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q;\’is thesis presents the development and the experimental validation of an Energy

Management System for a real Hybrid Energy Storage System using lithium-ion batteries and
supercapacitors in an electric vehicle emulator. The EMS allocates power based on source
dynamics, managing real-time power distribution between the battery and SC, with the SC
assisting the battery during high demands and recovering braking energy. Frequency-sharing
techniques have been proposed to achieve this goal, including two innovative adaptive Wavelet
Transform based on the development of the conventional versions. The first method employs an
adaptive wavelet technique within the EMS, adjusting the wavelet decomposition level according
to the state of charge of the supercapacitor. This allows for dynamic changes in the wavelet
decomposition during high power peaks and when the supercapacitor has a high charge, reducing
the battery’s workload. The second method integrates an adaptive wavelet with adaptive fuzzy
logic within the EMS. This approach modifies wavelet transform levels and fuzzy logic outputs
using a k-means-SVM pattern recognition system. The combination of k-means clustering and
Support Vector Machine classification enhances driving pattern recognition, enabling real-time
decision-making. The adaptive wavelet dynamically manages power distribution between the
battery and SC, while the fuzzy logic maintains the supercapacitor at optimal levels and shields
the battery from peak current surges. These proposed systems maintain the supercapacitor charge
by dynamically managing power between the battery and SC, taking into account real-time driving
conditions. As a result, it reduces battery aging, extends battery lifespan, and lowers overall
operational costs in electric vehicles.

Keywords: Electric vehicle, Energy Management System, Adaptive wavelet transform, Adaptive
fuzzy logic, Driving pattern recognition
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C('ette these présente le développement et la validation expérimentale d'un systeme de gestion

de I'énergie pour un systéme de stockage d'énergie hybride réel utilisant des batteries lithium-ion
et des supercondensateurs dans un émulateur de veéhicule électrique. Le systéme de gestion de
I'énergie alloue la puissance en fonction de la dynamique de la source, en gérant la distribution de
la puissance en temps réel entre la batterie et le systeme de stockage d'énergie, le systeme de
stockage d'énergie aidant la batterie en cas de forte demande et récupérant I'énergie de freinage.
Des techniques de partage des fréquences ont été proposées pour atteindre cet objectif, y compris
deux transformées d'ondelettes adaptatives innovantes basées sur le développement des versions
conventionnelles. La premiére méthode utilise une technique d'ondelettes adaptative au sein de
I'EMS, ajustant le niveau de décomposition des ondelettes en fonction de I'état de charge du
supercondensateur. Cela permet des changements dynamiques dans la décomposition des
ondelettes pendant les pics de puissance élevés et lorsque le supercondensateur a une charge
élevée, réduisant ainsi la charge de travail de la batterie. La deuxiéeme méthode intégre une
ondelette adaptative avec logique floue adaptative (AWT-AFL) au sein de 'EMS. Cette approche
modifie les niveaux de transformation des ondelettes et les sorties de la logique floue a I'aide d'un
systeme de reconnaissance des formes k-means-SVM. La combinaison du regroupement k-means
et de la classification Support Vector Machine améliore la reconnaissance des schémas de
conduite, ce qui permet une prise de décision en temps réel. L'ondelette adaptative gére
dynamiquement la répartition de la puissance entre la batterie et le supercondensateur, tandis que
la logique floue maintient le supercondensateur a des niveaux optimaux et protége la batterie contre
les pointes de courant. Les systemes proposes maintiennent la charge du supercondensateur en
gérant dynamiquement la puissance entre la batterie et le SC, en tenant compte des conditions de
conduite en temps réel. Ils permettent ainsi de réduire le vieillissement de la batterie, d'allonger sa

durée de vie et de reduire les codts de fonctionnement globaux des véhicules électriques.

Mots-clés : Véhicule électrique, Systéeme de gestion de I'énergie, Transformée en ondelettes

adaptative, Logique floue adaptative, Reconnaissance des modeles de conduite
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Chapter 1. Introduction

1.1. Background and motivation

The rapid progress of urbanization has indeed led to an increase in environmental contaminants in
urban areas, including sulfur dioxide, nitrogen oxides, carbon monoxide, and particulate
matter [1]. This environmental burden is closely associated with the transport industry, which
contributes over 22% to global energy usage and greenhouse gas emissions, with road transport
alone responsible for more than 70% of total domestic and international transport greenhouse gas
emissions As shown in Fig 1.1 [2]. This challenge is particularly heightened in urban settings,
where cities consume 75-78% of global energy resources and generate 67-80% of worldwide
greenhouse gas emissions. It is projected that by 2050, approximately 68% of the world's
population will reside in cities [3] [4], the significance of this issue is set to escalate. Consequently,
the increasing popularity of electric vehicles in recent years stems from their lower environmental
impact and potential to mitigate greenhouse gas emissions, coupled with their superior efficiency
compared to traditional gasoline-powered vehicles.

22%

9% 6%

= Electricity & heat production * Manufacturing & construction
Transport Residental
Other Automobiles » Trucks « Aviation » Marine Railways

Fig 1.1: Emissions of greenhouse gases from the transportation sector worldwide

In the context of addressing these environmental concerns, The European Energy Mix estimates
that CO2 emissions in 2010 were at 300 CO2 g/kWh. The deployment of sustainable energy
sources and the potential retirement of nuclear power plants are expected to reduce CO2 emissions

to below 200 g/kWh by 2030, and maybe even lower. The CO2 emissions per vehicle will drop
1
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from 66 CO2 g/km in 2010 to under 30 CO2 g/km in 2030 when the consumption and emissions
of the electric vehicles used to generate the electricity are taken into account [5]. This transition
towards a cleaner energy mix aligns with the increasing trend of adopting electric vehicles, offering
a promising solution to the environmental challenges associated with the rise in pollutants due to

urbanization.
1.2.Contributions

This thesis aims to develop a modern real-time EMS based on the Adaptive wavelet technique
within a hybrid storage system dedicated to the EV encompassing batteries and supercapacitors.
This development allows for optimized energy assignment and prolongs the battery lifetime,
thereby reducing EV expenses. This aim will be achieved through the following original

contributions:

- A comprehensive review of EVs has been carried out, offering insights into both the current state

of EMSs and potential avenues for future research.

-A selection of methods blending wavelet techniques with artificial intelligence has been made to
effectively manage the energy flow in the hybrid system and account for driving conditions. These
EMSs are described as follows:

e A novel AWT technique responsive to the supercapacitor state of charge is utilized to
dynamically regulate the decomposition level. This innovative approach provides a fresh
and streamlined method of adaptability in contrast to traditional pattern recognition drives.
Particularly noteworthy is its ability to adjust the wavelet decomposition level during
transient high peaks and when the supercapacitor holds ample reserves, thus easing the
workload on the battery.

e An improved AWT is presented integrating Dynamic Pattern Recognition principles,
allowing for flexibility in addressing the dynamic complexities of various driving
scenarios. Enhancement of the driving pattern recognition system's capabilities is
accomplished through the fusion of k-means clustering and SVM classification techniques.
Unsupervised classification of driving behaviors is facilitated by k-means clustering,

establishing a basis for data-driven insights. Patterns are classified based on clusters
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through the SVM classifier, thus enhancing real-time decision-making and substantially
bolstering the adaptability of the EMS to driving conditions.

e A progressive approach to fuzzy logic is adopted over conventional methods, introducing
adaptability into the FL architecture. Real-time adjustments are made to membership
functions and rules to ensure harmonization with evolving driving conditions. This
continuous adjustment guarantees the preservation of the supercapacitor at the desired
level, acting as a preventive measure for the battery against occurrences of peak current.

-The experimental validation of the proposed strategies using real-world sources which faces

challenges due to the offline methodology. This offline nature introduces complexities in

implementing the strategy experimentally. However, the importance attached to rigorously
testing and improving the viability of the strategy under realistic conditions is emphasized by

the attempt to verify the proposed approach with real data sources.

1.3.Thesis plan

The organization of this thesis is outlined as follows:

Chapter 1: an overview of the context in which the research will take place, motivation, and thesis

contributions are introduced.

Chapter 2: This chapter provides the fundamentals of HEVs, exploring the multifaceted dynamics
influencing their adoption, including financial considerations. Various types and architectures of
HEVs are identified and compared, with detailed explanations of the adoption of HESS
incorporating batteries and supercapacitors. Furthermore, existing EMSs are categorized, and the

strengths and limitations of each category are briefly reviewed.

Chapter 3: will focus on the modeling and sizing of the various components comprising the power
supply and traction system of the EV. Accurate modeling of these components is essential for
deriving suitable control laws, encompassing energy sources, associated converters, the dynamic

vehicle model, and the motors utilized for simulating the traction system.

Chapter 4: a novel approach is introduced utilizing an AWT technique-based EMS. This technique

customizes the wavelet decomposition level based on the supercapacitor's state of charge. In the
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second part of this chapter, an adaptive wavelet-adaptive fuzzy logic technique (AWT-AFL)
within an EMS is developed. This technique dynamically adjusts the wavelet transform levels and
fuzzy logic outputs according to the k-means-SVM-driven pattern recognizer. where it focuses on
achieving consistent maintenance of the supercapacitor around the desired level and protection of

the battery from peak current surges.

Chapter 5: focuses on the experimental validation of the proposed strategies within a
battery/supercapacitor HESS tested on a small-scale EV emulator where a detailed description of
the experimental set-up is given. The practical aspects of numerical implementation and strategy

calibration are discussed, and the performance of the various strategies is evaluated.

Chapter 6 serves as the conclusion of the thesis, delving into potential avenues for future research.
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Chapter 2. Review of hybrid energy storage systems in the context of electric vehicles

2.1.Introduction

In this opening chapter, we place the research in a general context by briefly describing the various
types and architectures of HEVs. Following a brief historical perspective, we delve into the
complex dynamics influencing the adoption of EVs, considering both technological and financial
aspects, with a particular focus on battery-related considerations. Additionally, we provide an
examination of on-board energy sources, elucidating their characteristics and the criteria used to
compare them. In the second part, we offer a succinct review of energy management techniques
for hybrid systems. This understanding serves as a foundation for informed decisions regarding

the strategy employed in this study.

2.2 .Electric Vehicle

An electric vehicle is a vehicle that uses electric energy stored in a battery or other devices for
energy storage and is operated by an electromotor. EVs have a higher degree of efficiency and
better driving characteristics compared to vehicles powered by internal combustion engines of
equal power. They do not emit gases and do not create noise, making them environmentally
friendly and suitable for urban environments [6]. EVs typically consist of a frame, an electric
powertrain, and a transmission system. The electric powertrain includes an electric motor that
receives power from a battery module and transmits power to the wheels. The frame provides
structural support and may also include storage units for auxiliary power sources [7]. However,
they may also have higher upfront costs and limited driving range, depending on the model and
battery capacity[8] where the main problem with EVs is their autonomy. Scientists are developing
better battery technology to increase driving range while reducing weight, cost, and charging time.

These factors will eventually determine the direction of EVS[9].

2.2.1. Historic
The first electric vehicle can be traced back to a Scottish man named Robert Anderson, who created
a non-rechargeable battery-powered vehicle that ultimately failed[10]. However, the first
successful EV was known as the 'Electro boat' and 'Ricker electric vehicle," manufactured by the
Electric Vehicle Company in the 1890s. There are numerous theories and opinions about the first
electric vehicle, but it is believed that the first experiment on an electric vehicle was performed in
the middle of the 1830s, just after the discovery of Faraday's law [11] . Greece is also considered

the homeland of the first modern electrical car, with the Enfild 8000 being one of the first electric
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cars in the world [12]. In the early 20th century, electric vehicles experienced waves of popularity.
However, they were eventually overshadowed by gasoline-fueled vehicles, which were mass-
produced and sold at low prices [13]. It was not until the 1990s when the harmful effects of fossil
fuels on the environment became a concern, that electric vehicles resurfaced as a viable option
[14]. Today, EVs are becoming more mainstream, with many major automakers producing fully
electric and hybrid electric models. Governments around the world are also promoting the adoption
of EVs through incentives and regulations, to reduce greenhouse gas emissions and improve air

quality[8]. Fig 2.1 depicts some of the referenced cars.

Fig 2.1 The development of electric vehicles: (a) Robert Anderson Electric vehicle, (b) “La Jamais
Contente” Electric vehicle, (c) Riker Electric Tricycle, (d) Enfield 8000

2.2.2. Electric vehicle prices and sales
The price of EVs has been decreasing over time due to advancements in technology, economies of

scale, and government incentives. According to a report by Bloomberg NEF, the average price is
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expected to reach parity with traditional gas-powered vehicles by 2026. In 2021, the average price
of anew EV in the US was around $55,000, while the average price of a new gas-powered vehicle
was around $40,000 [15]. However, the total cost of ownership over the vehicle's lifespan,
including fuel and maintenance, can be lower for EVs. In Europe and China, a similar trend is
observed, with EVs often being more expensive upfront but potentially more cost-effective in the

long run [16].

The EV market has witnessed substantial growth, with a projected threefold increase in EV users
by 2030 compared to 2011, driven by advancements in battery technology improving vehicle
autonomy[17]. Fig 2.2 illustrates the global electric car stock, including battery electric vehicles
(BEVs) and plug-in hybrid electric vehicles (PHEVS), showing a consistent increase in market
share over the past decade. In 2023, EV sales surged by 60%, resulting in 1 in 7 global automobiles
being electric [9].This growth not only led to a significant reduction in carbon emissions but also

transformed the automotive landscape.

25
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Fig 2.2: Global inventory of electric cars, comprising plug-in hybrid and battery electric vehicles.

China, the fastest-growing EV market, has set ambitious targets, where the global EV market
surpassed 10 million sales in 2022, marking a 55% increase from the previous year, with China

dominating by representing 59% of global EV sales. Europe emerged as the second-largest market,

8
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accounting for 30% of the total EV population. The United States contributed 8% to global EV

sales. This data suggests a promising future for the electric vehicle industry, with ongoing growth

and increasing global adoption[18].

2.2.3. Types of EVs

EVs come in various types, including battery-electric vehicles, hybrid-electric vehicles, plug-in

hybrid-electric vehicles, and fuel-cell electric vehicles as shown in Fig 2.3. They are classified

based on their engine technology and configurations [18]:

Battery Electric Vehicles: BEVs are powered solely by electricity stored in a rechargeable
battery pack or supercapacitor. They produce zero tailpipe emissions, offering high
efficiency and low maintenance costs. However, BEVs may suffer from range anxiety due
to limited driving range per charge and the availability of charging infrastructure. Popular
examples include the Tesla Model S, Nissan Leaf EV, and Tata Nexon EV.

Hybrid Electric Vehicles: HEVs combine an internal combustion engine (ICE) with an
electric motor, offering improved fuel efficiency and reduced emissions compared to
traditional ICE vehicles. They utilize regenerative braking to recharge the battery and can
operate in electric-only mode for short distances. HEVs like the Toyota Prius Hybrid,
Honda Civic Hybrid, and Ford Escape. Hybrid provides a balance between electric power
and fossil fuel reliance, making them a popular choice for drivers seeking increased
efficiency without the range limitations of pure electric vehicles.

Fuel Cell Electric Vehicles: FCEVs utilize hydrogen gas to produce electricity through a
chemical reaction in fuel cells, powering an electric motor with zero tailpipe emissions.
FCEVs offer high energy density and long-range capabilities, along with rapid refueling
similar to conventional vehicles. However, their adoption is hindered by the limited
availability of hydrogen refueling infrastructure and the high initial acquisition cost.
Notable examples include the Toyota Mirai, Honda Clarity, and Hyundai Tucson Fuel Cell.
Plug-in hybrid electric vehicles: These vehicles have both an electric motor and a gasoline
engine. They can be charged by plugging them into an electric power source, and they can
also run on gasoline when the battery is depleted. PHEVs have lower emissions than
conventional gasoline vehicles, but they are not as clean as BEVs [8].However, PHEVs

also face challenges such as high initial vehicle costs due to high battery costs, limited
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driving ranges caused by low battery energy density, and a lack of recharge infrastructure
[19].

(a) (b) () (d)

Fig 2.3: Types of Electric Vehicles: (a) Battery Electric Vehicles; (b) Hybrid Electric Vehicles; (c) Fuel
Cell Electric Vehicles; (d) Plug-in hybrid electric vehicles.

2.2.4. The Multifaceted Dynamics of Electric Vehicle Adoption [20]
EV adoption is influenced by a spectrum of interconnected factors across political, economic,
social, technological, legal, and environmental dimensions. Politically, governments implement
measures such as purchase subsidies, tax reductions, and investments in charging infrastructure to
stimulate EV uptake. These policies not only make EVs more financially viable but also signal a
commitment to sustainability. Furthermore, information campaigns and green certifications raise
awareness and promote eco-conscious choices among consumers. Economically, the attractiveness
of EVs lies in their lower long-term costs, including reduced maintenance and operation expenses,
coupled with potential future discounts due to anticipated depreciation rates. Sociodemographic
factors, including social status, peer influence, and individual attitudes towards environmental
concerns and new technologies, significantly impact adoption rates. Personal experiences with

EVs and daily travel patterns also shape preferences.

Technologically, the availability and speed of charging infrastructure, along with factors such as
vehicle range and smart functionalities like vehicle-to-grid connectivity, determine the practicality

and convenience of EV ownership. Legal frameworks play a critical role in ensuring equitable

10
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access to EVs, mandating charging infrastructure in new developments, and imposing restrictions
on traditional car ownership or usage to incentivize electric alternatives. Moreover, the
environmental benefits of EVs, including reduced greenhouse gas emissions and local air
pollutants, are driving factors in their adoption. Effective recycling programs for lithium-ion
batteries are essential for minimizing environmental impact and ensuring the sustainability of EVs

throughout their lifecycle.

2.3.Energy sources in Electric Vehicles
In the context of vehicle hybridization, HESS must be used. It is composed of at least two energy
sources. The advantage of hybridizing different storage elements is to take advantage of their
complementarity in these properties. The main features that should be offered in the ESS are
energy density, power density, lifespan, cost, and maintenance-free. Different types of energy
storage devices are used in electric vehicles, such as batteries, supercapacitors, flywheels, and fuel

cells.

2.3.1. Batteries
2.3.1.1  Choice of storage technology

Battery storage technologies are broadly categorized into three generations. The traditional
generation, including lead-acid and Ni-based batteries, which predates the Lithium era, they both
well-established and dominant before the advent of lithium-based technologies. Lead-acid
batteries, originating in 1859, are renowned for their maturity and low cost, utilizing lead and lead
dioxide electrodes with sulfuric acid electrolyte.

