satisfactory performance, with the LGBM classifier emerging as
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the top-performing model, achieving an impressive 91.08% F1 score. Notably, this model uti-
lized six inputs—conductivity, chloride (Cl– ), bicarbonate (HCO3

– ), sodium (Na+), calcium
(Ca2+), and magnesium (Mg2+)—to calculate IWQI.

In an appreciable stride towards model optimization, this research applied the mutual
information technique, resulting in a reduction of input parameters to three crucial factors:
total hardness (TH), chloride (Cl– ), and sulfate (SO4

2–). Within this streamlined framework,
the Extra Trees classifier emerged as the optimal model, achieving a notable 86.30% F1
score.

The implications of these findings are profound, introducing an ML model capable of ac-
curately simulating IWQI while presenting a streamlined and economically viable approach
to groundwater quality classification. The application of this model holds the potential to sig-
nificantly reduce the time and effort invested in water quality assessment, making it a valuable
tool for real-time monitoring. This is particularly beneficial for farmers and decision-makers
engaged in water resource management. In essence, this study contributes to a paradigm
shift towards efficient and economically feasible water quality assessment methodologies,
promising widespread applicability and adoption across diverse environmental contexts.



Chapter 6

Interpretable ML for irrigation water
Quality Prediction

6.1 Introduction

The study now pivots towards the subsequent prediction task. Having identified key interde-
pendencies among irrigation water quality parameters and established a robust classification
framework, the focus shifts toward predictive modeling. In addressing the challenges as-
sociated with predicting groundwater quality, this section proposes a sophisticated and
interpretable machine learning approach. Our methodology incorporates state-of-the-art
algorithms, including XGBoost, Random Forest, GradientBoost, and CatBoost regressors,
to craft predictive models for assessing groundwater quality. The utilization of the Shapley
Additive Explanations (SHAP) method provides valuable insights into the contributions of
water quality parameters to the Irrigation Water Quality Index (IWQI). To rigorously assess
the accuracy of our predictive models, key performance metrics such as Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), and the coefficient of determination (R2) will
be employed. Additionally, feature engineering techniques, specifically Recursive Feature
Elimination with Cross-Validation (RFECV) and Permutation Importance (PI), will be lever-
aged to optimize model performance and facilitate insightful feature selection. The primary
objective is to contribute to sustainable irrigation management by providing data-driven
insights. The outcomes of this investigation are expected to inform strategies for optimiz-
ing irrigation practices, ensuring regional food security, and promoting responsible water
resource management. As such, the ensuing results hold the promise of aiding policymakers,
agricultural stakeholders, and water resource managers in making informed decisions for the
betterment of the region’s water-related practices.
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6.2 Correlation Analysis

The outcomes of the correlation analysis under the new settings unveiled diverse magnitudes
of correlation among these parameters, offering insights into their respective impacts on
groundwater quality tailored for irrigation purposes (Fig. 6.1). Noteworthy among these
correlations is the moderately positive association (0.534) observed between Total Alkalinity
(TAC) and IWQI. This correlation implies that maintaining TAC levels within recommended
thresholds is linked to enhanced groundwater quality suitable for irrigation, as TAC plays
a pivotal role in pH control, establishing a stable environment conducive to optimal crop
growth.

Fig. 6.1 Heatmap of correlation values

Similarly, Kelly’s Ratio (KR) manifested a moderate positive correlation (0.462) with
IWQI. This finding suggests that a higher KR corresponds to a favorable sodium-calcium ratio,
positively influencing soil permeability and, consequently, overall water quality suitability for
irrigation. Furthermore, the Permeability Index (PI) exhibited a moderate positive correlation
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with IWQI (0.504), indicating that elevated PI values are associated with a reduced risk
of water-induced soil degradation. This correlation underscores the importance of PI in
enhancing groundwater quality for agricultural use. Conversely, Electrical Conductivity
(EC) demonstrated a moderate negative correlation (-0.378) with IWQI. Lower EC values,
indicative of reduced dissolved salt levels, prove advantageous for preserving soil structure
and mitigating the risk of salinization. Additionally, bicarbonates (HCO3

– ) showcased
a moderate negative correlation (-0.445) with IWQI, suggesting that lower bicarbonate
levels contribute to improved irrigation water quality. Moreover, Sulfates (SO4

2 – ) displayed
a moderate negative correlation (-0.406) with IWQI, signifying that diminished sulfate
concentrations lead to enhanced groundwater quality for irrigation, mitigating potential
adverse effects on soil and crop health.

