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This thesis presents the development and the experimental validation of an Energy 

Management System for a real Hybrid Energy Storage System using lithium-ion batteries and 

supercapacitors in an electric vehicle emulator. The EMS allocates power based on source 

dynamics, managing real-time power distribution between the battery and SC, with the SC 

assisting the battery during high demands and recovering braking energy. Frequency-sharing 

techniques have been proposed to achieve this goal, including two innovative adaptive Wavelet 

Transform based on the development of the conventional versions. The first method employs an 

adaptive wavelet technique within the EMS, adjusting the wavelet decomposition level according 

to the state of charge of the supercapacitor. This allows for dynamic changes in the wavelet 

decomposition during high power peaks and when the supercapacitor has a high charge, reducing 

the battery’s workload. The second method integrates an adaptive wavelet with adaptive fuzzy 

logic within the EMS. This approach modifies wavelet transform levels and fuzzy logic outputs 

using a k-means-SVM pattern recognition system. The combination of k-means clustering and 

Support Vector Machine classification enhances driving pattern recognition, enabling real-time 

decision-making. The adaptive wavelet dynamically manages power distribution between the 

battery and SC, while the fuzzy logic maintains the supercapacitor at optimal levels and shields 

the battery from peak current surges. These proposed systems maintain the supercapacitor charge 

by dynamically managing power between the battery and SC, taking into account real-time driving 

conditions. As a result, it reduces battery aging, extends battery lifespan, and lowers overall 

operational costs in electric vehicles. 

Keywords:  Electric vehicle, Energy Management System, Adaptive wavelet transform, Adaptive 

fuzzy logic, Driving pattern recognition 

 

 

 

 

  



 

 

 

Cette thèse présente le développement et la validation expérimentale d'un système de gestion 

de l'énergie pour un système de stockage d'énergie hybride réel utilisant des batteries lithium-ion 

et des supercondensateurs dans un émulateur de véhicule électrique. Le système de gestion de 

l'énergie alloue la puissance en fonction de la dynamique de la source, en gérant la distribution de 

la puissance en temps réel entre la batterie et le système de stockage d'énergie, le système de 

stockage d'énergie aidant la batterie en cas de forte demande et récupérant l'énergie de freinage. 

Des techniques de partage des fréquences ont été proposées pour atteindre cet objectif, y compris 

deux transformées d'ondelettes adaptatives innovantes basées sur le développement des versions 

conventionnelles. La première méthode utilise une technique d'ondelettes adaptative au sein de 

l'EMS, ajustant le niveau de décomposition des ondelettes en fonction de l'état de charge du 

supercondensateur. Cela permet des changements dynamiques dans la décomposition des 

ondelettes pendant les pics de puissance élevés et lorsque le supercondensateur a une charge 

élevée, réduisant ainsi la charge de travail de la batterie. La deuxième méthode intègre une 

ondelette adaptative avec logique floue adaptative (AWT-AFL) au sein de l'EMS. Cette approche 

modifie les niveaux de transformation des ondelettes et les sorties de la logique floue à l'aide d'un 

système de reconnaissance des formes k-means-SVM. La combinaison du regroupement k-means 

et de la classification Support Vector Machine améliore la reconnaissance des schémas de 

conduite, ce qui permet une prise de décision en temps réel. L'ondelette adaptative gère 

dynamiquement la répartition de la puissance entre la batterie et le supercondensateur, tandis que 

la logique floue maintient le supercondensateur à des niveaux optimaux et protège la batterie contre 

les pointes de courant. Les systèmes proposés maintiennent la charge du supercondensateur en 

gérant dynamiquement la puissance entre la batterie et le SC, en tenant compte des conditions de 

conduite en temps réel. Ils permettent ainsi de réduire le vieillissement de la batterie, d'allonger sa 

durée de vie et de réduire les coûts de fonctionnement globaux des véhicules électriques. 

Mots-clés : Véhicule électrique, Système de gestion de l'énergie, Transformée en ondelettes 

adaptative, Logique floue adaptative, Reconnaissance des modèles de conduite 

  



 

 

 

تخزين طاقة هجين حقيقي يستخدم بطاريات الليثيوم    لنظام الطاقةقدم هذه الأطروحة تطوير والتحقق التجريبي من نظام إدارة  ت

أيون والمكثفات الفائقة في محاكي سيارة كهربائية. يقوم نظام إدارة الطاقة بتوزيع الطاقة بناءً على ديناميكيات المصدر، حيث  

ناء الطلبات العالية ويستعيد يدير توزيع الطاقة في الوقت الفعلي بين البطارية والمكثف الفائق، حيث يساعد المكثف البطارية أث

الطاقة أثناء الكبح. تم اقتراح تقنيات تقاسم التردد لتحقيق هذا الهدف، بما في ذلك تقنيتين مبتكرتين مبنيتين على تطوير التحويل  

تحليل المويجي التقليدي. تعتمد الطريقة الأولى على تقنية تحويل مويجي تكيفي داخل نظام إدارة الطاقة، حيث تعدل مستوى  

التحويل المويجي وفقًا لحالة شحن المكثف الفائق. يسمح هذا بإجراء تغييرات ديناميكية في التحويل المويجي أثناء الذروة العالية  

الفائق   المكثف  فتدمج    عالي،عند مستوى شحن  للطاقة وعندما يكون  الثانية  الطريقة  أما  البطارية.  العبء على  يقلل من  مما 

الضبابي  التحويل   المنطق  مع  التكيفي  داخلالمويجي  التحويل   التكيفي  مستويات  بتعديل  التقنية  هذه  تقوم  الطاقة.  إدارة  نظام 

وتصنيف    k-meansالمويجي ومخرجات المنطق الضبابي باستخدام نظام التعرف على الأنماط المستند إلى التجميع باستخدام  

. يعزز هذا المزيج من التجميع وتصنيف الآلات الداعمة من التعرف على أنماط القيادة، مما يمكّن اتخاذ SVMالآلات الداعمة  

القرارات في الوقت الفعلي. يدير التحويل المويجي التكيفي توزيع الطاقة ديناميكيًا بين البطارية والمكثف الفائق، بينما يحافظ  

ال المكثف  البطارية من تالمنطق الضبابي على مستويات شحن  المقترحة في  فائق ويحمي  الذروة. تساهم هذه الأنظمة  يارات 

الحفاظ على شحن المكثف الفائق من خلال إدارة الطاقة ديناميكيًا بين البطارية والمكثف الفائق، مع مراعاة ظروف القيادة في  

 للسيارات الكهربائية.الوقت الفعلي. ونتيجة لذلك، يقلل من شيخوخة البطارية، ويطيل عمرها، ويخفض تكاليف التشغيل الإجمالية  

: السيارة الكهربائية، نظام إدارة الطاقة، تحويل الموجات التكيفي، المنطق الضبابي التكيفي، التعرف على أنماط الكلمات المفتاحية

 القيادة

  



Contents 

 

i 

 

 

Contents 

List of Tables………………………………………………………………………...…...………iii 

List of Figures……………………………………………………………………………...……. iv 

List of acronyms and symbols……………………………………………………………...……vii 

1. Chapter 1     Introduction        

1.1. Background and motivation …………………………………………...………….1 

1.2. Contributions……………………………………………………...………………2 

1.3. Thesis plan…………………………………………………………...……………3 

2. Chapter 2     Review of hybrid energy storage systems in the context of electric vehicles 

2.1. Introduction………………………………………………………………...….......6 

2.2. Electric Vehicle ……………………………………………………………...…....6 

2.2.1. Historic…………………….………..……………………………………...….6 

2.2.2. Electric vehicle prices and sales …………………………………………..….7 

2.2.3. Types of EVs …………………………………………………...……….........9 

2.2.4. The Multifaceted Dynamics of Electric Vehicle Adoption…………..….......10 

2.3. Energy sources in electric vehicle ………………………………….....……........11 

2.3.1. Battery………………………………………………….………………...…..11 

2.3.1.1 Choice of storage technology…………….………...………...…..11 

2.3.1.2 Battery price……………………………….……….…………….13 

2.3.2. Supercapacitor…………………………………………….……………...…..15 

2.3.3. Topologies…………………………………………….……………………...16 

2.4. Energy Management Strategies……………………….…….…….……...……...18 

2.4.1. Rule-Based Energy Management Strategies…………….……….…..……...19 

2.4.1.1.Deterministic rule-based……………………….…….………...…...…...19 

2.4.1.2.Frequency-based……………………….……….………...……………...20 

2.4.1.3.Fuzzy based……………………….…………….………..……….……...22 

2.4.2. Optimization-based……………………………….….…………….………...23 

2.4.2.1.Global optimization-based……………………….……….……………...23 



Contents 

 

ii 

 

2.4.2.2.Real-time optimization…………………….…...………………………...25 

2.4.3. Learning-Based Energy Management Strategies…………………......……...27 

2.5. Driving Pattern Recognition-Based Energy Management Strategies……...….....28 

2.6. Conclusion……………………………….….……………………..……….........29 

3. Chapter 3   Modeling of hybrid energy storage systems and electric vehicles 

3.1. Introduction…………………………………………………………………........31 

3.2. Energy source modeling…………………………………………………............31 

3.2.1. Battery……………………………………………….………………….........31 

3.2.2. Supercapacitor……………………….………………………………….........35 

3.2.3. Parameters identification.………………………………………...…….........37 

3.3. DC bus modeling………………………………...……………………...….........42 

3.4. DC/DC converter modeling…………………………...……………..…….........42 

3.5. Traction chain modeling……………………………………………...…….........43 

3.5.1. Vehicle Dynamics model……………………………….………..…….........43 

3.5.2. Traction motor……………………………….……………………..….........45 

3.5.3. Regeneration……………………………………………………..…….........47 

3.6. Sizing of sources……………………………………………………..…….........48 

3.7. Conclusion………………………………………………….………………........52 

4. Chapter 4    Description of proposed strategies 

4.1. Introduction…………………………………………………………...……….....54 

4.2. HEV emulator…………………………………………………………...…….....54 

4.2.1. Description……………………………………………………………...…....54 

4.2.2. System modeling…………………………………………………………......56 

4.2.3. Converters control approaches……………………………………...….….....57 

4.2.4. DC- link voltage control ………………………………………………….....59 

4.3. Frequency-based energy management strategies………………..………...….....60 

4.3.1. Fixed frequency-based energy management system:………..…...……….....60 

4.3.2. Adaptive frequency-based energy management system………...……..….....61 

4.4. Wavelet-based energy management system……………………….……..….......62 

4.4.1. Conventional Wavelet-based Energy Management System….……..…….....62 

4.4.2. Adaptive wavelet-based energy management system……………..…..…......65 



Contents 

 

iii 

 

4.5. Adaptive Wavelet-Adaptive Fuzzy Logic based K-Means-SVM Pattern 

Recognition………………………………………………………..…………......67 

4.5.1. Driving Pattern Recognition…………………….……….………….….........68 

4.5.1.1.Extraction of the driving patterns characteristic parameters…….….........70 

4.5.1.2.K-means cluster ………………………………………….……...…........73 

4.5.1.3.SVM classifier………………………………………….………..……....74 

4.5.2. Adaptive wavelet transform ………………………….……………..…….....76 

4.5.3. Adaptive fuzzy ……………………………………….……………..…….....77 

4.6. Traction part control……………………………………………..…………........80 

4.6.1. Speed control based on Sliding mode……………………….…………….....80 

4.6.2. Speed control based on Back-stepping ………………..……………....….....82 

4.6.3. Torque control based on PI controller………………..…………...…...….....84 

4.7. Conclusion………………………………………….…..……………..……........86 

5. Chapter 5   Experimental validation and performance analysis 

5.1. Introduction………………………………………………..………………..........88 

5.2. Description du banc d’essai……………………………….…………………......88 

5.2.1. dSPACE dS1104 Card…………………………………………...………......90 

5.2.2. SEMIKRON Converter……………………………………………..…..........91 

5.2.3. Sensors…………………………………………………………………….....92 

5.3. Experimental validation……………………………………………………….....93 

5.3.1. Adaptive wavelet-based supervisor………………………………..….…......93 

5.3.2. Adaptive Fuzzy Logic based K-Means-SVM Pattern Recognition 

supervisor…………………………………………………………….….….104 

5.4. Conclusion……………………………………………………………...…........115 

6. Chapter 6     Conclusion and future work 

6.1. Conclusion……………………………………………………………...…........117 

6.2. Future work……………………………………………………………..…........119 

6.3. Publication…………………………………………………………...……........120 

References…………………………………………………………………………………........120



List of Tables 

 

iii 

 

 

List of Tables 

2.1. Comparative Analysis of Hybrid Energy Storage System Topologies…………………17 

3.1. Li-ion battery types…………………………………………………..…………………32 

3.2. The Parameter Identification Results of supercapacitor………………………………..41 

4.1. A dynamic frequency cut-off operation………………………………………………...62 

4.2. The characteristic criteria used for the recognition of patterns…………………………72 

4.3. The coordinates of the centroid…………………………………………………………74 

4.4. Membership symbols………………………………………….……..…………………77 

4.5. Fuzzy rules……………………………………………..……………………….………77 

5.1. Hardware characteristics……………………………………………..…………………89 

5.2. Detailed evaluation of the suggested EMS, the standard wavelet approach, and the 

adaptive filter compared to a fixed cut-off frequency…………………………………103 

5.3. Comparison of Frequency-Based EMS Performance for Both Classical and Adaptive 

Versions.……………………………………………..………………………………...104 

5.4. Accuracy comparison of diverse machine learning techniques in Driving state 

recognition……………………………………………………………………………..105 

5.5. Assessment criteria results.………………………………………………….………....108 

5.6. Reduction in AWT RMS battery current compared to fixed-WT…………….……….109 

5.7. Comparison of the proposed EMS to AWT-FL and AWT in terms of battery current 

RMS and peak reduction…………………………..……………………….……….…111



List of Figures 

 

iv 

 

 

List of Figures 

1.1. Emissions of greenhouse gases from the transportation sector worldwide……………....1 

2.1. The development of electric vehicles: (a) Robert Anderson Electric vehicle, (b) “La 

Jamais Contente” Electric vehicle, (c) Riker Electric Tricycle ,(d) Enfield 

8000………………………………………………………………………………………7 

2.2. Global inventory of electric cars, comprising plug-in hybrid and battery electric 

vehicles…………………………………………………………………………………...8 

2.3. Types of Electric Vehicles: (a) Battery Electric Vehicles; (b) Hybrid Electric Vehicles; 

(c) Fuel Cell Electric Vehicles; (d) Plug-in hybrid electric vehicles……………………10 

2.4. The qualitative indicators of batteries…………………………………………………...12 

2.5. Evolution of Batteries for Electric Vehicle Use across Generations……………………13 

2.6. Global lithium-ion battery demand 2022-2030…………………………………………14 

2.7. Lithium-ion Battery Market Size 2022 to 2032………………………………………...14 

2.8. Comparison between batteries and supercapacitor…………………………………......16 

2.9. Topologies of HESSs integrating battery and SC sources……………………………...17 

2.10. Classification of energy management strategies for hybrid electric vehicle...….19 

2.11. Electrical diagram of a Battery/Ultracapacitor EMS utilizing an Adjustable 

Bandwidth Filter and Sliding-Mode Control ………………………………………………..21 

2.12. Detailed control framework of hybrid energy storage system in this study…….21 

2.13. The model diagram of the fuzzy control module……………………………….22 

2.14. Flow chart of Genetic Algorithm……………………………………………….24 

2.15. Model predictive control block diagram………………………………………..26 

2.16. A schematic of Reinforcement Learning concept………………………………28 

3.1. Schematics of Li-ion battery…………………………………………………………...32 

3.2. The equivalent models of Li-ion battery: (a) Rint model, (b)Thevenin model, (c) PNGV 

model, (d)DP model…………………………………………………………………...33 

3.3. Schematic illustration of (a) electrical double-layer capacitor, (b)pseudocapacitor, 

(c)hybrid supercapacitor………………………………….…………………………...35 



List of Figures 

 

v 

 

3.4. Supercapacitor equivalent circuit models: (a) simple model with equivalent series 

resistance, (b)simple model with equivalent parallel resistance, (c)multi-branch 

model……………………………….…………………………………………………...36 

3.5. The flowchart of the parameter estimation process……………………………………..38 

3.6. Battery parameters under different state of charge……………………………………...38 

3.7. MAFF-RLS algorithm concept………………………………………………………….40 

3.8. Parameter identification results using the MAFF-RLS algorithm: (a) ohmic resistance 

R_0 ; (b) polarization resistor R_cp; (c) polarization capacitor C_cp; (d) Forgetting 

factor variation …………………………………………………………………….........41 

3.9. Equivalent circuit of the dc bus………………………………………………………....42 

3.10. Schematic circuit of the buck-boost converter………………………………......43 

3.11. Schematic representation of forces acting on a vehicle in motion……………....45 

3.12. Equivalent circuit of permanent magnet DC motor………………………...........46 

3.13. Open-loop PMDC block diagram……………………………………………......47 

3.14. Braking system model representation……………………………….…………...48 

4.1. Topology Configuration of HEV………………………………......................................55 

4.2. System identification principle………………………………………………………….58 

4.3. A schematic representation of the adaptive frequency separation technique…………...61 

4.4. Concept of Haar wavelet transform: (a)Decomposition phase ;(b) Reconstruction 

phase…………………………………………………………………………………….63 

4.5. Sliding window concept.………………………………...………………………….......64 

4.6. Wavelet transform technique diagram……………………………………………..........65 

4.7. Schematic representation of adaptive wavelet transform technique……………….........66 

4.8. Adaptive process flowchart…………………………………………………………......67 

4.9. The concept of Adaptive Wavelet-Adaptive Fuzzy Logic based K-Means-SVM Pattern 

Recognition EMS……………………………………………………………………......68 

4.10. Driving pattern recognition framework………………………………………….69 

4.11. Principal component eigenvalues and cumulative variance contribution rate…...71 

4.12. Correlation of the characteristic features………………………………………...72 

4.13. Cluster number determination using the Calinski-Harabasz index………………73 

4.14. Results of K-means clustering……………………………………………..…….74 



List of Figures 

 

vi 

 

4.15. Diagram of the voting procedure………………………………………………...76 

4.16. Fuzzy logic input membership functions…………………………………...........78 

4.17. The output of adaptive fuzzy logic membership function………………………79 

4.18. Adaptive fuzzy logic controller process…………………………………………80 

4.19. PI current control………………………………………………………………...85 

5.1. Experimental bench……………………………………………………………………..89 

5.2. Structure of the dSPACE DS1104 controller board…………………………………….90 

5.3. The connector panel of DS1104 Card………………………………………………......91 

5.4. Sensors:(a) Current sensor; (b) Voltage sensor ;(c) A tachogenerator………………….92 

5.5. Speed tracking performance :(a) Profile 1; (b) Profile 2…………………….……….....94 

5.6. Motor speed……………………………………………………………………………..94 

5.7. Dc-bus voltage………………………………………………………………………......95 

5.8. Current of load ……………………………………………………………………….....95 

5.9. Load current FFT analysis: (a) Section 1 (green) load current during urban driving cycle; 

(b) Section 2 (green) load current during high-speed driving cycle; (c) Section 3 (green) 

load current during suburban driving cycle……………………………………………..96 

5.10. Currents of batteries and supercapacitors using tested techniques: (a) Battery 

current over various cut-off frequencies; (b) Current of the supercapacitor with various 

cut-off frequencies; (c) Battery current with different wavelet levels and the adaptive 

method; (d) Current of the supercapacitor with different wavelet levels and the adaptive 

technique.………………………………………………………......................................97 

5.11. .  State of charge of Battery and supercapacitor under validated techniques:(a) 

Variations in battery SoC at various cut-off frequencies;(b) Variations in supercapacitor 

SoC at various cut-off frequencies;(c) Battery SOC at various wavelet levels and 

adaptive method;(d) Supercapacitor SOc at varying wavelet levels and the adaptive 

technique.………………………………………………………......................................98 

5.12. Total RMS current across various techniques………………….………………100 

5.13. The total maximum current with different techniques.…………………………101 

5.14. Delta SOC with various techniques……………………………………….……102 

5.15. Total Losses under different techniques implementation……………….….......103 

5.16. Results of recognition within the test-driving cycle……………………………105 



List of Figures 

 

vii 

 

5.17. The first motor speed………………………………………………..…………106 

5.18. The second motor Current………………………………………….…….……106 

5.19. Curent of load………………………………….………………………………107 

5.20. Results of experiments with wavelet transform, both fixed and adaptive: (a) 

Current of battery; (b) Current of supercapacitor; (c) Battery state of charge ; (d) 

Supercapacitor state of charge.……………………………………………….….……108 

5.21. Results of experiments conducted with various adaptive techniques: (a) Current of 

battery; (b) Current of supercapacitor; (c) Battery state of charge; (d) Supercapacitor 

state of charge.………………………………….……………………………………...109 

5.22. The distribution of battery current peaks under adopted techniques…………...111 

5.23. Battery current rate of change Distribution within tested strategies……………113 

5.24. Dc-bus voltage using adopted strategies.………………………………….……114



List of acronymes ans symbols 

 

vii 

 

 

List of acronyms and symbols 

EV 

BEV 

HEV 

ESS 

HESS 

EMS 

EPS 

DS 

SCs 

Soc 

Li-ion 

ECM 

SPET 

RLS 

MAFF-RLS  

PMDC 

HWFET 

WLTP 

FFT 

WT 

HWT 

DPR 

FL 

SVM 

PCA 

RMS 

WT 

AWT 

AWT-FL 

AWT-AFL 

SM 

BS 

FTP72 

M1 

M2 

mP  

Electric vehicles 

battery electric vehicle 

Hybrid Electric Vehicle 

Energy storage system 

Hybrid energy storage systems 

Energy Management Strategy  

Electrical power system 

Driving system 

Supercapacitors 

State of charge 

lithium-ion  

Equivalent circuit model 

Simulink Parameter Estimation Toolbox  

Recursive Least Squares  

Modified Adaptive Forgetting Factor-Based Recursive Least Square 

Permanent magnet direct current  

Highway Fuel Economy Test Driving cycle 

Worldwide Harmonized Light Vehicles Test Procedure Driving cycle 

Fast Fourier transformation 

Wavelet transform 

Haar wavelet transform 

Driving pattern recognition 

Fuzzy logic 

Support Vector Machines 

Principal Component Analysis  

Root mean Square  

Wavelet transform 

Adaptive wavelet transform 

Adaptive wavelet transform-Fuzzy logic 

Adaptive wavelet transform-Adaptive Fuzzy logic 

Sliding Mode control 

Backstepping control 

Federal Test Procedure Driving cycle 

The first motor 

The second motor 

The mechanical power  



List of acronymes ans symbols 

 

viii 

 