Similarly, nickel-based batteries, introduced in 1899, offer superior electrochemical properties but
at a higher cost. Despite advancements like the nickel-metal-hydride (Ni-MH) battery, with better
performance and environmental friendliness, both traditional battery types face limitations such as
low energy density and lifespan. The current generation, dominated by Li-based batteries, has
already outpaced the traditional one in terms of key qualitative indicators, especially the High
storage density as shown in Fig 2.4, where Li-ion batteries have a high energy density, allowing
them to store a large amount of energy in a compact size. This makes them suitable for use in
electric vehicles, where space is limited[21]. Lithium-ion batteries (Li-ion) are particularly

prominent, with variations like lithium-ion polymer batteries (Li-poly) offering higher specific
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energy. Additionally, lithium-metal batteries present exciting possibilities for the future, albeit

with challenges related to rechargeability.

Lead acid

Na-ion ° Ni-Cd
]

Na-5 Ni-MH

Zn-air (Zn-02) Li-ion (LFP)
Solid-state (Li-O2 Li-ion (NMC)
Solid-state (Li-S) g Li-ion (LTO)
Li-metal (LMO) Li-poly (LCO)
—e— Specific Energy (Wh/kg) Specific Power (W/kg)
—8— (Cycles (x100) Efficiency(%)
—0— Memory Effect —o— Self Discharge (%/Month)

Fig 2.4: The qualitative indicators of batteries

Looking ahead to the future generation, diverse technologies such as sodium-beta, metal-ion, and
metal-air batteries promise advancements in energy density, environmental sustainability, and
cost-effectiveness. Among these, sodium-beta batteries stand out for their abundance and potential
in stationary applications, while metal-air batteries offer exceptionally high theoretical energy
densities, positioning them as prime candidates for electrified automobiles. Solid-state batteries,
especially those based on lithium-sulfur chemistry, hold promise for overcoming existing
challenges and ushering in a new era of high-performance energy storage for automotive
applications. Fig 2.5 illustrates the graphical classification and generational evolution of battery

types for EVs and portable applications [22].
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Fig 2.5: Evolution of Batteries for EV use across Generations

2.3.1.2  Battery price
The advancement of lithium-ion battery energy storage technology played a pivotal role in the
mass marketing of EVs. Estimates have shown that global lithium-ion battery demand will rise
over fivefold to 2000 gigawatt hours (GWh) between 2022 and 2030 as appears in Fig 2.6. The

largest market for lithium-ion batteries is and will remain diverse EV application scenarios [23].
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Fig 2.6: Global lithium-ion battery demand 2022-2030.

The battery pack is the most vital and most expensive component of an EV, constituting a
significant portion, roughly 25%-50%, of their overall acquisition cost. Choosing the right battery
technology for an EV is paramount, as it directly impacts various crucial factors such as cost,
weight, capacity, efficiency, durability, and overall performance[18] . For instance, when the
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Fig 2.7: Lithium-ion Battery Market Size 2022 to 2032[24].

Nissan LEAF was introduced, its lithium-ion batteries accounted for approximately one-third of
the vehicle's total cost. Over time, advancements in battery technology have led to a decline in
battery prices. For instance, by the end of 2014, the cost per kilowatt-hour (kwWh) had dropped to
around $500 from its 2009 price, and now it's anticipated to reach approximately $100 by 2025,
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indicating a significant downward trend. Tesla Motors' initiative to establish a "Mega factory"
aimed at reducing manufacturing costs and increasing battery output further underscores this trend
towards more affordable batteries [9] . As battery costs decrease, the price of EVs is expected to
follow suit, enhancing their competitiveness against traditional combustion engine vehicles. This
trend is supported by the expanding market opportunities for lithium-ion batteries, where the
global lithium-ion battery market size, estimated at USD 70 billion in 2022, is expected to exceed
USD 387.05 billion by 2032, showcasing a robust CAGR of 18.7% from 2022 to 2032 as shown
in Fig 2.7. These projections are bolstered by advancements in battery technology, which have
seen substantial increases in specific energy and energy density. For instance, from 2010 to 2020,
specific energy rose from nearly 110 Wh/kg to 250 Wh/kg, with expectations of reaching up to
450 Wh/kg by 2030. Similarly, energy density increased from 300 Wh/L to 550 Wh/L over the
same period, with predictions indicating a potential increase to 1100 Wh/L by 2030 [5].

2.3.2. Supercapacitor
ESS can be categorized based on their power and energy density. Batteries typically exhibit
relatively high specific energy, while SCs demonstrate lower specific energy but substantially
higher power density, as depicted in Fig 2.8. Which provides a concise comparison between
batteries and SCs [25]. The superior power density of SCs enables them to deliver significantly
higher power over shorter durations. This characteristic makes them well-suited for meeting the
power demands of EV motors during urban driving scenarios characterized by frequent
accelerations and decelerations, leading to large fluctuations in power requirements [26].
Moreover, supercapacitors are less susceptible to the effects of repeated deep charging and
discharging, thus eliminating the need for regular replacement, unlike batteries. This feature also
underscores their ecological friendliness, as they do not require frequent disposal. SCs can be
rapidly recharged within seconds following deep discharge[27] , with their internal resistance
remaining almost constant throughout charging and discharging processes, and boasting a high
cycle life [28]. Consequently, they find ideal applications in regenerative braking systems. While
SCs cannot entirely supplant batteries, they can complement each other, enhancing the
performance of the EV energy management system and reducing operational costs by mitigating
the degradation of the EV battery and consequently decreasing the frequency of battery

replacements.
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Fig 2.8: Comparison between batteries and supercapacitor.

2.4.1. Topologies

Investigating topology, control strategies, and optimal configurations for HESSs has consistently
been a focal point in research. Various topologies are devised to harness the potential of both
supercapacitors and batteries, ranging from passive and semi-active HESS configurations to full-
active ones. Although these configurations entail increased complexity and cost, they offer
enhanced operational flexibility and management capabilities. Fig 2.9 illustrates different hybrid
topology approaches integrating battery and SC sources. More comprehensive insights into HESS
for EV applications are encapsulated in Table 1 [29],[30], [31],[32],[33],[5].
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Fig 2.9: Topologies of HESSs integrating battery and SC sources: (a) Fully active topology with a parallel
structure;(b) Fully active topology with a series structure; (c) Passive topology; (d) Battery semi-active topology;
(e) Supercapacitor semi-active topology; (f) Multi-input converter topology.

Table 1: Comparative Analysis of Hybrid Energy Storage System Topologies

Topology Types Description Advantages Disadvantages
Active Parallel, In the parallel - Parallel architecture - High costs associated with
Serie architecture, the ESS  eliminates ultracapacitor implementation.
(cascade) is connected voltage fluctuations, making it - Complex real-time interaction

parallelly to the DC  highly favorable. control required.
bus through the use - Parallel architecture achieves - In the case of a failure in any
of two bidirectional ~ steady battery current flow and converter within the Series
DC-DC power voltage differences between architecture, it will lead to a
converters. On the load and battery. breakdown in the HESS
other hand, within - Series architecture isolates
the series high power and energy storage
architecture, these from the DC bus.
bidirectional DC-DC - Enhanced energy
power converters management capabilities.
link the ESS - Ensures optimal control for
elements in seriesto  improved system efficiency.
the DC buss

Passive This topology - Simplicity in design - Lack of controllability results in
directly connects the - Simplicity, cost- variable power-sharing dependent on
battery and SC to the  effectiveness, and reduced source impedance, leading to
DC bus, requiring no  weight susceptibility to cascading failures
control for energy - Provides high reliability during emergencies.
power-sharing. - Allows for direct integration - Limited utilization of SC due to

of battery and SC uncontrollable power flow and lack
- Power power-sharing ratio of protection against faults.

depends on internal resistance,
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Semi- Supercapac  This topology

active itor semi- utilizes a single DC-
active, DC converter
Battery connected to one of

semi-active  the individual ESSs,
while the other ESS
is directly connected
to the DC bus.

Multiple This topology works
input by integrating
converter multiple ESSs into a

single converter
connected to a DC
bus

offering simplicity in
implementation

- Reduced system cost and
complexity

- Most control strategies can
be applied

- Good trade-off between cost,
weight, and control complexity
- Adequate performance in
meeting load requirements

- It allows for bidirectional
power flow, enabling energy
transfer between the battery
and the output loads in both
charging and discharging
modes.

- It mitigates voltage stress on
semiconductors, resulting in
decreased losses on switches

2.4.Energy Management Strategies

- During regenerative braking, high
current peaks may impact battery
lifespan and efficiency

- Fluctuating DC bus voltage due to
supercapacitor connection.

- Limited operating range of the
supercapacitor in certain
configurations.

- Cost and space requirements for the
additional converter.

-Connecting the battery directly to
the DC bus makes it susceptible to
transient fluctuations

- The complexity of the control
structure

-Difficult in implementation

Developing an energy management strategy requires identifying the optimal power distribution

between the two sources while accounting for their operational constraints, including storage

capacities and frequency domain requirements. This distribution process must also address various

performance factors, such as source longevity, driving comfort, autonomy, and other relevant

considerations, as emphasized in the reference[34] . These energy management strategies are

categorized into three main categories: rule-based, optimization-based, and learning-based

strategy, as illustrated in Fig. 2.10.
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Fig 2.10: Classification of energy management strategies for hybrid electric vehicle.

2.4.1. Rule-Based Energy Management Strategies
This type of strategy is characterized by its simplicity and ease of real-time implementation. It
typically operates based on a predefined set of rules that govern energy management according to
the EV's current operating conditions. Typically, these regulations are enforced by employing
either a lookup table or conditional expressions based on if-then rules. Nevertheless, its primary
drawback lies in its inability to adapt to changing driving conditions over time, which arises from
a deficiency in prior knowledge of driving information[35] . These strategies are computationally

efficient and can be categorized into deterministic rule-based, frequency-based, fuzzy logic-based.

2.4.1.1.  Deterministic rule-based:
A deterministic rule-based approach for EVs operates through predefined conditions and
thresholds to regulate power distribution, thereby optimizing energy management. This method is
favored for its straightforward implementation, reliability, and minimal computational overhead
[36]. It effectively directs power within the vehicle's electrical system, ensuring safety functions
and preventing voltage drops below critical levels[37] . Additionally, such strategies can curtail

power consumption from comfort features, thus optimizing electrical energy utilization [38].
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However, deterministic rule-based strategies have their limitations. They may not match the
efficiency of other approaches, like deep reinforcement learning , in maximizing fuel-saving
performance or profit [39] [40]. They might struggle to adapt to varying states of charge and
battery capacities, thus hindering their integration with plug-in electric vehicles in power

distribution networks.

Numerous studies have delved into deterministic rule-based strategies for EVs. For instance,
Huang, Nguyen, and Chen devised a rule-based control strategy for a parallel HEV to enhance
energy efficiency and mitigate carbon emissions. This strategy utilized the driver's power demands
as input and determined power distribution among the generator, electric motor, and internal
combustion engine based on predefined rules. Evaluation on the NEDC2000 driving cycle revealed
significantly improved fuel efficiency in HEVs compared to ICE vehicles [37] . Shi, Guo, Liu,
Cai, and Wang proposed an enhanced rule-based strategy by incorporating a reference SOC curve
and SOC adaptive adjustment [41]. This ensured a linear decrease in state of charge with driving
distance, reaching a minimum at the end of journey, akin to dynamic programming results. The
improved rule-based strategy demonstrated a 7.87% reduction in fuel consumption compared to

conventional rule-based approaches.

2.4.1.2.  Frequency-based
EMSs based on frequency utilize the frequency attributes of power loads and energy sources to
optimize energy distribution and usage. By scrutinizing the frequency components of power loads,
advantageous frequency ranges conducive to efficient operation are pinpointed. This data is
subsequently employed to distribute energy resources and enact customized control measures
tailored to the specific frequency needs of the load. This approach results in minimized energy
wastage and heightened overall efficiency. In this context, researchers have explored a variety of
approaches. In [42], the authors introduce a frequency-based power-sharing technique utilizing a
frequency splitter to direct low-frequency power demand to the battery and high-frequency
demand to the SC. Their findings indicate that this method effectively reduces battery current and
enhances battery lifespan. However, the predetermined threshold for frequency separation may not
always optimize real-time power sharing because of variations in demanded power behavior across
driving conditions. Therefore, [43] proposes an EMS that utilizes a variable bandwidth filter

combined with sliding mode control for managing hybrid energy storage systems comprising
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batteries and ultracapacitors as shown in Fig 2.11. Results demonstrate the system's ability to

maintain battery soc within desired limits while ensuring stable ultracapacitor operation.
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Fig 2.11: Electrical diagram of a Battery/Ultracapacitor EMS utilizing an Adjustable Bandwidth Filter and
Sliding-Mode Control

On another front, WT has emerged as a formidable contender in frequency-based EMSs. In [44] ,
the authors present a real-time energy management strategy for hybrid battery and supercapacitor
ESSs that combines WT, neural networks, and FL as illustrated in Fig 2.12. The approach forecasts
low-frequency power demand with neural networks, allocates high-frequency demand to the
supercapacitor, and regulates supercapacitor voltage using FL. Outcomes showcase significant
reductions in peak power supplied by the fuel cell and effective utilization of the supercapacitor
and battery for energy management. The adaptability of wavelets enables superior signal analysis,

enhancing the accuracy of EMSs.
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Fig 2.12: Detailed control framework of hybrid energy storage system in this study
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2.4.1.3.  Fuzzy based
The fuzzy-rule-based energy management control strategy, an extension of deterministic rule-
based energy management control, operates by formulating a set of fuzzy rules (IF-THEN) derived
from human knowledge and cognition, eliminating the need for a mathematical system model [45].
This approach offers numerous advantages, including robustness, ease of implementation and
tuning, real-time control capability, sufficient human reasoning capacity, rapid calculation speed,
and suitability for online use in embedded systems. However, conventional methods may lack
adaptability due to challenges in selecting suitable membership functions for various inputs [35].
In [46], an energy management system was introduced for a hybrid energy storage system in an
electric vehicle , integrating a rule-based fuzzy logic controller with power filtering. The results
showed optimal energy distribution between the dual energy sources of the HESS model.
Additionally, the analysis indicated lower voltage demand frequency for the battery compared to
the SCs, leading to reduced battery degradation. In [47], the authors propose a hierarchical energy
management strategy for fuel-cell hybrid electric vehicles, The HEMS optimizes power
distribution among fuel cells, batteries, and ultracapacitors to enhance fuel economy. Energy
storage systems simplify distribution, while fuzzy logic controllers efficiently distribute power. A
status regulation module improves fuel cell life and battery state of charge. An adaptive low-pass
filter maximizes ultracapacitor utilization as shown in Fig 2.13 Comparative simulations show
reduced hydrogen consumption and enhanced vehicle energy efficiency under various cycle

conditions, demonstrating the economic and dynamic benefits of the strategy.
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Fig 2.13: The model diagram of the fuzzy control module
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2.4.2.0ptimization-based

Optimization-based strategies use mathematical models and algorithms to determine the optimal
energy management solution. They may consider driving cycle, battery characteristics, and
environmental conditions. However, these methods demand significant computational resources
and may necessitate high-performance hardware, leading to increased system cost and complexity.
Optimization-based approaches can be categorized as either offline or real-time optimization.

2.4.2.1. Offline optimization-based

Global optimization-based strategies aim to find the optimal energy management strategy that
minimizes energy consumption or maximizes the driving range of the electric vehicle over a long-
time horizon. These strategies typically require the use of complex optimization algorithms and
may take a longer computational time [48] . Dynamic Programming is proposed as a solution for
tackling optimal control problems within nonlinear systems, dynamic programming stands out as
a prominent mathematical technique derived from Bellman's optimality principle. Essentially, DP
endeavors to simplify intricate multi-stage decision-making into a series of single-stage decisions,
thus breaking down the problem into manageable sub-problems that can be addressed sequentially.
However, when dealing with excessively large dimensions, the computational and analytical
processes may face significant hindrances [49], [50] . In [51],the authors present a dynamic
programming-based energy management strategy for fuel cell hybrid electric vehicles, which
notably enhances fuel economy and system durability. Simulation results show a 6.46% reduction
in hydrogen consumption per 100 km compared to previous methods. Additionally, by regulating
power output changes, the strategy reduces large load fluctuations, demonstrating its advantages
over alternative approaches. Game theory finds extensive application in addressing multi-objective
optimization challenges by incorporating both anticipated and actual human behaviors. Employing
a multi-agent game model to simulate the actions of diverse energy sources in HEVs aids in
establishing a balanced power distribution. Compared to alternative methods, game theory's
mathematical computations are less intricate. However, due to its dependence on human behavior
predictions and the complexity of advanced powertrain models, its solution is less tied to specific
drive cycles but may be less compatible with vehicular control techniques [52]. Q. Zhang and G.
Li [53] employ game theory-based control to manage power flow in the FC + B configuration,

tackling uncertainties in energy demand during driving cycles. This approach, combined with
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fuzzy logic correction, effectively reduces fuel consumption and mitigates battery degradation.
However, its applicability is limited to specific hybridization configurations due to the need for a
deep understanding of each control method.

Genetic Algorithm (GA) is a metaheuristic approach inspired by the principles of evolution. It
begins by generating an initial population of solutions (chromosomes), which are then evaluated
using an objective fitness function. The best solutions typically require more time to evolve and
develop, Fig 2.14 illustrates the flow chart of the GA [54],[55] .Genetic algorithms have found
widespread application in devising energy management strategies for electric vehicles. These
algorithms are instrumental in determining the optimal battery charge/discharge protocol in fuel
cell hybrid electric vehicles, considering factors like minimizing hydrogen consumption rate,
preserving battery charge rate, and maximizing fuel cell efficiency [56]. Moreover, genetic
algorithms play a crucial role in the energy management control schemes for hybrid energy storage
systems in EVs, which integrate photovoltaic, battery, and ultracapacitor systems. These
algorithms contribute to efficient energy utilization, prolonging battery lifespan, and enhancing

overall performance [57].
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Fig 2.14: Flow chart of Genetic Algorithm
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2.4.2.2.  Real-time optimization
Real-time optimization aims to find an optimal energy management strategy for a specific driving
cycle or specific operating conditions. These strategies are typically less intensive in terms of
computational time and can be computed in real-time. A combination of both global and local

optimal strategies may be used to balance the need of accuracy and computational efficiency[48].

The Pontryagin's Minimum Principle (PMP) serves as a fundamental mathematical tool within
control systems for devising optimal control strategies. It entails establishing the requisite
conditions for minimizing costs in optimization dilemmas. Assuming determinism in the trajectory
computed via PMP and adherence to relevant constraints and boundaries, the resulting optimal
trajectory is commonly regarded as globally optimal. Consequently, the Hamiltonian function can

be formulated:

H (x(t),u(t),t) = rﬁf (x(t),u(t), t+A(t) f (x(t),u(t),t) 2.1)

with A (t) representing the co-state. Both the system's state and co-state must conform to the

stipulated following conditions:[49]

H_, 2.2)
ou
- oH of

_ A ad (2.3)
A(t) ™ A(t) P

Pontryagin's Minimum Principle (PMP) is employed in various energy management techniques
for electric vehicles. An A-ECMS-based EMS for extended-range electric vehicles integrates PMP
into its design, resulting in fuel consumption savings of 6.2% and 3.4% when compared to
traditional strategies[58]. Similarly, a real-time adaptive EMS for vehicles equipped with hybrid
energy storage systems (HESSs) utilizes PMP to minimize total electricity costs, leading to
reductions in battery losses by 18.41%, 13.94%, and 20.37% [59].

