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 :صملخ

تتناول هذه الأطروحة مشكلة الكشف عن الأشياء وتحديد موقعها استناداً إلى تقنيات التعلم العميق. يعد الكشف عن الأشياء 

الأساسية في مجال الرؤية الحاسوبية، والتي يمكن تطبيقها في القيادة الذاتية والمراقبة والتصوير  وتحديد موقعها من المهام  

الطبي والروبوتات. يتضمن الكشف عن الأشياء التعرف على وجود الأشياء في صورة أو مقطع فيديو. على النقيض من  

ناصر، والتي يتم تصويرها عادةً بواسطة مربعات حدودية  ذلك، يتعلق التحديد بتحديد الإحداثيات المكانية الدقيقة لهذه الع

التلافيفية ) العصبية  الشبكات  العميق، وخاصة  التعلم  التطورات الأخيرة في  أدت  أقنعة تجزئة.  ( والهندسة  CNNSأو 

المهام بشكل كبير. أصبحت تقنيات مثل شبكات   إلى تحسين دقة وكفاءة هذه  المحولات  القائمة على    CNNالمعمارية 

( المنطقة  على  وR-CNNالقائمة   )YOU ONLY LOOK ONCE (YOLO)   وSINGLE SHOT 

MULTIBOX DETECTOR (SSD)   من أحدث الطرق للكشف عن الأشياء وتحديد موقعها. تستفيد هذه الأساليب

 PASCAL VOCو COCOمن مجموعات البيانات واسعة النطاق، مثل 

 YOLOV4على يعتمد واحدة مرحلة من الأداء عالي جديد وجه قناع  كاشف هو الأول نموذجين، نقترح العمل، هذا في

 مرحلتين من الوجه لقناع  الأداء عالي جديد ومتعقب كاشف هو والثاني  .YOLOV4 FACE MASKكاشف يسمى

 تسلسلات باستخدام وتتبعه واكتشافه الوجه قناع  توطين مهمة لأتمتة العميق التعلم على قائم عمل وإطار أحادية بكاميرا

  من أكثر مع صورة  18000  من تتكون الوجه قناع عن للكشف جديدة ت بيانا مجموعة نقترح  ذلك، على علاوة.  الفيديو

 بدون/    صحيح غير بشكل مقنع /    مقنع  وجه:  التوالي على وهي مختلفة فئات تسميات  لثلاثة وشروح محكم مربع   30000

   -SCALED-YOU ONLY LOOK ONE (SCALEDالكائن عن  الكشف نموذج على نعتمد نحن.  ملثمين

YOLOV4)  كاشف لتدريبYOLOV4-P6- FACEMASKالحقيقي الوقت وفي الإنترنت عبر البسيط التتبع و 

 طريق عن الوجوه لتتبع DEEPSORT  استخدام نقترح.  الوجوه لتتبع(  DEEPSORT)  للارتباط عميق نهج باستخدام

 -YOLOV4-P6.  المقنعة غير للوجوه بيانات قاعدة وإنشاء فقط واحدة مرة الوجوه لحفظ المعرف تعيين

FACEMASKالوقت في   سرعة و ٪  92  استدعاء  ومتوسط٪  93  يبلغ دقة  متوسط يحقق عالية  دقة ذو نموذج هو 

. لدينا المقترحة البيانات مجموعة في واحدة GPU TESLA-T4 رسومات بطاقة على الثانية في إطارًا 35 تبلغ الفعلي

 الوجه قناع ىلاكتشاف الأخر الشائعة النماذج أحدث مع والتتبع الكشف نتائج بمقارنة قمنا المقترح، النموذج أداء لإثبات

 . وتتبعه

 

 

 

 . تحسين;  الواصفات;   الموقع;  كشفال; عميق تعلم; الصور تحديد  : حيةالكلمات المفتا

 

 

 



 
 

 
 

Abstract 

This thesis deals with the problem of detection and localization of objects based on deep Learning 

techniques. Object detection and localization are essential tasks in computer vision, applicable in 

autonomous driving, surveillance, medical imaging, and robotics.  Object detection entails 

recognizing the existence of objects in an image or video. In contrast, localization pertains to 

ascertaining the exact spatial coordinates of these items, usually depicted by bounding boxes or 

segmentation masks. Recent advancements in deep learning, particularly convolutional neural 

networks (CNNs) and transformer-based architectures have significantly improved the accuracy and 

efficiency of these tasks. Techniques such as Region-based CNNs (R-CNN), You Only Look Once 

(YOLO) and  Single Shot MultiBox Detector (SSD have become state-of-the-art methods for object 

detection and localization. These approaches leverage large-scale datasets, such as COCO and Pascal 

VOC. 

        In this work, we propose two models, the first one is a new high-performance one-stage face 

mask detector based on YOLOv4 called the Yolov4FaceMask detector.  The second is a novel high-

performance two-stage face mask detector and tracker with a monocular camera and a deep learning 

framework for automating face mask localization, detection, and tracking utilising video sequences. 

Furthermore, we offer a new face mask detection dataset comprised of 18000 pictures with over 

30000 tight bounding boxes and annotations for three alternative class labels: face 

masked/incorrectly masked/no masked.  To train the YOLOv4-P6-FaceMask detector, we used the 

Scaled-You Only Look Once (Scaled-YOLOv4) object detection model and the Simple Online and 

Real-time Tracking with a Deep Association Metric (DeepSORT) strategy to track faces. DeepSORT 

is recommended for tracking faces by ID assignment to save faces just once and construct a database 

of non-masked faces.  On our dataset of face masks, the YOLOv4-P6-FaceMask model achieves 

93% mean average precision, 92% mean average recall and a real-time speed of 35 frames per second 

on one Tesla-T4 graphic card. To show the proposed model's performance, we compare the 

identification and tracking results with those of other popular state-of-the-art face mask detection 

and tracking models. 

Keywords: Identification; Localization; Deep Learning; Detection; Descriptors; Optimization. 

 

 



 
 

 
 

 
Résumé 

 

 

 

     Cette thèse traite du problème de détection et de localisation d'objets basé sur des techniques 

d'apprentissage profond. La détection et la localisation d'objets sont des tâches essentielles en vision par 

ordinateur, applicables à la conduite autonome, à la surveillance, à l'imagerie médicale et à la robotique. 

La détection d'objets implique la reconnaissance de l'existence d'objets dans une image ou une vidéo. En 

revanche, la localisation consiste à déterminer les coordonnées spatiales exactes de ces éléments, 

généralement représentées par des cadres de délimitation ou des masques de segmentation. Les progrès 

récents dans l'apprentissage profond, en particulier les réseaux de neurones convolutifs et les architectures 

basées sur des transformateurs, ont considérablement amélioré la précision et l'efficacité de ces tâches. 

Des techniques telles que les CNN régionaux, YOLO et SSD sont devenues des méthodes de pointe pour 

la détection et la localisation d'objets. Ces approches exploitent des ensembles de données à grande échelle, 

tels que COCO et VOC. 

        Dans ce travail, nous proposons deux modèles, le premier est un nouveau détecteur de masque facial 

à une étape haute performance basé sur YOLOv4 appelé le détecteur Yolov4FaceMask. Le second est un 

nouveau détecteur et traqueur de masque facial à deux étages hautes performances avec une caméra 

monoculaire et un cadre basé sur l'apprentissage en profondeur pour automatiser la tâche de localisation, 

de détection et de suivi du masque facial à l'aide de séquences vidéo. De plus, nous proposons un nouvel 

ensemble de données de détection de masque facial composé de 18 000 images avec plus de 30 000 cadres 

de délimitation serrés et des annotations pour trois étiquettes de classe différentes, à savoir : visage 

masqué/incorrectement masqué/non masqué. Nous nous basons sur le modèle de détection d'objets Scaled-

YOLOv4 pour former le détecteur YOLOv4-P6-FaceMask et le suivi simple en ligne et en temps réel avec 

une approche de métrique d'association profonde pour le suivi des visages. Nous suggérons d'utiliser 

DeepSORT pour suivre les visages par attribution d'ID pour enregistrer les visages une seule fois et créer 

une base de données de visages non masqués. YOLOv4-P6-FaceMask est un modèle de haute précision 

qui atteint une précision moyenne moyenne de 93 %, un rappel moyen moyen de 92 % et une vitesse en 

temps réel de 35 ips sur une seule carte graphique GPU Tesla-T4 sur notre ensemble de données proposé. 

Pour démontrer les performances du modèle proposé, nous comparons les résultats de détection et de suivi 

avec d'autres modèles de pointe populaires de détection et de suivi des masques faciaux. 

Mots clés: Identification ;apprentissage profond;Détection;Localisation;escripteurs ; ptimisation. 
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GENERAL INTRODUCTION  

 

1. Background 

Nowadays, object detection and localization in indoor and outdoor scenes using deep learning are 

considered among the current challenging research topics in image processing and computer vision. It is 

an essential technology in several fields, including maintaining the general safety of the population against 

diseases and epidemics [93]. World Health Organization (WHO) reports noted that the disease COVID-

19 2019 has infected more than 58 million people worldwide and caused more than 1.4 million deaths 

(April 9, 2021). With this COVID-19 coronavirus outbreak, many countries, or we can say all nations, 

have been forced to put in place new social distancing and face mask wearing rules. Governments have 

forced hospitals and different organizations to use new infection interference measures to prevent the 

spread of COVID-19 as its transmission rate increases [146]. However, the rate of transmission could vary 

depending on government measures and policies. As COVID-19 spreads through airdrops and close 

contact, governments have started using new rules requiring individuals to prevent people from sitting 

next to each other and wearing face masks to reduce the rate. of transmission and propagation. New 

variants of the coronavirus have taken hold after the relaxation of many countries in respecting safety rules 

(India, Nigeria, United Kingdom, Brazil…), which has prompted the WHO to recommend the use of 

equipment personal protective equipment (PPE) between people and in medical care. The coronavirus 

(COVID-19) spreads rapidly in close contact and in crowded environments. The spread of COVID-19 has 

affected people's lives and disrupted the economy. It has been classified as an important economic and 

public health problem. Countries need guidance and monitoring of people in crowded environments and 

incredibly crowded public spaces to ensure laws on wearing face masks are enforced. This could be used 

through CCTV systems and deep learning (DL) models. However, most of the mask detection apps and 

current research on mask detection models aim to solve the problem of masked and unmasked face, but 

ignore the incorrect wearing of face mask. 

In this work, we are particularly interested in the localization and detection of faces as well as their 

follow-up in order to ensure the tracking of contaminated and at-risk people.  



 
 

 
 

 

2. Problematic 

Among the most common uses of images is identification in biometrics which is a field of artificial 

vision and which has experienced growing interest in recent years. Several interesting approaches have 

been developed in the fields of detection, localization and tracking. 

The effectiveness of localization and identification techniques in imaging is today very strongly linked 

to strong constraints imposed on the user, a current research path is therefore turning towards the 

management of situations where data acquisition is less constrained. Finally, the use of classical methods 

is often limited in terms of performance or difficulties of use, which is why it seems interesting to 

evaluate the contribution of deep learning and artificial intelligence models in this field. context.  

 

3. Positionnement 

Our study, conducted at the Identification, Command, Control and Communication Laboratory ( 

LI3C ) of Mohamed KHIDER BISKRA University, is part of one of the issues studied by the RB_IAIM 

team " Biometric Recognition & Identification of Anomalies on Medical Imaging This work contributes 

to the work carried out in the broader sense by the team on research linked to two parallel axes: 

a. Biometric identification/authentication of individuals; 

b. Recognition of kinship by biometrics; 

c. Identification of abnormalities in medical images; 

d. Indoor/Outdoor location; 

e. Optimization; 

f. Artificial Intelligence-Machine Learning. 

 

 

 

 

 



 
 

 
 

4. Objectifs 

The main objective of the thesis is to contribute to a work to pursue research directed at the same 

time towards the technique and the uses. 

The overall objective of the work is therefore to carry out the localization and detection of faces, 

that is to say: find where the object is and draw a bounding box around it, and then follow up (tracking) 

of these faces based on automatic image learning making our approach more flexible, fast and efficient. 

Afterwards unmasked and incorrectly masked faces are recorded to create an individual risk data set. This 

dataset is intended for identification/authentication and other applications. 

The study and research relating to this thesis focuses on three axes, with a view to achieving a robust, 

efficient and effective localization and recognition system: 

• The first part concerns the study and design of detection methods; 

• The second part concerns the study of localization methods. Along this work the computation time 

is taken into account; 

• On the other hand, artificial intelligence has proven to be most effective in computer vision tasks 

due to its convolution-based architecture. Since the advent of deep learning, face recognition technologies 

have steadily increased and had a substantial increase in accuracy. This motivated our research to use a 

location system based on Deep Learning. 

The validation of the results is carried out on various indoor and outdoor data and sequences in 

controlled and uncontrolled environments. 

 

5. Contributions  

In this thesis work, the first contribution is the development of structures of the detection model 

YoloV4FaceMask and the proposal of a new database of masked faces. 

Another contribution is the development of a biometric identification system, essentially based on 

another detection model under the name YOLOv4-P6-FaceMask and the DeepSORT tracker. 

As well as their application on still images and sequences in controlled and uncontrolled 

environments to see if these approaches retain their performance and optimality. 



 
 

 
 

The third contribution is the development and elaboration of a feature optimization structure based on the 

Deep Learning and Transfer Learning structure. For this, structures based on transfer learning is used 

based on convolutional neural networks (CNN) in order to extract the most relevant facial features. 

 

6. Organisation of the Thesis 

The thesis manuscript is structured around four chapters: after having introduced localization and facial 

recognition as well as the techniques used, chapter 2 is dedicated to the state of the art of scientific 

research in the field where the methods and techniques on Machine Learning and Deep Learning as well 

as the use of machine learning and classification are all reviewed. chapter 3 present deep detection and 

localization.  Then, chapter 4 presents the design and implementation of the first proposed approach and 

its validation on the proposed databases. Chapter 5 is devoted to the second proposed approach and use 

of Deep Learning and all the work carried out on Google Colab. In all the chapters the presented results 

are discussed and improved along the work for better performance rates and also a good test time. Finally, 

a general conclusion and perspectives close the thesis. 
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Introduction: 

     Throughout history, humans have consistently required the ability to determine the location of 

objects and position themselves within their surroundings. In order to fulfil this need, many 

methodologies have been employed. In the early stages of human civilization, individuals relied on 

stones or mountains as navigational aids. The distinctive features of the terrain acted as a navigational 

reference point for him to navigate across the forest and the deserts. The fundamental principle for any 

localization is the "reference". All subsequent localization systems are built on this concept in order to 

determine the position of an object or a person. This chapter aims to review fundamental ideas and 

terminology in facial biometrics. It will begin by providing a generic definition of biometrics and then 

explain the rationale behind selecting face recognition as a specific focus. We will then address the 

issues of face recognition, face detection and localization [1].  

1.1 What is biometrics?    

     There are two types of biometric systems: identification systems (recognition) and verification 

systems (authentication). see Figure 1.1. 

Identification is a sort of application for which the system must answer the question: Who am I? The 

system must locate the identity of a person among those in a database containing persons previously 

enrolled and return the identity corresponding to the person appearing before the system, or the 

"unknown" identity if this person does not is not part of the base. This is a [1 to n] comparison where 

n is the number of persons in the database, commonly known as the gallery. Among the potential uses 

of a system in identification mode, we find the search for hazardous persons or the limited entry to a 

building of a corporation to its only workers for example. 

In authentication, the system must answer the question: Am I the person I claim to be? The use case 

involves a person identifying themselves to the system, and the system then having to confirm that the 

person is who they say they are. Authentication-related applications include access to secure data, 

computing resources, and secure transactions. A biometric identification system's standard 

performance is measured using the following variables: 

1. Rank-one Recognition Rate: It measures the percentage of entries that are correctly identified. 

 



CHAPTER 1:                                                                           Generalities about localization and detection 

 

3       

 

Figure 1. 1: Some biometric modalities [2] 

2. Cumulative-Match-Characteristic (C-M-C): The CMC curve gives the percentage of people 

recognized according to a variable called the rank [3]. When a system selects the closest image 

as the outcome of the recognition, we say that it recognizes at rank 1. When a system selects 

the image that most closely resembles the input image out of two, for example, we say that the 

system recognizes at rank 2. The higher the rank, the greater the matching recognition rate is 

associated with a low level of security, we may thus conclude. 

The following parameters are used for standard performance measurement of a biometric system with 

a verification scenario. 

a. False-Reject-Rate (T-F-R) or False-Reject-Rate (F-R-R): This rate reflects the proportion 

of applicants who should be accepted but are turned down by the system. 

b. False-Acceptance-Rate (T-F-A) or False-Accept-Rate (F-A-R): this rate represents the 

percentage of people who are not supposed to be recognized but who are still accepted by 

the system. 

c. Equal-Error-Rate (T-E-E) or Equal-Error-Rate (E-E-R): This rate serves as a standard 

performance measuring point and is derived from the first two criteria. The intersection of 

TFR and TFA, or the ideal middle ground between false rejections and false accepts, is at 

this location. 
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d. Receiver-Operating-Characteristic (R-O-C): The R-O-C arc is a visual demonstration of the 

trade-off between TFAs and TFR related to a variable threshold. 

