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Résumé

ette theése présente deux sujets de recherche sur les problémes de controle stochas-

tique des équations de type McKean—Vlasov, dans lesquelles les coefficients du
systeme et la fonctionnelle de cotit dépendent de I’état du processus de solution ainsi que
sa loi de probabilité et la variable de controle. Dans le premier sujet, nous établissons des
conditions nécessaires d’optimalité vérifiées par un contréle partiellement observé pour des
équations différentielles stochastiques progressivement rétrogrades (EDSPRs) gouvernées
a la fois par une famille de martingales de Teugels et un mouvement brownien indépendant
sous I’hypothese que le domaine de controle est supposé convexe. En tant qu’application
de la théorie générale, un probleme de controle linéaire-quadratique est étudié en termes de
filtrage stochastique. Le deuxieme sujet consiste a étudier le principe du maximum pour
le probleme de contrdle optimal sensible au risque partiellement observé des EDSPRs, et
la fonctionnelle de coflit est une exponentielle de type intégral. De plus, sous certaines
hypotheses de concavité, nous obtenons les conditions suffisantes d’optimalité. En tant
qu’application, un probleme de controle optimal sensible au risque linéaire-quadratique
sous des informations partiellement observées et des informations entierement observées

est résolu en utilisant les principaux résultats.

Mots Clés. Principe du maximum stochastique, Equations différentielles stochastiques
progressivement rétrograde, Controle optimal partiellement observé, Equations différen-
tielles de tupe McKean-Vlasov, Martingales de Teugels, Controle optimal sensible au

risque.



Abstract

his thesis presents two research topics about stochastic control problems of the
general McKean—Vlasov equations, in which the coefficients depend nonlinearly

on both the state process as well as its law. In the first topic, we establish partially
observed necessary conditions of optimality for forward-backward stochastic differential
equations driven by both a family of Teugels martingales and an independent Brownian
motion under the assumption that the control domain is supposed to be convex. As an
application of the general theory, a partially observed linear-quadratic control problem
is studied in terms of stochastic filtering. The second topic is to study the maximum
principle for the partially observed risk-sensitive optimal control problem of FBSDEs,
and the cost functional is a McKean—Vlasov exponential of integral type. Moreover, un-
der certain concavity assumptions, we obtain the sufficient conditions of optimality. As
an application, a linear-quadratic risk-sensitive optimal control problem under partially

observed information and fully observed information is solved by using main results.

Key words. Stochastic maximum principle, Forward-backward stochastic differen-
tial equations, Partially observed optimal Control, McKean—Vlasov differential equations,

Teugels martingales, Risk-sensitive optimal control.



Symbols and acronyms

(Q, F,P): Probability space.

{Fi}i>0 : Filtration.

(Q, F A F}eepom, ]P’): Filtered probability space.
R: Real numbers.

N: Natural numbers.

I* is the Hilbert space of real-valued sequences = = (), -, such that

o 3
i—1

I? (R") is the space of R"-valued sequences (z;),5, such that

00 , 1
(aninw) < oo.
=1

13- (0, T, R") is the Banach space of [* (R")-valued F;-predictable processes such that

g

S% (0, T, R™) is the Banach space of R"-valued F;-adapted and cadlag processes such

2o \?
g; Rndt) < 00.

that

0<t<T

1
(E sup |ft|2> < 00.



L2 (0,7, R™) is the Banach space of R"-valued F;-adapted processes such that

Y
(E/ |ft]Rndt> < 0.
0

L2 (.7-"; Rd) is the Hilbert space with inner product (z,y), = E [z.y] ,z,y € L? (.7-"; Rd>

and the norm ||z||, = \/(z, z),.

(2, F, P,R™) is the Banach space of all R"-valued square-integrable Fr-measurable

random variables on (2, F, P).

Q- (Rd> the space of all probability measures p on (]Rd, B (Rd>> .
a.e.,: Almost everywhere.

a.s.,: Almost surely.

e.g.. For example (abbreviation of Latin exempli gratia).

i.e,.: that is (abbreviation of Latin id est).

SDE: Stochastic differential equations.

BSDE: Backward stochastic differential equation.

PDE: Partial differential equation.

ODE: Ordinary differential equation.

af
0x

P®dt : The product measure of P with the Lebesgue measure dt on [0, 7] .

, f= : The derivatives with respect to x.

Py the law of the random variable X (-).
E () : Expectation.

E (-| F;) : Conditional expectation.

o (A) : c—algebra generated by A.

E? denotes expectation on (2, F,F,P?).

FX . The filtration generated by the process X.



W (-) : Brownian motions.
FV : the natural filtration generated by the brownian motion W ().
F1V F5 denotes the o-field generated by F; U Fs.

O, f : the derivatives with respect to measure f.
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Introduction

he main objective of this thesis is to study two research topics about stochastic
control problems. For the first topic, we are interested in a class of partially

observed optimal control problems with McKean—Vlasov type:
dry =0 (t, xy, Py, vt> dt +o (t, xy, Py, vt> AW,
+6 (£, 27, Peg,ve) dW) + g (827, Py ,v) dH],
i=1
—dy’ = f (t, ¥, Povyyts Py, 20, Py, 20, Pov ), Py, vt) dt — 20dW,

i=1

Ty = To, Yr = (x%vaT) :

where W, is a one-dimensional Brownian motion defined on a complete probability space
(Q,F,F, P), H = (Hf)pl is a family of pairwise orthogonal martingales associated with
some Lévy process WhiC}I is independent from W; . These martingales are called Teugels
martingales. P, P,,, P, P5, and F,, denotes the law of the random variable z,y, z, Z and
q respectively.

It is worth noting that the above forward-backward stochastic differential equation of
type McKean—Vlasov is very general, in that the dependence of the coefficients on the
probability law of the solution Pv, Py, P, Pzv and Pp could be genuinely nonlinear as
an element of the space of probability measures.

We assume that the state processes (', y", z”, 2%, ¢”) cannot be observed directly, but the

controllers can observe a related noisy process Y, which is the solution of the following

11



equation
dY; = & (t, 2}, Poy ) dt + AW,
Yy =0,
where € : [0, 7] x R" — R™ and W is stochastic processes depending on the control .

The associated cost functional to be minimized defined as

T
J(U) = ]EU [/0 l(t,l’;j,Px};,yf7ny,Zf,sz,zf,ng,qZ)7qu,Ut) dt]

+E (M (%, Poy ) + b (v, Pyy) |

where EY denotes the expectation with respect to the probability space (2, F,F, P?).
Our partially observed optimal control problem is to minimize the cost functional over
v € Uyg,t.e.,

min J (v) .

V€U

Stochastic optimal control problems related to Teugels martingales associated with
some Lévy processes have been investigated by many authors through several papers, see,
e.g. [7, 8, 34, 38]. Maximum principle for partially observed optimal control of FBSDEs
driven by Teugels martingales and independent Brownian motion has been proved by
Bougherara and Khelfallah [8]. Nualart and Schoutens [34] offered the incredibly helpful
representation theory for researching SDEs and BSDEs driven by a brownian motion and
Teugels martingales. The stochastic linear quadratic control problem associated with
Lévy processes has been derived by Tang and Wu [38].

The stochastic differential equations (SDE) of McKean—Vlasov type play an important
role in different fields of finance, economics, physics, and the game theory. Stochastic
maximum principle of McKean—Vlasov systems has been studied by many authors, see,
e.g. [9, 11, 30]. The stochastic maximum principle for general mean-field systems by using
the tool of the second-order derivatives with respect to probability measures has been
established by Buckdahn et al. [9]. Carmona and Delarue [11] proved a new version of
the stochastic maximum principle of nonlinear stochastic dynamical systems of McKean—
Vlasov type and gave sufficient conditions for existence of an optimal control. Stochastic
maximum principle for optimal control of McKean—Vlasov FBSDEs with Lévy process

has been studied by Meherrem and Hafayed [30].

12



However, in the above mentioned works all assume that the overall information is avail-
able to controllers. This assumption is not always satisfied in reality. Generally speaking,
controllers can only get partial information in most cases. Then it is natural to study this
kind of optimal control problems under partial observation. There is a rich literature on
partially observed optimal control problem, see, e.g. [2, 6, 16, 17] and references therein.
Stochastic maximum principle for partially observed optimal control problems of general
McKean—Vlasov equations has been proved by Lakhdari et al. [21]. Ma and Liu [26] stud-
ied the maximum principle for partially observed risk-sensitive optimal control problems
of mean-field type. Miloudi et al. [29] established the necessary conditions of partially
observed optimal control of general McKean—Vlasov stochastic differential equations with
jumps.

Partially observed stochastic optimal control of forward-backward stochastic differen-
tial equations has been studied by Wu [42]. Shi and Wu [44] established the maximum
principle for partially observed optimal control of fully coupled forward-backward stochas-
tic systems. Li and Fu [23] proved a general maximum principle for partially observed
optimal control problems of mean-field FBSDEs under general control domains, with the
help of Ekeland’s variational principle and reduction method. Nie and Yan [33] studied
an extended mean-field control problem with partial observation, where the state and
the observation all depend on the joint distribution of the state and the control process.
Abba and Lakhdari [1] etablished the necessary and sufficient conditions of optimality for
partially observed optimal control problem of forward—-backward stochastic differential
equations of McKean—Vlasov type driven by a Poisson random measure and an indepen-
dent Brownian motion. Wang et al. [40] studied three versions of stochastic maximum
principle for partially observed optimal control problem for FBSDEs in the sense of weak
solution by utilizing a direct method, an approximation method and a Malliavin deriva-
tive method. Partially observed optimal control problem of forward-backward stochastic
jump diffusion differential system has been discussed by [41, 45].

Our main goal in this topic is to establish necessary conditions of partially observed
optimal control problem of McKean—Vlasov FBSDEs driven by Teugels martingales, as-

sociated with some Lévy process. The coefficients of our system and the cost functional

13



depend on the state of the solution process (z}, v/, 2/, 2/, q;) as well as of its probability
measures (ng, Py, Py, Psv, Pqt“)' The control domain must be convex. Our main result
is supported by variational techniques and delicate estimates of SDE. As an application,
a partially observed linear-quadratic control problem is provided.

For the second topic, we study risk-sensitive optimal control problems under partial
observation, modeled by forward-backward stochastic differential equations (FBSDE) of
general McKean-Vlasov form. The control variable consists of two components: a contin-
uous control and an impulse control and the cost functional is an exponential of integral
type based on the McKean-Vlasov framework. We consider the following stochastic con-

trolled system
dry™ = b(t,z", Ppen, vp)dt + o (t, 2", Py, vp)dW, + Cednyy,
—dy," = f(t, 2", Ppon, ", Py, 27", Povn,vp)dt — 2" dW, + Dydny,
vy =a, yp" = (zp", Pon),
where W, is a one-dimensional Brownian motion defined on a complete probability space

(Q,F,F,P) and n (- anl[ﬂ 7] such that each n; € R". Pm:m, Py;w and sz»n denotes
i>1
the law of the random variable z;"",y,"" and z;”" respectively.

Consider state processes (z;",y,", z,"") are not fully observable. Rather, they are
only partially observed through a noisy process Y, which is described by the following

equation:

dY, = £(t, 2", Po)dt + dWY,

Yo =0,
here £ : [0, T] x R" x @2 (R") — R™ and Wt” represents stochastic processes that rely on
the control variable v.
The corresponding cost functional to be maximized is of the McKean-Vlasov type and is

defined as follows

T
Jb (’U, 77) =E leXp@ </0 l(t, mf’”, Pz:m, yf’n, Py;w, Zf’n, szﬂi,vt)dt

I

+M([E}1}§n,Pvn)—|—hy0 ) y“n +Z 7—17771)

1>1

here E" represents expectation with respect to the probability space (£2, F,F, P’) and y;

is deterministic. # represents risk-sensitive index for 6 € (0, 1].

14



The objective of our partially observed risk-sensitive optimal control problem is to

maximize the above cost functional over (v.,7.) € A. A control (u.,(.) € A that satisfies

J? (u,¢) = max J? (v,n),
(u,¢) = max J*(v,n)

is called a risk-sensitive optimal control.

Stochastic impulse control problems have attracted considerable research attention
because of their wide applicability in numerous fields. For example, they are useful in
portfolio optimization problems that account for transaction costs (refer to [15, 35]), in
optimal impulse-type consumption issues (refer to [43]), in managing investment funds
for financial institutions (see [13]), and in the optimal control of currency exchange rates
(see [10]). For a thorough overview of impulse control theory and its applications, see
[28] and the sources cited within. Given their broad range of applications across different
domains, it is both significant and valuable to investigate problems involving FBSDEs
coupled with impulse controls. Wu and Zhang [43] studied the stochastic maximum
principle for optimal control problems involving forward-backward systems with impulse
controls. Moreover Xu and Zhou [46] formulated the risk-sensitive stochastic maximum
principle for forward-backward systems incorporating impulse controls. Maximum prin-
ciple for progressive optimal control in mean-field forward-backward stochastic systems
with random jumps and impulse controls has been demonstrated by [14].

McKean-Vlasov stochastic differential equations (SDEs) hold considerable importance
in disciplines like physics, finance, economics, and game theory. Kac [18] and McKean [25]
first introduced these equations to study physical systems characterized by the interaction
of numerous particles. It is important to note that McKean-Vlasov type stochastic dif-
ferential equations are quite general, as the coefficients can exhibit a genuinely nonlinear
dependence on the probability law of the solution, viewed as an element of the probability
measures space. Numerous researchers have explored stochastic optimal control problems
associated with McKean-Vlasov SDEs in various papers; for instance, see [9, 11, 30].

However, the results for stochastic optimal control problems involving McKean-Vlasov
SDEs discussed above are derived under the assumption of full information. In practice,
controllers often have access to only partial information. Thus, it is natural to explore

these optimal control problems within the context of partial observation. Extensive lit-

15



erature exists on optimal control problems involving McKean-Vlasov SDEs and McKean-
Vlasov forward-backward SDEs under partial observation. As an example, Kaouache
et al. [19] investigated a stochastic maximum principle for a partially observed opti-
mal control problem in McKean-Vlasov type FBSDEs, which are driven by a mixture
of independent Brownian motion and Teugels martingales. Nie and Yan [33] explored
an expanded mean-field stochastic control problem under partial observations, where the
state of the FBSDEs and the observations are influenced by the joint distribution of the
state and control process. Abba and Lakhdari [1] developed a stochastic maximum prin-
ciple for optimal control problems with partial observations in the framework of general
McKean-Vlasov FBSDEs with random jumps.