MPC, an advanced control method, utilizes a model to predict future system behavior and
determines optimal outputs by solving constrained optimization problems. It directly considers
constraints and aims to track a predefined reference within a specified horizon (Fig 2.15). Only
the initial output value from the optimized trajectory is implemented at each step [60] .A study
implemented Model Predictive Control to enhance the energy efficiency of EVs by optimizing
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their thermal management systems within power and thermal. This involved a control-oriented
model that captured the dynamics of the EV's powertrain and thermal subsystems. Through
sensitivity analysis, the study identified key traffic and speed variables influencing optimal EV
performance and assessed the impact of predictive uncertainties [61]. Additionally, another study
introduced a scenario-based MPC framework for Plug-In Hybrid Electric Vehicles (PHEVS),
achieving comparable fuel consumption reductions to nominal MPC without full foresight of
future driver behavior[62] .
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Fig 2.15: Model predictive control block diagram

The ECMS utilizes an optimization algorithm to dynamically compute the most efficient power
distribution between the internal combustion engine and electric motor, taking into account present
driving conditions and energy storage system status. This enables the vehicle to minimize fuel
consumption, fulfill driver power requirements, and preserve the energy storage system's charge
level. In [63] the authors proposed the environmental perceiver-based equivalent consumption
minimization strategy (EP-ECMS) for parallel plug-in hybrid vehicles. It employs a precise
environmental perceiver based on GCN and an attention mechanism for traffic state recognition.
Furthermore, the Harris Hawk optimization algorithm determines the optimal factor offline.
Simulation results demonstrate a notable 7.25% energy consumption improvement compared to
the traditional ECMS.
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2.4.3. Learning-Based Energy Management Strategies
Researchers have been exploring novel paradigms in pursuit of more adaptable and robust EMS
solutions. Recently, machine learning has emerged as a promising alternative that employs
software applications to enhance outcome predictions with increased accuracy, avoiding the
necessity for explicit programming. ML algorithms utilize past data to anticipate new output data.
There are three categories of ML methods based on what data types need to be predicted. These
categories include reinforcement learning supervised/unsupervised learning, and Neural network

learning [64].

Supervised learning trains a model using labeled data to predict outcomes. It utilizes labeled data
pairs of input and correct output attached to it to teach the machine, acting as a guide for
prediction[65]. supervised learning has been extensively utilized in HEV energy management for
tasks like battery degradation mitigation, hierarchical energy management, and online control
strategy development. In [66], a two-stage method is proposed. Firstly, a battery aging state
calibration model is established using a semi-empirical method, followed by linearizing the
mapping between aging features and battery life loss with a supervised learning method. Secondly,
a neural hybrid optimization-based energy management method is employed to mitigate vehicle
battery aging costs by simplifying model solving and reducing computation cost.

Contrary, in unsupervised learning, the data provided to learning algorithms consists solely of
input values without any associated output labels. This means there is no predefined notion of what
to predict. The primary goal of unsupervised learning is to uncover inherent structures within the
input data. Algorithms in unsupervised learning can organize the available data in various manners.
Unsupervised learning techniques could potentially be applied in HEV for tasks such as anomaly
detection, clustering driving patterns, or identifying hidden patterns in vehicle data without the
need for labeled information. In the study [67], the authors utilized the k-means clustering
algorithm to classify derived profiles. They then devised a power distribution strategy, applying

different co-state maps based on the classification of each driving profile

Reinforcement learning is a machine learning technique that involves training an agent to make
decisions based on feedback from the environment [68]. Unlike supervised and unsupervised
instructional methods, the RL approach iteratively enhances its understanding by incorporating

feedback from previous experiences in a cycle. This prevents it from persisting indefinitely once
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the model has been established through data gathered from trial and error attempts, a schematic of
Reinforcement Learning is shown in Fig 2.16 [69]. Reinforcement learning has been utilized to
improve energy management in hybrid electric vehicles by developing intelligent control
strategies, In their study [70] by Yu Cheng, Ge Xu, and Qihong Chen, a Q-learning-based approach
for dual-energy electric vehicle hybrid systems is proposed. It outperforms rule-based strategies,
reducing losses and lithium battery current conversion rate by 0.43% and 35.17%, respectively.
The effectiveness is demonstrated, updating control quantities through changes in the transition

probability matrix under mixed working conditions

(—y[ Environment

Action State
Agent Reward

Fig 2.16. A schematic of Reinforcement Learning concept

2.5.Driving Pattern Recognition-Based Energy Management Strategies.
Energy Management Systems can make smart decisions regarding power distribution within
HEVs. By optimizing the allocation of energy resources based on recognized driving patterns,
artificial intelligence allows to examination of both historical data and real-time driver actions
alongside road conditions. This enables Energy Management Systems to forecast energy
requirements more accurately and fine-tune power distribution, ultimately enhancing the

efficiency of HEVs.

Combining driving pattern recognition with optimization-based energy management strategies for
electric vehicles has several potential benefits. It allows for real-time power allocation based on
the driving patterns, resulting in improved system efficiency and energy loss reduction [71].
Additionally, the integration of predicted vehicle speed into the powertrain control strategy can

lead to more optimal energy management and closer results to optimal than conventional strategies
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[72]. Moreover, integrating driving behavior in energy management strategies can reduce fuel

consumption and improve the lifespan of power sources [73] .

Nevertheless, the complex merging of these techniques poses challenges, particularly due to the
increased computational requirements. which could lead to system delays or bottlenecks in system
performance. As a result, the system ability of the system to promptly respond and adapt to
dynamic driving conditions might be compromised.

Fusing driving pattern recognition with rule-based energy management strategies is seen as a
synergistic approach to enhance energy optimization in HEVs. Driving pattern recognition can
dynamically modify the flexibility of different rules based on the recognition process results [11].
This resolves the constraints of traditional rule-based systems and improves entire vehicle
performance and energy economy. Even so, much research hasn't been done on this strategy. In
both [12] and [13], the authors present an energy management methodology for hybrid electric
vehicles that incorporates driving pattern recognition alongside fuzzy logic control. Within the
second strategy, labeled as 'NNF-EMS," driving cycle recognition is merged with fuzzy logic
control to adjust fuzzy controller parameters according to driving cycle characteristics, thereby

improving fuel efficiency across scenarios

On the other hand, in [14], a flexible energy management system for electric vehicles is suggested,
which combines driving cycle recognition with wavelet transform. Additionally, [15] presents a
driving pattern recognition (DPR)-based intelligent energy management technique for a hybrid
energy storage system (HESS) in electric cars. Simulations highlight its superiority over
conventional methods, illustrating a 58.2% decrease in battery current, a 6.16% extension in

battery lifespan, and an 11.06% enhancement in vehicle endurance

2.6.Conclusion
In response to the growing interest in electric vehicles, this chapter gives a detailed exploration of
EVs. It delves into the intricate details of electric vehicle architecture, commonly utilized energy
sources, and prevalent topological configurations. Then, a review of energy management
techniques for hybrid systems has been briefly given. Knowledge of the principle of these

strategies allows us to make well-reasoned choices regarding the strategy employed in this study.
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Chapter 3. Modeling of hybrid energy storage systems and electric vehicles

3.1.Introduction
Modeling is crucial in understanding complex systems by providing a structured approach to
analyze, manage, and improve them. As such, in this chapter, explicit models of the various
subsystems are presented, together with the dimensioning of the constituent components. At the

core of our discussion, the proposed hybrid system comprises three integral parts:

e an electrical power system: mainly consists of lithium-ion batteries as a primary source,
supercapacitors as a secondary source, and two bidirectional DC/DC. These converters enable
power flow in both directions, delivering energy from the sources to the load during discharge
and returning energy from the load to the sources during charging.

e Driving system: contains Two DC motors which are individually controlled to emulate the
traction side.

e DC link: serves as a centralized junction for all power connections, facilitating the
interconnection between the electrical power system and the drive system. Its regulation
around a reference value is imperative for ensuring smooth operation and optimal performance

of the hybrid system.

3.2.Energy source modeling

3.2.2. Battery
A lithium-ion battery is an advanced battery technology that uses lithium ions as a key component
of its electrochemistry. Li-ion battery consists of a positive electrode (cathode), a negative
electrode (anode), an electrolyte, and two current collectors as shown in Fig 3.1. The cathode
typically comprises lithium metal oxide, while the anode is commonly made of graphite or other
carbon-based materials. The electrolyte in a Li-ion battery contains lithium salts and plays a crucial
role in facilitating the movement of lithium ions between the cathode and anode during charge and
discharge cycles[74]. During a discharge cycle in Li-ion batteries, lithium atoms in the anode
undergo ionization, separating from their electrons. These lithium ions then traverse through the
electrolyte towards the cathode, where they recombine with electrons to neutralize electrically.
The small size of lithium ions enables their movement through a micro-permeable separator
between the anode and cathode, facilitating high voltage and charge storage capabilities per unit

mass and volume in Li-ion batteries[75].
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Fig 3.1: Schematics of Li-ion battery

Li-ion batteries can be categorized based on the electrode materials utilized, as detailed in Table

3.1:

Type
Cathode
Material

Anode
Material

Table 3.1: Li-ion battery types.

LCO LMO NCA NMC LFP

Lithium Lithium Lithium Lithium Lithium

cobalt manganese  nickel cobalt Nickel Iron

oxide oxide aluminium Manganese Phosphate
oxide Cobalt Oxide

Graphite Graphite Graphite Graphite Graphite

LTO
Lithium
manganese
oxide

Li-titanate

LiFePO4 batteries are set from other lithium batteries by their exceptional thermal stability and

safety profile. Unlike conventional Li-ion batteries, which can undergo thermal runaway under

certain conditions. Moreover, LiFePO4 batteries offer long life with minimal capacity degradation

during repeated charge-discharge cycles, making them preferred for EVs [76]. The oxidation-

reduction reaction of LiFePO4 batteries taking place at both the positive and negative electrodes

is expressed as follows:
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Cathode Reaction:

FePo, +Li" +e” = LiFePo, (3.1)
Anode Reaction:
LiCs=C, +Li" +e (3.2)

Overall Reaction:
C, + LiFePo, = LiC, + FePo, (3.3)

Electrochemical models, illustrated in Fig. 3.2, provide a simple and widely used method to

simulate battery dynamics without accounting for internal phenomena.

The Rint model is the most basic ECM, containing a voltage source in series with internal
resistance. It accounts for ohmic resistance from contacts, electrodes, and electrolytes, offering a
basic approximation of battery voltage behavior. By connecting a resistor and capacitor in parallel
to the Rint model, the Thevenin model, also known as the 1 RC model, is created. This model
represents ohmic losses and concentration polarizations. Increasing the number of RC networks
can be included to enhance the model's complexity and accuracy. Therefore, the Partnership for a
New Generation of Vehicles (PNGV) model, developed by the US Department of Energy for
Power-Assist Hybrid Electric Vehicles, simulates battery voltage behavior using an internal
resistance element, an RC element, and a series-connected capacitance, known as bulk
capacitance, to calculate variation in open circuit voltage. The Dual Polarization (DP) model builds
on the Thevenin model by introducing activation polarization with the addition of a second RC
element. It captures the total internal resistance, encompassing ohmic resistance, including ohmic

resistance, concentration polarization resistance, and activation polarization resistance.[77]
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Fig 3.2. The equivalent models of Li-ion battery: (a) Rint model, (b) Thevenin model, (c) PNGV model,
(d)DP model.

This work employs the first-order ECM as the circuit model for Li-ion batteries. This model was
chosen to balance the ability to fit experimental data with the complexity of the equivalent

circuit[78]. The equations for the model are as follows:

,(0)=E, (0 -Ry(0)xi, () -V 4

cp

In addition to building an accurate battery model that involves constructing and parameterizing
an equivalent circuit that captures the nonlinear characteristics of the battery, this model must
account for dependencies on temperature, state of charge, and state of health. These dependencies
are unique to the electrochemical characteristics of each cell and must be determined based on

measurements of the battery cell [79].

Battery soc is typically defined as the remaining capacity of a battery compared to its total rated
capacity under a specific discharge rate[80] . It can be expressed as:
3.5
soc = Q x100% 39

N

Where @ is the current remaining battery capacity, and¢_ is the rated battery capacity

The Coulomb counting method is utilized in this work as a straightforward approach for estimating
the Soc. It is commonly used in online applications due to its simplicity and real-time capability,
avoiding the complexity of EMS implementation proposed in subsequent chapters. This method
involves calculating the extracted capacity of the cell by integrating the current over time, and it

can be defined as follows:
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soc(k+1)= soc(k)—n—Ati (k)

N

(3.6)

3.2.2. Supercapacitor
Supercapacitors are electrochemical capacitors with significantly higher energy density than
traditional electrolytic capacitors, owing to the charge accumulation via electrostatic double-layer
capacitance (EDLC) and electrochemical pseudocapacitance interactions. These interactions occur
at the electrode/electrolyte interface, emphasizing the importance of a high specific surface area
for enhanced charge storage. SC system consists of two electrodes (anode and cathode), an
electrolyte, and a separator, with charge mainly stored at the electrode in the case of EDLC, where
ions from the electrolyte are adsorbed at the interface. The separator serves as a semipermeable
membrane, allowing ion transport while preventing short circuits. The electrode incorporates a

current collector to ensure efficient electron transfer to external devices.[81].
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Fig 3.3: Schematic illustration of (a) electrical double-layer capacitor, (b)pseudocapacitor, (c)hybrid

supercapacitor
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Supercapacitors can be categorized into electric double-layer capacitors (Fig 3.3a) and
pseudocapacitors (PCs) (Fig 3. 3b) based on their energy storage mechanisms, with EDLCs storing
charges at the electrolyte-electrode interfaces and PCs involving reversible Faradaic redox
reactions. When a supercapacitor combines a capacitive carbon electrode with either a
pseudocapacitive or lithium-insertion electrode, it transforms into a hybrid supercapacitor
(HSC)(Fig 3. 3c) . HSCs offer a unique energy storage approach by leveraging the benefits of both
EDLCs and PCs, providing high power densities from EDLCs and high energy densities from
PCs[82].

The simplest ECMs, shown in Fig 3.4, have been widely used to describe the overall behavior of
SCs. The model in Fig 3. 4(a) features a capacitance and an equivalent series resistance that
represents the charging and discharging resistance. In contrast, Fig 3. 4(b) includes an equivalent
parallel resistance connected in parallel with the capacitance to account for self-discharging losses.
These two equivalent circuits are valuable for initial power system sizing and for simulating low-
rate and stationary charging and discharging processes[83]. More detailed models, such as the
multibranch models in Fig 3. 4(c), are not considered, as the dynamic behavior of the RC model

is sufficient for this case.
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Fig 3.4: Supercapacitor ECMs: (a) simple model with equivalent series resistance, (b)simple model

with equivalent parallel resistance, (c)multi-branch model
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The following equation mathematically describes the electrical behavior of the SC [84]:

V,, =Ri, += [idt
C

sC

(3.7)
Unlike other types of batteries, SCs exhibit a more linear relationship between their remaining
capacity and terminal voltage. Consequently, the SOC is frequently employed to estimate the
remaining capacity of SC. The SOC of a supercapacitor can be mathematically expressed as [85]:

Yy (3.8)

Vv .
— SC sC—min
soc,, =

V V

sc—max __ Vsc—min

v, corresponds to the terminal voltage of the supercapacitor, while,__and ____ indicate the

minimum and maximum cut-off voltage of the supercapacitor, respectively.

3.2.3. Parameters identification

A detailed numerical parameter estimation scheme was implemented using pulse current discharge
tests on LiFeYPO4 lithium-ion cells under various operating conditions with MATLAB®,
Simulink®, and Simscape™. The tests, conducted at a single ambient temperature, ensured that
parameters depended solely on the State of Charge. Data on voltage, current, and SoC were
collected and used to calculate parameters through interpolation, stored in 1-D look-up tables with
ten distinct SoC points. Parameter estimations of models were done in Simulink Parameter
Estimation Toolbox (SPET), where initial values and constraints for each parameter were defined
in the SPET, the constraints ensure the estimated parameters remain within realistic bounds. A
Non-linear Least Squares was chosen as the solver method and the Trust-Region-Reflective
algorithm was employed to solve non-linear equations, this algorithm iteratively adjusts the
parameters to minimize the difference between the simulated and experimental data. A discharge
profile was iteratively simulated, with results compared to experimental data to refine parameters
and minimize errors. Final parameters, dependent on SoC, were integrated into the model using
"From™ blocks, ensuring accurate reflection of cell behavior across the entire SoC range. The
model's accuracy was validated by comparing its output with experimental results, ensuring
reliable predictions of cell behavior under various scenarios The flow diagram in Fig 3.5 outlines
the steps involved in the parameter estimation process, while Fig 3.6 presents the results of this
procedure[77] [78].
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Fig 3.5: The flowchart of the parameter estimation process.

10

|
R1 (ohm)

0.008 1 1 1 1 1 1 1

04 02 03 04 05 06 0T 08 09 1 4 : : : : 1
state of charge (%) 01 02 03 04 05 06 07 08 09
(a) state of charge (%)
(b)
5x104
_4
)
Jd
©
L3
o
2
| | | | | | | |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
state of charge (%)
(©)

Fig 3.6. Battery parameters under different states of charge.

38



Chapter 3. Modeling of hybrid energy storage systems and electric vehicles

In the realm of battery model parameter identification, Recursive Least Squares algorithms are

deduced in equation (3.9) play a crucial role by integrating the concept of the forgetting factor (1)

to assign more weight to recent data over past data.

