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Abstract

The emerging technologies like Information and communications technology (ICT), Artificial
Intelligence (Al) and Internet of Things (IOT) have a huge influence on the development of
smart city, which improves the daily life of residents. The intelligent transportation system
(ITS) is one of the main requirements of a smart city. The application of machine-learning
(ML) technology in the development of driver assistance systems, has improved the safety and
the comfort of the experience of traveling by road. In this work, we propose the development
of an intelligent driving system for road accident risks prediction that can extract maximum
required information to alert the driver in order to avoid risky situations that may cause traffic
accidents. The current acceptable Internet-of-vehicle (IOV) solutions rely heavily on the cloud,
as it has virtually unlimited storage and processing power. However, the Internet
disconnection problem and response time are constraining its use. In this case, the concept of
vehicular edge computing (V.Edge.C) can overcome these limitations by leveraging the
processing and storage capabilities of simple resources located closer to the end user, such as
vehicles or roadside infrastructure. In this thesis, we propose an Intelligent and Collaborative
Cloud-V.Edge Driver Assistance System (ICEDAS) framework based on machine learning to
predict the risks of traffic accidents. The proposed framework consists of two models,
CLOUD DRL and V.Edge DL, Each one complements the other, together, these models work
to enhance the effectiveness and accuracy of crash prediction and prevention. The obtained
results show that our system efficient and it can help to reduce road accidents and save

thousands of citizens’ lives.

Keywords: IOV, Deep Learning, Deep Reinforcement Learning, Cloud Computing, V.Edge
Computing, Cloud-V.Edge Collaboration.



Résume

Les technologies eémergentes telles que les technologies de l'information et de la
communication (TIC), l'intelligence artificielle (IA) et l'Internet des objets (loT) ont une
influence considérable sur le développement des villes intelligentes, ce qui améliore la vie
quotidienne des résidents. Le systeme de transport intelligent (ITS) est l'une des principales
exigences d'une ville intelligente. L'application de la technologie d'apprentissage automatique
(ML) dans le développement de systeme d'assistance a la conduite a amélioré la sécurité et le
confort de l'expérience du voyage sur la route. Dans ce travail, nous proposons le
deéveloppement d'un systeme de conduite intelligent pour la prédiction des risques d'accident
routier qui peut extraire les informations nécessaires au maximum pour alerter le conducteur
afin d'éviter les situations risquées pouvant causer des accidents de la route. Les solutions
actuellement acceptables d'Internet des véhicules (IOV) reposent fortement sur le cloud, car il
dispose d'un stockage et d'une puissance de traitement pratiquement illimitée. Cependant, le
probleme de déconnexion d’Internet et le temps de réponse limitent son utilisation. Dans ce
cas, le concept de calcul en périphérie des véhicules (V.Edge.C) peut surmonter ces limitations
en exploitant les capacités de traitement et de stockage de ressources simples situées plus pres
de l'utilisateur final, telles que les véhicules ou les infrastructures routieres. Dans cette these,
nous proposons un systeme d'assistance a la conduite intelligent et collaboratif (ICEDAS) basé
sur l'apprentissage automatique pour prédire les risques d'accident de la circulation. Le
systeme proposé se compose de deux modeéles, Cloud DRL et V.Edge DL, chacun complétant
l'autre. Ensemble, ces modeles travaillent a améliorer l'efficacité et la précision de la
prédiction et de la prévention des accidents. Les résultats obtenus montrent que notre systeme
est efficace et peut aider a réduire les accidents de la route et a sauver des milliers de vies de

citoyens.

Mots-clés : 10OV, Apprentissage profond, Apprentissage par renforcement profond,

Informatique en nuage, Informatique en Périphérie, Collaboration nuage - Périphérie.
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General introduction

1. Context

Wireless Sensor Networks (WSNs) are essential for smart city transportation systems,
particularly in addressing critical challenges like traffic safety. These networks play a key role
in monitoring traffic flow, detecting accidents, and optimizing routes to improve road user
safety. Every day, thousands of lives are lost or altered forever due to road accidents.
Regardless of age, gender, or stage in life, people face the risk of road accidents while walking,
driving, commuting, or undertaking long journeys. Sadly, these accidents can devastate
families and communities, leaving a profound and lasting impact on those affected. According
to the World Health Organization (WHO), approximately 1.35 million road accidents occur
each year, causing serious injuries to an estimated 20 to 50 million individuals worldwide.
Currently, road accidents rank as the eighth leading cause of global death and are projected to
become the seventh by 2030 if current trends persist [1]. Additionally, road accidents result in
the depletion of public resources and impose significant economic burdens in real-world
contexts.

To enhance traffic safety, many studies have been conducted to help the development of Active
Traffic Management Systems. The main areas of interest covered by these studies are: 1) black-
spot detection where road traffic accidents have been concentrated, these spots are recognized
as locations where the frequency and features of accidents stand out, or where there are
potential safety hazards compared to other typical areas, typically observed over an extended
period (usually 1-3 years). Such distinctions are influenced by various factors including road
conditions, traffic flow, climate, and environmental factors [2][3][4] [5].

i1) Detection of traffic incidents in real time, which involves the utilization of sensors, cameras,
and other data sources to promptly identify and report traffic incidents as they happen and alert
people to reduce their effects [6]. ii1) Road accidents prediction, where the prime goal of this
research is to predict the road accidents before they occur [7][8][9]. Predicting the likelihood
of traffic accidents is crucial for preventing their occurrence and minimizing the resulting
damages proactively. However, accurately predicting traffic accident risk at a detailed
spatiotemporal level poses challenges, primarily due to the intricacies of the traffic
environment, human behavior, and limited availability of real-time traffic data [10]. In this

sense, machine learning (ML) has emerged as a promising tool for forecasting traffic accidents
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risk. This capability can provide drivers with early warnings and valuable information to help
them avoid potential hazards on the road [11]. With the recent development of Internet-of-
vehicle (IOV) technology and the advancement in wireless communications, and
computational systems, new opportunities have opened up for intelligent traffic safety,

comfort, and efficient solutions.

2. Problem statements

The advent of machine learning and communication technologies has led to the development
of intelligent transportation systems (ITS) aimed at enhancing traffic efficiency and addressing
public concerns regarding road safety. However, implementing these ITS applications, which
rely heavily on machine learning, demands substantial resources and must meet stringent
quality of service (QoS) standards, particularly in terms of processing speed and accuracy.
Furthermore, due to the limited computing power and storage resources of vehicles, meeting
these QoS requirements solely with the vehicles' resources poses a considerable challenge [12].
On the other hand, deep reinforcement learning is considered a superior machine learning
approach due to its ability to adapt to complex and dynamic transportation systems. This
algorithm relies on continuous interaction with the environment to perceive each new state of
the system and respond accordingly. Such interaction necessitates processing massive amounts
of data, which requires high-performance computing and storage resources. Unfortunately,
these resources are not readily available within vehicles. This highlights the critical need for
innovative solutions to overcome resource limitations and enable the effective deployment of

machine learning techniques in intelligent transportation systems.

Due to the robust resources supported by cloud computing, it is indeed feasible to consider it
as a viable solution to the resource constraints posed by vehicles and to aggregate all the data
on road accidents sent by vehicles. However, it is essential to acknowledge the distance
between the cloud and the driver, which can introduce latency issues. In certain cases, such as
emergencies, this latency can be critical, affecting the response time of the system to the driver.
Disruptions or disconnections can exacerbate latency issues and hinder real-time
communication between vehicles and the cloud. This presents a potential obstacle in delivering

timely responses to drivers, especially in urgent situations where immediate action is required.
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Therefore, while cloud computing provides abundant resources to surpass the limitations of
onboard vehicle systems, addressing latency and connectivity challenges is crucial for ensuring
prompt and effective communication between vehicles and the cloud. Innovative solutions,
such as edge computing and caching mechanisms, may be necessary to mitigate these issues

and enhance the overall performance and reliability of intelligent transportation systems.

3. Contributions

The Internet-Of-Vehicle (IOV) solutions to traffic safety problems rely heavily on the cloud,
as it has virtually unlimited storage and processing power; where data must be moved from the
data source location (IOV sensors) to a centralized location in the cloud. However, in addition
to the Internet disconnection problem, the cloud might be far from the location of sensors and
devices generating these data, which will cause the response time to be slow. Therefore, this
might restrict the use of a solution that is based on the cloud, for sudden car accidents

prediction.

The concept of V.Edge Computing is an efficient alternative to overcome the limitations of
using machine-learning models in the cloud platform. Many emergency predictions take place
close to the end user; therefore, they can be process at the edge nodes. This reduces the impact
of communication delay and internet disconnection. In this context, we propose an Intelligent
Collaborative Cloud-V.Edge Driver Assistance Systems (ICEDAS) framework based on

machine learning, which predicts the risks of traffic accidents.

This framework takes advantages of the strengths of the two platforms, where a Deep Q-
Learning Network (DQN) algorithm is adopted in the cloud in order to train intelligent agent
to warn the driver of any foreseeable risk of traffic accident based on the huge historical data
available on the cloud. On the other hand, a deep learning algorithm can be deployed on the
V.Edge platform for inference, covering potential response absences by the cloud in predicting
sudden traffic risk due to the platform's proximity to the end user. The DL algorithm is trained
in the cloud, taking advantage of its scalability and high-end computing resources for model

training. The proposed (ICEDAS) aims to achieve the following main objectives:

1) The system must be able to react in a timely manner to warn the driver before entering a
critical state: This involves not only detecting potential hazards but also assessing the severity

of the situation and delivering warnings promptly enough for the driver to take preventive
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action. Real-time data processing and analysis are crucial to ensure that warnings are issued

with minimal delay, allowing drivers to respond effectively and avoid accidents.

2) The system must deliver adaptive messages to each driver who is at risk of a traffic accident
based on their personal conditions: This entails personalized risk assessment, taking into
account individual driving behaviors, preferences, and environmental factors. By analyzing
historical data and real-time information, the system can tailor warnings and recommendations
to each driver's specific situation, increasing the likelihood of effective intervention and
accident prevention.

3) The system must have the ability to use the cloud and V.Edge to predict the accident risk in
an efficient manner: Leveraging cloud computing and edge computing technologies allows for
scalable and distributed processing of vast amounts of data required for accurate accident risk
prediction. By harnessing the computational power of the cloud and the proximity of edge
devices to vehicles, the system can perform complex analyses and predictive modeling
efficiently, enabling timely identification of potential risks and proactive measures to mitigate
them. This hybrid approach optimizes resource utilization and enhances the system's overall

effectiveness in ensuring road safety.

4. Thesis Structure

The remainder of this thesis is organized as follows:

Chapter (1) introduces the fundamental concepts relevant to this thesis, including classical
machine learning algorithms, deep learning, reinforcement learning, and the integration of deep
learning with reinforcement learning. It also covers key technologies such as Wireless Sensor
Networks (WSNs), the Internet of Vehicles (IoV), cloud computing, edge computing, and their

integration.

Chapter (2) presents the state of the art in the application of various machine learning

algorithms in the field of road safety, with a particular focus on accident risk prediction.

Chapter (3) provides a detailed theoretical presentation of our proposed approach, which is
divided into three main parts. First, we introduce the core algorithm—Deep Reinforcement
Learning—and describe the process of developing our machine learning models. Next, we

explore the deployment of deep learning algorithms on the edge platform, explaining the
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rationale behind this decision. Finally, we examine the cooperation between the cloud and edge
platforms, demonstrating how their integration contributes to an effective solution for

predicting road accident risks.

Chapter (4) focuses on the implementation of the proposed system, beginning with the
selection of datasets essential for experimentation. The datasets were then meticulously
preprocessed to ensure optimal quality for analysis, including steps such as data cleaning and
normalization. Next, we implemented the three core contributions of our framework, each
designed to address specific challenges in traffic accident risk prediction using advanced
machine learning techniques. Throughout the implementation process, we continuously
monitored and evaluated the performance of our algorithms, aiming to achieve high prediction
accuracy and outperform traditional methods, as demonstrated by the evaluation metrics

computed for each algorithm.

In the conclusion, we present a comprehensive summary of the contributions made in this
thesis and emphasize the promising results achieved through the application of machine
learning, particularly within the collaborative framework designed to reduce accident risk in
smart cities. Furthermore, we outline potential directions for future research, including the
integration of computer vision techniques to further enhance road safety, as well as the
extension of the proposed framework to other critical application domains beyond traffic

management.
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Chapter (1): Preliminaries and Basic Concepts

1.1. Introduction

This chapter presents the main concepts related to our thesis and gives an overview of the
domains we will use. Section 2 presents Machine Learning and its different categories. Section
3 introduces Deep Learning and its various models. Deep Reinforcement Learning, as a
specialized area, is covered in Section 4. Wireless Sensor Networks (WSNs) are discussed in
Section 5. Furthermore, the integration of Internet of Vehicles is examined in Section 6,
followed by an exploration of the intersection between Cloud Computing and Internet of

Vehicles in Section 7.
1.2. Machine Learning

Throughout history, humans have relied on an array of tools to streamline tasks, showcasing
the ingenuity of the human mind in inventing various machines. These innovations have
significantly simplified life by facilitating travel, industrial processes, computing, and more.
Among these advancements, machine learning stands out as a notable contribution [13].
Machine learning (ML) is a subfield of artificial intelligence (Al), empowering computers to
"self-learn" learn from provided data and enhance their performance over time. By analyzing
large amounts of data and "learning" from its past mistakes, ML algorithms can eventually
come up with accurate predictions on their own. Essentially, machine learning leverages
accumulated experience to refine its algorithms and models [ 14]. It finds applications in diverse
fields such as recommender systems, image identification, and email filtering and speech
recognition. Unlike traditional approaches, modern machine learning benefits from new
computing technologies, allowing computers to learn without explicit programming. It hinges
on iterative processes where models adjust with fresh data, ensuring reproducible results.
Stemming from artificial intelligence research, machine learning focuses on algorithms
enabling computers to learn independently. Coined by Arthur Samuel in 1959, it involves

creating prediction models from historical training data, incorporating computer science and
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statistics. The topic of Machine Learning within Artificial Intelligence (Al) is rapidly growing
in interest and prominence. marketing, finance, Healthcare, infrastructure, autonomous
vehicles, recommendation systems, gaming, social media, chatbots, cyber security and many
more all make use of machine learning techniques [14]. By leveraging vast processing power,
machine learning automates tasks, demonstrating unmatched speed and scalability,
revolutionizing various domains. However, computers have the capability to learn from their
own interactions and tackle problems with minimal human intervention via a process called
machine learning [14]. There are various methods through which machines acquire knowledge.
In some cases, machines are trained and, in some cases, machines learn on their own. These

methods can be broadly categorized into three main types of machine learning:

e Supervised Learning,
e Unsupervised Learning,

e Reinforcement Learning,

In this part, we will to discuss each type of this methods:

1.2.1. Supervised Learning

Supervised learning algorithms are designed to learn from examples. The term "supervised"
comes from the idea that the learning process is guided, much like a teacher overseeing a
student's progress. In supervised learning, the data consists of input variables and
corresponding output variables, meaning the dataset is labeled. Labeled data means that each
input comes with an associated output, providing the algorithm with the correct answers during
training. During training, the algorithm identifies patterns in the input data and associates them
with the correct outputs. After training, a supervised learning algorithm can take new, unseen
inputs and predict their labels based on what it has learned. The primary goal of supervised
learning is to accurately predict the correct label for new input data [15]. Common examples
include spam filtering, illustrating how supervised learning operates under supervision.

Additionally, supervised learning algorithms can be further categorized into two types.

a) Classification
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Classification is the process of categorizing output data into distinct classes based on one or
more input variables. It is commonly utilized when the output variable is discrete or categorical,
such as determining if an email is "spam" or "not spam," identifying the presence or absence
of a "disease," predicting whether it will "rain" or "not rain," or making binary decisions like
"Yes" or "No" and 0 or 1. When the algorithm aims to sort input variables into two distinct
classes, it is known as binary classification, as seen in the case of email categorization as
"spam" or "not spam." On the other hand, when the algorithm seeks to classify input variables
into more than two classes, it is termed as multiclass classification, such as in handwritten
character recognition where the classes range from 0 to 9 [15]. Some examples of Classification
tasks are Classifying the credit card transactions as legitimate or fraudulent, classifying
secondary structures of protein as alpha-helix, beta-sheet or random coil and categorize the

news stories as finance, weather, entertainment and sports. [16].

b) Regression

Regression procedure is applied if there is a correlation between the input and output variables.
It is used when the value of the output variable is continuous or real, such as house price,
weather forecasting, stock price prediction, and so on. Several well-liked regression algorithms
that fall under supervised learning are listed below Figure 1.1. In this section, we carry out a
study of the most used supervised machine learning algorithms for classification and regression

techniques:
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=
Classification Regression Clustering Decision Making

= Logistic Regression » Linear Regressmn . K-Means
+ Support * Support Vector Clustering

VFector Machines Regression « Mean Shift » Q-Learning
» Decision Tree * Lasso Regression Clusteri » R Learrning
+ Random Forest s Decision Tree . Gaussian Mixt + TD Learning
« Naive Bayes Regression . DBSCAN » Deep Q-Network
. I—m *  Newural - Network Clustering

Neighbors Regression

Figure 1. 1: machine learning algorithms

A. Linear Regression & Multiple linear Regression

Linear Regression (LR) stands out as one of the most renowned algorithms in machine learning.
Its primary function revolves around forecasting continuous values, such as salaries, ages, or
product prices. LR establishes the connection between dependent and independent variables.
When employing Simple Linear Regression, a solitary independent variable is utilized to
anticipate the value of a quantitative dependent variable. In simpler mathematical terms, the
equation for simple linear regression can be broken down as follows:

y = ax + b. (x) represents an independent variable, also known as the predictor variable, (y)
denotes the dependent variable, often referred to as the target variable. This methodology is

deployed on sample data to discern a straightforward line within the linear regression model
[17].
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B. Decision tree

Decision Tree (DT) serves as a classification technique that executes classification via a
learning tree structure. Within this tree, each node signifies a feature or attribute of the data,
while the branches symbolize conjunctions of features that guide classifications. Additionally,
every leaf node corresponds to a specific class label. Unlabeled samples can undergo
classification by comparing their feature values with the nodes present in the decision tree. DT
offers numerous benefits, including intuitive expression of knowledge, straightforward

implementation, and notable classification accuracy [18].

C. Random Forest (RF)

Random Forest (RF) is a versatile method widely utilized for various classification tasks. This
machine learning approach combines data aggregation, bagging, and Decision Tree (DT)
models using subsets. It effectively selects feature subsets from each node of the tree while
avoiding correlations within the bootstrapped set. When tasked with classifying companies and
ratios, RF functions as a forest comprising k trees, thereby providing robust computational

capabilities [19].

D. Naive Bayes

Naive Bayes (NB) is a classification technique rooted in Bayes Theorem, making the
assumption of independence among predictors. Essentially, it posits that the presence of a
particular feature in a class is unrelated to the presence of any other feature. Typically applied
in text classification, Naive Bayes serves clustering and classification purposes based on the

conditional probability of occurrence [20].

E. Support Vector Machine

Another most widely used state-of-the-art machine learning technique is Support Vector
Machine (SVM), SVM defined regression as well as classification problems. The primary
objective of employing Support Vector Machines (SVM) is to establish the optimal decision
boundary, effectively segregating the n-dimensional space into distinct classes. This ensures
accurate placement of new data points. The hyperplane, termed as the best decision boundary,

serves this purpose.

10
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e Support Vector: These are the nearest positive and negative points, pivotal in defining
the decision boundary.

e Hyperplane: Positioned at the center, this line serves as the dividing boundary between
classes.

e Margin: This refers to the gap between two parallel lines, signifying the width of the

separation between classes [17].
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Figure 1.2: Support Vector Machine.

