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Abstract 

 

This work presents a new high-order shear deformation theory using the enhanced 

Timoshenko beam theory (ETBT) to analyze FGM beams' behaviors. The developed 

model exhibits a quadratic distribution of shear stress along the thickness and meets the 

zero-shear stress condition at both the top and bottom surfaces of the beam without using 

the shear correction factor. Based on the proposed model, a two-nodded finite element is 

formulated to analyze FG and sandwich beams' static, buckling, and free vibration 

behaviors. This element has only three unknowns, unlike other higher-order models, 

which use a great number of variables. The stiffness and geometrical matrices have been 

derived using the principle of total potential energy. The concept of a physical neutral axis 

is introduced to avoid the stretching-bending phenomenon. The accuracy and the 

performance of the proposed model have been confirmed through comparisons with the 

results of the existing literature. In addition, the effect of the power law index, length-to-

thickness ratio, and boundary conditions on displacement, stresses, critical temperature 

and buckling load, and natural frequencies is investigated. The obtained results indicate 

that the formulated finite element is reliable for predicting the static, buckling, and free 

vibration behaviors of FGM beams. 

Keywords: Functionally graded materials, beams, Static, buckling, free vibration, 

Timoshenko beam theory, Finite element method, Neutral axis. 
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 ملخص 
 

 المحسّنةیقدم ھذا العمل نظریة تشوّه قص جدیدة عالیة الدرجة باستخدام نظریة عوارض تیموشینكو  

سلوك العوارض المتدرجة وظیفیاً. یظُھر النموذج المطور توزیعاً تربیعیًا لإجھاد القص على   لتحلیل

طول السُمك ویفي بشرط إجھاد القص الصفري عند كل من السطحین العلوي والسفلي للعارضة دون 

محدود ثنائي العقد استخدام معامل تصحیح القص. استناداً إلى النموذج المقترح، تمت صیاغة عنصر  

الا السلوكیات  والعوارض   ستاتیكيلتحلیل  وظیفیاً  المتدرجة  للعوارض  الحر  والاھتزاز  والالتواء 

الدرجة   ذات  النماذج الأخرى  النموذج على ثلاثة مجاھیل فقط، على عكس  یحتوي ھذا  الساندویتش. 

مصفوفات  اشتقاق  تم  المتغیرات.  من  كبیرًا  عدداً  تستخدم  والتي  والمصفوفات    الأعلى،  الصلابة 

لتجنب   الفیزیائي  المحاید  المحور  مفھوم  إدخال  تم  الكلیة.  الكامنة  الطاقة  مبدأ  باستخدام  الجیومتریة 

الدراسات   نتائج  المقترح من خلال مقارنات مع  النموذج  تأكید دقة وأداء  تم  التمدد والانحناء.  ظاھرة 

تأثیر مؤشر قا تم دراسة  القوة ونسبة الطول إلى السماكة والظروف  السابقة. بالإضافة إلى ذلك،  نون 

التواء الحرج والترددات الطبیعیة.  الحدیة على الإزاحة والإجھادات ودرجة الحرارة الحرجة وحمل 

بالسلوكیات   للتنبؤ  یمكن الاعتماد علیھ  المقترح  النموذج  أن  إلى  الحصول علیھا  تم  التي  النتائج  تشیر 

ً  الاستاتیكیة والالتواء والاھتزاز  .الحر لعوارض المواد المتدرجة وظیفیا

 

المفتاحیة: وظیفیاً،    الكلمات  المتدرجة  الاھتزازالثبات ،  الانحناء  العوارض،المواد  نظریة   ،الحر ، 

 .عوارض، طریقة العناصر المحدودة، المحور المحاید للتیموشینكو 
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General Introduction  

 

In the pursuit of developing super-heat-resistant materials, Japanese materials scientists 

proposed the concept of Functionally Graded Materials (FGMs) in the early 1980s. These 

materials, microscopically heterogeneous and typically made up of isotropic components 

such as metals and ceramics, were initially conceived as thermal barriers for aerospace 

structures and fusion reactors. Compared with traditional composites, FGMs offer various 

advantages, such as ensuring a smooth transition in stress distribution, minimizing or 

eliminating stress concentration and increasing bond strength along the interface of two 

different materials. On the other hand, over the past two decades, FGMs have been widely 

applied in modern industries including aerospace, mechanical engineering, electronics, 

optics, chemistry, biomedical, nuclear and civil engineering, to name but a few. Motivated 

by these engineering applications, FGMs have also attracted intensive research interest, 

mainly focused on their static, dynamic and stability behaviors. Furthermore, structural 

elements such as beams, plates and shells are commonly used. Consequently, 

understanding their behavior is necessary for practical applications. 

Thesis objective  

This doctoral research aims to develop a new model and numerically analyze functionally 

graded and sandwich beams behaviors through different parameters and boundary 

conditions, with a particular focus on improving the accuracy and predictive capabilities 

of the proposed model. 

Thesis organization  

This thesis is presented in two main parts: 

Part one: Literature review  

The first chapter discusses FGMs, covering their fundamental characteristics, historical 

development, and type of gradation. It also explores different categories of FGMs such as 

Chemical Compositional, Porosity, and Microstructural Gradation, and examines 

processing methods and material gradation rules essential for designing and modeling 

FGM properties. 
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In chapter two, initially we presented the most employed theories in analyzing and 

modelling FGM beams, as well as an overview of the approaches, theories and various 

models use to analyze the behaviors of FG and sandwich beams.   

Part two: Development of new finite element model based on enhanced Timoshenko 

beam theory 

The third chapter is dedicated to theorical development of new enhanced Timoshenko 

beam theory (ETBT) for analyzing FGM beams. The proposed model uses three 

unknowns, incorporates quadratic shear strain distribution, and meets zero shear stress 

conditions. As well as, formulating a new finite element for the static, buckling, and free 

vibration responses considering thermal effects and material properties variation through 

the depth. 

The fourth chapter conducts  numerical  analysis of the developed ETBT model, 

assessing its convergence, accuracy, and stability. It explores various FG beams response 

including static, buckling, and free vibration behaviors. The model is validated by 

comparing results with existing research and examining the influence of different 

parameters on FG beams behaviors   

The fifth chapter presents numerical examples evaluating the developed finite element’s 

performance in analyzing FG sandwich beams. Focuses on buckling and free vibration 

behaviors. The results are validated against existing literature, with an exploration of how 

parameters like support conditions and length-to-depth ratio influence beam 

characteristics. 

This research end with a general conclusion, encompassing the research problem, primary 

objectives, and key findings, complemented by potential future research directions. 
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Chapter 1:                                  
Functionally Graded Materials  

1.1.  Introduction 

Functionally Graded Materials or FGMs, are innovative kinds of engineered materials that 

maintain their properties and structural integrity in extreme conditions. Unlike other 

composites, in FGMs the composition changes gradually from one to another. 

The concept of Functionally Graded Materials and their fundamental characteristics has 

been presented in this chapter. This is followed by a brief background, tracing the 

development of FGMs from their conceptual origins to their current state-of-the-art 

applications. Various types of FGMs are based on gradation, including Chemical 

Compositional Gradation, Porosity Gradation, and Microstructural Gradation. Each type is 

discussed in detail. A variety of processing methods for FGMs is also presented along 

with material gradation rules, which are important for modeling and designing the 

effective properties in FGMs.  

1.2. Functionally graded material: Definition 

Functionally Graded Materials are a new class of advanced composites known by gradual 

variations in composition, structure, and/or specific properties over one or more 

dimensions of the material [1, 2]. This unique attribute distinguishes FGMs from 

traditional composite materials, which typically exhibit abrupt transitions between distinct 

layers or components.  

FGMs are inspired by nature, where many biological structures, such as teeth, bones, and 

bamboo, demonstrate gradual changes in density and composition to optimize their 

performance under varying conditions [3]. Inspired by these natural designs, materials 

scientists have created FGMs to address complex challenges in fields such as aerospace, 

biomedical, electronic, and other fields [4]. 
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Figure 1.1 Schematic illustration of (a) FGM and (b) traditional composite material [5] 

 
Figure 1.2 Examples of FGM in nature [6] 

The principle of functionally graded materials is the variation of material properties, 

which can be tailored to meet specific performance requirements. This gradation can occur 

in terms of chemical composition, microstructure, porosity, or a combination of these 

factors [7, 8]. The result is a material that can exhibit a seamless transition from one set of 

properties to another, allowing for optimized performance across different regions of the 

same component [9]. 

 
Figure 1.3 Material properties and structures of tradition composite and FGMs [10]  
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1.3. The Evolution of Functionally Graded Materials 

The origins of FGMs go back to the 1980s, when material scientists started looking at 

ways of overcoming conventional composites limits. The initial inspiration came from 

Japan in 1984, when a spaceplane project required materials capable of resisting extreme 

temperature gradients of 1000 K to 2000 K at a thickness of less than 10mm [11].  

Back in 1987, The term "Functionally Gradient Materials" was introduced as part of a 

national project on thermal barrier materials in Japan [2, 12]. This was the official birth of 

FGMs as a distinct field of study. During that time, the focus was on developing 

theoretical models and exploring potential applications, particularly in the aerospace and 

nuclear industries [11]. 

The 1990s saw substantial growth in FGM research on the global scale. During this 

decade, there was an increase in theoretical developments, experimental studies, and 

practical applications of FGMs. Researchers around the world have achieved significant 

progress in understanding the behavior of these materials under different conditions, 

focusing in particular on thermal stresses and mechanical properties [5, 13]. Further 

understanding of FGM behavior has led to more sophisticated designs and processing 

methods [14].  

In the early 21st century, significant improvement has been made in FGMs fabrication 

technologies. Scientists have developed new methods and enhanced existing ones to 

produce FGMs with more complex structures and property distributions [3, 15]. Vapor 

deposition, centrifugal casting, and Powder metallurgy methods were refined for FGM 

production. These advances allowed for the creation of FGM structures with better 

performance and characteristics [16]. 

Today, FGM research continues to develop, focusing on nano-scale gradation and the 

integration of smart materials. Additive manufacturing has opened up new ways of 

creating complicated FGM structures [17, 18].  
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Figure 1.4 Metallic example of FGM [19] 

1.4. Types of Functionally Graded Materials 

The original concept behind Functionally Graded Materials emerged as a response to the 

limitations of conventional composite materials. The primary goal was to eliminate the 

abrupt transitions between different material components, replacing them with gradual, 

continuous changes in composition or structure. As research in this field has progressed, a 

diverse array of FGM types has been developed. The specific requirements of each 

application typically dictate the selection and design of appropriate FGM variant. 

1.4.1. Chemical Compositional Gradation 

Compositional gradation involves a systematic change in chemical composition across the 

material's volume or surface. This type of gradation allows for the seamless integration of 

materials with vastly different properties, such as ceramics and metals [8]. The application 

of chemical compositional gradation in thermal barrier coating in turbines [18]. 

Key features of compositional gradation include: 

- Gradual transition from one material to another. 

- Continuous or stepwise variation in constituent ratios. 

- Ability to combine materials with contrasting properties. 

1.4.2. Porosity Gradation 

Porosity gradation involves controlled variation in pore size, shape, or distribution 

throughout the material. This approach allows engineers to tailor density, permeability, 

and mechanical properties while maintaining a constant chemical composition [20]. 
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Characteristics of porosity gradation include: 

- Systematic change in porosity percentage or pore size across the material. 

- Control over structural properties without altering composition. 

- Influence on density, permeability, and mechanical properties. 

Porosity gradation has found particular success in biomedical applications, especially in 

the design of bone implants. Miao and Sun [20] review revealed that porosity gradients 

can significantly enhance cell attachment and proliferation in bone implants, with optimal 

pore sizes ranging from 100-400 μm . 

 

Figure 1.5 3D model of gradient structure of trabecular bone [21] 

1.4.3. Microstructural Gradation 

Microstructural gradation focuses on changes in the material's internal structure, such as 

grain size, phase distribution, or crystal structure. This approach offers a powerful means 

to influence mechanical, thermal, and electrical properties without necessarily altering the 

material's chemical composition [22]. 

Key aspects of microstructural gradation include: 

- Gradual variation in microstructural features across the material. 

- Applicability to single-phase or multi-phase materials. 

- Influence on thermal, mechanical, and electrical properties. 

The concept of microstructural gradients in materials was pioneered by Bever and Duwez 

[23], whose work on graded martensitic structures in steel laid the foundation for modern 

microstructural gradient design in high-performance alloys. 
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Figure 1.6 A schematic of graded microstructure [24] 

1.5. Processing technique of functionally graded materials 

Functionally graded materials manufacturing methods play a pivotal role, commanding 

significant attention from researchers. FGMs can be produced as either surface coatings or 

bulk materials. When applied as thin layers on material surfaces, FGMs aim to enhance 

the substrate's surface characteristics. Alternatively, in their bulk form, FGMs display 

property variations throughout their entire volume. To address the diverse needs of FGM 

production, researchers have developed various fabrication techniques. These methods are 

tailored to create either gradient surface coatings or bulk materials with continuously 

varying properties. 