The weak positive correlation of 0.3046 with pH suggests that higher pH levels are
somewhat correlated with an increase in IWQI. In contrast, weak negative correlations are
evident with electrical conductivity (EC), turbidity, total dissolved solids (TDS), calcium
ions (Ca2+), magnesium (Mg2+), and sodium (Na+), implying that elevated values of these
parameters may be linked to a decrease in IWQI. Notably, IWQI does not display a straight-
forward linear relationship with temperature, salinity, ammonium (NH4

+), nitrate (NO3
– ),

and magnesium adsorption ratio (MAR). These observations align with existing irrigation
water quality knowledge, highlighting the significant role of specific water quality parameters
in assessing groundwater suitability for irrigation. It is imperative to emphasize, however,
that correlation analysis alone cannot serve as a standalone method for feature selection.
Correlation measures solely account for linear connections between variables and overlook
complex interactions or non-linear dependencies. To ensure robust feature selection and a
comprehensive understanding of the relative importance of each water quality parameter, a
broader analysis should incorporate additional feature selection methods such as Recursive
Feature Elimination with Cross-Validation (RFECV) or Permutation Importance (PI). These
supplementary methodologies contribute to the development of more accurate and reliable
predictive models for groundwater quality assessment in irrigation systems by providing a
thorough evaluation of feature relevance.

6.3 Feature selection

In the process of feature selection, the Recursive Feature Elimination with Cross-Validation
(RFECV) technique was implemented to identify the optimal number of water quality
parameters for optimizing the Random Forest model’s performance. The RFECV analysis
demonstrated that the Random Forest model achieved its peak performance with 7 parameters
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(Fig. 6.2), signifying the initial consideration of a larger set of features for predicting the
Irrigation Water Quality Index (IWQI).

Fig. 6.2 Recursive feature elimination with cross-validation plot

To further refine feature selection and ensure the inclusion of the most relevant parameters,
additional methods were employed. The permutation importance analysis results, insights
from correlation analysis, and domain knowledge of irrigation water quality collectively
played a crucial role in the final selection of the most influential features. Upon thorough
consideration, 6 parameters were identified as the optimum inputs for the predictive model.
These parameters were chosen based on their substantial positive or negative correlations
with IWQI and their individual importance in the permutation importance analysis. Domain
knowledge further provided insights into the practical relevance and impact of these features
on groundwater quality for irrigation. The integration of RFECV, permutation importance,
and correlation analysis with domain knowledge in the feature selection process resulted in a
refined set of input parameters significantly contributing to the accuracy and interpretability of
the predictive model. The utilization of these 6 key parameters enhances the model’s capacity
to capture essential factors influencing groundwater quality for irrigation. This optimized
set of features ensures a more robust and reliable model, facilitating improved decision-
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making in water resource management and promoting sustainable agricultural practices. It
is crucial to emphasize that the incorporation of multiple feature selection techniques and
domain knowledge is paramount for obtaining a comprehensive understanding of feature
importance. By considering results from diverse methods, potential limitations inherent in
individual approaches are overcome, leading to a more informed and well-rounded feature
selection process. This approach ensures that the selected features align with both statistical
significance and practical significance in the context of irrigation water quality assessment.

6.4 Results and discussion

6.4.0.1 Models performances

The evaluation of machine learning model performance in predicting the irrigation water
quality index (IWQI) encompassed three key measures: R-squared (score), Mean Absolute
Error (MAE), and Root Mean Squared Error (RMSE), as detailed in Table 6.1. These metrics
collectively offer a comprehensive assessment of the models’ ability to capture variability in
IWQI and the accuracy of their predictions.