F. Artificial Neural Network

Artificial Neural Network (ANN) utilizes Back-propagation (BP) as a supervised learning
strategy to train deep neural networks. Through BP, the network adjusts neuron weights based
on calculated errors, facilitating learning from the training process. ANN represents a blend of
supervised, unsupervised, and reinforcement learning techniques. Figurel.3 illustrates an
ANN with multiple layers. The input layer, denoted by i variables such as inputl, input2, to
input n, receives inputs. Hidden layers, represented by h variables h1, h2, to hn, process these

inputs. Finally, the output layer comprises o variables, labeled as outputl to output n [17].
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Figure 1. 3: Artificial Neural Network

1.2.2. Unsupervised Learning

Unlike supervised learning, unsupervised learning algorithms operate without labeled inputs,
meaning there are no corresponding outputs provided. Essentially, the goal of an unsupervised
learning algorithm is to uncover patterns, structures, or knowledge within unlabeled data by
clustering sample data into distinct groups based on their similarities. These unsupervised
learning techniques are extensively utilized in clustering and data aggregation tasks. In the
subsequent sections, we will present comprehensive descriptions of commonly employed

unsupervised learning algorithms, including k-means and self-organizing map [18].

a) K-Means Clustering

K-means stands out as a straightforward unsupervised learning algorithm adept at addressing
clustering problems. The method offers a simple approach to categorize a dataset into a
specified number of clusters. The core concept revolves around defining k centers, each
representing a cluster. Strategic placement of these centers is crucial as their positioning
significantly impacts the clustering outcome. Hence, the optimal strategy involves positioning

the centers as far apart from each other as possible [20].
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Figure 1.4: K-Means Clustering

b) Self-Organizing Map (SOM)

SOM, also known as Self-Organizing Feature Map, is a widely recognized unsupervised neural
network model frequently employed for tasks like dimensionality reduction and data clustering.
Typically, SOM comprises two layers: an input layer and a map layer. When utilized for data
clustering, the number of neurons within the map layer corresponds to the intended number of

clusters. Each neuron within the map layer possesses a weight vector [18].

1.2.3. Reinforcement learning

Reinforcement learning is a machine learning technique that involves training an agent to make
decisions based on feedback from the environment. It is a way to solve optimal control
problems without having a model of the environment. The agent interacts with the
environment, detects its state, and receives reward signals, as it gets closer to its goal. The agent
uses these rewards to determine successful actions and learns to choose the right action given
any state of the environment. Reinforcement learning has been successfully applied to tasks
like game playing and robot control. It serves as a common language for engineers, biologists,
and cognitive scientists to exchange their findings in goal-directed behaviors. Deep
reinforcement learning techniques have also been developed, which use deep learning
algorithms to solve complex uncertain tasks with continuous action and state spaces. The
decision to use single-agent or multi-agent reinforcement learning depends on the problem and

environment complexity.
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1.3. Deep Learning

Deep learning, a subset of machine learning, utilizes artificial neural networks (ANNs) to

analyze complex patterns and adapt to dynamic environments. Unlike traditional ML models,

deep learning can process unstructured data such as text, images, and audio, making it a

powerful tool for automation [21].

It has gained significant traction in areas such as computer vision, natural language

processing, speech recognition, and robotics. Neural networks, which are loosely inspired by

the structure and function of the human brain, form the core of deep learning systems. Deep

neural networks—those with multiple hidden layers—are particularly powerful, as their depth

allows them to capture intricate relationships between inputs and outputs. This capability has

led to breakthroughs across many industries, including autonomous driving and healthcare.

However, deep learning comes with challenges, such as the need for large datasets, substantial

computational power, and limited interpretability of models. Despite these hurdles, deep

learning continues to evolve and holds tremendous promise for the future of artificial

intelligence and technology. According to [22], the general architecture of a deep neural

network presented as follow:

Activation
&3 Neural node function

y
Summary of Output
the input function value

Input, x Weight, w

Figure 1.5: Single-neuron perceptron model [22].

Neurons: Neurons serve as the fundamental components of neural networks. An artificial

neuron, also referred to as a perceptron, operates as a mathematical function. It takes one or
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more inputs, multiplies them by corresponding weights, and then aggregates these values.
The resultant sum is then passed through an activation function, yielding the output of the
neuron.

Weights: Weights are pivotal in determining the significance of features in predicting the
target outcome. Each artificial neuron utilizes a set of weighted inputs to generate relevant
outputs. A positive weight associated with a feature indicates a direct relationship between
that feature and the target outcome. Conversely, a negative weight suggests an inverse
relationship between the feature and the target outcome.

Activation Function: Activation functions are crucial for the computational efficiency of a
training model and facilitate the network in learning intricate patterns within data. The sum
of weighted inputs is directed to the activation function, which establishes the threshold
requirement for the summed input. This process aids in determining the activation state of the neuron.
Neuron Network: Deep learning involves the utilization of extensive and complex neural
networks. These networks consist of numerous layers of neurons organized in a structured
fashion, akin to the organization of cells in the human brain. The learning process within
neurons occurs across these layers, where weighted inputs undergo multiple nonlinear
transformations before producing an output. The schematic view of Deep Neural network (DNN) is
as shown in Figure /.6. In deep learning, the input layer receives initial data, while hidden layers

process information between the input and output layers, ultimately producing the result.
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Figure 1.6: Deep Neural Network.
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Recently, two primary factors have contributed to the newfound utility of deep learning:

1) Deep learning necessitates extensive sets of labeled data. For instance, the advancement
of driverless cars demands vast collections of images and extensive hours of video footage.
2) Deep learning requires significant computational resources. Advanced GPUs offer
parallel processing capabilities that are particularly efficient for deep learning tasks. When
coupled with clusters or cloud computing, this enables development teams to significantly
reduce the time required for training deep learning networks [23].

Deep learning encompasses discriminative (supervised) and generative (unsupervised)
approaches, with prominent models including CNNs and RNNs for discrimination and GANs
and AEs for generation. The following section presents into various types of deep learning

models.

1.3.1. Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNNs) represent a robust category of deep learning models
extensively utilized across diverse applications such as object detection, speech recognition,
computer vision, image classification, and bioinformatics. Furthermore, they have exhibited
notable proficiency in tasks involving time series prediction. CNNs are structured as
feedforward neural networks that exploit convolutional operations to extract salient features
from data. Unlike traditional methodologies, CNNs autonomously discern and understand
features from the input data, obviating the need for manual feature extraction . Inspired by
visual perception, CNNs are designed to emulate the intricate processes of human visual
cortex. Key elements of CNNs encompass the convolutional layer, pooling layer, and fully
connected layer. Illustrated in Figurel.7 is a representative CNN architecture tailored for

image classification endeavors [24].
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Figure 1.7: Convolutional Neural Networks.

e  Convolutional layer: The convolutional layer in CNNs extracts features from input data
through convolution operations across multiple layers. Lower layers capture basic features
like texture and edges, while higher layers identify more abstract features. Learnable
convolution kernels, typically of equal length and width, slide over input feature maps to
execute convolution operations, as illustrated in Figurel.7 [24].

e Pooling layer: The pooling layer, typically positioned after the convolutional layer,
reduces network connections via down-sampling and dimensionality reduction, addressing
computational load and overfitting. It enhances CNNs' ability to recognize objects amidst
distortion by pooling various image dimensions, yielding more robust output feature maps.
Various pooling methods like Max Pooling and Average Pooling contribute to this process
[24].

o  Fully Connected (FC) Layer: The Fully Connected (FC) layer is typically situated at the
conclusion of CNN architecture. In this layer, each neuron establishes connections with all
neurons in the preceding layer, akin to a traditional multi-layer perceptron neural network.
Input for the FC layer is derived from the last pooling or convolutional layer, represented as a
vector obtained by flattening the feature maps. Serving as the classifier in the CNN, the FC

layer facilitates the network in making predictions [24].
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1.3.2. Recurrent Neural Networks (RNN)

In the field of machine learning, Recurrent Neural Networks (RNNs) are notable for their
capacity to handle sequential data. Unlike conventional neural networks, RNNs possess a
memory element enabling them to store information from prior inputs. This characteristic
renders them well-suited for tasks involving temporal sequences, including but not limited to
predicting stock prices, language modeling, and speech recognition. Recurrent Neural
Networks are valuable tools for grasping the sequential arrangement of text, wherein the
significance of each word hinges on preceding ones or sentences. This makes them apt for tasks

such as language translation, sentiment analysis, and generating text.

One drawback of basic RNNs is their limited short-term memory, hindering their effectiveness
with long sequences. To address this issue, more sophisticated RNN variations have emerged,
such as Long Short-Term Memory (LSTM), bidirectional LSTM, and Gated Recurrent Unit
(GRU).

:
'\ =) . - I~ 0~

Figure 1. 8: Recurrent Neural Networks.

1.3.3. Long Short-Term Memory

Long Short-Term Memory (LSTM) is a widely utilized type of RNN architecture incorporating
specialized units aimed at addressing the vanishing gradient problem. Within an LSTM unit, a
memory cell possesses the capability to retain data over extended durations, with the regulation
of information flow into and out of the cell orchestrated by three distinct gates. Specifically,

the 'Forget Gate' discerns the retention of pertinent information from the preceding state cell,

18



Chapter 1 Preliminaries and Basic Concepts

discarding obsolete data, while the 'Input Gate' governs the influx of new information into the
cell state. Simultaneously, the 'Output Gate' dictates and manages the generation of outputs.
Given its adeptness in resolving recurrent network training challenges, the LSTM network
stands out as one of the most triumphant RNN implementations. The architecture of LSTM

model is reflected in Figure 1.9.
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Figure 1. 9: Long Short-Term Memory.

1.3.4. Auto-Encoder

Deep autoencoders are unsupervised neural networks used to transform input vectors into
corresponding outputs, enabling dimensional manipulation of data representation. They exhibit
adaptability by learning compressed data encoding unsupervisedly and can be trained
incrementally, layer by layer, reducing computational resources. These networks extract
essential features from input data, with hidden layers having lower dimensionality for feature
compression. As shown in Figure 1.10, the standard architecture includes an input layer for
initial data, hidden layers for encoding with fewer neurons, and an output layer for

reconstructing the input faithfully.

Their utility extends across diverse domains, providing benefits in tasks such as data
compression, anomaly detection, and feature learning. Operating without the need for labeled
data during training, they function unsupervised, rendering them useful in situations where

acquiring labeled data proves challenging.
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Figure 1.11: Deep Reinforcement Learning [28]

Reinforcement Learning (RL) stands out among Machine Learning (ML) disciplines for its
unique trial-and-error approach, where algorithms learn by interacting with their environment.
Considered a vibrant field within artificial intelligence, RL is seen as a pivotal step towards
achieving artificial general intelligence. Recent years have witnessed significant advancements
in RL, particularly with the fusion of deep learning techniques, known as deep reinforcement

learning.
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Deep reinforcement learning (DRL) is a cutting-edge approach that combines reinforcement
learning with deep learning techniques, enabling machines to learn optimal behaviors through
interaction with their environment. This fusion empowers DRL systems to navigate complex
decision-making tasks across diverse domains such as healthcare, robotics, smart grids,
finance, and more. In healthcare, DRL assists in disease diagnosis, treatment optimization, and
personalized healthcare interventions. In robotics, it facilitates autonomous navigation,
manipulation, and task execution. Smart grids benefit from DRL's optimization of energy
production, distribution, and consumption. In finance, DRL revolutionizes algorithmic trading,
risk management, and portfolio optimization. Despite challenges, DRL holds promise for
transformative impacts on various industries by unlocking unprecedented capabilities in

artificial intelligence.

1.4.1. What is reinforcement learning?

Reinforcement learning (RL) offers a broad strategy for addressing reward-driven challenges.
RL seeks to emulate the manner in which humans acquire new knowledge, primarily through
interaction with the environment rather than direct instruction from a teacher. For example,
when a baby learns to wave hands, cry and laugh, it learns from the feedback from parents.
When we drive a vehicle, we learn to turn left and right to avoid the crash of the vehicle on the
road. RL serves as the mechanism through which machines acquire the capability to attain
objectives through interactions with their environment. From a mathematical standpoint, RL is
also framed as a problem of sequential decision-making and control. For instance, when driving
a vehicle, we need to choose turning right or left every time after we make the previous
decision. Reinforcement learning is one type of machine learning. In supervised learning,
algorithms are developed to make outputs mimic the labels given in the training set. In contrast
to supervised learning, offering supervision in RL poses challenges due to the lack of
knowledge about the correct decisions. For instance, when driving a vehicle, it's impractical to

assign labels to every image captured by the camera [25].
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Figure 1.12: Reinforcement Learning

1.4.2. Markov Decision Process (MDP)

An MDP serves as a mathematical tool in (deep) reinforcement learning, designed for tackling
sequential decision-making challenges amidst uncertainty. It aids agents in devising optimal
strategies within given environments to attain desired states efficiently. By employing MDP
policies, agents adapt their actions based on environmental dynamics, aiming to enhance their
performance. This optimization process revolves around a reward mechanism, wherein actions
are prioritized according to their anticipated rewards.

An MDP is characterized by a finite set of states, denoted as S, along with an action set A, a
reward function Ra(s, s’), and a transition probability function P(s, s’). In real-world scenarios,

the exact transition probability distributions are often unknown. Instead, simulators can be
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Figure 1.13: Markov Decision Process
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utilized to indirectly model the MDP by generating samples from these distributions, enabling
the estimation of the transition probability function. Additionally, the model adheres to the
Markov property, indicating that the next state solely depends on the current state and action.
This property offers the advantage of eliminating the need to consider all states in the trajectory.
It's crucial to appropriately translate the problem into an MDP formulation to facilitate analysis
using Reinforcement Learning (RL). Key terms in defining the MDP include [26]:

a) Environment: The environment represents the domain in which an agent or software
algorithm operates and interacts. It receives inputs such as the actions taken by the agent and
its current state, while producing outputs consisting of the next state and any associated
rewards. This environment encompasses any entity that processes and influences an agent's
actions and their resulting outcomes, including scenarios like games, healthcare systems, or the
living environment of an agent.

b) States: States refer to the collection of environmental states, denoted as S, which consists
of a finite set {s1, ..., sN}, where N represents the size of the state space, denoted as |S| = N.
A state serves as a distinct representation encapsulating all essential aspects within the problem
being modeled [27].

¢) Actions: Actions, denoted as A, constitute a finite set {al, ..., aK}, with K representing
the size of the action space, denoted as |A| = K. They are instrumental in influencing the
system's state. The set of actions that can be executed within a specific state s € S is indicated
by A(s), where A(s) € A. In some systems, not all actions can be applied in every state, but in
general we will assume that A(s) = A for all s € S. In more structured representations, the fact
that some actions are not applicable in some states, is modeled by a precondition function pre
(precondition function): S X A — {true, false}, stating whether action a € A is applicable in
state s € S [27].

d) Transition Function: The Transition Function determines the system's movement from
one state to another upon applying action a € A in state s € S. This transition is governed by a
probability distribution over potential outcomes. Represented as T: S x A x S — [0, 1], denoted
by T(s, a, s), it signifies the likelihood of transitioning from state s to state s’ after action a is
taken. It's essential that T(s, a, s") is non-negative and doesn't exceed 1 for all states s, actions
a, and possible next states s’. Additionally, for each state s and action a, the sum of probabilities

of all possible next states equals 1, ensuring a proper probability distribution. Alternatively, if
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action a is not feasible in state s, T(s, a, s") can be set to 0 for all s’ € S. To establish a
chronological sequence of actions, a discrete global clock is introduced, denoted ast=1, 2, ....
This allows for the distinction between different states (and actions) occurring sequentially
during interactions. The system is deemed Markovian if the outcome of an action solely hinges
on the current state, disregarding prior actions and visited states (history). Mathematically, this
translates to P(st+1 | st, at, st—1, at—1, .. .) = P(st+1 | st, at) = T(st, at, st+1) [27 ].

e¢) Reward: The Reward function Ra(s, s’ ) provides a numerical value indicating the benefit
an agent receives for being in a particular state after executing an action a € A in state s € S
leading to new state s” € S. Rewards serve as indicators of the state's utility, offering higher
rewards for favorable states and lower rewards for unfavorable ones. They serve as feedback
for the agent, conveying positive or negative outcomes based on its actions.

Figurel.14 denotes an MDP process, in each time step #, an action at is performed on a process
in the present state s¢, and there is a transition to the next state st+1. A Reward r;is acquired in

this transition.
1.4.3. Q-Learning

Q-learning is a well-established off-policy reinforcement learning (RL) algorithm that employs
the Temporal Difference method. Off-policy learning implies that the agent learns from data
generated by different policies or from past experiences, achieving high learning efficiency and
sample utilization. In the Q-learning algorithm, for each state, denoted as ’s’, the algorithm

records the Q-value for all feasible actions within that state in a data structure like Table

1.1{28]. Tablel. 1. Q-table

I I I N
- Q( S1,a1) Q(S1,a2) e Q(S1, an)

Q( Sz, a1) Q(S2,a2) e Q( Sz, an)
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The learning process updates the Q-table iteratively. The Q value update

step is given below:
O (55 ar) «— Q (s4, ar) + a (ree1 + ymax a€A4 Q (si1, ar) - Q (s, ar))

where y € [0, 1] accounts for the discount factor and can only take a value of 1 in very rare
MDPs condition. a is learning rate, maxses Q (st+1, at+1) is the maximum future reward for
all actions in state s#, (r+1 + ymax qes Q (st+1, at+1) denotes true Q value and Q (st, at) is
estimate Q value. Use this equation to iterate the Q values in the table until they converge. Then
for each state, the action is chosen by referring to the maximum Q value in Q-table to obtain
the optimal policy. The algorithm is described below:

Algorithm Q-Learning

1: Initialize Q(s, a) randomly

2: Repeat

3: Select action a; based on an exploration policy 7(s, a)

4: Perform action a;, observe reward ri.1 and new state St:1

5:0 (s, ar) — QO (51, a)) + a (ra1 + y maxQ (se1, am1) - O (84, @r))

6:St < St+1

7: Until Termination

1.4.4. Deep Q-Network (DQN)

In this section, we'll delve into one of the most widely recognized Deep Reinforcement
Learning (DRL) algorithms known as Deep Q Network (DQN). Familiarizing oneself with
DQN is crucial as numerous cutting-edge DRL techniques draw inspiration from it. Initially
introduced by researchers at Google's DeepMind in 2013 within the paper titled "Playing Atari
with Deep Reinforcement Learning”, the DQN algorithm was outlined along with its
architectural intricacies. The authors elucidated its remarkable efficacy in achieving human-

level performance when playing Atari games [29].

The aim of reinforcement learning is to identify the optimal policy, which is the strategy

yielding the highest cumulative reward (the total sum of rewards obtained in an episode). To
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derive this policy, we begin by computing the Q-function. Subsequently, utilizing the Q-
function, we determine the policy by selecting the action in each state that maximizes the Q-
value [29]. In the case where the environment consists of a large number of states and actions,
it will be very expensive to compute the Q values of all possible state-action pairs in an
exhaustive fashion. The optimal approach involves employing a neural network to
approximate the Q-values, with this neural network referred to as the Q-network. When
utilizing a deep neural network for this purpose, it is termed as a Deep Q Network (DQN). The
Q function is denoted by Qo (s, a) where 0 is the parameter of neural network. As Figurel.14
shows, we just feed state D as an input to the network and it returns the Q value of all actions
in state D, which are up, down, left, and right, as output. Then, we select the action that has the

maximum Q value. Since action right has a maximum Q value, we select action right in the

state D.
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Figure 1. 14: Deep Q-Network

Deep Q-Network (DQN) is an improved model-free Q-Learning approach for discrete actions
that approximates the Q-funtion as Q (st, at; 6) through deep neural networks. The objective

function is represented by the loss function that is shown in the following equation [28]:

J(0) = E(svanree1,861) [(ye — Q (s, at, 0))*]

Where y: is the learning target:
Vi =Tl +y max aea Q (Se+1,2’50)
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A buffer known as a replay buffer is utilized to collect the agent's experience, and based on this

experience, the network is trained.
e Replay buffer

The transition from a state s to the subsequent state s’, initiated by the agent's action a and
followed by the receipt of reward r, is recorded in a buffer known as a replay buffer or
experience replay, commonly denoted as (s, a, 1, s”). This transition data constitutes the agent's
accumulated experience, which is stored within the replay buffer across numerous episodes.
The underlying principle of utilizing the replay buffer to retain the agent's experience is to
facilitate the training of our DQN by sampling experiences (transitions) from this buffer.