1.5.1. Vapor Deposition methods 

Vapor deposition encompasses several distinct methodologies, notably Physical Vapor 

Deposition (PVD), Chemical Vapor Deposition (CVD), and sputter deposition. These 

approaches are employed in the application of gradient surface layers, yielding superior 

microstructural characteristics. However, their application is confined to thin-film 

coatings. Moreover, these techniques are characterized by high energy consumption and 

generate toxic gaseous byproducts [25-27]. Figure 1.7 present Schematic diagram of PVD 

technique and Figure 1.8 depict the experimental configuration utilized for preparing FGM 

by CVD.   
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Figure 1.7 Schematic diagram of PVD technique [6] 

 
Figure 1.8 Schematic diagram of CVD  Setup [26] 

1.5.2. Centrifugal Method 

The centrifugal method for producing functionally graded materials (FGMs) shares 

similarities with centrifugal casting techniques. This approach leverages gravitational 

forces, enhanced by the rotation of a mold, to create bulk FGMs [28, 29]. The key 

mechanism behind this method is the exploitation of density differences between 

constituent materials. As the mold spins, materials with varying densities naturally 

separate and distribute themselves along a gradient. This phenomenon is the cornerstone 

of the centrifugal method's ability to generate functionally graded structures. The resulting 

material exhibits a gradual change in properties and composition across its volume, 

directly influenced by the centrifugal forces acting on the constituent materials during the 

fabrication process [8, 30]. While this technique is limited to producing cylindrical shapes. 
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Figure 1.9 Centrifugal casting machine [31] 

1.5.3. Powder metallurgy method 

Powder metallurgy (PM) represents one of the oldest manufacturing processing for 

component production, and has recently found new application in the fabrication of FGMs 

[32]. Its extensive capabilities have propelled PM to the forefront of FGM production 

methods. As a solid-state process, PM stands out in creating bulk FGMs with 

discontinuous gradient properties [33, 34]. This approach is particularly valuable when 

discrete changes in material composition or structure are desired across the component's 

volume. 

 The PM method for FGM production typically involves four essential phases [35, 36]: 

- Mixing: Combining various powder materials to achieve specific compositional 

ratios. 

- Stacking: Layering the mixed powders to create the desired gradient structure. 

- Pressing: Applying pressure to compact the layered powders into a coherent form. 

- Sintering: Heat-treating the compacted material to bond particles and enhance 

properties. 

 
Figure 1.10 FGMs Fabrication process by PM [36] 
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1.5.4. Additive manufacturing methods 

Additive manufacturing (AM) techniques have recently gained prominence in the 

fabrication of FGMs, Revolutionizing traditional metal production approaches. These 

methods employ sophisticated layer-by-layer machinery, significant departure from 

conventional molding processes [37], as illustrated in Figure 11. 

 

Figure 1.11 AM methods concept [37] 

AM methods have recently gained traction in diverse applications, including aerospace,  

robotics, medical application, Architectural design, and Automotive industry. These fields 

increasingly demand materials with gradient properties, which AM can effectively 

produce by processing a range of diverse materials [38].  

Several AM methods have emerged as particularly suitable for fabricating FGMs with 

discrete gradient. These include: 

- Material jetting: Depositing droplets of material with high accuracy [39]. 

- Laser-based methods: Utilizing lasers for precise material deposition [40]. 

- Stereolithography: Employing light to solidify curable resins layer by layer [41]. 

- Fused deposition modeling (FDM): Often called fusion deposition simulation, 

this method extrudes and fuses thermoplastic material [42].  
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Figure 1.12 Schematic of a) Material jetting method [43].  b) Laser-based method [44].    

c) Stereolithography [45]. d) Fused deposition modeling [46] 

1.6. Rules for material gradation  

Functionally graded materials (FGMs) are characterized by a gradual transition in 

structure from one material to another, resulting in a continuous variation of properties 

throughout the material [47, 48]. The property variations in FGMs are typically modeled 

using several mathematical approaches, which are Sigmoid law, Exponential law, and 

Power law. Figure 1.13 illustrates the geometry and coordinate systems commonly used in 

the analysis of FG and sandwich beams. 

 
Figure 1.13 Schematic of FGM beams A) single layer FG beam. B) FG sandwich beam 

with homogenous core. C) FG sandwich beam with FGM core [48] 



Chapter 1: Functionally Graded Materials 
 
 

14 
 

1.6.1. Power law  

The power-law (P-FGM) formulation has gained significant traction among researchers in 

the field of functionally graded materials. It is extensively employed for modeling and 

analyzing FG and sandwich beams.  

For FGM beams with properties varying along the thickness, the power-law can be 

expressed as [49] :  

 ( )2 1 2( ) cP z P P P V= + −  (1.1) 

Where P is the material property.  

The distribution of constituent materials in P-FGM can be quantified using the following 

volume fraction Vc expression [15]: 

• Case of FG beams (type A): 

 1( )       ,
2 2 2

p

c
z h hV z z
h

   = + ∈ −      
 (1.2) 

 
Figure 1.14 Distribution of volume fraction across the thickness of P-FGM beam 

1.6.2. Exponential law 

The exponential law (E-FGM) has found widespread application in fracture mechanic 

research. Numerous studies have employed this law to analyze both the static and dynamic 

characteristics of structures composed of FGM [50]. The E-FGM law is given by: 
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  +  

  =  (1.3) 

 
Figure 1.15 Distribution of Young’s modulus across the thickness of E-FGM beam 

1.6.3. Sigmoid law 

The sigmoid law is a specialized material distribution model for bilayered functionally 

graded materials (S-FGMs). It combines two power-law functions to create a smooth 

property transition between layers [51]. Developed by Chung and Chi[52], this law 

addresses the stress discontinuity issue at layer interfaces that occurs with simple power-

law models. By using two distinct power-law functions, the sigmoid law ensures stress 

continuity across the entire beam structure, improving the accuracy of stress predictions in 

bilayered FGM components. The two functions of S-FGM are expressed as follows: 

 
1

2

1 21 1       0,
2 2

1 21           ,0
2 2

p

c

p

c

z hV z
h

z hV z
h

   = − − ∈      

   = + ∈ −      

 (1.4) 
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Figure 1.16 Distribution of volume fraction across the thickness of S-FGM beam 

 

1.7. Conclusion 

This chapter has presented a definition and the evolution of functionally graded materials. 

The various types of  FGMs and their areas of application have been introduced. The main 

types of FGMs are chemical composition gradation, microstructure gradation, and 

porosity gradation. The different methods used to manufacture FGMs are discussed. These 

include Vapor Deposition methods for thin coating FGM; powder metallurgy, centrifugal 

methods, and additive manufacturing methods for bulk FGM.  The gradation laws such as 

power law, exponential law, and sigmoid law, essential for characterizing the effective 

properties of functionally graded materials, are presented in this chapter. 
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Chapter 2:                                        
Theories for analyzing FGM beams 

2.1. Introduction 

Functionally Graded Materials are advanced engineering composites combining different 

materials like ceramics and metals to create innovative structural elements. These 

materials offer superior performance in beams, plates, and shells, providing exceptional 

thermal stress reduction and high-temperature resistance. FGMs are typically modeled 

using multiple beams such as Euler-Bernoulli, Timoshenko, and higher order shear 

deformation theories enabling precise analysis of their behaviors. This chapter provides a 

comprehensive review of existing beams theories and researches focused on static, 

vibration, and buckling analyses of functionally graded beams. 

2.2. Euler-Bernoulli beam theory 

Euler-Bernoulli beam theory (EBBT) or classic beam theory (CBT), is the most used 

theory by engineers. This was theory developed between 1750 and 1753 by Leonhard 

Euler and Daniel Bernoulli [1] for thin beams. EBBT neglects the shear strain and posits 

that the cross-section of the beam rests orthogonal to its central axis after deformation. 

Moreover, it assumes that the cross-section remains planned in deformed state [53], see 

Figure 2.1.  the displacement field of EBBT is defined as: 

 
0

0

0

( , ) ( , )

( , ) ( , )

dwu x z u x z z
dx

w x z w x z

= −

=
 (2.1) 

 

Figure 2.1 Beam's deformation according to EBBT [54] 
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2.3. First-order beam theory 

First-order shear deformation theory (FSDT) also called Timoshenko beam theory (TBT). 

it overcomes the limitation of the classic beam theory by considering the effect of 

transverse shear stress [55]. FSDT was first introduced by Stephen Timoshenko in 1921 

[56]. This approach rests on the principle that although the beam’s median line preserves 

its straightness prior to deformation, it may not retain perpendicularity to the cross-

sectional surface post-deformation (due to the effect of transverse shear) (Figure 2.2). he 

also assumed that the normal stress yσ  is negligible compared with the other components 

of the stress tensor [57-59]. The displacement field of the TBT can be written as: 

 
( ) 0

0

, ( , ) ( , )
( , ) ( , )

xu x z u x z z x z
w x z w x z

ϕ= +

=
 (2.2) 

From equation (2.2), we can see that the displacement components (u) vary linearly along 

the y axis, while the transverse displacement component (v) is constant. This will lead to a 

constant shear stress/strain through the depth of the beam , whereas, according to the 

theory of three-dimensional (3D) elasticity, the shear strain are rather quadratic across the 

thickness [60]. This limitation is corrected by the introduction of so-called shear 

correction factors (SCF). 

 

Figure 2.2 Kinematic of Timoshenko beam theory [61] 

2.4. High-order beam theories 

The limitation of EBBT and FSDT led researchers to develop refined approaches named 

High-order shear deformation theory (HSDT), these theories provides nonlinear 

distribution of shear stress along the beam thickness, making shear correction factor 

unnecessary [62-65]. Figure 2.3 shows the deformation of beam according to EBBT, 

FSDT, and third-order shear deformation theory (TSDT) [66]. 
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Figure 2.3 Comparison of beam deformation according to CBT, FSDT, and TSDT [66] 

Many researchers have developed HSDT utilizing a power series-based approach (Taylor 

series expansion) to represent the displacement field. Equation provides the general 

expression for the displacement field [67, 68]. 

 ( ) 1 1, , , ...j j j j j n j n
i i i i iu x y z t u y y yϕ ϕ ϕ+ + + += + + + +  (2.3) 

 Where { }, ,i x y z=  and j denotes the order or the power level of the theory. 

For example, the Classique beam and Timoshenko beam theories corresponds to the 

power series up to the order j=1.  

Stephen and Levinson [69] have tried to enhance the kinematics of Timoshenko by 

proposing the second-order shear deformation theory (SSDT) utilizing the same governing 

equation of FSDT but it contains two coefficients.  The displacement field of SSDT is 

usually written as: 

 
( )
( )

2
0

0

, ( , ) ( , ) ( , )

, ( , )
x xu x z u x z z x z z x z

w x z w x z

ϕ κ= + +

=
 (2.4) 

xκ  represent second order function. 
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 The third-order shear deformation theory (TSDT) is an extension of EBBT and FSDT. 

The displacement field of TSDT contains terms up to the third-order of z [70, 71], which 

can be described as:  

 
2 3

0

0

( , ) ( , ) ( , ) ( , ) ( , )
( , ) ( , )

x x xu x z u x z z x z z x z y x z
w x z w x z

ϕ κ θ= + + +
=

 (2.5) 

xκ  and xθ  are high-order functions. 

As the order increases, the number of variables increase. Which often become hard to 

interpret. To reduce the number the number of unknowns, researchers used the condition 

of zero shear strain at the upper and the lower face of the beam [59, 72]. Based on this 

simplification the displacement field can be rewritten as follows: 

 
0 0

0

0

( , ) ( , ) ( )

( , ) ( , )

x
w wu x z u x z z f z
x x

w x z v x z

ϕ∂ ∂ = − + + ∂ ∂ 
=

 (2.6) 

The distribution of shear strain along the beam’s depth is determined by the shear function

( ) f z . Furthermore, Levinson’s TSDT displacement field can be derived using the 

following function: 

 
3

2

4( )
3

zf z
h

= −  (2.7) 

Reddy [64] introduced an alternative TSDT by considering: 

 
2

2

4( ) 1
3

zf z z
h

 
= − 

 
 (2.8) 

Touratier [73] Developed The sinusoidal shear deformation theory (SSDT), which is 

obtained by taking: 

 ( ) sinh zf z
h
π

π
 =  
 

 (2.9) 

Soldatos [74] proposed hyperbolic shear deformation beam theory (HSDBT) by setting: 

 1( ) cosh sinh
2

zf y z h
h

   = − +   
   

 (2.10) 
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Karama et al. [65] formulated exponential shear deformation theory (ESDT) by utilizing: 

 ( )
2

2 z
hf z ze

 −  
 =  (2.11) 

Aydogdu [75] proposed a new shear deformation theory (ASDT), which is derived by 

considering:  

 ( )
( )22

ln

z
h

f z z ββ
−

=  (2.12) 

These theories have been widely used by academics for accurate predicting of FGM 

beams behaviors. The following section reviews literatures focused on the static, buckling 

and vibration behaviors of FGM beams.    

2.5. Previous research on modeling and analyzing FGM beams 

The theoretical models for FG and sandwich beams originate  from classic beam theory of 

Euler-Bernoulli, FSDT of Timoshenko, and various HSDTs developed over the time to 

improve predict the global response of these structures.  

2.5.1. Static analysis  

Static analysis of beams is fundamental withing structural engineering, where engineers 

investigate the beams response under different loads, emphasizing bending, deflection, 

and internal stress.  