It is important to note that the stochastic optimal control problems discussed in ref-
erences [1, 3,4, 5,9, 11, 18, 21, 25, 29, 30, 33] can be considered as risk-neutral. In these
cases, the cost functional is assessed solely based on the expected values of terminal, in-
tegral, and initial costs. This method can be extended to the risk-sensitive framework,
where the cost function includes the expected value of the exponentiated terminal and
integral costs. As a result, the risk-neutral case becomes a specific example within the
broader risk-sensitive framework. The risk-sensitive control problem has garnered sig-
nificant research interest and has been extensively explored under complete information
by various authors, such as [12, 22, 20, 24, 32, 37, 39]. The foundational work on the
stochastic maximum principle for risk-sensitive stochastic optimal control problems was
introduced by Whittle [39], who applied large deviation theory. Subsequently, Lim and
Zhou [24] introduced an innovative risk-sensitive stochastic maximum principle by em-
ploying logarithmic transformation and examining the relationship between the dynamic
programming principle and the maximum principle, under the condition that the value
function is smooth. Shi and Wu [37] formulated a risk-sensitive stochastic maximum prin-
ciple aimed at optimal control of jump diffusions. Meanwhile, Khallout and Chala [20)]
investigated a risk-sensitive maximum principle tailored for fully coupled FBSDEs. Moon
[32] investigated two distinct risk-sensitive maximum principles for FBSDEs, each with
different configurations of the FBSDEs and the cost functional, by employing nonlinear

transformations of the equivalent risk-neutral problems. Chala and Hafayed [12] pre-
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sented a stochastic maximum principle for mean-field type fully coupled FBSDEs within
a risk-sensitive performance framework.

A variety of studies have investigated risk-sensitive optimal control problems with
partial observations. For example, Ma and Liu [26] analyzed the stochastic maximum
principle in the context of risk-sensitive optimal control problems of the mean-field variety
with partial observations. Similarly, Ma and Wang [27] established a stochastic maximum
principle for partially observed risk-sensitive optimal control problems that involve mean-
field FBSDEs. Meanwhile, Moon [31] formulated the risk-sensitive maximum principle for
stochastic optimal control within mean-field type Markov regime-switching jump-diffusion
systems. Additionally, Saldi et al. [36] utilized the risk-sensitive optimality criterion to
establish results for discrete-time partially observed mean-field games.

This topic mainly concentrates on formulating the risk-sensitive maximum principle
for McKean-Vlasov forward-backward stochastic differential equations (FBSDEs) with
impulse control. In this framework, impulse control is modeled as a piecewise process
that does not necessarily need to be monotonic. Additionally, the work introduces fur-
ther concavity conditions under which the partial necessary risk-sensitive conditions of
optimality are sufficient. As an example, our work examines a linear quadratic (LQ) risk-
sensitive optimal control problem of the McKean-Vlasov type. It is noteworthy that the
results offered in this study build upon the research conducted by Ma and Wang [27].

This thesis is structured around three chapters:

Chapter 1: In this chapter, we present the stochastic maximum principle for a partially
observed optimal control problem of forward-backward stochastic differential equations
(FBSDEs for short) driven by both a family of Teugels martingales and an independent
Brownian motion in which the control domain is convex.

Chapter 2: This chapter contains the first main result of this thesis, which is the stochas-
tic maximum principle for a partially observed optimal control problem of FBSDEs of the
general McKean—Vlasov type driven by both a family of Teugels martingales and an
independent Brownian motion. The coefficients of the system and the cost functional
depending on the state of the solution process as well as its probability law and the con-

trol variable. Our main result is based on Girsavov’s theorem and the derivatives with
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respect to probability law. As an application of the general theory, a partially observed
linear-quadratic control problem of McKean—Vlasov type is studied in terms of stochastic
filtering.

Chapter 3: This chapter contains the second result of this thesis, which is the maximum
principle pertaining to risk-sensitive optimal control problems under partial observation,
modeled by FBSDESs of the general McKean—Vlasov equations. The control variable con-
sists of two components: a continuous control and an impulse control. The cost functional
is an exponential of integral type based on the regularity McKean—Vlasov framework.
Moreover, the sufficient conditions of optimality are obtained under certain concavity as-
sumptions. As an application, the main outcomes are used to solve a linear-quadratic
risk-sensitive optimal control problem of the regularity McKean—Vlasov type, both under

partial and full observation conditions.
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The content of this thesis was the subject of the following papers:

1. Kaouache, R., Lakhdari, I.LE., Djenaihi, Y.: Stochastic maximum principle for par-
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2. Lakhdari, I. E., Djenaihi, Y., Kaouache, R., Boulaaras, S., Jan, R.: Maximum prin-
ciple for partially observed risk-sensitive optimal control problem of McKean—Vlasov
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Applications, 15(4), 1-28 (2024).
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CHAPTER 1

Stochastic maximum principle for partially
observed optimal control problem of FBSDEs with

Teugels martingales

1.1 Introduction

In this chapter, we are interested in the stochastic maximum principle for a class of
partially observed optimal control problem with dynamics:
dr] =b(t,x;,v)dt + o (t,x},v) dW,
+7 (t,z),v4) dﬁft” + igi (t, xfﬁ,vt) dHZ,
i=1
—dyy = [ (L, y) 2, 2 qp s o) dE— 20 dWy (1.1)
—zydY; — 2; ¢ dHj,

LE’S = Ty, y”% = QD(SC%),

where W, is a one-dimensional Brownian motion defined on a complete probability space
(Q,F,F, P), H = (Hti>i>1 is a family of pairwise orthogonal martingales associated with
some Lévy process which is independent from W; . These martingales are called Teugels
martingales. The coefficients b : [0,7] x R" x U — R" ¢ : [0,T] x R* x U — R™% 5 :
0,T] xR" x U — R™ ¢ :[0,T] x R" x U = I*(R"), f : [0,7] x R" x R™ x R™*¢ x
R™ 4 x R™ x U — [*(R™), p : R® — R™, are given deterministic functions.

We assume that the state processes (', y", z”, 2%, ¢”) cannot be observed directly, but the

controllers can observe a related noisy process Y, which is the solution of the following

equation

(1.2)

dY, = £ (t,2¥) dt + dW,
Yo =0,

19



where £ : [0,T] x R® — R" and W} is stochastic processes depending on the control
v.

The associated cost functional to be minimized defined as
T -
J(v) = B’ [/0 L(t, 2, g0, 20, 50 g o) db+ M (%) + B (o) (1.3)

where EY denotes the expectation with respect to the probability space (2, F,F, P”) and
M :R" = Rh:R™ = R,I:[0,T] x R" x R™ x R™*4 x R™¢ x R" x U — R are
deterministic functions.

Our partially observed optimal control problem is to minimize the cost functional (1.3)
over v € Uy,q subject to (1.1) and (1.2) ,1.e.,

min J (v) .

VEULg

1.2 Preliminaries

Let T' be a fixed strictly positive real number and (2, F,F, P) be a complete filtered
probability space equipped with two independent standard one-dimensional Brownian
motions W and Y. Let L = {L; : t € [0, T]} be a R-valued Lévy process, independent of
W and Y of the form L; = )\; + bt, where )\, is a pure jump process. We assume that
F={F};50and F := FVVFYVFEVN, where N denotes the totality of P-null set and
FYV FY and FF denotes the P-completed natural filtration generated by W, Y and L
respectively. We denote by R" the n-dimensional Euclidean space, and by (-, -) (resp. | - |)
the inner product (resp. norm). The set of the admissible control variables is denoted by
Uqqg- We also assume that the Lévy measure v (dx) corresponding to the Lévy process \;

satisfies the following.
1. For every ¢ > 0, there exist v > 0 such that /( )exp (v]z|) v (dx) < 0.
—6,6
2. / (1 /\xg) v(dr) < oo.
i

The above conditions settings imply that the random variable L; have moments in all

orders. Notice that the jump of the state x} caused by the Lévy process is the power

20



jump processes defined by

Li= > (AL,)", fori>1,

0<s<t
L% - Lt7
where AL, = L, — L, .
The continuous part of L! obtained by removing the jumps of L; defined by
Li,=L,— Y (AL, fori> 1.
0<s<t
We distinguish between the jumps of state x; and y, caused by the Lévy martingales are
defined by
ALI’E =g (ta I§,7 P:E;’_ ) Ut) ALta

Ary, = Z inlALi'
i=1

i>1

Now, let N} = L! —E [Lﬂ , for © > 1. Then, the family of Teugels martingales (Hf)
j=i A
is defined by H} = Z a;; N}, where the coefficients «;; associated with the orthonormal-
j=1

ization of the polynomials 1,2, %, ... with respect to the measure m (dr) = 2*v (dx).
The Teugels martingales (Hf)pl are pathwise strongly orthogonal and their predictable
quadratic variation processes a;e given by <HZ, H >t = d;;t. For more information about
Teugels martingales, Lévy processes and their practical examples, we refer to the work of

Nualart and Schoutens [34].

Definition 1.1

Let U be a nonempty convex subset of R*. A control v : Q x [0,T] — U is called

admissible if it is F -adapted and satisfies sup E|v,|* < oco.
0<t<T

Now, inserting (1.2) into (1.1), we get

day = [b(t,z),v) dt — & (t,xy,v) € (t, )] dt
+o (t,x],v) dWy + 7 (t, z),v) dY, + igi (t, xf_,vt) dH},
i=1
—dy; = f (6,912, 7 af o) dt — 2 dW, (1.4)
Y, - 3 a7

Ty = To, Yp = o (v7).
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Define dP" = p;dP with

pi’:exp{/ot&(s,xi’ / 1€ (s, 22) [ dS}

where p’ is the unique .Ey—adapted solution of the SDE of McKean—Vlasov type

dp; = pi§ (t,x¢) dYi,

(1.5)
po = 1.
Obviously, cost functional (1.3) can be rewritten as
T
s =8 | [Tttt o) a v e nep)| 00

Then the original problem (1.3) is equivalent to minimize (1.6) over v € U, subject

o (1.1) and (1.5).
Condition (H1)

1. The function $(-,0,0) € L% (0,T,R") for 8 = b,0,6 and g (-,0,0) € % (0,T,R"),
¢(,0) € L3 (0,T,R"), £(-,0,0,0,0,0,0) € L% (0, T,R") and ¢ (0) € L*(Q2, F, P,R™).

2. The functions b, 0, & and g are continuously differentiable in (x, v) and they are bounded
by C(1 + |z| + |v|), and the function £ is continuously differentiable in .

3. The functions f and [ are continuously differentiable in (x,y, 2, z, ¢, v), and they are

bounded by C(1+|z|+|y|+|z|+|z|+|g|+|v]) and C (1 2+ yl? + 122+ 122+ g%+ o)

N—

The derivatives of f and [ with respect to (z,v, 2, Z, ¢, v) are uniformly bounded.

4. The functions ¢ and M are continuously differentiable in x, and the function h is
continuously differentiable in y. The derivatives M,, h, are bounded by C(1 + |z|) and
C(1+ |y|) respectively.

5. The derivatives b, b,, 0., 0y, 0y, 0y, &, are continuous and uniformly bounded.

Under condition (H1), and with the help of Theorem 3.1 in [9], and Lemma 2 in [41],
for each v € Uyg, there is a unique solution (z,v, 2, 2, q) € S% (0, T,R™) x S% (0, T, R™) x
L2 (o,T, R”Xd) x L2 (o,T, R”Xd) x 12 (0, T, R"™) which solves
xy —xg—l—/ (s,27,v5) — 0 (5,27, vs) € d5+/ (s, 25,0

—i—/oas, S,vde+Z/ 8, Ty U )dH;,

T
y;:y;gp_/ F (5,207, 20 ¢, v, dt+/ AW, +/ 24y, +Z/ gridH!.
t
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We denote for € and ¢ =b,0,0,¢

S(t) = g (t7 th) ) ¢(t) = ¢ (ta T, ut) )
gx(t) :Sx (t,.’lﬁt), ¢p(t) :¢p (t>$taut)>for p=,v,
Similarly, we denote for A = f,l and p =x,y,2,2,q,v
At) = At me, Y, 26, 26, G, Ut)

Ap(t) = Ap (ta Tty Yt, %t Eta qt, U’t) :
Now, we introduce the following variational equations which is a linear FBSDESs
dzt = [(by (t) = 5, ()€ () = & (D) & (B)) a1+ (b (£) — 5 (1) € (£)) ]
+ [Ux (t)z; + oy )vt} AW + [aw (t)z; + 5, (1) vt} dY;

OO

[g Yo+ gt (t) vt] dH},

(1.7)
—dy; = [fx (1)t + fy Oyt + L () 5+ f (0 + £, () g + + 1, (D) ve] dt
—zdWy — Z,dY, + Y _q; dH],
i=1
‘T(l) =0, y’}l‘ = Pa (xT) 33%,«,
and a linear SDE
dpt = [p1€ (1) + pi&e (1) 3] AV, L9
po = 0.
Set ¥ = p~'p', using Itd’s formula, we have
A, = &, (t) xLdW, 19)
Jo = 0.
Next, we introduce the following adjoint equations of McKean—Vlasov type
_dqjt - [bx(t)\llt -0 (t) 59& (t> \I]t - 590 (t) g (t) \Ilt + Ux(t)kt
0+ 3 (00 +6 ()~ L0+ L(0)]
i=1
— ke dW; — kedW, — > nidH;,
i=1
A%, = [f, ()% — 1y (D]t + [ (1) B, L (1)) dW, (110
+[f (6) 0= E(8) @, — 1 (1)] AW,
+3° [f; B ®; — 1 (t)| dH},

Vr =M, ( ) P (xT> CI)N

®o = —hy(y0)-

.
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It is clear that, under (H1), there exists a unique (\I/,k:,l;:,n, <I>) € S%(0,T,R™) x
L3 (0,7, R™) 5 L (0,7, R™ ") x 15 (0, T,R") x §% (0, T,R") satisfying the FBSDE
(1.10).

Now, we introduce the following BSDE involved in the stochastic maximum principle

—dUy =1 (t, 24, Ye, 205 20y o, wy) dt — Qi dW,; — Qtqu
FT = M(ZL’T)

(1.11)

Under condition (H1), it is easy to prove that equation (1.11) admits a unique strong
solution.

We define the Hamiltonian function
H:[0,T] x R" x R™ x R™4 x R™? x [? (R") x I? (R")
xU x R™ x R™ x R™? x R™4 x [? (R") x R™*¢ — R,

associated with the stochastic control problem (1.1)-(1.6) by

H(t7 x’ y7 Z’ 27 q’ U) W’ ®7 k’ zj’ n’ Q)
= qj (b (t7x7 v) - 5—<t7$7 v)&(t7 x)) - ®f (t7 '/’U7y7 Z? 27 Q7U)
+ko (t,z,0) + k& (t,z,0) + > _nig' (t,z,v) + QE (¢, x)

=1

(1.12)

+l (t7 x? y? Z? 27 q7 U) *
1.3 Stochastic maximum principle

In this section, we prove the necessary conditions of optimality for our system, satisfied
by a partially observed optimal control, assuming that the solution exists. The proof is
based on convex perturbation and on some estimates of the state processes of system and

observed process.

Suppose that u is an optimal control with the optimal trajectory (z,v, 2, 2z, q) of FB-
SDE (1.1). Forany 0 < 0 < 1 and v+u € U,q, we define a perturbed control uf = u; +6v;.

Lemma 1.1

Under condition (H1), the following estimations holds
lim E [ sup mt 1 =0, (1.13)
6—0  |o<t<T

2

) ds] —0,  (1.14)

E/ Al at=o. (1.15)

hmE[sup ‘yt‘ +/ (’ ’+’ ’+H§f

0<t<T



Proof. For notational ease, we introduce the following notations.

For t € [0,T], 6 > 0, we set

=071 (mf — xt) — a7, Ef =01 <Zf
g =07 (vl —w) —u,
=01 (zf - zt) —z

and we denote by

B =a M (3 +a), B =a+ M (F +4),
0 =2 (), B =a00 (5 +E),
~\,0

W = (70 uf) 0 =aq+ (3 +4).