The agent's transition information is collected over many episodes and saved in the replay
buffer. A random minibatch of transitions is sampled from the replay buffer and used to train

the network. Below is an illustration of a replay buffer [29]. Figure 1.15 shows the training

flowchart of DQN. DQN maintains two networks
: target network and evaluate network.
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Figure 1. 15: The structure of DON with replay buffer
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1.5. Wireless Sensor Networks

Wireless Sensor Networks (WSNss) are sophisticated systems comprising sensors, computing
components, and communication devices designed to enable real-time monitoring, data
collection, and response to events within a specific environment. Essentially, they serve as
bridges between the digital and physical realms, facilitating seamless interaction and data
exchange. WSNs have gained substantial momentum in recent years due to their diverse and
expanding applications across various sectors [30]. They offer unparalleled flexibility and
scalability, making them integral to modern information technologies. By leveraging
advancements in sensor technology and wireless communication, WSNs empower users to
gather crucial insights and make informed decisions based on real-time data. This
transformative technology continues to evolve rapidly, driving innovation and reshaping how

we interface with and understand our surroundings.

1.5.1. What is a WSN?

A Wireless Sensor Network (WSN) comprises distributed sensors and one or more sink nodes,
also known as base stations. These sensors continuously monitor physical conditions like
temperature, vibration, or motion in real-time, generating sensory data. Each sensor node can
both originate and route data. In applications such as event monitoring, sensors transmit data
to sinks when detecting specific events. Sinks then collect this data, which can be relayed to
end-users through various means like direct connections, the Internet, satellite, or wireless

links. Figure 1.16 illustrates a standard WSN architecture [31].
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Figure 1 .16: Typical WSN architecture [31].
1.5.2 'WSN applications
In recent years, sensors have become smaller, more affordable, and smarter, enabling wireless
integration within networks for efficient communication. The design and infrastructure of
wireless sensor networks (WSNs) are shaped by specific application needs, objectives, costs,
hardware capabilities, and maintenance requirements. WSNs consist of distributed autonomous

devices equipped with sensors to detect various parameters like temperature and sound across

different applications [33].
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Figure 1 .17: WSNs Applications [32].
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Initially developed for military use, WSNs are now predominantly applied in civilian sectors
such as weather monitoring, healthcare, and traffic management. environmental monitoring,
home automation, chemical and biological assault detection, smart grid deployment,
surveillance, and many more. Wireless Sensor Networks (WSNs) are crucial in aquaculture
and the oil industry, serving purposes such as data collection, offshore exploration, disaster
prevention, tactical surveillance, and pollution monitoring. These networks play important
roles in these sectors by facilitating diverse functions like gathering data, conducting offshore
surveys, preventing disasters, conducting surveillance operations, and monitoring pollution

levels [34].
1.5.3 WSNs for Road Safety applications

In road traffic safety applications, wireless sensor nodes play a critical role in accident detection
and response. These nodes are equipped with advanced sensors like magnetometers and micro-
radars, enabling them to continuously monitor vehicle behavior and traffic conditions. By
analyzing data in real-time, these sensors can detect sudden changes such as abrupt
deceleration, rapid acceleration, or unexpected maneuvers that may indicate a potential
accident.

The data collected by these sensors is processed locally or transmitted to a central monitoring
system. In the event of a detected anomaly, such as a collision or erratic driving behavior, alerts
can be immediately triggered to notify authorities and emergency responders. This rapid
response capability is crucial for reducing emergency response times and improving outcomes
in accident scenarios.

Moreover, wireless sensor networks contribute to overall traffic management by providing
valuable insights into traffic flow, congestion patterns, and road conditions. By integrating
these sensors into road infrastructure, such as traffic lights and signage, traffic control systems
can be optimized to enhance safety and efficiency.

The widespread adoption of wireless sensor technology in road traffic safety reflects its
versatility and effectiveness in improving transportation systems. By leveraging these
advanced sensor networks, cities and transportation agencies can implement proactive
measures to mitigate accidents, enhance emergency response capabilities, and ultimately create

safer road environments for drivers and pedestrians alike.
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1.5.4 Challenges in Wireless Sensor Networks

Wireless Sensor Networks (WSNs) are revolutionary systems that enable real-time data
collection and monitoring in diverse environments. However, these networks encounter various
challenges that impact their performance, reliability, and scalability. Understanding these
challenges is essential for developing effective solutions to optimize WSN deployments and
maximize their utility across different applications. Challenges in WSNs include [30]:

1. Reliability: WSNs, being wireless networks, are susceptible to issues like packet loss,
which can be particularly critical in applications such as chemical attack detection where data
integrity is crucial.

2. Power Consumption: Sensor nodes in WSNs are typically battery-powered, leading to
limited node lifespan and emphasizing the need for energy-efficient designs across all aspects
of network operation.

3. Node Size: The push for miniaturization in WSNs presents ongoing challenges in developing
smaller nodes that maintain or exceed the efficiency of larger counterparts, despite current
sensor nodes already being as small as a coin.

4. Mobility: Applications like vehicle tracking demand WSNs capable of dynamically
changing routing paths and infrastructure to accommodate mobile nodes, posing significant
challenges for network management and stability.

5. Privacy and Security: Unlike wired channels, wireless communication in WSNs is
vulnerable to unauthorized access and data interception, necessitating robust privacy and

security measures to safeguard sensitive information and network integrity.

1.5.5 WSNs and IOT in a smart city

Wireless Sensor Networks (WSNs) are integral to the Internet of Things (IoT), providing
connectivity, security, control, and awareness across diverse applications. These networks
employ low-power, compact sensors to efficiently monitor and gather data from various
environments. WSNs consist of numerous sensor nodes equipped with processing, detection,
communication, and power components, collaborating to collect and transmit data. Despite
their utility, WSNs face constraints like energy efficiency, processing power, memory,
topology management, mobility, and lifespan limitations. Sensor nodes operate over short

wireless ranges and autonomously organize into networks after deployment, often without prior
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planning. Each node contains sensor modules for measuring physical parameters and essential
components like battery, memory, processing, and communication modules. Energy
conservation is critical due to limited battery life, with nodes employing various
communication modes to optimize power usage. WSNs herald a transformative shift towards
interconnected smart spaces, where miniature devices seamlessly integrate wireless technology
into everyday life [35]. WSNs can be classified into different categories based on various
criteria [30], as follows:

e Deterministic and non-deterministic networks.

e Static and mobile networks.

e Single-sink and multi-sink networks.

e Static-sink and mobile-sink networks.

e Self-reconfigurable and non-self-configurable networks.

e Single-hop and multi-hop networks.

e Homogeneous and heterogeneous networks.

Cutting-edge Artificial Intelligence (Al) and Machine Learning (ML) techniques are poised to
revolutionize fully automated IoT applications. In smart cities, low-data-rate Wireless Sensor
Networks (WSNs) play a crucial role in monitoring and managing diverse applications. Sensor
nodes are the cornerstone of IoT technology infrastructure. Nonetheless, researchers face
challenges in areas like power management, security, and data handling, prompting the
development of innovative techniques and technologies to tackle these issues [36] [37].

1.5.6 WSNs and ML

Wireless sensor networks (WSNs) operate in dynamic environments characterized by rapid and
unpredictable changes, which can be influenced by external factors or intentional interventions
by system designers. In response to these challenges, WSNs leverage machine learning
techniques to adapt without the need for frequent redesigns. Machine learning enables WSNs
to learn from data patterns and environmental cues, optimizing resource allocation and
extending network lifespan [38]. By applying machine learning algorithms, WSNs can
autonomously adjust sensor configurations, routing protocols, and data processing strategies to
efficiently cope with dynamic environmental conditions. This integration of machine learning

with WSNs enhances their adaptability and performance in real-world scenarios, ensuring
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reliable operation and responsiveness in dynamic environments. Using machine learning (ML)
techniques in wireless sensor networks (WSNs) offers several benefits:

1. Adaptability: ML allows WSNs to adapt to changing environmental conditions and varying
network dynamics without manual intervention, improving overall efficiency and performance.
2. Enhanced Resource Management: ML algorithms optimize resource allocation within
WSNs, leading to better utilization of energy, memory, and bandwidth resources, thereby
extending the network's operational lifespan.

3. Fault Detection and Diagnosis: ML models can detect anomalies and faults in sensor data,
enabling proactive maintenance and troubleshooting to prevent network disruptions.

4. Predictive Analytics: ML enables predictive modeling based on historical sensor data,
facilitating proactive decision-making and timely responses to emerging trends or events.

5. Optimized Routing and Data Processing: ML algorithms can optimize data routing and
processing within WSNs, minimizing latency and reducing energy consumption.

6. Security and Anomaly Detection: ML techniques enhance network security by identifying
and mitigating security threats, such as intrusion detection and prevention.

7. Scalability: ML-driven automation and optimization enable WSNs to scale efficiently to
accommodate growing data volumes and network complexity.

Overall, integrating machine learning into wireless sensor networks enhances their intelligence,
adaptability, and performance, making them more effective in various applications across

dynamic environments.

1.6 Internet Of Vehicles (IOV)

Recently, there was much interest in Technology which has emerged greatly to the
development of smart city. The Internet of Things (IoT) encompasses a global network linking
countless small objects, enabling seamless communication between them. Within this vast
network, all interconnected devices have the capability to interact with one another. However,
when we focus specifically on connecting these small objects, particularly vehicles, over the
internet, we designate it as the Internet of Vehicles (IoV). With the rapid growth of urban
populations comes a corresponding surge in vehicle ownership, presenting significant

challenges. Consequently, there arises a pressing demand for innovative traffic management
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solutions based on IoV technology to address the complexities of modern transportation

systems [39].

1.6.1 10V’s Definition

The Internet of Vehicles (IoV) represents a dynamic convergence of technologies, including
Vehicular Ad-hoc Networks (VANETS), Internet of Things (IoT), and mobile computing. This
emerging field envisions vehicles as intelligent nodes interconnected through the internet,
facilitating seamless communication and data exchange. In this context, vehicles interact not
only with each other but also with pedestrians and roadside units, creating a comprehensive
network for information sharing and collaboration [39]. Moreover, the IoV has captured
significant attention in the realm of intelligent transportation systems, promising to
revolutionize the way vehicles connect with each other and with infrastructure. It aims to
establish robust network connections, integrating various communication technologies to
enhance the standard architecture of vehicle communication [40]. This transformative potential
of IoV has spurred rapid market growth, with major automotive manufacturers such as BMW
and Tesla already incorporating self-driving features into their vehicles. Furthermore,
companies like Uber and Google are actively exploring self-driving mechanisms, indicating
the widespread adoption and investment in [oV technologies [39]. As the automotive industry
continues to evolve, it consistently introduces new features aimed at enhancing both comfort

and safety on the roads. The Internet of Vehicles comprises the following elements: Vehicles,

Figure 1 .18: The Internet of Vehicles scenario [41].
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Sensors, Roadside Units (RSUs), Infrastructure, Personal devices, and Human involvement.

1.6.2 Communication architectures of IOV

In IoV, the devices are vehicles, sensors, personal devices, cloud servers and infrastructure

devices such as RSU and many more. In the literature, several different types of communications

are discussed for IoV. The following illustrates the five of them (Figure 1.19) [42]:

1. Vehicle-to-Vehicle (V2V) Communication: This involves vehicles exchanging data
concerning speed, direction, location, braking, and stability to prevent accidents, alleviate
congestion, enhance fuel efficiency, and optimize routes.

2. Vehicle-to-Infrastructure (V21) Communication: This entails data exchange between
vehicles and roadside infrastructure like lane markings, road signs, traffic lights, and
RSUs. V2I facilitates the development of applications aimed at bolstering safety, mobility,
and environmental benefits.

3. Vehicle-to-Cloud (V2C) Server Communication: This encompasses the exchange of
information between vehicles and cloud servers, supporting applications such as security,
firmware updates, and entertainment.

4. Vehicle-to-Pedestrian (V2P) Communication: This includes communication between
vehicles and pedestrians to avert potential accidents. V2P enables interaction between
vehicles and pedestrians through applications on personal devices like smartphones and

wearables.

5. Vehicle-to-Sensor (V2S) Communication: This facilitates communication between
sensors and vehicles, crucial for functions like collision protection by detecting obstacles

and individuals in a vehicle's path, thus enhancing safety against accidents.
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Figure 1. 19: Five types of vehicular communications of IOV.

1.6.3 10V-layered architecture

Several variants of IoV layered architectures are presented, where the most comprehensive has 5-
layers: Objects (perception) (OL), Connection (CL), Artificial Intelligence (AIL), Application (AL)
and Business (BL) layer. These layers are different from those of the classical TCP/IP architectures,
but the layering principles are still preserved.

a) Perception layer: The first layer of the architecture is represented by the different types of
sensors and actuators attached to vehicles, RSUs, smartphones and other personal that collect
information from the various elements (speed, position, tire pressure, oil pressure, direction,
pollution levels, collision detection, forward obstacle, side obstacle, , temperature, etc). The
primary responsibility of the layer is to gather information regarding vehicle, traffic environment
and devices.

b) Connection layer: The second layer of the architecture is represented by a virtual universal
network coordination module for heterogeneous networks involving WAVE, Wi-Fi, 4G/LTE
and satellite networks, through which the perceived information from the lower layer is
securely transferred to the artificial intelligence layer for processing. The connection layer
ensures interoperability with all the available networks to support all the communication

models (V2V, V&R, V&P, V&I).
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¢) Artificial Intelligence Layer: The artificial intelligence layer is represented by a generic virtual
cloud infrastructure, working as an information management centre. It stores, processes and
analyzes the information received from the lower layer and then takes decisions. Its major
components are: Vehicular Cloud Computing (VCC), Big Data Analysis (BDA) and Expert
System.

d) Application Layer: The application layer (AL) contains smart applications (e.g., for traffic
safety and efficiency, multimedia-based infotainment and web based utility). The AL include
safety and efficiency applications (VANET legacy) and provides smart services to End Users
(EU) based on intelligent analysis.

e) Business Layer: The fifth layer of the architecture is represented by the operational management
module of IoV. The major responsibility of the layer is to foresight strategies for the
development of business models based on the application usage data and statistical analysis of
the data. Different types of analysis tools including graphs, flowchart, comparison tables, use

case diagram, etc., are the major part of the layer.

Graphs, Tables, Diagrams, Flowcharts :
e Business models based on the application usage data
e  Statistical analysis of the data

Business

Smart applications for vehicles and vehicular dynamics:
e Safety and efficiency applications
e smart services to End Users

Application

Cloud computing, big data analysis, expert systems:
e Stores, processes and analyzes of data
e Takes decisions

Heterogeneous networks-WAVE, WiFi, LTE :
e interoperability, cooperation , transformation

(
Sensors and actuators of vehicles, RSU, personal devices:

e Data gathering (speed, direction, position)
e Digitization and transmission

Figure 1 .20: The five-layers architecture of IoV.
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1.6.4 Challenges in IoV

The IoV system has to face different types of hurdles before it is adopted. All the critical issues
need to be resolved before it is successfully adopted in the autonomous vehicle market. Some
of the selected critical challenges in IoV are listed below [43].
a) Delay Constraints: Timely delivery of safety-related messages is crucial in oV applications,
particularly during emergencies. Strict delay constraints are necessary, requiring minimal delay
even at the cost of other factors. However, achieving such efficiency proves challenging with
the current communication infrastructure.
b) Lack of Standards: The absence of proper communication standards hinders the seamless
exchange of information in loV systems. Developing comprehensive standards is essential for
transparent integration with existing protocols and further progress in system development.
Integration of different communication systems is key to overcoming this obstacle.
c) Network Connectivity: Poor and unstable network connectivity in remote areas poses a
significant challenge to IoV systems. Reliable connectivity forms the backbone of such
systems, necessitating intelligent and sustainable solutions to improve connectivity,
particularly in rural regions.
d) Fault Tolerance: 1oV systems must exhibit fault tolerance, ensuring uninterrupted
communication even in the presence of malicious vehicles. Establishing highly reliable
communication networks is crucial for maintaining system integrity.
e) Interoperability: Achieving interoperability among vehicles is a pivotal challenge in oV
systems. Addressing various interoperability issues, including handoff timing and optimal
wireless network technology selection, is essential. Well-organized and scalable management
and communication among vehicular nodes are necessary for effective interoperability.
f) Security and Privacy: The integration of diverse technologies, services, and standards in
IoV underscores the critical importance of data security and privacy protection. As an open
and public network, IoV is susceptible to intrusions and cyber-attacks, posing risks of physical

damage and privacy breaches.

1.6.5 10V Applications

The Internet of Vehicles (IoV) encompasses a wide array of applications, including [44]:
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e FEnhanced Safety: This involves collaborative collision avoidance systems that utilize
sensors to detect potential collisions and issue warnings to drivers. It includes the
transmission of periodic status updates and emergency messages triggered by critical
events like accidents, traffic congestion, or adverse road conditions.

o Traffic Management: 1oV promises to revolutionize urban congestion management,
transportation logistics, and urban traffic patterns, thereby influencing our collective
lifestyle and commuting experiences.

e Rapid Crash Response: Connected vehicles can automatically transmit real-time crash
data, including the vehicle's precise location, to emergency responders. This capability
accelerates emergency response times, potentially saving lives in critical situations.

o Convenient Services: Remote access to vehicles enables a range of services such as
remote door unlocking and stolen vehicle recovery. Moreover, loV facilitates
transportation agencies' access to up-to-date traffic, transit, and parking data,
streamlining the management of transportation systems and reducing congestion.

e Infotainment: Connected vehicles offer a plethora of in-vehicle entertainment options,
delivering streaming music and information directly through the dashboard, enhancing

the driving experience with online connectivity and multimedia content.

Additional applications encompass electronic toll collection, traffic guidance systems for safe
navigation, autonomous vehicles, intelligent vehicle control mechanisms, preemptive crash
avoidance systems, real-time traffic flow monitoring, and advancements in vehicle autonomy

technologies.

1.7 Cloud -Fog And Edge Computing

Cloud computing stands as the predominant method for managing IoT data, yet alongside it,
fog and edge computing have gained substantial traction. These alternative approaches aim to
enhance data processing speed and efficiency, while also bringing intelligence closer to the IoT
devices responsible for generating and acting upon data, such as sensors and actuators. In this
discussion, we will conduct a side-by-side comparison of these three data technologies, delving
into their distinctions, characteristics, and applications within the realm of Internet of Vehicles

(IoV).
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Figure 1 .21: Cloud, fog and edge architecture.

