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GENERALINTRODUCTION 

 
Dihydropyridines (DHPs) are a family of bioorganic compounds based on the pyridine 

nucleus. Among the existing isomeric forms of DHPs is 1, 4-dihydropyridine (DHP14). The synthesis 

of the first nucleus of 1, 4-dihydropyridine was reported about 130 years ago by Hantzsch [1]. DHPs 

are structures that can produce selective and robust ligands for a wide variety of biological targets [2]. 

Its original use was as calcium channel antagonists for the treatment of hypertension disease from the 

1970s [3]. 

Since then, DHP14 derivatives were tested for their biological activity and were introduced into clinical 

medicine for widely differing biological targets. For instance, they are known as vasodilators, analgesic, 

bronchodilators, antihero sclerotic, anti-tumor, anti- inflammatory and anti-diabetic agents [4-12]. 

Its derivatives have become over time one of the most used classes of drugs for the treatment of various 

cardiovascular diseases [13-15].They act as calcium (Ca2+) channel blockers (CCBs), which, as the 

Calcium Channel antagonists or calcium antagonists, disrupt the transit of Ca2+ cation through calcium 

channels [3,16].In particular, the short half-lives of the DHPs 14, like benidipine, felodipine, isradipine, 

clevidipine [17],nifedipine, nitrendipine, reduce systemic vascular resistance and arterial pressure. The 

Hantzsch synthesis generally produces racemic mixtures of such compounds. Thus, the development of 

the controlled stereoselective synthesis of 1,4-dihydropyridines is one of the targets of current research 

in medicinal chemistry [18]. 

Nowadays, the use of Quantitative Structure–activity relationship (QSAR) studies for the development 

and design of drugs is a current use because it allows bettering understanding the chemical structure 

and the mechanisms of action of drugs on the targets at the molecular levels. QSAR analysis is useful 

tool in the field of designing rational drugs and discovering the mechanism of pharmacological actions. 

The basic concept of QSAR methodology is to find a reliable correlation between biological activity 

and molecular structure. Recent works were devoted into using artificial neural network and multiple 

regression analysis to provide predictive QSAR models with high reliability [19]. This is the main focus 

of the present work dealing with 1,4-dihydropyridines as CCBs using similar approaches. 

In the literature, there are many QSAR studies of DHP14 derivatives targeting the design of novel 

CCBs. Back in 2003, Safarpour et al [20] conducted various quantum chemical-QSAR studies of some 

newly synthesized DHP14 using density functional theory (DFT) calculations. For many of these 

studies, a nonlinear relationship between the DHPs activity and calculated descriptors was concluded. 

One year later, Hemmateenejad et al. [15] have used GA-MLR and PC-GA-ANN procedures to study 

https://en.wikipedia.org/wiki/Calcium_channel
https://en.wikipedia.org/wiki/Calcium_channel
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the CCBs activity of DHP14–based Nifedipine analogous. In 2005, Yao et al. [21] used Least Squares 

Support Vector Machine (LSSVM) correlation to construct selective models with classification as a 

major screening mechanism for a novel series of DHP14 antagonists. In 2013, Hadizadeh et al. [22] 

used molecular descriptors calculated by the DRAGON software to develop MLR model that can be 

used to design new compounds with CCBs activity. Also, Da Mota et al. [23] proposed two compounds 

with high predicted activities and pharmacokinetic data comparable with those of known CCBs after 

MIA-QSAR, molecular docking and computational drug-likeness studies. More recently, Jardínez et al. 

[24] showed that the reduced density gradient approach can be used for estimating QSAR descriptors. 

They applied this approach to 1, 4-dihydropyridine derivatives with potential antihypertensive effects. 

Additionally, El-Moselhy et al. [25] developed a 3D-QSAR model; the latter is based on synthesized 

compounds, but previously inspired by molecular docking calculations before moving to the 

experimental stage. The proposed model indicates that the importance of lipophilicity over the 

electronegativity of substituents deduced by the high values of biological activity. Relying on the afore 

mentioned statement, thirty six DHP14 derivatives previously synthesized and evaluated as Calcium 

Channel Blockers (CCBs) were selected to build both robust and reliable linear and nonlinear models. 

This series was proposed by Navidpour et al.[26] and the corresponding DHP14 derivatives containing 

lipophilic 4-imidazolyl substituents. Here, multiple regression linear (MLR) and artificial neuron 

network (ANN) were employed for the construction of QSAR models. DFT method was used for 

geometry optimization of molecules and calculations of their electronic descriptors. The obtained 

models were further used as guide to design new compounds with enhanced CCBs activities. 

 

Our main contributions are summed in these essential points, namely: 

 Structural and electronic study of the basic nuclei of heterocyclic compounds of 1,4- 

dihydropyridine. 

 Drug-likeness study using several empirical rules such as Lipinski's rules ,Veber Score and 

Ghose rules. 

 Establish at the molecular level 2D-QSAR (MLR/ANN) models for 1,4-dihydropyridine 

derivatives. 

 Analysis by the molecular docking method of the most active chemical of 1.4 

dihydropyridine derivatives and the reference ligand. 

 

In order to carry out this work properly and to achieve the main objectives, we have organized our thesis 

into four chapters: 

CHAPTERI: DIHYDROPYRIDINES (DHPS) AND THEIR USE IN THE HYPERTENSIVE 
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TREATMENT 

In the chapter I we will present dihydropyridine molecule and describe the hypertension diseases, their 

pathogenesis and their treatment. In addition, it contains a description of some their inhibitors resistance. 

CHAPTER II: DEVELOPMENT , VALIDATION AND APPLICATION OF QSAR/QSPR 

METHODS 

The second chapter present a bibliographical study on various QSAR/QSPR methodologies, covering 

their stages of development, validation, and application. 

CHAPTERIII: DRUG-LIKENESS AND STRUCTURE-ACTIVITY/QUALITATIVE PROPERTIES 

RELATIONSHIP OF 1.4 DIHYDROPYRIDINE DERIVATIVES 

- The 1st point, a 2 Dimension Quantitative structure-activity relationship (2D-QSAR) models 

were generated using MLR and ANN methods for series of 31 derivatives of 1,4- 

dihydropyridine with the use of 29 molecular descriptors. 

- In the 2nd point, we will present drug-likeness screening studies of 1,4-dihydropyridine 

derivatives. 

- At last, the obtained QSAR models were employed to define biological activities of potentially 

novel active compounds. 

 

CHAPTER IV: MOLECULAR DOCKING STUDIES OF 1.4 DIHYDROPYRIDINE 

DERIVATIVES 

A molecular docking analysis recognizes which molecule; the most active compound or the reference 

ligands can then form novel drugs. 

 

We conclude this thesis with a general conclusion with perspectives. 



GENERAL INTRODUCTION 

13 

 

 

 

REFERENCES 

 
[1] Hantzsch A(1881) Condensation products made of aldehydammoniak and keton-like 

connections. Chem. Ber 14:1637-1638. 

[2] Eisner E, Kuthan E,J(1972) Chemistry of dihydropyridines. Chem. Rev 72:1-42. 

[3] Triggle D.J (2003) 1,4-Dihydropyridines as calcium channel ligands and privileged structures .Cell. 

Mol. Neurobiol 23: 293-303. 

[4] Edraki N,MehdipourA.R ,Khoshneviszadeh M , Miri R (2009) Dihydropyridines: evaluation of 

their current and future pharmacological applications. Drug Discov.Today 141058-66. 

[5] Bossert F, Vater W (1989) 1,4-Dihydropyridines-a basis for developing new drugs. Med. Res. Rev 

:9291-324. 

[6] Bossert F, Vater W (1971)Dihydropyridine, eineneue Gruppe stark wirksamerCoronartherapeutika 

[Dihydropyridines, a new group of strongly effective coronary therapeutic agents].Naturwissenschaften 

58578. 

[7] Epstein M, Black H.R(2001) Arterial Calcification and Calcium Antagonists.Hypertension 

37:1414–1415. 

[8] Klusa Atypical V 1,4-dihydropyridine derivatives, an approach to neuroprotection and memory 

enhancement.Pharmacol. Res 113:754-759. 

[9] Sharma V.K, Singh S.K(2017) Synthesis, utility and medicinal importance of 1,2- & 1,4- 

dihydropyridines. RSC Adv 7:2682–2732. 

[10] Frank C.A, Forst J.M, Harris R.J, Kau S.T, Li J.H, Ohmmachb C.J, Smith R.W, Trainor D.A, 

Trivedi S(1993) Dihydropyridine KATP potassium channel openers. Bioorg. Med. Chem. Lett 3:2725– 

2726. 

[11] Bocker R.H, Guengerich F.P(1986) Oxidation of 4-aryl- and 4-alkyl-substituted 2,6-dimethyl-3,5- 

bis(alkoxycarbonyl)-1,4-dihydropyridines byhuman liver microsomes and immunochemical evidence 

for the involvement of a form of cytochrome P-450.J. Med. Chem 29:1596-1603. 

[12] Ioan P ,Carosati E , Micucci M , Cruciani G , Broccatelli F ,Zhorov B. S, Chiarini A , Budriesi R 

(2011)1,4-Dihydropyridine Scaffold in Medicinal Chemistry, The Story so Far And Perspectives (Part 

1): Action in Ion Channels and GPCRs.Current Medicinal Chemistry 18:4901-4922. 

[13] Huang Q , Li Y, Sheng C, Dou Y, Zheng M , Zhu Z , Wang J (2015) Blood pressure lowering 

efficacy of amlodipine and nifedipine-Gits in ambulatory hypertension .J. Hypertens33:94. 

[14] Gordeev M.F, Patel D.V, Gordon E.M (1996) Approaches to the combinatorial synthesis of 

heterocycles: a solid-phase synthesis of 1,4-dihydropyridines.J.Org.Chem 61:924-928. 



GENERAL INTRODUCTION 

14 

 

 

[15] Hemmateenejad B, Safarpour M.A, Miri R, Taghavi F(2004) Application of ab initio theory to 

QSAR study of 1,4-dihydropyridine-based calcium channel blockers using GA-MLR and PC-GA-ANN 

procedures. J. Comput. Chem 25:1495–1503. 

[16] Mannhold R , Jablonka B, Voigdt W, Schoenafinger K, Schravan K (1992) Calcium- and 

calmodulin-antagonism of elnadipine derivatives: comparative SAR. Eur. J. Med. Chem 27:229-235. 

[17] Yet L(2018)1,4-dihydropyridines. In: Privileged Structures in Drug Discovery. Hoboken, NJ, 

USA: John Wiley & Sons. Inc 5:9–82. 

[18] Rucins M, Plotniece A ,Bernotiene E, Tsai W- B ,Sobolev A(2020) Recent Approaches to Chiral 

1,4-Dihydropyridines and their Fused Analogues.Catalysts 10:1019. 

[19] Hanachi R, Ben Said A , Allal H, Rahali S ,Alkhalifah M.A.M, Alresheedi F ,Tangour B, Hochlaf 

M (2021) Structural, QSAR, machine learning and molecular docking studies of 5-thiophen-2-yl 

pyrazole derivatives as potent and selective cannabinoid-1 receptor antagonists. New J. Chem 45:17796- 

17807. 

[20] Safarpour M. A, Hemmateenejad B, Miri R, Jamali M (2003) Quantum Chemical-QSAR Study of 

Some Newly Synthesized 1,4-Dihydropyridine Calcium Channel Blockers. QSAR & Combinatorial 

Science 22: 997–1005. 

[21] Yao X, Liu H, Zhang R, Liu M, Hu Z, Panaye A, Doucet J.P, Fan B (2005) QSAR and classification 

study of 1,4-dihydropyridine calcium channel antagonists base on least squares support vector 

machines. Mol. Pharm 2(5): 348-56. 

[22] Hadizadeh F, Vahdani S, Jafarpour M (2013) Quantitative Structure-Activity Relationship Studies 

of 4-Imidazolyl- 1,4-dihydropyridines as Calcium Channel Blockers. Iran. J. Basic Med. Sci 16:910- 

916. 

[23] Da Mota E. G, Silva D.G, Guimarães M. C, Da Cunha E. F. F,Freitas M. P(2014) Computer- 

assisted design of novel 1,4-dihydropyridine calcium channel blockers. Mol. Simul 40:959-965. 

[24] Jardínez C,Vela A,Cruz-Borbolla J, Alvarez-Mendez R.J, Alvarado-Rodríguez J.G (2016) 

Reduced density gradient as a novel approach for estimating QSAR descriptors, and its application to 

1,4-dihydropyridine derivatives with potential antihypertensive effects. J. Mol. Model 22:296. 

[25] El-Moselhy T. F, Sidhom P. A , Esmat E. A, El-Mahdy N. A (2017) Synthesis, Docking Simulation, 

Biological Evaluations and 3D-QSAR Study of 1,4-Dihydropyridines as Calcium Channel Blockers. 

Chem. Pharm. Bull. (Tokyo) 65:893-903. 

[26] Navidpour L,Miri R ,Shafiee A(2004) Synthesis and calcium channel antagonist activity of new 

1,4-dihydropyridine derivatives containing lipophilic 4-imidazolyl substituents.Arzneim. Forsch. Drug 

Res 54:499-504. 



 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

CHAPTER I : DIHYDROPYRIDINES 

(DHPS) AND THEIR USE IN THE 

HYPERTENSIVE TREATMENT 
 



CHAPTER I 

16 

 

 

 

I.1. INTRODUCTION 

Dihydropyridines (DHPs) are vital nitrogen-containing heterocycles recognized as 

fundamental frameworks in various biologically active compounds and natural substances. They also 

play crucial roles as medicinal agents and important starting materials for intricate molecules. 

Moreover, certain DHPs display blue fluorescence in organic solvents, indicating potential applications 

in functional materials. With their versatile applications in medicinal chemistry and materials science, 

there's been considerable focus on establishing efficient and reliable synthetic approaches for their 

synthesis. The proliferation of synthetic routes for DHPs underscores the escalating interest in their 

production[1]. 

Hantzsch reported the first synthesis of the initial nucleus of 1,4-dihydropyridine approximately 130 

years ago [2]. In the mid-1970s, its primary applications emerged as calcium channel antagonists for 

treating hypertension [3]. Since then, derivatives of DHP14 have undergone testing for their biological 

effects and have been incorporated into clinical practice for various purposes. They are recognized for 

their roles as vasodilators, analgesics, bronchodilators, anti-atherosclerotic, anti-tumor, anti- 

inflammatory, hepatoprotective, and anti-diabetic agents [4-12]. Over time, derivatives of these 

compounds have become one of the most utilized drug classes for treating a range of cardiovascular 

diseases [13-15]. They function as calcium channel blockers (CCBs), also known as calcium 

antagonists,  inhibiting  the  passage  of  Ca2+  ions  through  calcium  channels  [16]. 

The brief half-lives of DHPs 14, including benidipine, felodipine, isradipine, clevidipine [17], 

nifedipine, and nitrendipine (Figure. I.1), specifically lower systemic vascular resistance and arterial 

pressure. The Hantzsch synthesis typically yields racemic blends of these compounds. Hence, achieving 

controlled stereoselective synthesis of 1,4-dihydropyridines is a focal point of ongoing research in 

medicinal chemistry [18]. 

 

 

 

 

Benidipine Felodipine Isradipine 
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Clevidipine Nifedipine Nitrendipine 

 

 

Figure I.2. Structures of some 1,4‐dihydropyridine derivatives. 

 

I.2. DIHYDROPYRIDINE DERIVATIVES 

Dihydropyridine derivatives are categorized as calcium antagonist medications employed to treat 

hypertension and angina pectoris. 

I.2.1. Classification 

I.2.1.1. Compounds with predominant vascular effects 

Drugs belonging to the dihydropyridine class bind to slow voltage-gated (or L-type) calcium 

channels, leading to their inactivation. These channels are present in vascular and cardiac smooth 

muscles, as well as other tissues. These molecules exhibit a significant peripheral arterial and coronary 

vasodilator effect while exerting minimal influence on cardiac tissue conduction. Consequently, they 

cause a reduction in blood pressure without affecting heart rate. For instance, nimodipine, a member of 

this class, is effective in treating cerebral vascular spasms following subarachnoid hemorrhage. 

Main classes of these compounds: amlodipine, nifedipine , isradipine , felodipine, , lacidipine, 

nicardipine, nitrendipine. 

I.2.1.2. Compounds with vascular and cardiac effects 

Compounds with vascular and cardiac effects, such as benzothiazepines and phenylalkylamines, 

act on activated voltage-gated L calcium channels. Like dihydropyridines, these molecules produce 

similar effects at the vascular level. However, they also influence the cardiac rhythmic center, resulting 

in a decrease in the frequency of action potentials at the sinus node and a slowing of intracardiac 

conduction at the atrioventricular node and the bundle of His. These interactions collectively lead to a 

reduction in blood pressure by altering both heart rate and peripheral resistance of blood vessels. 

Some examples of molecules - phenylalkylamines (Verapamil); benzothiazepines (Diltiazem). 

I.2.1.3. Calcium Channel Blocker ( CCB) 

 

Calcium channel blockers (CCBs) are molecules with diverse chemical compositions, primarily 

originating from pyridine. They are prescribed for managing various cardiac conditions including 
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angina, arrhythmias, and hypertension. These compounds are divided into two groups based on their 

sites of action, acting on voltage-gated calcium channels to impede the typical influx of calcium ions 

into vascular and cardiac striated smooth muscle cells. Adverse effects have been documented, 

including instances of severe poisoning. 