As highlighted in the "Handbook of Biometrics" [4], A fast developing area, biometrics has several 

uses, including securing computer access and gaining entry into a country. For more information, one 

can refer to the manuals [4, 5]. 

1.1.1 Why face recognition?  

Who is most qualified for giving this information is an evident worry given the demand to identify 

people [6]? The fingerprint, iris, face, voice, and signature among all the available biometric traits 

have received the greatest interest. Particularly, the methodologies for face, iris, and fingerprint 

identification have gradually acquired acceptance as standard biometric recognition technologies. 

Although iris and fingerprint identification technologies can yield reliable results in some 

specialised commercial applications, they have the apparent limitations described below [7]: 

• Physically intrusive: While iris needs the user to position the eye in relation to the sensor, 

fingerprint demands the user's participation to make physical contact with the sensor surface. 

Furthermore, these kind of cooperative analysis techniques also require the user to pause for a 

second to “declare” themselves [6]. 

•  Socially intrusive: people cannot recognize other people using this type of data, these types 

of identification have no place in normal human interactions and social structures [6]. To build 

a store that recognizes its best customers, or an information kiosk that remembers you, or a 

home that knows the people who live there, video face recognition and voice recognition have 

a natural place in these next generation intelligent environments [4]. In particular, they must 

be: 

o Natural and non-intrusive: they are discreet (able to recognize from a distance) and 

generally passive (do not require the generation of special electromagnetic lighting). 

They should not restrict the user's movement and should be low power and inexpensive 

[6]. 

o Biological perception: This is perhaps the most important. However, People who can 

recognise others by their voice and face are consequently likely to feel at ease using 

face and voice recognition technologies [6]. 

As a strong proof of the ICAO organization (International-Civil-Aviation-Organization), Hietmeyer 

[8] pointed out that biometric identification can enable fast and secure processing of air passengers. 
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To select a single biometric feature for use in computer-aided identity confirmation, he suggested 

evaluating the compatibility of six biometric traits: face, fingerprint, hand geometry, voice, eyes as 

well signature on the basis of an MRTD (Machine-Readable-Travel-Documents) system. The 

compatibility score involves: enrollment factors, data renewal, machine-assisted identity verification 

requirements, redundancy, public perception, storage requirements and performance. As shown in 

figure 1.2, the face recognition system scored the highest compatibility and is becoming the biometric 

most likely to be selected for international use. 

1.1.2 2DP Face Detection and Localization Difficulties 

Many facial properties and the conditions in which they were photographed make automatic processing 

difficult. In the context of recognition, the main underlying problem is the intra-class variance, i.e. the 

variability that the face of the same person can take on because of differences in luminosity, pose. . . 

This intra-class variation can be greater than the inter-class variance, i.e.  the variability that the faces 

of different people take on. In many systems, this intra-class variation is considered noise (unwanted 

information) making the goal of recognition more difficult. 

The extraction of discriminating characteristics is indeed made more complicated and the overall 

performance of the systems is reduced [7]. We detail here the main difficulties encountered by a 2D 

automatic facial recognition system in real conditions. 

1. Lighting: The appearance of a face can vary significantly depending on the lighting. Global 

(or ambient) illumination and local illumination both have an impact on this. While local 

lighting produces shadows and highlights in a non-linear way, global illumination impacts the 

entire face uniformly (or almost so). Figure 1.2 shows an illustration of a face with a moving 

light source. Numerous solutions have been put up to address these brightness issues. It is 

possible to obtain implicit modelling of brightness while making a face model. Another 

strategy that is extensively discussed in the literature is the extraction of characteristics that are 

unaffected by variations in brightness. Finally, take notice that a few methods address the issue 

of brightness prior to recognition by performing a pre-processing phase whose primary goal is 

frequently to repair artefacts brought on by fluctuations in luminosity. 
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Figure 1. 2 : faces (examples) of the same person undergoing a change in brightness 

(Images is collected from the internet). 

2. Pose : The pose of a face defines the rotation that a face may have undergone during the 

capture. Pose variations can be of two types depending on the type of rotation: in-plane rotation 

where the axis of rotation is the camera axis, and out-of-plane rotation otherwise. Figure 1.3 

shows an example of a face undergoing out-of-plane rotation. Pose variations greatly affect 

automatic face recognition systems, which is why many of them are limited to frontal poses or 

too specific poses requiring prior estimation. In the case of a rotation in the plane, the 

appearance of the face is not deformed and a good estimate of the angle of rotation can be 

enough to recalibrate the image by simple reverse rotation and thus obtain a frontal pose 

(forehead top of image, chin down). The case of out-of-plane rotation is often much more 

complex, unless the faces used for enrollment and recognition have the same pose. 

 

Figure 1. 3 : Example of a face of the same person undergoing out-of-plane pose variations                                                                                                                            

(Image collected from internet). 

 

3. Facial-expressions: A face looks very different when facial emotions are present. (figure 1.4). 

When this happens, mouths and even the eyes might experience severe deformations, which 

can prevent a face recognition system based on, say, areas of interest from working properly. 

(these can thus undergo significant translations). The mouth is generally the facial element that 

varies the most, but the appearance of the eyebrows, for example, can be greatly modified [9]. 
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Figure 1. 4 :  Intra-class variability due to the presence of facial expressions(image collected from 

Internet). 

4. Occlusions: As seen in figure 1.5, partial occlusions regularly happen in practical applications. 

They can be brought on by long hair, eyeglasses, sunglasses, any other object (scarf, etc.), 

concealing hands, or even by another person. In other cases, such as when rotating out of plane, 

one aspect of the face may obscure another. 

 

Figure 1. 5 facial-occlusion (examples of image collected from internet). 

1.2 What is Object-Recognition? 

One of numerous related computer vision tasks that are generally referred to as "object-recognition" is 

the identification of objects in digital images. Image classification is the process of determining the 

class of a particular item inside an image. Object-localization is the process of identifying one or more 

objects in a picture and drawing a bounding box around their extent. Object detection, which finds and 

classifies one or more objects in a picture, combines these two tasks. (figure 1.6). 
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Figure 1. 6 : Tasks of Object Recognition 

 

1.3 Object Localization and detection-based Machine-Learning 

 Definitions  

Robotics, machine-learning, and natural language processing are just a few of the many subfields that 

fall under the broad umbrella of artificial-intelligence (AI) (see figure 1.7). It is strongly related to 

computer science as well. AI makes it possible to build intelligent-computers that can act and think 

like people and make decisions on their own. The main goal of AI research is to create computers that 

can reason, learn, and solve problems like humans do. AI applications can be used to process and make 

decisions on a variety of tasks, including but not limited to: Autonomous Vehicles, Object Detection 

and Localization, Fraud Detection, Predicting Consumer Behavior, Robotics, Speech Recognition, 

Translation. 
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Figure 1. 7 : AI taxonomy and related fields [10] 

 Machine-Learning 

A branch of artificial-intelligence called machine-learning (ML) is concerned with creating algorithms 

that can learn from data and make predictions. Machine learning's fundamental objective is to 

automatically spot patterns in data and use those patterns to infer future events or make judgements 

without having to be explicitly programmed to do so. supervised, unsupervised, semi-supervised, and 

reinforcement learning are common categories for ML algorithms. Based on the learning-algorithm, 

they are divided. 

• Supervised-learning:   

The instances in the training dataset are labelled, which is a feature of supervised learning. Typically, 

in classification issues, the labels are class labels. Induce models that may be used to categorise 

further unlabeled data by creating a function that maps inputs to desired outputs as the end aim of 

this form of learning. 

• Unsupervised-learning:  

Clustering and feature reduction are the key applications for unsupervised learning. The objective of 

this sort of learning is to uncover hidden patterns in the data using unlabelled inputs [11]. 

 

• semi-supervised-learning 
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Learning that is semi-supervised combines supervised and unsupervised learning and makes use of 

both labelled and unlabelled inputs [11]. 

• Reinforcement learning:  

In reinforcement learning, the algorithm selects an output for each data observation before receiving 

input from the environment. It is frequently used to issues involving sequential decision-making [12]. 

 Artificial Neural Networks 

(Figure 1.8). The technique attributed to the human brain is based on the fact that the network 

acquires knowledge from its surroundings through a learning process, and that the power between 

the connections of neurons is known as synaptic weight, which is where the gained knowledge is 

stored. The number of neurons and the type of activation function utilised determine the accuracy of 

an ANN. There is still no rule governing the number of layers that an ANN must have in order to 

work optimally or for the activation function; the only requirement is that the ANN have at least two 

layers [11]. 

An ANN's neurons are organised in multiple degrees of parallel organisation. These levels are 

classified as follows: 

• Input-layer: This is the level number one of an ANN. At this level the data enters the ANN 

and the number of variables is equal to the neurons. 

• Hidden-layer: The number of hidden layers may differ, and the number of neurons increases 

as the hidden levels increase. 

• Output-layer: This is the final level of an ANN. At this level, the results are the outputs, and 

the number of neurons is equal to the possible output variables. 

 

Figure 1. 8 : Schematic representation of a multilevel ANN [13] 
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1.4 Localization and Detection 

Object localization and detection are very large and important fields in research, because current 

research aims to create systems that approach human skills in perception and object tracking and 

recognition. The importance of the localization and detection comes from the fact that the good result 

in these phases gives a good result of the recognition and also these phases is not easy to process 

because of several problems such as the size of the object (Figure 1.9) : the light, the shape, the wide 

variety of objects, the real-time response speed, the complexity of the backgrounds… etc. 

One of the most intriguing real-world uses for object localization and detection is in traffic monitoring 

or for vehicles with automatic or partially autonomous driving assistance, as well as in the localization 

and detection of people who are not wearing masks during the "COVID-19" incident and in businesses 

to distinguish between well-made and poorly-made products (for example: company that produces 

parts so the system will check the quality) 

Deep learning has been embraced and incorporated by researchers and businesses for various computer 

vision use cases as a result of the evaluation of artificial intelligence technologies. One such use is 

object localization. By enclosing an object in a bounding box, object localization techniques locate the 

object in an image and determine its location. Object localization is one of the image recognition tasks 

along with image classification and object detection. Though object detection and object localization 

are sometimes used interchangeably, they are not the same. Similarly, image classification and image 

localization are also two distinct concepts. 

 

1.4.1 Classification task  

The process of classifying an image is assigning it to one of a set of labels or land cover categories. 

The objective of this project is to extract data from photos and classify it. (e.g., masked face/non 

masked face) or a probability (e.g., there is an 85% chance that this is a person). 

• Input: An image with a single object, such as a photograph. 

• Output: A class label (one or more integers that are mapped to class labels). 

1.4.2 Localization task 

Locate the presence of objects in an image and indicate their location (x and y coordinates) with a 

bounding box (draw bounding boxes). 
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• Input: an image 

• Output: “x”, “y”, height, and width numbers around an object of interest 

 

Figure 1. 9 : Example of localization [14] 

 

1.4.3 Detection-task  

Object-detection is a difficult problem that involves picture localization and classification. An object 

detection method would produce bounding boxes around all things of interest in a picture and assign 

them a class. (figure 1.10). 

• Input: an image 

• Output: “x”, “y”, height, and width numbers around all object of interest along with class(es). 
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Figure 1. 10 : Example of Object Detection (face mask detection) 

Conclusion  

In this chapter, we have revisited and thoroughly explored the definitions of the four primary 

applications of biometrics: identification (also referred to as recognition), verification, detection, and 

localization. Each of these applications plays a critical role in various real-world scenarios, from 

security systems to user authentication. Additionally, we have revisited and discussed in detail the 

CNN , detection and localisation . CNN detection and localization refer to the processes by which 

Convolutional Neural Networks (CNNs) identify and precisely locate objects within an image or video. 

Detection involves recognizing the presence of objects and classifying them, while localization focuses 

on determining their exact spatial coordinates, often represented by bounding boxes or segmentation 

masks. Together, these tasks enable CNNs to not only identify what objects are present in a scene but 

also pinpoint where they are located, making them essential for applications such as autonomous 

driving, surveillance, and medical imaging.
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Introduction  

 

The Viola Jones detector, which was utilised for real-time detection, marked the beginning of the 

growth of object detectors. Traditionally, object detection algorithms dealt with spatial structures using 

a structured classifier and hand-crafted features to extract pertinent information from photos. 

These conventional methods, however, are unable to handle the many changes in object look and shape 

and effectively leverage the enormously large data volume. These algorithms have several limitations, 

even though they are unsupervised and do not require historical data for training. This is especially 

true when dealing with complex situations like the lighting effect, occlusion effect, and clutter impact. 

Deep Learning methods are the foundation of the modern era of object detection. In the case of 

computer vision, we can distinguish traditional machine learning from Deep Learning by saying that 

Machine Learning extracts hand-crafted features from images and performs classification, whereas 

Deep Learning techniques extract the features and classify them in a single step. 

In this part of thesis, we review most of the recent work on the location and detection of people based 

on Deep Learning. First we will start with an introduction to the topic of object localization and 

detection itself and its key metrics. 

2.1.   Recent Research of Object Localization and Detection 

The classification of images consists in systematically distributing images according to classes 

established beforehand, classifying an image makes it correspond to a class, thus marking its 

relationship with other images. In general, recognizing an image is an easy task for a human over the 

course of his existence, he has acquired knowledge that allows him to adapt to the variations resulting 

from different acquisition conditions. For example, it is relatively easy for him to recognize an object 

in several orientations partially hidden by another from near or far and according to various 

illuminations. 

However, technological progress in terms of image acquisition (microscopes, cameras, sensors) and 

storage generate databases rich in information and multiply the fields of application, it then becomes 

difficult for humans to analyse the large number of images, the time required, the repetitive nature of 

the task and the concentration required are problematic. However, this is not necessarily easy for a 

computer program for which an image is a set of numerical values. The objective of image 

classification is to develop a system capable of automatically assigning a class to an image. Thus, this 

system makes it possible to carry out an expertise task which can prove costly to acquire for a human 
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being due in particular to physical constraints such as concentration, fatigue or the time required by a 

large volume of image data. 

Automatic image categorization has a wide range of uses, from document analysis to medicine and the 

military. Thus, there are applications in the medical field such as cell and tumour recognition, 

handwriting recognition for checks and postal codes, in the urban domain such as road sign 

recognition, pedestrian recognition, vehicle detection, building recognition to aid in localization, and 

in biometrics such as face, fingerprint, and iris recognition. 

All of these applications have one thing in common: they all require the construction of a processing 

chain from accessible pictures that consists of numerous steps in order to deliver a choice as output. 

Each phase of the development of such a classification system, namely the feature extraction and 

learning phases, necessitates the search for acceptable approaches for best overall performance. In 

most cases, we have picture data from which we must extract useful information in the form of digital 

vectors. This extraction process enables us to operate in a digital environment. It is thus necessary to 

create, during the learning phase, a decision function to determine if a new datum corresponds to one 

of the classes present. 

2.2.   Classifiers  

ImageNet [15] is an image database organized according to the WordNet hierarchy contains 14197122 

annotated images. The dataset has been used in the ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC) since 2010, which is a benchmark in picture classification and object recognition. 

A collection of manually annotated training photos is included in the publicly available dataset.  

A series of test photos is also made available, although the hand annotations are not included. In this 

part, we report the findings of cutting-edge classifiers trained on the ImageNet dataset.  

The results of classification are illustrating in table1.1 

• LeNet[16]: LeNet is the first applications that were successful of convolutional networks. This 

model developed by Yann-Le-Cun in the 1990. Of these, the best known is the LeNet 

architecture used to read postal codes, digits, etc. 
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Table 2.1 Deep Learning classifiers results on ImageNet dataset  

 

• AlexNet[17]: The first work that popularized convolutional-networks in computer-vision was 

AlexNet, developed by Alex-Krizhevsky, Ilya-Sutskever and Geoff-Hinton. AlexNet was 

sended to the ImageNet-ILSVRC-challenge [18] in 2012 and clearly outperformed its 

competitors (Figure 2. 1). The network of this model had a very similar or the same architecture 

of LeNet model, but was deeper, larger, and had convolutional-layers stacked on top of each 

other (previously it was common to have only one convolutional-layer always immediately 

followed by a pooling-layer). 

Model Name Accuracy 

AlexNet 63.3 

ZFNet 64 

VGG-19 74.5 

Inception V3 78.8 

EfficientNet-B1 79.1 

ResNeXt-101 80.9 

EfficientNet-B3 81.6 

NASNet-A 82.7 

PNASNet-5 82.9 

EfficientNet-B7 84.3 

FixResNeXt-101 86.4 

VAN-B6 87.8 

Mixer-H/14 87.94 

VITG/14 90.45 

Model soups(BASIC-L) 90.98 

COCA 91 

https://paperswithcode.com/paper/visual-attention-network
https://paperswithcode.com/paper/mlp-mixer-an-all-mlp-architecture-for-vision
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Figure 2. 2:  AlexNet Network architecture [17] 

• ZFnet [19]:  

The winner of ILSVRC challenge 2013 was a convolutional-network by Matthew-Zeiler and Rob-

Fergus. It became ZFNet (short-for-Zeiler-and-Fergus-Net). It was just an improvement of 

AlexNet model by adjusting the hyper-parameters of the architecture, in particular enlarging the 

size of the convolutional-layers and minimizing the kernel-size on the first-layer. (Figure 2. 2) 

Figure 2. 2: ZFNet Network architecture [19] 

• GoogLeNet [20]: The winner of ILSVRC challenge 2014 was a convolutional-network by 

Szegedy and other authors from Google. The main contribution of this work was the development 
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of an inception-module which significantly minimised the number of parameters in the network 

compared to AlexNet (4M, compared to AlexNet with 60M). Also, this module removes several 

parameters by using global AVG-pooling-instead of PMC at the network's end. There are 

numerous versions of GoogLeNet, including Inception-v4. [21]. 