1.7.1 Cloud computing:

Cloud Computing, an emerging technology in various fields, operates through internet-based
computing. It facilitates hosting and delivering diverse software and services over the internet,
tailoring computational resources to user demands and requirements. These resources
encompass extensive storage, high-performance servers, diverse operating systems, and
network capabilities [45]. At its core, cloud computing involves storing and accessing data and
programs via the internet from remote locations, diverging from local storage and computing.
This remote environment offers properties like scalability and elasticity, making it distinct from
a mere remote machine. The metaphorical cloud represents the internet, enabling data and

program access from anywhere, anytime, and via any device [46].

a) Cloud Essential Characteristics

Cloud computing possesses five essential characteristics [46], presented below:
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1. On-demand self-service: Users can autonomously procure computing resources, like
server time and network storage, without direct interaction with service providers.

2. Broad network access: Services are accessible over the network via standard mechanisms,
accommodating various client platforms, from mobile phones to laptops.

3. Elastic resource pooling: Providers aggregate resources to serve multiple users through a
multitenant model, dynamically allocating physical and virtual resources based on
demand. Users generally lack control over the exact resource location but may specify it
at a higher level of abstraction.

4. Rapid elasticity: Resources can be swiftly provisioned and released, scaling out or in as
needed. Users perceive these capabilities as unlimited and purchasable in any quantity at
any time.

5. Measured service: Cloud systems employ metering capabilities to optimize resource
utilization. Usage is monitored, controlled, and reported, ensuring transparency for both
providers and consumers across various services, such as storage, processing, and

bandwidth.

b) Cloud Service Offering Models

The cloud offers three main service models: Software as a Service (SaaS), Platform as a Service
(PaaS), and Infrastructure as a Service (laaS), collectively known as the service-platform-

infrastructure (SPI) model of the cloud.

1. SaaS: Users access applications hosted by providers over the internet, with the provider
managing the underlying infrastructure. Examples include CRM and business analytics
software.

2. PaaS: Users deploy their applications on the cloud infrastructure using supported
programming languages and tools. The provider manages the infrastructure, offering
scalability and maintenance. Examples include Google App Engine and Microsoft
Azure Services.

3. laaS: Users provision fundamental computing resources on a pay-per-use basis,
including processing, storage, and networks. Users have control over the operating
systems and applications, while the provider manages the underlying infrastructure.

Amazon Web Services (AWS) is a notable IaaS provider.
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c) Challenges & Issues

Cloud computing, despite offering numerous advantages, also faces various challenges and

issues. Here are some of the main ones [47]:

1. Security: Data security is one of the primary concerns in cloud computing. Companies
are often reluctant to move their sensitive data to cloud environments due to concerns
related to privacy, regulatory compliance, and the risk of cyberattacks.

2. Compliance: Companies must adhere to industry-specific regulations, which can
complicate the migration to the cloud. Cloud service providers must also ensure they
comply with compliance standards for data stored in their data centers.

3. Integration: Integrating existing systems with cloud services can be a challenge.
Companies may encounter difficulties connecting legacy applications to cloud services,
leading to compatibility issues.

4. Performance: Although cloud service providers have significantly improved their
performance, some users may still experience delays due to network latency or other
performance-related issues.

5. Availability: Dependency on cloud service providers means that companies are
vulnerable to service outages or unavailability. This highlights the importance of having
business continuity and disaster recovery plans in place.

6. Unexpected Costs: While cloud computing can offer cost savings; it can also result in
unexpected costs. Companies need to be aware of fees related to bandwidth, additional
storage, and other complementary services.

7. Resource Management: Managing resources in the cloud can be complex, especially in
multi-cloud or hybrid environments. Optimizing resource utilization while avoiding
waste is a constant challenge.

8. Data Sovereignty: Some countries have strict laws governing data storage and
processing, which can pose data sovereignty issues for companies using cloud services
located in other jurisdictions.

9. Scalability: While the cloud offers great scalability, some applications may encounter
scaling issues, especially if they were not designed to operate in distributed cloud

environments.
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10. Governance: Establishing effective governance policies for data management,
compliance, and security can be complex, especially in cloud environments where

resources are shared.

It is important to note that these challenges vary depending on the specific nature of the
business, its needs, and its cloud adoption strategy. Organizations must develop well-thought-

out strategies to mitigate these challenges and maximize the benefits of cloud computing.

1.7.2 Fog computing

Fog computing is a model that extends cloud computing to the edge of a network, allowing for
compute, storage, and networking services to be provided between end devices and cloud data
centers. It aims to address the latency and bandwidth issues of current cloud systems, as well as the
scalability problems caused by the growth of smart devices. Fog computing adds another layer
between edge devices and the cloud core, providing low latency and real-time interactive
applications. It distributes computing, storage, control, and networking functions closer to users
along a cloud-to-thing continuum. Fog devices, positioned between the cloud and smart devices,
enable real-time applications, location-based services, and mobility support. Cisco has promoted
the concept of fog computing in various areas, such as smart grid, connected vehicles, and wireless

sensor networks.

a) Application Areas of Fog Computing

Fog computing, as highlighted by Cisco, is poised to significantly impact several critical

domains. These include:

1. Smart Cities: Fog computing enables real-time processing of data from various sensors
and devices in urban environments, facilitating efficient management of resources and
services.

2. Healthcare: Fog computing enhances healthcare systems by enabling remote patient
monitoring, facilitating timely medical interventions, and improving overall patient
care delivery.

3. Industrial Internet of Things (IloT): Fog computing supports the IloT by providing
localized processing capabilities for data generated by industrial sensors and devices,

thereby improving operational efficiency and enabling predictive maintenance.
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4. Transportation: In the transportation sector, fog computing enables intelligent traffic
management, enhances vehicle safety through real-time data analysis, and supports the
development of autonomous vehicles.

5. Retail: Fog computing facilitates personalized customer experiences in retail by
analyzing customer data in real-time, optimizing inventory management, and enabling

targeted marketing strategies.

1.7.3 Edge computing

a) Definition

Edge computing, involves performing computation at the edge of the network, involving
downstream data for cloud services and upstream data for IoT services. This "Edge"
encompasses any computing and network resources between data sources and cloud data
centers. Examples include smartphones, gateways in smart homes, Micro Data Centers
(MDCs), and Cloudlets. The core concept is to conduct computing close to data sources for
efficiency. While Edge computing and Fog computing are often used interchangeably, Edge
computing emphasizes the Things side, while Fog computing focuses more on infrastructure.
Edge computing is expected to have a significant societal impact similar to Cloud computing.
Things can serve as both data consumers and producers. At the edge, they can request services
and content from the cloud and perform computing tasks locally. Edge computing entails tasks
like computing offloading, data storage, caching, processing, and distributing services from
cloud to users. The design of the edge must meet efficiency requirements in areas such as

reliability, security, and privacy protection [48].

b) Vehicular edge computing

VEC, or Vehicular Edge Computing, combines modern Mobile Edge Computing (MEC) with
conventional vehicular networks. VEC's primary goal is to relocate communication,
computing, and caching resources closer to vehicular users. This approach offers the potential
to address the growing demands of edge devices for low latency and high bandwidth by
bringing resources nearer to where they're needed. Unlike traditional MEC setups, VEC faces
unique challenges due to the fast mobility of vehicles, resulting in frequent and dynamic

changes in network topology. Additionally, it must contend with complex communication

44



Chapter 1 Preliminaries and Basic Concepts

characteristics arising from the rapidly changing channel environment over time. In VEC,
vehicles possess specific communication, computation, and storage resources. Roadside Units
(RSUs), acting as edge servers, are strategically positioned near vehicles to collect, process,
and promptly store data. Given the limitations in capacity, vehicles have the option to transfer
their computation-heavy and time-sensitive tasks to these edge servers. This offloading process

significantly reduces response times and effectively eases the strain on backhaul networks [49].

c) Vehicular edge computing architecture

Typically, this architecture is composed of three layers, i.e., vehicular terminals as the user

layer, RSUs as the MEC layer and cloud servers as the cloud layer.

Cloud layer

MEC layer

User layer

Lya '
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Figure 1. 22: Architecture of vehicular edge computing.
e Vehicular terminals

In VEC, vehicular terminals, primarily vehicles, exhibit distinct characteristics compared to

regular mobile nodes. These features include:

Sensing: Vehicles are equipped with various sensors such as cameras, radars, and GPS,
enabling them to gather information from both inside and outside their environment.
Communication: Vehicles can exchange data with other vehicles or Roadside Units (RSUs)

through V2V (vehicle-to-vehicle) and V2R (vehicle-to-RSU) communication methods.
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Computing: Apart from offloading computation tasks to edge servers or the cloud, vehicles can
also handle some tasks locally.
Storage: Vehicles have idle storage space that can be utilized to cache popular content,

facilitating data sharing.

e Edge servers

Typically represented by RSUs in VEC, are strategically positioned along city roads. These
servers boast abundant communication, computation, and storage capabilities compared to
vehicles. Their main functions include receiving, processing, and potentially uploading data
sent by vehicles. Utilizing computation offloading and caching techniques, RSUs effectively
manage stringent performance demands. Additionally, they offer a range of services to
vehicles, including video streaming, traffic management, and navigation assistance.

. Cloud servers

Cloud servers are situated in a distant cloud environment and are capable of receiving data
from edge servers. In contrast to edge servers, cloud services possess extensive computation
and storage capabilities and cover a wider geographic area. By gathering data from mobile
nodes and edge servers, cloud servers gain a comprehensive overview of the covered region.
This cloud-based approach enables global-level management and centralized control,

facilitating optimal decision-making processes.

d) Vehicular edge computing advantages

The key advantages of VEC are as follows.

1. Response time: in VEC, comprising offloading, processing, and return time, is
significantly reduced due to the proximity of edge servers to vehicular users,
particularly advantageous for safety-critical applications.

2. Energy efficiency: Smart vehicle proliferation leads to a surge in diverse vehicular
applications, causing significant energy consumption, yet electric vehicles with VEC
assistance can effectively support them despite limited energy capacity.

3. Bandwidth: Smart vehicle data explosion necessitates diverse content requests,
challenging cloud computing's bandwidth; VEC relocates resources to the network

edge, relieving back-haul networks' strain efficiently.
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4. Storage: In VEC, edge servers near vehicular users store data, facilitated by caching
technology, alleviating storage pressure on distant clouds.

5. Proximity services: VEC facilitates proximity services for vehicular users by
leveraging edge servers, ensuring enhanced user experience while efficiently managing

traffic.

1.7.4 From Cloud Computing To Fog And Edge Computing

Cloud computing enables convenient access to shared computing resources over the network,
but faces challenges like bandwidth and latency issues due to increasing access devices. Fog
computing extends cloud services to edge networks, providing closer proximity to user devices
and emphasizing local data storage and processing. Similarly, edge computing allows
computation at the network's edge, closer to data sources. While fog computing relies on
interconnection among nodes, edge computing operates in isolated edge nodes, offering
services near data sources to meet critical requirements like real-time optimization and security.
Both fog and edge computing supplement traditional cloud computing by providing compute,

storage, and networking services between end devices and the cloud [50].

1.7.5 Cloud-edge computing for the Internet of Vehicles (IoV)

Cloud-edge computing is a collaborative approach that combines the capabilities of cloud and
edge computing for the Internet of Vehicles (IoV). It involves offloading computational tasks
from vehicles to cloud data centers or edge devices to improve resource utilization and
minimize energy consumption. Various computational offloading schemes have been proposed
to manage the coordination among IoT devices, the cloud, and edge computing in the context
of IoV. Serverless vehicular edge computing (VEC) has emerged as a promising execution
paradigm for time-sensitive applications in connected vehicles. It aims to offload
computational load to edge devices, such as roadside units, using serverless computing
technology. Additionally, a joint communication and computational resource allocation
mechanism has been proposed to enhance resource utilization and scalability in VEC-enhanced

IoV.
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1.8 Conclusion

This chapter introduces the main concepts addressed in this thesis. These include Machine
Learning, along with various classic algorithms, Deep Learning and its subtypes with their use
cases, Reinforcement Learning, and its integration with Deep Learning to create more powerful
algorithms for solving complex dynamic systems. Additionally, we delve into the technology
of WSNs, Internet of Vehicles and Computing. We also provide an overview of Cloud, Fog,
and Edge Computing.

The Intelligent Transportation System (ITS) is a vast domain where road safety is a crucial
challenge. The application of artificial intelligence techniques in this domain has seen
significant growth recently, especially with the emergence of new machine learning algorithms
such as Deep Learning and Reinforcement Learning.

For this reason, in the following chapter, we aim to provide an overview of the state-of-the-art
works that combine Al and Intelligent Transportation Systems in general and specifically focus

on machine learning applied to road accident prediction.
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Chapter (2): Al in accident risk prediction- State of the art

2.1 Introduction

Many researchers have explored the application of machine learning in traffic safety and
accident risk prediction over the past few decades. This thesis primarily focuses on two key
machine learning algorithms, namely deep learning and deep reinforcement learning, which
are primarily applied to accident risk prediction in addition to classical methods.

In this chapter, we provide an overview of the relevant state-of-the-art for each type of
algorithm and how they are utilized in the accident risk prediction problem. We categorize
previous works in each sub-field based on the techniques used, and summarize all the relevant

state-of-the-art in a table at the end of each section.

2.2 Traffic Accident risk Prediction Using Classical Techniques

Numerous researchers have approached the prediction of traffic accidents risk by considering
it as either a classification problem or a regression problem. In this section, we will explore

several studies that have utilized classical machine learning techniques to address this problem.

The research presented in [51] discusses the development of accident prediction models using
linear and logistic regression. It identifies suitable regression models for predicting fatalities
based on the total number of accidents and analyzes specific scenarios like accidents at T-
junctions and those involving alcohol. A logistic regression model is created for accidents from
2014 to 2019 to forecast fatalities. The research concludes by validating the effectiveness of
the regression models in road safety modeling and accident prediction. In the same context, the
paper [52] introduces a new framework for assessing car accident risk using ordinal regression,
focusing on factors like weather and road conditions. It addresses the challenge of including
data where accidents did not happen, using multinomial logistic regression. The study
compares four ordinal regression methods using real accident data from the US and UK, finding
that adjusting data quantity and using a specific approach improves risk assessment accuracy.
The authors in [53] employed diverse analytical methods to bolster road safety measures. They
utilized Kernel Density Estimation to pinpoint blackspots based on injury severity levels and
develops a Multinomial Logistic Regression model to predict crashes involving vulnerable

road users. Spatial and temporal analysis uncovers patterns in VRU-involved crashes, aiding
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in the formulation of effective safety policies. Factors influencing injury severity of VRUs are
assessed, alongside the identification of peak traffic hours impacting VRU injuries. Overall,
the research offers insights crucial for targeted interventions and proactive accident prevention
strategies, emphasizing the importance of nuanced spatial and temporal considerations in road
safety initiatives. This paper [54] addresses the underreporting of African Road Traffic Injuries
(RTIs) and identifies contributing factors to accidents in Addis Ababa, Ethiopia, such as
pedestrian faults, illegal driver behaviors, and nighttime crashes. It utilizes an ordinal logistic
regression model to analyze injury severity levels, providing insights into key determinants of
crash outcomes. The findings emphasize the need for measures like strict law enforcement and
driver training to enhance road safety and reduce injury severity. In the paper [55] the authors
developed a predictive model for traffic accident severity on Indian highways using the random
forest algorithm. a multi-step methodology was employed, involving data collection and
preparation, feature selection, training a random forest model, tuning parameters, and
evaluating the model using accuracy and F1 score, Their model achieved an overall accuracy
of 67% on the training set and 41.47% on the test set.

Support Vector Machine (SVM) has been used in multiple studies for road accident risk
prediction. The paper [56] proposes a practical model using a mixed-support vector machine
(SVM) with heuristic algorithms to forecast traffic casualties. Ten variables including time
characteristics, weather factors, accident types, collision characteristics, and road environment
conditions are considered. The SSA-SVM model is found to be most effective compared to
other algorithms (GA-SVM, GWO-SVM, PSO-SVM) in casualty prediction. The study
focuses on urban road traffic accidents, aiming to enhance prediction accuracy using SVM.
Various attributes such as Week, Period, Weather, Road Conditions, Alarm Categories, Active
Hit, Passive Hit, Collision Type, Road Section, and Road Type are analyzed for this purpose.
This study [57] develops a severity causation network using information entropy and Bayesian
network to analyze the relationship between risk factors and crash severity. Key factors for
severity prediction are identified and used to predict injury and property damage levels.
Selective factor utilization enhances prediction accuracy and operational efficiency in crash
response, aiding in traffic safety improvement and casualty reduction. The findings offer
valuable insights for crash severity analysis and response planning. Authors in this research
[58] focused on analyzing road accident severity through the application of Support Vector
Machine (SVM) and Artificial Neural Network (ANN) algorithms. Leveraging a Traffic-

crashes dataset, the study aims to predict the severity of road accidents. Findings indicate a
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notable discrepancy in accuracy rates, with the SVM algorithm achieving a significantly higher
accuracy of 83.6% compared to the ANN algorithm's 73.3% in predicting accident severity.
This highlights the SVM algorithm's potential in accurately forecasting road accident severity,
offering valuable insights for the development of effective accident prevention strategies.
Moreover, SVM was employed in an image classification approach to discern vehicles
susceptible to accidents, showcasing its efficacy in accident analysis. In this study [59], the
authors investigate the accident's impact and identify vehicles prone to accidents through image
classification facilitated by machine learning. This method endows the system with the
capability to autonomously learn and refine from the provided dataset without requiring human
intervention or assistance.

Another study [60] explores the use of Support Vector Machine (SVM) in safety critical
applications, particularly in car crash scenarios like airbag control systems. Its objective is to
demonstrate how modern products utilize machine learning (ML) to prevent unnecessary
airbag deployment. Car safety applications heavily rely on detection algorithms and sensor
systems for timely and accurate decision-making based on sensor signals. The study employs
a multiclass SVM to enhance classification accuracy in full frontal crashes, comparing two
methods: One-Versus-Rest and One-Versus-One, with the latter performing better. This
improved classification facilitates the implementation of active and passive occupant safety
features in the automotive industry. Overall, SVM has shown promise in road accident risk
prediction, but its performance may vary depending on the specific context and factors
considered in the analysis.

By using several classic methods at the same time, the authors in the paper [61] tackle a
pressing concern in road safety by employing machine learning techniques to predict the causes
of traffic accidents. Their study is centered on analyzing the frequency of accidents and
exploring the interplay between traffic incidents, road conditions, and environmental factors.
To achieve this, the paper develops a robust accident prediction model leveraging machine
learning algorithms such as Decision Tree, Random Forest, and Logistic Regression. By
incorporating various elements such as weather, vehicle condition, road surface condition, and
light condition, the model aims to accurately predict road accidents and forecast their severity.
The evaluation of these models is conducted using key performance metrics including
accuracy, precision, recall, and F-score, providing a comprehensive assessment of their

predictive capabilities and effectiveness in addressing the challenges of road safety.
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This study [62] investigates the impact of traffic accidents and injury severity considering three
aspects: characteristics of daily travelers (e.g., age, sex), vehicle attributes (e.g., type,
transmission), and road conditions (e.g., pavement quality, intersection type). A proposed
model [63] utilizes Arduino boards (ATmega328) and IR sensors to detect and prevent traffic
accidents in two stages: initial accident detection using IR sensors and subsequent alerting of
individuals via GSM (SIM900D) module messages. The study [64] compares injury severity
prediction methods, including statistical models (multinomial logit and ordered probit) and
machine learning algorithms (k-nearest neighbors, decision tree, random forest, support vector
machine), using accident data from Florida. The evaluation aims to identify effective
approaches for predicting accident injury severities. In [65] a strategy is proposed to address
traffic congestion and reduce accidents through speed and lane-changing control systems. This
includes measures such as lane management, speed regulation, and the dissemination of traffic
information to enhance collision prevention and traffic flow management.