Table 6.1 Performances of the regressors

Regressors MAE RMSE R2

Catboost 1.789 2.911 0.871
XGBoost 1.963 3.159 0.851
GBoost 2.085 3.209 0.852
Random forests 2.452 3.714 0.797

The optimal hyperparameters utilized to achieve the highest model performance are
presented in Table 6.2.

Among the tested models, the CatBoostRegressor exhibited superior performance, at-
taining a high R-squared score of 0.871, accompanied by a standard deviation of 0.056.
This outcome implies that approximately 87.1% of the variance in IWQI can be elucidated
by the model’s predictions. Furthermore, the CatBoostRegressor demonstrated the lowest
MAE, featuring a mean value of 1.789 and a standard deviation of 0.326. This indicates that,
on average, the model’s predictions deviated by approximately 1.789 units from the actual
IWQI values. Additionally, the CatBoostRegressor displayed the smallest RMSE, featuring a
mean value of 2.911 and a standard deviation of 2.911. The reduced RMSE underscores the
proximity of the model’s predictions to the true IWQI values, thereby enhancing the accuracy
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Table 6.2 Models hyperparameters

Random Forest GBoost XGBoost Catboost

n_estimators= 1000 n_estimators= 1100 base_score=0.5 iterations=1000
max_depth= 50 min_samples_split= 2 grow_policy=’depthwise’ learning_rate=0.05
min_samples_split= 2 learning_rate= 0.055 max_cat_threshold=64
min_samples_leaf= 1 min_samples_leaf= 2 min_child_weight=1

max_depth=5 n_estimators=1100
loss= ’lad’
max_depth= 3

learning_rate=0.2
booster=’gbtree’
gamma=0.0463

The acronyms in the Table stand for: lad: least absolute deviation

of groundwater quality assessments. The XGBRegressor and GradientBoostingRegressor
models exhibited commendable performance, both yielding equivalent R-squared scores
of approximately 0.851. In terms of Mean Absolute Error (MAE), the XGBRegressor and
GradientBoostingRegressor demonstrated closely aligned values, approximately 1.963 and
2.085, respectively. This proximity in average prediction deviation indicates a similar accu-
racy in predicting the irrigation water quality index (IWQI) values. Furthermore, the Root
Mean Squared Error (RMSE) values for the XGBRegressor and GradientBoostingRegressor
models were also comparable, with mean values of approximately 3.159 and 3.209, respec-
tively. These findings underscore the models’ efficacy in generating accurate predictions
for groundwater quality assessment in the context of irrigation. Finally, the performance
of the RandomForestRegressor model was marginally lower when compared to the other
models, manifesting an R-squared score of approximately 0.797. The Mean Absolute Error
(MAE) for the RandomForestRegressor stood at around 2.452, and the Root Mean Squared
Error (RMSE) was approximately 3.714. While these metrics suggest a relatively satis-
factory predictive capability, the model exhibited a slightly diminished performance when
juxtaposed with the other three models under scrutiny. In summary, the CatBoostRegres-
sor model demonstrated superior predictive prowess compared to the XGBRegressor and
GradientBoostingRegressor models. Despite a noticeable decline in performance, the Ran-
domForestRegressor still provided reasonably accurate estimations of groundwater quality
for irrigation. These outcomes endorse the utilization of machine learning models for the
assessment and prediction of irrigation water quality index values based on water quality
parameters. The notable efficacy of these models enhances our capacity to make informed
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decisions regarding water resource management and agricultural practices. However, it is
crucial to consider these findings in the context of the models’ interpretability, as accurate
predictions are most valuable when the underlying processes influencing groundwater qual-
ity are comprehended. The residual and scatter plots are presented in Fig. 6.3 and Fig.
6.4, respectively, offering visual insights into the models’ predictive performance and the
distribution of residuals.

