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Ensuring the reliability and efficiency of photovoltaic (PV) systems requires robust fault 

detection and diagnosis methods. This thesis presents a comprehensive study on the detection, 

classification, and localization of PV faults using Artificial Neural Networks (ANN) and Fuzzy 

Logic (FL) techniques, validated through both simulation and experimental approaches. In the 

first phase, a simulation model was developed in Matlab/Simulink® to describe the system 

behavior for both healthy and faulty operations. To deal with this concern, a Matlab/Simulink® 

co-simulation strategy is developed to elaborate a trusted simulation model. This model requires 

the use of the One Diode Model (ODM) electrical parameters. For this, an efficient strategy, 

based on the War Strategy Optimization (WSO) algorithm, is applied to identify the ODM 

parameters. Finally, the ODM identified parameters are used to elaborate an efficient strategy 

of maximum power point (MPP) estimation. The efficiency of the developed strategies is 

experimentally evaluated by using real measured data. In the first phase, the thresholding 

method and FL classifier demonstrated high fault detection capabilities to diagnose eight types 

of faults occurring in PV cells, achieving approximately 100% accuracy in the simulation and 

experimental tests. In the second phase, an Artificial Neural Network (ANN)-based fault 

detection and classification approach was successfully implemented and validated through both 

simulation and experimental analysis. Five distinct single- and multi-fault types, including 

partial shading, open circuit and bypass diode failures, were applied to a PV module through 

the dSPACE DS1104 controller, confirmed the model’s robustness and reliability. The ANN-

based method achieved an impressive classification accuracy of 99.7%, proving its efficiency 

in detecting PV faults under varying conditions. In the third phase, a comprehensive study has 

substantiated that both Artificial Neural Networks (ANN) and Fuzzy Logic (FL) are capable of 

detecting and classifying all single- and multi-fault types effectively. However, when moving 

from simulation to experimental tests using the dSPACE DS1104 platform, the results 

unequivocally showcased the superiority of the ANN classifier over the FL classifier.  The ANN 

classifier exhibited superior accuracy (99.6%) and faster fault classification compared to the FL 

classifier (99.2%) in real-time conditions. The findings of this research highlight the ANN-

based approach as an efficient solution for PV fault diagnosis, offering enhanced accuracy and 

faster processing. These results underscore the potential of integrating ANN techniques into 

real-time monitoring systems to improve the performance, reliability, and safety of photovoltaic 

installations. 

Key words: Photovoltaic systems, Fault detection, Artificial Neural Networks, Fuzzy Logic, 

War Strategy Optimization, Matlab/Simulink, Real-time monitoring. 
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Assurer la fiabilité et l'efficacité des systèmes photovoltaïques (PV) nécessite des méthodes 

robustes de détection et de diagnostic des défauts. Cette thèse présente une étude approfondie 

de la détection, de la classification et de la localisation des défauts PV à l'aide de techniques de 

réseaux de neurones artificiels (ANN) et de logique floue (FL), validées par des approches de 

simulation et expérimentales. Dans un premier temps, un modèle de simulation a été développé 

sous Matlab/Simulink® afin de décrire le comportement du système, qu'il soit en 

fonctionnement normal ou en fonctionnement défectueux. Pour répondre à cette problématique, 

une stratégie de co-simulation Matlab/Simulink® a été développée afin d'élaborer un modèle 

de simulation fiable. Ce modèle nécessite l'utilisation des paramètres électriques du modèle à 

une diode (ODM). Pour cela, une stratégie efficace, basée sur l'algorithme d'optimisation de 

stratégie de guerre (WSO), est appliquée pour identifier les paramètres ODM. Enfin, les 

paramètres ODM identifiés sont utilisés pour élaborer une stratégie efficace d'estimation du 

point de puissance maximale (MPP). L'efficacité des stratégies développées est évaluée 

expérimentalement à l'aide de données réelles mesurées. Lors de la première phase, la méthode 

de seuillage et le classificateur FL ont démontré une capacité élevée de détection des défauts 

pour diagnostiquer huit types de défauts survenant dans les cellules photovoltaïques, atteignant 

une précision d'environ 100 % lors des simulations et des tests expérimentaux. Lors de la 

deuxième phase, une approche de détection et de classification des défauts basée sur un réseau 

de neurones artificiels (ANN) a été mise en œuvre avec succès et validée par simulation et 

analyse expérimentale. Cinq types distincts de défauts simples et multiples, dont l'ombrage 

partiel, le circuit ouvert et les défaillances de diodes de dérivation, ont été appliqués à un module 

photovoltaïque via le contrôleur dSPACE DS1104, confirmant la robustesse et la fiabilité du 

modèle. La méthode basée sur le RNA a atteint une précision de classification impressionnante 

de 99,7 %, prouvant son efficacité dans la détection des défauts photovoltaïques dans diverses 

conditions. Lors de la troisième phase, une étude approfondie a démontré que les réseaux de 

neurones artificiels (ANN) et la logique floue (FL) sont capables de détecter et de classer 

efficacement tous les types de défauts simples et multiples. Cependant, en passant de la 

simulation aux tests expérimentaux avec la plateforme dSPACE DS1104, les résultats ont 

clairement démontré la supériorité du classificateur ANN sur le classificateur FL. Le 

classificateur ANN a affiché une précision supérieure (99,6 %) et une classification des défauts 

plus rapide que le classificateur FL (99,2 %) en conditions temps réel. Les résultats de cette 

recherche mettent en évidence l'approche basée sur les ANN comme une solution efficace pour 

le diagnostic des défauts photovoltaïques, offrant une précision accrue et un traitement plus 

rapide. Ces résultats soulignent le potentiel de l'intégration des techniques ANN dans les 

systèmes de surveillance en temps réel pour améliorer les performances, la fiabilité et la sécurité 

des installations photovoltaïques.  

Mots-clés : Systèmes photovoltaïques, Détection de défauts, Réseaux de neurones artificiels, 

Logique floue, Optimisation de stratégie de guerre, Matlab/Simulink, Surveillance en temps 

réel. 
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الأعطال وتشخيصها. تقدم هذه  ( أساليب قوية للكشف عنPVيتطلب ضمان موثوقية وكفاءة أنظمة الطاقة الكهروضوئية )

الأطروحة دراسة شاملة حول الكشف عن أعطال الطاقة الكهروضوئية وتصنيفها وتحديد مواقعها باستخدام تقنيات الشبكات 

(، والتي تم التحقق من صحتها من خلال كل من المحاكاة والنهج FL( والمنطق الضبابي )ANNالعصبية الاصطناعية )

لوصف سلوك النظام لكل من العمليات ® Matlab/Simulinkلة الأولى، تم تطوير نموذج محاكاة في التجريبية. في المرح

لوضع نموذج ® Matlab/Simulinkالسليمة والمعيبة. للتعامل مع هذه المشكلة، تم تطوير استراتيجية محاكاة مشتركة 

(. ولهذا، يتم ODMوذج الصمام الثنائي الواحد )محاكاة موثوق به. يتطلب هذا النموذج استخدام المعلمات الكهربائية لنم

. وأخيرًا، يتم ODM(، لتحديد معلمات WSOتطبيق استراتيجية فعالة، تستند إلى خوارزمية تحسين استراتيجية الحرب )

جيات (. يتم تقييم كفاءة الاستراتيMPPالمحددة لوضع استراتيجية فعالة لتقدير نقطة القدرة القصوى ) ODMاستخدام معلمات 

قدرات  FLالمطورة تجريبيًا باستخدام بيانات مقاسة حقيقية. في المرحلة الأولى، أظهرت طريقة تحديد العتبات ومصنف 

عالية في اكتشاف الأعطال لتشخيص ثمانية أنواع من الأعطال التي تحدث في الخلايا الكهروضوئية، محققين دقة تقارب 

% في اختبارات المحاكاة والاختبارات التجريبية. في المرحلة الثانية، تم بنجاح تنفيذ نهج اكتشاف وتصنيف الأعطال 100

( والتحقق من صحته من خلال كل من المحاكاة والتحليل التجريبي. تم تطبيق ANNعية )القائم على الشبكة العصبية الاصطنا

خمسة أنواع مميزة من الأعطال المفردة والمتعددة، بما في ذلك التظليل الجزئي والدائرة المفتوحة وفشل الصمام الثنائي 

ا أكد متانة النموذج وموثوقيته. حققت ، ممdSPACE DS1104الالتفافية، على وحدة كهروضوئية من خلال وحدة التحكم 

%، مما يثبت كفاءتها في اكتشاف أعطال الخلايا الكهروضوئية 99.7دقة تصنيف رائعة بلغت  ANNالطريقة القائمة على 

( والمنطق ANNفي ظل ظروف مختلفة. في المرحلة الثالثة، أثبتت دراسة شاملة أن كلاً من الشبكات العصبية الاصطناعية )

( قادران على اكتشاف وتصنيف جميع أنواع الأعطال المفردة والمتعددة بشكل فعال. ومع ذلك، عند الانتقال FLي )الضباب

، أظهرت النتائج بوضوح تفوق مُصن ِّف dSPACE DS1104من المحاكاة إلى الاختبارات التجريبية باستخدام منصة 

%( 99.6صن ِّف الشبكات العصبية الاصطناعية دقةً فائقة ). أظهر مُ FL( على مُصن ِّف ANNالشبكات العصبية الاصطناعية )

%( في الظروف اللحظية. تسُل ِّط نتائج هذا البحث الضوء على النهج 99.2) FLوتصنيفًا أسرع للأعطال مقارنةً بمُصن ِّف 

ية، حيث يوُف ِّر دقةً مُحسَّنةً فعِّال  لتشخيص أعطال الخلايا الكهروضوئ( كحل ِّ ANNالقائم على الشبكات العصبية الاصطناعية )

ِّد هذه النتائج على إمكانية دمج تقنيات الشبكات العصبية الاصطناعية في أنظمة المراقبة اللحظية لتحسين  ومعالجةً أسرع. تؤُك 

 .أداء وموثوقية وسلامة منشآت الطاقة الكهروضوئية

 :الكلمات المفتاحية

كات العصبية الاصطناعية، المنطق الضبابي، تحسين استراتيجية الحرب، نظمة الكهروضوئية، اكتشاف الأخطاء، الشبالأ

Matlab/Simulink.المراقبة في الوقت الحقيقي ، 
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Introduction  

Photovoltaic (PV) systems play a crucial role in the conversion of solar energy into electrical 

power. Nevertheless, the performance and reliability of PV systems are encountering various 

real-time operational challenges. Researchers have identified these issues and proposed 

numerous solutions. Factors like solar irradiance and module temperature [1], shading [2], 

module degradation [3], soiling, and by-pass diode faults [4,5], impact the performance and 

energy output of PV modules potentially accelerating their degradation. Accurate energy yield 

forecasting under these varying conditions is crucial, making it important to consider these 

factors during the design and operation of PV systems. Additionally, without proper 

supervision, users find it difficult to identify the exact type of faults in the system. Although 

increasing data for better monitoring can complicate the system, accurate fault detection and 

diagnosis are essential for maintaining and ensuring the reliability of photovoltaic arrays. 

Selecting the right indicators for monitoring enhances fault diagnosis techniques and simplifies 

the system. Thus, power engineers need assistance in interpreting data and focusing on the most 

useful information. To keep costs down, only the essential electrical features of the PV system 

should be monitored and analyzed. Hence, the accurate diagnosis of these PV system faults is 

imperative to ensure proper functionality and to avert significant economic repercussions. 

With the rapid development of the PV industry and the increase in the installed capacity, 

efficient operation and maintenance strategies are increasingly required [6]. In fact, 

manufacturing, transportation, installation, and operating conditions can cause PV cell or 

module failures [7], [8]. In the case of a PV array or power plant, which is composed of several 

electrically connected modules, any fault in one cell or module affects the performance of the 

whole array or system. The PV faults could cause a severe safety hazard, e.g., fire risk, electrical 

shock, physical danger [9], or power loss [10]. Therefore, to assure the reliability, availability 

and safety of the PV installations, their health status should be monitored regularly to prevent 

from failures and contribute to an efficient condition-based maintenance policy. To this end, 

efficient PV fault detection and diagnosis (FDD) strategies are required. Recently, several 

methods have been suggested for detecting PV problems, such as the utilization of fuzzy logic 

(FL) [11-14] and artificial neural network (ANN) techniques [15-17]. Both techniques have 

shown significant potential in the field of fault diagnostics for PV systems. 



Introduction  

 

3 

 

Problem statement 

Despite the development of various defect diagnosis techniques, many existing methods 

demonstrate limitations in accurately identifying compound faults, often simplifying them as 

single faults. Additionally, while several deep learning approaches have been introduced, there 

remains a lack of comprehensive comparative analysis with the latest methodologies. Most 

current models also fall short in handling multi-label fault scenarios effectively. Therefore, 

there is a need for a diagnostic approach capable of accurately identifying both single and 

compound faults in offline and online real-time applications. This study addresses this gap by 

proposing advanced diagnostic models and evaluating their performance against state-of-the-

art multi-label learning algorithms (SAE-CA, PSO–SVM-OVMD, UHWSPR-BFM, Random 

Forest, BA-XGBoost, ANMSSA-MIFNet, and a weighted ensemble learning model) based on 

monitored parameters, fault detection capabilities, and diagnostic accuracy. 

 

Ref./Year Monitored Parameters Considered faults  

Detection & identification 

Method Accuracy 

(%) 

[18]/ 2021 Current, voltage and power Short-circuit, degradation, partial-

shading, partial-shading with the by-

pass diode open-circuit defect, 

partial-shading with the by-pass 

diode short-circuit, short-circuit with 

the degradation defect 

SAE-CA 98.3% 

[19]/ 2022 Current DC Arc fault PSO–SVM-OVMD 98.21% 

[20]/ 2022 Power Line to line, line to ground UHWSPR- BFM 99.29% 

[21]/ 2023 Current, voltage and power Line-to-line defects  

Open-circuit failures  

Partial shading 

Random forest 99.17% 

[22]/ 2024 Current, voltage and power Short-circuited modules, 

disconnected strings 

BA-XGBoost 87.56% 

[23] / 

2024 

Current, voltage and power Shading, short circuits, open circuits, 

and degradation of solar cells 

ANMSSA-MIFNet 99.64% 

[24] / 

2024 

T, Ir, Imp, Vmp, and, 

Maximum Power Point 

(MPP) 

Line-to-line defects  

Open-circuit failures  

Partial shading 

Random Forest 

Classifiers  
99.4% 

[25] / 

2024 

Short circuit current, open- 

circuit voltage, Maximum 

Power Point (MPP), half 

short-circuit current, and half 

open-circuit voltage 

line-ground (LG), line-line (LL), 

open-circuit (OC), string 

degradation, and array degradation 

faults 

Weighted ensemble  

learning model 

98.37% 

Thesis outline 

The aim of this thesis is to evaluate the efficacy of two artificial intelligence techniques: fuzzy 

logic (FL) and artificial neural networks (ANN) in diagnosing defects in photovoltaic (PV) 

systems. The created model seeks to identify and categories single and multiple fault types that 

may arise in photovoltaic panels for real-time applications, including partial shading, soiling, 

open circuit, short circuit of one bypass diode, short circuit of two bypass diodes, bypass diode 

shunting, and bypass diode disconnection. The detection methods depend on the analysis of 

Table GI.1. Performance comparison of the most recent fault detection methodologies. 
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three input ratios: Power Ratio (PR), Current Ratio (IR), and Open Circuit Ratio (OCR). These 

ratios are derived from measurements and simulations performed under both standard and 

defective settings. The comparison is conducted via simulation and experimentation utilizing 

Matlab/Simulink® software. The model is tested with dSPACE DS1104 controller to facilitate 

real-time testing of its efficacy in diagnosing photovoltaic module, in terms of accuracy, speed 

and feasibility in real conditions. The thesis comprises of four chapters, the last three chapters 

representing original works that have been previously published. 