Road traffic accidents (RTA) are a major global concern, especially in low and middle-income
countries, and are a leading cause of death in Rwanda. This study [66] used Random Forest
(RF) and Support Vector Machine (SVM) models to predict short-term road accidents using
police data. The models' performance was compared using MAE, MSE, RMSE, and the
coefficient of determination (R?). The RF model outperformed the SVM model, showing higher
R? values. Advancements in traffic sensor technology have enhanced short-term crash risk
prediction. This study [67] improves existing models using a random multinomial logit model
for key predictors and a Bayesian belief net (BBN) for real-time prediction. Tested on Tokyo
expressways, it forecasts hazardous conditions within 4-9 minutes for specific segments,

correctly predicting 66% of crashes with a false alarm rate under 20%.
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Table2. 1.Related work of application of Classical algorithms for accident risk prediction

Authors DATA Methods Performances
Accuracy :
RF =81.45
New Zealand road accident RF , DT, AdaBoost, DT =74.12
[1] data from 2016 - 2020 XGBoost, LGBM, AdaBoost = 65.61
(378820 rows) CatBoost XGBoost = 78.52
LGBM =76.94
CatBoost = 69.68
India road accident data from Binary Logistic e
[51] 20142019 (118 rows) Regression Cuoiiprolselslisy =0:52
US: road accident data from Uk: MSE (DT) =0.199
2015 -2016 (22380 rows MSE (L. AT)=0.396
and 17 features) LR, DT, L. AT, L.SVR, MSE (LR)=0.43
[52] MSE (L.SVR) =0.387
UK: 2018 (14593 rows and K-NN US: MSE (DT )= 1.145
10 features) MSE(K-NN)= 3.084
MSE (L. AT)=1.338
MSE (L.SVR) =2.247
Kernel Density
: i Estimation
(53] 0300 gl e i (KDE) Multinomial Nagelkerke's R2 values of 37, 39, and
Portugal (2012-2015) . . 29 for Aveiro, Porto, and Lisbon
Logistic Regression
(MLR)
8458 road accidents of Ordinal logistic 15.1% fatal, 46.7% severe, and 38.3%
[54] Addis Ababa, Ethiopia, from . C
regression slight injuries

(2017 to 2020)

[55] 3‘/21;5}17 3r202t(‘1ri?3(1:§[1e(lent R Random forest Accuracy of 67% , Fl-score of 0.64

ACC:
. . SVM = 0.60
5000 il et oF SV i lnemisihe GA-SVM = 0.84
[56] Wuhan algorithms (GA, SSA, SSA-SVM = 0.86
GWO,PSO) :

GWO-SVM = 0.85
PSO-SVM = 0.85
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>10,000 traffic Naive baves. RF NB —74% RF —77%
[57] accident datasets MLP Aga t;oos t’ MLP — 77%
of USA ’ AB —75%
Dataset of SVMA 533 6%
[58] traffic accidents LasVegas SVM, ANN m A0 ’
S ANN=73.3%
region in the year 2016
>300 datasets of
[62] KNN, DT KNN : 80.26% , DT :73.68%
traffic accidents
5,000 datasets of Overall accuracy
[63] traffic accidents NN, DT, RF, SVM ranges from
44.7% to 80.5%
> 6,000 datasets of RF, LR, NB LR: 74.5%
[64] Michigan traffic and Ad N B:73%
Accidents Boost Ad boost:74.5%
RF: 75%
3,643 traffic Bayesian network overall accuracy
[65] accident data of and information ranges from 50
China entropy to 90%
, RF: R2=0.918, MAE =11.925,
- ?gf;d?ngdatafomh?%m' RE. SUM MSE = 268.386 and RMSE = 16.382
n ;"ang a whith an ’ SVM: R2 of 0.866, MAE = 14.175,
average of 3595 cases per MSE = 440.268 and RMSE = 20.982.
year.
Random multinomial
[67] 6478 normal traffic condition logit (variable 66% crash detection rate with less than

data, Japan.

selection), Bayesian
network (model)

20% false alarm.
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2.3 Deep Learning For Traffic Accident Prediction

Artificial Neural Networks (ANN) offer superior precision and forecasting capacity for road
accident prediction, outperforming traditional statistical models. They provide flexibility and
can model non-linear functions without statistical simulation. Deep learning approaches like
Recurrent Neural Networks (RNN) and Convolutional Neural Networks (CNN) have gained
traction for their effectiveness in predicting road traffic accidents, attracting considerable
interest from researchers across diverse scientific fields. Recently, with the rapid advancements
and remarkable achievements in machine learning technologies, several recent studies have

embraced deep learning methods for predicting traffic accidents.

The study [68] contributes to the existing literature on motorcycle crash severity by
investigating various deep learning (DL) algorithms to forecast the severity of accidents
involving motorcycles. It aims to determine the most effective DL algorithm for this purpose.
The research focuses on predicting the severity of injuries resulting from motorcycle crashes
in Wyoming between 2006 and 2016, spanning a decade. This study overview and summarizes
the different forms of neural network models such as the single layer perceptron (SLP) neural
network, the multilayer layer perceptron (MLP) neural network, the radial basis function (RBF)
neural network, the recurrent neural network, and the convolutional neural network used as a

prediction method for the severity of road crash injuries.

In order to enhance prediction accuracy, [69] introduced a novel model, the Traffic Accident
Severity Prediction-Convolutional Neural Network (TASP-CNN), designed to consider
interrelationships among various features of traffic accidents. The model incorporates the
Feature Matrix to Gray Image (FM2GI) algorithm, which utilizes the weights of traffic accident
features. This algorithm transforms individual feature relationships within traffic accident data
into gray images, incorporating parallel combination relationships. These gray images serve as
input variables for the TASP-CNN model. The Authors in [70] explores the efficacy of deep
learning in predicting injury severity resulting from traffic accidents on Malaysian highways.
Three distinct network architectures utilizing simple feedforward Neural Networks (NN),
Recurrent Neural Networks (RNN), and Convolutional Neural Networks (CNN) were
introduced. These architectures were optimized through grid search optimization to finely
adjust the hyperparameters, aiming for models that provide accurate predictions with reduced
computational costs. The findings revealed that, among the evaluated algorithms, the RNN

model demonstrated superior performance. A novel Road Traffic Accident Prediction model
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(TAP-CNN) is introduced in [71], which leverages factors such as traffic flow, weather, and
light to construct a state matrix describing the traffic conditions and utilizes a Convolutional
Neural Network (CNN) model. The accuracy of this new model is evaluated using samples,
and the experimental findings indicate that the TAP-CNN model outperforms traditional neural
network models in predicting traffic accidents.

The work in [72] employed human mobility data and historical traffic accident records in Japan
to create a Stack Denoising Auto-Encoder (SdAE) model for assessing real-time traffic
accident risk. This marked the initial application of deep learning for estimating traffic accident
risk on a national level. However, the model generated only real-time accident risk maps,
lacking suitability for near-future accident prediction. Additionally, it solely relied on GPS data
from mobile phones, neglecting various other relevant factors. Long Short-Term Memory
(LSTM) and the Fully Connected (FC) network were utilized in [73] to predict the probability
of future traffic accidents in Beijing. They considered a number of significant variables, such
as the direction and speed of traffic, as well as the weather. However, the road level did not
allow for the specification of the prediction's granularity. The study [74] introduced the Hetero-
Convolutional Long Short-Term Memory (HeteroConvLSTM) model for predicting traffic
accident amounts in Iowa. This model incorporated spatial and temporal features, including
time-invariant, time-variant, and spatial-graph features. However, the prediction was limited
to a coarse-grained approach, constrained within grid cells spatially and daily prediction
temporally. This limitation is not reflective of real-world situations, as traffic accidents
typically occur near road networks. While the authors attempted to address this by using a road
network mask layer to map the model's final outputs, the predicting process remained confined
to grid levels due to the simplicity of the filter mask layer, which only performed a basic AND
operation.

A novel Deep Spatio-Temporal Graph Convolutional Network (DSTGCN) is proposed in [75].
The model consists of three components: a spatial learning layer, a spatio-temporal learning
layer, and an embedding layer. The DSTGCN outperforms traditional and state-of-the-art
methods in predicting traffic accidents, as demonstrated by experimental results on real-world
datasets. In [76] IOT and computer vision were used for the development of a driver safety
monitoring system that aims to alert drivers when they become drowsy and update their
condition in a centralized database. The system measures the driver's concentration level by
analyzing factors such as drowsiness and the position of their face in the frame. To address the

limitations of existing methods, robust facial landmark detectors are utilized to accurately
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detect the driver's face and eyes. Algorithms are then employed to detect driver drowsiness
and face position. The system averages the collected data to assess the driver's concentration
level and utilizes their previous data to make predictions. This paper [77] presents an innovative
data architecture influenced by images, designed to effectively capture intricate details of
vehicular behavior at the microscopic level. To achieve this, a model for predicting accidents
is developed for a specific segment of the Autopista Central urban highway in Santiago, Chile.
The model is constructed by amalgamating multiple-input Convolutional Neural Networks and
employs a combination of aggregated standard traffic data and the newly proposed image-
inspired architecture.

The main objective in [78] is to develop a hierarchical deep learning-based model for
estimating the risk of urban traffic accidents by considering factors such as aggressive driving,
land use, and traffic facilities. The proposed model aims to overcome challenges in previous
studies, such as the data imbalance problem and neglecting road environmental factors. The
goal is to improve the estimation performance and provide a more accurate risk assessment,
which can be used in traffic warning systems to prevent accidents and predict traffic accidents.
Deep Convolutional Neural Networks (CNNs) in [79] trained on OpenStreetMap (OSM)
images can accurately predict whether an area is high-risk or low-risk for road traffic accidents
in Okayama Prefecture, Japan, based on the OSM image. Grad-CAM is also used to visualize
the decision-making process of the trained CNN. A significance of traffic accident prediction
for travel route design and urban safety is covered in the study [80]. It introduces the Spatial
Gated Memory Network (SGMN), a proposed deep learning model to predict accident risk in
urban areas. The model integrates real-time accident risk, traffic flow, and weather data to
forecast high-risk sub-regions. The evaluation of the model's performance using real datasets
demonstrates that SGMN surpasses commonly used memory neural networks such as RNN,
LSTM, GRU, Convulsion, and Hereto-ConvLSTM.

The study [81] presents a combination of machine learning and deep learning models,
specifically Random Forest and Convolutional Neural Network, referred to as RFCNN. Its
purpose is to predict the severity of road accidents. The proposed approach is compared to
various base learner classifiers. The analysis utilizes accident records from the USA spanning
from February 2016 to June 2020. The results obtained demonstrate that RFCNN greatly
improves the decision-making process and outperforms other models.

This article [82] presents a forecast of road accident severity using a novel deep learning

approach that combines a deep-Convolutional Neural Network (D-CNN) and a Deep Recurrent
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Neural Network (D-RNN). The identification of important features is accomplished through
the utilization of CNN, enhancing the effectiveness of the models in terms of accuracy,
specificity, and sensitivity. D-RNN stands as the most efficient and productive model,
consistently yielding precise predictions in accident severity forecasting. The spacing between
vehicles is identified as the most influential factor impacting the severity of accidents. The
papers discussed in this subsection are summarized in Table?2.2.

The primary drawback of deep learning lies in its dependence on stable historical data, which
is not renewable with each new event. This reliance on fixed datasets can limit the adaptability
of deep learning models in dynamic environments where conditions may change rapidly.
Furthermore, deep learning algorithms necessitate considerable storage and processing
resources to handle the large volumes of data involved, adding complexity and costs to

implementation.
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Table?2. 2: Related work of application of DL for accident risk prediction

Input (Independent Output
Authors DATA variable) (R v Method Performances
RNN=0.74
. MLP=0.58
2 OOl Gkl i AADT, geometric . . SLP=0.53
mountainous area in the United = . Severity of motorbike
[68] . characteristics, winter . RNN, MLP Error rate:
States over a 10-year period (2006 .o accident »
t0 2016) conditions, area types LSP RNN=29
MLP=35
SLP=37
Stirssi e, (e o Slight accident = 0.893
. accident, number and type of (Average'
Traffic accident’s data for an 8- Vehi(;les road surface Severity of Precision) serious
[69] year period (2009-2016) from the liohti e i ’ e Y TASP-CNN accident = 0.248
Lsls ity ol ighting conditions, climate traffic accident -
conditions, casualty .. .
ks, g e e emarely Precision) fatal accident
’ =0.063).
. . Severity can be graded as
300 thousand records of traffic Traffic accident data includes
[72]

accidents throughout Japan from
January 1, 2013 to July 31, 2013.

attributes such as occurrence
location, hourly occurrence
time, GPS

three levels, that is, slight
injury (level 1), heavy
injury (level 2) and fatal
(level 3).

Stacked denoise
Autoencoder
(SAdAE),

MAE =0.96 ; MRE= 0.39
RMSE=1.00 .

>
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[73]

The traffic accident records of

Traffic flow , traffic accident
, geographical position

Severity level can be
graded as slight injury

LSTM

MAE =0.58 ; MRE= 0.38 ;

Beijing in the year 2016 weather , air quality , holiday | (level 1), heavy injury RMSE=0.69.
, time period, (level 2) or fatal (level 3).
Traffic Accident Data RMSE= 0.3439; PCC= 0.7445 ;
. timestamps and locations ), T ’ ’
Traffic accident records of Beijing ( . . Precision= 0.8213;
[75] from 2018/08/01 to 2018/10/31 GPS, POI Data, risk of next-period DSTGCN Recall=0.8968; F1-Score=
Meteorological Data , Road . _
Network Data 0.8573  ; AUC=0.8508 .
Data from 2019-01-1 to 2019-12- Flow of lane. speed of lane Binary classification (0 Accuracy =0.935 ;Precision=
[78] 31 to do the experiments. The W hi ’1 pt > | for no accident and 1 for CNN 0.848 ; Recall= 0.631 ;
dataset consists of 3,650,000 cells. vehicle type accident). F-Score= 0.724.
The 20092015 traffic accident ?occcigz?lt Sg?ﬁgizooélf ar;d Accuracy:
[70] data for the North—South > ron type, Injury severities RNN ,CNN FFNN RNN=73.76
. surface and lighting _
Expressway (NSE),Malaysia condition. accident Teportin CNN=70.30
’ poring FFNN=68.79
OpenStreetMap images of traffic Areas :"high-risk" or )
[79] accident data Okayama 2010 to Open Street Map images "low-risk". (NN VGG Accuracy: 90%
2021 and ResNet
The input data includes
[80] Datasets from New York City and | weather data, historical traffic | Accident risk graph for SGMN MSE=0.4418 RMSE=0.6646
Chicago accidents, and traffic flow the next hour. ACC=64.88  SPR=27.42

data.
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s . Temperature, wind, humidity, * Accuracy: 0.991
[81] -2 illion 1S ear accident 8aset | yisibility, wind dircction, and Severity RFCNN « Precision: 0.974
rom ke 0 Jun other variables * Recall: 0.986 F-Score: 0.980
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2.4 Deep Reinforcement Learning for Traffic Safety

In recent years, deep reinforcement learning (DRL), an advanced form of artificial intelligence, has
gained significant importance in intelligent decision-making across various domains. DRL has found
applications in robotics [83], healthcare [84], Natural Language Processing [86], and sentiment
analysis [85]. In the field of transportation systems, DRL algorithms have been widely utilized,
particularly in traffic control tasks. For example, DRL has emerged as the most popular machine
learning methodology for traffic signal control [87]. This paper examines the issues of persistent
congestion in dense traffic networks and the limitations of traditional Adaptive Traffic Signal Control
(ATSC) in addressing them. It presents Reinforcement Learning (RL) and Deep Reinforcement
Learning (DRL) as potential solutions, emphasizing their use of on-line learning and Deep Neural
Networks (DNN) to tackle the dimensionality curse and approximate quality functions. The authors
in [88] study proposes using the double actors and regularized critics (DARC) method, a state-of-
the-art reinforcement learning algorithm, for early accident prediction in autonomous driving. The
DARC method outperforms existing state-of-the-art accident anticipation models. This work utilizes
dashcam video as input and proposes the use of the DARC method for accident forecasting, resulting
in predictions 5% earlier on average with improved precision.

A novel technique named DRIVE (Deep Relnforced accident anticipation with Visual Explanation)
is presented in [89] which simulates both bottom-up and top-down visual attention mechanisms in a
dashcam observation environment. The proposed stochastic multi-task agent can be visually
explained by attentive regions, and the method uses dense anticipation reward and sparse fixation
reward to train the model with an improved reinforcement learning algorithm. Experimental results
show that the DRIVE model achieves state-of-the-art performance on multiple real-world traffic
accident datasets.

The authors in [90] explore the use of an end-to-end learning technique for self-driving cars through
reinforcement learning. A framework is created to test various reinforcement learning methods in a
simulated setting, using simulated front camera images as input and generating steering angle,
accelerator, and brake pedal position as output. The intended behavior is acquired through interaction
with the environment, and the reward function is fine-tuned to prioritize staying in a lane at maximum
speed. Several deep reinforcement learning methods are evaluated, with Soft Actor-Critic identified

as the most effective in terms of learning speed and adaptability to new environments.
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The work in [91] focuses on modeling the decision-making and interactions among different vehicles
on highways. The authors utilized Double DQN (DDQN) to train the host vehicle, and the study was
carried out using the open-source simulation platform "SUMO - Simulation of Urban Mobility". The
driving environment consisted of three lanes and 20 cars randomly distributed on the highway. The
host vehicle continuously monitors the distance between itself and any obstacles (such as other
moving vehicles) ahead as it travels. If there is a decrease in the distance between successive
measurements, the host vehicle begins to apply the brakes to avoid a collision. The algorithm then
adjusts the host vehicle's speed accordingly.

To increase the safety of urban expressways, [92] suggested implementing a variable speed limit
(VSL) system. It uses traffic data to assess crash risk in real time. When risk is high, the system
activates VSL control to normalize traffic. This study addresses limitations in current VSL-based
safety interventions. A CTM simulates traffic states based on existing detector spacing. A DBN is
used in the RTCPM. Instead of predefined strategies, we use a deep Q-network for VSL control. The
system reduced crash risk by 19% in the Tokyo Metropolitan Expressway.

The significance of traffic accident prediction for travel route design and urban safety is covered in
the study [93]. Unexpected critical situations can lead to severe collisions. This work reviews chain
collisions and proposes a reinforcement learning-based strategy to prevent and mitigate crash
severity. The safety efficiency of existing methods in driving security is also analyzed. A perception
network structure is used to enhance decision-making, and simulations assess algorithm efficiency
in different traffic situations. The findings aim to highlight the benefits of reliable autonomous traffic
systems.

In this research [94] the authors propose to train an agent to drive a simulated car in Unity ML-agents
Highway by utilizing Policy Gradient. The approach produced good results and successfully trained
the agent to navigate an environment that mimicked an autonomous car.

This paper [95] studied a DRL agent for highway driving by training an EV to learn a driving policy
through interaction with simulated traffic. The DRL agent is based on a modified version of the
DDQN algorithm which is considered a state-of-the-art RL algorithm for discrete state and
continuous action space optimal problems.

Numerous accidents and fatalities occur due to reckless driving and increasing number of vehicles.
Autonomous cars are seen as a potential solution. They need to be intelligent agents and capable of

making decisions to prioritize people's lives. A proposed algorithm in [96] trains autonomous
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vehicles to drive, overtake, and avoid collisions. The work is simulated using a TORC simulator and
has shown expected performance.

In order to improve the deep reinforcement learning method for traffic light control and to perform
information modeling, this paper [97] first uses deep learning to estimate municipal traffic flow. The
results show that algorithm-optimized timing control of traffic signals has a far bigger effect than
conventional timing control, lowering the probability of traffic accidents and bringing municipal
traffic engineering closer to the level of intellectualization.