O(k) = Ok 1)+ K(K)[ y(k) - (K)O(k -1 |
K (k) = (P(k ~1)8(Kk) / (2+ " (K)P(k~1)o(K)) (3.9)
P(k)=[ - K (K)¢" (K)P(k-1)]/ 2

Aiming to strike a balance between stability and accuracy, the optimal selection of forgetting
factors is always needed to balance stability and accuracy. Therefore, in this work, the MAFF-
RLS algorithm is adopted, which is described in [86], where the optimal value of the forgetting
factor 2 (k) is computed based on the value of model voltage error. The experimental analysis
shows that the relation between the model voltage error and the forgetting factor is non-linear. To
solve this non-linear relationship, the standard half-parabola curve equation is considered as
presented in Fig 3.7, for error values between 0.05 < [e(k)| < 0.005, the optimal value of (k) is
evaluated using the standard parabola equation. For e(k) values from 0to 0.005, A (k) equals
, and for e(k) values greater than 0.05, e(k) equals ; . The value of 2 (k) is determined based

on the error value as follows:

Amax. = 0.99; for0 < |e(k)| < 0.005
A(K) =9 Aax = (Aimax — Ain)-((K)|/ €0 )?; fOr0.05 < |e(k)| < 0.005 (3.10)
Anin = 0.95; for e(k)| > 0.05
According to the Thevenin model given in Fig 3.2(b), the transfer function of the battery
impedance is obtained by its electrical equation in the Laplace domain and is expressed in the s-
domain as follows:

E, = (ic+ Ro)i, +V,

: (3.12)

By using the bilinear transformation method, the (3.11) can be written as (3.12) and the coefficients

can be expressed as below:

Vi _ 8, +8,27
. 1-az™ (3.12)
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a, (AT -2RC,)/ (AT +2RC))
a, |=| (RAT +RAT + 2R RAT)/ (AT +2RC,) (3.13)
a,| |(RAT+RAT—2RRAT)/(AT +2RC,)

where AT refers to the sampling time interval.
by using (3.11), the recursive equation in discrete time form can be expressed as:

Vo = (1- al) Eb,k + alEb,k—l +al + a3|k—1 (3.14)
The discrete-time form (3.14) can be rewritten as:

Vo = ‘9kT (% (3.15)

Where,

ek:[(l_ai)Eb,k a g, as:l
o =[1 Epy b l] (3.16)

Now, the battery model parameters can be identified by using the expression (3.17)[86], and the

results of the process are depicted in Fig 3.8.

Ey al/l-a,)
Ry | | ~(a,-a)ira)
1 2(a1a2 +a3)/(1+a12) (3.17)

C, AT (L+4a,)*/4(a,a, +a;)

\* = 0.99

/{(1\) Amtu: = (Amtx.t S Alnin)- (e(k)/ema_\')z

_'lmin =0.95—

0 >
Ieminl |ema.\'|

le(k)] —*

Fig 3.7: MAFF-RLS algorithm concept
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Fig 3.8: Parameter identification results using the MAFF-RLS algorithm: (a) Ohmic resistance R ;

(b) Polarization resistor R,; (c) Polarization capacitor C,,; (d) Forgetting factor variation 1.

The identification of supercapacitor parameters involves conducting constant-current discharge
tests on the Maxwell module to collect voltage and current data, which are then utilized in the
parameter estimation process [87] mentioned above to obtain the real SC parameters, the results

are summarized in Table 3.2.

Table 3. 2: The Parameter Identification Results of supercapacitor
Parameter R, C
Value 7.2 (mQ) 159 (F)
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3.3.DC bus modeling

To ensure smooth and reliable power flow from various sources to the load, the sources are
interconnected via a DC bus. The voltage on this bus must be regulated around a reference value,
which depends on the transformation ratio of the DC/DC converters connected to the bus. Proper
regulation of this voltage allows for efficient collection and routing of energy from the sources to
the traction motor. The capacitor on the DC bus helps maintain voltage stability by absorbing or
supplying charge as needed. In the circuit diagram shown in Fig 3.9, the DC bus capacitor is
depicted with various currents flowing through it, connecting to components such as a traction
motor, a battery, and a supercapacitor. The mathematical model of the DC bus captures these

interactions can written as:

dv,,

VN (3.18)
C, g =T de _j,

c
dc

f-

v
v

Rdc

Fig 3.9: Equivalent circuit of the dc bus.

The resistor R, connected in parallel with the capacitor C,, provides a safe discharge path when

the system is turned off, preventing residual voltage buildup. It also emulates the leakage current
of real capacitors and helps slightly dampen voltage fluctuations.

3.4.DC/DC converter modeling
The modeling of the DC-DC converter behavior is crucial for designing the HESS controller, as it
aims to control the energy flow to DS efficiently. By regulating the DC-DC converter output
voltage and current through Pulse Width Modulation (PWM) applied to the IGBT. This research
contains a battery as the main source and a supercapacitor as the auxiliary source connected to the

DC bus via a single-layer bidirectional DC-DC converter to ensure bidirectional energy transfer
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between sources and the DC bus (the secondary source being reversible in current). The boost
mode discharges sources, while the buck mode charges the supercapacitor to maintain the DC bus
voltage at a set reference value.

The state-space average model is employed to represent the DC-DC converter illustrated in Fig
3.10, considering the ON and OFF states of the IGBT. The average model of the buck-boost
converter on the battery side is expressed as:

di 3.19
I-tf?zvb_vdc'(]-_ab) (3.19)

Similarly, the average model of the buck-boost converter on the supercapacitor side is given by:

L. % v, -V, -(l-a.) (3.20)

_————— -

!

et Cdc| vdc

Fig 3.10: Schematic circuit of the buck-boost converter

3.5.Traction chain modeling

3.5.1. Vehicle Dynamics model
The behavior of a moving vehicle is influenced by all the forces acting on it in a given direction

as shown in Fig 3.11. The tractive force f,_at the contact area between the drive wheels' tires and

the road surface propels the vehicle forward. This force is generated by the torque from the power
plant, which is then transmitted through the drivetrain to the driving wheels. As the vehicle moves,
it encounters resistance that opposes its motion. To determine the power needed to propel the

vehicle forward, the fundamental principle of dynamics is applied [88]:
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dv —
m, E = Z Fox (3.21)
a = Et _(ﬁ + I:slope +E)

F,.., represents the aerodynamic drag force and is given by:

F = 1pairvz'o‘f c:d

aero
2

(3.22)
where ,_ is the air density, V is the vehicle speed, A is the frontal area of the vehicle, and ¢, is

the aerodynamic drag coefficient.

The rolling resistance force of the wheels on the ground, F; is determined by the formula:

F. =C.m,gcos(a) (3.23)
where c_is the rolling resistance coefficient, g is the acceleration due to gravity, & is the angle,

and m, is the vehicle mass.

The gravitational force Fslope , which depends on the slope of the road, is calculated as:

F

slope

=m,gsin(a) (3.24)

The tractive force g can be expressed as:

3.25
F=m ﬁ+Frf+FI +F (3.25)
\ dt slope aero
dv . 1 )
F=m, a+ C,m,g cos(er) +m,gsin(a) +§pairv A.C,
(3.26)
The mechanical power p required to propel the vehicle forward is:
P =Fuv (3.27)
dv . 1 )
P, =v(m,—+C.m,gcos(a)+m,gsin(a)+=p,, V°AC,)
dt 2 (3.28)
According to the previous equation, the load torquer,_is given by:
T =F.r (3.29)

With r is the tire radius
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Fig 3.11: Schematic representation of forces acting on a vehicle in motion

3.5.3. Traction motor
Motors are a key component of the drivetrain in EVs. For an electric motor to be effective in
driving an EV, it must be highly efficient, have a high-power density, and be cost-effective. Unlike
industrial motors or conveyors, EV motor drives require frequent starts and stops, rapid
acceleration and deceleration, high torque at low speeds, low torque at high speeds, and a wide
range of operating speeds. DC motors are the oldest type of motors used in electric vehicles for
their simplicity, cost-effectiveness, and durability. Especially, permanent magnet DC motors
which eliminate the energy losses associated with field windings by using permanent magnets to
create a consistent magnetic field without additional electrical power. This efficiency is
complemented by the motor's compact size and lighter weight, which are crucial for EV design
where space and weight are critical considerations. Additionally, PMDC motors provide a higher
power density, meaning they can generate more power relative to their size, making them ideal for

maximizing performance in EVs.[89],[90].

To simplify and focus on our main objective, which is validating energy management techniques,
our choice was directed towards a PMDC, therefore two PMDC motors were adopted, the first one
is subject to speed control to simulate the traction aspect of an electric vehicle, while the second
DC motor is controlled to emulate the road driving conditions. The characteristics of the vehicle

considered are given in the table.
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To determine the maximum power required by the motor, the formula (3.30) is used. Assuming
flat terrain and the vehicle maintaining a constant maximum speed, the motor power is calculated
to be 200W. This is the power that must be supplied by the motor, which operates with an
efficiency ranging from 70% to 90%, depending on the technology used:

P, =m

", (3.30)
Consequently, a PMDC motor with a nominal voltage of 24V and a power rating of 250W has

been selected.

Since the motor being used is a PMDC motor, the inductor component is negligible, and the motor
can be represented by the diagram in Fig 3.12[91]:

Fig 3.12: Equivalent circuit of permanent magnet DC motor.

From the previous figure, the electrical and mechanical equations of the motor are written as:

V() -E) = L$+ RI() with Eq) — K, (1) (3.31)
C,=1J dQ—(t)+ FQ(t)+C, with C_ = K,.I1(t) (3.32)

Moving from the time domain to the Laplacian domain gives us the following current and velocity

equations:

V (s)—E(s) (3.33)

&) =—"51R
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We have: 7, electrical time constant. With:

L V(s)-E(s) (3.34)
=— 1(S)=—"——=
w=gm 2R s
ox(s) = Cn=C: (3.35)
JS+F
T e Mechanical time constant. With:
J _ (3.36)
Tee = = = Q(S) = Cm Cr
F F+7,,..S)

In practical systems, the friction coefficient F is never zero due to losses like mechanical friction
and air resistance. In high-efficiency or simplified models, F may be negligible. Here, the
mechanical time constant becomes undefined as F — 0. To prevent mathematical singularity in
simulations or control design, a small positive value ¢ is assigned to F, ensuring numerical

stability while approximating nearly lossless behavior.

From relations (33) and (35), a block diagram that represents the motor is obtained in Fig 3.13:

U +
cg) L.s+R

J.s+F

<4
~

Fig 3.13: Open-loop PMDC block diagram.

3.5.3. Regeneration
Considering driving patterns and road traffic conditions, a vehicle frequently needs to decelerate,
which typically requires braking. During this process, the vehicle's kinetic energy can be converted
into heat or electricity. In conventional friction brake systems, this excess kinetic energy is
transformed into unwanted and wasted heat due to friction. In contrast, regenerative braking allows

the vehicle to slow down by converting its kinetic energy into electricity, which can be stored or
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used immediately. Regenerative braking works on the principle that the traction motor generates
negative electromagnetic torque, effectively functioning as a generator. For regeneration to occur,
the propulsion powertrain system spanning from the energy source to the traction wheels must
support bidirectional energy flow, and the energy source itself must be capable of receiving power.
In practice, only 30% to 50% of this energy can be recovered due to conversion losses. However,
the amount of energy that can be regenerated depends on various factors, mainly the motor,
deceleration rate, and the receptiveness of the ESS.

The braking controller is the main part of the braking system, responsible for executing the
necessary braking scenarios to decelerate a vehicle and manage its energy. Its primary goal is to
stop the vehicle at the desired rate. This is typically achieved using a traditional closed-loop circuit,
as shown in Fig 3.14, where the controller (C) compares the reference speed with the actual speed
of the EV and generates a torque reference for the brakes, producing the required braking torque.
[921,[93].

Fig 3.14: Braking system model representation.

3.6.Sizing of sources
The dimensioning of energy sources in a vehicle depends on the dynamic performance
requirements of DS, particularly the vehicle's maximum speed and acceleration times. Maximum
speed requirements influence the power demand on the energy sources, necessitating a powertrain
capable of delivering sufficient continuous power to achieve and sustain high speeds without
efficiency losses or overheating. While acceleration performance dictates the peak power

requirements, requiring energy sources to handle significant bursts of power over short periods.

To calculate the size limit of the hybrid power supply i.e. the battery and the supercapacitor, a

power requirements analysis is conducted to determine the power needed for maximum speed and
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acceleration, the total energy needed for typical driving cycles, factoring in regenerative braking

and other energy recovery mechanisms.

The energy consumption is calculated based on the road loads, and the total power is calculated as
the product between the total road forces and the vehicle speed as previously mentioned in equation
(3.27). By integrating the total power over time (for the whole duration of the cycle), we get the
total energy consumption [94] ,[95]:

Eqa = [ Pyt (3.37)

The energy consumption varies depending on the driving force as shown in Fig 3.11 where two

cases are distinguished:
During Acceleration (F, =0) :

E.. = | Pyt (3.38)

This integral represents the total energy consumed when the driving force is positive (i.e., during
acceleration).

During Deceleration (r, < o)
E.. = [P, dtg (3:39)

This formula includes a recovery efficiency factor 4 to account for the energy recovered during

regeneration (regenerative braking).

The battery pack is considered the main power source and is designed to handle 300 watts. It

consists of a specific number of cells, determined as follows[96]:
The number of battery cells connected in series n__is calculated by dividing the nominal battery

pack voltage pr by the voltage of each battery cell U, . Since the number of strings must be an

integer, the result is rounded up to the nearest whole number.

(3.40)

The nominal battery pack voltage pr is calculated using:
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_ Ve (3.41)

U, = T

where Y is the boost ratio. The maximum output voltage is about 2-3 times the input voltage.
Exceeding this ratio can cause input currents to become large and expensive, including the

switching devices, and significantly decrease efficiency[97].

The energy content of a string E, in watt-hours is equal to the product of the number of battery

cells connected in series and the energy of a battery cell E,,

E, = Ng.E (3.42)
The total number of strings in the battery pack NSp is calculated by dividing the battery pack'’s

total energy Ebp by the energy content of a string. The result is rounded up to the nearest whole

number

(3.43)

The total energy of the battery pack Ebp can then be recalculated as the product of the number of

strings and the energy content of each string.
Ebp = Nsb'Ebs (3'44)
The battery pack capacity Cbp in ampere-hours is calculated as the product of the number of

strings and the capacity of a battery cell Cy, .

C,y =Ny Cye (3.45)

The batteries available in the lab have a nominal voltage of 3.3V. To ensure a stable operation of
the associated buck-boost converter considering the boost ratio, five of these batteries are
connected in series, resulting in a total voltage of 16.5V. Each battery has a capacity of 100 Ah,
meaning it can deliver a current of 100A for one hour or a lower current for a proportionally longer
duration. The minimum recharging capacity of these batteries is denoted as C1, corresponding to
a recharging current of 100A, enabling the battery to be fully recharged in one hour. However, due

to the unavailability of a source capable of supplying such a high current, a more practical
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recharging method known as C10 is often used. This means the battery is recharged at a current of

10A, taking 10 hours to fully recharge.

SCs serve as an auxiliary energy source that engages during the acceleration and braking phases
of a vehicle. The sizing of SC is determined based on the specific power requirements of their

intended application.

Let W, denote the energy stored in the supercapacitor at a given moment, which can be expressed

as [98]:

WSC = l CSCVSi
2

(3.46)

If the allowable voltage limits for the discharge process are considered, the energy variation can

be expressed as:

AWSC = %CSC (\/si—max _Vs(ztfmin) (3.47)
Typically, Vsc_min is set to Vsc_max / 2, leading to an energy variation of:
AWSC = gcscvsi—max (348)

which accounts for 75% of the stored energy. Given the energy needs of the system to which SC

must deliver its charge, defined AW ., , some simple calculations lead to the capacity sizing as:

c - - (3.49)
*o3Vv?

SC—max

8w

To find the number of serial cells needed N, . based on the individual cell voltageV,, . and the

required maximum voltageV,, , you can use the following formula:
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Y (3.50)

In this case, the Maxwell BMODO0165 module is used, which has a nominal voltage of 48 V, a

capacity of 165 F, and contains 18 cells

3.7.conclusion
This chapter provides a detailed description and explicit modeling of the various components of
the HEV chosen for tests which consists of a hybrid electric system (battery/SC) and a PMDC for
the traction part. The storage sources have been sized and their parameters identified. Furthermore,
the dynamic model of the vehicle is discussed. Before exploring different EMSs in the next
chapter, it is necessary to establish models of the various subsystems. This modeling enables us to
predict system performance once the proposed control strategies are implemented.
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4.1.Introduction

The problem of energy flow management is to find the best power distribution. Thus, developing
an EMS is crucial to ensure optimal power distribution within a HESS, while also addressing
operational constraints such as storage capacities and frequency domain specifications. Choosing
the right distribution requires evaluating various performance criteria, including the source

lifespan, driving comfort, autonomy, and other relevant factors[34] .

This chapter introduces a set of frequency-based energy management systems designed to optimize
energy allocation, extend battery life, and lower EV-related costs. The content is structured into
two parts and focuses on distributing energy among sources according to their performance across

different frequency ranges.

e The first part introduces a new adaptive wavelet approach that dynamically adjusts the
decomposition level in response to the supercapacitor's soc. It also evaluates this approach
against three alternative frequency-based approaches.

e The second part presents an innovative adaptive wavelet approach based on Dynamic Pattern
Recognition. This involves developing a driving pattern recognition system that integrates k-
means clustering with SVM classification techniques and adapting fuzzy logic using the
output from the driving pattern recognizer.

To achieve the intended goals, these strategies consider:

e Precise control of static converters to ensure smooth energy flow to the load

e Designing a driving system that emulates real electric vehicle driving conditions

4.2.HEV emulator
4.2.1. Description

HEYV topological architecture typically consists of an electrical power system and a driving system,
as illustrated in Fig 4.1. EPS is mainly made up of Li-ion batteries, SCs, and two bidirectional
DC/DC converters that allow power to flow from sources to loads during discharging mode and
back into sources during charging mode. Depending on the control mode, the HESS topology can
be defined as passive, semi-active, or active. The ability of the active structure for the HESS to
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regulate the power distribution between the battery and SC makes it an attractive option. This
structure not only increases power transfer efficiency but also protects the battery by reducing the
effects of high peak currents during cycles of charging and discharging in EVs[99]. On the other
hand, the DS combines electromechanical drive with vehicle dynamics, which renders it
susceptible to outside interference such as changing road conditions and driver-initiated speed

adjustments.

Two PMDC motors were regulated in terms of speed and torque, respectively, to emulate the
traction aspect and improve vehicle efficiency. To deliver accurate speed and torque control, a
motor controller manages the motor's voltage and current in response to sensor inputs and driver
inputs. Through regenerative braking, which converts the energy of motion from the vehicle into
electrical energy and feeds it back into the electrical power supply, the motor controller can switch
the motor into generator mode when on the brakes. Via the DC link, the DS interacts with the EPS

to obtain electricity.
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Fig 4.1. Topology Configuration of HEV.
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4.2.2. System modeling
In the process of developing the mathematical model for the power system shown in Fig 4.1, it
will be assumed that the converters function in a continuous, lossless conduction mode and that
their switching frequency is higher than that of the passive components. Therefore, Equation (4.1)

can be used to define the relationship between input and output power, where . and p_

represent the corresponding input and output powers:

Pin () = Poy (1) (4.1)
Py (1) + P (8) = Pec (1) 42)
Equation (4.2) can be expressed in terms of source voltages and currents as follows:

Vo (t) ' ib—mes (t) Vg (t) ' isc—mes (t) =Vie (t) ’ iI (t)
(4.3)

The importance of keeping the DC-link voltage constant is emphasized by equation (4.3) and is

represented as

: t (4.4)
i (t)= —pdC( )
Vdc(t)
Considering the previous equation, the output current will be treated as an image of the output

power if the DC-link voltage is kept constant

The dynamic equations of the HESS can be written by taking into account the average model of

the converters [100] :

di
b-mes _ H
L, dt =V =V &~ Ryl e
di .
sc-mes __
Lsc ’ dt =V Ve e — Rsc e —mes
(4.5)
dv vV
dc _ H dc H
Cdc ' dt = lymes U s " U _R__ I
dc

where [ i v, ] represents the state vector and [, o] are the duty ratios that act as control

inputs.
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It’s worth noting that Control structures significantly impact system dynamics because they
directly affect stability and convergence. Dynamic stability, a fundamental property of well-
designed systems, emphasizes their quick ability to recover equilibrium during disruptions.
Consequently, a hierarchical control structure was adopted to manage the suggested system
dynamics, the lower level was assigned to the current control loops, and the upper level to the DC-
link voltage control loop. This setup requires that the closed-loop dynamics of the current control
loop should be about five times quicker than those of the external loop regulating the DC link.