    

maxfc , nomfc , minfc  

n , sf , cf  

 

RMSI , rms bi − , rms sci −  

N ,
ib mesi − ,

isc mesi −  

 

∆ SoC 

TL , bL , scL  

bR , scR  

li  , bi , sci  

dcv , dc refv −  

b mesi − , sc mesi −  

*

bi ,
*

sci  

b refi − , sc refi −  

b  ,
sc ,

1m  ,
2m  

1, ,8s  

_Lo D , _Hi D  

n , nA , nD  

 

R  

Fi  

Fk  

( )pP i  

( )pn i  

( )n s  

bdi

dt
 

dcFv  

 

The charging/discharging efficiency 

Maximum, nominal, and minimum Cut-off frequency 

The number of decomposition levels, sampling frequency, and frequency of 

power demand on the battery pack 

The total RMS current, Battery RMS current, and Supercapacitor RMS current 

The number of data points in the signal, the individual data points of the 

measured battery, and the supercapacitor current signal  

Delta State of Charge 

Total losses, Battery losses, and supercapacitor losses  

Battery and Supercapacitor Internal Resistance 

Load current, Battery, and Supercapacitor controlled currents  

DC-link voltage and Reference DC-link voltage 

Measured Battery and Supercapacitor currents 

Battery and Supercapacitor currents references obtained from Wavelet transform 

Battery and Supercapacitor currents references obtained from Fuzzy logic 

Battery, Supercapacitor, and dc motors converter duty ratios 

Buck-Boost converter switches states  

Low and high pass filter 

Number of decomposition levels, Approximation and detail part of the wavelet 

decomposition  

Correlation coefficient matrix 

The contribution rate of each sample principal component 

Cumulative contribution of principal component samples 

Peak current probability 

Number of favorable findings (events where the condition is satisfied) 

The total number of samples processed 

Rate of change of battery current 

Dc-link voltage fluctuations 



 

vii 

 

 

 

 

Introduction 



Chapter 1. Introduction  

 

1 

 

1.1. Background and motivation 

 

The rapid progress of urbanization has indeed led to an increase in environmental contaminants in 

urban areas, including sulfur dioxide, nitrogen oxides, carbon monoxide, and particulate 

matter [1].  This environmental burden is closely associated with the transport industry, which 

contributes over 22% to global energy usage and greenhouse gas emissions, with road transport 

alone responsible for more than 70% of total domestic and international transport greenhouse gas 

emissions As shown in Fig 1.1 [2]. This challenge is particularly heightened in urban settings, 

where cities consume 75-78% of global energy resources and generate 67-80% of worldwide 

greenhouse gas emissions. It is projected that by 2050, approximately 68% of the world's 

population will reside in cities [3] [4], the significance of this issue is set to escalate. Consequently, 

the increasing popularity of electric vehicles in recent years stems from their lower environmental 

impact and potential to mitigate greenhouse gas emissions, coupled with their superior efficiency 

compared to traditional gasoline-powered vehicles. 

 

 

Fig 1.1: Emissions of greenhouse gases from the transportation sector worldwide 

 

In the context of addressing these environmental concerns, The European Energy Mix estimates 

that CO2 emissions in 2010 were at 300 CO2 g/kWh. The deployment of sustainable energy 

sources and the potential retirement of nuclear power plants are expected to reduce CO2 emissions 

to below 200 g/kWh by 2030, and maybe even lower. The CO2 emissions per vehicle will drop 
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from 66 CO2 g/km in 2010 to under 30 CO2 g/km in 2030 when the consumption and emissions 

of the electric vehicles used to generate the electricity are taken into account [5]. This transition 

towards a cleaner energy mix aligns with the increasing trend of adopting electric vehicles, offering 

a promising solution to the environmental challenges associated with the rise in pollutants due to 

urbanization. 

1.2. Contributions 

This thesis aims to develop a modern real-time EMS based on the Adaptive wavelet technique 

within a hybrid storage system dedicated to the EV encompassing batteries and supercapacitors. 

This development allows for optimized energy assignment and prolongs the battery lifetime, 

thereby reducing EV expenses. This aim will be achieved through the following original 

contributions: 

- A comprehensive review of EVs has been carried out, offering insights into both the current state 

of EMSs and potential avenues for future research. 

-A selection of methods blending wavelet techniques with artificial intelligence has been made to 

effectively manage the energy flow in the hybrid system and account for driving conditions. These 

EMSs are described as follows: 

• A novel AWT technique responsive to the supercapacitor state of charge is utilized to 

dynamically regulate the decomposition level. This innovative approach provides a fresh 

and streamlined method of adaptability in contrast to traditional pattern recognition drives. 

Particularly noteworthy is its ability to adjust the wavelet decomposition level during 

transient high peaks and when the supercapacitor holds ample reserves, thus easing the 

workload on the battery. 

• An improved AWT is presented integrating Dynamic Pattern Recognition principles, 

allowing for flexibility in addressing the dynamic complexities of various driving 

scenarios. Enhancement of the driving pattern recognition system's capabilities is 

accomplished through the fusion of k-means clustering and SVM classification techniques. 

Unsupervised classification of driving behaviors is facilitated by k-means clustering, 

establishing a basis for data-driven insights. Patterns are classified based on clusters 
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through the SVM classifier, thus enhancing real-time decision-making and substantially 

bolstering the adaptability of the EMS to driving conditions. 

• A progressive approach to fuzzy logic is adopted over conventional methods, introducing 

adaptability into the FL architecture. Real-time adjustments are made to membership 

functions and rules to ensure harmonization with evolving driving conditions. This 

continuous adjustment guarantees the preservation of the supercapacitor at the desired 

level, acting as a preventive measure for the battery against occurrences of peak current. 

-The experimental validation of the proposed strategies using real-world sources which faces 

challenges due to the offline methodology. This offline nature introduces complexities in 

implementing the strategy experimentally. However, the importance attached to rigorously 

testing and improving the viability of the strategy under realistic conditions is emphasized by 

the attempt to verify the proposed approach with real data sources. 

 

1.3. Thesis plan 

The organization of this thesis is outlined as follows: 

Chapter 1: an overview of the context in which the research will take place, motivation, and thesis 

contributions are introduced. 

Chapter 2: This chapter provides the fundamentals of HEVs, exploring the multifaceted dynamics 

influencing their adoption, including financial considerations. Various types and architectures of 

HEVs are identified and compared, with detailed explanations of the adoption of HESS 

incorporating batteries and supercapacitors. Furthermore, existing EMSs are categorized, and the 

strengths and limitations of each category are briefly reviewed. 

Chapter 3: will focus on the modeling and sizing of the various components comprising the power 

supply and traction system of the EV. Accurate modeling of these components is essential for 

deriving suitable control laws, encompassing energy sources, associated converters, the dynamic 

vehicle model, and the motors utilized for simulating the traction system. 

Chapter 4: a novel approach is introduced utilizing an AWT technique-based EMS. This technique 

customizes the wavelet decomposition level based on the supercapacitor's state of charge. In the 
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second part of this chapter, an adaptive wavelet-adaptive fuzzy logic technique (AWT-AFL) 

within an EMS is developed. This technique dynamically adjusts the wavelet transform levels and 

fuzzy logic outputs according to the k-means-SVM-driven pattern recognizer. where it focuses on 

achieving consistent maintenance of the supercapacitor around the desired level and protection of 

the battery from peak current surges. 

Chapter 5: focuses on the experimental validation of the proposed strategies within a 

battery/supercapacitor HESS tested on a small-scale  EV emulator where a detailed description of 

the experimental set-up is given. The practical aspects of numerical implementation and strategy 

calibration are discussed, and the performance of the various strategies is evaluated. 

Chapter 6 serves as the conclusion of the thesis, delving into potential avenues for future research. 
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2.1. Introduction 

In this opening chapter, we place the research in a general context by briefly describing the various 

types and architectures of HEVs. Following a brief historical perspective, we delve into the 

complex dynamics influencing the adoption of EVs, considering both technological and financial 

aspects, with a particular focus on battery-related considerations. Additionally, we provide an 

examination of on-board energy sources, elucidating their characteristics and the criteria used to 

compare them. In the second part, we offer a succinct review of energy management techniques 

for hybrid systems. This understanding serves as a foundation for informed decisions regarding 

the strategy employed in this study. 

2.2. Electric Vehicle 

An electric vehicle is a vehicle that uses electric energy stored in a battery or other devices for 

energy storage and is operated by an electromotor. EVs have a higher degree of efficiency and 

better driving characteristics compared to vehicles powered by internal combustion engines of 

equal power. They do not emit gases and do not create noise, making them environmentally 

friendly and suitable for urban environments [6]. EVs typically consist of a frame, an electric 

powertrain, and a transmission system. The electric powertrain includes an electric motor that 

receives power from a battery module and transmits power to the wheels. The frame provides 

structural support and may also include storage units for auxiliary power sources [7]. However, 

they may also have higher upfront costs and limited driving range, depending on the model and 

battery capacity[8] where the main problem with EVs is their autonomy. Scientists are developing 

better battery technology to increase driving range while reducing weight, cost, and charging time. 

These factors will eventually determine the direction of EVs[9]. 

2.2.1. Historic 

The first electric vehicle can be traced back to a Scottish man named Robert Anderson, who created 

a non-rechargeable battery-powered vehicle that ultimately failed[10]. However, the first 

successful EV was known as the 'Electro boat' and 'Ricker electric vehicle,' manufactured by the 

Electric Vehicle Company in the 1890s. There are numerous theories and opinions about the first 

electric vehicle, but it is believed that the first experiment on an electric vehicle was performed in 

the middle of the 1830s, just after the discovery of Faraday's law [11] . Greece is also considered 

the homeland of the first modern electrical car, with the Enfild 8000 being one of the first electric 
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cars in the world [12]. In the early 20th century, electric vehicles experienced waves of popularity. 

However, they were eventually overshadowed by gasoline-fueled vehicles, which were mass-

produced and sold at low prices [13]. It was not until the 1990s when the harmful effects of fossil 

fuels on the environment became a concern, that electric vehicles resurfaced as a viable option 

[14]. Today, EVs are becoming more mainstream, with many major automakers producing fully 

electric and hybrid electric models. Governments around the world are also promoting the adoption 

of EVs through incentives and regulations, to reduce greenhouse gas emissions and improve air 

quality[8]. Fig 2.1 depicts some of the referenced cars.  

(a) (b) 

(c) (d) 

Fig 2.1 The development of electric vehicles: (a) Robert Anderson Electric vehicle, (b) “La Jamais 

Contente” Electric vehicle, (c) Riker Electric Tricycle, (d) Enfield 8000 

 

2.2.2. Electric vehicle prices and sales  

The price of EVs has been decreasing over time due to advancements in technology, economies of 

scale, and government incentives. According to a report by Bloomberg NEF, the average price is 
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expected to reach parity with traditional gas-powered vehicles by 2026. In 2021, the average price 

of a new EV in the US was around $55,000, while the average price of a new gas-powered vehicle 

was around $40,000 [15]. However, the total cost of ownership over the vehicle's lifespan, 

including fuel and maintenance, can be lower for EVs. In Europe and China, a similar trend is 

observed, with EVs often being more expensive upfront but potentially more cost-effective in the 

long run [16]. 

The EV market has witnessed substantial growth, with a projected threefold increase in EV users 

by 2030 compared to 2011, driven by advancements in battery technology improving vehicle 

autonomy[17]. Fig 2.2 illustrates the global electric car stock, including battery electric vehicles 

(BEVs) and plug-in hybrid electric vehicles (PHEVs), showing a consistent increase in market 

share over the past decade. In 2023, EV sales surged by 60%, resulting in 1 in 7 global automobiles 

being electric [9].This growth not only led to a significant reduction in carbon emissions but also 

transformed the automotive landscape. 

 

Fig 2.2: Global inventory of electric cars, comprising plug-in hybrid and battery electric vehicles. 

 

China, the fastest-growing EV market, has set ambitious targets, where the global EV market 

surpassed 10 million sales in 2022, marking a 55% increase from the previous year, with China 

dominating by representing 59% of global EV sales. Europe emerged as the second-largest market, 
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accounting for 30% of the total EV population. The United States contributed 8% to global EV 

sales. This data suggests a promising future for the electric vehicle industry, with ongoing growth 

and increasing global adoption[18]. 

2.2.3. Types of EVs 

EVs come in various types, including battery-electric vehicles, hybrid-electric vehicles, plug-in 

hybrid-electric vehicles, and fuel-cell electric vehicles as shown in Fig 2.3. They  are classified 

based on their engine technology and configurations [18]: 

• Battery Electric Vehicles: BEVs are powered solely by electricity stored in a rechargeable 

battery pack or supercapacitor. They produce zero tailpipe emissions, offering high 

efficiency and low maintenance costs. However, BEVs may suffer from range anxiety due 

to limited driving range per charge and the availability of charging infrastructure. Popular 

examples include the Tesla Model S, Nissan Leaf EV, and Tata Nexon EV. 

• Hybrid Electric Vehicles: HEVs combine an internal combustion engine (ICE) with an 

electric motor, offering improved fuel efficiency and reduced emissions compared to 

traditional ICE vehicles. They utilize regenerative braking to recharge the battery and can 

operate in electric-only mode for short distances. HEVs like the Toyota Prius Hybrid, 

Honda Civic Hybrid, and Ford Escape. Hybrid provides a balance between electric power 

and fossil fuel reliance, making them a popular choice for drivers seeking increased 

efficiency without the range limitations of pure electric vehicles. 

• Fuel Cell Electric Vehicles: FCEVs utilize hydrogen gas to produce electricity through a 

chemical reaction in fuel cells, powering an electric motor with zero tailpipe emissions. 

FCEVs offer high energy density and long-range capabilities, along with rapid refueling 

similar to conventional vehicles. However, their adoption is hindered by the limited 

availability of hydrogen refueling infrastructure and the high initial acquisition cost. 

Notable examples include the Toyota Mirai, Honda Clarity, and Hyundai Tucson Fuel Cell. 

• Plug-in hybrid electric vehicles: These vehicles have both an electric motor and a gasoline 

engine. They can be charged by plugging them into an electric power source, and they can 

also run on gasoline when the battery is depleted. PHEVs have lower emissions than 

conventional gasoline vehicles, but they are not as clean as BEVs [8].However, PHEVs 

also face challenges such as high initial vehicle costs due to high battery costs, limited 
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driving ranges caused by low battery energy density, and a lack of recharge infrastructure 

[19] . 

(a) (b) (c) (d) 

 

Fig 2.3: Types of Electric Vehicles: (a) Battery Electric Vehicles; (b) Hybrid Electric Vehicles; (c) Fuel 

Cell Electric Vehicles; (d) Plug-in hybrid electric vehicles. 

 

2.2.4. The Multifaceted Dynamics of Electric Vehicle Adoption [20] 

EV adoption is influenced by a spectrum of interconnected factors across political, economic, 

social, technological, legal, and environmental dimensions. Politically, governments implement 

measures such as purchase subsidies, tax reductions, and investments in charging infrastructure to 

stimulate EV uptake. These policies not only make EVs more financially viable but also signal a 

commitment to sustainability. Furthermore, information campaigns and green certifications raise 

awareness and promote eco-conscious choices among consumers. Economically, the attractiveness 

of EVs lies in their lower long-term costs, including reduced maintenance and operation expenses, 

coupled with potential future discounts due to anticipated depreciation rates. Sociodemographic 

factors, including social status, peer influence, and individual attitudes towards environmental 

concerns and new technologies, significantly impact adoption rates. Personal experiences with 

EVs and daily travel patterns also shape preferences. 

Technologically, the availability and speed of charging infrastructure, along with factors such as 

vehicle range and smart functionalities like vehicle-to-grid connectivity, determine the practicality 

and convenience of EV ownership. Legal frameworks play a critical role in ensuring equitable 
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access to EVs, mandating charging infrastructure in new developments, and imposing restrictions 

on traditional car ownership or usage to incentivize electric alternatives. Moreover, the 

environmental benefits of EVs, including reduced greenhouse gas emissions and local air 

pollutants, are driving factors in their adoption. Effective recycling programs for lithium-ion 

batteries are essential for minimizing environmental impact and ensuring the sustainability of EVs 

throughout their lifecycle. 

2.3. Energy sources in Electric Vehicles  

In the context of vehicle hybridization, HESS must be used. It is composed of at least two energy 

sources. The advantage of hybridizing different storage elements is to take advantage of their 

complementarity in these properties. The main features that should be offered in the ESS are 

energy density, power density, lifespan, cost, and maintenance-free. Different types of energy 

storage devices are used in electric vehicles, such as batteries, supercapacitors, flywheels, and fuel 

cells. 

2.3.1. Batteries  

2.3.1.1 Choice of storage technology 

Battery storage technologies are broadly categorized into three generations. The traditional 

generation, including lead-acid and Ni-based batteries, which predates the Lithium era, they both 

well-established and dominant before the advent of lithium-based technologies. Lead-acid 

batteries, originating in 1859, are renowned for their maturity and low cost, utilizing lead and lead 

dioxide electrodes with sulfuric acid electrolyte.  

Similarly, nickel-based batteries, introduced in 1899, offer superior electrochemical properties but 

at a higher cost. Despite advancements like the nickel-metal-hydride (Ni-MH) battery, with better 

performance and environmental friendliness, both traditional battery types face limitations such as 

low energy density and lifespan.  The current generation, dominated by Li-based batteries, has 

already outpaced the traditional one in terms of key qualitative indicators, especially the High 

storage density as shown in Fig 2.4, where Li-ion batteries have a high energy density, allowing 

them to store a large amount of energy in a compact size. This makes them suitable for use in 

electric vehicles, where space is limited[21]. Lithium-ion batteries (Li-ion) are particularly 

prominent, with variations like lithium-ion polymer batteries (Li-poly) offering higher specific 
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energy. Additionally, lithium-metal batteries present exciting possibilities for the future, albeit 

with challenges related to rechargeability. 

 

Looking ahead to the future generation, diverse technologies such as sodium-beta, metal-ion, and 

metal-air batteries promise advancements in energy density, environmental sustainability, and 

cost-effectiveness. Among these, sodium-beta batteries stand out for their abundance and potential 

in stationary applications, while metal-air batteries offer exceptionally high theoretical energy 

densities, positioning them as prime candidates for electrified automobiles. Solid-state batteries, 

especially those based on lithium-sulfur chemistry, hold promise for overcoming existing 

challenges and ushering in a new era of high-performance energy storage for automotive 

applications. Fig 2.5 illustrates the graphical classification and generational evolution of battery 

types for EVs and portable applications [22]. 

 

Fig 2.4: The qualitative indicators of batteries 
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Fig 2.5: Evolution of Batteries for EV use across Generations 

 

2.3.1.2 Battery price 

The advancement of lithium-ion battery energy storage technology played a pivotal role in the 

mass marketing of EVs. Estimates have shown that global lithium-ion battery demand will rise 

over fivefold to 2000 gigawatt hours (GWh) between 2022 and 2030 as appears in Fig 2.6. The 

largest market for lithium-ion batteries is and will remain diverse EV application scenarios [23]. 
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Fig 2.6: Global lithium-ion battery demand 2022-2030. 

 

The battery pack is the most vital and most expensive component of an EV, constituting a 

significant portion, roughly 25%–50%, of their overall acquisition cost. Choosing the right battery 

technology for an EV is paramount, as it directly impacts various crucial factors such as cost, 

weight, capacity, efficiency, durability, and overall performance[18] . For instance, when the 

Nissan LEAF was introduced, its lithium-ion batteries accounted for approximately one-third of 

the vehicle's total cost. Over time, advancements in battery technology have led to a decline in 

battery prices. For instance, by the end of 2014, the cost per kilowatt-hour (kWh) had dropped to 

around $500 from its 2009 price, and now it's anticipated to reach approximately $100 by 2025, 

 

Fig 2.7: Lithium-ion Battery Market Size 2022 to 2032[24]. 
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indicating a significant downward trend. Tesla Motors' initiative to establish a "Mega factory" 

aimed at reducing manufacturing costs and increasing battery output further underscores this trend 

towards more affordable batteries [9] . As battery costs decrease, the price of EVs is expected to 

follow suit, enhancing their competitiveness against traditional combustion engine vehicles. This 

trend is supported by the expanding market opportunities for lithium-ion batteries, where the 

global lithium-ion battery market size, estimated at USD 70 billion in 2022, is expected to exceed 

USD 387.05 billion by 2032, showcasing a robust CAGR of 18.7% from 2022 to 2032 as shown 

in Fig 2.7. These projections are bolstered by advancements in battery technology, which have 

seen substantial increases in specific energy and energy density. For instance, from 2010 to 2020, 

specific energy rose from nearly 110 Wh/kg to 250 Wh/kg, with expectations of reaching up to 

450 Wh/kg by 2030. Similarly, energy density increased from 300 Wh/L to 550 Wh/L over the 

same period, with predictions indicating a potential increase to 1100 Wh/L by 2030 [5]. 

  

2.3.2. Supercapacitor 

ESS can be categorized based on their power and energy density. Batteries typically exhibit 

relatively high specific energy, while SCs demonstrate lower specific energy but substantially 

higher power density, as depicted in Fig 2.8. Which provides a concise comparison between 

batteries and SCs [25]. The superior power density of SCs enables them to deliver significantly 

higher power over shorter durations. This characteristic makes them well-suited for meeting the 

power demands of EV motors during urban driving scenarios characterized by frequent 

accelerations and decelerations, leading to large fluctuations in power requirements [26]. 

