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General Introduction

The origin of studies on waiting phenomena dates back to 1909–1920 with A.K. Erlang’s
work [8] on the Copenhagen telephone network. The mathematical theory then developed thanks
to the contributions of Palm, Kolmogorov, Khintchine, Pollaczek,... and currently has extended
to many fields of application such as inventory management, telecommunications in general, the
reliability of complex systems,... And this is due to the quality of the results provided by this
theory and to the fact that the problems related to waiting in a service center are omnipresent in
our days whose examples are not lacking:

– waiting at a counter (cash desk in a supermarket, administration),
– urban or air traffic,
– telephone networks,
– circulation of coins in a workshop,
– programs in a computer system,

In queueing theory, a traditional queue can be described as a system in which customers arrive
according to an arrival process, to be served by a service facility according to a service process.
However, in practice different behaviors of the server(s) and customers can be identified. A cus-
tomer can permanently leaves the system without being served for various reasons. In a balking
scenario, customers refuse to enter the queue as it has reached a certain length. Another case is the
reneging of the impatient customer. Other than customer balking, a reneging customer joins the
service queue. If the perceived wait time exceeds the customer’s expectations, then that customer
leaves the system. Regarding the server(s), other than the server activity period, the server may
be unavailable for a random period resulting from many factors. In some cases, unavailability may
be the result of a server failure, which means that the system needs to be repaired and put back
into service. It can also be a deliberating action to use the server’s idle time for different purposes
and in this case, the server is said to be on vacation.

Another customer behavior that can be distinguished in practice is that described by the no-
tion of ”feedback”, introduced in general to exploit waiting situations where all customers request
the main service and someone needs to request another service. Certain situations of the waiting
system a customer served may request an additional service by re-joining the tail of the queue
with a probability, or leave the system permanently with complementary probability. This latest
phenomenon is well known in queuing theory under the terminology Bernoulli feedback of the
customers. Indeed, This feedback is due to the dissatisfaction of this customer due to the inap-
propriate quality of service. After obtaining partial or incomplete service, the customer retry their
request for another service. In communication with the computer, the data transmission protocol
is repeated sometimes because of the occurrence of an error. This is the case of dissatisfaction

1



Introduction 2

with the quality of service. The return (feedback) phenomena of a customer in a queue has been
the subject of several works. This kind of system was initially considered by Tackas [26] and sub-
sequently by several authors [6, 30, 24, 21].

The aim of this thesis is the analysis of a particular case of the M/M/1 system where the
probability of feedback depends on the number of customers in the system. Also, we consider the
parametric estimation of the characteristics of the waiting model M/M/1/N queue with Bernoulli
feedback. From Monte Carlo simulation to study the effect of the estimation of the starting
parameters of the waiting system in question on the statistical properties of its performance mea-
surement estimators obtained via the plug-in method. Finally, analysis of the GI/GI/1 system
with Bernoulli feedback when the probability of the latter phenomenon depends on the number of
customers in the system.

Even though these systems are effective at faithfully describing many real situations, there are
still many models that haven’t been studied in the literature. However, Due to the complexity of
the analysis of such systems theoretically, the analytical results are generally difficult to obtain.
To overcome the problem, we use discrete event simulation, we have sought to provide bounds for
its characteristics through those of simple queuing systems (i.e. whose characteristics exist in the
literature).

In addition of the present introduction, this thesis consists of three chapters, a general conclu-
sion and a bibliography.

In the first chapter, a brief review of the queue theory was introduced to understand the notion
of stochastic model, the theory of queuing system, the stability of waiting systems.

In the second chapter, an M/M/1 queue with Bernoulli feedback under FCFS discipline is con-
sidered. After getting unacceptable service, with probability β′n, the customer may combine the
system as a Bernoulli feedback to order another regular service, or he leaves the system definitively
with probability βn. Numerical and graphical illustrations of different results obtained are exhibits.

In the third chapter, our aim is the analysis of GI/GI/1 queuing system with Bernoulli feedback
witch its probability depends on the number of customers in the system by the discrete event
simulation technique. The obtained results (numerical and graphical) mainly highlight the effect
of the distribution of inter-arrivals times, the distribution of service times, the probability of
Feedback and the traffic intensity on the stationary characteristics of the system in question and
allowed us to draw important conclusions on the behavior of these characteristics.

Analysis and performance evaluation of queue system with customers feedback



Chapter 1

Fundamental concepts of queuing
systems theory

Introduction

Waiting lines are the most frequently encountered problems in everyday life. For exam-
ple, queue at a cafeteria, library, bank, etc. Common to all of these cases are the arrival of objects
requiring service and the attendant delays when the service mechanism is busy. Waiting lines
cannot be eliminated completely, but suitable techniques can be used to reduce the waiting time of
an object in the system. A long waiting line may result in a loss of customers to an organization.
Waiting time can be reduced by providing additional service facilities, but it may increase the idle
time of the service mechanism.

Queuing theory is a form of probability that pertains to the study of waiting lines (queues).
This is for a system with a steady inflow of units (customers) and a specified number of servers
(service facilities). The analyst wants to know if the number of service facilities in the system is
adequate to handle the inflow of demands. The goal is to calculate various performance measures
of the system. These include the probability that a server is immediately available to a new arrival,
the average number of units in the queue, in the system, and the corresponding times in the queue
and system.

The waiting line models help the management in balancing between the cost associated with
waiting and the cost of providing service. Thus, queuing or waiting line models can be applied
in such situations where decisions have to be taken to minimize the waiting time with minimum
investment cost. A flow of customers from an infinite/finite population towards the service facility
forms. A queue (waiting line) on account of the lack of capability to serve them all at a time. The
queues may be of persons waiting at a doctor’s clinic or railway booking office; these may be of
machines waiting to be repaired ships in the harbor waiting to be unloaded or letters arriving at a
typist’s desk. In the absence of a perfect balance between the service facilities and the customers,
waiting is required either for the service facilities or for the customer’s arrival.

By the term ’customer’ we mean the arriving unit that requires some service to be performed.
The customer may be persons, machines, vehicles, parts, etc. Queues (waiting lines) stand for
several customers waiting to be serviced. The queue does not include the customer being serviced.

3



Fundamental concepts of queuing systems theory 4

The process or system that performs the services to the customer is termed by service channel or
service facility.

The word queue comes from the French interpretation of the Latin cauda, meaning a tail.
According the Funk and Wagnall’s New International Dictionary, a queue is ”a line of persons or
vehicles waiting in order of their arrival”. The world queue is the command way to refer to a line
in England.

Queuing Theory is a collection of mathematical models of various queuing systems that take
as inputs parameters of the above elements and that provide quantitative parameters describing
the system performance.

Because of the random nature of the processes involved the queuing theory is rather demand-
ing and all models are based on very strong assumptions (not always satisfied in practice). Many
systems (especially queuing networks) are not soluble at all, so the only technique that may be
applied is simulation.

Nevertheless, queuing systems are practically very important because of the typical trade-off
between the various costs of providing service and the costs associated with waiting for the service
(or leaving the system without being served). High-quality fast service is expensive, but costs
caused by customers waiting in the queue are minimal. On the other hand, long queues may cost
a lot because customers (machines e.g.) do not work while waiting in the queue or customers leave
because of long queues. So a typical problem is to find an optimum system configuration (e.g.
the optimum number of servers). The solution may be found by applying queuing theory or by
simulation. Queuing systems are widely studied and there is extensive literature on this topic (see
[20, 11, 27, 18, 10]).

1.1 Queuing System

The mechanism of a queuing process is very simple. Customers arrive at the service
counter and are attended to one or more of the servers. As soon as a customer is served, he
departs from the system. Thus a queuing system can be described as composed of customers
arriving for service, waiting for service if it is not immediate, and if having waited for service,
leaving the system after being served.

The detailed character station of a queuing system is defined by its characteristics discussed in
the following section.

1.1.1 Elements of Queuing Systems

In the context of queue theory, improving queue analysis relies primarily on selecting
the appropriate model taking into account the following characteristics:

– Population of Customers can be considered either limited (closed systems) or unlimited
(open systems). The unlimited population represents a theoretical model of systems with a
large number of possible customers (a bank on a busy street, a motorway petrol station). An
example of a limited population may be several processes to be run (served) by a computer
or a certain number of machines to be repaired by a serviceman. It is necessary to take
the term ”customer” very generally. Customers may be people, machines of various natures,

Analysis and performance evaluation of queue system with customers feedback
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The queue system

Waiting space ServiceIncoming
 customers

Customers 
served

Po
pu

la
tio

n

Figure 1.1: The elements of a single queue queuing system

computer processes, telephone calls, etc.

– Arrival defines the way customers enter the system. Mostly the arrivals are random with
random intervals between two adjacent arrivals. Typically the arrival is described by a ran-
dom distribution of intervals also called Arrival Pattern.

– Queue represents a certain number of customers waiting for service (of course the queue
may be empty). Typically the customer being served is considered not to be in the queue.
Sometimes the customers form a queue literally (people waiting in a line for a bank teller).
Sometimes the queue is an abstraction (planes waiting for a runway to land). There are two
important properties of a queue: Maximum Size and Queuing Discipline.
Maximum Queue Size (also called System capacity) is the maximum number of customers
that may wait in the queue (plus the one(s) being served). The queue is always limited, but
some theoretical models assume an unlimited queue length. If the queue length is limited,
some customers are forced to renounce without being served.

– Service represents some activity that takes time and that the customers are waiting for.
Again take it very generally. It may be a real service carried on persons or machines, but
it may be a CPU time slice, a connection created for a telephone call, being shot down by
an enemy plane, etc. Typically a service takes random time. Theoretical models are based
on random distribution of service duration also called Service Pattern. Another important
parameter is the number of servers. Systems with one server only are called Single Channel
Systems, and systems with more servers are called Multi Channel Systems.

– Output represents the way customers leave the system. Output is mostly ignored by theo-
retical models, but sometimes the customers leaving the server enter the queue again (”round
robin” time-sharing systems).

Customer’s Behaviour

– Balking. A customer may not like to join the queue due to the long waiting line.
– Reneging. A customer may leave the queue after waiting for some time due to impatience.
– Collusion. Several customers may cooperate and only one of them may stand in the queue.
– Jockeying. When there are many queues, a customer may move from one queue to another

in the hope of receiving the service quickly.