First, we have

~0
dz;

= (b — 16 — a7 + B7) dt
+ (o7& + B8) dW, + (67 aldt + B5) dY,

£y (9:7% + i) dH],
=1

(1.16)

d)\'l}t,

| dwy,

T5=20
where . .
b = Olbx (t,%w) A\, 7% = . Gy (t %w) ),
&= &) an of = [ o (t9)
9" = /0 g (t,92) d
and
B = /0 1 (b2 (£,77) = b (1)] dAa]
¢, /0 1 152 (£:927) = 6:(1)] dAz} — 5 /0 1 & (6:9) = &) dra]
+ /0 1 [bo (£,77) = by ()] Aoy — & /0 1 (50 (£,77) = 3u(t)] dhor,
= [ e (652) = 0w O] drad + [ o (122) = 00 (0]
= [ o (1) ~ o O] dxet + [ [p0 (6207) ~ 50 ()
By’ = / 1 (g5 (6.97) = gi (1)) dda) + /O 1 g (6:4927) = gi (1)
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Under condition (H1), it is not difficult to see that

e ]+ 3+ +

6—0

2] —0.

4

we have

Applying It6’s formula to ‘if 2,
9 T

El#| = 2E/0 7 (1b — 576 — a6 70+ pY) dt

+E/ 770 + 5| dt+E/

+ZE/

< C]E/ ~9] dt+/ Uﬂl ]ﬁ§\2+\6§’2+

2
o] + 35| dt

Z£E~t+/8

,0 2
i ] dt.

Finally, estimate (1.13) now follows easily from the Gronwall inequality.

Let (gf , éf , Ef, E]f ) be the solution of the following BSDE

diff = [f73] + 90 + 22 +ftzt+f @+ 0] dt
+F AW, + Z,dY; + Z qldH!,

=1

= 07" ¢ () — ¢ (2r)] = 2 () T,

where 7/ satisfies Eq. (1.16), and

1
I = _/ Ja <t7X?79) dA, for a =2,y,2,2,q,
0

where

A0
Xt =

~A9 ~\,0 ~A0 ~A,0 ~)\0 ,\0
t 7yt 7t 7Zt 7Qt )

and YY is given by
1 0 1 P
T = / fe (8 X0 )—fx ()] dA:ct1+/0 (1, (£.x3) = £, ()] drg}
1
[ (007 = fo@]and + [ [ (00") - £ (0] drd!
1
+ / fa (£07) = f,(0)] drg) + /0 fo (£X27) = £u (8)] dwr,
Due the fact that f7, f, f7, f/ and f{ are continuous, we have
. 912
mm\rt\ = 0. (1.17)
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Appying It6’s formula to ‘gjf ‘2, we have
el +E [ [ as+E [ |2 ds+E [ |2
t t t

2 T -
= B 28 [ g (£ prp + fE + fE 4 12+ YD) ds.

ds

2
1?(R")

By Young’s inequality, for each ¢ > 0, we get

el +E [ [ as+E [ [ as+m [ |4
< B+ [ | as

T
+cE /
t

g
lQ(]R”) o

-~ ~ o z~0 2
(foal+ fo0 + F220 + f220 + £200 + X2) | ds

< E\g§\2+iE/tT\gj§\2ds+0€]E/tT 2ds+CEE/tT‘f§§§‘2ds

~0
[T

+CEE/tT’fj%§‘2d3+CEE/tT’fj?f‘zderCg]E/tT‘fgqffds.

By the boundedness of f7, f, f7, f/, and f;, we obtain

E‘gf‘QnL]E/tT‘Zﬁ’stJrE/tT‘Ei‘stJrE/tTH(jf o 05
1 T o2 T o2 T 92 T o112

< <+C’€)]E/ U, ds+C’6E/ zZ, ds+CgE/ Z, ds+C’6E/ Hqs 2 ds
€ t t t t (R™)

+E’ﬂ§‘2+CaE/tT oz 2ds+CEE/tT’T§’2ds.

Hence, in view of Eqs. (1.13), (1.17), the fact that f; is continuous and bounded, by
Gronwall’s inequality, we obtain (1.14).
Now, we proceed to prove (1.15). It is plain to check that p¢ satisfies the following
equality
dpf = [P0 (t,2) + Y| dYs + p&TElaY;,
where

&= [ & L)

and Tf is given by
T=p [ [6(6327) - & @] axel + ol ¢ (6.47) — 0]
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Taking into account the fact that & is continuous, we deduce
. 9|2
lim E ‘Tt ‘ = 0.
6—0
2
Then, applying It6’s formula to ‘ ﬁf ) and taking expectation, we have

el <cr [t arv cr [t ar v o [0 ar

(1.18)

Finally, by Gronwall’s inequality, estimates (1.13) and recall to the Wasserstein metric,

the above convergence result (1.15) holds.
Since v is an optimal control, then, we have the following lemma.

Lemma 1.2
Let condition (H1) hold. Then, we have

0 < E {pTM (x7) :z:lT} +E [plTM( )} +E {h (%o) Z/(ﬂ
—I-IE/ pt dt+IE/ Pily vtdt—l—E/ Pely xtdt
—HE/ Piely ytdt—i-E/ pel ()27 dt

HE/ pil ztdt+IE/ o, (H)g dt.

Proof. Using Lemmas 1.1 and Taylor expansion, we get
0 < 07 [J(uf) = J ()]
= 07'E[pfh M (25) — prM (z1)]
+07'E [ (y]) = h (wo)]
+07'E /O ' o017 () — pil (t)) dt
= S+ o+ s,
where 17 (t) = 1 (t, 2], 4!, 2, 2, ¢f uf) .
Then, from the results of (1.13), (1.14) and (1.15), we derive
L= 0B [phM () = prM (ar)]
= B[ o) 1 ()]
pr [ Mo (wr -+ (e = or)) (e — r) @)
— B [0rM (vr)] +E* [ M, (o7) 7] -

+67'E
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Similarly, we have

J = 67'E|n gyg) — h(yo)]
— 0'E UO hy (90 + 2 (46 — ) ) (6 — v0) CM}

— E*[hy () ) -

and

Js = 0°'E [/OT(pfle(t)—ptl(tht]

T
— [k /O [ﬁtl(t)ﬂz(t)xl}+ly(t)yt1+lz(t)zt1

++ 107 + 1) g + L, (t)vdt.
Then, the variational inequality (1.19) can be rewritten as

0 < E"|M,(vr)z" (T)]

+E" [0 M (z1)] + E" [hy (y0) y' (0)] + B /0 ! D,(t)dt
+E /0 (vt + B /0 ' [1,(t)a}] dt + E* /0 ' [1,(t)y}] dt (1.20)

+E /0 ! [1.(t)2]] dt + B /0 ' [1-(t)z] dt + B /0 ! 1,(t)g}] dt.

Theorem 1.1
(Partial necessary conditions of optimality) Let condition (H1) hold and let (z,y, 2, Z, q, u)

be an optimal solution of our partially observed optimal control problem. Then, there
are (W, ®, k, k,n) and (T, Q, Q) of F-adapted processes that satisfy Eqs. (1.10), (1.11)

respectively, and that for all v € U,q, we have
E* {HU (t) (vy — uy) /.7-?/} >0,a.E,a.s, (1.21)
where the Hamiltonian function
H(t)=H (t,xt,yt,zt,ét,qt,ut,\Ift,CDt,kt,/%t,nt,Qt) ,

is defined by (1.12).
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Proof. Applying Ito’s formula to ¥,z; and ®,y; such that,

CI)O = _h’y<y0)7
Uy = M, (xT) — Pz (JJT) O,

we get

EY {\IIT;E;} = [E* AT [\Ijt (bv (t) — &U(t)f(t)) U + ];ta'v ( )Ut + ktgv Ut + Z ntgv
B [t 0@~ L)d B [ a6 (@) (1.22)
and
£ [(I)TQH + E* [hy (yo)]
_ _p /OT P, [fo (0) v+ fo (8) 2} dt
/ Yl (t) dt — E“/ 2, (1) dt (1.23)

_E / _E / gll,
0

Now, applying It6’s formula to ¥,I';, we have

E* [97M(z7)] = —E* /O 9 (6) dt + B /0 L0 () 2ldt. (1.24)

From Egs. (1.22), (1.23), and (1.24), we obtain
E* [My (zr)] + E* [hy(yo) + 07 M (7))
— E /OT [xyt [by (£) = G ()] 01 + kuFo (£) v + Krgy (¢ vt+Znth = Pufy (t) v dt
—E“/Tﬁtl (t) dt — B /T;ctlz ()dt—]E“/ yll, (t dt—E“/ AL dt (1.25)
0T ’ T
—E“/O ZH (1) dt—E“/O qtl, (t) dt,
thus
E* [M, (z7)] + E* [hy(yo) + 7 M (z7)]
_ ]E“/TH (1) v IE“/ l()vtdt—E“/ 94l () dt — /OT:U}[lx(t)]dt
T
1 u 1 u =1 [ 1
/ yil, (t) dt — E / 2, (t)dt —E /0 20, (t)dt —E /O gl (1) dt.

This together with the variational inequality (1.20) imply (1.21), the proof is then com-
pleted. O
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1.4 Linear-quadratic control problem

In this section, we are going to consider a partially observed linear-quadratic control
problem. We find an explicit expression of the corresponding optimal control by applying

our partial necessary conditions established in the previous section.

We consider the following forward-backward system:

day = (bjx, + bjv, — ofy) dt + o} dW, + 07dY; + Y gidH],
=1

—dys = (flae+ 2o+ o+ 70+ g+ o) dt — 2dW, — zdY; = Y gldHj,

=1

T (0) = o, Yr = P17,

(1.26)
and the SDE
dY; = vdt + dW, 127
Yo =0,
where
bia, +b2v, = b(t, 2", v,),
or = o (t,z!,v),
ol =5 (t, 2", v,),
gi =g (t,xfﬁ,vt> )
Ye =&t 2y),
and
Fay oy, 2, 2 ) o) = fiaoe+ fiye+ fize+ 2o+ fla+ o
The quadratic cost function to be minimized
Jw()) = IE“/OT [Lia? + L2y? + L7 dt
+E" [MyaF + hayg | (1.28)

Here, all the coefficients b (-),6*(-), 0" (-),0*(-),g(-),7(-), f7* (-) are bounded and de-
terministic functions for j; = 1,...,6, L% (-) is positive function and bounded for j, =
1,2,3, and M; (), M5 (-),h(-) are positive constants. Then for any v € U,q, Eqs. (1.26)

and (1.27) have unique solutions, respectively. Now, we introduce

t 1t
ptzexp{/ %dYs—*/ kA dS},
0 2 Jo

31



which is the unique ]:ty—adapted solution of the SDE:

dpr = pi1dYs,
Po = 17

and we define the probability measure P* by dP" = p;/dP.

In this setting, the Hamiltonian function is defined as

H(t7x7y7 Z7z7q7?‘]7\:[j7(b7k77 %7n7Q)
=VU (btla:t + bPvy — O’tQ’)/t> - (ftlxt + frus
+ 2o+ iz 4 fPa+ flu 4 kot + ko?

[ee}
+> " nigi + Qv + Liai + Liy; + Lv;.
=1

(1.29)

Further due to Egs. (1.10) and (1.11), the corresponding adjoint equations will be given

by
—dTy = (Liaf + Liy? + Liv}) dt — QudW, — QudW;,
1-‘T - M(ZL‘T, Pl?T))

and

—dW, = [0}, — £l &, + 2L}z, dt

— ke dW; — ey dW, — i nidH,
=1
A, = ([P — 2L7y,) di + (f70;) dW,
+ [ff%} AW, + i (ftwq)t) dH]
=1

Vp = 2Mizr — pr27,

CI)O = —2hty0.

According to Theorem 1.1, the necessary condition for optimality (1.21) will be
B [0} — @ ff + 2L}/ FY | = 0. as.ae.

If u (+) is partial observed optimal control, then

we =~ (B [0/ 7| — g9 [0 7).
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CHAPTER 2

Stochastic maximum principle for partially
observed optimal control problem of

McKean—Vlasov FBSDEs with Teugels

martingales

2.1 Introduction

Our main goal in this chapter is to establish necessary conditions of partially observed
optimal control problem of McKean—Vlasov FBSDEs driven by Teugels martingales, asso-
ciated with some Lévy process under the assumption that the control domain is supposed
to be convex. Our main result is supported by variational techniques and delicate esti-
mates of SDE.

The stochastic system under consideration takes the following form:

dz? = b (t,xg, ng,vt) dt + o (t, ¥, Py, vt> AW,
+6 (t, 27, Py, ve) AW} + igi (.2, Poy ,v,) dH],
—dy; = f (t, 2}, Pay, v}, Py 20 Py, 5 Py, @}, Py, wi) dt — 2dW, (2.1)
~5dY, = 3 g

v o_ v v
Ty = Zo, yT_QD("ET7P$UT)a

where W, is a one-dimensional Brownian motion defined on a complete probability space
(Q,F,F,P), H = <HZ),>1 is a family of pairwise orthogonal martingales associated
with some Lévy process which is independent from W, . These martingales are called

Teugels martingales. P, P,,, P.,, P, and F,, denotes the law of the random variable
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x,y,2,z and ¢ respectively. The coefficients b : [0,7] x R" x Q2 (R") x U — R", 0 :
[0, T] xR" x Qy (R") x U — R™% 5 :[0,T] x R" x Qy (R") x U — R™% ¢:[0,7] x R" x
Q2 (R") x U = 2 (R"), £ : [0, T] x R x Q2 (R") x R™ x Q5 (R™) x R™ x Qs (R™") x
R™ x Qq (R™?) x R" x Q2 (R") x U — I*(R"), ¢ : R" x Q; (R") — R™, are given
deterministic functions, ()o (Rd) the space of all probability measures p on (Rd, B (Rd)) ,
endowed with the following 2-Wasserstein metric (see Section 2.2 for more details).

It is worth noting that the above forward-backward stochastic differential equation
(2.1) of type McKean—Vlasov is very general, in that the dependence of the coefficients on
the probability law of the solution Py, Pyv, P.v, P;v and Py could be genuinely nonlinear
as an element of the space of probability measures.

We assume that the state processes (z°,y%, 2%, 2", ¢”) cannot be observed directly, but the
controllers can observe a related noisy process Y, which is the solution of the following

equation
dY; = & (t, 2}, Pay) dt + W7,
Yo =0,

(2.2)

where £ : [0,T] x R" x Q5 (R") — R" and I/T/t” is stochastic processes depending on the
control v. The associated cost functional to be minimized is also of McKean—Vlasov type,

defined as

T

‘]<U) :EU [/ l(tvxé}vprhyfaPyz’7ZZJ;P22’72;)7PEf>q;]7quavt) dt]
0
+E° [M (2%, Poy) + 1 (w5, Py )| (2.3)

where EY denotes the expectation with respect to the probability space (2, F,F, P”) and
M:R"xQy(R") 5 R, h:R™"x Qs (R™) = R, 1: [0, T] xR" x Qg (R") x R™ x Q3 (R™) X
R™*4 % Q, (R’"Xd) x R™ 4 % Q, (Rmx‘i> X R" X Q3 (R") x U — R are deterministic
functions.

Our partially observed optimal control problem of general McKean—Vlasov FBSDE is

to minimize the cost functional (2.3) over v € U,4 subject to (2.1) and (2.2) ,i.e.,

min J (v) .