Moreover, supercapacitors are less susceptible to the effects of repeated deep charging and 

discharging, thus eliminating the need for regular replacement, unlike batteries. This feature also 

underscores their ecological friendliness, as they do not require frequent disposal. SCs can be 

rapidly recharged within seconds following deep discharge[27] , with their internal resistance 

remaining almost constant throughout charging and discharging processes, and boasting a high 

cycle life [28]. Consequently, they find ideal applications in regenerative braking systems. While 

SCs cannot entirely supplant batteries, they can complement each other, enhancing the 

performance of the EV energy management system and reducing operational costs by mitigating 

the degradation of the EV battery and consequently decreasing the frequency of battery 

replacements. 
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2.4.1. Topologies 

Investigating topology, control strategies, and optimal configurations for HESSs has consistently 

been a focal point in research. Various topologies are devised to harness the potential of both 

supercapacitors and batteries, ranging from passive and semi-active HESS configurations to full-

active ones. Although these configurations entail increased complexity and cost, they offer 

enhanced operational flexibility and management capabilities. Fig 2.9 illustrates different hybrid 

topology approaches integrating battery and SC sources. More comprehensive insights into HESS 

for EV applications are encapsulated in Table 1 [29],[30], [31],[32],[33],[5]. 

 

Fig 2.8: Comparison between batteries and supercapacitor. 

(a) 

 

 

 

(b) 

 

 

 

(c) 
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Table 1: Comparative Analysis of Hybrid Energy Storage System Topologies 

Topology  Types  Description Advantages Disadvantages 

Active 

 

Parallel, 

Serie 

(cascade)  

In the parallel 

architecture, the ESS 

is connected 

parallelly to the DC 

bus through the use 

of two bidirectional 

DC-DC power 

converters. On the 

other hand, within 

the series 

architecture, these 

bidirectional DC-DC 

power converters 

link the ESS 

elements in series to 

the DC buss 

- Parallel architecture 

eliminates ultracapacitor 

voltage fluctuations, making it 

highly favorable. 

- Parallel architecture achieves 

steady battery current flow and 

voltage differences between 

load and battery. 

- Series architecture isolates 

high power and energy storage 

from the DC bus. 

-  Enhanced energy 

management capabilities. 

- Ensures optimal control for 

improved system efficiency. 

- High costs associated with 

implementation. 

- Complex real-time interaction 

control required. 

- In the case of a failure in any 

converter within the Series 

architecture, it will lead to a 

breakdown in the HESS 

Passive  

 

 This topology 

directly connects the 

battery and SC to the 

DC bus, requiring no 

control for energy 

power-sharing. 

- Simplicity in design 

- Simplicity, cost-

effectiveness, and reduced 

weight 

- Provides high reliability 

- Allows for direct integration 

of battery and SC  

- Power power-sharing ratio 

depends on internal resistance, 

- Lack of controllability results in 

variable power-sharing dependent on 

source impedance, leading to 

susceptibility to cascading failures 

during emergencies. 

-  Limited utilization of SC due to 

uncontrollable power flow and lack 

of protection against faults. 

 

 

(d) 

 

 

(e) 

 

(f) 

 

Fig 2.9: Topologies of HESSs integrating battery and SC sources: (a) Fully active topology with a parallel 

structure;(b) Fully active topology with a series structure; (c) Passive topology; (d) Battery semi-active topology; 

 (e) Supercapacitor semi-active topology; (f) Multi-input converter topology. 
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offering simplicity in 

implementation 

- During regenerative braking, high 

current peaks may impact battery 

lifespan and efficiency 

Semi-

active 

Supercapac

itor semi-

active, 

Battery 

semi-active  

This topology 

utilizes a single DC-

DC converter 

connected to one of 

the individual ESSs, 

while the other ESS 

is directly connected 

to the DC bus. 

- Reduced system cost and 

complexity 

- Most control strategies can 

be applied 

- Good trade-off between cost, 

weight, and control complexity 

- Adequate performance in 

meeting load requirements 

- Fluctuating DC bus voltage due to 

supercapacitor connection. 

- Limited operating range of the 

supercapacitor in certain 

configurations. 

- Cost and space requirements for the 

additional converter. 

-Connecting the battery directly to 

the DC bus makes it susceptible to 

transient fluctuations 

Multiple 

input 

converter 

 This topology works 

by integrating 

multiple ESSs into a 

single converter 

connected to a DC 

bus 

- It allows for bidirectional 

power flow, enabling energy 

transfer between the battery 

and the output loads in both 

charging and discharging 

modes. 

- It mitigates voltage stress on 

semiconductors, resulting in 

decreased losses on switches 

- The complexity of the control 

structure  

-Difficult in implementation 

 

2.4. Energy Management Strategies  

Developing an energy management strategy requires identifying the optimal power distribution 

between the two sources while accounting for their operational constraints, including storage 

capacities and frequency domain requirements. This distribution process must also address various 

performance factors, such as source longevity, driving comfort, autonomy, and other relevant 

considerations, as emphasized in the reference[34] . These energy management strategies are 

categorized into three main categories: rule-based, optimization-based, and learning-based 

strategy, as illustrated in Fig. 2.10. 
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Fig 2.10: Classification of energy management strategies for hybrid electric vehicle. 

 

2.4.1. Rule-Based Energy Management Strategies 

This type of strategy is characterized by its simplicity and ease of real-time implementation. It 

typically operates based on a predefined set of rules that govern energy management according to 

the EV's current operating conditions. Typically, these regulations are enforced by employing 

either a lookup table or conditional expressions based on if-then rules. Nevertheless, its primary 

drawback lies in its inability to adapt to changing driving conditions over time, which arises from 

a deficiency in prior knowledge of driving information[35] . These strategies are computationally 

efficient and can be categorized into deterministic rule-based, frequency-based, fuzzy logic-based. 

2.4.1.1. Deterministic rule-based: 

A deterministic rule-based approach for EVs operates through predefined conditions and 

thresholds to regulate power distribution, thereby optimizing energy management. This method is 

favored for its straightforward implementation, reliability, and minimal computational overhead 

[36]. It effectively directs power within the vehicle's electrical system, ensuring safety functions 

and preventing voltage drops below critical levels[37] . Additionally, such strategies can curtail 

power consumption from comfort features, thus optimizing electrical energy utilization [38]. 



Chapter 2. Review of hybrid energy storage systems in the context of electric vehicles 

 

20 

 

However, deterministic rule-based strategies have their limitations. They may not match the 

efficiency of other approaches, like deep reinforcement learning , in maximizing fuel-saving 

performance or profit [39]  [40]. They might struggle to adapt to varying states of charge and 

battery capacities, thus hindering their integration with plug-in electric vehicles in power 

distribution networks. 

Numerous studies have delved into deterministic rule-based strategies for EVs. For instance, 

Huang, Nguyen, and Chen devised a rule-based control strategy for a parallel HEV to enhance 

energy efficiency and mitigate carbon emissions. This strategy utilized the driver's power demands 

as input and determined power distribution among the generator, electric motor, and internal 

combustion engine based on predefined rules. Evaluation on the NEDC2000 driving cycle revealed 

significantly improved fuel efficiency in HEVs compared to ICE vehicles [37] . Shi, Guo, Liu, 

Cai, and Wang proposed an enhanced rule-based strategy by incorporating a reference SOC curve 

and SOC adaptive adjustment [41]. This ensured a linear decrease in state of charge with driving 

distance, reaching a minimum at the end of journey, akin to dynamic programming results. The 

improved rule-based strategy demonstrated a 7.87% reduction in fuel consumption compared to 

conventional rule-based approaches.  

2.4.1.2. Frequency-based 

EMSs based on frequency utilize the frequency attributes of power loads and energy sources to 

optimize energy distribution and usage. By scrutinizing the frequency components of power loads, 

advantageous frequency ranges conducive to efficient operation are pinpointed. This data is 

subsequently employed to distribute energy resources and enact customized control measures 

tailored to the specific frequency needs of the load. This approach results in minimized energy 

wastage and heightened overall efficiency. In this context, researchers have explored a variety of 

approaches. In [42], the authors introduce a frequency-based power-sharing technique utilizing a 

frequency splitter to direct low-frequency power demand to the battery and high-frequency 

demand to the SC. Their findings indicate that this method effectively reduces battery current and 

enhances battery lifespan. However, the predetermined threshold for frequency separation may not 

always optimize real-time power sharing because of variations in demanded power behavior across 

driving conditions. Therefore, [43] proposes an EMS that utilizes a variable bandwidth filter 

combined with sliding mode control for managing hybrid energy storage systems comprising 
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batteries and ultracapacitors as shown in Fig 2.11. Results demonstrate the system's ability to 

maintain battery soc within desired limits while ensuring stable ultracapacitor operation. 

On another front, WT has emerged as a formidable contender in frequency-based EMSs. In [44] , 

the authors present a real-time energy management strategy for hybrid battery and supercapacitor 

ESSs that combines WT, neural networks, and FL as illustrated in Fig 2.12. The approach forecasts 

low-frequency power demand with neural networks, allocates high-frequency demand to the 

supercapacitor, and regulates supercapacitor voltage using FL. Outcomes showcase significant 

reductions in peak power supplied by the fuel cell and effective utilization of the supercapacitor 

and battery for energy management. The adaptability of wavelets enables superior signal analysis, 

enhancing the accuracy of EMSs. 

 

Fig 2.12: Detailed control framework of hybrid energy storage system in this study 

 

Fig 2.11: Electrical diagram of a Battery/Ultracapacitor EMS utilizing an Adjustable Bandwidth Filter and 

Sliding-Mode Control 
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2.4.1.3. Fuzzy based 

The fuzzy-rule-based energy management control strategy, an extension of deterministic rule-

based energy management control, operates by formulating a set of fuzzy rules (IF–THEN) derived 

from human knowledge and cognition, eliminating the need for a mathematical system model [45]. 

This approach offers numerous advantages, including robustness, ease of implementation and 

tuning, real-time control capability, sufficient human reasoning capacity, rapid calculation speed, 

and suitability for online use in embedded systems. However, conventional methods may lack 

adaptability due to challenges in selecting suitable membership functions for various inputs [35]. 

In [46], an energy management system was introduced for a hybrid energy storage system  in an 

electric vehicle , integrating a rule-based fuzzy logic controller with power filtering. The results 

showed optimal energy distribution between the dual energy sources of the HESS model. 

Additionally, the analysis indicated lower voltage demand frequency for the battery compared to 

the SCs, leading to reduced battery degradation. In [47], the authors propose a hierarchical energy 

management strategy for fuel-cell hybrid electric vehicles, The HEMS optimizes power 

distribution among fuel cells, batteries, and ultracapacitors to enhance fuel economy. Energy 

storage systems simplify distribution, while fuzzy logic controllers efficiently distribute power. A 

status regulation module improves fuel cell life and battery state of charge. An adaptive low-pass 

filter maximizes ultracapacitor utilization as shown in Fig 2.13 Comparative simulations show 

reduced hydrogen consumption and enhanced vehicle energy efficiency under various cycle 

conditions, demonstrating the economic and dynamic benefits of the strategy. 

 

Fig 2.13: The model diagram of the fuzzy control module 
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2.4.2. Optimization-based 

Optimization-based strategies use mathematical models and algorithms to determine the optimal 

energy management solution. They may consider driving cycle, battery characteristics, and 

environmental conditions. However, these methods demand significant computational resources 

and may necessitate high-performance hardware, leading to increased system cost and complexity. 

Optimization-based approaches can be categorized as either offline or real-time optimization. 

2.4.2.1. Offline optimization-based 

Global optimization-based strategies aim to find the optimal energy management strategy that 

minimizes energy consumption or maximizes the driving range of the electric vehicle over a long-

time horizon. These strategies typically require the use of complex optimization algorithms and 

may take a longer computational time [48] . Dynamic Programming is proposed as a solution for 

tackling optimal control problems within nonlinear systems, dynamic programming stands out as 

a prominent mathematical technique derived from Bellman's optimality principle. Essentially, DP 

endeavors to simplify intricate multi-stage decision-making into a series of single-stage decisions, 

thus breaking down the problem into manageable sub-problems that can be addressed sequentially. 

However, when dealing with excessively large dimensions, the computational and analytical 

processes may face significant hindrances [49], [50] . In [51],the authors present a dynamic 

programming-based energy management strategy for fuel cell hybrid electric vehicles, which 

notably enhances fuel economy and system durability. Simulation results show a 6.46% reduction 

in hydrogen consumption per 100 km compared to previous methods. Additionally, by regulating 

power output changes, the strategy reduces large load fluctuations, demonstrating its advantages 

over alternative approaches. Game theory finds extensive application in addressing multi-objective 

optimization challenges by incorporating both anticipated and actual human behaviors. Employing 

a multi-agent game model to simulate the actions of diverse energy sources in HEVs aids in 

establishing a balanced power distribution. Compared to alternative methods, game theory's 

mathematical computations are less intricate. However, due to its dependence on human behavior 

predictions and the complexity of advanced powertrain models, its solution is less tied to specific 

drive cycles but may be less compatible with vehicular control techniques [52]. Q. Zhang and G. 

Li [53] employ game theory-based control to manage power flow in the FC + B configuration, 

tackling uncertainties in energy demand during driving cycles. This approach, combined with 
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fuzzy logic correction, effectively reduces fuel consumption and mitigates battery degradation. 

However, its applicability is limited to specific hybridization configurations due to the need for a 

deep understanding of each control method. 

Genetic Algorithm (GA) is a metaheuristic approach inspired by the principles of evolution. It 

begins by generating an initial population of solutions (chromosomes), which are then evaluated 

using an objective fitness function. The best solutions typically require more time to evolve and 

develop, Fig 2.14 illustrates the flow chart of the GA [54],[55] .Genetic algorithms have found 

widespread application in devising energy management strategies for electric vehicles. These 

algorithms are instrumental in determining the optimal battery charge/discharge protocol in fuel 

cell hybrid electric vehicles, considering factors like minimizing hydrogen consumption rate, 

preserving battery charge rate, and maximizing fuel cell efficiency [56]. Moreover, genetic 

algorithms play a crucial role in the energy management control schemes for hybrid energy storage 

systems in EVs, which integrate photovoltaic, battery, and ultracapacitor systems. These 

algorithms contribute to efficient energy utilization, prolonging battery lifespan, and enhancing 

overall performance [57]. 

 

Fig 2.14: Flow chart of Genetic Algorithm 
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2.4.2.2. Real-time optimization 

Real-time optimization aims to find an optimal energy management strategy for a specific driving 

cycle or specific operating conditions. These strategies are typically less intensive in terms of 

computational time and can be computed in real-time. A combination of both global and local 

optimal strategies may be used to balance the need of accuracy and computational efficiency[48].  

The Pontryagin's Minimum Principle (PMP) serves as a fundamental mathematical tool within 

control systems for devising optimal control strategies. It entails establishing the requisite 

conditions for minimizing costs in optimization dilemmas. Assuming determinism in the trajectory 

computed via PMP and adherence to relevant constraints and boundaries, the resulting optimal 

trajectory is commonly regarded as globally optimal. Consequently, the Hamiltonian function can 

be formulated: 

( ( ), ( ), ) ( ( ), ( ), ( ) ( ( ), ( ), )fH x t u t t m x t u t t t f x t u t t= +   

 

 

(2.1) 

with ( )t representing the co-state. Both the system's state and co-state must conform to the 

stipulated following conditions:[49]  
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Pontryagin's Minimum Principle (PMP) is employed in various energy management techniques 

for electric vehicles. An A-ECMS-based EMS for extended-range electric vehicles integrates PMP 

into its design, resulting in fuel consumption savings of 6.2% and 3.4% when compared to 

traditional strategies[58]. Similarly, a real-time adaptive EMS for vehicles equipped with hybrid 

energy storage systems (HESSs) utilizes PMP to minimize total electricity costs, leading to 

reductions in battery losses by 18.41%, 13.94%, and 20.37% [59]. 

 MPC, an advanced control method, utilizes a model to predict future system behavior and 

determines optimal outputs by solving constrained optimization problems. It directly considers 

constraints and aims to track a predefined reference within a specified horizon (Fig 2.15). Only 

the initial output value from the optimized trajectory is implemented at each step [60] .A study 

implemented Model Predictive Control to enhance the energy efficiency of EVs by optimizing 
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their thermal management systems within power and thermal. This involved a control-oriented 

model that captured the dynamics of the EV's powertrain and thermal subsystems. Through 

sensitivity analysis, the study identified key traffic and speed variables influencing optimal EV 

performance and assessed the impact of predictive uncertainties [61]. Additionally, another study 

introduced a scenario-based MPC framework for Plug-In Hybrid Electric Vehicles (PHEVs), 

achieving comparable fuel consumption reductions to nominal MPC without full foresight of 

future driver behavior[62] . 

 

Fig 2.15: Model predictive control block diagram 

 

The ECMS utilizes an optimization algorithm to dynamically compute the most efficient power 

distribution between the internal combustion engine and electric motor, taking into account present 

driving conditions and energy storage system status. This enables the vehicle to minimize fuel 

consumption, fulfill driver power requirements, and preserve the energy storage system's charge 

level. In [63] the authors proposed the environmental perceiver-based equivalent consumption 

minimization strategy (EP-ECMS) for parallel plug-in hybrid vehicles. It employs a precise 

environmental perceiver based on GCN and an attention mechanism for traffic state recognition. 

Furthermore, the Harris Hawk optimization algorithm determines the optimal factor offline. 

Simulation results demonstrate a notable 7.25% energy consumption improvement compared to 

the traditional ECMS. 
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2.4.3. Learning-Based Energy Management Strategies 

Researchers have been exploring novel paradigms in pursuit of more adaptable and robust EMS 

solutions. Recently, machine learning has emerged as a promising alternative that employs 

software applications to enhance outcome predictions with increased accuracy, avoiding the 

necessity for explicit programming.  ML algorithms utilize past data to anticipate new output data.  

There are three categories of ML methods based on what data types need to be predicted. These 

categories include reinforcement learning supervised/unsupervised learning, and Neural network 

learning [64]. 

Supervised learning trains a model using labeled data to predict outcomes. It utilizes labeled data 

pairs of input and correct output attached to it to teach the machine, acting as a guide for 

prediction[65]. supervised learning has been extensively utilized in HEV energy management for 

tasks like battery degradation mitigation, hierarchical energy management, and online control 

strategy development. In [66], a two-stage method is proposed. Firstly, a battery aging state 

calibration model is established using a semi-empirical method, followed by linearizing the 

mapping between aging features and battery life loss with a supervised learning method. Secondly, 

a neural hybrid optimization-based energy management method is employed to mitigate vehicle 

battery aging costs by simplifying model solving and reducing computation cost. 

Contrary, in unsupervised learning, the data provided to learning algorithms consists solely of 

input values without any associated output labels. This means there is no predefined notion of what 

to predict. The primary goal of unsupervised learning is to uncover inherent structures within the 

input data. Algorithms in unsupervised learning can organize the available data in various manners. 

Unsupervised learning techniques could potentially be applied in HEV for tasks such as anomaly 

detection, clustering driving patterns, or identifying hidden patterns in vehicle data without the 

need for labeled information. In the study [67], the authors utilized the k-means clustering 

algorithm to classify derived profiles. They then devised a power distribution strategy, applying 

different co-state maps based on the classification of each driving profile 

Reinforcement learning is a machine learning technique that involves training an agent to make 

decisions based on feedback from the environment [68]. Unlike supervised and unsupervised 

instructional methods, the RL approach iteratively enhances its understanding by incorporating 

feedback from previous experiences in a cycle. This prevents it from persisting indefinitely once 
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the model has been established through data gathered from trial and error attempts, a schematic of 

Reinforcement Learning is shown in Fig 2.16 [69].  Reinforcement learning has been utilized to 

improve energy management in hybrid electric vehicles by developing intelligent control 

strategies, In their study [70] by Yu Cheng, Ge Xu, and Qihong Chen, a Q-learning-based approach 

for dual-energy electric vehicle hybrid systems is proposed. It outperforms rule-based strategies, 

reducing losses and lithium battery current conversion rate by 0.43% and 35.17%, respectively. 

The effectiveness is demonstrated, updating control quantities through changes in the transition 

probability matrix under mixed working conditions 

 

 

Fig 2.16. A schematic of Reinforcement Learning concept 

 

2.5. Driving Pattern Recognition-Based Energy Management Strategies. 

Energy Management Systems can make smart decisions regarding power distribution within 

HEVs. By optimizing the allocation of energy resources based on recognized driving patterns, 

artificial intelligence allows to examination of both historical data and real-time driver actions 

alongside road conditions. This enables Energy Management Systems to forecast energy 

requirements more accurately and fine-tune power distribution, ultimately enhancing the 

efficiency of HEVs. 

Combining driving pattern recognition with optimization-based energy management strategies for 

electric vehicles has several potential benefits.  It allows for real-time power allocation based on 

the driving patterns, resulting in improved system efficiency and energy loss reduction [71].  

Additionally, the integration of predicted vehicle speed into the powertrain control strategy can 

lead to more optimal energy management and closer results to optimal than conventional strategies 
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[72]. Moreover, integrating driving behavior in energy management strategies can reduce fuel 

consumption and improve the lifespan of power sources [73] . 

Nevertheless, the complex merging of these techniques poses challenges, particularly due to the 

increased computational requirements. which could lead to system delays or bottlenecks in system 

performance. As a result, the system ability of the system to promptly respond and adapt to 

dynamic driving conditions might be compromised. 

Fusing driving pattern recognition with rule-based energy management strategies is seen as a 

synergistic approach to enhance energy optimization in HEVs. Driving pattern recognition can 

dynamically modify the flexibility of different rules based on the recognition process results [11]. 

