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Abstract 

 

The emerging technologies like Information and communications technology (ICT), Artificial 

Intelligence (AI) and Internet of Things (IOT) have a huge influence on the development of 

smart city, which improves the daily life of residents. The intelligent transportation system 

(ITS) is one of the main requirements of a smart city. The application of machine-learning 

(ML) technology in the development of driver assistance systems, has improved the safety and 

the comfort of the experience of traveling by road. In this work, we propose the development 

of an intelligent driving system for road accident risks prediction that can extract maximum 

required information to alert the driver in order to avoid risky situations that may cause traffic 

accidents. The current acceptable Internet-of-vehicle (IOV) solutions rely heavily on the cloud, 

as it has virtually unlimited storage and processing power. However, the Internet 

disconnection problem and response time are constraining its use. In this case, the concept of 

vehicular edge computing (V.Edge.C) can overcome these limitations by leveraging the 

processing and storage capabilities of simple resources located closer to the end user, such as 

vehicles or roadside infrastructure. In this thesis, we propose an Intelligent and Collaborative 

Cloud-V.Edge Driver Assistance System (ICEDAS) framework based on machine learning to 

predict the risks of traffic accidents. The proposed framework consists of two models, 

CLOUD_DRL and V.Edge_DL, Each one complements the other, together, these models work 

to enhance the effectiveness and accuracy of crash prediction and prevention. The obtained 

results show that our system efficient and it can help to reduce road accidents and save 

thousands of citizens’ lives. 

Keywords: IOV, Deep Learning, Deep Reinforcement Learning, Cloud Computing, V.Edge    

Computing, Cloud-V.Edge Collaboration. 
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Résumé 

Les technologies émergentes telles que les technologies de l'information et de la 

communication (TIC), l'intelligence artificielle (IA) et l'Internet des objets (IoT) ont une 

influence considérable sur le développement des villes intelligentes, ce qui améliore la vie 

quotidienne des résidents. Le système de transport intelligent (ITS) est l'une des principales 

exigences d'une ville intelligente. L'application de la technologie d'apprentissage automatique 

(ML) dans le développement de système d'assistance à la conduite a amélioré la sécurité et le 

confort de l'expérience du voyage sur la route. Dans ce travail, nous proposons le 

développement d'un système de conduite intelligent pour la prédiction des risques d'accident 

routier qui peut extraire les informations nécessaires au maximum pour alerter le conducteur 

afin d'éviter les situations risquées pouvant causer des accidents de la route. Les solutions 

actuellement acceptables d'Internet des véhicules (IOV) reposent fortement sur le cloud, car il 

dispose d'un stockage et d'une puissance de traitement pratiquement illimitée. Cependant, le 

problème de déconnexion d’Internet et le temps de réponse limitent son utilisation. Dans ce 

cas, le concept de calcul en périphérie des véhicules (V.Edge.C) peut surmonter ces limitations 

en exploitant les capacités de traitement et de stockage de ressources simples situées plus près 

de l'utilisateur final, telles que les véhicules ou les infrastructures routières. Dans cette thèse, 

nous proposons un système d'assistance à la conduite intelligent et collaboratif (ICEDAS) basé 

sur l'apprentissage automatique pour prédire les risques d'accident de la circulation. Le 

système proposé se compose de deux modèles, Cloud_DRL et V.Edge_DL, chacun complétant 

l'autre. Ensemble, ces modèles travaillent à améliorer l'efficacité et la précision de la 

prédiction et de la prévention des accidents. Les résultats obtenus montrent que notre système 

est efficace et peut aider à réduire les accidents de la route et à sauver des milliers de vies de 

citoyens. 

Mots-clés : IOV, Apprentissage profond, Apprentissage par renforcement profond, 

Informatique en nuage, Informatique en Périphérie, Collaboration nuage - Périphérie. 
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 على  كبير  تأثير لها الأشياء وإنترنت  الاصطناعي  والذكاء والاتصالات، المعلومات  تكنولوجيا مثل الناشئة التقنيات  إن

.  الذكية   للمدينة  الرئيسية  المتطلبات   أحد  الذكي  النقل  نظام  يعد .  للسكان  اليومية  الحياة  يحسن  مما  الذكية،  المدينة  تطوير

  على   السفر   تجربة  في  والراحة  السلامة  تحسين  إلى  السائق  مساعدة  أنظمة  تطوير  في الآلي  التعلم  تقنية  تطبيق  أدى

  من   الأقصى  الحد   استخلاص   يمكنه  الطرق  حوادث   بمخاطر  للتنبؤ  ذكي  قيادة  نظام  تطوير  نقترح   العمل  هذا  في.  الطرق

 إنترنت   حلول  تعتمد    .مرورية  حوادث   تسبب   قد   التي  الخطرة  المواقف  لتجنب   السائق  لتنبيه  المطلوبة  المعلومات 

  ذلك،   ومع  .  تقريبًا  محدودة  غير   ومعالجة   تخزين  بقدرة  تتمتع  حيث   السحابة،  على  كبير  بشكل  حاليًا  المقبولة المركبات 

 للمركبات   الطرفية  الحوسبة  لمفهوم  يمكن  الحالة،  هذه  في.  استخدامها  تقيد   الاستجابة  ووقت   الإنترنت   انقطاع  مشكلة  فإن

  من   بالقرب   الموجودة  البسيطة  للموارد   والتخزين  المعالجة  إمكانات   من  الاستفادة  خلال  من  القيود   هذه  على  التغلب 

  تعاوني   و  ذكي  نظام  نقترح  الأطروحة،  هذه  في.  الطريق  جانب   على  التحتية  البنية  أو  المركبات   مثل  النهائي،  المستخدم

 الحوادث  بمخاطر  للتنبؤ  الآلي  التعلم  على  يعتمد   الذي  و  السائق  لمساعدة  للسيارات   الطرفية  و  السحابية  الحوسبة  بين

 الآخر،  يكمل   منهما   كل  , العميق  المعزز  التعلم   و   العميق   التعلم  نموذجين،  من   المقترح   نظام ال  ويتكون     .المرورية

  عليها  الحصول تم التي النتائج وتظهر  .منها والوقاية بالحوادث  التنبؤ ودقة فعالية تعزيز على  معًا النماذج هذه وتعمل

 .المواطنين من الآلاف حياة وإنقاذ  الطرق حوادث  تقليل في يساعد  أن ويمكن فعال نظامنا أن

  ،   الطرفية  الحوسبة  السحابية،   الحوسبة  العميق،   المعزز  التعلم  العميق،  التعلم  ،  المركبات   انترنت  :المفتاحية  الكلمات

 . الطرفية و السحابية الحوسبة بين التعاون
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General introduction 

1. Context 

 Wireless Sensor Networks (WSNs) are essential for smart city transportation systems, 

particularly in addressing critical challenges like traffic safety. These networks play a key role 

in monitoring traffic flow, detecting accidents, and optimizing routes to improve road user 

safety. Every day, thousands of lives are lost or altered forever due to road accidents. 

Regardless of age, gender, or stage in life, people face the risk of road accidents while walking, 

driving, commuting, or undertaking long journeys. Sadly, these accidents can devastate 

families and communities, leaving a profound and lasting impact on those affected. According 

to the World Health Organization (WHO), approximately 1.35 million road accidents occur 

each year, causing serious injuries to an estimated 20 to 50 million individuals worldwide. 

Currently, road accidents rank as the eighth leading cause of global death and are projected to 

become the seventh by 2030 if current trends persist [1]. Additionally, road accidents result in 

the depletion of public resources and impose significant economic burdens in real-world 

contexts. 

To enhance traffic safety, many studies have been conducted to help the development of Active 

Traffic Management Systems. The main areas of interest covered by these studies are: i) black-

spot detection where road traffic accidents have been concentrated, these spots are recognized 

as locations where the frequency and features of accidents stand out, or where there are 

potential safety hazards compared to other typical areas, typically observed over an extended 

period (usually 1–3 years). Such distinctions are influenced by various factors including road 

conditions, traffic flow, climate, and environmental factors [2][3][4] [5]. 

ii) Detection of traffic incidents in real time, which involves the utilization of sensors, cameras, 

and other data sources to promptly identify and report traffic incidents as they happen and alert 

people to reduce their effects [6]. iii) Road accidents prediction, where the prime goal of this 

research is to predict the road accidents before they occur [7][8][9]. Predicting the likelihood 

of traffic accidents is crucial for preventing their occurrence and minimizing the resulting 

damages proactively. However, accurately predicting traffic accident risk at a detailed 

spatiotemporal level poses challenges, primarily due to the intricacies of the traffic 

environment, human behavior, and limited availability of real-time traffic data [10]. In this 

sense, machine learning (ML) has emerged as a promising tool for forecasting traffic accidents 
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risk. This capability can provide drivers with early warnings and valuable information to help 

them avoid potential hazards on the road [11]. With the recent development of Internet-of-

vehicle (IOV) technology and the advancement in wireless communications, and 

computational systems, new opportunities have opened up for intelligent traffic safety, 

comfort, and efficient solutions. 

2. Problem statements  

The advent of machine learning and communication technologies has led to the development 

of intelligent transportation systems (ITS) aimed at enhancing traffic efficiency and addressing 

public concerns regarding road safety. However, implementing these ITS applications, which 

rely heavily on machine learning, demands substantial resources and must meet stringent 

quality of service (QoS) standards, particularly in terms of processing speed and accuracy. 

Furthermore, due to the limited computing power and storage resources of vehicles, meeting 

these QoS requirements solely with the vehicles' resources poses a considerable challenge [12]. 

On the other hand, deep reinforcement learning is considered a superior machine learning 

approach due to its ability to adapt to complex and dynamic transportation systems. This 

algorithm relies on continuous interaction with the environment to perceive each new state of 

the system and respond accordingly. Such interaction necessitates processing massive amounts 

of data, which requires high-performance computing and storage resources. Unfortunately, 

these resources are not readily available within vehicles. This highlights the critical need for 

innovative solutions to overcome resource limitations and enable the effective deployment of 

machine learning techniques in intelligent transportation systems. 

Due to the robust resources supported by cloud computing, it is indeed feasible to consider it 

as a viable solution to the resource constraints posed by vehicles and to aggregate all the data 

on road accidents sent by vehicles. However, it is essential to acknowledge the distance 

between the cloud and the driver, which can introduce latency issues. In certain cases, such as 

emergencies, this latency can be critical, affecting the response time of the system to the driver. 

Disruptions or disconnections can exacerbate latency issues and hinder real-time 

communication between vehicles and the cloud. This presents a potential obstacle in delivering 

timely responses to drivers, especially in urgent situations where immediate action is required. 
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Therefore, while cloud computing provides abundant resources to surpass the limitations of 

onboard vehicle systems, addressing latency and connectivity challenges is crucial for ensuring 

prompt and effective communication between vehicles and the cloud. Innovative solutions, 

such as edge computing and caching mechanisms, may be necessary to mitigate these issues 

and enhance the overall performance and reliability of intelligent transportation systems. 

3. Contributions 

The Internet-Of-Vehicle (IOV) solutions to traffic safety problems rely heavily on the cloud, 

as it has virtually unlimited storage and processing power; where data must be moved from the 

data source location (IOV sensors) to a centralized location in the cloud. However, in addition 

to the Internet disconnection problem, the cloud might be far from the location of sensors and 

devices generating these data, which will cause the response time to be slow. Therefore, this 

might restrict the use of a solution that is based on the cloud, for sudden car accidents 

prediction. 

The concept of V.Edge Computing is an efficient alternative to overcome the limitations of 

using machine-learning models in the cloud platform. Many emergency predictions take place 

close to the end user; therefore, they can be process at the edge nodes. This reduces the impact 

of communication delay and internet disconnection. In this context, we propose an Intelligent 

Collaborative Cloud-V.Edge Driver Assistance Systems (ICEDAS) framework based on 

machine learning, which predicts the risks of traffic accidents. 

This framework takes advantages of the strengths of the two platforms, where a Deep Q-

Learning Network (DQN) algorithm is adopted in the cloud in order to train intelligent agent 

to warn the driver of any foreseeable risk of traffic accident based on the huge historical data 

available on the cloud. On the other hand, a deep learning algorithm can be deployed on the 

V.Edge platform for inference, covering potential response absences by the cloud in predicting 

sudden traffic risk due to the platform's proximity to the end user. The DL algorithm is trained 

in the cloud, taking advantage of its scalability and high-end computing resources for model 

training. The proposed (ICEDAS) aims to achieve the following main objectives: 

1) The system must be able to react in a timely manner to warn the driver before entering a 

critical state: This involves not only detecting potential hazards but also assessing the severity 

of the situation and delivering warnings promptly enough for the driver to take preventive 
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action. Real-time data processing and analysis are crucial to ensure that warnings are issued 

with minimal delay, allowing drivers to respond effectively and avoid accidents. 

2) The system must deliver adaptive messages to each driver who is at risk of a traffic accident 

based on their personal conditions: This entails personalized risk assessment, taking into 

account individual driving behaviors, preferences, and environmental factors. By analyzing 

historical data and real-time information, the system can tailor warnings and recommendations 

to each driver's specific situation, increasing the likelihood of effective intervention and 

accident prevention. 

3) The system must have the ability to use the cloud and V.Edge to predict the accident risk in 

an efficient manner: Leveraging cloud computing and edge computing technologies allows for 

scalable and distributed processing of vast amounts of data required for accurate accident risk 

prediction. By harnessing the computational power of the cloud and the proximity of edge 

devices to vehicles, the system can perform complex analyses and predictive modeling 

efficiently, enabling timely identification of potential risks and proactive measures to mitigate 

them. This hybrid approach optimizes resource utilization and enhances the system's overall 

effectiveness in ensuring road safety. 

4. Thesis Structure 

The remainder of this thesis is organized as follows: 

Chapter (1) introduces the fundamental concepts relevant to this thesis, including classical 

machine learning algorithms, deep learning, reinforcement learning, and the integration of deep 

learning with reinforcement learning. It also covers key technologies such as Wireless Sensor 

Networks (WSNs), the Internet of Vehicles (IoV), cloud computing, edge computing, and their 

integration. 

Chapter (2) presents the state of the art in the application of various machine learning 

algorithms in the field of road safety, with a particular focus on accident risk prediction. 

Chapter (3) provides a detailed theoretical presentation of our proposed approach, which is 

divided into three main parts. First, we introduce the core algorithm—Deep Reinforcement 

Learning—and describe the process of developing our machine learning models. Next, we 

explore the deployment of deep learning algorithms on the edge platform, explaining the 
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rationale behind this decision. Finally, we examine the cooperation between the cloud and edge 

platforms, demonstrating how their integration contributes to an effective solution for 

predicting road accident risks. 

Chapter (4) focuses on the implementation of the proposed system, beginning with the 

selection of datasets essential for experimentation. The datasets were then meticulously 

preprocessed to ensure optimal quality for analysis, including steps such as data cleaning and 

normalization. Next, we implemented the three core contributions of our framework, each 

designed to address specific challenges in traffic accident risk prediction using advanced 

machine learning techniques. Throughout the implementation process, we continuously 

monitored and evaluated the performance of our algorithms, aiming to achieve high prediction 

accuracy and outperform traditional methods, as demonstrated by the evaluation metrics 

computed for each algorithm. 

 

In the conclusion, we present a comprehensive summary of the contributions made in this 

thesis and emphasize the promising results achieved through the application of machine 

learning, particularly within the collaborative framework designed to reduce accident risk in 

smart cities. Furthermore, we outline potential directions for future research, including the 

integration of computer vision techniques to further enhance road safety, as well as the 

extension of the proposed framework to other critical application domains beyond traffic 

management.
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1. Chapter (1):      Preliminaries and Basic Concepts 

 

1.1. Introduction     

This chapter presents the main concepts related to our thesis and gives an overview of the 

domains we will use. Section 2 presents Machine Learning and its different categories. Section 

3 introduces Deep Learning and its various models. Deep Reinforcement Learning, as a 

specialized area, is covered in Section 4. Wireless Sensor Networks (WSNs) are discussed in 

Section 5. Furthermore, the integration of Internet of Vehicles is examined in Section 6, 

followed by an exploration of the intersection between Cloud Computing and Internet of 

Vehicles in Section 7. 

1.2. Machine Learning 

Throughout history, humans have relied on an array of tools to streamline tasks, showcasing 

the ingenuity of the human mind in inventing various machines. These innovations have 

significantly simplified life by facilitating travel, industrial processes, computing, and more. 

Among these advancements, machine learning stands out as a notable contribution [13]. 

Machine learning (ML) is a subfield of artificial intelligence (AI), empowering computers to 

"self-learn"  learn from provided data and enhance their performance over time. By analyzing 

large amounts of data and "learning" from its past mistakes, ML algorithms can eventually 

come up with accurate predictions on their own. Essentially, machine learning leverages 

accumulated experience to refine its algorithms and models [14]. It finds applications in diverse 

fields such as recommender systems, image identification, and email filtering and speech 

recognition. Unlike traditional approaches, modern machine learning benefits from new 

computing technologies, allowing computers to learn without explicit programming. It hinges 

on iterative processes where models adjust with fresh data, ensuring reproducible results. 

Stemming from artificial intelligence research, machine learning focuses on algorithms 

enabling computers to learn independently. Coined by Arthur Samuel in 1959, it involves 

creating prediction models from historical training data, incorporating computer science and 
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statistics.  The topic of Machine Learning within Artificial Intelligence (AI) is rapidly growing 

in interest and prominence. marketing, finance, Healthcare, infrastructure, autonomous 

vehicles, recommendation systems, gaming, social media, chatbots, cyber security and many 

more all make use of machine learning techniques [14]. By leveraging vast processing power, 

machine learning automates tasks, demonstrating unmatched speed and scalability, 

revolutionizing various domains. However, computers have the capability to learn from their 

own interactions and tackle problems with minimal human intervention via a process called 

machine learning [14]. There are various methods through which machines acquire knowledge. 

In some cases, machines are trained and, in some cases, machines learn on their own. These 

methods can be broadly categorized into three main types of machine learning: 

• Supervised Learning, 

• Unsupervised Learning, 

• Reinforcement Learning, 

In this part, we will to discuss each type of this methods: 

1.2.1. Supervised Learning 

Supervised learning algorithms are designed to learn from examples. The term "supervised" 

comes from the idea that the learning process is guided, much like a teacher overseeing a 

student's progress. In supervised learning, the data consists of input variables and 

corresponding output variables, meaning the dataset is labeled. Labeled data means that each 

input comes with an associated output, providing the algorithm with the correct answers during 

training. During training, the algorithm identifies patterns in the input data and associates them 

with the correct outputs. After training, a supervised learning algorithm can take new, unseen 

inputs and predict their labels based on what it has learned. The primary goal of supervised 

learning is to accurately predict the correct label for new input data [15]. Common examples 

include spam filtering, illustrating how supervised learning operates under supervision. 

Additionally, supervised learning algorithms can be further categorized into two types. 

a) Classification 
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Classification is the process of categorizing output data into distinct classes based on one or 

more input variables. It is commonly utilized when the output variable is discrete or categorical, 

such as determining if an email is "spam" or "not spam," identifying the presence or absence 

of a "disease," predicting whether it will "rain" or "not rain," or making binary decisions like 

"Yes" or "No" and 0 or 1. When the algorithm aims to sort input variables into two distinct 

classes, it is known as binary classification, as seen in the case of email categorization as 

"spam" or "not spam." On the other hand, when the algorithm seeks to classify input variables 

into more than two classes, it is termed as multiclass classification, such as in handwritten 

character recognition where the classes range from 0 to 9 [15]. Some examples of Classification 

tasks are Classifying the credit card transactions as legitimate or fraudulent, classifying 

secondary structures of protein as alpha-helix, beta-sheet or random coil and categorize the 

news stories as finance, weather, entertainment and sports. [16]. 

b) Regression 

Regression procedure is applied if there is a correlation between the input and output variables. 

It is used when the value of the output variable is continuous or real, such as house price, 

weather forecasting, stock price prediction, and so on. Several well-liked regression algorithms 

that fall under supervised learning are listed below Figure 1.1. In this section, we carry out a 

study of the most used supervised machine learning algorithms for classification and regression 

techniques: 
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A. Linear Regression & Multiple linear Regression 

Linear Regression (LR) stands out as one of the most renowned algorithms in machine learning. 

Its primary function revolves around forecasting continuous values, such as salaries, ages, or 

product prices. LR establishes the connection between dependent and independent variables. 