Fig. 6.3 Residual plots of the employed ML models
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Fig. 6.4 Scatter plots of the employed ML models

6.4.0.2 SHAP values interpretation

This section facilitates a comparative analysis between the outcomes derived from the
SHAP analysis and those obtained through correlation analysis. While correlation analysis
provides a comprehensive overview of inter-variable relationships, the examination of SHAP
values delves into more nuanced and model-specific insights. SHAP values furnish valuable
indicators for assessing machine learning models, offering a detailed understanding of the
influential water quality parameters in predicting the Irrigation Water Quality Index (IWQI)
by analyzing the impact of distinct features on the model’s predictions. The analysis of
feature importance utilizing mean SHAP values elucidates the relative significance of water
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quality parameters in predicting the IWQI (Fig. 6.5). Notably, Total Alkalinity (TAC)
emerges as the most crucial feature, boasting a mean SHAP value of 2.7, underscoring its
pronounced positive influence on the model’s predictions. Electrical Conductivity (EC)
and Chloride (Cl– ) closely follow, with mean SHAP values of 2.23 and 2.21, respectively,
signifying their substantial contributions to the model’s output. In contrast, Permeability
Index (PI) and Sodium (Na+) exhibit relatively lower importance, with mean SHAP values
of 1.24 and 1.23, respectively.

Fig. 6.5 Feature importance based on SHAP values

Subsequent to the SHAP analysis, the SHAP values for four randomly selected samples
from the dataset through Waterfall SHAP plots (Fig. 6.6) were illustrated. These plots
serve as visual representations, elucidating the contribution of each feature to the prediction
for individual samples, offering a transparent depiction of the decision-making process for
specific instances.

Furthermore, the Beeswarm SHAP plot is presented in (Fig. 6.7), which effectively
illustrates the aggregate impact of features on the model’s predictions across the entire
dataset. This plot provides a holistic perspective on feature importance, accentuating the
paramount role of specific water quality parameters in determining the Irrigation Water
Quality Index (IWQI).

In the Beeswarm plot, each data point signifies a unique record within the dataset, and the
vertical axis corresponds to individual water quality parameters. The SHAP value, serving
as a metric for assessing the extent of contribution and influence, is utilized to measure
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Fig. 6.6 Waterfall plot of 4 random samples

Fig. 6.7 Beeswarm plot of SHAP values

the impact of each feature on the model’s prediction for each data point. The color-coded
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representation in the Beeswarm plot facilitates the interpretation of results, where positive
SHAP values are visually represented on the right side of the axis. This positioning signifies
that increasing values of these features have a positive impact on the model’s predictions.
Conversely, negative SHAP values are depicted on the left side of the axis, indicating
that increasing values of these features negatively influence the model’s predictions. This
visual representation aids in comprehending the directional impact of each water quality
parameter on the model’s predictions, contributing to a nuanced understanding of the model’s
decision-making process. The observations derived from the Beeswarm plot underscore the
pivotal role of specific water quality parameters in delineating the irrigation water quality
index. Particularly, Total Alkalinity (TAC) exhibits a positive influence on the model’s
predictions, signifying that elevated TAC values contribute to enhanced groundwater quality
suitable for irrigation. Conversely, Electrical Conductivity (EC) is identified as having a
negative impact on the model’s outcomes, implying that heightened EC values may lead to a
diminished suitability of groundwater quality for irrigation. Sodium Adsorption Ratio (SAR)
emerges as a notably influential parameter with a positive effect on the model’s predictions,
suggesting that heightened SAR values are correlated with improved groundwater quality
for irrigation. Likewise, Permeability Index (PI) manifests a positive influence, indicating
that increased PI values are advantageous for maintaining suitable groundwater quality
for irrigation purposes. In contrast, Chloride (Cl– ) is observed to exert a highly negative
impact on the model’s predictions, suggesting that elevated chloride concentrations may
adversely affect groundwater quality for irrigation. Notably, Sodium (Na+) is highlighted
as a highly influential parameter with a positive impact, signifying that heightened sodium
levels are associated with improved groundwater quality for irrigation purposes. The cautious
interpretation of SHAP analysis outcomes is essential, as it may appear to diverge from the
conventional understanding of water quality parameters and their impact on groundwater
suitability for irrigation. An instance of such a discrepancy is observed in the case of
higher Total Alkalinity (TAC) values, traditionally deemed detrimental to water quality due to
potential scaling and soil pH issues, yet indicated by SHAP analysis to contribute to enhanced
groundwater quality for irrigation. This incongruity can be reconciled by considering the
specific contextual factors of the study area and the recommended water quality thresholds
tailored for irrigation purposes (Wilcox, 1955). It is plausible that TAC levels within certain
defined ranges offer benefits for pH buffering, creating a stable environment conducive
to crop growth in the investigated region. Similarly, the findings of SHAP analysis may
indicate that elevated Electrical Conductivity (EC) values result in diminished groundwater
quality suitability for irrigation. However, this observation necessitates a comparison with
established water quality guidelines and thresholds for EC in irrigation water. Depending
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on the specific crop varieties and soil characteristics prevalent in the study area, certain
EC levels might be deemed acceptable and even beneficial for irrigation purposes (Ayers
and Westcot, 1985). This principle extends to other water quality parameters, including
Sodium Adsorption Ratio (SAR), Permeability Index (PI), chloride concentrations, and
sodium levels, where SHAP analysis may propose varying effects on groundwater quality
compared to traditional interpretations. Contextual assessments should be grounded in
regional water quality standards, crop-specific requirements, and environmental conditions
to ensure judicious groundwater management for sustainable irrigation practices.