This resolves the constraints of traditional rule-based systems and improves entire vehicle 

performance and energy economy. Even so, much research hasn't been done on this strategy.  In 

both [12] and [13], the authors present an energy management methodology for hybrid electric 

vehicles that incorporates driving pattern recognition alongside fuzzy logic control. Within the 

second strategy, labeled as 'NNF-EMS,' driving cycle recognition is merged with fuzzy logic 

control to adjust fuzzy controller parameters according to driving cycle characteristics, thereby 

improving fuel efficiency across scenarios 

On the other hand, in [14], a flexible energy management system for electric vehicles is suggested, 

which combines driving cycle recognition with wavelet transform. Additionally, [15] presents a 

driving pattern recognition (DPR)-based intelligent energy management technique for a hybrid 

energy storage system (HESS) in electric cars. Simulations highlight its superiority over 

conventional methods, illustrating a 58.2% decrease in battery current, a 6.16% extension in 

battery lifespan, and an 11.06% enhancement in vehicle endurance 

2.6. Conclusion 

In response to the growing interest in electric vehicles, this chapter gives a detailed exploration of 

EVs. It delves into the intricate details of electric vehicle architecture, commonly utilized energy 

sources, and prevalent topological configurations. Then, a review of energy management 

techniques for hybrid systems has been briefly given. Knowledge of the principle of these 

strategies allows us to make well-reasoned choices regarding the strategy employed in this study.
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3.1. Introduction 

Modeling is crucial in understanding complex systems by providing a structured approach to 

analyze, manage, and improve them. As such, in this chapter, explicit models of the various 

subsystems are presented, together with the dimensioning of the constituent components. At the 

core of our discussion, the proposed hybrid system comprises three integral parts: 

• an electrical power system:   mainly consists of lithium-ion batteries as a primary source, 

supercapacitors as a secondary source, and two bidirectional DC/DC. These converters enable 

power flow in both directions, delivering energy from the sources to the load during discharge 

and returning energy from the load to the sources during charging. 

• Driving system:  contains Two DC motors which are individually controlled to emulate the 

traction side. 

• DC link:   serves as a centralized junction for all power connections, facilitating the 

interconnection between the electrical power system and the drive system. Its regulation 

around a reference value is imperative for ensuring smooth operation and optimal performance 

of the hybrid system. 

 

3.2. Energy source modeling 

3.2.2. Battery 

A lithium-ion battery is an advanced battery technology that uses lithium ions as a key component 

of its electrochemistry. Li-ion battery consists of a positive electrode (cathode), a negative 

electrode (anode), an electrolyte, and two current collectors as shown in Fig 3.1. The cathode 

typically comprises lithium metal oxide, while the anode is commonly made of graphite or other 

carbon-based materials. The electrolyte in a Li-ion battery contains lithium salts and plays a crucial 

role in facilitating the movement of lithium ions between the cathode and anode during charge and 

discharge cycles[74]. During a discharge cycle in Li-ion batteries, lithium atoms in the anode 

undergo ionization, separating from their electrons. These lithium ions then traverse through the 

electrolyte towards the cathode, where they recombine with electrons to neutralize electrically. 

The small size of lithium ions enables their movement through a micro-permeable separator 

between the anode and cathode, facilitating high voltage and charge storage capabilities per unit 

mass and volume in Li-ion batteries[75]. 
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Fig 3.1: Schematics of Li-ion battery 

 

Li-ion batteries can be categorized based on the electrode materials utilized, as detailed in Table 

3.1: 

 

LiFePO4 batteries are set from other lithium batteries by their exceptional thermal stability and 

safety profile. Unlike conventional Li-ion batteries, which can undergo thermal runaway under 

certain conditions. Moreover, LiFePO4 batteries offer long life with minimal capacity degradation 

during repeated charge-discharge cycles, making them preferred for EVs [76]. The oxidation-

reduction reaction of LiFePO4 batteries taking place at both the positive and negative electrodes 

is expressed as follows: 

 

 

 

Table 3.1: Li-ion battery types. 

Type LCO LMO NCA NMC LFP LTO 

Cathode 

Material 

Lithium 

cobalt 

oxide 

Lithium 

manganese 

oxide 

Lithium 

nickel cobalt 

aluminium 

oxide 

Lithium 

Nickel 

Manganese 

Cobalt Oxide 

Lithium 

Iron 

Phosphate 

Lithium 

manganese 

oxide 

Anode 

Material 

Graphite Graphite Graphite Graphite Graphite Li-titanate 
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Cathode Reaction:  

4 4FePo Li e LiFePo+ −+ + =   
(3.1) 

Anode Reaction:  

Overall Reaction:  

 

Electrochemical models, illustrated in Fig. 3.2, provide a simple and widely used method to 

simulate battery dynamics without accounting for internal phenomena.  

The Rint model is the most basic ECM, containing a voltage source in series with internal 

resistance. It accounts for ohmic resistance from contacts, electrodes, and electrolytes, offering a 

basic approximation of battery voltage behavior. By connecting a resistor and capacitor in parallel 

to the Rint model, the Thevenin model, also known as the 1 RC model, is created. This model 

represents ohmic losses and concentration polarizations. Increasing the number of RC networks 

can be included to enhance the model's complexity and accuracy. Therefore, the Partnership for a 

New Generation of Vehicles (PNGV) model, developed by the US Department of Energy for 

Power-Assist Hybrid Electric Vehicles, simulates battery voltage behavior using an internal 

resistance element, an RC element, and a series-connected capacitance, known as bulk 

capacitance, to calculate variation in open circuit voltage. The Dual Polarization (DP) model builds 

on the Thevenin model by introducing activation polarization with the addition of a second RC 

element. It captures the total internal resistance, encompassing ohmic resistance, including ohmic 

resistance, concentration polarization resistance, and activation polarization resistance.[77] 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

(b) 

6 6LiC C Li e+ −= + +   
(3.2) 

6 4 6 4C LiFePo LiC FePo+ = +   (3.3) 
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(c) (d) 

Fig 3.2. The equivalent models of Li-ion battery: (a) Rint model, (b)Thevenin model, (c) PNGV model, 

(d)DP model. 

 

This work employs the first-order ECM as the circuit model for Li-ion batteries. This model was 

chosen to balance the ability to fit experimental data with the complexity of the equivalent 

circuit[78]. The equations for the model are as follows: 

0( ) ( ) ( ) ( )b b b cpV t E t R t i t V= −  −  (3.4) 

 In addition to building an accurate battery model that involves constructing and parameterizing 

an equivalent circuit that captures the nonlinear characteristics of the battery, this model must 

account for dependencies on temperature, state of charge, and state of health. These dependencies 

are unique to the electrochemical characteristics of each cell and must be determined based on 

measurements of the battery cell [79]. 

Battery soc is typically defined as the remaining capacity of a battery compared to its total rated 

capacity under a specific discharge rate[80] . It can be expressed as: 

Where Q  is the current remaining battery capacity, and
NC  is the rated battery capacity 

The Coulomb counting method is utilized in this work as a straightforward approach for estimating 

the Soc. It is commonly used in online applications due to its simplicity and real-time capability, 

avoiding the complexity of EMS implementation proposed in subsequent chapters. This method 

involves calculating the extracted capacity of the cell by integrating the current over time, and it 

can be defined as follows: 

100%
N

Q
soc

C
=   

(3.5) 
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3.2.2. Supercapacitor 

Supercapacitors are electrochemical capacitors with significantly higher energy density than 

traditional electrolytic capacitors, owing to the charge accumulation via electrostatic double-layer 

capacitance (EDLC) and electrochemical pseudocapacitance interactions. These interactions occur 

at the electrode/electrolyte interface, emphasizing the importance of a high specific surface area 

for enhanced charge storage.  SC system consists of two electrodes (anode and cathode), an 

electrolyte, and a separator, with charge mainly stored at the electrode in the case of EDLC, where 

ions from the electrolyte are adsorbed at the interface. The separator serves as a semipermeable 

membrane, allowing ion transport while preventing short circuits. The electrode incorporates a 

current collector to ensure efficient electron transfer to external devices.[81]. 

 

Fig 3.3: Schematic illustration of (a) electrical double-layer capacitor, (b)pseudocapacitor, (c)hybrid 

supercapacitor 

 

( ) ( ) ( )1
N

t
soc k soc k i k

C


+ = −   

(3.6) 
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Supercapacitors can be categorized into electric double-layer capacitors (Fig 3.3a) and 

pseudocapacitors (PCs) (Fig 3. 3b) based on their energy storage mechanisms, with EDLCs storing 

charges at the electrolyte-electrode interfaces and PCs involving reversible Faradaic redox 

reactions. When a supercapacitor combines a capacitive carbon electrode with either a 

pseudocapacitive or lithium-insertion electrode, it transforms into a hybrid supercapacitor 

(HSC)(Fig 3. 3c) . HSCs offer a unique energy storage approach by leveraging the benefits of both 

EDLCs and PCs, providing high power densities from EDLCs and high energy densities from 

PCs[82]. 

The simplest ECMs, shown in Fig 3.4, have been widely used to describe the overall behavior of 

SCs.  The model in Fig 3. 4(a) features a capacitance and an equivalent series resistance that 

represents the charging and discharging resistance. In contrast, Fig 3. 4(b) includes an equivalent 

parallel resistance connected in parallel with the capacitance to account for self-discharging losses. 

These two equivalent circuits are valuable for initial power system sizing and for simulating low-

rate and stationary charging and discharging processes[83]. More detailed models, such as the 

multibranch models in Fig 3. 4(c), are not considered, as the dynamic behavior of the RC model 

is sufficient for this case. 

 

 

 

 

 

(a) 

 

 

 

 

 

 

(b) 

 

 

 

(c) 

 

Fig 3.4: Supercapacitor ECMs: (a) simple model with equivalent series resistance, (b)simple model 

with equivalent parallel resistance, (c)multi-branch model 
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The following equation mathematically describes the electrical behavior of the SC [84]: 

1
sc s sc scv R i i dt

c
= +   

 

(3.7) 

Unlike other types of batteries, SCs exhibit a more linear relationship between their remaining 

capacity and terminal voltage. Consequently, the SOC is frequently employed to estimate the 

remaining capacity of SC. The SOC of a supercapacitor can be mathematically expressed as  [85]: 

min

max min

sc sc
sc

sc sc

v v
soc

v v

−

− −

−
=

−
 

(3.8) 

scv   corresponds to the terminal voltage of the supercapacitor, while
minscv −

  and 
maxscv −

  indicate the 

minimum and maximum cut-off voltage of the supercapacitor, respectively. 

3.2.3. Parameters identification 

A detailed numerical parameter estimation scheme was implemented using pulse current discharge 

tests on LiFeYPO4 lithium-ion cells under various operating conditions with MATLAB®, 

Simulink®, and Simscape™. The tests, conducted at a single ambient temperature, ensured that 

parameters depended solely on the State of Charge. Data on voltage, current, and SoC were 

collected and used to calculate parameters through interpolation, stored in 1-D look-up tables with 

ten distinct SoC points. Parameter estimations of models were done in Simulink Parameter 

Estimation Toolbox (SPET), where initial values and constraints for each parameter were defined 

in the SPET, the constraints ensure the estimated parameters remain within realistic bounds. A 

Non-linear Least Squares was chosen as the solver method and the Trust-Region-Reflective 

algorithm was employed to solve non-linear equations, this algorithm iteratively adjusts the 

parameters to minimize the difference between the simulated and experimental data. A discharge 

profile was iteratively simulated, with results compared to experimental data to refine parameters 

and minimize errors. Final parameters, dependent on SoC, were integrated into the model using 

"From" blocks, ensuring accurate reflection of cell behavior across the entire SoC range. The 

model's accuracy was validated by comparing its output with experimental results, ensuring 

reliable predictions of cell behavior under various scenarios The flow diagram in Fig 3.5 outlines 

the steps involved in the parameter estimation process, while Fig 3.6 presents the results of this 

procedure[77] [78]. 
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Fig 3.5: The flowchart of the parameter estimation process. 

 

(a) 
(b) 

 

 

 

 

 

 

(c) 

 

Fig 3.6. Battery parameters under different states of charge. 
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In the realm of battery model parameter identification, Recursive Least Squares algorithms are 

deduced in equation (3.9) play a crucial role by integrating the concept of the forgetting factor ( )  

to assign more weight to recent data over past data. 

Aiming to strike a balance between stability and accuracy, the optimal selection of forgetting 

factors is always needed to balance stability and accuracy. Therefore, in this work, the MAFF-

RLS algorithm is adopted, which is described in  [86], where the optimal value of the forgetting 

factor ( )k   is computed based on the value of model voltage error. The experimental analysis 

shows that the relation between the model voltage error and the forgetting factor is non-linear. To 

solve this non-linear relationship, the standard half-parabola curve equation is considered as 

presented in Fig 3.7, for error values between 0.05 ( ) 0.005e k  , the optimal value of ( )k is 

evaluated using the standard parabola equation. For ( )e k values from 0 to 0.005, ( )k equals 
max

, and for ( )e k  values greater than 0.05, ( )e k equals 
min . The value of ( )k is determined based 

on the error value as follows: 

max

2

max max min max

min

0.99; 0 ( ) 0.005

( ) ( ).( ( ) / ) ; 0.05 ( ) 0.005

0.95; ( ) 0.05

for e k

k e k e for e k

for e k



   



 =  


= − −  
 = 

 

 

(3.10) 

According to the Thevenin model given in Fig 3.2(b), the transfer function of the battery 

impedance is obtained by its electrical equation in the Laplace domain and is expressed in the s-

domain as follows: 

By using the bilinear transformation method, the (3.11) can be written as (3.12) and the coefficients 

can be expressed as below: 

1
, 2 3

1

11

b k

k

V a a z

I a z

−

−

+
=

−
 

 

(3.12) 

ˆ ˆ ˆ ˆ( ) ( 1) ( ) ( ) ( ) ( 1)

( ) ( ( 1) ( ) / ( ( ) ( 1) ( ))

( ) (1 ( ) ( )) ( 1) /

T

T

T

k k K k y k k k

K k P k k k P k k

P k K k k P k

   

   

 

  = − + − −
 


= − + −


 = − −  

  

 

(3.9) 

1
0

1 1

( )b b b

R
E R i v

R C
= + +  

 

(3.11) 
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where T  refers to the sampling time interval. 

by using (3.11), the recursive equation in discrete time form can be expressed as: 

, 1 , 1 , 1 2 3 1(1 )b k b k b k k kv a E a E a I a I− −= − + + +  (3.14) 

The discrete-time form (3.14) can be rewritten as: 

,

T

b k k kv  =  (3.15) 

Where, 

1 , 1 2 3

, 1 1

(1 )

1

k b k

k b k k k

a E a a a

E I I



 − −

  = −  


 =  

 

 

(3.16) 

 

 

Now, the battery model parameters can be identified by using the expression (3.17)[86], and the 

results of the process are depicted in Fig 3.8. 

1 2,
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1 1 1 1 1

2 0 1 0 1 1 1

3 0 1 0 1 1 1

( 2 ) / ( 2 )

( 2 ) / ( 2 )

( 2 ) / ( 2 )

a T R C T R C

a R T R T R R T T R C

a R T R T R R T T R C

 −  +   
   

=  +  +   +
   
    +  −   +   

 

 

(3.13) 

 

Fig 3.7: MAFF-RLS algorithm concept 
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       (a) 
          (b) 

              (c)      (d) 

 

Fig 3.8: Parameter identification results using the MAFF-RLS algorithm: (a) Ohmic resistance 𝑅𝟎 ;  

(b) Polarization resistor 𝑅𝑐𝑝; (c) Polarization capacitor 𝐶𝑐𝑝; (d) Forgetting factor variation  . 

 

The identification of supercapacitor parameters involves conducting constant-current discharge  

tests on the Maxwell module to collect voltage and current data, which are then utilized in the 

parameter estimation process [87] mentioned above to obtain the real SC parameters, the results 

are summarized in Table 3.2. 

 

Table 3. 2: The Parameter Identification Results of supercapacitor 

Parameter 𝑅𝑠 𝐶 

Value 7.2 (mΩ) 159 (F) 
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3.3. DC bus modeling 

To ensure smooth and reliable power flow from various sources to the load, the sources are 

interconnected via a DC bus. The voltage on this bus must be regulated around a reference value, 

which depends on the transformation ratio of the DC/DC converters connected to the bus. Proper 

regulation of this voltage allows for efficient collection and routing of energy from the sources to 

the traction motor. The capacitor on the DC bus helps maintain voltage stability by absorbing or 

supplying charge as needed. In the circuit diagram shown in Fig 3.9, the DC bus capacitor is 

depicted with various currents flowing through it, connecting to components such as a traction 

motor, a battery, and a supercapacitor. The mathematical model of the DC bus captures these 

interactions can written as:  

dc dc
dc b sc l

dc

dv v
C i i i

dt R
 = + − −  

(3.18) 

The resistor dcR connected in parallel with the capacitor dcC  provides a safe discharge path when 

the system is turned off, preventing residual voltage buildup. It also emulates the leakage current 

of real capacitors and helps slightly dampen voltage fluctuations.  

 

3.4. DC/DC converter modeling 

The modeling of the DC-DC converter behavior is crucial for designing the HESS controller, as it 

aims to control the energy flow to DS efficiently. By regulating the DC-DC converter output 

voltage and current through Pulse Width Modulation (PWM) applied to the IGBT. This research 

contains a battery as the main source and a supercapacitor as the auxiliary source connected to the 

DC bus via a single-layer bidirectional DC-DC converter to ensure bidirectional energy transfer 

 

 

Fig 3.9: Equivalent circuit of the dc bus. 
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between sources and the DC bus (the secondary source being reversible in current). The boost 

mode discharges sources, while the buck mode charges the supercapacitor to maintain the DC bus 

voltage at a set reference value. 

The state-space average model is employed to represent the DC-DC converter illustrated in Fig 

3.10, considering the ON and OFF states of the IGBT. The average model of the buck-boost 

converter on the battery side is expressed as:  

(1 )b mes
b b dc b

di
L v v

dt
− = −  −  

(3.19) 

Similarly, the average model of the buck-boost converter on the supercapacitor side is given by: 

(1 )sc mes
sc sc dc sc

di
L v v

dt
− = −  −  

(3.20) 

 

 

 

Fig 3.10: Schematic circuit of the buck-boost converter 

 

3.5. Traction chain modeling 

3.5.1. Vehicle Dynamics model 

The behavior of a moving vehicle is influenced by all the forces acting on it in a given direction 

as shown in Fig 3.11. The tractive force 
tF  at the contact area between the drive wheels' tires and 

the road surface propels the vehicle forward. This force is generated by the torque from the power 

plant, which is then transmitted through the drivetrain to the driving wheels. As the vehicle moves, 

it encounters resistance that opposes its motion. To determine the power needed to propel the 

vehicle forward,  the fundamental principle of dynamics is applied [88]: 
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( )

v ext

text rf slope aero

dv
m F

dt

F F F F F


=


 = − + +


 

  

(3.21) 

aeroF represents the aerodynamic drag force and is given by: 

21

2
airaero f dF v A C=  

 

(3.22) 

where 
air  is the air density, v  is the vehicle speed, fA  is the frontal area of the vehicle, and 

dC  is 

the aerodynamic drag coefficient. 

The rolling resistance force of the wheels on the ground, rfF  is determined by the formula: 

cos( )rf r vF C m g =  (3.23) 

where 
rC  is the rolling resistance coefficient, g  is the acceleration due to gravity,   is the angle, 

and 
vm  is the vehicle mass. 

The gravitational force slopeF , which depends on the slope of the road, is calculated as: 

sin( )slope vF m g =  (3.24) 

The tractive force 
tF  can be expressed as: 

21
cos( ) sin( )

2
ai

t v rf slope aero

t v drr v v f

dv
F m F F F

dt

dv
F m C m g m g v A C

dt
  

= + + +

= + + +

 

(3.25) 

 

 

(3.26) 

The mechanical power 
mP  required to propel the vehicle forward is: 

2

.

1
( cos( ) sin( ) )

2

m t

m v r v v a f dir

P F v

dv
P v m C m g m g v A C

dt
 

=

= + + +
 

(3.27) 

 

(3.28) 

According to the previous equation, the load torque
LT  is given by: 

.L TT F r=  (3.29) 

  With r  is the tire radius  
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Fig 3.11: Schematic representation of forces acting on a vehicle in motion 

 

3.5.3. Traction motor 

Motors are a key component of the drivetrain in EVs. For an electric motor to be effective in 

driving an EV, it must be highly efficient, have a high-power density, and be cost-effective. Unlike 

industrial motors or conveyors, EV motor drives require frequent starts and stops, rapid 

acceleration and deceleration, high torque at low speeds, low torque at high speeds, and a wide 

range of operating speeds. DC motors are the oldest type of motors used in electric vehicles for 

their simplicity, cost-effectiveness, and durability. Especially, permanent magnet DC motors 

which eliminate the energy losses associated with field windings by using permanent magnets to 

create a consistent magnetic field without additional electrical power. This efficiency is 

complemented by the motor's compact size and lighter weight, which are crucial for EV design 

where space and weight are critical considerations. Additionally, PMDC motors provide a higher 

power density, meaning they can generate more power relative to their size, making them ideal for 

maximizing performance in EVs.[89],[90]. 

To simplify and focus on our main objective, which is validating energy management techniques, 

our choice was directed towards a PMDC, therefore two PMDC motors were adopted, the first one 

is subject to speed control to simulate the traction aspect of an electric vehicle, while the second 

DC motor is controlled to emulate the road driving conditions. The characteristics of the vehicle 

considered are given in the table. 



Chapter 3. Modeling of hybrid energy storage systems and electric vehicles 

 

46 

 

To determine the maximum power required by the motor, the formula (3.30) is used. Assuming 

flat terrain and the vehicle maintaining a constant maximum speed, the motor power is calculated 

to be 200W. This is the power that must be supplied by the motor, which operates with an 

efficiency ranging from 70% to 90%, depending on the technology used:  

m
mot

mot

P
P


=  

 

(3.30) 

Consequently, a PMDC motor with a nominal voltage of 24V and a power rating of 250W has 

been selected. 

Since the motor being used is a PMDC motor, the inductor component is negligible, and the motor 

can be represented by the  diagram in Fig 3.12[91]: 

 

 

 

Fig 3.12: Equivalent circuit of permanent magnet DC motor. 

 

From the previous figure, the electrical and mechanical equations of the motor are written as: 

( )
( ) ( ) . ( )

dI t
V t E t L R I t

dt
− = +      with ( ) . ( )bE t K t=   

 

(3.31) 

( )
( )m r

d t
C J F t C

dt


= +  +          with  . ( )m tC K I t=  

(3.32) 

Moving from the time domain to the Laplacian domain gives us the following current and velocity 

equations: 

( ) ( )
( )

.