When employing Simple Linear Regression, a solitary independent variable is utilized to 

anticipate the value of a quantitative dependent variable. In simpler mathematical terms, the 

equation for simple linear regression can be broken down as follows:  

y = ax + b. (x) represents an independent variable, also known as the predictor variable, (y) 

denotes the dependent variable, often referred to as the target variable. This methodology is 

deployed on sample data to discern a straightforward line within the linear regression model 

[17]. 

Figure 1. 1: machine learning algorithms    
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B. Decision tree 

Decision Tree (DT) serves as a classification technique that executes classification via a 

learning tree structure. Within this tree, each node signifies a feature or attribute of the data, 

while the branches symbolize conjunctions of features that guide classifications. Additionally, 

every leaf node corresponds to a specific class label. Unlabeled samples can undergo 

classification by comparing their feature values with the nodes present in the decision tree. DT 

offers numerous benefits, including intuitive expression of knowledge, straightforward 

implementation, and notable classification accuracy [18]. 

C. Random Forest (RF) 

Random Forest (RF) is a versatile method widely utilized for various classification tasks. This 

machine learning approach combines data aggregation, bagging, and Decision Tree (DT) 

models using subsets. It effectively selects feature subsets from each node of the tree while 

avoiding correlations within the bootstrapped set. When tasked with classifying companies and 

ratios, RF functions as a forest comprising k trees, thereby providing robust computational 

capabilities [19].  

D. Naive Bayes 

Naive Bayes (NB) is a classification technique rooted in Bayes Theorem, making the 

assumption of independence among predictors. Essentially, it posits that the presence of a 

particular feature in a class is unrelated to the presence of any other feature. Typically applied 

in text classification, Naive Bayes serves clustering and classification purposes based on the 

conditional probability of occurrence [20]. 

E. Support Vector Machine 

Another most widely used state-of-the-art machine learning technique is Support Vector 

Machine (SVM), SVM defined regression as well as classification problems. The primary 

objective of employing Support Vector Machines (SVM) is to establish the optimal decision 

boundary, effectively segregating the n-dimensional space into distinct classes. This ensures 

accurate placement of new data points. The hyperplane, termed as the best decision boundary, 

serves this purpose. 
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• Support Vector: These are the nearest positive and negative points, pivotal in defining 

the decision boundary. 

• Hyperplane: Positioned at the center, this line serves as the dividing boundary between 

classes. 

• Margin: This refers to the gap between two parallel lines, signifying the width of the 

separation between classes [17].   

 

 

 

 

 

 

 

F. Artificial Neural Network 

Artificial Neural Network (ANN) utilizes Back-propagation (BP) as a supervised learning 

strategy to train deep neural networks. Through BP, the network adjusts neuron weights based 

on calculated errors, facilitating learning from the training process. ANN represents a blend of 

supervised, unsupervised, and reinforcement learning techniques. Figure1.3   illustrates an 

ANN with multiple layers. The input layer, denoted by i variables such as input1, input2, to 

input n, receives inputs. Hidden layers, represented by h variables h1, h2, to hn, process these 

inputs. Finally, the output layer comprises o variables, labeled as output1 to output n [17].  

Figure 1.2: Support Vector Machine. 
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1.2.2. Unsupervised Learning 

Unlike supervised learning, unsupervised learning algorithms operate without labeled inputs, 

meaning there are no corresponding outputs provided. Essentially, the goal of an unsupervised 

learning algorithm is to uncover patterns, structures, or knowledge within unlabeled data by 

clustering sample data into distinct groups based on their similarities. These unsupervised 

learning techniques are extensively utilized in clustering and data aggregation tasks. In the 

subsequent sections, we will present comprehensive descriptions of commonly employed 

unsupervised learning algorithms, including k-means and self-organizing map [18].   

a) K-Means Clustering 

K-means stands out as a straightforward unsupervised learning algorithm adept at addressing 

clustering problems. The method offers a simple approach to categorize a dataset into a 

specified number of clusters. The core concept revolves around defining k centers, each 

representing a cluster. Strategic placement of these centers is crucial as their positioning 

significantly impacts the clustering outcome. Hence, the optimal strategy involves positioning 

the centers as far apart from each other as possible [20].   

 

 

Figure 1. 3: Artificial Neural Network 
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b) Self-Organizing Map (SOM) 

SOM, also known as Self-Organizing Feature Map, is a widely recognized unsupervised neural 

network model frequently employed for tasks like dimensionality reduction and data clustering. 

Typically, SOM comprises two layers: an input layer and a map layer. When utilized for data 

clustering, the number of neurons within the map layer corresponds to the intended number of 

clusters. Each neuron within the map layer possesses a weight vector [18]. 

1.2.3. Reinforcement learning 

Reinforcement learning is a machine learning technique that involves training an agent to make 

decisions based on feedback from the environment. It is a way to solve optimal control 

problems without having a model of the environment. The agent interacts with the 

environment, detects its state, and receives reward signals, as it gets closer to its goal. The agent 

uses these rewards to determine successful actions and learns to choose the right action given 

any state of the environment. Reinforcement learning has been successfully applied to tasks 

like game playing and robot control. It serves as a common language for engineers, biologists, 

and cognitive scientists to exchange their findings in goal-directed behaviors. Deep 

reinforcement learning techniques have also been developed, which use deep learning 

algorithms to solve complex uncertain tasks with continuous action and state spaces. The 

decision to use single-agent or multi-agent reinforcement learning depends on the problem and 

environment complexity. 

Figure 1.4: K-Means Clustering 
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1.3. Deep Learning 

Deep learning, a subset of machine learning, utilizes artificial neural networks (ANNs) to 

analyze complex patterns and adapt to dynamic environments. Unlike traditional ML models, 

deep learning can process unstructured data such as text, images, and audio, making it a 

powerful tool for automation [21]. 

 It has gained significant traction in areas such as computer vision, natural language 

processing, speech recognition, and robotics. Neural networks, which are loosely inspired by 

the structure and function of the human brain, form the core of deep learning systems. Deep 

neural networks—those with multiple hidden layers—are particularly powerful, as their depth 

allows them to capture intricate relationships between inputs and outputs. This capability has 

led to breakthroughs across many industries, including autonomous driving and healthcare. 

However, deep learning comes with challenges, such as the need for large datasets, substantial 

computational power, and limited interpretability of models. Despite these hurdles, deep 

learning continues to evolve and holds tremendous promise for the future of artificial 

intelligence and technology. According to [22], the general architecture of a deep neural 

network presented as follow: 

 

 

 

 

 

 

 

• Neurons: Neurons serve as the fundamental components of neural networks. An artificial 

neuron, also referred to as a perceptron, operates as a mathematical function. It takes one or 

Figure 1.5: Single-neuron perceptron model [22]. 
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more inputs, multiplies them by corresponding weights, and then aggregates these values. 

The resultant sum is then passed through an activation function, yielding the output of the 

neuron. 

• Weights: Weights are pivotal in determining the significance of features in predicting the 

target outcome. Each artificial neuron utilizes a set of weighted inputs to generate relevant 

outputs. A positive weight associated with a feature indicates a direct relationship between 

that feature and the target outcome. Conversely, a negative weight suggests an inverse 

relationship between the feature and the target outcome. 

• Activation Function: Activation functions are crucial for the computational efficiency of a 

training model and facilitate the network in learning intricate patterns within data. The sum 

of weighted inputs is directed to the activation function, which establishes the threshold 

requirement for the summed input. This process aids in determining the activation state of the neuron. 

• Neuron Network: Deep learning involves the utilization of extensive and complex neural 

networks. These networks consist of numerous layers of neurons organized in a structured 

fashion, akin to the organization of cells in the human brain. The learning process within 

neurons occurs across these layers, where weighted inputs undergo multiple nonlinear 

transformations before producing an output. The schematic view of Deep Neural network (DNN) is 

as shown in Figure 1.6. In deep learning, the input layer receives initial data, while hidden layers 

process information between the input and output layers, ultimately producing the result. 

 

 

 

 

 

 

 

 

 

                       (a) DL Structure                                                            (b) DL Prformance   

 

Figure 1.6: Deep Neural Network. 
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Recently, two primary factors have contributed to the newfound utility of deep learning: 

1) Deep learning necessitates extensive sets of labeled data. For instance, the advancement 

of driverless cars demands vast collections of images and extensive hours of video footage. 

2) Deep learning requires significant computational resources. Advanced GPUs offer 

parallel processing capabilities that are particularly efficient for deep learning tasks. When 

coupled with clusters or cloud computing, this enables development teams to significantly 

reduce the time required for training deep learning networks [23].  

Deep learning encompasses discriminative (supervised) and generative (unsupervised) 

approaches, with prominent models including CNNs and RNNs for discrimination and GANs 

and AEs for generation. The following section presents into various types of deep learning 

models. 

1.3.1. Convolutional Neural Networks (CNN) 

Convolutional Neural Networks (CNNs) represent a robust category of deep learning models 

extensively utilized across diverse applications such as object detection, speech recognition, 

computer vision, image classification, and bioinformatics. Furthermore, they have exhibited 

notable proficiency in tasks involving time series prediction. CNNs are structured as 

feedforward neural networks that exploit convolutional operations to extract salient features 

from data. Unlike traditional methodologies, CNNs autonomously discern and understand 

features from the input data, obviating the need for manual feature extraction . Inspired by 

visual perception, CNNs are designed to emulate the intricate processes of human visual 

cortex. Key elements of CNNs encompass the convolutional layer, pooling layer, and fully 

connected layer. Illustrated in Figure1.7 is a representative CNN architecture tailored for 

image classification endeavors [24]. 
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• Convolutional layer: The convolutional layer in CNNs extracts features from input data 

through convolution operations across multiple layers. Lower layers capture basic features 

like texture and edges, while higher layers identify more abstract features. Learnable 

convolution kernels, typically of equal length and width, slide over input feature maps to 

execute convolution operations, as illustrated in Figure1.7 [24]. 

• Pooling layer: The pooling layer, typically positioned after the convolutional layer, 

reduces network connections via down-sampling and dimensionality reduction, addressing 

computational load and overfitting. It enhances CNNs' ability to recognize objects amidst 

distortion by pooling various image dimensions, yielding more robust output feature maps. 

Various pooling methods like Max Pooling and Average Pooling contribute to this process 

[24]. 

• Fully Connected (FC) Layer: The Fully Connected (FC) layer is typically situated at the 

conclusion of CNN architecture. In this layer, each neuron establishes connections with all 

neurons in the preceding layer, akin to a traditional multi-layer perceptron neural network. 

Input for the FC layer is derived from the last pooling or convolutional layer, represented as a 

vector obtained by flattening the feature maps. Serving as the classifier in the CNN, the FC 

layer facilitates the network in making predictions [24].  

 

 

Figure 1.7: Convolutional Neural Networks. 
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1.3.2. Recurrent Neural Networks (RNN) 

In the field of machine learning, Recurrent Neural Networks (RNNs) are notable for their 

capacity to handle sequential data. Unlike conventional neural networks, RNNs possess a 

memory element enabling them to store information from prior inputs. This characteristic 

renders them well-suited for tasks involving temporal sequences, including but not limited to 

predicting stock prices, language modeling, and speech recognition. Recurrent Neural 

Networks are valuable tools for grasping the sequential arrangement of text, wherein the 

significance of each word hinges on preceding ones or sentences. This makes them apt for tasks 

such as language translation, sentiment analysis, and generating text. 

One drawback of basic RNNs is their limited short-term memory, hindering their effectiveness 

with long sequences. To address this issue, more sophisticated RNN variations have emerged, 

such as Long Short-Term Memory (LSTM), bidirectional LSTM, and Gated Recurrent Unit 

(GRU). 

 

1.3.3. Long Short-Term Memory 

Long Short-Term Memory (LSTM) is a widely utilized type of RNN architecture incorporating 

specialized units aimed at addressing the vanishing gradient problem. Within an LSTM unit, a 

memory cell possesses the capability to retain data over extended durations, with the regulation 

of information flow into and out of the cell orchestrated by three distinct gates. Specifically, 

the 'Forget Gate' discerns the retention of pertinent information from the preceding state cell, 

Figure 1. 8: Recurrent Neural Networks.      
 



Chapter 1                                                                          Preliminaries and Basic Concepts 

 

   

 

 19 
  

discarding obsolete data, while the 'Input Gate' governs the influx of new information into the 

cell state. Simultaneously, the 'Output Gate' dictates and manages the generation of outputs. 

Given its adeptness in resolving recurrent network training challenges, the LSTM network 

stands out as one of the most triumphant RNN implementations. The architecture of LSTM 

model is reflected in Figure 1.9. 

 

1.3.4. Auto-Encoder 

Deep autoencoders are unsupervised neural networks used to transform input vectors into 

corresponding outputs, enabling dimensional manipulation of data representation. They exhibit 

adaptability by learning compressed data encoding unsupervisedly and can be trained 

incrementally, layer by layer, reducing computational resources. These networks extract 

essential features from input data, with hidden layers having lower dimensionality for feature 

compression. As shown in Figure 1.10, the standard architecture includes an input layer for 

initial data, hidden layers for encoding with fewer neurons, and an output layer for 

reconstructing the input faithfully. 

Their utility extends across diverse domains, providing benefits in tasks such as data 

compression, anomaly detection, and feature learning. Operating without the need for labeled 

data during training, they function unsupervised, rendering them useful in situations where 

acquiring labeled data proves challenging. 

Figure 1. 9: Long Short-Term Memory. 
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1.4. Deep Reinforcement Learning 

Reinforcement Learning (RL) stands out among Machine Learning (ML) disciplines for its 

unique trial-and-error approach, where algorithms learn by interacting with their environment. 

Considered a vibrant field within artificial intelligence, RL is seen as a pivotal step towards 

achieving artificial general intelligence. Recent years have witnessed significant advancements 

in RL, particularly with the fusion of deep learning techniques, known as deep reinforcement 

learning. 

Figure 1. 10: Auto Encoder 

 

Figure 1.11: Deep Reinforcement Learning [28] 
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Deep reinforcement learning (DRL) is a cutting-edge approach that combines reinforcement 

learning with deep learning techniques, enabling machines to learn optimal behaviors through 

interaction with their environment. This fusion empowers DRL systems to navigate complex 

decision-making tasks across diverse domains such as healthcare, robotics, smart grids, 

finance, and more. In healthcare, DRL assists in disease diagnosis, treatment optimization, and 

personalized healthcare interventions. In robotics, it facilitates autonomous navigation, 

manipulation, and task execution. Smart grids benefit from DRL's optimization of energy 

production, distribution, and consumption. In finance, DRL revolutionizes algorithmic trading, 

risk management, and portfolio optimization. Despite challenges, DRL holds promise for 

transformative impacts on various industries by unlocking unprecedented capabilities in 

artificial intelligence. 

1.4.1. What is reinforcement learning? 

Reinforcement learning (RL) offers a broad strategy for addressing reward-driven challenges. 

RL seeks to emulate the manner in which humans acquire new knowledge, primarily through 

interaction with the environment rather than direct instruction from a teacher. For example, 

when a baby learns to wave hands, cry and laugh, it learns from the feedback from parents. 

When we drive a vehicle, we learn to turn left and right to avoid the crash of the vehicle on the 

road. RL serves as the mechanism through which machines acquire the capability to attain 

objectives through interactions with their environment. From a mathematical standpoint, RL is 

also framed as a problem of sequential decision-making and control. For instance, when driving 

a vehicle, we need to choose turning right or left every time after we make the previous 

decision. Reinforcement learning is one type of machine learning. In supervised learning, 

algorithms are developed to make outputs mimic the labels given in the training set. In contrast 

to supervised learning, offering supervision in RL poses challenges due to the lack of 

knowledge about the correct decisions. For instance, when driving a vehicle, it's impractical to 

assign labels to every image captured by the camera [25].  
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1.4.2. Markov Decision Process (MDP) 

An MDP serves as a mathematical tool in (deep) reinforcement learning, designed for tackling 

sequential decision-making challenges amidst uncertainty. It aids agents in devising optimal 

strategies within given environments to attain desired states efficiently. By employing MDP 

policies, agents adapt their actions based on environmental dynamics, aiming to enhance their 

performance. This optimization process revolves around a reward mechanism, wherein actions 

are prioritized according to their anticipated rewards. 

An MDP is characterized by a finite set of states, denoted as S, along with an action set A, a 

reward function Ra(s, s’), and a transition probability function P(s, s’). In real-world scenarios, 

the exact transition probability distributions are often unknown. Instead, simulators can be 

 

Figure 1.12: Reinforcement Learning 

 

Figure 1.13: Markov Decision Process 
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utilized to indirectly model the MDP by generating samples from these distributions, enabling 

the estimation of the transition probability function. Additionally, the model adheres to the 

Markov property, indicating that the next state solely depends on the current state and action. 

This property offers the advantage of eliminating the need to consider all states in the trajectory. 

It's crucial to appropriately translate the problem into an MDP formulation to facilitate analysis 

using Reinforcement Learning (RL). Key terms in defining the MDP include [26]:  

a) Environment: The environment represents the domain in which an agent or software 

algorithm operates and interacts. It receives inputs such as the actions taken by the agent and 

its current state, while producing outputs consisting of the next state and any associated 

rewards. This environment encompasses any entity that processes and influences an agent's 

actions and their resulting outcomes, including scenarios like games, healthcare systems, or the 

living environment of an agent. 

b) States:  States refer to the collection of environmental states, denoted as S, which consists 

of a finite set {s1, . . . , sN}, where N represents the size of the state space, denoted as |S| = N. 

A state serves as a distinct representation encapsulating all essential aspects within the problem 

being modeled [27].  

c) Actions: Actions, denoted as A, constitute a finite set {a1, . . . , aK}, with K representing 

the size of the action space, denoted as |A| = K. They are instrumental in influencing the 

system's state. The set of actions that can be executed within a specific state s ∈ S is indicated 

by A(s), where A(s) ⊆ A. In some systems, not all actions can be applied in every state, but in 

general we will assume that A(s) = A for all s ∈ S. In more structured representations, the fact 

that some actions are not applicable in some states, is modeled by a precondition function pre 

(precondition function):  S × A → {true, false}, stating whether action a ∈ A is applicable in 

state s ∈ S [27].  

d) Transition Function: The Transition Function determines the system's movement from 

one state to another upon applying action a ∈ A in state s ∈ S. This transition is governed by a 

probability distribution over potential outcomes. Represented as T: S × A × S → [0, 1], denoted 

by T(s, a, s′), it signifies the likelihood of transitioning from state s to state s′ after action a is 

taken. It's essential that T(s, a, s′) is non-negative and doesn't exceed 1 for all states s, actions 

a, and possible next states s′. Additionally, for each state s and action a, the sum of probabilities 

of all possible next states equals 1, ensuring a proper probability distribution. Alternatively, if 
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action a is not feasible in state s, T(s, a, s′) can be set to 0 for all s′ ∈ S. To establish a 

chronological sequence of actions, a discrete global clock is introduced, denoted as t = 1, 2, .... 

This allows for the distinction between different states (and actions) occurring sequentially 

during interactions. The system is deemed Markovian if the outcome of an action solely hinges 

on the current state, disregarding prior actions and visited states (history). Mathematically, this 

translates to P(st+1 | st, at, st−1, at−1, . . .) = P(st+1 | st, at) = T(st, at, st+1) [27 ]. 

e) Reward: The Reward function Ra(s, s’ ) provides a numerical value indicating the benefit 

an agent receives for being in a particular state after executing an action a ∈ A in state s ∈ S 

leading to new state s’ ∈ S. Rewards serve as indicators of the state's utility, offering higher 

rewards for favorable states and lower rewards for unfavorable ones. They serve as feedback 

for the agent, conveying positive or negative outcomes based on its actions. 

Figure1.14 denotes an MDP process, in each time step t, an action at is performed on a process 

in the present state st, and there is a transition to the next state st+1. A Reward rt is acquired in 

this transition. 

1.4.3. Q-Learning 

Q-learning is a well-established off-policy reinforcement learning (RL) algorithm that employs 

the Temporal Difference method. Off-policy learning implies that the agent learns from data 

generated by different policies or from past experiences, achieving high learning efficiency and 

sample utilization. In the Q-learning algorithm, for each state, denoted as ’s’, the algorithm 

records the Q-value for all feasible actions within that state in a data structure like Table 

1.1[28]. 