While analytic solutions are important for academics to use as a benchmark when 

evaluating approximate beam theory solutions, finding an exact solution for static 

behavior of FGM beams has proven challenging due to the difficult calculation of the 

problem. Sankar [76] presented a mathematical model analyzes FG beams with 

exponential distribution of material properties along the depth based on EBBT. According 

to the obtained results, the proposed model is effective for thin beams, while thick beams 

exhibit stress concentration. Huang et al. [77] explored the bending response of FG 

anisotropic cantilever beam utilizing elasticity equations for stress analysis. The authors 

employed a polynomial-based stress function to derive stress components through 

differentiation, with functions determined via compatibility equations. Zhong and Yu [78] 

proposed an exact solution to evaluate cantilever FGM beams under different loading 

conditions using stress function for a 2D solution. Where Young’s modulus varies 
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uniformly through the depth. This study provides explicit solution for specific examples to 

validate the proposed model. Li [79] developed a unified approach to analyze dynamic and 

static behaviors of FG beams, by combining rotary inertia and shear strain effects through 

a fourth-order differential equation that encompasses EBBT. Benatta et al. [80] used 

analytical solution to investigate the static behavior of simply supported FG beam under 

uniform loads. The obtained results are presented on beam’s deflection and stresses. Ying 

et al. [81] introduced an analytical solution for analyzing the static and vibration response 

of FG Beams using 2D elasticity theory, where the material properties vary exponentially 

along the depth. A mathematical model transforms partial differential equations into 

ordinary ones using trigonometric series. The results validated were against existing 

literature. Giunta et al. [82] introduced refined theories for analyzing functionally graded 

beams, using a unified N-order formulation for displacement and deriving equations 

through nucleo approach. A Naiver solution is used to examine different examples under 

bending and torsional loads. The model’s results are validated against elasticity solution 

and 3D finite element analysis. Ma and Lee [83] presented an exact solution for nonlinear 

bending response of FG beams subjected to thermal loading. Based on nonlinear FSDT, a 

single fourth-order integral-differential equation was derived. The exact solution were 

obtained for various boundary conditions. Li et al. [84] established the relationship 

between bending solution of FG beams based on Levinson theory and their homogenous 

counterparts using CBT. Analytical expression were derived for shear forces, bending 

moment, and deflection. The validity of this approach has been proven through 

comparison with previous research. Hadji et al. [85] developed a novel HSDT for 

analyzing the bending response of FG beams without requiring correction factor, Navier 

solution is used. The efficiency of the model is validated through a comparison with the 

existing research.  Chikh [86] presented several HSDTs for analyzing static behavior of 

functionally graded beams. These theories satisfies zero stress condition on the upper and 

lower surfaces without requiring correction factor. Analytical solutions and numerical 

validation are presented for simply supported FG beam. 

Apetre et al. [87] compared various sandwich beam theories for their applicability to 1D 

FG sandwich beams. Two equivalent single-layer theories, a high-order theory, and 

Fourier-Galerkin method are evaluated and compared to FE analysis. The results show a 

excellent agreement between Fourier-Galerkin method, High-order theory, and the finite 

element solution. Venkataraman and Sankar [88] examined the displacement and stress in 
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a FG core of 1D sandwich beam and compare them to uniform core. Zenkour et al. [89] 

evaluated the static response of FG sandwich beams resting on elastic foundations. The 

beam faces are made of FGM and homogenous core. The obtained results are compared 

across different beam theories and the impacts of different parameters on stresses and 

deflection are also examined. Fereidoon et al. [90] analyzed the bending behavior of 

curved sandwich beams with FG core. In this study EBBT models the thin face, while 

HSDT is used for the core. The governing equations are solved using Fourier-Galerkin 

method. Kim and Lee [91] studied derives analytical solutions for coupled bending 

response of FG sandwich beams with asymmetric section. CBT and Vlasov theory were 

utilized for bending, and explicit expression for displacement parameters are obtained 

from equilibrium equation. Şimşek and Al-shujairi [92] investigated the static and 

dynamic behaviors of functionally graded sandwich beams employing Timoshenko 

theory. Three different sandwich beam models with various cross section and boundary 

conditions are considered. The equation of motion was solved using Newmark implicit 

time integration method.  

The analysis of FGM structures has been conducted employing diverse analytical 

methods. However, these methods yield highly accurate results. These approaches are 

restricted to basic problems with simple geometric and boundary conditions. As result, 

researchers have utilized different numerical methods such as FEM to analyze FG and 

sandwich structures. Kadoli et al. [93] applied HSDT to evaluate the bending behavior of 

FG beam, employing FEM with two distinct stiffness matrices for shear and normal 

rotations effects. Kapuria et al. [94] validate a third-order zigzag theory for functionally 

graded beams utilizing the modified rule of mixtures (MROM). This research compares 

theoretical predictions with excremental data bending response through various boundary 

conditions. The results confirm both accuracy of stress-strain transfer ratio used in MROM 

and the Zigzag model’s effectiveness in modelling FG beams mechanics. Kocatürk et al. 

[95] studied the nonlinear static behavior of cantilever FGM beams using FSDT subjected 

to uniform loading, considering large displacement and rotation, the analysis employs a 

Lagrangian element with increment displacement-based FEM. The authors examine how 

geometric non-linearity and material distribution affect displacement and stresses. 

Mohanty et al. [96] analyzed bending and dynamic behavior of FG and sandwich beams 

employing FEM based on FSDT. This work examines how different parameters effect on 

the bending and dynamic stability. Vo et al. [97]  carried out the static and vibration 
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analysis of FGM beams utilizing refined shear deformation theory (RSDT) that eliminate 

the need for SCF. The authors developed a two-nodded element Five degrees of freedom 

(DOFs) per node to solve the governing equations. Filippi et al. [98] applied the 1D 

Carrera Unified Formulation (CUF) to analyze static behavior of FG structures, using its 

hierarchical feature to generate numerous displacement theories. the virtual displacements 

principle is used to obtain the governing equations. The problem was solved via FEM. The 

research evaluate different expansions across various structural conditions. A new model 

combining finite volume method (FVM) with Timoshenko theory was introduced by Jing 

et al. [99] to investigate  bending and vibration response of FG beams. A three different 

SCF were derived utilizing Hamilton principle. The method is validated by comparing 

natural frequencies and deflection through diverse boundary condition and parameters, 

while also identifying optimal SCF. Frikha et al. [100] developed two-node element 4 

DOFs per node based HSDT for studying FGM beams. The formulation uses a discrete 

constraint for stress-free conditions and avoids C1 displacement, presenting both 

displacement and mixed formulation approaches. The mixed formulation achieves 

accurate results  even with coarse meshes, showing an excellent agreement with 

literatures. El-Ashmawy et al. [101] presented nonconventional FEM based on 

Timoshenko theory for analyzing both axially and transversally. The new model uses local  

constant property values per element, overcoming length dependency issues. This study 

includes thermal analysis in high-temperature environment. The model’s accuracy 

comparable to HSDTs. 

To investigate the static behavior FG sandwich beams numerically Vo et al. [102] 

developed an advanced quasi-3D that considers both thickness and shear effects, to 

analyze various symmetric and asymmetric beam configurations, examining how different 

material distribution and geometric parameters influence their mechanical response. 

Yarasca et al. [103] explores the bending response of FG and sandwich beams through a 

new 7 DOFs Quasi 3D model. The governing equations were developed utilizing virtual 

work principle. The kinematics variables were derived by combining cubic Hermite and 

linear interpolations. Karamanlı [104] examinate the static behavior of bidirectional FG 

sandwich beams utilizing quasi-3D and symmetric smoothed particle hydrodynamics 

(SSPH). Kim and Lee [105] studied flexural-torsional of thin-walled I-FG beam. the 

analysis consider shear and warping shear deformation, and derives governing equations 

utilizing total potential energy principle. The numerical results investigate the effects of 
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boundary conditions, material ratio, gradient index, and the shear deformation on the 

flexural torsional of the beam. Li et al. [106] proposed novel HSDT that incorporates 

stress equilibrium condition, enabling the creation of new mixed FE with independent 

force and displacement field for precise analysis of FG sandwich beams. The mixed 

element demonstrated the ability to accurately evaluate displacement and stresses. 

Koutoati et al. [107] used 2D FG sandwich beams employing FEM, to compare the 

performance of CBT, FSDT, and HSDTs in predicting static and vibration response under 

diverse boundary conditions.  

2.5.2.    Buckling analysis  

Buckling behavior is one of the crucial design aspects for beams subjected to compressive 

forces. There have been wide-ranging interest on buckling analysis of FG and sandwich 

beams, focusing on determining the critical bucking load and under different boundary 

and loading conditions.  

Aydogdu [108] analyzed buckling and free vibration of axially functionally graded beam 

employing the semi-inverse method based on EBBT. By specifying the buckling load and 

frequency, the variation of young modulus was obtained along the axial direction of the 

beam. Li and Batra [109] developed analytical relationship between critical buckling loads 

of FG Timoshenko beam and their corresponding homogenous EBBT under compressive 

load for specific boundary conditions. Rahimi et al. [110] studied the buckling of FG 

beams using an exact solution based on TBT, incorporating nonlinear strain-displacement 

relations and the effects of shear strain and rotary inertia. Nguyen et al. [111] introduced a 

FSDT for investigating buckling, vibration, and bending behaviors of FG beams, deriving 

an enhanced shear stiffness formulation and  SCF using analytical solution. Huang et al. 

[112] carried out the buckling behavior of axially FG and  non-uniform Timoshenko 

beams using a, approach based on auxiliary functions and power series. A system of linear 

algebraic equations is used to determine the critical buckling loads under various boundary 

conditions. Trinh et al. [113] presented an exact solution to analyze buckling and vibration 

behaviors of FG beams subjected to mechanical and thermal loads, considering different 

boundary conditions. Şimşek [114] analyzed the buckling behavior of 2D FGM beams , 

with properties varying in both thickness and axial directions according to power-law. 

Based on TBT the critical buckling load is obtained utilizing Ritz method. Sayyad and 

Ghugal [115] proposed a modified ESDT for evaluate buckling, bending, and free 
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vibration of FG beams. This theory captures higher-order variation of shear stress across 

the depth, while satisfying traction-free conditions, without requiring SCF. 

Kahya and Turan [116] introduced FE model for analyzing Buckling and free vibration 

response of FG beams. The governing equation were obtained using Lagrangian 

relationships. A refined zigzag theory (RZT) was developed by Farhatnia and Sarami 

[117] based on FEM to study buckling and static behavior of thick FG beams. Unlike 

layerwise theories, the proposed model doesn’t need SCF and the number of the variables 

is independent of the number of layers. Carrera and Demirbas [118] carried out the 

nonlinear bending and buckling of 1D FG beams utilizing CUF combined with 

Lagrangian Extension (LE) and the material properties were assumed to vary 

exponentially. Demirhan [49] studied the buckling behavior of FG Timoshenko beam 

under various boundary conditions. This study examines the influence of various 

parameters and boundary conditions on the critical buckling load.  

Eslami et al. [119] carried out thermal buckling of FG beams , deriving the equilibrium 

and stability equations using 1D elasticity theory. A close form solution for critical 

thermal loads are obtained for beams with six different boundary conditions. Kiani and 

Eslami [120] investigated the buckling response of FGM beams under different thermal 

loading types using an analytical solution. The analysis is based on EBBT with material 

properties varying across the thickness according to the power law. Wattanasakulpong et 

al. [121] employed an enhanced TSDT to analyze thermal buckling and vibration of FG 

beams, using the Ritz method to solve the problem. Kiani and Eslami [122] analyzed the 

buckling behavior of FGM beams using TBT under thermomechanical loading, 

considering temperature-depending. Closed-form solution for critical temperature were 

derived for diverse boundary conditions. She et al. [123] focused on predicting thermal 

buckling of FGM beams employing different beam theories. the analysis considers for 

temperature depending properties under uniform temperature rise. A two-step perturbation 

method is utilized to evaluate critical temperature of FGM beam with clamped ends. 

Alimoradzadeh et al. [124] analyzed the thermal buckling temperature and nonlinear 

vibration of FG fiber reinforced beam, using EBBT and accounting for Von Karman 

geometrical nonlinearity. The nonlinear differential equations are discretized using 

Galerkin method and solved analytically for three different boundary conditions. Gayen 

[125] carried out an analytical method to study thermo-elastic buckling and vibration 
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response of FG beams using various gradation laws. The material properties are 

temperature-depending, and the equations of motions are determined using Hamilton 

principle. To understand the impact of geometric and temperature parameters on  thermo-

elastic buckling and vibration a parametric study is conducted. 

Nguyen et al. [126] introduced a new HSDT for analyzing buckling and vibration behavior 

of FG sandwich beams, featuring a hyperbolic distribution of shear strain. They also 

developed new quasi-3D [127]  with hyperbolic displacement to investigate the 

mechanical behaviors of sandwich beams. Nguyen and Nguyen [128] proposed an 

advanced TSDT incorporating trigonometric function for analyzing buckling, static, and 

free vibration of FG sandwich beams. Bennai et al. [129] presented a HSDBT explores 

dynamic and buckling response  FG sandwich beams, considering both shear and normal 

strain.  

Vo et al. [130] carried out a FE employing RSDT to evaluate the stability and dynamic 

behaviors of sandwich beams with FG faces. The mathematical framework, derived 

through Hamilton principle establishes equations of motion. A new FE based FSDT was 

introduced by Kahya and Turan [131] to analyze buckling and vibration of FG sandwich 

beams, featuring 3N+7 DOFs per N-layer. This research two different sandwich 

configurations. The model performance was confirmed through comparative studies.  

Fazzolari [132] studied the buckling and vibration behavior of 3D FG sandwich beams 

with dual porosity, supported by the Winkler-Pasternak foundation and different boundary 

conditions. The analysis was done using various beam theories. Al-shujairi and 

Mollamahmutoğlu [133] used nonlocal strain theory and multiple HSDTs to examine the 

stability and free vibrations behavior of FG micro-beams, incorporating thermal effect 

elastic foundation support. This research provides novel insight into how structure 

responses are affected by various parameters including nonlocal effects, material 

gradients, geometric configurations, and foundation properties. Liu et al. [134] 

investigated the thermomechanical buckling of clamped porous FG sandwich beams, 

utilizing SSDT and modified Voigt law to analyze temperature-depending properties and 

porosity effect. The study examines various thermal conditions while considering the 

physical neutral plane. The obtained results are validated against ABAQUS simulations. 

Ellali et al. [135] examinate the thermal stability of FG sandwich beams with integrated 

piezoelectric layers using TSDT, considering the combined effect of thermal loading and 
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constant voltage. The research reveals how critical buckling is influenced by multiple 

factors, thermal loading type, and piezoelectric voltages. 