VEULq
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2.2 Preliminaries

Let (2, F,F, P) be a complete filtered probability space equipped with two independent
standard one-dimensional Brownian motions W and Y. Let L = {L;:t € [0,7]} be a
R-valued Lévy process, independent of W and Y of the form L; = A\, + bt, where ), is a
pure jump process. We assume that F ={F;},, and F; :== FVVFYvVFEVN, where N
denotes the totality of P-null set and F}¥, F) and F} denotes the P-completed natural
filtration generated by W, Y and L respectively. We denote by R" the n-dimensional
Euclidean space, and by (-,-) (resp. | - |) the inner product (resp. norm). The set of the
admissible control variables is denoted by U,;. We also assume that the Lévy measure

v (dx) corresponding to the Lévy process ), satisfies the following.

1. For every ¢ > 0, there exist v > 0 such that /( )eXp (v]z|) v (dx) < 0.
—6,6

2. /R(l /\xg) v(dr) < oo.

The above conditions settings imply that the random variable L; have moments in all
orders. Notice that the jump of the state x; caused by the Lévy process is the power
jump processes defined by

Li= > (AL,)", fori>1,

0<s<t
L = Ly,
where AL, =L, — L, .
The continuous part of L! obtained by removing the jumps of L; defined by
Li,=L;— Y (AL, fori> 1.
0<s<t
We distinguish between the jumps of state x; and y,” caused by the Lévy martingales are

defined by
Apay =g (ta}, Poy svi) ALy,

i=1
Now, let N} = L! —E [Lﬂ , for ¢ > 1. Then, the family of Teugels martingales (HZ) -

Jj=i )

is defined by H; = Z a;; N7, where the coefficients «;; associated with the orthonormal-
j=1

ization of the polynomials 1,z,2?%, ... with respect to the measure m (dz) = 2*v (dz).
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The Teugels martingales (HZ) o, are pathwise strongly orthogonal and their predictable

quadratic variation processes are given by <HZ, H/ >t = ;;t. Let Q)2 (Rd) be a space of all

probability measures p on (]Rd, B (Rd)) with finite second moment, i.e, / ) \x!z w(de) <
R

00, endowed with the following 2-Wasserstein metric: for pu,v € Q9 (Rd) ,

Dy (p1, pro) = inf { URd lz—y|*k (da:,dy)} *ike Q2 (R2d) K (-,Rd) = 1, K (Rd, ) = ,ug} .

Let (Q,]?, F, ﬁ) be a copy of the probability space (2, F,F, P). For any random
variable (9, a) € L2 (.F ; ]Rd) x L2 (.7—" : ]Rd> , we let (5, @) be an independent copy of the
random variable (1, ) defined on (Q, F,F, ]3) Let (ﬁt, Tty Uiy 2ty 2t cjt) be an independent
P;=P; and P,=P,. We

~ ~ ~

copy of (us, e, s, 2, 2, q:) so that P, =P, P,=F;, P.,=P,
denote by E [-] the expectation under probability measure P and Py = PoX ™! denotes
the law of the random variable X.

In the following, we introduce the basic notations of the differentiability with respect
to probability measures. The principal idea is to identify a distribution u € Q9 (]Rd) with
a random variables ¥ € LL? (.7-" ; Rd> so that = Py. To be more precise, we assume that
probability space (2, F,F, P) is rich enough in the sense that for every pu € Qs (Rd) ,
there is a random variable ¢ € L2 (]—' ; Rd) such that u = Py. It is well-known that the
probability space ([0,1],B10,1],dz), where dx is the Borel measure, has this property.

Next, for any function f : Q9 (Rd) — R, we induce a function f . L2 (]—" ; Rd) - R
such that f (9) := f(Py), ¥ € L2 (]-" ; Rd) . Clearly, the function f called the lift of f in
the literature, depends only on the law of ¥ € L? (f ; Rd) and is independent of the choice
of the representative .

Definition 2.1
A function f : Q9 (Rd) — R is said to be differentiable at 1y € Qo (]Rd) if there exists
9 € L2 (]-"; Rd) with o = Py, such that its lift fis Fréchet differentiable at 9. More

precisely, there exists a continuous linear functional Df (¥g) : L2 (]—" ; Rd) — R such

that

F(+a) — F(90) = (DF (9) . a) + O (lally) = Daf () + O (lall,).  (2.4)

where (-,-) is the dual product on L? (}"; Rd> , and we will refer to D, f (1) as the
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Fréchet derivative of f at g in the direction «. In this case, we have

Daf (o) = (DF (90) 0y = 4 F (9 + ta)

, with py = Py,.
t=0

Note that by Riesz’s representation theorem, there is a unique random variable Ay €
L2 (.7-"; Rd> such that <Df(190) ,a> = (Ag,a), = E[(Ag,),], where a € L? (]—"; ]Rd’).
Then there exists a Boral function A [p] : R — R?, depending only on the law o = Py,
but not on the particular choice of the representative ¥y such that Ag = h o] (Jo) -

So, we can write equation (2.4) as
F (Py) = f (Pa) = (h[p0] (90) ;9 — Do), + O ([0 = Woll,) , V9 € L” (F;R?).

We shall denote 9, f (Pyg,, ) = h[uo] (z), * € R%. Moreover, we have the following iden-

tities:

Df (¥ho) = Ao = h [po] (Do) = Dyuf (Pay. V),
Daf (Pﬁo) = <8Mf (Pﬁmﬂo) 7a> )

where a = 1 — 1y, and for each p € @y (Rd) ,Ouf (Py,-) = h[Py] () is only defined in a

Py (dx) — a.e sense, where i = Py.

We say that the function f € C’,}’l (Qg (Rd)) if for all ¥ € L2 (.7:; Rd) , there exists a
Py-modification of 0, f (Py, -) such that 9, f : Q2 (Rd> x R? — R? is bounded and Lipchitz
continuous. That is for some C' > 0, it holds that
L |0, f (7)) < C,Vp € Q2 (R) V€ RY
210, (1) = Buf (42)| < € ol ) + o = 1) Vi € Qs (RY) ¥, ' € R,

If f e C;’l (Q2 (Rd>), the derivative 0, f (Py,-),0 € L? (.7:; Rd) indicated in the
Definition 2.1 is unique.

Definition 2.2

Let U be a nonempty convex subset of R*. A control v : Q x [0,T] — U is called

admissible if it is F} -adapted and satisfies sup E |v,|* < oo.
0<t<T
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Now, inserting (2.2) into (2.1), we get

da = [b(t,a7, Pey,vi) dt — & (t, 27, Poy,vi) € (£, 27, Py )| dlt
+o (t, xy, ng,vt) AWy + o (t, xy, Py, vt) dY; + igi (t, zy Py, Ut> dH},
i=1
_dy;} :f(t,l‘g,P;Bg,y:,Pyg,Zf,sz,Ef,ng,qz),qu,Ut)dt—szth
—zdY; — qudeZ,

=1

v o__ vo__ v
Ty = Zo, yT_S0<wT>Px%>-

(2.5)
Define dP" = p;dP with
t
pfzexp{/f(s,xs,Pv / ‘5 S7x57P“ d5}7
0
where p’ is the unique .7-" -adapted solution of the SDE of McKean—Vlasov type
dp} = pi& (t,x}, P ) dYs,
pi = pi§ ( t t) t (2.6)
po = 1.
Obviously, cost functional (2.3) can be rewritten as
T
J(U) :E [/ P?l (tax:ﬁ)aPrfayz}7ny72f>sza52)7P5§7qf7qu7vt) dt‘|
0
+E [phM (2%, Puy ) + h (v, Pyy)| - (2.7)

Then the original problem (2.3) is equivalent to minimize (2.7) over v € U,q subject

0 (2.1) and (2.6).

Let us impose some conditions on the coefficients of the state and the performance cost

functional.
Condition (H1)

1. Forallt € [0, 7], the function 3(-,0,0,0) € L% (0, T,R") for 8 = b,0,5 and g (-,0,0,0) €
15 (0,T,R™), £(-,0,0) € L% (0,7,R™), £(-,0,0,0,0,0,0,0,0,0,0,0) € L% (0, T,R") and
©(0,0) € L*(Q, F, P,R").

2. The functions b, 0, & and g are continuously differentiable in (x, v) and they are bounded

by C(1 + |z| + |v|), and the function £ is continuously differentiable in .
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3. The functions f and [ are continuously differentiable in (z,y, z, Z, ¢,v), and they are
bounded by C(1+|z|+|y|+|z|+|z|+|¢|+|v]) and C (1 + |z 4y 2+ |22+ |27 + 9% + |v|2) .
The derivatives of f and [ with respect to (z,v, 2, Z, q,v) are uniformly bounded.

4. The functions ¢ and M are continuously differentiable in x, and the function h is
continuously differentiable in y. The derivatives M,, h, are bounded by C(1 + |z|) and
C(1+ |y|) respectively.

5. The derivatives by, b,, 0, 0y, 04, 0y, & are continuous and uniformly bounded.
Condition (H2)
1. The functions b, 0,5, g, f,1,&, M, h,¢ € Cp" (Q2 (R™)).

2. The derivatives 85’”6, 85”0, 85”5,85””9,85“55, (057”,813?/ or= oP= BP‘?> (f,1) are bounded

[ R TR AT

and Lipchitz continuous, such that, for some C' > 0, it holds that
(i) For B =b,0,5,&,g and VY, i’ € Q2 (R) ,Va, 2" € R,

0578 (t,x, )| < C,
0B (¢, 1) = OB (¢, 2/, 1)

(i1) For 8= M, p, and Vu, i’ € Q3 (R) ,Vr, 2’ € R,

< C(D2 (luvlu,) + |l’ - $,|) )

073 (z, )| < C,

073 (e, 1) — 07 B (&', 1) < € (D (1, 1) + = )

(Z’lZ) FOI'B = f7 l7 and v,ula ,ullu Ha, :u/27 N&N&ﬁ%aﬂéaﬂ&/ﬁg € Q? (R) and vx7x/7y7 y/7 Z, Zla 57 §I7 q, q/ €
R,

‘( oo %% Y Y
‘(alljzvaiy?aizaaigaaqu) 5 (taxaubyvu?a Z7H372a ,u4aQ7H’5)
— (Of, 08, 0, 0, 00 ) B (2!, iy, i, 2 i 2 0 115

SOz =2+ ly—yl+1e =2+ 2= 2+ lg = | + D2 (pa, 1)

aPz aPy aPZ aPE an)5(taxa/ﬂa3/;,“2727,“3757#47(]7/%)’ S Cu

+ Dy (2, pty) + Do (s, ptg) + Do (pia, pry) + +Do (115, p15)) -

Under conditions (H1) and (H2), with the help of Theorem 3.1 in [9], and Lemma

2 in [41], for each v € U,q, there is a unique solution (r,y,2,%,q) € S%(0,T,R") x
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S5 (0, T,R") x L3 (0, T,R™?) x L3 (0,7, R™) x I3 (0, T, R") which solves

-I—/Ot s,xS,Pv vs dY +Z/ s, xy_, Ppo ,vs)dHi,
yf:y%—/Tf(s,$s,Pv,ys,Pyv,zS,Pv,qs,Pq ,US dt—I—/ zgdW
+/ zdy, +Z/ qridH!.
We denote for £ and ¢ =b,0,0,¢

§<t> :f(t,fbt,th), ¢(t) :(b(taxtypxuut))
fx(t) = gx (tywta Pa?t) ) ¢p(t) = ¢p (thtv Pa:ta ut) ,fOf P =T,,

xf:xo_i_/ot[ Sm Puvs>—0<s,xS,Puvs)g(s,xS,Pv ds+/0t S,xs,vas)dWS

and the derivative processes
8515 (t) = 8515 (t7§:\tvpl‘t7xt)7 aPIQS( ) Qb(t xt7th>utaxt>
afz’f (ta it) = 8515 (ta Tt, tha C/C\t) ) ux(b (ta xt) = aﬂ ¢ <t7 T, me Ut xt) )
Similarly, we denote for A = f,l and p = x,y,2,2,q,v
A<t> = A (t7'rt7 thﬂ Yt wa Zt, Pzw Eta Piw qt, Pq“ )
A,D(t) = Ap (t? T, thayta Pyt7 2ty Pzta Eta Pitv qt, Pqta )
Finally, we denote for ( = x,y, 2,2, q
85<A (t) = 85<A (t, ft, th, Yt , Pyt7 2ty Pzﬁ Zt7 P’th, qy, Plh? Uy, C) y
ang (t7 Et) = a;ng (t7 T, Pibtv Y, Pyta Zts Pzza Eta sza qt, qu U, Et) .
Now, we introduce the following variational equations which is a linear FBSDESs
dz; = [(bx( ) =G () €(t) =T () & () 2y + (by () = G0 (1) £ (1)) v
:%] [3 a(t xQfo(t)—&(t)JE[@# ¢ (t, xt)xtlﬂdt
Ps

—dy} = [fa (t)2} +E [af?f (t, @) B+ f 0y +E [05'f (t.5) 7
) RS A OEES AL A (EA TN

+f,(t)g} +E [aprf (t, d) cﬁ} + fo (8 0] dt = 2}aW, — laY, + Y ¢} dH],

=1

zh =0, yh =, (v7, Py )2k +E [85%0 (xp, Ppp, Tt) EH :
(2.8)



and a linear SDE

{ dp} = |prE () + pi (& (D) 2t) + pE [047€ (1, 3) 21| Y3, »
L (2.9)
po = 0.
Set ¥ = p~'p', using Itd’s formula, we have
{ a9, = [, (t)x} + E [0 (8,3,) 2}]] AW, 210
190 = O

Next, we introduce the following adjoint equations of McKean—Vlasov type

| - <>£<>wt—a<>A[ast<t>®4
O (1) Uy + ou(t)hy + B[00 (1) i)

Zgz nt—i-E[Z@Pz ]

+§m<t>Qt+E[a;ng<)Qt}—fz() = B[O f (1) ] + L(t) + E |01 (1)] ] dt
—kpdW; — kedW, — > nidH;,

A, = [f,()0 + B (057 f (£) &] — 1, (1) — E 0,71 (1)] ] at
+ £ ()@ + B[O F (1) @] — L. (1) — E [971 ()] ] aWs
[ = (8) B+ B 0,7 f (8) @) — (1) @, — 1= (1) — B [0}71 (1)]| WV,
L[ OC+E[NF (18] -1 ) - E (g7 ()] da

—d¥, = |b, (1), + K [0b (1) ¥,
—5, (1)) U — DR
0il s

+O'x( )kt + E 3P””

I

Uy = Mx (o7, Pop) + B [an (@1, Pes vr))|
—pz (27, Pry) @1 — [35“”%0 (Z1, Por, o7) &)T} ;
q)O - _hy(y(b Pyo) - [aiyh<:/y\07 Py07 yO)} .

(2.11)

It is clear that, under (H1) and (H2), there exists a unique (\I/, k k. n, <I>) € S%(0,T,R™)x

L% (0,7, R™) 5 L (0,7, R™%) x 15 (0, T,R") x §% (0, T,R") satisfying the FBSDE
(2.11) of McKean—Vlasov type.