• ResNet [22]: Residual network developed by Kaiming He et al. was the winner of ILSVRC 2015. 

It features connection jumps and strong use of batch normalization. It also uses global AVG 

pooling instead of PMC at the end. (Figure 2. 3) 

 

Figure 2. 3:  ResNet Network architecture [22] 

 

• ResNeXtModel [23]: The conventional approach to enhancing the accuracy of a model 

involves increasing its depth or width. However, such augmentation results in escalated model 

complexity and parameter count, while gain margins diminish rapidly. In response, Xie et al. 

introduced the ResNeXtModel architecture, which is simpler and more efficient than its 

predecessors. The ResNeXtModel was inspired by the stacking of comparable blocks in 

VGG_Net/ResNetModel and the "split transform-merge" behavior of the Inception module. 

Essentially, it is a ResNet-model with each ResNet block replaced by a ResNeXt-model that is 

similar to the inception-model. The intricate, customized transformation modules from the 

Inception model are substituted with topologically identical modules in the ResNeXtModel 

blocks, rendering the network more scalable and generalizable. The authors. also emphasize 

that the cardinality (topological paths in the ResNeXtModel block) can be regarded as a third 

dimension, alongside depth and width, to enhance model accuracy. The ResNeXtModel is 

elegant and more concise, achieving higher accuracy while having significantly fewer hyper-
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parameters than similar depth ResNetModel architectures. It was also the first runner-up in the 

ILSVRC2016Challenge.  

• CSPNet-model [24]: Existing neural-networks have shown incredible results in achieving 

high-accuracy in computer-vision tasks; however they rely on excessive computational 

resources. Wang and other authors. believe that heavy inference computations can be reduced 

by cutting-down the duplicate-gradient-information in the network. They proposed Cross-

Stage-Partial-Network (CSPNet), which creates different paths for the gradient flow within the 

network. CSPNet separates feature maps at the base layer into two-parts. One part is passed 

through the partial convolution-network block (e.g., Dense and Transition block in DenseNet 

or Res(X) block in ResNeXt ) while the other part is combined with its outputs at a later stage. 

This minimises the amount of parameters, improves processing unit utilisation, and reduces 

memory footprint. It is simple to implement and generic enough to be used on various 

architectures. like ResNet, ResNeXt, DenseNet, Scaled-YOLOv4 etc. Using CSPNet on these 

networks lowered calculations by 10% to 20% while maintaining or improving accuracy. This 

strategy dramatically reduces memory costs and processing bottlenecks. It is employed in 

various cutting-edge detector types, as well as for mobile and edge devices. 

 

 

Figure 2. 4: Exemple of CSPNet [24] 

 

• EfficientNet [25]: Tan and other authors. thoroughly investigated network-scalability and its 

implications on model-performance. They summarised how network-factors such as depth, 

breadth, and resolution affect accuracy. Any parameter that is scaled separately incurs a cost. 

Increased network-depth can aid in the capture of richer and more complex characteristics, but 

they are challenging to train owing to the vanishing gradient-problem. Similarly, increasing 
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network width makes it simpler to capture fine-grained information but makes capturing high-

level characteristics more challenging. Gains from increased picture resolution, such as depth 

and breadth, become saturating as the model scales. In the paper [25], The authors 

recommended using a compound coefficient that can scale all three dimensions evenly. 

EfficientNet-model is a simple and efficient architecture. It beat prior models in terms of 

accuracy and speed despite being much smaller. It has the ability to usher in a new era in the 

field of efficient networks by giving a massive boost in efficiency. 

2.3.  Detectors 

Detectors are classified into two types: one_stage detectors and two_stage detectors. A two-stage 

detector is a network that includes a separate module for generating area proposals. During the first 

step, these models attempt to find an arbitrary number of object suggestions in a picture, and then 

classify and localise them in the second. Because these systems have two distinct processes, they take 

longer to create suggestions, have more intricate design, and lack global context. which models are 

well-known:  

• Recurrent-Convolutional-Neural-Network (R-CNN) [26] The first publication in the R-

CNN family, r-cnn, illustrated how CNNs may be utilised to significantly increase detection 

performance. R-CNN employs a class-agnostic region proposal module in conjunction with 

CNNs to transform detection into a classification and localization challenge. 

• Fast-RCNN[27] is One of the key drawbacks of R-CNN/SPPNet was the requirement to train 

different systems individually. 

• Faster-RCNN[28], which starts with Region-Proposal-Network (RPN) to produce regions of 

interest, followed by categorization and bounding box regression. 

• FPN[29], which Use of image pyramid to obtain feature-pyramid (or featurized-image-

pyramids) at multiple levels is a common method to increase detection of small-objects. 

• R-FCN: Region-based Fully-Convolutional-Network (R-FCN) [30] that shared almost all 

calculations within the network, unlike previous two stage detectors which applied resource 

intensive techniques on each proposal. They advocated against using fully connected layers in 

favour of convolutional-layers. 

The second type of detector, known as one-stage detectors, classifies and localises semantic items in a 

single shot utilising dense sampling. Among the most well-known models are: 
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 You-Only-Look-Once(YOLO) [31] is a model made-up of a single neural-network that can be 

trained end-to-end using back-propagation. It combines the preceding techniques' two processes, 

object detection and localisation, into a single model. YOLOv2 [32]. An upgrade on the YOLO [31], 

the YOLO9000 model could predict 9000 item types in real time and offered a simple balance between 

speed and accuracy. DarkNet-19 was used to replace GoogLeNet's backbone architecture. YOLOv3 

[33]. The authors rebuilt the feature extractor network with a bigger Darknet-53 network in order to 

make "incremental improvements" over prior YOLO versions (YOLO, YOLOv2). YOLOv4 [34]. 

included a number of intriguing concepts to develop a quick and easy to train object detector that could 

function in existing production systems. Scaled-YOLOv4 Scaling: Cross-Stage-Partial (CSP) [35]. 

Single-Shot-Multibox-Detector (SSD) [36], was the first single stage detector that matched accuracy 

of contemporary two stage detectors like Faster R-CNN [44], while maintaining real time speed. SSD 

was built on VGG-16 [17], with additional auxiliary structures to improve performance. RetinaNet 

[37] Given the difference between the accuracies of single and two stage detectors,  

Table 2.2 Comparison of the speed and accuracy of detectors on the MS-COCO dataset (from coco 

dataset website) 

 

Model-Name Back_bone M-ap FPS 

Faster-RCNN - 22.0 3.0 

SSD  VGG- 16 27.0 10.0 

YOLO v2 - 22.0 - 

YOLO v3 Darknet53 33.0 31.0 

YOLO v4 CSP-Darknet53 43.50 62.0 

YOLO v4-CSP CSPDarknet53s 47.50 97.0 

Efficient DetD1  EfficientNetB1 40.50 74.0 

Efficient DetD0  EfficientNetB0 34.60 97.0 

A-S-F-F Darknet -53 42.40 46.0 

YOLO v3SPP Darknet -53 42.90 73.0 

YOLO v4P5 CSP -P5 51.80 43.0 

YOLO v4P6  CSP-P6 54.5 32.0 

YOLO v4-P7 CSP-P7 55.5 17.0 
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Lin et al. suggested that the reason single stage detectors lag is the “extreme foregroundbackground 

class imbalance” [67]. They proposed a reshaped cross entropy loss, called Focal loss as the means to 

remedy the imbalance. EfficientDet [38]. develops towards the notion of scalable detector with 

improved accuracy and efficiency. It adds efficient multi-scale features, as well as BiFPN and model 

scaling. BiFPN is a bi-directional feature pyramid network with learnable weights for connecting input 

features at various sizes. 

One_stage detectors use dense sampling to categorise and localise semantic items in a single shot. To 

localise objects, they employ predetermined boxes/keypoints of varying scale and aspect ratio. It 

outperforms two_stage detectors in terms of real-time performance and design simplicity. YOLO is 

the most popular one_stage model.; table 2.2 shows the comparison between members of the detection 

models and their performance. The evaluation of illustrated models was usually based on 

COCO(Microsoft-Common-Objects-in-Context)dataset [39]. 

2.4.     Recent face detectors 

The topic of face recognition (FR) has been a prominent and widely discussed subject in the field of 

computer vision. With the advent of deep learning techniques and the availability of large-scale 

datasets, deep face recognition has made significant strides and is now extensively employed in various 

real-world applications. The initial step in the face recognition process is face detection, which 

involves identifying all the faces present in an input image and providing their bounding box 

coordinates along with a confidence score. To provide a comprehensive classification of deep face 

detection methods, the author of [40] has categorized them into seven distinct groups. 

2.4.1. Multi-stage methods 

A multi-level detector creates many suggestions and then refines them by one or more further levels 

using a coarse-to-fine technique or a proposal-to-refinement strategy [40]. The initial step proposes a 

certain scale of potential bounding boxes using a sliding window, while subsequent phases eliminate 

false positives and refine the remaining boxes. In this case, the cascaded architecture [41, 42, 43] is 

certainly an effective solution for coarse-to-fine face recognition. Face recognition can be viewed as a 

specific goal of general object recognition. Therefore, many works [44, 45, 46] inherit the remarkable 

achievements of general object detectors. For example, Faster-RCNN, a classic and effective detection 

framework, uses a region proposal network to generate region proposals with a series of dense anchor 

boxes in the first stage, and then refines the proposals in the second stage. Based on the proposal-to-

refine scheme, a lot of work has been devoted to improving the modeling of the refinement stage [47, 
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48, 49] and the proposal stage [50, 51], and great progress has been made in accurate face recognition. 

Besides modeling, training multi-class detectors is another interesting topic. To address the poor 

optimization of MultiStage detectors, a general training strategy [52] is developed for CascadeCNN 

[41] and FasterRCNN to achieve end-to-end optimization and better-performance. 

2.4.2. One- stage method 

The one-step approach is capable of performing candidate classification and bounding box regression 

directly from feature maps, without relying on the proposal stage. This approach is derived from a 

general-purpose object detector known as the Single Shot Multi-Box Detector (SSD). While 

maintaining the same structure as SSD, the one-step approach achieves faster processing speeds 

compared to multi-stage methods, while still maintaining comparable accuracy. Several studies (53, 

54, 55) have developed deep face detectors based on SSD that are robust to different scales of faces. 

In terms of the backbone architecture, many face detectors utilize the Feature Pyramid Network 

(FPN) (29), which consists of a top-down architecture with skip connections. FPN merges high-level 

and low-level features to enhance detection. The high-level feature maps provide rich semantic 

information, while the low-level layers contribute more local information. The fusion of these 

features combines the advantages of both sides and significantly improves the detection of objects 

with a wide range of scales. Consequently, many single-stage face detectors (56, 57, 58, 54) have 

been developed to leverage the benefits of FPN. These methods not only address the scale issue in 

face detection using FPN but also attempt to overcome the inherent limitations of the original FPN, 

such as the conflict of receptive fields. 

Despite the high efficiency of single-stage methods, their detection accuracy is lower than that of two-

stage methods. This is partially due to the imbalance problem between positive and negative samples 

caused by the dense anchors. The proposal-to-refine scheme is able to alleviate this issue. As a result, 

RefineDet (59) introduces an anchor refinement mechanism to improve the accuracy of single-stage 

methods. 

The network employs a module to effectively eliminate a considerable number of negative instances. 

SRN [56] proposes a selective two-step classification and regression technique, which draws 

inspiration from the RefineDet-model. The two-step classification is executed at low-level layers to 

restrict the search space of the classifier, while the two-step regression is carried out at high-level 

layers to achieve precise localization. Numerous subsequent studies [87, 77, 81] have enhanced SRN 

by employing various successful strategies, such as data augmentation during training, improved 
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feature extraction and training supervision, anchor assignment and matching strategies, multi-scale 

testing strategies, and others. Although most of the aforementioned approaches necessitate the use of 

preset anchors for face identification, certain single-stage representative detectors, such as DenseBox-

model [70], UnitBox-model [71], and CenterFace-model [79], can recognize faces without them. In 

the subsequent subsection, we will present these detectors as anchor-free models. 

Table 2.3:  The categorization of deep face detection methods.[40] 

Category Description Method 

Multi_stage Detectors produce 

candidate boxes initially, 

then refine the candidates 

in one or more phases. 

Faceness [60], HyperFace [61], STN [44], ConvNet-3D 

[62], SAFD [51], CMSRCNN [63], Wan et al. [64], Jiang 

et al. [48], DeepIR [49], Grid loss [65], Face R-CNN 

[47], Face R-FCN [66], ZCC [67], FDNet [46], FA-RPN 

[50], Cascaded CNN [41], MTCNN [68], Qin et al. [52].  

Single_stage Face categorization and 

bounding box regression 

are accomplished 

simultaneously by 

detectors using feature 

maps. 

DDFD [69], DenseBox [70], UnitBox [71], HR [72], 

Faceboxes [55], SSH ,S3FD [73], DCFPN [53], FAN 

[74], FANet , RSA [75], S2AP [76], PyramidBox [54], 

DF2S2  , SFace  , DSFD [58], RefineFace [77], SRN [56], 

PyramidBox++ [78], CenterFace [79], VIM-FD [80] , 

ISRN [81], AInnoFace , ASFD [82], RetinaFace [57], 

HAMBox[83] . 

 

Anchor_based Detectors place a number 

of dense anchors on feature 

maps before doing 

classification and 

regression on these 

anchors. 

Wan et al. [64], Face Faster RCNN [48], RSA  , Face R-

CNN [47], FDNet [46], DeepIR [49], SAFD [51], SSH , 

S3FD [73], DCFPN [53], Face.boxes [55], FAN [74], 

FANet , Pyramid Box [54], ZCC [67], S2AP [76], DF2S2 

,SFace , Retina Face [57], DSFD [58], Refine Face [77], 

SRN [56], VIMFD [80], 

Anchor_free Face detectors locate faces 

without the need of 

predefined anchors. 

Dense Box [70], Unit Box [71], Center Face [79] 

Multi-

Tasklearning 

 

Detectors learn 

classification and bounding 

BoxRegression with 

additional objectives (such 

as LandmarkLocalization) 

in a same framework. 

STN [44], ConvNet3D [62], HyperFace [61], MTCNN 

[68], Face R-CNN [47], 

RetinaFace [57], DF2S 2,  PyramidBox++ [78], 

CenterFace [79], PCN , FLDet [84]. 
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CPUReal-Time Detectors can run on a 

single CPU core in real-

time for VGAresolution 

images. 

 

Cascade CNN [40], STN [44], MTCNN [68], DCFPN 

[53], Face.boxes [55], 

 

ProblemOriented 

 

Detectors are designed to 

address particular face 

detection issues, such as 

small faces, obstructed 

faces, rotated and hazy 

faces. 

HR [72], SSH , S3FD [73], Bai et al. [9], PyramidBox 

[54], GridLoss [65], FAN [74], LLE.CNNs [85], PCN , 

GroupSampling [86] 

 

 

2.4.3. Anchor-based and anchor-free methods. 

Because of their lengthy development history and good performance, most modern face detectors are 

anchor-based, as shown in Table 2.3. In general, we pre-select anchors on the feature maps, do one or 

more classification and bounding box regression on these anchors, and then output the acceptable 

anchors as the recognition result. Anchor mapping and matching algorithms are thus critical for 

detection accuracy. Most anchor-based approaches, for example, scale compensation [88, 73], 

maximum output background label [73], predicted maximum overlap score [67], group-by-scale 

sampling [86], and so on, rely on algorithms in this direction. However, variables (such as size, 

increment, ratio, and number of anchors) must be carefully tweaked for each particular dataset, limiting 

generalizability. Furthermore, dense anchors increase the computational overhead and pose the issue 

of positive/negative anchor imbalance. 

Anchor-free algorithms [89, 90] are gaining popularity in general object detection. In the field of face 

detection, some pioneering studies have arisen in recent years. The functions DenseBox-model [70] 

and UnitBox-model [71] attempt to forecast the pixel-wise bounding box on face. Face detection is 

seen by CenterFace-model [79] as a generalised job of keypoint estimation, which predicts the facial 

centre point and the size of the bounding-box in a feature-map. In summary, anchor-free detectors 

eliminate present anchors and improve generalisation capacity. In terms of detection accuracy, more 

research is needed to improve resilience to false positives and training process stability. see table 2.3 
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2.5.    Recent face mask detectors 

In this part, the existing algorithms for face mask detection are reviewed with their features, we based 

on survey papers focus on deep-learning approaches for face-mask detection, which can be found in 

the reference [91].  

• S. Ge et al. [92] created an algorithm with the goal of detecting masked faces, where the term 

"mask" is used to describe both actual facemasks and any occlusion on the face. Faces that are 

obscured by various objects, such as scarves, hair, hands, or the niqab, are seen as masks that 

hide the face. In Section IV, the many forms of masks are discussed. To identify occluded 

faces, a comprehensive dataset known as MAFA or Masked Faces was introduced in their study 

. More than 35,000 masking face photos may be found in MAFA, ensuring that at least a portion 

of the face is hidden. Additionally, faces with diverse angles and orientations are included in 

the dataset. They listed six characteristics of MAFA. The authors divided this proposed model 

into three-parts: (a) a proposal module, (b) an embedded module, and (c) a verification module. 