Analysis and performance evaluation of queue system with customers feedback



Fundamental concepts of queuing systems theory 6

Server’s Behaviour

– Failure. The service may be interrupted due to the failure of a server.
– Changing service rates. A server may speed up or slow down, depending on the number

of customers in the queue. For example, when the queue is long, a server may speed up in
response to the pressure. On the contrary, it may slow down if the queue is very small.

– Batch processing. A server may service several customers simultaneously, a phenomenon
known as batch processing.

1.1.2 Kendall Classification of Queuing Systems

The Kendall classification of queuing systems (1953) exists in several modifications. The most
comprehensive classification uses 6 symbols:

A/B/s/q/c/p
where:

A is the arrival pattern (distribution of intervals between arrivals).
B is the service pattern (distribution of service duration).
s is the number of servers.
q is the queuing discipline (FIFO, LIFO, ...). Omitted for FIFO or if not specified.
c is the system capacity. Omitted for unlimited queues.
p is the population size (number of possible customers). Omitted for open systems.
These symbols are used for arrival and service patterns:
M is the Poisson (Markovian) process with exponential distribution of intervals or service

duration respectively.

Em is the Erlang distribution of intervals or service duration.
D is the symbol for deterministic (known) arrivals and constant service duration.
G is a general (any) distribution.
GI is a general (any) distribution with independent random values.
Examples:
D/M/1 = Deterministic (known) input, one exponential server, one unlimited FIFO or un-

specified queue, unlimited customer population.
M/G/3/20 = Poisson input, three servers with any distribution, maximum number of cus-

tomers 20, unlimited customer population.
D/M/1/LIFO/10/50 = Deterministic arrivals, one exponential server, the queue is a stack

of the maximum size 9, the total number of customers 50.

1.1.3 Characteristics of Queuing systems

A queuing system is specified completely by the following five basic characteristics:

The Input Process: It expresses the mode of arrival of customers at the service facility
governed by some probability law. The number of customers emanates from finite or infinite
sources. Also, the customers may arrive at the service facility in batches of fixed size or variable size
or one by one. In the case when more than one arrival is allowed to enter the system simultaneously,

Analysis and performance evaluation of queue system with customers feedback



Fundamental concepts of queuing systems theory 7

(entering the system does not necessarily mean entering into service), the input is said to occur in
bulk or batches.

It is also necessary to know the reaction of a customer upon entering the system. A customer
may decide to wait no matter how long the queue becomes, or if the queue is too long to suit him,
may decide not to enter it. If a customer decides not to enter the queue because of its huge length,
he is said to have balked. On the other hand, a customer may enter the queue, but after some
time loses patience and decides to leave. In this case, he is said to have reneged. In the case when
there are two or more parallel queues, the customer may move from one queue to another for his
economic gains, that is jockeying for position.

The final factor to be considered regarding the input process is how the arrival pattern changes
with time. The input process which does not change with time is called a stationary input process.
If it is time dependent then the process is termed as transient.

The Queue Discipline: It is a rule according to which customers are selected for service when
a queue has been formed. The most common discipline is the ”first come, first served” (FCFS), or
”first in, first out” (FIFO) rule under which the customers are serviced in the strict order of their
arrival. Other queue disciplines include the ”last in, first out” (LIFO) rule according to which the
last arrival in the system is serviced first, the ”selection for service in random order” (SIRO) rule
according to which the arrivals as serviced randomly irrespective of their arrivals in the system;
and a variety of priority schemes-according to which a customer’s service is done in preference over
some other customer’s service.

Under priority discipline, the service is of two types. In the first, which is called preemptive,
the customers of high priority are given service over the low priority customer. In the second type,
called the non-preemptive, a customer of low priority is serviced before a customer of high priority
is entertained for service.

In the case of parallel channels ”fastest server rule” (FSR) is adopted. For its discussion, we
suppose that the customers arrive before parallel service channels. If only one service channel is
free, then the incoming customer is assigned to the free service channel. However, it will be more
efficient to assume that an incoming customer is to be assigned a server with the largest service
rate among the free ones.

The Service Mechanism: This means the arrangement of server-s facility to serve the cus-
tomers. If there are infinite numbers of servers then all the customers are served instantaneously
on arrival and there will be no queue.

If the number of servers is finite, then the customers are served according to a specific order.
Further, the customers may be served in batches of fixed size or variable size rather than individ-
ually by the same server, such as a computer with parallel processing or people boarding a bus.
The service system in this case is termed a bulk service system.

Sometimes, the service rate may also depend on the number of customers, waiting for service.
For example, when the queue becomes longer, a server may work faster or, conversely, may be-
come less efficient. The situation in which service depends upon the number of waiting customers
is referred to as a state-dependent system.

The Capacity of the System: Some of the queueing processes admit the physical limitation
to the amount of waiting room so that when the waiting line reaches a certain length, no further
customers are allowed to enter until space becomes available by a service completion. Such types
of situations are referred to as finite source queues, that is, there is a finite limit to the maximum

Analysis and performance evaluation of queue system with customers feedback
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queue size. The queue can also be viewed as one with forced balking
Where a customer is forced to balk if he arrives at a time when queue size is at its limit.

Service Channels: When there are several service channels available to provide service, much
depends upon their arrangements. They may be arranged in parallel or in series or a more complex
combination of both, depending on the design of the system’s service mechanism.

By parallel channels, we mean a number of channels providing identical service facilities so
that several customers may be serviced simultaneously. Further, customers may wait in a single
queue until one of the service channels is ready to serve, as in a barber shop where many chairs are
considered as different service channels; or customers may form separate queues in front of each
service channel as in the case of supermarkets.

For series channels, a customer must pass successively through all the ordered channels before
service is completed. The situations may be seen in public offices where parts of the service are
done at different service counters.

A queuing system is called a one-server model when the system has one server only, and a
multiple-server model when the system has several parallel channels each with one server.

1.1.4 Performance measure of a queueing system

The rate of arrival of customers is λ. This means that the expected duration of two successive
arrivals is E(X) = 1/λ.

The customer service rate is noted µ. This means that the expected length of service is
E(Y ) = 1/µ = β1. Traffic intensity is expressed as follows:

ρ =
λ

µ
=
E(Y )

E(X)
(1.1)

where X is the law of inter-arrivals and Y is the law of service.
The stationary distribution of the introduced stochastic process allows to obtain the operating

characteristics of the system, such as a customer’s wait time (the time that a customer spends in
the queue), the length of a customer’s sojourn in the system (consisting of waiting time and service
time), the response time of the system, the occupancy rate of the service devices, the duration of
the period of operation (the time interval during which there is always at least one customer in
the system); and the following performance measures:

– Ls: The mean number of customers in the system,
– Lq: The mean number of customers in the queue,
– Ws: The mean waiting time in the system,
– Wq: The mean time in the queue.

These values are linked by the following relationships:

– Ls = λWs,
– Lq = λWq,
– Ls = Lq + λ

µ
,

– Ws = Wq + 1
µ
.

where λ is the customer arrival rate in the system and µ the service rate.
The first two are called ”Little formulas”. It should be noted that these formulas are only

valid under the ergodicity condition check of the system ρ = λ
µ
< 1. These formulas simply
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express the fact that, on a stationary basis, the average number of customers in the queue is
equal to the customer arrival rate multiplied by the average customer wait time. They recall a
Poissonian behavior of the length of the queue in a steady state. These relationships are valid for
all G/G/C/K.

1.2 Mathematical analysis of a queue system

The mathematical study of a queue system is usually done by the introduction of a
stochastic process, appropriately defined. The main focus is on the number of X(t) customers
in the system at time t(t ≥ 0). Based on the quantities that define the system, the aim is to
determine:

State probabilities Pn(t) = P (X(t) = n), which define the transient regime of the stochastic
process X(t), t ≥ 0. The functions Pn(t) depend on the initial state or the initial distribution of
the process.

The steady state of the stochastic process is defined by:

πn = lim
t→∞

Pn(t) = P (X(+∞) = n) = P (X = n), (n = 0, 1, 2, ...). (1.2)

(πn)n≥0 is called stationary distribution of the process X(t), t ≥ 0.
The explicit calculation of the transient regime is generally difficult, if not impossible, for most

of the models given. We therefore simply determine the steady state.

1.2.1 Markovian models

They characterize systems in which the two main stochastic quantities inter-arrival time
and service time are exponentially distributed independent random variables (M/M/1 model).
The absence of memory property of the exponential law facilitates the study of these models.
The mathematical study of such systems is done by the introduction of an appropriate stochastic
process. This process is often {X(t), t ≥ 0} defined as the number of customers in the system at
the time t. The temporal evolution of the Markovian process {X(t), t ≥ 0} is completely defined
because of the absence of memory property.

1.2.2 Non-Markovian models

In the absence of exponentiality or rather when one deviates from the hypothesis of
exponentiality of one of the two stochastic quantities: the time of inter-arrivals and the duration
of service, or by taking into account certain specificities of the problems by introducing additional
parameters, a non-Markov model is obtained. The combination of all these factors makes the
mathematical study of the model very difficult, if not impossible. One then tries to return to a
judiciously chosen Markov process using one of the following analytical methods:

Erlang step method: Its principle is to approximate any probability law having a rational
Laplace transform by a Cox law (mixture of exponential laws), the latter has the property of ab-
sence of memory by stages.

Induced Markov Chain Method: This method, elaborate by Kendall [7], is often used. It
consists of choosing a sequence of moments t0, t1, t2, ..., tn (deterministic or random) such as the
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induced chain {Xn, n ≥ 0}, when Xn = X(tn), be markovian and homogeneous.

Auxiliary variable method: It consists of completing the information on the process {X(t), t ≥
0} in such a way as to give it the character Markovian. Thus, we come back to the study of the
process {X(t), A(t1), A(t2), ...A(tn)}. The variables A(tk), k ∈ {1, 2, ..., n} are called auxiliary.

Fictitious event method: The principle of this method is to introduce fictitious events that
make it possible to give a probabilistic interpretation to Laplace transforms and random variables
describing the studied system.

Simulation: It is a process of artificial imitation of a real process given on the computer. It
allows us to study the most complex systems, predict their behaviors, and calculate their charac-
teristics. The results obtained are only approximate but can be used with good precision. This
technique is based on the generation of random variables according to the laws governing the
system.

1.3 Some classical queue systems

1.3.1 M/M/1 queue

The M/M/1 queue system is the most basic in queue theory. The flow of arrivals is the pois-
sonian parameter λ and the service time is the exponential parameter µ.