Q-table  a1 a2 …………….. an 

S1 Q( S1, a1) Q( S1, a2) …………….. Q( S1, an) 

S2 Q( S2, a1) Q( S2, a2) …………….. Q( S2, an) 

…………….. …………….. …………….. ……………..   

Sn Q( Sn, a1) Q( Sn, a2) …………….. Q( Sn, an) 

Table1. 1 .  Q-table 
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The learning process updates the Q-table iteratively. The Q value update 

step is given below: 

Q (st, at) ← Q (st, at) + α (rt+1 + γmax a∈A Q (st+1, at+1) - Q (st, at)) 

where γ ∈ [0, 1] accounts for the discount factor and can only take a value of 1 in very rare 

MDPs condition. α is learning rate, maxa∈A Q (st+1, at+1) is the maximum future reward for 

all actions in state st, (rt+1 + γmax a∈A Q (st+1, at+1) denotes true Q value and Q (st, at) is 

estimate Q value. Use this equation to iterate the Q values in the table until they converge. Then 

for each state, the action is chosen by referring to the maximum Q value in Q-table to obtain 

the optimal policy. The algorithm is described below: 

 

1.4.4. Deep Q-Network (DQN) 

In this section, we'll delve into one of the most widely recognized Deep Reinforcement 

Learning (DRL) algorithms known as Deep Q Network (DQN). Familiarizing oneself with 

DQN is crucial as numerous cutting-edge DRL techniques draw inspiration from it. Initially 

introduced by researchers at Google's DeepMind in 2013 within the paper titled "Playing Atari 

with Deep Reinforcement Learning”, the DQN algorithm was outlined along with its 

architectural intricacies. The authors elucidated its remarkable efficacy in achieving human-

level performance when playing Atari games [29]. 

The aim of reinforcement learning is to identify the optimal policy, which is the strategy 

yielding the highest cumulative reward (the total sum of rewards obtained in an episode). To 

Algorithm Q-Learning 

1:   Initialize Q(s, a) randomly 

2:  Repeat  

3:  Select action at based on an exploration policy (s, a) 

 4: Perform action at, observe reward rt+1 and new state st+1 

5: Q (st, at) ← Q (st, at) + α (rt+1 + γ maxQ (st+1, at+1) - Q (st, at)) 

6: st      st+1 

7: Until Termination  
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derive this policy, we begin by computing the Q-function. Subsequently, utilizing the Q-

function, we determine the policy by selecting the action in each state that maximizes the Q-

value [29]. In the case where the environment consists of a large number of states and actions, 

it will be very expensive to compute the Q values of all possible state-action pairs in an 

exhaustive fashion.  The optimal approach involves employing a neural network to 

approximate the Q-values, with this neural network referred to as the Q-network. When 

utilizing a deep neural network for this purpose, it is termed as a Deep Q Network (DQN). The 

Q function is denoted by 𝑄𝜃 (𝑠, a) where 𝜃 is the parameter of neural network. As Figure1.14 

shows, we just feed state D as an input to the network and it returns the Q value of all actions 

in state D, which are up, down, left, and right, as output. Then, we select the action that has the 

maximum Q value. Since action right has a maximum Q value, we select action right in the 

state D. 

 

Deep Q-Network (DQN) is an improved model-free Q-Learning approach for discrete actions 

that approximates the Q-funtion as Q (st, at; θ) through deep neural networks. The objective 

function is represented by the loss function that is shown in the following equation [28]: 

J (θ) = E(st,at,rt+1,st+1) [(yt − Q (st, at, θ))2] 

Where yt is the learning target: 

yt = rt+1 + γ max a′∈A Q (st+1, a′; θ
’
) 

Figure 1. 14: Deep Q-Network 
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A buffer known as a replay buffer is utilized to collect the agent's experience, and based on this 

experience, the network is trained. 

• Replay buffer 

The transition from a state s to the subsequent state s’, initiated by the agent's action a and 

followed by the receipt of reward r, is recorded in a buffer known as a replay buffer or 

experience replay, commonly denoted as (s, a, r, s’). This transition data constitutes the agent's 

accumulated experience, which is stored within the replay buffer across numerous episodes. 

The underlying principle of utilizing the replay buffer to retain the agent's experience is to 

facilitate the training of our DQN by sampling experiences (transitions) from this buffer.  

The agent's transition information is collected over many episodes and saved in the replay 

buffer. A random minibatch of transitions is sampled from the replay buffer and used to train 

the network.  Below is an illustration of a replay buffer [29]. Figure 1.15 shows the training 

flowchart of DQN. DQN maintains two networks 

: target network and evaluate network. 

 

 

 

 

 

 

 

 

 

 

Figure 1. 15: The structure of DQN with replay buffer 
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1.5.   Wireless Sensor Networks 

Wireless Sensor Networks (WSNs) are sophisticated systems comprising sensors, computing 

components, and communication devices designed to enable real-time monitoring, data 

collection, and response to events within a specific environment. Essentially, they serve as 

bridges between the digital and physical realms, facilitating seamless interaction and data 

exchange. WSNs have gained substantial momentum in recent years due to their diverse and 

expanding applications across various sectors [30]. They offer unparalleled flexibility and 

scalability, making them integral to modern information technologies. By leveraging 

advancements in sensor technology and wireless communication, WSNs empower users to 

gather crucial insights and make informed decisions based on real-time data. This 

transformative technology continues to evolve rapidly, driving innovation and reshaping how 

we interface with and understand our surroundings. 

1.5.1. What is a WSN? 

A Wireless Sensor Network (WSN) comprises distributed sensors and one or more sink nodes, 

also known as base stations. These sensors continuously monitor physical conditions like 

temperature, vibration, or motion in real-time, generating sensory data. Each sensor node can 

both originate and route data. In applications such as event monitoring, sensors transmit data 

to sinks when detecting specific events. Sinks then collect this data, which can be relayed to 

end-users through various means like direct connections, the Internet, satellite, or wireless 

links. Figure 1.16 illustrates a standard WSN architecture [31]. 
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Figure 1 .16: Typical WSN architecture [31]. 

1.5.2 WSN applications 

In recent years, sensors have become smaller, more affordable, and smarter, enabling wireless 

integration within networks for efficient communication. The design and infrastructure of 

wireless sensor networks (WSNs) are shaped by specific application needs, objectives, costs, 

hardware capabilities, and maintenance requirements. WSNs consist of distributed autonomous 

devices equipped with sensors to detect various parameters like temperature and sound across 

different applications [33]. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 .17: WSNs Applications [32]. 
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Initially developed for military use, WSNs are now predominantly applied in civilian sectors 

such as weather monitoring, healthcare, and traffic management. environmental monitoring, 

home automation, chemical and biological assault detection, smart grid deployment, 

surveillance, and many more. Wireless Sensor Networks (WSNs) are crucial in aquaculture 

and the oil industry, serving purposes such as data collection, offshore exploration, disaster 

prevention, tactical surveillance, and pollution monitoring. These networks play important 

roles in these sectors by facilitating diverse functions like gathering data, conducting offshore 

surveys, preventing disasters, conducting surveillance operations, and monitoring pollution 

levels [34].  

1.5.3 WSNs for Road Safety applications 

In road traffic safety applications, wireless sensor nodes play a critical role in accident detection 

and response. These nodes are equipped with advanced sensors like magnetometers and micro-

radars, enabling them to continuously monitor vehicle behavior and traffic conditions. By 

analyzing data in real-time, these sensors can detect sudden changes such as abrupt 

deceleration, rapid acceleration, or unexpected maneuvers that may indicate a potential 

accident. 

The data collected by these sensors is processed locally or transmitted to a central monitoring 

system. In the event of a detected anomaly, such as a collision or erratic driving behavior, alerts 

can be immediately triggered to notify authorities and emergency responders. This rapid 

response capability is crucial for reducing emergency response times and improving outcomes 

in accident scenarios. 

Moreover, wireless sensor networks contribute to overall traffic management by providing 

valuable insights into traffic flow, congestion patterns, and road conditions. By integrating 

these sensors into road infrastructure, such as traffic lights and signage, traffic control systems 

can be optimized to enhance safety and efficiency. 

The widespread adoption of wireless sensor technology in road traffic safety reflects its 

versatility and effectiveness in improving transportation systems. By leveraging these 

advanced sensor networks, cities and transportation agencies can implement proactive 

measures to mitigate accidents, enhance emergency response capabilities, and ultimately create 

safer road environments for drivers and pedestrians alike. 
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1.5.4 Challenges in Wireless Sensor Networks 

Wireless Sensor Networks (WSNs) are revolutionary systems that enable real-time data 

collection and monitoring in diverse environments. However, these networks encounter various 

challenges that impact their performance, reliability, and scalability. Understanding these 

challenges is essential for developing effective solutions to optimize WSN deployments and 

maximize their utility across different applications. Challenges in WSNs include [30]: 

1. Reliability: WSNs, being wireless networks, are susceptible to issues like packet loss, 

which can be particularly critical in applications such as chemical attack detection where data 

integrity is crucial. 

2. Power Consumption: Sensor nodes in WSNs are typically battery-powered, leading to 

limited node lifespan and emphasizing the need for energy-efficient designs across all aspects 

of network operation. 

3. Node Size: The push for miniaturization in WSNs presents ongoing challenges in developing 

smaller nodes that maintain or exceed the efficiency of larger counterparts, despite current 

sensor nodes already being as small as a coin. 

4. Mobility: Applications like vehicle tracking demand WSNs capable of dynamically 

changing routing paths and infrastructure to accommodate mobile nodes, posing significant 

challenges for network management and stability. 

5. Privacy and Security: Unlike wired channels, wireless communication in WSNs is 

vulnerable to unauthorized access and data interception, necessitating robust privacy and 

security measures to safeguard sensitive information and network integrity. 

1.5.5 WSNs and IOT in a smart city 

Wireless Sensor Networks (WSNs) are integral to the Internet of Things (IoT), providing 

connectivity, security, control, and awareness across diverse applications. These networks 

employ low-power, compact sensors to efficiently monitor and gather data from various 

environments. WSNs consist of numerous sensor nodes equipped with processing, detection, 

communication, and power components, collaborating to collect and transmit data. Despite 

their utility, WSNs face constraints like energy efficiency, processing power, memory, 

topology management, mobility, and lifespan limitations. Sensor nodes operate over short 

wireless ranges and autonomously organize into networks after deployment, often without prior 
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planning. Each node contains sensor modules for measuring physical parameters and essential 

components like battery, memory, processing, and communication modules. Energy 

conservation is critical due to limited battery life, with nodes employing various 

communication modes to optimize power usage. WSNs herald a transformative shift towards 

interconnected smart spaces, where miniature devices seamlessly integrate wireless technology 

into everyday life [35]. WSNs can be classified into different categories based on various 

criteria [30], as follows: 

• Deterministic and non-deterministic networks. 

• Static and mobile networks. 

• Single-sink and multi-sink networks.  

• Static-sink and mobile-sink networks. 

• Self-reconfigurable and non-self-configurable networks.  

• Single-hop and multi-hop networks.  

• Homogeneous and heterogeneous networks.  

Cutting-edge Artificial Intelligence (AI) and Machine Learning (ML) techniques are poised to 

revolutionize fully automated IoT applications. In smart cities, low-data-rate Wireless Sensor 

Networks (WSNs) play a crucial role in monitoring and managing diverse applications. Sensor 

nodes are the cornerstone of IoT technology infrastructure. Nonetheless, researchers face 

challenges in areas like power management, security, and data handling, prompting the 

development of innovative techniques and technologies to tackle these issues [36] [37]. 

1.5.6 WSNs and ML 

Wireless sensor networks (WSNs) operate in dynamic environments characterized by rapid and 

unpredictable changes, which can be influenced by external factors or intentional interventions 

by system designers. In response to these challenges, WSNs leverage machine learning 

techniques to adapt without the need for frequent redesigns. Machine learning enables WSNs 

to learn from data patterns and environmental cues, optimizing resource allocation and 

extending network lifespan [38]. By applying machine learning algorithms, WSNs can 

autonomously adjust sensor configurations, routing protocols, and data processing strategies to 

efficiently cope with dynamic environmental conditions. This integration of machine learning 

with WSNs enhances their adaptability and performance in real-world scenarios, ensuring 
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reliable operation and responsiveness in dynamic environments. Using machine learning (ML) 

techniques in wireless sensor networks (WSNs) offers several benefits: 

1. Adaptability: ML allows WSNs to adapt to changing environmental conditions and varying 

network dynamics without manual intervention, improving overall efficiency and performance. 

2. Enhanced Resource Management: ML algorithms optimize resource allocation within 

WSNs, leading to better utilization of energy, memory, and bandwidth resources, thereby 

extending the network's operational lifespan. 

3. Fault Detection and Diagnosis: ML models can detect anomalies and faults in sensor data, 

enabling proactive maintenance and troubleshooting to prevent network disruptions. 

4. Predictive Analytics: ML enables predictive modeling based on historical sensor data, 

facilitating proactive decision-making and timely responses to emerging trends or events. 

5. Optimized Routing and Data Processing: ML algorithms can optimize data routing and 

processing within WSNs, minimizing latency and reducing energy consumption. 

6. Security and Anomaly Detection: ML techniques enhance network security by identifying 

and mitigating security threats, such as intrusion detection and prevention. 

7. Scalability: ML-driven automation and optimization enable WSNs to scale efficiently to 

accommodate growing data volumes and network complexity. 

Overall, integrating machine learning into wireless sensor networks enhances their intelligence, 

adaptability, and performance, making them more effective in various applications across 

dynamic environments. 

1.6 Internet Of Vehicles (IOV) 

Recently, there was much interest in Technology which has emerged greatly to the 

development of smart city. The Internet of Things (IoT) encompasses a global network linking 

countless small objects, enabling seamless communication between them. Within this vast 

network, all interconnected devices have the capability to interact with one another. However, 

when we focus specifically on connecting these small objects, particularly vehicles, over the 

internet, we designate it as the Internet of Vehicles (IoV). With the rapid growth of urban 

populations comes a corresponding surge in vehicle ownership, presenting significant 

challenges. Consequently, there arises a pressing demand for innovative traffic management 
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solutions based on IoV technology to address the complexities of modern transportation 

systems [39]. 

1.6.1 IOV’s Definition 

The Internet of Vehicles (IoV) represents a dynamic convergence of technologies, including 

Vehicular Ad-hoc Networks (VANETs), Internet of Things (IoT), and mobile computing. This 

emerging field envisions vehicles as intelligent nodes interconnected through the internet, 

facilitating seamless communication and data exchange. In this context, vehicles interact not 

only with each other but also with pedestrians and roadside units, creating a comprehensive 

network for information sharing and collaboration [39]. Moreover, the IoV has captured 

significant attention in the realm of intelligent transportation systems, promising to 

revolutionize the way vehicles connect with each other and with infrastructure. It aims to 

establish robust network connections, integrating various communication technologies to 

enhance the standard architecture of vehicle communication [40]. This transformative potential 

of IoV has spurred rapid market growth, with major automotive manufacturers such as BMW 

and Tesla already incorporating self-driving features into their vehicles. Furthermore, 

companies like Uber and Google are actively exploring self-driving mechanisms, indicating 

the widespread adoption and investment in IoV technologies [39]. As the automotive industry 

continues to evolve, it consistently introduces new features aimed at enhancing both comfort 

and safety on the roads. The Internet of Vehicles comprises the following elements: Vehicles,  

Figure 1 .18: The Internet of Vehicles scenario [41]. 
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Sensors, Roadside Units (RSUs), Infrastructure, Personal devices, and Human involvement. 

1.6.2 Communication architectures of IOV  

In IoV, the devices are vehicles, sensors, personal devices, cloud servers and infrastructure 

devices such as RSU and many more. In the literature, several different types of communications 

are discussed for IoV. The following illustrates the five of them (Figure 1.19) [42]: 

1. Vehicle-to-Vehicle (V2V) Communication: This involves vehicles exchanging data 

concerning speed, direction, location, braking, and stability to prevent accidents, alleviate 

congestion, enhance fuel efficiency, and optimize routes. 

2. Vehicle-to-Infrastructure (V2I) Communication: This entails data exchange between 

vehicles and roadside infrastructure like lane markings, road signs, traffic lights, and 

RSUs. V2I facilitates the development of applications aimed at bolstering safety, mobility, 

and environmental benefits. 

3. Vehicle-to-Cloud (V2C) Server Communication: This encompasses the exchange of 

information between vehicles and cloud servers, supporting applications such as security, 

firmware updates, and entertainment. 

4. Vehicle-to-Pedestrian (V2P) Communication: This includes communication between 

vehicles and pedestrians to avert potential accidents. V2P enables interaction between 

vehicles and pedestrians through applications on personal devices like smartphones and 

wearables. 

5. Vehicle-to-Sensor (V2S) Communication: This facilitates communication between 

sensors and vehicles, crucial for functions like collision protection by detecting obstacles 

and individuals in a vehicle's path, thus enhancing safety against accidents. 
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1.6.3 IOV-layered architecture 

Several variants of IoV layered architectures are presented, where the most comprehensive has 5-

layers: Objects (perception) (OL), Connection (CL), Artificial Intelligence (AIL), Application (AL) 

and Business (BL) layer. These layers are different from those of the classical TCP/IP architectures, 

but the layering principles are still preserved. 

a) Perception layer:  The first layer of the architecture is represented by the different types of 

sensors and actuators attached to vehicles, RSUs, smartphones and other personal  that collect 

information from the various elements (speed, position, tire pressure, oil pressure, direction, 

pollution levels, collision detection, forward obstacle, side obstacle, , temperature,  etc). The 

primary responsibility of the layer is to gather information regarding vehicle, traffic environment 

and devices. 

b) Connection layer: The second layer of the architecture is represented by a virtual universal 

network coordination module for heterogeneous networks involving WAVE, Wi-Fi, 4G/LTE 

and satellite networks, through which the perceived information from the lower layer is 

securely transferred to the artificial intelligence layer for processing. The connection layer 

ensures interoperability with all the available networks to support all the communication 

models (V2V, V&R, V&P, V&I). 

Figure 1. 19: Five types of vehicular communications of IOV. 
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c) Artificial Intelligence Layer: The artificial intelligence layer is represented by a generic virtual 

cloud infrastructure, working as an information management centre. It stores, processes and 

analyzes the information received from the lower layer and then takes decisions. Its major 

components are: Vehicular Cloud Computing (VCC), Big Data Analysis (BDA) and Expert 

System. 

d) Application Layer: The application layer (AL) contains smart applications (e.g., for traffic 

safety and efficiency, multimedia-based infotainment and web based utility). The AL include 

safety and efficiency applications (VANET legacy) and provides smart services to End Users 

(EU) based on intelligent analysis. 

e) Business Layer: The fifth layer of the architecture is represented by the operational management 

module of IoV. The major responsibility of the layer is to foresight strategies for the 

development of business models based on the application usage data and statistical analysis of 

the data. Different types of analysis tools including graphs, flowchart, comparison tables, use 

case diagram, etc., are the major part of the layer. 
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Figure 1 .20: The five-layers architecture of IoV. 
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1.6.4 Challenges in IoV 

The IoV system has to face different types of hurdles before it is adopted. All the critical issues 

need to be resolved before it is successfully adopted in the autonomous vehicle market. Some 

of the selected critical challenges in IoV are listed below [43].  

a) Delay Constraints: Timely delivery of safety-related messages is crucial in IoV applications, 

particularly during emergencies. Strict delay constraints are necessary, requiring minimal delay 

even at the cost of other factors. However, achieving such efficiency proves challenging with 

the current communication infrastructure. 

b) Lack of Standards: The absence of proper communication standards hinders the seamless 

exchange of information in IoV systems. Developing comprehensive standards is essential for 

transparent integration with existing protocols and further progress in system development. 

Integration of different communication systems is key to overcoming this obstacle. 

c) Network Connectivity: Poor and unstable network connectivity in remote areas poses a 

significant challenge to IoV systems. Reliable connectivity forms the backbone of such 

systems, necessitating intelligent and sustainable solutions to improve connectivity, 

particularly in rural regions. 

d) Fault Tolerance: IoV systems must exhibit fault tolerance, ensuring uninterrupted 

communication even in the presence of malicious vehicles. Establishing highly reliable 

communication networks is crucial for maintaining system integrity. 

e) Interoperability: Achieving interoperability among vehicles is a pivotal challenge in IoV 

systems. Addressing various interoperability issues, including handoff timing and optimal 

wireless network technology selection, is essential. Well-organized and scalable management 

and communication among vehicular nodes are necessary for effective interoperability. 

f) Security and Privacy: The integration of diverse technologies, services, and standards in 

IoV underscores the critical importance of data security and privacy protection. As an open 

and public network, IoV is susceptible to intrusions and cyber-attacks, posing risks of physical 

damage and privacy breaches. 