Chapter One provides a general overview of photovoltaic (PV) systems, including an 

examination of various types of faults that can occur. Additionally, a comprehensive literature 

review will be presented, focusing on existing fault detection and diagnosis techniques. 

Chapter Two is devoted entirely to PV array modeling. It begins with an introduction to the 

One-Diode Model (ODM) of PV modules. Subsequently, five electrical parameters of this 

model will be identified using the war strategy optimization algorithm (WSO) [26, 27]. 

Following by the implementation of fuzzy logic for fault diagnosis. The fuzzy logic models 

were developed and simulated using MATLAB/Simulink before being experimentally 

implemented on dSPACE DS1104 platform. The results demonstrated the effectiveness of 

fuzzy logic in identifying and diagnosing various faults, such as partial shading, shorted bypass 

diodes, and other common faults. 

Chapter Tree focuses on the application of ANNs to PV system fault diagnosis. An ANN 

model is trained using experimental databases and simulated using MATLAB/Simulink. This 

model is then implemented on dSPACE DS1104 platform to evaluate its real-time performance. 

The results demonstrate remarkable accuracy in term of detection and diagnosis single and 

multi-type faults.  

Chapter Four compares the two approaches (FL and ANN) in terms of accuracy, speed, and 

real-time adaptability. Experimental results reveal that ANNs slightly outperform fuzzy logic, 

particularly in terms of execution speed, making them a more practical solution for industrial 

applications. 

The work concludes with a conclusion that summarizes the main contributions of the thesis, 

highlighting the value of the studied approaches for real-time monitoring of photovoltaic 

systems, as well as the anticipated future prospects. 
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1.1. Introduction 

A photovoltaic (PV) array fault refers to a defect that either reduces output power or poses a safety 

hazard. However, variations in appearance due to manufacturing that do not impact safety or 

performance are not classified as faults. Outdoor PV arrays are exposed to various internal and 

external factors, making them susceptible to a wide range of faults that can affect nearly all 

components. These faults can result in different degrees of degradation, power loss, or even fire 

hazards. Therefore, a thorough understanding of common PV array faults is crucial before 

developing effective detection and diagnosis strategies. This chapter aims to provide a 

comprehensive state of the art on common PV array faults and diagnosis methods. Section I.2 

introduces the structure of PV panel and protection system, while in Section I.3, we present the faults 

in detail and their impact in terms of power loss and safety. In Section I.4, we analyze the fault 

detection techniques, and Section I.5 closes the chapter.  

1.2. Description of a photovoltaic system 

Solar cells are typically arranged in an assembly of one or more units and then encapsulated 

under glass to form a photovoltaic (PV) module. A PV generator consists of multiple 

interconnected modules, creating a unit capable of generating high continuous power suitable 

for standard electrical equipment (Figure 1.1). To enhance the output voltage and current, PV 

modules are usually connected in a series-parallel configuration. These interconnected modules 

are mounted on metal structures and tilted at an optimal angle based on the installation location, 

collectively referred to as a PV array [28]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Photovoltaics: Cells to Modules to Arrays. 
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1.2.1.Photovoltaic Conversion  

A photovoltaic cell is a device that converts sunlight into electricity. It works by using the 

properties of semiconductor materials to absorb light and create an electric current. The 

materials used to make photovoltaic cells are chosen based on how easily they can release 

electrons when exposed to light. When these electrons are released, they flow through the cell 

and create an electrical current. This phenomenon is called the photovoltaic effect. Figure 1.2 

shows the structure of a silicon photovoltaic cell. 

 

 

1.2.2 Current–voltage and power–voltage characteristics 

Most commonly available solar cells have a diode structure, consisting of a junction between 

p-type and n-type semiconductor materials. In some designs, an insulating layer is added to 

form a p-n junction, or multiple junctions are created. However, in terms of electrical behavior, 

the overall characteristics remain similar. The relationship between current (I) and voltage (V) 

is ideally described by Eq. (1.1), which represents the standard diode equation. This equation 

incorporates the light-generated current 𝐼𝑝ℎ and a diode factor (n), which accounts for the 

recombination mechanisms within the cell, as shown in Figure 1.3. 

 

 

 

 

Figure 1.2: Structure of a of a silicon photovoltaic cell. 

. 

 



Chapter 1                                                         State of the Art in PV System Fault Diagnosis: 

Types, Detection Methods, and Analysis 

 

8 

 

 

 

 

 

 

 

 

 

𝐼 =  𝐼𝑝ℎ  −   𝐼0. [exp (
𝑉 + 𝑅𝑆. 𝐼

𝑉𝑡. 𝑛
) − 1] −

𝑉 + 𝑅𝑆. 𝐼

𝑅𝑠ℎ
                                     (1.1) 

Where 𝑉𝑡  is defined by: 

𝑉𝑡 =
𝑁𝑆𝐾𝑇

𝑞
                                                                      (1.2) 

Whereas 

V= Voltage of the cell [V].  

q = Electron charge.  

k = Boltzmann constant.  

T = absolute temperature [°K].  

𝐼𝑠𝑐 = Saturation current of the diode [A].  

𝑅𝑠 = Series resistance.  

𝑅𝑠ℎ = Shunt resistance.  

n = Ideality Factor.  

The I-V curve represents the fundamental relationship between the output current and voltage 

of a solar cell, providing crucial insights into its performance and operational behavior under 

different conditions, as shown in Figure 1.4. Excluding the known parameters, there are five 

unknown parameters Iph, Io, Rsh, Rs, n that are needed to be estimated. 

 

 

 

 

Figure.1.3. Solar cell equivalent circuit. 

Iph 
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1.2.3 Structure of a photovoltaic module 

The photovoltaic module is a collection of assembled cells designed to generate usable 

electrical power when exposed to light. This series assembly must be protected to make the 

panel suitable for outdoor use. The cells are indeed fragile and susceptible to corrosion, 

requiring mechanical protection and shelter from harsh weather conditions such as humidity 

and temperature variations [28]. A "standard" module typically contains 36 or 72 cells, though 

modules with 40, 54, or 60 cells are also available on the market. Figure I-5 illustrates the 

structure of a photovoltaic module, showing its front and back sides with 36 cells [29]. 

Depending on the manufacturer and the number of cells, each module may include from 2 to 5 

bypass diodes [30]. The cells are connected in series to form a PV array (figure 1.5). Each array 

is connected in parallel with bypass diodes in an anti-parallel configuration to protect them from 

reverse operation (for example, during shading). 

The ideal approach is to connect a bypass diode for each cell [31], but this technique is not 

commonly used due to its complexity and high cost. Two different configurations are possible 

for the installation of bypass diodes, as shown in Figures 1.6 [32]. Typically, there are 18 cells 

per bypass diode; however, this number can vary among different manufacturers of the 

modules. In the case of PV modules with overlapped diodes (see (b) in Figure 1.6), these 

proposals are not widely applied due to manufacturing difficulties. In contrast, in PV modules 

with non-overlapped diodes (see (a) in Figure 1.6), energy losses are caused solely by the 

consumption of the bypass diodes. 

Figure I.4: Current voltage (IV) curve of a solar cell. 

𝑉𝑀𝑃 

𝐼𝑀𝑃 
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1.2.4 Protection System 

Several types of protection can be used in a photovoltaic installation, similar to other electrical 

installations: protection for operators, protection against lightning, and protection for the PV 

generator. Since we will be discussing faults or anomalies that lead to decreased production, we 

will focus solely on the components that protect the PV generator. 

1.2.4.1 Bypass Diode 

As mentioned earlier, the bypass diode is connected in parallel with a group of cells to protect 

the weaker cells from reverse bias (see Figure 1.7). Under the influence of factors such as 

shading or temperature variations, the electrical characteristics of series-connected photovoltaic 

Cell 
EVA Glass 

EVA Back 
Sheet 

Junction 
Box 

Figure 1.5: Structure of a photovoltaic module. 

 

(a)                                                             (b) 

Figure 1.6: PV modules with non- overlapped and overlapped bypass diodes. 
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cells may differ and their electrical properties can change due to shading or temperature 

differences. Cells that receive more sunlight generate more current than shaded ones, creating 

an imbalance. This can lead to overheating, which may deform or even break the glass panel of 

the solar module. To prevent excessive heating, bypass diodes are used. When a submodule is 

shaded, its bypass diode activates, allowing excess current to flow through it instead of the 

shaded cell. This helps reduce overheating in the affected area as shown in Figure 1.8 [33]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: Protection of a PV generator by bypass diode and blocking diode. 

 

Figure 1.8: PV module under shading of a cell. 

. 
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1.2.4.2 Blocking Diode 

The voltage produced by each string may be different. When these strings are connected in 

parallel to form a field, the string with the lowest voltage can absorb reverse current from the 

other strings. This leads to reduced production, and the modules in the string experiencing 

reverse current could also be at risk of failure. To prevent these reverse currents, a blocking 

diode is placed at the end of each string, as shown in Figure 1.7 [34]. 

1.3 Losses, defects, and possible faults in PV systems  

I.3.1. Fault classification 

Photovoltaic arrays and cells are highly sensitive instruments that must be installed in 

unobstructed surroundings to optimize solar radiation exposure. Nevertheless, existing in such 

environments exposes them to considerable environmental and physical stress all the time. This 

stress can result in physical damage, including corrosion, cracks, and delamination, so 

diminishing their effectiveness. Photovoltaic cells depend on sun radiation to generate electrical 

current; in its absence, they are incapable of producing any current. Partial shading of the array 

can result in significant variations in the IV properties, resulting in elevated temperatures and 

perhaps catastrophic damage to the cells. Alongside environmental and physical causes, 

electrical problems frequently occur in photovoltaic systems [35-37]. Figure 1.9 presents the 

classification of PV faults. 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1.9: Classification of PV faults. 

. 
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I.3.2. PV array faults 

The following sections provide a detailed explanation of typical PV faults associated with the 

three levels. 

I.3.2.1. Cell-level faults 

Cell-level faults are PV faults that impact an individual PV cell. While they may gradually 

extend to neighboring areas, they typically do not affect the entire surface of the PV module. 

Table 1.1 provides an overview of these faults along with corresponding images. 

Fault Description Example 

Cell crack Cell cracks are fractures in the silicon substrate of 

photovoltaic cells caused by mechanical stress, 

often invisible to the naked eye. They can occur 

during manufacturing, transportation, installation, 

or operation. The cracks vary in shape, length, and 

orientation within a single solar cell. The resulting 

power loss depends on the extent of the ‘inactive’ 

area affected by the crack. 

 

[38] 

 

Discoloration 

Discoloration is generally related to the PV 

modules using EVA (Ethylene Vinyl Acetate) as 

the encapsulant material. Discoloration refers to 

the yellowing or browning of PV cells. It causes a 

change in the transmission of solar irradiance 

reaching the cell surface and consequently a 

reduction in production. Nowadays, this fault is 

greatly eased for the PV modules with new 

encapsulant material. For example, for 

thermoplastic polyolefin, the discoloration rate is 

reported around 9 times lower [39].  

Snail track Snail tracks appear as grey or black discoloration 

on the silver paste of the front metallization in 

screen-printed solar cells. This discoloration 

typically develops between three months and one 

year after the PV module is installed. Studies in 

[40,41] indicate that humidity plays a role in the 

formation of snail trails. However, there is no 

evidence that this phenomenon reduces the 

efficiency of the PV module or affects its output 

power. [42] 

Table 1.1: Cell-level faults. 
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Delamination Delamination is the adhesion loss between the 

glass, encapsulant, active layer and back layer. For 

thin-film PV type, the Transparent conductive 

oxide (TCO) may as well delaminate from the 

adjacent glass layer. Bubble is also a form of 

delamination. Delamination will lead to optical 

reflection and therefore cause the decrease in 

power output. It also causes moisture penetration, 

which then leads to various chemical and physical 

degradation. 
[43] 

 

I.3.2.2. Module-level faults 

 At the module level, common PV faults can be classified into three main categories: shading, 

structural, and electrical faults. Additionally, hot spots resulting from a combination of diode 

faults, partial shading, or mismatches are also considered module-level faults. A detailed 

overview of these faults is provided in Table 1.2. 

 

Fault Description Example 

Shading/soiling Shading and partial shading (PS) are 

typically caused by obstructions such as 

buildings, trees, or moving clouds. Soiling, 

on the other hand, occurs when the PV 

module's surface is covered by snow, dirt, 

dust, or other particles. Both shading and 

soiling can be categorized as either hard or 

soft, as well as permanent or temporary and 

leads to a current reduction in the shaded 

cells, leading to varying degrees of power 

loss. 
[44] 

Frame 

 breakage 

The primary cause of frame breakage is the 

accumulation of heavy snow, which 

gradually moves downward and enters the 

gap between the frame and the glass. This 

process deforms the module and can cause 

the frame to detach from the PV glass, 

ultimately leading to power loss. 

[45] 

Table 1.2: Module-level faults. 
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Back sheet 

Adhesion loss 

The causes of back-sheet adhesion loss in PV 

modules vary based on the material type but 

are generally similar to those of 

delamination, including factors such as 

temperature, moisture, and mechanical 

stress. This issue leads to insulation failure, 

increasing the risk of exposure to active 

electrical components, particularly when it 

occurs near a junction box or the module's 

edge. 
[46] 

Junction Box 

fault 

Junction box faults commonly include poor 

fixation, faulty wiring, and broken 

connections. These issues are primarily 

caused by energy overstress, cable rework 

during installation, connector rework, and 

prolonged heat exposure. Such faults can 

lead to moisture ingress, internal arcing, and 

power loss. 
[47] 

Diode fault A common diode fault occurs in the bypass 

diode (BPD) due to excessive current levels 

and inadequate or improper heat dissipation. 

Limited airflow within the junction box also 

plays a significant role, especially during 

rapid transitions between shadow and 

sunlight. A burnt BPD can result in a short 

circuit, open circuit, shunted diode, or an 

inversed diode, leading to varying degrees of 

power loss. 

[48] 

Burn mark Partial shading combined with a BPD fault or 

other mismatch issues, such as a low 

resistance defect in c-Si, can result in energy 

being consumed in the mismatched area 

rather than being generated. This leads to 

localized overheating of the cell and the 

formation of burn marks. Additionally, a DC 

arc fault can also cause burn marks, 

potentially resulting in overheating, 

delamination, or material melting. 
[49] 
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Shunt Hot 

Spot 

Partial shading can cause a cell to enter a 

reverse-biased voltage state, to which thin-

film cells are particularly sensitive. This 

results in module current concentrating along 

the shunt path, leading to the formation of hot 

spots. Unlike hot spots in c-Si modules, 

where the BPD helps limit reverse voltage, 

thin-film modules lack this protection. While 

overheating is less likely, this condition can 

lead to glass breakage and an increased risk 

of electrical shock. [50] 

PID Potential Induced Degradation (PID) is a 

performance loss in photovoltaic (PV) 

modules caused by high voltage differences 

between the solar cell and grounded 

components, such as the module frame. This 

voltage stress can lead to leakage currents 

and the migration of ions (like sodium) 

through the encapsulant, resulting in reduced 

power output and degraded cell performance. 