Transitional regime

Let X(t) be the number of customers present in the system at time t(t ≥ 0). Thanks to the
fundamental properties of the Poisson process and the exponential law, X(t) is a homogeneous
Markov process.

The state probabilities Pn(t) = P [X(t) = n] can be calculated by the differential equations of
Kolmogorov below, knowing the initial conditions of the process.{

P ′n(t) = −(λ+ µ)Pn(t) + λPn−1(t) + µPn+1(t),
P ′0(t) = −λP0(t) + µP1(t).

(1.3)

Steady state

Under the ergodicity condition of the ρ < 1 or λ < µ system, for which the stationary regime
exists, it is necessary to obtain the stationary probabilities πn = limt→∞ Pn(t). We have

πn = (1− ρ)ρn,∀n ∈ N, (1.4)

ρ = λ/µ is called system load or duty cycle. It also represents the probability of occupancy of the
service station, since it is equal to 1− π0. π = πnn≥0 is called stationary distribution, it follows a
geometric law.

Characteristics of the system
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– The mean number of customers in the system is:

Ls = E(X) =
∑
n≥0

nπn = (1− ρ)
∑
n≥0

nρn =
ρ

1− ρ
. (1.5)

– The mean number of customers in the queue is:

Lq =
∑
n≥1

(n− 1)πn =
ρ2

1− ρ
. (1.6)

– The mean waiting time in the system is:

Ws =
ρ

λ(1− ρ)
. (1.7)

– The mean time in the queue is:

Wq =
ρ2

λ(1− ρ)
. (1.8)

Remark 1.3.1. The mean stay time in the system and the mean wait time in the queue are
obtained from Little’s formulas or system distributions.

1.3.2 M/GI/1 queue

The inflow of arrivals in the system M/GI/1 is poissonian of parameter λ and service-
time is distributed according to a general law G of average 1/µ. The particularity of this system
is that, unlike the case M/M/1, the process X(t) is not Markovian.

There are several methods of analyzing these systems (see paragraph 1.2.2). In this thesis, we
will limit ourselves to ”the method of the induced Markov chain.

Induced Markov Chain and Transition Probabilities

Either Xn: The number of customers in the M/GI/1 system at the end of the nth service
customer. Note by G(t) the distribution of the length of service and by λ the parameter of the
exponential distribution governing the duration between two consecutive arrivals.

The process {Xn, n ≥ 0} is a Markov chain, transition operator P = [Pij]i,j≥0, where:

Pi,j =

{
Pj if i = 0;
Pj−i+1 if i ≥ 1;

(1.9)

with

Pk =

∫
e−λt(λt)k

k!
dG(t), k = 0, 1, 2, ... (1.10)

Indeed, if An is the number of customers who enter the system during the nth service, we have:

Xn+1 = Xn − δn + An+1, (1.11)

Where
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δn =

{
1, if Xn > 0;
0, if Xn = 0.

(1.12)

This shows that Xn+1 depends only on Xn and An+1 and not on Xn−1, Xn−2, ... This means
that the sequence {X(t), t ≥ 0} is markovian, where X(t) is the number of customers in the system
at time t.
Moreover, Pr(An = k/t) = e−λt(λt)k

k!
, because the number of An customers that enter the system, is

distributed according to a parameter Poisson law (λt). According to the total probability theorem,

Pr(An = k) = Pk =
∫ e−λt(λt)k

k!
dG(t), where Pk > 0, (k=1,2,...). (1.13)

Steady state

The stationary regime of the system exists and it is identical to the stationary state of the
induced Markov chain Xn if ρ = λ/µ < 1. Finding the stationary distribution π = (π0, π1, ...) will
generally not be possible. However, we can calculate the corresponding generator function Π(z)
(see[17])

Π(z) = G∗(λ− λz)
(1− ρ)(1− z)

G∗(λ− λz)− z
, (1.14)

where G∗ represents the Laplace transform of the duty time probability density, and z is a
complex number checking |z| ≤ 1. This formula is called the 1st Pollaczek-Khintchine formula.
Its inversion, to find Π, is often difficult and requires numerical methods.

Characteristics of the system

– The average number of customers in the system: This amount can be determined, the steady
state, using the relationship:

E(X) = lim
Z→1

Π′(Z) (1.15)

Nevertheless, this calculation is complicated. However, it can be easily obtained by using
the relationship:

Xn+1 = Xn − δn + An+1, (1.16)

This is achieved by:

Ls = E(Xn) = ρ+
ρ2 + λ2V ar(Y )

2(1− ρ)
, (1.17)

Where V (Y ) is the variance of the random variable Y .
– The average number of customers in the queue is:

Lq =
ρ2 + λ2V ar(Y )

2(1− ρ)
. (1.18)

Using the Little formula, we obtain:
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– The mean waiting time in the system is:

Ws =
1

µ
+ λ(

V ar(Y ) + 1
µ2

2(1− ρ)
). (1.19)

– The mean waiting time in the queue is:

Wq = Ws −
1

µ
= λ(

V ar(Y ) + 1
µ2

2(1− ρ)
). (1.20)

1.3.3 GI/M/1 queue

The GI/M/1 queue system is the ”dual” of the M/GI/1 system. In this case, the inter-arrival
times of the customers are a series of random variables distributed according to a common general
law G, average 1/λ, and the service times are independent and identiquement distributed according
to an exponential law of parameter µ. The same methods cited in paragraph 1.2.2, may be used
for this non-markovian system. We will limit ourselves to the method of the induced Markov chain.

Induced Markov Chain

It can be shown that the two-dimensional process {X(t), δ(t)}, where δ(t) represents the time
since the last arrival before t, is a Markovian process. As in the M/GI/1 case, this process can be
simplified to a one-dimensional process by considering it at particular times. Indeed, by choosing
the moments tn of the arrival of the nth customer, it is clear that the random variables δ(tn) are
null. We will therefore have to study the Markov chain in discrete time Xn = X(tn) = ”number
of customers in the system just before the arrival of the nth customer”.

Let πk = limt→∞ P (X(t) = k), and pk = limn→∞ P (Xn = k) be the stationary probability of
the chain Xn.

Unlike the M/GI/1 system, in the GI/M/1 queue system, the equality between πk and
pk, k ∈ N, is generally not achieved. Furthermore, the ergodicity condition of the induced Xn

Markov chain is the same as that of the stability of the GI/M/1 system ( ρ = λ
µ
< 1).

Transition probabilities

Let be Pi,j = P [Xn+1 = j/Xn = i], i, j ∈ N, the transition probabilities of the Xn induced
Markov chain. It is easy to verify that the transition matrix P = [Pij]i,j∈N, has the following form:

P =


β1 α0 0 0 0 · · ·
β2 α1 α0 0 0 · · ·
β3 α2 α1 α0 0 · · ·
β4 α3 α2 α1 α0 · · ·

. . .

 ,

where,

βi+1 =

∫ ∞
0

∞∑
k=i+1

e−µt
(µt)k

k!
dG(t), i ≥ 0, (1.21)
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and,

αk =

∫ ∞
0

e−µt
(µt)k

k!
dG(t), k ≥ 0, (1.22)

Steady state

We are now able to find the ergodic probabilities, pk (k ∈ N), of the induced Xn Markov chain.
The ergodicity condition is ρ < 1. It can be easily verified that [17]:

pk = (1− σ)σk, k = 0, 1, 2..., (1.23)

where σ is the only solution to the equation:

σk = G∗(µ− µσ)

∫ ∞
0

e−(µ−µσ)tdG(t), (1.24)

G∗ being the Laplace transform of the probability density of times between customer arrivals.
It can be shown that 0 < σ < 1. Thus, the number of customers in the system GI/M/1 at the
time of occurrence of arrival is distributed according to a geometric law.

If πk = limt→∞ P (X(t) = k) then the following relationships can be easily verified:

πk = ppk−1, k = 1, 2, ... and π0 = 1− ρ. (1.25)

These relationships confirm the effectiveness of the induced Markov chain method. It can then be
seen that all the stationary characteristics of the queue system GI/M/1, can be deduced from the
stationary characteristics of the Markov chain Xn (although the stationary probabilities of the two
processes X(t) and Xn are different).

Characteristics of the system

It was noted that the study of the GI/M/1 queue system is simpler than that of the M/GI/1
system. In this case, it is enough to find the value of σ to deduce all the characteristics of this
system. Indeed:

– The average number of customers in the system is easily obtained by the formula:

Ls = E(X) =
∑
k≥0

kπk =
∑
k≥0

kρpk−1 =
∑
k≥0

ρ(k + 1)pk

= ρ
∑
k≥0

kpk + ρ
∑
k≥0

pk

=
ρ

1− σ
. (1.26)

– The average number of customers in the queue is given by:

Lq =
ρσ

1− σ
. (1.27)

Using the Little formula, we obtain:
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– The Mean waiting time in the system is:

Ws =
L

λ
=

1

(1− σ)µ
. (1.28)

– The average number of customers in the system when a customer arrives:
You can also get the average number of customers in the system that a customer finds upon
arrival (La). This quantity, unlike M/GI/1, is different from Ls.

La =
∑
k≥1

kpk =
σ

(1− σ)
. (1.29)

We notice that La/L = σ
ρ
. Therefore, we cannot give a priori any comparison between these

two values (since ρ < 1 and σ < 1).
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Chapter 2

Queuing systems with Bernoulli
Feedback of customers

Introduction

Feedback queues are useful for modeling many phenomena, for example, in telecommunica-
tions, a telephone call can generate several tasks to be processed. Such tasks can sometimes be
considered as feedback. Also, in communication with the computer, the data transmission pro-
tocol is repeated sometimes due to the occurrence of an error. Protocol data transmissions are
sometimes repeated, this happens frequently because of poor service. For example, in industry, we
have the reproduction of the wrongly composed product. In many queuing situations, customers
may be served multiple times for certain reasons. This feedback is due to the dissatisfaction of
this customer due to the inappropriate quality of service. After obtaining partial or incomplete
service, the customer retries their request for the service(banks, post offices...).

Several real situations can be modeled as queuing systems with feedback where the customer
can be referred to the system for another service. In telecommunications, protocol data transmis-
sions are sometimes repeated. This happens frequently because of poor service. In industry (the
reproduction of a poorly composed product) is an example of queues with feedback. In Queue
models with feedback have been extensively studied by a large number of researchers.

Takacs [26] studied queue with feedback, to determine the stationary process for the queue
size, the first two moments of the distribution function of the total time spent in the system by a
customer, and the distribution of the customers in the system.