The DRL algorithm has proven highly efficient in solving complex decision-making problems that
were previously beyond the capability of traditional machine learning techniques. However, when
operating in a dynamic environment, such as in the case of traffic prediction and prevention, the
algorithm requires frequent updates of the data being exploited in order to provide reliable
predictions. Additionally, due to the significant storage and computing resources required, its

application is best suited for deployment on a cloud platform.

Table2. 3: Related work of application of DRL for accident risk prediction

Authors | Description Framework/Environment Algorithm

Utilizes the Soft Actor-Critic
(SAC) algorithm for accident

[89] et with visual PyTorch Soft Actor-Critic (SAC)
explanations.
Implements an  end-to-end
learning technique for self- Town03 map from Carla with

[90] driving cars through Python Q-Network (DQN)

reinforcement learning.

Develops a safe driving policy
[91] for a highway scenario with SUMO
randomly distributed vehicles.

Deep Q-Network
(DDQN)
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Introduces a variable speed limit
[92] (VSL) system for enhancing the NA Deep Q-Network
safety of urban expressways in (DQN)
real time.
Proximal Policy
Proposes a  reinforcement Optimization (PPO),
learning-based  strate to . Soft Actor-Critic
[93] prevent and mitigategy crash Wity (SAC), Deep
severity. Deterministic Policy
Gradient (DDPG)
For building an autonomous vehicle
[94] on highways through reinforcement Unity ML-Agents Toolkit Policy Gradient
learning.
Proposes an RL method for ego
[95] cars (autonomous vehicles) to NA Deep Q-Network
learn decision-making through (DDQN)
simulated traffic.
Utilizes deep learning to forecast Recurrent Neural
traffic flow and enhances the Network (RNN) with
[97] deep reinforcement learning SCATS and SCOOT Long Short-Term
algorithm for traffic signal Memory (LSTM), Deep
control. Q-Network (DQN)

2.5 Conclusion

The prediction of traffic accident risks is paramount for minimizing hazards and saving lives. Across
the various research works cited above, a multitude of machine learning algorithms have been
employed to establish an efficient traffic security system, spanning from classical machine learning
models to newer algorithms inspired by neural network technologies such as deep learning and
reinforcement learning.

The Deep Reinforcement Learning (DRL) algorithm has shown exceptional efficacy in addressing
complex decision-making challenges previously beyond the capabilities of traditional machine
learning techniques. However, in dynamic environments like traffic prediction and prevention, the
algorithm requires frequent data updates to ensure reliable predictions, leading to a substantial
amount of data that needs to be stored.

Our primary challenge lies in overcoming the constraints of computing and storage resources within

vehicles to effectively used machine learning models. Moreover, the integration of Internet of

65



Chapter 2 Al in accident risk prediction: State of the art

Vehicles (IOV), edge computing and cloud computing technologies can provide significant resources
and real-time responses to drivers, thereby enhancing the Quality of Service (QoS) of the system.
Nevertheless, combining complex concepts such as deep learning, reinforcement learning, loV, and
edge and cloud computing presents a significant challenge that demands careful consideration and

innovative solutions.
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Chapter (3): Collaborative Cloud.DRL - V. Edge.DL approach for
Predicting Traffic Accident Risk

3.1 Introduction

In this chapter, we introduce our innovative approach employing machine learning techniques to aid
drivers in adopting safer driving practices. Our primary objective is to anticipate accident risks in
advance and notify drivers promptly to take appropriate action to prevent accidents. To achieve this
goal, we have employed machine learning methodologies, specifically deep learning and deep
reinforcement learning algorithms. Although deep learning and deep reinforcement learning are
highly proficient in tackling intricate challenges within transportation systems, but they demand
substantial resources for optimal performance. While the prevailing machine learning and Internet-
of-vehicles (IOV) solutions rely predominantly on cloud infrastructure due to its virtually unlimited
storage and processing capabilities, challenges such as internet disconnection and latency hinder its
practicality. Vehicular edge computing (V.Edge.C) emerges as a solution to mitigate these limitations
by leveraging resources in proximity to end users. Our research proposes an advanced system that
harnesses the power of Deep Reinforcement Learning (DRL) to forecast traffic accident risks. The
proposed approach entails conducting the training phase in the cloud, utilizing its vast storage and
computational resources alongside a comprehensive historical accident dataset. Subsequently, the
trained model is deployed to vehicular edge devices for real-time inference during accident scenarios.

Further details on the adopted approach will be provided below.

3.2 Proposed System Architecture

Our main goal is to develop a framework that leverages machine learning techniques to help drivers
in safe driving practices. We plan to achieve this by analyzing large amounts of data from previous
accidents. The proposed framework consists of an intelligent and collaborative driver assistance
system, called Intelligent and Collaborative Cloud-V.Edge Driver Assistance System (ICEDAS) that
operates between the cloud and a vehicle’s edge. Figure 3.1 illustrates the two layers in this

framework, which work together to safeguard drivers and minimize the risk of road accidents.

3.2.1 Cloud Layer
Cloud computing is one of the most significant trends in the information technology evolution, as it

has created new opportunities that were never possible before [98]. Due to its storage capacity and
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computing power, we consider it the suitable location to generate the two machine learning models
in our system. The first model is DRL, which is the main component in our framework. It runs on
the cloud to predict accident risks. The second model is a DL model, also generated in the cloud and
then deploys it to the V.Edge device for inference when needed, to cover the absence of prediction

by the cloud.

3.2.2 V.Edge Layer

Vehicular Edge Computing (VEC), based on the edge computing motivation and fundamentals, is a
promising technology supporting ITS services, and smart city applications [99]. In our system, the
V.Edge is used to replace the cloud in certain cases, such as internet disconnection or bandwidth
overload. Vehicles equipped with cameras, radars, GPS, and other devices can sense both the internal
and external environment and collect various information such as speed, road quality, position, and
more. These data are either sent to the cloud in real-time for prediction by DRL model, or used by

the edge itself to replace cloud prediction in generating accident risk alerts using the inferred DL

model.
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Figure 3.1:Cloud DRL and V.Edge DL system architecture
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3.3 Cloud_DRL For Accident Risk Prediction

In this section, we present the details of the proposed Cloud DRL based risk prediction system.
We first define possible scenarios then we present the structure of DQN and explain in detail

how it works to train the learning model based on accidents data available in the cloud.

3.3.1 Scenarios

Many accidents occur when driving conditions suddenly change. ICEDAS must detect the
potentially accident-causing events in advance and help the driver take the appropriate actions
to avoid them. To predict a traffic accident risk, we focus on many contributing factors that
frequently cause traffic accidents. They are often related to Drivers, Roads or Vehicles such
as Driver’s age, Driver’s Sex, Driver’s experience, Road condition, Light condition, Weather
condition, Type of vehicle, Service year, etc. When a sudden change in any of the car’s normal
conditions is accurately detected, it may be difficult to adapt properly to this change, which
may become a threat to the car. In this case, we need an intelligent risk prediction system that
adapts to different situations of this risk. Markov Decision Process (MDP) is a powerful
technique for modeling sequential decision-making problems. We used MDP to formulate our
problem. In the MDP framework, an agent interacts with a given environment state by taking
actions at discrete time steps. In our system, we assume that the traffic environment follows
the discrete-state. Figure 3.2 describes this Markov process. The state (SN-risk) implies that
the system did not detect any risk. Once a risk is detected, the state (SN-risk) is changed to the
state (S-risk). In practical scenarios, it is difficult to know the transition probabilities of the
Markov process and the distribution of the environment states. Therefore, reinforcement-

learning approach can be applied to learn the risk prediction policy through the interaction with

the environment.

(S-risk / SN-risk)

(SN-risk / 5-risk)

Figure 3.2: Traffic environment-state description by the discrete-state Markov
process.
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3.3.2 Key Elements of Cloud _DRL
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Figure 3.3: Proposed Cloud DRL based accident risk

There are four key elements in this DRL system: Cloud-Agent, observation/state, action, and
reward scheme. We formulate traffic accident risk prediction problem as a reinforcement
learning problem shown in Figure3.3, where the Cloud-Agent interacts with the vehicle traffic
environment in discrete time steps (to, t1, t2... tn). The agent’s objective is to reduce the number
of accidents.

o Cloud —Agent: the agent observes the state of each vehicle, in its environment, defined by St
at the beginning of time step #;, then selects an action A#,€A to perform. The use of a deep
neural network (DNN) model in this case is very appropriate due to the large number of states.
The DNN take input observations about traffic accidents and produces action decisions that
should be taken as its output. The DNN architecture is a multilayer-network where the Cloud—
Agent explores the information (available in the Cloud) about various accidents that have
occurred previously and recommend the best actions that must be applied to avoid similar
accidents from happening again.

e Action: refers to the decision recommended by a Cloud -Agent. It is a feedback on a state of
risk accident, which is one of the following actions (Stop, Deceleration, and No-Change of
lane) as an output to avoid this risk of accident.

e State: is an efficient representation of current road traffic condition. The representation

variables contain multiple parameters reflecting the circumstances of a specific zone of an
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urban transportation network to precisely describe the complexity of its dynamics. The agent
learns through interacting with the environment episode by episode, where each episode ends
with the prediction of accident risk for a vehicle, and the next episode starts.

e Reward (penalty): the agent gets a reward Rt at the end of time step # as a result of the
applied action Af. The key requirement for a successful application of reinforcement learning
is to design a reward function that frames the goal of an application and guides the learning
towards a desirable behavior [100]. To reduce the traffic accident risk, it is reasonable to
reward the agent at each time step for choosing an action that led to the avoidance of accidents
[101].

In this system, the reward indicates the degree of risk encountered by the drivers. If there is no
risk (negligible), the reward is set to ‘0’, encouraging the maintenance of safe conditions
through the action (No-Change). However, if a risk is detected and the appropriate action (such
as stopping or decelerating) is not applied, a negative reward (penalty) is given to discourage
unsafe behavior. Conversely, if the appropriate action (stopping or decelerating) is taken in the
presence of a risk, the reward also remains ‘0’, as the situation is managed correctly, but no
additional positive reward is given to ensure that the main goal remains avoiding risk situations
altogether. This approach ensures that actions failing to manage risks are penalized.
Accordingly, we define the reward (or penalty) R#; for the agent choosing an action A#; at time

step ¢ as follows:

0 — for: No Risk, action (No — Change /appropriate action)
Rt; =1 1% (N) or 2% (N) — for: Risk, action (No — appropriate action) (3.1)

Where N is a negative integer, which represents the severity of an accident. The agent can

perform one of these actions (No-Change, Deceleration or Stop) according to accident severity:
{(0) Negligible risk, (1) Serious risk and (2) Fatal risk}

The goal of reinforcement learning system is to achieve a safe road traffic system with no

accident risk rate during the evaluation time (T). This is represented by the Total-Reward

(T Rt=0):

T
T Rt; = Z | Rt; | (3.2)
i=1
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3.3.3 Deep Q-Network (DQN)

State Actions

Road condition I R
Weather condition I
Qls.a) Deceleration
Light condition E —

Traffic environment
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Figure 3.4: Cloud DQL accident risk prediction

There are classical RL algorithms such as Q-learning, Policy Gradient (PG), Actor Critic, etc.
Q-learning is one of the popular RL methods, which search for the optimal policy in an iterative
fashion [102]. This algorithm is not suitable when we have a huge number of states and
complex state transitions. In this work, a DQN algorithm that uses a DNN is utilized for
predicting accident risks, with the aim of enhancing both the speed and accuracy
of predictions. For each episode, the Cloud-Agent observes state St; at the beginning of time
step t;, then makes action decision according to vehicle state, and receives a sequence of rewards
(Rt;) after time steps. If the cloud agent aims to reduce vehicle road accidents, it is sufficient to
choose an action that maximizes the immediate reward Rt;.
Since the agent aims to reduce the number of accidents in the long run, it needs to find an
optimal policy noted (7 *) at every possible state-action pair. To find the optimal policy 7*, we
need to find the optimal Q-value:
Or (s, a) = maxQn(s, a)
= 0H(s, a) (3.3)
When the state space is continuous, it is impossible to find the optimal value of the state-
action pair Q«(s, a) for all possible states. To deal with this problem, the DQN method was

proposed, which approximates the state-action value function Q(s, a) using the DNN, i.e, QO (s,
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a) = Q0 (s, a), where 0 are parameters of the DNN that will be learned from raw traffic accident
data.

We construct such a DNN network, where the network input is the observed traffic
environment state Sz; and the output is a vector of estimated Q-values Q(s, a, 0) for all actions
a € A under observed state St#. Figure 3.4 illustrates the Cloud DQN module for traffic
accidents prediction. Real-traffic accident data was collected in a buffer called a replay buffer
to train our network. We build a neural network connected to several layers so that DNN
approaches the Q-value. The agent learns parameters 0 by training the DNN network to
minimize the following mean squared error (MSE) as the loss function. MSE can be defined
as the average squared difference between the target value and the predicted value [29], as

shown in Equation (3.4):

MSE = =%, (i — 91 (34)
Where y is the target value, yis the predicted value, and K is the number of training samples.
Our target value should be the optimal Q value; the optimal Q value can be obtained by using
the Bellman optimality Equation (3.5), where its Q value is just the sum of the reward (») and
the discounted maximum Q value of the next state-action pair [29]:

Q*(s,a) =r + YmaxQ*(s,a) (3.5)
Therefore, we can define our loss as the difference between the target value (the optimal Q
value) and the predicted value (the Q value predicted by the DQN) and express the loss function
L as (3.6) [29]:

L(©) = Q"(s,a) — Qo(s,a) (3.6)
Substituting Equation (5) in Equation (6), we get Equation (3.7).

L(®) =r+YmaxQ(s',a") — Qg(s,a) (3.7)

The Q value of the next state-action pair in the target is computed by the target network

parameterized by 6’ and the predicted Q value is computed by the main network parameterized
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by 0. The loss function is represented by Equation (3.8).
1 ’ 1.
L(©) = - X (1 + YmaxQy(s,a) — Qo(s ,a))*(3.8)
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Figure 3.5: deep reinforcement learning process

The target network has the same architecture as the main network but different weights. Every
N step, the weights from the main network are copied to the target network, where N is a
hyperparameter that can be set by the user. Using both networks leads to more stability in the
learning process and helps the algorithm to learn more effectively. To find the optimal
parameterf, we use gradient descent. We compute the gradient of our loss functionVgyL(6)and
update the network parameter 0 as:
0 =6—-aVyL(0) (3.9
The algorithm for training the Cloud DQN is defined on next page.
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Algorithm DQN algorithm

Initialize the main network with random weights 6;
Initialize the target network with random weights 6’ by copying the main network parameter 6;
Initialize the replay memory capacity as D;

For episodes =1, M do
(1) Randomly select the initial road traffic state S;
Fort=1,Tdo
(2) Observe the state S and select random action a with probability € otherwise select

a =argmaxQq(s, a) ;
(3) Execute action a and move to the next state s’and obtain the reward r;
(4) Store experience(s, a, r, s’) in replay memory D;
(5) Randomly sample a minibatch of K transitions from the replay memory D;
(6) Compute the target value, thatis, y=r + y max Q6’ (s’, ") ;
(7) Compute the loss function value L (6) with (3.8);
(8) Compute the gradients of the loss and update the main network parameter 6 using (3.9) ;
(9) Every N step update 6'< 6;
End For

End For

3.4 V.Edge Deep Learning For Accident Risk Prediction

In the realm of road safety, the fusion of Vehicular Edge Computing (V.Edge) with deep
learning holds significant promise, particularly in the context of accident risk prediction. This
innovative approach involves a two-step process: the initial training of a deep learning model
in the cloud, leveraging expansive storage and computational resources, followed by the
deployment and inferencing of the trained model on V.Edge devices situated within vehicles.
The decision to offload inferencing to the edge is motivated by the need for real-time
responsiveness and the constraints of space and computing resources in vehicular

environments.
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Figure 3.6: Regional V.Edge DL traffic accident risk prediction

3.4.1 Data Collection at the Edge

Data collection at the edge, within the context of Intelligent Transportation Systems (ITS),
represents a pivotal advancement in enhancing road safety. In the modern transportation
landscape, vehicles have transformed into sophisticated hubs of technology, equipped with
advanced sensors and communication capabilities. These sensors, including cameras, radars,
and GPS devices, enable vehicles to gather diverse information crucial for preventing
accidents. They assess road quality in real-time, monitor weather conditions, analyze driver
behavior, and engage in Vehicle-to-Everything (V2X) communication for sharing critical data
with the broader traffic infrastructure. This rich and varied information empowers vehicles to
proactively contribute to road safety, serving as the foundation for subsequent stages, where
the data is transmitted to the cloud for further analysis and model training. The collaboration
between edge and cloud computing marks the beginning of an innovative approach to accident

risk prediction, leveraging the strengths of both domains.

3.4.2 Cloud Processing and Training

Since DL often requires high-performance computing resources (GPUs, CPUs and storage
devices) for model training and execution on massive data [103], the resources available in a
vehicle may not fulfill this stringent requirement. Meanwhile, there is an imprecise trend: the

more layers and parameters of a deep neural network, the more accurate the decision-making,
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which would undoubtedly increase the training and running cost of deep learning models
(DLMs) [104]. In this case, the cloud is the best solution to handle massy traffic accident data

due to its scalability, availability of resources, and cost-effectiveness.

3.4.3 Model Deployment to the Edge (Vehicle)

In some situations, like sudden accidents, where fast response is the most important variable in
the accident risk prediction problem, it is not always effective to rely on the cloud to send risk
forecasting. This is because predictions sent from the cloud to the driver may be lost due to an
internet disconnection or a high latency. The best solution is to build a deep learning model
based on massy data for traffic accidents risk prediction in cloud platform, and then transferred
it to the V.Edge to cover this cloud prediction absence. Once the training is complete, the
trained deep learning model is deployed back to the edge (vehicle). The model is optimized for
efficient inference and adapted to the limited resources (memory and computation) available

on the edge device.

The deployed model on the edge (vehicle) performs real-time inference using the locally
collected data. This inference involves predicting the likelihood of accidents based on the
trained patterns and learned correlations. The edge (vehicle) can generate predictions about
potential accidents in real-time. If a significant risk is detected, the system can trigger alerts or
warnings to the driver, suggesting preventive actions. The V.Edge DL can learn deep
connections between traffic accidents and their spatial-temporal patterns. It aims to exploit

historical traffic accident data to prevent future occurrences.