Note that the mean-field nature of FBSDE (2.11) comes from the terms involving
Fréchet derivatives 85”1) (t) ,(95”9 (t) ,85’5 (1) ,85"5 (t) and (85’, 859, (952, 352, aqu) (f,1),
which will reduce to a standard BSDE if the coefficients do not explicitly depend on law

of the solution.
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Now, we introduce the following BSDE involved in the stochastic maximum principle

_drt =1 (tuxtrpxmyh wazta Pzw'gta PZtaQta qu )d
—QudW, — QudW, (2.12)
FT = M(.TT,PIT).

Under conditions (H1) and (H2), it is easy to prove that equation (2.12) admits a

unique strong solution. We define the Hamiltonian function

H:[0,T] x R” x Qy (R") x R™ x Q (R™) x R™* x @y (R™) x R™ x @ (R™?)
X1 (R™) x I (R") x U x R" x R™ x R™* x R x [ (R") x R — R,

associated with the McKean—Vlasov stochastic control problem (2.1)-(2.7) by

H(t,z, Py, Py, 2, P,, 2, P, q, Py,v, ¥, Ok, k,n,Q)
:\Ij(b(t,aﬁ,Px,’l})—5(t,l’,Px,U)§(t,.fE,Px>)—(I)f(t,.’E,Px,y,P - Pzaz PzaQaPlpv)
+ko (t,z, Py, v) + k& (t, 2, Py, v) —|—Znigi (t,x, Pp,v) + Q& (t,x, P,)

i=1
+i(t,z, Pyy, Py, 2, Py, 2, Ps,q, Py, v) .
(2.13)

2.3 Necessary conditions of optimality

In this section, we prove the necessary conditions of optimality for our system of McKean—
Vlasov type, satisfied by a partially observed optimal control, assuming that the solution
exists. The proof is based on convex perturbation and on some estimates of the state
processes of system and observed process. Suppose that u is an optimal control with the
optimal trajectory (z,vy, z, z,q) of FBSDE (2.1). For any 0 < 0 < 1 and v 4+ u € Uy, we

define a perturbed control uf = uy + Ov,.

Lemma 2.1
Under conditions (H1) and (H2), the following estimations holds

limE [ sup ‘xt‘ ] =0, (2.14)

00 lo<t<T

hmE Liltlgf ‘yt‘ +/ ( ’2 + ‘55‘2 + Hcff ?Z(Rn)> ds] =0, (2.15)
— IE/O [ ae=o. (2.16)
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Proof. For notational ease, we introduce the following notations.

For t € [0,T], 6 > 0, we set

61 (xf — :zzt) —
07 (vl =) —ui,
Z=60" (21? - Zt) %,

and we denote by

fﬁﬂ =x;+ N0 (f?—i—:c%),
ﬂ?e—yt‘f‘)\e(?jf‘i‘ytl):
’7/t7 = (f?’e,Pj?,g,u$)7

First, we have

H=0 (2 -5) -7,
@ =0" (¢ —a) —
p=0"(pl —p) = pt,
zt’\e—zt%—)\@(fz'f—i—zg),
20 =a+M (5 + ),

@' =a+ 20 +q)

di] = (b — 576 — 671 &) + [0 — 36 — &51°"] + B7) dt
+ (0770 4+ ol* + BY) dW, + (aFzldt + 51" + BY) aY,
(Gt ot ) oo )
+Z(9§mx?+92”+ﬁi’ ) ;.
b =0,
where
1 1.7 ——\ —
= [ (e o= [ [0 (600,37 ] dx,
1 1.7 S\ =5
5= [ 7 (1) an ot = [B|ofa (125 ) &)
0 0 L i
1 1. S0\
b= [&(ta)ir g = [Bofe(n.0") 3] ax
1 1.7 o\ =51
of = [ (t)ar ot = [B oo (£200,5) 3] dn,
0 0 L i
. 1 . 1 ——\ —
gie /Og; (.9 dx g”““Z/O E{af”g <t,7?’9f?’9> 55?} dX,
and

0

/ b (1692 = b (1)] dr!

—& / 1 5 (£ ) 5u(t)] dAet — 3, /0 1 €0 (E27) = &al)] dAa}

+/ t%
+ ['E[ (a0 (t Y
_&/o E[( (t M ~>\6>
sl

— by (1)] v,

Ve Ty

— & /01 {51, (t, 73"9) — 5U(t)} d\vy
) — 9P (t?t)) 7!

dA

o (t, xt)>

a:tl} A

P (t%})) :ﬁ} dx,
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Bs = /0 ow (642) = 02 ()] el + / (t,9) = 0, (8)] dAwy

+/01E [(81% (t '73\9,~i\0> . 85960. (t#%t)) *//E\tl] A,

= 5 (142) = 5. ()] drat + / o (69) = 50 ()] drey

(a}j (t,%”,}”) o (t, @)@1] dx,

1 X PR
+ E{(@fwg ( M ~”> — 9Py (t,ft)> gﬂ dn.

Under conditions (H1) and (H2), it is not difficult to see that

| =o.

tim B |[67]" + B8]+ [a1] +

6—0

we have

Applying [t6’s formula to ‘f? 2,
~92_ T~9 T ~xe o~ x50 T = f T T 0
E|#/| _2E/0 7 ([ — 576 — G| T+ DT — GElT — 6517 + BY) dt
T
+E [
0
+ZE/
=1
0|? 0)?
gOE/O #| dt+/ Uﬁl + |68+ |83| +

2
FrEl 4 5 +6§\ dt

2
%f+af’”“+ﬁ§] dtHE/O

12
g Tl 4 gt 4+ By dt

0 2] dt.

Finally, estimate (2.14) now follows easily from the Gronwall inequality.

Let (g]f, 2, Az_f, @f) be the solution of the following BSDE

~ T~ T ~ , 2~ 2 z~0
dﬁ=hﬁ+ﬂ—ﬂ%ﬁ¢”+ﬂ4+ﬁ+ma+f + £+ Ao+ )] dt
AW, + Z,dY, + Z G dH!,

=1
~1

i =07 [0 (5 Py) = @ (or, Por)| = 0 (o, Poy) 2} ~ B[00 (w7, Pay B1) )]

where 7 satisfies equation (2.17), and

1
fta:_/ fa (t,Xg\ﬁ)d)\ for o = 2,y,2,%,q,

1.
#,a:_/oE[aiaf <t X;‘07&?0> }d)\ fora=x,9,2,2,q,
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where
A0 (A0 A0 ~ 0
Xt = (xt 7P)‘9a t P>‘9 s 2 7P2§‘79azt 7P’§:"97Qt 7P¥‘veaut >7

and Y? is given by

[ T () = o] and + [E[(as (6x30.57) - o s (t xt,yt)) J ax
b [ 1 () = @) anad + B (05 (002 = 9l (1.0 5) ) 2] an
4 /01 (2 (8.0) = £ ()] drz! + /OIIAE -(Q’ff (t,xﬁﬂ,z?‘)) o (t,xt,2>> 2] dA
+/01 fa (6:X27) = £, (0)] drg) +/ fo (") = £ ()] doy
1
+[ B (aqu(t,x?ﬁ,a?ﬂ) —aiqf(t,xt,at))qt} .
Due the fact that f7, f{°°, U, fI"Y, f2, 117, f7, Z f% and f9 are continuous, we have

mz&:\rff ~0. (2.18)

2
Appying It6’s formula to ‘?'jf , we have

E]gf]2+E/tT Ef2ds+IE/T

2 T
:E‘g’}’ —i—ZE/t 375( O pom g fugl 4 ey 230 4 s g 77 +fﬂz+fq +f”q+T9)ds.

ds—i—E/ qs

S
12(R7)

S

By Young’s inequality, for each € > 0, we get

9|2 T
E|| +]E/t z

<l + 1= [ ]

~0|2
s

|2
G lliz ey

T
ds—i—E/
t

ds

T
+5E/‘ (FIT0+ f1 4 fUG0+ f10 + F220 4 f15  FIE] 4 f1F 1 +f“q+T9) ds
t
9 z~0]2 T2 T 02
<efpf+ e[ | 2l ds+ CE [ 1o ds + CE [ |2 ds

T 9 T ) T
+CEIE/ |12 ds+C’aE/ 250 ds+C’5E/ Lfe| ds+OEIE/
t t t t
T 2 T
Y CO.E / " ds + C.E / 71
t t
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By the boundedness of f7, f1"“, ff, f1*Y, 7, fI"%, f7, “ f¥and £, we obtain

012 T 2
7 ds+]E/ 7
t

: Dol gy

E\@f\2+E/tT 50

1 T 2 T 2 T
§(+CE>E/ glas+ce [ [#fas+ce [ ds+CIE/ I as
€ t t t 2(R")
~0 |2 T\ pa0]? Tpo?
+E 3] +C€E/ F77° 1Y ds.
t

Hence, in view of equations (2.14), (2.18), the fact that f7, f{"* are continuous and
bounded, by Gronwall’s inequality, we obtain (2.15).
Now, we proceed to prove (2.16). It is plain to check that ¢ satisfies the following
equality
dp; = |PE (t.af, Py ) + X7) dYs + po [67] + €] s,

where

1
ftx = / gaz (ta fi\,67 ngﬁ) d)‘a
0 t
1.
o :/0 o [a}}g( 5, Pows, 55,?9) xt] dn,
and T? is given by

Tf:pt/ € (8.7, Pore) — & (1)] da}

+ oy /1 (o€ (12 Py, ) = O¢ (1,30, P 7)) 1
+ o1 [ (.2, Pog) =€ (1))
Taking into account the fact that & and &"* are continuous, we deduce
lim E \W\ = 0. (2.19)

2
Then, applying 1t6’s formula to ’ ot ’ and taking expectation, we have
E|7| gCE/O 7 dt+OE/O ] dt+CE/O I9ad dt+OE/O 10| a.

Finally, by Gronwall’s inequality, estimates (2.14) and recall to the Wasserstein metric,
the above convergence result (2.16) holds. O

Since u is an optimal control, then, we have the following lemma.
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Lemma 2.2
Let conditions (H1) and (H2) hold. Then, we have

0 <E[prM, (w7, Poy) 2% + prE (00" M (w7, Pey, ) 7|

+E [phM (27, Pop)| +E [y (5o, Po) 6 + B [05 h(yo, Py 50)70]
T T T ~
+E/ ptlltdt—HE/ ptlv(t)vtdt—l—E/ pi [Lo(t)a) + B [0 (8,2 7] | i (2.20)
0
T ~
+E/ ou [1, Oyt +E [021 (2,5 31| dt—HE/ pi L0z +E [01(t,2) ]| dt

+E/ pu [0z + B [0 (1.2) 3] dt+E/ pi [l(t)g + B[00 (.6 ]| d.

Proof. Using Lemmas 2.1 and Taylor expansion, we get
0<6t {J (uf) —J (ut)}
= 07'E o7 M (2%, Puy) = prM (a7, Pry)
+07'E [h (4) = h (w)]
LR / ' (017 (£) — pil (1)) d
0
=Ji+ Jo+ Js,
where ¥ (t) = [ (t 2? P, o,yf,Pyte,zf,Pzte,Ef,PEte,qt,Pe,ut)
Then, from the results of (2.14), (2.15) and (2.16), we derive
Jy=0"'E [pf}M (mf}, xo) prM (xT,PxT)}
05 () ()
oo [} (s (8 =21) P ) (08 =) )
pr [ B[ (24 A (2~ 1) Py r(ay 50y, ) (35— 1)

— B [0rM (v, Pr,)) + B [(M, (21, Poy)) 2h + B |0 M (27, Py, 31) 77|

+0°'E

+07'E dk}

Similarly, we have
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|
=0'E [/0 hy (yo + A (yg - yo> ,Py0+/\(§g_§0)> (y
LR { 'a {a o <y0 A (3~ ). PyO+A@8_§O),§0) (7 - AO)} d)\}
[(hy (w0, Po)) s + B [057h(yo, Py, 50)T0) |

and

Jy=07'E [ /0 ! (0017 (1) — pd (2)) dt]
T ~ ~
— E“/O D(t) + L ()] + B [971 (8, 3) 31| + 1, (t)y) + E [0 (¢,50) 5t
+ L0z + B[00 (2) 2] + 107 +E [0 (t2,) 2]
+ (g +E [0 (,6) | + L(t)v] dt.

Then, the variational inequality (2.20) can be rewritten as

0 <E" M, (zr, Ppy) ' (T) + E [0 M (:cT, Py, 1) 71|

+E" [0 M (2, Pap)] + E* [y (0, P + [0 h(yo, Py, 70)30) |

+E“/O 9,0 (t )dt+E“/ ()vtdt+IE“/ {lx(t):vt+E[85Zl(t,’x})f§”dt (2.21)
+E /OT 1,0y} +E [0 (1,5,) 3] ] dt +E /OT [1.(t)= + B [0 (¢,2) 2}]] at

T

VB [CR [0z + o (15) 2] de B [ [u(0al + B [0 (.00 @] dr

0

Theorem 2.1

(Partial necessary conditions of optimality) Let conditions (H1) and (H2) hold and
let (z,y,2,Z%,q,u) be an optimal solution of our partially observed optimal control
problem of McKean-Vlasov type. Then, there are (U, ®,k k,n) and (T',Q, Q) of F-
adapted processes that satisfy equations (2.11),(2.12) respectively, and that for all

v € Uyq, we have

E" [H, () (v — w) [F] > 0,0.E,as, (2.22)
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where the Hamiltonian function
H (t) = H (tu T, me Ut, Pyta 2ty PZt? Zt7 PEH qi, qu Uy, ‘Ph (I)t7 kt7 l;:b Ny, Qt) 9

is defined by (2.13).

Proof. Applying Ito’s formula to W,z; and ®,y; such that,

oy = _hy(y0> Pyo) - IAE [a;ljyh(i/\o? Pyo’ yO)} )
Vp = M, (7, Pe,) + B [0 M (&1, Pay, 07)]
—Pz (JIT, PIT) O — E {aix@ (fT’ PiUT’ xT) &)T} )

and using Fubini’s theorem, we get
EY {\IJTJZ%W} =E" /OT |fI’t (bv (t) — 5v(t)€(t)) U + /;:tc"fv ( )Ut + ktgv Ut + Zntgv ‘|
+ R /OT 2t [ O)® + B [08 £ (1)) - L() — B [0 (1)]] at (2.93)
e [l e QB lofe Q)] a
and
E" [(I)Ty’}l’} + E* [hy(y07 Pyo) + E [aiyh(gm Pyoa yO)H
= —E* /OT B [ fu (8 ve+ fo () 2} + B[00 f (1,5) 31| dt
_E¥ /0 ’ ui [l (6) + B [ ()] ] dt — B /O ' 2 1 (6) +E |0f1 (1)]] dt (2.24)

—E* /OT g [l () + E [0 (1)]] dt — B /OT g |lg (t) + E [0 (1)]] at.