Also, a single server queue with state dependent feedback was studied by [6] D’Avignon and
Disney, they studied the M/G/1 queue, they supposed that units after being served either imme-
diately join the queue again with some probability or depart permanently with the complementary
probability. Such a probability is conditioned upon whether or not the previous unit fed back,
upon the increments in the queue length between two consecutive service completions, and upon
the length of service received. For such a system, the stationary queue length and departure pro-
cesses are characterized. The busy period distribution is also worked out. Studies on queue length,
the total sojourn time and the waiting time for an M/G/1 queue with Bernoulli feedback were
provided by Vanden Berg and Boxma [30].

16
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In [1], the authors studied the M/G/1 queue with feedback, according to some feedback policy
which customers visit the queue a fixed number of times before departure when the Bernoulli
policy implies a geometric distribution for the number of visits to the queue by a customer.

Santhakumaran and Thangaraj [24] considered a single server feedback queue with impatient
and feedback customers, they studied M/M/1 queueing model for queue length at arrival epochs
and obtained results for stationary distribution, mean and variance of queue length.

Choudhury and Paul [5] analyzed the file M/G/1 with two phases of heterogeneous servers and
bernoulli feedback, where the server provides first phase of regular service to all the customers.
As soon as the first phase of service of a customer is completed, it may leave the system or may
immediately go for second phase of optional service in one additional service channel. However,
after receiving the first phase or second phase of unsuccessful service by an unit, then it may
immediately join the tail of the original queue as feedback customer to have another regular
service. They derive the queue size distribution at random epoch and at a service completion
epoch and derive the distribution of response time and busy period.

Krishna Kumar et al. [12] considered a generalized M/G/1 feedback queue in which customers
are either ”positive” or ”negative”.

Thangaraj, and Vanitha [28] obtain transient solution of M/M/1 feedback queue with catastro-
phes using continued fractions. The steady-state solution, moments under steady state and busy
period analysis are calculated.

Salehirad and Badamchizadeh [23] studied the M/G/1 queue with k phases of heterogeneous
services and feedback.

Ayyapan et al. [4] used matrix geometric method to study M/M/1 retrial queueing system
with loss and feedback under non preemptive priority service in which two types of customers
arrive in a Poisson process with arrival rate λ1 for low priority customers and λ2 for high priority
customers. These customers are identified as primary calls. The service times follow an exponential
distribution with parameters µ1 and µ2 for both types of customers respectively. The concept
feedback is introduced for low priority customers. If the server is free at the time of the arrival of
low priority customer, then the arriving call begins to be served immediately by the server. After
completion of service, if the low priority customer dissatisfied then he may re-join the orbit with
probability q and with probability (1-q) he leaves the system. This is called feedback [4, 10, 12]
in queueing theory.

Also, Sharma and Kumar [15] gave the stationary solution of the M/M/K queue with feedback,
abandonment and retention.

Arivudainambi and Godhandaraman [3] considered a batch arrival queueing system with two
phases of service, feedback and K optional vacations under a classical retrial policy.

Melikov et al. [19] presented the numerical analysis of a queue system with feedback. The
feedback occurs as returning a part of serviced calls to get a new service. The probability of
returning to orbit depends on the number of busy channels. Both models with finite and infinite
orbits are examined. Both exact and approximate methods to calculate the characteristics of the
system are developed.

Kumar and Taneja [16] made an analysis of a queuing system with provision of service by one
or more out of three servers depending upon the feedback, one of which is centrally connected to
the other two servers, customers can return for service at most once. Equations have been derived
to find the average queue length using the probability generator technique.

Analysis and performance evaluation of queue system with customers feedback
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In [9], the authors studied the strategic customer behavior in an M/M/1 feedback queue, they
analyzed the decision of rejoining the system as a noncooperative game among the customers.
They showed that there existed a unique symmetric Nash equilibrium threshold strategy and they
proved that this strategy is evolutionarily stable.

In Nita et al.[21] involved estimating the characteristics of the M/M/1/N waiting model with
Bernoulli feedback using parametric estimation. By using the Monte-Carlo simulation study, we
have illustrated how the statistical properties of the performance measures estimates obtained
using the plug-in method can be affected by estimating the starting parameters of the considered
waiting system. In addition, several types of convergence (bias, variance, MSE, in law) of these
performance measure estimators have also been showing by simulation, Nita et al.[21] have used
several statistical techniques, namely: Parametric estimation, compliance tests and the box plot.
A simulation study carried out in this direction illustrates that the impact of estimating starting
parameters on the estimated performance measures of the system is strongly dependent on both
the estimated starting parameter and the sample size.

2.1 Markovians queues with Feedback constant

We consider an M/M/1 queue system with feedback constant. The latter can model a single
window where each customer receives a service whose duration is an exponential parameter variable
µ, and the process of arriving customers in the queue is a rate Poisson process λ (the number of
customers N(t) arriving during a time interval [0, t] follows a Poisson distribution). After obtaining
a service, with a probability β′ = 1− β; the customer can join the system as a Bernoulli customer
feedback to receive another additional service. Otherwise, it permanently leaves the system, with
a probability β; (where β′ + β = 1).

This system can be schematized as shown in Figure 2.3. .

Exponnetial 
µExponnetial 

(λ)

β

1−β

Figure 2.1: Representation M/M/1 queue with Bernoulli feedback.

Note that the N(t) arrival process is fully described by:

P [N(t) = k] = e−λt
(λt)k

k!
, k = 0, 1, 2, ...(parameter poisson law λt) (2.1)

The duration of inter-arrivals T are exponentially distributed by density function:

a(t) = λe−λt, ∀t > 0.

The duration of service S lives are exponentially distributed by density function:

b(t) = µe−µt, ∀t > 0.
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Let L(t) be the number of customers in the system at the time t. The probabilities of state of
the system in transient mode are given as follows:

Pt = P [L(t) = n] et Pij(dt) = P (L(t+ dt) = j/L(t) = i),

with

Pij(dt) =


1− λdt, if i=j=0,
λdt, if j=i+1 and j ≥ 1,
βµdt, if j=i-1 and j ≥ 0,
1− (λ+ βµ)dt, if i=j and j ≥ 1,
0, ifnot.

The system can be described by the following differential system (Chapman-Kolmogorov equa-
tion):{

P0(t+ dt) = P0(t)(1− λdt) + P1(t)βµdt,
Pn(t+ dt) = Pn−1(t)λdt+ Pn(t)(1− (λ+ βµ)dt) + Pn+1(t)βµdt, n ≥ 1.

The probabilities of steady-state system status are as follows:{
λP0 = βµP1, if n=0,
(λ+ βµ)Pn = λPn−1 + βµPn+1, if n ≥ 1.

• The server utilization rate: by definition, the utilization rate is the probability for the queue
server to be busy:

U = ρ =
λ

βµ
. (2.2)

• The probability of n customers in the system at the time of entry is:

πn = π0ρ
n, n = 0, 1, 2, ... avec : π0 = 1− ρ. (2.3)

• Average number of customers in system and queue:

Ls =
ρ

1− ρ
, Lq =

ρ2

1− ρ
. (2.4)

• Average stay and waiting time :

Ws =
1

βµ− λ
, Wq =

λ

βµ(βµ− λ)
. (2.5)

Remark 2.1.1. The ”memory-less” property of the exponential law (describing a service time)
means that the probability for the service to end before the overtime t0 knowing that it started t1
times earlier, does not depend on the time t1 the customer has already placed in service.

2.2 Analysis of an M/M/1 queue with dependent Bernoulli

feedback

In this section, we will consider an expectation model that can be very appropriate for
modeling several real situations in various areas, such as systems communication and telecommu-
nications, manufacturing systems, computing, etc. The model in question is the model M/M/1
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queueing system with Bernoulli feedback, with probability β′n = 1−βn, the customer may join the
system as a Bernoulli feedback to command another service, or he quits the system with proba-
bility βn, with n is the number of customers in the system. Feedback represents the case where
after getting partial or incomplete service, the customer retries for service. This usually happens
because of non-satisfactory quality of service. Rework in industrial operations is an example of a
queue with feedback.

Our goal is to analyze the impact of the feedback variant on the queue characteristics, in order
to reach this goal, we derive the steady-state equations by the Markov process method, we extract
performance measures of certain particular cases of the probability of feedback of the preceding
system.

This chapter is organized as follows. Firstly, we describe the model M/M/1 with Bernoulli
feedback. Then, we derive the steady-state equations by the Markov process method and calculate
some performance measures of the particular cases of the model. Finally, some numerical examples
are presented to demonstrate how the feedback influences the system M/M/1.

2.2.1 Model description

Let’s consider an M/M/1 queueing model with Bernoulli feedback and the following assump-
tions :

– Arrivals occur in a Poisson stream with an average arrival rate of λ.
– The customers are served on a first-come, first-served (FCFS) discipline. Once a customer’s

service commences, the service always proceeds to completion. In addition, the service times
are assumed to be distributed according to an exponential distribution with rate µ.

– After getting unsatisfactory service, with probability β′n = 1 − βn, with n is the number of
customers in the system, 0 < βn ≤ 1 the customer may rejoin the system at the end of
the queue as a Bernoulli feedback customer to receive another regular service. Otherwise, it
leaves the system definitively, i.e. with probability βn (where β′n + βn = 1).
Alternatively, customer feedback may be modeled by a monotonic increasing function βn.

– For the rate service, we do not distinguish between regular arrival and feedback.
– The inter-arrival times and the service times are independently, identically and exponentially

distributed.
The model can be illustrated by the schema presented in Figure3.1 .

µλ
β

1−βn

n

with n: is the number of customers in the system

Figure 2.2: M/M/1 queue with dependent Bernoulli feedback
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2.2.2 Steady-State Solution

In this section, we drive the steady-state probabilities by using the Markov process method
based on the principal recursive approach.