It can be seen in literature motioned above that many manuscripts have conducted on 

vibrations  analysis of FG and sandwich beams [92, 94, 97, 99, 107, 108, 110, 111, 113, 

115, 116, 121, 125-128, 130-133]. The following section presents more research on the 

vibration analysis of FGM beams. 

2.5.3. Vibration analysis    

  The analysis of functionally graded beams has been a subject of comprehensive 

investigation. A numerous of studies have been devoted to establishing exact solutions for 

examining the vibration of FG beams. Aydogdu and Taskin [136] explored the vibration 

behavior FG beams, examining the structure with both exponential and power laws 

variations of  Young modulus through their depth. The study employs multiple theoretical 

approaches, with frequencies determined through Navier’s solution based on equations 

derived from Hamilton principle. Sina et al. [137] proposed a novel beam theory explores 

the vibrational behavior of FGM beams, where material properties change along the depth 

according to the power law. Using Hamilton principle and assume zero lateral stress to 

develop motion equations, which are solved analytically. Chehel Amirani et al. [138] 

examined the free vibration of sandwich beams using FGM as core, implementing element 

free Galerkin method and 2D elasticity formulation. The investigation derives first ten 

natural frequencies of the sandwich beam. Ait Atmane et al. [139] examines the free 

vibration of E-FGM beam. Employing an analytical method, the study derives solutions 

for natural frequencies across different boundary conditions. The analysis of Free 

vibration of FG beams was conducted by Koochaki [140] using Reddy’s TSDT, to study 

simply supported FG beams, employing the Navier solution. Thai and Vo [141] 

investigation focused on analyzing the vibration and bending of FG beams through 

multiple HSDTs. The research provides analytical solutions and examines how the power 

law index and shear strain impact the beam’s behaviors. Akbaş [142] analyzed the 

vibration and bending of FG beam supported by a Winkler foundation, using EBBT and 

TBT. The authors developed an exact solution for deflection and frequencies utilizing the 

minimum potential energy and Navier approach. Hadji et al. [143] introduced a new FSDT 

to evaluate the FG beam’s dynamic response. The proposed model generates governing 

equations for axial and transverse deformation, maintaining mathematical simplicity while 
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accounting for material gradation effects. Wang et al. [144] presented a mathematical 

study explores the vibration of FG beams, utilizing an exact solution for natural 

frequencies in different beam support conditions. Through the application of Levinson 

beam theory Wang and Li [145] developed analytical solutions addressing free vibration 

and bending behaviors of FGM beams. Their analysis explores how volume fraction and 

boundary conditions influence the vibration response. Yildirim [146] explored vibration of 

sandwich beams with FG core, utilizing plane stress conditions and 2D elasticity 

formulation. 

Doroushi et al. [147] studied both forced and free vibration of FG piezoelectric beam 

subjected to combined thermal, electric, and mechanical forces using HSDT, the problem 

solved using FEM. Utilizing FEM, Alshorbagy et al. [148] conducted an analysis of 

dynamic behavior in functionally graded beams. By using virtual  work principle and CBT 

the equations of motions were obtained. The investigation examined how different 

parameters effects the beam’s vibrational behavior. Taeprasartsit [149] developed  

mathematical framework to analyze large amplitude vibrations in thin FG beams with 

fixed ends, employing FEM based on EBBT an Von Karman nonlinearity. A novel high-

order element using an integrated TBT is developed by Katili et al. [150], featuring a two-

node element with Hermitian functions that prevents shear locking while incorporating 

shear effects. The proposed model is applied to analyze the static and vibrational 

behaviors of  FG beams. Belarbi et al. [151] carried out free vibration response in both 

symmetric and asymmetric FG sandwich beams, applying Hermite-Lagrangian FEM 

based on HSDBT, featuring three variables and eliminating the necessity of SCF.   

Su et al. [152] analyzed free vibration and buckling of FG sandwich beams with various 

boundary conditions and Pasternak foundation support, using a modified Fourier series 

that incorporates both cosine and supplemented functions. Bouakkaz et al. [153] 

introduced a hyperbolic model to analyze free vibration response of FG sandwich beams, 

employing Hamilton principle. The influence of volume fraction geometrical 

configuration, and boundary condition  on critical buckling load and free vibration were 

explored. Trinh et al. [154] presented analytical solution for evaluating fundamental 

frequencies of FG sandwich beams, incorporating CBT, FSDT, and HSDTs.  

Mashat et al. [155] conducted an investigation of natural frequencies in FG sandwich 

beams, using multiple theories and FE based on CUF. A study by Tossapanon and 
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Wattanasakulpong [156] investigated the stability and dynamic behaviors of FG sandwich 

beams supported by dual- parameter elastic foundation. Bouamama et al. [157] analyzed 

the vibrational behavior of FG sandwich beams under diverse boundary conditions, with 

particular focus on how the skin depth effects on the beam frequencies. Akbas [158] 

examined forced vibration response of deep sandwich beams with porose core and FG 

Faces, subjected to harmonic loads. 

 A computational investigation utilizing FEM was performed by Bhangale and Ganesan 

[159] to understand the thermal influence on vibration and stability behaviors of clamped 

FG sandwich beams.  Pradhan and Murmu [160]  studied the thermo-mechanical vibration 

of FG and sandwich beams supported by Winkler Foundations, using modified  

differential quadrature method (DQM) with Chebyshev functions. The effect of 

temperature type, volume fraction, and foundation characteristic are examined.  

Rahmani and Dehghanpour [161] carried out the vibration analysis in two sandwich 

configurations, one with FG coating  over an isotropic core, and another one with isotropic 

outer layers around an FG core. The analysis employs an enhanced beam theory 

incorporating  core flexibility, various porosity distribution, temperature depending 

properties, utilizing Galerkin method and Hamilton principle for mathematical modeling. 

Zhang et al. [162] analyzed the nonlinear vibration of FG sandwich beam featuring 

pyramidal truss core and FG  layers subjected to thermomechanical loads. The authors 

developed a model to calculate shear modulus of the core under non-uniform temperature 

loads Li et al. [163] carried out the thermal vibration of FG sandwich beams, employing 

nonlinear FE simulation. The results demonstrate that the beams with auxetic core exhibit 

superior performance.  
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2.6. Conclusion  

This chapter introduces fundamental beam theories used for analyzing FGM beams. 

Classic beam theory, being the earliest and most straightforward approach, primarily 

address thin beams behaviors while overlooking shear stress effects. Timoshenko beam 

theory assumes uniform displacement along beam thickness. It predicts constant shear 

strain, although actual shear strain distribution is quadratic. To precisely represent the 

stress, we must implement a correction factor. Higher-order shear deformation theories 

expand the displacement field using more variations relative to the thickness. These 

approaches offers more accurate representation of beam’s mechanical behaviors compared 

simpler theorical frameworks.   An overview of scientific literature is presented, focusing 

on the mechanical and thermal response of functionally graded and sandwich beams. The 

research encompasses multiple analytical and numerical solutions developed to investigate 

the static, buckling vibration behaviors. 
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Chapter 3:                                  
Development of enhanced Timoshenko 

beam theory (ETBT) 

3.1.  Introduction 

This chapter introduces a new high-order shear deformation model, based on enhanced 

Timoshenko theory (ETBT), for analyzing the behavior of FG and sandwich beams. The 

proposed model utilizes only three unknowns and incorporates a quadratic variation of 

shear strain across the beam thickness. It satisfies the zero shear-stress condition at both 

the upper and the lower surfaces of the beam without requiring a correction factor. 

Based on this model, a beam element has been developed to perform static, buckling, and 

free vibration analysis of Functionally graded material beams, considering both thermal 

and non-thermal effects. The formulated element consists of two nodes, each possessing 

three degrees of freedom. Material properties are assumed to vary through the thickness 

following a power law distribution, expressed in terms of the constituent volume fraction. 

The stiffness, geometric, and mass matrices are formulated using the principle of total 

potential energy, Euler-Lagrange equation, and Hamilton principle. Additionally, the 

concept of the physical neutral axis is employed to avoid stretching-bending phenomenon. 

3.2. A new high order shear deformation theory  

This chapter, presents a new high-order shear deformation theory. This model enhances 

Timoshenko theory by accounting for the influence of stretching. 

3.2.1. Displacement field 

The proposed displacement field for the beam is assumed to be [164]: 

 0
2

0

( , , )
( , , )

x

z

u x z t u z
w x z t w z

ϕ

ψ

= +

= +
 (3.1) 
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In this context, u and v represent the displacement of a point R (x, z) within the beam. The 

terms u0 and v0 refer to the displacement components of the central axis along the x and z 

directions, respectively. xϕ denotes the rotation, zψ indicates the stretching contribution. 

3.2.2. Kinematics 

Introducing Von Karman nonlinear relationship [165], the strain components associated 

with the proposed displacement field are expressed as: 

 0 nl
x x xzkε ε ε= + +  (3.2) 

 0 2 0
xz xz zzγ γ ψ= +  (3.3) 

Where  

 0 0
x

u
x

ε ∂
=
∂

 (3.4) 

 x
xk

x
ϕ∂

=
∂

 (3.5) 

 0 0
xz x

w
x

γ ϕ∂
= +

∂
 (3.6) 

 
21

2
nl dw

dx
ε  =  

 
 (3.7) 

0
xε : axial strain  

xk : curvature  

0
xzγ : shear strain  

nlε : nonlinear strain 

Using shear stress-free boundary condition on the top and bottom of the beam. 

 
2

0 0 ( ) 0
2 4xz xz z
h h xγ γ ψ ± = + = 

 
 (3.8) 

Which lead to  

 0 0
2

4
z xzh

ψ γ= −  (3.9) 

By introducing Eq (3.9) into Eq (3.3), the shear strain relationship can be formulated as: 
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 0
1xz xzγ γ= Γ  (3.10) 

1Γ  is shear function defined by:  

 ( )
2

1 21 4 zz
h

 
Γ = − 

 
 (3.11) 

• Shear function improvement  

Shear correction factor is used in Timoshenko theory to consider the supposition of 

uniform shear strain across the thickness of the beam. This factor is calculated by 

comparing shear strain energy from elasticity theory with that predicted by Timoshenko 

theory. Consequently, the shear stress for an isotropic material is written as:   

 05
6xz xzQσ γ=  (3.12) 

 
( )

1
2 1

Q E
υ

=
+

 (3.13) 

Q represent the stiffness coefficient, and E stands for young’s modulus.  

Timoshenko’s shear strain energy per unit of area is given by: 

 
2

2

1
2

h

h

TM
ss xz xzU dzσ γ

−

= ∫  (3.14) 

By substitution the expression from Eq (3.12) into Eq (3.14) and preforming integration 

through the depth, we can reformulate Eq (3.14) as follows:  

 ( )205
12

TM
ss xzU Qh γ=  (3.15) 

When shear strain exhibits quadratic variation along the thickness, the shear stress may be 

expressed as:  

 ( )xz xzz Qσ γ= Γ  (3.16) 

 ( )
2

2

41 zz C
h

 
Γ = − 

 
 (3.17) 

( )zΓ represent enhanced shear function, and C is Constant. 
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The shear strain energy per unit of area can be formulated as:  

 ( ) ( )
2 2

2 2

22 01 1 ( )
2 2

h h

h h
ss xz xz xzU dz Q z dzσ γ γ

− −

Γ = = Γ∫ ∫  (3.18) 

Performing thickness integration on Eq (3.18) yields: 

 ( )20 24
15ss xz

hU Q CγΓ =  (3.19) 

The value of the constant C is determined by setting Eq (3.15) equal to Eq (3.19) 

 5
4

C =  (3.20) 

Based on the preceding analysis, we can recast the displacement field in this way  

 ( ) ( )( )
0

0

( , , )

( , , ) 1 ( )
xu x z t u z

w x z t z w z G x

ϕ= +

= Γ + Γ −
 (3.21) 

Where  
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2

2

5 41
4

zz
h

 
Γ = − 

 
 (3.22) 

 ( )
x

dG x
dx

ϕ =  (3.23) 

The strain relations may be restated as follows: 

 0 nl
x x xzkε ε ε= + +  (3.24) 

 0( )xz xzzγ γ= Γ  (3.25) 

3.3. Governing Equations  

3.3.1. Material properties  

A FGM beam with rectangular geometry is considered. The beam is defined by length L 

and cross-sectional area with a thickness h and width b (Figure 3.1). In this study, the 

Poisson’s ratio ʋ is maintained as a constant for simplification. Conversely, other material 

properties, including Young’s modulus E, thermal expansion α, and mass density ρ, are 
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posited to exhibit continuous variation across the thickness according to the power law. 

These properties can be mathematically described as [166]: 

 
( )
( )
( )

( )

( )

( )

m c m c

m c m c

m c m c

E z E E E V

z V

z V

α α α α

ρ ρ ρ ρ

= + −

= + −

= + −

 (3.26) 

 

Figure 3.1 FGM beam geometry and coordinate 

The subscripts c and m denote the ceramic and metallic materials respectively, while Vc 

represent the volume fraction. 