PID typically occurs under high system 

voltages, elevated temperatures, and humid 

conditions, and can significantly shorten the 

lifespan of PV modules if not properly 

mitigated. 

 
[51] 

Abnormal 

degradation 

Abnormal degradation is a combined effect 

of multiple faults, such as delamination, 

bubbles, snail tracks, PID, and the associated 

corrosion of the PV module [52]. Its impact 

is primarily observed through power loss and 

alterations in the slope of the module's I-V 

curve. 

 

I.3.2.3. Array-level faults 

At the array level, the main type of fault is the connection fault, which generally includes the 

earth fault, the line fault and the arc fault, as shown in Table 1.3. 
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Fault Description Example 

Ground 

fault 

(GF) 

It occurs when an unintended low-

impedance path forms between the 

Current Carrying Conductor (CCC) and 

the ground. In grounded PV systems, 

ground faults result in a high current 

flowing through a designated circulating 

path. In ungrounded systems, they 

create a residual magnetic field between 

the forward and return current flow. This 

leads to changes in insulation resistance 

and a sustained power loss.  

Line-line 

fault 

(LLF) 

Line-to-Line Fault (LLF) occurs due to 

an unintended low-resistance path 

between two Current Carrying 

Conductors (CCC) with different 

electrical potentials. It can result from 

poor insulation in string connectors, 

accidental short circuits between CCCs, 

improper mounting, or external damage. 

This fault causes a high reverse current 

determined by the potential difference at 

the fault location flowing through the 

faulty path, leading to persistent power 

loss. LLF is categorized into two types: 

intra-string and cross-string LLF. 

Equipment damage: May damage 

modules, strings, or MPPT units. 

Standard detection method: 

Current/voltage monitoring, insulation 

resistance test. 

 

Table 1.3: Array-level faults 
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Arc fault 

(AF) 

Various external factors can cause 

discontinuity or insulation failure in 

Current Carrying Conductors (CCC), 

creating an air gap that leads to an arc 

fault. Arc faults are classified into two 

types: series and parallel AF, with the 

latter further divided into intrastring, 

cross-string, and parallel-to-ground 

faults. These faults can occur at almost 

any connection point or structural 

component within the PV array, 

including cells, busbars, modules, 

diodes, strings, and safety devices. They 

generate brief but extremely high 

temperatures that can burn the module’s 

metal coating. Additionally, arc faults 

produce high-frequency components, 

leading to significant nonlinear 

distortions in current and voltage. 

Equipment damage: Can destroy 

connectors, modules, and protective 

devices. Standard detection method: 

Needs high-frequency signature 

analysis or arc fault detection devices. 

 

 Below, we present the impact of defects on the various parameters of the PV panel (see Table 

1.4). 

Nature of defects Affected parameters 

Shading (leaves, snow, 

sand, etc.) 
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Table 1.4: Impact of different defects on cell parameters [33]. 
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As shown in Figure 1.10, the most common degradation modes in modules for the last 10 years 

were hot spots (33%) followed by ribbon discoloration (20%), glass breakage (12%), 

encapsulant discoloration (10%), cell breakage (9%), and potential-induced degradation (PID, 

8%) [53]. 

 

 

 

 

 

 

1.4 Fault detection and diagnosis in PV systems 

A fault detector is an additional component in both off-line and on-line PV systems, designed 

to assist operators in identifying faults, determining their type, and locating them within the 

system. It comprises various sensors, processing units, actuators, transducers, protective relays, 
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Figure 1.10: Representative degradation modes of silicon PV modules for the last 10 

years [53]. 
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and circuit breakers, and can be installed at any node marked by the dashed polylines. At the 

output level, the fault detector features alarms, buzzers, and various Graphical User Interfaces 

(GUI) to notify field workers of any fault occurrences. The fault detection process is carried out 

in two key stages: monitoring and diagnosis. 

A. Monitoring  

To assess the performance of a PV system, the monitoring system gathers and analyzes various 

parameters such as voltage, current, and power [54]. This process is essential as a preliminary 

step before fault detection, ensuring continuous tracking of electrical power generation. Sensors 

serve as the primary input for data acquisition, with the collected data being transmitted through 

signal processing units. In the final stage, the data is stored for further analysis [54,55]. Figure 

1.11 illustrates the cascaded monitoring process of a PV system, integrated within a fault 

detection framework. 

 

 

 

 

B. Diagnosis  

The monitoring system outputs acquired data, which serves as the primary input for the fault 

diagnosis framework. By comparing this data with reference values, the system determines 

whether a fault is present or not [56,57]. The data source whether from the DC or AC side of 

the PV system helps guide the fault detector in its investigation. Figure 1.12 illustrates the 

sequential steps of PV fault diagnosis, starting with data analysis and concluding with the 

activation of alarms. 
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Figure 1.11: Block diagram of PV monitoring system. 
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Figure 1.12: Block diagram of PV fault diagnosis scheme. 
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1.4.1 Faults Detection Techniques 

Photovoltaic (PV) systems are prone to various faults that can degrade their performance, 

reduce energy output, and cause safety hazards. To ensure reliability and efficiency, different 

fault detection and identification techniques have been developed [58-61]. These techniques 

can be broadly classified into visual inspection, imaging-based techniques, electrical analysis, 

signal processing, analytical monitoring, and other advanced methods. The following sections 

provide an in-depth discussion of each approach. Figure 1.13 illustrates the Faults Detection 

and Identification techniques investigated in this sub-section.  

 

1. Visual Inspection 

Visual inspection is the most straightforward method for fault detection in PV systems. It 

involves manually examining solar panels, wiring, and electrical connections to identify visible 

defects. Technicians physically inspect the PV modules for signs of wear, damage, or dirt 

accumulation. 

Some of the common issues detected through visual inspection include: 

• Broken or cracked solar cells – Can be caused by external impacts, thermal stress, or 

material defects. 

• Burn marks or discoloration – Indicate overheating, electrical faults, or aging of the 

module. 

• Loose connections and damaged wiring – Poor connections can lead to power losses 

and even fire hazards. 

• Dust, dirt, and shading effects – Obstructions on the module surface can reduce power 

generation efficiency. 

Figure 1.13: Faults Detection and Identification techniques. 
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While visual inspection is useful in detecting physical faults, it has several limitations. It is 

time-consuming, labor-intensive, and cannot identify internal or electrical faults. As a 

result, it is often combined with other advanced techniques to provide a more comprehensive 

fault detection approach. 

2. Infrared (IR) and Electroluminescence (EL) Imaging Inspections 

 Numerous Operations and Maintenance firms provide routine Infrared (IR) and 

Electroluminescence (EL) imaging inspections of photovoltaic (PV) plants to guarantee optimal 

performance and safety of the PV array [62]. Infrared (IR) and electroluminescence (EL) 

imaging are non-destructive measurement techniques that can deliver high-resolution images 

of photovoltaic (PV) modules in real-time. Nonetheless, not all imperfections in PV modules 

result in a temperature rise; thus, a combination of infrared and electroluminescence monitoring 

techniques is essential for accurately identifying the most prevalent flaws in PV modules [63]. 

In recent years, numerous Machine Learning (ML) techniques have been employed to 

autonomously process sequences of images captured by infrared (IR) and electro-optical (EL) 

cameras mounted on Unmanned Aerial Vehicles (UAVs) [64-67], significantly reducing 

inspection durations and precisely analyzing diverse defects and failures in photovoltaic (PV) 

arrays. Figure 1.14 illustrates the imaging inspection procedure utilizing an infrared camera 

mounted on the drone platform to identify and pinpoint anomalies and failures inside the 

photovoltaic array. The IR and EL imaging approaches are complimentary, each possessing 

distinct strengths and shortcomings [63]. While these procedures necessitate complex 

equipment.  

 

 

Figure 1.14: Imaging inspection process utilizing an IR camera [68]. 
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3. I-V Curve Analysis 

I-V (current-voltage) curve analysis is a commonly used electrical method for diagnosing PV 

system faults. This technique involves measuring the I-V characteristics of a PV module or 

array and comparing the results with a reference (healthy) curve [69,70]. 

Key parameters extracted from the I-V curve include: 

• Short-circuit current (Isc): The maximum current. 

• Open-circuit voltage (Voc): The highest voltage output when no load is connected. 

• Maximum power point (Pmax): The point where the module generates peak power. 

By analyzing deviations in these parameters, different types of faults can be identified: 

• Open-circuit faults: Sudden drops in current indicate disconnected panels or broken 

interconnections. 

• Short-circuit faults: A significant reduction in voltage suggests a bypass diode failure 

or internal short-circuiting. 

• Partial shading effects: A distorted I-V curve indicates uneven solar exposure across 

the PV array. 

I-V curve analysis is widely used in both simulation and real-time monitoring. However, it 

requires accurate data acquisition and controlled test conditions for effective diagnosis (see 

figure 1.15). 

Figure 1.15: Illustrates the Smart I-V Curve diagnosis method developed by Huawei [71]. 
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4. Signal Processing Techniques 

Signal processing methods analyze electrical signals, such as voltage, current, and power, to 

identify fault patterns. These techniques utilize mathematical transformations to extract features 

from measured data and detect anomalies as shown in Figure 1.16 [72-75]. 

Common signal processing approaches include: 

• Fast Fourier Transform (FFT): Converts time-domain signals into frequency domain 

to detect periodic faults. 

• Wavelet Transform (WT): Identifies transient variations in electrical signals caused 

by sudden faults. 

• Hilbert-Huang Transform (HHT): Used for analyzing nonlinear and non-stationary 

electrical patterns in PV systems. 

Signal processing techniques are highly effective for detecting arc faults, ground faults, and 

inverter malfunctions. However, they require advanced computational tools and expert 

knowledge for accurate implementation.  

 

 

5. Analytical Monitoring 

Analytical monitoring techniques use mathematical models, statistical tools, and artificial 

intelligence to detect faults in PV systems. These methods are particularly effective for real-

time fault diagnosis and classification. 

5.1 Real-Time Difference Measurement (RDM) 

RDM compares real-time voltage, current, and power measurements with expected values 

under normal conditions. Any deviation beyond a predefined threshold is flagged as a potential 

fault. This method is widely used in real-time monitoring systems for rapid fault detection. 

Threshold logic serves as the fundamental mechanism for executing a binary decision. The 

Figure 1.16: Presents a fault detection diagram that analyzes the output signal to identify 

anomalies and classify faults in the PV system [30]. 



Chapter 1                                                         State of the Art in PV System Fault Diagnosis: 

Types, Detection Methods, and Analysis 

 

25 

 

threshold crossing, as indicated by the feature, signifies the system's health status, either 

functioning properly or malfunctioning [76-80].  

5.2 Statistical Approaches (SA) 

The statistical qualities of features can also be utilized for decision-making, as previously 

indicated for feature extraction.  Numerous tools for statistical analysis are documented in 

literature [81].  Regression analysis is a collection of statistical methods used to estimate the 

associations between a dependent variable and one or more independent variables [82,83].  The 

aim of regression is to determine the coefficients of the curve (linear or non-linear) that most 

accurately fit the data based on an optimization criterion.  It can be utilized for both prediction 

and categorization.  

5.3 Machine Learning Techniques (MLT) 

Machine learning (ML) models use historical data to train algorithms that can automatically 

detect and classify faults.  Machine Learning (ML) techniques have become essential in PV 

fault detection due to their ability to analyze large datasets, recognize complex patterns, and 

make real-time decisions [84]. These methods rely on historical and real-time data to identify 

deviations from normal operation, allowing for efficient classification of different fault types 

[85]. By utilizing intelligent algorithms, ML techniques reduce the need for manual inspections, 

enhance system reliability, and improve predictive maintenance. Among the most commonly 

used ML techniques are Artificial Neural Networks (ANNs), Support Vector Machines 

(SVMs), Fuzzy Logic Systems, and Decision Trees (DTs). 

• Artificial Neural Networks (ANNs):  

Artificial Neural Networks (ANNs) are computational models inspired by the structure 

and function of the human brain [86]. They consist of interconnected layers of artificial 

neurons that process input data and learn from experience. In PV fault detection, ANNs 

are trained using datasets containing various system parameters, such as voltage, 

current, and power, enabling them to classify normal and faulty conditions accurately. 

The multi-layered structure of ANNs allows them to extract meaningful features from 

complex, nonlinear data, making them highly effective in diagnosing different types of 

faults [87]. Once trained, an ANN can automatically detect abnormalities in real-time, 

making it a powerful tool for intelligent monitoring of PV systems. 

• Support Vector Machines (SVMs):  
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Support Vector Machines (SVMs) are supervised learning models used for classification 

and regression tasks [88]. They operate by mapping input data into a high-dimensional 

space and finding an optimal hyperplane that best separates different fault categories. 

SVMs are particularly effective when dealing with binary classification problems, such 

as distinguishing between normal and faulty PV system conditions. By using kernel 

functions, they can also handle complex, nonlinear relationships between input 

parameters [89-90]. Their ability to generalize well with limited training data makes 

them a reliable choice for PV fault detection, ensuring accurate classification even when 

environmental conditions vary. 

• Fuzzy Logic Systems:  

Fuzzy Logic Systems provide a rule-based approach to PV fault detection by handling 

imprecise or uncertain information. Unlike traditional binary classification methods 

[91], which make rigid decisions, fuzzy logic assigns degrees of membership to different 

fault conditions, allowing for more flexible and human-like reasoning. The system relies 

on a set of IF-THEN rules that describe how input variables, such as voltage and current, 

relate to potential faults. By processing uncertain or noisy data, fuzzy logic effectively 

diagnoses faults and provides interpretable results, making it a valuable tool for real-

time monitoring in dynamic PV environments. 

• Decision Trees (DTs) 

DT is a decision-making instrument that utilizes a tree-structured model [92]. It 

typically operates from top to bottom, selecting a variable at each stage that optimally 

divides the set of elements [93]. It typically comprises three types of nodes: root node, 

child nodes, and leaf nodes. The primary challenge in creating a decision tree is to 

identify the optimal splits. In PV fault detection, DTs segment data based on predefined 

conditions, allowing for a clear and structured classification of different fault types. 

Their ability to break down complex relationships into an intuitive, rule-based system 

makes them a widely used approach in automated fault diagnosis. 

6. Other Methods 

In addition to the above approaches, employing a signal transmission technique specifically for 

the PV array enables the detection of local disconnections in interconnect cables within PV 

modules and open-circuit failures of bypass diodes. The signal transmission device is compact, 
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lightweight, and cost-effective. It comprises two components: a transmitter and a receiver [94]. 

The identification of each defective module inside arrays facilitates rapid fault detection; 

however, this necessitates a substantial financial commitment owing to the enormous quantity 

of sensors needed. 