The first one combines two CNN and extracts the features from face images. The second one 

is dedicated to finding the missing facial landmarks that occurred by occlusion. In this sub- 

phase, the Locally-Linear-Embedded (LLE) algorithm is utilised. The last module is the 

performing of classification and regression tasks using unified CNN to determine if it is a face 

or not and scales the position of missing facial cues. the authors compared the results of their 

model with six other face detectors and achieved the best performance. The average-precision 

of model was 74.6%. 

• Inamdar, Madhura, and Ninad Mehendale in [93] proposed a model named Facemasknet,to 

detect if a person is wearing a facemask correctly or not, which summed up to a three class 

classification: no mask, improperly worn mask, and with a mask. The model was trained using 

a bespoke dataset of 35 photos. The faces in those 35 photographs included both masked and 

unmasked ones. The input data were pre-processed and scaled in the required value prior to 

training. The input image or live streams underwent pre-processing before being sent through 

the Facemasknet model, which first identified the face and then retrieved the Region of Interest 

(RoI). They claimed that their pieces contain two detectors. First, the face is detected. The RoI 

is extracted, and the Facemasknet model is then applied to those cropped images or live streams 

for classification. The green and yellow bounding boxes prominently refer to the face and 

facemask in an image, respectively. It contains very small and region-biased data. This model 

reported an accuracy of 98.6%. [91] 
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• Khandelwal, Prateek et al. [94] presented a model and implemented it in a real-world 

application that determines whether or not a mask is applied in an image. Two steps were used 

to divide the labour. One included finding faces in the image, while the other involved 

classifying masks. For face detection, they utilised a MobileNetV2 model built on the CNN 

architecture. This model is not able to detect faces smaller than a particular pixel count. After 

faces were found, the data was cleaned up and faces were labelled using semi-supervised 

learning before being fed into the mask detection stage. The model was constructed with 

MobileNetV2. The photos were scaled according to their needs before being fed into the 

network. Additionally, they employed an augmentation technique to add variation to the data. 

The authors took a validation set of 840 images combined with a mask and no mask among 

4,225 annotated images. This model achieved high-performance and was already implemented, 

but the model had two major drawbacks. First, classification or detection of partially 

overlapped faces cannot be done using this method. Secondly, this model cannot detect faces 

where the height of the camera exceeds 10 feet. Their model achieved an Area Under Region 

of Convergence (AUROC) of 97.6%. 

 

• Agarwal et al. In [95], a novel framework for face mask image recognition challenges is 

developed in response to the present COVID-19 pandemic. Classification tasks have been 

successfully used with CNN-SVM hybrid models. The suggested method produces high 

accuracy results when compared to previous comparable efforts. In comparison, it is discovered 

that the suggested work outperforms the other approaches. CNN is used to extract features from 

pictures, while SVM is used for classification. As a result, the authors summarise the evolution 

and propose a successful research framework based mostly on deep learning approaches based 

on CNN models. 
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Conclusion 

In this chapter, we have exposed different methods of classification and detection of object, face and 

face mask. Detection techniques vary between one_stage and two_stage methods. In the next section, 

we present in detail detection techniques based on machine-learning systems and especially deep-

learning. The evolution of object, face, and face mask detection has shifted from traditional feature-

based methods to deep learning-based approaches due to their superior accuracy and robustness. Key 

insights include: Deep Learning Dominance: Deep learning methods, particularly CNNs, have become 

the standard for these tasks due to their ability to learn complex features and generalize well. Real-

Time Performance: Models like YOLO, SSD, and MobileNet are preferred for real-time applications 

due to their speed and efficiency. Transfer Learning: Pre-trained models fine-tuned for specific tasks 

(e.g., face mask detection). Applications: These technologies are extensively utilized in security, 

healthcare (e.g., mask detection during pandemics), and retail (e.g., customer analytics). The selection 

of approach is contingent upon the particular application, computing limitations, and required 

precision. Deep learning methodologies represent the future; nonetheless, conventional techniques 

retain specific applications where simplicity and interpretability are paramount.
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Introduction 

In order to get machine learning (ML) one step closer to its ultimate objective of artificial intelligence 

(figure 3.1), deep learning was established. It relates to algorithms that were influenced by the anatomy 

and operation of the brain. To model complex interactions between data, they can learn many levels 

of representation. With the addition of more layers to the network, Deep Learning, which is based on 

the concept of artificial neural networks, is designed to manage massive volumes of data. With little 

to no human input, a deep learning model may extract features from raw data by applying numerous 

layers of processing that include both linear and nonlinear transformations, and it can then gradually 

learn about those features as it progresses through each layer [97, 98]. 

 

 

Figure 3. 1: Artificial intelligence, machine learning, and DL relationships [96] 

 

Deep learning has evolved over the past five years from being a specialized topic in which only a few 

academics were interested to being the one that researchers appreciate most. Top magazines including 

Science [99], Nature [100], and Nature Methods [101], to mention a few, are now publishing research 

on deep learning. Deep learning has influenced the GO [102], taught humans how to drive, detected 

cancer [103], diagnosed autism [104], and even helped a person become an artist [105]. 
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Dechter (1986) [106] and Aizenberg et al. were the first to use the term "Deep Learning" to machine 

learning (ML) and artificial neural networks, respectively. (2000) [107]. 

3.1  Why Deep Learning? 

The ML algorithms that were discussed in the first section are effective for a wide range of issues. 

However, they were unable to resolve certain significant AI issues like object and speech 

recognition. 

The failure of conventional algorithms to complete such an AI assignment was one of the driving 

forces behind the creation of deep learning. 

But it wasn't until more data became accessible, particularly as a result of Big Data and linked items, 

and until processing power increased that we were able to fully grasp the promise of Deep Learning. 

Deep Learning scales well; the more data supplied, the higher the performance of a Deep Learning 

algorithm. This is one of the key distinctions between Deep Learning and regular ML algorithms. Deep 

Learning models have no such restrictions (theoretically) and have even surpassed human performance 

in fields like image processing, in contrast to many traditional ML methods that have an upper 

constraint on the amount of data they can receive frequently referred to as the "performance plateau". 

(figure 3. 2).  

 

 

Figure 3. 2: Performance difference between DL and most ML algorithms as a function of the 

amount of data [108] 
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The feature extraction stage is another distinction between Deep Learning algorithms and conventional 

ML methods. Traditional machine learning algorithms require a subject matter expert to undertake the 

arduous and time-consuming task of feature extraction manually, whereas deep learning methods 

execute this task automatically. (figure 3. 3).  

 

Figure 3. 3: The classical ML process compared to that of DL 

 

3.2 Convolutional Neural Networks 

A sort of customized neural network for data processing called a convolutional neural network (CNN) 

has a grid-like architecture (figure 3.4). Examples include data of the time series type, which resembles 

a 1D grid by being sampled at regular intervals, and data of the picture type, which resembles a 2D 

grid of pixels. Convolutional networks have achieved great success in real-world settings. The term 

"convolutional neural network" denotes the use of the convolutional mathematical operation by the 

network. A unique linear operation is convolution. Convolutional networks are just neural networks 

that, in at least one of their layers, employ convolution rather than matrix multiplication. 

They are widely used in natural language processing [110], recommendation systems [109], and 

picture and video recognition [110]. 
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Figure 3. 4: Convolutional Neural Network architecture [113] 

3.2.1 Convolution Operation 

Convolution is an operation on two real argument functions in its most basic form. We begin with 

illustrations of two potential functions to help you comprehend the rationale behind convolution. Let's 

say we are using a laser sensor to locate a spaceship. The output of our laser sensor, x(t), represents 

the position of the spaceship at time t. Because x and t are real numbers, we can always obtain a 

different reading from the laser sensor. 

Let's say our laser sensor is a little loud now. We want to aggregate a number of readings to get a less 

noisy estimate of the spacecraft's location. We want these measures to be a weighted average and to 

give greater weight to recent observations since, of course, more recent measurements are more 

pertinent. This may be accomplished using the weighting function w(a), where an is the measurement's 

age. 

This weighted average process produces a new function that gives a smooth estimate of the 

spacecraft's location when applied at each instant: 

𝑠(𝑡)  =  ∫ 𝑥(𝑎)𝑤(𝑡 −  𝑎)𝑑𝑎                                              (3.1) 

Convolution is the name of this operation. Typically, an asterisk is used to indicate the convolution 

operation: 

         s(t) = (x ∗w)t                                                                      (3.2) 
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The concept of a laser sensor in our case being able to produce measurements at every moment in time 

is unfeasible. Typically, time is discretized (digitalized) when working with data on a computer, and 

our sensor will output data at regular intervals. It is more practical to suppose that our laser gives a 

measurement once per second for the sake of our example. 

Therefore, the time index t can only accept integer values. Now that x and w are assumed to be 

integers, we may define the discrete convolution as follows: 

𝑠(𝑡)  =  (𝑥 ∗  𝑤)(𝑡)  =  ∑ 𝑥(𝑎)𝑤(𝑡 −  𝑎) ∞
𝑎=−∞                                   (3.3) 

The first argument of a convolution, in this case the x function, is frequently referred to as the input 

and the second argument, in this case the w function, as the kernel in the context of 

convolutional networks. The result is occasionally referred to as a feature map. 

3.2.2 Convolutional Layer 

The three key concepts of sparse interactions, parameter sharing, and equivariant representations are 

the foundation of convolution and may be used to enhance ML systems. 

minimal interactions Traditional neural networks multiply a matrix of parameters by a different 

parameter for each input unit and output unit to describe how they interact with one another. This 

indicates that, unlike convolutional neural networks, each output unit interacts with each input unit. 

Making the kernel smaller than the input achieves this. When processing an image, for instance, the 

input picture may have thousands or millions of pixels, yet we can identify minute details like edges 

using kernels that only take up a few tens or hundreds of pixels. This allows us to keep fewer 

parameters, which lowers the model's memory needs and increases the model's effectiveness. 

Additionally, it means that fewer operations are needed to calculate the outcome. These efficiency 

gains are typically extremely large (figure 3. 6). 

 

Figure 3. 5: Description of convolution operation [111]. 
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Figure 3. 6: Description of Sparse interactions (connectivity) [112]. 

We draw attention to the impacted output units and the input unit x3. Only three outputs are impacted 

by x when s is created using convolution with a kernel of width 3 (top). (Bottom) X3 can reach all 

outputs when s is created through matrix multiplication.  

3.2.3 Pooling layer 

A convolutional network with an unusual architecture has three distinct kinds of layers. Prior to using 

the pooling function, a convolutional layer is used to create a collection of linear activations, which 

are then passed through a nonlinear activation layer such the Rectified Linear Unit (ReLu).   

• It permits reducing the size of the representations progressively in order to lessen the number 

of parameters and computations in the network and, consequently, control overfitting;It allows 

invariance to small translations; 

• Useful when one prefers to know if a characteristic is present rather than the region of its 

presence; 

• Several types of pooling differ (MAX pooling (very popular), AVG pooling, ...). (Figure 3.7) 

3.2.4 Perceptron 

We add a perceptron or an MLP at the end of the network after extracting the characteristics of the 

inputs. The extracted characteristics are sent into the perceptron, which creates a vector with N 

dimensions and N being the number of classes, or each element being the likelihood of belonging to a 

class. When the classes are purely mutual, the softmax function is used to determine each probability:   

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗

𝑗
                                                                                                   (4) 
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Figure 3. 7: Pooling operation example 

 

3.2.5 Activation functions 

In ANNs, activation functions are employed to transform input signals into output signals, which are 

then provided as input to the following layer. It has a significant impact on ANN prediction accuracy, 

thus attention must be used while choosing it. An ANN behaves as a Linear Regression 15 Model if it 

lacks an activation function, resulting in a linear function as the output signal. As a result, the network's 

performance is constrained. The BinaryStepFunction, Linear, Sigmoid, Tanh, ReLU, LeakyReLU, 

Parametrized ReLU, ExponentialLinearUnit, Swish, and SoftMax are some of the most significant 

activation functions. 

3.2.5.1 Binary step function 

The binary step function (Figure 3. 8) is a threshold-based activation function, meaning that once a 

given threshold is reached, activation occurs, and below that point, deactivation occurs. The 

threshold is zero on the graph up top. 

 

Figure 3. 8: Binary step function [114] 
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3.2.5.2 Linear Activation Function 

The activation is proportionate to the input in the case of the linear activation function (Figure 3. 9), 

sometimes referred to as "no activation" or the "identity function" (multiplied by 1.0). The function 

just throws out the value it was given, doing nothing to the weighted sum of the input. 

 

Figure 3. 9: Linear Activation Function [114] 

3.2.5.3 Non-Linear Activation Functions 

A linear regression model is all that the previous linear activation function is.  Due of its limited 

computational power, the model is unable to construct complex mappings between the network's inputs 

and outputs. 

3.2.5.4 Sigmoid / Logistic Activation Function  

Any real value may be used as an input for this function, Which it outputs values that range from 0 to 

1.  As demonstrated below, the output value will be closer to 1.0 the larger the input (more positive) 

and closer to 0.0 the smaller the input (more negative). 

3.2.5.5 Tanh Function (Hyperbolic Tangent) 

with a -1 to 1 range of output fluctuation, the HyperbolicTangent function (Figure 3.10) is very similar 

to the sigmoid / logistic activation function and even has the same S-shape. Tanh's output value 

approaches 1.0 when the input is greatest (more positive), whereas it approaches -1.0 when the input 

is smallest (more negative). 
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Figure 3. 10:  Hyperbolic Tangent function [114] 

 

3.2.5.6 ReLU Function 

RectifiedLinearUnit is referred to ReLU (Figure 3. 11). ReLU has a derivative function and enables 

for backpropagation while still being computationally efficient, while giving the impression of being 

a linear function.  

The fundamental issue here is that not all of the neurons are activated simultaneously by the ReLU 

function.  Only if the result of the linear transformation is less than 0 will the neurons become inactive. 

f(𝑥) = max (0, 𝑥)                                                                   (3.5) 

 

Figure 3. 11: ReLU Function [114] 
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3.2.5.7 Leaky ReLU Function 

Leaky ReLU (Figure 3.12), which has a little upward slope in the negative area, is an improved variant 

of the ReLU function for solving the Dying ReLU problem. 

 

Figure 3. 12:  Leaky ReLU Function [114] 

 

3.2.5.8 Mish  

“Mish: A Self Regularized Non-Monotonic Neural Activation Function” (Figure 3. 13) is the new 

deep learning activation function that shows improvement over ReLU (+ 1.671%) on final accuracy. 

f(x) = x*tanh(softplus(x))                                                               (3.6) 

 

 

Figure 3. 13: Mish activation function [114] 
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3.2.6 Performance Metrics 

The performance measures are helpful in capturing the model's performance. Prior to introducing 

more complex measurements, we identify four fundamental variables: 

• TruePositive (TP): The model correctly predicts that an item belongs to a class. 

• TrueNegative (TN): The model correctly predicts that an item does not belong to a class. 

• FalsePositive (FP): The model incorrectly predicts that an item belongs to a class. 

• FalseNegative (FN): The model incorrectly predicts that an item does not belong to a class. 

The number of all inaccurate predictions divided by the whole dataset number yields the error rate 

(ERR). Error rates range from 0.0 to 1.0, with 1.0 being the worst. 

𝐸𝑅𝑅 =
𝐹𝑃 +𝐹𝑁

𝑇𝑃 +𝑇𝑁+𝐹𝑁+𝐹𝑃
                                                               (3.7) 

A model's accuracy is a statistical metric for how well it identifies or omits a circumstance. In other 

words, accuracy is the proportion of true outcomes (including TP and TN) to all instances studied. TN 

elements are substantially more numerous and predominate in object recognition difficulties, despite 

the fact that it is a common metric. It's outlined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                              (3.8) 

Precision, also known as Positive Predictive Value, is the ratio of real positive results to all positive 

results. It is the proportion of positive records that the model properly detected out of all positive 

records. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑁 +𝐹𝑃
                                                             (3.9) 

Sensitivity, also known as recall, measures the proportion of genuine positive predictions to true 

positives and false negative outcomes. It displays the positive results that the algorithm properly 

detected out of the real positive results. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑁 +𝐹𝑁
                                                             (3.10) 

F1 score, also known as F-measure, is a statistic used to quantify incorrect predictions by taking into 

account recall and accuracy. 

                                                          𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 𝑥 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑟𝑒𝑐𝑎𝑙𝑙
                                         (3.11) 

Mean average precision (mAP) is defined as the mean of average precision across all K classes. 
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                                                               𝑚𝐴𝑃 =
∑ 𝐴𝑃𝑖

𝐾
𝑖=1

𝐾
                                                               (3.12) 

3.2.7 LossFunction 

A LossFunction compares the target and anticipated output values; it assesses how effectively the 

neural network predicts the training data. When training, we try to minimise the difference between 

anticipated and goal outputs. 

3.2.7.1 Types of LossFunctions 

There are two forms of LossFunctions in supervised learning, which correspond to the two types of 

neural networks: regression and classification loss functions. [115]. 