3.5 Collaboration V.Edge DL / Cloud DRL

In the pursuit of optimizing traffic safety, the collaboration between Cloud and V.Edge
platforms emerges as a strategic approach. Acknowledging the inherent limitations of V.Edge
in storing and processing vast amounts of Internet of Vehicle (I0V) data and generating Deep
Learning (DL) models, a distributed learning system has been adopted. This collaborative
effort aims to leverage the strengths of both platforms for an optimal prediction of traffic risks,
ensuring a proactive and effective safety mechanism. The cooperation-communication between
these platforms can have a vertical” V2C” (V.Edge- Cloud) or horizontal “V2V” (V.Edge—
V.Edge) type.
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3.5.1 V2C (V.Edge-Cloud)

Vertical Collaboration for Enhanced Predictions; within this collaborative framework, the
vertical cooperation between V.Edge and Cloud, known as V2C (V.Edge-Cloud), plays a
pivotal role. The V.Edge device, facing constraints in storage and processing capacity, relies
on models generated at the cloud level to enhance the quality of traffic safety predictions.
Figure 3.7 illustrates the flow of information, emphasizing the symbiotic relationship between
the Cloud and V.Edge. This vertical collaboration ensures that the cloud's expansive resources
contribute to refining models, ultimately leading to more accurate and efficient traffic risk
predictions. In the realm of V.Edge and Cloud collaboration, two distinctive forms emerge,

each contributing uniquely to the synergy between these platforms:

a) Communication (V.Edge - Cloud)

Within the Internet of Vehicles (IOV) technology, sensors embedded in vehicles serve as data
custodians, capturing intricate details about the road, vehicle dynamics, and driver behavior.
This wealth of information traverses through the digital highway, conveyed to the cloud
through the medium of V2C (Vehicle to Cloud) communication. In this context, the data
becomes a potent tool for predictive analytics, empowering the Cloud DRL entity to discern
potential accident risks. In the event of an impending threat, the cloud swiftly dispatches alert
messages to the driver, fostering timely responsiveness and accident prevention.

b) Cooperation (Cloud - V.Edge)

The collaboration between Cloud and V.Edge unfolds in a second form, where the cloud
assumes the role of a mentor. High-end computing resources in the cloud become the training
ground for deep learning models, refining their intelligence with vast datasets. Once honed,
these models descend from the cloud and take residence in the V.Edge device. This
orchestrated intelligence empowers V.Edge with the capability for real-time inference. By
distributing the cognitive load, this collaborative approach ensures swift decision-making and
processing, mitigating the risk of delayed responses during crucial moments. This dual
perspective encapsulates the versatility of (V.Edge - Cloud) collaboration, showcasing its
adaptability in both communication-driven predictive insights and intelligence-enhancing

model deployment scenarios.
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3.5.2 V2V (V.Edge-V.Edge)

In addition to vertical collaboration, the distributed learning system introduces horizontal
cooperation denoted as V2V (V.Edge-V.Edge). This type of collaboration emphasizes the
communication and information exchange between multiple V.Edge platforms. By fostering a
network of interconnected edge devices, this approach facilitates seamless connectivity and
information sharing among vehicles. The horizontal collaboration empowers V.Edge devices
to collectively contribute to traffic safety predictions, creating a dynamic and responsive
ecosystem at the vehicular edge. Embedded a deep learning model into different vehicles
enables effective collaboration and communication among them for accurate prediction of road

accidents.

a) Communication (V.Edge - V.Edge)

In this scenario, vehicles transcend their individual entities and engage in collaborative
communication through Vehicle-to-Vehicle (V2V) interactions. Enabled by wireless
communication protocols, vehicles share crucial data such as speed, direction, and location
with their counterparts on the road. This real-time exchange of information establishes a
dynamic network where vehicles become aware of each other's status, fostering a collective
effort to prevent potential collisions and address hazardous behaviors. The interconnected
V.Edge communication ensures a synchronized response to the evolving conditions on the
road.

b) Cooperation (V.Edge — V.Edge)

Beyond communication, V.Edge collaboration takes the form of cooperation between vehicles
in scenarios where cloud connectivity faces challenges. In this collaborative model, a vehicle
possesses the capability to refer to another vehicle for importing a deep learning model specific
to its current zone. This is particularly valuable in situations of internet connectivity issues with
the cloud. By sharing and leveraging local knowledge, vehicles collaboratively contribute to
maintaining a robust and responsive system for accident risk prediction. This decentralized

approach ensures continuous functionality even in the absence of direct cloud interaction.

79



Chapter 3 Collaborative Cloud.DRL - V. Edge .DL approach for Predicting Traffic Accident Risk

Cloud

I

DL Models
Trainer Jzrone

Y

Candidate models by
zone ( DLz; ... DLzn)

e S — =4 =Ly VS 9
1mE
Prédiction result g %

44

V.Edge

» DLZ; selected

Sensors data

Figure 3.7: Collaboration / communication (V. Edge -cloud)

3.6 Conclusion

In conclusion, our chapter has delineated an innovative approach that harnesses the power of
collaboration between cloud machine learning techniques and vehicular edge computing
(V.Edge.C) to bolster driver safety practices. Our primary objective has been to anticipate
accident risks proactively and swiftly alert drivers to avert potential collisions. By synergizing
deep learning and deep reinforcement learning algorithms with the capabilities of cloud
computing and vehicular edge computing, we've endeavored to address the intricate challenges
within transportation systems more effectively. While these methodologies necessitate
significant resources, the collaborative integration of cloud and edge platforms offers
promising solutions to overcome limitations associated with standalone systems. Our proposed
advanced system, driven by Deep Reinforcement Learning (DRL), is poised to accurately
forecast traffic accident risks. By conducting training in the cloud and deploying models to
vehicular edge devices for real-time inference, we aim to significantly enhance crash prediction
and prevention.

In this chapter, we have outlined the design of our idea and explored various scenarios of
collaboration between the two platforms. In the subsequent chapter, we will advance to the

implementation phase of this approach.
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Chapter (4): Experiments and results

4.1 Introduction

The study is structured around a series of phases designed to guide the process from the initial
selection of data to the ultimate goal of prediction. These phases emphasize a hands-on
approach, particularly suitable for issues pertaining to detection and prediction rather than
traditional systems engineering. The workflow consists of six key stages: data selection, data
pre-processing, exploratory data analysis, transformation, modeling, and evaluation. The figure
below visually represents the systematic flow through these essential phases, outlining a

comprehensive journey from the deliberate choice of data to the final prediction stage.

v Data Cleaning v’ Accuracy
v" Normalization v Train — v Sensitivity
v Handling Class v’ Test Split V' Specificity
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v" Temporal

Distribution

Logistic Regression (LR)
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decision trees (DT)
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Figure 4.1: Flow-Based Methodology for Data-Driven Prediction
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4.2 Data Selection

The datasets utilized in this study are sourced from the publicly available Open Data website

of the UK government (http://data.gov.uk/), specifically published by the Department of

Transport. This dataset encompasses accidents information spanning from 2005 to 2015. Three
CSV-formatted files constitute this dataset (Accidents, Casualties, and Vehicles) in (.csv)
format. Accidents is the main file, and through the Accident Index column, it has links to
Casualties and Vehicles. The Accidents file comprises 1780653 rows and 31 columns. The
Casualties file contains 2216720 rows and 14 columns, and the Vehicles file has 3004425 rows
and 21 columns. The Big Data presenting a significant challenge when loading it into CPU
memory and addressing non-numeric entries during the cleaning process. With over three
million entries, the dataset proves substantial enough for robust machine learning model

training.

The term "accident severity" in this dataset refers to the level of seriousness of the
consequences of a traffic accident. Each recorded accident is categorized into one of three
predetermined groups based on its outcomes: /) Fatal, 2) Serious, or 3) Slight. Fatal accidents
involve the death of individuals involved, while serious accidents result in severe injuries but

not death. Slight accidents are those causing minor injuries or no injuries at all.

4.3 Programming Language, Libraries And Used Environment

The programming language chosen for our methods presented previously is Python. Python is
a powerful and easy-to-learn programming language known for its high-level data structures
and simple yet efficient approach to object-oriented programming. The decision to use Python
offers several advantages, including:

o Cost-effectiveness: Python is completely free, making it an economical choice for
development.

e Ease of Learning and Use: Python is renowned for its simplicity, making it easy for
developers to learn, read, understand, and write code. This characteristic promotes a
smooth learning curve for beginners and enhances productivity for experienced
programmers.

e Object-Oriented Flexibility: Python supports object-oriented programming but does

not impose it, providing flexibility in coding styles based on project requirements.
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¢ Cross-Platform Compatibility: Python is compatible with all major operating systems
and computer platforms, ensuring the portability of code across diverse environments.
e Professional Quality Software: Python is widely used for developing professional-

grade software, thanks to its extensive libraries, frameworks, and community support.

Python offers several libraries (packages) for data processing, creating machine learning

models, matrix calculations, analysis, and data visualization, as illustrated in the table below:

Table4.1: Python Libraries Utilized.

Library Main Role

Numpy (np) Efficient manipulation of arrays and numerical computations.

Pandas (pd) Data manipulation and analysis using structured data, like
DataFrames.

D(i;iltI;btlib -pyplot Creating plots and data visualizations.

1t

Seaborn (sns) Advanced data visualization based on Matplotlib, with a focus
on statistical graphics.

Sklearn Comprehensive machine learning tools, including
preprocessing, models, and metrics.

Tensorflow (t£) A deep learning framework for building and training neural
networks.

Keras A high-level API integrated with TensorFlow for easily
building deep learning models.

Gym Toolkit for developing and comparing reinforcement learning
(RL) algorithms.

Baselines Implementations of RL algorithms ( DQN) and tools for

benchmarking and logging.
Generating random numbers, making random selections, and
Random shuffling data.

e Google Colab environment

Google Colab, also known as "the Colaboratory," serves as a complimentary cloud service by
Google aimed at fostering research in Machine Learning and Artificial Intelligence. It
addresses the common hurdle in these fields, which is the need for substantial computational
resources. The platform offers free GPU support, enabling users to enhance their Python
programming skills while developing deep learning applications utilizing popular libraries such
as Keras, TensorFlow, PyTorch, and OpenCV. Additionally, it seamlessly integrates with

Google Drive for project storage. What sets Colab apart from other free cloud services is its
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provision of GPU resources without any cost. Our work centers on a deep convolutional
network, demanding significant training data points, which we managed within the Google

Colab notebook environment.

4.4 Data Pre-Processing

Several preprocessing steps were meticulously executed on the dataset to ensure a robust and

unbiased analysis.
4.4.1 Data Loading

The data loading process involved importing the dataset into a Pandas Data Frame utilizing the
'pd.read csv()' function. This function is a part of the Pandas library in Python, specifically
designed to read comma-separated values (CSV) files. By passing the file path as an argument
to this function, the data was efficiently loaded into memory, ready for further analysis and

manipulation.
4.4.2 Data Cleaning

Data cleaning involves identifying and rectifying errors, eliminating duplicates, handling
missing values, and correcting inconsistencies. Techniques such as 'drop duplicates ()' and
‘dropna()' were employed to ensure data completeness and quality. To handle missing values,

both 'NaN' (Not a Number) and '-1' were considered as indicators of missing data.
4.4.3 Data Scaling

Data Scaling, also known as feature scaling or normalization, played a crucial role in our
dataset preprocessing, particularly due to the varied scales of attributes present. To ensure
uniformity across all features, we opted for the Min-Max scaling technique. This approach was
instrumental in standardizing the range of feature values, constraining them within the 0 to 1
interval. By doing so, we not only achieved consistency but also set the stage for enhanced
convergence and effectiveness of subsequent classification algorithms. This transformation
effectively harmonized the disparate scales of attributes, laying a solid foundation for accurate

and reliable model training.
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4.4.4 Handling Class Imbalance

Upon initial examination of the dataset, it became evident that there was a significant class
imbalance within the target attribute, Accident Severity. The majority of accidents, accounting
for 85.1%, were categorized as 'Slight.' In contrast, serious accidents represented /3.6%, while
fatal accidents constituted a mere 1.3% of the data. Such a skewed distribution poses a
challenge as it can introduce bias during model training and diminish the predictive capacity,
particularly for the underrepresented classes. To mitigate this imbalance, two techniques were

employed:

a. Under-sampling: In the first step, under-sampling was implemented using the
RandomUnderSampler method from the imblearn library. This method randomly removes
instances from the over-represented classes, thereby achieving a more balanced class

distribution.

b. Over-sampling: Following under-sampling, the Synthetic Minority Over-sampling
Technique (SMOTE) from the imblearn library was applied to further balance the dataset.
SMOTE operates by generating synthetic examples in the feature space, effectively reinforcing
the minority class. By augmenting the dataset with synthetically generated data points, SMOTE
ensures a more equitable class distribution, thereby enhancing the model's ability to generalize

effectively across all classes.

4.5 Exploratory Data Analysis (EDA)

In this analysis process, an investigation of the dataset was conducted through the utilization
of exploratory data analysis (EDA) techniques. This involved the utilization of various plots,
graphs to visually illustrate the data, revealing underlying patterns and correlations among the
variables present in the accident data. Through the EDA process, a more profound
understanding of the factors impacting accidents was achieved, encompassing aspects such as

weather conditions, types of roads, and the specific times of day when accidents occur.
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(a): Time series plot of RTAs, (b): Accident Severity Distribution

Figure 4.2: Accident Distribution

Figure 4.2 (a) depicts a notable decline in road accidents across the UK spanning from 2005 to
2015. Over this timeframe, there was a significant decrease in the total number of accidents.
This decline underscores the efficacy of road safety initiatives and signals substantial progress
in curbing accident rates throughout the specified period. Such a trend reflects positively on
the effectiveness of implemented measures aimed at enhancing road safety and mitigating the
occurrence of accidents. In Figure 4.2(b) a dataset analysis represented reveals that most
accidents (85.1%) were classified as 'Slight.' In contrast, serious accidents comprised (13.6%)

of the total, while fatal accidents were the least frequent, with a count of (1.3%)

In the following section, we aim to visually represent the distribution of accidents across
various factors, including human factors such as age and gender of drivers, environmental
conditions such as light conditions, weather conditions, and road surface conditions, and
finally, distribution across time by occurrences per month, day, and hour. To improve the
clarity and effectiveness of our visualizations, we will create insightful graphs that provide a
comprehensive understanding of the patterns and trends within each category. By analyzing
these visual representations, stakeholders can gain valuable insights into the contributing
factors and circumstances surrounding accidents, which can inform targeted interventions and

preventive measures to enhance road safety.
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4.5.1 Accident Distribution Across human factors

By studying the human factors and impact, we can design new rules to the drivers depending
on their age, sex, and many more individual or combined characteristics.

An interesting finding from our analysis of this data is the age of driver. The analysis shows
that the age band of the driver plays an important role in causing traffic accidents. Figure 4.3(a)
shows the distribution o f age driver, it can be observed that the majority of drivers lie in the
age band of [26-35, 36-45, 46-55]. Figure 4.3(b) shows the distribution for fatal, serious and
slight severity accident over the sex of the driver. Our analysis shows that male drivers are

higher than female drivers.

Previous studies in the field of traffic flow and incidents have modeled and simulated human
factors and their impacts using mathematical modeling techniques. Although mathematical
models are powerful, they often struggle to capture the complex and diverse nature of human
behavior, limiting their ability to generalize effectively. The unpredictable interactions among
various human elements on the road give rise to a wide range of scenarios that traditional

models cannot fully account for.

In this context, leveraging big data mining techniques emerges as a promising alternative for

studying human factors and interactions. By extracting insights from large volumes of
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Figure 4.3:Accident Distribution Across human factors.
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historical data, data mining provides a practical approach for forecasting and anticipating future

traffic-related scenarios.

4.5.2 Accident Distribution Across Environmental Conditions

All of environmental conditions considered by this study showed a similar distribution (Figure
4.4). Contrary to common belief, our analysis reveals that a significant 80% of accidents occur
under favorable weather conditions with no winds. Intriguingly, the lowest incidence of
accidents is observed in snowy conditions and high winds. It's noteworthy that this data pertains

to the UK, where adverse weather, such as fog, typically prevails throughout the year.

The same issue with the light condition, Contrary to the common belief that accidents
predominantly occur in low-light or nighttime conditions, our analysis reveals a surprising
trend. A significant 73% of the total accidents in our dataset occurred during daylight hours.
Moreover, of the accidents that took place in daylight. This challenges preconceived notions
about accident patterns and emphasizes the importance of addressing factors contributing to
daytime incidents. The majority of accidents occurred under dry road surface conditions,
comprising 69% of all incidents, followed by wet or damp conditions at 28%. Notably, a
significant proportion of accidents also transpired in urban areas. This trend can be attributed
to the dense traffic and prevalent congestion characterizing urban roadways, which elevate the

risk of collisions.
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Figure 4. 4: Accident Distribution Across Environmental Conditions

4.5.3 Accident Distribution Across Time

fewest accidents, with a decrease towards the end of the year.

Figure 4.5 depicts crash frequency by month, by day of the week, and by hour of the day,
revealing intriguing accident data concerning time patterns. In Figure 4.5(a), the accident rate
is observed to increase at 8 a.m. and between 3 p.m. and 5 p.m., particularly during rush hours
when traffic is at its peak, such as people commuting to and from work. In Figure 4.5(b),
weekdays tend to have more incidents compared to weekends, possibly due to higher travel
volume on workdays, which raises the risk of traffic accidents. Figure 4.5(c) summarizes the
annual traffic accidents. The chart illustrates the accident rate by year. It appears that accidents
fluctuate significantly throughout the year, peaking in the middle of the year. March and April

have consistently had the highest number of accidents over the years. In contrast, May has the
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4.6 Feature Importance

In this section, an analysis is conducted on the feature space to determine feature importance
and feature correlation within the generated dataset. Initially, a correlation measure is
employed to explore the relationship between each feature and accidents. Subsequently, a
machine learning feature selection method, such as the Scikit-learn Random Forest library, is
utilized to identify the most relevant and correlated attributes that influence the learning
process. These findings are illustrated in Figure 4.6.

Table 4.2 presents the (20) important features description of this dataset, which will form the

input vector of our ML models.

Did_Police_Officer_Attend_Scene_of_Accidert - IS
Number of Casualties - I S
Veehicle_Manoe uvre - I
Vehicle_Leaving_Carriageway -/
Skidding_and_Overturnin -
Sex_of Driver -
Speed_inm it -
Hit_Object_off Carriageway -
Urban_or_Rural_Area - I—
Light_Conditions - I
Number_of Vehicles - /I
2nd_Road_Class -
Road_Type -
Hit_Object_in_Carriageway - I
Driver Home_Area_Type -
Vehicle_Reference -
Junction_Location - I
Junction_Control - N
Weather_Conditions -
Longitude - I
0.00 0.02 0.04 0.06 0.08 0.10
Absolute Correlation

Feature

Figure 4. 6: Attribute importance scores.
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Tabled. 2: Input factors

Feature

Description

Did Police Officer Attend
Scene of Accident

This feature indicates whether a police officer attended the scene
of the accident, which may correlate with the severity or type of

accident.

Number_of Casualties

The number of casualties involved in the accident may be
correlated with the occurrence of the accident, as more casualties

may indicate a more severe accident.

Vehicle Manoeuvre

The type of vehicle manoeuvre performed at the time of the
accident may be correlated with the likelihood of an accident

occurring, depending on the manoeuvre executed.

Vehicle Leaving

Carriageway

Vehicles leaving the carriageway may be more likely to be
involved in accidents, correlating with the occurrence of

accidents.

Skidding and Overturnin

Skidding or overturning vehicles may indicate loss of control,

g potentially correlating with accident occurrence.

The gender of the driver may correlate with accident occurrence
Sex of Driver

due to differences in driving behaviour or risk-taking tendencies.

Higher speed limits may be correlated with a higher likelihood of
Speed_limit accidents occurring due to increased risk of loss of control or

collision severity.

Hit Object off Carriagew

ay

Objects struck off the carriageway may indicate erratic vehicle

behaviour, correlating with accident occurrence.
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Urban_or_Rural Area

The type of area where the accident occurs (urban or rural) may
correlate with accident occurrence due to differences in traffic

density and road conditions.

Light Conditions

Poor lighting may influence the severity of accidents, especially at
night or in tunnels, where reduced visibility can lead to more

serious outcomes.

Number of Vehicles

The number of vehicles involved in an accident may be correlated
with the occurrence of the accident, potentially indicating multi-

vehicle collisions.

2nd_Road Class

The classification of the second road involved in the accident may
correlate with the likelihood of accidents occurring, depending on

road characteristics.

Road Type

The type of road where the accident occurs may correlate with
accident occurrence, as different road types have varying risk

factors.

Hit Object_in_Carriagew
ay

Objects struck within the carriageway may indicate collision

patterns, correlating with accident occurrence.

Driver Home Area_Type

The type of area where the driver resides may correlate with
accident occurrence due to differences in driving habits or road

familiarity.

Vehicle Reference

Vehicle reference information may correlate with the occurrence

of the accident, depending on vehicle characteristics or condition.