5. Conclusion 

This chapter has presented an overview of photovoltaic (PV) systems, their prevalent defects, 

and the approaches employed for fault detection and diagnosis (FDD). We have examined the 

operation of photovoltaic systems, the potential issues they may face, and the several methods 

utilized to identify and resolve these problems. A varied array of tools is available for 

monitoring and supervising photovoltaic (PV) systems, varying from traditional model-based 

procedures to advanced artificial intelligence (AI) technologies. These methodologies include 

system performance simulation and data analysis with machine learning techniques, all directed 

towards achieving optimal system efficiency and reliability. This chapter's findings enhance our 

comprehension of PV system maintenance and establish a foundation for further progress in 

renewable energy technology. In our pursuit of a more sustainable future, the proficient 

management of photovoltaic system defects will be essential for optimizing energy output and 

reducing environmental impact, which is the objective of the next chapters. 
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2.1. Introduction 

Fault detection and diagnosis in photovoltaic (PV) systems are crucial for ensuring their 

efficiency and longevity. This chapter presents both simulation and experimental approaches to 

identifying, classifying, and localizing various PV faults using fuzzy logic-based techniques. 

In the first part, a Fuzzy Logic Classifier is developed in Matlab/Simulink to diagnose eight 

types of faults occurring in PV cells, series resistance, shunt resistance, and bypass diodes. A 

diagnostic model is designed to simulate both healthy and faulty conditions of a PV panel, 

enabling the identification of faults through two distinct algorithms. The first algorithm 

employs a thresholding method to detect faults with distinct symptoms, while the second 

utilizes a fuzzy logic classifier to distinguish faults with overlapping characteristics. 

The second part focuses on the experimental validation of the proposed fault detection 

approach. A fault classification algorithm is implemented to diagnose different shading 

conditions and short-circuit faults in bypass diodes. This method leverages an experimental 

database of climatic and electrical parameters from a PV panel, with the developed model 

integrated into Matlab/Simulink and interfaced with dSPACE DS1104 controller for real-time 

diagnosis. By combining simulation and experimental analysis, this chapter provides a 

comprehensive framework for detecting and classifying PV faults, enhancing the reliability and 

performance of solar energy systems. 

2.2. Part 1: Modeling and simulation 

2.2.1. Photovoltaic module modeling 

To evaluate the performance of photovoltaic panels under different operating 

conditions, the single diode model is generally considered as the most used model for describe 

the electrical behavior of PV cell as shown in Figure 1.3. 

2.2.1.1 PV module characteristics  

The PV panel used in this work is a SUNTECH PV module, composed of 36 PV cells and two 

bypass diodes as shown in Figure 2.1, with power 46.71 watt of type poly crystalline silicon 

and its electrical characteristics are presented in Table 2.1.  
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2.2.1.2 PV Module Parameters Identification 

• Fundamental Principle 

The key objective is to reduce the error between the simulated and experimental results in the 

evaluation of the solar PV cell parameters. The root mean square error (RMSE)is an objective 

function that can be built in such a way that optimal values for the solar PV model parameters 

can be achieved. As given bellow: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
(∑[𝐼𝑚𝑒𝑎𝑠 − 𝐼𝑒𝑠𝑡𝑖𝑚]2

𝑁

𝑖=1

                                                     (2.1) 

Where:   

𝑓(𝐼𝑝ℎ, 𝐼0, 𝑅𝑠ℎ, 𝑅𝑆, 𝑛) =  𝐼𝑝ℎ  −   𝐼0. [𝑒𝑥𝑝 (
𝑉 + 𝑅𝑆. 𝐼

𝑉𝑡. 𝑛
) − 1] −

𝑉 + 𝑅𝑆. 𝐼

𝑅𝑠ℎ
− 𝐼           (2.2) 

Where N is the number of samples, Imeas is the measured current, Iestim is the calculated 

current which obtained by solving the nonlinear Equations (2.2) for a given voltage value using 

the Newton Raphson method. The current RMSE is calculated using these current values by 

using Equation (2.1). 

The objective of this part is to use metaheuristic optimization techniques to estimate the 

parameters of a solar PV panel based on current and voltage measurements. The objective 

function is based on the RMSE values between the measured and expected current values. The 

parameters identification schema is highlighted in Figure 2.2. 

 

 

 

 

Electrical characteristics 

Pmax: Maximum power  46.71W 

Vmp: Voltage at Maximum power   14.15 V 

Imp: Current at Maximum power   3.3 A 

Voc : Open Circuit Voltage  20.8 V 

Isc: Short Circuit Current  3.67 A 

The total number of cells connected 

in series 

36 

Number of bypass diodes 2 

Table 2.1. Electrical characteristics of the SUNTECH PV module. 

Figure.2.1: Schematic 

of PV panel. 
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• War Strategy Optimization (WSO) algorithm 

The War Strategy Optimization (WSO) Algorithm is inspired by ancient kingdoms' military 

tactics during wars, where armies (infantry, chariots, elephants) arranged themselves into 

specific formations called Vyuha to achieve strategic objectives. The King and Commander 

coordinated troop movements using visible signals (like flags) and audible signals (like drum 

beats). The strategy adapted dynamically based on real-time battlefield situations. 

The main steps in WSO include: 

Random Attack: Troops are randomly and uniformly distributed; the King (leader) directs 

multiple army chiefs. 
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Figure. 2.2: Schematic of the experimental proposed technique. 
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Attack Strategy: Focuses on identifying and exploiting the opponent's weaknesses. Soldiers 

adjust their positions dynamically based on the King’s and Commander’s locations, promoting 

successful soldiers and reverting unsuccessful ones. 

Signaling by Drums: Drums are used to communicate strategic changes instantly to the 

soldiers. 

Defense Strategy: Prioritizes protecting the King by forming a defensive chain around him, 

with soldiers adjusting positions relative to neighbors and the King, while exploring the 

battlefield to confuse the enemy. 

The WSO algorithm is dynamic, adaptive, and decentralized, mimicking these historical tactics 

to solve optimization problems. 

• Mathematical modeling of the war strategy 

The War Strategy Optimization (WSO) Algorithm models two main war strategies inspired by 

ancient battlefield tactics. In the first strategy, each soldier updates their position based on the 

King's and the Commander’s locations. This attacking model is pictorially explained in Figure 

2.3.  

 

 

 

 

 

 

 

 

 

Initially, all soldiers have the same rank and weight, symbolizing equal status. The "King" is 

the soldier with the highest attack force (best fitness value). As the war progresses, soldiers who 

successfully improve their attack force by moving to better positions are promoted in rank, and 

Figure. 2.3: Attack strategy in WSO. 

𝑊𝑖 > 1 

𝑊𝑖 > 1 

𝑊𝑖 < 1 



Chapter 2                                        Diagnosis based on Fuzzy Logic: Simulation and real-time 

experimentation 

 

 
33 

 

their weights are updated accordingly. The movement rule combines the influence of the King 

and the Commander, and random variations. Where Xi(t+1) is a new position, Xi(t) is the 

previous position, C is the position of the commander, K is the position of the King, Wi is the 

weight. 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 2 × 𝜎 × (𝑐 − 𝐾) + 𝑟𝑎𝑛𝑑 × (𝑊𝑖 × 𝐾 − 𝑋𝑖(𝑡))                 (2.3)  

If a new position (fitness) leads to a worse attack force (Fn), the soldier reverts to their previous 

location (Fp). 

𝑋𝑖(𝑡 + 1) = (𝑋𝑖(𝑡 + 1)) × (𝐹𝑛 < 𝐹𝑝) + (𝑋𝑖(t)) × (𝐹𝑛 ≥ 𝐹𝑝)                         (2.4) 

If the soldier updates the position successfully, the rank (Ri) of the soldier will be upgraded. 

𝑅𝑖 = (𝑅𝑖 + 1) × (𝐹𝑛 < 𝐹𝑝) + (𝑅𝑖) × (𝐹𝑛 ≥ 𝐹𝑝)                                   (2.5) 

The weights dynamically adapt over time, encouraging large exploratory moves at the 

beginning of the war and smaller, more precise movements toward the end.  Where α is a tunable 

parameter. 

𝑊𝑖 = 𝑊𝑖 × (1 −
𝑅𝑖

𝑀𝑎𝑥_𝑖𝑡𝑒𝑟
)∝                                                         (2.6) 

In the second strategy, position updates depend not only on the King and Commander but also 

on a randomly selected soldier, which introduces more randomness into the search process. This 

enhances the algorithm’s exploration ability, allowing the army (search agents) to cover a 

broader search space and avoid premature convergence. 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 2 × 𝜎 × (𝐾 − 𝑋𝑟𝑎𝑛𝑑(𝑡)) + 𝑟𝑎𝑛𝑑 × 𝑊𝑖 × (𝐶 − 𝑋𝑖(𝑡))          (2.7) 

• Parameters Identification Results 

The War Strategy Optimization (WSO) technique is employed to ascertain the five unknown 

parameters Iph, Io, Rsh, Rs, and n of a single diode model with conjunction of the Newton 

Raphson method. This technique is employed to compute the value of the objective function 

during parameter optimization. Throughout the optimization process, the algorithm sends the 

photovoltaic parameters to the Newton-Raphson method for the computation of the objective 

function. Subsequently, the Newton-Raphson approach resolves the nonlinear equation in (2.2) 
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at a defined voltage, producing an output current with an absolute error (𝜀) significantly less 

than 1E-4. 

Table 2.2 displays the estimated parameters and the RMSE errors derived from WSO [26,27]. 

Figure 2.4 illustrates the convergence curves for the established goal functions, whereas Figures 

2.5 and 2.6 compare the I-V and P-V curves of the photovoltaic cell utilizing both empirical 

and calculated parameters. These attributes were modeled via Simulink/Matlab under standard 

test conditions (STC). The basic steps of the WSO algorithm are summarized in Figure 2.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The comparison of the extracted parameters from the WSO of the experimental and anticipated 

I-V and P-V curves demonstrates a strong concordance in both results and structure (refer to 

Figures 2.5 and 2.6). The smallest given RMSE (2.245253e-07A) from Table 2.2 and the best 

parameters fit expressed the efficiency of the proposed optimization algorithm and its 

convergence rate. Furthermore, as stated in [95], the highest absolute error remains below 0.06, 

Extracted Parameters 

𝐑𝐒 𝐑𝐬𝐡 𝐈𝐩𝐡 𝐈𝟎 n RMSE 

0.0356Ω 18.4709Ω 3.6658A 8.3e-10A 1.1567 2.245253e-07 

Figure. 2.4: The convergence rate of the WSO algorithm during the 

parameter extraction process for PV module. 
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Table 2.2. The final identified parameters of the SUNTECH PV module. 
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reinforcing the low RMSE value does not surpass 0.05 as a maximum value demonstrates the 

remarkable predictive accuracy of the WSO algorithm in selecting optimal parameter values. 

Moreover, the algorithm efficiently achieves this with a satisfactory convergence rate, as 

depicted in Figure 2.4. 

.    
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Figure 2.6: P-V Performance of a photovoltaic 

module under STC. 

 

Figure 2.5: I-V Performance of a 

photovoltaic module under STC. 
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Figure 2.7: Concept of objective function calculation with WSO. 
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To evaluate the performance of the proposed WSO algorithm, a comparative study was 

conducted using the ISOFOTON 106/12 PV module alongside two other optimization 

algorithms from the literature [96]: Artificial Bee Colony (ABC) and Practical Swarm 

Optimization algorithms (PSO). As shown in Table 2.3, the results clearly demonstrate that the 

WSO algorithm outperforms both ABC and PSO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.2 PV Module Faults 

Although it is desirable to maintain a regular solar radiation over the panel with each cell 

performing at its Maximum Power Point (MPP). In reality, PV panels often experience several abnormal 

conditions that negatively affect their efficiency and the total output power. In this part, eight faults on 

Item WSO ABC PSO 

Iph 6.5579 6.73 6.73 

Io 5.0308e-4 1.38e−05 1e− 5 

n 63.018 61.76 60.24 

Rs 0.21 0.12 0.13 

Rsh 105 103 95.50 

RMSE 0.012 0.015 0.018 

Table 2.3. The comparative study of the three optimization algorithms. 

 

Figure 2.8: Convergence rate of WSO algorithm during the 

extraction process of ISOFOTON106/12 PV module. 
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PV module are chosen to be achieved as listed in Table 2.4 with Schematic diagram of PV panel 

with various faults highlighted in Figure 2.9. 

                                     Table 2.4. Different type of faults chosen for the diagnosis.  

Symbol  Fault type 

F1:  Shading of one cell in submodule of the panel at 50 %. 

F2:  Shading of one cell in submodule of the panel at 100 %. 

F3:  Shading of a cell of the submodule 1 and another of the 

submodule 2 of the panel at 50 %. 

F4:  Shading of a cell of the submodule 1 and another of the 

submodule 2 of the panel at 100 %. 

F5:  Increase the serie resistors (Rs = 0.09Ω) module. 

F6:  By-pass diode disconnected. 

F7:  By-pass diode short circuited. 

F8:  Decrease the shunt resistors (Rp= 0.4Ω) module.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2.2.3 Fault Diagnosis PV System  

The simulated diagnosis PV system is composed of two SUNTECH PV modules, these 

modules consist of 36 cells and two bypass diodes each. As a first step we simulate the normal 

PV panel (healthy) which used as a reference module and the faulty PV panel as a tested module 

for different chosen faults. In the second step, for each I-V curve three parameters (Pmax, Voc, 

F1 

F2 

F3 

F4 

F6 F7 

Figure.2.9. Schematic diagram of PV 

panel with various faults. 
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Isc) are extracted, and in the third step, a diagnosis algorithm is used to detect and classify PV 

module faults into two groups: 

• Faults with different combination of symptoms. These faults are isolated using a signal 

threshold-based approach. 

• Faults with the same combination of symptoms. This type of faults is isolated using a 

Fuzzy Logic Classifier. 

Each fault generates a set of symptoms which are displayed with a message on the 

Commande Window illustate the fault type as shown in Figure 2.11. Simulink/Matlab has been 

used to implement this configuration illustrated in Figure 2.10. 

 

 

 

 

 
 

2.2.3.1 Thresholding method (Algorithm 1) 

In this part as shown in Figure 2.12, after extraction the three parameters (Pmax, Voc, 

Isc) from each I-V curve (Normal and faulty module), the resulting parameters are compared 

to obtain (Delta Pmax, Delta Voc, Delta Isc), In the second Step, the obtained parameters will 

compare to three relative errors associated to power, voltage and current, which these errors are 

related to measurement and the model errors. From the standard IEC 61724 [97], that indicates 

a relative error of 2 %, 1 %, and 1 % while measuring power, voltage, and current, respectively. 

The model uncertainty is related to the industrialization tolerance and sensors noise. The 

maximum error due by this uncertainty is calculated, according to [33], by adding a dispersion 

parameter to the simulation model parameters. The obtained relative errors associated to power, 

Figure 2.11. Output of fault 5 which is displayed in the command window. 

Figure.2.10. Diagnosis PV system. 



Chapter 2                                        Diagnosis based on Fuzzy Logic: Simulation and real-time 

experimentation 

 

 
39 

 

voltage, and current are equal to 5%, 3 %, and 6 %, respectively. The detection of faults is 

considered effective when these chosen thresholds are exceeded.  

After using the threshold method, five groups of faults can be achieved as shown in 

Table 2.5: 

 

 

 

 

 

 

According to these results, the first algorithm cannot discriminate between the faults (F1, F5), 

and (F2, F7, F8), which have the same combination of symptoms. Therefore, to isolate these 

faults, a very efficient technique of classification is required. 

The simulation of the previous faults allowed us to obtain different curves as shown in Figure 

2.13, which the outputs of our Simulink model are illustrated in the same figure. 

➢ The symptom S1: Reduction of maximum power of the PV module. 

➢ The symptom S2: Reduction of Voc of the PV module. 

➢ The symptom S3: Reduction of Isc of the PV module. 