The integration of Waterfall and Beeswarm SHAP plots serves to augment the inter-
pretability of the machine learning model, providing valuable insights into the relative
importance of each water quality parameter and their collective contributions to the predic-
tion of groundwater quality for irrigation purposes.

6.5 The novelty of the study

In contrast to previous investigations in the literature, our study exhibits several notable
strengths that distinguish it from prior endeavors in predicting the Irrigation Water Quality
Index (IWQI). Ibrahim et al. (2023) utilized Support Vector Machines (SVM) and Adaptive
Neuro-Fuzzy Inference System (ANFIS), employing nine water quality parameters as inputs
and achieving RMSE values of 12.45 and 4.54, respectively. Similarly, Gaagai et al. (2023)
employed the Gradient Boosting Regressor (GBR) and Artificial Neural Networks (ANN)
to predict IWQI, yielding RMSE values of 2.562 and 2.175, respectively. In another study,
Yıldız and Karakuş (2020) employed various ANN structures and obtained RMSE values
ranging from 1.634 to 5.231 in predicting IWQI. However, our research distinguishes itself by
not only employing a diverse array of state-of-the-art machine learning algorithms, including
XGBoost, Random Forest, GradientBoost, and CatBoost regressors, but also by incorporating
the Shapley Additive Explanations (SHAP) method for enhanced model interpretability. The
absence of model interpretability in previous studies represents a significant gap in the existing
literature. Through the utilization of SHAP analysis, our research provides valuable insights
into the contributions of individual water quality parameters in determining IWQI, thereby
advancing our understanding of the intricate relationships between groundwater quality and
irrigation suitability. Furthermore, our investigation offers an exhaustive examination of
feature engineering methodologies, including Recursive Feature Elimination with Cross-
Validation (RFECV) and Permutation Importance (PI), aimed at refining predictive models.
This approach facilitates the identification of pertinent features, thereby augmenting model
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interpretability and ultimately contributing to a more precise and dependable prediction of
the Irrigation Water Quality Index (IWQI) (Zegaar et al., 2024a).