1.6.5 IOV Applications 

The Internet of Vehicles (IoV) encompasses a wide array of applications, including [44]: 
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• Enhanced Safety: This involves collaborative collision avoidance systems that utilize 

sensors to detect potential collisions and issue warnings to drivers. It includes the 

transmission of periodic status updates and emergency messages triggered by critical 

events like accidents, traffic congestion, or adverse road conditions. 

• Traffic Management: IoV promises to revolutionize urban congestion management, 

transportation logistics, and urban traffic patterns, thereby influencing our collective 

lifestyle and commuting experiences. 

• Rapid Crash Response: Connected vehicles can automatically transmit real-time crash 

data, including the vehicle's precise location, to emergency responders. This capability 

accelerates emergency response times, potentially saving lives in critical situations. 

• Convenient Services: Remote access to vehicles enables a range of services such as 

remote door unlocking and stolen vehicle recovery. Moreover, IoV facilitates 

transportation agencies' access to up-to-date traffic, transit, and parking data, 

streamlining the management of transportation systems and reducing congestion. 

• Infotainment: Connected vehicles offer a plethora of in-vehicle entertainment options, 

delivering streaming music and information directly through the dashboard, enhancing 

the driving experience with online connectivity and multimedia content. 

Additional applications encompass electronic toll collection, traffic guidance systems for safe 

navigation, autonomous vehicles, intelligent vehicle control mechanisms, preemptive crash 

avoidance systems, real-time traffic flow monitoring, and advancements in vehicle autonomy 

technologies. 

1.7 Cloud -Fog And Edge Computing 

Cloud computing stands as the predominant method for managing IoT data, yet alongside it, 

fog and edge computing have gained substantial traction. These alternative approaches aim to 

enhance data processing speed and efficiency, while also bringing intelligence closer to the IoT 

devices responsible for generating and acting upon data, such as sensors and actuators. In this 

discussion, we will conduct a side-by-side comparison of these three data technologies, delving 

into their distinctions, characteristics, and applications within the realm of Internet of Vehicles 

(IoV). 
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1.7.1 Cloud computing: 

Cloud Computing, an emerging technology in various fields, operates through internet-based 

computing. It facilitates hosting and delivering diverse software and services over the internet, 

tailoring computational resources to user demands and requirements. These resources 

encompass extensive storage, high-performance servers, diverse operating systems, and 

network capabilities [45]. At its core, cloud computing involves storing and accessing data and 

programs via the internet from remote locations, diverging from local storage and computing. 

This remote environment offers properties like scalability and elasticity, making it distinct from 

a mere remote machine. The metaphorical cloud represents the internet, enabling data and 

program access from anywhere, anytime, and via any device [46]. 

a) Cloud Essential Characteristics 

Cloud computing possesses five essential characteristics [46], presented below: 

Figure 1 .21: Cloud, fog and edge architecture. 
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1. On-demand self-service: Users can autonomously procure computing resources, like 

server time and network storage, without direct interaction with service providers. 

2. Broad network access: Services are accessible over the network via standard mechanisms, 

accommodating various client platforms, from mobile phones to laptops. 

3. Elastic resource pooling: Providers aggregate resources to serve multiple users through a 

multitenant model, dynamically allocating physical and virtual resources based on 

demand. Users generally lack control over the exact resource location but may specify it 

at a higher level of abstraction. 

4. Rapid elasticity: Resources can be swiftly provisioned and released, scaling out or in as 

needed. Users perceive these capabilities as unlimited and purchasable in any quantity at 

any time. 

5. Measured service: Cloud systems employ metering capabilities to optimize resource 

utilization. Usage is monitored, controlled, and reported, ensuring transparency for both 

providers and consumers across various services, such as storage, processing, and 

bandwidth. 

b) Cloud Service Offering Models 

The cloud offers three main service models: Software as a Service (SaaS), Platform as a Service 

(PaaS), and Infrastructure as a Service (IaaS), collectively known as the service-platform-

infrastructure (SPI) model of the cloud. 

1. SaaS: Users access applications hosted by providers over the internet, with the provider 

managing the underlying infrastructure. Examples include CRM and business analytics 

software. 

2. PaaS: Users deploy their applications on the cloud infrastructure using supported 

programming languages and tools. The provider manages the infrastructure, offering 

scalability and maintenance. Examples include Google App Engine and Microsoft 

Azure Services. 

3. IaaS: Users provision fundamental computing resources on a pay-per-use basis, 

including processing, storage, and networks. Users have control over the operating 

systems and applications, while the provider manages the underlying infrastructure. 

Amazon Web Services (AWS) is a notable IaaS provider. 
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c) Challenges & Issues 

Cloud computing, despite offering numerous advantages, also faces various challenges and 

issues. Here are some of the main ones [47]: 

1. Security: Data security is one of the primary concerns in cloud computing. Companies 

are often reluctant to move their sensitive data to cloud environments due to concerns 

related to privacy, regulatory compliance, and the risk of cyberattacks. 

2. Compliance: Companies must adhere to industry-specific regulations, which can 

complicate the migration to the cloud. Cloud service providers must also ensure they 

comply with compliance standards for data stored in their data centers. 

3. Integration: Integrating existing systems with cloud services can be a challenge. 

Companies may encounter difficulties connecting legacy applications to cloud services, 

leading to compatibility issues. 

4. Performance: Although cloud service providers have significantly improved their 

performance, some users may still experience delays due to network latency or other 

performance-related issues. 

5. Availability: Dependency on cloud service providers means that companies are 

vulnerable to service outages or unavailability. This highlights the importance of having 

business continuity and disaster recovery plans in place. 

6. Unexpected Costs: While cloud computing can offer cost savings; it can also result in 

unexpected costs. Companies need to be aware of fees related to bandwidth, additional 

storage, and other complementary services. 

7. Resource Management: Managing resources in the cloud can be complex, especially in 

multi-cloud or hybrid environments. Optimizing resource utilization while avoiding 

waste is a constant challenge. 

8. Data Sovereignty: Some countries have strict laws governing data storage and 

processing, which can pose data sovereignty issues for companies using cloud services 

located in other jurisdictions. 

9. Scalability: While the cloud offers great scalability, some applications may encounter 

scaling issues, especially if they were not designed to operate in distributed cloud 

environments. 
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10. Governance: Establishing effective governance policies for data management, 

compliance, and security can be complex, especially in cloud environments where 

resources are shared. 

It is important to note that these challenges vary depending on the specific nature of the 

business, its needs, and its cloud adoption strategy. Organizations must develop well-thought-

out strategies to mitigate these challenges and maximize the benefits of cloud computing. 

1.7.2 Fog computing 

Fog computing is a model that extends cloud computing to the edge of a network, allowing for 

compute, storage, and networking services to be provided between end devices and cloud data 

centers. It aims to address the latency and bandwidth issues of current cloud systems, as well as the 

scalability problems caused by the growth of smart devices. Fog computing adds another layer 

between edge devices and the cloud core, providing low latency and real-time interactive 

applications. It distributes computing, storage, control, and networking functions closer to users 

along a cloud-to-thing continuum. Fog devices, positioned between the cloud and smart devices, 

enable real-time applications, location-based services, and mobility support. Cisco has promoted 

the concept of fog computing in various areas, such as smart grid, connected vehicles, and wireless 

sensor networks. 

a) Application Areas of Fog Computing 

Fog computing, as highlighted by Cisco, is poised to significantly impact several critical 

domains. These include: 

1. Smart Cities: Fog computing enables real-time processing of data from various sensors 

and devices in urban environments, facilitating efficient management of resources and 

services. 

2. Healthcare: Fog computing enhances healthcare systems by enabling remote patient 

monitoring, facilitating timely medical interventions, and improving overall patient 

care delivery. 

3. Industrial Internet of Things (IIoT): Fog computing supports the IIoT by providing 

localized processing capabilities for data generated by industrial sensors and devices, 

thereby improving operational efficiency and enabling predictive maintenance. 
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4. Transportation: In the transportation sector, fog computing enables intelligent traffic 

management, enhances vehicle safety through real-time data analysis, and supports the 

development of autonomous vehicles. 

5. Retail: Fog computing facilitates personalized customer experiences in retail by 

analyzing customer data in real-time, optimizing inventory management, and enabling 

targeted marketing strategies. 

1.7.3 Edge computing 

a) Definition 

Edge computing, involves performing computation at the edge of the network, involving 

downstream data for cloud services and upstream data for IoT services. This "Edge" 

encompasses any computing and network resources between data sources and cloud data 

centers. Examples include smartphones, gateways in smart homes, Micro Data Centers 

(MDCs), and Cloudlets. The core concept is to conduct computing close to data sources for 

efficiency. While Edge computing and Fog computing are often used interchangeably, Edge 

computing emphasizes the Things side, while Fog computing focuses more on infrastructure. 

Edge computing is expected to have a significant societal impact similar to Cloud computing.  

Things can serve as both data consumers and producers. At the edge, they can request services 

and content from the cloud and perform computing tasks locally. Edge computing entails tasks 

like computing offloading, data storage, caching, processing, and distributing services from 

cloud to users. The design of the edge must meet efficiency requirements in areas such as 

reliability, security, and privacy protection [48]. 

b) Vehicular edge computing 

VEC, or Vehicular Edge Computing, combines modern Mobile Edge Computing (MEC) with 

conventional vehicular networks. VEC's primary goal is to relocate communication, 

computing, and caching resources closer to vehicular users. This approach offers the potential 

to address the growing demands of edge devices for low latency and high bandwidth by 

bringing resources nearer to where they're needed. Unlike traditional MEC setups, VEC faces 

unique challenges due to the fast mobility of vehicles, resulting in frequent and dynamic 

changes in network topology. Additionally, it must contend with complex communication 
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characteristics arising from the rapidly changing channel environment over time.  In VEC, 

vehicles possess specific communication, computation, and storage resources. Roadside Units 

(RSUs), acting as edge servers, are strategically positioned near vehicles to collect, process, 

and promptly store data. Given the limitations in capacity, vehicles have the option to transfer 

their computation-heavy and time-sensitive tasks to these edge servers. This offloading process 

significantly reduces response times and effectively eases the strain on backhaul networks [49].  

c) Vehicular edge computing architecture 

Typically, this architecture is composed of three layers, i.e., vehicular terminals as the user 

layer, RSUs as the MEC layer and cloud servers as the cloud layer. 

 
 

Figure 1. 22: Architecture of vehicular edge computing. 

• Vehicular terminals 

In VEC, vehicular terminals, primarily vehicles, exhibit distinct characteristics compared to 

regular mobile nodes. These features include: 

Sensing: Vehicles are equipped with various sensors such as cameras, radars, and GPS, 

enabling them to gather information from both inside and outside their environment. 

Communication: Vehicles can exchange data with other vehicles or Roadside Units (RSUs) 

through V2V (vehicle-to-vehicle) and V2R (vehicle-to-RSU) communication methods. 
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Computing: Apart from offloading computation tasks to edge servers or the cloud, vehicles can 

also handle some tasks locally. 

Storage: Vehicles have idle storage space that can be utilized to cache popular content, 

facilitating data sharing. 

• Edge servers 

Typically represented by RSUs in VEC, are strategically positioned along city roads. These 

servers boast abundant communication, computation, and storage capabilities compared to 

vehicles. Their main functions include receiving, processing, and potentially uploading data 

sent by vehicles. Utilizing computation offloading and caching techniques, RSUs effectively 

manage stringent performance demands. Additionally, they offer a range of services to 

vehicles, including video streaming, traffic management, and navigation assistance. 

• Cloud servers 

Cloud servers are situated in a distant cloud environment and are capable of receiving data 

from edge servers. In contrast to edge servers, cloud services possess extensive computation 

and storage capabilities and cover a wider geographic area. By gathering data from mobile 

nodes and edge servers, cloud servers gain a comprehensive overview of the covered region. 

This cloud-based approach enables global-level management and centralized control, 

facilitating optimal decision-making processes. 

d)   Vehicular edge computing advantages 

The key advantages of VEC are as follows. 

1. Response time: in VEC, comprising offloading, processing, and return time, is 

significantly reduced due to the proximity of edge servers to vehicular users, 

particularly advantageous for safety-critical applications. 

2. Energy efficiency: Smart vehicle proliferation leads to a surge in diverse vehicular 

applications, causing significant energy consumption, yet electric vehicles with VEC 

assistance can effectively support them despite limited energy capacity. 

3. Bandwidth: Smart vehicle data explosion necessitates diverse content requests, 

challenging cloud computing's bandwidth; VEC relocates resources to the network 

edge, relieving back-haul networks' strain efficiently. 
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4. Storage: In VEC, edge servers near vehicular users store data, facilitated by caching 

technology, alleviating storage pressure on distant clouds. 

5. Proximity services: VEC facilitates proximity services for vehicular users by 

leveraging edge servers, ensuring enhanced user experience while efficiently managing 

traffic. 

1.7.4 From Cloud Computing To Fog And Edge Computing 

Cloud computing enables convenient access to shared computing resources over the network, 

but faces challenges like bandwidth and latency issues due to increasing access devices. Fog 

computing extends cloud services to edge networks, providing closer proximity to user devices 

and emphasizing local data storage and processing. Similarly, edge computing allows 

computation at the network's edge, closer to data sources. While fog computing relies on 

interconnection among nodes, edge computing operates in isolated edge nodes, offering 

services near data sources to meet critical requirements like real-time optimization and security. 

Both fog and edge computing supplement traditional cloud computing by providing compute, 

storage, and networking services between end devices and the cloud [50]. 

1.7.5 Cloud-edge computing for the Internet of Vehicles (IoV) 

Cloud-edge computing is a collaborative approach that combines the capabilities of cloud and 

edge computing for the Internet of Vehicles (IoV). It involves offloading computational tasks 

from vehicles to cloud data centers or edge devices to improve resource utilization and 

minimize energy consumption. Various computational offloading schemes have been proposed 

to manage the coordination among IoT devices, the cloud, and edge computing in the context 

of IoV. Serverless vehicular edge computing (VEC) has emerged as a promising execution 

paradigm for time-sensitive applications in connected vehicles. It aims to offload 

computational load to edge devices, such as roadside units, using serverless computing 

technology. Additionally, a joint communication and computational resource allocation 

mechanism has been proposed to enhance resource utilization and scalability in VEC-enhanced 

IoV. 
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1.8 Conclusion 

This chapter introduces the main concepts addressed in this thesis. These include Machine 

Learning, along with various classic algorithms, Deep Learning and its subtypes with their use 

cases, Reinforcement Learning, and its integration with Deep Learning to create more powerful 

algorithms for solving complex dynamic systems. Additionally, we delve into the technology 

of WSNs, Internet of Vehicles and Computing. We also provide an overview of Cloud, Fog, 

and Edge Computing. 

The Intelligent Transportation System (ITS) is a vast domain where road safety is a crucial 

challenge. The application of artificial intelligence techniques in this domain has seen 

significant growth recently, especially with the emergence of new machine learning algorithms 

such as Deep Learning and Reinforcement Learning. 

For this reason, in the following chapter, we aim to provide an overview of the state-of-the-art 

works that combine AI and Intelligent Transportation Systems in general and specifically focus 

on machine learning applied to road accident prediction. 
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Chapter (2):  AI in accident risk prediction- State of the art 

2.1     Introduction 

Many researchers have explored the application of machine learning in traffic safety and 

accident risk prediction over the past few decades. This thesis primarily focuses on two key 

machine learning algorithms, namely deep learning and deep reinforcement learning, which 

are primarily applied to accident risk prediction in addition to classical methods. 

In this chapter, we provide an overview of the relevant state-of-the-art for each type of 

algorithm and how they are utilized in the accident risk prediction problem. We categorize 

previous works in each sub-field based on the techniques used, and summarize all the relevant 

state-of-the-art in a table at the end of each section. 

2.2    Traffic Accident risk Prediction Using Classical Techniques 

Numerous researchers have approached the prediction of traffic accidents risk by considering 

it as either a classification problem or a regression problem.  In this section, we will explore 

several studies that have utilized classical machine learning techniques to address this problem. 

The research presented in [51] discusses the development of accident prediction models using 

linear and logistic regression. It identifies suitable regression models for predicting fatalities 

based on the total number of accidents and analyzes specific scenarios like accidents at T-

junctions and those involving alcohol. A logistic regression model is created for accidents from 

2014 to 2019 to forecast fatalities. The research concludes by validating the effectiveness of 

the regression models in road safety modeling and accident prediction. In the same context, the 

paper [52] introduces a new framework for assessing car accident risk using ordinal regression, 

focusing on factors like weather and road conditions. It addresses the challenge of including 

data where accidents did not happen, using multinomial logistic regression. The study 

compares four ordinal regression methods using real accident data from the US and UK, finding 

that adjusting data quantity and using a specific approach improves risk assessment accuracy. 

The authors in [53] employed diverse analytical methods to bolster road safety measures. They 

utilized Kernel Density Estimation to pinpoint blackspots based on injury severity levels and 

develops a Multinomial Logistic Regression model to predict crashes involving vulnerable 

road users. Spatial and temporal analysis uncovers patterns in VRU-involved crashes, aiding 
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in the formulation of effective safety policies. Factors influencing injury severity of VRUs are 

assessed, alongside the identification of peak traffic hours impacting VRU injuries. Overall, 

the research offers insights crucial for targeted interventions and proactive accident prevention 

strategies, emphasizing the importance of nuanced spatial and temporal considerations in road 

safety initiatives. This paper [54] addresses the underreporting of African Road Traffic Injuries 

(RTIs) and identifies contributing factors to accidents in Addis Ababa, Ethiopia, such as 

pedestrian faults, illegal driver behaviors, and nighttime crashes. It utilizes an ordinal logistic 

regression model to analyze injury severity levels, providing insights into key determinants of 

crash outcomes. The findings emphasize the need for measures like strict law enforcement and 

driver training to enhance road safety and reduce injury severity. In the paper [55] the authors 

developed a predictive model for traffic accident severity on Indian highways using the random 

forest algorithm. a multi-step methodology was employed, involving data collection and 

preparation, feature selection, training a random forest model, tuning parameters, and 

evaluating the model using accuracy and F1 score, Their model achieved an overall accuracy 

of 67% on the training set and 41.47% on the test set. 

Support Vector Machine (SVM) has been used in multiple studies for road accident risk 

prediction. The paper [56] proposes a practical model using a mixed-support vector machine 

(SVM) with heuristic algorithms to forecast traffic casualties. Ten variables including time 

characteristics, weather factors, accident types, collision characteristics, and road environment 

conditions are considered. The SSA-SVM model is found to be most effective compared to 

other algorithms (GA-SVM, GWO-SVM, PSO-SVM) in casualty prediction. The study 

focuses on urban road traffic accidents, aiming to enhance prediction accuracy using SVM. 

Various attributes such as Week, Period, Weather, Road Conditions, Alarm Categories, Active 

Hit, Passive Hit, Collision Type, Road Section, and Road Type are analyzed for this purpose. 

This study [57] develops a severity causation network using information entropy and Bayesian 

network to analyze the relationship between risk factors and crash severity. Key factors for 

severity prediction are identified and used to predict injury and property damage levels. 

Selective factor utilization enhances prediction accuracy and operational efficiency in crash 

response, aiding in traffic safety improvement and casualty reduction. The findings offer 

valuable insights for crash severity analysis and response planning. Authors in this research 

[58] focused on analyzing road accident severity through the application of Support Vector 

Machine (SVM) and Artificial Neural Network (ANN) algorithms. Leveraging a Traffic-

crashes dataset, the study aims to predict the severity of road accidents. Findings indicate a 



   Chapter 2                                                 AI in accident risk prediction: State of the art 

 
  

 51 
  

notable discrepancy in accuracy rates, with the SVM algorithm achieving a significantly higher 

accuracy of 83.6% compared to the ANN algorithm's 73.3% in predicting accident severity. 

This highlights the SVM algorithm's potential in accurately forecasting road accident severity, 

offering valuable insights for the development of effective accident prevention strategies. 

