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Abstract 

Every year millions around the world could be saved if they had access to faster and more accurate diagnosis 

of their disease. Advances in Artificial Intelligence (AI) are set to revolutionize the healthcare industry. For the 

year 2018, the Data Science Bowl brought together many Data Scientists from around the world to tackle one of 
the biggest challenges for biologists and doctors: designing image segmentation algorithms to automate the 

detection of nuclei in biological cells. It is no coincidence that segmentation has become a hot topic in medical 

image processing. Thus, researchers and doctors can understand the underlying biological processes and speed up 

medical diagnosis. 

A difficulty related to the data lies in the heterogeneity of the images. Indeed, the images are very varied, 

have different magnifications, different colorizations, and contain different cell types. Several strategies will 

therefore be required to overcome these imbalances and the size of the data set. A key characteristic of 

convolutional neural networks (CNNs) and Deep Learning (DL), in general, is the assumption of spatial invariance 

in image features. We are interested in the same patterns to be recognized in the different parts of the image. 

Technically, this amounts to having all the neurons of the same layer share similar weights, which considerably 

reduces the number of network parameters. It should be noted that this hypothesis could nevertheless limit the 

exploitation of very specific structures in an image, such as the geometry of an organ (face in biometrics).  

The work developed in this thesis brings several innovative advancements in this context. First, for 

classification, we used the Transfer Learning (TL) model called VGG16 after extracting parameters using the best 

Gabor filters to simulate retinal performance. Then, we explored a new approach to image enhancement with the 

extraction of global and textural features based on DL. Initially, chest X-ray and computed tomography images 

were preprocessed and enhanced using histogram equalization (HE). Next, global and local features were extracted 

using hybrid feature descriptors such as MobileNetV2 via Local Binary Pattern (LBP) models and Gabor filters. 

Concatenation of the best models for optimal feature extraction was employed, and DL methods for deep feature 
extraction and data reduction were applied for optimal classification. To validate this work, we first tested this 

approach on the COVID19 database (collected during the epidemic period) as well as on various types of 

pneumonia. 

For segmentation, we used the metaheuristic algorithm Particle Swarm Optimization (PSO) to improve the 
performance of our segmentation system. Two types of optimizations were studied: autoencoder optimization for 

image denoising before feeding it into the UNET model, and accuracy optimization of UNET. The results obtained 

are promising. All our experiments were conducted on different datasets, including COVID19, Viral Pneumonia, 

Breast Cancer, Skin Cancer, and a synthetic retinal database. The outcomes were satisfactory and promising, with 

potential for further improvement through enhanced detection and preprocessing techniques. 

 Keywords: Classification, Segmentation, Deep Learning, Scanner, Medical Imaging. 
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Résumé 

Chaque année des millions dans le monde pourraient être sauvées s’ils avaient accès à un diagnostic plus 

rapide et précis de leur maladie. Les avancées de l’Intelligence Artificielle sont vouées à bouleverser le monde de 

la santé. Pour l’année 2018 le Data Science Bowl a réuni de nombreux Data Scientist du monde entier pour 
s’attaquer à un des plus grands défis pour les biologistes et médecins : concevoir un algorithme de segmentation 

d’image pour automatiser la détection des noyaux dans les cellules biologiques. Ce n’est pas par hasard que la 

segmentation est devenue un sujet d’actualité dans le traitement des images médicales. Ainsi, les chercheurs et les 

médecins peuvent comprendre les processus biologiques sous-jacents et accélérer le diagnostic médical. 

Une difficulté liée aux données réside dans l'hétérogénéité des images. En effet, les images sont très variées, 

ont des grossissements différents, des colorisations différentes, et contiennent différents types de cellules. Plusieurs 

stratégies seront donc nécessaires pour surmonter ces déséquilibres et la taille de l’ensemble des données. La 

particularité d'un réseau de neurones convolutifs ou deep learning, en général, vient de l'hypothèse d'invariance 

spatiale des caractéristiques utilisées dans l'image : on s'intéresse aux mêmes motifs à reconnaître dans les 

différentes parties de l'image. Techniquement, cela revient à ce que tous les neurones d’une même couche partagent 

des poids similaires, ce qui réduit considérablement le nombre de paramètres du réseau. Il convient de noter que 

cette hypothèse peut néanmoins limiter l'exploitation de structures très spécifiques dans une image, comme la 

géométrie d'un organe (visage en biométrie). 

Le travail développé dans cette thèse apporte plusieurs avancées innovantes dans ce contexte. Tout d'abord, 

pour la classification, nous avons utilisé le modèle de TL nommé VGG16 après avoir extrait les paramètres à l'aide 

des meilleurs filtres de Gabor visant à simuler les performances de la rétine. Ensuite, nous avons étudié une 

nouvelle approche d'amélioration d'image avec extraction de caractéristiques globales et texturales basée sur 

l'apprentissage profond (DL). Dans un premier temps, les images de radiographie thoracique et de 

tomodensitométrie ont été prétraitées et améliorées à l'aide de l'égalisation de l'histogramme (HE). Ensuite, les 
caractéristiques globales et locales ont été extraites à l'aide de descripteurs de caractéristiques hybrides tels que 

MobileNetV2 via les modèles Local Binary Pattern (LBP) et les filtres Gabor. La concaténation des meilleurs 

modèles pour une extraction optimale des caractéristiques a été utilisée, et des méthodes de Deep Learning (DL) 

pour l'extraction de caractéristiques profondes et la réduction des données en profondeur ont été appliquées pour 

une classification optimale. Pour valider ce travail, nous avons testé cette approche d'abord sur la base de données 

COVID19 (pendant la période de l'épidémie) ainsi que sur différentes pneumonies. 

Pour la segmentation, nous avons utilisé l'algorithme métaheuristique Particle Swarm Optimization (PSO) 

dans le but d'améliorer les performances de notre système de segmentation. Deux types d'optimisations ont été 

étudiés : l'optimisation de l'autoencodeur pour le débruitage de l'image avant de l'injecter dans le modèle UNET, 

et l'optimisation de la précision de UNET. Les résultats obtenus sont encourageants. Toutes nos expériences ont 

été réalisées sur différents ensembles de données (COVID19, Pneumonie virale, Cancer du sein, Cancer de la peau, 

base de données rétinienne synthétique). Des résultats satisfaisants et prometteurs ont été obtenus et pourraient 

être encore améliorés grâce à de meilleures détections et prétraitements. 

Mot clés : Classification, Segmentation, Deep Learning, Scanner, Imagerie Medicale. 
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 الملخص

مجال في كل عام، يمكن إنقاذ الملايين حول العالم إذا تمكنوا من الوصول إلى تشخيص أسرع وأكثر دقة لمرضهم. من المتوقع أن يؤدي التقدم في 
 .م الصحةالذكاء الاصطناعي إلى إحداث تغيير جذري في عال

تصميم مع العديد من علماء البيانات من جميع أنحاء العالم لمعالجة أحد أكبر التحديات التي يواجهها علماء الأحياء والأطباء: تجا، 2018في عام 
ساخنًا في معالجة ليس من قبيل المصادفة أن التجزئة أصبحت موضوعًا . اكتشاف النوى في الخلايا البيولوجية لأتمتتجزئة الصور  خوارزمية

 .الصور الطبية. وهكذا، يمكن للباحثين والأطباء فهم العمليات البيولوجية الأساسية وتسريع التشخيص الطبي

ي على تكمن الصعوبة المرتبطة بالبيانات في عدم تجانس الصور. في الواقع، الصور متنوعة للغاية، ولها تكبيرات مختلفة، وألوان مختلفة، وتحتو 
تلفة من الخلايا. ولذلك ستكون هناك حاجة إلى عدة استراتيجيات للتغلب على هذه الاختلالات وحجم مجموعة البيانات. خصوصية الشبكة أنواع مخ

ماط التي العصبية التلافيفية أو التعلم العميق، بشكل عام، تأتي من فرضية الثبات المكاني للخصائص المستخدمة في الصورة: نحن مهتمون بنفس الأن
أوزان يتم التعرف عليها في الأجزاء المختلفة من الصورة. من الناحية الفنية، يؤدي هذا إلى مشاركة جميع الخلايا العصبية في نفس الطبقة في س

ي الصورة، مماثلة، مما يقلل بشكل كبير من عدد معلمات الشبكة. تجدر الإشارة إلى أن هذا الافتراض يمكن أن يحد من استغلال هياكل محددة للغاية ف
 .مثل هندسة العضو )الوجه في القياسات الحيوية(

ل التعلم العمل الذي تم تطويره في هذه الأطروحة يجلب العديد من التطورات المبتكرة في هذا السياق. بداية، من أجل التصنيف، استخدمنا نموذج نق
هدف إلى محاكاة أداء شبكية العين. بعد ذلك، قمنا بالتحقق من بعد استخراج المعلمات باستخدام أفضل مرشحات غابور التي ت VGG16 المسمى

أولاً، تمت معالجة صور الصدر بالأشعة  .(DL) نهج جديد لتحسين الصورة من خلال استخراج الميزات العالمية والتركيبية بناءً على التعلم العميق
بعد ذلك، تم استخراج الميزات العالمية والمحلية باستخدام واصفات  .(HE) البيانيالسينية والأشعة المقطعية مسبقاً وتحسينها باستخدام معادلة الرسم 

ومرشحات غابور. تم استخدام تسلسل أفضل النماذج لاستخراج  (LBP) عبر نماذج النمط الثنائي المحلي MobileNetV2 الميزات الهجينة مثل
راج الميزات العميقة وتقليل البيانات العميقة من أجل التصنيف الأمثل. وللتحقق من لاستخ (DL) الميزات الأمثل، وتم تطبيق أساليب التعلم العميق

 .)خلال فترة الوباء( وكذلك على أنواع مختلفة من الالتهابات الرئوية 19-صحة هذا العمل، اختبرنا هذا النهج أولاً على قاعدة بيانات كوفيد

( من أجل تحسين أداء نظام التجزئة لدينا. تمت دراسة نوعين من PSOسرب الجسيمات )لتحسين  Metaheuristicللتجزئة، استخدمنا خوارزمية 
. والنتائج التي تم الحصول عليها UNET الدقة، وتحسين UNETالتحسينات: تحسين التشفير التلقائي لتقليل تشويش الصورة قبل حقنها في نموذج 

، والالتهاب الرئوي الفيروسي، وسرطان الثدي، وسرطان الجلد، وقاعدة 19-فة )كوفيدمشجعة. تم إجراء جميع تجاربنا على مجموعات بيانات مختل
شكل بيانات الشبكية الاصطناعية(. تم الحصول على نتائج مرضية وواعدة ويمكن تحسينها بشكل أكبر من خلال عمليات الكشف والمعالجة المسبقة ب

 أفضل.

 .العميق، الماسح الضوئي، التصوير الطبيالتصنيف، التجزئة، التعلم  المفتاحیة:الكلمات 
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General Introduction  

This introduction provides a comprehensive overview of the work carried out throughout 

this thesis. We discuss the context in which the research was conducted, the underlying 

motivations, and how AI has been utilized to diagnose various diseases. We also highlight the 

primary challenges that need to be addressed and the contributions that our work has made 

towards their resolution. 

Context  

Nowadays, Computer Vision (CV) has become a rapidly expanding research field due to 

its importance in numerous applications. The goal of CV as a scientific discipline is to equip 

computers with the ability to process, analyze, and interpret images and videos similarly to how 

the human brain perceives visual stimuli [1]. It is an essential part of AI, enabling computers 

and systems to obtain useful information from digital visual inputs and execute decisions or 

make suggestions in response to that data. CV enables machines to see, interpret, and 

understand the visual environment whereas AI enables machines to think [2]. 

Human vision and CV both function similarly in the sense that they involve the process 

of perceiving, interpreting, and understanding visual information. However, when it comes to 

expertise and nuanced understanding, people often possess a higher level of knowledge and 

capability [3]. The human visual system learns object separation, distance estimation, motion 

detection, and anomaly detection through a lifetime of contextual learning. In contrast, CV 

trains machines to execute similar tasks using cameras, data, and algorithms. Deep Learning 

(DL) has impacted the area of CV through convolutional neural networks (CNNs). DL models 

can automatically extract hierarchical features from images, imitating the complex processing 

of the human visual system for use in various CV applications, such as image segmentation and 

classification. 

In recent years, the field of Information Technology (IT) has experienced significant 

growth, leading to the development of various applications in medical imaging. This 

technological advancement has revolutionized the way medical professionals visualize and 

analyze diagnostic images [2]. Medical imaging involves analyzing scans such as Magnetic 

Resonance Imaging (MRI), Computed Tomography (CT), and Chest X-rays (CX) for 

diagnostic purposes. It plays a crucial role in identifying diseases and conditions by examining 

and interpreting the visual information captured in the images.  
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Medical imaging is essential to today's healthcare, providing non-invasive methods for 

diagnosing and monitoring a variety of diseases and conditions. However, analyzing medical 

images can be a challenging and time-consuming task, especially when it comes to segmenting 

and classifying different regions of interest.  

Motivations 

Radiology is a medical specialty that uses medical imaging techniques, such as X-rays, 

MRI, CT scans, MRI, and others, to diagnose and treat diseases. Predictive models in radiology 

refer to sophisticated computer-based tools and algorithms that analyze medical images to make 

predictions or assessments about various aspects of a patient's health. AI techniques, including 

Machine Learning (ML) and DL, are used to analyze the extracted radiomic data and make 

predictions. AI algorithms can learn patterns and relationships within the data that may not be 

obvious to human observers. Predictive models in radiology, enhanced by the combination of 

radiomics and AI, have revolutionized the field by providing highly accurate tools for medical 

image analysis.        

In the field of medical imaging, professionals such as radiologists frequently rely on the 

manual examination and annotation of each individual image slice to pinpoint areas associated 

with specific diseases. This entails the meticulous process of outlining or demarcating affected 

regions within every slice of the 3D image volume.  Manual disease classification and 

segmentation is notorious for being a time-intensive endeavor. Analyzing and accurately 

labeling each image slice demands a substantial amount of time. This task can become 

particularly arduous when dealing with a large number of slices within a single scan. Labeling 

image slices can become monotonous and mentally taxing. Experts are required to maintain a 

high level of concentration and precision throughout the process to ensure the accuracy of their 

annotations. 

Objectives 

The search for optimal and efficient solutions for diagnosing various diseases using AI is 

the primary objective for the majority of researchers.  Our thesis aims to improve and enhance 

the performance of  DL methods in the domain of medical image classification and 

segmentation of different diseases. 

The main Steps of our work focus on the following aspects: 
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In this work, we aim to find an effective model to diagnose COVID19 by using a Transfer 

Learning (TL) model. We propose a DL based approach to detect COVID19 infection from 

chest CT Scans and X-rays images. We used Gabor Wavelet (GW) for feature extraction. Then, 

The VGG16 and MobileNetV2 was used in the classification of COVID19 and no-COVID19.  

Therefore, our goal is to find a robust framework to extract relevant features from images. 

Presenting a novel approach to image enhancement with global and textural features extraction 

based on DL.  In this methodology, chest X-ray and CT scan images are initially preprocessed 

and enhanced using Histogram Equalization (HE). Then, global and local features are extracted 

using hybrid feature descriptors such as MobileNetV2 via the Local Binary Pattern models 

(LBP) and Gabor filters. Global features are computed using Gabor filters, while texture 

features are computed using the LBP descriptor. 

Identifying an effective model based on features fusion using TL models for the classification 

of multiple viral respiratory diseases, encompassing COVID19. 

Find a standard model to diagnose different pathologies using different sensors for different 

stages of diseases and above all detect the disease at its beginning for early diagnostic. 

Discovering a rapid, effective, and, above all, standardized model capable of ensuring the 

diagnosis of various diseases affecting different organs. To achieve this, we undertake two 

distinct tasks: the first pertains to monomodality/multimodality, while the second focuses on 

optimizing the proposed CAE_UNET segmentation model by using PSO algorithm. These 

approaches are assessed across various pathologies and organ systems. 

Contributions 

In the classification part of the thesis, a detailed study on classification is conducted and 

utilizes the TL Fusion and Stacked Auto-Encoders (TLFSAE) methodology for the 

classification of viral lung diseases, bringing several important approaches. 

 Using Transfer Learning: TLFSAE uses TL to leverage knowledge gained from previous 

tasks to improve the performance of classification models. This transfer acquired knowledge 

to related tasks such as image classification, which can be used to improve the accuracy of 

viral lung disease classification. 

 Using Stacked Auto-Encoders: TLFSAE uses Stacked Auto-Encoders for unsupervised 

feature learning. 

This helps to extract relevant features from the input data, which can improve the accuracy and 

robustness of classification models. 
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 Model fusion: TLFSAE uses model fusion to improve the robustness and efficiency of 

classification models. By merging information from multiple pre-trained models, a more 

complete and accurate representation of the characteristics of the input data can be obtained. 

 Reduced data dimensionality: TLFSAE uses Stacked Auto-Encoders to reduce data 

dimensionality, allowing more complex data to be processed and reducing computation time. 

 Utilize an effective and simple classification algorithm: TLFSAE employs metric 

classification algorithms to enhance model accuracy. By leveraging these algorithms, more 

reliable and precise predictions can be achieved. 

The TLFSAE approach with model fusion has the potential to improve the accuracy of Viral 

Lung Disease classification. Further optimization of this approach can be achieved through 

exploring different pre-trained models, fusion techniques, and classification algorithms. 

In the segmentation part, the proposed approach is based on optimized model using 

UNET architecture, applied to COVID19, skin cancer and retinal vessel segmentation. The 

framework contains three stages: the first stage is the preprocessing images, which contains the 

conversion of nifty to png file, the data augmentation and the resizing. Then, a proposed 

denoising of the images using CAE before segmentation is applied in the second stage. PSO 

algorithm is used in the third stage to optimize the parameters of CAE for properly denoising 

images and saving valuable information, after that UNET is used in the segmentation task, 

which ensures the segmentation of the infection region. To evaluate this model and testing its 

robustness and efficiency, lung datasets, skin cancer dataset, synthetic retinal dataset and retinal 

vessel segmentation (STARE) are used. A pipeline is proposed to generating synthetic medical 

images from a pair of Generative Adversarial Networks (GAN). The GAN trained with retinal 

vessel segmentations from the DRIVE dataset. Several tasks need to be explored to unlock a 

high-performance, efficient, and standardized segmentation method: 

 Task 1: Study of monomodality (slice Ox, slice Oy, slice Oz), and choose which of the terms 

should be used; 

 Task 2: Multimodality and the concatenation of slices to know which of the two contributes 

the most to the deep segmentation; 

In the segmentation optimization part, the essential contributions are: 

 Task 3: Study the effect of the denoising by OCAE on the segmentation model; 
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 Task 4: Selection of the optimal parameters OUNET model and OCAE filters number 

Optimization. 

The contribution of this work focuses on implementing hybrid methodology, where the PSO 

algorithm is applied to find the optimal design of parameters for CAE architectures. The main 

contributions of this work are as follow: 

 Datasets Collection: Collect various datasets for the comprehensive evaluation of the 

proposed segmentation models. 

 CAE Parameter Optimization: PSO algorithm is used to fine-tune CAE parameters, ensuring 

optimal denoising performance. 

 Architectural Approaches: UNET, CAE+UNET, and OCAE+OUNET architectures are 

explored for the segmentation of COVID19 and other pathologies. 

 Monomodality and Multimodality Analysis: study of the impact of each modality and 

multimodal concatenation to know their relevance in segmentation tasks. 

Thesis Organization 

Our study has been organized into five primary chapters: 

Chapter 1: The first chapter is dedicated to providing a comprehensive overview of medical 

images.  Firstly, we explain the fundamental principles of various types of imaging and 

subsequently delineate the tools employed for evaluating their effectiveness. Our aim through 

this chapter is to contextualize the issues associated with each imaging modality and explicate 

their unique challenges and advantages vis-à-vis other techniques. Additionally, we analyze the 

key components of each imaging modality, namely detection, feature extraction, and 

recognition. Lastly, we underscore the challenges encountered in this domain that we intend to 

scrutinize in the course of this thesis. 

Chapter 2: In this chapter, we will present a state of the art on classification techniques. 

Chapter 3: In the classification part of the thesis, a detailed study on classification is conducted 

and utilizes the TL Fusion and Stacked Auto-Encoders (TLFSAE) methodology for the 

classification of viral lung diseases, bringing several important approaches. 

Chapter 4: In the classification optimization part, we collect a larger dataset and focus on 

improving the quality of images in the preprocessing stage. We also plan to utilize metaheuristic 

algorithms to optimize our proposed model for the detection and diagnosis of various diseases 
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Chapter 5: In the segmentation part, the proposed approach optimizes the UNET architecture 

for application in COVID-19, skin cancer, and retinal vessel segmentation, where the PSO 

algorithm is applied to find the optimal design of parameters for CAE architectures. 

Optimization. 

Conclusion:  The final part presents a conclusion on our work and a vision for future work. 
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1 Chapter: Overview of Deep Learning in Medical 

Imaging 

1.1 Introduction  

In modern medicine, medical imaging plays a pivotal role in diagnosing various diseases 

across different medical disciplines. The exploitation of relevant information on the human 

brain has many useful clinical applications, which help the practitioner in the process of 

diagnosing many diseases [4]. Several medical imaging modalities have been employed in 

clinical settings for disease diagnosis. Techniques such as X-rays, CT scans, MRI, and Positron 

Emission Tomography (PET) scans play a crucial role in tumor identification, determining their 

size, location, and metastasis. Additionally, Chest X-rays and CT scans assist in diagnosing 

lung conditions such as pneumonia, tuberculosis, chronic obstructive pulmonary disease 

(COPD), and lung cancer. The ongoing advancement of imaging technologies broadens 

opportunities for accurate and early diagnoses across different medical specialties. 

In this chapter, we explore the foundational aspects and broad scope of medical imaging. 

Our goal is to provide readers with a comprehensive understanding of the key concepts and 

principles that underpin the diverse field of medical image analysis. Next, we briefly introduce 

the principles behind various medical imaging techniques. 

1.2 Medical image processing chain 

Computed Tomography (CT) utilizes X-ray beams to capture 3D pixel intensities within 

the human body [5]. This process begins with a heated cathode emitting high-energy electrons, 

which subsequently release their energy in the form of X-ray radiation. These X-rays penetrate 

through the body's tissues and strike a detector situated on the opposing side. Notably, dense 

tissues, such as bones, absorb a greater amount of radiation compared to softer tissues like fat. 

Consequently, areas where X-rays are unabsorbed within the body, such as the air-filled regions 

within the lungs, appear black on the detector, resembling the appearance of a black film. In 

contrast, denser tissues are represented as white [6]. 
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Figure 1.1 Medical image processing chain 

1.3 Medical Image Modalities  

Medical imaging modalities are various techniques employed to visualize the internal 

structures of the human body for diagnostic and research purposes [6]. The modality of imaging 

is a crucial aspect of the image for medical retrieval. Each modality possesses its strengths and 

limitations, and they are utilized based on the specific clinical needs of a patient. These 

modalities fulfill various purposes and offer valuable insights for diagnosis, treatment planning, 

and monitoring of medical conditions[7].  

 

Figure 1.2 Imaging Modalities [images are collected via the internet] 
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1.3.1 X-ray Imaging 

A chest X-ray is a common medical imaging technique that uses a small dose of ionizing 

radiation to create pictures of the structures inside the chest, including the heart, lungs, blood 

vessels, ribs, and diaphragm. It's a valuable diagnostic tool used to detect and monitor a variety 

of conditions related to the chest area [8]. Chest X-rays can reveal a range of conditions. Some 

common findings include pneumonia (infection in the lungs), pleural effusion (accumulation of 

fluid around the lungs), pneumothorax (collapsed lung), lung tumors, congestive heart failure 

(fluid buildup in the lungs), and rib fractures. In addition, Depending on the findings of a chest 

X-ray, additional imaging tests might be recommended. For example, if an abnormality is 

detected, a more detailed imaging study like a CT scan or an MRI might be ordered to get a 

clearer view of the area in question. 

 

Figure 1.3 Example of X-ray Imaging 

Radiography is based on the use of X-rays, which possess the property of passing through 

tissues to varying degrees based on their density. Consequently, an X-ray source is positioned 

in front of the body to be radiographed, while a detector is positioned behind it. The reading 

must be carried out after checking the quality of the images according to various criteria. Frontal 

views in postero-anterior view and left profile should be taken with deep inspiration and breath-

hold, with the shoulders and arms well clear. Emitted photons pass through the body, 
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experiencing different absorption levels depending on the density of the tissues they encounter. 

This differentiation allows for the visualization of bones and muscles in the resulting image [9]. 

 

Figure 1.4 X-ray Radiography 

1.3.2 Computed Tomography (CT) 

The modality of CT images is highly radiative and harmful to the human body due to their 

high-frequency range from 3 × 1016 to 3 × 1019 Hz [4]. A CT scan, or Computed Tomography 

scan, is a medical imaging technique that uses X-rays and computer technology to create 

detailed cross-sectional images of various structures within the body [9]. It provides a 

comprehensive view of bones, organs, blood vessels, and tissues. During a CT scan, a rotating 

X-ray machine takes a series of images from different angles, and these images are processed 

by a computer to generate cross-sectional slices or 3D reconstructions of the area being 

examined. CT scans are valuable tools for diagnosing and monitoring various medical 

conditions, including injuries, tumors, infections, and internal diseases. They offer higher 

resolution and more detailed images compared to traditional X-rays and can provide essential 

information for healthcare professionals to make accurate diagnoses and treatment plans. 

 

Figure 1.5 Example of Computed Tomography (CT) 

The scanner operates on the same principle as radiology, employing an X-ray source and 

a detector positioned on opposite sides of the subject's body under examination. It enables the 
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acquisition of three-dimensional (3D) images by concurrently rotating both the X-ray emitting 

source and the detector around the body. Computer processing of the interim two-dimensional 

(2D) projections is then carried out to generate the final 3D images. 

 

Figure 1.6 CT scan Radiography 

1.3.3 Magnetic Resonance Imaging (MRI) 

MRI is a sophisticated medical imaging technique that uses a strong magnetic field and 

radio waves to generate detailed and clear images of the internal structures of the body. Unlike 

X-rays or CT scans, MRI does not involve ionizing radiation, making it a safer option for 

repeated imaging [4]. MRI images are used to examine blood vessels, brain and breast tumors, 

abnormal tissues, spinal injuries, etc. 

 

Figure 1.7 Magnetic Resonance Imaging (MRI) 
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MRI is based on the magnetic properties of water molecules, which constitute over 80% 

of the human body. Specifically, the hydrogen atoms within water molecules possess a 

"magnetic moment" or spin, akin to a miniature magnet. The MRI apparatus generates a robust 

magnetic field (B0) using a coil. The patient is positioned at the center of this magnetic field, 

causing all water molecules within the body to align themselves along the B0 field. An antenna, 

typically placed over the area of interest, facilitates the transmission and reception of specific 

frequencies. During emission, the induced frequency prompts the molecules to tilt in a plane 

perpendicular to the B0 field. Subsequently, when the antenna ceases emission, the molecules 

return to their original alignment, thereby emitting a frequency. This emitted frequency is then 

captured by the antenna and processed as an electrical signal, which is subsequently analyzed 

by software. Notably, the signal varies based on the water content within the observed tissues, 

distinguishing tissues with differing water concentrations. 

 

Figure 1.8 MRI system 

1.3.4 Ultrasound Imaging 

Ultrasound imaging, also known as sonography, is a medical imaging technique that uses 

high-frequency sound waves to create real-time images of the internal structures of the body. It 

is particularly useful for visualizing soft tissues, organs, blood flow, and the development of 

fetuses during pregnancy. Ultrasound imaging is non-invasive, safe, and does not involve 

ionizing radiation, making it a preferred choice for various medical applications. 
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Figure 1.9 Example of Ultrasound Imaging 

Ultrasound is a medical imaging modality that relies on exposing tissues to ultrasound 

waves and receiving their echo. The ultrasound system consists of a screen and a probe 

transmitting and receiving waves (called a transducer). When subjected to an electric current, 

the micro-ceramics on the surface of the probe vibrate and emit ultrasonic waves. These waves 

pass through the tissues and echo differently depending on their density: the denser the tissue, 

the greater the echo. The waves return to the probe, vibrating the ceramics, which induce an 

electrical current processed by a computer. Thus, during an ultrasound carried out in the case 

of pregnancy monitoring, it is possible to differentiate the skeleton of the fetus, its organs, the 

amniotic fluid, etc. 

 

Figure 1.10 Ultrasound system 
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Table 1-1 Comparison of the Imaging Modalities 

Medical 

Modalities 
Uses Radiation Image Quality 

Soft Tissue 

Contrast 

X-Rays 

Visualizing bones, 

detecting lung diseases, 

and identifying certain 

abnormalities. 

Involves ionizing radiation, 

which poses some risk. 

Provides 2D images with 

limited tissue 

differentiation 

Limited ; better for 

visualizing dense 

structures like bones 

CT 

Detailed visualization of 

bones, organs, blood 

vessels, and tissues. 

Involves ionizing radiation, 

which can carry some risk. 

Higher radiation dose 

compared to X-rays. 

High-resolution cross-

sectional images with 

excellent tissue 

differentiation. 

Good, but not as 

detailed as MRI. 

MRI 

Detailed images of soft 

tissues, organs, and 

neurological structures 

No ionizing radiation; 

considered safe for 

repeated use. 

High-resolution images 

with excellent soft tissue 

contrast 

Outstanding; 

superior for soft 

tissue evaluation 

compared to other 

modalities. 

US 

Real-time imaging of soft 

tissues, organs, blood 

flow, and fetal 

development. 

No ionizing radiation; 

considered safe for all, 

including pregnant women 

Real-time images with 

good tissue 

differentiation. 

Adequate for most 

applications. 

 

Table 1-2 Imaging Modalities (Advantages and Disadvantages) 

Imaging Modality Advantages Disadvantages 

X-ray Radiography 

Fast and provide immediate results. Available 

in most healthcare facilities. Low Cost, and 

low dose inozing radiation 

Limited Soft Tissue Detail: less 

effective for evaluating organs and 

soft tissue abnormalities. 

Computed Tomography (CT) 

Provides detailed cross-sectional images of the 

body in multiple. Higher sensitivity for 

detecting nodes. Fast, and 3D Reconstruction 

Higher radiation doses compared to 

some other modalities. More 

expensive than X-rays. Requires the 

use of contrast agents, which can 

have side effects in some patients. 

Ultrasound 

Provides real-time images and is useful for 

imaging moving structures, such as the heart 

or fetus. No Ionizing Radiation.  Safe for 

Pregnancy. 

Image quality can vary depending on 

the operator's skill. Limited Depth. 

Limited Bone Imaging. 

MRI 

Excellent Soft Tissue Contrast making it ideal 

for imaging the brain, spinal cord, and soft 

organs. No Ionizing Radiation. Can provide 

information about tissue composition, blood 

flow, and functional data. 

Longer Exam Times. Cost: more 

expensive than X-rays and CT scans. 

Requires specific expertise. 
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1.4 Advancements in Deep Learning for Healthcare  

Numerous papers have documented instances where DL has been employed with feature 

input in the realm of medical imaging. These applications encompass a wide range of areas, 

including the detection of lung nodules in chest X-rays and thoracic CT scans, the classification 

of lung nodules as benign or malignant in both chest X-rays and thoracic CT scans, the 

identification of micro calcifications in mammography, the discovery and differentiation of 

masses as benign or malignant in mammography, the recognition of polyps in CT 

colonography, and the spotting of aneurysms in brain MRI scans. Furthermore, DL has found 

utility in addressing regression problems, as exemplified by its use in determining subjective 

similarity measures for mammographic images [2]. 

1.5 Deep learning applied to medical imaging: Detection, Classification, 

and Segmentation of Diseases 

DL advancements extend to image segmentation and classification. Disease classification 

models use CNNs to identify diseases from medical images accurately. This aids in early 

detection and intervention, improving patient outcomes. 