6.6 Conclusion

In summary, this research constitutes a thorough exploration into the prediction of ground-
water quality tailored for irrigation purposes. The primary focus involves a nuanced un-
derstanding of the importance of water quality parameters facilitated by advanced machine
learning methodologies and SHAP analysis. The outcomes divulge pivotal insights into the
influence of diverse water quality parameters on the Irrigation Water Quality Index (IWQI),
furnishing valuable indicators for the optimization of water resource management strategies
and agricultural practices. Through meticulous correlation analysis, we unveiled significant
positive and negative correlations between IWQI and specific water quality parameters. Total
Alkalinity (TAC), Kelly’s Ratio (KR), Permeability Index (PI), and Sodium Adsorption Ratio
(SAR) surfaced as pivotal factors exerting positive influences on groundwater quality for
irrigation. In contrast, Electrical Conductivity (EC), Chloride (Cl– ), and Sulfates (SO4

2 – )
were identified as parameters with potential adverse impacts. This discernment holds promise
for advancing our comprehension of the intricate interplay between groundwater quality
and its suitability for irrigation, thereby contributing to informed decision-making in the
realm of water resource management and sustainable agricultural practices. Our investigation
showcases the interpretive capabilities of machine learning models through the application of
SHAP analysis, thereby fostering a profound comprehension of the predictive mechanisms
inherent in these models. The utilization of Beeswarm SHAP plots offers a visual repre-
sentation of the impact that individual features exert on model predictions, elucidating the
significance of Total Alkalinity (TAC), Electrical Conductivity (EC), Sodium Adsorption
Ratio (SAR), Permeability Index (PI), Chloride (Cl– ), and Sodium (Na) in delineating the
suitability of groundwater for irrigation. These discernments not only augment our scientific
understanding but also furnish decision-makers with valuable insights to prioritize interven-
tions aimed at enhancing water quality and, consequently, elevating agricultural productivity.
Nevertheless, it is imperative to recognize the inherent limitations of this study, such as
its dependence on a specific dataset and the omission of certain pertinent parameters. To
advance the field, future research endeavors should broaden their scope by encompassing
diverse geographical regions, integrating additional water quality variables, and undertaking
prolonged monitoring initiatives to encapsulate temporal variations comprehensively.

Despite these acknowledged constraints, the study significantly contributes to the domain
of groundwater quality prediction for irrigation, effectively bridging the nexus between water
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resource management and agricultural sustainability. The insights derived from this research
possess the potential to guide the formulation of evidence-based policies and practices,
thereby ensuring judicious water utilization, heightened crop yields, and the preservation of
invaluable water reservoirs.

In essence, the amalgamation of machine learning models and SHAP analysis propels the
attainment of a holistic comprehension of water quality dynamics, empowering stakeholders
to make enlightened decisions conducive to sustainable irrigation practices. Embracing these
insights and persistently delving into novel frontiers in groundwater research pave the way
for a future where agricultural productivity harmonizes seamlessly with conscientious water
stewardship, yielding benefits for both human livelihoods and the environment.



Chapter 7

General Conclusion

In conclusion, this comprehensive thesis has navigated the intricate intersection of machine
learning and water resources, offering a nuanced exploration into the classification and
assessment of groundwater quality for irrigation purposes. The research journey embarked
upon a multifaceted exploration, encompassing diverse aspects such as data preprocessing,
correlation analysis, feature selection, model development, and performance evaluation. The
overarching goal was to develop a robust framework that classifies the irrigation water based
on machine learning.

The early chapters of the thesis laid the groundwork by delving into the intricacies of the
dataset, spanning the years 2018 to 2022, sourced from various locations within the Msila
region. Data preprocessing emerged as a critical step, involving cleansing, normalization, and
imputation techniques, ensuring the trustworthiness and accuracy of subsequent modeling
endeavors. The classification task, anchored in the Irrigation Water Quality Index (IWQI),
became the focal point, where an array of state-of-the-art machine learning models underwent
rigorous evaluation. The LGBM classifier emerged as the top-performing model, showcasing
its prowess in accurately simulating IWQI.

A novel dimension unfolded with the optimization of model performance through the ap-
plication of the mutual information technique, streamlining input parameters to three crucial
factors: total hardness, chloride, and sulfate. This streamlined framework led to the emer-
gence of the Extra Trees classifier as the optimal model, further emphasizing the adaptability
of machine learning methodologies to enhance groundwater quality classification.