To this end, let us define the following notations which are used throughout the section. Let
N(t) denote the number of customers in the system at time t due to the fundamental properties of
the Poisson process and the exponential law, N(t) is a homogeneous Markov process, Pn(t) denote
the time dependent probabilities that there are ”n” customers in the system at time ”t”:

Pn(t) = P (N(t) = n), n ∈ N. (2.6)

So, at steady-state Pn; n ≥ 0, will be the probability that there are n customers in the system.
By applying the Markov process theory, it is easy to formulate the equations of the state-

transition-probabilities that governs our process {(N(t), t ≥ 0} and, therefore, we can deduce the
state balance equations that are given in the expressions

P0(t+ dt) = (1− λdt)P0(t) + µ1dtP1(t), n = 0, (2.7)

Pn(t+ dt) = λdtPn−1(t) + (1− (λ+ µn)dt)Pn(t) + µn+1dtPn+1(t), n ≥ 1, (2.8)

with µn = µβn.
So, the differential-difference equations of the queueing model are given as:

P0(t)

dt
= −λP0(t) + µ1P1(t), n = 0, (2.9)

Pn(t)

dt
= λPn−1(t)− (λ+ µn)Pn(t) + µn+1Pn+1(t), n ≥ 1. (2.10)

2.2.3 Performance measures of the system

In this section, we clear the expressions for some useful performance measures of the proposed
system when βn has a particular form. Indeed, we extract the explicit form for some important
measures of the effectiveness of the queuing model. By using its stationary distribution. Also, we
identify the stability condition and the form of stationary probability of the system described in
the previous section 2.2.1.

2.2.4 Particular cases

In this passage, we provide the characteristics of the preceding system for certain particular
forms of the probability of feedback, βn, with ρ, 0 < α ≤ 1 and δ = αρ ,I{.} is the indicator
function.

– Case βn = α n
(n+1)

The same steps used in the last case βn = β, we get the equations of equilibrium states:

λP0 = µαP1, n = 0, (2.11)

(λ+ µα
n

(n+ 1)
)Pn = λPn−1 + µα

n

(n+ 1)
Pn+1, n ≥ 1. (2.12)

Using the recursive method, we find the following equations:

P1 = δP0, n = 0, (2.13)

Pn = (n+ 1)δnP0, n ≥ 1. (2.14)
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– The expression of ρn:
Using the definition of ρn, for n ≥ 1 we find the following :

ρn =
n∏
i=1

λ

µβi
=

(
α
λ

µ

)n n∏
i=1

(
i+ 1

i

)
(2.15)

= δn
(n+ 1)!

n!
(2.16)

= (n+ 1)δn. (2.17)

– The expression of P0:
Using the expression

P0 =

[
∞∑
n=0

ρn

]−1
. (2.18)

under the stability condition δ < 1, we get the following expression for the probability P0:

P0 =

[
∞∑
n=0

δn

]−1
=

[
∞∑
n=0

(n+ 1)δn

]−1
(2.19)

=

[
δ

(1− δ)2
+

1

1− δ

]−1
(2.20)

(2.21)

It clear that if δ < 1, then P0 exist and is given by:

P0 =

[
1

(1− δ)2

]−1
= (1− δ)2. (2.22)

– The expression of the mean number of customers in the system:
By definition we have

Ls =
∞∑
n=0

nPn, (2.23)

so,

Ls =
∞∑
n=0

nρnP0

=
∞∑
n=0

n(n+ 1)δn(1− δ)2

= (1− δ)

[
∞∑
n=0

n2δn(1− δ) +
∞∑
n=0

nδn(1− δ)

]

it is easy to see the first and second moment of geometric law, we find

Ls =
2δ

1− δ
. (2.24)
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– The expression of the mean number of customers in the queue:

Lq = L− (1− P0) (2.25)

=
(3− δ)δ2

1− δ
. (2.26)

– Case βn = αn(n+2)
(n+1)2

– The expression of ρn:
By definition the quantity ρn is given as follow:

ρn =

 1, if n = 0;
n∏
i=1

λ
µβi
, if n ≥ 1.

(2.27)

If we substituting βi by its expression in this latest then we have:

ρn = δn
n∏
i=1

(
(i+ 1)2

i(i+ 2)

)
(2.28)

= δn
n∏
i=1

(
i+ 1

i

) n∏
i=1

(
i+ 1

i+ 2

)
(2.29)

=
2(n+ 1)

n+ 2
δn. (2.30)

– The expression of P0:

P0 =

[
∞∑
n=0

δn

]−1

=

[
2
∞∑
n=0

(1− 1

n+ 2
)δn

]−1

=

[
2(
∞∑
n=0

δn −
∞∑
n=0

1

n+ 2
δn)

]−1
.

The first sum of the latest expression is a geometric series, so if δ < 1 then

∞∑
n=0

δn =
1

1− δ
, (2.31)

and under the same condition, δ < 1, P0 and exist the second sum can be simplified as
follow: consequently,

P0 =

[
2

1− δ
+

2

δ
+

2

δ2
log(1− δ)

]−1
. (2.32)
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– The expression of the mean number of customers in the system:

Ls =
∞∑
n=0

nPn (2.33)

= 2P0

∞∑
n=0

n(n+ 1)

n+ 2
δn (2.34)

= 2P0

∞∑
n=0

(
n− 1 +

2

n+ 2

)
δn (2.35)

(2.36)

so

Ls = 2P0

[
δ

(1− δ)2
− 1

1− δ
− 2

δ
− 2

δ2
log(1− δ)

]
. (2.37)

– The expression of the mean number of customers in the queue:

Lq = L− (1− P0) (2.38)

= 2P0

[
δ

(1− δ)2
− 1

1− δ
− 2

δ
− 2

δ2
log(1− δ) +

1

2

]
− 1. (2.39)

– Case βn = n
N

– The expression of ρn:
In this case the quantity ρn is defined as follow:

ρn =


1 if n = 0;
(Nρ)n

n!
, if 1 ≤ n < N ;

ρnNN

N !
, if n ≥ N ;

(2.40)

and the stability condition of the system is ρ < 1
– The expression of P0:

P0 =

[
∞∑
n=0

ρn

]−1
=

(
N∑
n=0

ρn +
∞∑

n=N+1

ρn

)−1
(2.41)

=

(
N∑
n=0

(Nρ)n

n!
+
NN

N !

∞∑
n=N+1

ρn

)−1
(2.42)

=

(
N∑
n=0

(Nρ)n

n!
+
NN

N !

ρN+1

1− ρ

)−1
. (2.43)

– The expression of the mean number of customers in the system:

Ls =
∞∑
n=0

nPn = P0

[
N∑
n=0

nρn +
∞∑

n=N+1

nρn

]
. (2.44)
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We have, on the one hand, the quantity
N∑
n=0

nρn is the sum of a finite number of terms

that can easily be calculated numerically and on the other hand,

∞∑
n=N+1

nρn =
NN

N !

∞∑
n=N

nρn (2.45)

then,

Ls =

[
N∑
n=0

n
(Nρ)n

n!
+
NN

N !

ρN+2

(1− ρ)2
+
NN

N !

(N + 1)ρN+1

1− ρ

]
P0. (2.46)

– The expression of the mean number of customers in the queue:

Lq =

[
N∑
n=0

n
(Nρ)n

n!
+
NN

N !

ρN+2

(1− ρ)2
+
NN

N !

(N + 1)ρN+1

1− ρ
+ 1

]
P0 − 1. (2.47)

2.2.5 Numerical application

The objective of this section is to present illustrative numerical examples of the behavior of
the stationary characteristics of the M/M/1 queue with dependent feedback described in Section
2.2.3 according to the starting parameters defining it, namely: the traffic intensity ρ(= λ/µ), and
the shape and value of the probability βn.

To meet our objective, for the numerical calculations, we have set the starting parameters in
question as follows:

– The traffic intensity ρ ∈ {0.10, 0.15, 0.20, ..., 0.85}.
– The probability βn ∈ {1, 0.9, αn

n+1
, αn(n+2)

(n+1)2
, n
N
} with

◦ α ∈ {0.900, 0.950, 1.000},
◦ N ∈ {2, 3, 4, 5, 10}.

The figures 2.3–2.6 represent a sample of the graphical results provided, for the various pa-
rameters above, by the computer program that we implemented under the Matlab environment.

The results obtained perfectly illustrate the effect of the traffic intensity and the probability
βn and its shape on the characteristics of the system, where we note (particularly) that:

• The effect of the traffic intensity, ρ, on the queue length, Ls, and the probability that the system
is empty, P0, remains the same as the case of a queue without feedback and the case where
the feedback is done with a constant probability where, as the traffic intensity ρ increases Ls
increases hence the probability P0 decreases.

• The effect of the probability βn on the quantities Ls and P0 appears clearly for high values for
traffic intensity. Indeed, the impact of βn on Ls and P0 is all the more important when ρ
increases, so that it is negligible for very low values of ρ.

The fact that an increase in ρ leads to an increase in Ls, so due to the considerable number
of customers in the system, served customers tend to leave the system rather than request
additional service at the end of their services (βn is increasing according to n). Therefore,
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Figure 2.3: Variation of Ls and P0 according the couple (βn, ρ).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

35

The tra�c intensity ρ

Th
e 

q
u

eu
e 

 le
n

g
th

 
L s

 

 
α=0.900
α=0.925
α=0.950
α=0.975
α=1.000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

The tra�c intensity ρ

Th
e 

p
ro

b
ab

ili
ty

   
P 0

 

 
α=0.900
α=0.925
α=0.950
α=0.975
α=1.000

Figure 2.4: Variation of Ls and P0 according the couple (βn, ρ): case βn = αn
n+1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12

14

16

18

20

The traffic intensity ρ

T
he

 q
ue

ue
 le

ng
th

 
L

s

 

 
α=0.900
α=0.925
α=0.950
α=0.975
α=1.000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

The tra�c intensity ρ

Th
e 

p
ro

b
ab

ili
ty

   
P 0

 

 
α=0.900
α=0.925
α=0.950
α=0.975
α=1.000

Figure 2.5: Variation of Ls and P0 according the couple (βn, ρ): case βn = αn(n+1)
(n+1)2

.

Analysis and performance evaluation of queue system with customers feedback



Chapter 2: Queuing systems with Bernoulli Feedback of customers 27

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12

The tra�c intensity ρ

Th
e 

q
u

eu
e 

le
n

g
th

 L
s

 

 
N=2
N=3
N=4
N=5
N=10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

The tra�c intensity ρ

Th
e 

p
ro

b
ab

ili
ty

   
P 0

 

 
N=2
N=3
N=4
N=5
N=10

Figure 2.6: Variation of Ls and P0 according the couple (βn, ρ): case βn = n
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.

as ρ increases and tends to 1, our system tends to behave like a fixed Bernoulli feedback
system. This can be justified by :

lim
ρ→1

Ls(ρ) =∞⇒ lim
Ls→∞

βLs .