DL has made significant strides in medical imaging, revolutionizing the way diseases are 

detected, classified, and segmented from medical images such as X-rays, MRI scans, CT scans, 

and ultrasound images. Here are some key applications. 

Real Word Data Data Annotation Preprocessing 

Learning Type:

Discriminative Model, Generative Model, 

Hybrid

Tasks:

Detection, Classification, 

Segmentation,………

DL Models:

CNN, TL, AE,……

DL Models Training 

Performance Analysis Model Interpretation

Visualization

New Data DL Model Training
Detection, Classification, 

Segmentation,……

Step 1:

Data Collection

Step 2:

DL Model Building and Training

Step 3:

Validation and Interpretation

Step 4 :

Deployment (Inference)

 

Figure 1.11 Design of the Based System 
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1.5.1 Detection of Abnormalities 

 DL models can be trained to detect abnormalities in medical images. For example, they 

can identify tumors, lesions, fractures, and other anomalies in X-rays, CT scans, and MRI 

images [10]. 

1.5.2 Classification of Diseases 

DL models can classify medical images into different disease categories. For instance, 

they can classify skin lesions as benign or malignant, classify lung nodules as cancerous or non-

cancerous, or classify retinal images to detect diabetic retinopathy [11]. 

1.5.3 Segmentation of Organs and Tissues 

Segmentation involves partitioning an image into multiple segments to identify regions 

of interest. DL models can segment organs, tissues, and abnormalities in medical images. For 

example, they can segment the heart from cardiac MRI images, segment tumors from brain 

MRI images, or segment blood vessels from retinal images [12]. 

1.6 Conclusion  

In this chapter, we have presented the essential concepts related to medical imaging, as 

well as the various modalities. Despite the advancements in medical imaging techniques, which 

are well-suited for observing the structures of different organs, practitioners still face challenges 

in analyzing the acquisition results. This is not only due to the artifacts specific to these types 

of imaging but also to the complexity of organ anatomy, which encompasses numerous 

structures. 

To interpret medical images, doctors must accurately analyze the results to reach a final 

diagnosis. This operation is challenging and crucial for a reliable diagnosis. One of the 

fundamental operations in image processing is classification and segmentation. In the realm of 

medical imaging, classification involves categorizing specific elements within an image, such 

as tumors or abnormalities, into distinct groups based on their characteristics. On the other hand, 

segmentation is the process of delineating and outlining the boundaries of these elements, 

separating them from surrounding tissues. Through accurate classification and segmentation, 

healthcare professionals gain valuable insights into the nature and extent of diseases, which 

enables the identification, understanding, and monitoring of the progression of pathologies, 

aiding in precise diagnosis and tailored treatment plans. In this work, various methods for the 

classification and segmentation of medical images have been developed.  These methods will 

be discussed in the next chapters. 
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2 Chapter: AI Techniques for Medical Image 

Classification 

 

2.1 Introduction  

In the context of the new pandemic, COVID19 classification using DL is crucial for early 

diagnosis. The healthcare field requires decision-making technologies to effectively manage 

the COVID19 virus and provide appropriate suggestions to prevent its spread. AI plays a vital 

role in suggesting the development of a system for early detection of COVID19. Preprocessing 

of medical images is a critical step in improving quality, removing noise, and extracting useful 

information. There are many techniques available to process images in the spatial and frequency 

domains. However, low contrast in medical images remains a significant challenge for detecting 

various diseases, including COVID19. Therefore, many researchers have focused on image 

preprocessing techniques to address this issue. In this chapter, we focus on COVID19, and 

subsequently, the studies have been expanded to other pathologies. 

2.2 State-Of-The-Art for COVID19 Classification  

Medical image classification is a critical aspect of image analysis within the realm of 

medical imaging. It involves assigning a label or category to an image based on the presence of 

specific features, patterns, or characteristics. The ultimate goal is to assist healthcare 

professionals in diagnosing diseases, identifying anomalies, and making informed decisions 

about patient care. Medical image classification aids in automating the diagnostic process, 

enhancing efficiency, reducing human error, and providing a quantitative basis for decision-

making. It helps healthcare practitioners make accurate and timely assessments. 

Various techniques are employed for medical image classification, including Traditional 

ML: such as Support Vector Machines (SVM), Random Forests, and k-Nearest Neighbors (k-

NN) can be used with handcrafted features extracted from images, and DL such as 

Convolutional Neural Networks (CNNs). These neural networks are designed to automatically 

learn hierarchical features from raw image data, eliminating the need for manual feature 

engineering. 

In this chapter, we will present a state of the art on classification techniques, we give a 

taxonomy of existing approaches, techniques, and algorithms. We will also expose disease 

diagnosis and detection methods. The history of disease diagnosis and detection methods spans 
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centuries and has evolved significantly with advancements in technology, scientific 

understanding, and medical knowledge. In this chapter, we will detail in particular the methods 

based on classification.  Finally, we will end the chapter with a synthesis of the methods and 

techniques studied. The purpose of this chapter is to give an overview of the most significant 

methods of classification in the medical field. 

Hussain, Lal, et al.[13] aim to develop an AI imaging analysis tool to classify COVID19 

lung infection based on portable CXRs using Texture and morphological features extraction. 

They analyzed public datasets of COVID19, bacterial pneumonia, non-COVID19 viral 

pneumonia, and normal CXRs and used five supervised machine-learning algorithms to classify 

COVID19. The results show that AI classification of texture and morphological features of 

portable CXRs accurately distinguishes COVID19 lung infection in patients in multi-class 

datasets. The study concludes that DL methods have the potential to improve diagnostic 

efficiency and accuracy for portable CXRs. For binary classification, the accuracy, sensitivity 

and specificity were :100%, 100%, and 100% respectively, for COVID19 and normal; 96.34%, 

95.35% and 97.44% for COVID19 and bacterial pneumonia; and 97.56%, 97.44% and 97.67% 

for COVID19 and non-COVID19 viral pneumonia. For multi-class classification, the combined 

accuracy and AUC were 79.52% and 0.87, respectively.  

Wang, et al.[14] They introduced a deep convolutional neural network designed for 

detecting COVID19 called COVID-Net using a chest X-ray images dataset comprising 13,975 

CXR images across 13,870 patient cases. COVID-Net employs an explainability method to 

identify critical factors associated with COVID cases and ensure decisions are based on relevant 

CXR image data. 

Almalki, Yassir Edrees, et al.[15] proposed a new technique named CoVIRNet, which 

utilized Artificial Intelligence (AI) techniques like DL to detect COVID19. However, gathering 

a dataset for analysis is a challenge due to limited patients consenting to participate in the study. 

CoVIR-Net demonstrated a high level of accuracy, achieving 95.7%, and its feature extractor 

with a random-forest classifier obtained a 97.29% accuracy rate. The proposed method is 

anticipated to provide an automated approach for identifying COVID19 patients. 

Mansour, Romany F., et al. [16] proposed a novel unsupervised DL-based model, the 

UDL-VAE, for COVID19 detection and classification. The model uses an adaptive Wiener 

filtering-based preprocessing technique to enhance image quality and Inception v4 with the 

Adagrad technique as a feature extractor. The unsupervised VAE model is applied for the 



Chapter 2                                                                                     AI Techniques for Medical Image Classification 

19 

 

classification process. Experimental results show that the UDL-VAE model performs better 

than existing models with an accuracy of 0.987 and 0.992 for binary and multiple classes, 

respectively.  

Fusco, Roberta, et al.[17] Presented an overview of using AI to combat COVID19 by 

utilizing chest CT and CXR images. The study analyzed several datasets from January 2019 to 

June 2021 and identified ML and DL Approaches for Diagnosis and Treatment. The results 

show that there is a high summarized accuracy of the selected papers, but with an important 

variability. Nonetheless, AI approaches could be used in various ways such as identifying 

disease clusters, monitoring cases, predicting future outbreaks, and managing COVID19 

diagnosis and treatment. 

Meraihi, Yassine, et al.[18] Provided an overview of 160 ML algorithms to detect, 

diagnose, and predict COVID19 with two categories : supervised learning and DL, and 

analyzed based on the ML algorithm used, parameters, problem type, analyzed data type, and 

evaluated metrics. 

Saleem, Farrukh, et al.[19] Presented a Systematic Literature Review (SLR) that 

examines the latest advancements in the application of ML and DL algorithms for the analysis 

of COVID19 data. The study screened 218 articles and included 57 studies that met the 

PRISMA guidelines. The review discovered that CNN (DL) and SVM (ML) were the most 

widely used algorithms for forecasting, classification, and automatic detection. Compartmental 

models were found to be effective in determining the epidemiological characteristics of 

COVID19. The article recommends the utilization of ML, DL, and mathematical models as 

potential solutions to mitigate the healthcare impact of the epidemic. 

Costa, Yandre MG, et al.[20] Have presented a review of the top 100 most cited papers 

in the field of using computer-based strategies to detect COVID19. While thousands of works 

have been published on this topic, not all have made significant contributions. In addition, the 

review aims to help researchers by evaluating the distribution of papers based on various 

aspects, such as the type of medical imaging, learning settings, segmentation strategy, 

explainable artificial intelligence (XAI), and the availability of dataset and code. 
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2.3 Transfer Learning effect for COVID19 classification for Diagnosis 

This work aims to develop an effective model for diagnosing COVID-19 using a TL 

approach. The purpose is to classify COVID19 infected persons from chest X-Ray (XR) and 

Computed Tomography (CT) images. Several TL models have been studied to find the most 

efficient and effective among them. The proposed approach is based on Tensorflow and the 

architecture uses the MobileNet_V2 model.  

The emergence and wide spread of the new coronavirus have infected  many people around 

the world, making it necessary to combat and eradicate it. Early disease detection is crucial in 

preventing the spread of the pandemic due to its highly contagious nature and limited treatment 

options. Real-time reverse transcription-polymerase chain reaction (RT-PCR) is the strategy that 

has been used to discover the presence or absence of this type of virus. XR and CT images are 

the common tools used to detect COVID19, and the datasets are publicly available. The majority 

of research on image classification focuses on image feature extraction and classification 

methods since features are necessary for classification. Multiple network architectures are 

included in the benchmarking methodology for feature extraction and obtaining real-time 

performance. TL models have been used to aid in the detection of the severity and decision-

making, such as ResNet50, MobileNet, ShuffleNet, VGG19, VGG16, GoogleNet, and AlexNet, 

DenseNet,….etc . Huang, G et al.[21] used four different TL models: AlexNet, ResNet18, and 

DenseNet201 to distinguish the  new coronavirus and other pneumonia maladies. In this work, 

we will focus exclusively on utilizing the TL model known as MobileNet_V2 for the detection 

of COVID19. The MobileNet architecture leverages two key advantages: depth-wise and point-

wise separable convolutions. In this context, it represents the pinnacle of the inception module, 

employing separate spatial convolutions for each channel, a technique referred to as depth-wise 

convolutions 

In this proposed approach, we utilize the MobileNet_V2 TL model for image classification 

as follows:

Change of architectures for deep features extraction with : 

 Tensorflow-MobileNet_V2. 

 We add hidden layers and increase the size of dataset. 

Improve the performance of the models by major steps can be summarized as follows : 

 Realization of big dataset XR and CT images. 
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 Resizing the images in the dataset in 224x224 pixels. 

 Data augmentation. 

 Choice of parameters model of DL. 

MobileNet_V2 model (see Fig 2.1) is used to reduce the number of parameters and 

computations. 

Preprocessing :
-RGB to Grayscale

-Label Encoding

-Image Resizing

-Data Augmentation 

-Data Splitting

CT scan

X-ray MobileNet V2 

Dense 256

Dense 128

Dropout 0.25

Sigmoid

COVID-19/Normal

Figure 2.1 Proposed approach with MobileNet_V2 

MobileNet is a CNN model that is based on an inverted residual structure used to classify 

images. The MobileNet model is advantageous in reducing the model size and computation, 

because it is a lightweight network, which uses depthwise separable and pointwise convolution 

to deepen the network. The MobileNet_V2 architecture included the residual block with a thin 

bottleneck layer of a stride of 1 and minimized the size of the layer with a stride of 2 using the 

ReLu. The ReLu6 activation function is used to assure the efficacity used in low-accuracy 

situations and enhance the randomness of the model [22]. Table 2-1 illustrate the distribution of 

the datasets that are used. 

Table 2-1 Data Distribution 

 Total Data Training Validation Test 

1 COVID- 19 CT 3300 2700 300 300 

XR 219 175 44 44 

Normal CT 3300 2700 300 300 

XR 397 317 80 80 

2 COVID- 19 CT 4800 3600 400 800 

Normal CT 4800 3600 400 800 
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2.3.1 Hardware 

The classification model proposed was deployed on the Google Colab platform, offering 

free GPU computing for up to 12 hours. We conducted the majority of our experiments utilizing 

Google Colab, which offers complimentary access to GPU resources and enables the direct 

writing and execution of Python code in our browser, eliminating the need for intricate 

configurations. Detailed descriptions of various experimental outcomes, including those from 

each stage of experimentation, are provided. 

2.3.2 Performance Evaluation 

For evaluating system, we used different performance measures such as accuracy, 

sensitivity, and specificity. Table 2-2 shows the different performance metrics.                                             

The performance is assessed using the confusion matrix. Positive and negative patients were 

classified as COVID19 and normal infections, respectively, in this research. As a result, TP and 

TN refer to the number of COVID19 and normal infections correctly diagnosed, respectively. 

The numbers FP and FN represent the number of COVID19 infections that were misdiagnosed 

and the number of infections that were correctly diagnosed [23]. 

 Table 2-2 Performance metrics for classification 

 

2.3.3 An Approach Application  

Firstly, we employ data augmentation, a technique used to artificially increase the size of 

data by generating modified data points from existing ones, particularly when the initial dataset 

is limited for training purposes [24]. In this work, we augment the number of images to mitigate 

overfitting issues and enhance the model's performance. Data augmentation was conducted using 

the following parameters: rescale, shear_range=0.2, horizontal_flip=True, rotation_range=10, 

width_shift_range=0.2 , and height_shift_range=0.2. As a result, the model achieved a testing 

accuracy of 99%, indicating improved performance. 

The proposed model was trained with a variety of hyperparameters to choose the best ones. 

Table 2-3 shown different experiences. We train our models using TensorFlow.keras and use the 

standard RMSProp Optimizer, and the best hyperparameters, learning rate: LR= 0.001, loss = 

binary_crossentropy, batch size: BS= 64, and epochs = 50. 

Metrics 𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 𝐒𝐞𝐧𝐬𝐢𝐭𝐢𝐯𝐢𝐭𝐲 Precision 𝐒𝐩𝐞𝐜𝐢𝐟𝐢𝐜𝐢𝐭𝐲 

Value 

𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑁 + 𝑇𝑃 + 𝐹𝑃
 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
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In this case, two experiments are conducted with samples of different sizes and distributions: 

2.3.3.1 Experience 1 

To train and evaluate our proposed model, we used 3000 confirmed CT scans images with 

COVID-19, and 3000  without COVID19. A proportion of 90% of dataset were applied for 

training the model  and the rest of 10% were used for the validation set. For the test, 600 unknown 

images to the systems are added. Test images are presented in the proportions 300 COVID19/ 

300 No-COVID19. 

In the case of XR dataset, we used 219 COVID19 and 397 No-COVID19. The dataset is 

splitted into 80% for train and 20% for the test or validation. In the Table 2-3, we show the 

results achieved by our model with the two datasets. 

Table 2-3 Results achieved by our model (3000c/3000nc) 

 

 

Figure 2.2 Accuracy, Sensitivity and Specificity with Tensorflow_Keras 

                      

(a) XR image 

Tensorflow_Keras_COVID-19 

Image Acc(%) Sens(%) Spec (%) Prec(%) AUC( %) Test 

(time/image) 

Confusion 

matrix 

XR 96.77 100 95.23 90.90 95 0.18 s [𝟒𝟎 𝟒
𝟎 𝟖𝟎

] 

CT 99.67 100 99.33 99.33 100 0.03 s [𝟐𝟗𝟖 𝟐
𝟎 𝟑𝟎𝟎

] 
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(b) CT scans 

Figure 2.3 Accuracy and loss curve with Tensorflow TL MobileNet_V2 (3000C/3000NC) 

Discussion: 

The findings indicate that MobileNet_V2 outperforms other models, achieving an 

accuracy of 96.77% and 99.67%, sensitivity scores of 90.91% and 99.93% for XR and CT 

images respectively, and specificity scores of 100% for both XR and CT images. Additionally, 

we attained high sensitivity for CT images and high specificity for XR images. 

2.3.3.2 Experience 2 

Since Google Colab is free service and is faster than my GPU, we augmented the 

COVID19 CT dataset to train and evaluate the performance of MobileNet_V2. The dataset 

comprises 4000 COVID19 positive images and 4000 negative images. For training, 90% of the 

dataset was utilized, with the remaining 10% reserved for validation. During  testing, a random 

sample of 3% from the training dataset was selected, to which we added 1600 unknown images. 

Test images were  distributed in proportions of 800 COVID19 positive and 800 negative cases. 

Discussion: 

The results presented in Table 2-3 indicate that MobileNet_V2 requires 0.18 seconds and 

0.03 seconds per image for XR and CT images respectively. The most efficient performance in 

terms of test time per image is observed with the MobileNet_V2 model for the CT sample 

consisting of 3000 COVID19 positive and 3000 negative cases, along with 300 unknown images 

Figure 2.4 Accuracy and loss curve with Tensorflow TL MobileNet_V2 (4000C/4000NC) 
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for testing, resulting in a test time per image of 0.03 seconds (accuracy of 99.67%). However, 

with a larger sample of unknown images, specifically 800 COVID19 positive and 800 negative 

cases, the system's test time per image increases to 0.05 seconds (see Table 2-4). Despite this, 

our proposed framework remains swift for COVID19 monitoring. In scenarios involving 

individual examination where the number of unidentified images is substantial, the system 

requires an additional 0.02 seconds per image, which is deemed acceptable, especially 

considering the accuracy rate in this context is 99.62%. 

Table 2-4 Results achieved by our model (4000c/4000nc) 

Tensorflow_keras_COVID19 

Image 

type 

Acc 

(%) 

Sen 

(%) 

Spec 

(%) 

Prec 

(%) 

AUC 

(%) 

Confusion 

matrix 

Test 

time/image 

CT 99.62 99.25 100 100 100 [
𝟒𝟎𝟎 𝟎

𝟑 𝟑𝟗𝟕
] 0.05 s 

Table 2-5 Results of Different Experiments 

Hyperparameters Curves      Accuracy 

 

BS=64, Epochs=50, 

LR=0.0001 

  

        98.73% 

 

BS=64, Epochs=100, 

LR=0.0001 

  

       98.62% 

 

BS=32, Epochs=100, 

LR=0.001 

    

        98.87% 

 

BS=64, Epochs=30, 

LR=0.001 

    

       97.50% 
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 While the new coronavirus has spread around the world, causing a large number of 

deaths. Numerous studies employing DL techniques have emerged for the detection and 

classification of COVID19 cases. Pre-trained CNN models have demonstrated superior 

performance by extracting relevant features to represent images and streamline data. These 

methods offer significant advantages in terms of performance and learning efficiency. Moreover, 

conducting experiments across various databases, especially with non-standardized images, may 

not facilitate direct overall comparisons. However, it contributes to deriving diverse insights and 

results from the analyses. In Table 2-6 below, we present a comparison of our approach with the 

recent state of the art. 

Table 2-6 Comparison Results with State Of The Art. 

Ref Methods Modality Datasets Accuracy (%) 

[25] CNN XR 

Dataset A: 125 COVID-

19/500 Normal 

Dataset B: 300 COVID-

19/300 Normal 

Dataset A : 100 

Dataset B : 96.06 

[26] 

Ensemble model 

(VGGNet, 

GoogleNet, 

DenseNet, NASNet) 

 

XR 

 

635 COVID-19/ 

7081 Normal 

 

98.58 

[27] VGG16 and ResNet50 XR 

3616COVID19/ 

1345ViralPneumonia/ 

10192Normal 

89.34 

[28] 

CNN and 

(GNB, SVM,DT, 

LR,RF) 

CT 
1252 COVID-19/1230 

Normal 
99.73 

Ours 
 

MobileNet_V2 

 

CT & XR 

CT : 

Dataset 1 : 

3600 COVID19/3600 Normal 

Dataset 2 : 

4800 COVID19/4800 Normal 

XR: 

219 COVID-19/397 Normal 

 

99.67 

Ttest/image=0.03s 

 

99.62 

Ttest/image=0.05s 

 

96.77 

Ttest/image=0.18s 

 

Results presented in Table 2-6 compare the study model with other recent works approaches. 

The proposed approach confirms that the MobileNetV_2 gives better results in terms of 
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performance than other state-of-the-art methods, with an accuracy score of 99.67% and Ttest = 

0.03s for the best case.

2.4 Gabor Descriptor and TL in COVID19 Classification for Diagnosis. 

Our work introduces a DL-based method for detecting COVID19 infection in chest CT 

scans and X-ray images. We employ the Keras-TensorFlow architecture, specifically utilizing 

VGG16 for the classification task. Feature extraction is performed using Gabor Wavelet 

(GW). The TL technique with VGG16 is employed in the classification process for COVID19 

detection. 

We are interested in a binary classification, a topic that has been widely explored by 

researchers. In this work, we limit our scope to methods that are both simple and effective. 

2.4.1 Proposed Approach based Gabor Descriptor and TL 

 In the case of this approach with VGG16, we are interested in the contribution of the 

Gabor filter associated with the proposed architecture. 

2.4.1.1 Preprocessing 

Prior to feeding the data into neural networks, it is advisable to ensure uniformity in data 

size and the number of segments, which invariably enhances the accuracy and balance of the 

database. Therefore, the data is resized to 224x224, maintaining consistency across original 

images (training, testing, and evaluation). Additionally, Gabor Wavelet filtering is applied as 

part of the preprocessing stage. 

Preprocessing :
-RGB to Grayscale

-Label Encoding

-Image Resizing

CT scan

X-ray VGG16Gabor Filter

Dense 256

Dense 128

Dropout 0.25

Softmax 

Binary Classification

COVID-19/Normal 

Figure 2.5 Proposed approach with VGG16
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The Gabor wavelet [29] is a linear filter which impulse response is defined by a harmonic 

function multiplied  by a Gaussian function. This filter is used to detect line endings and edge 

borders over multiple scales and with  different orientations. The Gabor wavelet is defined as 

Eq.1 and Eq.2: 

                          𝜓(𝑧) =
𝑃𝑢,𝑟

2

𝜎2 𝑒𝑥𝑝 (
𝑃𝑢,𝑟

2 𝑧2

2𝜎2 ) [𝑒𝑥𝑝(𝑖𝑃𝑢,𝑟𝑧)𝑒𝑥𝑝 (−
𝜎2

2
)]                                      (2.1) 

Where  𝑧 = (𝑥, 𝑦) , 𝑢 and 𝑟 define the orientation and scale of the Gabor wavelet, respectively. 

𝑃𝑢,𝑟 is defined as follows:                   𝑃𝑢,𝑟 = 𝑃𝑟𝑒𝑖𝜙𝑟                                                                (2.2) 

Where                            𝑃𝑟 = 𝑃𝑚𝑎𝑥/𝑓𝑟     and     𝜙𝑢 =
𝜋𝑢

8
  . 

 𝑃𝑚𝑎𝑥   is the maximum frequency, and 𝑓 is the spacing factor between kernels in the frequency 

domain. 

Gabor Filter and Parameter Analysis 

The cv2.getGaborKernel() function generates a Gabor filter, a widely used tool in image 

processing for texture analysis, feature extraction, and edge detection. 

Python code: 

g_kernel = cv2.getGaborKernel((5, 5), 15.0, np.pi / 4, 3.0, 0.5, 0, ktype=cv2.CV_32F) 

Each parameter in this function plays a critical role in defining the behavior of the Gabor 

filter: 

Kernel Size (5, 5): Specifies the dimensions of the filter (width × height), in this case, a 5×5 

matrix. A larger kernel captures broader structures, while a smaller kernel focuses on fine 

details. 

Sigma (15.0): Represents the standard deviation of the Gaussian envelope, controlling the 

spread of the filter. A higher sigma value results in a more dispersed filter response, capturing 

broader image features. 

Theta (π/4 radians or 45°): Defines the orientation of the sinusoidal component. A value of 

π/4 radians means the filter is oriented diagonally, making it sensitive to edges along this 

direction. 

Lambda (3.0): Represents the wavelength of the sinusoidal wave, measured in pixels. A 

smaller wavelength captures finer textures, while a larger wavelength captures coarser 

structures. 

Gamma (0.5): Defines the spatial aspect ratio, determining the elongation of the Gaussian 

envelope. A gamma value of 0.5 results in an elliptical shape, influencing the directional 

sensitivity of the filter. 
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Psi (0 radians): Specifies the phase offset of the sinusoidal wave. A value of 0 ensures that the 

wave starts from zero phase. 

Kernel Type (cv2.CV_32F): Defines the data type of the kernel, where cv2.CV_32F represents 

a 32-bit floating-point format, ensuring high precision in computations. 

In our model, we perform data augmentation by setting  the random image rotation setting 

to 15 degrees clockwise or  counter clockwise. In this work, we use VGG16 technique for TL. 

VGG16 model is developed by the Visual Graphics Group (VGG) at Oxford and was described 

in the 2014 [30]. 

2.4.2 Keras-Tensorflow with TL VGG16  Implementation 

 Training methods: VGG16 TL is trained   using Adaptive Moment learning rate (Adam) 

solver after   applying data augmentation to increase the number of the  dataset and to avoid 

overfitting. The Keras model is used in  COVID19 detection method for X-ray and CT image. 

The  model is trained with the following hyperparameters: Adam   optimization method with 

Learning Rate (0.001), Batch Size (16, 8, 32, and 64) and Epochs (30, 50, 80, 100, 150, and 

200), Loss: binary cross_entropy.  

To train and evaluate the  system, we collect the COVID19-CT and X-ray dataset:  

COVID19-CT dataset contains 3000 positive CT scans with  clinical findings of COVID19, and 

3000 negative images  without findings of COVID19. We have used 90% of CT scans images 

for training and the rest of the 10% for  validation. 

COVID19-X-ray dataset contains 219 COVID19 and 397 Non-COVID19. We have used 80% 

of X-ray images for training and the rest of the 20% for validation. 

Table 2-7 Results obtained with VGG16. 

 

Image

s 

VGG16 with Gabor  VGG16 without Gabor  

Acc 
(%) 

Sens 
(%) 

Spec 
(%) 

Prec 
(%) 

Conf. 
Matrix 

Acc 
(%) 

Sens 
(%) 

Prec  Spec 
(%) 

Conf. 
Matrix 

X-ray 95.28 91.11 97.56 91.11 [41 4] 
2 80 

99.21 100 100 98.78 [45 0] 
1 81 

CT 98.50 99.33 97.67 99.33 [
298 2

]
 

7 293 
99.83 99.67 99.66 100 [

299 1
]
 

0 300 

  

Discussion 

The proposed method is applied to datasets comprising Chest X-ray and CT images. In 

the first scenario, VGG16 TL is utilized for the classification of COVID19 and nonCOVID19 

cases. In the second scenario, Gabor filters are employed to extract features for COVID19 
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classification. Results indicate that the performance of the VGG16   without Gabor is the highest 

accuracy and sensitivity/specificity (COVID19/NoCOVID19 portion predicted correctly). 

From the results, we can see that the test  time with Gabor gives better performance for X-ray 

images  and shows no improvement for CT images since the test time  remains the same in both 

cases. In addition, it is noticed that  the obtained sensitivity and specificity for COVID19 class 

is  remarkably higher (i.e., 100%) for both VGG16 models.  From the obtained results, we can 

infer that proposed model  can detect COVID19 patients (i.e. true positive) and non covid19 

(i.e. true negative) with high accuracy.  

 

2.5 Image Enhancement and Hybrid Deep Features for COVID19 

Diagnosis 

In this work, we propose an effective method for detecting COVID19 using TL model 

called MobileNetV2. We apply histogram equalization (HE) for image enhancement, as well 

as Local Binary Pattern (LBP) and Gabor descriptor techniques on CT scans and chest X-ray 

images to improve image contrast and extract features. In the classification phase, we use a 

fine-tuning model to detect COVID19. 

Our contribution is based on the effect of pre-processing the dataset to train the TL to 

accurately classification of COVID19 disease from a CT scans and Chest X-Rays images. We 

have used different pre-processing techniques to choose the appropriate and precise ones. The 

contributions of our work are presented as follows: 

 Image enhancement using histogram equalization; 

 Details information and image texture extraction using LBP and Gabor filters; 

 Deep Features extraction using MobileNetV2 TL model; 

 Fine Tuning model for COVID19 classification. 

2.5.1 Proposed approach in COVID19 Classification 

In this work, the MobileNetV2 is used for deep features extraction. The MobileNetV2 is 

based on depth wise separable and point wise convolution. The depth wise separable 

convolution produces the same output as the standard convolution, only it is more effective 

because it minimizes the number of parameters implicated in the operation. MobileNetV2 

includes 19 inverted residual bottleneck layers after the first convolution layer. A residual block 

connects the first and ending of a convolution block with a skip connection with the objective 

of converting information to the deeper layer of the network [22]. 
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2.5.1.1 Preprocessing  

1) Data augmentation 

To increase the size of dataset and avoid overfitting, we applied the data augmentation 

techniques such as, rotation, scale. The novel images can be created by using changes on the 

ancient tones. 

Data Preprocessing & Enhancement
Data Collection

CT scan & X-ray 

Images Resizing :

Normalizing,

Data augmentation, 

Splitting : Train, Val, Test  

Image Enhancement 

Histogram Equalization

Deep Features Extraction

Global feature and

Texture Extraction

Gabor Filter

LBP Descriptor

MobileNetV2

Layers Frozen

Fine Tuning Model

Average 

Pooling
Flatten

Dense 

Layer Dropout

Classifier

Softmax

COVID19

Normal 

 

Figure 2.6 Flowchart of proposed approach in COVID19 classification 

2) Histogram Equalization 

To enhance the contrast of images, HE is used. The HE technique is important for image 

processing because it increments the contrast of the image to improve the goodness of the 

images [31]. HE is a no linear expansion that calculates the probability mass function in addition 

to the accumulative distribution function of image pixels, and maps new grey-level values for 

these pixels after distributing the intensities of the pixels across the histogram of the image. The 

intensity of the image is represented in range [𝟎, 𝑷 − 𝟏] by the function as follows: 

                                                      𝑔(𝑠𝑖) = 𝑘𝑖                                                                             (2.3) 

𝒌𝒊 is the count of pixels with 𝒊𝒕𝒉intensity value 𝒔𝒊 

The histogram is normalized with the following equation: 

                                              𝑓(𝑠𝑖) =
𝑘𝑖

𝐻∗𝑊
                                                                             (2.4) 

Where the 𝑯 and 𝑾 are the height and the width. 
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Figure 2.7 Image Enhancement by HE 

3) Gabor Filter 

The Gabor filter is a linear function that is applied on images for texture analysis and to 

find the different orientations around the region of interest. The Gabor filter is used to extract 

the features from analyzed images [32] (see Fig 2.8): 

 

Figure 2.8 Gabor filter 

4) Local Binary Pattern 

The LBP is the one of several local image descriptors. It is method that is describe every 

pixel’s neighborhood through a binary code that is gained by initial convolving the image with 

a spesific group of linear filters and then binarizing the filter responses [33]. The proposed 

method is based on the LBP for COVID19 classification. The LBP  creates binary labels to 

pixels using thresholding the neighbourhood pixels together with the centric value [34]. 

Furthermore, for the centre pixel  p, I and its neighboring pixels Ni, a decimal value is converted 

to it (see Fig 2.9). 

          𝐷 =  ∑ 2𝑖−1𝐼(𝑃 −  𝑁𝑖
𝑠
𝑖=1 )    where,   I(P,Ni)= {

1          𝑖𝑓 𝑃 > 𝑁𝑖

0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                               (2.5) 
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Figure 2.9 LBP Descriptor 

5) Fine Tuning Model 

Fine-tuning refers to the process of adjusting a model's parameters to improve its 

performance. In this work, fine-tuning involved the implementation of an average pooling layer, 

a flatten layer, a dense layer, a dropout layer, and the final layer which utilizes the softmax 

function for COVID19 classification.  