Regression LossFunctions — used in regression tasks; given an input value, the model predicts a 

corresponding output value (rather than pre-selected labels); Ex. MeanSquaredError, Mean Absolute 

Error [115]. 

Classification LossFunctions — utilised in classification tasks; given an input, the neural network 

produces a vector of probabilities of the input belonging to various pre-set categories — can then select 

the category with the highest probability of belonging;  

Ex. Binary Cross-Entropy, Categorical Cross-Entropy: 

 

o MeanSquaredError (MSE) 

MSE is a common loss function that calculates the average of the squared differences between the 

target and anticipated outputs. 

This function has several qualities that make it ideal for computing loss. The difference is squared, 

thus it makes no difference whether the projected value is higher or lower than the target value; 

nevertheless, values with a big inaccuracy are penalised. MSE is also a convex function (as seen in the 

image above) with a clearly defined global minimum, which allows us to use gradient descent 

optimisation to select the weight values more simply. [116]. 

o Mean-Absolute-Error (MAE) 

The average of the absolute discrepancies between the target and predicted outputs is calculated 

using MAE. 

In some circumstances, this loss function is utilised instead of MSE. As previously stated, MSE is 

extremely sensitive to outliers, which can have a significant impact on the loss because the distance is 
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squared. MAE is used to counteract this when the training data contains a significant number of 

outliers. [117]. 

o Binary Cross-Entropy / Log-Loss 

This is the loss function used in binary classification models, which take in an input and must 

categorise it into one of two pre-defined categories.Classification neural networks operate by 

producing a vector of probabilities — the likelihood that the supplied input falls into each of the pre-

defined categories — and then picking the category with the greatest probability as the final output. 

[118]. 

There are just two possible real values of y in binary categorization— 0 or 1. Thus, in order to correctly 

measure the loss between the actual and expected values, the real value must be compared to the 

predicted value. (0 or 1) with the probability that the input-aligns with that category (p(i) = probability 

that the category is 1; 1 — p(i) = probability that the category is 0). 

o Categorical Cross-Entropy_Loss 

When the number of classes is higher than two, we use categorical cross-entropy, which works in the 

same way as binary cross-entropy.Categorical cross-entropy is a subset of binary cross-entropy, where 

M = 2 — the number of categories is 2 [118]. 

 

3.3 Deep Localization and Detection 

Object localization algorithms consist of two categories: The 1st category is named two stage detectors 

perform object localization and detection jointly, whose famous models are RCNN (Recurrent-

Convolutional-Neural-Network) [26], Fast-RCNN [27], Faster-RCNN [28], which starts with Region-

Proposal-Network (RPN) to generate regions of interest, then performs classification and bounding 

box regression. The second category is called single-stage detectors, whose famous models are You 

Only Look Once (YOLO) [31], YOLOv2 [32], YOLOV3 [33], YOLOv4 [34], Scaled-YOLOv4 

Scaling: CSP [35], Single-Shot-Multibox-Detector (SSD) [36], RetinaNet [37] and EfficientDet [38]. 

 

3.3.1 Single Stage Detectors 

3.3.1.1 YOLO family combining Detection and Localization 

• YOLOv1: The You Only Look Once (YOLO) model can be translated as “see only once” is a 

model that consists of a single neural network that can be trained end-to-end by back-

propagation. It merges the two steps of the previous algorithms, object detection and 

localization, into one model [31]. However, YOLO formulates the object detection problem 
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differently, as a regression task that spatially separates bounding boxes and associates class 

probabilities. The network is trained to learn very general representations of objects. It takes 

the entire image as input and predicts bounding boxes simultaneously for all classes in an 

image. The image is divided into an S×S grid, then bounding boxes B and confidence scores 

are predicted for these boxes. If the center of an object is in a cell of the grid, the grid will 

predict bounding boxes B with a confidence score. To calculate the confidence score, one must 

calculate Intersection over-Union (IoU), which is the difference between the predicted box and 

the Ground Truth. In this way, the confidence score which is probability (Object) × IoU can be 

calculated. The advantage of YOLO over other methods is its speed. It is so fast compared to 

other methods, which makes it ideal for real-time applications. However, this comes with a 

trade-off in terms of accuracy. YOLO makes more location errors. The network architecture is 

shown in figure 3. 14 

 

Figure 3. 14: Architecture of YOLOv1 and YOLOv2 models [32] 
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• YOLOv2 [32]: The newer version of YOLO, the YOLOv2 version, which overcomes the 

constraints of YOLOv1, was released at the end of 2016 by Joseph Redmon and Ali Farhad. 

The following are the primary adjustments that make YOLOv2 a superior model in terms of 

performance: 

o BatchNormalization: The addition of batch normalisation to all convolutional layers 

increased mAP by 2%. It also aided in tuning the model, reducing any overfitting. 

o High-resolution classifier: First, the model is tuned on ImageNet at 448 * 448 

resolutions, which gives the model more time to update its filters and raises mAP by 

4%. 

o AnchorBoxes: More BoundingBoxes are employed, and K-means clustering is used to 

calculate the AnchorBox input dimensions. 

o Fine grained features: It predicts detections on a 13 × 13 feature map, which is smaller 

than the one used by YOLOv1. This enhanced tiny item localisation while staying 

efficient for bigger objects. 

o Multi scale training: The YOLOv1 fared poorly at identifying objects with varying 

image sizes. YOLOv2 selects picture dimensions at random, with the lowest being 320 

* 320 and the highest being 608 * 608. 

 

• YOLOv3 [33]: The authors published the third version of YOLOv3 in April 2018.The mAP-

50 on the COCO dataset rose from 44.0% to 57.9% of YOLOv2. In comparison to RetinaNet, 

which has 61.1% mAP by default, RetinaNet has an input size of 500x500. When the input size 

is 416 * 416, the detection speed is around 98 ms/frame, whereas YOLOv3 has 29 ms/frame. 

The network Architecture of output results of YOLOv3 detection model is shown in figure 3. 

15. 

➢ Backbone: Darknet-53 is used;  

➢ Neck: FPN (Feature Pyramid Network) is used;  

➢ Head: YOLO is used. 
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Figure 3. 15:  Architecture of YOLOv3[119] 

• YOLOv4 (see Figure 3. 16): Yolov4 was published in 2020 and is an upgraded version of the 

YOLOv3 algorithm, with a 10% increase in mAP and a 12% increase in the number of frames 

per second.  

The authors of YOLOv4 present a series of contributions termed a "bag of freebies" in their article. 

This is a sequence of measures that may be made to increase the model's performance without raising 

inference latency. Because they cannot alter the model's inference time, the majority of them make 

improvements to the training pipeline's data management and data augmentation. These strategies 

increase and scale up the training set, exposing the model to previously unforeseen circumstances. 



CHAPTER 3:                                                                                  Deep Learning for Detection/Localization                                                               

 

47       

Another advancement is the use of "bag of specials" approaches, which alter network design and 

occasionally raise the cost of the output process [34]. 

 

Figure 3. 16: Architecture of YOLOv4 [34] 

• YOLOv5: YOLOv5 (Figure 3. 17) was distributed just on GitHub in 2020, with no 

accompanying study. It differs from all previous versions in that it is a PyTorch implementation 

rather than a fork from the original Darknet. The most significant enhancements are mosaic 

data augmentation and auto-learning bounding box anchoring. YOLOv5 is significantly faster 

and lighter than YOLOv4 [34], although its accuracy is comparable to the YOLOv4 

benchmark. YOLOv5 runs training data through a data loader, which augments data online, 

with each training batch. Scaling, colour space changes, and mosaic augmentation are the three 

types of augmentations performed by the data loader. The most unique of them is mosaic data 

augmentation, which merges four photos into four random ratio tiles. The PyTorch framework 

lets you to reduce the floating point accuracy in training and inference from 32 bits to 16 bits. 

This drastically reduces the YOLOv5 model's inference time. 
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Figure 3. 17: The architecture of the YOLOv5 model [120] 

The YOLOv5 architecture is divided into three parts: The backbone is CSPDarknet, the neck is PANet, 

and the head is YOLO Layer. The data is first supplied into CSPDarknet for feature extraction before 

being loaded into PANet for feature fusion. Finally, the YOLO Layer returns the object detection 

results (class, score, position, and size). 

• Scaled-YOLOv4: Scaled-YOLOv4 is a YOLOv4-based target detection model. The depth of 

layers and the number of stages in the network's backbone and neck are scaled in Scaled 

YOLOv4 to improve model performance. Some layers in the YOLOv4 scaled neural network 

are also created with a CSP architecture, which minimises the amount of processing resources 

necessary to train the network. Since its recent publication by the Google Research/Brain team, 

the EfficientDet family of models has become the favoured object detection models. The new 

contribution of the EfficientDet [35] research was to consider how to scale object detection 

algorithms up and down strategically. 
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Figure 3. 18:  Model scaling example [35] 

increasing object detection models involves taking big picture input resolutions, increasing the breadth 

of convolutional network layers, scaling the depth of convolutional layers, and then scaling everything 

together (Figure 3.18). The inventors of EfficientDet utilised a search to discover the ideal scaling 

threshold from EfficientDet-D0 to EfficientDet-D1[38], and then used this setting to linearly scale to 

the well-known EfficientDet-D7 [38]. Overall, the authors of Scaled-YOLOv4 [35] strike a 

compromise between certain scaling principles - picture size, number of slices, and number of channels 

- when developing their model and optimising model performance and inference speed (Figure 3.19). 

They are considering using some CSP based CNN backbones, ResNet, ResNeXt and traditional 

Darknet backbones in their network. In the Scaled-YOLOv4 [35] paper, the authors often write that 

they "CSPized" a certain part of the network. CSPize means applying the concepts outlined in the 

Cross-Stage Partial Networks. 

To recognise large objects in large pictures, the scientists discovered that increasing the depth and 

number of stages in the CNN backbone and neck is critical. (Increasing the width appears to have no 

effect.) This enables them to scale up the input size and number of stages before dynamically adjusting 

width and depth to meet real-time inference performance requirements. In addition to these scaling 

parameters, the authors modify the design of their model. 
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Figure 3. 19:  Architecture of YOLOv4-large (Scalled YOLOv4), including YOLOv4-P5, YOLOv4-

P6, and YOLOv4-P7[35]. The dashed arrow means. 

 

3.3.1.2 Swin Transformer 

Transformers [121] have had a profound impact on the field of Natural Language Processing (NLP) 

since its inception. Its application in language models such as Bidirectional Encoder Representation 

from Transformers (BERT) [122], Generative Pre-trained Transformer (GPT) [123], Text-To-Text 

Transfer Transformer (T5) [124] pushes the state forward development. State-of-the-art transformers 

[121] use attention models to build dependencies between sequence elements and can handle longer 

contexts than other sequence architectures. The success of Transformers in NLP has spurred interest 

in their application in computer vision. Although CNNs have been the mainstay of viewing progress, 

they also have some inherent flaws, such as: B. Lack of importance of global context, fixed weights 
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after training [125] and other computer vision tasks. It splits the input image into multiple non-

overlapping patches and converts them into embeddings. A large number of Swin Transformer blocks 

are then applied to the patch in 4 stages, with each subsequent stage reducing the number of patches 

to maintain a hierarchical representation. The Swin Transformer block consists of a local Multi-head 

Self-Attention (MSA) module based on alternately shifted patch windows in consecutive blocks. In 

local self-awareness, computational complexity scales linearly with image size, while moving 

windows allow cross-window connections. In [126] also showed how moving windows can improve 

recognition accuracy with little overhead. Transformers represent a paradigm shift in CNN-based 

neural networks. While its use in image processing is still in its early stages, its potential to replace 

convolutions in these tasks is very real. Swin Transformer achieves state-of-the-art on MS COCO 

dataset, but uses higher parameters than convolutional models. 

 

 

Figure 3. 20: Swin Transformer model architecture [126] 

 

3.3.1.3 Knock Detector (SSD) 

Single-Shot Detector (SSD) has eliminated the region proposal stage of the object detection pipeline. 

Thus, the neural network does not need to resample features to produce hypotheses and bounding 

boxes. Using a convolution filter, SSD predicts object categories and offsets in bounding box locations. 

Additionally, another convolution filter is used to perform object detection at different scales. The 

filters are applied to the feature maps of the first part of the neural network. This leads to a faster and 
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more accurate algorithm than the previous ones. Similar to YOLO and RFCN, SSD offers a model 

consisting of a single convolutional neural network that can be trained end-to-end. Specifically, SSD 

is based on a feedback convolutional neural network that produces a set of bounding boxes and scores 

for the presence of object classes [49]. The first part of the neural network called the base network 

follows a standard architecture (VGG-16 architecture) and is responsible for feature extraction. The 

second part of the network produces a set of forecasts. 

These predictions include the predicted coordinates of the bounding boxes, including the center, width, 

and height coordinates of the box. In addition, the network generates a vector of probabilities related 

to trust for each class of objects. In addition, two other methods are used during practice time. To keep 

the most relevant areas, a method called non-maximal suppression is used, then the result of this is 

consumed by the Hard Negative Mining method lists the predicted negative boxes based on the 

confidence score and selects a subset of them to be used for the calculation of the error. Indeed, many 

negative boxes are expected during the training and could have a destructive effect on the formation 

of the network see figure 3.21. 

The SSD model applies multiple layers to the feature maps generated by the base network to increase 

the number of relevant bounding boxes. 

 

 

Figure 3. 21: SSD model architecture [36] 

 

3.3.2 Two-Stage Detectors 

3.3.2.1 Region-Based Convolutional Network (R-CNN) 

The region-based convolutional network (R-CNN) is the first work that applied the deep learning 

method in object detection problems. The main idea [26] is that the algorithm finds all objects in an 
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image using an exhaustive search algorithm and then ranks the proposed objects using CNN. The 

search algorithm for locating objects in an image is called selective search.  

This search algorithm was designed to locate objects in images. The selective search algorithm is able 

to deal with a variety of image conditions.  

The basis of the selective search algorithm is the hierarchical clustering algorithm. Using bottom-up 

clustering, the selective search algorithm is able to generate object locations at all scales. The grouping 

process continues until the entire image becomes a single region. The detected regions are then 

processed using various color spaces with different invariance properties, different similarity 

measures, and varying the starting regions. The output of the selective search algorithm is a set of 

region proposals that may contain an object. The R-CNN model combines selective search and CNN 

methods to locate and classify objects.  

The R-CNN is composed of three modules. The first generates a set of proposal regions using the 

region of interest search. The second is a CNN to extract a fixed-length 4096-dimensional feature 

vector from each region. The third module is a set of linear SVM classifiers whose input is the feature 

vector and its output is the probability of belonging to an object category. The architecture of R-CNN 

is shown in figure 3.22. 

 

 

Figure 3. 22:  Principle of Region-Based Convolutional Network (R-CNN) [26] 
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3.3.2.2 SPP-Net 

The authors of this work, proposed the use of SpatialPyramidPooling (SPP) layer [127] to process 

image of arbitrary size or aspect ratio. They came to understand that a fixed input was only necessary 

for the CNN's completely linked portion. SPP-net [128] simply added a pooling layer and repositioned 

CNN's convolution layers prior to the region proposal module, making the network independent of 

size/aspect ratio and minimising calculations. The selective search [18] algorithm is utilised to generate 

candidate windows. Feature maps are obtained by passing the InputImage through the 

ConvolutionLayers of a ZF-5 [129] network. The candidate windows are then mapped on to the feature 

maps, which are subsequently converted into fixed length representations by spatial bins of a pyramidal 

pooling layer. This vector is passed to the fully connected layer and ultimately, to SVM classifiers to 

predict class and score. Similar to R-CNN [26], SPP-net has as post processing layer to improve 

localization by bounding box regression. It also uses the same multistage training process, except that 

the fine tuning is done only on the FullyConnectedLayers. SPP-Net is considerably faster than the R-

CNN model with comparable accuracy. It can process images of any shape/aspect ratio and thus, avoid 

object deformation due to input warping. However, as its architecture is analogous to R-CNN, it shared 

R-CNN’s disadvantages too like multistage training, computationally expensive and training time as 

well 

 

3.3.2.3 Fast R-CNN 

Fast R-CNN [27] is a variant of R-CNN aimed at accelerating object detection. R-CNN suffers from 

three major drawbacks: 

• The first is that the algorithm consists of several steps that are learned and regulated separately; 

• The second is training time. It is reported that for 5K frames of VOC 2007, training takes 2.5 

GPU-days. 

The last problem is at the time of testing, where it is necessary to make applications in real time, 

however, each image requires processing of 47 seconds. 

Fast R-CNN is designed to reduce the amount of computation and memory required for R-CNN by 

using lossy multitasking to train the entire network in a single pass and update all network layers. 

Rapid R-CNN takes the entire input image and sends it to the main CNN. Using multiple convolutions 

and clustering layers, a feature vector is extracted from the input. The feature vector is used by a 

region-of-interest clustering layer to extract a fixed-length feature vector for each object proposal. The 
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selective search method is applied to search the RoI regions. Each feature vector is then flattened to 

feed into fully connected layers which ultimately generate two analogous output layers: 

• The first is a one-hot coding vector passed through a softmax layer to indicate the probability 

of belonging to K object classes for each proposed object; 

• The second output is a real-valued vector with four real values for each of the K object classes, 

which encodes the coordinates of the predicted selection boxes for the detected objects. 