=

Now, applying It6’s formula to ¢,I'; and using also Fubini’s theorem, we have
E [90M (27)] / 94l (

E“/O Q1 kx( )a; +E {813“5( 7y) xtIH dt. (2.25)
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From equations (2.23), (2.24), and (2.25), we obtain
E" [M, (vr, Poy) + B [0 M (v7, Py )|
+E" [hy(yo, Py) + E |05 h(To, Py, w0)] + 97 M (w7)]
_ EU/ l\lft [by (1) — Go&(t)] vy + kT (£) Vg + Krgy (8) vy + Z nigt (t)v, — o f, (1) Ut‘| dt
/ 94l () dt — B / s [1.(6) + B[00 ()] | dt (2.26)
_E /0 uh 1, (0 + B[00 (1)]] dt - ]E“/ o 1 () + B[00 ()] at
e [ A [0+ E[op1 )] ar - [ gl [l () + B [0 0] an
thus

R |:M:p (z1, Py, )+IE [8’31]\/[ (xT,PmT)H

R )+ E o o] 07 o)

:]Eu/OTHU (t)vt—EU/OTl (t )vtdt_E“/ 9, ( dt—E”/Tx} () + E [9271 (1)) ] dt

—E* /OT ui [ty (1) + B [0 (1)]] dt — Eu/ 1) + B[0P ()] at

0

_E* /OT a2 [l () + E[o1 (1)]] dt — B /OT g [l (t) + E [0 (t)]] dt.

This together with the variational inequality (2.21) imply (2.22), the proof is then com-
pleted. 0

2.4 Partially observed linear-quadratic control prob-

lem of McKean-Vlasov FBSDEs

In this section, we are going to consider a partially observed linear-quadratic control
problem of McKean—Vlasov type. We find an explicit expression of the corresponding
optimal control by applying our partial necessary conditions established in the previous

section.
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We consider the following forward-backward system:

day = (bjze + B[] + bjv, — o7) dt + o} dW, + 07dY; + Y gid Hj,

=1

—dy; = (ftlﬂ?t + fPE [z + [Py + LBy + Foz + FPE [z + £z + fPE (2]

(2.27)
+ fla+ fOR ] + £ o) dt — zdW, = ZdY; = gidH],
i=1
z(0) = xo, yr = prxr + 2B [x7],
and the SDE
dY; = vdt + dW,
e ' (2.28)
Yo =0,
where
bg‘rt + b?E [xt] + bz?lvt = b (ta I’g, ngvvt) )
O-t1 =0 (taxija Pz};7vt) 3
ngQ = 5 (tvl‘:f]v Pxfavt) 3
gi=g (tay Py v),
Yt = 5 (taxéja Px;’) ,
and

f(t,l'f,Px;),y;),Pyg,Zf,PZ;J,ZZ),PE:,Q;),P(J;),UO :ftlxt—i_ftQE['xt]+ft3yt+ft4]E[yt]
+ fPz+ PR (2] + £z + [PE (7]

+ fa+ fE @] + f! v

The quadratic cost function to be minimized

T
J() =E* [ [Lia?+ L (B [w])? + Ly} + L (E[y))” + L}of] dt
+E [Myad + My (B [27])* + by (2.29)
Here, all the coefficients b' (), 6% (:),0* (-),0' (-), 0% (-),9(-),7 (), f* (-) are bounded
and deterministic functions for j; = 1,...,11, L’ (-) is positive function and bounded for

Jo=1,2,3,4,5,6, and M; (-), M5 (-),h(-) are positive constants. Then for any v € U,q,

equations (2.27) and (2.28) have unique solutions, respectively. Now, we introduce

t 1t
ptzexp{/ %dYs—*/ kA dS},
0 2 Jo
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which is the unique ]:ty—adapted solution of the SDE:

dpe = peedYs,
Po = 17
and we define the probability measure P’ by dP" = p;dP.

In this setting, the Hamiltonian function is defined as
H(t,x,y, 2 %,q¢0,Y,® kkn, Q)
=V (b}xt + b7E [2,] + blv, — af%) - <ft11:t + PR [z] + fPye + fPEy) + fPz
+ [PE 2] + [z + FPE [z + fla + f°E g + ftllvt) + kop + ka}

> nigi+ Qe+ Liw? + L? (B [x,])* + Liy? + L (E [y,])* + Lv?.
=1

(2.30)
Further due to equations (2.11) and (2.12), the corresponding adjoint equations will be
given by
—dly = (Lyw} + L (B[wi])* + Ly + L (B[y])” + Liv7) dt
—Q AW, — Q,dW,, (2.31)
Iy = M(zr, Pey),
and

—d¥, = [bg‘l’t +O{E (W] — [P — fPE[®] + 2Lyx, + 2L7E [ftﬂ dt

_ktth — ]%tth — andHZ,
i=1

AP, — (ft?)q)t + fIE[®;] — 2Ly, — 2LIE [ytD dt + (ff'(bt + f{E [(I)t]) dw;

e | 232)
+ o+ FE@)] dW+ > (£°0, + £'°E [®,]) dH;
i=1
Vr = 2Myzr + 2MsE [27] — ¢107 — $oF [27],
Dy = —2ho.
According to Theorem 2.1, the necessary condition for optimality (2.22) will be
B [0, — O f)! + 2L3u/F)] = 0. asae.
If u (-) is partial observed optimal control, then
1 3w Y 11w Y
ut:—ﬁ(th v,/ F ] - B [ FY]). (2.33)
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CHAPTER 3

Maximum principle for partially observed
Risk-sensitive optimal control problem of
McKean—VIasov FBSDEs involving impulse

controls

3.1 Introduction

This chapter examines the second topic of this thesis, which is the maximum principle
pertaining to risk-sensitive optimal control problems under partial observation, modeled

by FBSDEs of the general McKean—Vlasov equations:

day = b(t, x"", Py, vg)dt + o (t, 2", Pyyn, vp)dW + Cedy,
—dyf’n = f<t7 'r;),na Px:’"a yz)ma ny’"a 211517777 sz’"avt)dt - 2115}777th + Dthu (31)
zg" = a, yp' =(xg", Pryn),

where W, is a one-dimensional Brownian motion defined on a complete probability space
(Q,F,F,P) and n(-) = > _ n;1}, 1) such that each 7; € R™. Pyow, Pyon and Poen denotes
the law of the random V;ilable "y and 2" respectively. The coefficients b : [0, T] x
R™ x Q2 (R") x U = R",0: [0,T] x R" x Q3 (R") x U — R™% ¢ : R" x Q5 (R") — R™
are given deterministic functions, and C : [0, 7] — R™*" D : [0, T] — R™*? are continuous
functions. (Rd) is the space of all probability measures p on (Rd, B (Rd>) , endowed
with the following 2-Wasserstein metric.

It’s important to highlight that the aforementioned forward-backward stochastic dif-
ferential equation (3.1) of the McKean-Vlasov type is quite general, as the coefficients

can exhibit nonlinear dependence on the Ppvn, P and P.en which are considered as
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elements within the space of probability measures.
Consider state processes (z;",y;",2") are not fully observable. Rather, they are
only partially observed through a noisy process Y, which is described by the following

equation:
dY, = &(t, 2}, Py )dt + dWy,
Yo =0,

(3.2)

here £ : [0, T] x R" x Q2 (R") — R™ and th represents stochastic processes that rely on
the control variable v.
The corresponding cost functional to be maximized is of the McKean-Vlasov type and is

defined as follows

T
‘]0 (U7 77) =E° [expe </0 l<t7 x;’f’]’ P:L‘f’na y;7:777 ny’"7 Z;Sum7 sz"” Ut)dt

, (3-3)

+ M(27", Pogn) + h(yg™, Pygn) + > (i, m))

i>1
here EV represents expectation with respect to the probability space (2, F,F, P¥) and
Yo is deterministic. 6 represents risk-sensitive index for 6 € (0,1]. The coefficients M :
R x Qs (R") = R, h: R™ x Qy (R™) = R, c: [0,T] x R* = R, [ : [0,T] x R" x Q5 (R™) x
R™ x Qg (R™) x R™% x @, (Rde) x U — R are deterministic functions.

The objective of our partially observed risk-sensitive optimal control problem is to
maximize the cost functional (3.3) over (v.,7.) € A, subject to (3.1) and (3.2). A control
(u., () € A that satisfies

J? (u,¢) = max J? (v,n),
(,0) = max J* (v.1)

is called a risk-sensitive optimal control.

The chapter mainly concentrates on formulating the risk-sensitive maximum principle
for McKean-Vlasov forward-backward stochastic differential equations with impulse con-
trol. In this framework, impulse control is modeled as a piecewise process that does not
necessarily need to be monotonic. Additionally, this work introduces further concavity
conditions under which the partial necessary risk-sensitive conditions of optimality are
sufficient. As an example, a linear quadratic (LQ) risk-sensitive optimal control problem
of the McKean-Vlasov type is studied. It is noteworthy that the results offered in this
study build upon the research conducted by Ma and Wang [27].
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3.2 Statement of the problem

Let T' > 0 be a real constant, and let (2, F,F, P) represent a complete filtered probability
space equipped with two independent standard one-dimensional Brownian motions W and
Y. Define F ={F;},5, and F; := FV v F' VN, where N represents the collection of
P-null set, FF/ and ]—"tY represents the P-completed natural filtration generated by W
and Y respectively. Let U,y be the set of the admissible control variables. Let 7; be
a given sequence of increasing F-stopping times such that 7, 1 +o00 as @ — 400. The
assumption 7; T +o0o implies that only a finite number of impulses can occur within the
interval [0,T]. Define Z as the set of processes 7 (-) = > _ n;1(;, 7 where each 7; € R" is

i>1
F.,-measurable random variable. Let K represents the class of impulse processes n () € Z

with E(Y |mi])? < oc.
i>1
The admissible control set is denoted by A = U4 x K. The notation R" represents the

n-dimensional Euclidean space, and by (-,-) (resp. | - |) the inner product (resp. norm).

We will introduce the following spaces:

o The set G*(Q2, F, P,R") consists of all R"-valued random variables that are square-

integrable and Fp-measurable.
. QJQE (0,7,R"™) the set of all R"-valued square integrable F-adapted processes.

o S*(0,7,R™) the set of all R"-valued F-adapted and continuous processes,

E( sup |ft|2) < 00.
0<t<T

+ The space G* (]—" ; Rd> is a Hilbert space with the inner product defined by (z,y), =
E[z.y] for z,y € G (,7-"; Rd) . Its norm is given by ||z||, = \/(z, z),.

e () (Rd) the space of all probability measures p on (]Rd, B (Rd>) with finite second

moment, i.e, / , |z|? 11 (dz) < oo, endowed with the following 2-Wasserstein metric:
i

for p,v € Qs (Rd) ,
Do (g1, pr2) = inf { {/Rd |z — y|2/{(da:,dy)}é CKE Qo <R2d) K <.’Rd) = U1, K (Rd, ) = ,ug}.
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Let (Q, F.F, f’) represents a copy of the probability space (2, F,F, P). For any ran-
dom variable (91,79;) € G* (.7-" ; Rd) x G2 (.7-" ; Rd), let (51,52) represents independent
copy of the random variable (¥1,%s) defined on (Q F.F 13> Let (U, Ty, Ur, 2¢) repre-
sents independent copy of (ug, x4, Y4, 2¢) with P, th, P, Py and P, P We use E ]
to represent the expectation under probability measure P, and define Py = PoX !
the distribution of the random variable X. The core concept of differentiability concern-
ing probability measures involves associating a distribution u € Qs (Rd) with a ran-
dom variables ¥, € G* (]—“ ; Rd) such that p = Py,. Specifically, let the probability space
(Q, F,F, P) is sufficiently rich such that for every u € Qs (Rd> , there exists a random
variable ¥, € G* (]—" ; ]Rd> satisfying = Py,. It is well established that the probability
space ([0, 1], 810, 1], dx), where dz is the Borel measure, possesses this characteristic. For

further details on differentiability with respect to probability measures, refer to, Abba and
Lakhdari [1] (Definition 1.1 and Definition 2.2).

Definition 3.1 Let U be a nonempty convex subset of R¥. The control v : Q x [0, T] — U
will be admissible if it is F) -adapted and holds

sup E|v,]* < oo.
0<t<T

Utilizing Girsanov’s theorem, we get that:

¢
pf:exp{/ E(s,z2" P, vn /‘f s,z vn ds}
0

where p" represents unique JF, -adapted solution of the SDE of McKean-Vlasov type

dp;) = 10;]6 (tv x;}m? Pxf’") dYs,
po =1,

(3.4)

and if dP" = p;dP, then P" forms a new probability measure and (Wt, Wt”) is a standard
R2-valued Brownian motion under this probability. By Bayes formula, cost functional

(3.3) can be stated as
T
JG (U, 7]) =K |f)% exp 0 (/0 l(t, Z‘:’n, Pm:m, yz}’n, Py;mr, Zf’n, Pzzmr, ’Ut)dt

+M(m%’",Pvn)+hyO, W +Z 7'“771)]. (3.5)

>1
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Next, we define

v — v, v v v v.n v
dgt - l (tvxt 7th’"7yt )Pyt’n7zt aPzt’TUUt) dt7 (36)
g, = 0.
Therefore the original problem (3.3) is equivalent to maximize (3.5) over (v.,n.) € A

subject to (3.1), (3.2) and (3.6).
We denote for ¢ = b,0 and &

§(t) = &(t, 2™, Pywn),

&alt) = &t 2" P"")

o(t) = o(t, ", Pyun, uy),

¢o(t) = ¢o(t, 2", Ppun, uy), for ¢ =z, v,

and their derivative processes
ang (t) Ig (t bextaxt)
(t7 t) apzf (t JEt,th;It>

(t) wqb(t xt7P$t7utaxt)
(t7 t) qb(t,l't,th,Ut;l't).

orr¢
o

Moreover, we represents A = f,l and ¢ = x,y, z,v
A(t) = A(t7 x;‘ﬂ? P bl y:;hﬁ ny’"? Z;hn? Pz?’"? ut)7
AC(t):AC<t 'Ttn Pun yt Py:’nazzhn7pz:’"7ut)'
Thus, we have ¢ = z,v, 2
a};CA (t) = a;leA (ta '%ta wa Yt, wa Zt, Pzt7 at; gt) )
8541\ (t,%) = (95%\ (t, e, Py e, Py, 2 Payyus &) -
We will utilize the following conditions.
Condition (H1)
1. Vt € [0,T], the function b(-, 0, 8, 0) € G= (0, T,R), o(-,0,8,0) € G= (0,T,R), £ (-,0,68) €
G2 (0,T,R), f(-,0,8,0,d,0,d,0) € G=(0,T,R) and ¢ (0, p) € L*(2, F, P,R), where &
is the Dirac measure at 0. The function C : [0,7] — R and D : [0, 7] — R are continuous.
2. Functions b and o are continuously differentiable in (x,v) and also bounded by C(1 +

] =+ [v]).
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3. Functions f and [ are continuously differentiable in (z,y, z,v), and also bounded by
C(1+ |z|+ |y| + |z] + |v]) and C (1 + |z|? + y|2 + |2]* + |v|2) , respectively. Derivatives

of f and [ with respect to (z,y, z,v) are uniformly bounded.

4. Function c is continuous and continuously differentiable in 7 and their derivative is

bounded by C(1 + |n]).

5. Functions ¢, M and ¢ are continuously differentiable in z, and the function h is
continuously differentiable in y. Derivatives of M,h are bounded by C(1 + |z|) and
C(1+ |y|) respectively.

6. Derivatives b,, b,, 0., 0., &, are uniformly bounded and continuous.
Condition (H2)

1. Functions b, o, f,1,&, M, h,p € Cp" (@, (R)) .
2. Derivatives 85””1), 85“”0, 85””5, (85“‘, 851«’, 8}}) (f,1) are Lipchitz continuous and bounded,

such that, for some C' > 0, it satisfies

(i) For 11 = b,0,& and Vu, i’ € Q2 (R),Vz, 2’ € R,

O (¢, )] < C.