4.2.3. Converters control approaches

Despite the wide range and variety of current control systems in power electronics converters, they
all acknowledge the significance of accuracy and simplification during the modeling stage. To
properly model power electronic converters, one must have an in-depth knowledge of several
aspects of the converter, such as its physical architecture, the complex models of the different
voltage/current control loops, the protection strategy used, etc. Although the control architecture
is known, the parameters and control settings differ greatly between manufacturers. This might
cause faulty modeling and simulation of the power system, resulting in incorrect findings and
analysis[101].

These difficulties can be more easily resolved by employing data-driven control approaches, which
can be developed with minimal or no prior knowledge of the converter's control system or
topology. Additionally, data-driven models typically demand less computational power compared
to more intricate component-level models. These models are often created using system
identification tools, such as those available in MATLAB [101]. Fig 4.2 exhibits the core concepts
of a system identification procedure. To identify an unknown dynamic process, the input signal

u(t) and output signal yt) are first recorded. The dataset is subsequently fed into a system

identification algorithm, that generally minimizes a predetermined cost function to estimate the

system model.
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Fig 4.2. System identification principle

The same converter structure is used for both the battery and the supercapacitor, and it can be
modeled with a second-order transfer function model with two poles and no zeros, providing that
the DC-link voltage is maintained at its setpoint. The transfer function of the system is given by
the equation below:

by (4.6)
s’ +as+a,

For adjusting sources currents according to their references obtained by the proposed EMSs, the

H sys (S) =

control system utilizes internal closed loops using a Pl controller as a predefined fixed controller
structure within a data-driven approach due to its popularity in industry, durability, low design
complexity, and simplicity of implementation [102]. The PI controllers were fine-tuned using the
previously specified transfer functions based on the needed performance, such as desired response

time and overshoot. The PI controller's transfer function can be defined as follows:

k. 4.7
Ho(6) =k, 4 (47)
Both the SC and battery error signals are indicated by:
€ = ib—ref - ib—mes (48)
€ = isc—ref - isc—mes

The current control loops regulate the battery and SC output currents using equations (4.9) and
(4.10):

a, =H

pi,sc sc

{ a,=H,, & (4.9
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{ ib =, ib—mes (410)

e = Fge lse_mes

¢, and _are the buck-boost converter's common control input variables, which can be set as

follows [103]:

&, (51)+(1_ab(32)) =1 (411)
(229 (S3) + (1_ (2298 (54 )) =1 (412)

4.2.4. DC- link voltage control
To guarantee that both power sources contribute optimally to the traction portion, the DC-link
voltage must be controlled to a specific value. The controller uses a Lyapunov function to derive
an energy function that includes the regulation error [104]. This error can be defined as the
difference between the desired reference voltage and the actual DC-link voltage. By adjusting the
error voltage and guiding it towards zero, the controller efficiently maintains the DC-link voltage.

The following equations provide the DC-link’s current equilibrium:

dv,,
dt

For a finite time, convergence of the tracking error of the DC-link voltage to zero, a positive

(4.13)

C =1, +1, —|

definite candidate Lyapunov function and its targeted gradient are selected as:

1, (4.14)

(4.15)

here denotes e the error voltage, which is the difference between the required reference voltage
Vie_ret @nd the real DC-link voltage V. . The system energy will gradually decrease as a result

of the negative sign (7 in equation (4.15), leading the system towards stability and

convergence to its targeted reference voltage.

The rate of change of the error voltage over time can be determined by:
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(4.16)

- : 1. . 1.
e=v, -V ==, +i)—=i =-k e
dc C b sC CI dc

dc—ref

—K,y. <xCxe+i, =i, +ig (4.17)
From equations (4.16) and (4.17), the controller outcome gives ¢, +i_) as joint reference

amounts, the reference current is allocated to each source based on the EMS chosen. It is worth

mentioning that the good choice of the constant enhances the dynamic state.

4.3.Frequency-based energy management strategies
Frequency-based energy management strategies distribute energy among sources based on their
performances within different frequency ranges. Such methods take advantage of the unique
strengths of each energy source, with batteries performing better at low frequencies and
supercapacitors excelling at high frequencies. Therefore, before delving into the proposed energy
management strategies, we will first review traditional strategies to enable an analytical

comparison.

4.3.1. Fixed frequency-based energy management system:
In a frequency-based EMS, the load current is split into low-frequency components, which reflect
steady and slowly changing power demands, and high-frequency components, associated with
rapid or transient power fluctuations. This separation is achieved using a low-pass filter, indicated

in the following equation [105]:

1

zi-s+1 (4.18)

7 f,

Lo-D

T

Wherein 7 is the cut-off period. The following equations provide the references for the currents

at the filter output that relate to the supercapacitor and battery:
1 (4.19)
L
+1
(2rt,)-s

b—ref

Isc—ref = IL - Ib—ref (4.20)
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Although the technical capability of this technique, selecting the optimal cut-off frequency for the
filters used remains a major limitation. Putting the cut-off frequency too low may overload the
supercapacitor, resulting in loss of energy, whereas setting it too high could stress the battery, thus
limiting its life. The optimal cut-off frequency is determined by finding the dominant frequency

components obtained from Fourier analysis of the load current.

4.3.2. Adaptive frequency-based energy management system
In EMSs, Load current fluctuations varied according to driving conditions, keeping fixed cut-off
frequencies insufficient for effective energy distribution. Therefore, adaptive filters adjust the cut-
off frequencies based on driving conditions, optimizing power distribution between energy
sources. This approach continuously monitors the load current and the supercapacitor soc, as seen
in Fig 4.3.

Jemin «——fc —> fomax

Supercapacitor Adaptive \ Varying Low
soc Aleorithme f Pass Filter .
g c - @—) Supercapacitor

Isc—ref

( ] Ib—ref
Load > Battery
| Current L | i

/

Fig 4.3. A schematic representation of the adaptive frequency separation technique

In this study, the adaptive filter utilizes three distinct cut-off frequencies: fC.. , fC... ,and fC,
, as outlined in Table 4.1. The frequency meax is employed when the supercapacitor's soc is low,

necessitating greater energy contribution from the battery. Conversely, fC... is used when the

supercapacitor's soc is high, indicating substantial energy reserves, which allows the

supercapacitor to efficiently manage high-frequency load components, thereby reducing the strain
on the battery and extending its lifespan. The nominal cut-off frequency, anom is applied under

normal operating conditions with moderate power demands, enabling both the battery and
supercapacitor to contribute according to their capabilities. By dynamically adjusting the cut-off
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frequency, the adaptive filter ensures effective power distribution between the energy sources,

taking into account the system's specific energy requirements across varying operating conditions.

Table 4.1: A dynamic frequency cut-off operation

Frequency symbol mein anom fcmax
Frequency value (HZ) 0.06 0.03 0.01
Sc state of charge (%)  goc_ >70 70> soc,, >50 soc,, <50

4.4 \Wavelet-based energy management system

4.4.1. Conventional Wavelet-based energy management system
Vehicle power demand often exhibits sudden peaks and transient variations, which may adversely
affect battery longevity. These brief transients are especially important in power analysis. WT is a
robust mathematical technique that can analyze transient phenomena by decomposing a signal into
components across different positions and scales in both time and frequency domains. WT has
gained attention for its exceptional ability to differentiate transient power demands from the base
power load. This capability is particularly useful in HESSs. As illustrated in Fig 4.6, this strategy
allocates the detected transients to the supercapacitor, which is well-suited to managing the rapid

variations associated with such phenomena.

Mathematically, the WT is performed by convolving the power signal with a set of functions
known as wavelets, which are compact, oscillatory patterns and localized in both time and
frequency. Their scale and position can be adjusted, enabling the examination of different
frequency components of a signal across varying time intervals. The wavelet transform of a signal

X(t) is expressed by [106]:

t—u (4.21)

W(A,U) = j x(t)%«p(Tj dt

The original signal can be identified as X(t), while its wavelet coefficients are represented as

w(A,u)
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Here, A represents the scale factor, while Urefers to the position factor in the wavelet transform

procedure. Additionally, l//(t) signifies the mother wavelet.

The Haar wavelet, characterized by its simplicity in mathematical design and short filter length, is
a commonly utilized wavelet function. In this research, the HWT was selected for energy
management in EVs, particularly for real-time algorithm applications. It offers advantages such as
efficient real-time signal processing and identical forward and inverse transforms. The HWT is
noted as [107]:

1 te[0,0.5]
p(t)=<-1 te[05]]
0 otherwise

(4.22)

The wavelet filtering process involves two main phases: decomposition (Fig 4.4a) and
reconstruction (Fig 4.4b). During decomposition, the signal X(t) is divided into two components
using a low-pass filter Lo D and ahigh-pass filter Hi _ D , producing the approximation (low-
frequency component) A, and the detail (high-frequency component) D, . This procedure is

repeated iteratively for each chosen level n. Supercapacitor, battery, and load current are defined

as follows:
A (4.23)
i w=D+D,+...4D, (4.24)
|, =D,+D,+...+ D, + A, (4.25)

. —2 > D >4y —HiD .
X(t) L ' Oa
) > D D —>{0 N Reconstructed
L 2 2 “—og i
-— igna
LoD —): "HLD —|2 ——> Dn bn —> |2 — HLD- (%

Lo D — ) aesssseses [ ] - Lo D
\ ) %(_/
e — v b= Lavel 1
Lavel 1 ‘ﬁ(—/ %_/
Lavel 2 %(—/ \ﬁ_j Lavel2
Laveln Laveln
(a) (b)

Fig 4.4. Concept of Haar wavelet transform: (a)Decomposition phase ;(b) Reconstruction phase.
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The choice of wavelet decomposition levels is crucial because power demand varies significantly
across different decomposition levels. Generally, the frequency range impacting batteries is within
Hz, whereas the load power demand signal is sampled at 1 Hz [108]. The resulting decomposition
level, calculated using Equation (30), typically falls within the range of [2, 5], taking into account

the sampling frequency ¢ , the power demand frequency on the battery pack  , and the relationship

between signal frequency and decomposition level.

a :Vog(fs /1) _1J (4.26)
log(2)

Real-time signal processing using WT is achieved by incorporating a fixed-length sliding window,
which enables the extraction of characteristic parameters from driving cycles in real time [109]. A
specified number of samples are taken from the signal, processed, and then output after filtering.
The window then shifts forward, adding a new sample to the dataset while discarding the first one.

This process repeats until the entire signal has been processed. Fig 4.5 illustrates the sliding

window process. It is worth noting that the equilibrium between sliding window length W and
decomposition level n is critical for improved filter reconstruction. For optimal results, the

relationship between w andn should meet the inequality w >2+*2"[110].
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)

T

. L%

< .

4213 ] -] ] |2

— [
< 7

- Llalefule Lol
BENEREG S

Fig 4.5. Sliding window concept.
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Fig 4.6. Wavelet transform technique diagram.

4.4.2. Adaptive wavelet-based energy management system
Due to the limitations of conventional WT-based EMS systems, which usually rely on a fixed
decomposition level linked to a single frequency decomposition, an innovative Adaptive Wavelet
Transform based on Supercapacitor soc is suggested. This advanced system intelligently adjusts

the decomposition level in real-time by analyzing the supercapacitor SoC, as illustrated in Fig 4.7.

The AWT adjusts the decomposition level to suit varying power needs and driving conditions.
When the supercapacitor's SOC is high, indicating high energy reserves, the approach intelligently
selects a higher decomposition level, such as the fifth level. This strategic selection is crucial for
accurately and efficiently managing sudden power variations and transients, making full use of the
supercapacitor strengths. By assigning the SC the responsibility of handling these power surges,
the system reduces the battery workload during such periods, thereby extending its lifespan and

improving the overall efficiency of the system.

Conversely, when the supercapacitor's SOC is low or nearly depleted, the approach conservatively
lowers the decomposition level, such as to the 2nd level. This adjustment is intended to conserve
the supercapacitor's remaining energy, resulting in the battery taking on the majority of the load's
power demands. Additionally, during operation when the SoC is within an optimal range, which
is common during normal system performance, the methodology strategically selects intermediate
decomposition levels, such as the 3rd or 4th. These choices are influenced by the discharge rate of

the supercapacitor, as shown in the flowchart in Fig 4.8.
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The fifth level operates when the supercapacitor's energy storage surpasses 80%, thereby
decreasing the sudden demand for the batteries. In contrast, levels 3 and 4 become operational
when the charge state falls between 40% and 80%, taking into account the rate of supercapacitor
discharge. Level 4 is selected when the discharge rate exceeds 5%, while Level 3 is preferred when
it falls below this threshold. However, if the supercapacitor's SoC drops below 40%, the system
switches to the 2nd level to preserve a minimum amount of stored energy, ensuring the

supercapacitor contributes at the lowest possible rate.

This adaptive approach ensures that the SC operates within an optimal SoC range while
considering the unique characteristics of the energy source, allowing power allocation to be
perfectly aligned with the system's needs. As a result, it not only improves the SC's performance
but also reduces the strain on the battery, promoting a longer lifespan and reliable functionality

over time.

Decomposition Phase Reconstruction Phase

- 1 lb—ref
{ ‘ ‘ o ———> Battery
Load Sliding o m { (PP R— w2 o
Current ) Window -
100 — —
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L?.!I n LM n
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Fig 4.7. Schematic representation of adaptive wavelet transform technique
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Fig 4.8. Adaptive process flowchart

4.5.Adaptive Wavelet-Adaptive Fuzzy Logic based K-Means-SVM Pattern
Recognition
This strategy is an improved version of the previous, where some aspects have been improved
through these contributions:

e Introduction of an adaptive wavelet-based on Dynamic Pattern Recognition, providing

versatile adaptation to various driving scenarios.

e Enhancement of DPR using k-means clustering for unsupervised categorization and SVM

classification for improved real-time decision-making.
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e Adoption of adaptive fuzzy logic, allowing real-time adjustments of membership functions
and rules to align with changing driving conditions, ensuring optimal supercapacitor
maintenance and protecting the battery from peak current stress.

A schematic overview of this strategy is illustrated in Fig 4.9. It comprises an offline-trained SVM
classifier and the real-time operation of three key components: an online recognition process for
identifying driving patterns, an AWT algorithm that decomposes load power demand based on the
recognized pattern, and AFL, which ensures maintaining the SC at the optimal level while

safeguarding the battery from high peak current.

w e w wm w,  Driving Mode Detector

Real-time Driving Cycle . .
i [ Driving 1-=""mmemmeomne- > Adaptive | 4 iy
~>| Pattern | . —> Fuzy | Battery
. | Recogition | Supercapacitor Logic
Yo a00 w0 . -1---' Soc
Selected !
Leveln | \ ip
|
) "] Adaptive |
Load Current |—>| Slicing Wavelet i bsc-ref
Window 1 o =, lsc-re _
Transform . J —> 4} ———3  Supercapacitor

Fig 4.9. The concept of Adaptive Wavelet-Adaptive Fuzzy Logic based K-Means-SVM Pattern Recognition EMS.

4.5.1. Driving Pattern Recognition
In the field of DPR, two main approaches are commonly used. The first, Predictive Driving Pattern
Recognition, relies on data from connected vehicles, geographic information systems (GIS), and
vehicle navigation systems. While this method is highly accurate, it demands a large amount of
data and significant computational resources. On the other hand, Identification Driving Pattern
Recognition analyzes historical and real-time route data to identify key factors defining the current
driving pattern. The current driving behavior can be recognized by comparing these factors with
known patterns. Although this retrospective method is simpler and more user-friendly, it may not

be as accurate as the predictive approach. Choosing a DPR algorithm greatly influences the
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accuracy of condition recognition. However, accuracy is also shaped by other factors, such as the
complexity of the driving environment, the quantity and quality of training data, and the diversity

of driver behaviors.

The operational process of the DPR system is depicted in the graphic in Fig 4.10 and involves two

primary steps.
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Fig 4.10. Driving pattern recognition framework

The DPR system begins with an Offline Training phase, where 25 driving cycles with various
patterns are segmented, and distinctive features are extracted from 220 samples. Principal
Component Analysis is used to simplify the data, cluster centers are formed using the k-means
method, and the Support Vector Machine is trained on this data. In the Online Recognition phase,

real-time speed data is collected to derive feature values from the most recent 200 seconds, with
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samples taken every 5 seconds. These features are then fed into the SVM classifier, which produces

three possible outcomes, and the final driving pattern is identified through a voting mechanism.

45.1.1.  Extraction of the driving patterns characteristic parameters

Typical driving patterns must

accurately represent real-world driving behaviors and exhibit distinct feature vector values,
making it easier to categorize actual driving patterns into predefined groups [111]. In this study,
25 driving cycles are included in the training dataset, with each cycle segmented into 100-second
intervals. Nine key parameters, detailed in Table 4.2, are selected as characteristic features to
represent these patterns. Due to the high dimensionality of these features, which can limit real-
time driving pattern recognition, PCA is employed to reduce the complexity of the data. PCA
simplifies the dataset by transforming it into a lower-dimensional space, making it more
manageable

keeping the fundamental properties required for pattern recognition. The procedural steps of PCA

involve processing a dataset with N samples, each described by p variables, arranged in nx p

matrix [112].

X1 Xa Xip

S
: : (4.27)

X X2 Xop

The correlation coefficient matrix is first computed, which includes deriving the correlation

coefficient.
h Ty o rlp
R= fn T o Ty
(4.28)
r-nl rn2 r-np

- ;(in - Xi)(xkj - Xj) (4.29)

\/z”: (in _Z)zzn:(xkj _X_j)2
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By resolving the eigenvalue equations |4i—R|=0., the eigenvalues can be obtained and then

arranged in descending order as 4 24, -2 lp >0 . The corresponding eigenvectors are then

calculated &(i=12,..., ), satisfying the condition Zp:eijz =1
i1

p
The principal component contribution rate of each sample, r , is calculated as 4 Zﬂk with
k=1

G—12.. .. oy -Furthermore, the cumulative contribution from principal components =1 through

=k IS determined by the following expression:

;ﬂk kZ;ﬂbk(izl,z,...,p) (4.30)

The PCA results focus on principal components with eigenvalues greater than or near 1, ensuring
that the cumulative variance contribution exceeds 80%. The number of principal components
selected is determined by identifying the point at which the eigenvalues experience a significant

drop [113], as illustrated in Fig 4.11, the eigenvalues drop below 1 after the third component.
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Fig 4.11: Principal component eigenvalues and cumulative variance contribution rate

When reducing the original dimensional training dataset to more manageable dimensions. These

parameters are chosen based on their correlation with the original dataset, with a strong correlation
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Fig 4.12. Correlation of the characteristic features
indicating the presence of shared dominant factors among the components of the driving feature
vector [114], based on Fig 4.12, these characteristic parameters are Average velocity, Time ratio

of idling and Time ratio of acceleration.