 Fast R-CNN parts is shown in figure 3.23. 

 

Figure 3. 23: Architecture of the Fast R-CNN model [27] 
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3.3.2.4 Faster R-CNN 

Faster RCNN [28] is an object detection architecture presented by Ross Girshick, Shaoqing Ren, 

Kaiming He and Jian Sun in 2015. Faster R-CNN is designed to replace the selective search algorithm 

used in previous versions of R- CNN. The problem with selective search is that it is computationally 

expensive. Although Fast R-CNN introduced new features to reduce training and testing time, selective 

search remained a bottleneck for R-CNN algorithms.  

In faster R-CNN, a new network called Region Proposal Network (RPN) has been introduced to 

replace the selective search algorithm. This network aims to propose regions that will be used later by 

the Fast R-CNN network to predict bounding boxes and detect objects. RPN uses a pretrained model 

on the Image-Net dataset for classification. More specifically, the RPN network, which is a deep 

convolution network that offers regions, takes an image as input and generates a feature map as output. 

The feature map is then used by a small network.  

The small network takes as input an n × n sliding window on the feature map. The output of the small 

network is an equivalent output, one regression layer per box and one classification layer per box. On 

each window location, the small network predicts several region proposals. The number of region 

proposals is defined by a parameter called K. The K proposed regions determine the number of 

reference areas applied to all window locations to create region proposals. These boxes have different 

scales and aspect ratios to capture all possible objects at the current drag position and are called 

anchors. In this way, there is an anchor K for each sliding window. By using anchors, FasterR-CNN 

can handle multiple scales and formats. The box classification layer generates a probability vector 

indicating an objectivity score for each anchor box. The detected anchor boxes are then selected based 

on the objectivity score. Anchor boxes exceed a predefined threshold and then are routed to Fast R-

CNN. It should be noted that FasterR-CNN merges the RPNnetwork with FastR-CNN using a 

mechanism called "attention mechanism". The RPNnetwork guides the Fast R-CNNnetwork where to 

look. To share the computation, the convolution functions are shared between RPN and Fast R-CNN. 

The rest of the algorithm is similar to FastR-CNN. FasterR-CNN is composed of 3 parts as shown in 

figure 3.24. 
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Figure 3. 24:  Architecture of Faster R-CNN [28] 

 

3.4 Conclusion: 

In this chapter3, we have seen what and how Deep Learning differs from traditional ML algorithms. 

We've seen some major milestones in its evolution and the feats that have been accomplished with it. 

We have introduced some methods used by the Deep Learning community (classification, localization 

and detection) and we have explained the principle of each. In the next steps, we pass to the practical, 

and we illustrate our proposed deep learning models. 
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Introduction  

The COVID19 epidemic has compelled numerous nations to enact stricter regulations regarding the 

use of face masks. To combat the spread of COVID-19, governments have compelled hospitals and 

other organisations to install additional infection control procedures. The transmission rate of 

COVID19 is approximately 2.4 [130]. The rate of transmission, however, may vary depending on the 

measure and strategies used by governments. Governments have begun imposing new restrictions 

mandating people to wear face masks as COVID-19 spreads via airdrops and close contact. The goal 

of using face masks is to minimise the rate of transmission and dissemination.  

Personal protective equipment (PPE) is recommended by the World-Health-Organisation or WHO for 

usage between people and in medical treatment. However, most nations' capacity to grow PPE 

production is quite restricted [130]. COVID19 is now a serious public-health and economic concern 

due to the virus's negative impacts on people's quality of life, leading to acute respiratory illnesses, 

death, and financial crises worldwide. According to the WHO, more than six million people have been 

infected with COVID19 in over 180 countries, with a 3% fatality rate. COVID19 spreads quickly in 

crowded places and through close touch. In many nations, governments face enormous obstacles and 

hazards in safeguarding people from coronavirus. Because many nations prohibit people to wear face 

masks in public, masked face identification is critical for facial applications such as object detection. 

To fight and win in the battle against the COVID19-pandemic, governments need guidance and 

oversight on people in especially crowded public spaces to ensure face mask laws are enforced. This 

might be implemented by integrating monitoring systems with artificial-intelligence models [130]. 

However, most of the mask detection apps and current research on mask detection models aim to solve 

the problem of detecting masked and unmasked faces, but ignore the problem of wearing the mask 

incorrectly. Lack of research will lead to the spread of the virus by people who wear face masks 

incorrectly.The medical masked face is central to this work to minimize the transmission and spread 

of COVID19. Our main objective in this first work is: 1) the detection and the localization of masked-

faces, 2) incorrectly-masked-faces and 3) unmasked-faces. The result of the proposed mask detector 

in the image or in the surveillance video is shown in Figure. 4.1. Given an image, a region of masked 

faces and incorrect masks and unmasked faces on the input image based on Yolov4 will be shown in 

the output. The work is structured in five parts. The first is devoted to the introduction; the second part 

lists the most original recent works. We describe our approach in part three and review the design of 

the approach in part four. The fifth part is dedicated to the results and discussions. We end this chapter 

with a conclusion and some perspectives. 
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Figure 4. 1 :  The outcome of the proposed masked face detector 

4.1. Related work 

4.1.1. Recent DL-based detection and localization methods 

A survey of two object detectors, along with datasets, metrics, and fundamentals, can be found in 

[131]. other investigation [132] focuses on DL approaches for object detection. State-of-the-art object 

detectors use DL approaches, which are generally divided into two categories. The first is called 

OneStage detectors, whose famous models are YOLO v2/v3/v4 [31-35], SSD [36], RetinaNet [37] and 

EfficientDet [38]. The second one is named TwoStage detectors, RCNN 

(RecurrentConvolutionalNeuralNetwork) [26], FastRCNN [27] and FasterRCNN [28] which starts 

with region proposals and then performs bounding box classification and regression. These models 

have generally been evaluated on datasets from PascalVOC [133] and MSCOCO [39]. The accuracy 

and real-time performance of these approaches are good enough to deploy pre-trained models for face 

mask detection. 

Table 4.1: Object detection and accuracy 

Dataset VOC12 MSCOCO 

Model Name mAP FPS mAP 

RCNN 0.53 0.5 - 

Fast RCNN  0.68 7 0.19 

Faster RCNN  0.70 19 0.22 

SSD  0.75 45 0.27 

YOLOV2 0.73 67 0.22 

YOLOV3 0.75 47 0.33 

YOLOV4 0.79 62 0.43 
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Table 4.2: Speed and Accuracy of YOLOv4 on MSCOCO [58] 

 

 

 

 

4.1.2. Faces Detection  

Viola- Many advances in deep learning for discovering and learning things in numerous sectors of 

application have occurred in recent years. Most activities, in order to verify identification, concentrate 

on picture reconstruction and face recognition. However, the primary goal of this investigation is to 

identify persons who do not use masks in public settings in order to limit Covid-19 transmission. [141] 

developed a method for recognising a face mask using the SRCNet classification network, achieving 

98.7% accuracy in categorising photos into three kinds. First and foremost, it is about "wearing the 

proper face mask." Second, one is "wearing the wrong mask" Many advances in deep learning for 

discovering and learning things in numerous sectors of application have occurred in recent years. Most 

activities, in order to verify identification, concentrate on picture reconstruction and face recognition. 

However, the primary goal of this investigation is to identify persons who do not use masks in public 

settings in order to limit Covid-19 transmission. [141] developed a method for recognising a face mask 

using the SRCNet classification network, achieving 98.7% accuracy in categorising photos into three 

kinds. First and foremost, it is about "wearing the proper face mask." Second, one is "wearing the 

wrong mask" Jones [57] presented a boost-based cascade architecture with basic but fast Haar features 

as one of the most renowned early face detectors. 

N. Marku and colleagues [134] suggested an object identification approach based on pixel intensity 

comparisons. The comparison of pixel intensities between distinct nodes in this study results in a quick 

detection time. M.Belahcene et colleagues employ IPC detection for face verification [135], which 

combines detection and alignment into a single model. G. Ghiasi et al proposed using a hierarchical 

deformable component model [136] to identify occluded faces in order to perform face identification 

and key point localization. In addition to the face detectors mentioned above, CNN-based models have 

made significant development in recent years. In [137], B. Yang et al introduced a face identification 

technique that used a feature aggregation approach [138] based on CNN to extract features. S. Yang 

et al developed a deep learning technique to face identification based on the responses of face 

components [60]. C. Zhu et al. recently suggested MS-RCNN: region-based contextual multi-scale 

ModelName m-AP F-P-S 

YOLOV4(320) 0.370 - 

                (416) 0.410 096 

                (512) 0.430 083 

                (608) 0.4350 062 
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CNN for unconstrained face identification [139], which used contextual information. M. Opitz et al 

suggested the loss of grid: obstructed face detection. S. Luo et al introduced SFA: face detector 

attention small faces [65], which is a multi-branch framework for detecting tiny faces (accurate 

detection). Face identification using receptive field-enhanced multi-task cascading convolutional 

neural networks was suggested by X. Li et al [140]. 

4.2.      recent Methods of COVID-19 face mask-based DL 

Many advances in deep learning for discovering and learning things in numerous sectors of application have 

occurred in recent years. Most activities, in order to verify identification, concentrate on picture reconstruction 

and face recognition. However, the primary goal of this investigation is to identify persons who do not use 

masks in public settings in order to limit Covid-19 transmission. [141] developed a method for recognising a 

face mask using the SRCNet classification network, achieving 98.7% accuracy in categorising photos into three 

kinds. First and foremost, it is about "wearing the proper face mask." Second, one is "wearing the wrong mask" 

The work in [142] proposed by Sabbir Ejaz et al applied PCA (Principal Component Analysis) [143] 

in order to know the masked and unmasked faces. Observed that PCA is effective for face recognition 

without mask with an accuracy of 96.25%, but its accuracy is decreased to 68.75% in face recognition 

with mask. G. J. Chowdary [144] proposed a face mask detection model using transfer learning (TL) 

of InceptionV3, proposed approaches by achieving 99.9% accuracy during training and 100% during 

testing , but the model is trained and tested on the Simulated Masked Face (SMFD) dataset contained 

only 1570 images. 

 

Figure 4. 2: Wider dataset face detection results [14]. 
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4.3.      Proposed Approach 

In this proposes system (figure 4.3), we use Yolo detection technique to identify faces in image, real 

time video or line_cameras. We train the YOLO-v4 custom model for face detection and localization 

using a large dataset consisting of approximately 14409 images belonging to 3 classes: “masked-

faces”, “masked-incorrectly” and “unmasked-faces”. Blood among three others formed our data set: 

• wider-face [14] for unmasked faces and masked-faces 

• MMD [145] for masked-faces and incorrect masked-faces 

• RMFD [146] for masked-faces and incorrect masked-faces 

• Proposed Approach 

In this proposes system (figure 4.3), we use Yolo detection technique to identify faces in image, real 

time video or line_cameras. We train the YOLO-v4 custom model for face detection and localization 

using a large dataset consisting of approximately 14409 images belonging to 3 classes: “masked-

faces”, “masked-incorrectly” and “unmasked-faces”. Blood among three others formed our data set: 

• wider-face [14] for unmasked faces and masked-faces 

• MMD [145] for masked-faces and incorrect masked-faces 

• RMFD [146] for masked-faces and incorrect masked-faces 

 

Figure 4. 3: Proposed Approach Framework 
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• Dataset Description and pre-processing 

This proposed set of data consists of 14409 photos, 12879 of which are raw images from the Wider-

face dataset [14]. The Wider-face dataset is a true unmasked-face dataset, however it contains some 

masked-faces. The remaining 1530 photos in our dataset were downloaded from Kaggle [145], and 

they all had masked faces and erroneous masks. Figure 4 depicts how challenging it is to use this 

dataset, which has 32203 photos and 393703 faces with a significant degree of heterogeneity in 

scale, position, and occlusion. Example of datasets is in figure 4.4

 

Figure 4. 4: Images from the datasets 

•  Data pre-processing  

Data pre-processing is the process of converting data from one format to another that is more user 

pleasant. In our example, we transform the dataset to yolov4 format using the following steps:  

• Place all photos in the same file named data;  

• Separate the data file into train and test;  

• Create file.txt for each image;  

• Create train.txt/test.txt/file.names/file.data. 

• Make a configuration file.cfg  

• Network Architecture  

YOLOv4 [34], uses : 

• Bag-of-Freebies or BoF for back_bone: Cut_Mix and Mosaic data augmentation, Drop_Block 
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regularization, Class-label smoothing 

• Bag-of-Specials or BoS for backbone: Mish_activation, Cross-stage_partial_connections 

(CSP), Multiinput-weighted-residual-connections (MiWRC) 

• Bag-of-Freebies or BoF for detector: CIoU-loss, CmBN, DropBlock regularization, Mosaic 

data augmentation, Self-Adversarial Training, Eliminate grid sensitivity, Using multiple 

anchors for a single ground truth, Cosine annealing scheduler , Optimal hyperparameters, 

Random training shapes _ Bag of Specials (BoS) for detector: Mish_activation, SPP-block, 

SAM-block, PAN path-aggregation block, DIoU-NMS 

Figure 5 depicts our Yolov4FaceMask architecture. We specify the configuration file of the Yolov4 

object detector model described in [34], which recommends a detection network with a CSPDarknet53 

[24] backbone, a neck, and YOLOv3 [33] heads, to create an effective network for detection and 

localisation of faces mask. The backbone is a universal feature extractor composed of convolutional 

neural networks that extracts information from pictures and converts it to feature maps. We utilised 

CSPDarknet53 as a standard backbone in Yolov4FaceMask. In terms of the neck, it is a component 

that sits between the backbone and the heads, and it can augment or refine the original feature maps. 

As a neck, Yolov4FaceMask, SPP [147], and PAN [148] were used. which may extract high-level 

semantic information and then fuse it into preceding layers' feature maps via an addition operation 

with a coefficient. Finally, heads represent classifiers, predictors, estimators,and so forth. 

 

Figure 4. 5: Yolov4FaceMask Network Architecture 

1) Mish activation function [149] 

As for the backbone in our Yolov4FaceMask, we employed the mish_function (a unique self-

regularized non-monotonic activation function) [149] instead of the Leaky-ReLu activation function 

used in the prior model. The fact that the activation function reached any height prevents saturation 

induced by the cap, allowing a little negative value to provide a superior gradient flow. Furthermore, 

because the mish_function is non-monotone, we can keep a little negative value to achieve the effect 

of stabilising the network gradient flow. In terms of actual experimental concerns, a smoother 
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activation function, such as the Mish_function, can assist us in allowing more information to infiltrate 

the neural network, to obtain high accuracy of this proposed model.                               -            

                       𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥                                                                        (4.1) 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑝𝑙𝑢𝑠(𝑥) = ln (1 + 𝑒𝑥)                                                            (4.2) 

 𝑓(𝑥) = 𝑥 . tanh (𝒔𝒐𝒇𝒕𝒎𝒂𝒙𝒑𝒍𝒖𝒔(𝒙)                                                  (4.3) 

In the implementation process: 

 x: the input data, first passes through the softplus function stage, then enters into the Mish function 

stage after tanh operation and is merged. 

• Program code 

Algorithm 1 : Data pre-process and training model 

Input : Dataset including masked-faces, unmasked-face and incorrectly-mask  

Output : Image illustration indicating the presence of a face 

Begin : 

  for each image in the three-categories  

1) Visualise pictures in all categories and theirs labels 

2) Insert the train image emplacement into the train.txt file. 

3) Insert the test image emplacement into the file test.txt   

  After Build the Yolov4FaceMask model configuration : 

  batch=64; width=416; height=416; max_batches= 6000. 

  [convolutional] filters = (3+5)*3 

  [yolo] 

  Classes=3 

  end 

Split the data and start training of model./Test the model and evaluate error and map./Extract output 

results image.end 

• Experimental results  

In this paper, the batch size was set to 64 and the subdivisions were set to 16. We cropped the input 

picture to 416 416 pixels after increasing the size of the input to 512*512 and subsequently to 608 608. 

We utilised this created model to process the incoming picture. We utilised a momentum of 0.949 and 
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a weight decay of 0.0005. The learning rate is 0.001 for 600 mini-batches (classes x 2000). We spent 

12 hours more on the entire training process using GPU tesla T4 of Google Collaborator. In the 

presented work, the average precision equal to 83 % with input 416*416, and precision equal to 86.29 

% with input-size 512*512, and precision equal to 88.82 % with input-size 608×608  after 6000 iteration 

and average-loss of  2.8 %, the training result of input-size 416*416 shows in figure 4.6. 

   

 Figure 4. 6: Detector average loss and mean average precision  

• Results and discussion on brightness, blurring and proximity in images 

We investigated the performance of our Yolov4FaceMask detectors on photos with problems and 

barriers such as brightness, blurring, and proximity of faces to camera in the first round of trials.... To 

show the model's efficacy and accuracy. See Fig 4.8 a), b), d). 

 We can see that the model produces good outcomes in all of the preceding examples. 

In addition, we chose photos with problems and hurdles, such as diverse poses (rotation angles), 

profiles, and different formats and types of masks, such as transparent masks, to show the model's 

efficacy and accuracy. See Figure 4.8 a), c), d), h), i). 