‘8511_[ (t,x, ) — OLIL (¢, 2/, )

< C(]D)Q (M,MI) + |£L' - .I'/D )
(1) For IT = M, ¢, and Vu, i’ € Q2 (R),Vx, 2’ € R,

0T (2, )| < €,

’aixﬂ (w, 1) — O L (2", 1)

< C (D (p, ) + |z —2']).

(i13) For I = f,1, and Yy, pf, o, piy, piz, i3 € Q2 (R) and YV, 2’ y, 9/, 2, 2" € R,

(08, 0, 0% ) TL(t, @, 1, y, oo, 2, p1s)| < C,
I

O, O O ) L (t, 2, ja, g, oo, 2, ps) — (Of7, 05, O ) TL(t, ', o/, iy, 2/, i)

<C(le =2+ |y =y + [z = 2| + Dy (1, py) + Do (pag, py) + Do (3, 1)) -

By using (H1) and (H2), Theorem 3.1 in [9], Theorem 5.1 in [11], and Propositions
2.1 and 2.2 in Wu and Zhang [43], we get that for each (v.,n.) € A, there is a unique
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solution (z"", y"" z"") € G7(0,T,R) x G7(0,T,R) x G (0,,R) which solves equation
(3.1).

Now, introducing the first-order variational equations as:
dat = [by (t)xf + B [057b (t,3,) 3] + by (t) vi) dt

_.|_
+ [JI )zt +E [85“”0 (t,24) 2 } + 0, (1) vt} dWy + Cydny,
_'_

—dy} = [fo (#)x} + B |0 f (6, 2) 7| + £, )yl +E [0 £ (1.50) ] (3.7)
+f.(t)z +E [852]” (t,2) 2, } + fu (t )vt] dt — 2z} dW; + Dydn,

5 =0, yp =@ (07, Poy) 2 + B [0)70 (07, Pry, 81) 77

dg = [l (t) g + B [0571 (t,2) g} ] + 1, (t) g} + E [05°1 (£, 5)

+ 1 () g + B [0 1(t,2) 3| + 1, (t) v dt, (3.8)
9 =0,
and
{ dpt = [P () + pia (1) 31 + i [9F€ (1, 7) 7] ] Vs, ;.
po =0
Set ¥ = p~tp', utilizing Itd’s formula, we get
v, = [& (t)zy + E [0f7¢ (t,7,) 3, || AV, 3.10)

Yo = 0.

3.3 Necessary conditions of optimality

For any 0 < e <1 and v. +u. € Uyy,( + 1. € K, we define a perturbed control u; =
up +evy and ¢ = G +eng. Let (:L‘€ =gy = 2 = z“s’cs) represents the solution
of equation (3.1) corresponding to admissible control (u®, (%) and consider (u,() as an
optimal control having optimal trajectory (x,y, z), then we get.

Lemma 3.1
By (H1) and (H2), we get that the following estimations satisfies:

limE | sup |z (3.11)

e—0 _OStST ‘|

T
limE | sup |g7§|2+/ |2§|2ds] =0, (3.12)
|0<t<T 0

e—0

IimE | sup |p;]| =0, (3.13)

=0 o<i<T

limE | sup |g¢]*| =0, (3.14)

e—0 _OStST




where i

_ 6 —x

et Tt gl forte0,T],e >0,
~ Yi — Yt 1~ zi — % 1
yt€: — Y, Z;:: — 2,

66 58

= _ 9 — Gt 1~ _ Py — Pt 1
9t = . 9 o= — Pt

Proof. We denote

i;\‘g—xt%—)\a(ff—l—x%), z?a—zt+)\5(2tg+ztl>,
ﬂt’ :yt+)\5(ﬂf+yt1), ’yt’ :(xt ,P~As ut“)
First, we get

dis = (a5 + 0" + B, ) dt + (07 %5 + o + B5,) AW,

(3.15)
i =0,
where .
bf:/ be (t,40°) dA, b8 = / [an (,%“ ~*E)§t A,
0
1 —
o—fz/ o (,70°) dN, ol = / E |00 (t %, ~“)f§ d,
0
and

B, = /0 s (£92) = b ()] drad + / (t,9°) = b (1)) o
R (a[jz (t e 1“) — o (t, ft)> gﬂ d),

Bse = /0 o (8,29 — o (8)] dat + / (t,7) = o ()] dAw,
+/01f[-3 (an (t 'yt)‘fj~i\s) —359”‘7(@@)) @] "

Under conditions (H1) and (H2), we also get that

2
) =o

. .2
tim (|55, +

Utilizing Itd’s formula to |#5|%, we obtain

T € M, 15 2
:Et + (o + 527,5 dt

)dt

|_2]E/ bf~§+b’”+5u>dt+E/

SCE/O 2 dt+/0 IE(
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Finally, estimate (3.11) now follows easily from the Burkholder—Davis—-Gundy inequality

and Gronwall’s inequality.
Let (g;, z;) be the solution of the below stated BSDE
U = [P35+ I+ 0+ S+ EE S+ 85| dt + Z A,
b =< (¢ (25, Pes.) — ¢ (o7, Pay))

Z: (xTv PxT) I%ﬂ - IAE {85190 ($T> PxT’ fT) /x\%“} )

where 7§ satisfies SDE (3.15), and
= /1f (txt)d)\ for a = x,y, z,
= / [81)" (t L ap 5) 57?] d\, for a =,y 2,
where

X?E = (JI?E,P~>\ s,ﬂ?E,P’th)\,e,E;\’E,P’V)\e U?E) ,
and f33, is stated as
Bio= [ 15 (0x) = 0] dred + [B (01 (100 5) — 0 f (7)) 3
[T () = @] and + [ R [(as (132 5) - 0 (1.0 50) ) 1] ax
[ 1 () = @) e+ [ B[ (05 (004 27) 0 £ (60, 3) ) 2]
1. B
+/_ﬂ@ﬁﬂ—ﬁ@ﬁmb

In view of the fact that f7, f{*“, f, fI*Y, ff and f{"* are continuous, we have

d\

imE|g2,|" = 0. (3.16)
e—0

Utilizing [t6’s formula to |y; |2 we obtain
E |5 |+E/|?|ﬁ
~E[j/ +2E/ (F2E5+ 10+ PV + [0 + f235 + f° + B5,) ds.
By Young’s inequality, and conditions (H1) and (H2), we get
E |7; |+E/|?!@
<<QE/|%|M+CE/|?|@+E||

+CE/|ﬁ%ﬁds+CE/
t t
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Applying Gronwall’s inequality and in view of (3.11), (3.16), we obtain (3.12).

Finally, in a similar way, the estimate (3.13) and (3.14) can also be obtained. Which

completes the proof of Lemma 1. 0

Now, introducing adjoint equations of McKean-Vlasov type which rely on the risk-

sensitive parameter 6,

(3.17)

al’y = Qtth + QtdWm
600

Ip=e
—doy = [L(t)ay + B 0,7 1(6)an] + (£ + B [02VI()a]
+ Lty + B [0)71(t)d4) | dt — pid WV, (3.18)
ar = 0e’T,
and
—d¥, = [b,(t) U, + E [0570 () U] + 0u(t)k + B[00 (1) k]
+& QAR E() Q)] — f(t) — E [0, f () 4| dt — kud WV,
Ay = [f,(), + E [0p0 f (t) 4| dt + [£. (1) @, + E [0 f () D] | dW,
Uy = 0" [M, (21, Poy) + B [0 M (@1, Poy, 77)]|
—¢u (w1, Poy) ®r — B [0/ 0 (31, Pay, w7) O1]
o = 0”7 [~y (yo, Pyo) — E |04 h(Go, Py 10)] |

—

(3.19)

where

T
@Tz/o L(t)dt + M (zr, Pay) + h (40, Pyo) + 3 ¢ (72,7

1>1

Clearly, under (H1) and (H2), there exists a unique solutions (F, Q, Q) € G%(0,T,R)x
G2 (0,T,R) x G (0,T,R); (o, B) € G2 (0, T,R) x G (0,T,R); (¥, k, ®) € G%(0,T,R) x
G7(0,T,R)xG% (0, T, R) satisfying the McKean-Vlasov equations (3.17), (3.18) and (3.19)
respectively.
Remark 3.1
N In contrast to partially observed risk-neutral studies, a notable distinction in our
findings is that the adjoint equations and variational inequalities of the McKean-
Vlasov type are significantly influenced by the risk-sensitive parameter 6 and the

impulse control.
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Theorem 3.1
Suppose (H1) and (H2) satisfies, then we have

E* [eeQT p;lpﬂ + E [969®T gH + E

i>1

0O Z ce (15, Gi) 771‘]

—HEu [HGGGT (Mm (xT7 PxT) ZE; + ]E [alljwM (xT’ Pg”T’ fT) f%ﬂ})}

+E 06707 (h (yo, Poo) vs + B [0 h(yo, P 1)) )] < 0.

Proof. Using Lemma 3.1, Taylor expansion, and the fact that e [J (u$, ¢F) — J (uy, ¢;)] <

0, we have

lime ™ [J (us, C5) — J (ug, ¢)]

e—0

= lime 'E [(pfp —pr) eGQT} + li_r>%€’1E [pET <69@€T — eoeT)]

e—0

=E {pgpeGQT} +E [pTHeGGTgH +E

PT(%H@T Z C¢ (75, Gi) 771']
i>1

TE [pr06°®7 (M, (a1, Pay) oy + B [05 M (a1, Prp, 1) 4] )]

+E [PTeee@T (hy (Y0 Pyo) Yo + E [859h(y0, Py, go)g(l)])}

=E [eeeTp}IplT} + E* {QeeeTgH + E*

0o Z ce (76, Gi) 7)@]

i>1
+E [0"07 (M, (a1, Poy) @ + E [0 M (27, Py, 27) 24))] (3.20)
+Eu [QeoeT (hy (y07 Pyo) y(l) + E [afyh(ym Pym 370)%})} S 0.
This completes the proof. O
Let the Hamiltonian function related to the stochastic control problem defined by equa-

tions (3.1)-(3.5) be given by

H(t7 m? Px?y’ Py7z7 PZ7U’ ‘II7¢7 k? a’ Q)
:\Ifb(t,x,Px,U)—@f(t,x,Px,y,Py,z,Pz,v) (321)
+ko (t,z, Pp,v) + Q¢ (t,x, Py) + al (t,z, Py, Py, 2, Py, v).

The following theorem presents the first main result of this paper.
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Theorem 3.2

(Partial necessary risk-sensitive conditions of optimality) Assuming conditions (H1)

and (H2) are met, let (x,y,z,u) denote an optimal solution to the partially ob-
served risk-sensitive optimal control problem of McKean—Vlasov type. Then, there
exist unique solution (F,Q,Q) € G3(0,T,R) x G=(0,T,R) x G7(0,T,R); (o, B) €
G%(0,T,R) x G=(0,T,R); (V,k,®) € G2(0,T,R) x G%(0,T,R) x G5(0,T,R) to
(3.17), (3.18) and (3.19) respectively, and that for all (v.,n.) € A, we have

E* {HU (t) (vy — we) /]_-ﬂ <0, a.e,a.s, (3.22)

E* Y (9,Cr, — 0., Dy, + e (13, G)) (i — G) /FL | <0, Vn €K, (3.23)

i>1

where H (t) represents Hamiltonian function defined by (3.21).

Proof. Utilizing Ito’s formula to I';9;, we have
T .
E*[rdr] = B* [ Qi[g ()} + E[07¢ (1,30 2] at. (3.24)
Employing It6’s formula to W,z; and @y}, and utilizing Fubini’s theorem, we get
T T
E' [Vra}] = E / U,b, () vedt + E* / ko (1) vedt
0 0
T ~ ~ ~ ~
~E* [ ot [6 0@ +E [0 () Q) — £(0® B [0 () B, at
T
+ ]Eu/o \Iftctdnt,
and
1 1 T 1, & [aP S Al
E" {‘I)TyT} —E* [(I)Oyo} = —E“/O o, {fx (t)z; + E [auzf (t,7) ajt] + fo (1) Ut} dt
T
— ]Eu/ @tDtd’r]t.
0
Then
E [Ura}] + E" [Pryh] — E* [@oyg] + E* [Driy] (3.25)
T T T
— E / Wb, () vedt + B / koo (1) vedt — B / . f, (t) vedt
0 0 0

T T
4R /0 U,Cydiy; — Y /0 &, Dydn;.
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We notice that

+E |00 (Br, Poy, o1) 2],
Dy = —0eO7 (h (Y0, Pyo) + E [0 h(Go, Py, w0)| ) (3.26)
Wy = 097 (M, (vr, Poy) + B[00 M (31, Py 7)) )
~¢u (o7, Poy) ®r — B[00 (7, Py, 1) O]
Substituting (3.26) into (3.25), we obtain
E* [140¢°°7 (M, (w7, Poy) + E [0F M (Z7, Pry 7)) )]
— B [2} (¢a (o7, Poy) D1 + B[00 (Br, Pry, o7) ] )|
+E" |07 (0 (w1, Poy) o7 + B 0470 (B1, Poy, 1) B1 )|
+E" [yo0e”7 (hy(yo, Pyy) + B [0 h(To, P, v0)] )| + B [0re®7]
=E" 0’7 (M, (w7, P,)) o} + E [0 M (37, Pay, wr) 7))
+ B [0°07 (hy, (yo, Pyo) b + B[00 h(Go, Py o)) )| + E* [e707 0]
— E /0 b, (1) vt + /0 koo (1) vedt — BV /0 Yo f, (1) vt

T T
B / U,Cydiyy — Y / &, Dydn,. (3.27)
0 0

From (3.20) and ¥ = p~'p', we get

1
lim= [ (uf, GF) — J (ug, &) = B ["070 | + B [0e7 g} ] + B

e—=0¢g

0o Z ce (75, G) 771']

i>1

+E [QeeeT (Mx (27, Pop) zp + E [Qfo (Zr, Per, 1) IITD]

+E" [0¢797 (hy (yo, Pyy) 06 + E [0 h(To, P, v0)30] )| < 0.

(3.28)
Substituting (3.27) into (3.28), we obtain
T T T
E* [e%07 g} ] + E / U,b, () vedt + E / ks (1) vedt — B / , f, (1) vedt
+E / U,Cydn, — B / O, Dydy + E* |3 avnee (12, GYm| 0. (3.29)
i>1
Applying once more It6’s formula to g;a; and utilizing Fubini’s theorem, we get
T
E* [gzlpa;p} = E“/ ayly (t)vedt. (3.30)
0

65



Substituting (3.30) into (3.29), we obtain
T T T T
Ev / Wb, () vidt + E / koo (1) vyt — BV / O, f, (1) vydt + E / auly (£ vrdt
0 0 0 0

+E* | ¥,.Crmi| —E + E* <0

i>1

Z q)TiDTi Up

i>1

Z Qr, Ce (Ti7 C’L) 15

i>1

Y

where

T
Eu/o (\I/tct — ®tDt) d?’]t = ]Eu

Then, we can write

£ [Hv (t) (vt - ut) /*Fty] + £ Z (quiCTi - (I)TiDTi + Qr, C¢ (Tia C’L)) (Th - Cl) /fty

i>1

<0,

(3.31)
for any v. +u. € Uyqg and (. + 1. € K.
By choosing v = 0 in (3.31), we get (3.23). If we select n = 0, then we get (3.22).
This completes the proof. U

3.4 Sufficient conditions of optimality:

In this section, we show that under specific additional concavity conditions (H3), the
necessary conditions for partially observed risk-sensitive optimal control, as described in
Theorem 3.2, are also sufficient.