V s E s
I s

L S R

−
=

+
 

(3.33) 
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We have: ele  electrical time constant. With: 

ele

L

R
 =    →  

( ) ( )
( )

(1 . )ele

V s E s
I s

R S

−
=

+
 

 

(3.34) 

( )
.

m rC C
S

J S F

−
 =

+
 

(3.35) 

mec  mechanical time constant. With: 

mec

J

F
 = → ( )

(1 . )

m r

mec

C C
S

F S

−
 =

+
 

 

(3.36) 

In practical systems, the friction coefficient 𝐹 is never zero due to losses like mechanical friction 

and air resistance. In high-efficiency or simplified models, F  may be negligible. Here, the 

mechanical time constant becomes undefined as 0F → . To prevent mathematical singularity in 

simulations or control design, a small positive value   is assigned to F , ensuring numerical 

stability while approximating nearly lossless behavior. 

From relations (33) and (35), a block diagram that represents the motor is obtained in Fig 3.13: 

 

Fig 3.13: Open-loop PMDC block diagram. 

 

3.5.3. Regeneration 

Considering driving patterns and road traffic conditions, a vehicle frequently needs to decelerate, 

which typically requires braking. During this process, the vehicle's kinetic energy can be converted 

into heat or electricity. In conventional friction brake systems, this excess kinetic energy is 

transformed into unwanted and wasted heat due to friction. In contrast, regenerative braking allows 

the vehicle to slow down by converting its kinetic energy into electricity, which can be stored or 
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used immediately. Regenerative braking works on the principle that the traction motor generates 

negative electromagnetic torque, effectively functioning as a generator. For regeneration to occur, 

the propulsion powertrain system spanning from the energy source to the traction wheels must 

support bidirectional energy flow, and the energy source itself must be capable of receiving power. 

In practice, only 30% to 50% of this energy can be recovered due to conversion losses. However, 

the amount of energy that can be regenerated depends on various factors, mainly the motor, 

deceleration rate, and the receptiveness of the ESS. 

The braking controller is the main part of the braking system, responsible for executing the 

necessary braking scenarios to decelerate a vehicle and manage its energy. Its primary goal is to 

stop the vehicle at the desired rate. This is typically achieved using a traditional closed-loop circuit, 

as shown in Fig 3.14, where the controller (C) compares the reference speed with the actual speed 

of the EV and generates a torque reference for the brakes, producing the required braking torque. 

[92],[93]. 

 

3.6. Sizing of sources 

The dimensioning of energy sources in a vehicle depends on the dynamic performance 

requirements of DS, particularly the vehicle's maximum speed and acceleration times. Maximum 

speed requirements influence the power demand on the energy sources, necessitating a powertrain 

capable of delivering sufficient continuous power to achieve and sustain high speeds without 

efficiency losses or overheating. While acceleration performance dictates the peak power 

requirements, requiring energy sources to handle significant bursts of power over short periods.  

To calculate the size limit of the hybrid power supply i.e. the battery and the supercapacitor, a 

power requirements analysis is conducted to determine the power needed for maximum speed and 

 

 

Fig 3.14: Braking system model representation. 
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acceleration, the total energy needed for typical driving cycles, factoring in regenerative braking 

and other energy recovery mechanisms. 

The energy consumption is calculated based on the road loads, and the total power is calculated as 

the product between the total road forces and the vehicle speed as previously mentioned in equation 

(3.27). By integrating the total power over time (for the whole duration of the cycle), we get the 

total energy consumption [94] ,[95]: 

.total mE P dt=   (3.37) 

The energy consumption varies depending on the driving force as shown in Fig 3.11 where two 

cases are distinguished: 

During Acceleration ( 0)tF   : 

.acc mE P dt=   (3.38) 

This integral represents the total energy consumed when the driving force is positive (i.e., during 

acceleration). 

During Deceleration ( 0)tF   

. .acc mE P dt =   (3.39) 

This formula includes a recovery efficiency factor    to account for the energy recovered during 

regeneration (regenerative braking). 

The battery pack is considered the main power source and is designed to handle 300 watts. It 

consists of a specific number of cells, determined as follows[96]: 

The number of battery cells connected in series 
csN is calculated by dividing the nominal battery 

pack voltage bpU  by the voltage of each battery cell bcU . Since the number of strings must be an 

integer, the result is rounded up to the nearest whole number. 

bp

cs

bc

U
N

U
=  

(3.40) 

The nominal battery pack voltage bpU is calculated using: 
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dc
bp

V
U =


 

(3.41) 

where   is the boost ratio. The maximum output voltage is about 2-3 times the input voltage. 

Exceeding this ratio can cause input currents to become large and expensive, including the 

switching devices, and significantly decrease efficiency[97]. 

The energy content of a string bsE  in watt-hours is equal to the product of the number of battery 

cells connected in series and the energy of a battery cell bcE  

.bs cs bcE N E=  
(3.42) 

The total number of strings in the battery pack spN  is calculated by dividing the battery pack's 

total energy bpE  by the energy content of a string. The result is rounded up to the nearest whole 

number 

bp

sp

bs

E
N

E
=  

 (3.43) 

The total energy of the battery pack bpE can then be recalculated as the product of the number of 

strings and the energy content of each string. 

.bp sb bsE N E=  (3.44) 

The battery pack capacity bpC  in ampere-hours is calculated as the product of the number of 

strings and the capacity of a battery cell bcC .  

.bp sb bcC N C=  (3.45) 

The batteries available in the lab have a nominal voltage of 3.3V. To ensure a stable operation of 

the associated buck-boost converter considering the boost ratio, five of these batteries are 

connected in series, resulting in a total voltage of 16.5V. Each battery has a capacity of 100 Ah, 

meaning it can deliver a current of 100A for one hour or a lower current for a proportionally longer 

duration. The minimum recharging capacity of these batteries is denoted as C1, corresponding to 

a recharging current of 100A, enabling the battery to be fully recharged in one hour. However, due 

to the unavailability of a source capable of supplying such a high current, a more practical 
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recharging method known as C10 is often used. This means the battery is recharged at a current of 

10A, taking 10 hours to fully recharge. 

SCs serve as an auxiliary energy source that engages during the acceleration and braking phases 

of a vehicle. The sizing of SC is determined based on the specific power requirements of their 

intended application. 

Let scW   denote the energy stored in the supercapacitor at a given moment, which can be expressed 

as [98]: 

2

s

1

2
sc c scW C V=  

(3.46) 

If the allowable voltage limits for the discharge process are considered, the energy variation can 

be expressed as:  

2 2

s max min

1
( )

2
sc c sc scW C V V− − = −  

(3.47) 

Typically, minscV −  is set to max 2scV −  , leading to an energy variation of:  

2

s max

3

8
sc c scW C V − =  

(3.48) 

which accounts for 75% of the stored energy. Given the energy needs of the system to which SC 

must deliver its charge, defined needW , some simple calculations lead to the capacity sizing as: 

s 2

max

8

3

need
c

sc

W
C

V −


=  

(3.49) 

To find the number of serial cells needed s scN − based on the individual cell voltage sc cV −  and the 

required maximum voltage maxV , you can use the following formula: 
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max
s sc

sc c

V
N

V
−

−

=  
(3.50) 

In this case, the Maxwell BMOD0165 module is used, which has a nominal voltage of 48 V, a 

capacity of 165 F, and contains 18 cells 

 

 

 

3.7. conclusion 

This chapter provides a detailed description and explicit modeling of the various components of 

the HEV chosen for tests which consists of a hybrid electric system (battery/SC) and a PMDC for 

the traction part. The storage sources have been sized and their parameters identified. Furthermore, 

the dynamic model of the vehicle is discussed.  Before exploring different EMSs in the next 

chapter, it is necessary to establish models of the various subsystems. This modeling enables us to 

predict system performance once the proposed control strategies are implemented. 
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4.1. Introduction 

The problem of energy flow management is to find the best power distribution. Thus, developing 

an EMS is crucial to ensure optimal power distribution within a HESS, while also addressing 

operational constraints such as storage capacities and frequency domain specifications. Choosing 

the right distribution requires evaluating various performance criteria, including the source 

lifespan, driving comfort, autonomy, and other relevant factors[34] . 

This chapter introduces a set of frequency-based energy management systems designed to optimize 

energy allocation, extend battery life, and lower EV-related costs. The content is structured into 

two parts and focuses on distributing energy among sources according to their performance across 

different frequency ranges. 

• The first part introduces a new adaptive wavelet approach that dynamically adjusts the 

decomposition level in response to the supercapacitor's soc. It also evaluates this approach 

against three alternative frequency-based approaches. 

 

• The second part presents an innovative adaptive wavelet approach based on Dynamic Pattern 

Recognition. This involves developing a driving pattern recognition system that integrates k-

means clustering with SVM classification techniques and adapting fuzzy logic using the 

output from the driving pattern recognizer. 

To achieve the intended goals, these strategies consider: 

• Precise control of static converters to ensure smooth energy flow to the load 

• Designing a driving system that emulates real electric vehicle driving conditions 

 

4.2. HEV emulator  

4.2.1. Description 

HEV topological architecture typically consists of an electrical power system and a driving system, 

as illustrated in Fig 4.1.  EPS is mainly made up of Li-ion batteries, SCs, and two bidirectional 

DC/DC converters that allow power to flow from sources to loads during discharging mode and 

back into sources during charging mode. Depending on the control mode, the HESS topology can 

be defined as passive, semi-active, or active. The ability of the active structure for the HESS to 
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regulate the power distribution between the battery and SC makes it an attractive option. This 

structure not only increases power transfer efficiency but also protects the battery by reducing the 

effects of high peak currents during cycles of charging and discharging in EVs[99]. On the other 

hand, the DS combines electromechanical drive with vehicle dynamics, which renders it 

susceptible to outside interference such as changing road conditions and driver-initiated speed 

adjustments. 

Two PMDC motors were regulated in terms of speed and torque, respectively, to emulate the 

traction aspect and improve vehicle efficiency. To deliver accurate speed and torque control, a 

motor controller manages the motor's voltage and current in response to sensor inputs and driver 

inputs. Through regenerative braking, which converts the energy of motion from the vehicle into 

electrical energy and feeds it back into the electrical power supply, the motor controller can switch 

the motor into generator mode when on the brakes. Via the DC link, the DS interacts with the EPS 

to obtain electricity.  

 

Fig 4.1. Topology Configuration of HEV. 
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4.2.2. System modeling 

In the process of developing the mathematical model for the power system shown in Fig 4.1, it 

will be assumed that the converters function in a continuous, lossless conduction mode and that 

their switching frequency is higher than that of the passive components. Therefore, Equation (4.1) 

can be used to define the relationship between input and output power, where 
inp  and 

outp  

represent the corresponding input and output powers: 

( ) ( )in outp t p t=  
(4.1) 

( ) ( ) ( )b sc dcp t p t p t+ =  (4.2) 

Equation (4.2) can be expressed in terms of source voltages and currents as follows: 

( ) ( ) ( ) ( ) ( ) ( )b b mes sc sc mes dc lv t i t v t i t v t i t− − +  =   

 

  

(4.3) 

The importance of keeping the DC-link voltage constant is emphasized by equation (4.3) and is 

represented as   

Considering the previous equation, the output current will be treated as an image of the output 

power if the DC-link voltage is kept constant 

The dynamic equations of the HESS can be written by taking into account the average model of 

the converters [100] : 

b mes
b b dc b b b mes

sc mes
sc sc dc sc sc sc mes

dc dc
dc b mes b sc mes sc l

dc

di
L v v R i

dt

di
L v v R i

dt

dv v
C i i i

dt R





 

−
−

−
−

− −


 = −  − 




 = −  − 



 =  +  − −


 

 

 

 

(4.5) 

where [ 
bi  

sci  
dcv ]  represents the state vector and [

b  
sc  ]  are the duty ratios that act as control 

inputs. 

( )
( )

( )

dc
l

dc

p t
i t

v t
=  

(4.4) 
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It’s worth noting that Control structures significantly impact system dynamics because they 

directly affect stability and convergence. Dynamic stability, a fundamental property of well-

designed systems, emphasizes their quick ability to recover equilibrium during disruptions. 

Consequently, a hierarchical control structure was adopted to manage the suggested system 

dynamics, the lower level was assigned to the current control loops, and the upper level to the DC-

link voltage control loop.  This setup requires that the closed-loop dynamics of the current control 

loop should be about five times quicker than those of the external loop regulating the DC link. 

 

4.2.3. Converters control approaches 

Despite the wide range and variety of current control systems in power electronics converters, they 

all acknowledge the significance of accuracy and simplification during the modeling stage. To 

properly model power electronic converters, one must have an in-depth knowledge of several 

aspects of the converter, such as its physical architecture, the complex models of the different 

voltage/current control loops, the protection strategy used, etc. Although the control architecture 

is known, the parameters and control settings differ greatly between manufacturers. This might 

cause faulty modeling and simulation of the power system, resulting in incorrect findings and 

analysis[101]. 

These difficulties can be more easily resolved by employing data-driven control approaches, which 

can be developed with minimal or no prior knowledge of the converter's control system or 

topology. Additionally, data-driven models typically demand less computational power compared 

to more intricate component-level models. These models are often created using system 

identification tools, such as those available in MATLAB [101]. Fig 4.2 exhibits the core concepts 

of a system identification procedure. To identify an unknown dynamic process, the input signal 

( )u t  and output signal ( )y t   are first recorded. The dataset is subsequently fed into a system 

identification algorithm, that generally minimizes a predetermined cost function to estimate the 

system model. 
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Fig 4.2.  System identification principle 

 

The same converter structure is used for both the battery and the supercapacitor, and it can be 

modeled with a second-order transfer function model with two poles and no zeros, providing that 

the DC-link voltage is maintained at its setpoint. The transfer function of the system is given by 

the equation below: 

0

2

1 0

( )sys

b
H s

s a s a
=

+ +
 (4.6) 

For adjusting sources currents according to their references obtained by the proposed EMSs, the 

control system utilizes internal closed loops using a PI controller as a predefined fixed controller 

structure within a data-driven approach due to its popularity in industry, durability, low design 

complexity, and simplicity of implementation [102]. The PI controllers were fine-tuned using the 

previously specified transfer functions based on the needed performance, such as desired response 

time and overshoot. The PI controller's transfer function can be defined as follows: 

( ) i
pi p

k
H s k

s
= +  

(4.7) 

Both the SC and battery error signals are indicated by: 

b b ref b mes

sc sc ref sc mes

e i i

e i i

− −

− −

= −


= −

 
(4.8) 

The current control loops regulate the battery and SC output currents using equations (4.9) and 

(4.10): 

,

,

b pi b b

sc pi sc sc

H e

H e





= 


= 

 
(4.9) 
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sc sc sc mes

i i

i i





−

−

= 


= 

 
(4.10) 

b   and  
sc are the buck-boost converter's common control input variables, which can be set as 

follows [103]: 

1 2( ) (1 ( )) 1b bs s + − =  (4.11) 

3 4( ) (1 ( )) 1sc scs s + − =  (4.12) 

 

4.2.4. DC- link voltage control  

To guarantee that both power sources contribute optimally to the traction portion, the DC-link 

voltage must be controlled to a specific value. The controller uses a Lyapunov function to derive 

an energy function that includes the regulation error [104]. This error can be defined as the 

difference between the desired reference voltage and the actual DC-link voltage. By adjusting the 

error voltage and guiding it towards zero, the controller efficiently maintains the DC-link voltage. 

The following equations provide the DC-link's current equilibrium: 

For a finite time, convergence of the tracking error of the DC-link voltage to zero, a positive 

definite candidate Lyapunov function and its targeted gradient are selected as: 

here denotes  e  the error voltage, which is the difference between the required reference voltage 

dc refv −  and the real DC-link voltage dcv . The system energy will gradually decrease as a result 

of the negative sign 2( )dck e−  in equation (4.15), leading the system towards stability and 

convergence to its targeted reference voltage. 

The rate of change of the error voltage over time can be determined by: 

dc
b sc l

dv
c i i i

dt
= + −  

  (4.13) 

21

2
v e=  

 (4.14) 

2

dcv ee k e= = −  

 

 (4.15) 
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1 1
( )dc dc ref b sc l dce v v i i i k e

c c
−= − = + − = −  

(4.16) 

dc l b sck c e i i i−   + = +  
(4.17) 

From equations (4.16) and (4.17), the controller outcome gives ( )b sci i+  as joint reference 

amounts, the reference current is allocated to each source based on the EMS chosen. It is worth 

mentioning that the good choice of the constant 
dck  enhances the dynamic state. 

4.3. Frequency-based energy management strategies 

Frequency-based energy management strategies distribute energy among sources based on their 

performances within different frequency ranges. Such methods take advantage of the unique 

strengths of each energy source, with batteries performing better at low frequencies and 

supercapacitors excelling at high frequencies. Therefore, before delving into the proposed energy 

management strategies, we will first review traditional strategies to enable an analytical 

comparison. 

4.3.1. Fixed frequency-based energy management system: 

In a frequency-based EMS, the load current is split into low-frequency components, which reflect 

steady and slowly changing power demands, and high-frequency components, associated with 

rapid or transient power fluctuations.  This separation is achieved using a low-pass filter, indicated 

in the following equation [105]: 

 

Wherein   is the cut-off period. The following equations provide the references for the currents 

at the filter output that relate to the supercapacitor and battery: 

1

1
1

(2 )

b ref L
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I I
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 (4.19) 

sc ref L b refI I I− −= −  (4.20) 
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(4.18) 
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Although the technical capability of this technique, selecting the optimal cut-off frequency for the 

filters used remains a major limitation. Putting the cut-off frequency too low may overload the 

supercapacitor, resulting in loss of energy, whereas setting it too high could stress the battery, thus 

limiting its life. The optimal cut-off frequency is determined by finding the dominant frequency 

components obtained from Fourier analysis of the load current. 

4.3.2. Adaptive frequency-based energy management system 

In EMSs, Load current fluctuations varied according to driving conditions, keeping fixed cut-off 

frequencies insufficient for effective energy distribution. Therefore, adaptive filters adjust the cut-

off frequencies based on driving conditions, optimizing power distribution between energy 

sources. This approach continuously monitors the load current and the supercapacitor soc, as seen 

in Fig 4.3. 

 

In this study, the adaptive filter utilizes three distinct cut-off frequencies: maxfc  , minfc  , and nomfc

, as outlined in Table 4.1. The frequency maxfc is employed when the supercapacitor's soc is low, 

necessitating greater energy contribution from the battery. Conversely, minfc  is used when the 

supercapacitor's soc  is high, indicating substantial energy reserves, which allows the 

supercapacitor to efficiently manage high-frequency load components, thereby reducing the strain 

on the battery and extending its lifespan. The nominal cut-off frequency, nomfc  is applied under 

normal operating conditions with moderate power demands, enabling both the battery and 

supercapacitor to contribute according to their capabilities. By dynamically adjusting the cut-off 

 

Fig 4.3. A schematic representation of the adaptive frequency separation technique 



Chapter 4. Description of proposed strategies  

 

62 

 

frequency, the adaptive filter ensures effective power distribution between the energy sources, 

taking into account the system's specific energy requirements across varying operating conditions. 

 

4.4. Wavelet-based energy management system 

4.4.1. Conventional Wavelet-based energy management system 

Vehicle power demand often exhibits sudden peaks and transient variations, which may adversely 

affect battery longevity. These brief transients are especially important in power analysis. WT is a 

robust mathematical technique that can analyze transient phenomena by decomposing a signal into 

components across different positions and scales in both time and frequency domains. WT has 

gained attention for its exceptional ability to differentiate transient power demands from the base 

power load. This capability is particularly useful in HESSs. As illustrated in Fig 4.6, this strategy 

allocates the detected transients to the supercapacitor, which is well-suited to managing the rapid 

variations associated with such phenomena. 

Mathematically, the WT is performed by convolving the power signal with a set of functions 

known as wavelets, which are compact, oscillatory patterns and localized in both time and 

frequency. Their scale and position can be adjusted, enabling the examination of different 

frequency components of a signal across varying time intervals. The wavelet transform of a signal 

( )x t  is expressed by [106]: 

1
( , ) ( )

R

t u
w u x t dt 



− 
=  

 
  

(4.21) 

The original signal can be identified as ( )x t , while its wavelet coefficients are represented as

( , )w u . 

 

Table 4.1:  A dynamic frequency cut-off operation 

Frequency symbol  
minfc  nomfc  maxfc  

Frequency value (HZ) 0.06 0.03 0.01 

Sc state of charge (%) 70scsoc    70 50scsoc   50scsoc   
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 Here,  represents the scale factor, while u refers to the position factor in the wavelet transform 

procedure. Additionally, ( )t  signifies the mother wavelet. 

The Haar wavelet, characterized by its simplicity in mathematical design and short filter length, is 

a commonly utilized wavelet function. In this research, the HWT was selected for energy 

management in EVs, particularly for real-time algorithm applications. It offers advantages such as 

efficient real-time signal processing and identical forward and inverse transforms. The HWT is 

noted as [107]: 

 

 

1 0,0.5

( ) 1 0.5,1

0

t

t t

otherwise



 


= − 



 

 

     (4.22) 

The wavelet filtering process involves two main phases: decomposition (Fig 4.4a) and 

reconstruction (Fig 4.4b). During decomposition, the signal ( )x t  is divided into two components 

using a low-pass filter _Lo D  and a high-pass filter _Hi D , producing the approximation (low-

frequency component)  nA   and the detail (high-frequency component) nD . This procedure is 

repeated iteratively for each chosen level 𝑛. Supercapacitor, battery, and load current are defined 

as follows: 

b ref ni A− =  (4.23) 

1 2sc ref ni D D D− = + + +  (4.24) 

1 2l n ni D D D A= + + + +  
(4.25) 

             (a)           (b) 

Fig 4.4. Concept of Haar wavelet transform: (a)Decomposition phase ;(b) Reconstruction phase. 
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The choice of wavelet decomposition levels is crucial because power demand varies significantly 

across different decomposition levels. Generally, the frequency range impacting batteries is within 

Hz, whereas the load power demand signal is sampled at 1 Hz [108]. The resulting decomposition 

level, calculated using Equation (30), typically falls within the range of [2, 5], taking into account 

the sampling frequency 
sf  , the power demand frequency on the battery pack 

cf , and the relationship 

between signal frequency and decomposition level. 