• If we have two probabilities β
(1)
n and β

(2)
n such that β

(1)
n ≤ β

(2)
n then for a fixed traffic intensity

ρ, we have:

XLs(β
(1)
n ) ≥ Ls(β

(2)
n ) ≥ Ls(βn = 1) = ρ

1−ρ ,

XP0(β
(1)
n ) ≤ P0(β

(2)
n ) ≤ P0(βn = 1) = 1− ρ.

Concluding remarks

In this chapter, we considered the analysis and performance evaluation of the M/M/1 queue
with Bernoulli feedback of the customers whose feedback probability, βn (= 1− βn), is a decreasing
function of the number of customers in the system.

The theoretical analysis carried out allowed us to identify the stability condition of such
kind of a queue. However, the rest of the (theoretical) analysis brings us to think that, a priori,
one cannot obtain a general and explicit form of the characteristics of the system in question. We
get the expressions for some useful performance measures of the proposed system when βn has a
particular form.

On the other hand, the numerical study carried out allowed us to note that it is easy to
surround the characteristics of such a queue using those of an M/M/1 queue whose feedback
of the customers obeys a particular and/or simpler probability. Indeed, the first bounds (lower
and upper) were obtained for the mean queue length, the probability that the system is empty,
the mean sojourn time of a customer in the system, and the mean cumulative time waiting of a
customer.

Analysis and performance evaluation of queue system with customers feedback



Chapter 3

Analysis of performance measures of a
GI/GI/1 queue with Bernoulli feedback

Introduction

Our aim, in this chapter, is to evaluate the efficiency of the queuing system with Bernoulli
feedback when we move away from the Markov process hypothesis and/or that the feedback prob-
ability dependents on the number of customers in the system. Indeed, we propose the analysis of
the queuing system GI/GI/1 with customer feedback depending on the state of the system.

The literature lacks an exact analysis of a GI/GI/1 queuing system with dependent
feedback due to its complexity. To achieve our objective and analyze this type of system, we used
the discrete event simulation technique.

This chapter is organized as follows: Firstly, we give a description of the model GI/GI/1
with Bernoulli feedback. Then, we make a Numerical application that contains: the simulation of
the GI/GI/1 waiting system, validation of the simulation model, effect of the intensity ρ and the
probability βn, effect of arrivals and service process distributions. Finally, we finish our chapter
with a conclusion.

3.1 Model Description

Let’s consider an GI/GI/1 queuing system with Bernoulli feedback that works under the
following assumption:

– The arrival process: The arrival time follows a general distribution and it is denoted by the
random variable A with the distribution function A(x), with the mean E(A) = 1

λ
.

– The regular service process: The server instantly starts the regular service for the new
customers when they arrive at the server in its idle state. The service time follows a general
distribution and it is denoted by the random variable S with the distribution function S(x)
with mean E(S) = 1

µ
.

– Feedback rule: After getting unsatisfactory service, the customer may rejoin the system as a
Bernoulli feedback customer to receive another regular service with probability β′n = 1− βn,
(n ≥ 1). Otherwise, it leaves the system definitively, with probability βn, (where β′n+βn = 1,
and n is the number of customers in the system). Alternatively, the customer feedback may
be modeled by a monotonic decreasing function β′n.

28
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– All processes (arrivals and service times) are independent. The service discipline is assumed
to be first come first served (FCFS) for all customers (ordinary and feedback).

Finally, the considered system can be presented in its reduced form as follows:

S(t)A(t)
β

1−βn

n

with n: is the number of customers in the system

Figure 3.1: GI/GI/1 queue with dependent feedback

3.2 Numerical application

We are going to simulate the queuing system of type GI/GI/1 with customer feedback consid-
ering particular cases of this system, namely: M/GI/1, GI/M/1, and the system M/M/1. More
specifically, we will consider the following seven systems (see Table 3.1).

System M/M/1 GI/M/1 M/GI/1 GI/GI/1 GI/M/1 M/GI/1 GI/GI/1

Notation S1 S2 S3 S4 S5 S6 S7

Arrival Exp(λ) Wbl(λ1, λ2) Exp(λ) Wbl(λ1, λ2) Er2(λ) Exp(λ) Er2(λ)

Service Exp(µ) Exp(µ) Wbl(µ1, µ2) Wbl(µ1, µ2) Exp(µ) Er2(µ) Er2(µ)

Table 3.1: Particular cases of GI/GI/1 .

Where Exp denotes exponential law, Wbl denotes Weibull law and Er2 is the Erlang law of order
2.

Moreover, we assumed in the case of the seven above systems that the customers served can
permanently leave the system with a probability βn, where n is the number of customers in the
system at the instant of its service-end, or request possibly another service (feedback) with a
probability 1 − βn. For the form of the latter, we considered the following situations (see Figure
3.2):

– βn = 1, ∀n ∈ N∗, this system is without customer.
– βn = 0.7, ∀n ∈ N∗, this system is with Bernoulli feedback that does not depend on the

number of customers in the system.
– βn = n

n+1
, for n ∈ N∗, this system is with customer feedback depending on the number of

customers in the system.
– βn = 1 − e−n, for n ∈ N∗, this system is with customer feedback exponentially depends on

the number of customers in the system.
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Figure 3.2: Variation of βn according to the number of customers in the system.

3.2.1 Simulation of GI/GI/1 waiting system with feedback

As pointed out in the introduction of this chapter, the exact analytical analysis of a GI/GI/1
waiting system with dependent feedback is non-existent in the literature. To this end, in order to
analyze this type of system, we will use the discrete event simulation approach.

It is to underline that our aim in this analysis is to provide estimates for the stationary per-
formance measures of the system in question and to study the influence of its starting parameters
on this performance. More specifically, the objective is to answer the following questions:

1. What is the impact of the traffic intensity on system characteristics?

2. How does the probability of feedback and its form affect the characteristics of the system?

3. How do the law of inter-arrivals times and that of service times affect the characteristics of
the system?

After a careful analysis of the functioning of the system, we have implementer a simulation
program, under the MATLAB environment, which can imitate the behavior of the considered
system.

3.2.2 Validation of the simulation model

Recall that in the simulation study, the proposed simulation model cannot be used if it has not
been behind for validated. In this sense, the objective of the present passage is to check whether
the mean value of a characteristic of the system quantified based on the fixed starting parameter,
coincides (in the statistical sense) with the exact value. This verification is carried out using the
compliance tests (for more details see for example [25, 22]).

In this sense, the theoretical (exact) stationary characteristics of the system S1, for βn ∈
{1, 0.7} and ρ ∈ {1/15, 3/15, 5/15, ..., 10/15} are presented in Table 3.3. The estimations of the
characteristics of this same system returned by the consued simulator on 100 simulations (samples)
when the simulation time is fixed to T = 1000 of the system are stored in Table 3.3.
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ρ 0.0667 0.2000 0.2667 0.4000 0.4667 0.6000 0.6667
βn = 1 L 0.0714 0.2500 0.3636 0.6667 0.8750 1.5000 2.0000

P0 0.9333 0.8000 0.7333 0.6000 0.5333 0.4000 0.3333
βn = 0.7 L 0.1053 0.4000 0.6154 1.3333 2.0000 6.0000 20.000

P0 0.9048 0.7143 0.6190 0.4286 0.3333 0.1429 0.0476
Table 3.2: Performance of the M/M/1 system with fixed
feedback

.

Where, L denotes the mean number of customers in the queue and P0 is the probability that
there are no customers in the system. To validate our model, we will use the Student test that
allows us to validate the model. The validation of the simulation model will be done by exploiting
the waiting system M/M/1 with Bernoulli feedback as a witness and this fact that we have the
exact expressions of its performance measures see chapter 2. So, for fixed starting parameters of
the system, we can compute with exactitude its performance measures. For this, we will use the
Student test to check the equality between the exact analytical results (theoretical) mth and those
obtained by the simulation m. That is to say to carry out the following conformity test:

H0 ”m = mth” V s H1 ”m 6= mth”. (3.1)

In this case, it suffices to calculate the realization of the statistic T given by:

Tn−1 =
(X −mth)

√
n− 1

S
, (3.2)

with:

S2 =
1

n

n∑
i=1

(Xi −X)2.

Thus to take the decision ”not to reject H0”, it is sufficient to affirm the following inequality:

Tn−1 ≥ t(n−1,α
2
), (3.3)

where t(n−1,α
2
) is the Student’s law quantile at the threshold and check for a risk threshold α the

inequality (3.3), to decide whether or not to reject the H0 hypothesis. Note that this is equivalent
to checking :

mth ∈ [Binf , Bsup] ,

where Binf (resp. Bsup ) is the lower (resp. upper) bound of the confidence interval, at a threshold
1− α, of the considered characteristic X.

According to the results ranked in the Tables 3.2 and 3.3, we note that all the theoretical values
belong to the confidence intervals, designed at a risk threshold of 5%, obtained by the simulation.
To this effect, the hypothesis H0 of the test (3.1) will not be rejected for a decision risk α = 5%.
This means that the simulation model that we designed reproduces perfectly the behavior of the
GI/GI/1 waiting system with feedback, hence the validation of the proposed model. So, this
allows us to exploit this simulator to evaluate the performance of the rest of the systems described
in Table 3.1.

Analysis and performance evaluation of queue system with customers feedback



GI/GI/1 queue with Bernoulli feedback 32

3.2.3 Effect the traffic intensity ρ and the probability βn

Our goal in this section is to answer the first and second questions asked earlier in Section
3.2.1. To do this we were interested to the estimators of L, P0, β and N .

3.2.3.1 Simulation results

The estimation by IC95% of the characteristics of this same system returned by the consued sim-
ulator on 1000 simulations are presented in Table 3.3 where their mean and variance are presented
in Figures 3.3–3.6.