 

Calcium antagonists inhibit the entry of calcium into cells, particularly within the cardiovascular 

system; however, distinct classes produce notably different effects. 

Phenylalkylamines such as gallopamil and verapamil exert a reduction in cardiac frequency (negative 

chronotropic effect), contractility (negative inotropic effect), conductivity (negative dromotropic 

effect), and contraction of vascular smooth muscles. 

Dihydropyridines primarily induce vasodilation with lesser impact on cardiac function. Examples 

include amlodipine, barnidipine, felodipine, isradipine, lacidipine, lercanidipine, nicardipine, 

nifedipine, nimodipine, nisoldipine, and nitrendipine. 

Benzothiazepine derivatives, such as diltiazem, exhibit effects intermediate between those of verapamil 

and dihydropyridines. 

Etripamil, a distinct calcium channel blocker, can be administered via intranasal spray and is in 

development for the treatment of supraventricular tachycardia attacks. 

 

- Amlodipine besylate is a long-acting L-type calcium channel antagonist used as an 

antihypertensive and for the treatment of angina. 

- Felodipine is a calcium antagonist belonging to the dihydropyridine class. Its primary uses 

include treating angina and hypertension. 

- Lacidipine, classified as a dihydropyridine calcium antagonist, is primarily prescribed for 

hypertension treatment. 

 

- Isradipine is a dihydropyridine calcium antagonist. Its main indication is hypertension. 

- Lercanidipine, belonging to the dihydropyridine family, functions as a calcium antagonist and 

is primarily utilized as an antihypertensive medication. 

 

- Nicardipine, classified as a dihydropyridine calcium antagonist, is primarily indicated for the 

treatment of angina and hypertension. 

 

- Nifedipine, a dihydropyridine calcium antagonist, is primarily prescribed for angina and 

hypertension. However, it has also been increasingly used for various other indications, 
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including Raynaud's disease, among others. 

 

- Nimodipine, categorized as a dihydropyridine calcium antagonist, is primarily used to prevent 

cerebral arterial spasms, a complication of subarachnoid hemorrhage. Additionally, it can serve 

as a first-line treatment for reversible cerebral vasoconstriction syndrome (RCVS). 

 

- Barnidipine is a dihydropyridine calcium antagonist. It is indicated against hypertension. 

 

 

- Nisoldipine, belonging to the dihydropyridine family, functions as a calcium antagonist 

primarily employed as an antihypertensive medication. 

 

- Nitrendipine, belonging to the dihydropyridine family, functions as a calcium antagonist 

predominantly employed as an antihypertensive medication. 

 

I.2.1.3. a . Pharmacological Characteristics: 

Calcium channel blockers adhere to slow voltage calcium channels (L-type). These channels 

regulate the electrochemical gradient, which is significantly higher in extracellular calcium 

concentration compared to the intracellular environment, by a factor of 10,000. The channels transition 

from a closed to an open state in response to a depolarizing membrane potential initiated by 

acetylcholine release at a neuromuscular junction. This intracellular calcium release disengages the 

actin-myosin binding sites, leading to muscle contraction. Consequently, they regulate cardiac 

automatism at the atrioventricular sinus node and the bundle of His, as well as vascular tone, as these 

channels are predominantly found in the cardiovascular system. When inhibitors attach to the channels, 

they curtail the release of calcium from the channel pores, thereby limiting muscle contraction. 

 

Dihydropyridines exhibit a strong attraction to inactivated channels, primarily found on smooth muscle 

cells owing to their extended depolarization. 

 

I.2.1.3. b . Therapeutic Uses: 

1. Treatment of hypertension: Calcium channel blockers induce vasodilation, diminishing 

peripheral resistance, and consequently lowering blood pressure. They can be administered 

alone or in conjunction with β-blockers (e.g., Atenolol) or ACE inhibitors. 

2. Management of arrhythmias: Calcium channel blockers are employed to lower heart rate by 

acting on the heart's rhythmic center. 
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3. Prevention of angina: Angina is chest discomfort that arises during physical exertion and 

subsides upon cessation. It is a manifestation of myocardial ischemia. Calcium channel blockers 

aid in reducing coronary spasms that lead to ischemia or chest pain. 

4. Raynaud's syndrome: This condition involves the constriction of small arteries in the extremities 

without cold-induced triggers. Peripheral vasodilation induced by calcium channel blockers can 

alleviate this issue. 

 

I. 3. HYPERTENSION 

Cardiovascular diseases are the leading cause of death in developed countries and most 

developing countries . constituting a major public health concern across different regions. They are the 

primary cause of mortality in Algeria [19]. Epidemiological research on health in Algeria has 

highlighted that cardiovascular diseases are the most prevalent ailments . 

Changes in lifestyle, dietary habits, and behaviors resulting from significant urbanization have been 

associated with an increase in cardiovascular disease risk factors in urban areas. Epidemiological studies 

conducted in various European populations have demonstrated the considerable influence of 

environmental factors and explained the variability of cardiovascular disease across Europe. In Algeria, 

there is limited research on the influence of residence on the incidence of cardiovascular diseases. 

In a survey conducted in Algeria, the prevalence of cardiovascular risk factors , in a representative 

sample of the adult urban and rural populations. The overall participation rate in the study was 72.0%, 

with higher participation in rural areas (87.3%) compared to urban areas (61.6%). This discrepancy can 

be partially explained by the lower rate of professional activity among women in rural areas compared 

to their urban counterparts. 

The prevalence of arterial hypertension is 22.3% in the studied population and is higher in urban areas 

(28.0-40.0%) compared to rural areas (16.8%), especially among women. Previous studies have already 

observed that arterial hypertension increases with age. Additionally, numerous epidemiological studies 

have demonstrated that arterial hypertension is a major risk factor for ischemic heart disease in both 

developing and developed countries. [20]. 

 

I. 3. 1.High blood pressure (hypertension) 

High blood pressure, also known as adult essential hypertension or simply hypertension, often 

has no symptoms but is a major risk factor for cardiovascular disease. Adopting a healthier lifestyle can 

help prevent hypertension or reduce its complications. 

Arteries carry blood from the heart to the organs. Blood pressure measures the force exerted by blood 

on the walls of the arteries. A certain level of pressure is necessary for blood to circulate throughout the 
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body. 

Blood pressure is assessed using two values. The first value is the pressure during heart contraction, 

known as systolic or maximum pressure. The second value is the pressure during heart relaxation, 

known as diastolic or minimum pressure. These pressures are typically measured with a blood pressure 

monitor placed around the arm. Blood pressure naturally increases with age. On average, every 10 years, 

systolic pressure rises by 0.5 and diastolic pressure by 0.2. In more than half of people over 60, even 

those in good health, systolic pressure (the first number) increases above 14. (Figure I. 2) 

 

 

Figure  I. 2. Method of measuring blood pressure 

High blood pressure occurs when the pressure in the arteries is too high. Normal blood pressure 

values typically range between 10 and 14 for systolic (maximum) pressure and 6 and 8 for diastolic 

(minimum) pressure, with 12/8 considered normal. High blood pressure is a major risk factor for heart 

disease, kidney failure, and stroke. It generally develops with age and is often associated with excess 

weight. 

 

Various degrees of hypertension 

 Systolic pressure Diastolic pressure 

HTA sévère > 180 mmHg > 110 mmHg 

HTA stade 2 > 160 mmHg > 100 mmHg 
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HTA stade 1 > 140 et ≤ 159 mmHg > 90 et ≤ 99 mmHg 

pré HTA1 > 120 et ≤ 139 mmHg > 80 et ≤ 89 mmHg 

 

Table I. 1. Various degrees of hypertension 

 

I. 3. 2.Symptoms of high blood pressure 

Most people with hypertension do not exhibit any symptoms. However, extremely high blood 

pressure can cause headaches, blurred vision, chest pain, and other symptoms. The best way to 

determine if you have high blood pressure is by checking it regularly. Untreated hypertension can lead 

to serious health issues such as kidney disease, heart disease, and stroke. 

People with very high blood pressure (typically 180/120 or higher) may experience symptoms 

including: 

 Severe headache 

 Dizziness 

 Nausea 

 Anxiety 

 Nosebleeds 

 Ringing in the ears 

 Confusion 

 Irregular heart rhythm 

 Chest pain 

 Blurred vision or other vision changes 

 Difficulty breathing 

 Vomiting 

I. 3. 3. Causes of arterial hypertension 

In over 95% of cases, the cause of hypertension is unknown, and treatment focuses on reducing 

blood pressure without addressing the underlying cause. In other cases, hypertension is secondary to 

conditions like kidney, adrenal gland, or thyroid dysfunction. 

Several factors are known to worsen high blood pressure: 

 Excessive salt consumption 

 Physical inactivity 

 Smoking 

 Stress 

 Obesity 

https://fr.wikipedia.org/wiki/Hypertension_art%C3%A9rielle#cite_note-prescrire-1
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High blood pressure tends to develop earlier in men. Women of childbearing age are relatively 

protected due to the beneficial effects of certain sex hormones, particularly estrogens. However, the 

incidence of hypertension in women rises to match that of men after menopause. 

Excess weight, obesity, and type 2 diabetes are increasingly common in individuals with high blood 

pressure. Hypertension is twice as prevalent in overweight individuals, and obese elderly people are 1.5 

times more likely to have high blood pressure compared to those of normal weight. A study of type 2 

diabetes patients found that high blood pressure affected one-third of men and half of women. 

Additionally, certain medications or substances can promote or worsen high blood pressure, or even 

destabilize treated hypertension. These include estrogens, nasal decongestant sprays, non-steroidal anti- 

inflammatory drugs (such as aspirin, ibuprofen, and ketoprofen), glucocorticoids (like cortisone and 

dexamethasone), alcohol, licorice, and anise-flavored drinks such as pastis. 

I. 3. 4. Complications of high blood pressure 

Untreated hypertension can lead to several serious arterial problems, including: 

 Cerebrovascular accidents (strokes or transient ischemic attacks) 

 Intracranial hemorrhages 

 Heart failure 

 Retinal damage, sometimes resulting in vision loss. 

 Myocardial infarctions (heart attacks) 

 Kidney damage, potentially causing kidney failure 

 

 

I. 3. 5.  Medical treatment 

When lifestyle changes and dietary adjustments are insufficient to reduce blood pressure, 

medication is prescribed. Treatment may involve several types of medications. Five classes of 

antihypertensive drugs are commonly used: diuretics, beta blockers, calcium channel blockers, 

angiotensin-converting enzyme (ACE) inhibitors, and angiotensin II receptor blockers (ARBs). These 

medications have demonstrated effectiveness in preventing cardiovascular events in individuals with 

hypertension. 

 

Groups 
 

DCI Name of specialities 

Dihydropyridines 
 

Amlodipine AMLOR 

 

Félodipine FLODIL 
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Isradipine ICAZ 

 
Lacidipine CALDINE 

 
Nicardipine LOXEN 

 
Nitrendipine NIDREL 

 
Lercanidipine LERCAN ® ZANIDIP 

 
Manidipine IPERTEN 

 
Nifédipine ADALATE CHRONADALATE 

LP 

 

Table I. 2. Some blood pressure medications derived from dihydropyridine 

 

Hypertension poses a widespread medical and social challenge, contributing to cardiovascular 

diseases on a global scale. Antihypertensive medications are commonly used in clinical practice to 

reduce both the morbidity and mortality associated with hypertension and its related complications. The 

2014 hypertension guideline issued by the Eighth Joint National Committee (JNC8) in the United States 

introduced several notable alterations in the clinical approach to managing hypertension and the primary 

medications recommended, marking a departure from previous guidelines [21]. 

 

In addition to the guidance specifying the initiation of pharmacological treatment when blood 

pressure (BP) reaches 150/90 mmHg or higher in adults aged over 60, 140/90 mmHg in adults under 

60, or 140/90 mmHg or higher (regardless of age) in individuals with hypertension and diabetes, 

healthcare providers should contemplate initiating treatment with a thiazide-type diuretic, calcium 

(Ca2+) channel blocker (CCB), angiotensin-converting enzyme inhibitor (ACEI), or angiotensin 

receptor blocker (ARB) as the initial antihypertensive medication in non-black populations. For black 

populations, whether with or without diabetes, initial antihypertensive therapy should involve a 

thiazide-type diuretic or CCB. [22] 
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As a result, calcium channel blockers (CCBs) have emerged as crucial first-line agents for monotherapy 

in treating hypertension. Moreover, their demonstrated safety profile in not elevating the risk of 

coronary events and stroke further solidifies their significance. [23] 
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I. 5. CONCLUSION 

Dihydropyridines (DHPs) have significantly transformed pharmaceutical research due to their 

remarkable biological properties. DHPs are highly reactive, allowing for the synthesis of diverse 

compounds with substantial medicinal value, including natural products. Notable examples include 

alkaloids such as deplancheine, tangutorine, dihydroakummicine, olivacine, -guatambuine, l-pipecolic 

acid, -geissoschizine, -akagerine, lyaline, lyadine, harman-dihydropyrimidine, camptothecin, 20- 

deoxycamptothecin, akuammiline alkaloid precursors, silicine–methuenine alkaloids, vinoxine, -2,7- 

dihydropleiocarpamine, tubifoline, tubifolidine, and ervitsine . 

this remains a dynamic and challenging area for medicinal chemists to explore new synthetic 

methodologies or integrate different approaches to develop novel DHP-based drugs. Many DHP-based 

drugs have been blockbusters in their time; hence, we have also briefly highlighted the commercial 

value of previously approved DHP-based drugs. 

Calcium channel blockers that are often used to reduce systemic vascular resistance and arterial 

pressure.  The  majority  of  the  dihydropyridines  contain  either  a  2-nitrophenyl,  as 

in nifedipine and nisoldipine,  or  a  3-nitrophenyl  substituent  at  the  4-position  of 

the dihydropyridine moiety, as in lercanidipine, nicardipine, nimodipine, nitrendipine, and nivaldipine. 

https://www.sciencedirect.com/topics/chemistry/calcium-channel-blocker
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/nifedipine
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/nisoldipine
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/dihydropyridine
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/lercanidipine
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/nicardipine
https://www.sciencedirect.com/topics/chemistry/nimodipine
https://www.sciencedirect.com/topics/chemistry/nitrendipine
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II.1. INTRODUCTION 

There are many theoretical chemistry methods to determine physical or chemical properties of 

molecules. We can differentiate two main classes of simulation methods: the first, methods of quantum 

chemistry that can accurately determine the electronic properties molecules, and the second, molecular 

mechanics methods that are based on empirical parameters which make it possible in particular to 

determine the parameters. These methods make it possible to calculate the physic chemical parameters 

used in the QSAR study; where used to identify important structural features responsible for activity of 

drugs. Quantitative structure–activity relationships (QSARs) are a significant factor in drug design; 

consequently, it is quite evident why a many users of QSAR are located in industrial research units [1- 

4]. 

By employing these methods, it becomes possible to validate existing experimental data and 

predict the properties or activities of new compounds or those lacking experimental data. This chapter 

presents a bibliographical study on various QSAR/QSPR methodologies, covering their stages of 

development, validation, and application [5]. 

II.2. QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS / PROPERTY 

QSAR/QSPR 

II.2.1. Definition 

QSAR/QSPR methods are founded on the principle that the activity or property of a chemical 

compound is associated with its structure. Specifically, these methods assert that the activity (or 

property) and structure of chemical compounds can be linked through a mathematical algorithm, based 

on the fundamental as sumption that "similar chemical compounds exhibit similar activities." Further 

more, when molecular parameters are expressed as numerical values, it becomes possible to propose a 

mathematical relationship, known as a quantitative structure-activity/property relationship, between the 

two ; there fore QSAR/QSPR is a mathematical model which associates one or more quantitative 

parameters derived from the chemical structure, with a quantitative measure of a property or activity.  

II.2.2. Principle 

The principle of an QSAR/QSPR study involves establishing a mathematical relationship that 

quantitatively connects a biological activity or property, measured for a series of similar compounds 

under identical experimental conditions, with molecular descriptors using statistical methods. The aim 

of these studies is to analyze the structural data in order to identify the key factors influencing the 

studied activity or property. To accomplish this, various types of statistical methods can be utilized [6]. 

The resulting mathematical expression can be employed to predict the activity or property of new 

molecules or those lacking experimental data. This relationship can be represented by the following 
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equation : 

Activity/Property = f (molecular descriptors) 

 

II.2.3. Global strategy 

 

The development of a model begins with the search for the maximum possible reliable 

experimental data. Then, the development of a series of descriptors which characterize the molecular 

structures of the compounds of the database in order to link them to the activity/experimental property 

studied. Once developed, the model must be validated in terms of correlation (on the training dataset). 

The influence of the training set compounds on the model (model robustness) is estimated by internal 

validation methods. To estimate the predictive power of the model, it is necessary to have additional 

experimental data (external validation dataset) in order to determine the ability of the model to predict 

these values. Finally, for any model, it is important to know for which type of molecules it is usable or 

not, i.e. to know its domain of applicability [7]. 

 

 

Figure II.1 . Global strategy of QSAR/QSPR model 

A QSAR/QSPR model relates, in a qualitative or quantitative way, the structure of molecules 

to a given activity or property. The strategy for developing such models, respecting the five rules set up 

by the OECD (Organization for Economic Cooperation and Development) for the validation of 

QSAR/QSPR models (see below: OECD principles for the validity of QSAR models /QSPR), follows 

these steps: 

- Constitute the structure – activity (or property) database from quantitative, reliable and standardized 

measurements of the target activity (or property), for each compound, and select molecular descriptors 

in relation to the activity (or property). target in order to digitally translate the structure of molecules; 

- Divide this data set into a training set and a test set. 