Moreover, SVM was employed in an image classification approach to discern vehicles 

susceptible to accidents, showcasing its efficacy in accident analysis. In this study [59], the 

authors investigate the accident's impact and identify vehicles prone to accidents through image 

classification facilitated by machine learning. This method endows the system with the 

capability to autonomously learn and refine from the provided dataset without requiring human 

intervention or assistance. 

Another study [60] explores the use of Support Vector Machine (SVM) in safety critical 

applications, particularly in car crash scenarios like airbag control systems. Its objective is to 

demonstrate how modern products utilize machine learning (ML) to prevent unnecessary 

airbag deployment. Car safety applications heavily rely on detection algorithms and sensor 

systems for timely and accurate decision-making based on sensor signals. The study employs 

a multiclass SVM to enhance classification accuracy in full frontal crashes, comparing two 

methods: One-Versus-Rest and One-Versus-One, with the latter performing better. This 

improved classification facilitates the implementation of active and passive occupant safety 

features in the automotive industry. Overall, SVM has shown promise in road accident risk 

prediction, but its performance may vary depending on the specific context and factors 

considered in the analysis. 

By using several classic methods at the same time, the authors in the paper [61] tackle a 

pressing concern in road safety by employing machine learning techniques to predict the causes 

of traffic accidents. Their study is centered on analyzing the frequency of accidents and 

exploring the interplay between traffic incidents, road conditions, and environmental factors. 

To achieve this, the paper develops a robust accident prediction model leveraging machine 

learning algorithms such as Decision Tree, Random Forest, and Logistic Regression. By 

incorporating various elements such as weather, vehicle condition, road surface condition, and 

light condition, the model aims to accurately predict road accidents and forecast their severity. 

The evaluation of these models is conducted using key performance metrics including 

accuracy, precision, recall, and F-score, providing a comprehensive assessment of their 

predictive capabilities and effectiveness in addressing the challenges of road safety. 
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This study [62] investigates the impact of traffic accidents and injury severity considering three 

aspects: characteristics of daily travelers (e.g., age, sex), vehicle attributes (e.g., type, 

transmission), and road conditions (e.g., pavement quality, intersection type). A proposed 

model [63] utilizes Arduino boards (ATmega328) and IR sensors to detect and prevent traffic 

accidents in two stages: initial accident detection using IR sensors and subsequent alerting of 

individuals via GSM (SIM900D) module messages. The study [64] compares injury severity 

prediction methods, including statistical models (multinomial logit and ordered probit) and 

machine learning algorithms (k-nearest neighbors, decision tree, random forest, support vector 

machine), using accident data from Florida. The evaluation aims to identify effective 

approaches for predicting accident injury severities. In [65] a strategy is proposed to address 

traffic congestion and reduce accidents through speed and lane-changing control systems. This 

includes measures such as lane management, speed regulation, and the dissemination of traffic 

information to enhance collision prevention and traffic flow management. 

Road traffic accidents (RTA) are a major global concern, especially in low and middle-income 

countries, and are a leading cause of death in Rwanda. This study [66] used Random Forest 

(RF) and Support Vector Machine (SVM) models to predict short-term road accidents using 

police data. The models' performance was compared using MAE, MSE, RMSE, and the 

coefficient of determination (R²). The RF model outperformed the SVM model, showing higher 

R² values. Advancements in traffic sensor technology have enhanced short-term crash risk 

prediction. This study [67] improves existing models using a random multinomial logit model 

for key predictors and a Bayesian belief net (BBN) for real-time prediction. Tested on Tokyo 

expressways, it forecasts hazardous conditions within 4-9 minutes for specific segments, 

correctly predicting 66% of crashes with a false alarm rate under 20%. 

 

 

 

 

 

 

 

 

 

 

 
  



   Chapter 2                                                 AI in accident risk prediction: State of the art 

 
  

 53 
  

Table2. 1.Related work of application of Classical algorithms for accident risk prediction 

 

Authors DATA Methods Performances 

[1] 

New Zealand road accident 

data from 2016 - 2020 

(378820 rows) 

RF , DT, AdaBoost,                                              

XGBoost, LGBM, 

CatBoost 

Accuracy :                                                       

RF = 81.45 

DT = 74.12 

AdaBoost = 65.61 

XGBoost = 78.52 

LGBM = 76.94 

CatBoost = 69.68 

[51] 
India road accident data from 

2014–2019 (118 rows) 

Binary Logistic 

Regression   
 Cut-off probability  = 0.33 

[52] 

 

 US: road accident data from 

  2015 - 2016 (22380 rows  

and 17 features) 

 

 UK: 2018 (14593 rows and 

10 features) 

LR, DT, L. AT, L.SVR, 

K-NN 

Uk:   MSE (DT) = 0.199 

         MSE (L. AT)= 0.396 

         MSE  (LR)= 0.43 

         MSE  (L.SVR) = 0.387 

US :  MSE ( DT )=    1.145 

         MSE(K-NN)= 3.084 

         MSE  (L . AT)= 1.338 

         MSE  (L.SVR) = 2.247 

[53] 
4,439 road accidents in 

Portugal (2012-2015) 

 Kernel Density 

Estimation 

(KDE)   Multinomial 

Logistic Regression 

(MLR) 

Nagelkerke's R2 values of 37, 39, and 

29 for Aveiro, Porto, and Lisbon 

[54] 

8458 road  accidents   of 

Addis Ababa, Ethiopia, from 

(2017 to 2020)  

Ordinal logistic 

regression 

15.1% fatal, 46.7% severe, and 38.3% 

slight injuries 

[55] 
3257 road accident in India 

with 32 attributes 
Random forest  Accuracy of 67% , F1-score of 0.64  

[56] 
5000 road  accidents of  

Wuhan  

SVM with heuristic 

algorithms (GA, SSA, 

GWO,PSO) 

ACC: 

SVM = 0.60 

GA-SVM = 0.84 

SSA-SVM = 0.86 

GWO-SVM =  0.85 

PSO-SVM = 0.85 
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[57] 

>10,000 traffic 

accident datasets 

of USA 

Naïve bayes, RF, 

MLP, Ada boost 

NB – 74%  RF – 77% 

MLP – 77% 

AB – 75% 

[58] 

 Dataset of 

traffic accidents LasVegas 

region in the year 2016 

SVM, ANN 

ACC: 

SVM = 83.6% 

ANN= 73.3% 

  

[62] 
>300 datasets of 

KNN, DT KNN : 80.26% , DT :73.68% 

traffic accidents 

  

[63] 

5,000 datasets of 

NN, DT, RF, SVM 

Overall accuracy 

traffic accidents ranges from 

  44.7% to 80.5% 

[64] 

> 6,000 datasets of RF, LR, NB    LR:  74.5%  

Michigan traffic and Ad N B:73% 

Accidents Boost           Ad boost:74.5% 

                            RF: 75% 

[65] 

3,643 traffic Bayesian network overall accuracy 

accident data of and information ranges from 50 

China entropy to 90% 

[66] 
Accident data from 2016-

2019 in Rwanda whith an 

average of 5595 cases per 

year. 

RF, SVM 

RF:    R2 = 0.918, MAE = 11.925,                  

MSE = 268.386 and RMSE = 16.382      

SVM: R2 of 0.866, MAE = 14.175,                 

MSE = 440.268 and RMSE = 20.982. 

[67] 
6478 normal traffic condition 

data, Japan. 

Random multinomial 

logit (variable 

selection), Bayesian 

network (model) 

66% crash detection rate with less than 

20% false alarm. 

 

. 
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2.3    Deep Learning For Traffic Accident Prediction 

Artificial Neural Networks (ANN) offer superior precision and forecasting capacity for road 

accident prediction, outperforming traditional statistical models. They provide flexibility and 

can model non-linear functions without statistical simulation. Deep learning approaches like 

Recurrent Neural Networks (RNN) and Convolutional Neural Networks (CNN) have gained 

traction for their effectiveness in predicting road traffic accidents, attracting considerable 

interest from researchers across diverse scientific fields. Recently, with the rapid advancements 

and remarkable achievements in machine learning technologies, several recent studies have 

embraced deep learning methods for predicting traffic accidents. 

The study [68] contributes to the existing literature on motorcycle crash severity by 

investigating various deep learning (DL) algorithms to forecast the severity of accidents 

involving motorcycles. It aims to determine the most effective DL algorithm for this purpose. 

The research focuses on predicting the severity of injuries resulting from motorcycle crashes 

in Wyoming between 2006 and 2016, spanning a decade. This study overview and summarizes 

the different forms of neural network models such as the single layer perceptron (SLP) neural 

network, the multilayer layer perceptron (MLP) neural network, the radial basis function (RBF) 

neural network, the recurrent neural network, and the convolutional neural network used as a 

prediction method for the severity of road crash injuries. 

In order to enhance prediction accuracy, [69] introduced a novel model, the Traffic Accident 

Severity Prediction-Convolutional Neural Network (TASP-CNN), designed to consider 

interrelationships among various features of traffic accidents. The model incorporates the 

Feature Matrix to Gray Image (FM2GI) algorithm, which utilizes the weights of traffic accident 

features. This algorithm transforms individual feature relationships within traffic accident data 

into gray images, incorporating parallel combination relationships. These gray images serve as 

input variables for the TASP-CNN model. The Authors in [70] explores the efficacy of deep 

learning in predicting injury severity resulting from traffic accidents on Malaysian highways. 

Three distinct network architectures utilizing simple feedforward Neural Networks (NN), 

Recurrent Neural Networks (RNN), and Convolutional Neural Networks (CNN) were 

introduced. These architectures were optimized through grid search optimization to finely 

adjust the hyperparameters, aiming for models that provide accurate predictions with reduced 

computational costs. The findings revealed that, among the evaluated algorithms, the RNN 

model demonstrated superior performance. A novel Road Traffic Accident Prediction model 



   Chapter 2                                                 AI in accident risk prediction: State of the art 

 
  

 56 
  

(TAP-CNN) is introduced in [71], which leverages factors such as traffic flow, weather, and 

light to construct a state matrix describing the traffic conditions and utilizes a Convolutional 

Neural Network (CNN) model. The accuracy of this new model is evaluated using samples, 

and the experimental findings indicate that the TAP-CNN model outperforms traditional neural 

network models in predicting traffic accidents. 

The work in [72] employed human mobility data and historical traffic accident records in Japan 

to create a Stack Denoising Auto-Encoder (SdAE) model for assessing real-time traffic 

accident risk. This marked the initial application of deep learning for estimating traffic accident 

risk on a national level. However, the model generated only real-time accident risk maps, 

lacking suitability for near-future accident prediction. Additionally, it solely relied on GPS data 

from mobile phones, neglecting various other relevant factors.  Long Short-Term Memory 

(LSTM) and the Fully Connected (FC) network were utilized in [73] to predict the probability 

of future traffic accidents in Beijing. They considered a number of significant variables, such 

as the direction and speed of traffic, as well as the weather. However, the road level did not 

allow for the specification of the prediction's granularity. The study [74] introduced the Hetero-

Convolutional Long Short-Term Memory (HeteroConvLSTM) model for predicting traffic 

accident amounts in Iowa. This model incorporated spatial and temporal features, including 

time-invariant, time-variant, and spatial-graph features. However, the prediction was limited 

to a coarse-grained approach, constrained within grid cells spatially and daily prediction 

temporally. This limitation is not reflective of real-world situations, as traffic accidents 

typically occur near road networks. While the authors attempted to address this by using a road 

network mask layer to map the model's final outputs, the predicting process remained confined 

to grid levels due to the simplicity of the filter mask layer, which only performed a basic AND 

operation. 

A novel Deep Spatio-Temporal Graph Convolutional Network (DSTGCN) is proposed in [75]. 

The model consists of three components: a spatial learning layer, a spatio-temporal learning 

layer, and an embedding layer. The DSTGCN outperforms traditional and state-of-the-art 

methods in predicting traffic accidents, as demonstrated by experimental results on real-world 

datasets. In [76] IOT and computer vision were used for the development of a driver safety 

monitoring system that aims to alert drivers when they become drowsy and update their 

condition in a centralized database. The system measures the driver's concentration level by 

analyzing factors such as drowsiness and the position of their face in the frame. To address the 

limitations of existing methods, robust facial landmark detectors are utilized to accurately 
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detect the driver's face and eyes.   Algorithms are then employed to detect driver drowsiness 

and face position. The system averages the collected data to assess the driver's concentration 

level and utilizes their previous data to make predictions. This paper [77] presents an innovative 

data architecture influenced by images, designed to effectively capture intricate details of 

vehicular behavior at the microscopic level. To achieve this, a model for predicting accidents 

is developed for a specific segment of the Autopista Central urban highway in Santiago, Chile. 

The model is constructed by amalgamating multiple-input Convolutional Neural Networks and 

employs a combination of aggregated standard traffic data and the newly proposed image-

inspired architecture. 

The main objective in [78] is to develop a hierarchical deep learning-based model for 

estimating the risk of urban traffic accidents by considering factors such as aggressive driving, 

land use, and traffic facilities. The proposed model aims to overcome challenges in previous 

studies, such as the data imbalance problem and neglecting road environmental factors. The 

goal is to improve the estimation performance and provide a more accurate risk assessment, 

which can be used in traffic warning systems to prevent accidents and predict traffic accidents. 

Deep Convolutional Neural Networks (CNNs) in [79] trained on OpenStreetMap (OSM) 

images can accurately predict whether an area is high-risk or low-risk for road traffic accidents 

in Okayama Prefecture, Japan, based on the OSM image. Grad-CAM is also used to visualize 

the decision-making process of the trained CNN. A significance of traffic accident prediction 

for travel route design and urban safety is covered in the study [80]. It introduces the Spatial 

Gated Memory Network (SGMN), a proposed deep learning model to predict accident risk in 

urban areas. The model integrates real-time accident risk, traffic flow, and weather data to 

forecast high-risk sub-regions. The evaluation of the model's performance using real datasets 

demonstrates that SGMN surpasses commonly used memory neural networks such as RNN, 

LSTM, GRU, Convulsion, and Hereto-ConvLSTM. 

The study [81] presents a combination of machine learning and deep learning models, 

specifically Random Forest and Convolutional Neural Network, referred to as RFCNN. Its 

purpose is to predict the severity of road accidents. The proposed approach is compared to 

various base learner classifiers. The analysis utilizes accident records from the USA spanning 

from February 2016 to June 2020. The results obtained demonstrate that RFCNN greatly 

improves the decision-making process and outperforms other models. 

This article [82] presents a forecast of road accident severity using a novel deep learning 

approach that combines a deep-Convolutional Neural Network (D-CNN) and a Deep Recurrent 
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Neural Network (D-RNN). The identification of important features is accomplished through 

the utilization of CNN, enhancing the effectiveness of the models in terms of accuracy, 

specificity, and sensitivity. D-RNN stands as the most efficient and productive model, 

consistently yielding precise predictions in accident severity forecasting. The spacing between 

vehicles is identified as the most influential factor impacting the severity of accidents. The 

papers discussed in this subsection are summarized in Table2.2. 

The primary drawback of deep learning lies in its dependence on stable historical data, which 

is not renewable with each new event. This reliance on fixed datasets can limit the adaptability 

of deep learning models in dynamic environments where conditions may change rapidly. 

Furthermore, deep learning algorithms necessitate considerable storage and processing 

resources to handle the large volumes of data involved, adding complexity and costs to 

implementation. 
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Table2. 2: Related work of application of DL for accident risk prediction 

Authors DATA 
Input     (Independent 

variable) 

Output 

(Dependent variable) 
Method Performances 

[68] 

2,430 motorcycle crashes in a 

mountainous area in the United 

States over a 10-year period  (2006 

to 2016) 

AADT, geometric 

characteristics, winter 

conditions, area types 

Severity of motorbike 

accident 

 

RNN ,   MLP           

LSP 

RNN=0.74 

MLP=0.58 

SLP=0.53 

Error rate: 

RNN=29 

MLP=35 

SLP=37 

[69] 
Traffic accident’s data for an 8-

year period (2009–2016) from the 

Leeds City Council 

Street category, time of 

accident, number and type of 

vehicles, road surface, 

lighting conditions, climate 

conditions, casualty 

class, sex and age of casualty 

Severity of 

traffic accident 
TASP-CNN 

Slight accident = 0.893 

(Average 

Precision) serious 

accident = 0.248 

(Average 

Precision) fatal accident 

= 0.063). 

[72] 

300 thousand records of traffic 

accidents throughout Japan from 

January 1, 2013 to July 31, 2013. 

Traffic accident data includes 

attributes such as occurrence 

location, hourly occurrence 

time, GPS 

Severity can be graded as 

three levels, that is, slight 

injury (level 1), heavy 

injury (level 2) and fatal 

(level 3). 

Stacked denoise 

Autoencoder 

(SdAE), 

MAE =0.96  ;  MRE=  0.39   ;  

RMSE=1.00  . 
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[73] 
The traffic accident records of 

Beijing in the year 2016 

Traffic flow , traffic accident 

, geographical position 

weather , air quality , holiday 

,  time period, 

Severity level can be 

graded as slight injury 

(level 1), heavy injury 

(level 2) or fatal (level 3). 

LSTM 
MAE =0.58  ;  MRE=  0.38   ;  

RMSE=0.69. 

[75] 
Traffic accident records of Beijing  

from 2018/08/01 to 2018/10/31 

Traffic Accident Data 

(timestamps and locations ), 

GPS, POI Data,  

Meteorological Data , Road 

Network Data 

risk of next-period DSTGCN 

RMSE= 0.3439; PCC=  0.7445 ; 

Precision= 0.8213; 

Recall=0.8968; F1-Score= 

0.8573      ; AUC= 0.8508  . 

[78] 
Data from 2019-01-1 to 2019-12-

31 to do the experiments. The 

dataset consists of 3,650,000 cells. 

Flow of lane, speed of lane, 

vehicle type 

Binary classification (0 

for no accident and 1 for 

accident). 

CNN 

Accuracy  = 0.935   ;Precision= 

0.848  ; Recall=   0.631 ; 

F-Score= 0.724. 

[70] 

The 2009–2015 traffic accident 

data for the North–South 

Expressway (NSE),Malaysia 

Accident time, zone and 

location, collision type, 

surface and lighting 

condition, accident reporting 

Injury severities RNN ,CNN FFNN 

 

Accuracy: 

RNN=73.76 

CNN=70.30 

FFNN=68.79 

[79] 

OpenStreetMap images of traffic 

accident data Okayama   2010 to 

2021 

Open Street Map images 

Areas  :"high-risk" or 

"low-risk". 
CNN : VGGNet 

and  ResNet 
Accuracy: 90% 

[80] 
Datasets from New York City and 

Chicago 

The input data includes 

weather data, historical traffic 

accidents, and traffic flow 

data. 

Accident risk graph for 

the next hour. 
SGMN 

MSE=0.4418       RMSE=0.6646     

ACC=64.88      SPR=27.42 
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[81] 
4.2 million US car accident dataset 

from Feb 2016 to Jun 2020 

Temperature, wind, humidity, 

visibility, wind direction, and 

other variables 

Severity RFCNN 

• Accuracy: 0.991  

• Precision: 0.974  

• Recall: 0.986 F-Score: 0.980 
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2.4   Deep Reinforcement Learning for Traffic Safety 

In recent years, deep reinforcement learning (DRL), an advanced form of artificial intelligence, has 

gained significant importance in intelligent decision-making across various domains. DRL has found 

applications in robotics [83], healthcare [84], Natural Language Processing [86], and sentiment 

analysis [85]. In the field of transportation systems, DRL algorithms have been widely utilized, 

particularly in traffic control tasks. For example, DRL has emerged as the most popular machine 

learning methodology for traffic signal control [87]. This paper examines the issues of persistent 

congestion in dense traffic networks and the limitations of traditional Adaptive Traffic Signal Control 

(ATSC) in addressing them. It presents Reinforcement Learning (RL) and Deep Reinforcement 

Learning (DRL) as potential solutions, emphasizing their use of on-line learning and Deep Neural 

Networks (DNN) to tackle the dimensionality curse and approximate quality functions. The authors 

in [88] study proposes using the double actors and regularized critics (DARC) method, a state-of-

the-art reinforcement learning algorithm, for early accident prediction in autonomous driving. The 

DARC method outperforms existing state-of-the-art accident anticipation models. This work utilizes 

dashcam video as input and proposes the use of the DARC method for accident forecasting, resulting 

in predictions 5% earlier on average with improved precision. 