2.5.2 Experimentation 

2.5.2.1 Dataset  

The dataset that was used is public available in [35] and [36].They contain  2700 

COVID19/2700Normal CT scans images and 3608 COVID19/3616 Normal Chest X-Rays 

images. The ratio of 80% was for training the model and 20% for validation. All the images 

were resized to 128x128 to feed the preprocessing block before send it to the DL block. 

2.5.2.2 Proposed Model Implementation in COVID19 classification 

In this work, three tasks were implemented: the first task preprocessing using i) resizing, 

ii) HE, and iii) Data Augmentation.  The LBP descriptor and Gabor filter were used for features 

extraction in second task. In the third task, deep features extraction using TL model called 

MobileNetV2 and the fine tuning, where the fully connected layers removed and replaced by 

new model composed by average pooling layer , Flatten, Dense layer,  Dropout layer  and the 

last layer is Softmax function to classify COVID19. In this section, we present the different 

experiments of the MobileNetV2 with the different preprocessing techniques and compare 

results with state-of-the-art studies. The proposed model is implemented on the COVID19 

dataset using various hyperparameters as follows: Adam optimizer. Learning Rate = 0.001, 

Batch Size = 16, an Epoch = 50. 

 



Chapter 2                                                                                     AI Techniques for Medical Image Classification 

34 

 

Table 2-8 Results for HE and different descriptors with MobileNetV2 (CT scans images). 

Methods Acc. (%) 
Val_Acc. 

(%) 
Loss 

Val_Los

s 

Sens. 

(%) 

Spec. 

(%) 

AUC. 

(%) 

Confusion 

Matrix 

MobileNetV2 100 99.72 0.0003 0.009 99.44 100 100 [
𝟓𝟑𝟕 𝟑

𝟎 𝟓𝟒𝟎
] 

Gabor + Fine 

Tuning 
99.19 99.72 0.037 0.019 99.63 99.81 100 [

538 2
1 539

] 

HE + Fine 

Tuning 
98.40 99.44 0.054 0.032 99.63 99.26 99 [

538 2
4 536

] 

LBP+ 

MobileNetV2 
95.53 91.48 0.119 0.239 90 92.96 91 [

486 54
38 502

] 

Gabor+ 

MobileNetV2 
98.22 98.98 0.039 0.032 98.89 99.07 99 [

534 6
5 535

] 

LBP+Gabor+ 

MobileNetV2 
83.17 87.04 0.364 0.306 84.26 89.81 87 [

455 85
55 485

] 

HE+ 

MobileNetV2 
99.98 99.63 0.0009 0.008 99.26 100 100 [

𝟓𝟑𝟔 𝟒
𝟎 𝟓𝟒𝟎

] 

HE+Gabor+ 

MobileNetV2 
98.59 98.24 0.037 0.043 99.26 97.22 98 [

536 4
15 525

] 

HE+LBP+ 

MobileNetV2 
95.35 93.89 0.128 0.198 93.89 93.89 94 [

507 33
33 507

] 

HE+LBP+ 

Gabor+ 

MobileNetV2 

84.49 86.30 0.345 0.300 79.26 93.33 86 [
428 112
36 504

] 

 

Discussion: The results demonstrate that the MobileNetV2 model achieved high performance. 

HE enhancement techniques produced clearer images, resulting in good results as shown in the 

table 2-8. The combination of HE + Gabor for preprocessing images yielded better 

performance, while HE+MobileNetV2 also resulted in good performance. Additionally, when 

used with Gabor or HE, the LBP descriptor demonstrated a good effect on the curves. Gabor is 

a competitive method and performs well on CT scan images where detail is significant. 

Table 2-9 Results for HE and different descriptors with MobileNetV2 (X-Rays images). 

Methods Acc. (%) 
Val_Acc. 

(%) 
Loss Val_Loss 

Sens. 

(%) 

Spec. 

(%) 

AUC. 

(%) 

Confusion 

Matrix 

MobileNetV2 93.86 93.22 0.144 0.160 92.39 94.04 93 [
𝟔𝟔𝟖 𝟓𝟓
𝟒𝟑 𝟔𝟕𝟗

] 

LBP 56.19 66.44 0.686 0.684 91.15 41.69 66 [
659 64
421 301

] 

HE 79.52 81.38 0.435 0.390 86.45 76.32 81 [
625 98
171 551

] 

LBP+ 

MobileNetV2 
86.47 85.54 0.306 0.325 88.80 82.27 86 [

642 81
128 594

] 

Gabor+ 

MobileNetV2 
81.66 83.18 0.368 0.376 85.48 80.89 83 [

618 105
138 584

] 

LBP+Gabor+ 

MobileNetV2 
75.26 78.13 0.473 0.441 89.76 66.48 78 [

649 74
242 480

] 

HE+MobileNetV2 94.67 93.77 0.128 0.193 92.67 94.88 94 [
𝟔𝟕𝟎 𝟓𝟑
𝟑𝟕 𝟔𝟖𝟓

] 

HE+Gabor+ 

MobileNetV2 
83.86 83.60 0.349 0.353 82.43 84.76 84 [

596 127
110 612

] 

HE+LBP+ 

MobileNetV2 
85.81 85.12 0.312 0.334 89.63 80.61 85 [

648 75
140 582

] 

HE+LBP+Gabor+    

MobileNetV2 
75.17 77.23 0.478 0.463 89.49 64.96 77 [

647 76
253 469

] 
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a) X-ray                                                                 

    
Figure 2.10 Results of different models on X-Rays and CT scan images 

For CT scan images, the LBP+MobileNetV2 model achieved satisfactory results 

compared to Chest X-ray images. MobileNetV2 is a good candidate for this category of images 

which is noisy and where the texture information is the most requested. The best model to 

remember in the case of X-Rays images remains HE+MobileNetV2. The proposed method for 

COVID19 classification uses LBP for feature extraction, which captures the local texture 

information of images. LBP extracts relevant features from CT scans and Chest X-rays to 

differentiate COVID19 from other respiratory diseases. LBP is not used in the classification 

part; instead, a fine-tuning or TL model. LBP plays a significant role in feature extraction, but 

not in image classification. 

2.5.3 Comparison results with State of the Art 

The table 2-10 shows a comparison with different recent works on image classification 

and detection of COVID19. 
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Table 2-10 Comparison of Gabor Descriptor and TL with recent works 

Applications References Approachs Size Datasets N.C Acc. (%) 

 

Application 1 

Chest X-Rays 

HE and different TL 

David et al. [37] HE+ResNet-34 
95 COVID19, 
NoCOVID19: 

(19BP,81N,41VP) 

2 97.81 

Rahman, et al. [38] HE+ ChexNet 
3616 COVID19 

8851 Normal 
6012NoCOVID19 

3 94.34 

Proposed Method HE+MobileNetV2 
3616 COVID19 

3608 Normal 
2 94.67 

Gabor and different TL 

Barshooi et al [32] 

Gabor + VGG19 
360 COVID19 

4200 No COVID19 

2 86 

Gabor + AlexNet 2 84.50 

Gabor +GoogLeNet 2 80.50 

Proposed Method Gabor+ MobileNetV2 
3616 COVID19 

3608 Normal 
2 81.66 

 

Application 2 

CT Scan 

HE and different TL 

Lawton et al [39] 

 HE +VGG19 
1252 COVID19 

1230NoCOVID19 

2 90.90 

 HE + MobileNetV2 2 91.31 

 HE +DenseNet-201 2 93.93 

Proposed Method HE+MobileNetV2 
2700 COVID19 

2700 Normal 
2 99.98 

Gabor and different TL 

M. Ketfi et al [29] Gabor + VGG16 
3000 COVID19 

3000 Normal 
2 98.50 

Proposed Method 
Gabor+ MobileNetV2 

 

Gabor+Fine Tuning 

2700 COVID19 

2700 Normal 
2 

98.22 

 

99.19 

Chest X-Rays 

& CT Scan 

Hybrid Deep Descriptor 

M.Kaya et al. [40] 
 
 

D3SENET 
DarkNet53, DarkNet19, 

DenseNet201, SqueezeNet, and 
EfficientNetb0 

X-Rays images 
1210 COVID19 

1409 Normal 
1345  VP 

3 98.78 

El Shenbary et al.[41] 

 

Fusion Classic Descriptor 
(DWT+PCA) with AlexNet or 

GoogLeNet 

COVID, lung opacity, 
normal and VP 

4 97.6 

Proposed Method 

HE+Gabor+MobileNetV2 

 

 

HE+MobileNetV2 

X-Rays images 

2700 COVID19 

2700 Normal 

CT scans images 

2 

98.59 

 

 

99.98 

 

 

The hybrid descriptors techniques used in this study can be applied to other medical 

imaging modalities. In fact, the techniques used in this study are general image processing and 

feature extraction techniques that can be applied to any medical imaging modality that requires 

the detection and classification of diseases. 

Implementing a binary classification for COVID19 in a real-world clinical setting 

involves several steps, including data acquisition, model training, testing, and deployment. 

After creating and training the model, it can be utilized for real-time classification of lung 

images. To make the model easily accessible, the model can be integrated into a desktop or 

mobile application.  If the model is to be implemented in a real-time application, it is crucial to 

ensure that it can process the images at an appropriate speed. However, it is important to keep 
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in mind that the processing time may vary depending on factors such as the image size, the 

model complexity, and the processing power of the device being used. Overall, it is important 

to collaborate with healthcare professionals, regulatory bodies, and other stakeholders to 

address the challenges and ensure the successful deployment of the model.   

2.6 Conclusion  

In this chapter, we delved into the technologies employed for COVID19 classification 

and evaluated the performance of our proposed model on chest XR and CT images. The process 

involves initial feature extraction followed by the meta-architecture for classification, utilizing 

the MobileNet_V2 CNN architecture for feature extraction. 

Our investigation draws data from multiple sources for X-ray and CT images to 

implement an architecture for classifying COVID19-infected patients. We utilize the VGG16 

CNN architecture, leveraging the Tensorflow and Keras library with Python. Despite Gabor 

filter usage not yielding optimal accuracy, sensitivity, and specificity for VGG16 architectures, 

its implementation notably reduces test time/image, enhancing patient comfort while 

maintaining acceptable accuracy parameters. 

Our work demonstrates VGG16's robust performance on both X-ray and CT images, 

achieving accuracies of 99.21% and 99.83% respectively, with a time cost of 0.870 seconds per 

image for X-rays and 0.872 seconds for CT scans. Notably, our system maintained efficiency 

in patient follow-up scenarios but requires additional time for COVID19 screening when 

dealing with a larger volume of unknown images. 

Furthermore, we presented an effective model for COVID19 classification, leveraging 

enhancement techniques such as HE and deep features extraction via Gabor filters and LBP 

descriptors, alongside TL MobileNetV2. Our approach achieved optimal accuracy, particularly 

with MobileNetV2 and HE+MobileNetV2 combinations. Future work involves exploring 

additional deep descriptors. 

Despite its limitations, our proposed framework shows promise for the binary 

classification of lung images. We envision future endeavors aimed at developing a standardized 

system capable of classifying various diseases using diverse TL models, including multi-

classification and datasets from different organs. Further studies and comparisons are warranted 

to comprehensively evaluate its performance. The techniques used at the different stages of 

disease classification are detailed in the next Chapters.  
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3 Chapter: Transfer Learning Fusion and Stacked 

Auto-Encoders for Viral Lung Disease 

Classification 

3.1 Introduction  

High dimensional data is found in a variety of smaller dimensions. So-called "intrinsic 

dimensional" data is very complicated. Typically, it is not easy to capture such structures using 

a simple parametric model, such as Principal Component Analysis (PCA). All these limitations 

of traditional MDS (Dimensionality Methods) can be solved by ML methods that can be the 

solution. We thus affirm that to be more effective in viral lung disease classification/detection, 

Auto Encoder (AE) based DL framework proves to be a good candidate and may be 

classification-specific in nature. In other words, the performance of recognition algorithms 

based on AE can be a solution if the learned representations integrate the class information [25]. 

All these reasons motivate us to push our interest in this track which is lung disease 

classification based on AEs.  

The fields of application of AE are: AE denoising, reconstruction, classification and data 

reduction. One of the unsupervised methods is Stacked Denoising Auto Encoders (SDAE) 

introduced by Vincent et al [42]. The denoising AE learns from a distributed representation 

(encoding) of a set of data, then reconstructs the data from the encoder (decoding) by removing 

the noise from the image. The new output is a compact or fragmented representation serving as 

input to the next AE or other ML Automatic encoders are advantageous for dimensionality 

reduction and cluster analysis. The objective of this chapter endeavor is to identify an effective 

model for the classification of multiple viral respiratory diseases, encompassing COVID19. The 

feature extraction phase from medical images constitutes a formidable challenge in achieving 

optimal disease classification outcomes. In this work, a selection of the best models among 

several popular TL models is realized. The concatenation of the best models for better features 

extraction is used; the DL methods for deep features extraction and deep data reduction were 

applied for an optimal classification. This work includes two studies, the first was applied to 

binary classification (COVID19/Normal) and the second is concerned with multi-classification 

(COVID19/Normal/VPneumonia).  
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TL is mainly applied for two purposes: employing a pre-trained network as a feature 

extractor, where the last layer of the pre-trained model architecture is changed out with a fully 

connected layer with the same number of classes as the new dataset during performing TL, and 

fine-tuning a pre-trained network on medical data [43]. These models can be used directly in 

making predictions on new tasks or integrated into the process of training a new model. In 

addition, feature models have also been extracted using a CNN based approach. For feature 

learning and extraction, basic architectures such as DenseNet201, VGG16, VGG19, and 

GoogLeNet have been modified to detect no linearity in the lung and classify the different 

diseases such as COVID19 and Pneumonia. Several feature extraction techniques have been 

used to improve the accuracy of diseases detection. Concatenation method between TL models 

is the new techniques to enhance the performances of pre-trained models for classification tasks. 

In [44] a parallel deep feature extraction approach based on TL models and concatenation-based 

models were used to achieve a high accuracy. 

For deep feature extraction, the SAEs are known for their power in these tasks. The SAE 

is a Deep Neural Network (DNN) architecture that has been used in varieties of applications. 

Benyelles et al. [45] presented a framework based on SAEs for the recognition of the disease 

characteristics in medical images to detect COVID19 disease from CXR and CT scan images. 

The paper referenced in citation [46] presented a proposal to utilize features extracted from both 

TL models and Convolutional Neural Networks (CNN) developed from scratch to classify and 

detect COVID19. The objective of our work is to extract profound features by utilizing a fusion 

approach involving the most effective TL models, subsequently associating them with either an 

Encoder (E) or Stacked Encoder (SE) to reduce data. Additionally, we employ Autoencoder 

(AE) or Stacked Autoencoder (SAE) methods to attain high performance. The experiments in 

this study involve an investigation of the impact of depth on unsupervised models, and an 

evaluation of data reduction outcomes. Our primary objective is to develop a robust and 

effective system that can diagnose COVID19 in binary classification and differentiate it from 

other pathologies. In a prior study [40], the VGG16 TL architecture was employed to classify 

images from CXR and CT scans. Initially, we employed Gabor filter for feature extraction in 

our study. However, the Gabor filter did not provide satisfactory accuracy levels. Consequently, 

we proposed a novel approach based on the fusion of TL selection with E/SE or AE/SAE 

architectures for the classification of CXR and CT scans images, aiming to detect pulmonary 

viral pathologies.  

During the current pandemic, recent works have focused on the detection of COVID19 

from chest CXR and CT images and several methods have applied based on DL technologies 
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using advanced CNN architectures[43]. Several studies have been conducted in the literature to 

develop DL-based models for COVID19 detection using chest X-ray and CT images. Different 

DL architectures, such as VGG16, ResNet-50, DenseNet121, MobileNet, NASNet, Xception, 

and EfficientNet, have been used for COVID19 detection. TL and MTSSL have been proposed 

as effective techniques for COVID-19 detection. Hybrid and deep feature extraction techniques 

such as SAE, AAE, EVAE, and CovNet have been implemented to improve classification 

accuracy. The reported accuracies for COVID19 detection in these studies range from 80.19% 

to 99.75%, with the highest accuracy achieved using ResNet-50 and DeepCovNet models. 

Overall, these studies show that DL-based models have the potential to aid in COVID19 

diagnosis and screening. 

Other recent research employed CT scans to discover the most critical virus features and 

correctly classify the infection[44].  

Literature indicate that VGG16 architecture performed better compared to the other 

architectures. Additionally, deep transfer learning has been widely used in literature models to 

identify pneumonia from CXR and CT images. In spite of the numerous studies that have 

utilized DL for feature extraction and classification, there is still need for improvement in these 

stages. To address this issue, a promising technique called stacked autoencoder (SAE) has been 

proposed. SAE improves the gradient and enhances the training of convolution layers by 

employing separate encoding and decoding networks or separate training for each convolution 

layer. This method can reduce the pressure of classification by utilizing unsupervised DL. In 

addition, the autoencoder (AE) model, which learns about the dataset's features during 

unsupervised training, can be further enhanced by initializing the model with the learned 

weights during the decoding stage. Table 3-1 shows summary of the studies in literature. 
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Table 3-1 Summary of the studies in literature 

 

Authors 

 

Methods 

Datasets N

C 

Results (%) 

CXR CT Acc. Sens. Spec. F1-

score. 

DL (COVID-19(C-19)/Normal(N)) 

Lahsaini et al 

[44] 

DenseNet201 + GradCAM _ 1868 C-19 

3118 N 

2 98.8 98.54 99.22 99.02 

S.H. Khan et 

al [47] 

DHL &  DBHL 3224 C-19, 

3224 N 

_ 2 

 

98.53 

 

99 

 

_ 

 

98 

L. Mohamed 

et al.[48]  

CNN Bayesian Optimizer 3616 C-19, 

3616 N, 3616 P 

_ 3 96 _ _ _ 

Kaya et al. 

[49] 

DarkNet53,DarkNet19, 

DenseNet201, SqueezeNet, 

and EfficientNetb0, SVM 

_ 

 

3616C-19, 

1345VP, 

10191N 

3 

 

98.78 

 

_ _ 

 

_ 

Benyelles  et 

al. [50] 

SAE 760  (CXR and 

CT ): 

C-19 

Other Pathologies 

_ 10 80 _ 

 

_ 

 

_ 

TL 

Nasir et al 

[51] 

VGG16, 

ResNet50, 

InceptionResNetV2, 

MobileNetV2. 

_ 

 

342 C-19, 

193 

NC-19 

2 97.8 _ _ _ 

Madhavan et 

al.[52] 

ResNet-50 150 C-19 Vs  

1583 N, 

150 C-19 Vs 

(2798 BP, 

1480 VP) 

_ 2 

 

 

2 

98.4 

 

 

96.2 

_ 

 

 

_ 

_ 

 

 

_ 

98.1 

 

 

94.9 

Khan, E, 

et al. [53] 

EfficientNetB1, 

NasNetMobile, 

MobileNetV2 

2473 C-19, 

6012 Opacity, 

10192 N,  

1345 VP 

 

_ 

 

4 

 

96.13 

 

_ 

 

_ 

 

_ 

A.Bhattachar

ya et al.[54] 

VGG19 

BRISK_RF 

930 C-19, 

1583N, 4273 P 

_ 3 

 

96.60 

 

95.0 

 

97.4 

 

_ 

 

M. Loey et 

al. [55] 

AlexNet, VGGNet16, 

VGGNet19,GoogLeNet, 

ResNet50 

 

 

 

345 C-19, 

397 N 

2 

 

 

82.91 

 

 

77.66 

 

 

87.62 

 

 

_ 

 

Wang, et 

al.[56] 

Xception+SVM 565 N, 

537 C-19 

 2 99.33 

 

99.27 

 

99.38 

 

_ 

 

El Gannour, 

et al.[57] 

Concatenate : 

1) Xception, Inception V3 

2) Resnet50 V2 

MobileNet V2 

 

2249 N,  

3500 T, 

1400 C-19, 

 

 

_ 

 

 

4 

 

99.80 

 

 

 

99.71 

 

 

 

99.93 

 

 

 

_ 
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T: Tuberculosis 

In [60] a Sparse Stacked Denoising AE (SSDAE) is proposed for feature extraction and 

an efficient. TL approach is used to resolve the domain adaptation problem due to the diversity 

of the actual fault diagnosis distribution. Directly adopting features from the source domain’s 

pre-training phase and only adjusting the fine tuning step decrease the algorithm’s complexity. 

Madhavan et al. [52] proposed a TL model based on ResNet-50 architecture to classify 

COVID19 from various types of pneumonia using chest X-ray images. The dataset consisted 

of 5856 images, and the authors achieved an accuracy of 98.4% for COVID-19/Normal cases 

and 96.2% for COVID-19 against all other cases. Ullah et al. [62] proposed a framework based 

on multi-task semi-supervised learning (MTSSL) to detect COVID19. The authors utilized an 

adversarial autoencoder (AAE) for feature extraction and trained the model on a CXR dataset 

consisting of 8851 Normal, 1770 COVID19, 373 Negative, and 6069 Pneumonia, achieving an 

accuracy, sensitivity, and specificity of 96.95%, 91.07%, and 99.62%, respectively. Addo et al. 

[63] proposed the Ensemble Variational Autoencoder (EVAE) based on two encoders 

(ResNet50 and VGG16) for deep feature extraction, where the features are concatenated for 

effective classification of COVID19 using a CXR image dataset consisting of 3616 COVID19, 

10192 Normal, 6012 lung opacity, and 1345 viral pneumonia.  

The proposed framework achieved an accuracy of 99.19% for 4 classes and 98.66% for 

3 classes. Reddy et al. [64] proposed a new framework called Multi-modal fusion of deep 

transfer learning (MMF-DTL) to detect COVID19. The authors utilized three TL models, 

namely VGG16, Inception v3, and ResNet50, for deep feature extraction from a CXR dataset 

containing 305 images with six classes. With the fusion model, the authors obtained an average 

sensitivity of 92.96%, specificity of 98.54%, and accuracy of 98.80%. Abdulkareem et al. [65] 

proposed CNN, SAE, and DNN to classify COVID19. The authors achieved an accuracy of 

88.30% with the CNN model on the CT scan dataset consisting of 349 COVID19 and 397 

3250 VP, 99.71 99.67 99.88 _ 

Khan et al. 

[58] 

Xception 284 C-19, 310 N, 

330 BP, 327 VP 

_ 3 

4 

95 

93 

_ 

_ 

_ 

_ 

_ 

_ 

DL+TL 

S.Dilshad et 

al. [59] 

CNN_MobileNet 447 C-19,  

447 N 

_ 2 96.33 

 

_ _ 93 

 

Li, Daqiu, et 

al.  [60] 

SAE _ 275 C-19, 

195 N 

2 94.7 _ _ 94.8 

Shukla 

et al.[61] 

CNN_ 

GoogLeNet 

1332 C-19 ,  

1421 N 

_ 2 97.62 98.29 97.64 98.3 
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Normal. Demir et al. [66] proposed an approach called DeepCovNet to classify COVID19 from 

normal and pneumonia cases. They used a convolutional autoencoder model for deep feature 

extraction and SVM optimized by SDAR algorithm for classification. The model achieved an 

accuracy of 99.75% on the CXR dataset consisting of 580 COVID19 images, 500 Pneumonia, 

and 1541 Normal. Khan et al. [58] proposed the Xception TL model for detecting COVID19 

and other types of pneumonia using a CXR dataset containing 284 COVID19, 310 Normal, 330 

Bacterial Pneumonia, and 327 Viral Pneumonia. The proposed model achieved an accuracy of 

95% for 3 classes and 93% for 4 classes. Table 3-2 shows the limitation of recent studies. 

Table 3-2 Limitations of recent methods 

 

Overall, while DL methods taken separately have shown promise in various image 

References Recent works Limitations 

Madhavan et 

al. [52] 
ResNet-50 

This study's limitations become apparent as it only utilizes a single 

Transfer Learning model in conjunction with the CXR dataset, without 

comparing the results with those obtained by other models. 

Ullah et al. 

[62] 

Adversarial Auto 

Encoder (AAE) 

Overall, while AAEs have shown potential for medical image generation 

and other applications, their limitations in terms of data, interpretability, 

generalization, and accuracy make them less suitable for diagnostic lung 

disease. 

Addo et al. 

[63] 

Variational Auto 

Encoder (EVAE) based 

on two encoders 

(ResNet50 and VGG16) 

The limitation of this study is concentrated on chest X-ray images 

without using another modalities such as CT scan. 

Reddy et al. 

[64] 

Multi-modal fusion of 

deep transfer learning 

(VGG16, Inception v3, 

and ResNet 50) 

As with AAEs, multi-modal fusion of deep transfer learning models 

requires large amounts of training data to generate meaningful results. 

There is also a limited interpret, generalization accuracy and complexity. 

Abdulkareem 

et al. [65] 
CNN, SAE and DNN 

CNN and DNN are  limited in interpretability, generalization and 

data. SAE is limited in interpretability, data and accuracy. 

Demir et al 

[66] 

DeepCovNet (Auto 

Encoder + SVM) 

While DeepCovNet (Auto Encoder + SVM) has shown promising 

results for diagnosing lung diseases, it has limitations and should be 

used with caution in a medical context. It is important to carefully 

consider the limitations and potential biases of any ML algorithm and to 

supplement the algorithm's results with additional clinical information 

and expertise. 

Khan et al 

[58] 
Xception 

The limitations of this work are shown in using one TL model with the 

CXR dataset and didn't use another model to compare the results. 
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classification tasks, their limitations in terms of interpretability, generalization, accuracy, and 

data make them less suitable for lung disease diagnosis. Therefore, more research is needed to 

determine the best approaches for using ML in medical diagnosis, including the use of 

alternative models or hybrid models that combine different techniques. From the studies 

reviewed, it can be concluded that neither the depth of the model, such as SAE, nor the fusion 

of TL alone can achieve optimal classification performance. This raises the question of whether 

the depth of the model is more effective than the fusion of TL or simply reducing the data. 

Further, it is worth investigating whether a combination of data reduction and fusion with depth 

can lead to more effective classification results. 

3.2 Contribution 

The TL Fusion and Stacked Auto-Encoders (TLFSAE) methodology for the classification 

of viral lung diseases brings several important approaches: 

Using Transfer Learning: TLFSAE uses TL to leverage knowledge gained from previous 

tasks to improve the performance of classification models. This transfer acquired knowledge to 

related tasks such as image classification, which can be used to improve the accuracy of viral 

lung disease classification. 

Using Stacked Auto-Encoders: TLFSAE uses Stacked Auto-Encoders for unsupervised 

feature learning. This helps to extract relevant features from the input data, which can improve 

the accuracy and robustness of classification models. 

Model fusion: TLFSAE uses model fusion to improve the robustness and efficiency of 

classification models. By merging information from multiple pre-trained models, a more 

complete and accurate representation of the characteristics of the input data can be obtained. 

Reduced data dimensionality: TLFSAE uses Stacked Auto-Encoders to reduce data 

dimensionality, allowing more complex data to be processed and reducing computation time. 

Use an effective and simple classification algorithm: TLFSAE uses metric classification 

algorithms to improve model accuracy. By using metric classification algorithm, more reliable 

and accurate predictions can be obtained. 

By combining these approaches, the TLFSAE methodology offers a novel approach for 

the classification of viral lung diseases, which can significantly improve the accuracy and 

reliability of classification models. 
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The primary objective of this work is to assess the effectiveness of the proposed classifier model 

in detecting various lung diseases, including COVID19. The primary contributions are outlined 

below: 

 First application on CXR images: In this study, we introduce an efficient and reliable 

method for classifying lung infections, specifically COVID19, using chest X-ray (CXR) 

images. Deep TL models have been previously employed for pneumonia detection from 

CXR images; however, there is still scope for improvement in both feature extraction 

and advanced classification stages. 

 Second application on CXR and CT scan images: The current study collected CXR and 

CT images and explored various TL methods, including E and Stacked Encoders (SE). 

The proposed classification method involves two stages for classifying different cases 

from CXR and CT images. The method involves performing TL-based SE and SAE on 

a large database, followed by concatenating the results to achieve improved 

classification performance. 

Two studies and experiments have been conducted on two approaches: i) the first was applied 

to binary classification; ii) the second is concerned with multi classification (COVID-

19/Normal/VPneumoni).  

The main contribution of this work is centered on the selection of deep feature extraction 

methods. Specifically, this involves selecting the most effective models from a range of popular 

TL methods, including VGG16, VGG19, MobileNetV2, and examining their concatenation. 

Additionally, the work explores the best methods for deep data selection and reduction, such as 

SE and SAE, to enhance the accuracy of the classification task. The work also investigates the 

impact of model depth in conjunction with TL concatenation.  

The novelty of this work stems from the deep data reduction and feature extraction 

techniques utilized, which enable the model to be applied to both CXR and CT modalities, thus 

selecting the most appropriate features for the dataset. 

The research work consisted of the following steps:  

 First, a dataset of CXR and CT images was collected from different sources. Next, 

various TL models were applied to the dataset and the best model was selected for lung image 

classification. Then, the performance of different models was compared to select the best one. 

The best TL models were concatenated to achieve high accuracy, and this concatenated model 

was applied to both CXR and CT image datasets. 



Chapter 3       Transfer Learning Fusion and Stacked Auto-Encoders for Viral Lung Disease Classification 

46 

 

 In the second stage, SE or SAE was added for dimensionality reduction or deep feature 

extraction to improve the performance of the best TL models. The effect of model depth 

associated with TL concatenation was also studied. 

 Finally, the approach was applied to both binary and multiclass models to evaluate its 

effectiveness. 

There are four scenarios in the experiments:  

The first scenario shows the effectiveness of five TL models for classifying the chest CXR and 

CT cases and offers the importance of transfer features for the next stage. The second scenario 

is carried out to study data reduction using an E with the concatenation of the best TLs for 

binary classification and then a SE by association with the concatenation of the best TLs. The 

third scenariois designed for multi class classification to study the effect of the depth of the 

model and compare the E, SE, AE, and SAE algorithm for data reduction and feature extraction. 

The fourth scenariois conducted to test the proposed TL_E, TL_SE, TL_SAE or TL_SAE 

algorithm’s ability as a classifier for improving the classification accuracy. 

3.3 Proposed TL Fusion and SAE Model 

TL Fusion and Stacked Auto-Encoders (TLFSAE) can be a powerful approach for Viral 

Lung Disease classification. TLFSAE is a technique that combines TL and Stacked Auto-

Encoders to improve the accuracy of classification models. TL involves using the knowledge 

gained from one task to improve performance on another task. In the context of lung disease 

classification, TL can be used to leverage the large amount of pre-trained models available for 

image classification, such as ResNet, VGG, or Inception. Stacked Auto-Encoders are a type of 

neural network architecture that can be used for unsupervised feature learning. They consist of 

multiple layers of neurons that learn to encode and decode data, and can be used to reduce the 

dimensionality of data. By stacking multiple layers, Stacked Auto-Encoders can learn 

increasingly complex representations of the input data. The TLFSAE approach can be applied 

as follows: 

 Pretrain a Stacked Auto-Encoder on unlabeled data, such as chest X-rays of healthy 

individuals, to learn a compressed representation of the input data. 

 Fine-tune the pre-trained Stacked Auto-Encoder on labeled data of Viral Lung Disease 

and healthy individuals to learn a representation that is specific to the classification task. 

 Use the learned representation as input to a metric classifier to predict the presence of 

Viral Lung Disease. 
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The TLFSAE approach can be further improved by fusing multiple pre-trained models 

using TL. By combining the knowledge from multiple models, the resulting representation is 

more robust and informative. Fusing can be done at different levels, such as at the feature level 

or decision level. For example, features from different pre- trained models can be concatenated 

and used as input to the Stacked Auto-Encoder, or the outputs from multiple classifiers can be 

combined using techniques such as majority voting or weighted averaging. 