βn = 1 βn = 0.7 βn = 1− 1/(n+ 1) βn = 1− exp(−n)
ρ = λ/µ Binf Bsup Binf Bsup Binf Bsup Binf Bsup

0.0667 0.0711 0.0716 0.1047 0.1053 0.1425 0.1433 0.1106 0.1113
0.1333 0.1535 0.1542 0.2351 0.2364 0.3072 0.3087 0.2342 0.2353
0.2000 0.2494 0.2505 0.4000 0.4023 0.4985 0.5005 0.3725 0.3740
0.2667 0.3634 0.3650 0.6137 0.6172 0.7247 0.7279 0.5304 0.5325

L(βn, ρ) 0.3333 0.4986 0.5007 0.9064 0.9121 0.9966 1.0007 0.7127 0.7155
0.4000 0.6645 0.6673 1.3315 1.3405 1.3311 1.3364 0.9275 0.9308
0.4667 0.8746 0.8785 1.9895 2.0063 1.7497 1.7575 1.1856 1.1905
0.5333 1.1397 1.1456 3.1762 3.2163 2.2778 2.2883 1.5023 1.5096
0.6000 1.4985 1.5081 5.9326 6.0408 2.9931 3.0101 1.9181 1.9262
0.6667 1.9967 2.0108 19.6267 20.6489 3.9789 4.0060 2.4747 2.4885
0.0667 0.9332 0.9336 0.9048 0.9052 0.8708 0.8715 0.8973 0.8978
0.1333 0.8664 0.8669 0.8089 0.8097 0.7504 0.7513 0.8001 0.8009
0.2000 0.7997 0.8003 0.7132 0.7142 0.6397 0.6406 0.7093 0.7103
0.2667 0.7328 0.7335 0.6184 0.6195 0.5373 0.5386 0.6236 0.6245

P0(βn, ρ) 0.3333 0.6664 0.6671 0.5234 0.5248 0.4448 0.4459 0.5430 0.5441
0.4000 0.5997 0.6006 0.4275 0.4288 0.3594 0.3605 0.4682 0.4693
0.4667 0.5327 0.5336 0.3333 0.3347 0.2836 0.2846 0.3982 0.3991
0.5333 0.4661 0.4672 0.2374 0.2391 0.2173 0.2183 0.3332 0.3342
0.6000 0.3990 0.4003 0.1423 0.1440 0.1594 0.1605 0.2724 0.2733
0.6667 0.3320 0.3332 0.0471 0.0488 0.1109 0.1118 0.2165 0.2175
0.0667 0.6997 0.7012 0.5165 0.5180 0.6498 0.6515
0.1333 0.6993 0.7003 0.5346 0.5357 0.6685 0.6696
0.2000 0.6992 0.7000 0.5552 0.5559 0.6888 0.6897
0.2667 0.6996 0.7003 0.5767 0.5775 0.7091 0.7099

β(βn, ρ) 0.3333 1 1 0.6997 0.7004 0.5999 0.6005 0.7305 0.7312
0.4000 0.6995 0.7002 0.6252 0.6258 0.7529 0.7535
0.4667 0.6999 0.7005 0.6516 0.6522 0.7761 0.7767
0.5333 0.6997 0.7003 0.681 0.6821 0.7997 0.8003
0.6000 0.6999 0.7004 0.7142 0.7149 0.8250 0.8255
0.6667 0.6998 0.7002 0.749 0.7504 0.8511 0.8517
0.0667 1.4262 1.4292 1.9304 1.9360 1.5350 1.5389
0.1333 1.4279 1.4299 1.866 1.8704 1.4934 1.4958
0.2000 1.4287 1.4303 1.7989 1.8013 1.4499 1.4518
0.2667 1.4279 1.4294 1.7317 1.7340 1.4086 1.4101

N(βn, ρ) 0.3333 1 1 1.4278 1.4292 1.6653 1.6670 1.3676 1.3689
0.4000 1.4281 1.4295 1.5979 1.5994 1.3271 1.3282
0.4667 1.4276 1.4287 1.5332 1.5346 1.2874 1.2885
0.5333 1.4280 1.4291 1.4660 1.4673 1.2496 1.2505
0.6000 1.4277 1.4288 1.3989 1.4001 1.2113 1.2121
0.6667 1.4278 1.4288 1.3326 1.3339 1.1741 1.1749
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Table 3.3: Simulation results of M/M/1 system without and with
dependent feedback.
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Figure 3.3: Variation of L and V ar(L̂) according to the couple (βn, ρ).
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Figure 3.4: Variation of P0 and V ar(P̂0) according to the couple (βn, ρ).

3.2.3.2 Discussion and interpretation of the results

The answer to the first and second question asked previously in the Section 3.2.1 will be obtained
after the analysis and interpretation of the results stored in Table 3.3 and those presented in figures
3.3–3.6, and we were interested in estimating the characteristics of this system, namely: the average
number of customers in the system L, the probability that the system is empty P0 (U = 1 − P0

is system load), the average probability of no feedback of a customer E(βn) = β, and the average
number of services received by the same customer N .
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Figure 3.5: Variation of β and V ar(β̂) according to the couple (βn, ρ).
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Figure 3.6: Variation of N and V ar(N̂) according to the couple (βn, ρ).
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The effect of βn and ρ on L: According to the results presented in the lines associated with
L(βn, ρ) in the Table 3.3 and the graphical results presented in Figure 3.3, we notice that
the increase in the intensity of the traffic ρ generates a clear increase in the average number
of customers in the system L. Moreover, the growth of L as a function of ρ depends also
on the form of the feedback probability βn. Indeed, we note that L is more considerable
in the case of βn = 0.7, followed by the case where βn = n/(n + 1) and βn = 1 − e−n, so
that L is lower for the case where βn = 1 (without feedback). The observation made on the
behavior of L as a function of ρ and βn remains true for V ar(L̂). Thus, increasing the length

of IC95%(L) =

[
L± 0.196

√
V ar(L̂)

]
.

It should be noted that the behavior of L and V ar(L̂), as a function of ρ coincides with the
notions of queuing theory, where it is stated that the process of the number of customers
in the infinite capacity system tends to become a non-stationary process when the system
load approaches 1 or even non-stationary when the load of the system U is greater than 1
(L =∞ and V ar(L) =∞).

The effect of βn and ρ on P0: According to the results presented in lines associated with P0(βn, ρ)
of Table 3.3 and those presented in Figure 3.4, we see that the increase of ρ generates the
decrease of P0. This can be explained by the fact that for a large load of the system, the
latter tends to be permanently active. That is to say U tends towards 1, consequently P0

tends towards 0 (U = 1 − P0). While the behavior of P0 as a function of βn is exactly the
opposite of that of L. The V ar(P̂0) globally tends to be an increasing function according to
ρ but not in a regular way. This makes, in some sense the length of the IC95%(P̂0) a random
variable.

The effect of βn and ρ on β: According to the results presented in lines associated with β(βn, ρ)
of Table 3.3 and the graphical one that presented in Figure 3.5, we note that as ρ increases
β tends towards 1 in the case βn = n/(n + 1) and βn = 1 − e−n, this can be explained
by the fact that the increase of ρ generates increasing L (see discussion of results L(ρ, βn))
therefore served customers tend to leave the system rather than to request an additional
service because there is a considerable number of customers in the waiting room at the end
of its service (βn is increasing function according to n). We notice in this case that the
V ar(β) is practically independent of the form of βn consequently, the length of the IC95%(β)
is practically a constant when we change βn.

The effect of βn and ρ on N : According to the results presented in lines associated withN(βn, ρ)
of Table 3.3 and those presented in Figure 3.6, we note on the one hand that for a constant
feedback probability (βn = 1 and βn = 0.7) the number of services received by the same
customer is always the same, which is quite natural. Whereas for the case of βn = n/(n+ 1)
and βn = 1 − e−n, as ρ increases the system tends to become a system without feedback
(N(ρ) tends to 1 when ρ tends to 1). The latter results from the fact

lim
ρ→1

L(ρ) =∞⇒ lim
L→∞

βL = 1.

On the other hand, the V ar(N) gets closer to 0 as ρ increases which can be interrupted by

the convergence of N towards a constant when ρ tends towards 1. Thus, the length of the
IC95%(N) decreases as a function of ρ and tends to be zero when the latter tends to 1.
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In conclusion, the results obtained in this application indicate that the different characteristics
considered (L, P0, β and N) depend closely on the value of ρ and on the form of βn. In addition,
they provide us with a finding of great importance which can be summarized as follows:

If for two forms of probabilities feedback 1 − β(1)
n and 1 − β(2)

n of leaving the system, we have
β
(1)
n ≤ β

(2)
n , ∀n ≥ 1, then

L(βn = 1, ρ) ≤ L(β(2)
n , ρ) ≤ L(β(1)

n , ρ).

Therefore
P0(β

(1)
n , ρ) ≤ P0(β

(2)
n , ρ) ≤ P0(βn = 1, ρ).

β(β(1)
n , ρ) ≤ β(β(2)

n , ρ) ≤ β(βn = 1, ρ)).

N(βn = 1, ρ) ≤ N(β(2)
n , ρ) ≤ N(β(1)

n , ρ).

3.2.4 Effect of arrivals and service process distributions

In this section, our objective is to answer the third question fixed previously in section 3.2.1,
namely the question concerning the analysis of the effect of the distribution of the arrivals process
and that of the service process on the stationary characteristics of the GI/GI/1 system with
dependent-state feedback.

3.2.4.1 Simulation results

The execution of our simulator for the different systems considered previously (S1 − S7) for
a simulation duration of 10000 time units provided us with the empirical averages of the four
characteristics: L, P0, β and N . A sample of the obtained results on the seven systems for some
parameters as that the first application (see section 3.2.1) are stored in Table 3.4.