We can see that the model performs well in all of the aforementioned scenarios, both indoor and 

outdoor, with the exception of wrongly masking, where we have a lack of accuracy due to the limited 

amount of photos in this category combined with other groups (masked and unmasked) in the training 

stage.  

Figure 4.8 g) depicts two picture resolutions (low and high). We may deduce that the model accuracy 

decreased when the image resolution was poor. That was previously stated in Table 4.3.   

• Discuss the results of surveillance video 

We chose indoor and outdoor videos with difficulties and obstacles such as different video 

resolution, brightness, blurring, different rotation angles of faces, profile, and proximity of the faces... 

to demonstrate the model's effectiveness and accuracy; the results are shown in fig 4.9 a) for indoor and 

fig4.9 b) for outdoor.  
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In terms of accuracy, we can infer that the model precision decreased with low resolution, but in 

terms of reel time, the model produces good results: 

• Input-size 416 × 416 : FPS = 39.2 

• Input-size 512 × 512 : FPS = 34.4 

• Input-size 608 × 608 : FPS = 29.8 

 

Figure 4. 7 : Yolov4FaceMask Frame_Per_Seconds 

Table 4.3: Accuracy Of YOLOv4-Face-Model/Different Input-Sizes 

 

 

 

 

 

 

 

Table 4.4: Proposed YoloV4FaceMask detection Model 416 X 416 Training-Results   

 

 

 

 

 

TABLE 4.5:        COMPARISON OF PROPOSED YOLOV4FACEMASK MODEL WITH STATE OF THE ART MODELS-SIZE 

Model name Publication  Dataset name Dataset 

Size 

Precision (% ) 

YOLOv2+ResNet50 [130] Feb 2021 MMD [145]+FMD [151] 1415 81.000 

Face-mask-InceptionV3 [143] 2020 SMFD [152] 1570 99.990 

SSDMNV2[150] Mar 2021 RMFD [40]+PyImageSearch 5521 92.640 

Face-mask-SRCNet [141] Sept 2020 - 3835 98.700 

Retina_Face_Mask [57]  Jun 2020 Face Mask Dataset [153] 7971 93.400 

      Input        

Iteration 

416×416 512×512 608×608 

1000 45.48% 47.87% 51.03% 

2000 64.16% 66.28% 67.30% 

3000 73.06% 76.51% 72.31% 

4000 79.90% 86.27% 83.93% 

5000 83.03% 86.15% 87.99% 

6000 82.77% 86.29% 88.82% 

Iteration  mAP Avg Loss 

It_1000 45 % 5.190 

It_2000 64.16 % 2.870 

It_3000 73.05 % 3.200 

It_4000 80.6 % 2.900 

It_5000 83.03 % 2.800 

It_6000 82.77 % 2.800 
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Yolov4FaceMask (ours) 2021 WiderFace [14]+ FMD 

[151]+ RMFD [146] 

14409 88.820   

     

a) Transparent masks and brightness      b)  Blurring, proximity indoor                   c)   Profile indoor/outdoor 

 

e) Masks and no masks indoor with pose 

f) Correctly, incorrectly and without mask 
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g) Diffèrent images at low and good resolution 

 Figure 4. 8: Visual examples generated by Yolov4FaceMask (Green bounding boxes unmasked faces; red 

bounding boxes masked faces; orange bounding boxes incorrectly mask faces.) 
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Figure 4. 9 : Real-time surveillance video examples generated by Yolov4FaceMask outdoor (Green 

bounding boxes represent unmasked faces; Red bounding boxes represent masked faces; orange 

bounding boxes represent incorrectly mask faces.) 

Conclusion 

In this section, we provide a realistic dataset for facemask identification, followed by a novel facemask 

detector, Yolov4FaceMask, that can contribute to public healthcare. Yolov4FaceMask's architecture 

is made up of CSPDarknet53 as the backbone, SPP and PAN as the neck, and Yolov3 modules as the 

heads. The CSPDarknet53 backbone may be utilised for both high and low computing applications. 

To extract more robust features, we believe that our proposed dataset and model named 

Yolov4FaceMask could help to prevent the spread of COVID-19 and protect against other infectious 

diseases, which can be spread by things like speaking at close range, coughing, and sneezing. On our 

face mask dataset, the suggested model provides state-of-the-art results with an accuracy of 83%. In 

future work we aspire to: •We expanded our data by include additional photos of masked faces and 

wrongly masked ones. • Improve the precision of our YoloMaskFace. • Apply the Yolov4FaceMask 

concept to additional applications. 
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Introduction 

According to World Health Organisation (WHO) report n.48, COVID-19 illness 2019 has infected 

over 58 million people and killed over 1.4 million (9 April 2021). With the advent of the COVID-19 

coronavirus, many countries, if not all, were forced to implement new social distancing and face mask-

wearing guidelines. Because the transmission rate of COVID-19 is growing, governments have 

required hospitals and other organisations to implement additional infection control measures. The 

transmission rate, however, may vary depending on the government's efforts and policies. Because 

COVID-19 is transferred by airdrops and closed contact, governments have begun enforcing new 

restrictions requiring citizens to avoid sitting too close together and to wear a face mask in order to 

slow the transmission and spread rate. New coronavirus variations emerged following the relaxation 

of several nations' adherence to safety laws (India, Nigeria, the United Kingdom, Brazil, and so on), 

prompting the WHO to encourage the use of Personal Protective Equipment (PPE) among people and 

in medical treatment. The coronavirus (COVID-19) spreads swiftly in close quarters and busy areas. 

The proliferation of COVID-19 has an impact on people's lives and the economy. It was identified as 

a serious public health and economic issue. Countries require instruction and supervision of persons 

in crowded situations and densely packed public locations to guarantee that face mask rules are 

followed. This might be implemented using video surveillance systems and deep learning (DL) 

models. However, most mask detection applications and present mask detection model research focus 

on tackling the masked face and no masked face identification problems while ignoring incorrectly 

worn face masks (Table 5.1).     

 

Table 5.1:  State-of-art facemask-framework based deep-learning models (Dm: detection_model Tr: 
tracking_model,  Imd: incorrectly_mask_detection S_ no_ MF:  Save_no_Masked_faces) 

Model-name Dm Tr Imd S_ no_ MF 
YOLO v2 + ResNet50  YOLO v2 No. No. No. 
FaceMask_SRCNet  SRC-Net No. Yes. No. 
SSDMNv2  SSD+MobileNetv2 No. No. No. 
Retina_FaceMask  Retina-Net No. Yes. No. 
Goyal_FaceMask  Custom-model No. Yes. No. 
Prasad_YOLOv4-FaceMask  YOLO v4 no No.. No. 

 

The face mask is the focus of this endeavour to reduce COVID-19 transmission and dissemination. 

The result of the suggested detection model of masked faces/incorrectly masked faces/no masked face 

region in image or video surveillance. This area is used as an input by the DeepSORT tracker. The 

Simple Online and Real-time Tracker produces an image or sequence video, but with ID identification 
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for each face. We save the image of the unmasked face only once in the last stage and after each 

tracking of the box. (figure 5.1). 

The superiority of the suggested technique is demonstrated by performance metrics mean average 

precision (mAP) and mean average recall (mAR), after which the detection and tracking results are 

compared to previous studies on facemask identification and tracking. This work is assessed using the 

suggested facemask dataset and publicly available videos/images. 

On video sequences of people with masked/incorrectly masked/no masked faces, the detection of 

masked face sequences and the outcomes (cropped pictures) are assessed. 

The sections of this chapter is structured as follows: The first portion is an introduction. Section 2 is 

devoted to the presentation and examination of the suggested method. Section 3 presents the 

experimental results and comments, and Section 4 concludes the work with a conclusion. 

 

Figure 5. 1: Our proposed detection and tracking framework 
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5.1.      Proposed YOLOv4-P6-FaceMask detection and DeepSORT tracking 

5.1.1. YOLO detection models 

 

 

Figure 5. 2 : Different YOLO models and their average precision 

 

YouOnlyLookOnce(YOLO) is a real-time, one-stage object identification system that is very accurate. 

It is designed to be a one-step method for detection and localisation. Following an examination of the 

input picture, the bounding box and class prediction are done. Backbone, Neck, and Prediction 

comprise the model's structure (an example of structure). On a GPU-equipped computer, the fastest 

YOLO architecture can reach 96 Frames per Second (FPS), while the smaller variant, the tiny YOLO, 

 2016      2017       2018     April 2020     June 2020       July 2020      November 2020 

YOLO v2 

Published by J.Redmon 

• AS-Backbone:  Darknet 

• MAP OF 78.6 on 
PASCAL-VOC2007 
dataset with 40 FPS  

YOLO v4 

Published by A.Bochkovskiy 

• Backbone:  CSPDarknet53 

• 43.5AP on the COCO 
dataset with real-time 
performance of 65FPS 

 

 

PP YOLO 

• AS-Backbone:  ResNet 

• MAP OF 45.2 on the 
COCO-dataset with 
RPM of 72.9FPS 

 

YOLOv1 

Published by J.Redmon 

• As-Backbone:  Darknet 

• MAP OF 63.4 
onPASCAL-VOC 
2007 dataset with 
45 FPS 

YOLOv3 

Published by J.Redmon 

• AS-Backbone:  
Darknet-53 

• MAP OF 57.9 value 
on COCO-dataset 
with 20FPS 

 

YOLOv5 

Published by G. Jocher 

• The model is Bases 
Pytorch platform 

• The YOLOv5 
demonstrates striking 
enhancements are 
mosaic information 
expansion and auto 
Learning bounding-box 
Anchor 

Scaled-YOLOv4 

Published by Wang 

• AS-Backbone:  CSP-ized 
Darknet-53 

• The Scaled YOLOv4 model 
achieved the highest-
average-precession among 
all published YOLO models 
on COCO-dataset (55.4 
MAP and 15 FPS)  
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can reach up to 244 FPS. YOLO'S idea is different from other traditional systems: the bounding box 

prediction and prediction category are done at the same time. The figure 5.2 illustrates a state of the 

art of the different yolo models and their accuracy. 

YOLOv4 combines the qualities of YOLOv1, YOLOv2, YOLOv3, and others to achieve the current 

best in detection speed and detection accuracy compensation.  

The combinations between the characteristics of the ResNet-structure and YOLOv3 integrates the 

residual module into itself and obtains Darknet53. On this premise, YOLOv4 built CSPDarkNet53 in 

the residual module (input the feature layer and output the top-level feature information), taking into 

account the higher learning ability of Cross Stage Partial Network (CSP-Net) [24]. The input picture 

is separated into grids, and a B bound box with a confidence score is defined for each grid cell. The 

likelihood that an item will exist in each bounding box is represented by reliability, which is defined 

as:    

                                                                     𝐶𝑆 = 𝑃𝑟 × 𝐼𝑂𝑈                                                                             (5.1) 

 

Were IOU (Intersection-Over-Union) is a fraction between zero and one, and Average Precision (AP):  

                                                   𝐴𝑃 =  ∑ 𝑃(𝑘)∆𝑟(𝑘)𝑛
𝑘=1                                                                     (5.2) 

 

Where k is the precision at threshold k and ∆r(k) is the change in recall.  

The Cross-Stage-Partial design was inspired by the DenseNet-architecture, which takes the preceding 

input and concatenates it with the current input before moving into the dense layer.  

Each stage layer of a DenseNet-model has a dense-block and a transition-layer, and each dense-block 

is composed of k dense-layers. 

 The output of the ith dense layer will be concatenated with the input of the ith dense layer, with the 

result being the (i+1) dense layer's input. The following equations illustrate the aforementioned 

mechanism: 

                                                                    𝑥1 = 𝑤1 ∗ 𝑥0                                                                  (5.3) 

                                                                 𝑥2 = 𝑤2 ∗ [𝑥0, 𝑥1]                                                            (5.4) 

⋮ 

 

Where ∗ is the convolution operator, and [x0, x1, …] means to concatenate x0, x1, …, and wi and xi 

the ith dense layer's weights and outputs, respectively. 
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The CSP[24] is based on the same principle, except that instead of concatenating the ithoutput with the 

ithinput, we divided the inputith into two parts, x0’ and x0”, with one part passing through the dense 

layer x0’ and the second part x0” being concatenated at the end with the result at the dense layer's 

output. 

This is equal to the following equation in mathematics: 

 

                                                           𝑥𝑘 = 𝑤𝑘 ∗ [𝑥0, 𝑥1, … , 𝑥𝑘−1]                                                  (5.5) 

 

                                                             𝑥𝑇 = 𝑤𝑇 ∗ [𝑥0, 𝑥1, … , 𝑥𝑘]                                                    (5.6) 

 

                                                            𝑥𝑈 = 𝑤𝑈 ∗ [𝑥0, 𝑥1, … , 𝑥𝑇]                                                     (5.7) 

 

This will result in different dense layers repeatedly learn copied gradient information. 

 

 

Figure 5. 3: Architecture of YOLOv4P6FaceMask-model Detection 
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Table 5.2: the network architecture of YOLOv4-P6-FaceMask-model   

1: parameters 2: anchors 3: backbone  

Classes number : 3 

Depth multiple: 1.0   

Width multiple: 1.0   

- [13,17, 31,25, 24,51, 61,45]   

- [61,45, 48,102, 119,96, 97,189]  

- [97,189, 217,184, 171,384, 324,451]  

- [324,451, 545,357, 616,618, 1024,1024]  

  # [from, number, module, args] 

  [[-1, 1, Conv, [32, 3, 1]], # 0 

   [-1, 1, Conv, [64, 3, 2]], # 1-P1/2 

   [-1, 1, BottleneckCSP, [64]], 

   [-1, 1, Conv, [128, 3, 2]], # 3-P2/4 

   [-1, 3, BottleneckCSP, [128]], 

   [-1, 1, Conv, [256, 3, 2]], # 5-P3/8 

   [-1, 15, BottleneckCSP, [256]], 

   [-1, 1, Conv, [512, 3, 2]], # 7-P4/16 

   [-1, 15, BottleneckCSP, [512]], 

   [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32 

   [-1, 7, BottleneckCSP, [1024]], 

   [-1, 1, Conv, [1024, 3, 2]], # 11-P6/64 

   [-1, 7, BottleneckCSP, [1024]], # 12 

4: head  5: detect 

[[-1, 1, SPPCSP, [512]], [-1, 1, Conv, [512, 1, 1]], 

[-1, 1, nn.Upsample, [None, 2, 'nearest']], 

[-6, 1, Conv, [512, 1, 1]], [[-1, -2], 1, Concat, [1]], 

[-1, 3, BottleneckCSP2, [512]],  

[-1, 1, Conv, [256, 1, 1]], 

[-1, 1, nn.Upsample, [None, 2, 'nearest']], 

[-13, 1, Conv, [256, 1, 1]], [[-1, -2], 1, Concat, [1]], 

[-1, 3, BottleneckCSP2, [256]], 

[-1, 1, Conv, [128, 1, 1]], 

[-1, 1, nn.Upsample, [None, 2, 'nearest']], 

[-20, 1, Conv, [128, 1, 1]], [[-1, -2], 1, Concat, [1]], 

[-1, 3, BottleneckCSP2, [128]], 

[-1, 1, Conv, [256, 3, 1]],[-2, 1, Conv, [256, 3, 2]], 

[[-1, 23], 1, Concat, [1]],  

[-1, 3, BottleneckCSP2, [256]], 

[-1, 1, Conv, [512, 3, 1]],[-2, 1, Conv, [512, 3, 2]], 

[[-1, 18], 1, Concat, [1]],   

[-1, 3, BottleneckCSP2, [512]],  

[-1, 1, Conv, [1024, 3, 1]],[-2, 1, Conv, [512, 3, 2]], 

[[-1, 13], 1, Concat, [1]],   

[-1, 3, BottleneckCSP2, [512]], 

[-1, 1, Conv, [1024, 3, 1]], 

[[29,33,37,41], 1, Detect, [nc, anchors]], Detect(P6) 

 

5.2. YOLOv4 model  scaling technique 

Scaling in classic detection models entails changing the model's depth by adding more convolutional 

layers. The VGGNet, for example, scaled to VGG11, VGG13, VGG16, and VGG19 architectures. 

However, the scaling strategy now affects the network's depth, breadth, resolution, and structure, 

resulting in a scaled model, such as ScaledYOLOv4.  

To demonstrate the superiority of the chosen model YOLOv4-P6 in terms of backbone, accuracy, real-

time performance, and so on, In this experiment section of the thesis, we compare it against the state-

of-the-art pedestrian detection algorithms Fast-RCNN, FasterRCNN, YOLOv3, and YOLOv4. The 
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Scaled YOLOv4 detection algorithm is used in the suggested solution, as shown in figure 5.1, to 

recognise faces in single images, real-time video, or online cameras. 

This chapter will not for discuss the history of previous versions (see chapters 3 and 4) of YOLO 

(YOLOv1, YOLOv2, and YOLOv3). We trained a customised YOLOv4P6 model for facemask 

detection and localisation using an enormous dataset of over 18000 photos classified as "masked," 

"incorrectly mask," and "unmasked (no-masked)."  

The suggested dataset (a refinement of the dataset proposed in Chapter 4) is derived from: 

• WiderFace-dataset(all no masked faces and part of MaskedFaces)  

• FMD(FaceMask-dataset) (masked-faces and incorrectly masked faces)  

• RMFD(RealFaceMask-dataset)  

Following that, we use the face set identified by YOLOv4-P6-FaceMask as an input to the Deep SORT 

tracker. For each first detection, the Deep SORT generates a unique identification number ID. If the 

first detection is an uncovered face or erroneous mask wear, we crop the face and save it in an OpenCV 

file. Deep SORT then follows each of the faces as they move across frames in a movie, assigning each 

one a unique ID.   

