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Ensuring the reliability and efficiency of photovoltaic (PV) systems requires robust fault
detection and diagnosis methods. This thesis presents a comprehensive study on the detection,
classification, and localization of PV faults using Artificial Neural Networks (ANN) and Fuzzy
Logic (FL) techniques, validated through both simulation and experimental approaches. In the
first phase, a simulation model was developed in Matlab/Simulink® to describe the system
behavior for both healthy and faulty operations. To deal with this concern, a Matlab/Simulink®
co-simulation strategy is developed to elaborate a trusted simulation model. This model requires
the use of the One Diode Model (ODM) electrical parameters. For this, an efficient strategy,
based on the War Strategy Optimization (WSO) algorithm, is applied to identify the ODM
parameters. Finally, the ODM identified parameters are used to elaborate an efficient strategy
of maximum power point (MPP) estimation. The efficiency of the developed strategies is
experimentally evaluated by using real measured data. In the first phase, the thresholding
method and FL classifier demonstrated high fault detection capabilities to diagnose eight types
of faults occurring in PV cells, achieving approximately 100% accuracy in the simulation and
experimental tests. In the second phase, an Artificial Neural Network (ANN)-based fault
detection and classification approach was successfully implemented and validated through both
simulation and experimental analysis. Five distinct single- and multi-fault types, including
partial shading, open circuit and bypass diode failures, were applied to a PV module through
the dSPACE DS1104 controller, confirmed the model’s robustness and reliability. The ANN-
based method achieved an impressive classification accuracy of 99.7%, proving its efficiency
in detecting PV faults under varying conditions. In the third phase, a comprehensive study has
substantiated that both Artificial Neural Networks (ANN) and Fuzzy Logic (FL) are capable of
detecting and classifying all single- and multi-fault types effectively. However, when moving
from simulation to experimental tests using the dSPACE DS1104 platform, the results
unequivocally showcased the superiority of the ANN classifier over the FL classifier. The ANN
classifier exhibited superior accuracy (99.6%) and faster fault classification compared to the FL
classifier (99.2%) in real-time conditions. The findings of this research highlight the ANN-
based approach as an efficient solution for PV fault diagnosis, offering enhanced accuracy and
faster processing. These results underscore the potential of integrating ANN techniques into
real-time monitoring systems to improve the performance, reliability, and safety of photovoltaic
installations.

Key words: Photovoltaic systems, Fault detection, Artificial Neural Networks, Fuzzy Logic,
War Strategy Optimization, Matlab/Simulink, Real-time monitoring.



Assurer la fiabilité et I'efficacité des systemes photovoltaiques (PV) nécessite des méthodes
robustes de détection et de diagnostic des défauts. Cette thése présente une étude approfondie
de la détection, de la classification et de la localisation des défauts PV a I'aide de techniques de
réseaux de neurones artificiels (ANN) et de logique floue (FL), validées par des approches de
simulation et expérimentales. Dans un premier temps, un modeéle de simulation a été développé
sous Matlab/Simulink® afin de décrire le comportement du systeme, qu'il soit en
fonctionnement normal ou en fonctionnement défectueux. Pour répondre a cette problématique,
une stratégie de co-simulation Matlab/Simulink® a été développée afin d'élaborer un modeéle
de simulation fiable. Ce modele nécessite I'utilisation des parametres électriques du modele a
une diode (ODM). Pour cela, une stratégie efficace, basée sur l'algorithme d'optimisation de
stratégie de guerre (WSO), est appliquée pour identifier les parametres ODM. Enfin, les
paramétres ODM identifiés sont utilisés pour élaborer une stratégie efficace d'estimation du
point de puissance maximale (MPP). L'efficacité des stratégies développées est évaluée
expérimentalement a I'aide de données réelles mesurées. Lors de la premiere phase, la méthode
de seuillage et le classificateur FL ont démontré une capacité élevée de détection des défauts
pour diagnostiquer huit types de défauts survenant dans les cellules photovoltaiques, atteignant
une précision d'environ 100 % lors des simulations et des tests expérimentaux. Lors de la
deuxiéme phase, une approche de détection et de classification des défauts basée sur un réseau
de neurones artificiels (ANN) a été¢ mise en ceuvre avec succes et validée par simulation et
analyse expérimentale. Cing types distincts de défauts simples et multiples, dont I'ombrage
partiel, le circuit ouvert et les défaillances de diodes de dérivation, ont été appliqués a un module
photovoltaique via le contréleur dSSPACE DS1104, confirmant la robustesse et la fiabilité du
modele. La méthode basée sur le RNA a atteint une précision de classification impressionnante
de 99,7 %, prouvant son efficacité dans la détection des défauts photovoltaiques dans diverses
conditions. Lors de la troisieme phase, une étude approfondie a démontré que les réseaux de
neurones artificiels (ANN) et la logique floue (FL) sont capables de détecter et de classer
efficacement tous les types de défauts simples et multiples. Cependant, en passant de la
simulation aux tests expérimentaux avec la plateforme dSPACE DS1104, les résultats ont
clairement démontré la supériorité du classificateur ANN sur le classificateur FL. Le
classificateur ANN a affiché une précision supérieure (99,6 %) et une classification des défauts
plus rapide que le classificateur FL (99,2 %) en conditions temps réel. Les résultats de cette
recherche mettent en évidence I'approche basée sur les ANN comme une solution efficace pour
le diagnostic des défauts photovoltaiques, offrant une précision accrue et un traitement plus
rapide. Ces résultats soulignent le potentiel de l'intégration des techniques ANN dans les
systemes de surveillance en temps réel pour améliorer les performances, la fiabilité et la sécurité
des installations photovoltaiques.

Mots-clés : Systemes photovoltaiques, Détection de défauts, Réseaux de neurones artificiels,
Logique floue, Optimisation de stratégie de guerre, Matlab/Simulink, Surveillance en temps
réel.
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Introduction

Photovoltaic (PV) systems play a crucial role in the conversion of solar energy into electrical
power. Nevertheless, the performance and reliability of PV systems are encountering various
real-time operational challenges. Researchers have identified these issues and proposed
numerous solutions. Factors like solar irradiance and module temperature [1], shading [2],
module degradation [3], soiling, and by-pass diode faults [4,5], impact the performance and
energy output of PV modules potentially accelerating their degradation. Accurate energy yield
forecasting under these varying conditions is crucial, making it important to consider these
factors during the design and operation of PV systems. Additionally, without proper
supervision, users find it difficult to identify the exact type of faults in the system. Although
increasing data for better monitoring can complicate the system, accurate fault detection and
diagnosis are essential for maintaining and ensuring the reliability of photovoltaic arrays.
Selecting the right indicators for monitoring enhances fault diagnosis techniques and simplifies
the system. Thus, power engineers need assistance in interpreting data and focusing on the most
useful information. To keep costs down, only the essential electrical features of the PV system
should be monitored and analyzed. Hence, the accurate diagnosis of these PV system faults is

imperative to ensure proper functionality and to avert significant economic repercussions.

With the rapid development of the PV industry and the increase in the installed capacity,
efficient operation and maintenance strategies are increasingly required [6]. In fact,
manufacturing, transportation, installation, and operating conditions can cause PV cell or
module failures [7], [8]. In the case of a PV array or power plant, which is composed of several
electrically connected modules, any fault in one cell or module affects the performance of the
whole array or system. The PV faults could cause a severe safety hazard, e.g., fire risk, electrical
shock, physical danger [9], or power loss [10]. Therefore, to assure the reliability, availability
and safety of the PV installations, their health status should be monitored regularly to prevent
from failures and contribute to an efficient condition-based maintenance policy. To this end,
efficient PV fault detection and diagnosis (FDD) strategies are required. Recently, several
methods have been suggested for detecting PV problems, such as the utilization of fuzzy logic
(FL) [11-14] and artificial neural network (ANN) techniques [15-17]. Both techniques have

shown significant potential in the field of fault diagnostics for PV systems.
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Problem statement

Despite the development of various defect diagnosis techniques, many existing methods
demonstrate limitations in accurately identifying compound faults, often simplifying them as
single faults. Additionally, while several deep learning approaches have been introduced, there
remains a lack of comprehensive comparative analysis with the latest methodologies. Most
current models also fall short in handling multi-label fault scenarios effectively. Therefore,
there is a need for a diagnostic approach capable of accurately identifying both single and
compound faults in offline and online real-time applications. This study addresses this gap by
proposing advanced diagnostic models and evaluating their performance against state-of-the-
art multi-label learning algorithms (SAE-CA, PSO-SVM-OVMD, UHWSPR-BFM, Random
Forest, BA-XGBoost, ANMSSA-MIFNet, and a weighted ensemble learning model) based on

monitored parameters, fault detection capabilities, and diagnostic accuracy.

Table GI.1. Performance comparison of the most recent fault detection methodologies.

Ref./Year Monitored Parameters Considered faults Method Accuracy
Detection & identification (%)
[18]/2021 Current, voltage and power Short-circuit, degradation, partial- SAE-CA 98.3%

shading, partial-shading with the by-
pass diode open-circuit defect,
partial-shading with the by-pass
diode short-circuit, short-circuit with
the degradation defect

[19]/2022  Current DC Arc fault PSO-SVM-OVMD 98.21%
[20]/ 2022  Power Line to line, line to ground UHWSPR- BFM 99.29%
[21]/2023  Current, voltage and power Line-to-line defects Random forest 99.17%

Open-circuit failures
Partial shading

[22]/ 2024  Current, voltage and power Short-circuited modules, BA-XGBoost 87.56%
disconnected strings
[23]/ Current, voltage and power Shading, short circuits, open circuits, ANMSSA-MIFNet 99.64%
2024 and degradation of solar cells
[24]/ T, Ir, Imp, Vmp, and, Line-to-line defects Random Forest 99.4%
2024 Maximum Power Point Open-circuit failures Classifiers 7
(MPP) Partial shading
[25]/ Short circuit current, open- line-ground (LG), line-line (LL), Weighted ensemble 98.37%
2024 circuit voltage, Maximum open-circuit (OC), string learning model
Power Point (MPP), half degradation, and array degradation

short-circuit current, and half  faults
open-circuit voltage

Thesis outline

The aim of this thesis is to evaluate the efficacy of two artificial intelligence techniques: fuzzy
logic (FL) and artificial neural networks (ANN) in diagnosing defects in photovoltaic (PV)
systems. The created model seeks to identify and categories single and multiple fault types that
may arise in photovoltaic panels for real-time applications, including partial shading, soiling,
open circuit, short circuit of one bypass diode, short circuit of two bypass diodes, bypass diode
shunting, and bypass diode disconnection. The detection methods depend on the analysis of

3



Introduction

three input ratios: Power Ratio (PR), Current Ratio (IR), and Open Circuit Ratio (OCR). These
ratios are derived from measurements and simulations performed under both standard and
defective settings. The comparison is conducted via simulation and experimentation utilizing
Matlab/Simulink® software. The model is tested with ASSPACE DS1104 controller to facilitate
real-time testing of its efficacy in diagnosing photovoltaic module, in terms of accuracy, speed
and feasibility in real conditions. The thesis comprises of four chapters, the last three chapters

representing original works that have been previously published.

Chapter One provides a general overview of photovoltaic (PV) systems, including an
examination of various types of faults that can occur. Additionally, a comprehensive literature

review will be presented, focusing on existing fault detection and diagnosis techniques.

Chapter Two is devoted entirely to PV array modeling. It begins with an introduction to the
One-Diode Model (ODM) of PV modules. Subsequently, five electrical parameters of this
model will be identified using the war strategy optimization algorithm (WSO) [26, 27].
Following by the implementation of fuzzy logic for fault diagnosis. The fuzzy logic models
were developed and simulated using MATLAB/Simulink before being experimentally
implemented on dSPACE DS1104 platform. The results demonstrated the effectiveness of
fuzzy logic in identifying and diagnosing various faults, such as partial shading, shorted bypass

diodes, and other common faults.

Chapter Tree focuses on the application of ANNs to PV system fault diagnosis. An ANN
model is trained using experimental databases and simulated using MATLAB/Simulink. This
model is then implemented on dSPACE DS1104 platform to evaluate its real-time performance.
The results demonstrate remarkable accuracy in term of detection and diagnosis single and

multi-type faults.

Chapter Four compares the two approaches (FL and ANN) in terms of accuracy, speed, and
real-time adaptability. Experimental results reveal that ANNs slightly outperform fuzzy logic,
particularly in terms of execution speed, making them a more practical solution for industrial

applications.

The work concludes with a conclusion that summarizes the main contributions of the thesis,
highlighting the value of the studied approaches for real-time monitoring of photovoltaic

systems, as well as the anticipated future prospects.
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Chapter 1 State of the Art in PV System Fault Diagnosis:
Types, Detection Methods, and Analysis

1.1. Introduction

A photovoltaic (PV) array fault refers to a defect that either reduces output power or poses a safety
hazard. However, variations in appearance due to manufacturing that do not impact safety or
performance are not classified as faults. Outdoor PV arrays are exposed to various internal and
external factors, making them susceptible to a wide range of faults that can affect nearly all
components. These faults can result in different degrees of degradation, power loss, or even fire
hazards. Therefore, a thorough understanding of common PV array faults is crucial before
developing effective detection and diagnosis strategies. This chapter aims to provide a
comprehensive state of the art on common PV array faults and diagnosis methods. Section 1.2
introduces the structure of PV panel and protection system, while in Section 1.3, we present the faults
in detail and their impact in terms of power loss and safety. In Section 1.4, we analyze the fault

detection techniques, and Section L.5 closes the chapter.

1.2. Description of a photovoltaic system

Solar cells are typically arranged in an assembly of one or more units and then encapsulated
under glass to form a photovoltaic (PV) module. A PV generator consists of multiple
interconnected modules, creating a unit capable of generating high continuous power suitable
for standard electrical equipment (Figure 1.1). To enhance the output voltage and current, PV
modules are usually connected in a series-parallel configuration. These interconnected modules
are mounted on metal structures and tilted at an optimal angle based on the installation location,

collectively referred to as a PV array [28].