The architecture proposed in this work is composed of four stages. The first stage is 

dedicated to the preprocessing of the lung sequence. In the second stage, different TL models 

are studied and evaluated for their performance, and the best one is selected as shown in fig 3.1. 

The third stage consists of an encoder (E) and either SE for data reduction and deep data 

reduction or AE and SAE for feature extraction and deep features extraction.  

Finally, the fourth stage consists of different layers used for the classification of viral lung 

diseases.
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Figure 3.1 Block diagram of the proposed approach 

The encoder extracts the pertinent features and reduces the number of data. It is generally 

used to discover no linearity in the lungs, allowing for the detection of any lung problems. 

Several feature extraction methods have been used to enhance the accuracy of viral lung 

diagnosis. The E network is added to extract deep features from CT and CXR images, and the 

obtained features are utilized in the classification layers in the next stage. The Figure 3.2 
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Proposed approach for binary and multiclass classification 

 In the fig 3.2 , the contributions of the proposed method are depicted as follows:  

 The first contribution (dotted blue line) is the selection of the best TL model for deep feature 

extraction.  

 The second contribution (red dotted line) is the replacement of the Fully Connected (FC) 

layer with a more effective data reduction method.  

 The third contribution (green dotted line) is the concatenation of three TL models with fine-

tuning for improved classification results. 

3.3.1 Preprocessing 

Based on the characteristic signs of COVID19/VPneumonia, images were defined as 

inflammatory lesions and extracted by a CV model as per the following steps: CT scans Dicom 

files was converted to PNG file, image was converted to grayscale and resizing. Afterwards, 

label encoding has been done, and then dataset is splitted in train, validation and test (see 

Fig.3.3). 
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Figure 3.2 Proposed approach for binary and multiclass classification 

 



Chapter 3       Transfer Learning Fusion and Stacked Auto-Encoders for Viral Lung Disease Classification 

49 

 

5602 Images

5779 Images

Train

XR Images 

CT scan

DICOM to PNG

RVB to NG
Resizing Data Splitting

8515 Images

Val

Binary 

Classification 

2402 Images

1445 Images

Multi Class 

Classification 

Train 

Val 2127 Images

Test

Test

Resizing

1600 Images

620 Images

1485 Images

 

Figure 3.3 Data preprocessing and splitting 

3.3.2 Transfer Learning Fusion 

TL is a technique for re-using a previously trained model, and the knowledge obtained 

from the prior task is used in TL [43]. This technique compensates for the dataset's size 

limitation while additionally speeding up the training process. As a result, several DL models 

have been applied in the feature extraction stage. For COVID19 classification, pre-trained 

models such as MobileNet_V2, VGG16, VGG19, Xception, and ResNet50 have been applied 

to achieve high accuracy scores. 

 VGG16 is DL architecture consists of 13 Convolutional layers with 3 layers for fully 

connected layers. The final output layer consists of the 1000 classes of images for the input 

of 224 x 224 images, all the layers are followed by the convolutional layers and max-pooling 

layers. RELU is the activation function that is used in the hidden layers [67][30] . 

 

 VGG19 is a pre-trained network that is trained on the ImageNet dataset, which achieved 

state-of-the-art performance on ILSVRC Challenge 2014. It is a DL architecture that consists 

of 16 Convolutional layers with 3 layers for fully connected layers [68]. 

 MobileNetV2 is a streamlined architecture that constructs lightweight DCNN using 

depthwise separable convolutions and provides an efficient model for mobile and embedded 

vision applications. MobileNet model is depth-wise, and has shown to be efficient and 

accurate enough to run on lightweight computational device [23][69] . 
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 Xception model includes depth-wise separable convolutions followed by point-wise 

convolutions in a DCNN architecture. The Xception module is equivalent to the Inception 

module, however the depth-wise separable convolutions replace the Inception modules [70]. 

 ResNet50 (Residual Network) is an Artificial Neural Network (ANN) that uses skip 

connections to generate pyramidal cells and contains no linearity. The skip connections are 

used to get over the problem of decreasing gradients and simplify the network even more. 

ResNet-50 contains 50 layers, including 48 convolution layers[71]. 

3.3.3 Data Reduction  and DFE 

A decoder and an encoder constitute the generic AE model. The encoded coefficients are 

the learned features. A network with many more hidden neurons is commonly developed for 

the no linearly separable dataset (over complete representation) [50]. The basic AE can also be 

combined to create a deep model. A SAE neural network is a modeling method to use an AE 

neural network [60]. The loss of the AE network is the reconstruction loss, as shown in Eq. 1:  

                                    𝐽 =  
1

𝑁
∑ 𝐿(𝑓𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝑤, 𝑥), 𝑥)𝑁

𝑖=1                                                   (3. 1) 

Where N denotes the size of batch size, w is the parameter matrix of layer, x is the input 

image, and L is loss function Mean-Squared-Error (MSE) and cross entropy, as shown in Eq. 2 

and Eq. 4: 

                         ((𝑤, 𝑥), 𝑥) = (𝑓𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝑤, 𝑥) − 𝑥)2                                                                                (3. 2) 

Where J denotes the layer AE network loss function as the regularization item and h is 

the output of layer fencoding, as shown in Eq. 3: 

                                                ℎ = 𝑓𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝑤, 𝑥)                                                                           (3. 3)  

                𝐿𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦
(𝑓𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑤, ℎ), 𝑦) = _ 𝑦𝑙𝑜𝑔 (𝑓𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑤, ℎ))                  (3. 4) 

The convolutional AE is a model that can combine between the convolution operation 

and the AE, where  each layer of convolutional AE produce n feature maps, it can use as input 

in next layer [72]. In this case, the encoder was used for data reduction, and Auto Encoder was 

used for feature extraction. For deep feature extraction, we used the SE and SAE. The 

architecture of an AE and SAE models are shown in fig 3.4. 
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Figure 3.4 Data Reduction and Deep Feature Extraction 

3.3.4 TLFSAE Model architecture  

To evaluate our model, the images were preprocessed using different functions before the 

model was implemented on the input. Further, in the training phase, the dataset was resized by 

50x50 and 128x128, as shown in fig 3.5, and the  fig 3.6 shows detailed parameters of VGG16 

+ Encoder model with (50x50) and (128x128) size. 

 

Figure 3.5 Dataset with different size 
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Figure 3.6 Detailed parameters of VGG16 model 

In several recent literature studies many researchers worked on deep features extraction 

using TL [73][74] ,  SAE [50] , and features extraction using AE [73]. On the other hand, there 

are who have focused on deep data reduction. For this reason, we proposed two studies, i) the 

first focusing on deep feature extraction and feature extraction using concatenation of TL, AE 

and SAE, and ii)  the second focusing on deep data reduction and data reduction using 

concatenation of TL,E and SE. The study is applied to the binary and multi-class classification. 

The algorithm of the TL_SE approach is given by algorithm 1 below: 

Algorithm 1: COVID19 classification using different TL models and SE   

      Input: (128x128x3) dimensional chest XR and CT images. 

                    Output: predicted class label for the image (0: covid19, 1: normal). 

Divide the dataset into a training set, validation set, and test set. 

Different TL models N= {VGG16, VGG19, MobileNetV2, Xception, ResNet50} are used as 

features extractors. 

DFE and data reduction (Encoder). 

For each n ϵ N do 

for epochs = 1 to 10 do 

Train TL + Stacked Encoders 

                                         end 

end 

               Flatten and dense layers (used to generate features vector) 

             Softmax function (classification) 

                          Save outcomes (TL +Stacked E) 
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3.4 Experimentation and Results  

3.4.1 Data Collection 

Example of CT and CXR images are illustrated on fig 3.7. Before training the model, the 

first step is to partition the dataset. By the holdout method, the original dataset is divided into 

three mutually exclusive sets, which are divided into three sets: a training, verification, and test. 

Table 3-3 describes the dataset distribution. 

        

           

a) Positive COVID19                               b) Negative COVID19 

                                      

 

c) Viral Pneumonia 

Figure 3.7 Examples of CT scans and XR Lung images 

Table 3-3 Data distribution 

                                     

 

 

 

 

 

 

3.4.2 Binary Classification 

To train and assess the system on CXR images, we assemble a dataset comprising 3616 

COVID19 and 3608 Normal images. 80% of the dataset is allocated for training, with the 

remaining 20% for validation. The test dataset consists of 315 COVID19 and 315 Normal 

images. For CT images, our dataset includes 4000 COVID19 and 4003 Normal images, with 

Binary Classification 

 
Training Validation Test 

CT CXR CT CXR CT CXR 

COVID19 2800 2893 1200 723 800 315 

Normal 2802 2886 1201 722 800 315 

Multi Classification 

CXR 

COVID19 2893 723 315 

Normal 2886 722 315 

VPneumonia 2736 682 855 
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70% earmarked for training and 30% for validation. The test dataset comprises 800 COVID-19 

and 800 Normal images. We employ diverse hyperparameters during model training, detailed 

in Table 3-4 along with the functions used for binary and multiclass classification. 

In this section of the work, the authors describe several experiments conducted for binary 

classification using a dataset of CXR and CT images.  

 The first experiment involved using an Encoder with two layers, each consisting of 

Convolutional Layers, ReLU activation, and MaxPooling to extract the latent space from the 

images. Different hyperparameters were used during training, such as the number of epochs, 

batch size, learning rate, and image size, to evaluate the model's performance. Table 3-4 

displays the best hyperparameters that produced the best results.  

 The second experiment involved using TL models combined with a fine-tuning model 

consisting of a CNN (Convolutional Layers, ReLU activation, and MaxPooling) and two 

dense layers with dropout and Softmax activation to extract deep features from the CXR and 

CT images. 

 The third experiment involved comparing the results of using Encoder alone, TL+CNN, and 

TL+Encoder models to select the most effective model. The proposed technique used TL 

combined with Encoder to achieve this goal.  

 Table 3-4 Hyperparameters of different models 

 SI: Size Image; LR: Learning Rate; BS: Batch Size; LF: Loss Function; AF: Activation Function 

Discussion: In fig 3.8  and  table 3-6  we see experimentation results of different TL models 

with E or CNN applied to CXR and CT images. The reason why our model can achieve better 

detection performance is mainly because the encoder detector model that has the following 

advantages: firstly, each layer of the E detector model can be trained separately, which ensures 

the controllability of the dimensionality reduction of the CXR and CT scan images features. 

Secondly, the TL added in the encoder layer also plays an important role in improving the 

accuracy of the detection model. The TL models are used as a feature extractor; afterwards, the 

encoder (or CNN) is for deep feature extraction. 

 

 Optimizer SI LR BS Beta_1 Beta_2 Epochs LF AF 

CT Adam 128x128 10-5 32 0.9 0.999 10 
Categorical_ 

Crossentropy 
Softmax 

XR Adam 128x128 10-5 32 0.9 0.999 25 and 10 
Categorical_ 

Crossentropy 
Softmax 
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Table 3-5 Results obtained from different TL models 

  

From the results, we notice the strength of the encoder in the extraction of the optimal 

parameters and their reduction. It is significantly more efficient than the CNN model. We can 

say that the encoder used alone gives satisfactory and efficient results. 

 

Figure 3.8 Accuracy comparison of different TL models in CT and CXR image 

3.4.3 Concatenation models  

The initial block is the TL models stacked with an E. The output of this block is used as 

feature vector input to the softmax function. Next, the three softmax are concatenated together 

Methods Val_Acc (%) Sens. (%) Spec. (%) TP FP FN TN 

Encoder 
CT-scan : 99.13 

CXR : 81.11 

99 

77.59 

99.25 

84.63 

1188 

581 

12 

162 

9 

111 

1192 

611 

VGG19_Encoder 
CT-scan : 96.25 

CXR : 96.06 

98.51 

94.61 

94.18 

97.51 

1183 

684 

8 

39 

16 

18 

719 

704 

VGG19_CNN 
CT-scan : 99 

CXR : 97.02 

99.32 

96.82 

98.67 

97.23 

1192 

700 

17 

23 

73 

20 

718 

702 

VGG16_Encoder 
CT-scan : 99 

CXR : 97.02 

99.32 

96.82 

98.67 

97.23 

1192 

700 

17 

23 

73 

20 

718 

702 

VGG16_CNN 
CT-scan : 99.71 

CXR : 91 

99.75 

90.18 

99.67 

91.83 

1197 

652 

3 

71 

4 

59 

1197 

663 

MobileNetV2_Encoder 
CT-scan : 99.79 

CXR : 96.26 

99.66 

96.96 

99.91 

95.57 

1196 

701 

4 

22 

1 

32 

1200 

690 

MobileNetV2_CNN 
CT-scan : 95.34 

CXR : 93.84 

95.92 

95.02 

94.75 

92.66 

1151 

687 

49 

36 

63 

53 

1138 

669 

Xception_ Encoder 
CT-scan : 94.54 

CXR : 89.62 

91.17 

87.69 

97.92 

91.55 

1094 

634 

106 

89 

25 

61 

1176 

661 

Resnet50_ Encoder 
CT-scan : 86.25 

CXR : 75.22 

81.83 

64.87 

90.67 

85.60 

982 

469 

218 

254 

112 

104 

1089 

618 
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and passed to the next stage. We used flatten, dense layers, and softmax function for COVID19 

classification. 

The results show in  table 3-6 that the concatenation TL-E model is indeed effective. Our 

proposed model has about 37M parameters (see Fig 3.9), which is very large. This is mainly 

due to the E neural network having strong feature expression ability and the advantages of TL 

concatenation. It can usually obtain the hierarchical grouping structure feature or the partial 

whole structure feature of the input, and parameters in general, are weights that are learned 

during training. 

 

Figure 3.9 Parameters number of different proposed approach 

Error! Reference source not found. shows that the best reduction in the number of parameters 

is given by the MobileNetV2_Encoder model. This model is a good candidate and remains to 

be improved. 

 Table 3-6 Concatenation and Encoder effect for binary classification 

Pn: parameters number 

CXR 

Methods Pn 
Acc.  

(%) 

Spec. 

(%) 

Sens. 

(%) 

Acc_test. 

(%) 
T/image.(s) TP FP FN TN 

1.VGG16_Encoder 14.866.482 97.02 96.82 97.23 98.44 0.01 700 23 20 702 

2.VGG19_Encoder 20.176.178 96.06 94.61 97.51 96.87 0.01 684 39 18 704 

3.MobileNetV2_Encoder 2.630.962 96.26 96.96 95.57 98.44 0.006 701 22 32 690 

Concatenation (1+2+3) 37.708.824 98.41 98.07 98.33 99.21 0.008 711 12 14 708 

CT_scan 

1.VGG16_Encoder 14.866.482 99 99.32 98.67 99.21 0.001 1192 8 16 1185 

2.VGG19_Encoder 20.176.178 96.25 98.51 94.18 97.65 0.002 1183 17 73 1128 

3.MobileNetV2_Encoder 2.630.962 99.79 99.66 99.91 98.43 0.001 1196 4 1 1200 

Concatenation (1+2+3) 37.708.824 99.87 99.75 100 100 0.002 1196 3 0 1201 
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From table 3-7, we can say that the encoder used here for the data reduction associated 

with MobileNetV2 has a good test time performance. 

The concatenation is the best only its disadvantage is the number of parameters hence the 

slower test time. In the case of the COVID19/Normal binary classification, table 3-6 shows that 

the best results are obtained in the case of the concatenation associated with the E a one layer 

that plays the role of data reduction in this case it is similar to PCA. The difference between a 

PCA and an AE is that the AE performs analysis on the data with a non-linear activation 

function on the hidden layers. 

The proposed method achieved the highest performance with remarkable accuracy, 

specificity, and sensitivity. Specifically, for the CXR dataset, the method achieved an accuracy 

of 98.41%, a specificity of 98.01%, and a sensitivity of 98.33%. Meanwhile, for the CT scan 

dataset, the proposed method yielded an accuracy of 99.87%, a specificity of 99.75%, and a 

sensitivity of 100%. Moreover, the concatenation models demonstrated improvements in true 

positives/true negatives and reductions in false positives/false negatives for both CXR and CT 

scan datasets. In what follows, we are interested in the depth of the model and the effect of the 

concatenation of the best TL on the performance of the multi-classification. 

3.4.4 Multi classification  

To train and evaluate the system, we collect a CXR dataset containing 3616 COVID19, 

3608 Normal, and 3418 Pneumonia. All the images were resized to 128x128 pixels and 

converted to grayscale images. 

In this part of the work on multi-classification as shown in table 3-8, several experiments were 

conducted with a dataset on CXR images and which look like this: 
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3.4.4.1 Experience 1  

SAE: In this study, we employed a Stacked Encoder-Decoder architecture. The Encoder is 

composed by four layers, with each layer containing Convolutional (Conv) operations with 

Rectified Linear Unit (ReLU) activation functions, and Maxpooling. The Decoder also has four 

layers, with each layer containing Conv operations with ReLU activation functions and 

UpSampling. 

Table 3-7 Best results for proposed multi classification 

 

3.4.4.2 Experience 2 

VGG19+SAE: In this case, fusion VGG19 with SAE are used to deepen the model and extract 

the discriminate features. All the VGG19 layers were freeze and the fully connected layers were 

removed and replaced by SAE.  

 Methods 
Val_Acc 

(%) 

Val_ 

Loss 

Test_Acc 

(%) 
Test_Loss 

TestTime 

(s) 
Sens(%) Spec (%) Confusion Matrix 

Stacked Auto-Encoders 2 Layers 

SAE 94.26 0.177 92.96 0.166 10.594 32.95 66.20 [
231 267 239
233 255 238
235 238 209

] 

VGG19+ Stacked Auto-Encoders 2 Layers 

VGG19+ SAE 92.82 0.207 94.53 0.186 17.483 35.88 67.94 [
249 251 237
222 𝟐𝟖𝟎 224
204 237 𝟐𝟒𝟏

] 

Concatenation : TL_Encoder (TL_E) 1 Layer 

VGG16+ 

MobileNetV2

+VGG19_E 

97.48 0.099 
88.28 

 

0.383 

 
5.828 35.91 67.95 [

𝟐𝟓𝟗 267 211
214 𝟐𝟕𝟕 235
230 217 𝟐𝟑𝟓

] 

Concatenation : TL_Encoder (TL_E) 2 Layer 

VGG16+ 

MobileNetV2

+VGG19_SE 

97.34 0.112 84.25 0.306 
43.967 

 
31.05 65.53 [

229 264 244
240 241 245
229 256 197

] 

Concatenation : TL_Stacked Auto-Encoders (TL_AE)  1 Layers 

VGG16+ 

MobileNetV2

+VGG19_ AE 

97.76 0.099 84.37 0.365 8.969 33.07 66.56 [
228 267 242
240 268 218
238 229 215

] 

Concatenation : TL_Stacked Auto-Encoders (TL_SAE)  2 Layers 

VGG16+ 

MobileNetV2

+VGG19_ 

SAE 

97.11 0.108 88.28 0.399 8.744 34.26 67.13 [
258 243 236
230 262 234
210 251 213

] 
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3.4.4.3 Experience 3  

Concatenation three TL model and E, or SE or SAE: Each of the TL models was combined 

with E, SE, or SAE and the fine-tuning model was added on the top of each model. The 

concatenation of the softmax of the three models was applied and the two dense layers and 

dropout layer with softmax activation function were added to classify different types of 

pneumonia. 

The model is trained with a variety of hyperparameters.  In addition, we got the best-SAE 

detection model through these parameters. Different models results for multi-class 

classification are described in table 3-8. 

The algorithm of the TL_SE or SAE approach is given by algorithm 2 below: 

Algorithm 2: Concatenation Transfer Learning SE or SAE for CT and CXR classification  

Input:(128x128x3) dimensionalCXR and CT images. 

Output:predicted class label:  

• 0: COVID-19, 1: Normal (CXR and CT images). 

• 0: COVID-19, 1: Normal,2: VPneumonia (CXR images). 

fori=1 to N  do      (N:number of epochs) 

Train(VGG16_Encoder, train_img, img_label) 

end 

Softmax1 = save (VGG16_E, SE or SAE) 

fori=1 to N  do 

Train(VGG19_Encoder, train_img, img_label) 

end 

Softmax2 = save(VGG19_E, SE or SAE) 

fori =1 to N  do 

Train (MobileNetV2_Encoder, train_img, img_label) 

end 

Softmax3 = save(MobileNetV2_E, SE or SAE) 

Concatenate = concatenation(softmax[softmax1, softmax2, softmax3]) 

Dense layers (for features softmax vector) 

Formed features vector is used as input to softmax function to perform classification. 

 

According to the results, it is clear that the fusion of the TL is prevalent over the depth of the 

model. The more layers that are added to the models slower the test. 

For the multi class classification, The results in table 3-8 show that the concatenation of the 

TLs associated with the reduction by the encoder (VGG16+MobileNetV2+VGG19_E) is more 

efficient than the depth of the model (VGG16+MobileNetV2+VGG19_SAE) in the case of the 

multi-classification COVID19/VPneumonia/Normal. 
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c) Test Time 

Figure 3.10 Comparing the validation and test accuracy, loss and time test of the different TL 

models 
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a) TL and TL_SE 1 Layer                                                  

 

         
b) TL_SAE 2 Layers 

Figure 3.11 Val_Accuracy and Val_Loss for TL_SE /SAE 

Discussion: For multi classification, the concatenation between three TL_E, TL_SE, and 

TL_SAE is used for deep feature extraction and data reduction. The TL_E 1 layer is the fastest 

of all methods. This is explained by the fact that the image coming out of the AE is denoised 

while the one coming out of the E is reduced and coded only there is a loss of information, 

which explains the results. 

Through results shown in table 3-8, SAE without concatenation gives better performance results 

than concatenation of different TLs with Test_Acc=92.96%  and Test_Loss = 0.166 against 

Test_Acc = 88.28% , Test_Loss = 0.399, but it is slower with Test time = 10.594s against 

Testtime=8.744s for concatenation. We can say that concatenation plays an important role in the 

test speed but it does not improve the performance of the classification of the multiclass model.  

3.5 Comparison with state of the art methods 

The multiclass gives good results when the pathologies to be classified are not viral, while 

classification difficulties are linked to the viral aspect of COVID19 and Viral Pneumonia. 
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Table 3-8 Comparison results with state of the art methods 

Authors Methods Datasets Class 

Results (%) 

Acc Sens Spec 
Test 

time(s) 

Pn 

(M) 

 Binary Classification (COVID19(C-19)/Normal(N)) : DL 

Rashid, et 

al. [67] 

 

 

AE 

CT CXR  

_ 
 816 N 

408C-19 
 90.13 _ _ _ _ 

Ullah et al 

[62] 
AE _ 

8851 N, 1770 

C-19, 373 

Neg, 6069 P 

N, 

C-19, 

Neg, 

P 

96.95 91.07 99.6 _ _ 

Rashid et 

al.[67]  
AutoCovNet _ 

408 C-19, 816 

NC-19 

C-19 

NC-19 
99.39 99.39 100 _ _ 

 

Proposed 

Model 

 

SE 

 

4000 

C-19 

4003 N 

3616 

C-19 

3608 N 

 

C-19 

N 

CT  

99.13 99 99.25 _ 
92 

Th 

CXR  

81.11 77.59 84.63 _  

 Binary Classification (COVID19(C-19)/Normal(N)) : DL and TL  

Lahsaini 

et al.[44] 

DenseNet201+ 

GradCam 

1868 

C-19 

3118 N 

_ 
C-19 

N 
98.8 98.54 99.02 _ _ 

Narin et 

ai. [70] 
ResNet50 _ 

2800 N, 

341 

C‐19, 

2772 BP, 

1493 VP 

1. N, C-

19, 

2. C-19, 

VP 

3. C-19, 

BP 

96.1 

99.5 

99.7 

 

 

_ 

 

_ 

 

_ 

 

_ 

Madhavan 

et al.[52] 
ResNet-50 _ 

150 

C-19, 1583 N, 

2798BP, 

1480VP 

1. N, 

C-19 

2. C-

19,(BP,

VP) 

98.1 

96.2 
_ _ _ _ 

Ketfi et al 

[75] 
MobileNetV2 

1.3600 C-

19 

3600 N 

2.4800 C-

19 

4800 N 

219 C-19 

397 N 

C-19 

N 

CXR 

96.77 90.91 100 0.18 _ 

CT 

99.67 

99.62 

99.93 

100 

100 

99.25 

0.03 

0.05 

_ 

_ 

Li, Daqiu, 

et al [60] 
SAE 

275 

C-19, 

195 N 

_ _ 94.7 _ _ _ _ 

MobileNetV2_ E 4000 3616  CT  
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Proposed 

Model 

C-19, 

4003 N 

C-19, 

3608 N 

C-19 

N 

 

99.79 99.66 99.91 0.001  

2.63 CXR 

96.26 96.96 95.57 0.006 

MobileNetV2_ 

CNN 

4000 

C-19, 

4003 N 

3616 

C-19 

3608 N 

C-19 

N 

CT 

2.6 
95.34 95.92 94.75 _ 

CXR 

93.84 95.02 92.66 _ 

Binary Classification (COVID19(C-19)/Normal(N)) : DL and TL Concatenation 

Kong et 

al.[71]  

Fusion(DenseNet+

VGG16)+GAB + 

CAB 

 

_ 

576 

C-19 

1583 N 

 

C-19 

N 

 

98.0 

 

_ 

 

_ 

 

_ 

 

_ 

Reddy et 

al. [64] 

Concatenation 

(VGG16, 

Inception v3, and 

ResNet 50) 

_ 

305 images 

with six 

classes 

_ 98.80 92.96 98.54 _ _ 

Proposed 

Model 

 

Concatenation 

VGG16_E 

+VGG19_E 

+MobileNetV2_E 

4000 

C-19, 

4003 N 

3616 

C-19 

3608 N 

C-19 

N 

CT 

37.7 
99.87 99.75 100 0.002 

CXR 

98.41 98.07 98.33 0.008 

Multi Classification (COVID19(C-19)/VPneumonia(P)/Normal(N)) : DL and TL 

L. 

Mohamed 

et al. [48] 

CNN Bayesian 

Optimizer 

3616 

C-19, 

3616 N, 

3616VP 

 
 

3 

 

96 

 

_ 

 

_ 

 

_ 

 

_ 

Kong et 

al. [71] 

Fusion(DenseNet+

VGG16) + GAB + 

CAB 

_ 

576 

C-19 

1583 N 

4273 CP 

3 97.3 _ _ _ _ 

Khan, E, 

et al.[53] 

EfficientNetB1, 

NasNetMobile, 

MobileNetV2 

2473 

C-19, 

6012 

Opacity, 

10192N, 

1345VP 

_ 4 96.13 _ _ _ _ 

Xu et al. 

[73] 

UNet : ResNet + 

CNN model 

1840 N, 

433 

C-19, 

2780BP, 

1345VP 

394 T 

_ 

N, 

C-19, 

BP, 

VP, 

T 

96.32 _ _ 
 

2h37mn 

 

23.5 

Proposed 

Model 

 

Concatenation 

VGG16_SE + 

VGG19_SE+ 

MobileNetV2_ 

CXR 

12127 

 

3931 

C-19, 

3923 N, 

4273 VP 

C-19 

N 

VP 

97.48 _ _ 
0.004 

 

37.7 
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The recently published models are compared and discussed the differences between the 

proposed models. Obviously, the accuracies obtained varied, but the advantage of our model is 

that it distinguishes COVID19 from other typical types of pneumonia. For example, despite the 

high accuracy of some models, they were conducted on limited datasets, applied to a single 

modality, and sometimes could not distinguish between COVID19 and other SARS. Some 

models obtained quite similar accuracies; however, they compared COVID19 and other lung 

diseases.  Table 3-8 shows comparative results of our approach with the existing models, it also 

indicates that compared to other models, our proposed concatenation model achieves the 

highest accuracy for binary classification of lung CT images when compared to existing models. 

 

3.6 Conclusion 

In conclusion, the TLFSAE approach with model fusion has the potential to improve the 

accuracy of Viral Lung Disease classification. This approach can be further optimized by 

exploring different pre-trained models, fusion techniques, and classification algorithms. 

In this work, different TL models are used. We have proposed the concatenation method 

between the three best TL models used with SE and SAE. They are linked together for obtained 

better results. As a result, an automatic recognition system is desperately needed to cut down 

on false positives. VGG16, VGG19, ResNet50, MobileNetV2, and Xception are just some of 

the many pre-trained CNN models. This work introduces new concatenation models between 

three TL models and SE or SAE. The model is suitable for diagnosing COVID19 by applying 

different pre-trained models. For binary classification, the approach achieves the highest 

performance with an accuracy of 99.87% for CT scans and 98.41% for a CXR. The test time 

par image for our approach spent tCXR =0.008s, tCT=0.002s. For multi class classification, the 

proposed model obtained an accuracy of 97.48% for concatenation TF and SE, and 97.10% for 

concatenation TL and SAE. TL_SAE is the fastest with Time_test=8.744s and VGG19 is the 

best candidate for the confusion matrix. In this case, we can say that the concatenation plays an 

important role in the test speed but it does not improve the performance of the classification of 

SE  

Concatenation 

VGG16_SAE + 

VGG19_SAE + 

MobileNetV2_ 

SAE 

97.12 _ _ 0.006 

 

38.8 
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the multiclass model. Our proposed model outperformed existing methods and demonstrated 

the best performance.  

Therefore, more research is needed to determine the best approaches for using ML in medical 

diagnosis, including the use of alternative models or hybrid models that combine different 

techniques. There are several perspectives for the TL Fusion and Stacked Auto-Encoders 

(TLFSAE) approach in the context of Viral Lung Disease classification :i) Improved accuracy 

by leveraging the knowledge gained from pretrained models and learning a representation that 

is specific to the classification task. The use of Stacked AutoEncoders for feature learning can 

also help in identifying relevant features that are important for classification. It can also be 

applied to other areas of medical imaging to improve diagnostic accuracy and reliability. 

As future work, we aim to collect a larger dataset and focus on improving the quality of 

images in the preprocessing stage. We also plan to utilize metaheuristic algorithms to optimize 

our proposed model for the detection and diagnosis of various diseases. Additionally, we aim 

to improve the test time and standardize the model while also exploring novel measures for 

evaluation of the disease evolution. 
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4 Chapter: Metaheuristic Optimization Deep 

Features for Pathologies Diagnostic 

4.1 Introduction 

In the domain of medical imaging, the task of pinpointing infected regions within MRI, 

CT scans, and Ultrasounds remains a daunting challenge, even for seasoned experts.  The power 

of DL has proven to be a groundbreaking approach in the realm of medical pathology 

diagnostic. The objective is to find a standard model to diagnose different pathologies using 

different sensors for different stages of diseases and above all detect the disease at its beginning 

for early diagnostic. 

This work introduces a framework to detect and classify not one, but three critical 

diseases: lung and breast cancer, as well as Alzheimer disease (AD). Proposed approach lies in 

a hybrid model fine-tuned through the application of Manta-Ray Foraging Optimization 

(MRFO), an advanced metaheuristic optimization technique. This optimization process is 

instrumental in enhancing the feature extractor, primarily based on the VGG16 model. Within 

this fine-tuned model, a series of enhancements have been implemented. A global average 

pooling layer and a residual connection block, both optimized using MRFO, constitute the core 

elements of this model. To further elevate its performance, a strategically placed skip 

connection links the first dense layer to the subsequent layer. This integration is effectively 

utilized in the final layer of our model. 

The aim of this work is to build a fine-tuning model optimized that achieves high accuracy with 

low computational power. The proposed model achieves better accuracy than other Transfer 

Learning (TL) models when applied to different pathologies in Binary and Multiclass 

Classification 

4.2 Recent Work 

In recent years, Computer-Aided Diagnosis (CAD) systems have been developed for 

diagnosing various illnesses. In this work, we are interested in three types of pathologies. Our 

motivation is based on different reasons presented in the following. Each disease has different 

subtypes, such as lung cancer with four types, breast cancer with three types, and Alzheimer 

disease with four types. Lung cancer is a deadly and severe disease that can go undetected until 

it has spread. Symptoms of lung cancer include coughing up blood, chest pain, hoarseness, loss 
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of appetite, shortness of breath, and fatigue. Early detection of lung cancer is absolutely vital 

for increasing the chances of survival and improving overall outcomes for patients. When lung 

cancer is diagnosed in its early stages, it is often localized, meaning it has not spread to other 

parts of the body. Early detection plays a crucial role in the successful treatment of lung cancer. 