- Build models from learning games using statistical methods. 

- Characterize these models by their statistical indices and by internal validation. 
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- Validate the models with the test set and calculate their external correlation index. 

- Repeat the division operation to obtain other training and test sets, and repeat the same steps (optional). 

- Define the area of applicability of the proposed models in order to avoid risky extrapolations. 

- Explore and exploit validated models to understand possible mechanisms and make activity/property 

predictions for new molecules, if possible. 

II.3. OECD principles of validity of QSAR/QSPR models 

In order to support the development of alternative methods, rules have recently been put in place 

by the OECD (Organization for Economic Co-operation and Development) for the validation of 

QSAR/QSPR models [8, 9]. The evaluation of each of the five principles is an important condition in 

order to propose models applicable in the experimental plan. 

According to the OECD, model validation is based on five main principles [10]: 

- A defined effect: the database (the targeted activity/property) must be reliable and defined with an 

identified experimental protocol. 

- An unambiguous algorithm: the algorithm on which the model is based must guarantee the 

transparency and reproducibility of the calculation. Forecasts from a model using an algorithm which 

cannot verify its operation and whose forecasts cannot be reproduced can hardly be accepted. In 

particular, caution should be exercised when non-transparent and difficult-to-reproduce methods have 

been used to develop the RQSA/RQSP model. 

- A defined domain of applicability: the domain of applicability and the limitations of the model must 

be described to allow the evaluation of the chemical space in which predictions can be made with 

confidence. The most used methods to describe the domain of applicability consist of taking into 

account the interval of individual descriptors and the presence of structural fragments in the training 

set. Forecasts from a model containing no information on the applicability domain cannot be accepted. 

- Appropriate measures of the degree of fit, robustness and predictability: this principle reflects the need 

for statistical validation of the model. Statistics relating to internal validation (goodness of fit and 

robustness) and external validation (predictability) must be available. For example, statistics for the 

regression model can be reported using the correlation coefficient, cross-validation correlation 

coefficient, mean squared error of the model, etc. ; the external validation must have been carried out 

as part of a prediction of compounds from an external set (test set). Statistics relating to external 

validation make it possible to estimate the uncertainty associated with the forecasts. 

A mechanistic interpretation, when possible: a justification of the causal link between the molecular 

descriptors used in the model and the predicted effect reinforces the reliability of the predict ions. 

II.4. Molecular descriptors 

II. 4.1. Introduction 

A molecular descriptor is a parameter (a numerical value) specific to a given chemical structure. 
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These values can be obtained experimentally or calculated from the structure of the molecule. The 

calculated descriptors make it possible to make predictions without having to synthesize the molecules, 

which is one of the objectives of molecular modeling. 

Molecular descriptors play a fundamental role in studies of the quantitative structure 

activity/property relationship. They are used as independent variables to predict a dependent variable 

(activity or property). 

The use of molecular descriptors in the development of QSAR/QSPR models is not an easy task. 

First of all, a very large number of molecular descriptors, of different complexities and designs, have 

been introduced in recent years. Then, during this time, no strict rules have been established for the 

selection of suitable descriptors from the large number of available descriptors. This choice has often 

been based on the chemical intuition of researchers, or by bowing to tradition [11]. 

II.4.2. Types of descriptors 

The importance of the number of descriptors (more than 6000 descriptors listed [12]) that can 

describe a molecule makes any classification or presentation of these descriptors non-exhaustive. 

We will present the most used molecular descriptors and those that have been used throughout 

our work, starting with the simplest descriptors, which require little knowledge of molecular structure. 

We will see then how advances in molecular modeling have made it possible to access the 3D structure 

of the molecule, and to calculate descriptors from this structure. 

 

 

 

 

Figure II.2. Types of descriptors 

 

Historically, two main schemes for the classification of molecular descriptors have been 

established: one based on their origin (constitutional, topological, geometric, quantum, thermodynamic, 
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etc.), and another based on their dimensionality (1D, 2D, 3D or 4D) [13]. 

II.4.2.1. 1-D descriptors 

These descriptors are calculated from the crude formula of the molecule using the molecular 

composition, that is to say the atoms which constitute it, and they represent general properties such as: 

the mass percentages of the atoms, molar mass, molecular weight. 

In our work we used: 

- The molecular weight, noted MW (also called the formula weight), measured in Daltons (Da). It is the 

sum of the atomic weights of the different atoms constituting the molecule. It is used in the study of 

transport including diffusion and mode of operation. Compounds with higher weights are less likely to 

be absorbed and therefore cannot reach the site of action. Thus, trying to keep molecular weights as low 

as possible should be the goal for establishing a drug [14]. For drugs delivered orally, the molecular 

weight must be less than or equal to 500 Daltons (optimum around 300 Daltons) [15]. 

- The mass percentage, defined by the following formula: 

 

 

% mass = the mass of the element in one mole of the compound 
* 100 

the mass of one mole of the compound 

The 1D descriptors are easy to calculate, their values are precise, essential and regularly intervene 

in the RQSA/RQSP models, but they do not make it possible to distinguish the constitutional isomers 

and do not allow the development of more complex models, it is that is, if we develop models with this 

type of descriptors only, we will have problems in interpreting the interaction mechanisms involved for 

the activity or property studied [16]. However, for the vast majority of properties, the position of a 

substituent modifies its value; 1D descriptors are, in such cases, faulty. It is then necessary to use other 

classes of descriptors. 

II.4.2.2. 2-D descriptors 

2D descriptors are obtained from the planar structure of the molecule. In this category we mainly 

find topological descriptors. 

Topological descriptors (or topological indices) describe the atomic connectivities in the molecule. 

These are more “sophisticated” descriptors that do not necessarily have an obvious chemical meaning 

but they contain within them information about the overall size of the system, its overall shape and its 

ramifications [11]. The principle is to find a different value for each molecular skeleton. 

These descriptors are easy to calculate, their values are generally precise, they are often used in models. 

They come from graph theory developed by Euler in 1736 [17]; this theory is applied to the connectivity 

table, which is a compact representation of the interatomic connectivity within the molecule. 

A graph is a set of points, some connected by lines; it makes it possible to represent the topology of the 

molecule without worrying about the exact spatial geometry of the latter [18]. 
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This theory is invented based on a few simple laws: two adjacent points are connected by lines and two 

lines with a common point are adjacent. The order or degree of a point is the number of lines connected 

to that point. A step is a sequence of points and adjacent lines starting with a point and ending with a 

point. A path is a step in which no point is used more than once. From a molecular point of view, a dot 

represents an atom and a line represents a covalent bond. The paths are characteristic of the architecture 

of all the atoms constituting the molecule. Hydrogen atoms are excluded from the graph to simplify the 

calculations. 

The area of the polar surface [19], denoted (PSA), in (Å²), is a very useful parameter for predicting drug 

transport properties. It is defined as the sum of the surface areas of polar atoms (usually oxygen, 

nitrogen, sulfur, chlorine and hydrogen attached) in a molecule. 

 

II.4.2.3. 3-D descriptors 

This type of descriptor requires a 3D conformation of the molecule; They are evaluated from the 

relative positions of their atoms in space and describe more complex characteristics; their calculations 

therefore require knowing, most often by “empirical molecular modeling” or “ab-initio”, the 3D 

geometry of the molecule. Most of these descriptors turn out to be relatively expensive in terms of 

calculation time, but provide more information and are necessary for modeling properties or activities 

that depend on the 3D structure. There are several families of 3D descriptors. 

II.4.2.3.1 Geometric descriptors 

These descriptors can be obtained experimentally or by molecular, empirical or ab-initio 

modeling. They are based on the spatial arrangement of the atoms constituting the molecule and are 

defined by the coordinates of the atomic nuclei and the size of the molecule represented. These 

descriptors include information on the molecular surface obtained by Van Der Waals areas and their 

superposition [20]. Molecular volumes can be obtained by Van Der Waals volumes [21]. Among the 

most important ones, which we used in our work, we find: 

- The molecular volume, noted MV, in cm3, is defined by the following formula: 

𝑀𝑉 = MW/𝑑 

 
With: MW is the molecular weight and d is the density. 

The number of rotating bonds: The rotating bond is defined as a bond of a non-cyclic compound, 

associated with a non-heavy atom (which is not hydrogen). CN (amide) bonds are not considered due 

to their high rotational energy barrier. The number of rotatable bonds, denoted NROT, is used to identify 

the flexibility of the molecule, it has been shown to be a descriptor of very good oral bioavailability of 

drugs, and for a chemical structure to be able to exhibit good inhibitory and 

to be similar to drugs, according to Lipinski's rule, the number of rotatable bonds must be less than or 
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equal to 5 [15]. 

The Van Der Waals surface, denoted SVDW, is described as resulting from the set of atomic surfaces 

defined by the Van Der Waals radius of each atom composing the molecule. The larger this surface 

area, the greater the possibilities for interactions. 

- The Van Der Waals volume, noted VVDW, is the volume occupied by the Van Der Waals envelope, 

these numerical values depend on the calculation method and the atomic Van Der Waals radii (RVDW). 

These determine the most favorable position of one atom in relation to another, the appropriate distance 

where the repulsive and attractive potentials of the atoms are balanced. They are particularly used to 

model how organic molecules "approach" each other 

II.4.2.3.2. Physico-chemical descriptors 

Physicochemical descriptors, (or physicochemical indices) some of them reflect the molecular 

composition of the compound (the number and type of atoms and bonds present in the molecule, the 

number of rings, the H bond donor/acceptor properties, cation, anion, etc.) [22]. Others represent the 

hydrophilic or lipophilic nature of the molecule generally evaluated from the Octanol/water partition 

coefficient represented by log P [23]. Among those we used in our work, we find: 

- The Octanol/Water partition coefficient: The transport, passage through membranes and 

pharmacological activity of a molecule can be conditioned by its sharing between a lipid phase and an 

aqueous phase, i.e. its hydrophilic character. This can be quantified by the Octanol-Water partition 

coefficient, denoted (log P), which measures the differential solubility of a solute in these two 

immiscible solvents [24]. 

This is an important measure for the identification of drug similarity, according to Lipinski's rule, drugs 

dispensed orally must have log P values greater than or equal to -2 and less than or equal to 5) [15]. 

- Molecular refractivity, noted (MR), in m3/mol, is the volume of the substance absorbed per mole of 

this substance [25]. 

- The refractive index, noted n [25]. 

- Polarizability, denoted (αe) in (m3), is the ability to deform the electronic cloud of the molecule under 

the influence of a uniform electric field. It is one of the parameters which reflect the molecular properties 

linked to hydrophobicity and consequently to biological activities [26-28]. 

- The density, noted (d), in (kg/m3), is linked to the mass and size of the molecule. It is the ratio of the 

molecular weight MW to the molecular volume MV: 

𝑑 = MW/MV 

-The number of hydrogen bond acceptors, denoted (NHA), calculates the number of hydrogen bond 

acceptors in the molecule. This is the number of atoms having non-bonding doublets (nitrogen, oxygen 

or fluorine) and capable of forming hydrogen bonds with other molecules. 

According to “Lipinski's rule of five” [25], when identifying drug similarity, orally delivered drugs 
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should have a number of hydrogen bond acceptors (NHA) less than or equal to 10 and a number of 

hydrogen bond donors (NHD) less than or equal to 5 (optimum of 2). 

-The number of hydrogen bond donors, denoted (NHD), calculates the number of hydrogen bond donors 

in the molecule. This is the number of atoms having an empty quantum cell and containing an acidic 

hydrogen, that is to say a hydrogen atom linked to a heteroatom 

-The tension surface, denoted γ, in dyne/cm [29]. 

II.4.2.3.3. Quantum/electronic descriptors 

These descriptors delineate the charge distribution of molecules (molecular polarity), while also 

encompassing parameters of quantum chemistry that necessitate more intricate calculations for reliable 

results. Quantum chemistry methodologies provide access to supplementary information, including 

structural, energetic, electronic, and spectroscopic data of the systems under scrutiny.m$ù 

 

Electronic properties will be obtained at the end of the calculations, among these properties: 

- The dipole moment, symbolized as μ and quantified in debye (D), gauges the over all molecular 

polarity, elucidating the extent of charge segregation within a molecule where electron density is 

unevenly distributed among its atoms. The presence of a dipole moment in a molecule arises from 

variations in electronegativity among its constituent atoms, with greater electron density near the most 

electronegative atom. Consequently, an asymmetry emerges in the distribution of bonding electrons. 

Hence, a molecule's dipole moment correlates with the degree of asymmetry within it. 

-Total energy , for an isolated molecule in the ground state, the calculated total energy, denoted Et, 

measured in eV, can be used as a quantum molecular descriptor. This approximate energy was 

calculated for an optimized conformation of the most stable geometry whose energy structure is 

minimal. 

-The energies of frontier orbitals, play a major role in many chemical reactions and in reaction 

mechanisms. The energies of these orbitals are very popular parameters in quantum chemistry and in 

QSAR/RQSP studies. 

-The LUMO energy, denoted ELUMO, measured in eV, is the lowest energy level in the molecule 

which does not contain electrons, it is directly linked to the electron affinity. When a molecule acts as 

a Lewis acid (an acceptor electron doublet) in forming bonds, incoming electron doublets are received 

into this orbital. It measures the electrophilicity of a molecule and characterizes the susceptibility of the 

molecule to attack by nucleophiles [30]. 

-The HOMO energy, denoted EHOMO, measured in eV, is the highest energy level in the molecule 

which contains electrons, it is directly linked to the ionization potential. When a molecule acts as a 

Lewis base (a donor electron pair) in forming a bond, electrons are supplied from that orbital. It 

measures the nucleophilicity of a molecule and characterizes the susceptibility of the molecule to attack 
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by electrophiles [30]. 

-The energy gap, or the HOMO-LUMO gap, noted Egap, measured in eV, reflects the energy between 

the highest occupied molecular orbital and the lowest vacant. This is an important stability index. This 

energy difference serves as a measure of the excitability of a molecule. Thus, the lower the energy 

interval, the more the molecule will be able to interact with the environment. 

A large HOMO-LUMO gap implies high stability for the molecule in the sense of its low reactivity in 

chemical reactions, and similarly, a small gap implies high reactivity of the molecule. The HOMO- 

LUMO gap has also been used as an approximation of the lowest excitation energy of the molecule 

[31]. 

- Hardness and softness, denoted η, and its inverse softness, denoted S, can be obtained. 

- Electronegativity, denoted χ, measured in eV, is the opposite of the chemical potential which measures 

the tendency of the electron cloud to escape from the molecule. 

 

- The electrophilicity index, noted ω, used to characterize the capacity of a molecule to generate an 

electron transfer. 

 

II.4.2.3.4. Thermodynamic descriptors 

These are descriptors little used in RQSA/RQSP studies. They can be expressed by the 

partition function Q of the molecule used in statistical thermodynamics as well as its derivatives [32- 

34]. This function describes the way in which the energy of a system of molecules is distributed among 

the molecular individuals. Its value depends on molecular weight, temperature, molecular volume, 

internuclear distances, molecular movements and intermolecular forces. The partition function is the 

most convenient point between the microscopic properties of independent molecules (energy levels, 

moments of inertia) with the macroscopic properties (The heat of formation (enthalpy), melting point, 

boiling point, entropy….). 

II.4.2.4. 4-D descriptors 

They correspond to the measurement of the 3D properties (electrostatic potential, hydrophobicity, 

hydrogen bonding, etc.) of a molecule at any point in space. They provide information on the structure 

of the target (protein). We will thus be able to distinguish the 4D descriptors which require an alignment 

of the molecule guided by the study of the ligand-target complexes (or, at least, by constraints aimed at 

optimizing the spatial overlap of the electric and steric fields of the ligands, in the absence of 

information on the true mode of fixation in the target) before being calculated. These descriptors are 

obtained by calculating the molecular interaction fields (CoMFA, CoMSIA) between a molecule and a 

probe represented by another molecule (amide, water etc.) 



CHAPTER II 

39 

 

 

II.5. STATISTICAL METHODS 

II.5.1. Definition 

Statistics, is the science that deals with the collection, processing, and analysis of data obtained 

from the observation of phenomena influenced by chance or random factors. 

Hence, the primary objective of statistics is to effectively manage uncertainty and extract valuable 

information from data by analyzing variations within observations. Data analysis serves the purpose of 

describing, comprehending, and managing the phenomena under study, as well as making predictions 

and informed decisions. 

II.5.2. Application areas 

Statistics finds utility in a wide range of disciplines due to its applicability to diverse types of data. 

It is extensively used in disciplines such as agronomy, medicine, economics, biology, sociology, 

psychology, geology, chemistry, physics, engineering sciences, information sciences, and 

communication, among others. 

II.5.3. Statistical methods 

The practice of statistics involves the study of a collection of similar entities, where we observe 

specific characteristics referred to as "variables." In our context, the entities or individuals are the 

molecules under investigation, and the variables correspond to the molecular descriptors discussed 

earlier in this chapter. 

Once the descriptors have been collected, the statistical approach involves processing and 

interpreting the gathered information regarding these molecules. This approach can be broadly 

categorized into two main classes: descriptive statistics and inferential statistics, which is further 

divided into decision-making or predictive statistics. 