The correlation analysis shed light on the interplay of various water quality parameters,
unraveling their intricate relationships and implications for groundwater quality. Subsequent
feature selection techniques, including Recursive Feature Elimination with Cross-Validation
(RFECV) and Permutation Importance (PI), were employed to distill the most influential
parameters, enhancing model accuracy and interpretability.
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Model performance evaluation was a pivotal aspect, with metrics such as R-squared, Mean
Absolute Error (MAE), and Root Mean Squared Error (RMSE) providing a comprehensive
assessment. In the prediction task, the CatBoostRegressor emerged as a standout performer,
signifying its efficacy in capturing variability in the IWQI and producing accurate predictions.

The interpretability of machine learning models took center stage with the incorporation
of Shapley Additive Explanations (SHAP) analysis. This not only enhanced our understand-
ing of individual parameter contributions but also provided valuable insights into the complex
decision-making processes of the models. The Waterfall and Beeswarm SHAP plots visually
illustrated these contributions, offering a holistic view of the relative significance of each
water quality parameter.

As the thesis advanced into its concluding chapter, the limitations inherent in the study
were candidly addressed.

The primary limitations include:

• Geographical Extension: The study focuses mainly on the M’sila state region, limiting
generalizability to other areas with potentially different water quality dynamics.

• Under-Representation of IWQI Classes: Sampling bias towards certain IWQI classes
may affect classifier performance. Future research should prioritize collecting samples
from all IWQI classes.

• Ensemble Learning Models: The study could benefit from exploring more complex
models like CNN and RNN to improve classification accuracy, particularly regarding
the fifth IWQI class.

• Limited Dataset Reach: Relying on data from 210 wells in M’sila state restricts
generalizability. Broader data collection efforts are needed to encompass diverse water
quality conditions.

• Incomplete Feature Set: The study’s predefined water quality parameters may overlook
other influential factors. Including additional parameters is essential for a comprehen-
sive understanding.

• Model Selection: Exploring a broader spectrum of models beyond XGBoost, Gradient
Boosting, and CatBoost could yield diverse results and improve accuracy.

• Limited SHAP Analysis: While SHAP analysis enhances interpretability, its efficacy
depends on the underlying model’s design. Complementary techniques should be
explored for a nuanced understanding of model behavior (Kumar et al., 2020).
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As we navigate the terrain of groundwater quality assessment with machine learning,
recognizing limitations propels us towards future research directions.

The future directions outlined a roadmap for :

• Geographical Expansion: Extending the study beyond the Msila region will enrich
understanding of water quality dynamics across diverse climates and geological condi-
tions, enhancing model applicability.

• Inclusion of Additional Parameters: Expanding predictive models to include biological
and ecological indicators will provide a more holistic insight into groundwater quality,
refining accuracy and depth.

• Long-Term Monitoring Initiatives: Establishing long-term monitoring initiatives will
capture temporal variations in groundwater quality, enabling proactive management
strategies.

• Collaborative Research Opportunities: Collaborations with experts in hydrology, ecol-
ogy, and environmental science will enrich groundwater quality assessment through
diverse datasets and methodologies.

• Advanced Machine Learning Techniques: Exploring ensemble learning, deep learning,
and hybrid models aims to elevate model accuracy and keep pace with evolving
methodologies.

• Incorporating Emerging Technologies: Integrating IoT, remote sensing (Zegaar et al.,
2024b), and UAVs enhances data acquisition, enabling real-time, high-frequency
monitoring for dynamic model development.

• Continuous Model Refinement: Iterative model evaluation, validation, and adapta-
tion ensure relevance and effectiveness in addressing evolving groundwater quality
dynamics.

In totality, this thesis stands as a testament to the synergy between machine learning
and water resources. It has transcended the boundaries of traditional approaches, offering
a holistic framework that not only predicts groundwater quality but also interprets the
intricate dynamics governing the process. The contributions made, coupled with the candid
acknowledgment of limitations and a visionary outlook toward the future, position this
research as a valuable cornerstone in the ongoing quest for sustainable water resource
management and agricultural practices.
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