Patients diagnosed in the early stages have a higher chance of successful treatment outcomes 

[76]. In Algeria, a National Cancer Plan for 2015-2019 was implemented to address the national 

priority of lung cancer. The most common types of lung cancer in Algeria are adenocarcinoma 

and squamous cell carcinoma. These malignancies predominantly afflict individuals with a 

history of smoking, whether current or former smokers. Adenocarcinoma, a cancer that 

originates in the glandular cells lining the airways, and squamous cell carcinoma, arising from 

the thin, flat cells covering the airway surfaces, pose significant health challenges in the nation 

[77]. Breast cancer is a leading cause of death among women, characterized by the uncontrolled 

growth of cells in the breast. Early detection is key to reducing mortality rates. AD is a type of 

dementia that is characterized by mild memory loss, which gradually progresses to a loss of the 

ability to carry on a conversation and respond to the environment. AD affects parts of the brain 

that control thought, memory, and language. 

DL, through the use of convolutional neural networks (CNNs) and other techniques, has 

demonstrated the ability to recognize the underlying structure of data. These networks are adept 

at automatically learning features from raw data, enabling them to discern subtle patterns, 

textures, and shapes within images. By employing multiple layers of convolutions and pooling 

operations, CNNs can extract hierarchical representations of visual information, leading to 

superior accuracy in tasks like object recognition, image segmentation, and classification [78]. 

With the rapid advancement of technology, ML has emerged as a powerful force in the field of 

radiology, transforming the way medical imaging data is analyzed and interpreted. The 

integration of ML algorithms into radiological practices has significantly enhanced the 

accuracy, efficiency, and speed of diagnosing various medical conditions, including complex 

diseases and abnormalities[5]. TL models have shown hopeful performance in detecting 

different diseases, using medical images.  

In the field of medical research and disease detection, TL has been widely utilized to 

leverage pre-trained models and enhance the accuracy and efficiency of disease detection 

algorithms. TL allows the knowledge learned from one task (often on a large dataset) to be 

applied to a different but related task, even with limited data availability. While numerous 

techniques have been proposed to improve disease detection using TL models, there remains a 
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notable gap in comprehensive experimental studies exploring the impact of metaheuristic 

algorithms on fine-tuning models. Metaheuristic algorithms are powerful optimization 

techniques that can effectively search through complex solution spaces to find optimal or near-

optimal solutions for specific problems. In the context of fine-tuning TL models for disease 

detection, the application of metaheuristic algorithms holds significant potential to optimize 

hyperparameters and improve the overall performance of the models. By carefully fine-tuning 

the TL models using metaheuristic algorithms, researchers can unlock hidden patterns and 

relationships within medical datasets, leading to more accurate and reliable disease detection 

systems. 

In this context, we propose a collection of experiments to compare the performance of 

VGG16 with a fine-tuning model optimized by the MRFO algorithm. Additionally, the MRFO 

algorithm optimizes parameters and hyperparameters such as data augmentation parameters, 

batch size, optimizer, TL layers trainable ratio, and dropout ratio. This work also targets to 

rummage deep into effective studies optimizing the fine-tuning model techniques that can 

increase the performance of diagnostic systems based on DL. 

This work proposes a novel framework to detect lung cancer, breast cancer, and alzeimer’s 

disease from CT scan, ultrasound scan and MRI images. Our contribution is inspired by the 

work of reference [79], which utilized eight pre-trained CNN architectures with TL and 

metaheuristic optimization techniques, specifically the Manta Ray Foraging Optimization 

(MRFO) approach, to optimize TL parameters and hyperparameters. 

The main contributions of the proposed method are as follows: 

The contribution acts directly on the architecture of the parameter extraction phase by adding 

several layers based on a data reduction and a metaheuristic optimization algorithm in order to 

select the optimal parameters for a better classification. The important phases of the 

contribution are listed as follows: 

• Features extraction from different types of disease using VGG16 TL network ; 

• Data reduction : Flatten or Global average pooling layer was used after VGG16 for 

local and global features extraction to find which one is best ; 

• Hyperparametres optimization based metaheuristic MRFO algorithm on different 

databases ; 

• VGG16 features optimization based MRFO algorithm and added residual block to 

obtain high accuracy; 

•  Dense layers addition and their MRFO optimization ; 
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• Concatenation of optimized dense layers (added) ; 

• Selection of best features concatened by the final dense layer optimized ; 

• Add dropout layer and optimize it ; 

DL models are categorized into two main types: non-pre-trained and pre-trained models: Pre-

trained models tend to exhibit higher performance compared to non-pre-trained models because 

they have been initially trained on large datasets, enabling them to capture rich and 

generalizable features. By leveraging this pre-existing knowledge, pre-trained models can avoid 

overfitting and demonstrate better performance on specific tasks even with limited data. In 

contrast, non-pre-trained models start from random initialization and require significant 

amounts of data to learn meaningful representations, which may lead to challenges in achieving 

comparable performance. Thus, the use of pre-trained models with fine-tuning is a common 

practice to boost the efficiency and accuracy of DL models across various applications. 

4.2.1 Lung cancer classification based methods 

Lung cancer classification refers to the task of distinguishing between different types of 

lung cancer or identifying whether a patient's lung tissue is cancerous or non-cancerous based 

on medical imaging or other relevant data. Over the years, various methods and techniques have 

been developed for lung cancer classification. Lakshmanaprabu, S. K., et al. [80] proposed a 

framework called Optimal Deep Neural Network (ODNN) optimized by Modified 

Gravitational Search Algorithm (MGSA) and Linear Discriminate Analysis (LDA) to analyze 

and classify the CT scan lung nodules images. Their results showed that the proposed classifier 

gives a sensitivity of 96.2%, specificity of 94.2%, and accuracy of 94.56%.  Hammad, 

Mohamed, et al. [81] achieved high accuracy of 99.99% with a new deep CNN for detecting 

normal and abnormal cancer images database. Civit-Masot, et al. [82] proposed a diagnostic 

aid system (DAS) to detect healthy and non-healthy images from lung cancer tissue. They 

obtained an accuracy of 97.11 and 99.96%, and a value of the area under ROC curve of 99.77 

and 99.94% depending on the number of classes classified. Ajai, et al. [83] proposed a method 

called Shuffled Social Sky Optimizer-based Multi-Object Rectified Attention Network (SSSO-

based MORAN) to classify lung cancer. They employed the Gaussian filtering to pre-process 

the image, and for feature extraction, they used Local Gabor XOR Pattern (LGXP), Gray-Level 

Co-occurrence Matrix (GLCM) features, Global Binary Pattern (GBP), Tetrolet transform, and 

statistical features. Their algorithm showed an accuracy, Mean Absolute Error (MAE), 

sensitivity, and specificity of 0.896, 0.104, 0.8969, and 0.845, respectively. Xuan, Ping, et al 

[84] proposed a new convolutional bidirectional gated recurrent unit based module technique 
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to improve lung tumours’ segmentation. Dodia, Shubham, et al [85] presented an overview of 

recent research performed in medical image analysis of lung cancer using DL algorithms, and  

Tomassini, Selene, et al. [86] presented a survey to show the contribution of convolutional 

neural networks for identifying malignant lung nodules and classifying lung cancer from 

computed tomography data. Tian, Qingji, et al. [87] proposed a new method to achieve high 

accuracy for lung cancer classification. they used a new version of a metaheuristic, called the 

Converged Search and Rescue (CSAR) algorithm to Enhance Capsule Networks (ECN) for the 

diagnosis. They showed that the suggested method achieved 96.35 % precision, 96.07 % recall, 

96.41 % F1-score and 96.65 % accuracy. Siddiqui, et al  [88] proposed an IGF-EDBN with 

SVM classifier approach for identifying and classifying lung CT images into normal, malignant 

and benign categories. The suggested method outperforms state-of-the-art techniques in terms 

of accuracy, sensitivity, specificity, F-1 score, false positive rate (FPR), and false negative rate 

(FNR). The IGF-EDBN approach achieves impressive performance metrics, including an F1 

score of 99.37%, accuracy of 99.42%, sensitivity of 98.49%, and specificity of 98.31%. El 

Hamdi, et al [89] proposed a novel approach using PET/CT images and a multi-output CNN 

for lung cancer classification. The VGG16 network extracts relevant features, fed to a three-

branch classifier for TN staging and histologic subtypes. Experimental results show good 

performance in TN staging and histology classification, achieving high accuracy (0.94) and 

AUC (0.97) for tumor size classification on Lung-PET-CT-Dx dataset. Table 4-1 presents 

recent studies on lung cancer classification. 

Table 4-1 Recent studies on lung cancer classification 

Authors Years Methodology Results (%) 

Lakshmanaprabu, S. K., 

et al. [80] 
2019 

ODNN Optimized by MGSA and LDA for 

CT scan Lung Nodules 

Sensitivity= 96.2 

Specificity= 94.2 

Accuracy= 94.56 

Tian, Qingji, et al.[87] 2021 
CSAR Algorithm to Enhance Capsule 

Networks for Diagnosis 

Precision = 96.35 

Recall = 96.07 

F1-score = 96.41 

Accuracy = 96.65 

Hammad, Mohamed, et 

al. [81] 
2022 

New CNN for Detecting Normal and 

Abnormal Cancer Images 
Accuracy = 99.99 

Civit-Masot, et al. [82] 2022 
Diagnostic Aid System (DAS) for Healthy 

and Non-Healthy Images 

Accuracy = 97.11/99.96 

AUC = 99.77/99.94 

Ajai, et al. [83] 2022 
SSSO-based MORAN for Lung Cancer 

Classification 

Accuracy =  89.6 

MAE = 10.4 

Sensitivity = 89.69 

Specificity = 84.5 
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Siddiqui, et al [88] 2023 
IGF-EDBN with SVM Classifier for Lung 

CT Image Classification 

F1 score = 99.37 

Accuracy = 99.42 

Sensitivity = 98.49 

Specificity = 98.31 

El Hamdi, et al [89] 2023 
Multi-Output CNN for Lung Cancer 

Classification using PET/CT 

Accuracy = 94 

AUC = 97 

 

4.2.2 Breast cancer classification based methods  

Various types of deep neural network architecture have been utilized for breast cancer 

classification using images. Murtaza, Ghulam, et al [90] reviewed different deep neural network 

models that were used for this purpose. M,Nawaz, et al [91] proposed a DL approach based on 

a CNN model for multi-class breast cancer classification. The DenseNet CNN model achieved 

high performance with an accuracy of 95.4% in the multi-class breast cancer classification task. 

Khan, SanaUllah, et al [92] proposed a framework based on CNN architectures of GoogLeNet, 

VGGNet, and ResNet. The combined features were fed into a fully connected layer for breast 

cancer classification. Han, Zhongyi, et al [93] proposed a new model called class structure-

based deep convolutional neural network (CSDCNN) for breast cancer multi-classification. The 

structured DL model achieved high performance with an average accuracy of 93.2%. 

Omondiagbe, et al [94] presented three ML algorithms: Support Vector Machine, Artificial 

Neural Networks, and Naïve Bayes, and a hybrid approach using linear discriminant analysis 

(LDA) for breast cancer classification. The proposed approach achieved an accuracy of 98.82%. 

Baghdadi, et al. [79] proposed a framework based on convolutional neural networks, TL, and 

the MRFO for parameters and hyperparameter optimization using histopathological and 

ultrasound breast cancer datasets to classify breast cancer automatically with high performance. 

They achieved a score of 97.73% on the histopathological dataset and 99.01% on the ultrasound 

dataset in terms of accuracy. Boulenger, et al. [95] presented VGG19 architecture to predict 

breast cancer from ultrasound images. The model performs well with an accuracy of 85%, a 

sensitivity of 86%, and a specificity of 86%. Ali, Muhammad Danish, et al [96] presented a 

novel breast cancer classification approach with 90% accuracy on the BUSI dataset. They used 

multiple CNN models (Inception V3, ResNet50, DenseNet121) in a meta-learning framework 

for improved generalization and accuracy, especially in detecting malignant tumors. The study 

demonstrates the potential of meta-learning and ensemble techniques to enhance breast cancer 

diagnosis. Table 4-2 shows recent studies on breast cancer classification. 
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Table 4-2 Recent studies on Breast cancer classification 

Authors Years Methodology Results (%) 

Han, Zhongyi, et al. [93] 2017 
CSDCNN Model for Breast Cancer Multi-

Classification 
Average Accuracy = 93.2 

M,Nawaz, et al. [91] 2018 
CNN Model for Multi-Class Breast Cancer 

Classification 
Accuracy = 95.4 

Omondiagbe, et al. [94] 2019 
SVM, ANN, Naïve Bayes, and hybrid Approach for 

Breast Cancer Classification 
Accuracy = 98.82 

Baghdadi, et al. [79] 2022 
Framework with CNNs, TL, and MRFO for Breast 

Cancer Classification 

HD: 

Accuracy = 97.73 

US: 

Accuracy = 99.01 

Boulenger, et al. [95] 2023 
VGG19 Architecture for Predicting Breast Cancer 

from Ultrasound Images 

Accuracy = 85 

Sensitivity = 86 

Specificity = 86 

Ali, Muhammad Danish, 

et al. [96] 
2023 

Meta-Learning Framework with Multiple CNN 

models for Breast Cancer Classification 
Accuracy = 90 

 

4.2.3 Alzheimer disease classification based methods 

MRI is a tool that is used to analyze the anatomical structures of the brain due to its high 

spatial resolution. The classification of Alzheimer disease using DL has gained significant 

attention in recent decades. ML has become a popular area of study in the health sciences, 

particularly in improving AD diagnosis and prognosis. This section presents a review of recent 

studies that utilize DL for AD diagnosis and prediction. Yamanakkanavar, et al. [97] provided 

an overview of current DL and ML approaches for brain MRI segmentation and classification 

of AD for high accuracy in detecting AD. Babu, et al. [98] introduced a novel AD diagnosis 

model with two main phases: proposed feature extraction and classification using Deep 

Convolutional Neural Network (DCNN) optimized by a new hybrid model termed as Combined 

Gray Wolf and Dragon Updating (CG-DU). They achieved an average accuracy of 98.79%, 

sensitivity of 98.67%, and specificity of 99.42%. 

Islam, et al. [99] developed a DCNN model for four-class classification of AD based on 

MRI scans. The model was trained and evaluated using the OASIS dataset, achieving an 

accuracy of 73.75%. However, due to limited data, the model's accuracy was inadequate. Wen, 

Junhao, et al. [100] provided an overview of various DL methods used for AD classification 

and compares their performance on a publicly available dataset. The authors also provide a 

reproducible evaluation framework for benchmarking the performance of new models. Zhang, 

et al. [101] presented an extreme learning machine (ELM) classification model for binary AD, 

utilizing images of 627 patients from the ADNI database. In addition, a technique for multi-
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class detection for AD and cognitive impairment stage was proposed. Ismail, et al.[102] 

proposed a novel technique combines MRI and PET images to diagnose AD into three groups. 

DNN models such as InceptionV3, AlexNet, and ResNet-18 were used for binary and multi-

class classification tasks. The hyperparameters were optimized with a multi-objective algorithm 

to learn the distinguishing characteristics of AD. The features were classified using Softmax, 

SVM, and RF classifiers. The proposed method shows promise in the early detection of AD. 

They collected 1617 DICOM images of brain tissue from the Alzheimer Disease Neuroimaging 

Initiative (ADNI) database, which included 511 AD, 571 early MCI, and 535 NC subjects 

acquired from MRI and PET scans. The MultiAz-Net model combined with softmax achieved 

an accuracy of 90.13%, while MultiAz-Net combined with SVM achieved a specificity of 

92.3%, and MultiAz-Net combined with RF achieved a sensitivity of 89.0%. Leela. M, et 

al.[103] proposed HEMRDTL, a hybrid EEG and fused CT-MRI model that uses TL, VGG19 

techniques, and RPCA for automatic and early detection of AD. The model extracts features 

from both EEG and fused CT-MRI signals for classification, representing the brain's functional 

and structural properties. Their approach outperformed several state-of-the-art methods for AD 

detection on a large dataset, showing promise for accurately detecting categories of AD from 

both fused CT-MRI and EEG signals. Table 4-3 presents recent studies on Alzheimer disease 

classification. 

Table 4-3 Recent studies on Alzheimer disease classification 

Authors Years Methodology Results (%) 

Islam, et al. 

[99] 
2017 

DCNN Model for Four-Class Classification of 

AD based on MRI Scans 
Accuracy = 73.75 

Zhang, et 

al.[101] 
2019 

ELM Classification Model for Binary AD and 

Multi-Class Detection using Images from the 

ADNI Database 

_ 

Babu, et al.[98]  2022 
AD Diagnosis Model with Feature Extraction and 

DCNN Optimized by CG-DU Model 

Average Accuracy = 98.79 

Sensitivity = 98.67 

Specificity = 99.42 

Ismail, et al. 

[102] 
2023 

Novel Technique Combining MRI and PET 

Images for AD Diagnosis into Three Groups; use 

of DNN Models 

(InceptionV3, AlexNet, ResNet-18) 

Accuracy = 90.13 

Specificity = 92.3 

Sensitivity = 89.0 
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4.3 Proposed Optimized Deep Features (ODF) Method 

The proposed method draws from TL principles, widely acknowledged for its efficacy 

across diverse medical applications. TL involves feature extraction and representation from a 

pre-trained model, eliminating the need to train anew. In this proposed approach, the VGG16 

TL model is employed, where we modify the architecture by replacing fully connected layers 

with a new model featuring global average pooling. This alteration reduces computations and 

facilitates the extraction of global features. In Figure 4.1, the proposed TL model showcases 

the significance of pooling in dimension reduction, enhancing feature relevance while 

discarding unnecessary details [104]. Additionally, a residual connection block with two 

optimized dense layers is incorporated and concatenated to select optimal features. The last 

layer is a dropout layer optimized for preventing overfitting. This configuration is designed for 

the multi-class classification of various cancer types in the lung, breast, and AD. 

 

Figure 4.1 Proposed ODF Approach for Binary/Multiclass classification of different Diseases 

Classification 
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4.3.1 Preprocessing and Deep Features Extraction 

The preprocessing of medical images and extracting the important characteristics using 

AI techniques are great challenges.  

• Resizing : Resizing refers to the process of changing the dimensions of an image. In 

medical image preprocessing, resizing is often used to standardize the dimensions of images in 

a dataset. This step is crucial when dealing with images of different sizes, resolutions, or aspect 

ratios. In this work, all images were reshaped to (224x224x3). 

• Normalization : Normalization is a preprocessing technique used to standardize the 

pixel values of images. In the context of medical image analysis, normalization typically 

involves scaling the pixel values to a specific range, such as [0, 1] or [-1, 1]. By ensuring that 

pixel values are within a consistent and standardized range, normalization prepares the images 

for more effective feature extraction and model training. 

• Data Splitting : In the context of medical image analysis and ML, the dataset is usually 

divided into three sets: the training set, which is used to train the model; the validation set, 

which is used to fine-tune hyperparameters and prevent overfitting; and the test set, which is 

used to evaluate the model's performance. 

4.3.2 Deep Features Extraction  

Different methods for detecting and extracting the relevant information from lung cancer, 

breast cancer, and alzeimer’s disease were used, for example, traditional ML like SVM [88], 

ANN [94], and DL techniques like CNN [89] architecture. Today, TL techniques are being 

broadly used in the classification problem. The assistance of Optimal Deep Neural Network 

(ODNN) and Linear Discriminate Analysis (LDA) has been used for extracting the deep 

features from CT scan of lung images. In [105] a review of recent state-of-the-art DL algorithms 

and architectures proposed as CAD systems for lung cancer detection was presented. 

In this work, the VGG16 model is used for feature extraction. The architecture of VGG16, 

depicted in Figure 4.2, comprising 16 layers, including 13 convolutional layers and three fully 

connected layers, VGG16 employs small 3x3 filters with a stride of 1 in its convolutional layers. 

The use of max-pooling layers with 2x2 filters and a stride of 2 contribute to down-sampling, 

while the fully connected layers are equipped with ReLU activation functions. 
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Figure 4.2 Used VGG16 Architecture 

4.3.3 Fine Tuning Model  

The proposed model is built upon the VGG16 architecture, with a specific focus on fine-

tuning and optimization using the MRFO algorithm. To enhance the model's adaptability to our 

specific task, we have removed the fully connected layers of the original VGG16 (See Fig 4.3). 

In place of the removed fully connected layers, we have introduced a novel architecture. This 

new structure comprises a global average pooling layer and a residual block, which, in turn, 

consists of two dense layers. These dense layers are carefully optimized and concatenated to 

ensure effective feature extraction and representation. To address potential overfitting concerns, 

a dropout layer has been incorporated at the end of the architecture. This strategic addition helps 

mitigate the risk of overfitting, thereby enhancing the model's generalization capabilities. 

Through this modification and optimization process, we aim to achieve superior performance 

and accuracy in our specific application 
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Figure 4.3 Fune Tuning VGG16 Model and Searching the Best Solution 
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4.3.4 Deep Features Optimization 

There are diverse types of optimizers that can be used in DL. Some common optimizers 

include Stochastic Gradient Descent (SGD), Adam, RMSprop, Nadam, and Adagrad, each with 

its own strengths and weaknesses. In this work, for each experience we use the MRFO 

algorithm to choose the best between them. The algorithm uses a combination of cyclone, 

random, chain, and somersault foraging strategies for exploration and exploitation in the search 

space, aiming to find the best solution for the optimization problem. The selected solution 

represents the optimal set of hyperparameters for the VGG16 TL + ODF model, as determined 

by the Manta Ray Foraging Optimization process. 

4.3.4.1 Manta Ray Foraging Optimization  

Metaheuristic algorithms are an effective approach for finding accurate solutions to real-

world problems. One such algorithm that is commonly used in DL to optimize hyperparameters 

and improve performance is the MRFO algorithm. Inspired by the intelligent behaviors of 

Manta Rays, this algorithm has become increasingly popular in DL research. Its effectiveness 

in optimizing hyperparameters has been demonstrated in several studies, making it a valuable 

tool for improving DL performance. Overall, the MRFO algorithm is a promising addition to 

the field of metaheuristics and has the potential to be utilized in a wide range of real-world 

applications [106]. 

 Chain Foraging  

This technique is based on rays of Manta to find the plankton and move toward them. can be 

presented mathematically as follows [107]: 

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑(𝑡) + 𝑟 ∗ (𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) + 𝛼 ∗ (𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) ,   𝑖 = 1                                              (4.1) 

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑(𝑡) + 𝑟 ∗ (𝑥𝑖−1
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) + 𝛼 ∗ (𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) , 𝑖 = 2, … … , 𝑁                                    (4.2) 

𝛼 = 2 ∗ 𝑟 ∗ √|log (𝑟)|                                                                                                                                          (4.3) 

𝑥𝑖
𝑑  is the placement of  𝑖𝑡ℎ single in the 𝑑𝑡ℎ dimension at time𝑡,  𝛼 is a weight coefficient, 𝑟 is 

a random vector in [0, 1].  𝑥𝑏𝑒𝑠𝑡 
𝑑 is the position of high-concentration planktons. 

 Cyclone Foraging 

 In this case, every Manta swims towards the one in front of it pointing spirally moving to the 

food, wherever this activity behavior may be expanded for n-D space. The mathematical 

equation can be expressed as: 
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𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) + 𝑟 ∗ (𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) + 𝛽 ∗ (𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) ,   𝑖 = 1                                           (4.4) 

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) + 𝑟 ∗ (𝑥𝑖−1
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) + 𝛽 ∗ (𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) , 𝑖 = 2, … … , 𝑁                                   (4.5) 

𝛽 = 2𝑒𝑟1
𝑇−𝑡+1

𝑇 ∗ sin (2𝜋𝑟1) 

𝑇 represents the max iteration, 𝛽 is the weight coefficient, and 𝑟1 a rand number in the range 

[0, 1]. Different technique based on making each search for a new position from the current 

best position by assigning a random position to detect the search space: 

𝑥𝑟𝑎𝑛𝑑
𝑑 = 𝐿𝑏𝑑 + 𝑟 ∗ (𝑈𝑏𝑑 − 𝐿𝑏𝑑)(6) 

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑟𝑎𝑛𝑑

𝑑 (𝑡) + 𝑟 ∗ (𝑥𝑏𝑒𝑠𝑡𝑟𝑎𝑛𝑑
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) + 𝛽 ∗ (𝑥𝑟𝑎𝑛𝑑
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) ,   𝑖 = 1                                    (4.7) 

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑟𝑎𝑛𝑑

𝑑 (𝑡) + 𝑟 ∗ (𝑥𝑖−1
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) + 𝛽 ∗ (𝑥𝑏𝑒𝑠𝑡𝑟𝑎𝑛𝑑
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) , 𝑖 = 2, … … , 𝑁                          (4.8) 

 SomerSault Foraging 

In this situation, Manta swims in an axis way and updates their positions. The mathematical 

equation [107] can be presented as follow: 

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑(𝑡) + 𝑆 ∗ (𝑟2 ∗ 𝑥𝑏
𝑑 − 𝑟3 ∗ 𝑥𝑖

𝑑(𝑡)) ,    𝑖 = 1, … , 𝑛                                                                         (4.9) 

S represents the somersault factor, 𝑟2 𝑎𝑛𝑑 𝑟3  represent two random numbers in [0, 1].  

Algorithm 3 outlines the various steps of MRFO optimization 
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Algorithm 3 : MRFO Optimization 

Initial Setup and Population Initialization 

Input: 

• Number of solutions in the population (Population Size) 

• Maximum iterations for MRFO (Max Iterations) 

• Training, validation, and test datasets 

• Problem-specific parameters and constraints 

  Output:  

• Best hyperparameters obtained from MRFO process 

Initialize Population: 

• Randomly initialize a population of solutions based on problem-specific parameters and constraints; 

• Each solution represents a set of hyperparameters for the VGG16 TL + ODF model. 

 

Define Fitness Function: 

• Implement a fitness function to evaluate the performance of each solution; 

• The fitness function evaluates the model's performance on the validation dataset. 

  

MRFO Optimization: 

For t=1 to Max Iterations: 

• Evaluate fitness for each solution in the population using the Fitness Function; 

• Apply MRFO foraging strategies to update solutions in the population; 

• Continue optimizing solutions within the specified maximum iterations. 

 

Select Best Solution: 

• After completing the iterations, select the solution with the highest fitness score  as the best 

 hyperparameters configuration. 

 

Output: 

• Return the best solution, which represents the optimal hyperparameters obtained from the MRFO process. 

 

4.4 Classification 

4.4.1 Binary classification 

To evaluate the efficacy of the proposed model, a series of experiments are conducted 

across three distinct datasets, specifically targeting Lung Cancer, Breast Cancer, and Alzheimer 

Disease. The focus of our assessment centered on binary classification, wherein the model's 

performance was rigorously tested and analyzed against each dataset. This method allowed us 

to assess the model's ability to accurately distinguish between positive and negative instances 

within the context of Lung Cancer, Breast Cancer, and Alzheimer Disease datasets, providing 

a thorough and nuanced evaluation of its classification capabilities. 
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Data balancing: In the case of binary classification when the program searches the 

hyperparameters optimization, dataset balancing is used to enhance the results. This technique 

is used for Lung and Breast Cancer datasets: 

For Lung Cancer dataset: The original dataset [108] has 159 normal images, 326 

Adenocarcinoma images, 163 Large Cell Carcinoma, and 252 Squamous Cell. After applying 

data augmentation, the total number of any classes were increased to 326. Therefore, the final 

image dataset was (326 normal images, 326 Adenocarcinoma images, 326 Large cell 

carcinoma, and 326 Squamous Cell), and in case of large cell carcinoma and squamous cell, the 

total number of images was (260 Large Cell Carcinoma, and 260 Squamous Cell). 

For Breast Cancer dataset: The database has 437 benign images, 210 malignant images, 133 

normal. After applying data augmentation, the total number of any classes were increased to 

437. Therefore, the final image dataset was (437 benign images, 437 malignant images, 437 

normal). 

4.4.2 Multiclass Classification  

To assess the model, diverse experiments are conducted across three datasets (Lung 

Cancer, Breast Cancer, and Alzheimer Disease), employing Multiclass Classification. Our 

objective is to evaluate the model's performance across various scenarios. Algorithm 4 outlines 

the distinct steps for both binary and Multiclass Classification. 
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Algorithm 4: Binary/Multiclass Classification 

Input: (224x224x3) dimensional Chest CT, Ultrasound or IMR images. 

 Split dataset into Training, Validation, and Test sets; 

 Population size N, Maximum iterations. 

VGG16 TL+ ODF (Optimized Dense Features) model. 

Output: 

 Best solution found through MRFO Algorithm. 

Manta Ray Foraging Optimization (MRFO) Algorithm: 

Initialization: 

 Initialize a population of N solutions (each represented as a search agent); 

 Set maximum number of iterations; 

 Define the VGG16 TL + ODF model architecture; 

 Initialize constants  

Fitness Evaluation: 

 Evaluate the fitness score for each search agent using the defined model and the fitness function. 

MRFO Algorithm: 

For t=1 to Maximum Iterations: 

     For i=1 to N 

        Randomly generate a threshold rand 

        If (rand < 0.5): (cyclone foraging) 

            If t/ Tmax<rand: //Update agent𝑥𝑖
𝑑(𝑡 + 1)using cyclone foraging formula 

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) + 𝑟 ∗ (𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) + 𝛽 ∗ (𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) ,   𝑖 = 1 

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) + 𝑟 ∗ (𝑥𝑖−1
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) + 𝛽 ∗ (𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) , 𝑖 = 2, … … , 𝑁 

                    Else //  Update agent 𝑥𝑖
𝑑(𝑡 + 1) using random foraging formula. 

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑟𝑎𝑛𝑑

𝑑 (𝑡) + 𝑟 ∗ (𝑥𝑏𝑒𝑠𝑡𝑟𝑎𝑛𝑑
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) + 𝛽 ∗ (𝑥𝑟𝑎𝑛𝑑
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) ,   𝑖 = 1 

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑟𝑎𝑛𝑑

𝑑 (𝑡) + 𝑟 ∗ (𝑥𝑖−1
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) + 𝛽 ∗ (𝑥𝑏𝑒𝑠𝑡𝑟𝑎𝑛𝑑
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) , 𝑖 = 2, … … , 𝑁 

            End If 

      Else // (chain foraging): Update agent𝑥𝑖
𝑑(𝑡 + 1)  using chain foraging formula. 

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑(𝑡) + 𝑟 ∗ (𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) + 𝛼 ∗ (𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) ,   𝑖 = 1 

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑(𝑡) + 𝑟 ∗ (𝑥𝑖−1
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) + 𝛼 ∗ (𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) , 𝑖 = 2, … … , 𝑁 

      End If                                

      Compute fitness for the updated individual 

               Perform somersault foraging for each agent: 

               Update agent    using somersault foraging formula. 

              Compute fitness for the updated individual 

          End For  

        End For  

Selection: Select the best solution from all the search agents based on their fitness scores. 

 Output: Return the best solution found through MRFO algorithm 

 

4.5 Model Training with best solution and concatenation 

Following the meticulous selection of optimal solutions through MRFO, our model 

underwent training across three datasets (Lung Cancer, Breast Cancer, and Alzheimer Disease). 

During this training phase, the finest parameters and hyperparameters are employed, 

meticulously derived through the application of MRFO to our model. This iterative 
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optimization process allowed us to fine-tune the model's configuration to achieve optimal 

performance for each dataset. Furthermore, the model is subjected to a comprehensive 

evaluation, employing a diverse array of metrics. 
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Dropout Layer

Optimized

Activation Function
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Figure 4.4 Proposed approach with best solution 

4.5.1 Data Collection  

In this study, four public datasets representing various pathologies are utilized. 