II.5.3.1. Descriptive statistics 

Descriptive statistics (also called data analysis) aims to extract the maximum of the information 

contained in the data in an efficient, simple and understandable way. It makes it possible to summarize 

the essential characteristics of the phenomen on studied and to suggest hypotheses for more so 

phisticated studies. For this, it uses data representations in the form of graphs, tables and statistical 

indicators. It is also used to divide and classify data into homogeneous classes. 

 

II.5.3.2. Decision-making or predictive statistics 

In contrast to descriptive statistics, decision-making or predictive statistics heavily rely on 

probabilities. The aim of this type of statistics is to make decisions and predictions based on 

observations. Typically, this involves proposing probabilistic models of the random phenomenon under 

study and effectively managing the risk of error. In our case, the objective is to establish an approximate 

relationship between an activity or property and multiple quantitative variables (molecular descriptors). 
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This relationship can take the form of a linear or non-linear function. 

In our work, we have used multiple linear regression (MLR), and artificial neural networks (ANN) to 

construct QSAR/ QSPR models consistently. 

II.5.3.2.1. Multiple Linear Regressio (MLR) 

Multiple Linear Regression (MLR) is a widely used modeling method known for its simplicity 

and interpretability. One of its key advantages is its transparency, as the algorithm is readily available 

and predictions can be easily made. In much of our work, MLR was also employed for the selection of 

molecular descriptors used in other statistical methods [35]. 

There are multiple types of multiple linear regression (MLR), with the most commonly used approches 

being : 

 Progressive ascending MLR : In this method, variables are added to the model step by step. At 

each stage, the variable with the highest partial correlation with the target variable is selected 

and included in the model. The process continues until a valid model with the desired correlation 

is obtained (refer to the validation section). 

 Progressive descending MLR : In contrast to progressive ascending MLR, this approach starts 

with all the variables included in the model and then eliminates them one by one. Variables are 

removed based on their contribution to the model until the best set of components is obtained, 

resulting in a valid model with the desired correlation. 

Stepwise MLR combines elements from both the progressive ascending and progressive descending 

methods mentioned earlier. In this approach, variables are added to the model one by one through 

progressive selection. However, at each step, the significance of the partial correlations of the previously 

included variables is checked. 

II. 5.3.2.2. Multiple nonlinear regression (MNLR) 

In the context of multiple nonlinear regression (MNLR), various nonlinear methods such as 

exponential, logarithmic, polynomial, etc., are utilized to establish a mathematical model that 

effectively captures the nonlinear relationship between a property or activity and molecular descriptors. 

In our study, we specifically employed a polynomial model based on the descriptors proposed by the 

linear model, where the descriptors are raised to the power of 2. 

II. 5.3.2.3. The partial least squares regression PLS 

PLS regression, which stands for Partial Least Squares regression, is an extension of multiple linear 

regression. It is employed when there is a high number of descriptors that are strongly correlated 

[36,37]. This approach combines the principles of PCA (Principal Component Analysis) and multilinear 

regression. By employing a linear transformation, PLS regression identifies the axes that most 

effectively represent the data in the given space. This approach enables us to identify the axes that most 

effectively account for the spread of data points. When data is characterized by n descriptors, Partial 
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Least Squares (PLS) can identify up to n axes arranged by the variance they capture. This technique 

involves substituting a predictive data matrix X, which has nrows and mcolumns, with a new matrix 

derived from X. It also requires that the columns of the resulting matrix T are formed as linear 

combinations of the original variables. In matrix notation, this relationship is expressed as : T=XW. 

Where W (m * k) is a matrix of coefficients defining the linear combinations and T is the resulting 

matrix with columns forming "artificial variables" obtained through linear combinations of the original 

variables, multiple linear regression is performed on the matrix T instead of X. 

 

II.5.3.2.4. Artificial Neural Networks (ANN) 

Biological Neurons : The human brain comprises an extensive network of nerve cells known as neurons, 

totaling approximately 100 billion, each with between 1000 to 10,000 synapses or connections [38]. 

Illustrated in Figure II.3 

  The biological neuron is a specialized nerve cell responsible for processing information in the 

form of electrical signals. It consists of three primary components: 

 Dendrites are delicate extensions of the cell body that envelop it in a mesh-like structure, 

gathering oscillations and information from neighboring nerve cells and conveying them to the 

cell body. 

 The cell body, known as the soma, is responsible for receiving excitations, integrating them, and 

deciding whether to transmit them further. It houses the nucleus, which sustains the neuron's life 

functions. 

 Axons serve to transmit electrical signals from one neuron's output to another neuron's input. 

The junction where the axon of one neuron connects with the dendrite of another neuron is 

termed the synapse [39]. 

 

 

 

Figure II.3. The biological neuron 
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At the level of the neuron, an integration (summation) of the signals received occurs and if this sum 

exceeds a certain threshold the neuron in turn emits an electrical signal to other neurons. This signal 

can strengthen or decrease the activity of the neurons that receive it depending on whether the synapses 

are excitatory or inhibitory . 

 

-  Artificial Neural Networks (ANNs) 

History : Neural networks originated as a simplified attempt to mathematically model biological 

nervous systems. This endeavor began in 1943 with McCulloch and Pitts, who devised the first formal 

neuron [40]. The first artificial neural network emerged in 1958, credited to Rosenblatt's development 

of the Perceptron model [41]. This model consisted of a layer of input neurons, known as the perception 

layer (used for gathering inputs), and a layer of output neurons called the decision layer. Notably, it was 

the first artificial system capable of learning through experience. In 1960, Widrow and Hoff introduced 

a model inspired by the perceptron, called the Adaline (Adaptive Linear Element) model [42]. This 

model  subsequently  served  as  the  foundation  for  multilayer  neural  networks. 

However, in 1969, Minsky and Papert [43] elucidated the limitations of single-layer neural networks, 

particularly their inability to address nonlinear problems, as documented in their book "Perceptrons". It 

wasn't until 1982 that interest in neural networks was reignited, thanks to Hopfield's proposal of 

associative neurons . Concurrently, Werbos [44] developed the back propagation algorithm, offering a 

learning mechanism for multilayer Perceptron networks, capable of training neurons within hidden 

layers. However, it wasn't until after 1986 that this algorithm gained widespread recognition, largely 

due to Rumelhart [45]. Such networks proved effective in solving nonlinear problems. Additionally, in 

1984, the discovery of Kohonen maps [46] introduced an unsupervised algorithm based on self- 

organization, followed by the unveiling of the Boltzmann machine a year later. 

in 1989, Moody and Darken [47] introduced the Radial Basis Function network (RBF), known by its 

English abbreviation. 

Principle : The ANN methodology mirrors biological neural systems, enabling the processing and 

transmission of information through the circulation of electrical signals in a network composed of 

axons. Each artificial neuron serves as a fundamental processor, essentially functioning as a 

mathematical operator with "inputs" (mathematical function variables) and "outputs" (function values). 

The significance of neurons lies in the properties that emerge from their integration into networks, 

specifically from the amalgamation of functions executed by each neuron. A neuron receives a variable 

number of inputs from up stream neurons or sensors constituting the system it be longs to. Each input 

is linked to a weight (wi), indicating the strength of the connection. Operating as elementary processors, 

neurons possess a solitary output that subsequently branches out to energize various down stream 

neurons. An output signal is emitted by the neuron if the weighted sum of the inputs surpasses a certain 
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threshold. 

A neural network consists of several layers: an input layer comprising molecular descriptors, one or 

more hidden layers, and an output layer representing the properties to be modeled. Neurons within one 

layer are interconnected with neurons in adjacent layers. 

Every neuron in the hidden layer performs weighted summation operations, after which the neuron 

may or may not be activated. Each neuron in the input layer is linked via synapses to every neuron in 

the hidden layer, with weights (wi) at these virtual synapses regulating the relative significance of each 

descriptor. The output layer comprises as many neurons as properties being modeled. In our case, only 

one property/activity was modeled. During the model's learning phase by a neural network, molecules 

are sequentially presented to the neurons of the input layer. 

The weights (wi) linked to the input neurons undergo iterative adjustments to minimize the discrepancy 

between the calculated property and the experimental property. Consequently, the output of a neuron is 

contingent on both its input and its transfer function. Primarily, three types of transfer functions exist: 

threshold functions, sigmoid functions, and linear functions (refer to Figure II.4). The sigmoid function 

is predominantly favored as it strikes a balance between threshold and linear functions, rendering it 

widely employed. 

 

The threshold function The linear function The sigmoid function 

Figure II.4. Types of transfer functions for the artificial neuron. 

 

Two types of neural networks exist: feed forward networks and recurrent networks. Here, we'll focus 

solely on feed forward networks. Feed forward neural networks execute one or more algebraic functions 

of their inputs by composing the functions performed by each neuron. Essentially, they comprise 

neurons inter connected such that information flows from inputs to outputs without any feedback loops. 

These networks are commonly referred to as multi layer perceptrons, owing to the inclusion of hidden 

neurons (Figure II.5). 
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Figure II.5. Topology of a neural network with n inputs and a single output. 

 

 

 

- Learning artificial neural networks ANNs 

Learning is a critical stage in neural network development, defining the process for 

establishing the network's structure and parameters. A fundamental attribute of neural networks is their 

ability to adapt and refine performance by adjusting neuron connections during the learning process 

[48]. 

Artificial neural networks are trained using learning algorithms, where the primary objective is to adjust 

connection weights to align the network's response with the provided experimental examples [48]. 

Initially, the weights are randomly initialized, and the network is presented with input-output vector 

pairs from the experiments. Through the application of learning algorithms, the weights are iteratively 

adjusted to minimize the disparity between the network's calculated outputs (predictions) and the 

observed experimental outputs. 

The database is partitioned into two segments: 

 The training set: used for optimizing the weights. 

 The test set: employed to assess the network's generalization ability, ensuring that the selected 

weights yield minimal errors on this dataset 

In practice, the initial step involves computing the network weights, which entails estimating the crucial 

parameters. This necessitates constructing a network that directly links neurons representing the 

selected molecular descriptors with the output neurons. Subsequently, each descriptor is assigned a 

weight based on its significance in relation to the property or activity under investigation. 

Next, it's essential to determine the architecture of the learning network, which involves selecting the 

external inputs, determining the number of hidden neurons, and arranging the connections between 

them. The number of hidden units significantly influences the network's performance. If the count is 

too low, the network lacks sufficient parameters to capture the dependencies required for modeling and 
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prediction. Conversely, an excessively high number of hidden neurons may cause the network to overfit 

the noise present in the training dataset. 

Some authors [49, 50] have proposed a parameter ρ, leading to determining the number of hidden 

neurons, which plays a major role in determining the best architecture of the network (the best number 

of hidden layers). It is defined as follows 

p = 
Number of data in the training set 

Sum of number of connections 

Therefore, in order to avoid overfitting or underfitting, it is recommended that the value of ρ be between 

1 < p < 3 [51]. 

Finally, it is necessary to estimate the quality of the network obtained by presenting it with data that is 

not part of the learning. 

II. 6. VALIDATION METHODS 

Assessing the significance of QSAR/QSPR models and their potential in predicting the 

activities/properties of new compounds necessitates rigorous validation, a critical step in statistical 

analysis. As models are products of statistical analyses, their interpretation and application should 

strictly adhere to the domain delineated by the analysis [52]. Applying these models beyond their 

designated scope requires meticulousness and becomes increasingly precarious the farther one strays 

from their intended framework. To mitigate errors during validation and application, it's imperative to 

clearly delineate the model's limitations: verifying its robustness, determining both internal and external 

predictive power, and constraining the chemical space within which the model is applicable. 

 

II. 6. 1. Model Coefficients and Standard Statistical Tests 

Evaluating the efficacy of a model involves employing various statistical parameters, including 

Mean Square Errors and correlation coefficients, which are commonly utilized in QSAR/QSPR studies. 

This section provides a detailed description of these statistical metrics. 

II. 6. 1.1. Correlation Coefficient r (and Coefficient of Determination r²) 

The correlation coefficient is a widely used statistical measure that as sesses the proportion of 

variance in the activity/target property explained by the model. 

∑(𝑦𝑖 − ŷi)2 
r = √1 − 

∑(𝑦𝑖 − y̅)2 

Where: r represents the correlation coefficient; yi and ŷi denote the observed and predicted values of 

the dependent variable, respectively; y̅ represents the average value of the observed values. 

These coefficients are independent of the chosen unit of measurement and indicate a strong correlation 

between the target activity and the initial activity when r² approaches 1 (ideal scenario). 

However, the assessment of r or r² values is highly subjective. While this coefficient is straight forward 
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to interpret, it should not be overly relied upon as a sole criterion for evaluating regression quality. 

Using r² to compare models with different numbers of descriptors is not recommended, as it tends to 

favor models with a larger number of descriptors, even if those variables have no effect on the response 

(the activity or property under study). 

The value of r² is influenced by the sample size and the number of predictor variables in the equation. 

It remains constant or increases when a new predictor variable is added to the regression equation, even 

if the added variable does not contribute to reducing unexplained variance. Therefore, another statistical 

parameter called adjusted r² (r²adj) can be employed. Additionally, another indicator is the mean square 

error (MSE), sometimes preferred over the standard deviation s. 

II. 6. 1.2. Adjusted Coefficient of Determination 

This coefficient is applied in multiple regression analysis as it incorporates the degree of freedom: 

𝑟2(n − 1) − p 
𝑟²adj = √   

n − p − 1 

Where: n, represents the number of observations (molecules); p denotes the number of independent 

variables (descriptors); r2 signifies the coefficient of determination of the model. 

II. 6. 1.3. The mean square error “MSE” 

∑|(ŷı − yi)2| 
𝑀𝑆𝐸 =   

n 

With : yi and ŷi are, respectively, the observed and calculated values of the dependent variable ; n is the 

number of observations. 

These parameters measure the variation in target activity not explained by the model 

RQSA/RQSP. In particular, the smaller the standard deviation, the better the correlation. Its value 

always depends on the unit of measurement of the target activity and also takes into account 

experimental errors, which explains why a value that is too small has no meaning. 

II. 6. 1.4. Fisher’s F Test 

The Fisher F-test index evaluates the level of statistical significance of the model at a given 

confidence level (typically 95%), indicating the quality of the parameter selection. It's important to note 

that the conclusion drawn does not imply that the correlation has a "x%" chance of being true, but rather 

that the correlation holds true for "x%" of the reference compounds, with an assumption made for the 

others. 

Hypotheses: 

- H0: Sample variances are homogeneous 

- H1: Sample variances are not homogeneous 

The calculated value is determined as follows: We compute the observed F (F (observed) using the 

formula: 
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F ( observed ) =  
∑(𝑦− y̅))2n−p−1 

∑(𝑦𝑖−ŷ)2 𝑝 
 

 

With: F represents the Fisher index;yi and ŷ i denote, respectively, the observed and predicted values 

of the dependent variable; y̅ is the average value of the predicted values; n is the number of observations 

(molecules); p is the number of independent variables (descriptors). 

Following the computation of the observed F (F(observed)), we compare it with the theoretical F 

obtained from standard statistical tables (the Fisher table). 

If the observed F exceeds the theoretical F: rejection of the null hypothesis 

H0, indicating that the sample variances differ significantly and can not be considered homogeneous. 

If the observed F is lower than the theoretical F: acceptance of the null hypothesis H1, suggesting that 

the two variances are sufficiently similar to be deemed homogeneous. 

II. 6. 2. Forecasting power 

To assess the predictive reliability of a model and investigate the impact of individual samples 

(compounds) on the final model, cross-validation procedures are frequently employed. These validation 

techniques typically enable the assessment of model robustness, indicating the consistency of 

QSAR/QSPR model parameters concerning the molecules within the training set. However, it's 

important to note that these techniques do not directly demonstrate the predictive capability of the 

models [51,52]. 

The essence of these methods involves selecting a specific number of molecules from the training 

set and constructing a new model with the remaining molecules, utilizing the designated descriptors 

(only the regression constants vary). This newly formed model is the nutilized for predicting the values 

of the removed molecules. This iterative process is repeated until all molecules in the training set have 

been both removed and predicted. The correlation coefficient .2q (or r2
cv) between the calculated and 

observed activities reflects the internal predictive capability of the model ; fgtthe closer the coefficient's 

value is to 1, the stronger the predictiveability. For the model to be considered acceptable, the internal 

predictive capability should exceed 0.5 . 

II. 6. 2.1. Leave-Many-Out Cross-Validation 

The "k-fold cross-validation" procedure involves partitioning the training dataset into k subsets. 

One of these subsets is designated as the validation set, while the remaining (k-1) subsets constitute the 

training set. A QSAR/QSPR model is then constructed using the training set, and the 

activities/properties of the validation set are predicted. This process is iterated k times, ensuring that 

each sub set is used exactly once as a validation set. The correlation coefficient 2q (or r2
cv) between 

the predicted and observed activities is then calculated to assess the internal predictive capability of the 

model. 
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II. 6. 2.2. Leave-One-Out Cross-Validation 

This approach is a specific instance of "k-fold" cross-validation where k equals n, meaning that we 

train the QSAR/QSPR model using (n-1) observations and then validate it on the nth observation. This 

process is repeated n times, ensuring that each observation is utilized exactly once as a validation set. 

II. 6. 2.3. Randomization Test (Y-Randomization Test) for Validation 

The internal predictive power assessed through cross-validation procedures tends to be 

susceptible to over estimation. A high correlation coefficient value 2q (or r2cv) can arise either from 

chance correlations or from structural redundancies, particularly when the differences between 

compounds in the training set are minimal (autocorrelation). 