Table 4.2: The characteristic criteria used for the recognition of patterns

Symbol  Parameter Unit Mathematical description[115]
Vag Average velocity m/s Jvat
Vavg = T
Vhax Maximum velocity m/s Vinax = mMax (v;,i=1,2,..., k)
a,, Average acceleration m/s? J.|a|dt
avg = _'(a > )
A pax Maximum acceleration m/s? 8., =max(a,,.i=12,...,k)
dog Average deceleration m/s? J' |a]dt
dan =T ( )
dax Maximum deceleration m/s?  dp =max(d,.,.i=12,...,k)
T, Time ratio of idling % T t'—d-loo
t
T, Time ratio of acceleration % t
’ T, =-=2.100
t
T Time ratio of deceleration % t
‘ ’ T, = Td -100
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45.1.2. K-means cluster
The K-means algorithm is a popular choice for handling datasets that have features but no labels.
This classic unsupervised learning method has been used for a long time because it is easy to
understand and works well [116]. Two important things affect how well the K-means algorithm
works. First, the type of distance measurement you choose can greatly influence the clustering
results. Second, you need to decide how many clusters you want before using the K-means
algorithm [117].

To determine the optimal number of clusters, a combination of evaluation criteria is employed.
These criteria include the Calinski-Harabasz index, Davies-Bouldin index, Dunn index, gap index,
and silhouette index, each providing a distinct approach to evaluating cluster quality. The Calinski-
Harabasz index, in particular, is often favored as it serves as the foundation for many clustering
algorithms. This index is a widely accepted measure of cluster validity that calculates the ratio of
the between-cluster variance to the within-cluster variance. In simpler terms, it evaluates how well-
separated the clusters are from one another compared to how tightly grouped the points are within
each cluster [118], A higher Calinski-Harabasz index suggests that the clusters in the model are
more distinct and clearly defined [119] . Therefore, the Calinski-Harabasz index is selected as the
primary performance metric for evaluation in this context. According to Fig 4.13, the optimal
number of clusters for the dataset studied is set as 3.

20 T T T T T T T

o o
[=] (L]
D

75

CalinskiHarabasz Values

Number of Clusters
Fig 4.13: Cluster number determination using the Calinski-Harabasz index

With three clusters specified, we applied the k-means clustering algorithm using Cosine distance
metrics. This produced the cluster center coordinates, which are summarized in Table 4.3, and the

k-means clustering results are shown in Fig 4.14.
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Table 4.3: The coordinates of the centroid.
Classes C1 C2 C3
Centroid (92.3786, 0.0247, 0.6433) (42.1502, 0.110, 0.5532) (15.4591, 0.3412, 0.3840)

coordinates
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Fig 4.14. Results of K-means clustering.

45.1.3. SVM classifier
When dealing with classification problems, Support Vector Machines, a widely recognized

supervised machine learning algorithm, are known for their robustness, strong learning abilities,
and excellent generalization capabilities [ 120]. For these reasons, SVM has been chosen in this

work as the method to solve classification problems.

SVM uses kernel functions based on input space variables, including linear, polynomial, Gaussian,

or radial basis functions, to perform classification. The dataset consists of N -labeled training
. . “th
samples noted as (yi, ){i)), where %, represents the d-dimensional feature vector of the |

training sample, andy, takes values within the set (-1, +1)to represent the assigned labels
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[121].The discriminant function g( ) of the SVM for the observed data is defined by a mapping

#(x) that corresponds to the chosen kernel function. g() is provided as:

9(z) =W g(x)+b (4.31)

This work deals with a ternary classification task, whereas SVM was originally created for binary

classification. Therefore, a One-on-one approach is used [122], which involves training three

SVMs to distinguish between each pair of patterns (¢t and c2, cand ¢3, c2 and ¢3) [123].

Afterward, a majority voting strategy is adopted.
e Voting mechanism
The main idea of this voting is to solve an n-class (C;, j=12,...,n) classification problem using

m different data sources. For a given sample s , its classification result, denoted as
Yi(B)={Y1(B). Vi (B).-... Vi (B)} from source S;(i=12,...,m, j=12,...,n), is determined by a

binary-valued function Y; ().

Let denoter (/) the number of votes that sample 2 received for class C,. i=12

the m data sources. Therefore, V;() can be computed as follows [124]:

Vi(B) = Zml ¥y (B) (4.32)

Following the majority voting principle, sample g is assigned to the class C, that receives the

highest number of votes, as determined by the equation:

C, =arg, {max{vj (ﬂ)}}, j=12,...,n (4.33)

The classification result is determined by the pattern with the highest number of votes. The voter
diagram, illustrated in Fig 4.15, uses numerical labels to denote specific driving patterns: 1
represents urban driving patterns, 2 denotes suburban driving patterns, and 3 indicates highway

driving patterns.
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Fig 4.15: Diagram of the voting procedure.

4.5.2. Adaptive wavelet transform
This adaptive approach dynamically adjusts the decomposition level based on the DPR results
through an algorithm. Specifically, the decomposition levels correspond to different driving

conditions:

e Level 2: This level is applied to urban cycles, where driving is characterized by frequent stops,
starts, and lower power requirements. In urban settings, energy demands fluctuate less, and
the system adjusts to manage power efficiently with minimal stress on the battery.

e Level 3: This level is suited for suburban driving conditions, which involve moderate speeds
and fewer stops compared to urban driving. Suburban driving typically requires more
consistent power delivery, and this level ensures that energy allocation is optimized for these
mid-range power demands.

e Level 4: This level is used for highway driving, where high-speed travel leads to significant

power fluctuations. Highway driving demands more power and results in larger variations in
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energy requirements. The system at this level adjusts to accommodate these rapid changes,
ensuring efficient power distribution while preventing excessive strain on the battery.
By adapting the decomposition level to the specific driving pattern, the approach not only
optimizes energy management but also protects the battery by reducing stress, particularly during
high-demand scenarios like highway driving. This dynamic adjustment helps to extend the
battery’s lifespan by preventing it from undergoing unnecessary strain, thereby contributing to

overall system efficiency and longevity.

Table 4.4: Membership symbols

Fuzzy Inputs  Battery current NB NM NS PS PM PB
Supercapacitor Soc L M H
Fuzzy Outputs change ratio in battery current NB NM NS PS PM PB

NB (negative big), NM (negative medium), NS (negative small), PS (positive small), PM (positive
medium), PB (positive big), L(low), M (medium), and H (high)

4.5.3. Adaptive fuzzy
This study involves the development of an AFL controller that considers two key input variables:
battery current and the state of charge of the supercapacitor. Given that the battery acts as the
primary long-term energy source, its SOoC has minimal impact on the overall system's efficiency.
The input variables are converted into fuzzy values using specific membership functions, as shown
in Fig 4.16 and described in Table 4.4. In particular, the battery current is divided into six

membership functions, while the supercapacitor's SoC is represented by three distinct membership

functions.
Table 4.5: Fuzzy rules
If NB NM NS PS PM PB
And
L PB PM PS PM PS NS
PM PS PS PS NS NM
H PS NS NS NS NM NB
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Once the inputs are fuzzified, a decision-making inference mechanism applies a rule base informed
by experience and heuristic knowledge to generate fuzzy conclusions. The output of the fuzzy
controller is the change ratio in battery current, which is used to modify the battery current
according to a reference value obtained from the WT. Depending on the controller's decision,
guided by the set of fuzzy logic rules outlined in Table 4.5, this adjustment may result in either an

increase or decrease in battery current.
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Fig 4.16: Fuzzy logic input membership functions.

It's important to note that the FL controller operates primarily (about 95% of the time) in the
positive range of battery current, meaning it mainly manages scenarios where the battery is
supplying current (i.e., discharging). This is because the system is generally designed to operate
in conditions where the battery powers the DS . However, despite this focus, it is also essential to
establish rules for the negative current range to address exceptional or edge cases where the battery
might absorb current (i.e., charging). Even though these situations are rare, they must be

considered to ensure the controller remains robust and effective under all operating conditions.

Because the output produced by the inference system is inherently fuzzy, it cannot be used directly

as a control system signal. Therefore, an essential step is to translate this fuzzy output into a
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practical, real-world value. This is achieved through the widely recognized center of gravity
(COG) method, which is defined by the following equation [125]:

. jz.yc(z)dz

T juc(Z)dZ (4.34)

Where j 1. (z)dz indicates the area of the region enclosed by the curve 4, ,and Z represents the

L -coordinate of the center of gravity.

Six membership functions are defined for the output variable as defined in Table 4.3. If the output
values are positive, it indicates that the batteries will supply more power than the reference power
obtained from the WT. Conversely, If the output values are negative, it suggests that the batteries
will either deliver less power than the reference or require recharging, depending on the change

ratio determined by the fuzzy controller.
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Fig 4.17: The output of adaptive fuzzy logic membership function.

Unlike classical FL, AFL defines the output membership function as adaptive, as illustrated in Fig
4.17. The ability to adjust the « value introduces adaptivity into the FL system. The decision-
making process for the adaptive fuzzy output is shown in Fig 4.18, where the basic concept is the
periodic updating of the output membership function based on the recognition results.
Additionally, a driving mode detector algorithm is designed to reverse the classification of driving

patterns. It acts as a modifier, with 3 indicating urban driving patterns, 2 representing suburban

79



Chapter 4. Description of proposed strategies

driving patterns, and 1 corresponding to highway driving patterns. This change is based on the
observation that battery current peaks are higher during urban driving compared to highway

driving. The factor ¢ is selected to define the delta current interval, setting the acceptable range
for current variations. A higher value of g could result in the cancellation of the battery current,
while a lower value might increase the risk of uncontrolled current spikes. Therefore, g is crucial

in fine-tuning the AFL system's response to changes in driving patterns.

e e e e e e e

Driving
Mode
Detector
Algorithm

I
Driving Pattern 1 3
Recognition |

Ai,

B T, ey ———

Adaptive Fuzzy Logic
Fig 4.18: Adaptive fuzzy logic controller process

4.6.Traction part control
To replicate the motorization aspect of the VES, a comparative speed control strategy is proposed
for the first motor(M1), utilizing sliding mode theory and back-stepping to follow a reference
speed profile. The method yielding the best results will be integrated into the proposed EMSs.
Meanwhile, torque control using PI control is implemented in the second motor (M2) to emulate

real-world driving conditions.

4.6.1. Speed control based on Sliding mode
Sliding Mode Control works by guiding the system'’s state to a sliding surface, where the switching
function s equals zero. If the state crosses a threshold a , the switching control adjusts accordingly
to keep the system on track. The goal of SMC is to ensure the system's output follows the desired
reference with minimal error. It achieves this through two control modes: reaching mode, which

uses a switching control to bring the system to the sliding surface, and sliding mode, which uses
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an equivalent control U, to maintain stability. The control signal is a combination of these modes,

where ksm determines the speed of convergence to the sliding surface. To reduce chattering, smooth

control actions can be implemented, such as using Eq (4.37), where 5 is a small tuning

parameter[126].
uSMC (t) = ueq + usw (435)
U, = Kgy, SgN(s) (4.36)
uSW = ksm S
|s|+& (4.37)

The transfer function of the PMDC motor can be represented as[127]:

o(s) k/L,J ~ 2.11x10°
W) {Rm N F} R F+k? s%+519.67725+1.59x10° (4.38)
L J LJ

In the time domain, Equation (38) can be expressed as:

4.39

@(t)+519.67 i(t) +1.59x10°w = 2.11x10°v_(t) (4.39)
Let's consider

x =) and u=v_ (0 (4.40)
The system can then be transformed into the canonical form mentioned below:

. (4.41)

X =X,

X, = &=-519.67x, —1.59x10°x, +2.11x10°u (4.42)

y=X (4.43)

The equivalent control and switching control can now be designed, wherein the switching function

is given by:
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s=Ce+é=C(w, —w)+ (0, —0) (4.44)

S= C(a)r —a)) + (a)r —60) (4.45)

where ,, is the speed reference and C > 0 is a performance parameter that ensures system stability

[12]. On the sliding surface s=0—>$=0

To find the equivalent control, substitute Equation (4.42) into Equation (4.45) with s=0

4.46

C(w, — @)+, —(-519.67x, —1.59x10°x, +2.11x10°u) =0 (4.48)

C(®, — @)+, +519.670+1.59x10° @ —2.11x10°u =0 (4.47)

Since the derivative of the reference signal is zero, Equation (4.47) simplifies to:
4.48
2.11x10°u =1.59x10°w +(519.67-C) & (4.48)
1

u,=Uu=————(159x10°w+(519.67-C) &

h 2.11x10° ( ( )®) (4.49)

To reduce chattering, use the smooth switching control from Equation (4.37). Therefore, the final

SMC control signal is:

1
Ugpe = ————=
SME 2 11x10°

(1.59%10°w + (519.67 —C) @) + k,, —>—

|s|+6 (4.50)

4.6.2. Speed control based on Back-stepping
The basic idea of BS is to first stabilize the initial subsystem using a known stabilizing function
through a chosen Lyapunov function. Then, an integrator is added to its input. This method is
applied to each subsequent augmented subsystem, continuing in this manner until a global
Lyapunov function is obtained. This global function then defines the overall control law that
stabilizes the entire system[128].

From the electrical and mechanical equations of the motor explained in Chapter 3, we derive the

following equations:
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o) =~ T oW+ 1,0-3¢,0

I'm<t)=—%Q(t)—%lm(mLi

m m m

Vi (1)

we assume @, as a desired reference. This leads to the following control error:

€L =0~y
e‘1 =0~ Wy
F k 1 .
=——wt+— Im __Cr — Wy
J J J

Thus, the quadratic form of the Lyapunov function v, is:

Its temporal derivative is:

Vi=eg
f k 1 )
:el(_ja)_'_jla_jcr _a)ref)

To make \/.1 negative and ensure stability we take:

1 .
m _jcr — Wr = _klel (k, > 0)

f k
——w+—1

J J

vl = _k1e12
Then the control law for current is given by:

Ir; ZEa)_'_lcr _ia)ref _kl_‘]el
k k k k

Now a new desired reference will be the control variable for the previous subsystem
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e, =1,-1I (461)
éz — I.m _ Ir’; (4.62)
:—La)—& Ly o

L, L™ L " " (4.63)

So the extended Lyapunov function is:

4.64
Vv, =V, +1e22 (4.64)
2
1
=5 (e +€;)
(4.65)
V, =V, +e,8, (4.66)
y k R 1 *
V2 :_klelz +e2(__a)__m Im +_Vm - Im)
Lm Lm Lm (4.67)
To make \/'2 negative and ensure stability we take:
k Rm 1 * p
—EW—L—m|m+L—me—|m)Vz——kzez (k, > 0) (4.68)
So, the control law for speed is given by:
v.=ko+R I +L I"—kL e, (4.69)
This ensures the negativity of the derivative of the extended Lyapunov function:
\/'2 = —klef - kzez2 <0 (4.70)

4.6.3. Torque control based on PI controller
The primary responsibility of M1 is to drive the system, serving as the main source of propulsion.
It delivers the necessary force to move the system forward or maintain its speed. M2, on the other
hand, has a secondary role, interacting with M1 during specific situations like deceleration. M2 is
mechanically connected to M1 and electrically to a separate energy source viaa DC/DC converter.
which ensures the motor receives the precise amount of power required to match the reference

torque.
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During deceleration, a negative reference torque is required because of the resistive forces applied
by the road to the wheels. This negative torque indicates that the system needs to slow down or
resist forward motion. In response, M2 must generate torque that opposes the torque produced by
M1. This opposition is necessary to achieve effective braking or slowing down of the system. The

relationship between these forces and torques is governed by equation (3.29).

In the scenario where motor torque needs to be controlled, Equation (3.32) demonstrates that this
can be done directly by managing the motor current. This control is implemented using a Pl

controller, with its transfer function provided in Equation (4.71). In this equation, Ky s and

represent the proportional and integral gains, respectively. The controller's input er is the
difference between the desired current - and the actual current; , , as shown in Equation (4.72).

The controller's output is the voltage, which must be applied to achieve the desired armature

current, and consequently, the desired motor torque[129].

pi(s) = a4 Kim (4.711)
er(s) " S
er(s) = I;z (S) - Imz (S) (4.72)

The current control system is summarized below, where , represents the second motor model:

I,2(5) _er(s) Viz(s) Ir 1 : Iz (s)
— ®—>[ Rt 72 ]——>, Los iR | |

T

W

Fig 4.19: PI current control.

The Ky o and , _ values are tuned to achieve the desired transient response. There are several

methods to define this desired response. In the time domain, it is common to specify the desired
rise time and overshoot for a step input, and the gains are adjusted accordingly to meet these
criteria. Alternatively, in the frequency domain, the desired phase margin and cross-over frequency

are specified.
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4.7.Conclusion

In this chapter, a comprehensive overview of the new EMSs designed for smart power sharing in
hybrid systems has been presented. Two adaptive wavelet methods were proposed, each
employing distinct adaptation techniques to optimize performance. The chapter also covered the
implementation of effective control strategies for the various static converters involved in the
system, as well as the control mechanisms to emulate the electric vehicle traction system. The next
chapter will delve into the experimental validation of these approaches, providing empirical

evidence to support their effectiveness.
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Chapter 5. Experimental validation and performance analysis

5.1.Introduction

A considerable effort of this research has been dedicated to creating a test vehicle that includes
real-world sources, which will serve as a practical setup for studying power and energy
management. This chapter details the experimental validation of the proposed strategy presented
in the previous chapter, using a test bench to implement control laws within a software
environment based on Matlab/Simulink, supported by a dSPACE DS 1104 board. The offline
nature of the proposed methods adds complexity to the experimental implementation. However,
the significance of testing and improving the strategy in real-world conditions is highlighted by
the experimental results, which are used to evaluate the performance of the system and the different
control algorithms.

5.2.Description of the test bench

A small-scale experimental test bench has been established to implement and validate the proposed

strategies, as appears in Fig 5.1. The test bench is made up of:

e An EPS with two sources, a primary source consisting of five LiFePO4 batteries connected in
series, and a secondary source using a Maxwell supercapacitor module with a capacity of 165
Farads. Each power source was connected to two separate arms of the SEMIKRON converter
through a filter that included an inductor with specifications of 30mH and 0.9Q.

e A DS emulator was created by assigning a third arm to a 24V PMDC motor, which is speed-
controlled to simulate the traction of an EV. Another SEMIKRON converter is used to control
the torque of a second DC motor, identical to the first one, to emulate road driving conditions.