A novel technique named DRIVE (Deep ReInforced accident anticipation with Visual Explanation) 

is presented in [89] which simulates both bottom-up and top-down visual attention mechanisms in a 

dashcam observation environment. The proposed stochastic multi-task agent can be visually 

explained by attentive regions, and the method uses dense anticipation reward and sparse fixation 

reward to train the model with an improved reinforcement learning  algorithm. Experimental results 

show that the DRIVE model achieves state-of-the-art performance on multiple real-world traffic 

accident datasets. 

The authors in [90] explore the use of an end-to-end learning technique for self-driving cars through 

reinforcement learning. A framework is created to test various reinforcement learning methods in a 

simulated setting, using simulated front camera images as input and generating steering angle, 

accelerator, and brake pedal position as output. The intended behavior is acquired through interaction 

with the environment, and the reward function is fine-tuned to prioritize staying in a lane at maximum 

speed. Several deep reinforcement learning methods are evaluated, with Soft Actor-Critic identified 

as the most effective in terms of learning speed and adaptability to new environments. 
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The work in [91] focuses on modeling the decision-making and interactions among different vehicles 

on highways. The authors utilized Double DQN (DDQN) to train the host vehicle, and the study was 

carried out using the open-source simulation platform "SUMO - Simulation of Urban Mobility". The 

driving environment consisted of three lanes and 20 cars randomly distributed on the highway. The 

host vehicle continuously monitors the distance between itself and any obstacles (such as other 

moving vehicles) ahead as it travels. If there is a decrease in the distance between successive 

measurements, the host vehicle begins to apply the brakes to avoid a collision. The algorithm then 

adjusts the host vehicle's speed accordingly. 

To increase the safety of urban expressways, [92] suggested implementing a variable speed limit 

(VSL) system. It uses traffic data to assess crash risk in real time. When risk is high, the system 

activates VSL control to normalize traffic. This study addresses limitations in current VSL-based 

safety interventions. A CTM simulates traffic states based on existing detector spacing. A DBN is 

used in the RTCPM. Instead of predefined strategies, we use a deep Q-network for VSL control. The 

system reduced crash risk by 19% in the Tokyo Metropolitan Expressway. 

The significance of traffic accident prediction for travel route design and urban safety is covered in 

the study [93]. Unexpected critical situations can lead to severe collisions. This work reviews chain 

collisions and proposes a reinforcement learning-based strategy to prevent and mitigate crash 

severity. The safety efficiency of existing methods in driving security is also analyzed. A perception 

network structure is used to enhance decision-making, and simulations assess algorithm efficiency 

in different traffic situations. The findings aim to highlight the benefits of reliable autonomous traffic 

systems. 

In this research [94] the authors propose to train an agent to drive a simulated car in Unity ML-agents 

Highway by utilizing Policy Gradient. The approach produced good results and successfully trained 

the agent to navigate an environment that mimicked an autonomous car. 

This paper [95] studied a DRL agent for highway driving by training an EV to learn a driving policy 

through interaction with simulated traffic. The DRL agent is based on a modified version of the 

DDQN algorithm which is considered a state-of-the-art RL algorithm for discrete state and 

continuous action space optimal problems. 

Numerous accidents and fatalities occur due to reckless driving and increasing number of vehicles. 

Autonomous cars are seen as a potential solution. They need to be intelligent agents and capable of 

making decisions to prioritize people's lives. A proposed algorithm in [96] trains autonomous 
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vehicles to drive, overtake, and avoid collisions. The work is simulated using a TORC simulator and 

has shown expected performance. 

In order to improve the deep reinforcement learning method for traffic light control and to perform 

information modeling, this paper [97] first uses deep learning to estimate municipal traffic flow. The 

results show that algorithm-optimized timing control of traffic signals has a far bigger effect than 

conventional timing control, lowering the probability of traffic accidents and bringing municipal 

traffic engineering closer to the level of intellectualization. 

The DRL algorithm has proven highly efficient in solving complex decision-making problems that 

were previously beyond the capability of traditional machine learning techniques. However, when 

operating in a dynamic environment, such as in the case of traffic prediction and prevention, the 

algorithm requires frequent updates of the data being exploited in order to provide reliable 

predictions. Additionally, due to the significant storage and computing resources required, its 

application is best suited for deployment on a cloud platform. 

 

Table2. 3: Related work of application of DRL for accident risk prediction 

 

Authors Description Framework/Environment Algorithm 

[89]  

Utilizes the Soft Actor-Critic 

(SAC) algorithm for accident 

anticipation with visual 

explanations. 

PyTorch Soft Actor-Critic (SAC) 

[90] 

Implements an end-to-end 

learning technique for self-

driving cars through 

reinforcement learning. 

Town03 map from Carla with 

Python 
Q-Network (DQN) 

[91] 

Develops a safe driving policy 

for a highway scenario with 

randomly distributed vehicles. 

SUMO 
Deep Q-Network 

(DDQN) 
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[92] 

Introduces a variable speed limit 

(VSL) system for enhancing the 

safety of urban expressways in 

real time. 

NA 
Deep Q-Network 

(DQN) 

[93] 

Proposes a reinforcement 

learning-based strategy to 

prevent and mitigate crash 

severity. 

Unity3D 

Proximal Policy 

Optimization (PPO), 

Soft Actor-Critic 

(SAC), Deep 

Deterministic Policy 

Gradient (DDPG) 

[94] 

Presents a method For building an autonomous vehicle 

navigation system on highways through reinforcement 

learning. 

Unity ML-Agents Toolkit Policy Gradient 

    [95] 

Proposes an RL method for ego 

cars (autonomous vehicles) to 

learn decision-making through 

simulated traffic. 

NA 
Deep Q-Network 

(DDQN) 

[97] 

Utilizes deep learning to forecast 

traffic flow and enhances the 

deep reinforcement learning 

algorithm for traffic signal 

control. 

SCATS and SCOOT 

Recurrent Neural 

Network (RNN) with 

Long Short-Term 

Memory (LSTM), Deep 

Q-Network (DQN) 

2.5    Conclusion 

The prediction of traffic accident risks is paramount for minimizing hazards and saving lives. Across 

the various research works cited above, a multitude of machine learning algorithms have been 

employed to establish an efficient traffic security system, spanning from classical machine learning 

models to newer algorithms inspired by neural network technologies such as deep learning and 

reinforcement learning. 

The Deep Reinforcement Learning (DRL) algorithm has shown exceptional efficacy in addressing 

complex decision-making challenges previously beyond the capabilities of traditional machine 

learning techniques. However, in dynamic environments like traffic prediction and prevention, the 

algorithm requires frequent data updates to ensure reliable predictions, leading to a substantial 

amount of data that needs to be stored. 

Our primary challenge lies in overcoming the constraints of computing and storage resources within 

vehicles to effectively used machine learning models. Moreover, the integration of Internet of 
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Vehicles (IOV), edge computing and cloud computing technologies can provide significant resources 

and real-time responses to drivers, thereby enhancing the Quality of Service (QoS) of the system. 

Nevertheless, combining complex concepts such as deep learning, reinforcement learning, IoV, and 

edge and cloud computing presents a significant challenge that demands careful consideration and 

innovative solutions. 
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Chapter (3): Collaborative Cloud.DRL - V. Edge.DL approach for 

Predicting Traffic Accident Risk 

3.1   Introduction 

In this chapter, we introduce our innovative approach employing machine learning techniques to aid 

drivers in adopting safer driving practices. Our primary objective is to anticipate accident risks in 

advance and notify drivers promptly to take appropriate action to prevent accidents. To achieve this 

goal, we have employed machine learning methodologies, specifically deep learning and deep 

reinforcement learning algorithms. Although deep learning and deep reinforcement learning are 

highly proficient in tackling intricate challenges within transportation systems, but they demand 

substantial resources for optimal performance. While the prevailing machine learning and Internet-

of-vehicles (IOV) solutions rely predominantly on cloud infrastructure due to its virtually unlimited 

storage and processing capabilities, challenges such as internet disconnection and latency hinder its 

practicality. Vehicular edge computing (V.Edge.C) emerges as a solution to mitigate these limitations 

by leveraging resources in proximity to end users. Our research proposes an advanced system that 

harnesses the power of Deep Reinforcement Learning (DRL) to forecast traffic accident risks. The 

proposed approach entails conducting the training phase in the cloud, utilizing its vast storage and 

computational resources alongside a comprehensive historical accident dataset. Subsequently, the 

trained model is deployed to vehicular edge devices for real-time inference during accident scenarios. 

Further details on the adopted approach will be provided below. 

3.2 Proposed System Architecture 

Our main goal is to develop a framework that leverages machine learning techniques to help drivers 

in safe driving practices. We plan to achieve this by analyzing large amounts of data from previous 

accidents. The proposed framework consists of an intelligent and collaborative driver assistance 

system, called  Intelligent and Collaborative Cloud-V.Edge Driver Assistance System (ICEDAS)  that 

operates between the cloud and a vehicle’s edge. Figure 3.1 illustrates the two layers in this 

framework, which work together to safeguard drivers and minimize the risk of road accidents. 

3.2.1 Cloud Layer 

Cloud computing is one of the most significant trends in the information technology evolution, as it 

has created new opportunities that were never possible before [98]. Due to its storage capacity and 
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computing power, we consider it the suitable location to generate the two machine learning models 

in our system. The first model is DRL, which is the main component in our framework. It runs on 

the cloud to predict accident risks. The second model is a DL model, also generated in the cloud and 

then deploys it to the V.Edge device for inference when needed, to cover the absence of prediction 

by the cloud. 

3.2.2 V.Edge Layer 

Vehicular Edge Computing (VEC), based on the edge computing motivation and fundamentals, is a 

promising technology supporting ITS services, and smart city applications [99].  In our system, the 

V.Edge is used to replace the cloud in certain cases, such as internet disconnection or bandwidth 

overload. Vehicles equipped with cameras, radars, GPS, and other devices can sense both the internal 

and external environment and collect various information such as speed, road quality, position, and 

more. These data are either sent to the cloud in real-time for prediction by DRL model, or used by 

the edge itself to replace cloud prediction in generating accident risk alerts using the inferred DL 

model. 

Figure 3.1:Cloud_DRL and V.Edge_DL system architecture 
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3.3   Cloud_DRL For Accident Risk Prediction 

In this section, we present the details of the proposed Cloud_DRL based risk prediction system. 

We first define possible scenarios then we present the structure of DQN and explain in detail 

how it works to train the learning model based on accidents data available in the cloud. 

3.3.1 Scenarios 

Many accidents occur when driving conditions suddenly change. ICEDAS must detect the 

potentially accident-causing events in advance and help the driver take the appropriate actions 

to avoid them.  To predict a traffic accident risk, we focus on many contributing factors that 

frequently cause traffic accidents.  They are often related to Drivers, Roads or Vehicles such 

as Driver’s age, Driver’s Sex, Driver’s experience, Road condition, Light condition, Weather 

condition, Type of vehicle, Service year, etc. When a sudden change in any of the car’s normal 

conditions is accurately detected, it may be difficult to adapt properly to this change, which 

may become a threat to the car.  In this case, we need an intelligent risk prediction system that 

adapts to different situations of this risk.  Markov Decision Process (MDP) is a powerful 

technique for modeling sequential decision-making problems.  We used MDP to formulate our 

problem.  In the MDP framework, an agent interacts with a given environment state by taking 

actions at discrete time steps.  In our system, we assume that the traffic environment follows 

the discrete-state.  Figure 3.2 describes this Markov process. The state (SN-risk) implies that 

the system did not detect any risk. Once a risk is detected, the state (SN-risk) is changed to the 

state (S-risk).  In practical scenarios, it is difficult to know the transition probabilities of the 

Markov process and the distribution of the environment states.  Therefore, reinforcement-

learning approach can be applied to learn the risk prediction policy through the interaction with 

the environment. 

 

 

 

 

 

            Figure 3.2: Traffic environment-state description by the discrete-state Markov 

process. 
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3.3.2     Key Elements of Cloud _DRL 

There are four key elements in this DRL system:  Cloud-Agent, observation/state, action, and 

reward scheme. We formulate traffic accident risk prediction problem as a reinforcement 

learning problem shown in Figure3.3, where the Cloud-Agent interacts with the vehicle traffic 

environment in discrete time steps (t0, t1, t2… tN).  The agent’s objective is to reduce the number 

of accidents. 

• Cloud –Agent: the agent observes the state of each vehicle, in its environment, defined by Sti 

at the beginning of time step ti, then selects an action Ati∈A to perform. The use of a deep 

neural network (DNN) model in this case is very appropriate due to the large number of states. 

The DNN take input observations about traffic accidents and produces action decisions that 

should be taken as its output.  The DNN architecture is a multilayer-network where the Cloud–

Agent explores the information (available in the Cloud) about various accidents that have 

occurred previously and recommend the best actions that must be applied to avoid similar 

accidents from happening again. 

• Action: refers to the decision recommended by a Cloud - Agent.  It is a feedback on a state of 

risk accident, which is one of the following actions (Stop, Deceleration, and No-Change of 

lane) as an output to avoid this risk of accident. 

• State: is an efficient representation of current road traffic condition.  The representation 

variables contain multiple parameters reflecting the circumstances of a specific zone of an 

 

Figure 3.3: Proposed Cloud DRL based accident risk 
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urban transportation network to precisely describe the complexity of its dynamics.  The agent 

learns through interacting with the environment episode by episode, where each episode ends 

with the prediction of accident risk for a vehicle, and the next episode starts. 

• Reward (penalty): the agent gets a reward Rti at the end of time step ti  as a result of the 

applied action Ati. The key requirement for a successful application of reinforcement learning 

is to design a reward function that frames the goal of an application and guides the learning 

towards a desirable behavior [100].  To reduce the traffic accident risk, it is reasonable to 

reward the agent at each time step for choosing an action that led to the avoidance of accidents 

[101].  

In this system, the reward indicates the degree of risk encountered by the drivers. If there is no 

risk (negligible), the reward is set to ‘0’, encouraging the maintenance of safe conditions 

through the action (No-Change). However, if a risk is detected and the appropriate action (such 

as stopping or decelerating) is not applied, a negative reward (penalty) is given to discourage 

unsafe behavior. Conversely, if the appropriate action (stopping or decelerating) is taken in the 

presence of a risk, the reward also remains ‘0’, as the situation is managed correctly, but no 

additional positive reward is given to ensure that the main goal remains avoiding risk situations 

altogether. This approach ensures that actions failing to manage risks are penalized. 

Accordingly, we define the reward (or penalty) Rti  for the agent choosing an action Ati  at time 

step ti  as follows: 

 

𝑅𝑡𝑖 = {
    0                ⟶   for ∶  No Risk, action (No − Change /appropriate action)

1 ∗ (N)  or  2 ∗ (N)  ⟶    for ∶  Risk, action (No − appropriate action)  
 

}       (3.1) 

Where N is a negative integer, which represents the severity of an accident.  The agent can 

perform one of these actions (No-Change, Deceleration or Stop) according to accident severity: 

                          {(0) Negligible risk, (1) Serious risk    and    (2) Fatal risk} 

The goal of reinforcement learning system is to achieve a safe road traffic system with no 

accident risk rate during the evaluation time (T).  This is represented by the Total-Reward  

(T_Rti≈ 0): 

 

𝑇_𝑅𝑡𝑖 = ∑ Rti
𝑇

𝑖=1

                                        (3.2) 
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3.3.3 Deep Q-Network (DQN) 

 

 

 

 

 

 

 

 

 

 

 

 

There are classical RL algorithms such as Q-learning, Policy Gradient (PG), Actor Critic, etc.  

Q-learning is one of the popular RL methods, which search for the optimal policy in an iterative 

fashion [102].  This algorithm is not suitable when we have a huge number of states and 

complex state transitions.  In this work, a DQN algorithm that uses a DNN is utilized for 

predicting accident risks, with the aim of enhancing both the speed and accuracy 

of predictions.  For each episode, the Cloud-Agent observes state Sti at the beginning of time 

step ti, then makes action decision according to vehicle state, and receives a sequence of rewards 

(Rti) after time steps. If the cloud agent aims to reduce vehicle road accidents, it is sufficient to 

choose an action that maximizes the immediate reward Rti. 

Since the agent aims to reduce the number of accidents in the long run, it needs to find an 

optimal policy noted (π∗) at every possible state-action pair. To find the optimal policy π∗, we 

need to find the optimal Q-value: 

Qπ∗(s, a) = maxQπ(s, a) 

                                                     = Q∗(s, a)                                 (3.3) 

When the state space is continuous, it is impossible to find the optimal value of the state-

action pair Q*(s, a) for all possible states. To deal with this problem, the DQN method was 

proposed, which approximates the state-action value function Q(s, a) using the DNN, i.e, Q (s, 

Figure 3.4: Cloud _DQL accident risk prediction 
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a) ≈ Qθ (s, a), where θ are parameters of the DNN that will be learned from raw traffic accident 

data. 

We construct such a DNN network, where the network input is the observed traffic 

environment state Sti and the output is a vector of estimated Q-values Q(s, a, θ) for all actions 

a ∈ A under observed state Sti. Figure 3.4 illustrates the Cloud_DQN module for traffic 

accidents prediction. Real-traffic accident data was collected in a buffer called a replay buffer 

to train our network. We build a neural network connected to several layers so that DNN 

approaches the Q-value. The agent learns parameters θ by training the DNN network to 

minimize the following mean squared error (MSE) as the loss function. MSE can be defined 

as the average squared difference between the target value and the predicted value [29], as 

shown in Equation (3.4): 

𝑀𝑆𝐸 =  
1

𝐾
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑘
𝑖=1  (3.4) 

Where y is the target value, 𝑦̂is the predicted value, and K is the number of training samples.  

Our target value should be the optimal Q value; the optimal Q value can be obtained by using 

the Bellman optimality Equation (3.5), where its Q value is just the sum of the reward (r) and 

the discounted maximum Q value of the next state-action pair [29]: 

𝑄∗(𝑠, 𝑎) = 𝑟 + 𝛶𝑚𝑎𝑥𝑄∗(𝑠 ′, 𝑎′) (3.5) 

 

Therefore, we can define our loss as the difference between the target value (the optimal Q 

value) and the predicted value (the Q value predicted by the DQN) and express the loss function 

L as (3.6) [29]: 

 

𝐿(Ө) = 𝑄∗(𝑠, 𝑎) − 𝑄Ө(𝑠, 𝑎) (3.6) 

 

Substituting Equation (5) in Equation (6), we get Equation (3.7). 

 

       𝐿(Ө) = 𝑟 + 𝛶𝑚𝑎𝑥𝑄(𝑠′, 𝑎′) − 𝑄Ө(𝑠, 𝑎)                (3.7) 

 

The Q value of the next state-action pair in the target is computed by the target network 

parameterized by θ’ and the predicted Q value is computed by the main network parameterized 
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by θ. The loss function is represented by Equation (3.8). 

𝐿(Ө) =
1

𝐾
∑ (𝑟𝑖 + 𝐾

𝑖=1 𝛶𝑚𝑎𝑥𝑄Ө′(𝑠 ′, 𝑎′) − 𝑄Ө(𝑠 , 𝑎))2(3.8) 

 

 

The target network has the same architecture as the main network but different weights.  Every 

N step, the weights from the main network are copied to the target network, where N is a 

hyperparameter that can be set by the user.  Using both networks leads to more stability in the 

learning process and helps the algorithm to learn more effectively.  To find the optimal 

parameter𝜃, we use gradient descent.  We compute the gradient of our loss function∇θL(θ)and 

update the network parameter 𝜃 as: 

𝜃 = 𝜃 − 𝛼∇𝜃𝐿(𝜃) (3.9) 

The algorithm for training the Cloud_DQN is defined on next page. 

Figure 3.5: deep reinforcement learning process 
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3.4   V.Edge_Deep Learning For Accident Risk Prediction 

In the realm of road safety, the fusion of Vehicular Edge Computing (V.Edge) with deep 

learning holds significant promise, particularly in the context of accident risk prediction. This 

innovative approach involves a two-step process: the initial training of a deep learning model 

in the cloud, leveraging expansive storage and computational resources, followed by the 

deployment and inferencing of the trained model on V.Edge devices situated within vehicles. 

The decision to offload inferencing to the edge is motivated by the need for real-time 

responsiveness and the constraints of space and computing resources in vehicular 

environments. 