Real-time signal processing using WT is achieved by incorporating a fixed-length sliding window, 

which enables the extraction of characteristic parameters from driving cycles in real time [109]. A 

specified number of samples are taken from the signal, processed, and then output after filtering. 

The window then shifts forward, adding a new sample to the dataset while discarding the first one. 

This process repeats until the entire signal has been processed. Fig 4.5 illustrates the sliding 

window process. It is worth noting that the equilibrium between sliding window length W and 

decomposition level n  is critical for improved filter reconstruction. For optimal results, the 

relationship between  W andn   should meet the inequality 2*2nW  [110]. 

 

 

Fig 4.5.  Sliding window concept. 

 

log( / )
1

log(2)

s cf f
n

 
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 

 
(4.26) 
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Fig 4.6. Wavelet transform technique diagram. 

 

4.4.2. Adaptive wavelet-based energy management system 

Due to the limitations of conventional WT-based EMS systems, which usually rely on a fixed 

decomposition level linked to a single frequency decomposition, an innovative Adaptive Wavelet 

Transform based on Supercapacitor soc is suggested. This advanced system intelligently adjusts 

the decomposition level in real-time by analyzing the supercapacitor SoC, as illustrated in Fig 4.7. 

The AWT adjusts the decomposition level to suit varying power needs and driving conditions.  

When the supercapacitor's SOC is high, indicating high energy reserves, the approach intelligently 

selects a higher decomposition level, such as the fifth level. This strategic selection is crucial for 

accurately and efficiently managing sudden power variations and transients, making full use of the 

supercapacitor strengths. By assigning the SC the responsibility of handling these power surges, 

the system reduces the battery workload during such periods, thereby extending its lifespan and 

improving the overall efficiency of the system. 

Conversely, when the supercapacitor's SOC is low or nearly depleted, the approach conservatively 

lowers the decomposition level, such as to the 2nd level. This adjustment is intended to conserve 

the supercapacitor's remaining energy, resulting in the battery taking on the majority of the load's 

power demands. Additionally, during operation when the SoC is within an optimal range, which 

is common during normal system performance, the methodology strategically selects intermediate 

decomposition levels, such as the 3rd or 4th. These choices are influenced by the discharge rate of 

the supercapacitor, as shown in the flowchart in Fig 4.8. 
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The fifth level operates when the supercapacitor's energy storage surpasses 80%, thereby 

decreasing the sudden demand for the batteries.  In contrast, levels 3 and 4 become operational 

when the charge state falls between 40% and 80%, taking into account the rate of supercapacitor 

discharge. Level 4 is selected when the discharge rate exceeds 5%, while Level 3 is preferred when 

it falls below this threshold. However, if the supercapacitor's SoC drops below 40%, the system 

switches to the 2nd level to preserve a minimum amount of stored energy, ensuring the 

supercapacitor contributes at the lowest possible rate. 

This adaptive approach ensures that the SC operates within an optimal SoC range while 

considering the unique characteristics of the energy source, allowing power allocation to be 

perfectly aligned with the system's needs. As a result, it not only improves the SC's performance 

but also reduces the strain on the battery, promoting a longer lifespan and reliable functionality 

over time. 

 

Fig 4.7. Schematic representation of adaptive wavelet transform technique 
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Fig 4.8. Adaptive process flowchart 

 

 

4.5. Adaptive Wavelet-Adaptive Fuzzy Logic based K-Means-SVM Pattern 

Recognition 

This strategy is an improved version of the previous, where some aspects have been improved 

through these contributions: 

• Introduction of an adaptive wavelet-based on Dynamic Pattern Recognition, providing 

versatile adaptation to various driving scenarios. 

• Enhancement of DPR using k-means clustering for unsupervised categorization and SVM 

classification for improved real-time decision-making. 
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• Adoption of adaptive fuzzy logic, allowing real-time adjustments of membership functions 

and rules to align with changing driving conditions, ensuring optimal supercapacitor 

maintenance and protecting the battery from peak current stress. 

A schematic overview of this strategy is illustrated in Fig 4.9. It comprises an offline-trained SVM 

classifier and the real-time operation of three key components: an online recognition process for 

identifying driving patterns, an AWT algorithm that decomposes load power demand based on the 

recognized pattern, and AFL, which ensures maintaining the SC at the optimal level while 

safeguarding the battery from high peak current. 

 

 

 

Fig 4.9. The concept of Adaptive Wavelet-Adaptive Fuzzy Logic based K-Means-SVM Pattern Recognition EMS. 

 

 

4.5.1. Driving Pattern Recognition 

In the field of DPR, two main approaches are commonly used. The first, Predictive Driving Pattern 

Recognition, relies on data from connected vehicles, geographic information systems (GIS), and 

vehicle navigation systems. While this method is highly accurate, it demands a large amount of 

data and significant computational resources. On the other hand, Identification Driving Pattern 

Recognition analyzes historical and real-time route data to identify key factors defining the current 

driving pattern. The current driving behavior can be recognized by comparing these factors with 

known patterns. Although this retrospective method is simpler and more user-friendly, it may not 

be as accurate as the predictive approach. Choosing a DPR algorithm greatly influences the 
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accuracy of condition recognition. However, accuracy is also shaped by other factors, such as the 

complexity of the driving environment, the quantity and quality of training data, and the diversity 

of driver behaviors. 

The operational process of the DPR system is depicted in the graphic in Fig 4.10 and involves two 

primary steps. 

 

The DPR system begins with an Offline Training phase, where 25 driving cycles with various 

patterns are segmented, and distinctive features are extracted from 220 samples. Principal 

Component Analysis is used to simplify the data, cluster centers are formed using the k-means 

method, and the Support Vector Machine is trained on this data. In the Online Recognition phase, 

real-time speed data is collected to derive feature values from the most recent 200 seconds, with 

 

Fig 4.10. Driving pattern recognition framework 
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samples taken every 5 seconds. These features are then fed into the SVM classifier, which produces 

three possible outcomes, and the final driving pattern is identified through a voting mechanism. 

4.5.1.1. Extraction of the driving patterns characteristic parameters 

Typical driving patterns must  

accurately represent real-world driving behaviors and exhibit distinct feature vector values, 

making it easier to categorize actual driving patterns into predefined groups [111]. In this study, 

25 driving cycles are included in the training dataset, with each cycle segmented into 100-second 

intervals. Nine key parameters, detailed in Table 4.2, are selected as characteristic features to 

represent these patterns. Due to the high dimensionality of these features, which can limit real-

time driving pattern recognition, PCA is employed to reduce the complexity of the data. PCA 

simplifies the dataset by transforming it into a lower-dimensional space, making it more 

manageable  

keeping the fundamental properties required for pattern recognition. The procedural steps of PCA 

involve processing a dataset with n  samples, each described by p  variables, arranged in  n p  

matrix [112]. 
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The correlation coefficient matrix is first computed, which includes deriving the correlation 

coefficient. 
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By resolving the eigenvalue equations 0i R − = ., the eigenvalues can be obtained and then 

arranged in descending order as 1 2 0p       . The corresponding eigenvectors are then 

calculated ( 1,2, , )ie i p= , satisfying the condition 2

1

1
p

ij

j

e
=

=  

The principal component contribution rate of each sample, Fi  , is calculated as 
1

p

i k

k

 
=

  ,with

( 1,2, , )i p= .Furthermore, the cumulative contribution from principal components 1F   through

Fk    is determined by the following expression: 

1 1

( 1,2, , )
pi

k k

k k

i p 
= =
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(4.30) 

 

The PCA results focus on principal components with eigenvalues greater than or near 1, ensuring 

that the cumulative variance contribution exceeds 80%. The number of principal components 

selected is determined by identifying the point at which the eigenvalues experience a significant 

drop [113], as illustrated in Fig 4.11, the eigenvalues drop below 1 after the third component. 

 

 

When reducing the original dimensional training dataset to more manageable dimensions. These 

parameters are chosen based on their correlation with the original dataset, with a strong correlation 

 

Fig 4.11:  Principal component eigenvalues and cumulative variance contribution rate 
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indicating the presence of shared dominant factors among the components of the driving feature 

vector [114], based on Fig 4.12, these characteristic parameters are Average velocity, Time ratio 

of idling and Time ratio of acceleration. 

 

 

 

Table 4.2: The characteristic criteria used for the recognition of patterns 

Symbol  Parameter Unit Mathematical description[115] 

avgv   Average velocity m s   

avg

vdt
v

t
=
  

maxv   Maximum velocity m s  ( )max max , 1,2, ,iv v i k= =  

avga   Average acceleration 2m s  
( ), 0avg

a dt
a a

t
= 
  

maxa   Maximum acceleration 2m s  ( )max maxmax , 1,2, ,a a i k= =  

avgd   Average deceleration 2m s  
( ), 0avg

a dt
d a

t
= 
  

maxd   Maximum deceleration 2m s  ( )max maxmax , 1,2, ,d d i k= =  

idT   Time ratio of idling %   
100id

id

t
T

t
=   

aT   Time ratio of acceleration %  
100a

a

t
T

t
=   

dT   Time ratio of deceleration %  
100d

d

t
T

t
=   

 

 

Fig 4.12.  Correlation of the characteristic features 
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4.5.1.2. K-means cluster 

The K-means algorithm is a popular choice for handling datasets that have features but no labels. 

This classic unsupervised learning method has been used for a long time because it is easy to 

understand and works well [116]. Two important things affect how well the K-means algorithm 

works. First, the type of distance measurement you choose can greatly influence the clustering 

results. Second, you need to decide how many clusters you want before using the K-means 

algorithm [117]. 

To determine the optimal number of clusters, a combination of evaluation criteria is employed. 

These criteria include the Calinski-Harabasz index, Davies-Bouldin index, Dunn index, gap index, 

and silhouette index, each providing a distinct approach to evaluating cluster quality. The Calinski-

Harabasz index, in particular, is often favored as it serves as the foundation for many clustering 

algorithms. This index is a widely accepted measure of cluster validity that calculates the ratio of 

the between-cluster variance to the within-cluster variance. In simpler terms, it evaluates how well-

separated the clusters are from one another compared to how tightly grouped the points are within 

each cluster [118], A higher Calinski-Harabasz index suggests that the clusters in the model are 

more distinct and clearly defined [119] . Therefore, the Calinski-Harabasz index is selected as the 

primary performance metric for evaluation in this context. According to Fig 4.13, the optimal 

number of clusters for the dataset studied is set as 3. 

With three clusters specified, we applied the k-means clustering algorithm using Cosine distance 

metrics. This produced the cluster center coordinates, which are summarized in Table 4.3, and the 

k-means clustering results are shown in Fig 4.14. 

 

Fig 4.13: Cluster number determination using the Calinski-Harabasz index 
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4.5.1.3. SVM classifier 

When dealing with classification problems, Support Vector Machines, a widely recognized 

supervised machine learning algorithm, are known for their robustness, strong learning abilities, 

and excellent generalization capabilities [120]. For these reasons, SVM has been chosen in this 

work as the method to solve classification problems. 

SVM uses kernel functions based on input space variables, including linear, polynomial, Gaussian, 

or radial basis functions, to perform classification. The dataset consists of N -labeled training 

samples noted as ( , )i iy  ), where i  represents the d-dimensional feature vector of the 
thi  

training sample, and iy  takes values within the set  ( 1, 1)− + to represent the assigned labels 

Table 4.3: The coordinates of the centroid. 

Classes C1 C2 C3 

Centroid 

coordinates 

(92.3786, 0.0247, 0.6433) (42.1502, 0.110, 0.5532) (15.4591, 0.3412, 0.3840) 

 

Fig 4.14.  Results of K-means clustering. 
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[121].The discriminant function ( )g  of the SVM for the observed data is defined by a mapping 

( )   that corresponds to the chosen kernel function. ( )g   is provided as: 

 

This work deals with a ternary classification task, whereas SVM was originally created for binary 

classification. Therefore, a One-on-one approach is used [122], which involves training three 

SVMs to distinguish between each pair of patterns ( 1c   and 2c ,  1c and 3c ,  2c  and 3c ) [123]. 

Afterward, a majority voting strategy is adopted. 

• Voting mechanism  

The main idea of this voting is to solve an n -class ( , 1,2, , )jC j n= classification problem using 

m  different data sources. For a given sample   , its classification result, denoted as 

 1 2( ) ( ), ( ), , ( )i i i iny y y y   =   from source ( 1,2, , , 1,2, , )iS i m j n= = , is determined by a 

binary-valued function ( )ijy  . 

Let   denote ( )jV   the number of votes that sample    received for class ( , 1,2, , )jC j n=   from 

the m data sources. Therefore, ( )jV    can be computed as follows [124]: 

1

( ) ( )
m

j ij

i

V y 
=

=  (4.32) 

Following the majority voting principle, sample     is assigned to the class kC    that receives the 

highest number of votes, as determined by the equation: 

  arg max ( ) , 1,2, , .k j jC V j n= =  (4.33) 

 

The classification result is determined by the pattern with the highest number of votes. The voter 

diagram, illustrated in Fig 4.15, uses numerical labels to denote specific driving patterns: 1 

represents urban driving patterns, 2 denotes suburban driving patterns, and 3 indicates highway 

driving patterns. 

( ) ( )Tg w b  = +  
(4.31) 
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4.5.2.  Adaptive wavelet transform  

This adaptive approach dynamically adjusts the decomposition level based on the DPR results 

through an algorithm. Specifically, the decomposition levels correspond to different driving 

conditions: 

• Level 2: This level is applied to urban cycles, where driving is characterized by frequent stops, 

starts, and lower power requirements. In urban settings, energy demands fluctuate less, and 

the system adjusts to manage power efficiently with minimal stress on the battery. 

• Level 3: This level is suited for suburban driving conditions, which involve moderate speeds 

and fewer stops compared to urban driving. Suburban driving typically requires more 

consistent power delivery, and this level ensures that energy allocation is optimized for these 

mid-range power demands. 

• Level 4: This level is used for highway driving, where high-speed travel leads to significant 

power fluctuations. Highway driving demands more power and results in larger variations in 

 

 

Fig 4.15: Diagram of the voting procedure. 
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energy requirements. The system at this level adjusts to accommodate these rapid changes, 

ensuring efficient power distribution while preventing excessive strain on the battery. 

By adapting the decomposition level to the specific driving pattern, the approach not only 

optimizes energy management but also protects the battery by reducing stress, particularly during 

high-demand scenarios like highway driving. This dynamic adjustment helps to extend the 

battery’s lifespan by preventing it from undergoing unnecessary strain, thereby contributing to 

overall system efficiency and longevity. 

 

4.5.3. Adaptive fuzzy  

This study involves the development of an AFL controller that considers two key input variables: 

battery current and the state of charge of the supercapacitor. Given that the battery acts as the 

primary long-term energy source, its SoC has minimal impact on the overall system's efficiency. 

The input variables are converted into fuzzy values using specific membership functions, as shown 

in Fig 4.16 and described in Table 4.4. In particular, the battery current is divided into six 

membership functions, while the supercapacitor's SoC is represented by three distinct membership 

functions. 

 

 

Table 4.4: Membership symbols 

Fuzzy Inputs Battery current NB NM NS PS PM PB 

Supercapacitor Soc L M H 

Fuzzy Outputs change ratio in battery current NB NM NS PS PM PB 

 

NB (negative big), NM (negative medium), NS (negative small), PS (positive small), PM (positive 

medium), PB (positive big), L(low), M (medium), and H (high) 

Table 4.5: Fuzzy rules 

               

And 

   If NB NM NS PS PM PB 

L PB PM PS PM PS NS 

M PM PS PS PS NS NM 

H PS NS NS NS NM NB 
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Once the inputs are fuzzified, a decision-making inference mechanism applies a rule base informed 

by experience and heuristic knowledge to generate fuzzy conclusions. The output of the fuzzy 

controller is the change ratio in battery current, which is used to modify the battery current 

according to a reference value obtained from the WT. Depending on the controller's decision, 

guided by the set of fuzzy logic rules outlined in Table 4.5, this adjustment may result in either an 

increase or decrease in battery current. 

It's important to note that the FL controller operates primarily (about 95% of the time) in the 

positive range of battery current, meaning it mainly manages scenarios where the battery is 

supplying current (i.e., discharging). This is because the system is generally designed to operate 

in conditions where the battery powers the DS . However, despite this focus, it is also essential to 

establish rules for the negative current range to address exceptional or edge cases where the battery 

might absorb current (i.e., charging). Even though these situations are rare, they must be 

considered to ensure the controller remains robust and effective under all operating conditions. 

Because the output produced by the inference system is inherently fuzzy, it cannot be used directly 

as a control system signal. Therefore, an essential step is to translate this fuzzy output into a 

 

Fig 4.16: Fuzzy logic input membership functions. 
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practical, real-world value. This is achieved through the widely recognized center of gravity 

(COG) method, which is defined by the following equation [125]: 

*
. ( )

( )

c

c

z z dz
z

z dz




=



  

 

(4.34) 

 

Where ( )c z dz  indicates the area of the region enclosed by the curve c  ,and 
*z represents the           

z -coordinate of the center of gravity. 

Six membership functions are defined for the output variable as defined in Table 4.3. If the output 

values are positive, it indicates that the batteries will supply more power than the reference power 

obtained from the WT. Conversely, If the output values are negative, it suggests that the batteries 

will either deliver less power than the reference or require recharging, depending on the change 

ratio determined by the fuzzy controller. 

Unlike classical FL, AFL defines the output membership function as adaptive, as illustrated in Fig 

4.17. The ability to adjust the   value introduces adaptivity into the FL system. The decision-

making process for the adaptive fuzzy output is shown in Fig 4.18, where the basic concept is the 

periodic updating of the output membership function based on the recognition results. 

Additionally, a driving mode detector algorithm is designed to reverse the classification of driving 

patterns. It acts as a modifier, with 3 indicating urban driving patterns, 2 representing suburban 

 

Fig 4.17:  The output of adaptive fuzzy logic membership function. 
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driving patterns, and 1 corresponding to highway driving patterns. This change is based on the 

observation that battery current peaks are higher during urban driving compared to highway 

driving. The factor 
ig  is selected to define the delta current interval, setting the acceptable range 

for current variations. A higher value of 
ig  could result in the cancellation of the battery current, 

while a lower value might increase the risk of uncontrolled current spikes. Therefore, 
ig  is crucial 

in fine-tuning the AFL system's response to changes in driving patterns. 

 

 

Fig 4.18: Adaptive fuzzy logic controller process 

 

4.6. Traction part control 

To replicate the motorization aspect of the VEs, a comparative speed control strategy is proposed 

for the first motor(M1), utilizing sliding mode theory and back-stepping to follow a reference 

speed profile. The method yielding the best results will be integrated into the proposed EMSs. 

Meanwhile, torque control using PI control is implemented in the second motor (M2) to emulate 

real-world driving conditions. 

4.6.1. Speed control based on Sliding mode 

Sliding Mode Control works by guiding the system's state to a sliding surface, where the switching 

function 𝑠 equals zero. If the state crosses a threshold   , the switching control adjusts accordingly 

to keep the system on track. The goal of SMC is to ensure the system's output follows the desired 

reference with minimal error. It achieves this through two control modes: reaching mode, which 

uses a switching control to bring the system to the sliding surface, and sliding mode, which uses 
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an equivalent control equ to maintain stability. The control signal is a combination of these modes, 

where smk  determines the speed of convergence to the sliding surface. To reduce chattering, smooth 

control actions can be implemented, such as using Eq (4.37), where   is a small tuning 

parameter[126]. 

( )

sgn( )

SMC eq sw

sw sm

sw sm

u t u u

u k s

s
u k

s 

= +

=

=
+

 

(4.35) 

(4.36) 

 

(4.37) 

 

The transfer function of the PMDC motor can be represented as[127]: 
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(4.38) 

 

In the time domain, Equation (38) can be expressed as: 

5 5( ) 519.67 ( ) 1.59 10 2.11 10 ( )mt t v t  + +  =   
(4.39) 

Let's  consider 

1 ( )x t=   and ( )mu v t=  (4.40) 

The system can then be transformed into the canonical form mentioned below: 

1 2

5 5

2 2 1

1
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x x

x x x u

y x
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=

= = − −  + 
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(4.41) 

 

(4.42) 

(4.43) 

 

The equivalent control and switching control can now be designed, wherein the switching function 

is given by:  
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(4.44) 

 

(4.45) 

where 
r  is the speed reference and 0C   is a performance parameter that ensures system stability 

[12]. On the sliding surface 0 0s s= → =   

To find the equivalent control, substitute Equation (4.42) into Equation (4.45) with 0s =  

5 5

2 1

5 5
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(4.46) 

 

(4.47) 

 

Since the derivative of the reference signal is zero, Equation (4.47) simplifies to: 

5 5
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(4.49) 

 

To reduce chattering, use the smooth switching control from Equation (4.37). Therefore, the final 

SMC control signal is: 

5
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1
(1.59 10 (519.67 ) )

2.11 10
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s
u C k

s
 


=  + − +

 +
 

 

(4.50) 

 

4.6.2. Speed control based on Back-stepping  

The basic idea of BS is to first stabilize the initial subsystem using a known stabilizing function 

through a chosen Lyapunov function. Then, an integrator is added to its input. This method is 

applied to each subsequent augmented subsystem, continuing in this manner until a global 

Lyapunov function is obtained. This global function then defines the overall control law that 

stabilizes the entire system[128]. 

From the electrical and mechanical equations of the motor explained in Chapter 3, we derive the 

following equations:  
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(4.52) 

 

we assume ref   as a desired reference. This leads to the following control error: 
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(4.53) 

 

Thus, the quadratic form of the Lyapunov function 
1V  is:  

2

1 1

1

2
V e=  

(4.55) 

Its temporal derivative is: 

1 1 1V e e=  
(4.56) 
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(4.57) 

To make 1V  negative and ensure stability we take: 

1 1

1
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(4.58) 

2

1 1 1V k e= −  
(4.59) 

Then the control law for current is given by: 

* 1
1

1
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k JF J
I C e

k k k k
 = + − −  

(4.60) 

Now a new desired reference will be the control variable for the previous subsystem 

1
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I C

J J J
 = − + − −  
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So the extended Lyapunov function is: 

2

2 1 2

2 2

1 2

1

2

1
( )

2

V V e

e e

= +

= +

 

(4.64) 

 

 

(4.65) 

2 1 2 2

2 *

2 1 1 2

1
( )m

m m m

m m m

V V e e

Rk
V k e e I v I

L L L


= +

= − + − − + −
 

(4.66) 

 

(4.67) 

To make 2V  negative and ensure stability we take: 
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(4.68) 

So, the control law for speed is given by: 

*

2 2m m m m m mv k R I L I k L e= + + −  
(4.69) 

This ensures the negativity of the derivative of the extended Lyapunov function: 

2 2

2 1 1 2 2 0V k e k e= − −   
(4.70) 

 

4.6.3. Torque control based on PI controller 

The primary responsibility of M1 is to drive the system, serving as the main source of propulsion. 