Figure 1.1. Photovoltaics: Cells to Modules to Arrays.
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1.2.1.Photovoltaic Conversion

A photovoltaic cell is a device that converts sunlight into electricity. It works by using the
properties of semiconductor materials to absorb light and create an electric current. The
materials used to make photovoltaic cells are chosen based on how easily they can release
electrons when exposed to light. When these electrons are released, they flow through the cell
and create an electrical current. This phenomenon is called the photovoltaic effect. Figure 1.2

shows the structure of a silicon photovoltaic cell.
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Figure 1.2: Structure of a of a silicon photovoltaic cell.

1.2.2 Current—voltage and power—voltage characteristics

Most commonly available solar cells have a diode structure, consisting of a junction between
p-type and n-type semiconductor materials. In some designs, an insulating layer is added to
form a p-n junction, or multiple junctions are created. However, in terms of electrical behavior,
the overall characteristics remain similar. The relationship between current (I) and voltage (V)
is ideally described by Eq. (1.1), which represents the standard diode equation. This equation

incorporates the light-generated current I, and a diode factor (n), which accounts for the

recombination mechanisms within the cell, as shown in Figure 1.3.
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Whereas

V= Voltage of the cell [V].

q = Electron charge.

k = Boltzmann constant.

T = absolute temperature [°K].

Isc = Saturation current of the diode [A].
Rs = Series resistance.

Rsh = Shunt resistance.

n = Ideality Factor.

V+R5.I> 1] V + Rs.1

P (1.1)

(1.2)

The I-V curve represents the fundamental relationship between the output current and voltage

of a solar cell, providing crucial insights into its performance and operational behavior under

different conditions, as shown in Figure 1.4. Excluding the known parameters, there are five

unknown parameters Iph, lo, Rsh, Rs, n that are needed to be estimated.
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Figure 1.4: Current voltage (IV) curve of a solar cell.

1.2.3 Structure of a photovoltaic module

The photovoltaic module is a collection of assembled cells designed to generate usable
electrical power when exposed to light. This series assembly must be protected to make the
panel suitable for outdoor use. The cells are indeed fragile and susceptible to corrosion,
requiring mechanical protection and shelter from harsh weather conditions such as humidity
and temperature variations [28]. A "standard" module typically contains 36 or 72 cells, though
modules with 40, 54, or 60 cells are also available on the market. Figure I-5 illustrates the
structure of a photovoltaic module, showing its front and back sides with 36 cells [29].
Depending on the manufacturer and the number of cells, each module may include from 2 to 5
bypass diodes [30]. The cells are connected in series to form a PV array (figure 1.5). Each array
is connected in parallel with bypass diodes in an anti-parallel configuration to protect them from

reverse operation (for example, during shading).

The ideal approach is to connect a bypass diode for each cell [31], but this technique is not
commonly used due to its complexity and high cost. Two different configurations are possible
for the installation of bypass diodes, as shown in Figures 1.6 [32]. Typically, there are 18 cells
per bypass diode; however, this number can vary among different manufacturers of the
modules. In the case of PV modules with overlapped diodes (see (b) in Figure 1.6), these
proposals are not widely applied due to manufacturing difficulties. In contrast, in PV modules
with non-overlapped diodes (see (a) in Figure 1.6), energy losses are caused solely by the

consumption of the bypass diodes.
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Figure 1.5: Structure of a photovoltaic module.
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Figure 1.6: PV modules with non- overlapped and overlapped bypass diodes.
1.2.4 Protection System
Several types of protection can be used in a photovoltaic installation, similar to other electrical
installations: protection for operators, protection against lightning, and protection for the PV
generator. Since we will be discussing faults or anomalies that lead to decreased production, we

will focus solely on the components that protect the PV generator.

1.2.4.1 Bypass Diode

As mentioned earlier, the bypass diode is connected in parallel with a group of cells to protect
the weaker cells from reverse bias (see Figure 1.7). Under the influence of factors such as

shading or temperature variations, the electrical characteristics of series-connected photovoltaic
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cells may differ and their electrical properties can change due to shading or temperature
differences. Cells that receive more sunlight generate more current than shaded ones, creating
an imbalance. This can lead to overheating, which may deform or even break the glass panel of
the solar module. To prevent excessive heating, bypass diodes are used. When a submodule is
shaded, its bypass diode activates, allowing excess current to flow through it instead of the

shaded cell. This helps reduce overheating in the affected area as shown in Figure 1.8 [33].

PV Module

Bypass Diode

\ : I Group
PV . 1 1
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\\ \f Floa ) +
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Figure 1.7: Protection of a PV generator by bypass diode and blocking diode.
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Figure 1.8: PV module under shading of a cell.

11



Chapter 1 State of the Art in PV System Fault Diagnosis:
Types, Detection Methods, and Analysis

1.2.4.2 Blocking Diode

The voltage produced by each string may be different. When these strings are connected in
parallel to form a field, the string with the lowest voltage can absorb reverse current from the
other strings. This leads to reduced production, and the modules in the string experiencing
reverse current could also be at risk of failure. To prevent these reverse currents, a blocking

diode is placed at the end of each string, as shown in Figure 1.7 [34].

1.3 Losses, defects, and possible faults in PV systems

1.3.1. Fault classification

Photovoltaic arrays and cells are highly sensitive instruments that must be installed in
unobstructed surroundings to optimize solar radiation exposure. Nevertheless, existing in such
environments exposes them to considerable environmental and physical stress all the time. This
stress can result in physical damage, including corrosion, cracks, and delamination, so
diminishing their effectiveness. Photovoltaic cells depend on sun radiation to generate electrical
current; in its absence, they are incapable of producing any current. Partial shading of the array
can result in significant variations in the IV properties, resulting in elevated temperatures and
perhaps catastrophic damage to the cells. Alongside environmental and physical causes,
electrical problems frequently occur in photovoltaic systems [35-37]. Figure 1.9 presents the

classification of PV faults.

| o l
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> Snail trails E . Temperature Fault E Contamination
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i . Open Circuit /> irradiance
E . Short Circuit : distribution
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. Line-Line Fault

Figure 1.9: Classification of PV faults.
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1.3.2. PV array faults

The following sections provide a detailed explanation of typical PV faults associated with the

three levels.
1.3.2.1. Cell-level faults

Cell-level faults are PV faults that impact an individual PV cell. While they may gradually
extend to neighboring areas, they typically do not affect the entire surface of the PV module.

Table 1.1 provides an overview of these faults along with corresponding images.

Table 1.1: Cell-level faults.

Fault Description Example

Cell crack Cell cracks are fractures in the silicon substrate of
photovoltaic cells caused by mechanical stress,
often invisible to the naked eye. They can occur
during manufacturing, transportation, installation,
or operation. The cracks vary in shape, length, and
orientation within a single solar cell. The resulting
power loss depends on the extent of the ‘inactive’
area affected by the crack.

Discoloration is generally related to the PV
modules using EVA (Ethylene Vinyl Acetate) as
the encapsulant material. Discoloration refers to
the yellowing or browning of PV cells. It causes a
change in the transmission of solar irradiance
reaching the cell surface and consequently a
reduction in production. Nowadays, this fault is
greatly eased for the PV modules with new
encapsulant  material. For example, for
thermoplastic polyolefin, the discoloration rate is
reported around 9 times lower [39].

Discoloration

Snail track Snail tracks appear as grey or black discoloration
on the silver paste of the front metallization in
screen-printed solar cells. This discoloration
typically develops between three months and one
year after the PV module is installed. Studies in
[40,41] indicate that humidity plays a role in the
formation of snail trails. However, there is no
evidence that this phenomenon reduces the
efficiency of the PV module or affects its output
power.
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Delamination Delamination is the adhesion loss between the
glass, encapsulant, active layer and back layer. For
thin-film PV type, the Transparent conductive
oxide (TCO) may as well delaminate from the
adjacent glass layer. Bubble is also a form of
delamination. Delamination will lead to optical
reflection and therefore cause the decrease in
power output. It also causes moisture penetration,
which then leads to various chemical and physical
degradation.

1.3.2.2. Module-level faults

At the module level, common PV faults can be classified into three main categories: shading,
structural, and electrical faults. Additionally, hot spots resulting from a combination of diode
faults, partial shading, or mismatches are also considered module-level faults. A detailed

overview of these faults is provided in Table 1.2.

Table 1.2: Module-level faults.

Fault Description Example

Shading/soiling Shading and partial shading (PS) are
typically caused by obstructions such as
buildings, trees, or moving clouds. Soiling,
on the other hand, occurs when the PV
module's surface is covered by snow, dirt,
dust, or other particles. Both shading and
soiling can be categorized as either hard or
soft, as well as permanent or temporary and
leads to a current reduction in the shaded
cells, leading to varying degrees of power
loss.

Frame The primary cause of frame breakage is the
accumulation of heavy snow, which
gradually moves downward and enters the
gap between the frame and the glass. This
process deforms the module and can cause
the frame to detach from the PV glass,
ultimately leading to power loss.

breakage
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Back sheet  The causes of back-sheet adhesion loss in PV
modules vary based on the material type but
are generally similar to those of
delamination, including factors such as
temperature, moisture, and mechanical
stress. This issue leads to insulation failure,
increasing the risk of exposure to active
electrical components, particularly when it
occurs near a junction box or the module's
edge.

Adhesion loss

[46]
Junction Box Junction box faults commonly include poor
fixation, faulty wiring, and broken
connections. These issues are primarily
caused by energy overstress, cable rework
during installation, connector rework, and
prolonged heat exposure. Such faults can
lead to moisture ingress, internal arcing, and
power loss.

fault

Diode fault A common diode fault occurs in the bypass
diode (BPD) due to excessive current levels
and inadequate or improper heat dissipation.
Limited airflow within the junction box also
plays a significant role, especially during
rapid transitions between shadow and
sunlight. A burnt BPD can result in a short |
circuit, open circuit, shunted diode, or an [48]
inversed diode, leading to varying degrees of
power loss.

Burn mark  Partial shading combined with a BPD fault or
other mismatch issues, such as a low

resistance defect in c-Si, can result in energy I"
being consumed in the mismatched area

rather than being generated. This leads to

localized overheating of the cell and the

formation of burn marks. Additionally, a DC

arc fault can also cause burn marks,

potentially  resulting in  overheating, -

[49]

delamination, or material melting.
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Shunt Hot Partial shading can cause a cell to enter a
reverse-biased voltage state, to which thin-
film cells are particularly sensitive. This
results in module current concentrating along
the shunt path, leading to the formation of hot
spots. Unlike hot spots in c-Si modules,
where the BPD helps limit reverse voltage,
thin-film modules lack this protection. While
overheating is less likely, this condition can
lead to glass breakage and an increased risk
of electrical shock.

PID Potential Induced Degradation (PID) is a
performance loss in photovoltaic (PV)
modules caused by high voltage differences
between the solar cell and grounded
components, such as the module frame. This
voltage stress can lead to leakage currents
and the migration of ions (like sodium)
through the encapsulant, resulting in reduced
power output and degraded cell performance.
PID typically occurs under high system
voltages, elevated temperatures, and humid
conditions, and can significantly shorten the
lifespan of PV modules if not properly [51]
mitigated.

Abnormal Abnormal degradation is a combined effect
of multiple faults, such as delamination,
bubbles, snail tracks, PID, and the associated
corrosion of the PV module [52]. Its impact
is primarily observed through power loss and
alterations in the slope of the module's I-V
curve.

Spot

degradation

1.3.2.3. Array-level faults

At the array level, the main type of fault is the connection fault, which generally includes the

earth fault, the line fault and the arc fault, as shown in Table 1.3.
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Table 1.3: Array-level faults

Fault Description Example

It occurs when an unintended low-
Ground ;hedance path forms between the

fault  Cyrrent Carrying Conductor (CCC) and

(GF) the ground. In grounded PV systems, | -| <F_H <|' i '*@Power Converter
ground faults result in a high current |} = _ ====:__ . "T—— ' —|£ _______
flowing through a designated circulating :
path. In ungrounded systems, they
create a residual magnetic field between
the forward and return current flow. This : <H_'r <H_:+ Q:L - '}ystem
leads to changes in insulation resistance |1 ... P30 St vetel I Grounding
and a sustained power loss.

Line-line ;.. (o Line Fault (LLF) occurs due to

fault an unintended low-resistance path |p----------- =

LLF between two  Current Carrying == =5 ==

( ) Conductors (CCC) with different BN N LN 7=====
electrical potentials. It can result from |f -LinelineFault ~ 2" oy
poor insulation in string connectors, L A : : ANy -

accidental short circuits between CCCs, ||| '==== L =
improper mounting, or external damage.

This fault causes a high reverse current
determined by the potential difference at
the fault location flowing through the
faulty path, leading to persistent power
loss. LLF is categorized into two types:
intra-string and  cross-string LLF. Line-line Fault
Equipment damage: May damage

modules, strings, or MPPT units.

Standard detection method:

Current/voltage monitoring, insulation

resistance test.
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Arc fault Various external factors can cause
(AF) discontinuity or insulation failure in
Current Carrying Conductors (CCC),
creating an air gap that leads to an arc |p---cccccacn oo
fault. Arc faults are classified into two
types: series and parallel AF, with the . o _l';
:
i

latter further divided into intrastring, ] - - SECSArS AN L
cross-string, and parallel-to-ground
faults. These faults can occur at almost
any connection point or structural

parallel

component within the PV array, Are Fault HEE

including cells, busbars, modules,
diodes, strings, and safety devices. They
generate brief but extremely high
temperatures that can burn the module’s
metal coating. Additionally, arc faults
produce high-frequency components,
leading to  significant  nonlinear
distortions in current and voltage.
Equipment damage: Can destroy
connectors, modules, and protective
devices. Standard detection method:
Needs high-frequency signature
analysis or arc fault detection devices.

1 I
T -

1 A
==

Intra-strihg parallel
Parallel Arc Fault to ground Arc Fault o

Below, we present the impact of defects on the various parameters of the PV panel (see Table
1.4).

Table 1.4: Impact of different defects on cell parameters [33].

Nature of defects Affected parameters

Shading (leaves, snow, Variation in Iph
sand, etc.)

Current A]

== Shading 50%
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== Shading 25%

= Shading 75%

=====Shading 100%
r
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Voltage [V]

[t
3]

Cell heating Variation in T
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As shown in Figure 1.10, the most common degradation modes in modules for the last 10 years
were hot spots (33%) followed by ribbon discoloration (20%), glass breakage (12%),

encapsulant discoloration (10%), cell breakage (9%), and potential-induced degradation (PID,
8%) [53].