To verify the robustness of a model, the randomization test is often employed [53]. In this validation 

approach, the values of the target variable are randomly shuffled across the entire training set, and a 

new model is generated. This process is repeated multiple times, and if the average correlation 

coefficients obtained remain high, it suggests that no acceptable model can be derived using this 

statistical method with the given dataset. 

II. 6. 3. External Predictive Power 

A model exhibiting high values of internal indices such as 2q (or r2cv) is not automatically 

deemed valid; thus, internal validation alone is necessary but insufficient. 

The true predictive capability of a QSAR/QSPR model lies in its ability to accurately fore cast the 

activity/property of compounds from an external test set (i.e., compounds not utilized for model 

development). A robust QSAR/QSPR model should not only predict the activities of compounds within 

the training set but also those of test molecules. The QSAR/QSPR model is constructed using the 

training set and validated using the test set. The predictive performance of the model is assessed based 

on the correlation coefficient test 2r test 2 between the observed and predicted activities for the test set, 

with a higher test 2r test 2 value (>0.5) indicating superior model performance. 

II. 6. 4. Applicability Domain 

A QSAR/QSPR model cannot be regarded as universally applicable since it is developed based 

on a finite number of compounds that fail to encompass the entirety of chemical space. Consequently, 

predicting the activity/property of a chemically dissimilar compound, not represented in the training 

set, cannot be deemed reliable [54]. 

An ideal model would possess the capability to predict the activity or property of any conceivable 

molecule. However, achieving this is often unattainable. The constrained size of the training set restricts 

the chemical space covered by the models developed. Therefore, when a molecule falls out side this 

chemical space, the prediction becomes less reliable. 
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III .1. INTRODUCTION 

 
Identifying and discovering new molecules early and reliably for potential drug development 

remain pivotal main in pharmaceutical research, posing a significant challenge for the 

foreseeable future. The process is notably complex, influenced by factors including cost, time 

constraints, and the availability of laboratories equipped for synthesis and testing. [1] 

Typically, only one innovative drug emerges on the market for every thousand 

molecules synthesized and tested. Moreover, drug development typically requires over a 

decade of research. The primary challenge is to identify a molecule with targeted therapeutic 

properties while mitigating undesirable side effects. The substantial cost of drug development 

largely arises from protracted, costly, and frequently unproductive synthesis processes. 

Consequently, the pharmaceutical industry is transitioning towards innovative research 

methods that entail predicting the properties and activities of molecules before synthesis. [2] 

In recent years, advancements in technologies enabling the simultaneous synthesis of a vast 

array of molecules and their evaluation on therapeutic targets have yielded promising 

outcomes. This forms the core focus of studies on Quantitative Structure-Activity 

Relationships (QSAR) [3] and Quantitative Structure-Property Relationships (QSPR). These 

investigations primarily revolve around identifying resemblances among molecules within 

extensive databases containing known activities or properties. Uncovering such relationships 

facilitates the prediction of activities and properties for novel compounds [4], there by 

steering the synthesis of new molecules without necessitating their physical creation. 

Relationships between molecular structures and their activities or properties are typically 

forged through a combination of molecular modeling and statistical methodologies. Common 

approaches involve characterizing molecules using a series of descriptors, which are real 

numbers derived from measured or calculated features of molecular structures. Subsequently, 

these descriptors can be correlated with the modeled quantity to establish a relationship [5]. 

The continuous progress in heterocyclic chemistry plays a crucial role in organic synthesis, 

[6], as heterocycles form the essential scaffold in a broad spectrum of compounds of 

considerable chemical, biological, pharmacological, and industrial importance. Nitrogen- 
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containing heterocycles such as pyrimidines, pyridines , phenothiazines, indoles, acridines 

and others are widely distributed in various natural products and hold significant relevance 

in medicinal chemistry. The exploration for novel nitrogen heterocycles with potential 

biological activity is essential in the endeavor to create fresh compounds that can meet the 

rising demand for innovative molecules. [7] 

 

III.2. MATERIAL AND METHODS 

Accurate predictions of molecular geometries are sensitive to the choice of the electronic 

structure method and the atomic basis set used for the description of the atoms. We started 

our investigations by selecting a suitable methodology to be used for the determination of the 

equilibrium structures of 1,4 dihydropyridine derivatives under study. Our strategy consists 

in performing benchmark computations on the subunit of the series 

Chemical structure of each molecule was built and optimized by HyperChem (version 8.08) 

packages [8], using the AM1 semi-empirical method. GAUSSIAN 16 program [9] was 

operated to reoptimize the molecular structures. The structures were reoptimized by density 

functional theory (DFT) at the level of B3LYP /6-31G++ (d, p). 

The geometries of 1.4 dihydropyridine, were fully optimized with   ab initio/HF (6-31G, 

6-31G+ (d,p), 6-311G++(d,p)) and DFT/B3LYP(6-31G, 6-31G+ (d,p), 6-311G++(d,p)). 

integrated in Gaussian 16 program package. The calculation of QSAR properties is 

performed through the module QSAR Properties (HyperChem version 8.08), and allows the 

calculation of several properties commonly used in QSAR studies. 

Molinspiration [10], was used to obtain parameter such as TPSA (topological polar surface 

area), nrotb (number of rotatable bonds) and drug likeness. The calculated results are reported 

in the present work. 

 

- GEOMETRIC AND ELECTRONIC STRUCTURE OF 1,4 DIHYDROPYRIDINE 

 

 

The optimized geometrical parameters of 4-Imidazolyl- 1,4-dihydropyridines 

(Figure.III.1) are obtained using ab-initio/HF and DFT methods, listed in (Table.III.1) and 

(Table III.2) 
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We found good agreement between predicted geometries (bond lengths, angles) and 

corresponding experimental data, especially the DFT/B3LYP results. From that, we can say 

the DFT method is more appropriate for our next study part. Charge densities calculated by 

DFT/B3LYP are almost similar to Ab initio/HF methods. 

 

 

 

 

 

Figure III.1. 3D conformation of 4-Imidazolyl- 1,4-dihydropyridines(Gauss View 3.0.9) 

 

 

Table III. 1. Calculated bond lengths and angles of 4-Imidazolyl- 1,4-dihydropyridines . 

Bond lengths are in Å and bond angles are in degrees. 
 

 

 DFT/B3LYP  Ab initio/HF  

6-31G 31G+ 

(d,p) 

31G++ 

(d,p) 

6-31G 31G+ 

(d,p) 

31G++ 

(d,p) 

N1-C2 1.39 1.38 1.38 1.38 1.38 1.38 

C2-C3 1.36 1.36 1.36 1.34 1.34 1.34 

C3-C4 1.52 1.52 1.52 1.52 1.52 1.52 

C4-C5 1.53 1.53 1.53 1.52 1.52 1.52 

C5-C6 1.37 1.36 1.36 1.35 1.34 1.34 
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C6-N1 

C2-C7 

C3-C8 

C4-C9 

C5-C10 

C6-C11 

C9-N12 

N12-C13 

C13-N14 

N14-C15 

C10-O16 

C10-O17 

C8-O18 

C8-O29 

O29-H30 

O17-H28 

N1-H25 

C4-H26 

N12-H27 

C15-H31 

C7-H19 

C7-H20 

C7-H21 

C11-H22 

C11-H23 

C11-H24 

C13-C32 

C32-C33 

C32-C34 

1.38 

1.50 

1.45 

1.51 

1.45 

1.50 

1.38 

1.38 

1.34 

1.38 

1.24 

1.40 

1.24 

1.38 

0.98 

0.98 

1.00 

1.09 

1.01 

1.07 

1.09 

1.09 

1.09 

1.09 

1.09 

1.09 

1.46 

1.41 

1.40 

1.38 

1.50 

1.46 

1.51 

1.46 

1.50 

1.38 

1.37 

1.32 

1.37 

1.22 

1.38 

1.22 

1.36 

0.97 

0.97 

1.01 

1.09 

1.01 

1.08 

1.09 

1.09 

1.09 

1.09 

1.09 

1.09 

1.46 

1.40 

1.40 

1.38 

1.50 

1.46 

1.51 

1.46 

1.50 

1.38 

1.37 

1.32 

1.37 

1.22 

1.38 

1.22 

1.36 

0.97 

0.97 

1.01 

1.09 

1.01 

1.08 

1.09 

1.09 

1.09 

1.09 

1.09 

1.09 

1.46 

1.40 

1.40 

1.37 

1.50 

1.45 

1.51 

1.45 

1.50 

1.37 

1.36 

1.30 

1.38 

1.22 

1.36 

1.22 

1.35 

0.95 

0.95 

0.99 

1.08 

0.99 

1.06 

1.08 

1.08 

1.07 

1.08 

1.07 

1.08 

1.46 

1.39 

1.39 

1.37 

1.50 

1.47 

1.51 

1.46 

1.50 

1.37 

1.35 

1.29 

1.37 

1.19 

1.34 

1.19 

1.33 

0.94 

0.94 

0.99 

1.08 

0.99 

1.07 

1.08 

1.08 

1.07 

1.08 

1.07 

1.08 

1.47 

1.39 

1.39 

1.37 

1.50 

1.47 

1.51 

1.46 

1.50 

1.37 

1.35 

1.29 

1.37 

1.19 

1.34 

1.19 

1.33 

0.94 

0.94 

0.99 

1.08 

0.99 

1.07 

1.08 

1.08 

1.07 

1.08 

1.07 

1.08 

1.47 

1.39 

1.39 
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C33-C35 

C34-C36 

C35-C37 

C36-C37 

C33-H42 

C34-H39 

C35-H38 

C36-H40 

C37-H41 

1.39 

1.39 

1.40 

1.39 

1.08 

1.08 

1.08 

1.08 

1.08 

1.39 

1.39 

1.40 

1.39 

1.08 

1.08 

1.08 

1.08 

1.08 

1.39 

1.39 

1.40 

1.39 

1.08 

1.08 

1.08 

1.08 

1.08 

1.38 

1.38 

1.39 

1.38 

1.07 

1.07 

1.07 

1.07 

1.07 

1.38 

1.38 

1.39 

1.38 

1.07 

1.07 

1.07 

1.07 

1.07 

1.38 

1.38 

1.39 

1.38 

1.07 

1.07 

1.07 

1.07 

1.07 

N1-C2-C3 

C2-C3-C4 

C3-C4-C5 

C4-C5-C6 

C5-C6-N1 

C6-N1-C2 

N1-C2-C7 

C7-C2-C3 

N1-C6-C11 

C2-C3-C8 

C6-C5-C10 

C3-C4-C9 

C5-C4-C9 

C3-C4-H26 

C5-C4-H26 

C5-C10-O16 

C5-C10-O17 

O16-C10-O17 

C10-O17-H28 

118.53 

120.32 

110.48 

120.05 

118.51 

124.22 

114.75 

126.65 

114.79 

120.53 

120.02 

110.40 

110.58 

108.38 

108.13 

128.24 

113.02 

118.73 

108.01 

118.34 

119.87 

110.25 

119.70 

118.26 

124.12 

114.75 

127.03 

114.66 

120.43 

120.03 

110.70 

111.76 

108.14 

108.26 

127.61 

112.76 

119.61 

105.36 

118.35 

119.87 

110.96 

119.70 

118.27 

124.11 

114.58 

127.02 

114.66 

120.44 

120.02 

110.69 

111.77 

108.14 

108.26 

127.61 

112.77 

119.61 

105.35 

118.70 

120.46 

110.14 

120.17 

118.73 

123.89 

114.44 

126.81 

114.29 

120.60 

120.07 

110.39 

111.61 

108.38 

108.58 

127.55 

113.69 

118.74 

111.78 

118.67 

120.03 

109.81 

119.81 

118.64 

123.65 

114.09 

127.22 

113.97 

120.43 

120.02 

110.69 

112.01 

108.30 

108.40 

127.05 

113.14 

119.80 

107.39 

118.67 

120.03 

109.81 

119.81 

118.64 

123.25 

114.09 

127.22 

113.95 

120.43 

120.03 

110.69 

112.04 

108.28 

108.39 

127.06 

113.14 

119.79 

107.37 
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C3-C8-O18 

C3-C8-O29 

C8-O29-H30 

C4-C9-C15 

C4-C9-N12 

C9-N12-C13 

N12-C13-N14 

C13-N14-C15 

N14-C15-C9 

C9-N12-H27 

C9-C15-H31 

C13-N12-H27 

N14-C15-H31 

N12-C13-C32 

N14-C13-C32 

C13-C32-C33 

C13-C32-C34 

C32-C33-C35 

C32-C34-C36 

C33-C35-C37 

C34-C36-C37 

C35-C37-C36 

C32-C33-H42 

C32-C34-H39 

127.33 

112.53 

109.03 

133.23 

121.71 

108.34 

109.86 

106.25 

110.48 

122.71 

128.25 

128.85 

121.25 

124.95 

125.17 

118.87 

122.40 

120.47 

120.61 

120.44 

120.26 

119.48 

118.21 

120.43 

126.73 

112.56 

106.09 

133.34 

122.13 

108.24 

110.30 

106.03 

110.89 

123. 66 

127.73 

127.95 

121.36 

124.31 

125.38 

119.07 

122.33 

120.53 

120.71 

120.49 

120.27 

119.40 

118.48 

120.60 

126.74 

112.56 

106.09 

133.34 

122.14 

108.24 

110.30 

106.03 

110.89 

123.66 

127.73 

127.95 

121.36 

124.30 

125.39 

119.08 

122.32 

120.52 

120.71 

120.49 

120.26 

120.26 

118.48 

120.60 

126.85 

113.21 

112.83 

133.06 

121.81 

108.22 

109.93 

106.83 

109.89 

123.62 

128.85 

128.15 

121.25 

124.79 

125.27 

118.92 

122.19 

120.41 

120.63 

120.37 

120.17 

119.56 

118.60 

120.58 

126.25 

112.96 

108.03 

133.26 

122.10 

107.75 

111.05 

105.97 

110.59 

124.79 

128.17 

127.35 

121.24 

132.72 

125.22 

119.10 

121.93 

120.36 

120.59 

120.38 

120.13 

119.57 

118.89 

120.55 

126.26 

112.96 

108.03 

133.26 

122.11 

107.74 

111.06 

105.96 

110.59 

124.80 

128.16 

127.34 

121.24 

123.69 

125.24 

119.12 

121.91 

120.36 

120.59 

120.38 

120.12 

119.57 

118.89 

120.53 
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Table III.2. NBO charges distribution of 4-Imidazolyl- 1,4-dihydropyridines 
 

 Ab initio/HF DFT/B3LYP 

 6-31G 6-31G+(d,p) 6-31G++(d,p) 6-31G 6-31G+(d,p) 6-31G++(d,p) 

N 1 -0.667 -0.685 -0.680 -0.569 -0.585 -0.581 

C 2 0.354 0.351 0.354 0.261 0.262 0.265 

C 3 -0.269 -0.282 -0.279 -0.188 -0.201 -0.199 

C 4 -0.279 -0.267 -0.255 -0.317 -0.313 -0.300 

C 5 -0.280 -0.295 -0.294 -0.198 -0.214 -0.213 

C 6 0.370 0.369 0.371 0.275 0.278 0.280 

C7 -0.709 -0.679 -0.635 -0.732 -0.726 -0.689 

C8 0.933 0.973 0.971 0.755 0.788 0.786 

C9 0.148 0.136 0.137 0.126 0.112 0.116 

C10 0.928 0.969 0.967 0.755 0.783 0.782 

C11 -0.710 -0.679 -0.635 -0.732 -0.727 -0.689 

N12 -0.629 -0.632 -0.630 -0.552 -0.563 -0.556 

C13 0.419 0.436 0.451 0.347 0.366 0.347 

N14 -0.539 -0.557 -0.555 -0.479 -0.492 -0.489 

C15 -0.108 -0.083 -0.077 -0.109 -0.093 -0.089 

O16 -0.708 -0.730 -0.732 -0.600 -0.627 -0.629 

O17 -0.811 -0.807 -0.801 -0.734 -0.758 -0.752 

O18 -0.714 -0.736 -0.738 -0.607 -0.634 -0.637 

H19 0.224 0.215 0.203 0.232 0.233 0.223 

H20 0.279 0.268 0.250 0.279 0.282 0.268 

H21 0.283 0.274 0.259 0.288 0.290 0.276 

H22 0.227 0.218 0.206 0.234 0.236 0.225 

H23 0.283 0.274 0.259 0.286 0.289 0.274 

H24 0.276 0.264 0.247 0.278 0.281 0.267 

H25 0.440 0.437 0.531 0.432 0.438 0.433 
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H26 

H27 

H28 

O29 

H30 

H31 

C32 

C33 

C34 

C35 

C36 

C37 

H38 

H39 

H40 

H41 

H42 

0.303 

0.464 

0.524 

-0.788 

0.523 

0.238 

-0.091 

-0.194 

-0.224 

-0.236 

-0.237 

-0.236 

0.242 

0.225 

0.239 

0.240 

0.269 

0.285 

0.456 

0.532 

- 0.784 

0.529 

0.229 

-0.077 

-0.197 

-0.225 

-0.231 

-0.234 

-0.233 

0.239 

0.221 

0.237 

0.237 

0.263 

0.270 

0.452 

0.527 

- 0.778 

-0.525 

0.220 

-0.097 

-0.185 

-0.215 

-0.222 

-0.224 

-0.224 

-0.230 

-0.217 

0.228 

0.228 

0.253 

0.308 

0.452 

0.229 

-0.704 

0.499 

0.239 

-0.088 

-0.205 

-0.233 

-0.238 

-0.238 

-0.244 

0.243 

0.266 

0.244 

0.242 

0.267 

0.304 

0.459 

0.229 

-0.729 

0.524 

0.238 

-0.097 

-0.205 

-0.231 

-0.240 

-0.241 

-0.247 

0.247 

0.229 

0.245 

0.245 

0.268 

0.293 

0.450 

0.522 

-0.723 

0.519 

0.231 

-0.080 

-0.189 

-0.230 

-0.238 

-0.233 

-0.238 

0.239 

0.222 

0.237 

0.237 

0.261 

 

Molecular electrostatic potential 

 

 

The molecular electrostatic potential (MEP) serves as a well-established method for 

elucidating the reactive characteristics of diverse chemical systems, encompassing both 

electrophilic and nucleophilic reactions. In this study, the focus was on investigating 

biological recognition processes and hydrogen bonding interactions to anticipate the reactive 

sites susceptible to electrophilic and nucleophilic attack within the analyzed molecule [11]. 