 

5.3. COVID19 YOLOv4P6FaceMask-model  

Figure 5.3 depicts the suggested facemask detector with the re-design of YOLOv4 to YOLOv4CSP to 

achieve the optimal speed and accuracy TradeOff. Architecture of a Network . 

The YOLOv4 detector's network architecture used CSPDarknet53 as a backbone, YOLOv3 as a heads, 

and SPP and PAN as a neck. 

We discuss architectural scaling in order to develop a real-time facemask detection approach. We 

implement several architectural changes to improve the performance of YOLO v4.  

The proposed network architecture of YOLOv4P6FaceMask-model is illustrated in figure 5.3 and table 

5.2. The convolution-layer is responsible of extracting features from the input using kernel (conv-

filter). 
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5.3.1. The backbone :  

The Backbone of proposed YOLOv4P6FaceMask-model can be shared into two parts: the kernel-block 

(ConvolutionBuildingBlock) and the CSPBlock modules (see table 3). The number of Residual- layers 

owned by each stage in CSPBlock is 1_2_8_8_4 respectively This means that (1x CSP-Block _ 2x 

CSP-Block _ 8xCSP-Block_ 8xCSP-Block_4xCSP-Block). 

The first CSPStage is converted to original DarknetResidualLayer. 

 

5.3.2. The neck :  

In order to minimise calculations, the PAN architecture is CSPized (converted to CrossStagePartial 

connections form). 

5.3.3.  The SPP:  

It was initially put in the centre of the neck; the same concept has been adopted and applied in CSPPAN 

as well. 

5.4. Tracking of Object. 

MultiObjectTracking (MOT) is the challenge of tracking the trajectory of various objects in a 

sequence, often a video. With the recent emergence of DL, the algorithms that provide a solution to 

this problem have profited from the representational capacity of DL models. We focus on MOT-

based DL techniques and how StateOfTheArt MOTs employ DL approaches based on a survey 

article [154]. 

On the MOT-16 dataset [160], the autors evaluate the accuracy and performance of DeepSORT [159]. 

This dataset assesses tracking performance on seven difficult test video sequences, including frontal-

view situations with moving cameras and top-down surveillance configurations.   

The tracker is compared with StateOfTheArt _of_tracking_methods (illustrate in table 8):  

• AMIR [155]: Savarese.S and others. proposed a racking the untrackable: Learning to track 

multiple cues with long-term dependencies 

• IA [156]: Tan.CC and others. proposed an OnlineMOT with InstanceAware Tracker and 

DynamicModelRefreshment 

• SORT (the SimpleOnlineReal-timeTracking) technique [157]: Ge.Z and others. proposed a 

Simple online and Real-Time Tracking method. 
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• EAMTT [158]: Matilla.S and others proposed a tracker named OnlineMulti-TargetTracking 

with strong and weak detections 

 

Figure 5. 4: DeepSORT_Face_Mask_Tracking 

 

Table 5.3 StateOf Art Trackers (MOT: Mot16Dataset [41], MT: MostlyTracked, ML: MostlyLost, ID: 

IdentificationNumber, Acc:Accuracy, Pr:Precision) 

Tracking-Model MOT_Acc MOT_Pr MT % ML% ID s  

 

ESNN  33.4 72.1 11.7 30.9 1598 

AMIR  47.2 75.8 14 41.6 774 

IA  48.8 75.7 15.8 38.1 906 

SORT  59.8 79.6 25.4 22.7 1423 

DeepSORT  61.4 79.1 32.8 18.2. 781 

EAMTT  52.5 78.8 19 34.9 910 
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5.5. Faces Tracking 

In this step, we use the DeepSORT approach to track faces and ID assignments for each box (figure 

5.4). DeepSORT is an online object tracking technique that uses both information about the monitored 

items' manifestation and the bounding box characteristics of the detection results to connect detections 

in the frame at time t+1 with tracked objects at time t. As a result,  

DeepSORT does not have to process the entire video at once. To create predictions about the current 

frame, it only considers information from the current and prior frames. The method is allocated to each 

bounding box indicating a pedestrian with a greater confidence value than a given threshold at the start 

of the series, i.e. in frame number one. The Hungarian method is a combinatorial optimisation 

procedure that is used to allocate detections in a new frame to existing tracks in order for the 

assignment cost function to approach the global minimum.   

The cost-function involves the Mahalanobis-spatial-distance 𝑑(1)(𝑖, 𝑗)of the detected bounding-box 

from the position predicted according to the known position at time t of that object, and a visual 

distance 𝑑(2)(𝑖, 𝑗)that considers the appearance of the detected object and the history of the appearance 

of the tracked-object. The expression of Mahalanobis 𝑑(1)(𝑖, 𝑗) is given by 

 

                                          𝑑(1)(𝑖, 𝑗) = (𝑑𝑗 , 𝑦𝑖)
𝑇

𝑆𝑖
−1(𝑑𝑗 − 𝑦𝑖)                             (5.8) 

 

: λ: is a parameter that can be set to determine the influence of the visual distance 𝑑(2)(𝑖, 𝑗)and the 

Mahalanobis 𝑑(1)(𝑖, 𝑗).   The cost function c_(i,j)  of assigning a detected object 𝑗 to a track 𝑖 is given 

by the expression:  

                                            𝑐𝑖,𝑗 = 𝛾𝑑(1)(𝑖, 𝑗) + (1 − 𝛾)𝑑(2)(𝑖, 𝑗)                        (5.9) 

 

Where 𝑦𝑖 represent the mean and 𝑆𝑖 represent the covariance matrix bounding box observations for the 

ith track 𝑑𝑗 represents the jth detected bounding box. 

The expression of visual 𝑑(2)(𝑖, 𝑗)that relies on appearance 

feature descriptors:  

𝑑(2)(𝑖, 𝑗) = 𝑚𝑖𝑛 {1 − 𝑟𝐽
𝑇𝑟𝑘

(𝑖)
|𝑟𝑘

(𝑖)
𝜖 }                               (5.10) 
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Where 𝑟𝑗 is the appearance descriptor extracted from the part of the image within the jth detected 

bounding box; ℛ𝑖 is the set of last 100 appearance descriptors 𝑟𝑘
(𝑖)

associated with the track i.  

 The cosine distance uses by 𝑑(2)(𝑖, 𝑗) measure between the jth detection and ith track in the current 

detection to select the track where visually the most similar detection is  

previously found. 

When there are more detections in a frame than currently monitored people, new track IDs are 

created. 

The detection cannot be attributed to any track because it is too far away from any track or does not 

look visually similar to any prior detection.  

      

5.6. Detection results   

Because mask detection is fundamentally a classification and localisation problem, it is assessed using 

standard metrics such as TruePositive (TP), TrueNegative (TN), FalsePositive (FP), and FalseNegative 

(FN), which are defined as accuracy and recall: 

 

         Precision=  TP/(TP+FP)                                                          (5.11) 

 

         recall=  TP/(TP+FN)                                                              (5.12) 

 

Furthermore, the evaluation employs IntersectionOverUnion (IoU), which provides the ratio of the 

overlapping area of the predicted boxes to the matching ground truth; higher IoU values indicate more 

accurate localization, so IoU = 1 is the best case. Combined with the IoU value, AP50 and AP75 are 

applied to report the AveragePrecision at IoU = 0.5 and IoU = 0.75 levels. mAP and mAR represent 

the means of the 10 precision and recall values at IoU, ranging from 0.5 to 0.95 with an interval of 

0.05 for detailed performance in each category to further evaluate the overall performance of the 

facemask detection model. We selected a BatchSize of 64 and a subdivisions of value 8: depending on 

the performance of used GPU. The InputImage is set to width×height=1280×1280 pixels. We used this 

prepared model to process the InputImage. A Momentum of value 0.96, a batch_normalization of value 

= 1, ActivationFunction = mish_function ,weight_decay of value = 0.0004 were used. The 
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learning_rate is Lr=0.001 for 600 mini-batches-size ;  which is calculated using the following method 

C*2000=6000. We spent 14 hours extra on model training utilising Google-Collaborator's GPU Tesla-

T4. After 6000 iterations, the mean average accuracy was 93% with an input-size of 12801280 and an 

average loss of 1.8%. All training settings and outcomes are included in Tables 5 and 6. 

 

Table 5.4  Parameters of YOLOv4P6FaceMask Model  
 

 

 

 

 

 

 

 

 

 

 

Table 5.5 YOLOv4P6FaceMask Model 1280x1280 - Results of model Training  

 

 

 

 

 

 

 

5.6.1. Comparison of proposed model with State-Of-The-Art. 

For a typical evaluation  of our proposed model, we trained various cutting-edge models on our 

suggested dataset using the same platform implementation (tesla T4). The classification accuracy and 

real-time performance of the YOLOv4P6FaceMask model are compared to the classification accuracy 

of YOLOv4, YOLOv3, Faster RCNN, EfficientDet, and RenitaFaceMask [60]. Table 7 compares the 

trained models in the proposed face mask dataset. We discovered that YOLOv4-P6-FaceMask can 

Parameters  Value 

TheWidth 1280  

TheHeight 1280 

theMomentum  0.960 

theLearning rate  0.00100 

theBatch_size  64 

TheSubdivisions 8 

theActivation function  MishFunction 

TheClasses 3 

theMini-batches 600 

theWeight decay 0.00040 

Iteration  mAP% Avg_Loss 

It_1000 47  4.190 

It_2000 67.16  2.870 

It_3000 79.05  2.20 

It_4000 87.6  1.90 

It_5000 89.03 1.80 

It_6000 93.02 1.80 
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outperform Faster RCNN by 13% and can outperform YOLOv3 and YOLOv4 by 11% and 7%, 

respectively, and can outperform EfficientDet and RenitaFaceMask by 7% and 4% in term of mean 

average precision (mAP). The results are illustrated in table 11 and figure 9.  

 

Table 5.6    YOLOv4P6FaceMask-modelresult comparison with StateOfTheArt. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 5: The proposes YOLOv4-P6-FaceMask comparison with state-of-the-art models 

 

Model Name AP 50% AP 75% Map % mAR % FPS% 

Faster_RCNN  80 72 80 70 35 

YOLOv3   82 75 82 80 30 

YOLOv4  416  81 74 80 75 57 

YOLOv4  512  83 77 83 83 50 

YOLOv4  608  86 80 86 82 44 

EfficientDet  89 84 87 87 32 

RenitaFaceMask 91 88 89 89 29 

YOLOv4P6FaceMask  (Ours) 94.0 90.0 93.0 92.0 35 
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5.6.2. discussion of obtained results on term of  brightness/blurring/noise/proximity in 

images of proposed YOLOv4P6FaceMask-model 

 

In the 1st part illustrated in figure 5.7, the experiments that we conducted is to validate the effectiveness 

and model accuracy (GreenBoxes: unmasked_faces without IdentificationNumberID; RedBoxes: 

masked_faces without IdentificationNumberID; orangeoxes: incorrectly_masked_faces without 

IdentificationNumberID).  

We investigated the performance of our YOLOv4-P6-FaceMask detector on photos with problems and 

barriers such as brightness, blurring, noise, and closeness faces to the camera... to demonstrate the 

model's efficacy and correctness. We can see that our suggested approach produces outstanding 

outcomes in all of the issues discussed earlier. 

 In another part of the experiments, we explored the performance of the YOLOv4-P6-FaceMask 

detector on images that contained difficulties and obstacles such as different poses (rotation angles), 

profiles, and different formats and types of masks such as transparent masks... to demonstrate the 

model's effectiveness and accuracy. 

  

5.6.3. Results and discussion of surveillance video 

Indoor and outdoor videos are chosen with problems and hurdles such as varying video resolution, 

brightness, blurring, different rotation angles of faces, profile, and closeness of the faces... to 

demonstrate the model's efficacy and accuracy. Figure 5.8 depicts the outcomes.                

 In terms of the suggested model's accuracy, we can see that the precision decreases when the picture 

resolution is low, and in terms of real-time performance, we can see that the model provides an 

acceptable performance of 35 frames per second.  

 

5.6.4. Tracking and output results 

We have tested with a number of indoor/outdoor videos in order to achieve the accurateness of the 

model offered in this experiment section. Figure 5.8 shows the model's tracking performance in both 

indoor and outdoor settings, with respectable YOLOv4-P6-FaceMask model accuracy. Figure 5.6 

illustrates the outcome of unmasked/inadvertently-masked faces that were obtained and saved in a file. 

In all the video sequences, there is just one inaccuracy that stands out: a face that is covered.   
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Figure 5. 6: Outputl Results of crop/save unmasked/incorrectly_masked_faces 

 

5.7. Implementation platform/used_libraries : 

The Python3 programming language is utilised on ONLINE Google-Collab to develop the facemask 

detection and tracking framework. We used a DarknetProject to train the YOLOv4P6FaceMask 

detector in the first step.  

The detection model was trained and tested on a single Google-Collab Tesla-T4 GPU. Darknet, Keras, 

Os, OpenCv, NumPy, MatPlotLib, and pillow were the libraries utilised in the implementation 

procedures. 

 

5.8. Limits of the work : 

Among model’s limitations:  

•  The weakness in the detection model's precision for those who mistakenly wear medical 

masks. This is because there weren't lots of pictures of faces that had been incorrectly_masked 

during training. 

•        The lack of a standardised database built specifically for this purpose prevents the face-tracking 

model from being compared to other models. 
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Figure 5. 7: YOLOv4P6FaceMask detector Images results. (RedBoxes: masked_faces, GreenBoxes: 
in-masked_faces, orangeBoxes: incorrect_masked_faces). 
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a) ndoor-School students 

 

b) Indoor-Airport 

 

 

c) low conditions videos with bruit 

Figure 5. 8: YOLOv4P6FaceMask-model and DeepSort_tracker videos examples (reel time).  
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Conclusion 

In the chapter number five, we proposed a new framework of detection and tracking of medical maskes, 

the proposed work is a automatic TwoStage framework based our YOLOv4P6FaceMask-model and 

DeepSORTtracker. In addition, we suggested a new dataset of face (with medical mask/without 

medical mask/ with medical mask incorrectly) with 18000 images, the 1st phase or stage is the training 

of YOLOv4P6FaceMask face-mask detection-model, which can contribute to public-healthcare. The 

network-architecture of the proposed DetectionModel uses CSPizedCSPDarknet53 as backbone, 

CSP_SPP and PAN as the neck and CSPizedYoloV3 module as the heads and we scaling-up the model 

network and mish as ActivationFunction. In the 2nd stage, the DeepSORTtracker is used to track faces, 

the tracker helps us to crop and save faces only once per person in all sequences. In order to extract, 

more robust features we believe that our work propose a dataset, a model named 

YOLOv4P6FaceMask-model and could contribute to preventing the COVID19 from pervasion for 

protect against other infectious diseases; which can be prevalent by such things as speaking at close 

range, coughing, sneezing. The proposed model achieves state-of-the-art results on face-mask datasets, 

with an accuracy of 93%, a MeanAverageRecall of 92%, a real-time speed of 35 fps with input 

1280×1280, and average_loss of 1.8%.  
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Biometrics is an exciting and complex field. It attempts, utilising frequently sophisticated 

mathematical techniques, to distinguish between individuals, forcing us to work in a context of great 

diversity. This diversity is also found in the considerable number of algorithms that have been 

proposed for facial recognition. 

In this thesis, we are interested in the problem of localization and detection-based Deep Learning. A 

literature research was conducted to learn about several deep-learning models capable of conducting 

real-time object identification and recognition. An analysis of the different techniques developed in 

recent years has been presented, in order to highlight the particularities as well as the advantages and 

disadvantages of each of them. 

 We have proposed different techniques aimed at taking into account the specificities of our problem. 

We have developed an approach based on the extraction of regions of interest using Yolov4, and 

ScaledYoloV4. However, these object detection techniques have drawbacks such as non-exact 

detection and the need for a large database of fairly large volumes. To remedy these problems, we have 

proposed a new large database of face-masked, non-masked, and incorrectly masked faces, this 

database has been provided with both rich annotations, but also a rigorous testing protocol, and a set 

of benchmark algorithm performance, which allows the community to come up with other algorithms 

and compare them effectively. 

Two models of detection are proposed namely respectively YOLOV4FaceMask and YoloV4-p6-

FaceMask. A new technique of detecting and localization and tracking of faces is offered with the 

combination of two models ScaledYolov4 detection model and the DeepSORT tracker. An other new 

technique of social distancing and face mask detection is proposed. 

In the future, we want to: 

•     Improve the accuracy of our YOLOv4-P6-FaceMask and Yolov4FaceMask by employing various 

recent optimisation methods. 

•      Create apps with the YOLOv4-P6-FaceMask model (social-distance applications, android studio 

applications, java apps …) 

•       try to companies between our YOLOv4-P6-FaceMask model and  another recent tracker.   

•      Using the collected photos from the model to determine if the individual is unwell or has sickness 

symptoms based on his facial features 
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• Implement our recommended proposed technique in an embedded-system. (Raspberry-Pi, 

Drone..…).   
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