The system uses LA25NP and LV25P Hall sensors to measure various currents and voltages
precisely. Also, a tacho generator with a sensitivity of 1 V per 1000 rpm is used to measure motor
speed. System control is achieved using a dSPACE DS1104 prototyping tool combined with
MATLAB® Simulink®. The Real-Time Interface (RTI) facilitates the transfer of applications to
a microprocessor-based control system. The dSPACE card is connected via the PC's PCI port,
while an interface card adapts the control signals for the power converters. Further details about

the system components are provided in Table 5.1.
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Fig 5.1: Experimental bench.

Table 5.1: Hardware characteristics

Model name

pack Nominal voltage (v)
Pack Capacity (Ah)

Pack Energy (wh)

Pack Internal Resistance (m£2)
Pack Weight (kg)

Model name

pack Nominal voltage (v)
Pack Capacity (F)

Pack Energy (wh)

Pack Internal Resistance (m£2)
Pack Weight (kg)

Model

Supply Voltage (v)
Output power (w)

Rated Current (A)

Rated Speed (RPM)
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TSWB-LYP100AHA(B)
LiFeYPO4
3
100
330
0.45
3.6
BMODO0165
48
165
53
6.3
13.5
MY1016
24
250
14
2750
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5.2.1. DSPACE dS1104 Card

The dSPACE DS1104 Controller card is a standard board with a real-time processor that can be
installed in a personal computer with a 5V PCI slot. According to Fig 5.2, the DS1104 includes
[130]:

e 4 inputs connected to a 16-bit analog-to-digital converter (ADC), 4 inputs with separate
12-bit ADCs, and an 8-output digital-to-analog converter (DAC).

e 2 incremental encoders.

e Onboard 64-bit floating-point processor running at 250 MHz.

e Onboard Slave DSP based on the TMS320F240 DSP microcontroller.

e Onboard memory.

e Additional digital input/output capabilities.

P e

l“ PCl slot 5V \
I PowerPC603 Master Processor | e e e e e e e !
1 f Slave DSP I/0 \ :
1 Memory I
" ! Digital 1/0 14 bits J P
Interrupt Controller I P
! I Serial Peripheral Interface I I
| TIMERS —
| TMS320F240 PWM Generator | 1
X DSP o
| p === === —— l 4 Capture Inputs ] 1
7
! \ \ 7/ 1
| ! Digital 1/O 20 bits T Y Tl |
|
I
11 DAC Unit I 1
11 |
1l ADC Unit 1
! [
1 [ incremental Encoder Interface | | 1
! l A l I
\ .\ Master PPC I/O y;
NS - - - _ 4
_____________________________________
v
m—
DC/oC | AT
Converter Sl ls

Fig 5.2: Structure of the dSSPACE DS1104 controller board.

The integration of dSPACE with Simulink/Matlab software creates a powerful development
environment. With Real-Time Interface (RTI), function models can be easily run on the dSPACE

system. The process involves generating the model code using Simulink Coder, after which the
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real-time simulated model is compiled, downloaded, and automatically started [131]. The

connector panel links all system 1/0O signals to the DS1104, as shown in Fig. 5.3.

To configure these inputs and outputs of the control system graphically, ControlDesk software
can be used, which offers all the tools needed to control and monitor experiments through graphical
user interfaces, making it easier to develop controllers. To clarify more, ControlDesk allows users
to design graphical layouts with diverse control elements. This platform facilitates real-time
control and monitoring of parameters while also providing access to 1/0 signals linked to the
hardware.[132].

Fig 5.3: The connector panel of DS1104 Card.
5.2.2. SEMIKRON Converter

The SEMIKRON converter is an advanced power electronics system designed to control and
regulate high-voltage power precisely. It uses SKHI22 driver cards to manage voltage levels at 0V
and 15V for each bridge arm. The driver in an IGBT system is essential for controlling the
SKM50GB123 IGBT power modules and ensuring the safety of both the system and the user
through segregation between the low and high-power sections of the converter. Its key functions
include amplifying ON/OFF logic signals to deliver high peak currents for switching, monitoring
errors like under-voltage and short circuits, and isolating the primary circuit from the high-power
secondary circuit. This isolation prevents dangerous interactions while allowing the safe
transmission of control signals, ensuring reliable performance and protection. The drivers use three
SKHI 22 A-R cores, each controlling an inverter leg with both "Top" and "Bottom" IGBTs of a
single module. The drivers require a 0/15V power supply with a maximum current consumption
of 160 mA per driver. They operate with a negative logic error signal, outputting +15V when no

errors are detected. In case of a fault, the driver stops, ignores input pulses, and resets the error
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latch after resolving the issue. Each driver operates independently; safety precautions are necessary

to handle error conditions[133].

The IGBT gate control circuit operates with 0/15V logic signals, while the dSPACE port outputs
are in TTL format (0/5V). Therefore, to enable the inverter switches to be locked and adapt the
control signal levels to match the IGBT gate voltage, an interface board was designed to align the
dSPACE output with the inverter input logic levels. This board includes a buffering circuit using
74L.S00 NAND gates to ensure reducing damage in case of inverter malfunction, this buffering
circuit is cascaded by a voltage step-up stage using the 74LS17 circuit, comprising six open

collector inverters.

5.2.3. Sensors
The current and voltage measurements shown in Fig 5.4 are performed using the LEM LA25-NP
and LEM LV25P circuits, respectively. These sensors utilize the magnetic fields generated by
electric currents to provide high accuracy and a broad dynamic range. A 4th-order Shpychev low-
pass filter is employed to reduce noise, ensuring that the measurement signals are clean and reliable
before being used in control algorithms. Gain adjustments are essential to align the sensor output
with the input range of the analog-to-digital converter, ensuring accurate digital representation of
the measured signals [134]. Additionally, speed is measured using a tachogenerator with a
sensitivity of 1 /1000 rpm. This is a direct current generator that produces an output voltage

proportional to the RPM. It is connected to the machine via a clutch, as seen in Fig 5.4(c).

@ (b) (c)

Fig 5.4.: Sensors: (a) Current sensor; (b) Voltage sensor ;(c) A tachogenerator.
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5.3.Experimental validation
The experimental study was carried out using the dedicated test bench, divided into two phases
with different driving cycles. In the first phase, an AWT method based on the supercapacitor soc
was implemented. This method was compared with three other frequency-based techniques: a
fixed cut-off frequency, an adaptive filter, and the conventional WT. In this phase, the regenerative
braking process was not considered.

In contrast, the second phase focused on applying the method developed in the previous chapter,
which is based on Adaptive Wavelet-Adaptive Fuzzy Logic based K-Means-SVM Pattern
Recognition. Here, attention was given to the regenerative braking phase, emulating the behavior
of a real EV system where energy is recovered during braking. Various performance criteria were
adopted to assess the effectiveness of the proposed EMS methods and determine how well each
one managed energy under different driving conditions.

5.3.1. Adaptive wavelet-based strategy

In this part, a custom driving cycle is generated by randomly merging two standard driving cycles:
HWFET (400 -500 s) and WLTP class 2(990-1140s), each with an average duration of 150
seconds. These selected cycles represent a variety of road conditions, including highways,
suburban roads, and urban environments, providing a wide range of current load frequencies for
the vehicle traction system. Then, this custom driving cycle is used in equation (3.28) to extract

the mechanical power profile which is used as a speed profile.

Before selecting the most suitable speed control method for tracking the reference speed, an
experiment was carried out using two speed profiles to compare the performance of the SM and
BS controllers. The goal was to evaluate how effectively each controller tracks the desired speed.
The results, displayed in Fig 5.5 indicate that the BS method significantly outperformed the

alternative controller in terms of response accuracy and stability
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Fig 5.5: Speed tracking performance: (a) Profile 1; (b) Profile 2.

Then, this approach was applied using the driving cycle cited previously. Results can be found in

Fig 5.6 with almost no overshoot and negligible static error.
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Fig 5.6: Motor speed.
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A Lyapunov control system is used to regulate the DC-link voltage, enabling currents to be treated
as control variables and viewed as an image of power transferred from the EPS to the DS. The

results in Fig. 5.7 demonstrate that the DC bus remains regulated around its reference Vy._ .

100 T T

80 - —

60 - b

Dc Bus voltage (v)

20 |- b

0 I | I | |
0 50 100 150 200 250 300

Time (seconds)

Fig 5.7: Dc-bus voltage

The load current in Fig. 5.8 takes the same shape as the speed profile, reflecting a signal with the
same frequency spectrum as the speed profile. Since the proposed strategy relies on frequency,
this profile requires a frequency analysis, revealing three different sections with varying
frequencies, caused by using different driving patterns. The FFT analysis results presented in Fig
5. 9 show key frequencies of 0.01 Hz for the first section (Fig 5.9(a)), 0.06 Hz for the second
section (Fig 5.9(b)), and 0.03 Hz for the third section (Fig 5.9(c)). These frequencies match urban,

high-speed, and suburban driving patterns, respectively.

Load current (A)

- | I | I |
0 50 100 150 200 250 300
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Fig 5.8: Current of load.
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Fig 5.9. Load current FFT analysis: (a) Section 1 (green) load current during urban driving cycle; (b)
Section 2 (green) load current during high-speed driving cycle; (c) Section 3 (green) load current during
suburban driving cycle.

96



Chapter 5. Experimental validation and performance analysis

In order to evaluate the effectiveness of the proposed method, it was compared with three other
frequency-based techniques: a fixed cut-off frequency, an adaptive filter, and the conventional
wavelet transform. The comparison focused on battery and supercapacitor currents as well as their
state of charge.

Figs 5.10(a) and 5.10(b) illustrate changes in battery and supercapacitor currents when using fixed
and adaptive cut-off frequencies for frequency separation. As the cut-off frequency increases from
0.01 Hz to 0.06 Hz, the battery current shows greater fluctuations, while the supercapacitor current
becomes more stable. This demonstrates the supercapacitor's effectiveness in handling
fluctuations, as reflected by the higher state of charge for the batteries and the lower one for the
supercapacitor shown in Figs 5.11(a) and 5.11(b). The adaptive frequency separation method
proves to be the most effective in managing high-frequency components while maintaining a stable
supercapacitor current.
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Fig 5.10. Currents of batteries and supercapacitors using tested techniques: (a) Battery current over various

cut-off frequencies; (b) Current of the supercapacitor with various cut-off frequencies; (c) Battery current
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with different wavelet levels and the adaptive method; (d) Current of the supercapacitor with different
wavelet levels and the adaptive technique.

The analysis also explores the WT method using different decomposition levels (2, 3, 4, and 5)
and an adaptive approach, Figs 5.10(c) and 5.10(d) show battery and supercapacitor current under
these different levels. Higher levels result in more rapid changes in battery current and frequent
power exchanges, while higher levels filter out high-frequency components in supercapacitor
current, reducing those fluctuations. AWT method performs best at managing high-frequency
components while keeping the supercapacitor current stable. This appears through the analysis of
the State of Charge curves in Figs 5.11 (c), and 5.11 (d) where high wavelet decomposition levels
introduce smoother changes and more balanced energy flow in the SoC curves for the battery.

Conversely, they lead to greater dynamics and fluctuations in the supercapacitor Soc.
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Depending on the application's particular requirements, frequency separation and wavelet
transform approaches each have unique benefits and trade-offs. Adaptive strategies are highly
effective at managing energy precisely and maintaining the stability of both battery current and
State of Charge. However, selecting the optimal approach requires considering additional criteria,
particularly when aiming to extend battery life. Battery current RMS and peaks are important
indicators of aging and provide valuable insights into battery health and performance. Another key
aspect is system losses, as reducing these losses can greatly affect the battery's lifespan. These

considerations are discussed below:

» Current Root Mean Square (RMS)
The Root Mean Square current serves as an important evaluation metric in EMSs for HESS. It
offers key insights into system performance and the strain imposed on the energy storage
components, especially batteries. The significance of RMS lies in its ability to evaluate the
smoothness and stability of current flows, which directly influence the lifespan and reliability of
these storage devices. RMS may be computed using the following formula:

IRMS = Irms—b + Irms—sc (5'1)

I RMS — %(\/Z ibz—mesi + \/Z iszc—mesi ) (5.2)

Fig 5.12 proves the ability of AWT method to lower the total RMS current. The current dropped
to 2.81 A; a 34% decrease compared to the fixed cut-off frequency method. This improvement
allows for smoother power transfer, less battery stress, and prolongs component lifespan,
contributing to better system stability. The conventional WT method also reduces RMS current to
values between 3.7 A and 3.9 A, representing a decrease of 9.36% to 14.63% compared to the
fixed cut-off frequency range of 4.04 A to 4.34 A, demonstrating its capability in controlling
current variations. Although the adaptive filter reduces RMS current to around 4 A, showing
improved handling of fluctuations over the fixed cut-off frequency method, it does not match the
precision of the AWT. The fixed cut-off frequency method, which produces high RMS current
values, poses concerns regarding increased stress on energy storage components and its effect on

battery longevity. Therefore, the AWT method proves to be the most effective solution for
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optimizing energy management and safeguarding components in the HESS. This makes it the

preferred choice for maintaining reliable performance.
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Fig 5.12: Total RMS current across various techniques

» Maximum current
Reducing the maximum current in an EMS for HESSs is crucial. This value indicates the highest
instantaneous current provided by the battery and supercapacitor during operation. High peak
currents may put enormous pressure on these energy storage elements, accelerating their failure
and reducing their lifespan. Furthermore, high peak currents can cause drops in voltage, energy

loss, and instability in the system.

Examining the maximum current criterion shown in Fig 5.13 demonstrates that the AWT approach
excels at lowering peak currents to 12.58 A, which is essential for smoother power delivery and
minimizing battery stress. The current profile obtained using the adaptive wavelet approach
indicate longer component life and enhanced system stability, reducing the probabilities of
premature failure and expensive repairs. In contrast, other methods exhibit higher peak currents:
16.36 A to 20.46 A for the conventional WT, 21 A for the adaptive filter, and 21.7 A to 22.68 A
for the fixed cut-off frequency. These elevated currents can accelerate the aging of energy storage
components, resulting in inefficiencies and safety problems. Thus, the AWT method effectively

minimizes peak current values, making it a strong alternative for EMSs in EVs. Its ability to reduce
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maximum currents plays a key role in optimizing energy management, ensuring the long-term
health of the HESS, and protecting components.
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Fig 5.13: The total maximum current with different techniques

» The Delta State of Charge (A SoC)
This criterion quantifies variations in SoC over time and offers valuable data about energy
consumption efficiency. Reducing the Delta SoC is important for achieving balanced energy

sharing between the battery and supercapacitor, reducing excessive discharge cycles, and
enhancing the use of storage system.

Fig 5.14 illustrates the ability of the AWT method to lower the total Delta SoC to 30%,
demonstrating its precise control and efficient energy distribution for a more stable SoC profile.
In comparison, other methods show higher Delta SoC values: 20.2% to 24.1% for the conventional
WT, 19.6% for the adaptive filter, and 9.2% to 14.6% for the fixed cut-off frequency method.
Elevated Delta SoC values signify less efficient energy sharing and imbalances between the battery
and supercapacitor. Large and frequent SoC fluctuations can accelerate degradation, reduce
capacity, and shorten battery lifespan. The AWT method successfully reduces Delta SoC,

emphasizing its role in optimizing energy use and maintaining the long-term health and reliability
of the HESS.
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Fig 5.14: Delta SOC with various techniques.

> losses
The losses in EMSs have a direct impact on system efficiency and energy usage. Limiting losses
is important for achieving better energy conversion efficiency, less energy waste, and improved

performance of the Hybrid Energy Storage System. Battery and supercapacitor losses can be stated
as[135]:

Ll (5.3)
LT = ( Rb x ib—mes) (R X Isc mes) (54)
L ()=

Lt (5:5)

Fig 5.15 shows that the adaptive wavelet method achieves the lowest energy losses, at just 20.40%
of the total losses related to the fixed cut-off frequency EMS. This demonstrates the good
performance of the AWT in optimizing power flow and minimizing energy waste. In comparison,
the conventional WT approach has a bit more losses, ranging from 59.30% to 84.76% depending
on the decomposition level, whereas the adaptive filter method has even greater losses, at 72.55%.
The ability of the AWT strategy to attain the lowest losses is a major advantage, resulting in greater
energy efficiency, less heat generation, and a longer lifespan for energy storage devices. As well
as Lower losses contribute to increased system reliability and economic viability.
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Fig 5.15: Total Losses under different techniques implementation
The results obtained using the above mentioned criteria can be summarized in Table 5.2 as
follows:

Table 5.2: Detailed evaluation of the suggested EMS, the standard wavelet approach, and the

adaptive filter compared to a fixed cut-off frequency

Criteria Proposed EMS Wavelet-based EMS  Adaptive Filter
Total RMS current 66% 85.37% -90.64% 87%

Total maximum current  55.47% 72.14% -90.22% 92.60%

A soc 70% 75.9% -79.8% 80.4%

Total Losses 20.40% 59.30% -84.76% 72.55%

In the existing literature, EMS comparisons typically contrasted fixed cut-off frequencies with
adaptive ones or the traditional WT to the AWT. In this part, four different approaches are tested
under the same experimental conditions to assess their performance, making the comparison more
technical and detailed. Table 5.3 shows the obtained comparative results as well as selected
comparisons from the literature. The numerical results show that the adaptive techniques regularly
outperform their fixed versions in terms of battery RMS current, peak power, longevity, maximum
current, and losses. Notably, the proposed EMS, which has been experimentally compared with
the conventional WT, adaptive filter, and fixed cut-off frequencies in this work, proves to be of

special significance.

103



Chapter 5. Experimental validation and performance analysis

Table 5.3: Comparison of Frequency-Based EMS Performance for Both Classical and Adaptive

Versions.