= Hot spot

= Ribbon discoloration

Encapsulant © Glass breakage
discoloration

Encapsulant discoloration

= Cell breakage

= PID

m Etc.

Figure 1.10: Representative degradation modes of silicon PV modules for the last 10
years [53].

1.4 Fault detection and diagnosis in PV systems

A fault detector is an additional component in both off-line and on-line PV systems, designed
to assist operators in identifying faults, determining their type, and locating them within the

system. It comprises various sensors, processing units, actuators, transducers, protective relays,
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and circuit breakers, and can be installed at any node marked by the dashed polylines. At the
output level, the fault detector features alarms, buzzers, and various Graphical User Interfaces
(GUI) to notify field workers of any fault occurrences. The fault detection process is carried out

in two key stages: monitoring and diagnosis.

A. Monitoring

To assess the performance of a PV system, the monitoring system gathers and analyzes various
parameters such as voltage, current, and power [54]. This process is essential as a preliminary
step before fault detection, ensuring continuous tracking of electrical power generation. Sensors
serve as the primary input for data acquisition, with the collected data being transmitted through
signal processing units. In the final stage, the data is stored for further analysis [54,55]. Figure
1.11 illustrates the cascaded monitoring process of a PV system, integrated within a fault

detection framework.

Data
Aquisition

Signal
processing

Storage &
Analysis

Figure 1.11: Block diagram of PV monitoring system.
B. Diagnosis

The monitoring system outputs acquired data, which serves as the primary input for the fault
diagnosis framework. By comparing this data with reference values, the system determines
whether a fault is present or not [56,57]. The data source whether from the DC or AC side of
the PV system helps guide the fault detector in its investigation. Figure 1.12 illustrates the
sequential steps of PV fault diagnosis, starting with data analysis and concluding with the

activation of alarms.

PV Fault

Monitoring

system Detection

Figure 1.12: Block diagram of PV fault diagnosis scheme.
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1.4.1 Faults Detection Techniques

Photovoltaic (PV) systems are prone to various faults that can degrade their performance,
reduce energy output, and cause safety hazards. To ensure reliability and efficiency, different
fault detection and identification techniques have been developed [58-61]. These techniques
can be broadly classified into visual inspection, imaging-based techniques, electrical analysis,
signal processing, analytical monitoring, and other advanced methods. The following sections
provide an in-depth discussion of each approach. Figure 1.13 illustrates the Faults Detection

and Identification techniques investigated in this sub-section.

< Fault Detection and Identification Techniques >

>I Q, Visual Inspection I > Physical Faults

Electrical Faults

>I R Signal Processing

@ Infrared (IR) electroluminescence (EL) Physical +
—>
imaging inspections Enviromental Faults
) 3 Electrical +
I-V Curve analysis Enviromental Faults

Physical + Electrical

A 4

QO {23 Analytical Monitoring

+ Enviromental Faults

> @ Other Methods

Figure 1.13: Faults Detection and Identification techniques.

1. Visual Inspection

Visual inspection is the most straightforward method for fault detection in PV systems. It
involves manually examining solar panels, wiring, and electrical connections to identify visible
defects. Technicians physically inspect the PV modules for signs of wear, damage, or dirt
accumulation.

Some of the common issues detected through visual inspection include:

e Broken or cracked solar cells — Can be caused by external impacts, thermal stress, or
material defects.

e Burn marks or discoloration — Indicate overheating, electrical faults, or aging of the
module.

e Loose connections and damaged wiring — Poor connections can lead to power losses
and even fire hazards.

e Dust, dirt, and shading effects — Obstructions on the module surface can reduce power
generation efficiency.
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While visual inspection is useful in detecting physical faults, it has several limitations. It is
time-consuming, labor-intensive, and cannot identify internal or electrical faults. As a
result, it is often combined with other advanced techniques to provide a more comprehensive

fault detection approach.
2. Infrared (IR) and Electroluminescence (EL) Imaging Inspections

Numerous Operations and Maintenance firms provide routine Infrared (IR) and
Electroluminescence (EL) imaging inspections of photovoltaic (PV) plants to guarantee optimal
performance and safety of the PV array [62]. Infrared (IR) and electroluminescence (EL)
imaging are non-destructive measurement techniques that can deliver high-resolution images
of photovoltaic (PV) modules in real-time. Nonetheless, not all imperfections in PV modules
result in a temperature rise; thus, a combination of infrared and electroluminescence monitoring
techniques is essential for accurately identifying the most prevalent flaws in PV modules [63].
In recent years, numerous Machine Learning (ML) techniques have been employed to
autonomously process sequences of images captured by infrared (IR) and electro-optical (EL)
cameras mounted on Unmanned Aerial Vehicles (UAVs) [64-67], significantly reducing
inspection durations and precisely analyzing diverse defects and failures in photovoltaic (PV)
arrays. Figure 1.14 illustrates the imaging inspection procedure utilizing an infrared camera
mounted on the drone platform to identify and pinpoint anomalies and failures inside the
photovoltaic array. The IR and EL imaging approaches are complimentary, each possessing
distinct strengths and shortcomings [63]. While these procedures necessitate complex

equipment.

Setup& || IRimage . : Image | | Detect & identify
p| acquisition | re-processsing | processing > anomaly in
of the PV array using deep in PV array
learning
model

config

Figure 1.14: Imaging inspection process utilizing an IR camera [68].
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3. I-V Curve Analysis

I-V (current-voltage) curve analysis is a commonly used electrical method for diagnosing PV
system faults. This technique involves measuring the I-V characteristics of a PV module or

array and comparing the results with a reference (healthy) curve [69,70].

Key parameters extracted from the I-V curve include:
e Short-circuit current (Isc): The maximum current.
e Open-circuit voltage (Voc): The highest voltage output when no load is connected.
e Maximum power point (Pmax): The point where the module generates peak power.
By analyzing deviations in these parameters, different types of faults can be identified:

e Open-circuit faults: Sudden drops in current indicate disconnected panels or broken
interconnections.

e Short-circuit faults: A significant reduction in voltage suggests a bypass diode failure
or internal short-circuiting.

o Partial shading effects: A distorted I-V curve indicates uneven solar exposure across
the PV array.

I-V curve analysis is widely used in both simulation and real-time monitoring. However, it

requires accurate data acquisition and controlled test conditions for effective diagnosis (see

figure 1.15).
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Figure 1.15: [llustrates the Smart [-V Curve diagnosis method developed by Huawei [71].
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4. Signal Processing Techniques

Signal processing methods analyze electrical signals, such as voltage, current, and power, to
identify fault patterns. These techniques utilize mathematical transformations to extract features

from measured data and detect anomalies as shown in Figure 1.16 [72-75].

Common signal processing approaches include:

o Fast Fourier Transform (FFT): Converts time-domain signals into frequency domain
to detect periodic faults.

e Wavelet Transform (WT): Identifies transient variations in electrical signals caused
by sudden faults.

o Hilbert-Huang Transform (HHT): Used for analyzing nonlinear and non-stationary
electrical patterns in PV systems.

Signal processing techniques are highly effective for detecting arc faults, ground faults, and
inverter malfunctions. However, they require advanced computational tools and expert

knowledge for accurate implementation.
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Figure 1.16: Presents a fault detection diagram that analyzes the output signal to identify
anomalies and classify faults in the PV system [30].

5. Analytical Monitoring

Analytical monitoring techniques use mathematical models, statistical tools, and artificial
intelligence to detect faults in PV systems. These methods are particularly effective for real-

time fault diagnosis and classification.
5.1 Real-Time Difference Measurement (RDM)

RDM compares real-time voltage, current, and power measurements with expected values
under normal conditions. Any deviation beyond a predefined threshold is flagged as a potential
fault. This method is widely used in real-time monitoring systems for rapid fault detection.

Threshold logic serves as the fundamental mechanism for executing a binary decision. The
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threshold crossing, as indicated by the feature, signifies the system's health status, either

functioning properly or malfunctioning [76-80].
5.2 Statistical Approaches (SA)

The statistical qualities of features can also be utilized for decision-making, as previously
indicated for feature extraction. Numerous tools for statistical analysis are documented in
literature [81]. Regression analysis is a collection of statistical methods used to estimate the
associations between a dependent variable and one or more independent variables [82,83]. The
aim of regression is to determine the coefficients of the curve (linear or non-linear) that most
accurately fit the data based on an optimization criterion. It can be utilized for both prediction

and categorization.
5.3 Machine Learning Techniques (MLT)

Machine learning (ML) models use historical data to train algorithms that can automatically
detect and classify faults. Machine Learning (ML) techniques have become essential in PV
fault detection due to their ability to analyze large datasets, recognize complex patterns, and
make real-time decisions [84]. These methods rely on historical and real-time data to identify
deviations from normal operation, allowing for efficient classification of different fault types
[85]. By utilizing intelligent algorithms, ML techniques reduce the need for manual inspections,
enhance system reliability, and improve predictive maintenance. Among the most commonly
used ML techniques are Artificial Neural Networks (ANNs), Support Vector Machines
(SVMs), Fuzzy Logic Systems, and Decision Trees (DTs).

o Artificial Neural Networks (ANNs):

Artificial Neural Networks (ANNs) are computational models inspired by the structure
and function of the human brain [86]. They consist of interconnected layers of artificial
neurons that process input data and learn from experience. In PV fault detection, ANNs
are trained using datasets containing various system parameters, such as voltage,
current, and power, enabling them to classify normal and faulty conditions accurately.
The multi-layered structure of ANNs allows them to extract meaningful features from
complex, nonlinear data, making them highly effective in diagnosing different types of
faults [87]. Once trained, an ANN can automatically detect abnormalities in real-time,

making it a powerful tool for intelligent monitoring of PV systems.

e Support Vector Machines (SVMs):
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Support Vector Machines (SVMs) are supervised learning models used for classification
and regression tasks [88]. They operate by mapping input data into a high-dimensional
space and finding an optimal hyperplane that best separates different fault categories.
SVMs are particularly effective when dealing with binary classification problems, such
as distinguishing between normal and faulty PV system conditions. By using kernel
functions, they can also handle complex, nonlinear relationships between input
parameters [89-90]. Their ability to generalize well with limited training data makes
them a reliable choice for PV fault detection, ensuring accurate classification even when

environmental conditions vary.
o Fuzzy Logic Systems:

Fuzzy Logic Systems provide a rule-based approach to PV fault detection by handling
imprecise or uncertain information. Unlike traditional binary classification methods
[91], which make rigid decisions, fuzzy logic assigns degrees of membership to different
fault conditions, allowing for more flexible and human-like reasoning. The system relies
on a set of IF-THEN rules that describe how input variables, such as voltage and current,
relate to potential faults. By processing uncertain or noisy data, fuzzy logic effectively
diagnoses faults and provides interpretable results, making it a valuable tool for real-

time monitoring in dynamic PV environments.

o Decision Trees (DTs)
DT is a decision-making instrument that utilizes a tree-structured model [92]. It
typically operates from top to bottom, selecting a variable at each stage that optimally
divides the set of elements [93]. It typically comprises three types of nodes: root node,
child nodes, and leaf nodes. The primary challenge in creating a decision tree is to
identify the optimal splits. In PV fault detection, DTs segment data based on predefined
conditions, allowing for a clear and structured classification of different fault types.
Their ability to break down complex relationships into an intuitive, rule-based system

makes them a widely used approach in automated fault diagnosis.

6. Other Methods

In addition to the above approaches, employing a signal transmission technique specifically for
the PV array enables the detection of local disconnections in interconnect cables within PV

modules and open-circuit failures of bypass diodes. The signal transmission device is compact,
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lightweight, and cost-effective. It comprises two components: a transmitter and a receiver [94].
The identification of each defective module inside arrays facilitates rapid fault detection;
however, this necessitates a substantial financial commitment owing to the enormous quantity

of sensors needed.
5. Conclusion

This chapter has presented an overview of photovoltaic (PV) systems, their prevalent defects,
and the approaches employed for fault detection and diagnosis (FDD). We have examined the
operation of photovoltaic systems, the potential issues they may face, and the several methods
utilized to identify and resolve these problems. A varied array of tools is available for
monitoring and supervising photovoltaic (PV) systems, varying from traditional model-based
procedures to advanced artificial intelligence (Al) technologies. These methodologies include
system performance simulation and data analysis with machine learning techniques, all directed
towards achieving optimal system efficiency and reliability. This chapter's findings enhance our
comprehension of PV system maintenance and establish a foundation for further progress in
renewable energy technology. In our pursuit of a more sustainable future, the proficient
management of photovoltaic system defects will be essential for optimizing energy output and

reducing environmental impact, which is the objective of the next chapters.
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2.1. Introduction

Fault detection and diagnosis in photovoltaic (PV) systems are crucial for ensuring their
efficiency and longevity. This chapter presents both simulation and experimental approaches to

identifying, classifying, and localizing various PV faults using fuzzy logic-based techniques.

In the first part, a Fuzzy Logic Classifier is developed in Matlab/Simulink to diagnose eight
types of faults occurring in PV cells, series resistance, shunt resistance, and bypass diodes. A
diagnostic model is designed to simulate both healthy and faulty conditions of a PV panel,
enabling the identification of faults through two distinct algorithms. The first algorithm
employs a thresholding method to detect faults with distinct symptoms, while the second

utilizes a fuzzy logic classifier to distinguish faults with overlapping characteristics.

The second part focuses on the experimental validation of the proposed fault detection
approach. A fault classification algorithm is implemented to diagnose different shading
conditions and short-circuit faults in bypass diodes. This method leverages an experimental
database of climatic and electrical parameters from a PV panel, with the developed model
integrated into Matlab/Simulink and interfaced with dSPACE DS1104 controller for real-time
diagnosis. By combining simulation and experimental analysis, this chapter provides a
comprehensive framework for detecting and classifying PV faults, enhancing the reliability and

performance of solar energy systems.

2.2. Part 1: Modeling and simulation

2.2.1. Photovoltaic module modeling

To evaluate the performance of photovoltaic panels under different operating
conditions, the single diode model is generally considered as the most used model for describe

the electrical behavior of PV cell as shown in Figure 1.3.