 

 

 

 

 

 

 

 

 

 

 

 

Groups Fault type Symptoms [S1,S2,S3] 

1 [F1,F5] S1=1 S2=0 S3=0 

2 [F2,F7,F8] S1= 1 S2=1 S3 =0 

3 [F3] S1=1 S2=0 S3=1 

4 [F4] S1=1 S2=1 S3=1 

5 [F6] S1=0 S2=0 S3=0 

 Table 2.5. The signature of faults after using the threshold 

method. 

Figure 2.12: Diagnosis Model based on Threshold method. 
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2.2.3.2 Fuzzy Logic Method (Algorithm 2)  

To solve this problem A Fuzzy Logic (FL) method will be applied. From Figure 2.14, the 

threshold algorithm block remains the same. Therefore, the modification consists in integrating 

two diagnosis blocks by Fuzzy Logic Classifier in the system, with (∆Pmax, ∆Voc) as inputs. 

The 1st FL block works only in the case where (S1, S2, S3) = (1, 1, 0) and the 2nd block works 

only in the case where (S1, S2, S3) = (1, 0, 0). The algorithm used is summarized in Figure 

2.16.  
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Figure 2.13: I-V Curves of different type of faults. 

. 

Figure.2.14: Diagnosis Model after integration of the fuzzy logic. 
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To construct a classifier, we have to use data mentioned in the previous paragraph as inputs. As 

shown in Figure 2.15, in the case 1 and 2, fuzzy classifier (FC) starts by fuzzification of these 

inputs by using the membership functions. 

Then we have to construct a fuzzy inference base rule IF/THEN, the fuzzy rules are chosen to 

distinguish the defects which have the same indication signature. As presented in Table 2.6 and 

2.7, precise bases discriminate between the three faults (in case 1) and the two faults (in case 

2) have been constructed. Which Table 2.6 contains 3 rules and Table 2.7 contains 2 rules.  

Finally, the values obtained have been defuzzified. This has been performed by applying the 

Takagi-Sugeno-Kang type one FL method at the output of a FC. Therefore, the outputs 

membership functions are constants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.2.15: Fuzzy Classifier structure and input variables. 

Fuzzification  Fuzzification  Base-rule  Defuzzification  Base-rule  Defuzzification  

Case 2 Case 1 

2 Rules 3 Rules 
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Rule 

N° 

IF THEN Defuzzi

-fication 
PPM Voc S1 S2 S3 

1 PPM_

M 

Vco_

P 

S1=1 S2=

0 

S3=

0 

[1 0 0] 

2 PPM_

G 

Vco_

P 

S1= 

0 

S2=

0 

S3 

=1 

[0 0 1] 

Rule 

N° 

IF THEN  Defuzzi- 

fication PPM Voc S1 S2 S3 

1 PPM_G Vco_P S1=0 S2=1 S3=0 [0 1 0] 

2 PPM_M Vco_M S1= 

0 

S2=1 S3 

=1 

[0 1 1] 

3 PPM_M Vco_P S1=1 S2=1 S3=0 [1 1 0] 

Table 2.6. Fuzzy Rule base and Defuzzification 

for Fuzzy Classifier (Case 1). 

Table 2.7. Fuzzy Rule base and Defuzzification 

for Fuzzy Classifier (Case 2). 

Figure.2.16: Flowchart of the diagnosis algorithm. 
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I = (I0, …, In), T, et Ir. 

 
➢ Computation of : Isc(N), Voc(N) et  Pmax(N) 

➢ Computation of : Isc(F) ,  Voc(F)  et   Pmax(F) 

 

        Computation of:  

➢ ∆Pmax  = Pmax(N)  − Pmax(F)  

➢ ∆Voc =  Voc(N)  − Voc(F)  

➢ ∆Isc = Isc(N) − Isc(F)  

 

(S1, S2, S3) ≠ (0, 0, 0) 
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Fuzzy Logic 

 

No fault 
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End 
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        Computation of:  

➢ ∆Pmax  > Th(P) :  S1=1 

➢ ∆Voc   >  Th(V) :  S2=1 

➢ ∆Isc    >  Th(I)   :  S3=1 
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2.2.4 Results and discussion 

This part presents the results of the Simscape based model as well as the performance of the 

proposed fault diagnosis technique for the PV module (SUNTECH) system is simulated. 

As example, Figure 2.17 shows the results given by the technique used in the case of shading 1 

cell at 50%, Figure 2.18 shows the results given in the case of shading 1 cell at 100%. 

The different chosen faults are applied in a singular way on the faulty PV module, so then the 

algorithm detects and classifies the fault to different combination of symptoms. The obtained 

symptoms send a signal to decision block (shown in Figure 2.14) to gives its accurate location. 

The results of different fault scenarios for Sugeno FL and thresholding method are illustrated 

in Table 2.8. For eight different case scenarios have been tested, all different faults have been 

detected except the fault 6, which does not affect in the power generation of the system. Hence, 

it can be seen clearly from these obtained results that these two methods have proved to be able 

to detect and classify and locate different faults in PV panels accurately and efficiently. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.2.17: Diagnosis PV system results for F1 fault. 
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2.3. Part 2: Experimental Validation  

2.3.1. EXPERIMENTAL COMPONENTS DESCRIPTION 

In this section, a detection of faults is undertaken on an experimental PV panel situated at 

LGEB, University of Biskra, Algeria, where the schematic representation is given in 

Figure.2.19. It comprises of a SUNTECH PV panel of type poly crystalline silicon connected 

with a resistive load, through the intermediary current and voltage sensors are used to provide 

the performance of the PV panel implemented. The irradiances are measured using a Reference 

cell, while for temperature, it is measured using K-type thermocouple.  

 

Faults Amplitude of symptoms Method 
S1 (W) S2 (V) S3 (A) 

F1  1 0 0 
Fuzzy 

Logic 
F2 0 1 0 

F3  1 0 1 
Thresholdi

ng 
F4  1 1 1 

F5 0 0 1 Fuzzy 

Logic 

F6  0 0 0 Thresholdi

ng 

F7  0 1 1 
Fuzzy 

Logic 
F8 1 1 0 

Table 2.8. The signatures of each of the symptom for each fault 

after integration of the fuzzy logic. 

 

Figure.2.18: Diagnosis PV system results for F2 fault. 
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Figure. 2.19: Schematic of the experimental proposed technique. 
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The different data measured are realized by DS1104 controller board which is connected to the 

PC via PCI slot, and by the software Matlab/Simulink® and ControlDesk® we can monitor our 

experimental system using the implemented diagnosis technique. 

A. Investigated Faults in the Experimental PV module  

Four types of faults are established in our PV module, where F1 correspond to the 

shading of one cell in subpanel of the module at 50 %, the Fault 2 is shading horizontal line of 

cells at 100%, the Fault 3 is shading vertical line of cells at 100% and the Fault 4 is the diode 

by-pass short circuited. The investigated faults are shown in Figure 2.20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Experimental SET-UP 

To verify experimentally the diagnosis technique, as shown in Figure 2.21 a dSPACE 

DS1104 controller have been used as control platform since it enables the linking of the 

MATLAB/Simulink diagnosis simulated model to the experimental PV module. The electrical 

parameters generated by the faulty PV panel and the climatic parameters measured are read and 

then sent to the DS1104 board. After compiled the simulink model files with different 

extensions (SDF, PPC... etc.) are created and transferred automatically to DS1104 board. 

(a) (b) (c) 

(d) 

Figure 2.20: The investigated faults: (a) Shading 1 cell 50%, (b) Shading horizontal line of 

cells at 100%, (c) Shading vertical line of cells at 100%, (d) one diode by-pass short 

circuited. 
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Otherwise, the file with extension SDF appears in ControlDesk® which acts as a user-interface 

that we can use to control and monitor experiments. 

 

 

 

 

 

 

 

 

 

 

 

  

2.3.2. Real-time Implementation: RESULTS AND DISCUSSION 

This part presents the experimental diagnosis technique results for photovoltaic panel using 

only: The experimental database of climate (solar irradiance and temperature) and electrical 

parameters (voltage and current) of the faulty PV panel. The experiments have been carried out 

on temperature of 25 °C and irradiation of 1000 W/m². The proposed diagnosis technique is 

verified by the two different algorithms based on thresholding method and fuzzy logic method 

for the identification of four types of faults tested experimentally in a PV panel. To check the 

ability of the diagnosis technique, four types of faults are applied in an individual process on 

our PV panel. In Figure.2.22 the user-interface ControlDesk shows the Photovoltaic 

characteristics (I -V and P-V) for each faulty PV panel with the results of the two algorithms 

used, however the final signature of faults is also illustrated. To clearly indicate the type of fault, 

a display part is used to give its accurate location. As shown in Figure.2.22a and Figure.2.22b. 

The results of identification of the fault F1 and F2 by the thresholding method are the same 

combination of symptoms, which leads to automatic activation of the classification by the fuzzy 

logic method to classify the faults to different combination of symptoms. Hence, it can be 

clearly noticed that the two faults are detected and classified by the diagnosis technique, where 

the type of faults are indicated in the display part with a red LED. Figure.2.22c and Figure.2.22d 

show the results of identification of the fault F3 and F4. As can be seen, the faults have been  

Host PC with 

dspace board and 

ControlDesk 

software 

Current 

sensor 

Voltage 

sensor 

Load 

Control 

panel 

CLP1104 

Figure 2.21: Experimental SET-UP. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

(c) 
(d) 

Figure. 2.22: The user-interface ControlDesk. 
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detected and classified by the thresholding method which gives a different combination of 

symptoms. Therefore, the diagnosis technique indicates in the display part the type of each fault. 

2.4. Conclusion 

This chapter presented both simulation and experimental approaches for fault detection and 

classification in PV panels using thresholding and fuzzy logic-based methods. In the simulation 

phase, eight types of faults were analyzed by comparing power, voltage, and current 

characteristics under normal and faulty conditions. While the thresholding method proved 

effective for some faults, it lacked the ability to distinguish all fault types, highlighting the need 

for a more advanced classification approach. The fuzzy logic method demonstrated superior 

diagnostic accuracy, successfully identifying all considered faults in a distinguishable manner. 

The experimental phase validated the proposed diagnostic approach using real-world data 

collected from a PV panel at the LGEB Laboratory, University of Biskra. Implemented on the 

DS1104 platform and developed in Matlab/Simulink, the experimental results confirmed the 

efficiency of the fuzzy logic classification technique in accurately detecting and classifying 

various faults. Overall, the findings emphasize the effectiveness of fuzzy logic in PV fault 

diagnosis, offering a robust and reliable method for improving PV system performance. 
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3.1. Introduction 

Fault detection and diagnosis in photovoltaic (PV) systems are essential for maintaining their 

performance, reliability, and longevity. This chapter presents a comprehensive approach to fault 

identification, classification, and localization using Artificial Neural Networks (ANN) through 

both simulation and experimental analysis. 

In the first part, a diagnostic model is developed in Matlab/Simulink to simulate both normal 

and faulty conditions of a PV module. The model is designed to detect and classify five single- 

and multi-fault types of faults, including partial shading and bypass diode failures. Specifically, 

Fault 1 (F1) corresponds to 50% shading of a single cell in a subpanel, Fault 2 (F2) involves 

full shading of a horizontal line of cells, Fault 3 (F3) represents full shading of a vertical line 

of cells with open circuit fault, Fault 4 (F4) corresponds to a short-circuited bypass diode, and 

Fault 5 (F5) involves two short-circuited bypass diodes. The ANN-based fault detection method 

is trained to recognize patterns in voltage, current, and power variations, ensuring accurate fault 

classification. 

The second part of this chapter focuses on the experimental validation of the proposed ANN-

based fault detection technique. The same five single- and multi-fault types are introduced in a 

real PV module, and an experimental dataset of climatic and electrical parameters is collected. 

The developed ANN model is implemented in Matlab/Simulink and integrated with the 

dSPACE DS1104 controller to enable real-time fault diagnosis.  

 

3.2. Description of Monitoring and Diagnosis PV System 

The PV panel system under study was installed on LGEB Laboratory of the University of Biskra 

(Algeria). The actual system is shown in Figure 3.1. The PV system consist of mono-crystalline 

silicon module linked to a resistive load. The diverse data measurements are monitored such as 

module temperature and solar irradiance using a K-type thermocouple and Reference cell, 

outputs voltage and current which are measured by current and voltage sensors. These data 

collected is processed through a DS1104 controller board, seamlessly connected to a computer 

via a PCI slot. Employing the Matlab/Simulink® software alongside ControlDesk®. Collected 

data such as voltage, current, irradiance and temperature are displayed in a graphical and 

numerical form that creates using ControlDesk® user interface along with the state of the 

system. Figure 3.1 present the monitoring system. 
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Figure. 3.1: Schematic Representation of the Electrical Configuration for the Experimental PV System. 
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3.2.1. Monitoring Unit 

Firstly, the climatic-database of the experimental PV module which is solar irradiance and 

temperature are measured, which acts as inputs to the simulated PV module. Then, the difference 

between the experimental (Faulty) and the simulated (Normal or Reference) PV module 

electrical parameters were systematically compared to establish their relative effectiveness in 

fault detection. Subsequently, these parameters are classified using an Artificial Neural Network 

(ANN) algorithm to facilitate the detection and identification of faults in photovoltaic systems. 

The Figure. 3.2. presents the architecture of the realized monitoring with the PV system.   

 

 

 

 

 

 

 

 

 

 

 

 

3.2.2. Photovoltaic System Modeling 

To assess the operational effectiveness of photovoltaic panels across different scenarios, the 

single diode model is commonly recognized as the predominant framework for elucidating the 

electrical characteristics of PV cells. The same strategy of PV module parameters extraction, 

which has been developed in chapter 2 utilizing the Newton-Raphson with the War Strategy 

Optimization (WSO) algorithm, is used to extract the set of five parameters (Iph,I0,𝑅𝑆, 𝑅𝑠ℎ, n) 

expounded in Table 3.1. This process exclusively relies upon the information intrinsic to the 

datasheet specific to the SUNTECH PV panel, characterized as mono-crystalline silicon and 

delineated in Table 3.1. It is observed that the extracted value of the shunt resistance is relatively 

low (1.5923 Ω), indicating the presence of internal leakage paths within the PV cell. This may 

be caused by manufacturing defects, surface contamination, or aging effects. The low Rsh results 

in increased power losses and a reduced fill factor, which negatively affects the overall 

performance of the PV module. Notably, the configuration of this PV panel encompasses 72 

T 
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Figure. 3.2: Diagram Depicting the Proposed Monitoring and Diagnosis system. 
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photovoltaic cells, organized into groups of 24 cells, with each group featuring three bypass 

diodes in a bypass configuration, as visually represented in Figure 3.3. 

 

 

 

 

 

 

The Matlab/Simscape tool is then used to simulate a real PV panel under normal conditions using the 

identified parameters. before simulating the PV system to obtain accurate daily profiles of temperatures 

and irradiances. On the other side, Matlab/Simulink™ environment is used for data processing and the 

associated calculations. Finally, a comparison is made between the simulated and measured 

characteristics, in accordance with STC conditions, which provide for STC (25 °C and 1000 W/m²). 