In this study two types of FGM beams are considered: (A) FG beam; and sandwich beam 

• FG beam 

This beam is graded from metal to ceramic (Figure 3.2) with volume fraction Vc written as 

follows: 

 1 ,              z ,
2 2 2

p

c
z h hV
h

   = + ∈ −      
 (3.27) 

p denotes power-law index 

 

Figure 3.2 Functionally Graded beam 

 



Chapter 3: Development of enhanced Timoshenko beam theory (ETBT) 
 

38 
 

• Sandwich beam 

The upper and lower layers of the sandwich beams consist of FGM, while the core layer is 

composed of ceramic or metallic as shown in figure 3.3. The volume fraction Vc is defined 

by: 

 

1
1 12

2

2
1 1

1
0 1 1

0

0

       z      (Top layer)2 , 2 2

1,                   z           (Core )   
2 2

2             z     (Bottom layer), 2 2

c

c

c

h h hh z z hV
h

h hV z
hh z h hh zV
h

  + − ∈ ≤ ≤ + =  
  = ∈ − ≤ ≤   
 + +  ∈ − − ≤ ≤ =   

 (3.28) 

 
Figure 3.3 Sandwich beam with FGM skin and homogeneous core 

3.3.2. Constitutive equations 

For an elastic FG beam,  the stress-deformation relationship may be written as: 

 
( )( )x x T

xz xz

E z
Q

σ ε ε
σ γ

= −
=

 (3.29) 

Tε denotes strain due temperature rise, which can be expressed by: 

 ( )T z Tε α= ∆  (3.30) 

3.3.3. Physical neutral axis 

The heterogeneous distribution of material properties in the beam results in a coupled 

stretching-bending behavior. To simplify the analysis, force and moment resultant are 

evaluated with respect to the physical neutral axis. Which deviates from the beam’s 

centroidal axis, as illustrated in Figure 3.4. Calculating the location of physical neutral 

axis needs determining the value e, at which the axial force induced by bending becomes 

zero [165, 167]. This be expressed through the following equation: 
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 naz z e= −  (3.31) 

where e  is the distance between the neutral axis and the centroid of the beam 

 
Figure 3.4 Physical neutral axis position 

e  is determined by setting the axial force due bending to zero at the point where y e= [72] 

 ( )2 2

2 2

( ) 0
h h

h h
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x

ddz E z z e dz
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− −
= − =∫ ∫  (3.32) 

Through simplification of Eq (3.32), we obtain: 

 2 2 2

2 2 2

( )( )  = ( ) ( ) 0
h h h
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− − =∫ ∫ ∫  (3.33) 

So, the neutral axis position can be calculated using the following relation: 
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 (3.34) 

3.3.4. Forces and moments  

The forces and moment resultant are determined by integrating the respective stress across 

the thickness, as written in the following equations: 

 2
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hx xN dzσ
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= ∫  (3.35) 
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The correlation between the stress resultants and deformations is given as: 
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 (3.38) 

The terms A, D, and H represent the elastic coefficient, these coefficients are written 

mathematically as follows: 

 { } ( ){ }2( )  1        (z)Q  
S

A D H E z z e dS= × − Γ∫  (3.39) 

3.4. Finite element formulation 

To analyze the static, buckling, and free vibration of FG and sandwich beams, both with 

and without thermal effect, a two-node finite element is used. This element is based on an 

improved Timoshenko theory and features three degrees of freedom (DOFs) per node. 

 
Figure 3.5 finite element of ETBT  

3.4.1. Displacement interpolation 

The present finite element’s displacement field is defined by: 

 
2

1
( ) ,     =1,2,3i

i
i

x Nα αθ θ α
=

=∑  (3.40) 

Where 0 0, , ,     1, 2i i i i
xu w iαθ ϕ= =  

αθ represent the displacement or rotation at an arbitrary point of the element. The terms iN
and i

αθ  are the Lagrange shape function and displacement component associated with node 
i, respectively.   

Lagrange shape functions are represented by the following formula: 
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3.4.2. Strain displacement relations 

By employing shape functions, the strain-displacement relations expressed in Eqs (3.4)-
(3.7) can be rewritten as:  

[ ]{ }0
x aB qε = (3.42) 

[ ]{ }x bk B q= (3.43) 

[ ]{ }0
xz sB qγ = (3.44) 

[ ]{ }dw G q
dx

= (3.45) 

The matrices [ ] [ ] [ ], ,a b sB B B and [ ]G are of dimension (1×6), where the subscripts a, b,

and s denote the axial, bending, and shear strain, respectively.{ }q represent displacement 
vector.  

These matrices can be derived from the shape function as follows: 

[ ] ( )0 0       1, 2i
a

NB i
x

∂ = = ∂ 
 (3.46) 

[ ] ( )0 0      1, 2i
b

NB i
x

∂ = = ∂ 
 (3.47) 

[ ] ( )0    1, 2i
s i

NB N i
x

∂ = = ∂ 
 (3.48) 

[ ] ( )0 0      1, 2iNG i
x

∂ = = ∂ 
 (3.49) 

{ } { } ( )0 0    1, 2T i i i
xq u w iϕ= = (3.50) 

3.4.3. Derivation of elementary matrices 

The elementary stiffness and geometric matrices of the element are derived using the total 

potential energy, which is defined as: 

U WΠ = + (3.51) 

with U  being the strain energy and W the potential energy of external loads. 

The strain energy of beam is expressed as: 
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 (3.52) 

Ω denote the beam’s surface. 

Substitution Eqs (3.35), (3.36), and (3.37) into Eq (3.52), the strain energy may be 
rewritten as: 

 { } { } { }( )01
2

T T T
x x x x xz xzU N k M S dε γ

Ω

= + + Ω∫  (3.53) 

 Using Eq (3.38), Eq (3.53) can be reformulated as follows: 

 { } [ ]{ } { } [ ]{ } { } [ ]{ }( )0 0

0

1
2

l
T T T

x x x x xz xzU A k D k H dxε ε γ γ= + +∫  (3.54) 

Introducing the strain-displacement relationships defined in Eqs (3.42), (3.43), and (3.44) 
into the preceding expression yields: 

 { } [ ] [ ] [ ] [ ] [ ] [ ]( ){ }( )
0

1
2

l
T T TT

a a b b s sU q B A B B D B B H B q dx= + +∫  (3.55) 

3.4.3.1. Static analysis 

The external work performed by the distributed load F(x) on the beam is expressed by the 

following formula:  

 

{ } [ ]

0
0

0

( ) ( )

   ( )

l

l
TT

W F x w x dx

F x q N dx

=

=

∫

∫
 (3.56) 

By substitution of Eqs (3.55) and (3.56) into (3.51) leads to the following expression: 

 
{ } [ ] [ ] [ ] [ ] [ ] [ ]( ){ }( )
{ } [ ]

0

0

1
2

( )

l
T T TT

a a b b s s

L
T

q B A B B D B B H B q dx

F x q N dx

Π = + +

−

∫

∫
 (3.57) 

Setting the first variation of the total potential energy with respect to the nodal value q to 
zero yields the following equilibrium equation: 
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 [ ]{ } { }e eK q F=  (3.58) 

 [ ] [ ] [ ] [ ] [ ] [ ] [ ]
0

l
T T T

e a a b b s s

axial bending shear

K B A B B D B B H B dx
 
 = + +
 
 
∫   

 (3.59) 

 { } [ ]
0

( )
l

T
eF F x N dx= ∫  (3.60) 

 [ ] [ ]1 20 0 0 0N N N=  (3.61) 

[ ]eK : Elementary stiffness matrix. 

{ }eF : Nodal load vector. 

[ ]N : Shape functions matrix. 

3.4.3.2. Buckling analysis 

The potential energy of external loads, resulting from either thermal or mechanical forces, 
is given by: 

 { }
0

1
2

l
nlW Pdxε= ∫  (3.62) 

By substitution Eqs (3.7), (3.45), (3.55), and (3.62) in the total potential energy principle 
yields:  

 
{ } [ ] [ ] [ ] [ ] [ ] [ ]( ){ }( )

{ } [ ] [ ]{ }

0

0

1
2

1
2

l
T T TT

a a b b s s

l
TT

q B A B B D B B H B q dx

q G P G q dx

Π = + +

+

∫

∫
 (3.63) 

Eliminating the second variation of the total potential energy with respect to nodal values 
leads to the following eigenvalue problem: 

 [ ]( ){ } 0g
e eK K q + =   (3.64) 

g
eK    represent geometric matrix 

 [ ] [ ]
0

l
Tg

eK G P G dx  =  ∫  (3.65) 

The introduction of loading factor λ allow us to rewrite the stress as: 0P Pλ= . 

P0 denotes the stress due the mechanical load or temperature rise ∆T0. 
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 [ ] [ ]0 0
0

l
Tg

eK G P G dx  =  ∫  (3.66) 

 

The eigenvalue problem for calculating the critical buckling is given by: 

 [ ]( )0 0g
e eDet K Kλ  + =   (3.67) 

3.4.3.3. Free vibration analysis 

Hamilton’s principle can be used to derive the governing equations for free vibration 
problems, which is defined by:  

 
2

1

0
t

t

Ldtδ =∫  (3.68) 

L represent Lagrangian of the system, expressed as L T= −Π , where T denote the kinetic 
energy and Π is the potential energy. t1 and t2 are initial and the final instant. Therefore, 
Hamilton principle can be rewritten as: 

 

( )

( )( )

2

1

2

1

0

0

t

t

t

t

T dt

T U V dt

δ

δ

−Π =

− + =

∫

∫
 (3.69) 

While  

 ( )
2

2 2

2

1 ( )
2

h

h

T z u w dzdρ
Ω −

= + Ω∫ ∫    (3.70) 

Where duu
dt

=  and dww
dt

=  

The time variation of kinetic energy may be expressed as: 

  ( )
2

2

( )

h

h

T z u u w w dzdδ ρ δ δ
Ω −

= + Ω∫ ∫    (3.71) 

Integrating Eq (3.71) over the thickness yields the following expression:  

 ( ) ( )( )0 0 0 0 0 2 x xT I u u w w I dδ δ δ ϕ δϕ
Ω

= + + Ω∫    (3.72) 
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(¨) denote the second derivative with respect to time. I0 and I2 represent the moment of 
inertia, defined as follows:  

 ( )( )
2

2
0 2

2

, ( ) 1,

h

h

I I z z e dzρ
−

= −∫  (3.73) 

By employing Euler-Lagrange equation, as expressed below:   

 0d L L
dt q q
 ∂ ∂

− = ∂ ∂ 
 (3.74) 

It leads to the following equation of motion:  

 [ ]{ } [ ]{ } 0M q K q+ =  (3.75) 

 [ ] [ ] [ ][ ]
0

l
TM N I N dx= ∫  (3.76) 

 [ ] [ ] g
e eK K K = +    (3.77) 

[ ]M represents the mass matrix. [ ]N  and [ ]I  are the shape function and inertia matrices, 
respectively, and they defined as follows:  

 [ ]
1 2

1 2

1 2

0 0 0 0
0 0 0 0
0 0 0 0

N N
N N N

N N

 
 =  
  

 (3.78) 

 [ ]
0

0

2

0 0
0 0
0 0

I
I I

I

 
 =  
  

 (3.79) 

Substituting { } { }2q qω= − into the equation of motion, we obtain:  

 [ ] [ ]( ){ }2 0K M qω− =  (3.80) 
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3.5. Conclusion 

This chapter presented a new high-order shear deformation model with three unknowns 

for analyzing FGM beams. This model incorporates a quadratic variation of shear stress 

through the thickness, ensuring zero shear stress at the top and bottom surfaces of the 

beam, eliminating the need for a shear correction factor. Based on this model, a two-node 

finite element is formulated with three DOFs per node. This element is employed for 

static, buckling, and free vibration analyses of FG and sandwich beams with and without 

thermal effects. The material properties of the beams follow a power-law distribution 

across the thickness. To prevent the stretching-bending coupling effect arising from the 

beam's asymmetry, force and moment resultants are determined with respect to the 

physical neutral axis, which is distinct from the beam's centroid. The stiffness, geometric, 

and mass matrices are derived using the principles of total potential energy, Hamilton's 

principle, and the Euler-Lagrange equation.     
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Chapter 4:                                    
Application ETBT on FG beams-Results 

and discussions  

4.1. Introduction 

This chapter presents numerical analysis to evaluate the capabilities of developed model 

(ETBT). The analysis examines the convergence, computational accuracy, and numerical 

stability. The investigation addresses different response of functionally graded beams, 

including static, mechanical, thermal buckling, and free vibration behaviors. The model 

validation is achieved through a comparison with previously published research results, 

while investigating how various parameters affect the FG beam behaviors.  

4.2. Functionally graded beams analysis  

This section presents the static, buckling, and free vibration of FG beams under 

mechanical and thermal loads. The analysis were conducted by examining diverse material 

composition. The detailed material properties utilized through this investigation are 

presented in Table 4.1: 

Table 4.1 Material properties of FG beams [113] 

Properties E (MPa) ρ (Kg/m3) ʋ α (1/K) 

Top 

surface 

Alumina (Al2O3) 380 3960 0.3 8.4e-6 

Silicon nitride (Si3N4) 322.27 - 0.3 7.4746e-6 

Bottom 

surface 

Aluminum (Al) 70 2702 0.3 23.1e-6 

Stainless  steel (SUS304) 207.79 - 0.3 15.32e-6 

 

Three distinct supports were used to evaluate FGM beams response: 

- Simply Supported (S-S) 
- Clamped-Clamped (C-C) 
- Clamped-Free (C-F) 
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To ensure the accuracy and validate the present model, the beam was segmented into 

multiple elements, specifically utilizing mesh configurations of 50, 100, 150, 200, and 250 

elements  

4.3. Static Analysis of FG beams 

To validate the developed model’s reliability, initial assessments focused on evaluating the 

static response of Alumina-Aluminum FG beams with length-to-thickness ratio (L/h=5, 

10) and different ends support under uniform distributed load (UDL) q0. the numerical

results are expressed through dimensionless parameters for displacement and stresses,

calculated using the following relationships:

( )

( )

3

4
0

3

4
0

0

0

100       S-S , C-C
2

100        C-F          

,  
2 2

0,0   
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LEmh w
L q

w
E h w L

L q

h L h
q L

h
q L

σ σ

σ σ

  
 
 = 




 =  
 

=

(4.1) 

The nondimensional displacements and stresses of S-S FG beams derived from our 

proposed  model are demonstrated in Tables 4.2 - 4.4. Specifically, we conducted 

comparative analysis with the quasi-3D model developed by Vo et al. [102], the analytical 

solution grounded in Reddy’s TSDT proposed by Thai and Vo [141], and the third-order 

shear deformation theory established by Li et al. [168]. Our findings reveal substantial 

convergence across these different models, confirming the reliability of our model’s 

accuracy in predicting static behavior.  