2.2.1.1 PV module characteristics

The PV panel used in this work is a SUNTECH PV module, composed of 36 PV cells and two
bypass diodes as shown in Figure 2.1, with power 46.71 watt of type poly crystalline silicon

and its electrical characteristics are presented in Table 2.1.
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Table 2.1. Electrical characteristics of the SUNTECH PV module. + |q | |q -

Electrical characteristics

Pmax: Maximum power 46.71W
Vmp: Voltage at Maximum power  14.15V
Imp: Current at Maximum power 3.3 A

Voc : Open Circuit Voltage 208V
Isc: Short Circuit Current 3.67 A

The total number of cells connected 36
in series
Number of bypass diodes 2

Figure.2.1: Schematic

of PV panel.
2.2.1.2 PV Module Parameters Identification

¢ Fundamental Principle
The key objective is to reduce the error between the simulated and experimental results in the
evaluation of the solar PV cell parameters. The root mean square error (RMSE)is an objective
function that can be built in such a way that optimal values for the solar PV model parameters

can be achieved. As given bellow:

N
1
RMSE = N(Z[lmeas — lestim]? (21)
i=1

Where:

V + Rs.1 V +Rs.1
—) — 1] - (2.2)

Rsh

Where N is the number of samples, /meas is the measured current, /estim is the calculated

F U o R Reym) = Ty = Ty [exp (==

current which obtained by solving the nonlinear Equations (2.2) for a given voltage value using
the Newton Raphson method. The current RMSE is calculated using these current values by

using Equation (2.1).

The objective of this part is to use metaheuristic optimization techniques to estimate the
parameters of a solar PV panel based on current and voltage measurements. The objective
function is based on the RMSE values between the measured and expected current values. The

parameters identification schema is highlighted in Figure 2.2.
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e War Strategy Optimization (WSO) algorithm

Figure. 2.2: Schematic of the experimental proposed technique.

The War Strategy Optimization (WSO) Algorithm is inspired by ancient kingdoms' military

tactics during wars, where armies (infantry, chariots, elephants) arranged themselves into

specific formations called Vyuha to achieve strategic objectives. The King and Commander

coordinated troop movements using visible signals (like flags) and audible signals (like drum

beats). The strategy adapted dynamically based on real-time battlefield situations.

The main steps in WSO include:

Random Attack: Troops are randomly and uniformly distributed; the King (leader) directs

multiple army chiefs.
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Attack Strategy: Focuses on identifying and exploiting the opponent's weaknesses. Soldiers
adjust their positions dynamically based on the King’s and Commander’s locations, promoting

successful soldiers and reverting unsuccessful ones.

Signaling by Drums: Drums are used to communicate strategic changes instantly to the

soldiers.

Defense Strategy: Prioritizes protecting the King by forming a defensive chain around him,
with soldiers adjusting positions relative to neighbors and the King, while exploring the

battlefield to confuse the enemy.

The WSO algorithm is dynamic, adaptive, and decentralized, mimicking these historical tactics

to solve optimization problems.
e Mathematical modeling of the war strategy

The War Strategy Optimization (WSO) Algorithm models two main war strategies inspired by
ancient battlefield tactics. In the first strategy, each soldier updates their position based on the

King's and the Commander’s locations. This attacking model is pictorially explained in Figure

2.3.
R
i © W1

X+t

2*rand*(C-K)

w; <1

wW;>1

Figure. 2.3: Attack strategy in WSO.

Initially, all soldiers have the same rank and weight, symbolizing equal status. The "King" is
the soldier with the highest attack force (best fitness value). As the war progresses, soldiers who

successfully improve their attack force by moving to better positions are promoted in rank, and
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their weights are updated accordingly. The movement rule combines the influence of the King
and the Commander, and random variations. Where X;(#+1) is a new position, X;(?) is the
previous position, C is the position of the commander, K is the position of the King, Wi is the

weight.

X(t+1) =X;t) +2%x0x(c—K)+rand x (W; x K — X;(t)) (2.3)

If a new position (fitness) leads to a worse attack force (F),), the soldier reverts to their previous

location (F)).

X(t+1)=XE+1))x(F<F)+(X®)x(F=F) (2.4)
If the soldier updates the position successfully, the rank (Ri) of the soldier will be upgraded.
Ri=Ri+1)x(F,<FE)+®R)x(F,=F) (2.5)

The weights dynamically adapt over time, encouraging large exploratory moves at the
beginning of the war and smaller, more precise movements toward the end. Where a is a tunable

parameter.

R;

Wy=W,x (1-—0>W—
l i % ( Max_iter

)* (2.6)

In the second strategy, position updates depend not only on the King and Commander but also
on a randomly selected soldier, which introduces more randomness into the search process. This
enhances the algorithm’s exploration ability, allowing the army (search agents) to cover a

broader search space and avoid premature convergence.

X(t+1) =X;(t) + 2 X 0 X (K = Xpgna(t)) + rand X W; x (C — X;(t)) 2.7)

e Parameters Identification Results
The War Strategy Optimization (WSO) technique is employed to ascertain the five unknown
parameters Iph, lo, Rsh, Rs, and n of a single diode model with conjunction of the Newton
Raphson method. This technique is employed to compute the value of the objective function
during parameter optimization. Throughout the optimization process, the algorithm sends the
photovoltaic parameters to the Newton-Raphson method for the computation of the objective

function. Subsequently, the Newton-Raphson approach resolves the nonlinear equation in (2.2)
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at a defined voltage, producing an output current with an absolute error (¢) significantly less

than 1E-4.

Table 2.2 displays the estimated parameters and the RMSE errors derived from WSO [26,27].
Figure 2.4 illustrates the convergence curves for the established goal functions, whereas Figures
2.5 and 2.6 compare the I-V and P-V curves of the photovoltaic cell utilizing both empirical
and calculated parameters. These attributes were modeled via Simulink/Matlab under standard

test conditions (STC). The basic steps of the WSO algorithm are summarized in Figure 2.7.

Table 2.2. The final identified parameters of the SUNTECH PV module.

Extracted Parameters

RS Rsh Iph l() n RMSE

0.0356Q 18.4709Q 3.6658A 8.3e-10A 1.1567 2.245253e-07
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Figure. 2.4: The convergence rate of the WSO algorithm during the
parameter extraction process for PV module.
The comparison of the extracted parameters from the WSO of the experimental and anticipated
I-V and P-V curves demonstrates a strong concordance in both results and structure (refer to
Figures 2.5 and 2.6). The smallest given RMSE (2.245253e-07A) from Table 2.2 and the best
parameters fit expressed the efficiency of the proposed optimization algorithm and its

convergence rate. Furthermore, as stated in [95], the highest absolute error remains below 0.06,
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reinforcing the low RMSE value does not surpass 0.05 as a maximum value demonstrates the

remarkable predictive accuracy of the WSO algorithm in selecting optimal parameter values.

Moreover, the algorithm efficiently achieves this with a satisfactory convergence rate, as

depicted in Figure 2.4.
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Figure 2.7: Concept of objective function calculation with WSO.
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To evaluate the performance of the proposed WSO algorithm, a comparative study was
conducted using the ISOFOTON 106/12 PV module alongside two other optimization
algorithms from the literature [96]: Artificial Bee Colony (ABC) and Practical Swarm
Optimization algorithms (PSO). As shown in Table 2.3, the results clearly demonstrate that the
WSO algorithm outperforms both ABC and PSO.

Table 2.3. The comparative study of the three optimization algorithms.

Item WSO ABC PSO
Iph 6.5579 6.73 6.73
lo 5.0308e-4 1.38e—05 le-5

n 63.018 61.76 60.24
Rs 0.21 0.12 0.13
Rsh 105 103 95.50
RMSE 0.012 0.015 0.018

Objective space

10

10

Best score obtained so far

—

| ——
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Iteration

Figure 2.8: Convergence rate of WSO algorithm during the
extraction process of ISOFOTON106/12 PV module.

2.2.2 PV Module Faults

Although it is desirable to maintain a regular solar radiation over the panel with each cell
performing at its Maximum Power Point (MPP). In reality, PV panels often experience several abnormal

conditions that negatively affect their efficiency and the total output power. In this part, eight faults on
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PV module are chosen to be achieved as listed in Table 2.4 with Schematic diagram of PV panel

with various faults highlighted in Figure 2.9.

Table 2.4. Different type of faults chosen for the diagnosis.

Symbol

Fault type

F1:
F2:
F3:

F4:

F5:
Fé:
F7:
F8:

Shading of one cell in submodule of the panel at 50 %.

Shading of one cell in submodule of the panel at 100 %.

Shading of a cell of the submodule 1 and another of the
submodule 2 of the panel at 50 %.

Shading of a cell of the submodule 1 and another of the
submodule 2 of the panel at 100 %.

Increase the serie resistors (Rs = 0.09Q) module.

By-pass diode disconnected.

By-pass diode short circuited.
Decrease the shunt resistors (Rp= 0.4€) module.

Figure.2.9. Schematic diagram of PV
panel with various faults.

2.2.3 Fault Diagnosis PV System

The simulated diagnosis PV system is composed of two SUNTECH PV modules, these

modules consist of 36 cells and two bypass diodes each. As a first step we simulate the normal

PV panel (healthy) which used as a reference module and the faulty PV panel as a tested module

for different chosen faults. In the second step, for each I-V curve three parameters (Pmax, Voc,
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Isc) are extracted, and in the third step, a diagnosis algorithm is used to detect and classify PV

module faults into two groups:

e Faults with different combination of symptoms. These faults are isolated using a signal
threshold-based approach.

e Faults with the same combination of symptoms. This type of faults is isolated using a
Fuzzy Logic Classifier.

Each fault generates a set of symptoms which are displayed with a message on the
Commande Window illustate the fault type as shown in Figure 2.11. Simulink/Matlab has been

used to implement this configuration illustrated in Figure 2.10.

Mm@ mmne -
MOOEmEmE

)

OOOODHED Voc N
DOOOHE

Normal PV Module — Isc_N
Characteristic p.lotter St i 0“ 0“
of the PV Module without fault
Pmax_F

Signature of faults

AOOOmmE. ]
MOOEHmEE

Q0OBOEE

HOOHHE

Faulty PV Module
Characteristic plotter

of the PV module with fault

Diagnosis Algorithm

Figure.2.10. Diagnosis PV system.

Command Window

F5(0,0,1) = Increase the resistance =series RE=s=0.09 =+

J5t'>>| -

-

Figure 2.11. Output of fault 5 which is displayed in the command window.

2.2.3.1 Thresholding method (Algorithm 1)

In this part as shown in Figure 2.12, after extraction the three parameters (Pmax, Voc,
Isc) from each I-V curve (Normal and faulty module), the resulting parameters are compared
to obtain (Delta Pmax, Delta Voc, Delta Isc), In the second Step, the obtained parameters will
compare to three relative errors associated to power, voltage and current, which these errors are
related to measurement and the model errors. From the standard IEC 61724 [97], that indicates
arelative error of 2 %, 1 %, and 1 % while measuring power, voltage, and current, respectively.
The model uncertainty is related to the industrialization tolerance and sensors noise. The
maximum error due by this uncertainty is calculated, according to [33], by adding a dispersion

parameter to the simulation model parameters. The obtained relative errors associated to power,
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voltage, and current are equal to 5%, 3 %, and 6 %, respectively. The detection of faults is

considered effective when these chosen thresholds are exceeded.

After using the threshold method, five groups of faults can be achieved as shown in

Table 2.5:
Table 2.5. The signature of faults after using the threshold

method.
Groups Fault type Symptoms [S1,S2,S3]
1 [F1,F5] S1=1 S2=0  S3=0
2 [F2,F7,F8] SI=1  S2=1  S3=0
3 [F3] S1=1 S2=0  S3=I
4 [F4] S1=1 S2=1 S3=1
5 [F6] SI=0  S2=0  S3=0

According to these results, the first algorithm cannot discriminate between the faults (F1, F5),
and (F2, F7, F8), which have the same combination of symptoms. Therefore, to isolate these

faults, a very efficient technique of classification is required.

The simulation of the previous faults allowed us to obtain different curves as shown in Figure
2.13, which the outputs of our Simulink model are illustrated in the same figure.
» The symptom S1: Reduction of maximum power of the PV module.

» The symptom S2: Reduction of Voc of the PV module.
» The symptom S3: Reduction of Isc of the PV module.

Symtom generator

@+ Pmax N

._‘—> Pmax F APmax
@ > VocN _|—> Diagnosis by S1

@ vock  AVoc — | threshold s2 Decision > D
@@ >N calculation S3 Signature of
Alse —l—) Faults

._‘—> Isc F

Figure 2.12: Diagnosis Model based on Threshold method.
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Figure 2.13: I-V Curves of different type of faults.

2.2.3.2 Fuzzy Logic Method (Algorithm 2)

To solve this problem A Fuzzy Logic (FL) method will be applied. From Figure 2.14, the

threshold algorithm block remains the same. Therefore, the modification consists in integrating

two diagnosis blocks by Fuzzy Logic Classifier in the system, with (APmax, AVoc) as inputs.
The 1st FL block works only in the case where (S1, S2, S3) = (1, 1, 0) and the 2nd block works

only in the case where (S1, S2, S3) = (1, 0, 0). The algorithm used is summarized in Figure

2.16.
Diagnosis by
threshold
Symtom generator | | [ calculation
@ —= Pmax N
@, rmaxF APmax >
.—’ Voe N Diagnosis by T
@ VocF AVoc > Fuzzy Logic
a Ise N 1
.—'——) Isc F Alse >
“| Diagnosis by
Fuzzy Logic
N 2

A

S1

S2 Decision
S3

—

Signature of

Faults

Figure.2.14: Diagnosis Model after integration of the fuzzy logic.
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To construct a classifier, we have to use data mentioned in the previous paragraph as inputs. As

shown in Figure 2.15, in the case 1 and 2, fuzzy classifier (FC) starts by fuzzification of these

inputs by using the membership functions.

Then we have to construct a fuzzy inference base rule IF/THEN, the fuzzy rules are chosen to

distinguish the defects which have the same indication signature. As presented in Table 2.6 and

2.7, precise bases discriminate between the three faults (in case 1) and the two faults (in case

2) have been constructed. Which Table 2.6 contains 3 rules and Table 2.7 contains 2 rules.