The MEP calculations were conducted based on the DFT optimized geometry (see Figure 

III.2). 
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Figure III .2. 3D molecular electrostatic potential surface map (3D MESP) for 1,4- 

dihydropyridines . 

 

The electrostatic potential values are depicted using various colors, illustrating the 

positive, negative, and neutral regions of molecules through a gradient of colors. Typically, 

the potential ascends in the sequence: red < orange < yellow < green < blue. Red signifies 

the most negative region, while blue indicates the most positive region [12]. 

 

For the 4-Imidazolyl- 1,4-dihydropyridines molecule, we carried out NBO population 

analysis and we mapped its 3D molecular electrostatic potential surface (MESP). The 

corresponding data are listed in Table III .2 and displayed in Figure III .2. This figure shows 

that this MESP exhibits one region characterized by red color (negative electrostatic 

 

potential) around N1 nitrogen atom. This indicates area of excess negative charge enabling 

electrophilic attacks on this position. Whereas a blue color (positive electrostatic potential) 
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can be seen around all the other atoms of 1,4-dihydropyridines indicating an electron 

deficiency. Thus, these correspond to regions susceptible of a nucleophilic attack. The NBO 

analysis [13] confirms these findings as can be seen in Table III. 2. This table shows however 

that DFT charges exhibit some differences with computed using HF. 

 

III.3. QSAR STUDY OF 1,4 DIHYDROPYRIDINES DERIVATIVES 

III.3.1. Dataset 

A series of thirty-one 1,4-dihydropyridine derivatives acting as Calcium Channel blockers 

was collected from the literature [14]. The chemical structures of these compounds are given 

in Scheme 1 and Table III .3. This table lists also their biological activity values (IC50) after 

conversion to logarithmic scale (pIC50= -log IC50 and used as dependent variables to develop 

QSAR models. The structures of the collected molecules and their biological activity values 

are given in Table III .3. These compounds consist on a substituted 1,4-dihydropyridine by a 

phenyl imidazolyl and ester groups in positions 3 and 5. The various substituents are detailed 

in Table III .3. 

 

 

Scheme 1: Structures of the series of 1,4-dihydropyridines treated presently. (See Table. 

III. 3 for the definition of R1, R2, n1 and n2). 

Table III.3. Chemical structures of 1,4-dihydropyridinederivatives. 

* denotes compounds used for external statistical validation (test set). We quote also their 

experimental biological activity values (IC50 and pIC50= -log IC50) as taken from Ref. [14]. 
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N R1 n1 R2 n2 Molecular Formula IC50 mmol/l pIC50 

        

1* C6H11 

 

(cyclohexyl) 

0 C6H11 (cyclohexyl) 0 C30H37N3O4 3.02×10-10 9.52 

2 C6H11 

 

(cyclohexyl) 

1 C6H11 (cyclohexyl) 1 C32H41N3O4 3.60×10-11 10.44 

3 C6H11 

 

(cyclohexyl) 

2 C6H11 (cyclohexyl) 2 C34H45N3O4 1.79×10-11 10.74 

4 C6H11 

 

(cyclohexyl) 

3 C6H11 (cyclohexyl) 3 C36H49N3O4 1.20×10-11 10.92 

5 C6H11 

 

(cyclohexyl) 

4 C6H11 (cyclohexyl) 4 C36H49N3O4 6.43×10-10 9.19 

6 C5H9 

 

(cyclopentyl) 

3 C5H9 (cyclopentyl) 3 C34H45N3O4 2.79×10-9 8.55 

7* C6H5 1 C6H5 1 C32H29N3O4 5.61 ×10-10 9.25 

8* C6H5 2 C6H5 2 C34H33N3O4 4.52 ×10-10 9.34 

9 C6H5 3 C6H5 3 C36H37N3O4 9.72 ×10-11 10.01 

10 C6H5 4 C6H5 4 C40H45N3O4 6.42 ×10-10 9.19 

11 C6H5 5 C6H5 5 C40H45N3O4 8.91 ×10-8 7.05 

12 C6H11 

 

(cyclohexyl) 

0 CH3 0 C25H29N3O4 1.75 × 10-10 9.75 

13 C6H11 

 

(cyclohexyl) 

0 CH2CH3 0 C26H31N3O4 8.45 × 10-10 9.07 

14 C6H11 

 

(cyclohexyl) 

1 CH3 0 C26H31N3O4 2.80× 10-9 8.55 

15* C6H11 

 

(cyclohexyl) 

1 CH2CH3 0 C27H33N3O4 1.32× 10-9 8.88 

16 C6H11 2 CH3 0 C27H33N3O4 3.02× 10-9 8.52 
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 (cyclohexyl)       

17 C6H11 

 

(cyclohexyl) 

2 CH2CH3 0 C28H35N3O4 1.09× 10-9 8.96 

18 C6H11 

 

(cyclohexyl) 

3 CH3 0 C28H35N3O4 3.52× 10-9 8.45 

19 C6H11 

 

(cyclohexyl) 

3 CH2CH3 0 C29H37N3O4 2.23× 10-9 8.65 

20 C6H11 

 

(cyclohexyl) 

4 CH3 0 C29H37N3O4 4.94× 10-9 8.30 

21 C6H11 

 

(cyclohexyl) 

4 CH2CH3 0 C30H39N3O4 6.31× 10-9 8.20 

22 C6H5 1 CH3 0 C26H25N3O4 2.71× 10-10 9.56 

23 C6H5 1 CH2CH3 0 C27H27N3O4 2.11× 10-10 9.67 

24* C6H5 2 CH3 0 C27H27N3O4 5.23× 10-10 9.28 

25 C6H5 2 CH2CH3 0 C28H29N3O4 1.90× 10-10 9.72 

26 4-CH3-C6H4 2 CH3 0 C28H29N3O4 3.24× 10-10 9.49 

27 4-CH3-C6H4 2 CH2CH3 0 C29H31N3O4 5.75× 10-10 9.24 

28 C6H5 3 CH3 0 C28H29N3O4 5.84× 10-10 9.23 

29* C6H5 3 CH2CH3 0 C29H31N3O4 8.75× 10-9 8.05 

30 C6H5 4 CH3 0 C29H31N3O4 6.14× 10-9 8.21 

31 C6H5 4 CH2CH3 0 C30H33N3O4 5.02× 10-9 8.30 

 

* denotes the compounds selected for external validation (test set). 
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Table III .4 : 3D Chemical structures of 1, 4-dihydropyridines derivatives under study. 
 
 

 

 

NO Compound structure NO Compound structure NO Compound structure 
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III.3.2. Drug likeness scoring. 

Drug-likeness is a qualitative method applied in the research of the 

structure/activity relationship in biomolecules [15]. These methods study the balance between 

molecular prop erties affecting the pharmacodynamics and pharmacokinetics of molecules that 

have a significant impact on their absorption, distribution, metabolism and excretion (ADME) 
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in the human body. Molecular properties such as bioavailability, solubility and membrane 

permeability and are related to several basic molecular descriptors such as molecular weight 

(MW), topological polar surface (TPSA), partition coefficient (LogP), molar refractivity 

( MR),number of rotatable bonds (Nrotb), hydrogen bond donors (HBD) and hydrogen bond 

acceptors (HBA).These descriptors were calculated using HyperChem 8 and the tool 

Molinspiration server (http://www.molinspiration.com). 

According to Lipinski's rule [16], good absorption of the drug is obtained if: the molecular 

weight is less than 500 Da, log P is less than 5, the H donor bonds are less than 5, the H acceptor 

bonds are less than 10 . 

According to Veber's rule, a good bioavailability is more present if the compounds have 

rotatable bonds (nrotb) less than 10 and a total polar surface area (TPSA) less than 140 Å2 [17]. 

Ghose's rule defines a ligand as a good drug if: the molecular weight is between 160 and 480, 

the LogP is between -0.4 and 5.6, the molar refraction (MR) between 40 and 130, and the total 

number of atoms between 20 and 70 [18]. 

III.3.3. Molecular structure and molecular descriptors calculations 

GAUSSIAN16 program was used to optimize the investigated structures and further generate 

their electronic descriptors by using DFT method at the B3LYP/6-31G+ (d,p) level as 

implemented in GAUSSIAN 16. To better describe their structural features, others various 

molecular descriptors were generated using Chem3D software [19]. 

Molecular frontier orbitals, HOMO and LUMO are major parameters in quantum chemistry, 

because they determine how the molecule interacts with other chemical entities. The value of 

the frontier orbital gap allows us to estimate and characterize the kinetic stability and the 

chemical reactivity of the studied molecule (Egap = ELUMO - EHOMO). A molecule which has a 

small gap is more polarizable, ie associated with a high chemical reactivity and a low kinetic 

stability and is qualified as soft molecule, according to the concept of HSAB (hard and soft, 

acids and bases) 

The conceptual descriptors based on the DFT quantum method have facilitated a good 

understanding of the 3D structure of molecules and their reactivity by calculating the global 

hardness (η) and the chemical potential (µ). Using the frontier orbital energies (EHOMO and 

ELUMO), the chemical potential µ is equal to (EHOMO+ELUMO)/2 and the hardness is given by η = 

http://www.molinspiration.com/
https://en.wikipedia.org/wiki/Lewis_acids_and_bases
https://en.wikipedia.org/wiki/Lewis_acids_and_bases
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(-EHOMO + ELUMO)/2 [20]. This index measures the stabilization of the molecule when the system 

has obtained an additional charge from the environment, therefore, the electrophilicity presents 

a double capacity, the first to acquire an additional electronic charge and the second to resist an 

exchange of an electronic charge with the environment. The global electrophilicity (ω) power 

of a ligand is given by ω= µ2/2η 

III.3.4. QSAR study 

In the current QSAR study, two different methods of cheminformatics techniques, 

namely multiple linear regression (MLR) and artificial neural networks (ANNs), were used to 

model the relationship between the observed activity of the investigated compounds and their 

molecular descriptors. Before starting modeling, the collected series was randomly divided into 

a training set and a test set. The quality of developed models was tested by calculating their 

internal validation indices and external validation statistics parameters including the 

determination coefficient of external validation estimating their predictive abilities and y- 

Randomization test parameters giving insight into their robustness. The model's domain of 

applicability was also identified to be used as guide to design new compounds with enhanced 

CCBs activities. 

 

III .4. RESULTS AND DISCUSSION 

III .4.1. Molecular structures 
 

 

 

Figure. III 3. 3D conformation of compound 3 
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As discussed in Refs. [21-25], the study of the subunit common to all members of a series may 

help in understanding of their 3D structure and their biological activities. Nevertheless, we 

found that the 3D structure of the 4-imidazolyl- 1,4-dihydropyridine molecule, which is the 

subunit of the series under investigation, has different 3D shape with those of the series. As can 

be seen in Figure III.3, the 4-imidazolyl- 1,4-dihydropyridine structure consists of two planar 

phenyl and imidazolyl group, whereas the 1,4-dihydropyridine moiety is close to orthogonal to 

them. Within the series, three cycles are however close to planar favoring their stabilization by 

electron delocalization over the three cycles. Such structural differences between the isolated 

subunit and the series is due to the additional long range interactions between the phenyl and 

the alkoxy substituents attached to ester functions of the present 1,4-dihydropyridine derivatives 

(e.g.  CH- interactions). 

 

III.4.2. Drug likeness screening of 1,4-dihydropyridines derivatives 

All compounds under study have a LogP between 0 and 5 except compounds 22, 23, 24 

and 26 LogP values that are in the range of 1 to 3, resulting in good oral bioavailability; 

therefore the ligand has a good aqueous solubility to dissolve in the digestive tract. However 

for a value of LogP > 3, the ligand has a low solubility in the stomach and the intestines 

(compounds 4,5 and 11) and for LogP < 1 the drug has a good solubility, but it has a bad 

penetration through lipid membranes. [26] 

Molecular weight (MW) is an important factor determines drug permeability, for molecules 

with a molar mass < 450, the result is better cerebral permeability and good oral absorption 

(compounds 12, 13, 14 and 22) [27]. 

All compounds have H-bond acceptors less than 10 and H-bond donors less than 5. HBAs those 

are large in number leads to low permeability through a lipid bilayer membrane, while smaller 

number leads to better permeability. [28] 

The topological polar surface (TPSA) is a necessary parameter to predict the intrinsic properties 

of molecular transport, especially in permeability, that is to say the speed of passage of 

molecules through the blood-brain barrier and also in intestinal absorption [29]. For our results, 

all 1,4 dihydropyridines derivatives have values below 140 Å2 (93.32Å2), which shows the good 

prediction of oral bioavailability and transport through biological membranes. The total number 
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of atoms for all compounds is between 20 and 70. 

In conclusion the majority of ligands agree with Lipinski rules, Veber rules and Ghose rules, in 

particular compound 12 Lipinski who has the top score in the three rules. These rules are used 

as filters to select the best promising molecules. 

Table III 5. Pharmacological activities and properties for1, 4 dihydropyridines derivatives 

under study; with application of the following rules: Lipinski, Veber and Ghose. 

 

 

comp 
Log P MW(amu) HBA 

HB 

D 
Lipinski 

Score 

TPSA 
nrot 

b 
Veber 

Score 

 

MR 
N 

atom

s 

Ghose 

and al 

Score 

1 1.64 503.28 7 2 3 93.32 8 2 150.09 37 2 

2 2.27 531.31 7 2 3 93.32 10 2 159.55 39 2 

3 2.91 559.34 7 2 3 93.32 12 1 168.91 41 2 

4 3.71 587.37 7 2 3 93.32 14 1 178.11 43 2 

5 4.50 615.40 7 2 3 93.32 16 1 187.31 45 2 

6 2.91 559.34 7 2 3 93.32 14 1 168.91 41 2 

7 0.50 519.22 7 2 3 93.32 10 2 165.57 39 2 

8 1.00 547.25 7 2 3 93.32 12 1 175.08 41 2 

9 1.79 575.28 7 2 3 93.32 14 1 184.28 43 2 

10 2.58 603.31 7 2 3 93.32 16 1 193.48 45 2 
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11 3.38 631.34 7 2 3 93.32 18 1 202.68 47 2 

12 0.05 435.22 7 2 4 93.32 7 2 129.08 32 4 

13 0.40 449.23 7 2 4 93.32 8 2 133.82 33 3 

14 0.37 449.23 7 2 4 93.32 8 2 133.81 33 3 

15 0.71 463.25 7 2 4 93.32 9 2 
138.56 

34 3 

16 0.69 463.25 7 2 4 93.32 9 2 138.49 34 3 

17 1.03 477.26 7 2 4 93.32 10 2 
143.23 

35 3 

18 1.09 477.26 7 2 4 93.32 10 2 143.09 35 3 

19 1.43 491.28 7 2 4 93.32 11 1 147.84 36 2 

20 1.48 491.28 7 2 4 93.32 11 1 147.69 36 2 

21 1.83 505.29 7 2 3 93.32 12 1 152.44 37 2 

22 -0.52 443.18 7 2 4 93.32 8 2 136.81 33 3 

23 -0.17 457.20 7 2 4 93.32 9 2 141.56 34 3 

24 -0.27 457.20 7 2 4 93.32 9 2 141.57 34 3 

25 0.08 471.22 7 2 4 93.32 10 2 146.32 35 3 
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26 -0.11 471.22 7 2 4 93.32 9 2 145.85 35 3 

27 0.23 485.23 7 2 4 93.32 10 2 150.60 36 2 

28 0.13 471.22 7 2 4 93.32 10 2 146.17 35 3 

29 0.47 485.23 7 2 4 93.32 11 1 150.92 36 2 

30 0.53 485.23 7 2 4 93.32 11 1 150.77 36 2 

31 0.87 499.25 7 2 4 93.32 12 1 
155.52 

37 2 

 

III.4.3. Molecular descriptors 

The molecular descriptor is the consequence of a mathematical procedure which transforms the 

chemical information in a symbolic character representation of a molecule into a useful number 

with standard numerical character. To assess chemical properties and to reduce the number of 

laboratory tests which are very expensive, so it is essential to build reliable models using 

computational chemistry to establish a quantitative mathematical relationship between the 

structures of molecules and the properties desires (QSAR). Descriptors can be classified in 

different forms. In particular, two main categories are distinguished, calculated descriptors and 

purely experimental descriptors. [30, 31]. The process of encoding the structure of chemical 

compounds by descriptors is an essential step in QSAR studies. [32] 

We calculated 29 descriptors of 1,4‐dihydropyridine derivatives, including Exact Mass (EM), 

Intrinsic Solubility (Log S), Number Rotatable Bonds (NRB), Shape Coefficient (SC), Sum of 

Valence Degrees (SVD), Topological Diameter (TD), Molar Refractivity (MR), Hydration 

Energy (HE), Molar Volume (V), Surface Area Grid (SAG) and Partition Coefficient 

Octanol/Water (Log P). The values of the calculated descriptors are given in Table III. 6. These 

descriptors will be used later to establish the QSAR models. 
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Table III 6. Calculated molecular descriptors. 
 