Algorithm   DQN algorithm 

Initialize the main network with random weights θ; 

Initialize the target network with random weights θ’ by copying the main network parameter θ; 

Initialize the replay memory capacity as D; 

For episodes = 1, M do 

         (1) Randomly select the initial road traffic state s; 

    For t = 1, T do 

          (2) Observe the state s and select random action a with probability ε otherwise select 

                      a =argmaxQθ(s, a) ; 

          (3) Execute action a and move to the next state s’and obtain the reward r; 

          (4) Store experience(s, a, r, s’) in replay memory D; 

          (5) Randomly sample a minibatch of K transitions from the replay memory D; 

          (6) Compute the target value, that is, y= r + ɣ max Qθ’ (s’, a’) ; 

          (7) Compute the loss function value L (θ) with  (3.8) ; 

          (8) Compute the gradients of the loss and update the main network parameter θ using (3.9) ; 

          (9) Every N step update θ’  θ; 

End For 

End For 

https://fr.wikipedia.org/wiki/API_%C9%A3
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3.4.1 Data Collection at the Edge 

Data collection at the edge, within the context of Intelligent Transportation Systems (ITS), 

represents a pivotal advancement in enhancing road safety. In the modern transportation 

landscape, vehicles have transformed into sophisticated hubs of technology, equipped with 

advanced sensors and communication capabilities. These sensors, including cameras, radars, 

and GPS devices, enable vehicles to gather diverse information crucial for preventing 

accidents. They assess road quality in real-time, monitor weather conditions, analyze driver 

behavior, and engage in Vehicle-to-Everything (V2X) communication for sharing critical data 

with the broader traffic infrastructure. This rich and varied information empowers vehicles to 

proactively contribute to road safety, serving as the foundation for subsequent stages, where 

the data is transmitted to the cloud for further analysis and model training. The collaboration 

between edge and cloud computing marks the beginning of an innovative approach to accident 

risk prediction, leveraging the strengths of both domains.  

3.4.2 Cloud Processing and Training 

Since DL often requires high-performance computing resources (GPUs, CPUs and storage 

devices) for model training and execution on massive data [103], the resources available in a 

vehicle   may not fulfill this stringent requirement. Meanwhile, there is an imprecise trend: the 

more layers and parameters of a deep neural network, the more accurate the decision-making, 

Figure 3.6: Regional V.Edge_DL traffic accident risk prediction 
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which would undoubtedly increase the training and running cost of deep learning models 

(DLMs) [104].  In this case, the cloud is the best solution to handle massy traffic accident data 

due to its scalability, availability of resources, and cost-effectiveness. 

3.4.3 Model Deployment to the Edge (Vehicle) 

In some situations, like sudden accidents, where fast response is the most important variable in 

the accident risk prediction problem, it is not always effective to rely on the cloud to send risk 

forecasting. This is because predictions sent from the cloud to the driver may be lost due to an 

internet disconnection or a high latency. The best solution is to build a deep learning model 

based on massy data for traffic accidents risk prediction in cloud platform, and then transferred 

it to the V.Edge to cover this cloud prediction absence. Once the training is complete, the 

trained deep learning model is deployed back to the edge (vehicle). The model is optimized for 

efficient inference and adapted to the limited resources (memory and computation) available 

on the edge device. 

The deployed model on the edge (vehicle) performs real-time inference using the locally 

collected data. This inference involves predicting the likelihood of accidents based on the 

trained patterns and learned correlations. The edge (vehicle) can generate predictions about 

potential accidents in real-time. If a significant risk is detected, the system can trigger alerts or 

warnings to the driver, suggesting preventive actions. The V.Edge_DL can learn deep 

connections between traffic accidents and their spatial-temporal patterns. It aims to exploit 

historical traffic accident data to prevent future occurrences. 

3.5   Collaboration V.Edge _DL / Cloud _DRL 

In the pursuit of optimizing traffic safety, the collaboration between Cloud and V.Edge 

platforms emerges as a strategic approach. Acknowledging the inherent limitations of V.Edge 

in storing and processing vast amounts of Internet of Vehicle (IOV) data and generating Deep 

Learning (DL) models, a distributed learning system has been adopted. This collaborative 

effort aims to leverage the strengths of both platforms for an optimal prediction of traffic risks, 

ensuring a proactive and effective safety mechanism. The cooperation-communication between 

these platforms can have a vertical” V2C” (V.Edge- Cloud) or horizontal “V2V” (V.Edge–

V.Edge) type. 
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3.5.1 V2C (V.Edge-Cloud) 

 Vertical Collaboration for Enhanced Predictions; within this collaborative framework, the 

vertical cooperation between V.Edge and Cloud, known as V2C (V.Edge-Cloud), plays a 

pivotal role. The V.Edge device, facing constraints in storage and processing capacity, relies 

on models generated at the cloud level to enhance the quality of traffic safety predictions. 

Figure 3.7 illustrates the flow of information, emphasizing the symbiotic relationship between 

the Cloud and V.Edge. This vertical collaboration ensures that the cloud's expansive resources 

contribute to refining models, ultimately leading to more accurate and efficient traffic risk 

predictions. In the realm of V.Edge and Cloud collaboration, two distinctive forms emerge, 

each contributing uniquely to the synergy between these platforms: 

a) Communication (V.Edge - Cloud) 

Within the Internet of Vehicles (IOV) technology, sensors embedded in vehicles serve as data 

custodians, capturing intricate details about the road, vehicle dynamics, and driver behavior. 

This wealth of information traverses through the digital highway, conveyed to the cloud 

through the medium of V2C (Vehicle to Cloud) communication. In this context, the data 

becomes a potent tool for predictive analytics, empowering the Cloud_DRL entity to discern 

potential accident risks. In the event of an impending threat, the cloud swiftly dispatches alert 

messages to the driver, fostering timely responsiveness and accident prevention. 

b) Cooperation (Cloud - V.Edge) 

The collaboration between Cloud and V.Edge unfolds in a second form, where the cloud 

assumes the role of a mentor. High-end computing resources in the cloud become the training 

ground for deep learning models, refining their intelligence with vast datasets. Once honed, 

these models descend from the cloud and take residence in the V.Edge device. This 

orchestrated intelligence empowers V.Edge with the capability for real-time inference. By 

distributing the cognitive load, this collaborative approach ensures swift decision-making and 

processing, mitigating the risk of delayed responses during crucial moments.  This dual 

perspective encapsulates the versatility of (V.Edge - Cloud) collaboration, showcasing its 

adaptability in both communication-driven predictive insights and intelligence-enhancing 

model deployment scenarios. 
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3.5.2 V2V (V.Edge-V.Edge) 

In addition to vertical collaboration, the distributed learning system introduces horizontal 

cooperation denoted as V2V (V.Edge-V.Edge). This type of collaboration emphasizes the 

communication and information exchange between multiple V.Edge platforms. By fostering a 

network of interconnected edge devices, this approach facilitates seamless connectivity and 

information sharing among vehicles. The horizontal collaboration empowers V.Edge devices 

to collectively contribute to traffic safety predictions, creating a dynamic and responsive 

ecosystem at the vehicular edge.  Embedded a deep learning model into different vehicles 

enables effective collaboration and communication among them for accurate prediction of road 

accidents.  

a) Communication (V.Edge - V.Edge) 

In this scenario, vehicles transcend their individual entities and engage in collaborative 

communication through Vehicle-to-Vehicle (V2V) interactions. Enabled by wireless 

communication protocols, vehicles share crucial data such as speed, direction, and location 

with their counterparts on the road. This real-time exchange of information establishes a 

dynamic network where vehicles become aware of each other's status, fostering a collective 

effort to prevent potential collisions and address hazardous behaviors. The interconnected 

V.Edge communication ensures a synchronized response to the evolving conditions on the 

road. 

b) Cooperation (V.Edge – V.Edge) 

Beyond communication, V.Edge collaboration takes the form of cooperation between vehicles 

in scenarios where cloud connectivity faces challenges. In this collaborative model, a vehicle 

possesses the capability to refer to another vehicle for importing a deep learning model specific 

to its current zone. This is particularly valuable in situations of internet connectivity issues with 

the cloud. By sharing and leveraging local knowledge, vehicles collaboratively contribute to 

maintaining a robust and responsive system for accident risk prediction. This decentralized 

approach ensures continuous functionality even in the absence of direct cloud interaction. 
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3.6   Conclusion 

In conclusion, our chapter has delineated an innovative approach that harnesses the power of 

collaboration between cloud machine learning techniques and vehicular edge computing 

(V.Edge.C) to bolster driver safety practices. Our primary objective has been to anticipate 

accident risks proactively and swiftly alert drivers to avert potential collisions. By synergizing 

deep learning and deep reinforcement learning algorithms with the capabilities of cloud 

computing and vehicular edge computing, we've endeavored to address the intricate challenges 

within transportation systems more effectively. While these methodologies necessitate 

significant resources, the collaborative integration of cloud and edge platforms offers 

promising solutions to overcome limitations associated with standalone systems. Our proposed 

advanced system, driven by Deep Reinforcement Learning (DRL), is poised to accurately 

forecast traffic accident risks. By conducting training in the cloud and deploying models to 

vehicular edge devices for real-time inference, we aim to significantly enhance crash prediction 

and prevention. 

In this chapter, we have outlined the design of our idea and explored various scenarios of 

collaboration between the two platforms. In the subsequent chapter, we will advance to the 

implementation phase of this approach. 

Figure 3.7: Collaboration / communication (V. Edge -cloud) 
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4 Chapter (4):   Experiments and results 

4.1   Introduction 

The study is structured around a series of phases designed to guide the process from the initial 

selection of data to the ultimate goal of prediction. These phases emphasize a hands-on 

approach, particularly suitable for issues pertaining to detection and prediction rather than 

traditional systems engineering. The workflow consists of six key stages: data selection, data 

pre-processing, exploratory data analysis, transformation, modeling, and evaluation. The figure 

below visually represents the systematic flow through these essential phases, outlining a 

comprehensive journey from the deliberate choice of data to the final prediction stage. 
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Figure 4.1: Flow-Based Methodology for Data-Driven Prediction 



    Chapter 4                                                                                  Experiments and results 

 

 

 

 82 
  

4.2   Data Selection 

The datasets utilized in this study are sourced from the publicly available Open Data website 

of the UK government (http://data.gov.uk/), specifically published by the Department of 

Transport. This dataset encompasses accidents information spanning from 2005 to 2015. Three 

CSV-formatted files constitute this dataset (Accidents, Casualties, and Vehicles) in (.csv) 

format. Accidents is the main file, and through the Accident Index column, it has links to 

Casualties and Vehicles. The Accidents file comprises 1780653 rows and 31 columns. The 

Casualties file contains 2216720 rows and 14 columns, and the Vehicles file has 3004425 rows 

and 21 columns. The Big Data  presenting a significant challenge when loading it into CPU 

memory and addressing non-numeric entries during the cleaning process. With over three 

million entries, the dataset proves substantial enough for robust machine learning model 

training.   

The term "accident severity" in this dataset refers to the level of seriousness of the 

consequences of a traffic accident. Each recorded accident is categorized into one of three 

predetermined groups based on its outcomes: 1) Fatal, 2) Serious, or 3) Slight. Fatal accidents 

involve the death of individuals involved, while serious accidents result in severe injuries but 

not death. Slight accidents are those causing minor injuries or no injuries at all. 

4.3   Programming Language, Libraries And Used Environment 

The programming language chosen for our methods presented previously is Python. Python is 

a powerful and easy-to-learn programming language known for its high-level data structures 

and simple yet efficient approach to object-oriented programming. The decision to use Python 

offers several advantages, including: 

• Cost-effectiveness: Python is completely free, making it an economical choice for 

development. 

• Ease of Learning and Use: Python is renowned for its simplicity, making it easy for 

developers to learn, read, understand, and write code. This characteristic promotes a 

smooth learning curve for beginners and enhances productivity for experienced 

programmers. 

• Object-Oriented Flexibility: Python supports object-oriented programming but does 

not impose it, providing flexibility in coding styles based on project requirements. 

http://data.gov.uk/
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• Cross-Platform Compatibility: Python is compatible with all major operating systems 

and computer platforms, ensuring the portability of code across diverse environments. 

• Professional Quality Software: Python is widely used for developing professional-

grade software, thanks to its extensive libraries, frameworks, and community support. 

Python offers several libraries (packages) for data processing, creating machine learning 

models, matrix calculations, analysis, and data visualization, as illustrated in the table below: 

 

Library Main Role 

  
Numpy (np) Efficient manipulation of arrays and numerical computations. 

  
Pandas (pd) Data manipulation and analysis using structured data, like 

DataFrames. 
Matplotlib.pyplot 

(plt) 
Creating plots and data visualizations.  

Seaborn (sns) Advanced data visualization based on Matplotlib, with a focus 

on statistical graphics. 
Sklearn Comprehensive machine learning tools, including 

preprocessing, models, and metrics. 

Tensorflow (tf) A deep learning framework for building and training neural 

networks. 
Keras A high-level API integrated with TensorFlow for easily 

building deep learning models. 
Gym Toolkit for developing and comparing reinforcement learning 

(RL) algorithms. 
Baselines Implementations of RL algorithms ( DQN) and tools for 

benchmarking and logging. 
 

Random 
Generating random numbers, making random selections, and 

shuffling data. 

• Google Colab environment 

Google Colab, also known as "the Colaboratory," serves as a complimentary cloud service by 

Google aimed at fostering research in Machine Learning and Artificial Intelligence. It 

addresses the common hurdle in these fields, which is the need for substantial computational 

resources. The platform offers free GPU support, enabling users to enhance their Python 

programming skills while developing deep learning applications utilizing popular libraries such 

as Keras, TensorFlow, PyTorch, and OpenCV. Additionally, it seamlessly integrates with 

Google Drive for project storage. What sets Colab apart from other free cloud services is its 

Table4.1:  Python Libraries Utilized. 
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provision of GPU resources without any cost. Our work centers on a deep convolutional 

network, demanding significant training data points, which we managed within the Google 

Colab notebook environment. 

4.4   Data Pre-Processing 

Several preprocessing steps were meticulously executed on the dataset to ensure a robust and 

unbiased analysis. 

4.4.1 Data Loading 

The data loading process involved importing the dataset into a Pandas Data Frame utilizing the 

'pd.read_csv()' function. This function is a part of the Pandas library in Python, specifically 

designed to read comma-separated values (CSV) files. By passing the file path as an argument 

to this function, the data was efficiently loaded into memory, ready for further analysis and 

manipulation. 

4.4.2 Data Cleaning 

Data cleaning involves identifying and rectifying errors, eliminating duplicates, handling 

missing values, and correcting inconsistencies. Techniques such as 'drop_duplicates ()' and 

'dropna()' were employed to ensure data completeness and quality. To handle missing values, 

both 'NaN' (Not a Number) and '-1' were considered as indicators of missing data. 

4.4.3 Data Scaling 

Data Scaling, also known as feature scaling or normalization, played a crucial role in our 

dataset preprocessing, particularly due to the varied scales of attributes present. To ensure 

uniformity across all features, we opted for the Min-Max scaling technique. This approach was 

instrumental in standardizing the range of feature values, constraining them within the 0 to 1 

interval. By doing so, we not only achieved consistency but also set the stage for enhanced 

convergence and effectiveness of subsequent classification algorithms. This transformation 

effectively harmonized the disparate scales of attributes, laying a solid foundation for accurate 

and reliable model training. 
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4.4.4 Handling Class Imbalance 

Upon initial examination of the dataset, it became evident that there was a significant class 

imbalance within the target attribute, Accident_Severity. The majority of accidents, accounting 

for 85.1%, were categorized as 'Slight.' In contrast, serious accidents represented 13.6%, while 

fatal accidents constituted a mere 1.3% of the data. Such a skewed distribution poses a 

challenge as it can introduce bias during model training and diminish the predictive capacity, 

particularly for the underrepresented classes. To mitigate this imbalance, two techniques were 

employed: 

a. Under-sampling: In the first step, under-sampling was implemented using the 

RandomUnderSampler method from the imblearn library. This method randomly removes 

instances from the over-represented classes, thereby achieving a more balanced class 

distribution. 

b. Over-sampling: Following under-sampling, the Synthetic Minority Over-sampling 

Technique (SMOTE) from the imblearn library was applied to further balance the dataset. 

SMOTE operates by generating synthetic examples in the feature space, effectively reinforcing 

the minority class. By augmenting the dataset with synthetically generated data points, SMOTE 

ensures a more equitable class distribution, thereby enhancing the model's ability to generalize 

effectively across all classes. 

4.5  Exploratory Data Analysis (EDA) 

In this analysis process, an investigation of the dataset was conducted through the utilization 

of exploratory data analysis (EDA) techniques. This involved the utilization of various plots, 

graphs to visually illustrate the data, revealing underlying patterns and correlations among the 

variables present in the accident data. Through the EDA process, a more profound 

understanding of the factors impacting accidents was achieved, encompassing aspects such as 

weather conditions, types of roads, and the specific times of day when accidents occur. 

 

 



    Chapter 4                                                                                  Experiments and results 

 

 

 

 86 
  

 

Figure 4.2 (a) depicts a notable decline in road accidents across the UK spanning from 2005 to 

2015. Over this timeframe, there was a significant decrease in the total number of accidents. 

This decline underscores the efficacy of road safety initiatives and signals substantial progress 

in curbing accident rates throughout the specified period. Such a trend reflects positively on 

the effectiveness of implemented measures aimed at enhancing road safety and mitigating the 

occurrence of accidents. In Figure 4.2(b) a dataset analysis represented reveals that most 

accidents (85.1%) were classified as 'Slight.' In contrast, serious accidents comprised (13.6%) 

of the total, while fatal accidents were the least frequent, with a count of (1.3%) 

In the following section, we aim to visually represent the distribution of accidents across 

various factors, including human factors such as age and gender of drivers, environmental 

conditions such as light conditions, weather conditions, and road surface conditions, and 

finally, distribution across time by occurrences per month, day, and hour. To improve the 

clarity and effectiveness of our visualizations, we will create insightful graphs that provide a 

comprehensive understanding of the patterns and trends within each category. By analyzing 

these visual representations, stakeholders can gain valuable insights into the contributing 

factors and circumstances surrounding accidents, which can inform targeted interventions and 

preventive measures to enhance road safety. 

Figure  5.2: Time series plot of RTAs . 

 

(a): Time series plot of RTAs;     (b): Accident Severity Distribution 
 

Figure 4.2: Accident Distribution 
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4.5.1 Accident Distribution Across human factors 

By studying the human factors and impact, we can design new rules to the drivers depending 

on their age, sex, and many more individual or combined characteristics. 

An interesting finding from our analysis of this data is the age_of_driver. The analysis shows 

that the age band of the driver plays an important role in causing traffic accidents. Figure 4.3(a) 

shows the distribution o f age driver, it can be observed that the majority of drivers lie in the 

age band of [26-35, 36-45, 46-55]. Figure 4.3(b) shows the distribution for fatal, serious and 

slight severity accident over the sex of the driver. Our analysis shows that male drivers are 

higher than female drivers.    

 Previous studies in the field of traffic flow and incidents have modeled and simulated human 

factors and their impacts using mathematical modeling techniques. Although mathematical 

models are powerful, they often struggle to capture the complex and diverse nature of human 

behavior, limiting their ability to generalize effectively. The unpredictable interactions among 

various human elements on the road give rise to a wide range of scenarios that traditional 

models cannot fully account for. 

In this context, leveraging big data mining techniques emerges as a promising alternative for 

studying human factors and interactions. By extracting insights from large volumes of 

Figure 4.3:Accident Distribution Across human factors. 
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historical data, data mining provides a practical approach for forecasting and anticipating future 

traffic-related scenarios. 

4.5.2 Accident Distribution Across Environmental Conditions 

All of environmental conditions considered by this study showed a similar distribution (Figure 

4.4). Contrary to common belief, our analysis reveals that a significant 80% of accidents occur 

under favorable weather conditions with no winds. Intriguingly, the lowest incidence of 

accidents is observed in snowy conditions and high winds. It's noteworthy that this data pertains 

to the UK, where adverse weather, such as fog, typically prevails throughout the year. 

The same issue with the light condition, Contrary to the common belief that accidents 

predominantly occur in low-light or nighttime conditions, our analysis reveals a surprising 

trend. A significant 73% of the total accidents in our dataset occurred during daylight hours. 