Using Simulink/Matlab, the electrical I(V) and P(V) curves of a PV panel (simulation and experiments) 

are shown in Figures. 3.4 and 3.5. It has been noted that the simulated data is almost identical to the 

measured data, allowing for reliable PV module modeling. These graphs demonstrate that the electrical 

output characteristics of the simulated and experimental models are similar to those found in the PV 

module's datasheet. The curves display the highest power point determined by the data tips on the I-V 

and P-V curves, where Pmax is equal to 123 (W), Vmp is equal to 26.3 (V), and Imp is equal to 4.8 (A). 

 

 

 

Electrical Propreties Extracted Parameters 

Power at STC 123W 𝐑𝐒 0.0259Ω 

Vmp 26.3 V 𝐑𝐬𝐡 1.5923Ω 

Imp 4.80 A 𝐈𝐩𝐡 5.5580A 

Voc 38.29 V 𝐈𝟎 2.3e-8A 

Isc 5.55 A n 1.22 

No. of cells in panel 72 RMSE 0.01807 

No. of by-pass diodes 3   

Table 3.1. Electric Properties of the SUNTECH Photovoltaic Module 

Figure. 3.3: PV module BP diode connections. 
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The reduced RMSE value (refer to Table 3.1) demonstrates the strong predictive capability of 

the WSO algorithm in identifying optimal parameter values. Additionally, the algorithm 

achieves this with a satisfactory convergence rate, as illustrated in Figure 3.6. 
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Figure. 3.6: Illustrates the convergence rate of the WSO algorithm 

during the parameter extraction process for PV module. 

 

Figure. 3.5: P-V curve of a photovoltaic module 
under STC. 

 

Figure. 3.4: I-V curve of a photovoltaic module 

under STC. 
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3.3. PV Faults 

 Five categories of faults have been identified in our photovoltaic module: Fault 1 refers 

to the shading of one cell in a subpanel at 50%, Fault 2 corresponds to the shading of a 

horizontal line of cells at 100%, Fault 3 refers to the shading of a vertical line of cells at 100% 

with open circuit of string of cells, Fault 4 refers to a short circuit in the bypass diode, and Fault 

5 refers to a short circuit in two bypass diodes. The investigated faults are shown in Figure 3.7. 

The schematic representation of a photovoltaic panel exhibiting the five faults is highlighted in 

Figure 3.8. 
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Figure. 3.7: The Investigated faults. 

 

F5 

Voltage [V] 

F4 

Figure. 3.8: Schematic representation of a 

photovoltaic panel exhibiting the five faults. 
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3.4 . Implementation of the Artificial Neural Network Classifier 

To make use of an Artificial Neural Network (ANN) it is important to develop a mechanism 

that imitates the structure and functioning of brain cells. In today’s world ANN has proven its 

usefulness in fields such as pattern recognition, signal processing, modeling and computer 

vision. Within this thesis the Artificial Neural Network (ANN) is proposed. According to Figure 

3.9 the ANN architecture consists of three layers: 

➢ The input layer comprises three neurons representing the ratio between simulated and 

measured values of maximum power point current (Pmax) open circuit voltage (Voc) 

and short circuit current (Isc). 

➢ A hidden layer, with ten neurons that have chosen. tansig activation functions.  

➢ The output layer contains six neurons representing five faults and the normal condition, 

which indicates a binary classification with a selected purelin activation function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this part, a Multilayer Perceptron (MLP) Feedforward Neural Network is employed as the 

network architecture. This MLP structure comprises a single hidden layer with 10 nodes, as 

depicted in Figure 3.10. The network undergoes training utilizing the Levenberg-Marquardt 

(LM) algorithm. The training dataset is generated from simulations that encompass both typical 

and fault-inducing operations for five distinct faults and the normal condition. Specifically, 70% 

of the patterns are allocated for training, while the remaining 30% are reserved for testing and 

model validation purposes. 
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Figure 3.9: ANN configuration. 
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3.5. Simulation results  

To assess the proposed approach, a case study was conducted using MATLAB Simulink 

software. Data samples representing the distribution of three indicators were collected to 

generate input for the ANN model. The dataset consists of a total of 684= (114*6) samples, 

encompassing both standard conditions and five distinct fault scenarios. Each sample 

incorporates the three selected input indicators. 

Figure 3.11 (a) Shows the minimum Mean Square Errors (MSE) variation concerning epoch for 

training, validating, and testing. Performance after training is 0.002 and the best validation 

performance is 0.00070178 after 33 iterations. 

Generalization tests are aimed at assessing the neural network's performance and its ability to 

apply learned knowledge to new data. After the network's computation, it is essential to conduct 

tests to ensure that our network is providing accurate responses. The Figure 3.11 (b) illustrates 

the confusion matrix for the five faults including the normal case analyzed in the testing phase. 

The matrix cells that are colored green and red indicate the percentages of correctly and 

incorrectly classified faults, respectively. The confusion matrix provides the precision 

measurement for the training of the ANN fault detection and diagnosis model. It's noteworthy 

that a notably high precision rate of 99.7% has been achieved for the ANN diagnosis model. 

This result signifies the well-informed selection and effective training of the ANN model in 

detection and classification. 

 

 

 

 

 

 

 

Figure 3.10: Schematic of the used ANN architecture. 
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Figure 3.12 illustrates the outcomes of implementing fault 2, "Shading Horizontal line of cells 

at 100%" using simulation blocks. The simulation results validate the proposed approaches 

efficacy in detecting and classifying faults based on various symptom combinations. Notably, 

ANN categorized the fault by displaying "1" in the second output, corresponding to F2, and "0" 

in the remaining outputs. Upon fault detection and defect classification, a message is displayed 

in the command window to inform the user about the system's fault type.  
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Figure 3.11: (a). Progression of Mean Squared Error (MSE) for the MLP Network. (b). Confusion 

Matrix for Classification in the MLP Network. 

Figure 3.12: Detection and classification of Fault 2. 
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3.6. Experimental Validation 

To prove the effectiveness of the proposed real-time monitoring and diagnosis system a 

laboratory experimental test bench is built. 

First, this developed test bench is presented with its associated user interface, then the 

experimental results will be presented and analyzed. A commercial current and voltage monitor 

is used to acquire measurements. Figure 3.13 shows the investigated cases for the real PV panel: 

Normale operation and various faults mentioned in section 3.3, for implementing the shading 

fault (see Figure 3.13), the shaded module is conducted by covering the cells with a physical 

solid opaque. 

The developed user interface is shown in Figures 3.14-3.19. The developed program is 

performed and allows the data acquisition of all the measured signals through the current and 

voltage PV monitor board. Furthermore, this interface allows real time visualization and 

presentation of these signals, as well as the presentation of different curves (power, current, 

voltage..., etc.) and the state of the system, detected and the classified faults. Several tests have 

been performed on the PV panel at measured temperature 25 °C and measured irradiation 

1023W/m².  

The Figure 3.14. illustrates the current-voltage (I-V) characteristic of the photovoltaic (PV) 

panel under typical operating conditions. Within this context, the observed I-V curve closely 

aligns with the anticipated performance, suggesting conformity between measured and 

estimated values. Specifically, parameters such as Pmax (maximum power output), Voc (open-

circuit voltage), and Isc (short-circuit current) exhibit consistency, denoting normal operation. 

This alignment is symbolized by the presence of a green LED indicator on the user interface, 

affirming normal functioning.  

When the shading fault occurs (F1); in this case, the measured short-circuit current is the same 

with the estimated short-circuit current.  Furthermore, the measured open-circuit voltage and 

measured maximum power output decrease of estimated values as shown in the Figure 3.15. 

The analysis demonstrates a direct correlation between the percentage of shading impacting the 

cell and the reduction in Pmax and Voc. This correspondence is further affirmed by the presence 

of an alarm with a red LED indicator on the user interface, symbolizing the panel's faulty 

functioning and indicates in the display part the type of fault. In fault 2, where three sub-strings 

are partially shaded, three bypass diodes are activated. Depending on the severity of the shading 

fault, scenario emerge: simultaneous conduction of diodes and the occurrence of a single 
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voltage peak (see Figure 3.16) leads to activate the alarm, identifies the type of fault with a red 

LED. 

Figure 3.17 depicts the shading setup, wherein a vertical line of PV cells experiences partial 

shading at 100% with open circuit in string of cells. Shading of cells triggers the activation of 

one bypass diode, and the open circuit leads to the activation the second bypass diode, thereby 

deactivating the affected sub-strings. This phenomenon is corroborated by the sharp voltage 

variation resulting from the loss of this sub-strings, with the current value being directly 

proportional to the degree of shading (see Figure 3.17). The applied technique activates the 

alarm system and signals the specific fault type through a red LED indicator. 

A short circuit diode defect (Figures 3.18 and 3.19) investigates two distinct scenarios: the 

short-circuiting of a single bypass diode and the short-circuiting of two bypass diodes. Both 

scenarios result in a reduced open-circuit voltage (Voc) in comparison to the reference curve.  

Therefore, it is evident that the diagnosis technique is responsible for the detection and 

classification of the two defects. The display part of the interface indicates the type of fault with 

a red LED.  

 

 

 

 

 

 

 

 

 

 

 

 

 

b)  Shading Horizontal line 

100%  
a) Shading one cell 

50% 

c)  Shading Vertical line 

100% 

Figure 3.13: The investigated faults. 

f) Two bypass diodes short-

circuited 

e)  One bypass diode short-

circuited 

d) Open circuit  
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 Figure 3.14: The ControlDesk User Interface Presents Real-Time Measurement Data in the Monitored 

PV Panel (Normal operation). 

Source: Authors, (2025). 

Figure 3.15: The ControlDesk User Interface Presents Real-Time Measurement Data in the Monitored 

PV Panel: Fault 1 
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Figure 3.16: The ControlDesk User Interface Presents Real-Time Measurement Data in the Monitored 

PV Panel: Fault 2. 

Figure 3.17: The ControlDesk User Interface Presents Real-Time Measurement Data in the Monitored 

PV Panel: Fault 3. 
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Figure 3.18: The ControlDesk User Interface Presents Real-Time Measurement Data in the Monitored 

PV Panel: Fault 4. 

Figure 3.19: The ControlDesk User Interface Presents Real-Time Measurement Data in the Monitored 

PV Panel: Fault 5. 
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3.7. Conclusion 

In this chapter, an Artificial Neural Network (ANN)-based fault detection and classification 

approach was successfully implemented and validated through both simulation and 

experimental analysis. Five distinct single- and multi-fault types of faults, including partial 

shading, open circuit and bypass diode failures, were applied to a PV module, and their effects 

were analyzed using voltage, current, and power variations. The simulation results 

demonstrated the effectiveness of the ANN model in accurately identifying and classifying all 

faults. Furthermore, the experimental validation, conducted using real PV module data and 

implemented through dSPACE DS1104 controller, confirmed the model’s robustness and 

reliability. The ANN-based method achieved an impressive classification accuracy of 99.7%, 

proving its efficiency in detecting PV faults under varying conditions. 
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4.1. Introduction  

Solar photovoltaic (PV) systems are becoming increasingly popular for renewable 

energy production. However, due to environmental and operational conditions, various faults 

can occur in PV modules, which can cause a significant reduction in system performance. This 

chapter proposes the use of two different methods, Fuzzy Logic (FL) and Artificial Neural 

Networks (ANN), for the real-time diagnosis of single and multi-type PV faults. The 

performance of these methods is compared both in simulation and experimentation. The 

simulation was conducted using MATLAB/Simulink, while the experiment was conducted 

using dSPACE DS1104 platform in order to implement the diagnosis model developed in 

Matlab/Simulink® software. The proposed methods have been validated using an experimental 

database of meteorological and electrical characteristics from a PV panel located at LGEB 

Laboratory of the University of Biskra (Algeria), for six different fault types, including shading, 

soiling, and by-pass diode faults. 

4.2. Explanation of the Photovoltaic System and the Strategy for 
Detecting and Diagnosing Faults 

4.2.1. PV system description 

This section undertakes the examination of fault detection within an experimental photovoltaic 

(PV) panel installed at LGEB, University of Biskra, Algeria. The schematic representation of 

the electrical setup of the PV system under experimental conditions is presented in Figure 4.1. 

The validated PV system model, detailed in chapter 3, forms the basis for generating databases 

that capture the performance of the PV system under real outdoor conditions. Utilizing daily 

solar irradiance and module temperature profiles, this PV model is employed to create datasets 

comprising both optimal operation and intentionally simulated faults. The physical model of 

the PV system is implemented in the Matlab/Simulink® software platform. Subsequently, the 

values of the unknown parameters obtained under reference conditions are integrated into the 

physical PV array model.  

The final stage of the proposed fault detection and localization strategy involves applying the 

ANN and FL, thereby facilitating the observation of the implemented diagnostic technique in 

the simulation. 
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Figure. 4.1: Schematic representation of the electrical configuration for the experimental PV system. 
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4.2.2. The Implemented Diagnosis Technique 

4.2.2.1 PV Module Faults 

The main issues, with PV systems usually arise from the PV array inverter, storage system and 

electrical grid. The objective of this part is to pinpoint the faults that occur in the PV array. Six 

different faults are explored, as referenced in Table 4.1, and a schematic representation is 

depicted in Figure 4.2. Constructing a database on the faulty behavior of a PV panel requires 

creating a causal relation between faults and symptoms obtained from the I-V characteristic of 

the panel source. To accomplish this, a series of simulations must be carried out to obtain a 

complete list of the fault scenarios considered, as shown in Figure 4.3. Symptom S1 represents 

the reduction of the maximum power of the PV module, symptom S2 represents the reduction 

of Voc of the PV module and the symptom S3 describe the reduction of Isc of the PV module. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol  Types of faults  

F1:  Shading of a cell of the subpanel 1 at 75% and 

another of the subpanel 2 of the PV module at 25 %. 

F2:  Soiling. 

F3:  One By-pass diode short circuited. 

F4:  Two By-pass diodes short-circuited. 

F5:  One by-pass diode shunted (Rsh= 2Ω). 

F6:  Shading of a cell of the subpanel 1 at 25% and 

another of the subpanel 2 of the module at 75 % with 

By-pass diode disconnected. 

Table 4.1 Various categories of faults selected for the diagnosis. 

 

Figure. 4.2: Schematic representation of the six 

faults. 
 

F2 

F1 

F5 

F3 
F4 

F6 



Chapter 4                     Comparative Study of Real-Time Photovoltaic Fault Diagnosis: Fuzzy 

Logic and Neural Network Approaches 

 

70 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this section, six faults of the PV module have been selected, as outlined in Table 4.1. To 

accurately model both the operational state and various fault scenarios within the PV array, a 

flexible fault simulation has been developed using a Simulink-based model, as depicted in 

Figure 4.3. The simulation enables the emulation of shading by adjusting the irradiance input 

to the relevant PV cells. Similarly, soiling can be simulated by modifying the irradiance input 

for all PV cells. For the simulation of short-circuit diode faults, wires are connected between 

the bypass diodes. Meanwhile, to simulate shunted diode faults, a parallel resistor (Rsh) with a 

value of 2Ω is added along with a bypass diode. Shading and bypass diode disconnection faults 

can also be simulated by manipulating the irradiance input to the relevant PV cells and 

disconnecting the bypass diode. 

The datasets required for this study are directly obtained from the PV Simulink model under 

both faulty conditions, while varying parameters such as solar radiation (Ir) and temperature 

(T). During data generation, temperature is increased in increments of ten degrees Celsius from 

0°C to 80°C, while solar irradiance is varied in increments of 50W/m2, ranging from 0W/m² to 

1,100W/m². Consequently, a total of 102 sets of samples is generated. 