Finally, the values obtained have been defuzzified. This has been performed by applying the

Takagi-Sugeno-Kang type one FL method at the output of a FC. Therefore, the outputs

membership functions are constants.

Fuzzification |

Base-rule

|| Defuzzification

Fuzzification

Base-rule

Defuzzification

s g
; . 51
- digi¥=tic_pv_surggno_ = - digndftic_pv_surgno_3
PEI : fu) PRI ‘ . flu)
SUgEno) SUgEno)
XX~ ~ XX I~
3 Rules flu} 2 Rules flu)
woe = o o
PPN _ F'F'M” PPM_" PPM_ F‘F‘r.‘lhJ PPM_
1 X ol — d 1 / .l =
E Lo & = - N 10 20 30 40 50
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1 ‘r = il E _ 1 { i g
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Figure.2.15: Fuzzy Classifier structure and input variables.
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Table 2.6. Fuzzy Rule base and Defuzzification

Table 2.7. Fuzzy Rule base and Defuzzification
for Fuzzy Classifier (Case 1).

for Fuzzy Classifier (Case 2).

. Defuzzi
Rule IF THEN Defuzzi- Rule IF THEN -ﬁiatichlll
N° PPM Voc S1 S2 S3 fication N° PPM Voc S1 S2 S3
1 PPM G Vco P S1=0 S2=1 S3=0 [010] 1 PPM_ Vco  Sl=1 S2 S3= [100]
M P 0 0
2 PPM M Vco M SIi S2=1 S3 [011]
0 =1 2 PPM_ Vco S1 S2 S3 [001]
3 PPMM Veo P SI=1 S2=1 S3=0 [110] o 5 U
Start I
Measurement of: V= (VO, ..., Vn),
I1=(0, ...,In), T, et Ir.
> Computation of : Iy, Vocn) €t Pmaxy
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Figure.2.16: Flowchart of the diagnosis algorithm.
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2.2.4 Results and discussion

This part presents the results of the Simscape based model as well as the performance of the

proposed fault diagnosis technique for the PV module (SUNTECH) system is simulated.

As example, Figure 2.17 shows the results given by the technique used in the case of shading 1

cell at 50%, Figure 2.18 shows the results given in the case of shading 1 cell at 100%.

The different chosen faults are applied in a singular way on the faulty PV module, so then the
algorithm detects and classifies the fault to different combination of symptoms. The obtained

symptoms send a signal to decision block (shown in Figure 2.14) to gives its accurate location.

The results of different fault scenarios for Sugeno FL and thresholding method are illustrated
in Table 2.8. For eight different case scenarios have been tested, all different faults have been
detected except the fault 6, which does not affect in the power generation of the system. Hence,
it can be seen clearly from these obtained results that these two methods have proved to be able

to detect and classify and locate different faults in PV panels accurately and efficiently.
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Diagnosis Algorithm

Command Window
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Figure.2.17: Diagnosis PV system results for F1 fault.
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Figure.2.18: Diagnosis PV system results for F2 fault.

Table 2.8. The signatures of each of the symptom for each fault
after integration of the fuzzy logic.

Faults Amplitude of symptoms Method
S1 (W) S2 (V) S3 (A)

F1 1 0 0 Fuzzy

F2 0 1 0 Logic

F3 1 0 .

Fa 1 1 Thresholdi
. ng

F5 0 0 1 Fuzzy

Logic

Fé6 0 0 0 Thresholdi
. ng

F7 0 1 1 Fuzz

F8 0 Logiz

2.3. Part 2: Experimental Validation
2.3.1. EXPERIMENTAL COMPONENTS DESCRIPTION

In this section, a detection of faults is undertaken on an experimental PV panel situated at
LGEB, University of Biskra, Algeria, where the schematic representation is given in
Figure.2.19. It comprises of a SUNTECH PV panel of type poly crystalline silicon connected
with a resistive load, through the intermediary current and voltage sensors are used to provide
the performance of the PV panel implemented. The irradiances are measured using a Reference

cell, while for temperature, it is measured using K-type thermocouple.
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The different data measured are realized by DS1104 controller board which is connected to the
PC via PCI slot, and by the software Matlab/Simulink® and ControlDesk® we can monitor our

experimental system using the implemented diagnosis technique.

A. Investigated Faults in the Experimental PV module
Four types of faults are established in our PV module, where F1 correspond to the

shading of one cell in subpanel of the module at 50 %, the Fault 2 is shading horizontal line of
cells at 100%, the Fault 3 is shading vertical line of cells at 100% and the Fault 4 is the diode

by-pass short circuited. The investigated faults are shown in Figure 2.20.

(@)

Figure 2.20: The investigated faults: (a) Shading 1 cell 50%, (b) Shading horizontal line of
cells at 100%, (¢) Shading vertical line of cells at 100%, (d) one diode by-pass short
circuited.

B. Experimental SET-UP
To verify experimentally the diagnosis technique, as shown in Figure 2.21 a dSPACE

DS1104 controller have been used as control platform since it enables the linking of the
MATLAB/Simulink diagnosis simulated model to the experimental PV module. The electrical
parameters generated by the faulty PV panel and the climatic parameters measured are read and
then sent to the DS1104 board. After compiled the simulink model files with different
extensions (SDF, PPC... etc.) are created and transferred automatically to DS1104 board.
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Otherwise, the file with extension SDF appears in ControlDesk® which acts as a user-interface

that we can use to control and monitor experiments.

Host PC with
dspace board and
ControlDesk
software

Voltage
| sensor

Figure 2.21: Experimental SET-UP.

2.3.2. Real-time Implementation: RESULTS AND DISCUSSION

This part presents the experimental diagnosis technique results for photovoltaic panel using
only: The experimental database of climate (solar irradiance and temperature) and electrical
parameters (voltage and current) of the faulty PV panel. The experiments have been carried out
on temperature of 25 °C and irradiation of 1000 W/m?. The proposed diagnosis technique is
verified by the two different algorithms based on thresholding method and fuzzy logic method
for the identification of four types of faults tested experimentally in a PV panel. To check the
ability of the diagnosis technique, four types of faults are applied in an individual process on
our PV panel. In Figure.2.22 the user-interface ControlDesk shows the Photovoltaic
characteristics (I -V and P-V) for each faulty PV panel with the results of the two algorithms
used, however the final signature of faults is also illustrated. To clearly indicate the type of fault,
a display part is used to give its accurate location. As shown in Figure.2.22a and Figure.2.22b.
The results of identification of the fault F1 and F2 by the thresholding method are the same
combination of symptoms, which leads to automatic activation of the classification by the fuzzy
logic method to classify the faults to different combination of symptoms. Hence, it can be
clearly noticed that the two faults are detected and classified by the diagnosis technique, where
the type of faults are indicated in the display part with ared LED. Figure.2.22¢ and Figure.2.22d

show the results of identification of the fault F3 and F4. As can be seen, the faults have been
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detected and classified by the thresholding method which gives a different combination of
symptoms. Therefore, the diagnosis technique indicates in the display part the type of each fault.

2.4. Conclusion

This chapter presented both simulation and experimental approaches for fault detection and
classification in PV panels using thresholding and fuzzy logic-based methods. In the simulation
phase, eight types of faults were analyzed by comparing power, voltage, and current
characteristics under normal and faulty conditions. While the thresholding method proved
effective for some faults, it lacked the ability to distinguish all fault types, highlighting the need
for a more advanced classification approach. The fuzzy logic method demonstrated superior

diagnostic accuracy, successfully identifying all considered faults in a distinguishable manner.

The experimental phase validated the proposed diagnostic approach using real-world data
collected from a PV panel at the LGEB Laboratory, University of Biskra. Implemented on the
DS1104 platform and developed in Matlab/Simulink, the experimental results confirmed the
efficiency of the fuzzy logic classification technique in accurately detecting and classifying
various faults. Overall, the findings emphasize the effectiveness of fuzzy logic in PV fault

diagnosis, offering a robust and reliable method for improving PV system performance.
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Simulation and real-time experimentation

3.1. Introduction

Fault detection and diagnosis in photovoltaic (PV) systems are essential for maintaining their
performance, reliability, and longevity. This chapter presents a comprehensive approach to fault
identification, classification, and localization using Artificial Neural Networks (ANN) through

both simulation and experimental analysis.

In the first part, a diagnostic model is developed in Matlab/Simulink to simulate both normal
and faulty conditions of a PV module. The model is designed to detect and classify five single-
and multi-fault types of faults, including partial shading and bypass diode failures. Specifically,
Fault 1 (F1) corresponds to 50% shading of a single cell in a subpanel, Fault 2 (F2) involves
full shading of a horizontal line of cells, Fault 3 (F3) represents full shading of a vertical line
of cells with open circuit fault, Fault 4 (F4) corresponds to a short-circuited bypass diode, and
Fault 5 (F5) involves two short-circuited bypass diodes. The ANN-based fault detection method
is trained to recognize patterns in voltage, current, and power variations, ensuring accurate fault

classification.

The second part of this chapter focuses on the experimental validation of the proposed ANN-
based fault detection technique. The same five single- and multi-fault types are introduced in a
real PV module, and an experimental dataset of climatic and electrical parameters is collected.
The developed ANN model is implemented in Matlab/Simulink and integrated with the
dSPACE DS1104 controller to enable real-time fault diagnosis.

3.2. Description of Monitoring and Diagnosis PV System
The PV panel system under study was installed on LGEB Laboratory of the University of Biskra

(Algeria). The actual system is shown in Figure 3.1. The PV system consist of mono-crystalline
silicon module linked to a resistive load. The diverse data measurements are monitored such as
module temperature and solar irradiance using a K-type thermocouple and Reference cell,
outputs voltage and current which are measured by current and voltage sensors. These data
collected is processed through a DS1104 controller board, seamlessly connected to a computer
via a PCI slot. Employing the Matlab/Simulink® software alongside ControlDesk®. Collected
data such as voltage, current, irradiance and temperature are displayed in a graphical and
numerical form that creates using ControlDesk® user interface along with the state of the

system. Figure 3.1 present the monitoring system.
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Figure. 3.1: Schematic Representation of the Electrical Configuration for the Experimental PV System.
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3.2.1. Monitoring Unit
Firstly, the climatic-database of the experimental PV module which is solar irradiance and

temperature are measured, which acts as inputs to the simulated PV module. Then, the difference
between the experimental (Faulty) and the simulated (Normal or Reference) PV module
electrical parameters were systematically compared to establish their relative effectiveness in
fault detection. Subsequently, these parameters are classified using an Artificial Neural Network
(ANN) algorithm to facilitate the detection and identification of faults in photovoltaic systems.

The Figure. 3.2. presents the architecture of the realized monitoring with the PV system.

| g V1....Vipy(Measured)

-.-.lk P‘

Attributes
Computation

State of the system: Normal/
(Alarm: Fault Type)

Simulink
Model

('

Vi....Vk pv

ll'"Ik PV (simulated)

Figure. 3.2: Diagram Depicting the Proposed Monitoring and Diagnosis system.

3.2.2. Photovoltaic System Modeling

To assess the operational effectiveness of photovoltaic panels across different scenarios, the
single diode model is commonly recognized as the predominant framework for elucidating the
electrical characteristics of PV cells. The same strategy of PV module parameters extraction,
which has been developed in chapter 2 utilizing the Newton-Raphson with the War Strategy
Optimization (WSO) algorithm, is used to extract the set of five parameters (Ipp,l,Rs, Rsp, n)
expounded in Table 3.1. This process exclusively relies upon the information intrinsic to the
datasheet specific to the SUNTECH PV panel, characterized as mono-crystalline silicon and
delineated in Table 3.1. It is observed that the extracted value of the shunt resistance is relatively
low (1.5923 Q), indicating the presence of internal leakage paths within the PV cell. This may
be caused by manufacturing defects, surface contamination, or aging effects. The low R, results
in increased power losses and a reduced fill factor, which negatively affects the overall

performance of the PV module. Notably, the configuration of this PV panel encompasses 72
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photovoltaic cells, organized into groups of 24 cells, with each group featuring three bypass

diodes in a bypass configuration, as visually represented in Figure 3.3.

Table 3.1. Electric Properties of the SUNTECH Photovoltaic Module

Electrical Propreties Extracted Parameters
Power at STC 123W Rg 0.0259Q
Vmp 26.3V Ry, 1.5923Q
Imp 4.80 A Ion 5.5580A
Voc 38.29V Iy 2.3e-8A
Isc 5.55 A n 1.22

No. of cells in panel 72 RMSE 0.01807
No. of by-pass diodes 3

Figure. 3.3: PV module BP diode connections.

The Matlab/Simscape tool is then used to simulate a real PV panel under normal conditions using the
identified parameters. before simulating the PV system to obtain accurate daily profiles of temperatures
and irradiances. On the other side, Matlab/Simulink™ environment is used for data processing and the
associated calculations. Finally, a comparison is made between the simulated and measured
characteristics, in accordance with STC conditions, which provide for STC (25 °C and 1000 W/m?).
Using Simulink/Matlab, the electrical I(V) and P(V) curves of a PV panel (simulation and experiments)
are shown in Figures. 3.4 and 3.5. It has been noted that the simulated data is almost identical to the
measured data, allowing for reliable PV module modeling. These graphs demonstrate that the electrical
output characteristics of the simulated and experimental models are similar to those found in the PV
module's datasheet. The curves display the highest power point determined by the data tips on the I-V
and P-V curves, where Pmax is equal to 123 (W), Vmp is equal to 26.3 (V), and Imp is equal to 4.8 (A).
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Figure. 3.4: I-V curve of a photovoltaic module Figure. 3.5: P-V curve of a photovoltaic module
under STC. under STC.

The reduced RMSE value (refer to Table 3.1) demonstrates the strong predictive capability of
the WSO algorithm in identifying optimal parameter values. Additionally, the algorithm

achieves this with a satisfactory convergence rate, as illustrated in Figure 3.6.

10

10

Best score obtained so far

S

20 40 60 80 100 120 140 160 180 200
Iteration

Figure. 3.6: Illustrates the convergence rate of the WSO algorithm
during the parameter extraction process for PV module.