 Public Dataset for Lung Cancer 

The dataset contains three types of Chest Cancer (See Fig 4.5 (a)) Adenocarcinoma, Large Cell 

Carcinoma, and Squamous Cell Carcinoma. Additionally, there is one folder dedicated to 

Normal Cells. This dataset is publicly available on Kaggle repository [108]. 

 Public Dataset for Breast Cancer  

Dataset_1 consists of ultrasound scans for three types of Breast Cancer: normal, benign, and 

malignant (See Fig 4.5(b)). This dataset is publicly available on Kaggle repository [109] and 

from reference [110]. The dataset, collected in 2018, includes breast ultrasound images from 

600 women aged between 25 and 75 years. It contains 780 images with an average size of 

500x500 pixels, saved in PNG format. The ground truth images are presented alongside the 

original images. 

Dataset_2 is a Breast Cancer histological images contains two types of cancer: benign and 

malignant (See Fig 4.5(c)). Dataset is public available in Kaggle repository [111]. The dataset 

consists of 2479 images benign and 5304 images malignant. 
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 Public Dataset for Alzheimer  Disease 

The dataset contains four types of Alzheimer Disease (See Fig 4.5(d)): Mild Demented, 

Moderate Demented, Very Mild Demented and Non Demented. The dataset is public available 

in Kaggle repository [112]. Fig 4.5 shows the different dataset. Algorithm 5 shows the model 

training with best solution initialization. 

Algorithm 5: Model Training with Best Solution 

 

Input: 

• BestSolution: Optimal hyperparameters obtained from the MRFO algorithm 

• Training dataset: Chest CT, Ultrasound, or IMR images of size 224×224×3 

• Split dataset into Training, Validation, and Test sets. 

Output: 

• Trained and Optimized VGG16 TL + ODF Model 

Configure Data: 

• Preprocess the Training, Validation, and Test datasets based on the chosen hyperparameters from the 

best solution. 

• Apply normalization to the image data. 

• Implement data augmentation techniques based on the specified augmentation parameters. 

• Prepare the datasets as input for model training. 

Build the Model: 

• Initialize the VGG16 TL model with pre-trained ImageNet weights. 

• Remove the top (classification) layers of the VGG16 model. 

• Add additional dense layers (ODF) to the model architecture based on the best solution's 

hyperparameters. 

• Add an output layer with appropriate activation function for the specific task 

                (e.g., sigmoid for binary classification and softmax for multiclass). 

Compile the Model: 

• Compile the model with binary cross-entropy loss for binary classification or appropriate loss function 

for the task. 

• Use the optimizer specified in the best solution along with its learning rate. 

• Choose appropriate evaluation metrics 

Train the Model: 

• Train the model using the preprocessed training dataset. 

• Train the model for a specified number of epochs based on the best solution's hyperparameters. 

• Use the specified batch size during training. 

Evaluate the Model: 

• Evaluate the trained model's performance using the test dataset to obtain final metrics. 

Output: The trained VGG16 TL + ODF model optimized using the best solution from the MRFO process. 
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Figure 4.5 Different Dataset Collection 

4.6 ODF Results and Discussions 

In this section, we present a series of experiments conducted with diverse datasets. In 

each experiment, hyperparameters undergo optimization to enhance accuracy. To achieve 

heightened precision in performance, the MRFO algorithm is employed to search for the best 

hyperparameters as detailed in Table 4-4. 

Table 4-4 Hyperparameters Optimized by MRFO 

Hyper  

Parameters 
Search Range Results 

Optimizer 

 

Adam, Nadam, 
RMSProp, 

Adadelta, SGD 

Lung Cancer Breast Cancer Alzheimer Disease 

Exp1 Exp2 Exp3 Exp4 Exp1 Exp2 Exp3 Exp1 Exp2 Exp3 Exp4 

Nada
m 

Adam RMS 
prop 

RMS 
prop 

Adam Adam Adam Adam SGD Adam SGD 

batch size 8, 16, 32, 64 8 8 8 8 16 8 8 8 8 8 8 

dense_1 
1024, 512, 256, 

128 
512 1024 1024 1024 1024 1024 1024 128 512 1024 512 

dense_2 
512, 256, 128, 

64 
512 512 512 512 128 512 512 128 512 512 512 

dense_3 
512, 256, 128, 

64 
256 512 256 512 128 512 512 64 512 512 512 

dropout 
0→5 

(step = 1) 
0.1 0.1 0.1 0.1 0.06 0.1 0.1 0.1 0.06 0.1 0.06 

 

  

              (a) Normal and Lung Cancer images 
  

(b) Normal and Ultrasound Breast Cancer images 

       
(c ) Breast Cancer Histological images 

  

 (d) Different Alzheimer’s Disease 
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The protocol utilized for the 2-class classification is outlined in Table 4-5, along with details 

about the various datasets employed in this study. 

 

Table 4-5 Protocol for Binary Classification 

Datasets Classes Total Images Training Set Testing Set 

Lung 

Cancer 

'adenocarcinoma', 'normal' 659 527 132 

‘adenocarcinoma',  'large_cell_carcinoma' 660 528 132 

‘adenocarcinoma', 'squamous_cell_carcinoma' 796 636 160 

'large_cell_carcinoma', 'squamous_cell_carcinoma' 564 451 113 

Breast 

Cancer 

‘benign’, ‘malignant’ 863 690 173 

‘benign’, ‘normal’ 786 628 158 

‘malignant’, ‘normal’ 563 450 113 

Alzheimer 

Disease 

‘MildDemented’,    ‘ModerateDemented’ 607 485 122 

‘MildDemented’, ‘NonDemented’ 1097 877 220 

‘MildDemented’, ‘VeryMildDemented’ 1108 886 222 

‘ModerateDemented’, ‘NonDemented’ 618 494 124 

 

4.6.1 Binary Classification  

4.6.1.1 CT Images Lung Cancer 

Table 4-6 present different results related to the binary dataset of Lung Cancer, with the optimal 

solutions derived from the proposed model after the training and optimization process.  

Table 4-6 Results with different Lung Cancer types for Binary Classification 

 
Acc 

(%) 
Loss 

(%) 
Precision 

(%) 
AUC 

(%) 

Val_ 

Acc 

(%) 

Val_ 

Loss 

(%) 

Val_ 

Precision 

(%) 

Val_ 

AUC 

(%) 

Test_ 

Acc (%) 

Exp1 

Adenocarcinoma/Normal 100 0.0008 100 100 99.24 0.032 99.24 99.98 99.24 

Exp2 

Adenocarcinoma/ 

Large_Cell_Carcinoma 
99.24 0.016 99.24 99.99 96.97 0.076 96.97 99.62 77.27 

Exp3 

Adenocarcinoma/ 

Squamous_Cell_Carcinoma 
98.58 0.048 98.58 99.66 98.75 0.069 98.75 99.34 80.62 

Exp4 

Large_Cell_Carcinoma/ 

Squamous_Cell_Carcinoma 
98.67 0.209 98.67 98.80 98.23 0.122 98.23 98.78 82.30 

 

The best curves are shown in Figure 4.6. 

           
                                                Exp1                                                                                              Exp2                                        
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                                               Exp3                                                                                              Exp4 

(a) Accuracy curves of different experiences  

 

                  
                                                    Exp1                                                                                                 Exp2                                       

 

                 
                                                Exp3                                                                                                 Exp4 

(b) Loss curves of different experiences 

          Exp1: Adenocarcinoma/           Exp2: Adenocarcinoma/        Exp3: Adenocarcinoma/     Exp4 Large_cell_carcinoma/ 

                        Normal                         Large_cell_carcinoma        Squamous_cell_carcinoma     Squamous_cell_carcinoma 

Figure 4.6 Accuracy and Loss curves of different experiences on Lung Cancer (CT Images) 

dataset 

In this work, we apply the optimized VGG16+ODF model to classify Lung Cancer images into 

two classes. The detailed metrics are outlined in Table 4-6, providing a comprehensive 

overview of the model's performance. Additionally, Figure 4.7 visually represents the model 

predictions through the confusion matrix. Upon analysis, the model demonstrates exceptional 

performance in classifying Exp1 (Adenocarcinoma/Normal) images, achieving 100% accuracy.  

However, challenges arise in more complex scenarios like Exp2 (Adenocarcinoma 

/Large_Cell_Carcinoma), Exp3 (Adenocarcinoma/Squamous_Cell_Carcinoma), and Exp4 
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(Large_Cell_Carcinoma /Squamous_Cell_Carcinoma). In these cases, the model exhibits a 

notable number of false positives, leading to slightly lower accuracy rates of 99.24%, 98.85%, 

and 98.67%, respectively. These findings indicate that while the proposed model effectively 

distinguishes Cancerous and Normal Lung images, it encounters difficulties in classifying 

between different types of Lung Cancers.  

       

 

 

 

 

                  

(a)                                    (b)  

 

 

 

 

 

 

 

 

              

(c)                                                                                  (d) 

Figure 4.7 Confusion Matrixes for the VGG16+ODF with 2 classes on Lung Cancer CT 

dataset: (a) Exp1, (b) Exp2, (c) Exp3, (d) Exp4  

4.6.1.2 Breast Cancer images 

 Breast Cancer Ultrasound Images 

Table 4-7, Figures 4.8 and 4.9 present different results related to the binary dataset of Breast 

Cancer ultrasound images with the optimal solutions derived from the proposed model after the 

training and optimization process. 
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Table 4-7 Results with different Breast Cancer types for Binary Classification 

 
Acc 

(%) 
Loss 

(%) 
Precision 

(%) 
AUC 

(%) 
Val_Acc 

(%) 

Val_ 

Loss 

(%) 

Val_ 

Precision 

(%) 

Val_ 

AUC 

(%) 

Test_ 

Acc 

(%) 

Exp1 : 

Benign/malignant 
97.39 0.065 97.39 99.74 93.06 0.362 93.06 96.34 71.10 

Exp2 : 

Benign/normal 
98.73 0.037 98.73 99.90 95.57 0.227 95.57 97.52 79.11 

Exp3 : 

Malignant/normal 
100 0.00009 100 100 99.12 0.069 9912 99.05 84.96 

 

  
                                  Exp1                                                         Exp2                                                       Exp3 

a)  Accuracy curves of different experiences 

 

      
                                     Exp1                                                       Exp2                                                        Exp3 

b) Loss curves of different experiences 

       Exp1: Benign/Malignant                          Exp2: Benign/Normal                       Exp3: Malignant/Normal 

Figure 4.8 Accuracy and Loss curves of different Binary Classification on Breast Cancer 

Ultrasound dataset 

 

In the case of Breast Cancer dataset, a better accuracy was obtained with different experiences 

using the optimized VGG16+ODF with two classes; the metrics results are elaborated in Table 

4-7. The confusion matrix obtained is shown in Fig 4.9. 
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According to the results, the model obtained a Val_accuracy of 93.06% and Test_accuracy of 

71.10% and has a large number of false positives (in the case of benign and malignant). On the 

other hand, the model makes the lowest error in the case of (malignant and normal) with a 

Val_accuracy of 99.12% and Test_accuracy of 84.96%and has a best confusion matrix with 

lowest number of false positives. 

               
(a)                                                 (b)                                                         (c) 

Figure 4.9 Confusion Matrixes for the VGG16+ODF with 2 classes on Breast Cancer 

Ultrasound dataset: (a) Exp1, (b) Exp2, (c) Exp3 

 

At this stage of the study, a question arises: Could histological data for breast cancer yield 

better results? 

In the following section, we attempt to address this question through the experiment outlined 

below. 

 Breast Cancer Histological Images 

Dataset: Breast Cancer Histological dataset (texture color different) 

The dataset comprises 7909 Breast Cancer Histopathology images has been meticulously 

compiled from examinations conducted on 82 patients. These images are made publicly 

available and can be accessed from Kaggle repository [111]. This comprehensive dataset offers 

a diverse array of images, featuring cases from both benign and malignant categories. 

Specifically, there are 2479 images representing benign cases and 5304 images representing 

malignant cases. 

In this work, the dataset was divided according to a specific protocol to ensure a balanced and 

fair evaluation of the proposed methods. The protocol stipulated a clear distribution of the 

dataset into two distinct categories: benign and malignant cases. There were 495 images 

representing benign cases and an equal number of 495 images representing malignant cases. 
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For the training phase, 80% of the data from both benign and malignant categories. The 

remaining 20% of the dataset was reserved for the testing phase. This protocol, with its balanced 

representation of both classes and clear division between training and testing sets, aimed to 

provide a robust and reliable framework for evaluating the effectiveness of the proposed 

methodologies in distinguishing between benign and malignant Breast Cancer cases. Table 4-8 

and Figures 4.10 and 4.11 show the different results obtained through the implemented 

methods. 

Table 4-8 Results with Breast Cancer Histological for Binary Classification 

Classes 
Acc 

(%) 
Loss 

Precision 

(%) 
AUC 

(%) 

Val_ 

Acc 

(%) 

Val_ 

Loss 

Val_ 

Precision 

(%) 

Val_ 

AUC 

(%) 

Test_ 

Acc 

(%) 

Histologic 
Benign/Malignant 

98.99 0.0195 98.99 98.99 96.46 0.121 96.46 98.73 85.35 

Ultrasound 
Benign/Malignant 

97.39 0.065 97.39 99.74 93.06 0.362 93.06 96.34 71.10 

 

   
(a) Breast Cancer histological images 

             
(b) Breast Cancer ultrasound images 

 

Figure 4.10 Accuracy and Loss curves of different experiences on Breast Cancer histological 

and ultrasound dataset 
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(a)                                                                        (b) 
     

Figure 4.11 Confusion Matrices for Binary Classification with VGG16+ODF on Breast 

Cancer datasets: (a) Histologic and   (b) Ultrasound 

The results derived from the evaluation of both ultrasound and Histological Breast Cancer 

images, including the analysis of curves and confusion matrices, offer insights into the 

performance of our proposed methodology. In response to the inquiry regarding the efficacy of 

Breast Cancer Histological data, the exceptionally high accuracy values of 98.99% during both 

the training and validation phases serve as compelling evidence. These results affirm the 

superior performance of our approach in accurately classifying Breast Cancer Histopathology 

images when compared to Ultrasound images. 

The Val accuracy for histologic images remains commendable at 96.46%, showcasing 

the robustness of the proposed approach. While slightly lower than the training and validation 

accuracies, this discrepancy is well within an acceptable range. The detailed breakdown of 

metrics, including precision, AUC, and other performance indicators, provides a 

comprehensive view of our model's efficacy in distinguishing between benign and malignant 

cases in histologic images. In contrast, ultrasound images exhibit a lower Val accuracy of 

93.06%, indicating a noticeable performance gap compared to histologic images. Despite this 

disparity, it's crucial to emphasize that the ultrasound model still demonstrates a respectable 

level of accuracy and precision in classifying benign and malignant cases. 

Given the nearly identical sizes of the two datasets, a meaningful comparison can be drawn by 

assessing the occurrences of false positives and false negatives. Notably, this proposed model 

demonstrates consistent performance with comparable percentages of false positives and false 

negatives in both datasets. 

In the histological dataset, the proposed model exhibits an ability to identify benign 

cancer, characterized by a minimal number of false positives in contrast to the ultrasound 
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dataset. Furthermore, when it comes to detecting malignant cancer, the proposed model shows 

nearly identical percentages of false negatives across both datasets. 

4.6.1.3 Alzheimer Disease MRI images 

In our investigation of Alzheimer disease types, we observed varied outcomes with the 

proposed optimized model. The detailed results are presented in Table 4-9, Figures 4.12 and 

4.13. 

Table 4-9 Results with different Alzheimer Disease types for Binary Classification 

Classes Acc 

(%) 
Loss Precision 

(%) 
AUC 

(%) 
Val_ 

Acc(%) 
Val_ 

Loss 
Val_ 

Precision 

(%) 

Val_ 

AUC 

(%) 

Test_ 

Acc 

(%) 
Exp1 

MildDemented/    
ModerateDemented 

 
98.76 

 
0.034 

 
98.76 

 
99.93 

 
98.36 

 
0.042 

 
98.36 

 
99.88 

 
89.34 

Exp2 

MildDemented/ 
NonDemented 

 

98.97 
 

0.024 
 

98.97 
 

99.97 
 

97.27 
 

0.163 
 

97.27 
 

98.52 
 

93.64 

Exp3 
MildDemented/ 

VeryMildDemented 

 
95.82 

 
0.09 

 
95.82 

 
99.52 

 
91.89 

 
0.407 

 
91.89 

 
95.30 

 
72.07 

Exp4 
ModerateDemented/ 

NonDemented 

 
98.99 

 
0.017 

 
98.99 

 
99.98 

 
99.19 

 
0.016 

 
99.19 

 
99.98 

 
90.32 

 

                    
Exp1                                                                               Exp2 

                              
                           

   Exp3                                                                                  Exp4 

a) Accuracy curves of different experiences 
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 Exp1                                                                                       Exp2 

 

                             
Exp3                                      Exp4 

b) Loss curves of different experiences 

       Exp1: MildDemented/                Exp2: MildDemented/                  Exp3: MildDemented/         Exp4: ModerateDemented/ 

        ModerateDemented                             NonDemented                         VeryMildDemented                           NonDemented 

Figure 4.12 Accuracy and Loss curves for Binary Classification on Alzheimer Disease MRI 

dataset 

In the case of the Alzheimer disease dataset, we achieved superior accuracy through 

various experiments utilizing the optimized VGG16+ODF model with two classes. The detailed 

metrics outlining the findings are comprehensively presented in Table 4-9, providing a 

comprehensive overview of the model's performance. Additionally, the confusion matrix, 

illustrating the model's predictions is depicted in Figure 4.13. 

Upon scrutinizing the results, the model demonstrated a commendably low number of 

false positives, particularly in the cases of MildDemented and NonDemented classifications. 

This indicates the model's robust ability to accurately identify these categories. However, 

challenges arose when detecting ModerateDemented disease, as evidenced by higher error rates 

in experiments 2 and 4. This signifies a potential area for improvement, suggesting that the 

model may benefit from further optimization to enhance its accuracy in identifying this 

particular disease subtype. Furthermore, in the case of MildDemented and VeryMildDemented 

classifications, the model faced difficulties, leading to a considerable number of false negatives 

and false positives. This highlights the intricacies of distinguishing between these closely 

related categories, suggesting the need for fine-tuning and refinement to address these specific 

challenges. 
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(a)                                                                                                  (b) 

 

 

 

 

 

 

 

                                 (c)                                                                             (d) 

Figure 4.13 Confusion Matrices for Binary Classification with VGG16+ODF on Alzheimer 

disease MRI dataset: (a): Exp1, (b):Exp2, (c):Exp3, (d): Exp4 

4.6.2 Multiclass Classification 

In the case of Multiclass Classification, the hyperparameters of the model are choose 

from the best results obtained with the binary classification of different experiences of each 

dataset. The protocol used for each dataset is shown in table 4-10. 

 

Table 4-10 Protocol for Multiclass Classification 

 

 

 

 

 

4.6.2.1 Lung Cancer   

Table 4-11 presents the different results obtained with Multiclass Classification in this 

case. 

Datasets Total Images Training Set Testing Set 

Lung Cancer 1223 987 245 

Breast Cancer 1106 884 222 

Alzheimer Disease 1726 1380 346 
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Table 4-11 Results with different Lung Cancer types for 4-classes Classification 

 

The challenges observed in accurately classifying images, particularly those depicting 

Adenocarcinoma and Large Cell Carcinoma, stem from the convergence of infected areas in 

the images. When the infected area of Adenocarcinoma images is large and overlaps with the 

small infected area of Large Cell Carcinoma images, the system encounters difficulties and 

makes errors in classification (See Fig 4.14(a)). This overlap creates ambiguity in the features, 

making it challenging the model to distinguish between the two classes accurately. Moreover, 

the confusion matrix highlights a significant number of false positives, especially in cases 

involving Large Cell Carcinoma and Squamous Cell Carcinoma, indicating a tendency of the 

model to misclassify these instances. 

4.6.2.2 Breast Cancer Ultrasound Images 

For Breast Cancer Ultrasound images, Table 4-12 presents the different results obtained 

with multiclass classification. 

Table 4-12 Results with different Breast Cancer types for 3-class Classification 

Classes Acc(%) Loss Precision(%) AUC(%) 
Val_ 

Acc(%) 
Val_ 

Loss 
Val_ 

Precision(%) 
Val_ 

AUC(%) 
Test_Acc 

(%) 

3_Classes 96.83 0.136 95.56 99.35 92.64 0.570 89.14 95.27 62.61 

               
(a)                                                                                              (b) 

Figure 4.14 Confusion Matrices for the VGG16+ODF with: 

 (a) 4 classes on Lung Cancer and (b) 3 classes on Breast Cancer datasets 

Classes 
Acc 

(%) 
Loss 

Precision 

(%) 
AUC(%) 

Val_ 

Acc(%) 
Val_ 

Loss 
Val_ 

Precision(%) 
Val_ 

AUC(%) 
Test_Acc 

(%) 

4_classes 99.05 0.059 98.16 99.75 97.96 0.456 95.92 98.54 72.24 



Chapter 4                                                 Metaheuristic Optimization Deep Features for Pathologies Diagnostic 

96 

 

For Multiclass Classification of the Breast Cancer Ultrasound images dataset, the model 

achieved a Val_accuracy of 92.64% and Test_accuracy of 62.61% and has a large number of 

false positives. The ultrasound is not the most suitable detector for this model (28, 14 and 15). 

For this kind of acquisition denoising is necessary. 

4.6.2.3 Alzheimer Disease 

For Alzheimer’s Disease, Table 4-13 and Figure 4-15 present the different results obtained with 

multiclass classification. 

Table 4-13 Results obtained with different Alzheimer disease types for 4-class classification 

Classes Acc(%) Loss Precision(%) AUC(%) 
Val_ 

Acc(%) 
Val_ 

Loss 
Val_ 

Precision(%) 
Val_ 

AUC(%) 
Test_Acc 

(%) 

4_Classes 99.24 0.005 98.48 99.91 96.46 0.052 93.04 99.08 74.57 

 
Figure 4.15 Confusion Matrix for the VGG16+ODF with 4 classes on Alzheimer Disease 

dataset 

While our model achieves an impressive overall accuracy of 99.24%, it exhibits a significant 

challenge in correctly identifying cases of VeryMildDemented individuals. Despite the low 

number of false positives in other categories, the model consistently misclassifies a substantial 

portion of VeryMildDemented cases. 

4.7 Comparison Results with State of the Art 

Numerous studies have delved into the potential of CNN models for tasks such as feature 

extraction and classification. These models have revolutionized the way we interpret complex 

data. Building upon this foundation, our research aims to extend the boundaries of knowledge 
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in this area. In this work, we conduct a comparative analysis, pitting our proposed framework 

against state-of-the-art methods. 

Table 4-14 Comparison with results and related studies. 

Authors Methods Datasets N.C 
Acc 

(%) 

Precisio

n 

(%) 

AUC 

(%) 

Breast Cancer Dataset 

 
Mukhlif et 

al. [113] 

 
Dual TL (DTL)     

(Xception 
MODEL) 

ICIAR2018 Breast 

Cancer : 
100 Benign, 

100 InSitucarcinoma, 
100 Invasivecarcinoma, 

100 Normal 

4 99 99.003 _ 

Chakravarth

y et al. 
[114] 

ResNet18+ 
CSOA-wKNN 

WDBC _Mammogram 

Breast Cancer : 
357 Benign, 212 Malignant 

3 97.33 _ _ 

 
Baghdadi et 

al. [79] 

 
TL + MRFO 

Breast Cancer 
Histological Images : 

2479 Benign, 
5304 Malignant. 

Ultrasound Images : 
437 Benign, 210 Malignant, 

133 Normal 

 
2 
 
 
3 

 
97.72 

 
 

99.01 

 
97.72 

 
 

99.01 

 
99.57 

 
 

99.77 

Atban et 
al.[115] 

ResNet18-
EO+SVM 

Histological Images : 
587 Benign, 587 Malignant 

2 97.73 _ _ 

Boulenger 
et al. [95] 

adaptive 
Histogram 

Equalization+ 
VGG19 

Ultrasound Images : 
831 images 

2 
85 
 

_ 86 

 

Ours 

 

MRFO+VGG16

+ODF 

Ultrasound Images : 
437 Benign, 

210 Malignant, 
133 Normal. 

Benign/ 
Malignant 

97.39 97.39 99.74 

Benign/ 
Normal 

98.73 98.73 99.90 

Malignant/ Normal 100 100 100 

Histological Images : 
495 Benign/ 

495 Malignant 
Benign/ Malignant 98.99 98.99 98.99 

Ultrasound images 3 96.83 95.56 99.35 

Lung Cancer Dataset 

Xu, Yeguo 
et al. [116] 

MSBO+Alexnet 

CT scan 

4682 images 
(Healthy and 
Cancerous) 

2 95.96 _ _ 

Elnakib et 
al. [117] 

GA+VGG19+SVM 
160 Normal 

160 Cancerous 
2 96.25 _ _ 

Civit-Masot 

et al. [82] 

Colour CNN 

Greyscale CNN 

5000 Healthy 
5000 Adenocarcinoma 

5000 Squamous-cell 
carcinoma 

2 

3 

99.7 

97.11 

99.7 

96.1 

_ 

_ 

Lakshmana
prabu et al. 

[80] 
ODNN CT scan images 3 94.56 _ _ 

Salama et 
al. [118] 

ResNet50 CXR Images 2 98.91 97.72 98.85 

 

Ours 

 

MRFO+VGG16+ 

ODF 

CT scan 
159 Normal, 

326 Adenocarcinoma, 
163 Large_Cell_ 

Carcinoma, 
252 Squamous_Cell_ 

Carcinoma' 

Adenocarcinoma/ 
Normal 

100 100 100 

Adenocarcinoma/ 
Large_cell_carcinom

a 
99.24 99.24 99.99 

Adenocarcinoma/ 

Squamous_cell_ 
carcinoma 

98.58 98.85 99.66 
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Large_cell_carcinoma
/ 

Squamous_cell_ 
carcinoma 

98.67 98.67 98.80 

4 99.05 98.16 99.75 

Alzheimer Disease Dataset 

Ismail et al. 
[102] 

MOGOA + 
MultiAz-Net + 

softmax 
 

MultiAz-Net + SVM 

 
 
 

MultiAz-Net + RF 
 

MultiAz-Net : 
InceptionV3, 

AlexNet, and ResNet-
18 

 

 

DICOM : 
1617 images 

MRI and PET scans : 
511 AD, 

571 Early MCI, 
535 NC. 

 

AD/NC 
 
 

MCI/NC 
 
 
 

AD/MCI 

 
 
 

AD/ NC/ MCI 

87.7 
94.4 

92.8 
 

91.5 
93.2 
89 
 

89.4 
90.0 

83.0 
 

90.1 
92 

89.0.3 

 

_ 
 
 
 

_ 
 
 
 

_ 
 
 

_ 

 

_ 
 
 
 

_ 
 
 
 

_ 
 
 

_ 

Baghdadi et 
al. [79] 

A3C-TL-GTO 
MRI dataset : 
6400 images 

4 96.25 _ _ 

Babu et al. 
[98] 

DCNN +CG-DU MRI (Not clear) AD/ NC/ MCI 98.79 98.70 _ 

Mahendran 
et al. [119] 

mRmR-WPSO-AEand 
IDBN 

161 samples (AD and 
normal) and 54675 

features 
AD/Normal 96.78 _ _ 

Ours 
MRFO+VGG16+ 

ODF 
MRI dataset : 
6400 images 

MildDemented/    

ModerateDemented 
98.76 98.76 99.93 

MildDemented/ 
NonDemented 

98.97 98.97 99.97 

MildDemented/ 
VeryMildDemented 

95.82 95.82 99.52 

ModerateDemented/ 

NonDemented 
98.99 98.99 99.98 

4 99.24 98.48 99.91 

 

Table 4-14 compares the outcomes of the proposed MRFO+VGG16+ODF framework 

with those from various state-of-the-art studies in the realms of Breast Cancer, Lung Cancer 

and Alzheimer Disease classification. Our work endeavors to redefine the landscape of medical 

image analysis. By not only outperforming existing methods but also highlighting a level of 

adaptability previously unseen, MRFO+VGG16+ODF framework represents a significant leap 

forward. It not only demonstrates the potency of advanced ML techniques but also highlights 

the importance of flexibility in handling diverse and complex medical datasets. 

4.8 Conclusion 

In conclusion, this work underscores the pivotal role of AI in revolutionizing healthcare, 

especially in the early detection of various cancers through medical image classification. The 

primary objective has been to enhance the accuracy of disease classification models across a 

spectrum of illnesses, encompassing Alzheimer Disease, Lung Cancer and Breast Cancer. 

Employing the MRFO algorithm for optimal feature subset selection, our study aims to 
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significantly improve the overall precision of disease classification models. This, in turn, 

contributes to the advancement of more effective diagnostic and treatment strategies. In this 

study, we introduce a novel approach to disease classification utilizing a modified TL model. 

Specifically, the VGG16 model serves as the foundation for feature extraction, with global 

average pooling enhancing the extraction of global features. The proposed model demonstrates 

notable accuracy rates of 99.24%, 100%, and 99.25% for Alzheimer Disease, Lung Cancer, and 

Breast Cancer respectively. These results signify the potential of the proposed approach in 

advancing the field of medical image classification for more accurate and timely disease 

diagnosis.  

Despite the promising outcomes achieved in this research, it is essential to acknowledge 

certain limitations. Firstly, the performance of the proposed model may be influenced by the 

quality and quantity of available data. Additionally, the generalizability of the model to diverse 

diseases should be further investigated. Future research could explore the scalability and 

robustness of the proposed technique across larger and more varied datasets. 
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5 Chapter: AI Techniques for Medical Image 

Segmentation and Optimization 

5.1 Introduction  

Medical image segmentation is a fundamental task in image analysis and computer vision, 

particularly in the context of medical imaging. It involves dividing an image into distinct and 

meaningful regions, each corresponding to a specific anatomical structure, tissue type, or object 

of interest within the image. The primary goal of segmentation is to facilitate accurate 

quantitative analysis, visualization, and interpretation of the structures present in the image. 

There are various techniques are used for medical image segmentation, including Thresholding, 

Edge-based Methods, Active Contours, and DL. 

Amidst the backdrop of advancing medical imaging technology, the segmentation of 

diseases within medical images has emerged as a critical frontier in diagnosis and treatment. 

As healthcare systems confront the challenges and the increasing incidence of various diseases, 

the need for precise and efficient disease segmentation methodologies has become paramount. 

DL and other advanced computational techniques have revolutionized disease segmentation in 

medical imaging. These technologies offer unprecedented capabilities to delineate and analyze 

pathological features within images, enabling clinicians to identify and quantify disease 

manifestations with greater accuracy and speed. 

5.2 The Evolution of Medical Image Segmentation 

Medical image segmentation refers to the process of partitioning medical images into 

different regions of interest, which can be used for analysis, diagnosis, and treatment planning. 

This involves identifying and separating different structures or tissues within an image, such as 

organs, tumors, blood vessels, or bones. Medical image segmentation is important in healthcare 

because it can provide clinicians and researchers with valuable information about the structure 

and function of organs and tissues, as well as help guide treatment decisions. For example, in 

cancer treatment, accurate segmentation of tumors can help determine the extent of the disease, 

plan radiation therapy, and assess treatment response. 
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5.3 Overview of UNet and its variants architectures 

Medical image segmentation plays a pivotal role in the field of medicine and successively 

a vital component in the computer-aided diagnosis paradigm. UNet is the most widespread 

image segmentation architecture due to its flexibility, optimized modular design, and success 

in all medical image modalities [120]. Several extensions of UNet have been proposed to 

address the scale and complexity created by medical tasks. 