It delivers the necessary force to move the system forward or maintain its speed.  M2, on the other 

hand, has a secondary role, interacting with M1 during specific situations like deceleration. M2 is 

mechanically connected to M1 and electrically to a separate energy source via a DC/DC converter. 

which ensures the motor receives the precise amount of power required to match the reference 

torque.  
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During deceleration, a negative reference torque is required because of the resistive forces applied 

by the road to the wheels. This negative torque indicates that the system needs to slow down or 

resist forward motion. In response, M2 must generate torque that opposes the torque produced by 

M1. This opposition is necessary to achieve effective braking or slowing down of the system. The 

relationship between these forces and torques is governed by equation (3.29). 

In the scenario where motor torque needs to be controlled, Equation (3.32) demonstrates that this 

can be done directly by managing the motor current. This control is implemented using a PI 

controller, with its transfer function provided in Equation (4.71). In this equation, 
, 2p mk    and 

, 2i mk  

represent the proportional and integral gains, respectively. The controller's input er   is the 

difference between the desired current   *

2mI  and the actual current
2mI    , as shown in Equation (4.72). 

The controller's output is the voltage, which must be applied to achieve the desired armature 

current, and consequently, the desired motor torque[129]. 

, 22
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(4.72) 

 The current control system is summarized below, where  
2m represents the second motor model: 

 

Fig 4.19: PI current control. 

 

The 
, 2p mk    and 

, 2i mk  values are tuned to achieve the desired transient response. There are several 

methods to define this desired response. In the time domain, it is common to specify the desired 

rise time and overshoot for a step input, and the gains are adjusted accordingly to meet these 

criteria. Alternatively, in the frequency domain, the desired phase margin and cross-over frequency 

are specified. 
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4.7. Conclusion 

In this chapter, a comprehensive overview of the new EMSs designed for smart power sharing in 

hybrid systems has been presented. Two adaptive wavelet methods were proposed, each 

employing distinct adaptation techniques to optimize performance. The chapter also covered the 

implementation of effective control strategies for the various static converters involved in the 

system, as well as the control mechanisms to emulate the electric vehicle traction system. The next 

chapter will delve into the experimental validation of these approaches, providing empirical 

evidence to support their effectiveness. 
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5.1. Introduction 

A considerable effort of this research has been dedicated to creating a test vehicle that includes 

real-world sources, which will serve as a practical setup for studying power and energy 

management. This chapter details the experimental validation of the proposed strategy presented 

in the previous chapter, using a test bench to implement control laws within a software 

environment based on Matlab/Simulink, supported by a dSPACE DS 1104 board. The offline 

nature of the proposed methods adds complexity to the experimental implementation. However, 

the significance of testing and improving the strategy in real-world conditions is highlighted by 

the experimental results, which are used to evaluate the performance of the system and the different 

control algorithms. 

5.2. Description of the test bench 

A small-scale experimental test bench has been established to implement and validate the proposed 

strategies, as appears in Fig 5.1. The test bench is made up of: 

• An EPS with two sources, a primary source consisting of five LiFePO4 batteries connected in 

series, and a secondary source using a Maxwell supercapacitor module with a capacity of 165 

Farads. Each power source was connected to two separate arms of the SEMIKRON converter 

through a filter that included an inductor with specifications of 30mH and 0.9Ω. 

• A DS emulator was created by assigning a third arm to a 24V PMDC motor, which is speed-

controlled to simulate the traction of an EV. Another SEMIKRON converter is used to control 

the torque of a second DC motor, identical to the first one, to emulate road driving conditions. 

The system uses LA25NP and LV25P Hall sensors to measure various currents and voltages 

precisely. Also, a tacho generator with a sensitivity of 1 V per 1000 rpm is used to measure motor 

speed. System control is achieved using a dSPACE DS1104 prototyping tool combined with 

MATLAB® Simulink®. The Real-Time Interface (RTI) facilitates the transfer of applications to 

a microprocessor-based control system. The dSPACE card is connected via the PC's PCI port, 

while an interface card adapts the control signals for the power converters. Further details about 

the system components are provided in Table 5.1. 
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Table 5.1: Hardware characteristics 

Battery 

 

 

Model name 

pack Nominal voltage (v) 

Pack Capacity (Ah) 

Pack Energy (wh) 

Pack Internal Resistance (mΩ) 

Pack Weight (kg) 

TSWB-LYP100AHA(B) 

LiFeYPO4 

3.3 

100 

330 

0.45 

3.6 

Supercapacitor 

 

Model name 

pack Nominal voltage (v) 

Pack Capacity (F) 

Pack Energy (wh) 

Pack Internal Resistance (mΩ) 

Pack Weight (kg) 

BMOD0165 

48 

165 

53 

6.3 

13.5 

Dc motor 

 

Model 

Supply Voltage (v) 

Output power (w) 

Rated Current (A) 

Rated Speed (RPM) 

MY1016 

24 

250 

14 

2750 

  

 

Fig 5.1: Experimental bench. 
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5.2.1. DSPACE dS1104 Card 

The dSPACE DS1104 Controller card is a standard board with a real-time processor that can be 

installed in a personal computer with a 5V PCI slot. According to Fig 5.2, the DS1104 includes 

[130]: 

• 4 inputs connected to a 16-bit analog-to-digital converter (ADC), 4 inputs with separate 

12-bit ADCs, and an 8-output digital-to-analog converter (DAC). 

• 2 incremental encoders. 

• Onboard 64-bit floating-point processor running at 250 MHz. 

• Onboard Slave DSP based on the TMS320F240 DSP microcontroller. 

• Onboard memory. 

• Additional digital input/output capabilities. 

 

The integration of dSPACE with Simulink/Matlab software creates a powerful development 

environment. With Real-Time Interface (RTI), function models can be easily run on the dSPACE 

system. The process involves generating the model code using Simulink Coder, after which the 

 

Fig 5.2: Structure of the dSPACE DS1104 controller board. 
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real-time simulated model is compiled, downloaded, and automatically started [131]. The 

connector panel links all system I/O signals to the DS1104, as shown in Fig. 5.3. 

 To configure these inputs and outputs of the control system graphically, ControlDesk software 

can be used, which offers all the tools needed to control and monitor experiments through graphical 

user interfaces, making it easier to develop controllers. To clarify more, ControlDesk allows users 

to design graphical layouts with diverse control elements. This platform facilitates real-time 

control and monitoring of parameters while also providing access to I/O signals linked to the 

hardware.[132]. 

5.2.2. SEMIKRON Converter 

The SEMIKRON converter is an advanced power electronics system designed to control and 

regulate high-voltage power precisely. It uses SKHI22 driver cards to manage voltage levels at 0V 

and 15V for each bridge arm. The driver in an IGBT system is essential for controlling the 

SKM50GB123 IGBT power modules and ensuring the safety of both the system and the user 

through segregation between the low and high-power sections of the converter. Its key functions 

include amplifying ON/OFF logic signals to deliver high peak currents for switching, monitoring 

errors like under-voltage and short circuits, and isolating the primary circuit from the high-power 

secondary circuit. This isolation prevents dangerous interactions while allowing the safe 

transmission of control signals, ensuring reliable performance and protection. The drivers use three 

SKHI 22 A-R cores, each controlling an inverter leg with both "Top" and "Bottom" IGBTs of a 

single module. The drivers require a 0/15V power supply with a maximum current consumption 

of 160 mA per driver. They operate with a negative logic error signal, outputting +15V when no 

errors are detected. In case of a fault, the driver stops, ignores input pulses, and resets the error 

 

 

Fig 5.3:  The connector panel of DS1104 Card. 
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latch after resolving the issue. Each driver operates independently; safety precautions are necessary 

to handle error conditions[133]. 

The IGBT gate control circuit operates with 0/15V logic signals, while the dSPACE port outputs 

are in TTL format (0/5V). Therefore, to enable the inverter switches to be locked and adapt the 

control signal levels to match the IGBT gate voltage, an interface board was designed to align the 

dSPACE output with the inverter input logic levels. This board includes a buffering circuit using 

74LS00 NAND gates to ensure reducing damage in case of inverter malfunction, this buffering 

circuit is cascaded by a voltage step-up stage using the 74LS17 circuit, comprising six open 

collector inverters. 

5.2.3. Sensors 

The current and voltage measurements shown in Fig 5.4 are performed using the LEM LA25-NP 

and LEM LV25P circuits, respectively. These sensors utilize the magnetic fields generated by 

electric currents to provide high accuracy and a broad dynamic range. A 4th-order Shpychev low-

pass filter is employed to reduce noise, ensuring that the measurement signals are clean and reliable 

before being used in control algorithms. Gain adjustments are essential to align the sensor output 

with the input range of the analog-to-digital converter, ensuring accurate digital representation of 

the measured signals [134]. Additionally, speed is measured using a tachogenerator with a 

sensitivity of 1 V/1000 rpm. This is a direct current generator that produces an output voltage 

proportional to the RPM. It is connected to the machine via a clutch, as seen in Fig 5.4(c). 

 

 

 

 

(a) 

 

(b) 

 

 

 

 

 

 

 

 

(c) 

Fig 5.4.: Sensors: (a) Current sensor; (b) Voltage sensor ;(c) A tachogenerator. 
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5.3. Experimental validation 

The experimental study was carried out using the dedicated test bench, divided into two phases 

with different driving cycles. In the first phase, an AWT method based on the supercapacitor soc 

was implemented. This method was compared with three other frequency-based techniques: a 

fixed cut-off frequency, an adaptive filter, and the conventional WT. In this phase, the regenerative 

braking process was not considered.  

In contrast, the second phase focused on applying the method developed in the previous chapter, 

which is based on Adaptive Wavelet-Adaptive Fuzzy Logic based K-Means-SVM Pattern 

Recognition. Here, attention was given to the regenerative braking phase, emulating the behavior 

of a real EV system where energy is recovered during braking. Various performance criteria were 

adopted to assess the effectiveness of the proposed EMS methods and determine how well each 

one managed energy under different driving conditions. 

5.3.1. Adaptive wavelet-based strategy 

In this part, a custom driving cycle is generated by randomly merging two standard driving cycles: 

HWFET (400 -500 s) and WLTP class 2(990-1140s), each with an average duration of 150 

seconds. These selected cycles represent a variety of road conditions, including highways, 

suburban roads, and urban environments, providing a wide range of current load frequencies for 

the vehicle traction system. Then, this custom driving cycle is used in equation (3.28) to extract 

the mechanical power profile which is used as a speed profile. 

Before selecting the most suitable speed control method for tracking the reference speed, an 

experiment was carried out using two speed profiles to compare the performance of the SM and 

BS controllers. The goal was to evaluate how effectively each controller tracks the desired speed. 

The results, displayed in Fig 5.5 indicate that the BS method significantly outperformed the 

alternative controller in terms of response accuracy and stability 
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Then, this approach was applied using the driving cycle cited previously. Results can be found in 

Fig 5.6 with almost no overshoot and negligible static error. 

 

Fig 5.6: Motor speed. 

 

 

 

 

 

 

 

 

    

       (a) 

 

 

 

 

 

 

 

      

        (b) 

Fig 5.5: Speed tracking performance: (a) Profile 1; (b) Profile 2. 
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A Lyapunov control system is used to regulate the DC-link voltage, enabling currents to be treated 

as control variables and viewed as an image of power transferred from the EPS to the DS. The 

results in Fig. 5.7 demonstrate that the DC bus remains regulated around its reference dc refv − . 

 

Fig 5.7: Dc-bus voltage 

 The load current in Fig. 5.8 takes the same shape as the speed profile, reflecting a signal with the 

same frequency spectrum as the speed profile. Since the proposed strategy relies on frequency, 

this profile requires a frequency analysis, revealing three different sections with varying 

frequencies, caused by using different driving patterns. The FFT analysis results presented in Fig 

5. 9 show key frequencies of 0.01 Hz for the first section (Fig 5.9(a)), 0.06 Hz for the second 

section (Fig 5.9(b)), and 0.03 Hz for the third section (Fig 5.9(c)). These frequencies match urban, 

high-speed, and suburban driving patterns, respectively. 

 

 

Fig 5.8:  Current of load. 
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(a) 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

(c) 

 

Fig 5.9. Load current FFT analysis: (a) Section 1 (green) load current during urban driving cycle; (b) 

Section 2 (green) load current during high-speed driving cycle; (c) Section 3 (green) load current during 

suburban driving cycle. 
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In order to evaluate the effectiveness of the proposed method, it was compared with three other 

frequency-based techniques: a fixed cut-off frequency, an adaptive filter, and the conventional 

wavelet transform. The comparison focused on battery and supercapacitor currents as well as their 

state of charge. 

Figs 5.10(a) and 5.10(b) illustrate changes in battery and supercapacitor currents when using fixed 

and adaptive cut-off frequencies for frequency separation. As the cut-off frequency increases from 

0.01 Hz to 0.06 Hz, the battery current shows greater fluctuations, while the supercapacitor current 

becomes more stable. This demonstrates the supercapacitor's effectiveness in handling 

fluctuations, as reflected by the higher state of charge for the batteries and the lower one for the 

supercapacitor shown in Figs 5.11(a) and 5.11(b). The adaptive frequency separation method 

proves to be the most effective in managing high-frequency components while maintaining a stable 

supercapacitor current. 

(a) (b) 

(c) (d) 

Fig 5.10. Currents of batteries and supercapacitors using tested techniques: (a) Battery current over various 

cut-off frequencies; (b) Current of the supercapacitor with various cut-off frequencies; (c) Battery current 
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with different wavelet levels and the adaptive method; (d) Current of the supercapacitor with different 

wavelet levels and the adaptive technique. 

The analysis also explores the WT method using different decomposition levels (2, 3, 4, and 5) 

and an adaptive approach, Figs 5.10(c) and 5.10(d) show battery and supercapacitor current under 

these different levels. Higher levels result in more rapid changes in battery current and frequent 

power exchanges, while higher levels filter out high-frequency components in supercapacitor 

current, reducing those fluctuations. AWT method performs best at managing high-frequency 

components while keeping the supercapacitor current stable. This appears through the analysis of 

the State of Charge curves in Figs 5.11 (c), and 5.11 (d) where high wavelet decomposition levels 

introduce smoother changes and more balanced energy flow in the SoC curves for the battery. 

Conversely, they lead to greater dynamics and fluctuations in the supercapacitor Soc.  

(a) (b) 

(c) (d) 

Fig 5.11.  State of charge of Battery and supercapacitor under validated techniques:(a) Variations in battery SoC at 

various cut-off frequencies;(b) Variations in supercapacitor SoC at various cut-off frequencies;(c) Battery SOC at 

various wavelet levels and adaptive method;(d) Supercapacitor SOc at varying wavelet levels and the adaptive 

technique. . 
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Depending on the application's particular requirements, frequency separation and wavelet 

transform approaches each have unique benefits and trade-offs. Adaptive strategies are highly 

effective at managing energy precisely and maintaining the stability of both battery current and 

State of Charge. However, selecting the optimal approach requires considering additional criteria, 

particularly when aiming to extend battery life. Battery current RMS and peaks are important 

indicators of aging and provide valuable insights into battery health and performance. Another key 

aspect is system losses, as reducing these losses can greatly affect the battery's lifespan. These 

considerations are discussed below: 

➢ Current Root Mean Square (RMS) 

The Root Mean Square current serves as an important evaluation metric in EMSs for HESS. It 

offers key insights into system performance and the strain imposed on the energy storage 

components, especially batteries. The significance of RMS lies in its ability to evaluate the 

smoothness and stability of current flows, which directly influence the lifespan and reliability of 

these storage devices. RMS may be computed using the following formula: 

 

Fig 5.12 proves the ability of AWT method to lower the total RMS current. The current dropped 

to 2.81 A; a 34% decrease compared to the fixed cut-off frequency method. This improvement 

allows for smoother power transfer, less battery stress, and prolongs component lifespan, 

contributing to better system stability. The conventional WT method also reduces RMS current to 

values between 3.7 A and 3.9 A, representing a decrease of 9.36% to 14.63% compared to the 

fixed cut-off frequency range of 4.04 A to 4.34 A, demonstrating its capability in controlling 

current variations. Although the adaptive filter reduces RMS current to around 4 A, showing 

improved handling of fluctuations over the fixed cut-off frequency method, it does not match the 

precision of the AWT.  The fixed cut-off frequency method, which produces high RMS current 

values,  poses concerns regarding increased stress on energy storage components and its effect on 

battery longevity. Therefore, the AWT method proves to be the most effective solution for 

RMS rms b rms scI i i− −= +  

( )2 21
i iRMS b mes sc mesI i i

N
− −= +   

(5.1) 

 

(5.2) 
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optimizing energy management and safeguarding components in the HESS. This makes it the 

preferred choice for maintaining reliable performance. 

 

➢ Maximum current 

Reducing the maximum current in an EMS for HESSs is crucial. This value indicates the highest 

instantaneous current provided by the battery and supercapacitor during operation. High peak 

currents may put enormous pressure on these energy storage elements, accelerating their failure 

and reducing their lifespan. Furthermore, high peak currents can cause drops in voltage, energy 

loss, and instability in the system. 

Examining the maximum current criterion shown in Fig 5.13 demonstrates that the AWT approach 

excels at lowering peak currents to 12.58 A, which is essential for smoother power delivery and 

minimizing battery stress. The current profile obtained using the adaptive wavelet approach 

indicate longer component life and enhanced system stability, reducing the probabilities of 

premature failure and expensive repairs. In contrast, other methods exhibit higher peak currents: 

16.36 A to 20.46 A for the conventional WT, 21 A for the adaptive filter, and 21.7 A to 22.68 A 

for the fixed cut-off frequency. These elevated currents can accelerate the aging of energy storage 

components, resulting in inefficiencies and safety problems. Thus, the AWT method effectively 

minimizes peak current values, making it a strong alternative for EMSs in EVs. Its ability to reduce 

 

Fig 5.12:  Total RMS current across various techniques 
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maximum currents plays a key role in optimizing energy management, ensuring the long-term 

health of the HESS, and protecting components. 

➢ The Delta State of Charge (∆ SoC) 

This criterion quantifies variations in SoC over time and offers valuable data about energy 

consumption efficiency. Reducing the Delta SoC is important for achieving balanced energy 

sharing between the battery and supercapacitor, reducing excessive discharge cycles, and 

enhancing the use of storage system. 

Fig 5.14 illustrates the ability of the AWT method to lower the total Delta SoC to 30%, 

demonstrating its precise control and efficient energy distribution for a more stable SoC profile.  

In comparison, other methods show higher Delta SoC values: 20.2% to 24.1% for the conventional 

WT, 19.6% for the adaptive filter, and 9.2% to 14.6% for the fixed cut-off frequency method. 

Elevated Delta SoC values signify less efficient energy sharing and imbalances between the battery 

and supercapacitor. Large and frequent SoC fluctuations can accelerate degradation, reduce 

capacity, and shorten battery lifespan. The AWT method successfully reduces Delta SoC, 

emphasizing its role in optimizing energy use and maintaining the long-term health and reliability 

of the HESS. 

 

 

 

 

Fig 5.13: The total maximum current with different techniques 
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➢ losses 

The losses in EMSs have a direct impact on system efficiency and energy usage. Limiting losses 

is important for achieving better energy conversion efficiency, less energy waste, and improved 

performance of the Hybrid Energy Storage System. Battery and supercapacitor losses can be stated 

as[135]: 

T b scL L L= +  

 ( ) ( )2 2

T b b mes sc sc mesL R i R i− −=  +   

( )
max

% T
T

T

L
L

L −

=  

(5.3) 

 

(5.4) 

 

(5.5) 

Fig 5.15 shows that the adaptive wavelet method achieves the lowest energy losses, at just 20.40% 

of the total losses related to the fixed cut-off frequency EMS. This demonstrates the good 

performance of the AWT in optimizing power flow and minimizing energy waste. In comparison, 

the conventional WT approach has a bit more losses, ranging from 59.30% to 84.76% depending 

on the decomposition level, whereas the adaptive filter method has even greater losses, at 72.55%. 

The ability of the AWT strategy to attain the lowest losses is a major advantage, resulting in greater 

energy efficiency, less heat generation, and a longer lifespan for energy storage devices. As well 

as Lower losses contribute to increased system reliability and economic viability. 

 

Fig 5.14:  Delta SOC with various techniques. 
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The results obtained using the above mentioned criteria can be summarized in Table 5.2 as 

follows: 

Table 5.2: Detailed evaluation of the suggested EMS, the standard wavelet approach, and the 

adaptive filter compared to a fixed cut-off frequency 

Criteria Proposed EMS  Wavelet-based EMS  Adaptive Filter  

Total RMS current 66% 85.37% -90.64% 87% 

Total maximum current 55.47% 72.14% -90.22% 92.60% 

∆ soc 70% 75.9% -79.8%  80.4% 

Total Losses  20.40% 59.30% -84.76% 72.55% 

 

In the existing literature, EMS comparisons typically contrasted fixed cut-off frequencies with 

adaptive ones or the traditional WT to the AWT. In this part, four different approaches are tested 

under the same experimental conditions to assess their performance, making the comparison more 

technical and detailed. Table 5.3 shows the obtained comparative results as well as selected 

comparisons from the literature. The numerical results show that the adaptive techniques regularly 

outperform their fixed versions in terms of battery RMS current, peak power, longevity, maximum 

current, and losses. Notably, the proposed EMS, which has been experimentally compared with 

the conventional WT, adaptive filter, and fixed cut-off frequencies in this work, proves to be of 

special significance. 