55



Chapter 3 Diagnosis based on Artificial Neural Network:
Simulation and real-time experimentation

3.3. PV Faults

Five categories of faults have been identified in our photovoltaic module: Fault 1 refers
to the shading of one cell in a subpanel at 50%, Fault 2 corresponds to the shading of a
horizontal line of cells at 100%, Fault 3 refers to the shading of a vertical line of cells at 100%
with open circuit of string of cells, Fault 4 refers to a short circuit in the bypass diode, and Fault
5 refers to a short circuit in two bypass diodes. The investigated faults are shown in Figure 3.7.

The schematic representation of a photovoltaic panel exhibiting the five faults is highlighted in

Figure 3.8. 6r
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R
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Figure. 3.7: The Investigated faults.

F3

Figure. 3.8: Schematic representation of a
photovoltaic panel exhibiting the five faults.
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3.4. Implementation of the Artificial Neural Network Classifier

To make use of an Artificial Neural Network (ANN) it is important to develop a mechanism
that imitates the structure and functioning of brain cells. In today’s world ANN has proven its
usefulness in fields such as pattern recognition, signal processing, modeling and computer
vision. Within this thesis the Artificial Neural Network (ANN) is proposed. According to Figure
3.9 the ANN architecture consists of three layers:

» The input layer comprises three neurons representing the ratio between simulated and
measured values of maximum power point current (Pmax) open circuit voltage (Voc)
and short circuit current (Isc).

» A hidden layer, with ten neurons that have chosen. tansig activation functions.

» The output layer contains six neurons representing five faults and the normal condition,

which indicates a binary classification with a selected purelin activation function.

Hidden
Layer

Output
Layer

Input

Layer Normal (F0)

Pmax Fault 1 (F1)

Fault 2 (F2)
Fault 3 (F3)
Fault 4 (F4)

Isc

Fault 5 (F5)

10 neurons

Figure 3.9: ANN configuration.

In this part, a Multilayer Perceptron (MLP) Feedforward Neural Network is employed as the
network architecture. This MLP structure comprises a single hidden layer with 10 nodes, as
depicted in Figure 3.10. The network undergoes training utilizing the Levenberg-Marquardt
(LM) algorithm. The training dataset is generated from simulations that encompass both typical
and fault-inducing operations for five distinct faults and the normal condition. Specifically, 70%
of the patterns are allocated for training, while the remaining 30% are reserved for testing and

model validation purposes.
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Hidden Layer Output Layer
Input Output
W W /
10 6

Figure 3.10: Schematic of the used ANN architecture.

3.5. Simulation results

To assess the proposed approach, a case study was conducted using MATLAB Simulink
software. Data samples representing the distribution of three indicators were collected to
generate input for the ANN model. The dataset consists of a total of 684= (114*6) samples,
encompassing both standard conditions and five distinct fault scenarios. Each sample
incorporates the three selected input indicators.

Figure 3.11 (a) Shows the minimum Mean Square Errors (MSE) variation concerning epoch for
training, validating, and testing. Performance after training is 0.002 and the best validation
performance is 0.00070178 after 33 iterations.

Generalization tests are aimed at assessing the neural network's performance and its ability to
apply learned knowledge to new data. After the network's computation, it is essential to conduct
tests to ensure that our network is providing accurate responses. The Figure 3.11 (b) illustrates
the confusion matrix for the five faults including the normal case analyzed in the testing phase.
The matrix cells that are colored green and red indicate the percentages of correctly and
incorrectly classified faults, respectively. The confusion matrix provides the precision
measurement for the training of the ANN fault detection and diagnosis model. It's noteworthy
that a notably high precision rate of 99.7% has been achieved for the ANN diagnosis model.
This result signifies the well-informed selection and effective training of the ANN model in

detection and classification.
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Confusion Matrix
(a) Best Validation Performance is 0.00070178 at epoch 33 (b)
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Figure 3.11: (a). Progression of Mean Squared Error (MSE) for the MLP Network. (b). Confusion
Matrix for Classification in the MLP Network.
Figure 3.12 illustrates the outcomes of implementing fault 2, "Shading Horizontal line of cells
at 100%" using simulation blocks. The simulation results validate the proposed approaches
efficacy in detecting and classifying faults based on various symptom combinations. Notably,
ANN categorized the fault by displaying "1" in the second output, corresponding to F2, and "0"
in the remaining outputs. Upon fault detection and defect classification, a message is displayed

in the command window to inform the user about the system's fault type.

Normal PV Module
Characteristic plotter

of the PV Module without fault

cleleo|le|l-|le

Signature of faults ANN

Faulty PV Module
Characteristic plotter

of the PV module with fault

Diagnosis Algorithm

Command Window

Diagnosis By LNN "F2= Shading Horizomtal
line of cell=s at 100"
f£:>>| v

Figure 3.12: Detection and classification of Fault 2.
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3.6. Experimental Validation

To prove the effectiveness of the proposed real-time monitoring and diagnosis system a

laboratory experimental test bench is built.

First, this developed test bench is presented with its associated user interface, then the
experimental results will be presented and analyzed. A commercial current and voltage monitor
is used to acquire measurements. Figure 3.13 shows the investigated cases for the real PV panel:
Normale operation and various faults mentioned in section 3.3, for implementing the shading
fault (see Figure 3.13), the shaded module is conducted by covering the cells with a physical

solid opaque.

The developed user interface is shown in Figures 3.14-3.19. The developed program is
performed and allows the data acquisition of all the measured signals through the current and
voltage PV monitor board. Furthermore, this interface allows real time visualization and
presentation of these signals, as well as the presentation of different curves (power, current,
voltage..., etc.) and the state of the system, detected and the classified faults. Several tests have
been performed on the PV panel at measured temperature 25 °C and measured irradiation

1023W/m?.

The Figure 3.14. illustrates the current-voltage (I-V) characteristic of the photovoltaic (PV)
panel under typical operating conditions. Within this context, the observed I-V curve closely
aligns with the anticipated performance, suggesting conformity between measured and
estimated values. Specifically, parameters such as Pmax (maximum power output), Voc (open-
circuit voltage), and Isc (short-circuit current) exhibit consistency, denoting normal operation.
This alignment is symbolized by the presence of a green LED indicator on the user interface,

affirming normal functioning.

When the shading fault occurs (F1); in this case, the measured short-circuit current is the same
with the estimated short-circuit current. Furthermore, the measured open-circuit voltage and
measured maximum power output decrease of estimated values as shown in the Figure 3.15.
The analysis demonstrates a direct correlation between the percentage of shading impacting the
cell and the reduction in Pmax and Voc. This correspondence is further affirmed by the presence
of an alarm with a red LED indicator on the user interface, symbolizing the panel's faulty
functioning and indicates in the display part the type of fault. In fault 2, where three sub-strings
are partially shaded, three bypass diodes are activated. Depending on the severity of the shading

fault, scenario emerge: simultaneous conduction of diodes and the occurrence of a single
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voltage peak (see Figure 3.16) leads to activate the alarm, identifies the type of fault with a red
LED.

Figure 3.17 depicts the shading setup, wherein a vertical line of PV cells experiences partial
shading at 100% with open circuit in string of cells. Shading of cells triggers the activation of
one bypass diode, and the open circuit leads to the activation the second bypass diode, thereby
deactivating the affected sub-strings. This phenomenon is corroborated by the sharp voltage
variation resulting from the loss of this sub-strings, with the current value being directly
proportional to the degree of shading (see Figure 3.17). The applied technique activates the
alarm system and signals the specific fault type through a red LED indicator.

A short circuit diode defect (Figures 3.18 and 3.19) investigates two distinct scenarios: the
short-circuiting of a single bypass diode and the short-circuiting of two bypass diodes. Both
scenarios result in a reduced open-circuit voltage (Voc) in comparison to the reference curve.
Therefore, it is evident that the diagnosis technique is responsible for the detection and
classification of the two defects. The display part of the interface indicates the type of fault with
ared LED.

Y suntech & Y Suntechd
d) Open circuit e) One bvpass diode short- f) Two bvpass diodes short-

Figure 3.13: The investigated faults.
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Figure 3.15: The ControlDesk User Interface Presents Real-Time Measurement Data in the Monitored
PV Panel: Fault 1
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Figure 3.16: The ControlDesk User Interface Presents Real-Time Measurement Data in the Monitored
PV Panel: Fault 2.
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Figure 3.17: The ControlDesk User Interface Presents Real-Time Measurement Data in the Monitored
PV Panel: Fault 3.
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3.7.Conclusion

In this chapter, an Artificial Neural Network (ANN)-based fault detection and classification
approach was successfully implemented and wvalidated through both simulation and
experimental analysis. Five distinct single- and multi-fault types of faults, including partial
shading, open circuit and bypass diode failures, were applied to a PV module, and their effects
were analyzed using voltage, current, and power variations. The simulation results
demonstrated the effectiveness of the ANN model in accurately identifying and classifying all
faults. Furthermore, the experimental validation, conducted using real PV module data and
implemented through dSPACE DS1104 controller, confirmed the model’s robustness and
reliability. The ANN-based method achieved an impressive classification accuracy of 99.7%,

proving its efficiency in detecting PV faults under varying conditions.
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Chapter 4 Comparative Study of Real-Time Photovoltaic Fault Diagnosis: Fuzzy
Logic and Neural Network Approaches

4.1. Introduction

Solar photovoltaic (PV) systems are becoming increasingly popular for renewable
energy production. However, due to environmental and operational conditions, various faults
can occur in PV modules, which can cause a significant reduction in system performance. This
chapter proposes the use of two different methods, Fuzzy Logic (FL) and Artificial Neural
Networks (ANN), for the real-time diagnosis of single and multi-type PV faults. The
performance of these methods is compared both in simulation and experimentation. The
simulation was conducted using MATLAB/Simulink, while the experiment was conducted
using dSPACE DS1104 platform in order to implement the diagnosis model developed in
Matlab/Simulink® software. The proposed methods have been validated using an experimental
database of meteorological and electrical characteristics from a PV panel located at LGEB
Laboratory of the University of Biskra (Algeria), for six different fault types, including shading,
soiling, and by-pass diode faults.

4.2, Exglanation of the Photovoltaic System and the Strategy for
Detecting and Diagnosing Faults

4.2.1. PV system description
This section undertakes the examination of fault detection within an experimental photovoltaic

(PV) panel installed at LGEB, University of Biskra, Algeria. The schematic representation of
the electrical setup of the PV system under experimental conditions is presented in Figure 4.1.
The validated PV system model, detailed in chapter 3, forms the basis for generating databases
that capture the performance of the PV system under real outdoor conditions. Utilizing daily
solar irradiance and module temperature profiles, this PV model is employed to create datasets
comprising both optimal operation and intentionally simulated faults. The physical model of
the PV system is implemented in the Matlab/Simulink® software platform. Subsequently, the
values of the unknown parameters obtained under reference conditions are integrated into the
physical PV array model.

The final stage of the proposed fault detection and localization strategy involves applying the
ANN and FL, thereby facilitating the observation of the implemented diagnostic technique in

the simulation.
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Figure. 4.1: Schematic representation of the electrical configuration for the experimental PV system.
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4.2.2. The Implemented Diagnosis Technique
4.2.2.1 PV Module Faults

The main issues, with PV systems usually arise from the PV array inverter, storage system and
electrical grid. The objective of this part is to pinpoint the faults that occur in the PV array. Six
different faults are explored, as referenced in Table 4.1, and a schematic representation is
depicted in Figure 4.2. Constructing a database on the faulty behavior of a PV panel requires
creating a causal relation between faults and symptoms obtained from the |-V characteristic of
the panel source. To accomplish this, a series of simulations must be carried out to obtain a
complete list of the fault scenarios considered, as shown in Figure 4.3. Symptom S1 represents
the reduction of the maximum power of the PV module, symptom S2 represents the reduction
of Voc of the PV module and the symptom S3 describe the reduction of Isc of the PV module.

Table 4.1 Various categories of faults selected for the diagnosis.

Symbol Types of faults

F1: Shading of a cell of the subpanel 1 at 75% and
another of the subpanel 2 of the PV module at 25 %.

F2: Soiling.

F3: One By-pass diode short circuited.

F4: Two By-pass diodes short-circuited.

F5: One by-pass diode shunted (Rsh=2Q).

F6: Shading of a cell of the subpanel 1 at 25% and

another of the subpanel 2 of the module at 75 % with
By-pass diode disconnected.

F2

F1

Figure. 4.2: Schematic representation of the six
faults.
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Current [A]

Voltage[V]
Figure 4.3: 1V Performance for various types
In this section, six faults of the PVV module have been selected, as outlined in Table 4.1. To

accurately model both the operational state and various fault scenarios within the PV array, a
flexible fault simulation has been developed using a Simulink-based model, as depicted in
Figure 4.3. The simulation enables the emulation of shading by adjusting the irradiance input
to the relevant PV cells. Similarly, soiling can be simulated by modifying the irradiance input
for all PV cells. For the simulation of short-circuit diode faults, wires are connected between
the bypass diodes. Meanwhile, to simulate shunted diode faults, a parallel resistor (Rsh) with a
value of 2€) is added along with a bypass diode. Shading and bypass diode disconnection faults
can also be simulated by manipulating the irradiance input to the relevant PV cells and
disconnecting the bypass diode.

The datasets required for this study are directly obtained from the PV Simulink model under
both faulty conditions, while varying parameters such as solar radiation (Ir) and temperature
(T). During data generation, temperature is increased in increments of ten degrees Celsius from
0°C to 80°C, while solar irradiance is varied in increments of 50W/m2, ranging from 0W/m?2 to

1,100W/mz2. Consequently, a total of 102 sets of samples is generated.

In each simulation, a single fault is considered, and the 1-V characteristic resulting from this
simulation is analyzed to determine the symptoms that can be used to identify the nature of the
fault using two different methods, Fuzzy Logic (FL) and Artificial Neural Networks (ANN).
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4.2.2.2. Photovoltaic System Fault Detection

In this part, the work consists of developing an algorithm to discriminate all the chosen defects.
For this purpose, two methods, including their treatment concept have been applied. The first
is a combined method based on threshold detection and the Fuzzy Logic approach of each
symptom, which subsequently gives binary signatures (in the form of 1 and 0) as fault detection,
the second method, is based on an Artificial Neural Network .The approach used for each of
these methods can be summarized in the block diagram in Figure 4.4. It is used to obtain the
signature for all the defects considered in our study, by simulating each defect separately from
the other (Singular defects).