The original UNet is a convolutional neural network architecture designed for image 

segmentation tasks, particularly in the field of medical image analysis. The UNet architecture 

is known for its effectiveness in producing accurate pixel-wise segmentation masks from input 

images [121]. The UNet architecture is an advanced iteration of the fully convolutional network 

(FCN). It enhances the network's capabilities by incorporating larger feature channels during 

the upsampling phase, facilitating the seamless transmission of contextual information to 

higher-resolution layers. Additionally, UNet adopts a stack of convolutional layers instead of 

dense layers for improved performance[122]. The UNet network is designed to learn input 

images in an end-to-end, pixel-to-pixel manner. It achieves this by amalgamating three distinct 

functional components: the encoder, the decoder, and the integration of short and long 

connections, all of which collectively form a U-shaped structure. Skipping connections 

facilitate the integration of the encoder's output with the decoder's input at multiple resolutions. 

This mechanism aids in recovering spatial information that might be lost during the down 

sampling process. 

5.4 OCAE and OUNET:  Standard Automatic Optimization for 

Segmentation Medical Image 

Medical imaging technology plays a vital role in modern healthcare by generating 

detailed images of various human body organs. Through modalities such as X-Rays (XR), 

Computed Tomography (CT) scans, MRI, Ultra Sound, and Positron Emission Tomography 

(PET) scans, medical professionals gain access to detailed images of various organs [123].  For 

instance, the lung area can be affected by infections caused by bacteria and viruses, resulting in 

conditions such as pneumonia. One notable example is COVID19, which can cause severe 

pneumonia affecting both lungs. The inflammation triggered by lung infections can 

significantly impair a person's breathing, making it difficult for them to breathe properly. 

Additionally, infections can impact other organs, such as retinal vessels or even lead to 
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conditions like skin cancer. Skin cancer, particularly melanoma poses a significant public health 

challenge. Melanoma is recognized as the most fatal type of skin cancer and accounts for a 

majority of skin cancer-related deaths. Between the years 1990 and 2019, there were 

approximately 289950 reported cases of melanoma globally, with 62840 deaths attributed to 

the disease [124]. These images are pivotal in the meticulous process of disease identification, 

where doctors analyze them with utmost care to make accurate diagnoses. However, these tasks 

are challenging and time-consuming. In response, techniques like segmentation and 

quantitative analysis have become instrumental, enabling precise delineation of structures 

within images and providing in-depth understanding of a patient's condition. Moreover, the 

integration of advanced technologies, particularly DL, has revolutionized the field. DL has 

achieved unremarkable advancements in image analysis, classification, and segmentation, 

enabling early detection of anomalies and timely prevention of pathologies. 

Segmentation is essential in the field of medical image processing, as it involves the 

division of a digital image into distinct regions. This technique is commonly used to detect and 

separate various objects within an image. In the context of medical images, accurate 

segmentation is crucial for identifying boundaries of anatomical structures and tissues. These 

boundaries are essential for automated analysis and diagnosis of medical images, enabling 

medical professionals to extract valuable information and make informed decisions regarding 

patient care. [12]  conducted a comprehensive thematic survey on medical image segmentation 

using DL techniques, with a focus on supervised learning. Their analysis delved into backbone 

networks, network block designs, and loss function enhancements. Additionally, the study 

explored weakly supervised learning methods, including data augmentation, Transfer Learning 

(TL), and interactive segmentation approaches. This research enhances our understanding of 

the rationale and potential improvements in medical image segmentation using DL.  In [125] 

authors explored the increasing importance of DL in medical image segmentation, covering 

fundamental concepts applicable to various medical imaging tasks such as categorization, 

recognition, segmentation, and registration. The paper introduced basic DL ideas, applications, 

and frameworks, emphasizing the necessity for future research to address these challenges and 

advance the field of medical image segmentation. The reference [126] presented a review that 

discusses the significance of medical image segmentation in the field of biomedical image 

processing, emphasizing its growing importance in sustainable healthcare and its integration 

into Computer Vision (CV) research. The focus of the work lies in exploring medical image 

segmentation using DL techniques, particularly deep convolutional neural networks. The work 
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introduced the basic concepts and features of medical image segmentation based on DL, 

outlining the current research status and its limitations. 

Auto Encoders constructed using convolutional layers have proven to be successful in 

various medical image analysis tasks, such as denoising, and are well suited for efficient 

segmentation of medical images. Compared to other types of AE, CAEs are particularly 

advantageous for medical image preprocessing due to their ability to fully leverage the power 

of CNNs and exploit the inherent structure of the images [127]. 

The UNET model is widely recognized as one of the most effective DL networks for 

medical image segmentation. It employs an encoder-decoder architecture that facilitates the 

extraction of relevant features from the input image and enables the reconstruction of the 

segmented image to its original size. The encoder-decoder structure is a key component of the 

UNET model, has demonstrated impressive performance and is often used as baseline 

architecture for various medical image segmentation networks [128]. In addition to the encoder-

decoder structure, the UNET model incorporates skip connections. These connections play a 

crucial role in joining low-level features captured by the encoder block with high-level features 

obtained from the decoder block. This allows for the seamless integration of detailed 

information from different levels of the network, enabling accurate and precise segmentation 

of medical images. The skip connections contribute to preserving important spatial information 

and improving the overall performance of the UNET model in medical image segmentation 

tasks. 

Recently, there has been a growing interest in DL techniques for multi-modal medical 

image segmentation. This is because multi modal imaging modalities can provide 

complementary and diverse information about a specific target or region of interest. By 

incorporating multi modalities, DL models can leverage the rich and varied data to enhance the 

segmentation accuracy and performance [129]. Due to the challenges faced by medical image 

segmentation methods based on DL, several researchers continue to explore and improve these 

techniques. DL model optimization is widely employed to enhance the challenging task of 

image segmentation in the medical field [130]. 

The objective of this work is to find a fast, efficient and above all standard model that can ensure 

the segmentation of several diseases on different organs. For this, we carry out two different 

works; the first deals with monomodality/multimodality and the second with the optimization 

of the proposed CAE+UNET segmentation model. The proposed technique was evaluated on 
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datasets with various pathologies and organs. 

Different algorithms have been developed using DL to assist clinicians. The extensive 

utilization of normal radiography and other modalities can significantly augment the 

information contained in the used dataset for training DL algorithms, thereby introducing 

challenges in achieving accurate diagnoses for critical diseases. Our objective is to identify an 

efficient and rapid model that adheres to established standards, enabling its widespread 

application across various pathologies and organs. 

Image noise removal is a crucial preprocessing step in medical image analysis. The first 

stage of the proposed work involves improvements to the Convolutional Auto Encoder (CAE) 

that can potentially serve as a solution to the problem, among various other artificial intelligence 

(AI) methods. Then, the optimization of the DL model is proposed, this is a promising candidate 

for detecting anomalies and segmenting them accurately in medical images. In this study, we 

introduce a standardized approach for organ segmentation utilizing an optimized fully 

convolutional network (OUNET) and an Optimized CAE (OCAE). To enhance the dataset and 

improve image denoising, the Particle Swarm Optimization (PSO) algorithm is used, preventing 

information loss during the denoising process conducted by OCAE.  

5.4.1 Recent Work of Segmentation  

AI applications rely on big datasets to assist doctors so that they can diagnose and predict 

accurately and rapidly the risk of diseases and prevent them in time. However, the availability 

of annotated data is not easily possible as compared to other imaging areas [131]. One of the 

most common tasks in medical imaging is semantic segmentation. Achieving this segmentation 

automatically has been an important research field, but the process has been proven very 

complex due to the large variation of anatomy between different patients [126].  The 

segmentation of organs or lesions from medical images plays a vital role in many clinical 

applications. Nevertheless, obtaining the annotated data is big challenge in medical images and 

generating annotations requires expertise and time. Liu et al. [132] provided overall ideas for 

medical image segmentation using DL techniques including UNET, VNET, attention UNET, 

and nnUNET. In addition, there are several techniques such as Support Vector Machines (SVM) 

[133] , multi-task, multi-instance M2UNET [134], Global Feature network (GFNet) [135], and 

UNET [136] have been proposed for medical image segmentation. All of the above techniques 

focused on the precision and robustness of segmentation. A comparative study between two 

modules: target region selection and single-instance segmentation for COVID19 lesion 

detection is presented in [137]. 
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Table 5-1 Recent Work of Segmentation 

 

More recently, the introduction of DL techniques and the development of segmentation 

algorithms have helped researchers to optimize classification and segmentation problems in the 

medical field. Indeed, various methods have been proposed for the segmentation of medical 

images across different domains. Skin cancer segmentation, brain segmentation, retinal vessel 

segmentation, and lung segmentation are among the many areas of focus in medical image 

segmentation. Recently, there has been significant attention directed towards the detection and 

Authors Years Methods Databases Results 

He et al [134] 2021 

A multi-task multi-

instance deep network 

(M2 UNet) 

 

666 chest CT images 
DSC : 0.759 ± 0.055 

Fan et al [138] 2020 Inf-Net 

100 axial CT images 

from different 

COVID19 patients 

Inf-Net :Dice = 0.682 

Semi-Inf-Net : Dice = 0.725 

Saeedizadehet 

al.[139] 
2021 TV-Unet around 900 images 

mIoU rate of over 99%, 

Dice score = 86%. 

Amyar et al. 

[140] 
2020 

multitask deep learning 

model (classifiction,  

segmentation, 

reconstruction) 

347 COVID19, 397 non-

COVID 

100 COVID19 CT scan 

with ground truths 

425 CT scans of normal, 

98 of lung cancer. 

 

Dice-coef = 80% 

Chen et al.[141] 2020 modifiedU-Net 

100COVID19 with 

masks 

 

DSC = 0.94 

Yan et al.[142] 2020 Deep CNN 
21,658 annotated chest 

CT images 

Dice similarity coefficients = 0.987 

for lung and 

= 0.726 for COVID19. 

Elharrouss et 

al.[143] 
2020 encoder-decoder network 100 COVID-19 Dice = 0.786 

Müller et 

al.[144] 
2020 3D U-Net 

20 annotated COVID19 

chest CT volumes 

Dice similarity coefficients of 0.956 

for lungs and 0.761 for infection 

Abdel-Basset et 

al.[145] 
2021 FSS-2019-nCov 

110 axial CT slices, 

nine CT volumes, 
20 CT volumes 

DSC = 0.798 

Shan et al.[146] 2021 VB-Net 

549  CT images  
COVID19 infection 

regions 
 

DSC: 91.6% ± 10.0% 

Chaganti et 

al.[147] 
2020 Dense UNet 9749 chest CT volumes 

Abnormality Segmentation PO (P < 

.001) = 0.92, PHO (P < .001) = 0.97 

LSS (P < .001) = 0.91, LHOS (P < 

.001) = 0.9 

Negi, A et 

al.[148] 
2020 RDA-UNET-WGAN 

1062 images  obtained 
from the Breast 

Ultrasound Lesions 
Dataset 

DSC = 0.8841 
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segmentation of COVID19 infections at the lung level using DL methods. With the emergence 

of the COVID19 pandemic, there has been an urgent need to develop automated and accurate 

tools for diagnosing and monitoring the disease. For example, He et al. [134] presented a multi-

task, multi-instance deep network (M2UNET) to appreciate the gravity of COVID19 infections 

and lung lobe segmentation. Fan et al. [138] proposed novel COVID19 lung Infection 

segmentation Deep Network called Inf-Net to automatically identify infected regions from 

chest CT slices. Amyar et al. [140] presented an automatic classification and segmentation tools 

for detecting COVID19 pneumonia using chest CT imaging. The model was designed for three 

learning tasks: segmentation, classification, and reconstruction. The model obtained a Dice 

Similarity Coefficient (DSC) of 0.88 and an area under the ROC curve of 97%. Saha et al.[149] 

proposed a novel DL algorithm by using Deep Neural Network (DNN) composed of an 

attention-based dense UNET with deep supervision for COVID19 lung lesion segmentation 

from chest CT images. The model achieved a DSC of 0.86 with the dataset containing 100 CT 

images and 100 masks. Chaganti et al. [136] have used a Dense UNET method for segmentation 

and quantification of abnormal CT_COVID19. They validated their work on a dataset with 

9749 CT volumes for lung segmentation, lobe segmentation, and COVID19 lesions. 

For skin cancer segmentation, Mirikharaji et al. [150] presented a comprehensive review 

of 177 research papers related to DL based segmentation. The analysis covered multiple aspects, 

including input data like datasets, preprocessing methods, and synthetic data generation. 

Additionally, they delved into model design, including architecture, modules, and losses, as 

well as evaluation criteria such as data annotation requirements and segmentation performance 

metrics. Adegun et al. [151] presented a comprehensive survey of techniques that have been 

used for detecting skin cancer from skin lesion images. Kumar et al. [152] presented an 

optimization based model to discover skin cancer. They proposed a U-RP-Net model, which is 

obtained by integrating UNET and RP-Net for segmentation, and Aquila Whale Optimization 

(AWO) based SqueezeNet for skin cancer detection. Dash et al. [153] proposed an automated 

psoriasis lesion segmentation method based on a modified UNET architecture. They achieved 

a DSC of 0.9303 and an accuracy of 94.8% for retinal vessel segmentation. Badar et al. [154] 

presented a review of DL retinal image application analysis for automated classification of 

retinal landmarks, pathology, and disease classification. Zhang et al. [155] utilized a UNET 

with residual to detect vessels. They obtained a high performance with AUC of 97.99% on 

DRIVE dataset.  Hu Kai et al. [156] have proposed a novel retinal vessel segmentation method 

of the eye fundus images based on CNN and fully connected conditional random fields (CRFs). 
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Two public datasets were used DRIVE and STARE. They achieved an accuracy of 95.33% and 

96.32% for the DRIVE and STARE datasets respectively. Iqbal et al. [157] proposed a new 

Generative Adversarial Network for Medical Imaging (MI-GAN). The MI-GAN generates 

synthetic medical images and their segmented masks. The proposed model achieved a DSC of 

0.837 on STARE dataset and 0.832 on DRIVE dataset.  

In the recent studies [134-136, 138] examined, there is a notice able gap in the 

optimization techniques employed, particularly concerning the widely used UNET architecture. 

Many recent works have not prioritized optimizing UNET, a foundational model in medical 

image segmentation. It is imperative for future research endeavors to address this gap by 

focusing on the integration of metaheuristic algorithms. By optimizing models like UNET using 

these advanced techniques, researchers can unlock more robust and refined medical image 

segmentation solutions. This enhancement is essential for advancing the field and, ultimately, 

improving patient care. 

The innovation in this proposed work lies in the utilization of a metaheuristic approach for 

optimizing both CAE and UNET. Among the array of methods available, PSO stands out due 

to its superior  calculation accuracy and its ability to perform global and local search 

simultaneously. Our focus is on strategically integrating the PSO algorithm. Firstly, it is used 

to select the optimal number of filters for the CAE model, enhancing image denoising for 

preprocessing. Then, in a second step, we optimize UNET for improved segmentation. This 

enhances the performance and precision of the UNET model 

5.4.2 Contribution 

The proposed approach is based on optimized model using UNET architecture, applied 

to COVID-19, skin cancer and retinal vessel segmentation. The framework contains three 

stages: the first stage is the preprocessing images, which contains the conversion of nifty to png 

file, the data augmentation and the resizing. Then, a proposed denoising of the images using 

CAE before segmentation is applied in the second stage. PSO algorithm is used in the third 

stage to optimize the parameters of CAE for properly denoising images and saving valuable 

information, after that UNET is used in the segmentation task, which ensures the segmentation 

of the infection region. To evaluate this model and testing its robustness and efficiency, lung 

datasets, skin cancer dataset, synthetic retinal dataset and retinal vessel segmentation (STARE) 

are used. A pipeline is proposed for generating synthetic medical images using Generative 

Adversarial Networks (GANs). The GAN trained with retinal vessel segmentations from the 
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DRIVE dataset. Several tasks to be explored to find the lock to a high-performance, efficient 

and standard segmentation: 

• Task 1: Study of monomodality (slice Ox,  slice Oy, slice Oz), and choose which of the 

terms should be used; 

• Task 2: Multimodality and the concatenation of slices to know which of the two contributes 

the most to the deep segmentation; 

• Task 3: Study the effect of the denoising by OCAE on the segmentation model; 

• Task 4: Selection of the optimal parameters OUNET model and OCAE filters number 

Optimization. 

The contribution of this work focuses on implementing hybrid methodology, where the PSO 

algorithm is applied to find the optimal design of parameters for CAE architectures. The main 

contributions of this work are as follow :  

• Datasets Collection: Collect various datasets for the comprehensive evaluation of the 

proposed segmentation models. 

• CAE Parameter Optimization: PSO algorithm is used to fine-tune CAE parameters, 

ensuring optimal denoising performance. 

• Architectural Approaches: UNET, CAE+UNET, and OCAE+OUNET architectures are 

explored for the segmentation of COVID19 and other pathologies. 

• Monomodality and Multimodality Analysis: study of the impact of each modality and 

multimodal concatenation to know their relevance in segmentation tasks. 

• Robustness Evaluation: the methodology is rigorously evaluated on datasets representing 

four distinct pathologies, demonstrating its robustness and applicability in various medical 

contexts. 

5.4.3 Proposed OCAE+OUNET Approach 

Early detection of diseases has become necessary, for the prevention of certain diseases 

and to avoid their growth. For this reason, and with the advancements in computational capacity 

and the availability of massive datasets, researchers have developed various DL based 

algorithms that outperform the specialists in that field, such as medical image disease detection, 

classification, and segmentation. 

The high diversity in infection features and poor intensity contrast between infections and 

normal tissues make segmenting infected regions from CT slices difficult [133]. Different DL 

methods can give good segmentations, but they are likely to make different mistakes. However, 

in this study, we tried to develop novel optimizer DL-derived segmentation to extract features 
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of the ROI to segment the infected area. 

5.4.3.1 OCAE+OUNET Model description 

In this work, the proposed approach and optimization with PSO algorithm is described 

(see Fig. 5.1). The main idea and mathematical background are explained. Furthermore, 

proposed approach implementation and its optimization with the PSO algorithm are detailed as 

well as the presentation of the method in the context of the CAE optimization problem. We have 

also described the improvements that were needed to adapt the basic PSO algorithm for the 

optimization number filters of CAE model. 

COVID19 Multi View Skin Cancer 

Synthetic Retinal 

Dataset Types(DICOM, JPEG, PNG…..)

Axial Segmented
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Dice, Loss, Acc   

Optimized 

256 x 256 x 64
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64 x 64 x 256
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Prediction Mask 

GT Dataset

STARE Retinal

 

Figure 5.1 Flowchart of the proposed approach OCAE+OUNET Segmentation 

 Convolutional Auto Encoder 

Medical images usually contain noise and show blurred boundaries. The presence of noise 

may confuse the identification and analysis of diseases, which may result in unnecessary deaths. 

Hence, denoising of medical images is a mandatory and essential preprocessing technique. For 

this reason, CAE is used before UNET to reduce the noise in medical images. In another hand, 
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to obtain an optimal CAE, a method of optimization called PSO is used to optimize the number 

of filters for each layer in CAE. 

The quality of the dataset and an effective labeling strategy are also essential. Denoising 

the datasets using CAE [157] plays an important role in increasing the accuracy and facilitating 

diagnostic models. Denoising CAE does two things: 

• Encode the input with preserving the information about the data. The encoder takes high 

dimensional input data and maps to a low dimensional space (latent-space) using 

Convolution Layer with Rectified Linear Unit (ReLU) activation function and  Max 

Pooling Layer, where, the ReLU activation function is :     

                                               𝑓(𝑥) = {
0, 𝑥 ≤ 0
𝑥, 𝑥 > 0

                                                                       (5.1) 

Suppose, if convolution is performed on an image with more than one kernel, then dimensions 

of output also increases by ‘n’ dimensions. 

• Decoder takes data in the latent-space and try to reconstruct this data in the original high 

dimensional space 

Denoising CAE forces the hidden layer to extract more robust features and restrict it from 

merely learning the identity. 

 UNET       

For medical image segmentation, the UNET architecture [121] has been found to be 

highly effective, where the UNET efficiently concatenates low-level and high-level image 

features through skip connections, which is a typical solution for medical image segmentation 

tasks. 

The first part is the Encoder, which uses the convolutional network. It consists of the 

refined application of convolutions, ReLU, Dropout, and Maxpooling.  After, the spatial 

dimensions of the feature map are transformed to the size of 2x2, and then the second part starts 

(Decoder) to increase the spatial dimensions by reducing the Encoder feature map. At every 

downsampling stride, the decoder consists of:  i) an upsampling of the feature map pursued by 

a 2x2 convolution, which halves the number of feature channels, ii) a  fusion with the coinciding 

cropped feature map from the Encoder, and iii) two 3x3 convolutions, each followed by a ReLU. 

At the final 1x1 convolution layer is used for the coveted number of classes. 
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 Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) is a search-based optimization technique that starts 

with a population of particles in a d-dimensional vector space [158]. It is proposed to imitate 

birds searching for food, the movement of fish’s shoals, etc. It can be classified as a swarm 

intelligence algorithm like Ant Colony Algorithm, Artificial Bee Colony Algorithm, and 

Bacterial Foraging. 

PSO algorithm is proposed in 1995 by Kennedy and Eberhart [159] where the article 

“Particle Swarm Optimization” became very popular due to his continue optimization process 

allowing variations to multi-targets. Consisting in the constant search for the best solution, the 

method moves the particles with a certain velocity calculated in every iteration. Each particle’s 

movement has the influence of this own the best-recognized position and the best-recognized 

position in the space search. The result expected is that the particle swarm converges to the best 

solution [160]. 

The velocity is updated by using the equation (5.4) and the position is calculated using the 

equation (5.2):   

𝑥𝑖(𝑡 + 1) =  𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)                                                                                     (5.2) 

𝒙𝒊(𝒕): position of particle i in a time t,   𝒗𝒊(𝒕): velocity can modify the position of the particle, 

and all particles are randomly grouped within pre-defined ranges 𝒙𝒎𝒊𝒏and 𝒙𝒎𝒂𝒙, where :   

𝑥𝑖(0) =  𝑥𝑚𝑖𝑛 +  𝑟𝑎𝑛𝑑(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)                                                                        (5.3) 

𝑣𝑖(𝑡 + 1) =  𝑣𝑖𝑤 + 𝑐1𝑟1[𝑥𝑝𝑏𝑒𝑠𝑡𝑖
− 𝑥𝑖] + 𝑐2𝑟2[𝑥𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)]                                    (5.4) 

𝒗 ∶ velocity,  𝒊: particle. 𝒄1: cognitive,  𝒄2:  social factors, 𝒓1and 𝒓2𝝐 [0, 1], and 𝒘:  inertia 

weight. The best position of the particle 𝒙𝒑𝒃𝒆𝒔𝒕 is updated after each iteration if better than 

previous, and the best global position 𝒙𝒈𝒃𝒆𝒔𝒕 is among all particles. This parameter affects the 

movement propagation given by the last velocity value. The swarm consists of 𝑵 particles, so 

an objective function 𝒇 calculates particle fitness. The personal and global best values are 

updated using equations (5.5) and (5.6), respectively at a time𝒕. Thus, 𝒊 ∈ 1 … … 𝑵 

 

𝑥𝑝𝑏𝑒𝑠𝑡𝑖
(𝑡 + 1) = {

𝑥𝑝𝑏𝑒𝑠𝑡𝑖
(𝑡)𝑖𝑓𝑓(𝑥𝑝𝑏𝑒𝑠𝑡𝑖

(𝑡) ≤ 𝑓(𝑥(𝑡 + 1)) 

𝑥𝑖(𝑡 + 1)𝑖𝑓𝑓(𝑥𝑝𝑏𝑒𝑠𝑡𝑖
(𝑡) > 𝑓(𝑥𝑖(𝑡 + 1)

                                        (5.5) 

 

𝑥𝑔𝑏𝑒𝑠𝑡(𝑡 + 1) = max{𝑓(𝑥𝑝𝑏𝑒𝑠𝑡), 𝑓(𝑥𝑔𝑏𝑒𝑠𝑡)}                                                          (5.6) 

Where:    

𝑥𝑝𝑏𝑒𝑠𝑡 ∈  𝑥𝑝𝑏𝑒𝑠𝑡0
(𝑡), 𝑥𝑝𝑏𝑒𝑠𝑡1

(𝑡), … … … … . . 𝑥𝑝𝑏𝑒𝑠𝑡𝑁
(𝑡)                                       (5.7) 

 



Chapter 5                                                       AI Techniques for Medical Image Segmentation and Optimization 

112 

 

5.4.4 OCAE+OUNET Experimentation 

To demonstrate the effectiveness of the proposed model, this section discusses the 

different experiments segmentation tests on several datasets. Experiments are conducted with 

diversified classes and modality of medical images. 

5.4.4.1 Datasets 

Four kinds of CT datasets are used in the experiments to test the proposed framework. 

The dataset of COVID19 was collected between May 2020 and December 2020 at the LI3C, 

Mohamed Khider University, Biskra, Algeria using different public datasets sources. The first 

dataset contains 100 lungs images with 100 infected masks [161]. In this dataset, a 

preprocessing step was performed to reduce the area to be analyzed, and remove unimportant 

regions. While the second dataset [162] contains 20 labeled (Nifti dataset) COVID19 CT scans 

(COVID19-CT-Seg_20 cases, Infection Mask, Lung_and_Infection_Mask and Lung Mask). 

Left lung, right lung, and infections are labeled by two radiologists and verified by an 

experienced radiologist. In this study, COVID19 and infected Masks 2D CT slices are extracted 

from the twenty nine 3D volumes of the CT imaging having no-uniform or varying dimensions. 

Each of these slices is annotated carefully by expert radiologists to generate the segmentation 

mask. CT scan is a set of images, which contains black slices at the beginning of each volume 

and other images that do not contain any part of the lung, for this reason, these images are 

removed. In experiment, 100 images and 100 masks from each slice were selected to tune the 

parameters of the proposed model. In the third skin cancer dataset, 100 images and 100 masks 

were used to evaluate the proposed model [163]. In the fourth dataset, the Synthetic Retinal 

dataset contains 91 images and 91 masks [164] STARE set contains 20 images, and 20 masks 

are used [165]. Figure 5.2 shows the different datasets with the ground truth segmentation mask. 

(SR: STARE Retinal)      
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Figure 5.2 Different used Datasets 

The objective is to select the most relevant number of filters that have influence to obtain 

good performance of AE and then implement the PSO algorithm to find these optimal numbers. 

Figure 4 illustrates the organizational structure of our OCAE+OUNET algorithm. The PSO 

algorithm, through its iterative optimization process, strategically fine-tunes the parameters of 

both the CAE and UNET components. This meticulous tuning ensures that the model converges 

to an optimal solution, maximizing its segmentation Dice, Accuracy and Loss. 

5.4.4.2 Conversion, data augmentation, resizing and splitting 

Image file types may be converted from one type to another.  In this case, for COVID19 

dataset, the Dicom images have been converted to png image file format, and for the skin cancer 

dataset, the jpg file have been converted to png file.  

The data augmentation technique is applied in this work on the four datasets to create new 

training data artificially. Data augmentation techniques can be used to generate additional data, 

thereby producing different versions of the original data. In this work, we used data 

augmentation to avoid overfitting and increase the accuracy of the model. First, a model is run 

without any augmented images. Next, a model using augmentations is created like zooming, 

rotating, flipping, and cropping images. In addition, all the dataset are resized to have the same 

size to 256 × 256 and while the dataset contains 2816 images and 2816 masks, all images and 

masks have been resized to 128x128. All the datasets are split into training and validating sets 

with a ratio of 0.9:0.1, and resized them into 256x256 size images, where the data augmentation 
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is applied to the training set (a total number of training images is increased by 6 times) to 

increase the accuracy of the model. 

5.4.5 OCAE+OUNET Implementation  

 

Input Image

Dataset Preprocessing

Initialize Particles

Run Each Particle CAE+UNET

CAE Denoising
PSO Nb filters Optimization
W = 0.5, C1 = 0.5, C2 = 0.5
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Optimized CAE+UNET Model

Optimal Parameters and Results

PSO Parameters Optimization

Fitness

Yes 

No  

Yes 

No  

UNET Segmentation 

 

Figure 5.3 Optimization Segmentation based OCAE+OUNET Algorithm 

5.4.5.1 Optimized CAE for denoising  

The first step in enhancing image quality and improving contrast is preprocessing, which 

plays a major role in obtaining accurate results. Different classical methods for enhancing image 

were used to achieve high quality and contrast of images. In this work, the CAE denoising 

techniques are implemented, where the PSO algorithm is applied to optimize the number of 

filters for the different layers of encoder and decoder. Table 1 presents the detail of the particle, 

and the search space used and illustrates an example of a particle generated by PSO for different 

datasets. 
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Figure 5.4 Flowchart of the OCAE algorithm (n1: Filters Number in Conv1, n2: Filters 

Number in Conv2; n3: Filters Number in UpConv1; n4: Filters Number in UpConv2) 

Table 5-2 PSO parameters and Search Space 

 
 

Parameters 

 
 

Description 

 
 

Search 

Space 

Datasets 
 

D1 

D2 
 

D3 
 

D4 SLICE 
Z 

SLICE 
Z, Y 

SLICE 
Z, Y, X 

Particles i Particles Number _ 4 4 4 4 4 4 

Maxiter Max of iteration _ 10 10 10 10 10 10 

C1 Cognitive factors _ 0.5 0.5 0.5 0.5 0.5 0.5 

C2 Social factors _ 0.5 0.5 0.5 0.5 0.5 0.5 

W Inertia weight _ 0.5 0.5 0.5 0.5 0.5 0.5 

E1 Filters Number in 1stlayer Encoder [8- 32] 28 29 25 32 18 15 

E2 Filters Number in 2nd layer Encoder [8- 32] 17 20 29 21 22 32 

D1 Filters Number in 1st  layer Decoder [8- 32] 22 15 20 32 21 14 

D2 Filters Number in 2ndlayer Decoder [8- 32] 19 25 29 19 26 23 

 

The fitness function evaluation uses the OCAE+OUNET model on different datasets. It 

reports the required number of filters and returns the fitness function score. The fitness function 

is generated to achieve the best segmentation measure by maximizing its accuracy and 

minimizing Loss. It is evaluated based on the below expression: 

                                                            𝑓𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = Max(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)                                                                      (5.8) 
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Figure 5.5 Flowchart of the OUNET 

5.4.5.2 Optimized CAE+UNET for segmentation 

The segmentation method is presented in this section; it begins by optimizing the AE to 

denoise the images without losing any information. As each image may contains details about 

the contour of an object as well as details about its texture that may be important in computer 

vision tasks. 
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Figure 5.6 Flowchart of the OCAE+OUNET algorithm 

In this case, denoising techniques are employed to achieve high-quality contrast in 

images, thereby enhancing the performance of the UNET model. To optimize the number of 

filters for the various convolution layers of both the Encoder and Decoder while maintaining 

the size kernel of Maxpooling layers, the PSO algorithm (see Fig. 5.6) is utilized. 
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In the OCAE+OUNET model parameter configuration, certain static parameters are 

utilized, including the Adam optimizer, Sigmoid activation function in the final layer, and ReLU 

as the non-linear activation function. A fixed epoch number of 100 is set for all datasets, with 

"early stopping" implemented. The model is iteratively implemented 10 times with a PSO 

iteration number of 10. In addition, the datasets are divided into training and validation sets. 

The training set is utilized to train the models, while the validation set is used to assess the 

performance of the trained models. 

5.4.5.3 Evaluation metrics 

The performance of segmentation models is evaluated using a several metrics [139]. In 

this work,  the following metrics are used to evaluate the model:  Intersection over Union (IoU) 

and Dice Similarity Coefficient (DSC). 

• Dice Similarity Coefficient: The concept is intuitive we count the similar pixels (taking 

intersection, present in both the images) in the both images we are comparing and multiple 

it by 2, and divide it by the aggregate number of pixels in both the images. 

𝐷𝐼𝐶𝐸𝐶𝑜𝑒𝑓 =  
2|𝑌𝑔∩𝑌𝑝𝑟𝑒𝑑|

|𝑌𝑔|+|𝑌𝑝𝑟𝑒𝑑|
              Where 𝒀𝒈and 𝒀𝒑𝒓𝒆𝒅  denote the ground truth and predected 

masks. 