 In each simulation, a single fault is considered, and the I-V characteristic resulting from this 

simulation is analyzed to determine the symptoms that can be used to identify the nature of the 

fault using two different methods, Fuzzy Logic (FL) and Artificial Neural Networks (ANN). 
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4.2.2.2. Photovoltaic System Fault Detection 

In this part, the work consists of developing an algorithm to discriminate all the chosen defects. 

For this purpose, two methods, including their treatment concept have been applied. The first 

is a combined method based on threshold detection and the Fuzzy Logic approach of each 

symptom, which subsequently gives binary signatures (in the form of 1 and 0) as fault detection, 

the second method, is based on an Artificial Neural Network . The approach used for each of 

these methods can be summarized in the block diagram in Figure 4.4. It is used to obtain the 

signature for all the defects considered in our study, by simulating each defect separately from 

the other (Singular defects). 

As depicted in Figure 4.5, the simulated diagnostic photovoltaic (PV) system comprises two 

SUNTECH PV modules, each module includes 72 solar cells and three by-pass diodes. In the 

initial phase, the simulation encompasses the characterization of both a reference PV panel, 

representing a healthy module, and a tested PV panel subjected to various fault conditions. 

Subsequently, three critical parameters (Pmax, Voc, Isc) are extracted from each I-V curve. In 

the subsequent step, a diagnostic algorithm is employed to detect and classify PV faults, 

utilizing two distinct approaches: a combined method involving thresholding and a fuzzy logic 

classifier, as well as the utilization of an Artificial Neural Network. 

The difference between predicted and measured values is used as a fault indicator. The fault 

diagnosis process will next be initiated and the alarm will trigger according to the identified 

fault category. Each malfunction produces a distinct set of symptoms that are identified and 

then displayed in the yellow blocs with a message on the Command Window to indicate the 

fault type (Fault F1), as depicted in Figure 4.6. Matlab/Simulink was used to apply the 

configuration shown in Figure 4.5. 
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Figure 4.5: Photovoltaic System Fault Detection. 
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Figure. 4.4: The proposed fault diagnosis technique. 
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A. Thresholding method and Fuzzy Logic classifier 

In this section, Figure 4.5 is analyzed to extract three parameters (Pmax, Voc, Isc) from the I-

V curves of both the standard and defective modules. The derived parameters are subsequently 

compared to calculate (∆Pmax, ∆Voc, ∆Isc). In the following step, these acquired parameters 

are compared with three relative errors accounting for potential deviations in measurement 

precision and modeling accuracy in power, voltage, and current. The standard IEC 61724 [97] 

prescribes a tolerance of 2% for power measurements, 1% for voltage measurements, and 1% 

for current measurements. Furthermore, the uncertainty inherent in the model is influenced by 

industrialization tolerances and sensor-related noise, as detailed in [33]. To incorporate this 

variability, a dispersion parameter is introduced into the simulation model parameters to 

calculate the allowable error. The relative errors for power, voltage, and current are determined 

as 5%, 3%, and 6%, respectively. Successful detection of defects is confirmed when these 

predefined thresholds are surpassed. 

As shown in Table 4.2, three categories of defects can be identified using the threshold method: 

 

  

 

 

 

According to these findings, the first algorithm is incapable of distinguishing between defects 

(F2, F6) and (F3, F4, F5), which share the same combination of symptoms. Therefore, a highly 

efficient classification method is required to identify these faults. In the next step, a diagnosis 

algorithm based on the Fuzzy Logic approach is used to detect and classify PV module faults 

into two groups: 

➢ Defects with various combinations of symptoms. Using a signal threshold-based 

method, these defects are identified. 

Groups Fault type Symptoms [S1, S2, S3] 

1 [F1] S1=1 S2=0 S3=0 

2 [F2, F6] S1= 1 S2=0 S3 =1 

3 [F3, F4, F5] S1=1 S2=1 S3=0 

Table 4.2 The distinctive signature of faults following 

the application of the threshold technique. 

Figure 4.6:  Result of the first fault, presented within the command window. 



Chapter 4                     Comparative Study of Real-Time Photovoltaic Fault Diagnosis: Fuzzy 

Logic and Neural Network Approaches 

 

74 

 

➢ Defects with the same set of symptoms. Using a Fuzzy Logic Classifier, this 

form of errors is isolated. 

Fuzzy Logic Classifier 

Fuzzy Logic classifier (FLC) stands as a contemporary artificial methodology utilized for fault 

diagnosis within photovoltaic systems. The characteristics of the FLC system are formulated 

through the establishment of connections between the IF condition and THEN statements across 

multiple uncertain input datasets. This process results in generating decisions denoted as 

membership function outputs. 

In this section, A Fuzzy Logic (FL) method will be implemented, with (∆Pmax, ∆Voc) as inputs. 

From Figure 4.7, In cases 1 where (S1, S2, S3) = (1, 1, 0) and case 2 (S1, S2, S3) = (1, 0, 1), 

the Fuzzy Logic classifier (FL) begins by fuzzifying the inputs through the use of membership 

functions. 

Following this, the establishment of a rule base for inference is required. The fuzzy rules are 

selected to distinguish between defects that have the indication signatures. As shown in Tables 

4.3 and 4.4 precise bases have been created to differentiate between the three faults (in case 1) 

and the two faults (in case 2). Table 4.3 consists of three rules while Table 4.4 contains two 

rules. 

Finally, the acquired data has been analyzed and interpreted. At the output of the implemented 

FL system, the Takagi Sugeno Kang type one procedure is applied. Therefore, the outputs of 

membership functions are fixed values. 

 

 

Rul

e 

N° 

IF THEN Defuzz

i- 

ficatio

n 

PPM Voc S1 S2 S3 

1 PPM_

S 

Vco

_S 

S1=

1 

S2

=0 

S3=

1 

[1 0 1] 

2 PPM_

L 

Vco

_S 

S1= 

0 

S2

=0 

S3 

=1 

[0 0 1] 

Rule 

N° 

IF THEN  Defuzzi- 

fication PPM Voc S1 S2 S3 

1 PPM_M Vco_S S1=0 S2=1 S3=

1 

[0 1 1] 

2 PPM_M Vco_M S1= 

1 

S2=1 S3 

=0 

[1 1 0] 

3 PPM_M Vco_L S1=0 S2=1 S3=

0 

[0 1 0] 

Table 4.4. Fuzzy rule set and the process of 

defuzzification employed in the fuzzy classifier 

(Case 2). 

Table 4.3. Fuzzy rule set and the process of 

defuzzification employed in the fuzzy classifier 

(Case 1). 
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B. Artificial Neural Network Classifier 

In this section the Artificial Neural Network (ANN) is proposed. According to Figure 4.8 the 

ANN architecture consists of three layers: 

➢ The input layer comprises three neurons representing the ratio between simulated and 

measured values of maximum power point current (Pmax) open circuit voltage (Voc) 

and short circuit current (Isc). 

➢ A hidden layer, with ten neurons that have chosen. tansig activation functions.  

➢ The output layer contains seven neurons representing six faults and the normal 

condition, which indicates a binary classification with a selected purelin activation 

function. 

Fuzzification  Fuzzification  Base-rule  Defuzzification  Base-rule  Defuzzification  

Case 2 Case 1 

2 Rules 3 Rules 

Figure 4.7: Structure of the fuzzy classifier and its input parameters. 
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The network architecture is a Multilayer Perceptron (MLP) Feedforward Neural Network. 

As shown in Figure 4.9, this MLP structure consists of a single concealed layer with 10 

nodes. The Levenberg-Marquardt (LM) algorithm is employed to train the network. The 

training dataset is produced from simulations that include both typical and fault-inducing 

operations for six distinct faults. In particular, 70% of the patterns are designated for 

training, while the remaining 30% are reserved for model validation and testing. 

 

 

 

 

 

 

4.3. Results Analysis  

4.3.1. Simulation results for Simulink Model  

To assess the efficacy of this intelligent approach, a simulation was conducted within the 

Matlab/Simulink environment, encompassing both normal and defective operational scenarios. 

The detection algorithm derives characteristics from two simulated photovoltaic systems: one 

emulates a real PV array with various faults, while the second represents the standard 

functioning. 

 

Figure 4.9: Schematic of the used ANN architecture. 
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Figure 4.8: ANN configuration. 
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4.3.1.1.Evaluation of the Proposed Method's Effectiveness 

1) Evaluation of Algorithm 1 

To assess the effectiveness of the algorithm, the suggested fault diagnosis method is simulated, 

for the SUNTECH photovoltaic (PV) module system. 

The selected faults are individually applied to the faulty PV module, allowing the algorithm to 

detect and classify the faults based on various combinations of symptoms. These symptoms are 

then used for accurate fault localization. 

Table 4.5 presents the results of various fault scenarios analyzed using the Sugeno FL and 

thresholding methods. Six different scenarios including normal case were tested, and all faults 

were successfully distinguished. The results clearly demonstrate that the combined method is 

highly effective in accurately and efficiently detecting, classifying, and locating different faults 

in PV panels, which achieved 100% accuracy. further details are reported in our previous 

studies [11-13]. 

 

 

 

 

 

 

 

 

 

 2) Evaluation of Algorithm 2 

A case study was conducted using MATLAB Simulink software to evaluate the proposed 

approach. Data samples reflecting the distribution of three indicators were gathered to provide 

input for the ANN model. The dataset comprises 721 samples, calculated as (103×7), which 

includes standard conditions and six unique fault scenarios. Each sample includes the three 

chosen input indicators.  Figure 4.10 (a) illustrates the variation of minimum Mean Square 

Errors (MSE) with respect to epochs for training, validation, and testing. The performance 

following training is 0.002, while the optimal validation performance achieved is 0.0016615 

after 96 iterations. Generalization tests evaluate the performance of neural networks and their 

capacity to apply acquired knowledge to novel data. Following the network's computation, it is 

Faults Amplitude of symptoms Method 
S1 (W) S2 (V) S3 (A) 

F0  0 0 0 
Thresholdin

g F1  1 0 0 

F2 1 0 1 
 

Fuzzy Logic  

F3  1 1 0 

F4  0 1 0 

F5 0 1 1 

F6  0 0 1 

Table 4.5. The Symptom Signatures for Individual Faults after Fuzzy 

Logic Integration. 
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crucial to perform tests to verify that the network delivers accurate responses. Figure 4.10(b) 

presents the confusion matrix for the six faults, including the normal case, as analyzed during 

the testing phase. The matrix cells colored green and red represent the percentages of correctly 

and incorrectly classified faults, respectively. The confusion matrix offers a precision 

measurement for training the artificial neural network fault detection and diagnosis model. A 

precision rate of 99.7% has been achieved for the ANN diagnosis model. This result indicates 

the informed selection and efficient training of the ANN model for detection and classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 depicts the results of implementing fault 3, "One bypass diode CC," across 

simulation blocks. The simulation results confirm the effectiveness of the proposed approach 

in detecting and classifying defects based on diverse symptom combinations. FL designated F3 

as the vector (1,1,0), while ANN identified the fault by indicating "1" in the fourth output, 

representing F3, and "0" in the other outputs. Upon detecting a fault and classifying the defect, 

a message is presented in the command window to notify the user of the system's fault type. 
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Figure 4.10: (a). Progression of Mean Squared Error (MSE) for the MLP Network. (b). 

Confusion Matrix for Classification in the MLP Network. 
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4.4. Experimental validation 

The experimental assessment of the performance of the diagnostic algorithms is conducted 

using the test bench as depicted in Figure 4.12 (a) This test setup was conceived and deployed 

within the LGEB Laboratory, University of Biskra, Algeria. The test bench consists of the 

following elements: 

A SUNTECH PV photovoltaic solar panel of type mono-crystalline silicon was installed outside 

the building. The overall PV panel consists of 72 PV cells with three diodes (bypass type) each 

group of 24 cells connected to their bypass diode, where the electrical parameters of the module 

are previously presented in chapter 3. Following a reference cell and K-type thermocouple are 

used to record irradiance and temperature respectively. Which is used as inputs to our reference 

model. Due to practical limitations in reproducing each type of PV fault under varying real-

world environmental conditions (irradiance and temperature), fault signatures were 

experimentally collected under standard test conditions. To simulate the variability of operating 

conditions, additional datasets were synthetically generated using MATLAB models calibrated 

with the real measurements, where the environmental conditions are that irradiance ranges from 

about 1000 to 1068 W/m² and the temperature ranges from about 23 to 25 ℃. 

As depicted in Figure 4.12 (b), the current sensor and voltage sensor are employed to obtain the 

current and voltage outputs of the solar panel. These data sets serve as input variables for 

Figure 4.11: Detection of bypass diode CC fault. 
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presenting the faulty PV panel, which are then compared to the simulated PV panel and 

diagnosed as shown in Figure 4.13. 

The DS1104 Control Board is linked to a computer equipped with both the experimental 

ControlDesk software and the Matlab/Simulink software. The diagnostic algorithms being 

investigated are realized within Matlab/Simulink using blocks available in the Simulink 

libraries which are previously presented in Figure 4.5. To utilize the real-time interface toolbox, 

the implemented diagnosis algorithms are linked to the hardware. 
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Figure 4.12: The experimental test bench setup. 
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4.4.1. Investigated Faults  

In this part, we can examine how diverse fault types influence a photovoltaic system across 

various parameters such as voltage and current variations and power losses. Consequently, this 

leads to the generation of distinct I-V characterization curves. Figure 4.14 shows the curves for 

several typical types of faults which show a visual concordance between real and simulated 

data. For implementing the shading fault (see Figure 4.15 (a)), the shaded module is conducted 

by covering the cells with a physical solid opaque, the Imax and Vmax, are significantly 

affected, while Isc and Voc are similar to those of the normal condition. Soiling effect (Figure 

4.15 (b)): The presence of dirt and debris on the surface of a PV panel can reduce the amount 

of sunlight reaching the solar cells thus decreasing the Isc value. A shunted diode fault (Figure 

4.15 (c)): the Imax and Vmax, are significantly affected, which leads to a decrease in short 

circuit current and this leads also to a decrease in power. A short circuit diode fault (Figure 4.15 

(d-f)): This section examines two distinct scenarios: the short-circuiting of a single bypass diode 

and the short-circuiting of two bypass diodes, both of which result in a decreased open-circuit 

voltage (Voc) compared to the standard curve. Additionally, the presence of partial shading and 

disconnected bypass diode are also investigated (Figure 4.15 (a-e)), the result brings a reduction 

in the Imax and Vmax, which leads to a decrease in power. As a result of the aforementioned 

factors, the detection of faults and the diagnostic processes for PV systems have emerged as 

critical endeavors and particularly interesting in this area. 

 

 

 

 

 

 

 

 

 

 

 

 

 (a)  (b) 

Figure 4.14:(a). PV module characteristics: case of soiling, shadow effect, shadow effect and bypass diode fault. 

(b). PV module characteristics: case of bypass diode faults. 
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4.4.2. Experimental data Test off-line implementation 

In this section, our contribution lies in the extension of this technique to render it suitable for 

off-line fault diagnosis and real-time implementation. For full supervision, a series of 

experiments were conducted over the course of seven consecutive days to assess a normal 

condition and six distinct fault types. For the off-line implementation, the data sample was 

collected from the experimental PV module consisting of 700 = (100*7). Moreover, its data has 

been normalized in the same procedure mentioned previously in the simulation part (section 

4.3.1.1). Finally, the data points have been divided into 70% and 30% for training and testing, 

respectively. 