Looking at Tables 4.2-4.4, we observe that the increasing in the power-law index value p, 

the nondimensional displacement and normal stress are consistently rise because the 

material graduation change from ceramic to metallic compositions, whereas  

nondimensional shear stress initially declining until p=5, after which it begins to escalate 

(see Figure 4.1). The shear stress calculations were  performed without implementing a 

shear correction factor, and notably, the dimensionless shear stress remains constant 
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regardless of the length-to-thickness ratio. Our finding align remarkably well with 

Reddy’s TSDT developed by Thai and Vo [141]. 

For more demonstration, Figure 4.2 depicts dimensionless displacement variation across 

different power-law index values for FG beam configurations with length-to-thickness 

ratio of 5 and 10 under UDL. As the power-law index escalates, the metallic volume 

fraction correspondingly increases, resulting in progressive reduction of the beam’s 

rigidity. Consequently, this compositional shift is reflected as an increase in the 

displacement.  

Expanding the comparative analysis, Tables 4.5 and 4.6 showcase the dimensionless 

displacement of Clamped-Clamped (C-C) and Clamped-Free (C-F) functionally graded 

beams. These results demonstrate good concordance with alternative approaches, 

including first-order shear deformation theory (FSDT) by Jing et al. [99], and the quasi-3D 

and third-order shear deformation theory (TSDT) proposed by  Vo et al. [102]. 

Table 4.2 Dimensionless displacements w of S-S FG beams 

L/h p N° elements Quasi-3D  
[102] 

Reddy  
[141] 

TSDT 
[168] 25 50 100 150 200 250 

5 

0 3.1160 3.1546 3.1629 3.1644 3.1650 3.1652 3.1397 3.1657 3.1657 

1 6.1471 6.2343 6.2535 6.2570 6.2583 6.2589 6.1338 6.2594 6.2599 

2 7.9548 8.0589 8.0814 8.0856 8.0871 8.0878 7.8606 8.0677 8.0602 

5 9.7645 9.8632 9.8835 9.8872 9.8886 9.8893 9.6037 9.8281 9.7802 

10 10.9016 11.0020 11.0221 11.0258 11.0272 11.0278 10.7572 10.9381 10.8979 

20 

0 2.3956 2.7541 2.8594 2.8797 2.8869 2.8903 2.8947 2.8962 2.8962 

1 4.6527 5.4699 5.7174 5.7657 5.7828 5.7908 5.7201 5.8049 5.8049 

2 6.0812 7.0529 7.3418 7.3978 7.4177 7.4270 7.2805 7.4421 7.4415 

5 7.5988 8.4856 8.7354 8.7833 8.8002 8.8081 8.6479 8.8182 8.5151 

10 8.4902 9.3688 9.6122 9.6586 9.6750 9.6826 9.5749 9.6905 9.6879 
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Table 4.3 Dimensionless normal stress xσ  of S-S FG beam 

L/h P N° element Quasi-3D  
[102] 

Reddy  
[141] 

TSDT 
[168] 25 50 100 150 200 250 

5 

0 3,6960 3,7360 3,7460 3,7480 3,7491 3,7494 3.8005 3.8020 3.8020 

1 5,7000 5,7700 5,7900 5,7920 5,7942 5,7948 5.8812 5.8836 5.8837 

2 6,6667 6,7400 6,7600 6,7640 6,7658 6,7665 6.8818 6.8826 6.8812 

5 7,8520 7,9160 7,9360 7,9400 7,9412 7,9418 8.1140 8.1106 8.1030 

10 9,4260 9,4940 9,5160 9,5200 9,5211 9,5217 9.7164 9.7122 9.7063 

20 

0 12,4269 14,2569 14,8072 14,9137 14,9514 14,9689 15.0125 15.0129 15.0130 

1 18,6113 21,8348 22,8311 23,0255 23,0944 23,1264 23.2046 23.2053 23.2054 

2 22,1520 25,6382 26,6978 26,9036 26,9764 27,0103 27.0988 27.0991 27.0989 

5 27,4094 30,5447 31,4556 31,6301 31,6917 31,7204 31.8137 31.8130 31.8112 

10 33,4069 36,7880 37,7571 37,9420 38,0073 38,0376 38.1600 38.1385 38.1372 

 

Table 4.4 Dimensionless shear stress xzσ of S-S FG beam 

L/h p N° element Quasi-3D  
[102] 

Reddy  
[141] 

TSDT 
[168] 25 50 100 150 200 250 

5 

0 0,7200 0,7350 0,7426 0,7450 0,7463 0,7470 0.7233 0.7332 0.7500 

1 0,7200 0,7350 0,7426 0,7450 0,7463 0,7470 0.7233 0.7332 0.7500 

2 0,6698 0,6836 0,6906 0,6930 0,6941 0,6948 0.6622 0.6706 0.6787 

5 0,5986 0,6112 0,6174 0,6194 0,6205 0,6211 0.5840 0.5905 0.5790 

10 0,6590 0,6728 0,6796 0,6818 0,6830 0,6837 0.6396 0.6467 0.6436 

20 

0 0,7200 0,7350 0,7425 0,7450 0,7463 0,7470 0.7432 0.7451 0.7500 

1 0,7200 0,7350 0,7425 0,7450 0,7463 0,7470 0.7432 0.7451 0.7500 

2 0,6697 0,6837 0,6907 0,6930 0,6941 0,6948 0.6809 0.6824 0.6787 

5 0,5987 0,6112 0,6174 0,6195 0,6205 0,6212 0.6010 0.6023 0.5790 

10 0,6590 0,6727 0,6796 0,6819 0,6830 0,6837 0.6583 0.6596 0.6436 
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Figure 4.1 Variation of dimensionless shear stress versus power-law index of S-S FG 

beam 

 

 
Figure 4.2 Variation of dimensionless Displacement versus power-law index of S-S FG 

beam 
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Table 4.5 Dimensionless displacements w  of C-C FG beams 

L/h p N° elements FBT 
[99] 

Quasi-3D  
[102] 

TSDT  
[102] 25 50 100 150 200 250 

5 

0 0,8498 0,8603 0,8623 0,8627 0,8629 0,8629 0.8590 0.8328 0.8501 

1 1,6112 1,6340 1,6387 1,6396 1,6399 1,6400 1.6339 1.5722 1.6179 

2 2,1335 2,1613 2,1668 2,1679 2,1682 2,1684 2.1523 2.0489 2.1151 

5 2,8542 2,8826 2,8879 2,8888 2,8892 2,8894 2.8420 2.6929 2.7700 

10 3,3061 3,3359 3,3413 3,3423 3,3426 3,3428 3.2516 3.1058 3.1812 

20 

0 0,4910 0,5647 0,5861 0,5903 0,5917 0,5924 0.5896 0.5894 0.5933 

1 0,9500 1,1172 1,1675 1,1773 1,1808 1,1824 1.1774 1.1613 1.1843 

2 1,2444 1,4437 1,5024 1,5138 1,5179 1,5198 1.5124 1.4811 1.5203 

5 1,5689 1,7525 1,8036 1,8134 1,8169 1,8185 1.8070 1.7731 1.8155 

10 1,7604 1,9431 1,9931 2,0026 2,0060 2,0075 1.9921 1.9694 2.027 

 

Table 4.6 Dimensionless displacements w  of C-F FG beams 

L/h p N° elements FBT 
[99] 

Quasi-3D  
[102] 

TSDT  
[102] 25 50 100 150 200 250 

5 

0 28,4313 28,6928 28,7589 28,7711 28,7755 28,7777 28.7805 28.5524 28.7555 

1 56,5458 57,1671 57,3247 57,3537 57,3642 57,3694 57.3822 56.2002 57.3323 

2 72,8335 73,5540 73,7364 73,7701 73,7822 73,7883 73.7757 71.7295 73.6482 

5 87,7477 88,3595 88,5138 88,5422 88,5525 88,5579 88.4251 86.1201 88.2044 

10 97,1248 97,7168 97,8659 97,8933 97,9033 97,9086 97.6052 95.7582 97.4151 

20 

0 23,0002 26,3555 27,3537 27,5468 27,6151 27,6471 27.7125 27.6217 27.7029 

1 44,6957 52,3742 54,7258 55,1845 55,3471 55,4231 55.5384 54.6285 55.5546 

2 58,4002 67,5101 70,2511 70,7831 70,9716 71,0596 71.1923 69.5266 71.2051 

5 72,8754 81,1142 83,4746 83,9267 84,0864 84,1611 84.2889 82.4836 84.2712 

10 81,3719 89,5002 91,7937 92,2311 92,3856 92,4579 92.5726 91.2606 92.5571 
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Figure 4.3 Dimensionless normal stress distribution through the thickness of S-S FG 

beam for various power-law index values 

The distribution of stresses across the depth of S-S FG beam has been analyzed in Figure 

4.3 and 4.4.  

Figure 4.3 illustrate the normalized stress distribution across the beam’s thickness for 

various power-law index values. The analysis reveals that as the power-law index 

increases, the nondimensional normal stress also rises. The stress pattern demonstrates 

tensile at the beam’s upper surface and compressive at its lower surface. Notably, when 

the beam is homogeneous, the compressive stress reaches its maximum at the bottom, 

while tensile stress is minimal at the top. 

Figure 4.4 highlights the dimensionless shear stress distribution over the thickness with 

multiple power-law index values. It can be observed that the shear stress is perfectly 

quadratic and symmetric over the thickness for p=0 and asymmetrical for the other values 

of p, and the shear stress is zero at the top and bottom surfaces of the beam. 
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Figure 4.4 Dimensionless shear stress distribution through the thickness of S-S FG beam 

for various power-law index values p 

4.4. Buckling analysis  of FG beams  

In the next examples the present element is used for mechanical and thermal buckling 

analysis of FG beams. 

4.4.1. Mechanical buckling  

The analysis was conducted to evaluate the mechanical buckling response of Al2O3/Al  FG 

beams subjected to axial compressive load based on the proposed model. The research 

analyzes how power-law index, length-to-depth ratio, and boundary conditions affect the 

critical buckling load. A nondimensional representation of the critical buckling load is 

derived using the following equation: 

 
2

3

12
cr cr

m

LP P
h E

=  (4.2) 

Tables 4.7 - 4.9 present the convergence of dimensionless critical buckling loads across 

different power-law index values, length-to-depth ratio, and ends support. The findings 

were validated against several established approaches, including Timoshenko beam theory 

(TBT) implemented by Li and Batra [109], the hyperbolic shear deformation beam theory 

(HSDBT) developed by Nguyen et al. [126], and First-order shear deformation theory 

(FSDT) utilized by Kahya and Turan [116]. The comparative analysis reveals strong 
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consistency between the present model and previous theories, with particular concordance 

to HSDBT of Nguyen et al. [126]. 

Results in Tables 4.7-4.9 reveal that higher values of p correspond to lower 

nondimensional critical buckling loads, with increased length-to-thickness ratio results in 

elevated critical buckling loads.   

Table 4.7 Dimensionless critical buckling loads crP  of S-S Al2O3/Al FG beam 

L/h P N° elements TBT 
[109] 

HSDBT  
[126] 

FSDT 
 [116] 25 50 100 150 200 250 

5 

0 49,2643 48,7500 48,6429 48,6000 48,6000 48,6000 48.835 48.8406 48.5907 

1 24,9857 24,6857 24,6000 24,6000 24,5786 24,5786 24.687 24.6894 24.5815 

2 19,3071 19,0929 19,0286 19,0286 19,0286 19,0286 19.245 19.1577 19.1617 

5 15,7131 15,5848 15,5528 15,5469 15,5448 15,5437 16.024 15.7355 15.9417 

10 14,0688 13,9664 13,9407 13,9360 13,9344 13,9335 14.427 14.1448 14.3445 

10 

0 55,0286 52,9714 52,4571 52,2857 52,2857 52,2857 52.309 52.3083 - 

1 27,7689 26,5474 26,2423 26,1859 26,1662 26,1569 26.171 26.1707 - 

2 21,4994 20,6385 20,4235 20,3837 20,3698 20,3633 20.416 20.3909 - 

5 17,7451 17,2251 17,0954 17,0712 17,0628 17,0589 17.192 17.1091 - 

10 16,0190 15,6024 15,4983 15,4791 15,4723 15,4690 15.612 15.5278 - 

 
Table 4.8 Dimensionless critical buckling loads crP  of C-C Al2O3/Al FG beam 

L/h p N° elements TBT 
[109] 

HSDBT  
[126] 

FSDT 
 [116] 25 50 100 150 200 250 

5 

0 154,4571 152,5714 152,0786 151,9929 151,9714 151,9500 154.35 154.5610 151.9430 

1 80,9143 79,7571 79,4786 79,4357 79,4143 79,3929 80.498 80.5940 79.3903 

2 61,3500 60,5571 60,3429 60,3214 60,3000 60,3000 62.614 61.7666 61.7449 

5 46,5181 46,0601 45,9459 45,9248 45,9174 45,9138 50.384 47.7174 49.5828 

10 40,3938 40,0357 39,9465 39,9300 39,9241 39,9214 44.267 41.7885 43.5014 

10 

0 205,3714 197,1429 195,0857 194,7429 194,5714 194,4000 195.34 195.3623 - 

1 104,8217 99,9439 98,7298 98,5053 98,4266 98,3899 98.749 98.7885 - 

2 80,6484 77,2155 76,3610 76,2031 76,1477 76,1218 76.980 76.6538 - 

5 64,9131 62,8522 62,3391 62,2443 62,2111 62,1955 64.096 62.9580 - 

10 57,9209 56,2752 55,8653 55,7895 55,7630 55,7505 57.708 56.5926 - 
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The relationship between power-law index  and critical buckling loads has been examined 

using FG beams with length-to-thickness ratio of 5 and 10, as illustrated in Figure 4.5. The 

results show a marked decrease in dimensionless critical buckling load with increasing p 

values, corresponding to the shift from rigid ceramic-rich composition to more flexible 

metal-rich beam. 