Junction Location

Accidents occurring at junctions may be more common and
correlate with accident occurrence due to the complexity of traffic

movements.
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The type of control at junctions may correlate with accident
Junction Control occurrence, as different control types affect traffic flow and

collision risk.

Adverse weather conditions may increase the likelihood of
Weather Conditions . ‘ ' ' ‘
accidents occurring, correlating with accident occurrence.

The geographical location (longitude) of the accident may
Longitude correlate with accident occurrence due to varying road and traffic

conditions.

4.7 Evaluation Metrics

It is necessary to identify and estimate the efficiency and effectiveness of Cloud DRL and
V.Edge DL in predicting traffic accidents with the dataset. Our models are validated in terms
of:

Learning curves (Accuracy and Loss) for both of Cloud DRL and V.Edge DL.

Comparison with other algorithms in terms of

evaluation metrics. Predicted values
Efficiency and effectiveness in reducing the risk - - . .
Y 8 Positive | Negative
of road accidents with or without cooperation.
k-
The calculation of evaluation metrics is mainly w E TP FN
=
based on (N x N) confusion matrix (shown in "E Ry
Figure 4.7) that is used to display the performance -'.: Y
Y
f the algorith here N is th ber of target b=
of the algorithm, where N is the number of targe _é o FP ™
classes. This matrix compares the actual target g"

values with those predicted by the machine
learning model. To comprehensively measure the Figure 4. 7-:Confusion matrix.
performance of the proposed models, accuracy, sensitivity, F1 score, and other indicators are
used. The concept and formula for calculating each of these indicators are shown in Table
4.3Where TP denotes true positive, FP denotes false positive, TN denotes true negative, and

FN denotes false negative.
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Table 4.3: Main metrics for classification

Metric Formula Interpretation
(TP +TN) Gives the proportion of the total number of
Accuracy (Acc) * 100% o
TP+TN+FP+FN predictions that were correct
Precision (Pre) m * 100% How accurate the positive predictions are
Recall TP Gives information about the True Positives that
* 100% ' .
(Sensitivity) (TP + FN) are correctly classified during the test
TN Gives information about of True Negatives that
fici ——— % 1009 . .
Specificity (TN + FP) 2 A are correctly classified during the test
2xTP . .
Fl-score * 100% | Hybrid metric useful for unbalanced classes

(2*TP + FN + FP)

4.8 Results And Discussion

4.8.1 Data Splitting

Training and testing on the same dataset are not good approaches. If we train and test on the
same dataset, it might give high performance but this might lead to overfitting and the model

might fail to generalize well. To avoid such problems, we split the datasets into training and

Data Preprocessing : Training Data Train Model
Data Cleaning ; — =
>}

Cars - mme:
Accidentss | *  Dat Normmalization l
Data Set ) . — Accident risk

Data Transformation { prediction

' Test Data

Evaluate Mode

Figure 4.8:Experiment procedure.
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test data. During the construction of our machine learning models, the dataset was divided into

training dataset (80%) and test dataset (20%).
4.8.2 Cloud DRL Vs V.Edge DI learning curves

Epsilon-Greedy Strategy: as illustrated in the transformations of deep reinforcement learning
curves, the exploration-exploitation strategy requires a delicate balance between discovering
new actions and exploiting known ones to maximize cumulative rewards. At its core, this
strategy revolves around a parameter ‘epsilon (€)’, which determines the probability of
choosing a random action versus selecting the action with the highest estimated value based on
previous experience. During exploration (when ‘epsilon’ dictates random action selection), the
agent gathers information about the environment, ensuring it doesn't prematurely settle on
suboptimal actions. In contrast, exploitation (when ‘epsilon’ favors choosing the best-known
action) utilizes accumulated knowledge to maximize immediate rewards. This dynamic ensures
that over time, the agent refines its decision-making by gradually shifting focus from
exploration to exploitation as it learns more about the environment and the rewards associated
with different actions. By striking a balance between these two approaches, the agent can
effectively navigate uncertain environments while striving for optimal long-term performance.
In Deep Q-Learning (DQL), the choice of hyperparameters is critical for guiding the learning

process and ensuring the model's effectiveness, which are defined as follows:

Table4.4: DRL hyperparameters.

State_size Input layer size: number of features

Action_size Output layer size: 3 (possible actions: stop, decelerate, No-change)
Hidden Layers 3 layers

Activation functions ReLU for hidden layers; Linear for output layer

Optimiser Adam optimizer

Memory_size Replay memory capacity: 512

Gamma Discount rate for future rewards: 0.99.
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Epsilon Initial exploration rate: 1.0.
Epsilon_min Minimum exploration rate: 0.005.
Epsilon_decay Decay factor for exploration rate: 0.995.

e To build the best traffic accidents predictive framework, we used a Convolution Neural
Network (CNN), which is one of the best classification algorithms based on artificial neural
networks. CNN is designed to learn automatically and adaptively using multiple building
blocks such as convolution layers, pooling layers, and fully connected layers. The set of deep
learning model hyperparameters is described in the following table.

Table4.5: DL hyperparameters

Input Layer number of features.

Output Layer 3 neurons (1 per Casualty Severity class)
Conv1D Layers 3layers: 64 filters

Kernel Size 4 for both Conv1D layers

Pooling MaxPooling1D with pool size 2 after each Conv1D layer
Dense Units 64 —>32—-3

Activation Functions ReLU for hidden layers, Softmax for output
Dropout 0.5 after first Dense, 0.3 after second Dense
Optimizer Adam (learning rate = 0.001)

Batch Size 64

Epochs 20 (with early stopping, patience=5)

Loss Function Categorical Crossentropy

The results obtained in terms of accuracy and loss for both models are displayed in Figure 4.9

and Figure 4.10.
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(a) DRL-Model accuracy

(b) DL-Model loss
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Figure 4.9:Learning curves for DRL Model
o7
L0
— Train = Tbin
—— validation — Validation
0.6
0.9 1
0.5 1
0.8 -
0.4 1
0.7 1
0.3 1
0.6 1
0.2 1
s . - . : . . . . .
oo 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0.0 25 5.0 15 10.0 12.5 15.0 17.5

(a) DL-Model Accuracy .

(b) DL-Model Loss

Figure 4.10: Learning curves for DL Model
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4.8.3 Performance comparison

The proposed models Cloud DRL and V.Edge DL are compared to other well know
algorithms [104], such as Logistic Regression (LR), support vector machine (SVM), decision
trees (DT), Random forests (RF), and XGBoost in terms of Accuracy, Sensitivity, Specificity,
Precision, and F1-score measures. The experiment results are summarized in Table 4.6. Figure

4.11 visualized the results in Table 4.6.

Table 4.6: Comparison of (Cloud DRL, V.Edge DL) with baseline.

Classification Accuracy Sensitivity Specificity Precision F1I score
Techniques

Cloud_DRL 0.94 0.94 0.97 0.94 0.94
V.Edge DL 0.92 0.92 0.96 0.92 0.92

LR 0.79 0.79 0.89 0.79 0.79
SVM 0.80 0.80 0.84 0.79 0.79
DT 0.88 0.88 0.94 0.89 0.88

RF 0.91 0.91 0.95 0.92 0.91
XGBoost 0.91 0.91 0.94 0.91 0.91
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M Accuracy
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[ Specificity
M Precision

[ F1 score

Cloud_DRL V.Edge_DL LR SVM DT RF XGBoost

Figure 4.11:Visual comparison with baselines.

The confusion matrix is one of the most often used metrics for evaluating classification
performance using predicted and actual or real labels. It is used to assess the model’s capacity
to handle ambiguous labels. Figure 4.12 DRL(a), DL(b), LR(c), SVM(d), DT(e), RF(f),
XGboost(g) depict the confusion matrix (CM) of the various techniques utilized.
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4.8.4 Cloud-Edge Collaboration: A Flask-Based Implementation
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Figure 4.13: Cloud-Edge Communication Architecture for Accident Risk Prediction — Flask
Implementation.

This research proposes a novel cloud-edge collaboration framework for real-time vehicular
accident risk prediction, leveraging the synergy between distributed edge computing and
centralized cloud resources. The system integrates real-time data acquisition from vehicular
edge nodes equipped with embedded sensors and advanced predictive analytics executed on a
cloud server. By employing a deep reinforcement learning (DRL) algorithm, the framework
predicts accident severity (classified as fatal, serious, or slight) and generates actionable
recommendations (e.g., stop, decelerate, or maintain speed) to mitigate risks. This hybrid
architecture ensures low-latency decision-making at the edge while harnessing the cloud’s
computational capabilities for complex model inference, addressing the critical need for timely
and accurate risk assessment in intelligent transportation systems (ITS).

The proposed system is structured into two core components: the vehicular edge node and the
cloud server (localhost). These components are seamlessly integrated using a RESTful API
implemented with Flask, a lightweight Python web framework, facilitating efficient
communication via HTTP POST requests. The following sections detail the design,
implementation, and operational mechanisms of each component [105].

Vehicular Edge Node

The vehicular edge node serves as the frontline data acquisition unit, simulating the real-time

collection of sensor data from an instrumented vehicle. In this implementation, sensor data—
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such as speed, acceleration, proximity to obstacles, and environmental conditions—are sourced
from a CSV file to emulate real-world vehicular telemetry. This data is transmitted to the cloud
server (Localhost) through an HTTP POST request, a method chosen for its ability to securely
encapsulate large datasets within the request body, unlike the URL-based GET method. Upon
receiving the cloud server’s response a JSON object containing the predicted accident severity
and recommended action, the edge node displays this information via a Tkinter-based graphical
user interface (GUI) and executes the prescribed action (e.g., deceleration or stopping).
HTTP POST Request Mechanics:
An HTTP POST request is a client-server communication protocol wherein data is embedded
in the request body and sent to a designated server endpoint (in this case,
http://localhost:5002/predict). Unlike GET requests, which append data to the URL and are
thus limited in size and security, POST requests offer enhanced privacy and capacity, making
them ideal for transmitting sensitive or voluminous sensor data. The edge node’s POST request
triggers the cloud server to process the data and return a response, enabling real-time interaction
critical for accident prevention.

Cloud Server

The cloud server, implemented using Flask, constitutes the analytical backbone of the system.
It receives sensor data from vehicular edge nodes via the /predict endpoint, preprocesses it into
a structured format (e.g., a Pandas Data Frame), and applies a pre-trained DRL model to predict
accident severity. The DRL algorithm, trained on historical accident data, dynamically learns
optimal action policies to minimize risk, aligning with recent advancements in reinforcement
learning for ITS. The predicted severity and corresponding action recommendation are
encapsulated in a JSON response and transmitted back to the edge node, ensuring compatibility
with heterogeneous systems.

Role of Flask:
Flask facilitates the development of a lightweight, scalable RESTful API that handles HTTP
requests efficiently. Upon receiving a POST request, the server extracts the sensor data,
performs necessary preprocessing (e.g., normalization, feature extraction), and invokes the
DRL model for inference. The use of JSON as the data interchange format enhances
interoperability, enabling seamless integration with diverse edge devices. The server’s ability
to process multiple requests concurrently underscores its scalability, a critical attribute for

deployment in large-scale vehicular networks.
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3) Operational Workflow

The collaboration between edge and cloud unfolds as follows:

The vehicular edge node collects and transmits sensor data to the cloud server via an HTTP
POST request.

The Flask-based cloud server processes the request, preprocesses the data, and applies the DRL
model to predict accident severity.

The server returns a JSON response containing the severity level and recommended action.

The edge node interprets the response and executes the action.

4.8.5 Cloud DRL - V.Edge DL collaboration

Cloud DRL, V.Edge DL collaboration leads to efficient and effective prediction of traffic
accident risk. The results obtained by each model individually and then together are shown in

Figure 4.14.
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Figure 4. 14: Cloud DRL - V.Edge DL Collaboration

4.8.6 Discussion

Figure 4.9 and Figure 4.10 represents the accuracy and the loss of both models Cloud DRL
and V.Edge DL. Figure 4.9(a) plots the increment of Cloud DRL accuracy in function of

.epoch’s number; its accuracy starts very low and ends very high. The main reason of this
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distinction is due to a balance between the two explorations and exploitation strategies. At the
beginning of the algorithm, each action is performed randomly, which is useful for helping the
agent learns more about its environment. Whenever the agent takes more steps, the exploration
decreases, and the agent starts to exploit more of the good actions that it has detected. Towards
the end of the training process, the search space becomes very limited. Therefore, the agent
concentrate more on the exploitation step. This leads to this significant increase in accuracy. It
is the same similar justification for the loss curve Figure 4.9(b), which reduces the error to the

minimum.

DL has also shown better performance (Figure 4.10) , but DRL remains the strongest in solving
dynamic problems where the environment changes over time and the optimal decision-making
strategy may vary depending on the state of the environment. This poses challenges for

traditional DL algorithm that lack the ability to adapt to changing conditions.

To present how well our accident risk prediction models are performing, we compared them
with other algorithms that use the same performance measures. Table 4.6 summarizes the
obtained results when applying these machine learning algorithms including LR, SVM, DT, RF
and XGBoost. We note that Cloud DRL and V.Edge DL give a high performance in term of
Accuracy, Sensitivity, Specificity, Precision, F1-score measures. We can see that the Cloud
_DRL achieved the highest degrees of accuracy 94%, Sensitivity94%, Specificity 97%,
Precision 94% and Fl-score 94%. After Cloud DRL algorithm, the V.Edge DL classifier
generates a good result with 92 percent accuracy, 92 percent Sensitivity, 96 percent Specificity,
and 92 percent Precision and 92 percent F1-score ; where all the implemented ML methods
also perform excellently. Only LR performs relatively poorly with accuracy of less than 80%.
In analyzing the classifier outcomes via the confusion matrix (Figure 4.12), the discernment of
each model in predicting accident severities became more transparent. The Deep
Reinforcement Learning (DRL) algorithm classifier exhibited high accuracy in identifying
accident severities, correctly classifying 99% of fatal accidents, 89% of severe accidents, and
96% of slight accidents. These results highlight the effectiveness of the classifier in accurately
recognizing different levels of accident severity. Similarly, an alternative Deep Learning (DL)
model achieved promising results, with an accuracy of 98% for detecting fatal accidents, 88%
for identifying severe accidents, and 91% for recognizing slight accidents. These findings

demonstrate strong performance across various levels of accident severity.
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Chapter 4 Experiments and results

In Figure 4.14, we tested our framework on a sample of past road accidents to evaluate its
effectiveness in reducing the risk of traffic accidents by using equations (1) and (2) with (N= -
100), running it through 80 epochs. We started by evaluating each model individually and then
combined the two models to demonstrate the importance of their collaboration. As shown in
Figure 4.14. The red curve in the graph shows the decrease in the risk rate of road accidents
when only V.Edge DL was applied, The risk value decreased from 8200 to 3000 over time; In
contrast, when Cloud DRL was used, the risk value decreased further to 2800, as shown by the
orange curve. However, the best solution for reducing traffic accident risk was achieved by
combining the two models, as demonstrated by the blue curve. With their collaboration, the
risk level decreased to almost zero (1800). The same objective is represented by the histogram
in Figure 4.14 (b), which shows the level of traffic safety that has been achieved by each model

individually and by their collaboration.

4.9 Conclusion

In this chapter, we have demonstrated the effectiveness of our proposal, which involves
collaboration between cloud and edge platforms to make a smart city safer and minimize
accident rates. We utilized two main machine learning algorithms deep learning and deep
reinforcement learning based on neural network concepts. The results obtained are highly
satisfactory, as evidenced by the accuracy and loss curves of the two main algorithms, as well
as in terms of accuracy, sensitivity, specificity, precision, and F1-score measures. They provide
better results compared to classical machine learning algorithms such as logistic regression,
decision trees, random forests, and XGBoost. The collaboration between the two algorithms,
applied to historical accident data in the UK, also results in a significant reduction in the

accident rate.
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General Conclusion

This part provides a summary of the contributions made in this thesis and outlines the attained

results. Additionally, it proposes directions for future research and improvement.

1. Summary

Ensuring traffic safety in smart cities is a primary focus in the development of urban areas,
necessitating innovative methods for managing and preventing traffic accidents.

With recent advancements in Internet-of-Vehicle (I0V) technology, wireless communications,
and computational systems, new opportunities have emerged for enhancing road traffic safety.
Predicting traffic accident risk plays a pivotal role in achieving this objective, machine learning
(ML) is considered as a promising tool for forecasting this risk. These all technologies offer
drivers early warnings and valuable information to help them avoid potential hazards on the
road. In this framework, we have employed machine learning methodologies, specifically deep
learning and deep reinforcement learning algorithms. While deep learning and deep
reinforcement learning are highly proficient in addressing intricate challenges within
transportation systems, they require substantial resources for optimal performance. Therefore,
exploring efficient resource utilization strategies is essential for their effective implementation
in enhancing road traffic safety. On the other hand, the data generated by the ensemble of IOV
devices on the road is highly voluminous, making their collection and processing within the
vehicle impossible. To address this challenge, a collaborative Cloud-V.Edge driver assistance
system (ICEDAS) that utilizes machine learning-based IOV has been proposed. To leverage
the advantages and mitigate the drawbacks of both platforms, the proposed framework includes
two models.

e The first model, CLOUD_ DRL, achieves an accuracy of 94% and utilizes a substantial
amount of crash data stored in the cloud. It suggests various preventive actions,
including stopping, decelerating, or not changing lanes in cases of negligible risk. The
cloud serves as a centralized location to aggregate all continuously generated data by
IOV devices inside or outside of vehicles, making it an ideal location for training the
two proposed ML algorithms (DL and DRL), leveraging the storage and computing
capacity provided by this platform.
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e The second model, V.Edge DL, achieves an accuracy of 92% and is deployed at the
edge (vehicle) to perform real-time inference. It provides a solution for cases of internet
disconnection or bandwidth overload by utilizing locally collected data. This inference
involves predicting the likelihood of accidents based on trained patterns and learned
correlations. By leveraging edge computing, this model enables faster response times
and reduces dependency on cloud resources, thereby enhancing the overall efficiency
and effectiveness of the driver assistance system.

To evaluate the effectiveness of the collaborative framework in reducing the risk of accidents,
we conducted tests on a randomly selected sample of past road accidents, running it through
80 epochs. The results obtained indicate that the collaboration between the two models
significantly reduces the risk (from 8200 to less thanl 800), surpassing the performance of
either model alone. This demonstrates its capability to decrease the incidence of traffic

accidents.

2. Perspective

The future work will also explore the synergies between machine learning and Cloud-Edge
Computing to develop advanced systems for preventing accidents and enhancing road safety.
By incorporating computer vision technologies, the system will be able to analyze images and
videos captured from various sources such as vehicle-mounted cameras, traffic cameras, and
drones. This analysis will enable the detection of hazardous situations, identification of risky
behaviors among road users, and assessment of real-time road conditions.

Furthermore, the integration of computer vision will enhance the system's ability to detect and
respond to complex scenarios on the road, such as identifying pedestrians, cyclists, and other
vehicles in challenging environments like low-light conditions or adverse weather. By
leveraging the power of machine learning algorithms, the system can continuously learn and
improve its accuracy in recognizing and predicting potential risks on the road.

This approach holds great promise for further advancements, particularly in the field of self-
driving vehicles. By equipping autonomous vehicles with advanced computer vision
capabilities, they can better perceive and understand their surroundings, leading to safer
navigation and reduced accident rates.

Moreover, beyond road safety, the system's capabilities can extend to other areas such as fire

detection and industrial risk management. By adapting the algorithms and methodologies
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developed for road safety applications, the system can be applied to analyze images and videos
in industrial settings to detect potential hazards, monitor equipment performance, and ensure

workplace safety.
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