The learning algorithm's convergence is confirmed by examining the learning curve presented 

in Figure 4.16 (a). This curve clearly demonstrates that the error objective reaches a value of 

b)  Soiling  a) Shading c)  bypass diode shunted (R=2 Ω) 

Figure 4.15: The investigated faults. 

f) Two bypass diodes short-circuited d)  One bypass diode short-circuited e) bypass diode disconnected 
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0.0017085 after 31 iterations, which is indicative of an adequate performance level for 

achieving a high ranking rate.  

The dataset (training + test) is examined to determine if ANN is capable of classifying defects. 

The results of the classification are shown in Figure 4.16 (b), where the green squares represent 

correctly classified data and the red squares represent the opposite. According to the 

classification confusion matrix, the MLP-based model's correct and false classification rates are 

99.6% and 0.4%, respectively. This shows that the ANN model achieved a good performance 

in detecting classification faults. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5. Real-time Experimental Application Results and Discussion  

In order to guarantee that the simulated system accurately emulates the real system behavior, 

we compare experimentally multilayer neural network identification method and Fuzzy Logic 

method in the same data and the comparison result of fault diagnosis by day. Figures. 4.17-22 

showcase the created ControlDesk user interface for real-time surveillance, which allows users 

to observe all instantaneous and integrated monitoring signals both electrical and environmental 

along with the state of the system, the Photovoltaic characteristics (I-V) for the normal 

operation and defective PV panel, accompanied by the outcomes obtained from the two 

employed algorithms (Detection part). Furthermore, the figures also demonstrate the ultimate 

classification of faults (Classification part). To provide a clear indication of the fault type, a 
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Figure 4.16: (a). Progression of Mean Squared Error (MSE) for the MLP Network. (b). Confusion Matrix for 

Classification in the MLP Network. 
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designated display component is utilized as an alarm triggered according to the identified fault 

category. 

As shown in Figure 4.17. The results of the identification of the shading fault by the 

multilayer neural network identification method and Fuzzy Logic method successfully 

classified the fault into different combinations of symptoms. We can see in the monitoring 

platform that the graph of the measured PV panel (faulty) is not identical to the estimated one 

(normal), this indicates the existence of a fault in the panel.  Hence, it can be seen clearly that 

the fault is detected and classified by the diagnosis technique, where the type of fault is indicated 

in the display part with a red LED. On the other hand, Figure 4.18. depicts the outcomes of the 

soiling fault identification. As can be seen, the fault has been detected by the FL and the ANN 

methods and classified only by the ANN method which gives a different combination of 

symptoms displayed with a red LED. However, the employment of the fuzzy logic method has 

resulted in a false alarm (indicated fault 6). The observed misclassification can be attributed to 

the existence of inherent measuring errors, which have consequently led to an inaccurate 

classification. 

Figure 4.19 and 20 Present the result of the implementation of a single by-pass diode 

short-circuited and two by-pass diodes short-circuited. As observed, the measured (faulty) 

graphs of the PV panel differ from the predicted (normal) graph in the two cases. Thus, the 

results that were obtained of the by-pass diode short circuit faults identification using the ANN 

and FL methods successfully detect and classify the faults in the display part. Additionally, as 

depicted in Figure 4.21 and 22.  The figures show the results of the shunted by-pass diode fault 

and the shading + open-circuit by-pass diode fault identification along with their corresponding 

characteristics (measured) compared to the predicted one (simulated). As can be seen, only the 

ANN technique which provides a unique combination of symptoms was able to detect and 

classify the defects in the display part. However, the use of fuzzy logic produced a fault 

detection, accompanied by a misclassification of the faults.  
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Figure 4.17: The ControlDesk User Interface Presents Real-Time Measurement Data and Detects 

Fault 1 in the Monitored PV Panel. 

Figure 4.18:  The ControlDesk User Interface Presents Real-Time Measurement Data and Detects 

Fault 2 in the Monitored PV Panel. 
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Figure 4.20:  The ControlDesk User Interface Presents Real-Time Measurement Data and Detects 

Fault 4 in the Monitored PV Panel.  

Figure 4.19:  The ControlDesk User Interface Presents Real-Time Measurement Data and Detects 

Fault 3 in the Monitored PV Panel. 
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 Figure 4.22:  The ControlDesk User Interface Presents Real-Time Measurement Data and Detects 

Fault 6 in the Monitored PV Panel. 

Figure 4.21:  The ControlDesk User Interface Presents Real-Time Measurement Data and Detects 

Fault 5 in the Monitored PV Panel. 
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Most of the sampled data during the testing period are found to fall within the predetermined 

range of lower and upper thresholds. Nonetheless, in each case, a subset of samples 

demonstrates inaccurate detection, resulting in their classification as out-of-region instances. 

This situation arises due to the system's identification of a significant number of defective 

regions, a factor that could potentially be influenced by sensor efficiency and the computation 

of three ratios. The computation of Detection Accuracy (DA) for each examined scenario can 

be achieved through the subsequent calculation: 

𝐷𝐴 =
𝑡𝑜𝑡𝑎𝑙𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 − 𝑜𝑢𝑡 𝑜𝑓 𝑟𝑒𝑔𝑖𝑜𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
                                               (4.1) 

For each scenario examined in Figures 4.17-22, the employment of the Artificial Neural 

Network (ANN) method leads to a reduction in instances classified as out of region, as 

evidenced by the comparison with the Fuzzy Logic (FL) system state in Table 4.7. This 

unequivocally ensures a high degree of accurate classification for the majority of samples 

through the utilization of the Artificial Neural Network (ANN). Furthermore, the aggregate 

Detection Accuracy (DA) subsequent to the implementation of the ANN system, wherein only 

3 instances out of a total of 700 are designated as out of the region, attains 99.6%. Similarly, 

employing the fuzzy logic approach (FL), 5 instances are categorized as out of region samples, 

contributing to a 99.2% DA level. On the aspect of speed, the execution time for generating the 

I-V curves is 20 seconds, due to manual variation of the load. Moreover, the diagnosis time 

using fuzzy logic method takes 3.02s, while ANN consumes only 1.04s for the execution of 

fault analysis, which in turn makes the system free from unwanted delays. 

This enhancement significantly augments the monitoring efficacy of the Photovoltaic (PV) 

system. It is evident from the observations that the Artificial Neural Network (ANN) method 

adeptly and efficiently accomplishes the precise classification and detection of diverse fault 

data. 

 

 

 

Case 

With FLC With ANN Duration of 

I-V Curves 

Generation 

(s) 

Diagnosis 

time (s) 

Out of region 

samples 
DA (%) Out of region 

samples 
DA (%) With 

FLC 

With 

ANN 

F1 0 100 0 100 

20s 3.02s 1.04s 

F2 1 99 0 100 

F3 0 100 2 98 

F4 0 100 1 99 

F5 2 98 0 100 

F6 2 98 0 100 

Table 4.7. The output DA and the execution time with FL and with ANN system. 
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4.6. Comparative Study with Other ANN Solutions 

Table 4.8 presents a comparative analysis of the characteristics of the proposed artificial neural 

network (ANN) architecture in contrast to other deep learning methodologies introduced in 

recent years. This comparative examination is succinctly addressed in the introductory section. 

The table exclusively encompasses methodologies pertinent to experimental diagnosis and fault 

detection in photovoltaic (PV) systems. The evaluation encompasses the ANN's accuracy, and 

the consideration of various types of detected faults (single- and multi-fault types), which could 

have significant implications for integration into embedded systems. This comparative analysis 

also underscores that all referenced studies encompass distinct test conditions and represent 

diverse scenarios. The results underscore the remarkable efficiency of the proposed fault 

diagnosis strategies, which consistently demonstrate their capability to accurately detect and 

classify single- and multi-fault types. It is notable that the parameter of training time is 

frequently omitted in the works reviewed. Nonetheless, this investigation underscores its 

relevance, particularly in the context of fault diagnosis. The outcomes affirm that the proposed 

fault diagnosis strategies exhibit rapid self-training, yielding a detection accuracy surpassing 

99%. 

References Year of study Types of faults detected Fault Diagnosis 

Accuracy (%) 

[22] 2024 
Short-circuited modules, 

disconnected strings 
87.56% 

[23] 2024 

Shading, short circuits, open 

circuits, and degradation of 

solar cells 
99.64% 

[24] 2024 
Line-to-line defects, Open-

circuit failures, Partial 

shading 

99.4% 

[25] 2024 

line-ground (LG), line-line 

(LL), open-circuit (OC), 

string degradation, and 

array degradation faults 

98.37% 

This work 2024 

Partial shading, Soiling, SC 

of one by-pass diode, SC of 

two by-pass diodes, by-pass 

diode shunted, Shading & 

by-pass diode disconnected 

99.6% 

 

4.7. Conclusion 

In this chapter, the ANN and a combined method based on the FL classifier have been 

developed for fault detection and classification in photovoltaic panel, and both experimental 

Table 4.8. ANN techniques for PV diagnosis and faults identification. 
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and simulation validations have been introduced using Matlab/Simulink® software. First, the 

WSO with Newton-Raphson optimization algorithm is used to determine the optimal PV 

simulation model parameters to improve the system's capability and performance. Second, three 

selected indicators are calculated and analyzed for normal (simulated PV panel) and measured 

(real PV panel) for various fault cases that represent: PV cells (shading and soiling) and by-

pass diode defects. 

 The simulation part has substantiated that both Artificial Neural Networks (ANN) and Fuzzy 

Logic (FL) are capable of detecting and classifying all faults effectively. However, when 

moving from simulation to experimental tests using dSPACE DS1104 platform, the results 

unequivocally showcased the superiority of the ANN classifier over the FL classifier. The 

experimental findings of real-time surveillance demonstrated that the ANN classifier 

outperformed the FL classifier in terms of fault classification accuracy performance and speed, 

the proposed FL and ANN model obtained classification accuracies of approximately 100% 

and 99.7% in simulation tests and 99.2% and 99.6% in experimental tests, respectively. These 

results highlight the potential of the ANN-based approach as a preferred choice for practical 

fault detection systems. Thus, incorporating ANN techniques in real-time applications can lead 

to enhanced fault detection capabilities and improved overall system performance.  

 



 

 

 

 

 

 

 

 

 

 

Conclusion 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



     Conclusion 

 

91 

 

 
 

Conclusion 

The strategies developed in this research focus on the detection and diagnosis of faults in 

Photovoltaic system. The primary objective was to enhance the efficiency of PV systems and 

protect them from potential faults by implementing effective fault detection and diagnosis 

methods. In particular, the research emphasized the application of artificial intelligence (AI) 

techniques, such as artificial neural network classifier and Fuzzy Logic method as the core aim 

of the thesis. 

Nonetheless, the use of AI tools for this purpose necessitates a high-quality database that, on 

one hand, accurately captures the relationship between system faults and PV parameters, and 

on the other hand, effectively characterizes system behavior under both normal and faulty 

conditions. 

From a practical perspective, acquiring a comprehensive fault dataset through real-world 

experimentation is often challenging, as operating a PV system under faulty conditions can pose 

significant risks, including equipment damage and safety hazards. To address this limitation, 

this thesis employed a Matlab/Simulink co-simulation approach to develop a robust and realistic 

simulation model capable of accurately representing the system’s behavior in both healthy and 

faulty states. Additionally, several types of faults were experimentally introduced in a 

controlled environment, and the resulting faulty data were collected. These experimental results 

were then compared with the outputs of the reference simulation model to validate its accuracy 

and reliability for fault diagnosis applications. 

Moreover, the developed simulation model necessitates the use of the five electrical parameters 

of the One-Diode Model (ODM). To this end, an effective extraction methodology based on 

the War Strategy Optimization (WSO) algorithm and Newton-Raphson algorithm has been 

proposed. These algorithms were selected owing to their proven efficiency in solving complex 

optimization problems, rapid convergence characteristics, and suitability for real-time 

implementation. The performance of the proposed ODM parameter extraction method has been 
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experimentally validated using two of photovoltaic (PV) modules employing different 

technologies. 

Subsequently, the extracted ODM parameters were employed to develop a robust strategy for 

Maximum Power Point (MPP) estimation. This estimation approach was validated through 

experimental testing with real measurement data obtained from photovoltaic system.  

Second, both simulation and experimental methodologies were employed to investigate fault 

detection and classification in photovoltaic (PV) panels, utilizing thresholding and fuzzy logic-

based techniques. During the simulation phase, eight distinct fault types were examined. 

Although the thresholding method proved effective in detecting certain faults, it was limited in 

its ability to accurately distinguish between all fault scenarios, thereby indicating the necessity 

for a more sophisticated classification strategy. In contrast, the fuzzy logic-based approach 

exhibited enhanced diagnostic performance, successfully and distinctly identifying all 

investigated faults. The experimental validation was carried out using real measurement data 

obtained from a PV panel tested at the LGEB Laboratory, University of Biskra. The 

implementation, carried out on the dSPACE DS1104 platform and developed in the 

Matlab/Simulink environment, further confirmed the effectiveness of the fuzzy logic method in 

reliably detecting and classifying multiple fault conditions. 

Third, an Artificial Neural Network (ANN)-based approach for fault detection and 

classification was successfully developed and rigorously validated through both simulation and 

experimental investigations. The third chapter considered five distinct fault scenarios 

comprising both single and multiple faults, such as partial shading, open circuit faults, and 

bypass diode failures, applied to a photovoltaic (PV) module. The impact of these faults was 

assessed based on variations in voltage, current, and power. Simulation results confirmed the 

ANN model’s high accuracy in identifying and classifying all fault types. In addition, 

experimental validation using real-time PV module data and implemented via dSPACE DS1104 

controller further substantiated the model’s robustness and reliability. The proposed method 

achieved a classification accuracy of 99.7%, demonstrating its strong potential for effective PV 

fault detection under diverse operating conditions. 

Finally, the simulation of the comparative part of this thesis has substantiated that both Artificial 

Neural Networks (ANN) and Fuzzy Logic (FL) are capable of detecting and classifying single 

and multi-type faults effectively. However, when moving from simulation to experimental tests 
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using dSPACE DS1104 platform, the results unequivocally showcased the superiority of the 

ANN classifier over the FL classifier in terms of classifying the single fault (soiling) and the 

multi-fault (shading with By-pass diode disconnected). The experimental findings of real-time 

surveillance demonstrated that the ANN classifier outperformed the FL classifier concerning 

fault classification accuracy performance and speed for classifying the single and multi-faults 

types, the proposed FL and ANN model obtained classification accuracies of approximately 

100% and 99.7% in simulation tests and 99.2% and 99.6% in experimental tests, respectively. 

These results highlight the potential of the ANN-based approach as a preferred choice for 

practical fault detection systems. Thus, incorporating ANN techniques in real-time applications 

can lead to enhanced fault detection capabilities and improved overall system performance. 

 As a perspective work, the future contribution is to implement the recommended technique on 

an extensive photovoltaic (PV) system could offer significant benefits owing to its notable 

advantages in effectively identifying common and multi-faults through heightened sensitivity 

and precision, also we will focus on evaluating the proposed embedded system for large-scale 

PV plants. Additionally, other type of multi-faults will be investigated, and also generalize the 

method for different PV module technologies. Furthermore, another avenue for enhancing the 

system involves the integration of Internet of Things (IoT) functionalities, which serves to 

enhance real-time online monitoring of performance analysis and the prompt issuance of 

malfunction alerts. 
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