Table 4.9 Dimensionless critical buckling loads crP  of C-F Al2O3/Al FG beam 

L/h p N° elements TBT 
[109] 

HSDBT  
[126] 

FSDT 
 [116] 25 50 100 150 200 250 

5 

0 13,2214 13,0929 13,0714 13,0714 13,0714 13,0714 13.213 13.0771 13.0594 

1 6,6429 6,5571 6,5357 6,5357 6,5357 6,5357 6.6002 6.5427 6.5352 

2 5,1643 5,1000 5,1000 5,1000 5,0786 5,0786 5.1495 5.0977 5.0981 

5 4,3063 4,2738 4,2657 4,2642 4,2637 4,2634 4.3445 4.2772 4.2926 

10 3,9006 3,8746 3,8681 3,8669 3,8664 3,8662 3.9502 3.8820 3.8970 

10 

0 14,0571 13,5429 13,3714 13,3714 13,3714 13,3714 13.349 13.3741 - 

1 7,0473 6,7421 6,6658 6,6518 6,6468 6,6446 6.6571 6.6678 - 

2 5,4655 5,2503 5,1967 5,1867 5,1831 5,1816 5.1945 5.2025 - 

5 4,5423 4,4124 4,3800 4,3740 4,3718 4,3709 4.3902 4.3974 - 

10 4,1139 4,0099 3,9838 3,9790 3,9773 3,9765 3.9969 4.0045 - 

    

An investigation of length-to-thickness ratio effects on mechanical buckling response has 

been conducted for FG beams with various ends conditions at p=5, as shown in Figure 4.6. 

The figure shows that nondimensional critical buckling loads increase with higher L/h 

values for all boundary conditions. Therefore, slender FG beams have the lower buckling 

resistance. Maximum critical loads are observed in double-clamped support, characterized 

by rapid initial increase at small L/h ratios followed by stabilization at higher values of 

L/h. While Clamped-free condition exhibit the lowest critical loads, largely unaffected by 

higher length-to-thickness variations. 
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Figure 4.5 The influence of power-law index p on nondimensional Critical buckling load 

of S-S FG beam 

 
Figure 4.6 Variation of nondimensional critical buckling load of FG beam (L/h=5) with 

various ends conditions under compressive axial load 

4.4.2. Thermal buckling FG beams 

This section examines thermal buckling response of Si3N4/SUS304 functionally graded 

beams with double clamped (C-C) boundary conditions under uniform temperature rise. 

The material properties utilized in this analysis, presented in Table 4.1, are considered 

temperature-independent.  
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In reviewing existing literatures, we discovered that thermal buckling analysis with 

temperature-independent properties has been addressed in single publication [123]. This 

work, which employs multiple beam theories, was selected as our comparative reference. 

First, a convergence study was conducted in Table 4.10. This study aims to validate the 

developed model for critical temperature loads of FG beams. The results show that as the 

number of elements increases, the critical temperature decreases and approaches stable, 

converged values. At 250 elements, the change compared to 200 elements is small, 

indicating the reliability and stability of the numerical model. Furthermore, the close 

agreement between the results obtained and the reference values from Timoshenko beam 

theory (TBT) demonstrates the accuracy of the present model.  

To underscore the proposed element’s precision, Table 4.11 presents comprehensive 

comparative study of critical temperature predictions. The results show remarkable 

consistency with Reddy’s theory and Exponential shear deformation theory (ESDT) [123], 

evaluated across multiple p values and length-to-thickness ratios. 

Table 4.10 Convergence study of critical temperature crT∆ of Si3N4/SUS304 FG beam 
(L/h=25) with Clamped ends  

p N° elements TBT 
[123] 50 100 150 200 250 

0.5 553.1370 520.8516 514.8805 512.7899 511.8172 510.002 

1 496.7870 468.2881 463.0174 461.1719 460.3143 458.780 

2 456.8361 431.8179 427.1909 425.5709 424.8185 423.624 

5 423.6043 401.5573 397.4799 396.0522 395.3897 394.488 

10 404.1771 383.0424 379.1336 377.7650 377.1302 376.223 

 

Figure 4.7 illustrates the impact of length-to-thickness ratio on critical temperature for C-

C Si3N4/SUS304 FG beam under uniform temperature rise for various material 

gradations. The results demonstrate a significant decrease in  critical temperature as L/h 

increases across all power-index values. Pure ceramic beams (p=0) exhibit the highest 

critical temperatures, which can be attributed to the superior thermal resistance and 

stiffness of Si3N4. Additionally, the Figure indicates diminished temperature sensitivity at 

higher L/h values. 
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Table 4.11 Comparison of critical Temperature crT∆ of C-C Si3N4/SUS304 FG beam 

L/h Model p=0 p=1 p=2 p=5 p=10 

20 

Present 1075.085 712.028 656.860 611.0733 582.879 

Reddy [123] - 710.491 655.616 610.086 581.957 

ESDT [123] - 710.597 655.696 610.150 582.054 

30 

Present 485.791 321.684 296.931 276.421 263.650 

Reddy [123] - 320.154 295.608 275.276 262.557 

ESDT [123] - 320.176 295.624 275.289 262.577 

40 

Present 275.593 182.490 168.461 156.841 149.593 

Reddy [123] - 180.966 167.128 155.672 148.474 

ESDT [123] - 180.972 167.133 155.676 148.480 

 
Figure 4.7 The effect of length-to-thickness ratio on the critical temperature crT∆  of C-C 

Si3N4/SUS304 beam 

4.5. Free vibration of FG beams 

This section presents a numerical analysis of the free vibration behavior of FG beams with 

three different support ends. The model performance is validated through convergence 

studies and comparison against established results from the literature.  

The beam is combined of alumina (Al2O3) and aluminum (Al), which their material 

properties are listed in Table 4.1.  
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For convenience, following nondimensional natural frequency parameter is used in 

presenting the numerical results. 

 
2

m

m

L
h E

ρωω =  (4.3) 

Just like the mentioned in above analysis, as shown in Tables 4.12 – 4.14 , the proposed 

model gives fast converged results of dimensionless natural frequencies ω  to the 

references solutions for all boundary condition and length-to thickness ratio. Furthermore, 

the obtained results are in good agreement with literatures values from Unified and 

Integrated Timoshenko beam theory (UI) developed by Katili et al. [150], First-order 

beam theory (FBT) of  Vo et al. [97], and Levinson beam theory (LBT) of Wang and Li 

[145], demonstrate the accuracy of the ETBT. The results of C-C FG beam exhibit the 

highest natural frequencies compared to S-S and C-F. As predicted the beam Young’s 

modulus and rigidity decrease as the power law index increases leading to lower natural 

frequencies. All three boundary conditions share the same pattern.  

Table 4.12 Comparison of the dimensionless natural frequencies ω  of S-S Al2O3/Al FG 
beam 

L/h p N° elements UI 
[150] 

FBT 
[97] 

LBT 
[145] 50 100 150 200 250 

5 

0 5.1624 5.1549 5.1536 5.1531 5.1529 5.1526 5.1526 5.1525 

1 3.9992 3.9926 3.9913 3.9909 3.9907 3.9790 3.9710 3.9902 

2 3.6293 3.6237 3.6227 3.6224 3.6222 3.6228 3.6049 3.6280 

5 3.3961 3.3922 3.3914 3.3912 3.3911 3.4178 3.4025 3.4090 

10 3.2729 3.2695 3.2689 3.2687 3.2686 3.3022 3.2962 3.2873 

20 

0 5.6004 5.4957 5.4761 5.4692 5.4660 5.4603 5.4603 5.4603 

1 4.3327 4.2373 4.2194 4.2131 4.2102 4.2049 4.2038 4.2050 

2 3.9413 3.8625 3.8477 3.8425 3.8401 3.8369 3.8349 3.8363 

5 3.7200 3.6659 3.6558 3.6523 3.6506 3.6506 3.6490 3.6491 

10 3.5999 3.5536 3.5450 3.5419 3.5405 3.5411 3.5404 3.5395 
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Table 4.13 Comparison of the dimensionless natural frequencies of C-F Al2O3/Al FG 
beam 

L/h p N° elements UI 
[150] 

FBT 
[97] 

LBT 
[145] 50 100 150 200 250 

5 

0 1.8974 1.8952 1.8947 1.8946 1.8945 1.8944 1.8944 1.9387 

1 1.4655 1.4635 1.4631 1.4629 1.4629 1.4637 1.4627 1.4917 

2 1.3334 1.3317 1.3314 1.3313 1.3313 1.3358 1.3335 1.3623 

5 1.2580 1.2568 1.2566 1.2565 1.2565 1.2661 1.2642 1.2989 

10 1.2163 1.2153 1.2151 1.2151 1.2150 1.2244 1.2237 1.2623 

20 

0 1.9989 1.9620 1.9551 1.9527 1.9515 1.9495 1.9495 1.9526 

1 1.5460 1.5124 1.5061 1.5039 1.5028 1.5012 1.5010 1.5030 

2 1.4067 1.3789 1.3737 1.3719 1.3710 1.3700 1.3697 1.3716 

5 1.3285 1.3096 1.3060 1.3048 1.3042 1.3040 1.3037 1.3062 

10 1.2860 1.2698 1.2668 1.2657 1.2652 1.2650 1.2649 1.2676 

 

Table 4.14 Comparison of the dimensionless natural frequencies of C-C Al2O3/Al FG 
beam 

L/h p N° elements UI 
[150] 

FBT 
[97] 50 100 150 200 250 

5 

0 10.0168 10.0023 9.9997 9.9987 9.9982 9.9982 9.9983 

1 7.9176 7.9043 7.9019 7.9010 7.9006 7.9364 7.9015 

2 7.1064 7.0954 7.0934 7.0927 7.0924 7.2632 7.1901 

5 6.3714 6.3640 6.3627 6.3622 6.3620 6.6998 6.6446 

10 6.0253 6.0191 6.0191 6.0175 6.0173 6.3365 6.3160 

20 

0 12.5346 12.2995 12.2555 12.2400 12.2328 12.2201 12.2202 

1 9.7161 9.5017 9.4615 9.4474 9.4408 9.4417 9.4311 

2 8.8283 8.6514 8.6182 8.6066 8.6011 8.6247 8.6046 

5 8.2945 8.1735 8.1509 8.1430 8.1393 8.1863 8.1697 

10 8.0095 7.9061 7.8868 7.8800 7.8768 7.9186 7.9115 
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4.5.1. Free vibration in thermal environment  

A thorough review of existing literature concerning free vibration behavior of FG beams 

in thermal environments, specifically those with temperature independent material 

properties, identified a notable research gap in heated FG beam analysis. This study fills 

this void by analyzing the effect of uniform temperature rise on natural frequencies of 

Clamped-Clamped FG beam.  

The dimensionless natural frequencies of C-C FG beam made of Al2O3/Al under uniform 

temperature rise T∆ with L/h=20 and various power law index values are presented in 

Figure 4.8. As the temperature increases, the natural frequencies consistently decrease, 

indicating a reduction in beam stiffness due heating, regardless of the power law index 

value. When p=0, the beam  exhibit the highest natural frequencies across all 

temperatures. As the power law index increases, the natural frequencies progressively 

decreases, with p=5 showing the lowest values. 

 
Figure 4.8 Dimensionless natural frequencies of C-C FG beam with L/h=20 under 

uniform temperature rise 
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4.6. Conclusion 

This chapter has demonstrated the effectiveness of the Enhanced Timoshenko beam theory 

(ETBT) through extensive numerical analysis. The investigation, covering static, 

mechanical and thermal buckling, and free vibration of functionally graded beams, yielded 

results that align closely with established literature. Specifically, the calculation of 

displacements, stresses, critical loads and temperatures, and natural frequencies. 

Additionally, parametric studies reveal valuable insight into how beam behavior is 

influenced by length-to-thickness ratio, boundary conditions, and power-law index. 
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Chapter 5:                                    
Application ETBT on FG sandwich 
beams-Results and discussions 

5.1. Introduction  

This chapter presents various numerical examples demonstrating, performance of the 

developed element in analyzing FG sandwich beams’ buckling, and free vibration 

behaviors. Obtained results, encompassing nondimensional natural frequencies and critical 

loads, are validated against established literature findings. The analysis explore the impact 

of various parameters including  support conditions, length-to-depth ratio.  

5.2. FG sandwich beams analysis 

Based on the mathematical formulation of enhanced Timoshenko beam theory (ETBT) 

presented in chapter 3, a computational code is developed to analyze mechanical buckling 

and free vibration of FG sandwich beam. 