 

 

Fig 5.15: Total Losses under different techniques implementation 
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Table 5.3: Comparison of Frequency-Based EMS Performance for Both Classical and Adaptive 

Versions. 

 

Reference Comparison method  Finding  

[136] Adaptive Filter Vs fixed cut-off frequency Battery RMS current: Reduction by 17.03% 

Battery peak power: Diminution by 3.71% 

Battery lifespan: Improvement by 32.40% 

[137] Adaptive Filter Vs fixed cut-off frequency Battery RMS current: Reduction by 14% 

and 55% for NEDC and urban Artemis 

cycle 

[138] Adaptive wavelet vs conventional wavelet Battery maximum current: Minimization by 

58.2% 

Battery lifespan: Enhancement by: 6.16% 

[135] Adaptive wavelet vs conventional wavelet Losses: Diminution by 10.66% 

Proposed 

EMS 

Proposed adaptive wavelet, conventional 

wavelet, and adaptive Filter Vs fixed cut-off 

frequency 

Total RMS current: Reduction by 34%, 

9.36% -14.63% and 13% 

Total maximum current: Lowering by 

44.53%, 27.86% -9.78% and 7.40% 

Losses:  Minimization by 79.6%, 15.24% -

40.7% and 27.45% 

 

5.3.1. Adaptive Fuzzy Logic based K-Means-SVM Pattern Recognition strategy 

During the second experimental phase, a developed adaptive wavelet was validated considering 

driving conditions. Therefore, K-Means-SVM drive Pattern Recognition was adopted as an 

important part of this EMS. Table 5.4 shows comparative results from the literature where K-

Means and SVM outperformed their alternatives. The validity of this recognizer was tested by 

applying the first 500 seconds of the FTP72 standard driving cycle which includes a mix of urban, 

suburban, and highway driving environments. The recognition process results are shown in Fig 

5.16 by the blue line where 1 represents urban driving patterns, 2 corresponds to suburban driving 

patterns, and 3 indicates highway driving patterns. The outcome demonstrates that the developed 

driving pattern recognizer can accurately identify different driving patterns, confirming the 

effectiveness of the k-means-SVM recognizer.  
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Table 5.4: Accuracy comparison of diverse machine learning techniques in Driving state 

recognition 

 Methods  Accuracy Reference 

Clustering K-means, Fuzzy C-means, K-

medoids, GMM 

K-means 97.84% 

Fuzzy C-means 97.12% 

K-medoids 96.82% 

GMM 96.29% 

[139] 

Classification SVM, KNN, RF 

 

 

SVM, KNN, Linear 

Discriminant  

SVM 67.4% 

KNN 66.8%,  

RF 81.3% 

Linear SVM 95.51% 

Coarse Gaussian SVM 91.02% 

Quadratic SVM 89.79% 

Medium Gaussian SVM 85.47% 

Fine Gaussian SVM 85.25% 

Cubic SVM 67.16% 

KNN 92.3% 

Linear Discriminant 90.6% 

[140] 

 

[141] 

 

 

Fig 5.16: Results of recognition within the test-driving cycle 
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 To emulate the traction part, the power profile generated from the previously shown FTP72 drive 

cycle was used as a reference profile. Specifically, the positive portion of the power profile was 

used as the M1 speed reference, while the negative portion was used as the M2 torque reference. 

During the discharge phase, the system operated with a variable positive speed and constant torque, 

placing M1 in quadrant 1 and ensuring that the frequency behavior of the power was dictated by 

the speed profile. In the braking phase, a constant speed with variable negative torque was applied, 

making the power's frequency behavior dependent on the torque profile and transitioning M1 from 

quadrant 1 to quadrant 4. This approach allowed the system to accurately represent the energy 

dynamics of real-world driving conditions. Results in Fig 5.17 demonstrate that M1 speed closely 

tracks its reference signal, with only a small overshoot. Fig 5.18 also shows that the M2 current 

matches its reference signal precisely. This current corresponds to the resistance torque exerted on 

M1. 

Fig 5.19 represents the evolution of traction current during this process demonstrating that M1 

operated under realistic load scenarios throughout the tests. 

 

Fig 5.17: M1 speed 

 

Fig 5.18: M2 Current 
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A comparative analysis is conducted to assess the impact of DPR on WT adaptability, using a 

traditional WT with fixed decomposition levels. Fig 5.20(a) gives details about the battery's 

discharge current at different wavelet decomposition levels, clearly showing that AWT can lower 

the discharge current. Moreover, Fig 5.20 (b) shows the charge/discharge current of the 

supercapacitor, demonstrating its ability to manage significant peak currents. Higher 

decomposition levels effectively filter out high-frequency components, improving the 

supercapacitor's rapid charge/discharge capabilities and decreasing battery current variations. 

Tables 5.6 and 5.7 verify those results by comparing the RMS values of the obtained battery current 

for the EMSs implemented. AWT technique appears as the most efficient strategy, with RMS 

reductions ranging from 3.28 to 21.85% when compared to traditional WT with a fixed 

decomposition level. 

The battery Soc indicates a slower reduction of 0.001% in comparison to the initial Soc when 

exposed to AWT, as illustrated in Fig 5.20(c). This behavior is due to combining the WT with 

DPR. This result refers to the dynamic power distribution between the battery and supercapacitor, 

which is adjusted in real-time based on DPR.  When examining the details provided in Table 5.4, 

it is clear that the battery Soc curve variations are smoother at higher wavelet decomposition levels. 

This smoother progression helps reduce battery SoC consumption, with final SoC values of 

79.9987%, 79.99885%, and 79.9989% for decomposition levels 2, 3, and 4, respectively. At the 

same time, higher wavelet decomposition levels direct high-frequency components to the 

supercapacitors, aligning their soc changes with these variations, as shown in Fig 5.20(d). 

 

Fig 5.19: Current of load 
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(a) (b) 

(c) (d) 

Fig 5.20: Results of experiments with wavelet transform, both fixed and adaptive: (a) Current of battery; (b) Current of 

supercapacitor; (c) Battery state of charge ; (d) Supercapacitor state of charge. 

 

Table 5.5: Assessment criteria results. 

Parameters 

 

2-Level WT 3-Level WT 4-Level WT AWT AWT-FL AWT-AFL 

Battery RMS current (A) 

 

3,5 2,964 2,828 2,735 2,732 2,163 

Supercapacitor RMS current (A) 

 

0,4904 0,4097 0,6708 0,8374 0,9345 0,9546 

Battery peak current (A) 

 

16,32 15,9 15,62 15,39 14,15 13,5 

Terminal Battery Soc (%) 

 

79,9987 79,99885 79,9989 79,999 79,99917 79,9992 

Terminal Supercapacitor Soc (%) 

 

47,11 46,78 46,75 46,85 47,02 47,63 



Chapter 5. Experimental validation and performance analysis 

 

109 

 

      

Dc-link voltage fluctuations (%) 

 

21,08271 20,55604 20,55604 14,67813 13,91813 11,59854 

 

 

(a) 
(b) 

(c) (d) 

Fig 5.21:  Results of experiments conducted with various adaptive techniques: (a) Current of battery; (b) Current of 

supercapacitor; (c) Battery state of charge; (d) Supercapacitor state of charge. 

 

Table 5.6: Reduction in AWT RMS battery current compared to fixed-WT 

Parameters AWT vs 2-Level 

WT 

AWT vs 3-Level WT AWT vs 4-Level 

WT 

Battery current RMS reduction (%) 21.85 % 7.726% 3.28 % 
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From the results above, it is strongly evident that the adaptive version outperforms the fixed 

counterpart. This prompts a comparison of the adaptive versions used in this study: AWT-AFL, 

AWT-FL, and AWT, which is done by adopting several criteria as follows:  

➢ Battery current RMS 

The changes in battery and supercapacitor current curves are shown in Fig 5.21(a) and Fig 5.21(b), 

respectively. The results show that the EMS based on AWT-AFL has fewer fluctuations compared 

to AWT-FL and AWT. This obvious reduction in fluctuations leads to a significantly smoother 

battery current profile, thus decreasing the battery damage. Additionally, as shown in Table 5.7, 

the proposed EMS achieves an important reduction in RMS current, with a 20.92% decrease 

compared to the AWT strategy and a 20.83% decrease compared to the AWT-FL. This 

considerable reduction highlights the efficiency of the proposed strategy in enhancing and 

stabilizing the performance of batteries. 

➢ Maximum battery current 

The proposed strategy also performs well in reducing peak current, with a maximum battery 

current of 13.5 A, representing a notable 4.59% decrease compared to the AWT-FL strategy's peak 

of 14.15 A. Moreover, the reduction becomes even more significant at 12.28% when compared to 

the AWT strategy, which has a peak current of 15.39 A. Fig 5.22 illustrates the effectiveness of 

the proposed strategy in minimizing peak battery current. A depth analysis is provided through a 

probability assessment across specific current ranges, utilizing the following equation to calculate 

the probability: 

( )
( )

( )

p

p

n i
P i

n s
=   

 

(5.6) 

 

Within the [10 A-15 A] range, the proposed EMS demonstrates a notably low probability of 7.5%, 

outperforming AWT (8.79%) and AWT-FL (8%). In the [15 A-20 A] range, the proposed EMS 

entirely eliminates the occurrence of peaks, whereas AWT-FL shows a probability of 1% and 

AWT a slightly higher 4%. This detailed analysis further highlights the precision and efficiency 

of the proposed strategy in controlling and reducing peak battery currents. 
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Table 5.7: Comparison of the proposed EMS to AWT-FL and AWT in terms of battery current RMS 

and peak reduction 

Parameters Proposed EMS vs AWT-FL Proposed EMS vs AWT 

Battery current RMS reduction (%) 20.83% 20.92% 

Maximum Battery current reduction (%) 4.59% 12.28 % 

 

 

➢ Rate of change of battery current 

The effectiveness of the suggested technique is further emphasized by its ability to reduce the 

rate of change of battery current bdi

dt
, an essential parameter defined through the Equation (7) 

[136]: 

max min

max min

b b bdi i i

dt t t

− −
 −

=  
− 

 
 

(5.7) 

 

This parameter indicates the rate at which the current flowing into or out of the battery changes. 

Consequently, Fig 5.23 offers a detailed representation of the stress placed on the battery by 

 

Fig 5.22: The distribution of battery current peaks under adopted techniques. 
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showing the normal distribution of this parameter, characterized by a mean
ib   , standard deviation 

ib , and variance 2

ib , as expressed by the following probability distribution  [142]: 

2

2

( )
1

( , , ) exp
22

b
ib

b
ib ib

ibib

di

di dtf
dt


 
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 
− 

= − 
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(5.8) 

In the AWT-AFL scenario, the rate of change mostly stays within a small range of [0 - 7.5] A, 

showing that the battery experiences less operational stress. However, the AWT-FL strategy has a 

wider range, with the rate of change in battery current reaching up to 9.4 A, and the AWT strategy 

goes even higher, up to 10.6 A. This detailed analysis shows that the battery experiences 

significantly less operational stress under AWT-AFL compared to AWT-FL and AWT. This 

suggests that the proposed strategy successfully reduces higher and sudden changes in battery 

current, limiting the growth of Li+ concentration and preventing the film's irregular, steeper 

gradients, both of which are affecting battery life[143]. 

Under the proposed control strategy, the supercapacitor current consistently exceeds that of the 

AWT-FL strategy and AWT, showing that it effectively manages all peak currents by supplying 

power during periods of peak demand. Moreover, the supercapacitor's output current shows a 

dynamic pattern, alternating between positive and negative values, indicating charging and 

discharging operations. The charging was attributed only to the supercapacitor due to the battery 

slow charging requirements and the short braking periods. In contrast, discharging is specifically 

designed to handle the transient portions of the load current demand. This charge/discharge 

functionality allows the supercapacitor to adjust to the vehicle's energy needs in real-time, 

optimizing energy flow and usage. As a result, the battery's electrochemical structure stays 

protected from sudden changes in load demand, leading to safer operation and a longer battery 

lifespan. 
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➢ Battery state of charge 

A comparative analysis of the battery and the supercapacitor soc is provided in Fig 5.21(c) and 

(d). Fig 5.21 (c) focuses on the battery's SoC, which is initially set to 80% for all EMSs. In 

comparison to the other two strategies, it appears that the AWT-AFL strategy finishes the driving 

cycle with a higher battery SoC. For EMSs using AWT, AWT-FL, and AWT-AFL, the final 

battery Soc values are 79,999%, 79,99917%, and 79,9992%, respectively. On the other hand, Fig 

5.17(d) indicates the supercapacitors Soc changes over time where 47.3% is set as the initial value 

for the adopted EMSs. It is worth noting that AWT-FL completes the driving cycle with a 0.17% 

higher supercapacitor Soc than AWT, according to the description in Table 5.5, where fuzzy logic 

control is used to keep the supercapacitor Soc within predetermined limits (60%) and minimize 

battery peaks by assisting these peaks with the supercapacitor. Because the initial value was lower 

than the intended Soc, the AWT-FL attempted to achieve a balance between the battery current 

output and supercapacitor Soc consumption. While the supercapacitor Soc gains 0.33% at the end 

of the driving cycle for AWT-AFL EMS. AFL control enables more flexible current use for both 

the battery and supercapacitor based on real-time recognition findings. This approach aims to keep 

the supercapacitor's soc close to the target level by recovering more braking energy, consuming 

less battery current, and preventing high battery current peaks. 

 

 

Fig 5.23:  Battery current rate of change Distribution within tested strategies. 
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➢ Dc-link voltage fluctuations  

Furthermore, the importance of the proposed EMS is determined by the frequent voltage 

fluctuations in the bus caused by sudden changes in EV load current. A well-designed EMS is 

crucial in greatly reducing dcv [136]. This decrease is accomplished through the optimal use of the 

supercapacitor, especially during abrupt load changes. 

max min .100dc

dc

v v
Fv

v

 −
=  
 

 
(5.9) 

Fig 5.24 presents a comparison of DC-link voltage using different strategies, comprising the 

proposed approach, AWT-FL, and AWT, over the testing cycle. The evaluation shows that dcFv

of AWT exceeded both AWT-FL and AWT-AFL, with AWT reaching 14.67%, while AWT-FL 

and AWT-AFL achieved 13.91% and 11.59%, respectively, as detailed in Table 5.5. This confirms 

the ability of the proposed strategy, not only in reducing bus voltage fluctuations but also in 

improving the system's overall stability and performance of the system under varying EV load 

situations. 

 

Fig 5.24: Dc-bus voltage using adopted strategies. 

 

The results mentioned above reveal that the AWT-FL EMS excels at assuring the optimum 

functioning of both the battery and the supercapacitor within their respective frequency bands. 
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Wavelet and fuzzy logic integration is specifically designed to accommodate diverse driving cycle 

types. This special benefit allows the HESS to be used efficiently and intelligently, guaranteeing 

a reasonable load power demand distribution while accounting for the characteristics of the 

different drive cycles. 

 

5.4. Conclusion 

In this chapter, we presented experimental results following the description of the test bench setup, 

which was used to validate the earlier study. This bench enabled us to assess the effectiveness of 

energy management algorithms developed using an adaptive wavelet-based supercapacitor SoC 

supervisor. The success of this phase encouraged us to further explore adaptivity to driving 

conditions by implementing an Adaptive Wavelet EMS with K-Means-SVM pattern recognition 

alongside Adaptive Fuzzy Logic. Additionally, the traction system of the vehicle was accurately 

emulated to reflect the real behavior of an electric vehicle during both the acceleration and energy 

recuperation phases. The experimental results validated the proposed EMS, offering a promising 

approach for extending battery life and reducing overall operational costs in electric vehicles. 
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6.1. Conclusion 

Electric vehicles currently available in the market use batteries as their primary energy source. 

However, these batteries face significant challenges, particularly in terms of energy delivery 

capabilities and lifespan, especially under varying and high-demand driving conditions. To 

overcome these limitations, researchers have developed HESS, which combine two types of 

energy storage devices: batteries and supercapacitors. In such configuration, batteries are used as 

the main energy storage device because of their high energy density, which allows them to store 

large amounts of energy for extended driving ranges. However, batteries have relatively low power 

density, making them less efficient at handling sudden surges in power demand, which is common 

in dynamic driving situations. On the other hand, supercapacitors have a much higher power 

density, enabling them to quickly deliver or absorb power during short, high-power demands like 

acceleration or regenerative braking. This complementary relationship between batteries and 

supercapacitors enhances the overall performance and longevity of the ESS.  

Many studies have proposed various hybrid topologies that integrate batteries and supercapacitors 

in different ways to optimize performance. The topology presented in this thesis is an active 

configuration, where both the battery and supercapacitor are connected to the DC bus through a 

bidirectional DC-DC converter. This allows flexible control over power flow, ensuring that each 

storage device operates in its optimal range. The DC-DC converter manages the charging and 

discharging of both devices, dynamically allocating power between the battery and supercapacitor 

based on the vehicle's power demands. 

 In many HESS designs, a frequency-based control strategy is employed to manage power flow to 

the DC bus. This strategy typically assigns lower-frequency power demands (sustained energy 

needs) to the battery, while higher-frequency components (rapid power fluctuations) are handled 

by the supercapacitor. While effective in theory, this approach has limitations in real-world 

applications. It often lacks adaptability to changing driving conditions, such as rapid transitions 

between different driving modes (e.g., city driving, highway driving). Furthermore, the frequency-

based strategy is challenging to implement in real-time control systems due to its reliance on 

offline calculations, making it difficult to respond to real-time variations in vehicle power demand. 

This thesis presents enhancements to frequency-based EMS by introducing an adaptive wavelet-

based approach that optimizes power distribution in a HESS by dynamically adjusting the wavelet 
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decomposition level according to the supercapacitor’s charge state, the system effectively handles 

sudden power demands, significantly reducing the strain on the battery during high-load situations. 

Real-time experiments comparing this approach with other frequency-based methods confirm its 

effectiveness. The findings prove an improvement in battery lifespan through: 

• A reduction in RMS current by up to 34% compared to fixed cut-off frequency methods. 

In comparison, conventional wavelet and adaptive cut-off frequency techniques showed 

reductions of 9.36% to 14.63% and 13%, respectively, indicating lower energy losses. 

•  Improved battery performance during high-current peaks, with a reduction of 44.53% 

compared to fixed cut-off frequency methods. This outperformed the conventional wavelet 

and adaptive cut-off frequency methods, which showed reductions between 9.78% and 

27.86% and 7.40%, respectively. 

These techniques give promising results in terms of performance, allowing the power demanded 

by the load to be distributed suitably over the two sources.  

Based on the previous approach, a novel EMS is proposed to deal with challenges imposed by the 

driving conditions. This approach consists of two essential components: an adaptive wavelet that 

expertly supervises the power allocation to each source and as a complementary component, 

adaptive fuzzy logic that maintains the supercapacitor continuously at the desired level, preventing 

peak current surges. Additionally, integrating k-means clustering and Support Vector Machine 

recognition improves the driving pattern recognition system, enhancing the adaptability of the 

wavelet-fuzzy system to various driving conditions. The experimental validation shows an 

interesting increase in battery lifespan, as proven by several notable contributions:  

• A significant decrease in the battery's operational stress was observed, with AWT-AFL 

limited to a range of [0, 7.5] A. In comparison, AWT-FL covers 9.4 A, and AWT extends 

up to 10.6 A. 

 

• A reduction of up to 20.83% in RMS current was achieved compared to AWT-FL, which 

exceeds the 0.09% reduction observed with AWT. 

 

• An important reduction in peak battery current occurrences, particularly in the [10 A - 15 

A] range, where the probability is low at 7.5%, compared to 8.79% for AWT and 8% for 
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AWT-FL. In the [15 A - 20 A] range, the new energy management system eliminates the 

probability of peaks, while AWT-FL has a 1% probability and AWT has a 4% probability. 

 

• A clear decrease in bus voltage oscillations is observed, with the proposed method 

outperforming both AWT-FL and AWT, achieving a reduction of 14.67% compared to 

their values of 13.91% and 11.59%, respectively. 

Although online experimental validation presents obvious challenges, the dedication to thoroughly 

testing and improving the strategy in real conditions enhances the authority and practicality of the 

results. These results reveal a promising approach to increasing battery longevity, which can lead 

to reduced overall operational costs in electric vehicles 

6.2. Future work 

For future work, this research suggests further exploration in the following areas: 

• Investigate the integration of various energy sources, such as fuel cells, into the existing 

system. This expansion will provide greater flexibility in energy management and improve 

overall efficiency by allowing for better utilization of diverse energy sources. 

 

• Focus on creating a robust algorithm to accurately estimate the State of Charge of the battery. 

This algorithm will help ensure that the battery operates within optimal ranges, providing 

crucial information for effective energy management. 

 

• Integrate battery State of Health into the energy management systems. By considering the 

condition of the battery, the system can make more informed decisions about power 

allocation, ultimately leading to improved durability and reliability of the energy storage 

system. 

 

• Account for the temperature of energy sources in the optimization process. By regulating the 

sources around a nominal temperature value, we can mitigate risks associated with 

overheating or cold conditions, thus prolonging the lifespan and efficiency of the hybrid 

energy system. 
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• Create an EMS that relies entirely on artificial intelligence such as reinforcement learning. 

This advanced system will utilize machine learning and data-driven approaches to optimize 

energy distribution, predict energy needs, and adapt to changing conditions in real time. 

 

6.3. Publication 

 

• Hasrouri, M., Charrouf, O., Betka, A., & Abdeddaim, S. (2024). Experimental 

validation of a real-time energy management system using four frequency-based 

approaches. Journal of Energy Storage, 79, 110139. 

https://doi.org/10.1016/j.est.2023.110139 

• Mourad, T., Omar, C., Malika, H., Achour, B., Kethiri, F. M., & Sabrina, A. (2024). 

Experimental validation of a real-time fuzzy logic-based MPPT controller for a PEM 

fuel cell emulator system. Studies in Engineering and Exact Sciences, 5(1), 2774-2798. 

https://doi.org/10.54021/seesv5n1-137 

• Hasrouri, M., Charrouf, O., Betka, A., & Abdeddaim, S. (2022, May). Wavelet-based 

control approach for hybrid energy storage system. In 2022 19th International Multi-

Conference on Systems, Signals & Devices (SSD) (pp. 509-514). IEEE. 
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