βn CaractÃ c©ristique ρ S1 S2 S3 S4 S5 S6 S7

0.2 0.4014 0.3233 0.3626 0.3015 0.3420 0.3802 0.3275
L(βn, ρ, Si) 0.4 1.3389 0.9522 1.0786 0.7420 1.0631 1.1930 0.9406

0.6 5.9491 3.9203 4.2682 2.3116 4.5389 5.0988 3.6591
0.2 0.7136 0.7143 0.7141 0.7144 0.7145 0.7141 0.7139

P0(βn, ρ, Si) 0.4 0.4281 0.4286 0.4295 0.4290 0.4286 0.4298 0.4286
0.6 0.1441 0.1438 0.1438 0.1430 0.1434 0.1430 0.1439

βn = 0.7 0.2 0.7002 0.6997 0.6995 0.7000 0.6999 0.6997 0.7003

β(βn, ρ, Si) 0.4 0.6999 0.7002 0.7003 0.7003 0.6997 0.7000 0.7002
0.6 0.7002 0.7003 0.7003 0.7003 0.7001 0.7002 0.7000
0.2 1.4281 1.4292 1.4296 1.4287 1.4287 1.4291 1.4281

N(βn, ρ, Si) 0.4 1.4288 1.4281 1.4280 1.4280 1.4292 1.4285 1.4281
0.6 1.4280 1.4279 1.4279 1.4279 1.4282 1.4280 1.4284

0.2 0.5004 0.4440 0.4570 0.4171 0.4600 0.4788 0.4419
L(βn, ρ, Si) 0.4 1.3322 1.1328 1.1313 0.9500 1.1917 1.2258 1.0896

0.6 2.9953 2.4916 2.3949 1.8822 2.6442 2.6796 2.3319
0.2 0.6402 0.6199 0.6393 0.6168 0.6255 0.6388 0.6244

P0(βn, ρ, Si) 0.4 0.3601 0.3212 0.3544 0.3068 0.3350 0.3571 0.3297
0.6 0.1596 0.1232 0.1485 0.0988 0.1366 0.1549 0.1275

βn = 1 − 1/(n + 1) 0.2 0.5555 0.5265 0.5546 0.5219 0.5347 0.5544 0.5327

β(βn, ρ, Si) 0.4 0.6246 0.5896 0.6197 0.5769 0.6017 0.6220 0.5969
0.6 0.7142 0.6842 0.7045 0.6657 0.6943 0.7094 0.6879
0.2 1.8001 1.8993 1.8031 1.9163 1.8701 1.8037 1.8772

N(βn, ρ, Si) 0.4 1.6009 1.6961 1.6138 1.7334 1.6620 1.6076 1.6753
0.6 1.4000 1.4614 1.4193 1.5022 1.4402 1.4096 1.4535
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0.2 0.3738 0.3370 0.3398 0.3203 0.3459 0.3550 0.3332
L(βn, ρ, Si) 0.4 0.9282 0.7898 0.7699 0.6697 0.8295 0.8469 0.7540

0.6 1.9248 1.5391 1.4385 1.1167 1.6506 1.6623 1.4112
0.2 0.7095 0.6950 0.7092 0.6922 0.6994 0.7098 0.6982

P0(βn, ρ, Si) 0.4 0.4689 0.4366 0.4659 0.4248 0.4476 0.4670 0.4442
0.6 0.2726 0.2368 0.2667 0.2147 0.2501 0.2704 0.2434

βn = 1 − exp(−n) 0.2 0.6888 0.6552 0.6880 0.6496 0.6653 0.6884 0.6625

β(βn, ρ, Si) 0.4 0.7526 0.7097 0.7492 0.6956 0.7242 0.7514 0.7192
0.6 0.8252 0.7867 0.8182 0.7637 0.8002 0.8221 0.7932
0.2 1.4518 1.5264 1.4536 1.5395 1.5032 1.4526 1.5095

N(βn, ρ, Si) 0.4 1.3287 1.4090 1.3347 1.4377 1.3808 1.3309 1.3904
0.6 1.2117 1.2711 1.2222 1.3094 1.2497 1.2164 1.2607

Table 3.4: Simulation results of the GI/GI/1 system with dependent feedback.

3.2.4.2 Analysis and interpretation of results

From the results stored in Table 3.4, we can see that the characteristics of the seven systems
S1−S7 are closely dependent on the starting parameters defining this system, namely: the intensity
of the traffic ρ, the distribution of inter-arrival times, the distribution of service times as well as
the form of the probability βn. Indeed, we note that

– The form of βn influences the values of the characteristics considered, and this in the same
way as in the first application where for medium and high values of the traffic intensity we
have:

L(βn = 1, ρ) ≤ L(βn = 1− e−n, ρ) ≤ L(βn = n/(n+ 1), ρ) ≤ L(βn = 0.7, ρ).

– The distribution of the inter-arrival times and those of the service times influence the four
characteristics considered in the study. Moreover, their influences are more apparent as the
system load increases. On the other hand, for low system load, our results lead us to believe
that the characteristics of the 7 systems are practically the same. Therefore, when the load
of the system is weak, the evaluation (approximation) of the characteristics of the GI/GI/1
system with feedback (whose exact analysis is non-exist), via the M/M/1 system is now
justified.

– Overall, when the system load increases, the GI/GI/1 system behaves like a GI/GI/1 system
without feedback, this is the fact that:

lim
ρ→1

L(βn, ρ) =∞⇒

{
N and B tends to 1,

V ar
(
N̂
)

and V ar
(
β̂
)

tends to 0.
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Conclusion

In this chapter, the analysis of the model retained by the discrete event simulation approach
gave us an overview of the influence of the intensity of the traffic, the distributions of the processes
of the inter-arrivals and the service, as well as the probability of feedback and its form on some
performance measures of the system considered in the study.

In this work, we analyze the waiting systems: M/M/1, M/GI/1, GI/M/1 with Bernoulli
feedback. We were interested (L, P0, β, N) when the variation in the estimates of the latter
characteristics was also considered.

After the development of a discrete event simulation model for the system GI/GI/1 with de-
pendent feedback, its validation was made concerning the Markovian systems M/M/1 without
feedback and M/M/1 with fixed Bernoulli feedback, for which theoretical results exist. The sim-
ulator was used to measure the different performances of the GI/GI/1 system for different load
rates varying between 1/15 and 10/15 and for inter-arrivals and services which follow a Weibull
law of parameters (µ1, µ2) or a second order Erlang law with parameter µ.

In this study, the analysis of the model retained by the simulation approach gave us the
possibility of carrying out a comparison between the results obtained by the latter and those of
the theoretical analysis when the latter exists. In addition, the results obtained allowed us to
identify how the form of the feedback probability, the traffic intensity, as well as the laws of the
inter-arrival and service processes influence the characteristics of the system.
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General conclusion

Queuing systems with bernoulli feedback are encountered in several areas. The study
of such systems is certainly very important for practical applications, because the feedback and
mechanism of impatient customers in the system has a significant influence on the main perfor-
mance measures of the system.

In this thesis, for a good understanding of the different notions related to the problem ad-
dressed, a synthesis on the queueing theory was presented. Also, some systems of classic queues
and basic concepts of queuing system and their characteristics, methods to analyze markovian and
non markovian models are exposed.

In addition, we studied an M/M/1 queue model with bernoulli feedback depending on the
number of customers in the system. Using the stationary state markov chain method, we were
able to obtain analytical results in special cases and some performance measures of the model in
question of this latest cases, such as average number of customers in the system, ...etc.

The exact analysis by markov chain for this type of M/M/1 system is difficult to study, and
the digital application shows we can identify the characteristics of this M/M/1 system. In the
second numerical application we tried to find the same results as found in M/M/1. Despite the
effectiveness of such systems in faithfully describing many real situations, the fact remains that a
large class of models has not been studied in the literature. To resolve the problem, we employ
discrete event simulation and attempt to constrain its characteristics using those of simple queue-
ing systems, which have characteristics that exist in the literature.

Our focus in the second chapter is on analyzing the model that was retained using the discrete
event simulation approach. An overview of how traffic intensity, inter-arrival processes, and service
impact each other, as well as the probability of feedback and its form on some performance mea-
sures of the system considered in the study. We analyze the waiting systems: M/M/1, M/GI/1,
GI/M/1 with Bernoulli feedback. Our aim was to investigate the variation in the estimations of
the latter characteristics when taking into account (L, P0, β, N).

The simulator was used to measure the different performances of the GI/GI/1 system for dif-
ferent load rates varying between 1/15 and 10/15 and for inter-arrivals and services which follow
a Weibull law of parameters (µ1, µ2) or a second order Erlang law with parameter µ.

By analyzing the model retained by the simulation approach, we gained valuable information
in this study. The possibility of comparing the results obtained by the latter and those of the
theoretical analysis exists. Moreover, we have been able to determine how the feedback prob-
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ability distribution, traffic intensity, inter-arrival and service process laws impact the system’s
characteristics through our obtained results.

In terms of continuity of this work, several research perspectives can be envisaged, including:
– Establish an analytical bounds for performance measures of a queuing system with dependent

feedback.
– Complete analysis of the M/M2/1 system with feedback (modelling, resolution and numerical

illustration).
– Complete analysis of the M/M2/1 system with feedback when customers are impatient.
– Through an economic analysis, the parameters, the characteristics and the optimal function-

ing policy of a system modeled by an M/M2/1 waiting model with feedback.
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Abstract

The main objective of this thesis is to analyze differences queuing systems with Bernoulli
feedback when the probability of this latest phenomena depends on the number of customers in the
system. At first, we have considered an M/M/1 queue with Bernoulli feedback, where we analyzed
a particular cases of them. Secondly, we consider the parametric estimation of the characteristics
of the waiting model M/M/1/N queue with Bernoulli feedback. A simulation study was carried
out with the objective of analyzing the effect of estimating the starting parameters of the waiting
system in question on the statistical properties of its performance measurement estimators obtained
via the plug-in method. Where a through discrete event simulation technique, we have analyzed
the GI/GI/1 queue system with Bernoulli feedback. Numerical and graphic analyzes are carried
out to show the effect of the distribution of inter-arrivals times, the distribution of service times,
the probability of Feedback, and the traffic intensity on the stationary characteristics of the system
in question and allowed us to draw important conclusions on the behavior of these characteristics.
Key words : queuing system; Bernoulli feedback; performance measures; simulation.

Résumé

L’objectif principal de cette thèse est d’analyser différents systèmes de files d’attente avec
Bernoulli feedback lorsque la probabilité de ce dernier phénomène dépend du nombre de clients
dans le système. Dans un premier temps, nous considérons une file d’attente M/M/1 avec Bernoulli
feedback, nous analysons un cas particulier d’entre eux. Dans un deuxième temps, nous considérons
l’estimation paramétrique des caractéristiques de la file d’attente M/M/1/N avec Bernoulli feed-
back. Une étude de simulation a été réalisée dans l’objectif d’analyser l’effet de l’estimation des
paramètres de départ du système d’attente en question sur les propriétés statistiques de ses es-
timateurs de mesure de performance obtenus via la méthode plug-in. Ensuite, nous analysons le
système de file d’attente GI/GI/1 avec les commentaires de Bernoulli. Nous avons eu recours à
la technique de simulation d’événements discrets. Des analyses numériques et graphiques sont ef-
fectuées pour montrer l’effet de la distribution des temps d’inter-arrivées, la distribution des temps
de service, la probabilité de Feedback, et l’intensité du trafic sur les caractéristiques stationnaires
du système en question et nous ont permis de tirer des conclusions importantes sur le comporte-
ment de ces caractéristiques.
Mots clés: système de file d’attente; Bernoulli feedback; mesures du performances; simulation.
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