N EM LogS NRB SC SVD TD MR HE V SAG logP EHOMO ELUMO EHOMO-1 ELUMO+1 D E η χ EGap 

1 503.28 -7.50 8 1 122 14 150.09 -4.21 1451.63 812.16 1.64 -5.24 -1.63 -5.83 -0.47 3.92 -44361.11 1.81 3.44 3.61 

2 531.31 -8.40 10 1 126 16 159.55 -3.62 1569.04 870.21 2.27 -5.28 -1.68 -5.88 -0.51 3.75 -46499.93 1.80 3.48 3.60 

3 559.34 -8.78 12 1 130 18 168.91 -2.24 1756.62 1003.51 2.91 -5.26 -1.65 -5.85 -0.49 3.81 -48639.02 1.80 3.46 3.61 

4 587.37 -9.46 14 1 134 20 178.11 -3.07 1846.21 1052.63 3.71 -5.26 -1.66 -5.86 -0.50 3.73 -50778.11 1.80 3.46 3.60 

5 615.40 -10.14 16 1 138 22 187.31 -1.01 1988.95 1150.05 4.50 -5.26 -1.66 -5.86 -0.50 3.77 -52916.92 1.80 3.46 3.61 

6 559.34 -8.67 14 1 130 18 168.91 -2.96 1713.28 979.85 2.91 -5.26 -1.66 -5.87 -0.50 3.73 -48638.47 1.80 3.46 3.60 

7 519.22 -7.80 10 1 138 16 165.57 -10.45 1448.30 814.67 0.50 -5.21 -1.71 -5.89 -0.57 4.08 -46302.92 1.75 3.46 3.50 

8 547.25 -8.09 12 1 142 18 175.08 -9.61 1599.33 915.66 1.00 -5.31 -1.72 -5.92 -0.55 3.79 -48442.01 1.80 3.52 3.59 

9 575.28 -8.63 14 1 146 20 184.28 -8.88 1684.03 954.11 1.79 -5.28 -1.70 -5.89 -0.51 3.70 -50580.82 1.79 3.49 3.59 

10 603.31 -9.47 16 1 150 22 193.48 -8.21 1793.49 1008.54 2.58 -5.30 -1.70 -5.90 -0.53 3.74 -52719.91 1.80 3.50 3.60 

11 631.34 -10.31 18 1 154 24 202.68 -7.66 1880.58 1063.00 3.38 -5.28 -1.69 -5.89 -0.51 3.74 -54859.00 1.79 3.48 3.59 

12 435.22 -5.79 7 1 110 14 129.08 -5.39 1252.30 713.83 0.05 -5.28 -1.68 -5.87 -0.49 4.12 -39046.18 1.80 3.48 3.60 

13 449.23 -6.13 8 1 112 14 133.82 -4.81 1308.63 745.27 0.40 -5.27 -1.66 -5.85 -0.49 4.08 -40115.86 1.81 3.46 3.62 

14 449.23 -6.24 8 0 112 15 133.81 -5.02 1324.04 761.86 0.37 -5.28 -1.70 -5.90 -0.52 3.77 -40115.59 1.79 3.49 3.58 

15 463.25 -6.58 9 0 114 15 138.56 -4.41 1376.32 793.15 0.71 -5.28 -1.68 -5.88 -0.51 3.77 -41185.27 1.80 3.48 3.60 

16 463.25 -6.81 9 1 114 16 138.49 -4.43 1447.98 825.77 0.69 -5.27 -1.69 -5.89 -0.50 3.97 -41185.00 1.79 3.48 3.58 

17 477.26 -7.15 10 1 116 16 143.23 -3.85 1483.56 854.08 1.03 -5.26 -1.67 -5.87 -0.50 3.91 -42254.68 1.80 3.47 3.60 

18 477.26 -7.22 10 0 116 17 143.09 -4.40 1462.37 844.40 1.09 -5.27 -1.69 -5.89 -0.51 3.79 -42254.41 1.79 3.48 3.58 
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19 491.28 -7.56 11 0 118 17 147.84 -3.88 1524.98 886.22 1.43 -5.27 -1.67 -5.87 -0.50 3.86 -43324.09 1.80 3.47 3.60 

20 491.28 -7.64 11 1 118 18 147.69 -3.78 1511.14 880.51 1.48 -5.27 -1.69 -5.90 -0.51 3.89 -43324.09 1.79 3.48 3.58 

21 505.29 -7.98 12 1 120 18 152.44 -3.29 1562.52 899.07 1.83 -5.27 -1.67 -5.87 -0.50 3.83 -44393.77 1.80 3.47 3.60 

22 443.18 -5.93 8 0 118 15 136.81 -8.27 1262.50 723.19 -0.52 -5.22 -1.70 -5.89 -0.57 3.76 -40016.81 1.76 3.46 3.51 

23 457.20 -6.27 9 0 120 15 141.56 -7.69 1318.10 552.38 -0.17 -5.22 -1.68 -5.87 -0.57 3.71 -41086.49 1.77 3.45 3.54 

24 457.20 -6.08 9 1 120 16 141.57 -8.15 1336.03 772.92 -0.27 -5.30 -1.72 -5.92 -0.54 3.92 -41086.49 1.79 3.51 3.58 

25 471.22 -6.42 10 1 122 16 146.32 -7.57 1389.85 801.39 0.08 -5.30 -1.70 -5.90 -0.53 3.84 -42156.17 1.80 3.50 3.59 

26 471.22 -6.44 9 0 122 17 145.85 -6.95 1381.48 801.95 -0.11 -5.19 -1.70 -5.89 -0.48 3.61 -42156.17 1.75 3.44 3.49 

27 485.23 -6.78 10 0 124 17 150.60 -6.38 1436.92 829.38 0.23 -5.19 -1.68 -5.87 -0.47 3.56 -43225.85 1.76 3.43 3.51 

28 471.22 -6.35 10 0 122 17 146.17 -7.72 1381.76 799.42 0.13 -5.28 -1.71 -5.91 -0.52 3.78 -42155.90 1.79 3.50 3.57 

29 485.23 -6.69 11 0 124 17 150.92 -7.14 1436.81 831.57 0.47 -5.28 -1.69 -5.89 -0.51 3.73 -43225.58 1.80 3.49 3.59 

30 485.23 -6.77 11 1 124 18 150.77 -7.42 1491.96 873.56 0.53 -5.29 -1.71 -5.92 -0.53 3.78 -43225.58 1.79 3.50 3.58 

31 499.25 -7.11 12 1 126 18 155.52 -6.84 1547.91 903.90 0.87 -5.29 -1.69 -5.90 -0.53 3.73 -44295.26 1.80 3.49 3.60 

 

EM: Exact Mass; Log S: Intrinsic Solubility; NRB: Number of Rotatable Bonds; SC: Shape Coefficient; SVD: Sum of Valence Degrees; TD: 

Topological Diameter; MR: Molar Refractivity; HE: Hydration Energy; V: Molar Volume; SAG: Surface Area Grid; Log P: Partition Coefficient 

Octanol/Water;EHOMO(eV), ELUMO(eV), EHOMO-1(eV)and ELUMO+1 (eV): Energies of the HOMO, LUMO, HOMO-1 and LUMO+1 orbitals, 

respectively; D (Debye): Dipole moment; E (eV): Total energy; η(eV): Hardness; χ(eV): Electronegativity; EGap(eV): Energy Gap. 
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III.4.4. Data analysis 

For building QSAR models, we need a data analysis technique. The latter quantifies the relationship 

between the structure and the activity (descriptor). There are different methods for constructing a 

QSAR model and analyzing the statistical data of the latter. We used in our study the XLSTAT 

software [33] for multiple linear regression and Matlab software [34] for artificial neural network 

investigations. 

III.4.4.1. Multiple linear regression (MLR) 

The MLR statistical method is one of the most widely used approaches for developing QSAR 

models, either alone or in combination with other statistical methods, this method is simple to use 

and very practical, the interpretation is easy with clear transparency. [35] 

We have established a remarkable correlation between CCBs activity and molecular descriptors 

which is represented by the following equation: 

pIC50 = 4.089 + 1.871 Log S - 1.242 NRB - 0.494 SVD + 0.568 MR -12.480 ELUMO+1 

 

 

The previous equation shows that the biological activity depends solely on the intrinsic solubility 

(Log S), the number of rotatable bonds (NRB), sum of valence degrees (SVD), molar refractivity 

(MR) and the energy of the LUMO+1 (ELUMO+1) physicochemical descriptors. Indeed, these 

descriptors are strongly correlated with the pIC50 value quantifying the target activity. Moreover, 

we also note that Log S, and MR are preceded by a positive sign, while the remaining descriptors 

are preceded by a negative sign. Therefore, increasing the values of log S and MR or decreasing the 

values of NRB, SVD and ELUMO+1 will contribute to the improvement of the target activity. 

 

Table III .7. Predicted and Experimental pIC50 values using ANN and MLR methods. 
 

N° Exp. pIC50 Pred. pIC50 N° Exp. pIC50 Pred.  pIC50 

  MLR ANN   MLR ANN 

1* 9.52 10.93 10.93 16 8.52 8.81 8.97 

2 10.44 10.75 10.35 17 8.96 8.59 8.68 

3 10.74 10.64 10.69 18 8.45 8.48 8.74 

4 10.92 10.21 10.43 19 8.65 8.24 8.42 
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5 9.19 9.68 9.45 20 8.30 8.08 8.48 

6 8.55 8.41 8.90 21 8.20 7.86 8.15 

7* 9.25 10.01 10.01 22 9.56 9.56 9.37 

8* 9.34 10.17 10.17 23 9.67 9.46 9.19 

9 10.01 9.50 10.09 24* 9.28 9.38 9.38 

10 9.19 8.98 8.92 25 9.72 9.16 8.72 

11 7.05 7.90 8.11 26 9.49 9.44 9.41 

12 9.75 9.65 9.25 27 9.24 9.18 9.35 

13 9.07 9.45 9.02 28 9.23 9.02 8.62 

14 8.55 9.59 9.13 29* 8.05 8.79 8.79 

15* 8.88 9.35 9.35 30 8.21 8.77 8.34 

    
31 8.30 8.55 7.92 

(* denotes the compounds selected for test set). 

 

 

The values of calculated activities using MLR model are given in Table III 7, Figure III.4 shows the 

plot of the experimental activities against the predicted values. We notice that the predicted pIC50 

values are in good agreement with the experimental values with correlation coefficient R2=0.762 for 

the training set and R2
test=0.684 for test set shows the good correlation between different independent 

variables with the activity of BCCs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. III .4. Correlation between predicted and experimental pIC50 values using MLR. 
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The domain of applicability (DA) of each QSAR model is considered a necessary and essential step 

to assess the accuracy of the prediction. The AD of the built MLR model was determined by using 

the leverage approach to represent the William’s plot accessible in Matlab software [36-37]. The 

leverage of a given chemical entity hi is defined: hi = x T(XTX)-1xi (i= 1, 2…n), where X is the 

descriptor matrix of the chemical compounds in the training set used to build the model and xi is the 

query compound descriptor row. As a prediction tool, the warning leverage h* is defined as: 

h*=3(P+1)/n, where P is the number of descriptors in the model and n is the number of training 

compounds. The domain of applicability is realized in a known area squared inside a standard 

deviation (x= ±2.5) used as a cut of value for accepting predictions [38–39]. 

 

Figure. III .5. William’s plot of standardized residual versus leverage via MLR model, 

with h* = 0.250 and residual limits ± 2.5. Training samples are in black and test samples are in 

red. The dashed red lines correspond to the interval delimiting the applicability domain. 

 

 

From the William’s plot (Figure. III. 5) all compounds in the series are within the applicability 

domain of the model except test compound 2. This compound has a leverage value greater than the 

warning h* value and may be a high leverage compound influencing the model's performance. So 

their standard residuals are very low and within the established limit. This compound may be 
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considered significant in fitting the model performance, but there is no need to delete it from the 

data set. Besides, the standardized residuals of all compounds belongs to the interval [-2.5, 2.5] used 

for accepting predictions 

 

III.4.4.2. Artificial neuron network 

Artificial neural networks (ANN) are very useful for the prediction of biological activity for 

a dataset of chemical compounds [40]. The latter make it possible to study complex and non-linear 

relationships, unlike conventional statistical methods (MLR, PLS,..) [41]. They are accustomed to 

modeling various complex nonlinear systems in several fields such as the pharmaceutical field, 

medicinal chemistry, engineering, psychology [42]. 

 

 

Figure. III. 6. Structure of ANN used in this work 

The structure of the ANN is designed as follows, the neural network is a more or less complex 

system of neurons fully interconnected and structured in three layers. As can be seen in Figure. III. 

6, the input layer is composed of five neurons, each neuron receiving one of the five descriptors 

selected in the MLR model (Log S, NRB, SVD, MR and ELUMO+1). The hidden layer also called 

middle is made up of three neurons that form the deep internal entity that reveals the most important 

correlations between experimental and predicted data. One neuron is the output layer, which returns 

the value of pIC50 [43]. The values of calculated activities using ANN model are given in 

Table III .7. 

Figure. III 7. gives the experimental activities versus the predicted values as determined by the ANN 

model. We notice that the predicted pIC50 values are in very good agreement with the values taken 

from the experiment., which demonstrates a reliable correlation between the five selected descriptors 

with CCBs activity. In fact, the statistical parameters of this model present a correlation coefficient 

of R2= 0.767. In addition, the reliability and robustness of the model has been confirmed by the 
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important R2
test value of the test data set (R2

test = 0.876). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III .7. Correlation of predicted and experimental pIC50 values validated by the ANN 

model. 

 

III .5. CONCLUSION: 

 

 

The current study presents a structural analysis of thirty-one 1,4-dihydropyridine derivative 

compounds. Additionally, it includes a discussion of various qualitative approximations of the 

relationship between their activity and structural properties. All compounds under study have a LogP 

between 0 and 5 except compounds 22, 23, 24 and 26 LogP values that are in the range of 1 to 3, 

resulting in good oral bioavailability; therefore the ligand has a good aqueous solubility to dissolve 

in the digestive tract. However for a value of LogP > 3, the ligand has a low solubility in the stomach 

and the intestines (compounds 4,5 and 11) and for LogP < 1 the drug has a good solubility, but it has 

a bad penetration through lipid membranes. 

Molecular weight (MW) is an important factor determines drug permeability, for molecules with a 

molar mass < 450, the result is better cerebral permeability and good oral absorption (compounds 

12, 13, 14 and 22) . 

All compounds have H-bond acceptors less than 10 and H-bond donors less than 5. HBAs those are 

large in number leads to low permeability through a lipid bilayer membrane, while smaller number 

leads to better permeability. 

The topological polar surface (TPSA) is a necessary parameter to predict the intrinsic properties of 
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molecular transport, especially in permeability, that is to say the speed of passage of molecules 

through the blood-brain barrier and also in intestinal absorption. For our results, all 1,4 

dihydropyridines derivatives have values below 140 Å2 (93.32Å2), which shows the good prediction 

of oral bioavailability and transport through biological membranes. The total number of atoms for 

all compounds is between 20 and 70. 

In conclusion the majority of ligands agree with Lipinski rules, Veber rules and Ghose rules, in 

particular compound 12 Lipinski who has the top score in the three rules. These rules are used as 

filters to select the best promising molecules. 

In this work, the CCBs activity of a series of 1,4-dihydropyridines was predicted using MLR and 

ANN approaches. The external and internal consistency of the built models was confirmed using 

internal and external validation methods to assess their statistical quality. External validation of these 

models confirmed their ability to accurately predict the CCBs activity of the studied compounds. 

Furthermore, the MLR equation can show that physical features, organic functional groups, and 

chemical molecular fragments are significantly linked to the desired activity of these studied 

compounds. 
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IV .1. INTRODUCTION 

 

Drug design often relies on computer modeling techniques, commonly referred to as "in silico" 

methods. This approach, known as computer-aided drug design, aims to predict the affinity between 

a ligand and its target. Thus far, the outcomes of these modeling techniques have generally been 

satisfactory. however, there exist additional properties that must be fine-tuned for the ligand to 

achieve optimal safety and efficacy as a drug. These molecular attributes, including the absence of 

side effects, bioavailability, metabolic half-life, toxicity….pose considerable challenges for rational 

drug design techniques [1].The mode of action for numerous drugs involves serving as inhibitors or 

activators of specific receptors relevant to drug development. The elucidation of the three- 

dimensional structure of proteins implicated in various pathologies has facilitated, through computer 

simulations, the identification of potent inhibitors targeting these proteins. This has significantly 

diminished the need for extensive screening tests to develop new drugs [2]. 

Interactions between molecules are the basis of most biological mechanisms understanding the 

intricate workings of these interactions on a molecular scale is highly compelling, with methods such 

as X-ray crystallography or nuclear magnetic resonance (NMR) providing avenues for exploration. 