The function Z : R x Q3 (R) — R is concave if, for every (%, P}), (2", P;) € R X

Q? (R) ’
= (2", PY) = E (2", PY) < Zy (2", PY) (2" — 2") + B [0°2 (2", PY) (a¥ — )] .
Here, we required an extra condition (H3), given below:

Condition (H3)

1. Function [ does not depend on (z, P,,y, P, 2, P,), and ¢(z, P;) = ¢z, where ¢ is a
constant.
2. Functions M, h are concave in (z, P,) and (y, P,) respectively.

3. Function n — ¢ (t,n) is concave.
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4. H(t, -y, U0 K, ", Q") is concave in (2, Py, y", Py, 2%, P, u).

H® (t) = H" (t) < HY () («" — ") + E [0 H" (t) (3" — 3")]

+HY () (" — ")+ E [0f H" (t) (5° — §")]
+HE (1) (2" — 2) + E [0 H" (t) (3 — 2)]
+HY () (v—u),

where H* (t) = H(t,z", P}, y", Py, 2", Py, (,¥", ®" k", a*, Q"), for ¢ = v, u.

We now introduce the adjoint equations for controlled system (3.1) as outlined below:

doy = B dWy,
ar = 0797,

drt = Qtth + Qttha
00

FT:€

and

—dW; = [ba(t)U, + B [0)7b (1) U] + 0 (D) + E [0 0 (1) ]
+& (1) Qe+ E (076 (1) Q] — fo(t)®, — B [0 £ (£) B4]] dt — kedWV,
—d®, = [f,()®, + E [0} f (t) By ] dt + [fz ), + B [0 £ (t) ]| W,
Uy = 0"°7 (M, (w7, Pry) + B [0F M (@7, Py 07)|| = 007,

(I)O = QGGGT [—hy(yo, Py0> — IE [85“h(@0, Pym yo)” .
In this cases, the Hamiltonian function defined as

H(t,z, Py, Py, 2z, P, U, 0.k o, Q)
:\I/b(t,w,Px,v)—CDf(t,x,Pm,y,Py,z,Pz,v)
+ko (t,x, Pp,v) + Q€ (t,x, Py) + al (t,v) .

Theorem 3.3

(3.32)

(3.33)

(3.34)

Let (H1),(H2) and (H3) satisfies. Suppose p’ be F) -adapted, (u.,(.) € Uyq x K be

an admissible control, and (x,y, z) represents the corresponding trajectories. Assume

that (o, B,T') and (¥, k,®) holds (3.32) and (3.33), respectively. Additionally, the

Hamiltonian function H is concave in (x, P, y, Py, z, P,,v), and
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E* {Hv (t) (vp — uy) /fﬂ <0, a.e,a.s,

E’u

i>1

Then (u, ) will be an optimal control.

Proof. For any control (v.,7.) € Usa X K, we denote by
T
Of = /0 () dt+ M (29, Poy ) + (45, Pyy) + > c () |

@%:ATp@dew@#j@)+h@&%Q+§:dmg%

then, we have
I (i) = I (ur, ) = BV ["F]| — B* %]
— B [#9F] — E [pie?®t]
TE [ppe’®F] — E [ppe®]
= E [(p — p) e’%]
+EY [fOF] — B [#OF]

By concavity property of the function M, h and ¢, (3.37) can be written as

J? () = J° (ug, ) < E [(P% — Pr) 60@%]
+EY (0% (g5 — g)]

+EY |97 Z ce (7, G) (i — G)

i>1

Z (\IITiCTi - (I)TiDn + Qr; C¢ (Th Cz)) (771' - CZ) /‘FtY < Oa Vﬁ- cek.

(3.35)

(3.36)

(3.37)

+E (070 (M, (a4, P ) +E [0F M (a4, Pay )]) (25 — o)

+E [0e°% (hy, (v, Py ) + B [05h(u, Pao)]) (08 — ut

—L+L+1s+ 1+ 1

Employing It6’s formula to (p; — p;') [} and (g7 — ¢;') o, we have

n-w|[laren-ewa),
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and ) )
T
L=E /O al (1Y (1) — 1* (1)) dt | . (3.39)
Note that
I3 = Ev Z Oé-,—iC§ (Ti7 Cl) (Th — Q) . (340)

[i>1

Utilizing [t6’s formula to (x} — ) Uy and p;®} (y; — y;'), we have

I = B () — a%) 60}

S

~E | ()~ ap) (b () W; + E [0Fb (£) Wy| + 0w (t)ky + B [017 0 (¢) Iy (3.41)

+ 6 () QTR0 (D)Q] — fu(t)® —E [0 f (t) B,]] di]
+E /OT\P?(b”(t)—b”(t))dt%E” [/Oka(UU(t)—o“(t))dt]nLE” VO WC,d (n; gt)],

and
E [p5@% (v — yi)] — E [0 D (4 [/T V=) (£, +E [0 f (1) ® Ddt]
VOT — ) (f )@, +E [0 f (1) B Ddt]
v | [To g0 - o] - | "o o)
Then

Is = =K [pp®7 (yp — yp) + E° [/OT (i = o) (S () +E [0 f (1) ) dt]
+E VOT( —2) (£ ()@ +E {85#(1&)&)4)&1
v |[lor g0 - ey - | ["opane- o) (3.42)

Noting that

Ev [AT \If;LCtd (7’]15 — <t)‘| == EU Z \IITiCTi (772 - CZ)] )

E° l/OT O} Dyd (m: — Ct)] =E" > ®. Dy (i — Cz‘)} :
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From (3.38),(3.39), (3.40), (3.41) and (3.42), we get

7 () — 1 (G < B [ (HY (0) — ¥ (1)) o
- | [ () e oty 4 B o ) a7 - a2 o
E | [ (0 - )+ B[ ) G - ) dt]

—EY /0 ' (H2(8) (2 — 2) + E [0 H" (t) (31 — 2)]) dt]

+ E” Z (\IJTiCTi - (I)TiDTi + A7, C¢ (Ti7 Cz)) (ni - gz)] ) (343)

Li>1

where
HY (1) (af — ) + E |0f H" (¢) (& — 2})]
= (@} — a}) (bo(t) Wy + 0 (t) ke + & (1) Q1 — fu(t)Dy)
+ (@ — o) (B [0fb(t) W) + B[00 () k| + E [0 (1) Q,) — E [007 F (£) 4] ) ,
and
HY () (v — ") + B [0 H" (1) (5 — 3] = 0 — u) (£, + E [0 f (£) @),
HE (1) (2" = 2) + B [0 H" (1) (3 — 2] = (5 — =) (£ () @ + B [057 f (1) 4] ).
By the concavity of the functional H in (¢,x, Py, y, Py, z, P,,v), and from (3.43) we have

J@(v 70 v T o
) = I (s, G) B [ H, (1) (0 = w) e

+E”

Z (\Ijncﬂ' - (I)TiDTi + Qr, C¢ (Ti7 CZ)) (ni - Cl)]

i>1

T
<E / pVH, (8) (v, — up) dt
0

+E

ZP% (UrCr, — D, Dr, + e (T3, G)) (i — Cz)]

1>1

< IE/OT]E [0 H, (8) (v — ) JF) ] dt

+E

ZP% (VrCr, — .. Dr, + aree (13, G)) (0 — G) /‘FtY] .

i>1

Since p; > 0, and utilizing condition (3.35), (3.36) we obtain
J? (v, m) = J° (ug, ) <0,
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that is (u, () is an optimal control. O

3.5 Application to LQ risk-sensitive control problem

3.5.1 Partially observed LQ risk-sensitive optimal control prob-

lem

In this subsection, we apply the partial necessary risk-sensitive optimality conditions from
Theorem 3.2 to examine a mean-field type partially observed linear-quadratic (LQ) risk-
sensitive optimal control problem. Let U = R. The dynamic state is described by the
following mean-field type forward-backward stochastic differential equation
dwy = (Alz, + ATE [x,] + Ajvi) dt + (Bla, + BPE [2)] + Bjv) dW, + Cldn,
—~dy, = (D}x, + D}E [z,] + D}y, + D{E[y] + D}z + D{E[z] + D]v,) dt — zdW; + Cdn,,
z (0) = zo, yr =0,

and the observation stochastic equation satisfies

dY, = Gydt + dW,,

Yo =0,
where
b(t, x", Ppon,vy) = Alx, + AZE [z;] + Adv,,
o(t,z]", Ppon,vy) = Blw, + BE [z,] + B}v,,
Gy =¢ (t, xy" Px;un) ,
C =C},
D, =C;,
and

f(tvw;}m7Px;”nvyz)’n7pyf’nvzzjmaPz:’"»”t) = Dtlxt_’_DtQE [l‘t] _’_D?yt—i—DfE [yt]

+ D32 + DOE [2] + D!v;.

Here, ), -)) > 0, and the coefficients A’ (-), B* (-), D’ (-), G (-) are bounded an
(c'().c2()) d the coefficients A (-), B'(-), D (-),G () are bounded and

deterministic functions forv=1,...,3and j=1,...,7.
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We specify the cost functional in the form of an expected exponential function as follows

J(v,n) =E°

0 T
exp§ (:c%%—y% —i—/o Rw?dt—l—Z?ﬁ)] .

i>1
Assume that (u., () € A represents optimal control and (z,y, z) represents the corre-
sponding trajectory. Denote by
1 T
Or =3 (a:QT+y§ +/O RtufdtJrz;Cf) :
The corresponding adjoint equations of mean-field type which depend on the risk-sensitive

parameter is given by
dl'y = Qtth + Qttha

o (3.44)

FT =€
—dU, = (Atl\llt + A’E [W,] + B}k, + BE [k,] — D} ®, — D’E [@t]) dt — kdW,,
~d®, = (D}®, + DIE[®,]) dt + (D}@, + DIE[®,)) dW,

Uy = 0971,

®g = 0e”°T (—yp)
(3.45)

where @Q; and (W, @4, k;) are adjoint processes satisfy (3.44) and (3.45), respectively.

In this case, the Hamiltonian function is defined as follows

H(tv z, E ['It] > Ut E [?/t] s 2ty E [Zt] » Ut, \I[tv (I)tv ktv Q, Qt)
= \Dt (A%.I’t -+ A?E [fﬂt] -+ A?’Ut> + k (Btlaft + BtZ]E [.Tt] + B?Ut> + Gt@t
1
—®, (Dtlfl?t + D{E [2] + Djy, + D{E [y,] + Dz + DE [2] + Dth) + §athUt2-
(3.46)

Theorem 3.4
Suppose (H1) and (H2) satisfies, and Q; and (U, &y, ki) are F-adapted solutions of

(3.44) and (3.45), respectively. Consider (u, () as optimal, then the maximum principle
E [(APW, + Bk — DI®, + anRyuy) (v — ) JFY] <0, ae. t €[0,7], P~ as,

E Z (\IszC; - CI)TZCEZ + O‘TiCz‘) (nz - Cz) S 07

i>1
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holds, for all (v.,n.) € A.

Remark 3.2
By Theorem 3.4, (u,() can be stated as

1
T TR, <A§’\Ijt + Bk — DZ@) , .., a.s.
1
G=- ((I)TZC?_Z - \I]TZC}') ,Vi>1, a.s.

O,

3.5.2 Fully observed LQ risk-sensitive optimal control problem

In this subsection, we investigate the maximum principle for a fully observed risk-sensitive
optimal control problem and, using the findings from Theorem 3.4, derive an explicit
formula for the optimal control.

We examine the following mean-field type forward-backward system
dx; = Alusdt + BluydWy,
—dy, = (D}y + D{E [y] + D}z + DJE [2] + D]v,) dt — zdW,,
z(0) =z9, yr =0.

We will find the optimal control u such that

J(u) = max E[exp 8 (zr + yo)] -

v.€EUqq

Here, Hamiltonian function (3.46) is defined by

H(t,x,Elze], ye, Eye] , 20, E [21] , vg, Uy, Py, Ky) (3.47)
= A’W, + Blkv, — @, (nyt + D!E [y,] + D}z + DPE [z] + DZUf) ,

where the adjoint equation (3.44) disappears.

The related adjoint equations, which depend on the risk-sensitive parameter, are expressed

as follows
AV, = kdWy,

P, = (D}®; + D{E[Dq]) dt + (D}®, + DIE[®q]) dW,
Uy = gee(ITﬂ/o)’

O = 969($T+y0) .
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According to Theorem 4, we deduce that

A2, + Bk, — D] ®; = 0. (3.48)

We suppose
\I]t = 7Tt€6(xt+yt)7 (349)
Dy = puyef @, (3.50)

where 7; and pu; are deterministic functions which are to be determined.

Now, applying [t6’s formula to (3.49), we obtain

AV, = (m; +m8 (Ajw, — Dy, — D{E [y] = D}z — DIE [=

1 (3.51)
— Dlu; + 26233%)) @Vt + 1,0 (Bf’ut + zt> @) g,
Comparing the coefficients of (3.49) and (3.51), we have
™y + m (Afut — Djy: — D{E [ys] — D}z
— DJE [%] — Dju; + 0zB}u;)) = 0, (3.52)
™ = ‘9,
and
ky =m0 (Bfut + zt) el (@etue), (3.53)

Similarly, utilizing 1t6’s formula to (3.50), we get

1y + 10 (A?Ut — D}y, — D{E[y] — D}z — D{E [2] — Dju; + 923?%) I@itue)
+D;®; + D/E[P,] =0

po = 0.
(3.54)
By substituting (3.49), (3.53) and (3.50) into (3.48), the optimal control, which is fully

observed, can be represented in the state feedback form

1

~ 5B (Am — D + Bimz) , (3.55)
t =t

Uy =

where 7; and g holds (3.52) and (3.54), respectively.
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Conclusion

n this thesis, we have investigated stochastic optimal control problems in two different
topics. In the first one, we have proved the stochastic maximum principle for a
partially observed optimal control problem of forward-backward stochastic differential
equations governed by both a family of Teugels martingales and an independent Brownian
motion in which the control domain is convex. As an application of the general theory,
a partially observed linear-quadratic control problem of McKean—Vlasov type is studied
in terms of stochastic filtering. The second one, we have investigated the maximum
principle pertaining to risk-sensitive optimal control problems under partial observation,
modeled by FBSDEs of the general McKean—Vlasov equations. The control variable
consists of two components: a continuous control and an impulse control. The cost
functional is an exponential of integral type based on the regularity McKean—Vlasov
framework. Moreover, the sufficient conditions of optimality are obtained under certain
concavity assumptions. As an application, the main outcomes are used to solve a linear-
quadratic risk-sensitive optimal control problem of the regularity McKean—Vlasov type,
both under partial and full observation conditions.

Following this study, several perspectives are considered:

o Study the risk-sensitive optimal control problems for systems governed by both a

family of Teugels martingales and an independent Brownian motion.

o Explore the risk-sensitive optimal control problems under partial observation, mod-
eled by fully coupled FBSDEs of the general McKean—Vlasov equations, which could

have valuable applications in finance.
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