• Intersection over Union: also known as the Jaccard index. In this case, the intersection 

means is divided by the number of similar pixels by the union total number of unique pixels 

in both the images. 

 
 

𝐼𝑜𝑈(𝑌𝑔, 𝑌𝑝𝑟𝑒𝑑) =
|𝑌𝑔∩𝑌𝑝𝑟𝑒𝑑|

|𝑌𝑔∪𝑌𝑝𝑟𝑒𝑑|
=

|𝑌𝑔∩𝑌𝑝𝑟𝑒𝑑|

|𝑌𝑔|+|𝑌𝑝𝑟𝑒𝑑|−|𝑌𝑔∩𝑌𝑝𝑟𝑒𝑑|
      Where area1: 𝒀𝒈 and area2: 𝒀𝒑𝒓𝒆𝒅 
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5.4.6 OCAE+OUNET Results and Discussion 

5.4.6.1  Hyperparameters Selection 

In this work, different combinations hyperparameters are evaluated and the best 

combination is selected. To simplify the tuning process, we choose the number of epochs= 50, 

100, 200, and 300, and fixed it to 300 with early stopping; whenever the validation loss does 

not improve for 15 continuous epochs, learning rate =0.001, and the batch size = 16. Binary 

cross-entropy is used for loss functions and different optimizers (such as RMSprop, Adamax, 

Adagrad, and Adam) were used to choose the best optimizer. In this case, Adam gives high 

Accuracy and Dice similarity. Table 5-3 shows the performance of different optimizers where 

Adam optimizer gives the best performance.                                                

Table 5-3 Performance of different optimizers 

Optimizer DSC (%) Accuracy (%) 

Adam 81.13 97.83 

RMSprop 78.50 97.38 

Adamax 78.89 97.47 

Adagrad 65.40 96.52 

 

5.4.6.2 Monomodality 

In this work, four different datasets are used to demonstrate the effectiveness of our 

method for other diseases or other organs. 

Experience 1: Effect of the data augmentation and size dataset CT D2 SLICE_ Z COVID19  

Because chest CT scans are volumetric images, they can be viewed by scrolling through 

three different planes: the Coronal, Axial, and Sagittal. In this section, we trained a mono-view 

model using the proposed network to screen patients with COVID19 using CT images of the 

lung regions in axial view. 

In this case, our question: Is data augmentation or dataset size better? 

For this reason, two experiments are conducted: i) the first with a 100 images and 100 

masks (256x256)  with data augmentation, ii) the second with a 2816 images and 2816 masks 

(128x128)  without data augmentation. The results obtained are shown in Table 5-4. 

 

 

https://keras.io/api/optimizers/rmsprop
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Table 5-4 Effect of the data augmentation and size dataset CT D2 SLICE_ Z COVID19 

Model 

100 images/100 masks (256x256) 2816 images/2816 masks (128x128) 

With Augmentation (Small Size Dataset) Without Augmentation (Big Size Dataset) 

Acc (%) Loss DSC(%) IoU(%) Acc(%) Loss DSC(%) IoU(%) 

UNET 99.16 0.0172 88.56 79.47 98.92 0.004 84.55 74.54 

CAE+UNET 99.20 0.1615 89.05 80.27 98.92 0.004 84.77 69.74 

OCAE+OUNET 99.21 0.0151 89.46 80.93 98.78 0.005 83.37 71.48 

 

The information given by the data augmentation with small dataset is better than the big 

dataset size as shown in Table 5-4 except for the loss curve and image predict. 

The model trained on a small dataset of 100 images and 100 masks with data augmentation 

demonstrated superior performance across key metrics when compared to models trained on 

larger datasets without augmentation. Specifically, the augmented dataset model achieved an 

accuracy of 99.21% and a Dice Similarity Coefficient (DSC) of 89.46%, whereas the dataset 

without augmentation attained an accuracy of 98.78% and a DSC of 83.37%. This clearly 

confirms the effectiveness of the proposed model for small samples, which is often the case in 

reality and meets the intended objective. This significant performance gap underscores the 

impact of data augmentation techniques in enhancing the accuracy and precision of the 

proposed model. By augmenting the limited dataset, we effectively expanded its diversity, 

enabling the model to recognize a broader range of patterns and variations within the images. 

Consequently, the augmented dataset model exhibited a higher accuracy rate, ensuring more 

precise identification of COVID19 cases. Moreover, the Dice Similarity Coefficient, a metric 

assessing the spatial overlap between the predicted and ground truth masks, demonstrated a 

substantial improvement with data augmentation. This emphasizes the model's enhanced ability 

to delineate the exact boundaries of infected areas within the lung images. 

In all that follows, we will limit our study to the case 100 images/100 masks (256x256) 

with data augmentation. 

Experience 2: Effect of the optimized preprocessing  

In this case, the question asked: Are augmentation or/and denoising effective for small 

dataset? 

100 images/100 masks (256x256) are chosen for this experiment. Sample 2D Dataset1 and 3D 

Dataset2(seefig5.7)
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Figure 5.7 Images 2D Dataset1 and 3D Dataset2 

Table 5-5 presents comparison results between preprocessed lung images and original lung 

images. The first experiment is applied on dataset D1. As shown table 5-5, there are very clear 

improvements going from the impact of PSO on CAE+UNET. We also note that the accuracy 

and dice score are increased. 

Table 5-5 Effect of optimized preprocessing lung image on the results with small dataset 

   IoU : Intersection Over Union 

 

 

 

 

 

 

 

 

 

 

 

 

MONOMODALITY 

2D Dataset1: Optimized Preprocessing Lung Image (COVID-19) 

SLICE_Z: Nbr Filters Optimized : [28, 17, 22, 19] 

Without Augmentation 

 

With Augmentation 

UNET CAE+UNET OCAE+OUNET UNET CAE+UNET OCAE+OUNET 

Acc (%) 93.11 93 92.82 97.42 97.73 97.83 

Loss 0.175 0.185 0.170 0.118 0.062 0.066 

DSC (%) 52.81 61.96 64.62 73.21 80.41 81.13 

IoU (%) 38.37 26.41 44.87 63.70 63.05 63.85 

Time(s) 0.612 0.679 0.681 2.785 2.995 3.060 

 
3D Dataset2: Original Lung Image (COVID-19) 

SLICE_Z:  Nbr Filters Optimized : [19, 8, 25, 12] 

Acc (%) 97.72 98.39 98.39 

 

99.16 99.20 99.21 

Loss 0.033 0.012 0.013 0.017 0.016 0.016 

DSC (%) 65.15 87.95 88.81 88.56 89.05 89.46 

IoU (%) 48.32 78.49 79.87 79.47 80.27 80.93 

Time(s) 1.046 0.672 0.661 2.827 3.776 3.110 
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• COVID-19 Lung Image preprocessed (Augmentation, Resizing and OCAE denoising) 

Original Image 

Ground Truth

OCAE+OUNET

Figure 5.8 Dataset D1 100 images/100 masks with augmentation 

Original Image 

Ground Truth

OCAE+OUNET

 

Figure 5.9 Segmentation for original 3D dataset 2 COVID19 SLICE _Z (100 images/100 

masks (256x256)) 

For the case (100 images/100 masks (256x256)), the different models achieve a good 

segmentation, but the OCAE+OUNET are closer to the Ground Truth. 
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Original Image 

Ground Truth

OCAE+OUNET

 
Figure 5.10 Segmentation for original 3D dataset 2 COVID19 SLICE _Z (2816 images/2816 

masks (256x256)) 

COVID19 Lung Image preprocessed and OCAE+OUNET Augmentation + Resizing + OCAE                                                      

OCAE + OUNET 

      
 

 

      
(a)                                                         (b)                                                                 (c) 

  
(a) Optimized Preprocessing Dataset D1 COVID-19 (256x256) (100 images/100 masks),  (b) 3D dataset 2 COVID-19 

SLICE _Z (100 images/100 masks), (c) 3D dataset 2 COVID-19 SLICE _Z (2816 images/2816 masks) 

Figure 5.11 Mono modality accuracy and Loss curves for COVID19 Lung datasets 

In the case of 2D and 3D mono modality, we notice that: 

• The data augmentation plays a positive role; 

• The optimization of the number of filters of the CAE model by PSO clearly improves the 

results; 
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• The original image is better suited for ML with a view to segmentation because it is a Nifti 

sequence; this is not the case for dataset 1 which is in the form of preprocessed images; 

• The best time is obtained on the dataset without preprocessing and without data 

augmentation. While the time decreases on the dataset with preprocessing and data 

augmentation compared to the original lung image dataset. 

• The accuracy is efficient on datasets with data augmentation despite the time being long. 

Figure 10 confirms that the optimization of the number of CAE denoising model filters 

and the optimization of the Loss and the Acc of the UNET model used for the segmentation 

clearly improves the accuracy and loss performance curves. It also notices that the 

OCAE+OUNET model gives the best segmentation results because it manages to predict the 

smallest details and anomalies in the original image. 

5.4.6.3 Multimodality 

Experience 3: Multimodality with augmentation 

In this study, 100 images/100 masks (256x256) from SLICE_Z, SLICE_Y and 

SLICE_X to demonstrate the effectiveness of our method. 

The second experiment is applied on dataset D2 as shown table 5-6. In this case, different slices 

from axial, sagittal, coronal view of lung and masks infected by COVID19 are tested. 

Table 5-6 Effect of the multi-view (multimodality) and data augmentation 

 MULTIMODALITY 

 Dataset2: Original Lung Image (COVID19) 

 SLICE_Z and SLICE_Y 

Nbr Filters Optimized: [25, 29, 20, 29] 

 Without Augmentation  With Augmentation 

 UNET CAE+UNET OCAE+OUNET UNET CAE+UNET OCAE+OUNET 

Acc (%) 97.97 98.57 98.58 98.89 98.90 99.04 

Loss 0.0272 0.0075 0.0072 0.016 0.016 0.014 

DSC (%) 66.41 93.35 93.57 90.28 90.73 90.72 

IoU (%) 49.71 87.54 87.92 82.28 83.03 83.02 

Time(s) 1.291 1.756 1.058 6.088 5.579 8.881 

 SLICE_Z, SLICE_Y and SLICE_X 

Nbr Filters Optimized : [32, 21, 32, 19] 

Acc (%) 98.79 98.82 98.81  99.09 99.24 99.25 

Loss 0.008 0.006 0.006 0.015 0.011 0.011 

DSC (%) 90.23 92.27 92.57 86.82 89.62 90.11 

IoU (%) 82.20 85.65 86.17 76.71 81.20 81.99 

Time(s) 1.859 1.764 1.891 8.381 10.216 9.015 

The observation that accuracy tends to increase with increasing amount of data is 
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consistent with the common understanding of M. A large data size generally leads to better 

performance, because the model has more diverse examples, which ensures good learning and 

can be generalized to unseen data. However, the fact that some experiments without data 

augmentation present good results and short processing times we can deduce that data 

augmentation requires slower calculation and learning times. Additionally, some metrics may 

be more sensitive to changes introduced by increased data. Therefore, a choice depending on 

the progression and severity of the pathology is necessary because even if one measure 

improves with increase, another could deteriorate. 

• Dataset 2 SLICE_Z, SLICE_Y 

Original Image 

Ground Truth

OCAE+OUNET

 
Figure 5.12 Multimodality Segmentation for 3D dataset 2 (SLICE _Z, SLICE_Y) COVID19 

 

 

 

 

 

 

 

 

 

 

 

• Dataset 2 SLICE_Z, SLICE_Y, SLICE_X with augmentation 
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Original Image 

Ground Truth

OCAE+OUNET

 

Figure 5.13 Multimodality Segmentation for 3D Dataset 2 COVID-19 SLICE _Z, SLICE_Y, 

SLICE_X 

In the case of multimodality, the data augmentation played its role as well as the 

optimization of PSO and the use of all three modalities (SLICE_Z, SLICE_Y and SLICE_X). 

This is explained by the information provided by each of the modalities. 

OCAE+OUNET 

 

      
(a)                                                                                  (b)                                                         

(a) Dataset 2 (SLICE_Z, SLICE_Y) COVID-19 (256x256) (images/100 masks), (b) Dataset 2 (SLICE_Z, SLICE_Y, 
SLICE_X) COVID-19 (100 images/100) masks with augmentation 

Figure 5.14 Multimodality Accuracy and Loss curves 

Analyzing slices from different views (axial, sagittal, and coronal) provides a more 
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comprehensive understanding of the 3D structure of the lungs and the spread of COVID19 

infection. This multi-view approach ensures that the model learns from various perspectives, 

enhancing its ability to detect and segment the infected region. 

The results obtained from SLICE_Z and SLICE_Y with and without data augmentation 

outperformed those from the three combined slices because each Different view (axial, sagittal, 

coronal) represent the anatomical structure differently. It's possible that certain orientations 

emphasize key features related to COVID19 infection more prominently (SLICE_Z and 

SLICE_Y). 

Individual slices (especially SLICE_Z and SLICE_Y) provide higher resolution and more 

localized information compared to combined slices. This higher level of detail might be crucial 

in accurately identifying and segmenting small or intricate COVID19 infected regions within 

the lungs. 

5.4.7 Application on different datasets 

To validate the effectiveness and robustness of the developed model, we conducted 

experiments on diverse datasets for specific medical imaging tasks. The primary focus is on 

skin cancer analysis, for which we utilized a curate dataset consisting of 100 images with 

corresponding masks. 

5.4.7.1 Dataset 3 Skin Cancer 

In this case, 100 images/100 masks (256x256) are used to evaluate our proposed model. 

Table 5-7 Application of the approach on Skin Cancer dataset 

 
MONOMODALITY 

2D Dataset 3: Skin Cancer 

 
Nbr Filters Optimized : [18, 22, 22, 26] 

 Without Augmentation 

 

With Augmentation 

 
UNE

T 
CAE+UNET OCAE+OUNET UNET CAE+UNET OCAE+OUNET 

Acc (%) 92.50 93.54 93.31 93.74 94.82 94.24 

Loss 0.195 0.114 0.138 0.248 0.156 0.167 

DSC (%) 89.76 92.03 91.48 92.38 93.81 93.12 

IoU (%) 81.43 85.24 84.30 85.85 88.34 87.13 

Time(s) 0.615 0.954 0.758 3.386 3.088 2.895 

 
Afterwards, experience is validating with third dataset D3 that contains skin cancer and the 

masks. 
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Original Image 

Ground Truth

OCAE+OUNET

 

Figure 5.15 Segmentation for 2D Dataset 3 Skin Cancer (100 images/100 masks (256x256)) 

The effective performance of the proposed model, with high dice score of 91% and 93% 

with and without data augmentation respectively (as shown in table 5-7) on a completely 

different dataset (D3) indicates its robustness and ability to generalize across diverse medical 

imaging data. This is a critical factor in the practical application of any segmentation model.  

5.4.7.2 Dataset 4 Synthetic Retinal 

Furthermore, we expanded our validation to include Synthetic Retinal images, consisting 

of 91 images and 91 corresponding masks, as well as STARE Retinal datasets comprising 20 

images and 20 masks. This extension broadened the scope of our analysis, allowing us to 

comprehensively assess the model's performance across varied datasets. 

Table 5-8 Application of the approach on Synthetic Retinal dataset 

 
MONOMODALITY 

2D Dataset 4: Synthetic Retinal 

 Nbr Filters Optimized : [15, 32, 14, 23] 

 
Without Augmentation 

 

With Augmentation 

 
UNET CAE+UNET OCAE+OUNET UNET CAE+UNET OCAE+OUNET 

Acc (%) 70.45 70.45 70.44 83.80 83.75 83.92 

Loss 0.129 0.125 0.128 0.127 0.129 0.127 

DSC (%) 65.74 66.11 66.86 67.36 66.82 66.60 

IoU (%) 48.97 49.38 50.22 50.78 50.17 49.92 

Time(s) 0.634 0.655 0.735 3.417 2.811 2.658 
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Original Image 

Ground Truth

OCAE+OUNET

Figure 5.16 Segmentation for 2D Dataset 4 Synthetic Retinal (91 images/91 masks 

(256x256)) 

5.4.7.3 Dataset 5 Stare Retinal dataset 

Unlike synthetic retinal datasets, which may lack the authenticity and realism of real 

clinical images, datasets derived from actual clinical cases such as STARE offer genuine, 

diverse, and varied retinal images that effectively capture the complexity of retinal conditions. 

For this reason, we chose to evaluate our model using the STARE retinal dataset. We assessed 

our model's performance on authentic and diverse retinal images, providing a more reliable 

assessment of its capabilities in real-world scenarios. Due to the limited size of the STARE 

Retinal dataset, which consists of only 20 images and 20 masks, we applied data augmentation 

techniques to enhance our model's performance. Table 5-9 displays the various results obtained. 

Table 5-9 Application of the approach on Stare Retinal dataset 

 
MONOMODALITY 

2D Dataset 5 STARE Retinal (20 images/20 masks) 

 
Nb Filters Optimized : [8, 29, 15, 22] 

 
Without Augmentation 

 

With Augmentation 

 UNE

T 
CAE+UNET PSO_CAE+UNET UNET CAE+UNET OCAE+OUNET 

Acc (%) _ _ _ 92.66 93.26 93.24 

Loss _ _ _ 0.141 0.109 0.113 

DSC (%) _ _ _ 63.13 71.87 72.07 

IoU (%) _ _ _ 46.11 56.09 56.34 

Time(s) _ _ _ 0.854 0.758 1.833 
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Original Image 

Ground Truth

OCAE+OUNET

 

Figure 5.17 Segmentation for 2D Dataset 5 STARE Retinal (20 images/20 masks (256x256)) 

Finally, experiment with database D4 that contains Synthetic and database D5 contains 

STARE Retinal images and masks; Synthetic images, especially in medical contexts, are 

computer-generated and lack the organic complexity of real-world images. These subtle 

differences, such as variations in tissue texture, color gradients, and lighting conditions, are 

critical for medical professionals. In real medical scenarios, these variations often carry 

diagnostic significance, aiding doctors in identifying specific conditions or abnormalities.  

For this reason, the proposed model demonstrates superior performance when applied to 

STARE Retinal images in comparison to Synthetic Retinal images (as shown in table 5-8 and 

5-9). The disparities in image realism and complexity between these datasets significantly 

influenced the outcomes, highlighting the challenges associated with working with synthetic 

data. 
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OCAE+OUNET 

 

 
(a)                                                             (b)                                                     (c 

(a) 2D Dataset 3 Skin Cancer (256x256) (100images/100masks ), (b) 2D Dataset 4 Synthetic Retinal (91 images/91 

masks), (c) 2D Dataset 5 STARE Retinal (20images/20masks) 

Figure 5.18 Accuracy and Loss curves for different datasets 

 

Based on the obtained results, it is evident that the OCAE+OUNET model displayed 

suboptimal parameter values. Notably, the performance curves failed to converge or stabilize 

when applied to the 2D Dataset 4 Synthetic Retinal (see Fig 5.18 (b)). This lack of convergence 

indicates a potential limitation or challenge in the model's adaptability to this specific dataset. 

In addition, when the same model was employed on the 2D Dataset 5 STARE Retinal, a 

noteworthy improvement was observed (see Fig 5.18 (c)). The performance curves exhibited 

significant enhancement and successful convergence, suggesting a more favorable interaction 

between the model architecture and the characteristics of the STARE Retinal dataset. This 

divergence in performance between the two retinal datasets highlights the importance of 

dataset-specific considerations in model evaluation and selection. 

Furthermore, in the case of the 2D Dataset 3 Skin Cancer, the OCAE+OUNET model 

demonstrated superior performance. The performance curves for this dataset exhibited clear 

optimization, indicating that the model effectively adapted to the features present in the Skin 

Cancer dataset (see Fig 5.18 (a)). This positive outcome emphasizes the model's potential and 

effectiveness in handling diverse datasets, but it also underscores the need for a nuanced 

understanding of its performance across various domains. These findings underscore the 

importance of considering dataset-specific nuances and potential limitations when assessing the 
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performance of complex models, providing valuable insights for further refinement and 

optimization. 

5.5  State of the Art Comparison 

In this work, we will compare our proposed method with different state of the art methods. 

Table 5-10 Comparison with the state-of-the-art methods 

Authors Methods Datasets 
DSC 

(%) 
Time (s) 

IoU 

(%) 
Acc (%) 

Original 

images 
Ground 

Truths 
Segmented 

Images 
   COVID19 

Amyar et 
al. [140] 

 

Encoder-
Decoder 

 

CT COVID-

19 
100 images/            
100 masks 

88 _ 
_ 
 

94.67 

 

 
  

Fan et al. 

[138] 
Inf-Net 

CT axial 
COVID19 

100 images/ 
100 masks 

Inf-
Net = 
68.2 

Semi-
Inf-

Net = 
72.5 

_ _ 
_ 
 

   

Saha et al. 
[149] 

ADU+ 
Net 

CT COVID-
19 

100 images/            
100 masks 

86 _ _ _ 

   

Elghamraw
y et al. 
[166] 

 
 

 
AIMDP 

 
 
 

AIMDP+ 
FSWOA 

 

 
432 Images/ 
432 masks 

 
 

432 Images/ 
432 masks 

 
 
 

 
_ 
 
 
 

_ 
 
 
 

Classifier
 : 

SVM: 
98.94 
NB: 

101.3 
DA: 99.2 

 
_ 

 
- 
 
 
 

_ 

90.4 
- 
 
- 
 

Classifier 
: 

SVM 
97.14 

NB 94.99 
DA 94.71 

 

 

 
 
- 
 
 
- 
 

 
 

 

Agarwal et 

al. [167] 

FCN+ 

PSO 
lungs X-Ray 

dataset 
_ _ _ _ 

   

Ours 
 

OCAE+ 
OUNET 

Preprocessing 
CT COVID-

19 SLICE_Z 
100 images/ 
100 masks 

81.13 3.06 63.85 97.83 

   

  

Original 
images 

CT COVID-
19 SLICE_Z 
100 images/ 
100 masks 

89.46 3.11 80.93 99.21 

 

 

 

 

 

 

  

Original 
images 

COVID-19 
SLICE_Z, 
SLICE_Y, 

100 images/ 
100 masks 

93.57 1.058 87.92 99.04 
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Original 
images 

COVID-19 
SLICE_Z, 
SLICE_Y, 
SLICE_X 

100 images/ 
100 masks 

92.57 1.89 86.17 99.25 

 

 
 

 

 

   Skin cancer 

Kumar et 

al. [152] 

AWO+ba
sed 

Squeeze
Net 

Skin Cancer 
1800 images / 
1800 masks 

_ _ _ 92.5 

 

_ 

 

Attia et al. 

[168] 
CNN+ 
RNN 

Skin Cancer 
900 images/ 
900 masks 

93 _ _ 98 

   

Vesal et 

al. [169] 
SkinNet 

Skin Cancer 
2000 images/ 
2000 masks 

85.1 
 

_ 76.67 _  

Green= 
ground truth 

Blue= 

SkinNet 

output  

Ahmed et 

al. [170] 

ITSU+ 

Efficient
Net 

Skin cancer 
dataset (ISIC 

2018 
challenge 

dataset:2594 
images 

94.36  92.9  

   

Ours 
OCAE+ 
OUNET 

Skin Cancer 
100 images/ 
100 masks 

 
93.12 

 
2.89 

 
88.34 

 
94.24 

   
   Retinal 

L.Yan et al. 
[171] 

AA+UN
ET 

Retinal 
STARE 

20 images/ 
20 masks 

 
_ 

 
_ 

 
96.24 

 
96.40 

   

Yanhonget 
al. [172] 

ResDO+
UNET 

Retinal 
STARE 

20 images/ 
20 masks 

 
_ 

 
_ 

 
_ 

 
95.67 

   

Yan et al. 

[173] 
OTSU+ 

PSO 

Retinal 
STARE 

20 images/ 
20 masks 

_ _ _ 95.79 

   

Popat et al. 

[174] 

GA+ 

UNET 

Segmenting 

blood vessels 
in retinal 

images (stare 
retinal) 

_ _ _ 0.9668 _ _ _ 

Ours 
OCAE+ 
OUNET 

Synthetic 

Retinal 
100 images/ 
100 masks 

 
66.86 

 
0.73 

 
50.22 

 
70.44 

   

  
Retinal 

STARE 
20 images/ 
20 masks 

 
72.07 

 
1.83 

 
56.34 

 
93.24 

   

 

Table 5-10 provides a comprehensive comparative overview of the proposed approach 

against various state-of-the-art methods across three diverse datasets: COVID19, skin cancer, 

and retinal images. The purpose of this analysis is to evaluate the effectiveness of the proposed 
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method in comparison to existing techniques for image segmentation. The table illustrates that 

the proposed method consistently outperforms most of the state-of-the-art segmentation 

techniques. Different metrics, accuracy, and Dice Similarity Coefficient (DSC), have been 

employed to gauge the segmentation quality. The accuracy metric reflects the precision of the 

segmentation process, while DSC quantifies the spatial overlap between the predicted and 

ground truth segmentations. In the context of the COVID19 dataset, the proposed method 

showcases remarkable accuracy of 99.04% and DSC scores of 93.57% with the two slices. This 

suggests the method's proficiency in accurately delineating infected regions within lung images, 

a critical task in COVID-19 diagnosis and monitoring. 

Moving to the skin cancer dataset, the proposed method continues to demonstrate superior 

segmentation results. Achieving high DSC scores of 93.12% in skin cancer segmentation is 

pivotal for precise identification of cancerous lesions, aiding in early detection and subsequent 

treatment planning. Furthermore, within the retinal dataset, the proposed method maintains its 

superiority, indicating its effectiveness in segmenting complex structures within retinal images. 

Accurate segmentation with an accuracy of 93.24% and DSC of 72.07% in retinal imaging is 

vital for diagnosing various eye conditions, making these results particularly promising for 

ophthalmic applications. 

While our work shows promising results, there are certain limitations that should be 

acknowledged. Firstly, our approach was tested on small datasets, and its performance on larger 

datasets remains to be explored. Additionally, the utilization of hybrid metaheuristic algorithms 

could further enhance the optimization process, and this avenue warrants further investigation. 

Moreover, the real-world applicability and generalizability of proposed model in diverse 

clinical settings need to be thoroughly validated before practical implementation. Addressing 

these limitations will be crucial for the broader adoption and effectiveness of our proposed 

methodology in the field of medical image segmentation and disease diagnosis. 

5.6 Conclusion 

New advancements in AI have made a huge contribution to enhancing our lives, and AI 

has become widely used in our daily lives in a multitude of situations. As a result, there is a 

strong belief that indeed designed AI research will fully utilize AI's potential in supporting and 

helping humans in combating rapidly and diagnosing different diseases. The framework 

presented in this work is based on DL optimized by a metaheuristics algorithm called PSO. We 
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have proposed to apply the PSO optimization algorithm in the CAE neural network to optimize 

its network parameters to denoising the datasets of images without losing information included 

in it before the segmentation stage. The UNET was optimized to achieve high accuracy, low 

loss; low-test time and robustness. The results indicated that the proposed approach gives well 

dice scores with different pathologies. The current study proposed image denoising with CAE 

optimized by PSO before segmentation task, which was trained with different datasets images. 

The approach has given encouraging results on different small datasets. The results remain 

stable and efficient from one dataset to another. 

In the future, we plan to evaluate our model using large datasets and explore the 

integration of hybrid metaheuristic algorithms. Adapting and validating our techniques on 

extensive datasets will be crucial for ensuring the robustness and reliability of our models in 

real-world, large-scale medical applications. 
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General Conclusion  

This thesis has presented a robust and multifaceted approach to medical image analysis, 

focusing on the early detection and diagnosis of COVID-19 while extending its applicability to 

other critical diseases. By combining advanced DL architectures, innovative preprocessing 

techniques, and optimization strategies, we have developed a framework capable of addressing 

complex challenges in medical imaging. 

Our work began by tackling the problem of COVID-19 detection using chest X-ray and 

CT images. MobileNet_V2 was employed as the backbone for feature extraction due to its 

efficiency and accuracy. For enhanced feature extraction, we integrated VGG16 with Gabor 

filters, enabling the capture of detailed texture and structural patterns within medical images. A 

significant contribution of this study was the use of a CAE for denoising images, ensuring 

cleaner inputs for segmentation tasks. To further enhance the CAE’s effectiveness, we applied 

the PSO algorithm to optimize the filter parameters, significantly improving the segmentation 

accuracy of the U-Net model. 

A key strength of this thesis lies in the systematic comparison of monomodality and 

multimodality approaches, which provided valuable insights into their relative effectiveness. 

By employing techniques such as HE for image enhancement and hybrid descriptors combining 

Gabor filters with LBP, we achieved higher classification accuracy and demonstrated the 

versatility of the proposed model. The inclusion of a curated dataset focusing on pneumonia 

and other viral lung diseases, given their visual similarity to COVID-19, allowed us to expand 

the model's capability to multiclass classification. 

Moreover, this research extended beyond COVID-19 to explore its applicability to other 

diseases. The model demonstrated adaptability by effectively segmenting and classifying 

conditions such as skin cancer and retinal abnormalities. For additional classification tasks, the 

MRFO algorithm combined with VGG16 enabled accurate detection of diseases like lung 

cancer, breast cancer, and Alzheimer’s disease, showcasing the framework’s scalability and 

versatility in addressing diverse medical challenges. 

While the proposed methodologies achieved commendable results, this work also 

acknowledged certain limitations. The effectiveness of the model is influenced by the quality 

and quantity of the dataset, which underscores the need for larger, more diverse datasets to 

enhance training and evaluation. Additionally, further research is required to evaluate the 
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model's generalizability to broader medical imaging domains and ensure its robustness across 

varied clinical environments. 

The utilization of AI-driven technologies in the field of healthcare is still mostly a 

research area at this time. However, the general understanding is that in the near future, these 

revolutionary technologies will completely change the field of medical practice. The healthcare 

sector typically takes new innovations at a more controlled pace than certain industries, which 

rapidly incorporate technology. Furthermore, without the active engagement, collaboration, and 

support of significant clients, such as healthcare professionals and patients, the successful 

integration of AI into the current medical workflow faces tremendous obstacles. For this 

developmental journey to be successful, a strong legal and regulatory framework is essential.  

Limitation and Perspectives: The advancements in this thesis open up numerous 

opportunities for further research and improvement. Future work should address the following 

areas: 

The current model's performance is highly dependent on the dataset's quality and variety. 

Incorporating larger and more diverse datasets, including multi-institutional data, will improve 

model generalization and applicability to broader patient populations. Additionally, datasets 

that capture rare conditions or anomalies can further expand the model’s diagnostic capabilities.  

While traditional augmentation methods were used in this work, future studies could 

explore generative approaches like Generative Adversarial Networks (GANs) to synthesize 

realistic medical images. This would enhance data diversity and help mitigate data scarcity 

issues in rare diseases. 

To improve the clinical adoption of AI models, integrating explainable AI techniques is 

essential. Future work could focus on developing interpretable models that provide insights into 

the decision-making process, highlighting the critical regions or features used for diagnosis. 

While PSO and MRFO have been applied successfully, exploring other optimization 

algorithms like Ant Colony Optimization (ACO), Genetic Algorithms (GA), or hybrid 

optimization methods may yield further performance improvements. These techniques could 

also help reduce computational overhead. 

The contributions of this research have significant implications for the future of medical 

image analysis. By leveraging hybrid models, optimization techniques, and TL, we have 

demonstrated a pathway toward the development of diagnostic tools that are not only accurate 
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but also adaptable and efficient. These advancements hold the potential to revolutionize medical 

imaging by enabling early detection and precise diagnosis of diseases, thereby improving 

patient outcomes and supporting clinical decision-making. 

In conclusion, this thesis underscores the transformative potential of  DL and optimization 

techniques in advancing medical image analysis. By addressing critical challenges and 

proposing future directions, the methodologies developed in this research pave the way for 

innovative diagnostic solutions with wide-ranging applications across medical imaging 

domains. The findings presented here lay a strong foundation for further exploration, aiming to 

bridge the gap between cutting-edge technology and practical healthcare delivery, ultimately 

contributing to better patient care and clinical outcomes.  
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