Reference Comparison method Finding

[136] Adaptive Filter Vs fixed cut-off frequency Battery RMS current: Reduction by 17.03%
Battery peak power: Diminution by 3.71%
Battery lifespan: Improvement by 32.40%

[137] Adaptive Filter Vs fixed cut-off frequency Battery RMS current: Reduction by 14%
and 55% for NEDC and urban Artemis
cycle

[138] Adaptive wavelet vs conventional wavelet Battery maximum current: Minimization by
58.2%
Battery lifespan: Enhancement by: 6.16%

[135] Adaptive wavelet vs conventional wavelet Losses: Diminution by 10.66%

Proposed  Proposed adaptive wavelet, conventional Total RMS current: Reduction by 34%,

EMS wavelet, and adaptive Filter Vs fixed cut-off 9.36% -14.63% and 13%

frequency Total maximum current: Lowering by

44.53%, 27.86% -9.78% and 7.40%
Losses: Minimization by 79.6%, 15.24% -
40.7% and 27.45%

5.3.1. Adaptive Fuzzy Logic based K-Means-SVM Pattern Recognition strategy

During the second experimental phase, a developed adaptive wavelet was validated considering
driving conditions. Therefore, K-Means-SVM drive Pattern Recognition was adopted as an
important part of this EMS. Table 5.4 shows comparative results from the literature where K-
Means and SVM outperformed their alternatives. The validity of this recognizer was tested by
applying the first 500 seconds of the FTP72 standard driving cycle which includes a mix of urban,
suburban, and highway driving environments. The recognition process results are shown in Fig
5.16 by the blue line where 1 represents urban driving patterns, 2 corresponds to suburban driving
patterns, and 3 indicates highway driving patterns. The outcome demonstrates that the developed
driving pattern recognizer can accurately identify different driving patterns, confirming the

effectiveness of the k-means-SVM recognizer.
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Table 5.4: Accuracy comparison of diverse machine learning techniques in Driving state

recognition
Methods Accuracy Reference
Clustering K-means, Fuzzy C-means, K- K-means 97.84% [139]
medoids, GMM Fuzzy C-means 97.12%

K-medoids 96.82%
GMM 96.29%

Classification SVM, KNN, RF SVM 67.4% [140]
KNN 66.8%,
RF 81.3%
SVM, KNN, Linear Linear SVM 95.51% [141]
Discriminant

Coarse Gaussian SVM 91.02%
Quadratic SVM 89.79%
Medium Gaussian SVM 85.47%
Fine Gaussian SVM 85.25%
Cubic SVM 67.16%

KNN 92.3%

Linear Discriminant 90.6%
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Fig 5.16: Results of recognition within the test-driving cycle
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To emulate the traction part, the power profile generated from the previously shown FTP72 drive
cycle was used as a reference profile. Specifically, the positive portion of the power profile was
used as the M1 speed reference, while the negative portion was used as the M2 torque reference.
During the discharge phase, the system operated with a variable positive speed and constant torque,
placing M1 in quadrant 1 and ensuring that the frequency behavior of the power was dictated by
the speed profile. In the braking phase, a constant speed with variable negative torque was applied,
making the power's frequency behavior dependent on the torque profile and transitioning M1 from
quadrant 1 to quadrant 4. This approach allowed the system to accurately represent the energy
dynamics of real-world driving conditions. Results in Fig 5.17 demonstrate that M1 speed closely
tracks its reference signal, with only a small overshoot. Fig 5.18 also shows that the M2 current
matches its reference signal precisely. This current corresponds to the resistance torque exerted on

M1.

Fig 5.19 represents the evolution of traction current during this process demonstrating that M1

operated under realistic load scenarios throughout the tests.
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Fig 5.19: Current of load

A comparative analysis is conducted to assess the impact of DPR on WT adaptability, using a
traditional WT with fixed decomposition levels. Fig 5.20(a) gives details about the battery's
discharge current at different wavelet decomposition levels, clearly showing that AWT can lower
the discharge current. Moreover, Fig 5.20 (b) shows the charge/discharge current of the
supercapacitor, demonstrating its ability to manage significant peak currents. Higher
decomposition levels effectively filter out high-frequency components, improving the

supercapacitor's rapid charge/discharge capabilities and decreasing battery current variations.

Tables 5.6 and 5.7 verify those results by comparing the RMS values of the obtained battery current
for the EMSs implemented. AWT technique appears as the most efficient strategy, with RMS
reductions ranging from 3.28 to 21.85% when compared to traditional WT with a fixed

decomposition level.

The battery Soc indicates a slower reduction of 0.001% in comparison to the initial Soc when
exposed to AWT, as illustrated in Fig 5.20(c). This behavior is due to combining the WT with
DPR. This result refers to the dynamic power distribution between the battery and supercapacitor,
which is adjusted in real-time based on DPR. When examining the details provided in Table 5.4,
it is clear that the battery Soc curve variations are smoother at higher wavelet decomposition levels.
This smoother progression helps reduce battery SoC consumption, with final SoC values of
79.9987%, 79.99885%, and 79.9989% for decomposition levels 2, 3, and 4, respectively. At the
same time, higher wavelet decomposition levels direct high-frequency components to the
supercapacitors, aligning their soc changes with these variations, as shown in Fig 5.20(d).
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Fig 5.20: Results of experiments with wavelet transform, both fixed and adaptive: (a) Current of battery; (b) Current of

supercapacitor; (c) Battery state of charge ; (d) Supercapacitor state of charge.

Table 5.5: Assessment criteria results.

Parameters 2-Level WT  3-Level WT  4-Level WT ~ AWT AWT-FL
Battery RMS current (A) 3,5 2,964 2,828 2,735 2,732
Supercapacitor RMS current (A)  0,4904 0,4097 0,6708 0,8374 0,9345
Battery peak current (A) 16,32 15,9 15,62 15,39 14,15
Terminal Battery Soc (%) 79,9987 79,99885 79,9989 79,999 79,99917
Terminal Supercapacitor Soc (%) 47,11 46,78 46,75 46,85 47,02
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Dc-link voltage fluctuations (%) 21,08271 20,55604 20,55604 14,67813  13,91813  11,59854

Table 5.6: Reduction in AWT RMS battery current compared to fixed-WT

Parameters AWT vs 2-Level AWT vs3-Level WT ~ AWT vs 4-Level
WT WT
Battery current RMS reduction (%) 21.85 % 7.726% 3.28 %
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Fig 5.21: Results of experiments conducted with various adaptive techniques: (a) Current of battery; (b) Current of

supercapacitor; (c) Battery state of charge; (d) Supercapacitor state of charge.
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From the results above, it is strongly evident that the adaptive version outperforms the fixed
counterpart. This prompts a comparison of the adaptive versions used in this study: AWT-AFL,

AWT-FL, and AWT, which is done by adopting several criteria as follows:

» Battery current RMS

The changes in battery and supercapacitor current curves are shown in Fig 5.21(a) and Fig 5.21(b),
respectively. The results show that the EMS based on AWT-AFL has fewer fluctuations compared
to AWT-FL and AWT. This obvious reduction in fluctuations leads to a significantly smoother
battery current profile, thus decreasing the battery damage. Additionally, as shown in Table 5.7,
the proposed EMS achieves an important reduction in RMS current, with a 20.92% decrease
compared to the AWT strategy and a 20.83% decrease compared to the AWT-FL. This
considerable reduction highlights the efficiency of the proposed strategy in enhancing and
stabilizing the performance of batteries.

» Maximum battery current

The proposed strategy also performs well in reducing peak current, with a maximum battery
current of 13.5 A, representing a notable 4.59% decrease compared to the AWT-FL strategy's peak
of 14.15 A. Moreover, the reduction becomes even more significant at 12.28% when compared to
the AWT strategy, which has a peak current of 15.39 A. Fig 5.22 illustrates the effectiveness of
the proposed strategy in minimizing peak battery current. A depth analysis is provided through a
probability assessment across specific current ranges, utilizing the following equation to calculate
the probability:

n(i,)

n(s) (5.6)

P(i,) =

Within the [10 A-15 A] range, the proposed EMS demonstrates a notably low probability of 7.5%,
outperforming AWT (8.79%) and AWT-FL (8%). In the [15 A-20 A] range, the proposed EMS
entirely eliminates the occurrence of peaks, whereas AWT-FL shows a probability of 1% and
AWT a slightly higher 4%. This detailed analysis further highlights the precision and efficiency

of the proposed strategy in controlling and reducing peak battery currents.
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Table 5.7: Comparison of the proposed EMS to AWT-FL and AWT in terms of battery current RMS
and peak reduction

Parameters Proposed EMS vs AWT-FL Proposed EMS vs AWT
Battery current RMS reduction (%6) 20.83% 20.92%
Maximum Battery current reduction (%) 4.59% 12.28 %
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Fig 5.22: The distribution of battery current peaks under adopted techniques.
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> Rate of change of battery current

The effectiveness of the suggested technique is further emphasized by its ability to reduce the

rate of change of battery current ‘:ji an essential parameter defined through the Equation (7)
t

[136]:
% _ ib—max — ib—min
dt tmax _tmin (57)

This parameter indicates the rate at which the current flowing into or out of the battery changes.

Consequently, Fig 5.23 offers a detailed representation of the stress placed on the battery by
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showing the normal distribution of this parameter, characterized by a mean s, , standard deviation

0y, and variance , 2, as expressed by the following probability distribution [142]:

di, .

. s

dl 1 (dt ib
fW s o) exp| ——dt " (5.8)
( dt " O-Ib) O-ib\/g p 20_in

In the AWT-AFL scenario, the rate of change mostly stays within a small range of [0 - 7.5] A,
showing that the battery experiences less operational stress. However, the AWT-FL strategy has a
wider range, with the rate of change in battery current reaching up to 9.4 A, and the AWT strategy
goes even higher, up to 10.6 A. This detailed analysis shows that the battery experiences
significantly less operational stress under AWT-AFL compared to AWT-FL and AWT. This
suggests that the proposed strategy successfully reduces higher and sudden changes in battery
current, limiting the growth of Li+ concentration and preventing the film's irregular, steeper

gradients, both of which are affecting battery life[143].

Under the proposed control strategy, the supercapacitor current consistently exceeds that of the
AWT-FL strategy and AWT, showing that it effectively manages all peak currents by supplying
power during periods of peak demand. Moreover, the supercapacitor's output current shows a
dynamic pattern, alternating between positive and negative values, indicating charging and
discharging operations. The charging was attributed only to the supercapacitor due to the battery
slow charging requirements and the short braking periods. In contrast, discharging is specifically
designed to handle the transient portions of the load current demand. This charge/discharge
functionality allows the supercapacitor to adjust to the vehicle's energy needs in real-time,
optimizing energy flow and usage. As a result, the battery's electrochemical structure stays
protected from sudden changes in load demand, leading to safer operation and a longer battery

lifespan.
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Fig 5.23: Battery current rate of change Distribution within tested strategies.

> Battery state of charge
A comparative analysis of the battery and the supercapacitor soc is provided in Fig 5.21(c) and
(d). Fig 5.21 (c) focuses on the battery's SoC, which is initially set to 80% for all EMSs. In
comparison to the other two strategies, it appears that the AWT-AFL strategy finishes the driving
cycle with a higher battery SoC. For EMSs using AWT, AWT-FL, and AWT-AFL, the final
battery Soc values are 79,999%, 79,99917%, and 79,9992%, respectively. On the other hand, Fig
5.17(d) indicates the supercapacitors Soc changes over time where 47.3% is set as the initial value
for the adopted EMSs. It is worth noting that AWT-FL completes the driving cycle with a 0.17%
higher supercapacitor Soc than AWT, according to the description in Table 5.5, where fuzzy logic
control is used to keep the supercapacitor Soc within predetermined limits (60%) and minimize
battery peaks by assisting these peaks with the supercapacitor. Because the initial value was lower
than the intended Soc, the AWT-FL attempted to achieve a balance between the battery current
output and supercapacitor Soc consumption. While the supercapacitor Soc gains 0.33% at the end
of the driving cycle for AWT-AFL EMS. AFL control enables more flexible current use for both
the battery and supercapacitor based on real-time recognition findings. This approach aims to keep
the supercapacitor's soc close to the target level by recovering more braking energy, consuming

less battery current, and preventing high battery current peaks.
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» Dc-link voltage fluctuations
Furthermore, the importance of the proposed EMS is determined by the frequent voltage
fluctuations in the bus caused by sudden changes in EV load current. A well-designed EMS is

crucial in greatly reducing Yy [136]. This decrease is accomplished through the optimal use of the
supercapacitor, especially during abrupt load changes.

_ 5.9
v = (—Vmax Yo J.lOO &9
dc

Vv
Fig 5.24 presents a comparison of DC-link voltage using different strategies, comprising the
proposed approach, AWT-FL, and AWT, over the testing cycle. The evaluation shows that FV,,

of AWT exceeded both AWT-FL and AWT-AFL, with AWT reaching 14.67%, while AWT-FL
and AWT-AFL achieved 13.91% and 11.59%, respectively, as detailed in Table 5.5. This confirms
the ability of the proposed strategy, not only in reducing bus voltage fluctuations but also in

improving the system's overall stability and performance of the system under varying EV load

situations.
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Fig 5.24: Dc-bus voltage using adopted strategies.
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The results mentioned above reveal that the AWT-FL EMS excels at assuring the optimum

functioning of both the battery and the supercapacitor within their respective frequency bands.
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Wavelet and fuzzy logic integration is specifically designed to accommodate diverse driving cycle
types. This special benefit allows the HESS to be used efficiently and intelligently, guaranteeing
a reasonable load power demand distribution while accounting for the characteristics of the

different drive cycles.

5.4.Conclusion

In this chapter, we presented experimental results following the description of the test bench setup,
which was used to validate the earlier study. This bench enabled us to assess the effectiveness of
energy management algorithms developed using an adaptive wavelet-based supercapacitor SoC
supervisor. The success of this phase encouraged us to further explore adaptivity to driving
conditions by implementing an Adaptive Wavelet EMS with K-Means-SVM pattern recognition
alongside Adaptive Fuzzy Logic. Additionally, the traction system of the vehicle was accurately
emulated to reflect the real behavior of an electric vehicle during both the acceleration and energy
recuperation phases. The experimental results validated the proposed EMS, offering a promising

approach for extending battery life and reducing overall operational costs in electric vehicles.
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Chapitre 6. Conclusion and future work

6.1.Conclusion
Electric vehicles currently available in the market use batteries as their primary energy source.
However, these batteries face significant challenges, particularly in terms of energy delivery
capabilities and lifespan, especially under varying and high-demand driving conditions. To
overcome these limitations, researchers have developed HESS, which combine two types of
energy storage devices: batteries and supercapacitors. In such configuration, batteries are used as
the main energy storage device because of their high energy density, which allows them to store
large amounts of energy for extended driving ranges. However, batteries have relatively low power
density, making them less efficient at handling sudden surges in power demand, which is common
in dynamic driving situations. On the other hand, supercapacitors have a much higher power
density, enabling them to quickly deliver or absorb power during short, high-power demands like
acceleration or regenerative braking. This complementary relationship between batteries and

supercapacitors enhances the overall performance and longevity of the ESS.

Many studies have proposed various hybrid topologies that integrate batteries and supercapacitors
in different ways to optimize performance. The topology presented in this thesis is an active
configuration, where both the battery and supercapacitor are connected to the DC bus through a
bidirectional DC-DC converter. This allows flexible control over power flow, ensuring that each
storage device operates in its optimal range. The DC-DC converter manages the charging and
discharging of both devices, dynamically allocating power between the battery and supercapacitor

based on the vehicle's power demands.

In many HESS designs, a frequency-based control strategy is employed to manage power flow to
the DC bus. This strategy typically assigns lower-frequency power demands (sustained energy
needs) to the battery, while higher-frequency components (rapid power fluctuations) are handled
by the supercapacitor. While effective in theory, this approach has limitations in real-world
applications. It often lacks adaptability to changing driving conditions, such as rapid transitions
between different driving modes (e.qg., city driving, highway driving). Furthermore, the frequency-
based strategy is challenging to implement in real-time control systems due to its reliance on

offline calculations, making it difficult to respond to real-time variations in vehicle power demand.

This thesis presents enhancements to frequency-based EMS by introducing an adaptive wavelet-
based approach that optimizes power distribution in a HESS by dynamically adjusting the wavelet
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decomposition level according to the supercapacitor’s charge state, the system effectively handles
sudden power demands, significantly reducing the strain on the battery during high-load situations.
Real-time experiments comparing this approach with other frequency-based methods confirm its

effectiveness. The findings prove an improvement in battery lifespan through:

e A reduction in RMS current by up to 34% compared to fixed cut-off frequency methods.
In comparison, conventional wavelet and adaptive cut-off frequency techniques showed
reductions of 9.36% to 14.63% and 13%, respectively, indicating lower energy losses.

e Improved battery performance during high-current peaks, with a reduction of 44.53%
compared to fixed cut-off frequency methods. This outperformed the conventional wavelet
and adaptive cut-off frequency methods, which showed reductions between 9.78% and
27.86% and 7.40%, respectively.

These techniques give promising results in terms of performance, allowing the power demanded
by the load to be distributed suitably over the two sources.

Based on the previous approach, a novel EMS is proposed to deal with challenges imposed by the
driving conditions. This approach consists of two essential components: an adaptive wavelet that
expertly supervises the power allocation to each source and as a complementary component,
adaptive fuzzy logic that maintains the supercapacitor continuously at the desired level, preventing
peak current surges. Additionally, integrating k-means clustering and Support Vector Machine
recognition improves the driving pattern recognition system, enhancing the adaptability of the
wavelet-fuzzy system to various driving conditions. The experimental validation shows an

interesting increase in battery lifespan, as proven by several notable contributions:

e A significant decrease in the battery's operational stress was observed, with AWT-AFL
limited to a range of [0, 7.5] A. In comparison, AWT-FL covers 9.4 A, and AWT extends
up to 10.6 A.

e A reduction of up to 20.83% in RMS current was achieved compared to AWT-FL, which
exceeds the 0.09% reduction observed with AWT.

e An important reduction in peak battery current occurrences, particularly in the [10 A - 15
A] range, where the probability is low at 7.5%, compared to 8.79% for AWT and 8% for
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AWT-FL. In the [15 A - 20 A] range, the new energy management system eliminates the
probability of peaks, while AWT-FL has a 1% probability and AWT has a 4% probability.

e A clear decrease in bus voltage oscillations is observed, with the proposed method
outperforming both AWT-FL and AWT, achieving a reduction of 14.67% compared to
their values of 13.91% and 11.59%, respectively.

Although online experimental validation presents obvious challenges, the dedication to thoroughly
testing and improving the strategy in real conditions enhances the authority and practicality of the
results. These results reveal a promising approach to increasing battery longevity, which can lead

to reduced overall operational costs in electric vehicles
6.2.Future work
For future work, this research suggests further exploration in the following areas:

e Investigate the integration of various energy sources, such as fuel cells, into the existing
system. This expansion will provide greater flexibility in energy management and improve

overall efficiency by allowing for better utilization of diverse energy sources.

e Focus on creating a robust algorithm to accurately estimate the State of Charge of the battery.
This algorithm will help ensure that the battery operates within optimal ranges, providing

crucial information for effective energy management.

e Integrate battery State of Health into the energy management systems. By considering the
condition of the battery, the system can make more informed decisions about power
allocation, ultimately leading to improved durability and reliability of the energy storage

system.

e Account for the temperature of energy sources in the optimization process. By regulating the
sources around a nominal temperature value, we can mitigate risks associated with
overheating or cold conditions, thus prolonging the lifespan and efficiency of the hybrid

energy system.
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e Create an EMS that relies entirely on artificial intelligence such as reinforcement learning.

This advanced system will utilize machine learning and data-driven approaches to optimize

energy distribution, predict energy needs, and adapt to changing conditions in real time.

6.3.Publication
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