However, due to the vastarray of diverse molecules present within a single cell, these techniques of 

tenfall short of fully elucidating every interaction. 

The objective of in silico molecular docking is to forecast the configuration of a molecular complex 

starting from individual molecules. This approach is notably more convenient, cost-effective, and 

rapid compared to the experimental techniques [3]. 

 

IV .2 . OVERVIEW OF MOLECULAR DOCKING 

 

Docking refers to molecular simulations that integrate various methods to investigate how two 

molecules interact. Docking software serves as a valuable tool in biology, pharmacy, and medicine, 

particularly because many active compounds are small molecules that interact with biologically 

relevant targets. Typically, the macromolecular receptor is a protein, and the term "docking" 

commonly denotes the interaction between a protein and a ligand [4]. 

Docking methods integrate a search algorithm to produce potential binding modes of the ligand 

within the receptor, known as "poses," along with a scoring function to rank these poses based on 

predicted affinity scores. Consequently [5], docking methods strive to discern the true ligands of the 

receptor among the studied molecules and ascertain the accurate poses, representing the 
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conformations adopted by the ligands during receptor binding [6]. 

Docking essentially comprises two phases: docking and scoring: 

 The initial phase (docking) involves the selection process. It entails positioning the ligand within the 

protein's active site, sampling various conformations, positions, and orientations (poses), and 

retaining those that depict the most favorable interaction modes. While manual execution is feasible, 

this step is typically automated using docking algorithms to enhance the efficiency and precision of 

simulations [4]. 

 The second step (scoring): the scoring functions are used to mathematically estimate the binding 

affinity between a receptor and each of the poses generated during docking [7]. The efficiency of 

these scoring functions is at least as important as that of conformation al search algorithms. Indeed, 

even if the bioactive conformation of the ligand has been obtained during docking, if the scoring 

functions do not make it possible to differentiate the correct poses from the incorrect ones, the most 

promising compounds for the target cannot be identified [8]. 

 

 

 

Figure IV.1. The fundamental concept of molecular docking 
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IV .2-1- Various molecular docking techniques 

Molecular docking techniques can be categorized into three types, depending on factors such as 

ligand flexibility, the algorithms employed for pose exploration, and the scoring functions for 

evaluating binding affinity. Hence, we can delineate three types of docking 

 

 

 

 

Figure IV.2. Methods for protein-ligand molecular docking. 

 

 

IV .2.1.1.Rigid docking 

Rigid docking involves considering both the protein and ligand as entirely rigid entities. This 

approach aligns with the concept of the "lock and key" mechanism proposed by Emil Fischer in 

1890, wherein only a ligand (resembling the key) with the appropriate size and shape can interact 

with the protein (acting as the lock) [9]. 
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Figure IV. 3. Diagram illustrating the principle of 

“Lock and key” 

 

IV .2.1.2. Semi-flexible docking 

Semi-flexible docking involves allowing flexibility in the ligand to explore its various 

conformations, while keeping the target rigid through  out the process. While this approach offers 

the advantage of shorter calculation times, it over looks any conformational changes necessary in 

the target [10]. 

IV .2.1.3. Flexible docking 

This technique addresses the flexibility of both the ligand and the receptor. One significant 

challenge of flexible docking methods lies in navigating the ligands' conformational space to discern 

both the accurate poses within the protein's active site and the binding modes associated with low 

binding free energy [11]. 

 

IV .2.2. Molecular docking algorithms 

Offer various approaches to the process. Initially, docking could be performed manually, 

where the modeler directly positions the ligand within the protein's active site using a graphical 

interface. Subsequently, the assembly's geometry is optimized to rectify steric issues and achieve an 

energetically stable complex. This method is suitable when the actual mode of ligand interaction is 

well-understood. However, in many cases, the precise mode of interaction remains unknown. In such 
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instances, manually exploring all ligand conformations and orientations becomes impractical, even 

when considering the protein as a rigid entity. To address this challenge, docking algorithms have 

been developed to systematically, swiftly, and efficiently search for the most favorable protein-ligand 

binding modes [12]. 

An algorithm’s effectiveness in locating the accurate position of the ligand concerning its receptor is 

typically evaluated using the Root-Mean-Square Deviation (RMSD) of the model generated by the 

software. The RMSD between two poses serves as a geometric metric, quantifying the distance 

between the atomic positions of the experimental structure and those of the predicted structure of the 

ligand/binding site complex [13]. 

IV .2.3. Scoring function 

The scoring function is a numerical value used to measure the extent to which a ligand binds to a 

receptor. Typically, it approximates the free energy change associated with the transition from the 

unbound state of the protein and ligand to the formation of a complex. The underlying 

thermodynamic principle is as follows: [14]. 

 

 

∆𝐺= ∆𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑒−∆𝐺ligand−∆𝐺proteine 

 

 

IV .3- MOLECULAR DOCKING STUDIES 

The quality of any QSAR model is mainly related to the accuracy of the experimental results 

based on which it will be developed. Therefore, after QSAR analysis, it is of great importance to 

evaluate the collected data quality [15,16] .In this context, molecular docking studies were performed 

using Auto Dock Vina software [17], to re-estimate the activity of the dataset molecules as Calcium 

Channel antagonists by analyzing their binding energies as well as their mutual interaction types. The 

crystal structure of Calcium Channel in complex with amlodipine, which is a Calcium Channel 

blocker, was retrieved from the RCSB Protein Data Bank (PDB ID: 5KMD). Before performing 

docking, all ligands linked to the Calcium Channel were removed and then Kollman charges as well 

as polar hydrogen were added using Auto Dock Tools [18]. The docking gird box was set as follow: 

x = 39.626, y = 36.709, z = 14.846 at 20 Å size and 0.375 Å spacing. Furthermore, the ligands 

structures were optimized with the steepest Descent method using Avogadro software [19]. and then 

Gasteiger charges were added to the optimized structures, followed by merging polar hydrogens. 

Finally, the investigated ligands were docked to the Calcium Channel and the involved interactions 

were analyzed employing Discovery Studio 2021 software [20]. 
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RESULTS AND DISCUSSION 

 

After developing QSAR models, docking studies were performed to check upon the validating 

of the collected experimental results. The docking results were analyzed based on two parameters, 

namely binding energies and ligand-protein interactions. This table shows that all compounds of our 

series have negatives binding energies while interacting with the Calcium Channel. This is a signature 

of their strong affinities towards the mentioned biological target. Besides, they exhibit larger binding 

energies in absolute values compared to Amlodipine, which is a well-known calcium channel 

blockers drug. Thus the series under investigation have a favorable complexation with the Calcium 

Channel. 

 

Table IV.1 :Binding energies (BE, kcal/mol) for docked compounds of the series as ligands 
 

Compound BE Compound BE 

1 -8.3 17 -8.3 

2 -7.9 18 -7.8 

3 -7.8 19 -7.9 

4 -8.7 20 -8.1 

5 -6.9 21 -7.6 

6 -8.4 22 -7.9 

7 -7.7 23 -7.7 

8 -8.3 24 -8.5 

9 -9.0 25 -8.2 

10 -7.2 26 -8.8 

11 -7.4 27 -8.4 

12 -8.0 28 -8.7 

13 -7.8 29 -8.5 

14 -8.1 30 -8.4 

15 -7.8 31 -8.1 

16 -7.9 Amlodipine -5.5 

 

. 
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Figure IV .4:2D (left) and 3D (right) diagrams revealing the interactions between Amlodipine and 

the Calcium Channel. 

 

At first glance, we screened the interactions between Calcium Channel and Amlodipine drug. 

Indeed, the key residues characterizing the active site of the Calcium Channel were identified by 

analyzing the interacting sites responsible for the activity of Amlodipine. According to Figure IV .4, 

Amlodipine bind to the biological target by implicating three hydrogen bonds with GLY D: 1164, 

and two - interactions with PHE D: 1167 and TYR C: 1195. Therefore, GLY D: 1164, PHE D: 

1167 and TYR C: 1195 can be considered as the most potent key residues influencing the Calcium 

Channel activity. Afterwards, the interactions involved between the most active ligands (i.e. 

compounds 2, 3 and 4) and their biological target were analyzed, to justify their high activity values 

(high pIC50). As depicted in Figure IV .5, compound 2 interacts mainly with two key residues, namely 

TYR C: 1195, PHE D: 1167 via a - interaction with TYR C: 1195 as well as a -alkyl interaction 

with PHE D: 1167 in addition to other interactions with PHE D: 1171 and ILE C: 1199, justifying its 

activity as Calcium channel blocker. Besides, the compounds 3 was found to be complexed with the 

Calcium Channel by involving five alkyl interactions with ILE C: 1199, TYR C: 1195 and VAL C: 

1196, a - interaction with TYR C: 1195 and a hydrogen bond with GLY D: 1164. Moreover, TYR 

C: 1195 and GLY D: 1164 with which interact compound 3, are among the active sites influencing 

the Calcium Channel activity, justifying its observed activity toward the Calcium channel. 

Concerning Compound 4, which is the most active compound among the collected dataset, it was 

able to interact with all key residues influencing the Calcium Channel activity. Indeed, it is involved 

in a hydrogen bond with GLY D: 1164, five alkyl interactions with TYR C: 1195, PHE D: 1167, ILE 

C: 1199 and VAL C: 1196, two -interactions with PHE D: 1167 and TYR C: 1195, in addition to 

two - interactions with TYR C: 1195 and PHE D: 1171. 
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Table IV.2: The number of interactions involved between the most active compounds and the key 

residues of the Calcium Channel. 

Interacting sites 

Compound pIC50 GLY D: 1164 PHE D: 1167 TYR C: 1195 

2 10.44 0 1 1 

3 10.74 1 0 2 

4 10.92 1 2 3 

 

 

On the other hand, by comparing the number of interactions involved between the most active 

compounds and the key residues (Table IV.2), we can provide an explanation for their enhanced 

biological activity against the Calcium Channel as found experimentally. Indeed, the higher the 

number of interactions with the key residues, the higher the activity. Therefore, the docking results 

corroborate and validate the biological activities exhibited in vitro by the collected 1, 4- 

dihydropyridine derivatives [21]. 
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Figure . IV.5. 2D (left) and 3D (right) diagrams revealing the interactions between Calcium 

channel and ligand (2) (top), ligand (3) (middle) and ligand (4) (bottom). 
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IV .4. CONCLUSION 

 

Molecular docking studies were conducted using Auto dock Vina software to reassess the 

activity of the dataset molecules as Calcium Channel antagonists. This involved analyzing their 

binding energies and interaction types. The crystal structure of the Calcium Channel complexed with 

amlodipine (a Calcium Channel blocker) was obtained from the RCSB Protein Data Bank (PDB ID: 

5KMD). Prior to docking, ligands bound to the Calcium Channel were removed, and Kollman 

charges along with polar hydrogen atoms were in corporated using AutoDock Tools. The docking 

grid box dimensions were set to x = 39.626, y = 36.709, z = 14.846 with a size of 20 Å and spacing 

of 0.375 Å. Additionally, ligand structures under went optimization using the steepest Descent 

method in Avogadro software, followed by the addition of Gasteiger charges and merging of polar 

hydrogens. Subsequently, the ligands were docked to the Calcium Channel, and their interactions 

were analyzed using Discovery Studio 2021 software. 
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GENERAL CONCLUSION 

 
The aim of this work was to construct dependable QSAR models for predicting specific 

biological properties and activities of heterocyclic organic molecules, particularly those with varied 

structures of 1,4-dihydropyridines. A comprehensive range of molecular descriptors was computed, 

encompassing constitutional, electronic, topological, geometric, physicochemical, and thermodynamic 

descriptors..,we applied many methods of computational chemistry in this study.Quantum mechanics 

methods wereused in the study of chemical reactivity of 1,4 dihydropyridine and theirderivatives, with 

methods: PM3, Ab initio/ (HF / 6-31 + G (d, p)) and DFT (B3LYP / 6-31 + G (d, p)).The qualitative 

study of the structure-activity relationship was conducted on 31 compounds, all of which possess 

pharmacological properties. The nature of the groups attached to the basic nucleus of these molecules 

influences their physicochemical properties, and in turn, their pharmacological effects. 

Molecular properties like membrane permeability and oral bioavailability are typically associated with 

basic molecular descriptors, such as molecular weight (MW), log P (partition coefficient) and the 

number of hydrogen bond acceptors and donors in a molecule. 

 

In this work, the CCBs activity of a series of 1,4-dihydropyridines was predicted using MLR and ANN 

approaches. The external and internal consistency of the built models was confirmed using internal and 

external validation methods to assess their statistical quality. External validation of these models 

confirmed their ability to accurately predict the CCBs activity of the studied compounds. Furthermore, 

the MLR equation can show that physical features, organic functional groups, and chemical molecular 

fragments are significantly linked to the desired activity of these studied compounds. Furthermore, the 

molecular docking study allowed us to understand the mechanism of the interactions between the 

required activity and this kind of chemical compounds. 

 

The methodology based on MLR has primarily been employed for predictionpurposes. This 

approach effectively generates transparent QSAR models, which are characterized by their reliability, 

explanatory power, predictiveness, and interpretability. By selecting pertinent descriptors, these models 

facilitate the explanation and interpretation of the structure-activity of the compounds under study, from 

both statistical and chemical perspectives. 

The models presented in these applications offer insights into pharmaceutical research, aiding in the 

design and synthesis of novel molecules with potential to evolve into drugs. 
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While the primary objectives of this work have been achieved, to continue our research journey in this 

field, we anticipate various perspectives moving forward: 

 

- we are in the process of employing alternative molecular modeling techniques. This includes the 

development of QSAR-3D models using other methods . 

- We intend to use the same databases and develop models using other methods such as: genetic 

algorithms (GA)… 

- In experiment alterms, the next steps for advancing the proposed models would involve on going 

efforts aimed at validating them through the synthesis of the newly proposed molecules. This 

process should be carried out in collaboration with other research laboratories. 



 

Abstract 

Artificial neural networks (ANNs) are useful for predicting biological activities from large 

datasets of molecules. Unlike traditional statistical methods such as regression analysis, 

ANNs allow the study of complex and nonlinear relationships such as QSAR studies. Here, 

we use artificial neural network and multiple linear regression (MLR) methods to generate 

QSAR models for Calcium Channel Blockers activity of a series of 1,4-dihydropyridine 

derivatives molecules. The molecular descriptors were calculated by using Density Functional 

Theory (DFT) method at the B3LYP/6-31G+ (d, p) level. The statistical analyses indicate that 

the predicted values are in good agreement with the experimental results for both the training 

and test sets using either MLR or ANN. In addition, we used molecular docking to determine 

the binding energies, and ligand-protein interactions between these compounds and their 

biological target. 

Keywords:1,4-dihydropyridine, Calcium Channel Blockers, QSAR, DFT, ANN, MLR. 

Resume 

Les réseaux de neurones artificiels (ANN) sont utiles pour prédire les activités biologiques à 

partir de grands ensembles de données de molécules. Contrairement aux méthodes statistiques 

traditionnelles telles que l'analyse de régression, les ANN permettent l'étude de relations 

complexes et non linéaires telles que les études QSAR. Ici, nous utilisons un réseau de 

neurones artificiels et des méthodes de régression linéaire multiple (MLR) pour générer des 

modèles QSAR pour l'activité des bloqueurs de canaux calciques d'une série de molécules de 

dérivés de 1,4-dihydropyridine. Les descripteurs moléculaires ont été calculés en utilisant la 

méthode de la théorie fonctionnelle de la densité (DFT) au niveau B3LYP/6-31G+ (d, p). Les 

analyses statistiques indiquent que les valeurs prédites sont en bon accord avec les résultats 

expérimentaux pour les ensembles d'apprentissage et de test utilisant soit MLR, soit ANN. De 

plus, nous avons utilisé l'amarrage moléculaire pour déterminer les énergies de liaison et les 

interactions ligand-protéine entre ces composés et leur cible biologique. 

Mots-clés : 1,4-dihydropyridine, inhibiteurs calciques, QSAR, DFT, ANN, MLR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ملخص

 مثل التقليدية الاحصائية الاساليب عكس على .الجزيئات من كبيرة بيانات مجموعات من البيولوجية بالأنشطة للتنبؤ مفيدة ANNs الاصطناعية العصبية الشبكات

 المعقدة العالقات بدراسة الاصطناعية العصبية الشبكات تسمح الانحدار، تحليل
 لسلسلة الكالسيوم قنوات راتحاص لنشاط QSAR نماذج إنشاء MLR المتعددة الخطي الانحدار وطرق الاصطناعية العصبية الشبكة نستخدم ، هنا QSAR .دراسات مثل الخطية وغير

 )DFT الوظيفية الكثافة نظرية طريقة باستخدام الجزيئية الواصفات حساب تم .ديهيدروبيريدين1-،4 مشتقات جزيئات من

،B3LYP / 6-31G + (d p )pعلى مستوى 

 ، الربط طاقات لتحديد الجزيئي الالتحام استخدمنا ، ذلك إلى بالإضافة ANN. أو MLR إما باستخدام والاختبار التدريب مجموعات من لكل التجريبية النتائج مع جيداً تتفق المتوقعة القيم أن إلى الاحصائية التحليلات

 .البيولوجي وهدفها المركبات هذه بين يجند بروتين وتفاعلات

 QSAR، DFT، ANN، .MLR ، الكالسيوم قنوات حاصرات ، ديهيدروبيريدين1-،4 : المفتاحية الكلمات
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