As depicted in Figure 4.5, the simulated diagnostic photovoltaic (PV) system comprises two
SUNTECH PV modules, each module includes 72 solar cells and three by-pass diodes. In the
initial phase, the simulation encompasses the characterization of both a reference PV panel,
representing a healthy module, and a tested PV panel subjected to various fault conditions.
Subsequently, three critical parameters (Pmax, Voc, Isc) are extracted from each I-V curve. In
the subsequent step, a diagnostic algorithm is employed to detect and classify PV faults,
utilizing two distinct approaches: a combined method involving thresholding and a fuzzy logic
classifier, as well as the utilization of an Artificial Neural Network.

The difference between predicted and measured values is used as a fault indicator. The fault
diagnosis process will next be initiated and the alarm will trigger according to the identified
fault category. Each malfunction produces a distinct set of symptoms that are identified and
then displayed in the yellow blocs with a message on the Command Window to indicate the
fault type (Fault F1), as depicted in Figure 4.6. Matlab/Simulink was used to apply the

configuration shown in Figure 4.5.
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Figure 4.5: Photovoltaic System Fault Detection.
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Figure 4.6: Result of the first fault, presented within the command window.

A. Thresholding method and Fuzzy Logic classifier

In this section, Figure 4.5 is analyzed to extract three parameters (Pmax, Voc, Isc) from the I-
V curves of both the standard and defective modules. The derived parameters are subsequently
compared to calculate (APmax, AVoc, Alsc). In the following step, these acquired parameters
are compared with three relative errors accounting for potential deviations in measurement
precision and modeling accuracy in power, voltage, and current. The standard IEC 61724 [97]
prescribes a tolerance of 2% for power measurements, 1% for voltage measurements, and 1%
for current measurements. Furthermore, the uncertainty inherent in the model is influenced by
industrialization tolerances and sensor-related noise, as detailed in [33]. To incorporate this
variability, a dispersion parameter is introduced into the simulation model parameters to
calculate the allowable error. The relative errors for power, voltage, and current are determined
as 5%, 3%, and 6%, respectively. Successful detection of defects is confirmed when these

predefined thresholds are surpassed.

As shown in Table 4.2, three categories of defects can be identified using the threshold method:

Table 4.2 The distinctive signature of faults following
the application of the threshold technique.

Groups  Fault type Symptoms [S1, S2, S3]
1 [F1] S1=1 S2=0 S3=0
2 [F2, F6] S1=1 S2=0 S3=1

3 [F3,F4,F5] S1=1 S2=1 S3=0

According to these findings, the first algorithm is incapable of distinguishing between defects
(F2, F6) and (F3, F4, F5), which share the same combination of symptoms. Therefore, a highly
efficient classification method is required to identify these faults. In the next step, a diagnosis
algorithm based on the Fuzzy Logic approach is used to detect and classify PV module faults
into two groups:

» Defects with various combinations of symptoms. Using a signal threshold-based
method, these defects are identified.
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» Defects with the same set of symptoms. Using a Fuzzy Logic Classifier, this
form of errors is isolated.

Fuzzy Logic Classifier

Fuzzy Logic classifier (FLC) stands as a contemporary artificial methodology utilized for fault
diagnosis within photovoltaic systems. The characteristics of the FLC system are formulated
through the establishment of connections between the IF condition and THEN statements across
multiple uncertain input datasets. This process results in generating decisions denoted as
membership function outputs.

In this section, A Fuzzy Logic (FL) method will be implemented, with (APmax, AVoc) as inputs.
From Figure 4.7, In cases 1 where (S1, S2, S3) = (1, 1, 0) and case 2 (S1, S2, S3) = (1, 0, 1),
the Fuzzy Logic classifier (FL) begins by fuzzifying the inputs through the use of membership
functions.

Following this, the establishment of a rule base for inference is required. The fuzzy rules are
selected to distinguish between defects that have the indication signatures. As shown in Tables
4.3 and 4.4 precise bases have been created to differentiate between the three faults (in case 1)
and the two faults (in case 2). Table 4.3 consists of three rules while Table 4.4 contains two
rules.

Finally, the acquired data has been analyzed and interpreted. At the output of the implemented
FL system, the Takagi Sugeno Kang type one procedure is applied. Therefore, the outputs of

membership functions are fixed values.

Table 4.4. Fuzzy rule set and the process of
defuzzification employed in the fuzzy classifier

Table 4.3. Fuzzy rule set and the process of
defuzzification employed in the fuzzy classifier

(Case 1). (Case 2).
Rule IF THEN Defuzzi- Rul IF THEN Defuzz
N opM voc  s1 s2  s3 fication o [FRNMI Vet siiE2 s omio
1 PPM_M Vco S S1=0 S2=1 S3= [011] N n
1 1 PPM_ Vco S1= S2 S3= [101]
2 PPMM VcoM Sl= S2=1 S3  [110] S S 1 =0 1
1 =0 2 PPM_ Vco Sl= S2 S3 [001]
3 PPM M Vco L S1=0 S2=1 S3= [010] L _S 0 =0 =1
0
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Figure 4.7: Structure of the fuzzy classifier and its input parameters.

B. Artificial Neural Network Classifier
In this section the Artificial Neural Network (ANN) is proposed. According to Figure 4.8 the

ANN architecture consists of three layers:

» The input layer comprises three neurons representing the ratio between simulated and
measured values of maximum power point current (Pmax) open circuit voltage (Voc)
and short circuit current (Isc).

> A hidden layer, with ten neurons that have chosen. tansig activation functions.

» The output layer contains seven neurons representing six faults and the normal
condition, which indicates a binary classification with a selected purelin activation

function.
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Figure 4.8: ANN configuration.
The network architecture is a Multilayer Perceptron (MLP) Feedforward Neural Network.

As shown in Figure 4.9, this MLP structure consists of a single concealed layer with 10
nodes. The Levenberg-Marquardt (LM) algorithm is employed to train the network. The
training dataset is produced from simulations that include both typical and fault-inducing
operations for six distinct faults. In particular, 70% of the patterns are designated for

training, while the remaining 30% are reserved for model validation and testing.

Hidden Layer Output Layer
Input Output
LE—
3 7
10 7

Figure 4.9: Schematic of the used ANN architecture.

4.3. Results Analysis

4.3.1. Simulation results for Simulink Model

To assess the efficacy of this intelligent approach, a simulation was conducted within the
Matlab/Simulink environment, encompassing both normal and defective operational scenarios.
The detection algorithm derives characteristics from two simulated photovoltaic systems: one

emulates a real PV array with various faults, while the second represents the standard
functioning.
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4.3.1.1.Evaluation of the Proposed Method's Effectiveness
1) Evaluation of Algorithm 1

To assess the effectiveness of the algorithm, the suggested fault diagnosis method is simulated,
for the SUNTECH photovoltaic (PV) module system.

The selected faults are individually applied to the faulty PV module, allowing the algorithm to
detect and classify the faults based on various combinations of symptoms. These symptoms are
then used for accurate fault localization.

Table 4.5 presents the results of various fault scenarios analyzed using the Sugeno FL and
thresholding methods. Six different scenarios including normal case were tested, and all faults
were successfully distinguished. The results clearly demonstrate that the combined method is
highly effective in accurately and efficiently detecting, classifying, and locating different faults
in PV panels, which achieved 100% accuracy. further details are reported in our previous
studies [11-13].

Table 4.5. The Symptom Signatures for Individual Faults after Fuzzy
Logic Integration.

Faults Amplitude of symptoms Method
S1 (W) S2 (V) S3 (A)
Fo 0 0 0 Thresholdin
F1 1 0
g

F2 1 0 1

F3 1 1 0

F4 0 1 0 Fuzzy Logic
F5 0 1 1

F6 0 0 1

2) Evaluation of Algorithm 2

A case study was conducted using MATLAB Simulink software to evaluate the proposed
approach. Data samples reflecting the distribution of three indicators were gathered to provide
input for the ANN model. The dataset comprises 721 samples, calculated as (103x7), which
includes standard conditions and six unique fault scenarios. Each sample includes the three
chosen input indicators. Figure 4.10 (a) illustrates the variation of minimum Mean Square
Errors (MSE) with respect to epochs for training, validation, and testing. The performance
following training is 0.002, while the optimal validation performance achieved is 0.0016615
after 96 iterations. Generalization tests evaluate the performance of neural networks and their

capacity to apply acquired knowledge to novel data. Following the network's computation, it is
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crucial to perform tests to verify that the network delivers accurate responses. Figure 4.10(b)
presents the confusion matrix for the six faults, including the normal case, as analyzed during
the testing phase. The matrix cells colored green and red represent the percentages of correctly
and incorrectly classified faults, respectively. The confusion matrix offers a precision
measurement for training the artificial neural network fault detection and diagnosis model. A
precision rate of 99.7% has been achieved for the ANN diagnosis model. This result indicates

the informed selection and efficient training of the ANN model for detection and classification.

Confusion Matrix
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Figure 4.10: (a). Progression of Mean Squared Error (MSE) for the MLP Network. (b).
Confusion Matrix for Classification in the MLP Network.
Figure 4.11 depicts the results of implementing fault 3, "One bypass diode CC," across
simulation blocks. The simulation results confirm the effectiveness of the proposed approach
in detecting and classifying defects based on diverse symptom combinations. FL designated F3
as the vector (1,1,0), while ANN identified the fault by indicating "1" in the fourth output,
representing F3, and "0" in the other outputs. Upon detecting a fault and classifying the defect,

a message is presented in the command window to notify the user of the system's fault type.

78



Chapter 4 Comparative Study of Real-Time Photovoltaic Fault Diagnosis: Fuzzy
Logic and Neural Network Approaches

Pmax_N

Voc_N Signature of faults FL g” IH IH

Normal PV Module Isc_ N
Characteristic plotter 0

of the PV Module without fault
Pmax_F 0

Voc_F Signature of faults ANN 1

Signature of faults FL

Faulty PV Module e I
Characteristic plo‘tter Diagnosis Algorithm
of the PV module with fault Signature of faults ANN

Command Window

Diagnosis By BNN "F3= One Diode CC™ "
Diagnosis By FL "F3(1,1,0)= OCne Diode CC"

JE: B

-

Figure 4.11: Detection of bypass diode CC fault.

4.4. Experimental validation

The experimental assessment of the performance of the diagnostic algorithms is conducted
using the test bench as depicted in Figure 4.12 (a) This test setup was conceived and deployed
within the LGEB Laboratory, University of Biskra, Algeria. The test bench consists of the
following elements:

A SUNTECH PV photovoltaic solar panel of type mono-crystalline silicon was installed outside
the building. The overall PV panel consists of 72 PV cells with three diodes (bypass type) each
group of 24 cells connected to their bypass diode, where the electrical parameters of the module
are previously presented in chapter 3. Following a reference cell and K-type thermocouple are
used to record irradiance and temperature respectively. Which is used as inputs to our reference
model. Due to practical limitations in reproducing each type of PV fault under varying real-
world environmental conditions (irradiance and temperature), fault signatures were
experimentally collected under standard test conditions. To simulate the variability of operating
conditions, additional datasets were synthetically generated using MATLAB models calibrated
with the real measurements, where the environmental conditions are that irradiance ranges from
about 1000 to 1068 W/m?2 and the temperature ranges from about 23 to 25 °C.

As depicted in Figure 4.12 (b), the current sensor and voltage sensor are employed to obtain the

current and voltage outputs of the solar panel. These data sets serve as input variables for
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presenting the faulty PV panel, which are then compared to the simulated PV panel and
diagnosed as shown in Figure 4.13.

The DS1104 Control Board is linked to a computer equipped with both the experimental
ControlDesk software and the Matlab/Simulink software. The diagnostic algorithms being
investigated are realized within Matlab/Simulink using blocks available in the Simulink
libraries which are previously presented in Figure 4.5. To utilize the real-time interface toolbox,

the implemented diagnosis algorithms are linked to the hardware.

Reference cell

- i N Computer with
Temperature e a2 i Matlab/Simulink and

sensor [pLd s B ControlDesk software
> & = Control
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Figure 4.13: Diagram Depicting the Proposed Technique for Fault Diagnosis.
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4.4.1. Investigated Faults

In this part, we can examine how diverse fault types influence a photovoltaic system across
various parameters such as voltage and current variations and power losses. Consequently, this
leads to the generation of distinct I-V characterization curves. Figure 4.14 shows the curves for
several typical types of faults which show a visual concordance between real and simulated
data. For implementing the shading fault (see Figure 4.15 (a)), the shaded module is conducted
by covering the cells with a physical solid opaque, the Imax and Vmax, are significantly
affected, while Isc and Voc are similar to those of the normal condition. Soiling effect (Figure
4.15 (b)): The presence of dirt and debris on the surface of a PV panel can reduce the amount
of sunlight reaching the solar cells thus decreasing the Isc value. A shunted diode fault (Figure
4.15 (c)): the Imax and Vmax, are significantly affected, which leads to a decrease in short
circuit current and this leads also to a decrease in power. A short circuit diode fault (Figure 4.15
(d-f)): This section examines two distinct scenarios: the short-circuiting of a single bypass diode
and the short-circuiting of two bypass diodes, both of which result in a decreased open-circuit
voltage (Voc) compared to the standard curve. Additionally, the presence of partial shading and
disconnected bypass diode are also investigated (Figure 4.15 (a-€)), the result brings a reduction
in the Imax and Vmax, which leads to a decrease in power. As a result of the aforementioned
factors, the detection of faults and the diagnostic processes for PV systems have emerged as

critical endeavors and particularly interesting in this area.
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Figure 4.14:(a). PV module characteristics: case of soiling, shadow effect, shadow effect and bypass diode fault.

(b). PV module characteristics: case of bypass diode faults.
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Figure 4.15: The investigated faults.

4.4.2. Experimental data Test off-line implementation

In this section, our contribution lies in the extension of this technique to render it suitable for

off-line fault diagnosis and real-time implementation. For full supervision, a series of

experiments were conducted over the course of seven consecutive days to assess a normal

condition and six distinct fault types. For the off-line implementation, the data sample was

collected from the experimental PV module consisting of 700 = (100*7). Moreover, its data has

been normalized in the same procedure mentioned previously in the simulation part (section

4.3.1.1). Finally, the data points have been divided into 70% and 30% for training and testing,

respectively.