5.3.  Mechanical buckling of FG sandwich Beams 

Mechanical buckling analysis is conducted for sandwich beam featuring two support 

conditions: simply supported (S-S) and cantilever (C-F). These beams incorporate FG 

skins surrounding an isotropic ceramic core. The element accuracy is validated through 

comparison with established results. The beam utilizes a combination of alumina and 

aluminum materials, whose properties are specified in Table 4.1 

The analysis explores the effect of power-law index and length-to-thickness ratio on the 

critical loads. Three distinctive sandwich beam layouts were analyzed (1-1-1, 2-1-2, 2-2-

1). The numerical model implemented 250 elements, reflecting optimal convergence, 

which is determined in the previous analysis. The numerical findings are presented in 

Tables 5.1-5.4 

Tables 5.1-5.4 presents the comparison study of FG sandwich beams’ dimensionless 

critical buckling loads, examining the variation in boundary conditions, length-to- 

thickness ratio, and power-law index values. The ETBT’s results  show remarkable 
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consistency with the literature, including the analytical solution based on HSDT 

developed by Nguyen et al. [126] and Nguyen and Nguyen [128], as well as FE solution 

utilizing refined shear deformation theory (RSDT) by Vo et al. [130]. Notable findings 

indicate that the critical buckling loads are significantly influenced by both material 

graduation and the sandwich beam layouts, with the (2-2-1) configuration displays highest 

critical loads, while the (2-1-2) layout exhibits the lowest critical buckling loads across all 

tested conditions.  

Table 5.1 Comparison of dimensionless critical buckling loads of S-S FG sandwich beams 
with ceramic core (L/h=5) 

L/h p Model 1-1-1 2-1-2 2-2-1 

5 

1 

Present 24.5705 22.2150 26.0410 

HSDT [126] 24.5602 22.2121 26.3611 

RSDT [130] 24.5596 22.2108 26.3611 

HSDT [128] 24.5598 22.2113 26.3609 

2 

Present 18.3848 15.9259 20.2664 

HSDT [126] 18.3596 15.9167 20.3751 

RSDT [130] 18.3587 15.9152 20.3750 

HSDT [128] 18.3591 15.9158 20.3748 

5 

Present 13.7330 11.6607 15.7230 

HSDT [126] 13.7226 11.6697 15.7313 

RSDT [130] 13.7212 11.6676 15.7307 

HSDT [128] 13.7218 11.6685 15.7307 

10 

Present 12.2626 10.5178 14.2131 

HSDT [126] 12.2621 10.5370 14.2002 

RSDT [130] 12.2605 10.5348 14.1995 

HSDT [128] 12.2611 10.5356 14.1995 
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Table 5.2 Comparison of dimensionless critical buckling loads of S-S FG sandwich beams 
with ceramic core (L/h=20) 

L/h p Model 1-1-1 2-1-2 2-2-1 

20 

1 

Present 26.0974 23.5057 27.6699 

HSDT [126] 25.9588 23.4212 27.9537 

RSDT [130] 25.9588 23.4211 27.9540 

HSDT [128] 25.9588 23.4212 27.9537 

2 

Present 19.3161 16.6815 21.3153 

HSDT [126] 19.2000 16.6051 21.3923 

RSDT [130] 19.3116 16.6050 21.3927 

HSDT [128] 19.1999 16.6050 21.3923 

5 

Present 14.3250 12.1520 16.4165 

HSDT [126] 14.2285 12.0886 16.3829 

RSDT [130] 14.2284 12.0883 16.3834 

HSDT [128] 14.2285 12.0885 16.3829 

10 

Present 12.7707 10.9637 14.8120 

HSDT [126] 12.6820 10.9075 14.7520 

RSDT [130] 12.6819 10.9075 14.7525 

HSDT [128] 12.6819 10.9074 14.7520 

 

Table 5.3 Comparison of dimensionless critical buckling loads of cantilever FG sandwich 
beams with ceramic core (L/h=5) 

L/h p Model 1-1-1 2-1-2 2-2-1 

5 

1 

Present 6.4184 5.7934 6.8153 

HSDT [126] 6.4166 5.7922 6.9050 

RSDT [130] 6.4166 5.7921 6.9050 
    

2 

Present 4.7591 4.1172 5.2582 

HSDT [126] 4.7564 4.1157 5.2952 

RSDT [130] 4.7564 4.1156 5.2952 
    

5 

Present 3.5327 3.0007 4.0532 

HSDT [126] 3.5311 3.0006 4.0621 

RSDT [130] 3.5310 3.0004 4.0620 
    

10 

Present 3.1498 2.7073 3.6575 

HSDT [126] 3.1489 2.7078 3.6596 

RSDT [130] 3.1488 2.7077 3.6595 
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Table 5.4 Comparison of dimensionless critical buckling loads of cantilever FG sandwich 
beams with ceramic core (L/h=20) 

L/h p Model 1-1-1 2-1-2 2-2-1 

20 

1 

Present 6.5388 5.8924 6.9378 

HSDT [126] 6.5083 5.8713 7.0096 

RSDT [130] 6.5083 5.8713 7.0096 
    

2 

Present 4.8380 4.1794 5.3416 

HSDT [126] 4.8110 4.1603 5.3615 

RSDT [130] 4.8110 4.1603 5.3615 
    

5 

Present 3.5870 3.0436 4.1123 

HSDT [126] 3.5637 3.0276 4.1042 

RSDT [130] 3.5637 3.0275 4.1043 
    

10 

Present 3.1975 2.7461 3.7098 

HSDT [126] 3.1759 2.7317 3.6952 

RSDT [130] 3.1759 2.7317 3.6952 

 

5.4.  Free vibration of FG sandwich beams 

The study proceeds with an investigation of the natural frequencies ω  in sandwich beams 

constructed with FG surface layers and a homogenous ceramic core. The beam 

composition consists of Al2O3 and Al.  

Tables 5.5-5.8 document the evaluation of dimensionless natural frequencies across 

different sandwich beam configurations, incorporating various length-to-depth ratios, 

power-law indices, and structural layouts (1-1-1, 2-1-2, 2-2-1). The analysis of simply 

supported (S-S) sandwich beams, detailed in Tables 5.5 and 5.6, includes comparisons 

with Refined sheard deformation theory (RSDT) [130] and high-order zigzag theory 

(HOZT) [169]. Similarly, Tables 5.7 and 5.8 analyze C-C configuration, with results 

validate against RSDT [130] and quasi-3D [170]. For all cases, the 2-2-1 layout exhibit 

the highest natural frequencies due to stiffer ceramic core, while 2-1-2 layout exhibit the 

lowest natural frequencies because its softer FG distribution. For each layout, natural 

frequencies decrease as the  value of p increases , reflecting the reduce of stiffness 

associated with higher metallic content in FG layer. In general, The proposed model align 

closely with published works, particularly with HOZT and quasi-3D. Overall, the 

developed ETBT is efficient in predicting free vibration behavior. 
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Table 5.5 Comparison of dimensionless natural frequencies S-S FG sandwich beams with 
ceramic core (L/h=5) 

L/h p Model 1-1-1 2-1-2 2-2-1 

5 

1 

Present 3.9815 3.7852 4.1071 

RSDT [130] 3.8756 3.7298 3.9911 

HOZT [169] 3.8421 3.7164 3.9830 
    

2 

Present 3.5526 3.3061 3.7161 

RSDT [130] 3.4190 3.2366 3.5719 

HOZT [169] - - - 
    

5 

Present 3.1754 2.9262 3.3749 

RSDT [130] 3.0182 2.8441 3.1966 

HOZT [169] 3.0399 2.8974 3.2808 
    

10 

Present 3.0507 2.8260 3.2656 

RSDT [130] 2.8810 2.7357 3.0630 

HOZT [169] 2.9203 2.8005 3.1639 

 

Table 5.6 Comparison of dimensionless natural frequencies S-S FG sandwich beams with 
ceramic core (L/h=20) 

L/h p Model 1-1-1 2-1-2 2-2-1 

20 

1 

Present 4.1691 3.9561 4.2029 

RSDT [130] 4.0328 3.8768 4.1602 

HOZT [169] 3.9977 3.8661 4.1536 
    

2 

Present 3.7067 3.4427 3.7852 

RSDT [130] 3.5389 3.3465 3.7049 

HOZT [169]    
    

5 

Present 3.3064 3.0423 3.4226 

RSDT [130] 3.1111 2.9310 3.3028 

HOZT [169] 3.1451 3.0081 3.4043 
    

10 

Present 3.1746 2.9382 3.3051 

RSDT [130] 2.9662 2.8188 3.1613 

HOZT [169] 3.0262 2.9199 3.2865 
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Table 5.7 Comparison of dimensionless natural frequencies C-C FG sandwich beams with 
ceramic core (L/h=5) 

L/h p Model 1-1-1 2-1-2 2-2-1 

5 

1 

Present 8.2230 7.8411 8.4108 

RSDT [130] 7.9580 7.6865 8.1554 

Quai-3D [170] 8.0595 7.7854 8.2615 
    

2 

Present 7.4636 6.9625 7.7851 

RSDT [130] 7.1373 6.7826 7.4105 

Quai-3D [170] 7.2328 6.8740 7.5143 
    

5 

Present 6.7527 6.2173 7.1863 

RSDT [130] 6.3889 6.0293 6.7188 

Quai-3D [170] 6.4780 6.1124 6.8210 
    

10 

Present 6.5061 6.0018 6.9733 

RSDT [130] 6.1240 5.8059 6.4641 

Quai-3D [170] 6.2099 5.8848 6.5654 

 

Table 5.8 Comparison of dimensionless natural frequencies C-C FG sandwich beams with 
ceramic core (L/h=20) 

L/h p Model 1-1-1 2-1-2 2-2-1 

20 

1 

Present 9.3835 8.9064 9.4583 

RSDT [130] 9.0722 8.7241 9.355 

Quai-3D [170] 9.1061 8.7569 9.3964 
    

2 

Present 8.3549 7.7613 8.5299 

RSDT [130] 7.9727 7.5417 8.3430 

Quai-3D [170] 8.0035 7.5711 8.3877 
    

5 

Present 7.4598 6.8635 7.7203 

RSDT [130] 7.0170 6.6116 7.4461 

Quai-3D [170] 7.0451 6.6379 7.4955 
    

10 

Present 7.1642 6.6285 7.4570 

RSDT [130] 6.6924 6.3590 7.1296 

Quai-3D [170] 6.7194 6.3841 7.1809 
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5.5. Conclusion 

This chapter presents  a comprehensive investigation into buckling and free vibration 

behaviors of three distinct sandwich FGM beams configuration, employing Enhanced 

Timoshenko beam theory. The findings reveal that FG sandwich beam is influenced by 

power-law index, length-to-thickness ratio, thickness schematic variation, and boundary 

condition. Validation through extensive comparison with established literature confirms 

the model's efficacy in analyzing the buckling and free vibration behaviors of sandwich 

FGM beam structures. 
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General Conclusion  

 

The development of functionally graded materials represents a major advance in material 

science. Featuring unique variation in composition and microstructure properties across 

the thickness. This class of composites continues to gain prominence in scientific research 

and engineering applications. The complexity of the design and optimization of these 

materials demands dedicated research efforts, especially in view of their potential 

advantages in various fields. The development of tailored methodologies is essential to 

address the distinctive geometric and material properties intrinsic to FGM. 

The present research aims to analyze the static, buckling, and vibrations of functionally 

graded and sandwich beams, by  developing enhanced Timoshenko beam theory (ETBT). 

Based on ETBT, a two nodded beam element with three degrees of freedom per node had 

been developed, considering quadratic variation of shear stress along the thickness without 

introducing any shear correction factor. The accuracy and the performance of the 

formulated element is confirmed by comparing the obtained results with those from 

literatures.  The effect of the power law index, length-to-thickness ratio, and boundary 

conditions on static, buckling, and free vibration is investigated. This work has been 

divided into two parts. 

The first part  provides an overview of functionally graded materials, encompassing their 

definition, manufacturing technics, and diverse applications. Subsequent reviews prevalent 

beam theories employed for analyzing and modeling FG and sandwich beams. A  detailed 

literature review examining static, buckling, and free vibration response of FGM beams is 

presented.  

In the second part, an enhanced Timoshenko beam theory ETBT with three variables has 

been developed for the analysis of FG and sandwich beams behaviors. The model features 

quadratic shear stress distribution through the thickness and meets the stress-free 

conditions on the upper and lower surfaces of the beam without shear correction factor. 

The physical neutral axis concept mitigates stretching-bending effect. Based ETBT, a 

beam element was formulated to investigate the static, buckling, and free vibration 

behaviors of FGM beams. The validation of the developed element was achieved through 
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comparative analysis of displacements, critical temperature and buckling loads, and 

natural frequencies results against established literatures. The comparison consistently 

showed excellent agreement, validating the element’s effectiveness. Moreover, the 

influence of different parameters including length-to-thickness, power-law index, and 

boundery conditions, on the FGM beams behaviors has been explored. 

 Based on the analysis, the following key findings emerge: 

• Based on the findings, the present model ETBT is reliable in predicting the static, 
buckling, and dynamic behaviors of FGM beam. 

• The nondimensional displacement of FG beams decreases by the increasing of 
length-to-thickness ratio, whereas with it increases as the power law index value 
increase. 

• The dimensionless shear stress of FG beams doesn’t effect by the change of 
length-to-thickness ratio but it decreases with increase of the power-law index until 
p=5 and then increases again. 

• The dimensionless natural frequency and critical buckling load of FG and 
sandwich beams increase with the increase of the length-to-thickness ratio and 
decrease with increase of the power law index.  

• The critical temperature of FG beams decreases with increase of both length to 
thickness ratio and power-la index. 

• The natural frequencies of FG beams decrease with increase of the temperature. 
• The sandwich layout configuration effects on the beam response. 

 

 

Perspectives  

In perspective, it is planned to apply the ETBT for the analysis of thermal behaviors 

response of FG sandwich beams and to analyze the static, buckling and free vibration 

response of FG beams using analytical solution. 
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