The learning algorithm's convergence is confirmed by examining the learning curve presented

in Figure 4.16 (a). This curve clearly demonstrates that the error objective reaches a value of
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0.0017085 after 31 iterations, which is indicative of an adequate performance level for
achieving a high ranking rate.

The dataset (training + test) is examined to determine if ANN is capable of classifying defects.
The results of the classification are shown in Figure 4.16 (b), where the green squares represent
correctly classified data and the red squares represent the opposite. According to the
classification confusion matrix, the MLP-based model's correct and false classification rates are
99.6% and 0.4%, respectively. This shows that the ANN model achieved a good performance
in detecting classification faults. Confusion Matrix
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Figure 4.16: (a). Progression of Mean Squared Error (MSE) for the MLP Network. (b). Confusion Matrix for
Classification in the MLP Network.

4.5. Real-time Experimental Application Results and Discussion

In order to guarantee that the simulated system accurately emulates the real system behavior,
we compare experimentally multilayer neural network identification method and Fuzzy Logic
method in the same data and the comparison result of fault diagnosis by day. Figures. 4.17-22
showcase the created ControlDesk user interface for real-time surveillance, which allows users
to observe all instantaneous and integrated monitoring signals both electrical and environmental
along with the state of the system, the Photovoltaic characteristics (I-V) for the normal
operation and defective PV panel, accompanied by the outcomes obtained from the two
employed algorithms (Detection part). Furthermore, the figures also demonstrate the ultimate

classification of faults (Classification part). To provide a clear indication of the fault type, a
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designated display component is utilized as an alarm triggered according to the identified fault
category.

As shown in Figure 4.17. The results of the identification of the shading fault by the
multilayer neural network identification method and Fuzzy Logic method successfully
classified the fault into different combinations of symptoms. We can see in the monitoring
platform that the graph of the measured PV panel (faulty) is not identical to the estimated one
(normal), this indicates the existence of a fault in the panel. Hence, it can be seen clearly that
the fault is detected and classified by the diagnosis technique, where the type of fault is indicated
in the display part with a red LED. On the other hand, Figure 4.18. depicts the outcomes of the
soiling fault identification. As can be seen, the fault has been detected by the FL and the ANN
methods and classified only by the ANN method which gives a different combination of
symptoms displayed with a red LED. However, the employment of the fuzzy logic method has
resulted in a false alarm (indicated fault 6). The observed misclassification can be attributed to
the existence of inherent measuring errors, which have consequently led to an inaccurate
classification.

Figure 4.19 and 20 Present the result of the implementation of a single by-pass diode
short-circuited and two by-pass diodes short-circuited. As observed, the measured (faulty)
graphs of the PV panel differ from the predicted (normal) graph in the two cases. Thus, the
results that were obtained of the by-pass diode short circuit faults identification using the ANN
and FL methods successfully detect and classify the faults in the display part. Additionally, as
depicted in Figure 4.21 and 22. The figures show the results of the shunted by-pass diode fault
and the shading + open-circuit by-pass diode fault identification along with their corresponding
characteristics (measured) compared to the predicted one (simulated). As can be seen, only the
ANN technique which provides a unique combination of symptoms was able to detect and
classify the defects in the display part. However, the use of fuzzy logic produced a fault

detection, accompanied by a misclassification of the faults.
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Figure 4.17: The ControlDesk User Interface Presents Real-Time Measurement Data and Detects
Fault 1 in the Monitored PV Panel.
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Figure 4.18: The ControlDesk User Interface Presents Real-Time Measurement Data and Detects
Fault 2 in the Monitored PV Panel.
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Figure 4.19: The ControlDesk User Interface Presents Real-Time Measurement Data and Detects
Fault 3 in the Monitored PV Panel.
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Figure 4.20: The ControlDesk User Interface Presents Real-Time Measurement Data and Detects
Fault 4 in the Monitored PV Panel.
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Figure 4.21: The ControlDesk User Interface Presents Real-Time Measurement Data and Detects
Fault 5 in the Monitored PV Panel.
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Figure 4.22: The ControlDesk User Interface Presents Real-Time Measurement Data and Detects

Fault 6 in the Monitored PV Panel.
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Most of the sampled data during the testing period are found to fall within the predetermined
range of lower and upper thresholds. Nonetheless, in each case, a subset of samples
demonstrates inaccurate detection, resulting in their classification as out-of-region instances.
This situation arises due to the system's identification of a significant number of defective
regions, a factor that could potentially be influenced by sensor efficiency and the computation
of three ratios. The computation of Detection Accuracy (DA) for each examined scenario can

be achieved through the subsequent calculation:

totale samples — out of region samples
A= p f reg p @1
total samples

For each scenario examined in Figures 4.17-22, the employment of the Artificial Neural
Network (ANN) method leads to a reduction in instances classified as out of region, as
evidenced by the comparison with the Fuzzy Logic (FL) system state in Table 4.7. This
unequivocally ensures a high degree of accurate classification for the majority of samples
through the utilization of the Artificial Neural Network (ANN). Furthermore, the aggregate
Detection Accuracy (DA) subsequent to the implementation of the ANN system, wherein only
3 instances out of a total of 700 are designated as out of the region, attains 99.6%. Similarly,
employing the fuzzy logic approach (FL), 5 instances are categorized as out of region samples,
contributing to a 99.2% DA level. On the aspect of speed, the execution time for generating the
I-V curves is 20 seconds, due to manual variation of the load. Moreover, the diagnosis time
using fuzzy logic method takes 3.02s, while ANN consumes only 1.04s for the execution of
fault analysis, which in turn makes the system free from unwanted delays.

This enhancement significantly augments the monitoring efficacy of the Photovoltaic (PV)
system. It is evident from the observations that the Artificial Neural Network (ANN) method
adeptly and efficiently accomplishes the precise classification and detection of diverse fault
data.

Table 4.7. The output DA and the execution time with FL and with ANN system.

With FLC With ANN Duration of Diagnosis
I-V Curves time (s)
Case  oQutofregion pa (%) Outofregion pa (g  Generation — With  With

samples samples (s) FLC ANN
F1 0 100 0 100
F2 1 99 0 100
F3 0 100 2 98
20s 3.02s 1.04s
F4 0 100 1 99
F5 2 98 0 100
F6 2 98 0 100
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4.6. Comparative Study with Other ANN Solutions

Table 4.8 presents a comparative analysis of the characteristics of the proposed artificial neural
network (ANN) architecture in contrast to other deep learning methodologies introduced in
recent years. This comparative examination is succinctly addressed in the introductory section.
The table exclusively encompasses methodologies pertinent to experimental diagnosis and fault
detection in photovoltaic (PV) systems. The evaluation encompasses the ANN's accuracy, and
the consideration of various types of detected faults (single- and multi-fault types), which could
have significant implications for integration into embedded systems. This comparative analysis
also underscores that all referenced studies encompass distinct test conditions and represent
diverse scenarios. The results underscore the remarkable efficiency of the proposed fault
diagnosis strategies, which consistently demonstrate their capability to accurately detect and
classify single- and multi-fault types. It is notable that the parameter of training time is
frequently omitted in the works reviewed. Nonetheless, this investigation underscores its
relevance, particularly in the context of fault diagnosis. The outcomes affirm that the proposed
fault diagnosis strategies exhibit rapid self-training, yielding a detection accuracy surpassing

99%.
Table 4.8. ANN techniques for PV diagnosis and faults identification.

References Year of study Types of faults detected Fault Diagnosis
Accuracy (%)

Short-circuited modules,

0,
disconnected strings 87.56%

[22] 2024

Shading, short circuits, open
circuits, and degradation of

solar cells 99.64%

[23] 2024

Line-to-line defects, Open-
circuit failures, Partial
shading

[24] 2024 99.4%

line-ground (LG), line-line
[25] 2024 (LL), open-circuit (OC), 98.37%
string degradation, and
array degradation faults

Partial shading, Soiling, SC
of one by-pass diode, SC of
This work 2024 two by-pass diodes, by-pass 99.6%
diode shunted, Shading &
by-pass diode disconnected

4.7. Conclusion

In this chapter, the ANN and a combined method based on the FL classifier have been

developed for fault detection and classification in photovoltaic panel, and both experimental
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and simulation validations have been introduced using Matlab/Simulink® software. First, the
WSO with Newton-Raphson optimization algorithm is used to determine the optimal PV
simulation model parameters to improve the system'’s capability and performance. Second, three
selected indicators are calculated and analyzed for normal (simulated PV panel) and measured
(real PV panel) for various fault cases that represent: PV cells (shading and soiling) and by-
pass diode defects.

The simulation part has substantiated that both Artificial Neural Networks (ANN) and Fuzzy
Logic (FL) are capable of detecting and classifying all faults effectively. However, when
moving from simulation to experimental tests using dSPACE DS1104 platform, the results
unequivocally showcased the superiority of the ANN classifier over the FL classifier. The
experimental findings of real-time surveillance demonstrated that the ANN classifier
outperformed the FL classifier in terms of fault classification accuracy performance and speed,
the proposed FL and ANN model obtained classification accuracies of approximately 100%
and 99.7% in simulation tests and 99.2% and 99.6% in experimental tests, respectively. These
results highlight the potential of the ANN-based approach as a preferred choice for practical
fault detection systems. Thus, incorporating ANN techniques in real-time applications can lead

to enhanced fault detection capabilities and improved overall system performance.
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Conclusion

The strategies developed in this research focus on the detection and diagnosis of faults in
Photovoltaic system. The primary objective was to enhance the efficiency of PV systems and
protect them from potential faults by implementing effective fault detection and diagnosis
methods. In particular, the research emphasized the application of artificial intelligence (Al)
techniques, such as artificial neural network classifier and Fuzzy Logic method as the core aim
of the thesis.

Nonetheless, the use of Al tools for this purpose necessitates a high-quality database that, on
one hand, accurately captures the relationship between system faults and PV parameters, and
on the other hand, effectively characterizes system behavior under both normal and faulty

conditions.

From a practical perspective, acquiring a comprehensive fault dataset through real-world
experimentation is often challenging, as operating a PV system under faulty conditions can pose
significant risks, including equipment damage and safety hazards. To address this limitation,
this thesis employed a Matlab/Simulink co-simulation approach to develop a robust and realistic
simulation model capable of accurately representing the system’s behavior in both healthy and
faulty states. Additionally, several types of faults were experimentally introduced in a
controlled environment, and the resulting faulty data were collected. These experimental results
were then compared with the outputs of the reference simulation model to validate its accuracy
and reliability for fault diagnosis applications.

Moreover, the developed simulation model necessitates the use of the five electrical parameters
of the One-Diode Model (ODM). To this end, an effective extraction methodology based on
the War Strategy Optimization (WSO) algorithm and Newton-Raphson algorithm has been
proposed. These algorithms were selected owing to their proven efficiency in solving complex
optimization problems, rapid convergence characteristics, and suitability for real-time

implementation. The performance of the proposed ODM parameter extraction method has been
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experimentally validated using two of photovoltaic (PV) modules employing different
technologies.

Subsequently, the extracted ODM parameters were employed to develop a robust strategy for
Maximum Power Point (MPP) estimation. This estimation approach was validated through

experimental testing with real measurement data obtained from photovoltaic system.

Second, both simulation and experimental methodologies were employed to investigate fault
detection and classification in photovoltaic (PV) panels, utilizing thresholding and fuzzy logic-
based techniques. During the simulation phase, eight distinct fault types were examined.
Although the thresholding method proved effective in detecting certain faults, it was limited in
its ability to accurately distinguish between all fault scenarios, thereby indicating the necessity
for a more sophisticated classification strategy. In contrast, the fuzzy logic-based approach
exhibited enhanced diagnostic performance, successfully and distinctly identifying all
investigated faults. The experimental validation was carried out using real measurement data
obtained from a PV panel tested at the LGEB Laboratory, University of Biskra. The
implementation, carried out on the dSPACE DS1104 platform and developed in the
Matlab/Simulink environment, further confirmed the effectiveness of the fuzzy logic method in
reliably detecting and classifying multiple fault conditions.

Third, an Artificial Neural Network (ANN)-based approach for fault detection and
classification was successfully developed and rigorously validated through both simulation and
experimental investigations. The third chapter considered five distinct fault scenarios
comprising both single and multiple faults, such as partial shading, open circuit faults, and
bypass diode failures, applied to a photovoltaic (PV) module. The impact of these faults was
assessed based on variations in voltage, current, and power. Simulation results confirmed the
ANN model’s high accuracy in identifying and classifying all fault types. In addition,
experimental validation using real-time PV module data and implemented via ASSPACE DS1104
controller further substantiated the model’s robustness and reliability. The proposed method
achieved a classification accuracy of 99.7%, demonstrating its strong potential for effective PV

fault detection under diverse operating conditions.

Finally, the simulation of the comparative part of this thesis has substantiated that both Artificial
Neural Networks (ANN) and Fuzzy Logic (FL) are capable of detecting and classifying single

and multi-type faults effectively. However, when moving from simulation to experimental tests
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using dSPACE DS1104 platform, the results unequivocally showcased the superiority of the
ANN classifier over the FL classifier in terms of classifying the single fault (soiling) and the
multi-fault (shading with By-pass diode disconnected). The experimental findings of real-time
surveillance demonstrated that the ANN classifier outperformed the FL classifier concerning
fault classification accuracy performance and speed for classifying the single and multi-faults
types, the proposed FL and ANN model obtained classification accuracies of approximately
100% and 99.7% in simulation tests and 99.2% and 99.6% in experimental tests, respectively.
These results highlight the potential of the ANN-based approach as a preferred choice for
practical fault detection systems. Thus, incorporating ANN techniques in real-time applications
can lead to enhanced fault detection capabilities and improved overall system performance.

As a perspective work, the future contribution is to implement the recommended technique on
an extensive photovoltaic (PV) system could offer significant benefits owing to its notable
advantages in effectively identifying common and multi-faults through heightened sensitivity
and precision, also we will focus on evaluating the proposed embedded system for large-scale
PV plants. Additionally, other type of multi-faults will be investigated, and also generalize the
method for different PV module technologies. Furthermore, another avenue for enhancing the
system involves the integration of Internet of Things (IoT) functionalities, which serves to
enhance real-time online monitoring of performance analysis and the prompt issuance of

malfunction alerts.
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