Moreover, of the accidents that took place in daylight. This challenges preconceived notions 

about accident patterns and emphasizes the importance of addressing factors contributing to 

daytime incidents. The majority of accidents occurred under dry road surface conditions, 

comprising 69% of all incidents, followed by wet or damp conditions at 28%. Notably, a 

significant proportion of accidents also transpired in urban areas. This trend can be attributed 

to the dense traffic and prevalent congestion characterizing urban roadways, which elevate the 

risk of collisions. 
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4.5.3 Accident Distribution Across Time 

Figure 4.5 depicts crash frequency by month, by day of the week, and by hour of the day, 

revealing intriguing accident data concerning time patterns. In Figure 4.5(a), the accident rate 

is observed to increase at 8 a.m. and between 3 p.m. and 5 p.m., particularly during rush hours 

when traffic is at its peak, such as people commuting to and from work. In Figure 4.5(b), 

weekdays tend to have more incidents compared to weekends, possibly due to higher travel 

volume on workdays, which raises the risk of traffic accidents. Figure 4.5(c) summarizes the 

annual traffic accidents. The chart illustrates the accident rate by year. It appears that accidents 

fluctuate significantly throughout the year, peaking in the middle of the year. March and April 

have consistently had the highest number of accidents over the years. In contrast, May has the 

fewest accidents, with a decrease towards the end of the year. 

Figure 4. 4: Accident Distribution Across Environmental Conditions 
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Figure 4.5:Accident Distribution Across Time 

 

 

 

Figure 4. 5: Accident Distribution Across Time 
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4.6    Feature Importance 

In this section, an analysis is conducted on the feature space to determine feature importance 

and feature correlation within the generated dataset. Initially, a correlation measure is 

employed to explore the relationship between each feature and accidents. Subsequently, a 

machine learning feature selection method, such as the Scikit-learn Random Forest library, is 

utilized to identify the most relevant and correlated attributes that influence the learning 

process. These findings are illustrated in Figure 4.6. 

Table 4.2 presents the (20) important features description of this dataset, which will form the 

input vector of our ML models. 

 

 

 

 

 

 

 

 

 

Figure 4. 6: Attribute importance scores. 
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Feature Description 

Did Police Officer Attend 

Scene of Accident 

This feature indicates whether a police officer attended the scene 

of the accident, which may correlate with the severity or type of 

accident. 

Number_of_Casualties 

The number of casualties involved in the accident may be 

correlated with the occurrence of the accident, as more casualties 

may indicate a more severe accident. 

Vehicle Manoeuvre 

The type of vehicle manoeuvre performed at the time of the 

accident may be correlated with the likelihood of an accident 

occurring, depending on the manoeuvre executed. 

Vehicle Leaving 

Carriageway 

Vehicles leaving the carriageway may be more likely to be 

involved in accidents, correlating with the occurrence of 

accidents. 

Skidding_and_Overturnin

g 

Skidding or overturning vehicles may indicate loss of control, 

potentially correlating with accident occurrence. 

Sex of Driver 
The gender of the driver may correlate with accident occurrence 

due to differences in driving behaviour or risk-taking tendencies. 

Speed_limit 

Higher speed limits may be correlated with a higher likelihood of 

accidents occurring due to increased risk of loss of control or 

collision severity. 

Hit_Object_off_Carriagew

ay 

Objects struck off the carriageway may indicate erratic vehicle 

behaviour, correlating with accident occurrence. 

Table4. 2: Input factors 
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Urban_or_Rural_Area 

The type of area where the accident occurs (urban or rural) may 

correlate with accident occurrence due to differences in traffic 

density and road conditions. 

Light Conditions 

Poor lighting may influence the severity of accidents, especially at 

night or in tunnels, where reduced visibility can lead to more 

serious outcomes. 

Number of Vehicles 

The number of vehicles involved in an accident may be correlated 

with the occurrence of the accident, potentially indicating multi-

vehicle collisions. 

2nd_Road_Class 

The classification of the second road involved in the accident may 

correlate with the likelihood of accidents occurring, depending on 

road characteristics. 

Road Type 

The type of road where the accident occurs may correlate with 

accident occurrence, as different road types have varying risk 

factors. 

Hit_Object_in_Carriagew

ay 

Objects struck within the carriageway may indicate collision 

patterns, correlating with accident occurrence. 

Driver_Home_Area_Type 

The type of area where the driver resides may correlate with 

accident occurrence due to differences in driving habits or road 

familiarity. 

Vehicle Reference 
Vehicle reference information may correlate with the occurrence 

of the accident, depending on vehicle characteristics or condition. 

Junction Location 

Accidents occurring at junctions may be more common and 

correlate with accident occurrence due to the complexity of traffic 

movements. 
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Junction Control 

The type of control at junctions may correlate with accident 

occurrence, as different control types affect traffic flow and 

collision risk. 

Weather Conditions 
Adverse weather conditions may increase the likelihood of 

accidents occurring, correlating with accident occurrence. 

Longitude 

The geographical location (longitude) of the accident may 

correlate with accident occurrence due to varying road and traffic 

conditions. 

4.7   Evaluation Metrics 

It is necessary to identify and estimate the efficiency and effectiveness of Cloud_DRL and 

V.Edge_DL in predicting traffic accidents with the dataset.  Our models are validated in terms 

of: 

• Learning curves (Accuracy and Loss) for both of Cloud_DRL and V.Edge_DL. 

• Comparison with other algorithms in terms of 

evaluation metrics. 

• Efficiency and effectiveness in reducing the risk 

of road accidents with or without cooperation. 

The calculation of evaluation metrics is mainly 

based on (N x N) confusion matrix (shown in 

Figure 4.7) that is used to display the performance 

of the algorithm, where N is the number of target 

classes. This matrix compares the actual target 

values with those predicted by the machine 

learning model. To comprehensively measure the 

performance of the proposed models, accuracy, sensitivity, F1 score, and other indicators are 

used. The concept and formula for calculating each of these indicators are shown in Table 

4.3Where TP denotes true positive, FP denotes false positive, TN denotes true negative, and 

FN denotes false negative. 

Figure 4. 7:Confusion matrix. 
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Metric Formula Interpretation 

Accuracy (Acc) 
(𝑇𝑃 + 𝑇𝑁)

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
∗ 100% 

Gives the proportion of the total number of 

predictions that were correct 

Precision (Pre) 
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
∗ 100% How accurate the positive predictions are 

Recall 

(Sensitivity) 

𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
∗ 100% 

Gives information about the True Positives that 

are correctly classified during the test 

Specificity 
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
∗ 100% 

✓ Gives information about of True Negatives that 

are correctly classified during the test 

F1-score 
2 ∗ 𝑇𝑃

(2 ∗ 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃)
∗ 100% Hybrid metric useful for unbalanced classes 

4.8   Results And Discussion 

4.8.1 Data Splitting 

Training and testing on the same dataset are not good approaches. If we train and test on the 

same dataset, it might give high performance but this might lead to overfitting and the model 

might fail to generalize well. To avoid such problems, we split the datasets into training and 

Table 4.3: Main metrics for classification 

 

Figure 4.8:Experiment procedure. 
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test data. During the construction of our machine learning models, the dataset was divided into 

training dataset (80%) and test dataset (20%). 

4.8.2 Cloud_DRL Vs V.Edge_Dl learning curves 

Epsilon-Greedy Strategy: as illustrated in the transformations of deep reinforcement learning 

curves, the exploration-exploitation strategy requires a delicate balance between discovering 

new actions and exploiting known ones to maximize cumulative rewards. At its core, this 

strategy revolves around a parameter ‘epsilon (ε)’, which determines the probability of 

choosing a random action versus selecting the action with the highest estimated value based on 

previous experience. During exploration (when ‘epsilon’ dictates random action selection), the 

agent gathers information about the environment, ensuring it doesn't prematurely settle on 

suboptimal actions. In contrast, exploitation (when ‘epsilon’ favors choosing the best-known 

action) utilizes accumulated knowledge to maximize immediate rewards. This dynamic ensures 

that over time, the agent refines its decision-making by gradually shifting focus from 

exploration to exploitation as it learns more about the environment and the rewards associated 

with different actions. By striking a balance between these two approaches, the agent can 

effectively navigate uncertain environments while striving for optimal long-term performance. 

In Deep Q-Learning (DQL), the choice of hyperparameters is critical for guiding the learning 

process and ensuring the model's effectiveness, which are defined as follows: 

Table4.4: DRL hyperparameters. 
 

Parameter Description/Value 

State_size Input layer size:  number of features 

Action_size Output layer size: 3 (possible actions: stop, decelerate, No-change) 

Hidden Layers 3 layers  

Activation functions ReLU for hidden layers; Linear for output layer 

 
Optimiser Adam optimizer  

Memory_size Replay memory capacity: 512 

Gamma Discount rate for future rewards: 0.99. 
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Epsilon Initial exploration rate: 1.0. 

Epsilon_min Minimum exploration rate: 0.005. 

Epsilon_decay Decay factor for exploration rate: 0.995. 

 

• To build the best traffic accidents predictive framework, we used a Convolution Neural 

Network (CNN), which is one of the best classification algorithms based on artificial neural 

networks. CNN is designed to learn automatically and adaptively using multiple building 

blocks such as convolution layers, pooling layers, and fully connected layers. The set of deep 

learning model hyperparameters is described in the following table. 

 Table4.5: DL hyperparameters 
 

Parameter Value 

Input Layer number of features. 

Output Layer 3 neurons (1 per Casualty Severity class) 

Conv1D Layers 3layers:  64 filters 

Kernel Size 4 for both Conv1D layers 

Pooling MaxPooling1D with pool size 2 after each Conv1D layer 

Dense Units 64 → 32 → 3 

Activation Functions ReLU for hidden layers, Softmax for output 

Dropout 0.5 after first Dense, 0.3 after second Dense 

Optimizer Adam (learning rate = 0.001) 

Batch Size 64 

Epochs 20 (with early stopping, patience=5) 

Loss Function Categorical Crossentropy 

 The results obtained in terms of accuracy and loss for both models are displayed in Figure 4.9 

and Figure 4.10. 
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Figure 4. 10:Learning curves for DRL Model 

 

Figure 4.10: Learning curves for DL Model 

Figure 4.9:Learning curves for  DRL Model 
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4.8.3 Performance comparison 

The proposed models Cloud_DRL and V.Edge_DL are compared to other well know 

algorithms [104], such as Logistic Regression (LR), support vector machine (SVM), decision 

trees (DT), Random forests (RF), and XGBoost in terms of Accuracy, Sensitivity, Specificity, 

Precision, and F1-score measures. The experiment results are summarized in Table 4.6.  Figure 

4.11 visualized the results in Table 4.6. 

 

Table 4.6: Comparison of (Cloud_DRL, V.Edge_DL) with baseline. 

Classification 

Techniques 

Accuracy Sensitivity Specificity Precision F1 score 

Cloud_DRL 0.94 0.94 0.97 0.94 0.94 

V.Edge_DL 0.92 0.92 0.96 0.92 0.92 

LR 0.79 0.79 0.89 0.79 0.79 

SVM 0.80 0.80 0.84 0.79 0.79 

DT 0.88 0.88 0.94 0.89 0.88 

RF 0.91 0.91 0.95 0.92 O.91 

XGBoost 0.91 0.91 0.94 0.91 0.91 
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Figure 4.11:Visual comparison with baselines. 

• The confusion matrix is one of the most often used metrics for evaluating classification 

performance using predicted and actual or real labels. It is used to assess the model’s capacity 

to handle ambiguous labels. Figure 4.12 DRL(a), DL(b), LR(c), SVM(d), DT(e), RF(f), 

XGboost(g) depict the confusion matrix (CM) of the various techniques utilized. 
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Figure 4.12: Confusion Matrix Results of: DRL(a), DL(b), LR(c), SVM(d), DT (e), RF(f), XGboost(g). 
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4.8.4 Cloud-Edge Collaboration: A Flask-Based Implementation 

 

Figure 4.13: Cloud-Edge Communication Architecture for Accident Risk Prediction – Flask 

Implementation. 

 

This research proposes a novel cloud-edge collaboration framework for real-time vehicular 

accident risk prediction, leveraging the synergy between distributed edge computing and 

centralized cloud resources. The system integrates real-time data acquisition from vehicular 

edge nodes equipped with embedded sensors and advanced predictive analytics executed on a 

cloud server. By employing a deep reinforcement learning (DRL) algorithm, the framework 

predicts accident severity (classified as fatal, serious, or slight) and generates actionable 

recommendations (e.g., stop, decelerate, or maintain speed) to mitigate risks. This hybrid 

architecture ensures low-latency decision-making at the edge while harnessing the cloud’s 

computational capabilities for complex model inference, addressing the critical need for timely 

and accurate risk assessment in intelligent transportation systems (ITS). 

The proposed system is structured into two core components: the vehicular edge node and the 

cloud server (localhost). These components are seamlessly integrated using a RESTful API 

implemented with Flask, a lightweight Python web framework, facilitating efficient 

communication via HTTP POST requests. The following sections detail the design, 

implementation, and operational mechanisms of each component [105]. 

1) Vehicular Edge Node 

The vehicular edge node serves as the frontline data acquisition unit, simulating the real-time 

collection of sensor data from an instrumented vehicle. In this implementation, sensor data—
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such as speed, acceleration, proximity to obstacles, and environmental conditions—are sourced 

from a CSV file to emulate real-world vehicular telemetry. This data is transmitted to the cloud 

server (Localhost) through an HTTP POST request, a method chosen for its ability to securely 

encapsulate large datasets within the request body, unlike the URL-based GET method. Upon 

receiving the cloud server’s response a JSON object containing the predicted accident severity 

and recommended action, the edge node displays this information via a Tkinter-based graphical 

user interface (GUI) and executes the prescribed action (e.g., deceleration or stopping). 

o HTTP POST Request Mechanics: 

An HTTP POST request is a client-server communication protocol wherein data is embedded 

in the request body and sent to a designated server endpoint (in this case, 

http://localhost:5002/predict). Unlike GET requests, which append data to the URL and are 

thus limited in size and security, POST requests offer enhanced privacy and capacity, making 

them ideal for transmitting sensitive or voluminous sensor data. The edge node’s POST request 

triggers the cloud server to process the data and return a response, enabling real-time interaction 

critical for accident prevention. 

2)  Cloud Server 

The cloud server, implemented using Flask, constitutes the analytical backbone of the system. 

It receives sensor data from vehicular edge nodes via the /predict endpoint, preprocesses it into 

a structured format (e.g., a Pandas Data Frame), and applies a pre-trained DRL model to predict 

accident severity. The DRL algorithm, trained on historical accident data, dynamically learns 

optimal action policies to minimize risk, aligning with recent advancements in reinforcement 

learning for ITS. The predicted severity and corresponding action recommendation are 

encapsulated in a JSON response and transmitted back to the edge node, ensuring compatibility 

with heterogeneous systems. 

o Role of Flask: 

Flask facilitates the development of a lightweight, scalable RESTful API that handles HTTP 

requests efficiently. Upon receiving a POST request, the server extracts the sensor data, 

performs necessary preprocessing (e.g., normalization, feature extraction), and invokes the 

DRL model for inference. The use of JSON as the data interchange format enhances 

interoperability, enabling seamless integration with diverse edge devices. The server’s ability 

to process multiple requests concurrently underscores its scalability, a critical attribute for 

deployment in large-scale vehicular networks. 
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3) Operational Workflow 

The collaboration between edge and cloud unfolds as follows: 

1. The vehicular edge node collects and transmits sensor data to the cloud server via an HTTP 

POST request. 

2. The Flask-based cloud server processes the request, preprocesses the data, and applies the DRL 

model to predict accident severity. 

3. The server returns a JSON response containing the severity level and recommended action. 

4. The edge node interprets the response and executes the action. 

4.8.5 Cloud_DRL – V.Edge_DL collaboration 

Cloud_DRL, V.Edge_DL collaboration leads to efficient and effective prediction of traffic 

accident risk. The results obtained by each model individually and then together are shown in 

Figure 4.14.  

 

4.8.6 Discussion 

Figure 4.9 and Figure 4.10 represents the accuracy and the loss of both models Cloud _DRL 

and V.Edge _DL. Figure 4.9(a) plots the increment of Cloud_DRL accuracy in function of 

.epoch’s number; its accuracy starts very low and ends very high. The main reason of this 

Figure 4. 14: Cloud _DRL - V.Edge_DL Collaboration 
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distinction is due to a balance between the two explorations and exploitation strategies. At the 

beginning of the algorithm, each action is performed randomly, which is useful for helping the 

agent learns more about its environment. Whenever the agent takes more steps, the exploration 

decreases, and the agent starts to exploit more of the good actions that it has detected. Towards 

the end of the training process, the search space becomes very limited. Therefore, the agent 

concentrate more on the exploitation step. This leads to this significant increase in accuracy. It 

is the same similar justification for the loss curve Figure 4.9(b), which reduces the error to the 

minimum. 

DL has also shown better performance (Figure 4.10) , but DRL remains the strongest in solving  

dynamic problems where the environment changes over time and the optimal decision-making 

strategy may vary depending on the state of the environment. This poses challenges for 

traditional DL algorithm that lack the ability to adapt to changing conditions. 

To present how well our accident risk prediction models are performing, we compared them 

with other algorithms that use the same performance measures. Table 4.6 summarizes the 

obtained results when applying these machine learning algorithms including LR, SVM, DT, RF 

and XGBoost. We note that Cloud_DRL and V.Edge_DL give a high performance in term of 

Accuracy, Sensitivity, Specificity, Precision, F1-score measures. We can see that the Cloud 

_DRL achieved the highest degrees of accuracy 94%, Sensitivity94%, Specificity 97%, 

Precision 94% and F1-score 94%. After Cloud_DRL algorithm, the V.Edge_DL classifier  

generates a good result with 92 percent accuracy, 92 percent Sensitivity, 96 percent Specificity, 

and 92 percent  Precision and 92 percent F1-score ; where all the implemented ML methods 

also perform excellently. Only LR performs relatively poorly with accuracy of less than 80%. 

In analyzing the classifier outcomes via the confusion matrix (Figure 4.12), the discernment of 

each model in predicting accident severities became more transparent. The Deep 

Reinforcement Learning (DRL) algorithm classifier exhibited high accuracy in identifying 

accident severities, correctly classifying 99% of fatal accidents, 89% of severe accidents, and 

96% of slight accidents. These results highlight the effectiveness of the classifier in accurately 

recognizing different levels of accident severity. Similarly, an alternative Deep Learning (DL) 

model achieved promising results, with an accuracy of 98% for detecting fatal accidents, 88% 

for identifying severe accidents, and 91% for recognizing slight accidents. These findings 

demonstrate strong performance across various levels of accident severity. 
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In Figure 4.14, we tested our framework on a sample of past road accidents to evaluate its 

effectiveness in reducing the risk of traffic accidents by using equations (1) and (2) with (N= -

100), running it through 80 epochs.  We started by evaluating each model individually and then 

combined the two models to demonstrate the importance of their collaboration. As shown in 

Figure 4.14. The red curve in the graph shows the decrease in the risk rate of road accidents 

when only V.Edge_DL was applied, The risk value decreased from 8200 to 3000 over time; In 

contrast, when Cloud_DRL was used, the risk value decreased further to 2800, as shown by the 

orange curve. However, the best solution for reducing traffic accident risk was achieved by 

combining the two models, as demonstrated by the blue curve. With their collaboration, the 

risk level decreased to almost zero (1800). The same objective is represented by the histogram 

in Figure 4.14 (b), which shows the level of traffic safety that has been achieved by each model 

individually and by their collaboration. 

4.9   Conclusion 

In this chapter, we have demonstrated the effectiveness of our proposal, which involves 

collaboration between cloud and edge platforms to make a smart city safer and minimize 

accident rates. We utilized two main machine learning algorithms deep learning and deep 

reinforcement learning based on neural network concepts. The results obtained are highly 

satisfactory, as evidenced by the accuracy and loss curves of the two main algorithms, as well 

as in terms of accuracy, sensitivity, specificity, precision, and F1-score measures. They provide 

better results compared to classical machine learning algorithms such as logistic regression, 

decision trees, random forests, and XGBoost. The collaboration between the two algorithms, 

applied to historical accident data in the UK, also results in a significant reduction in the 

accident rate. 

 

 

 



General conclusion 

 

 

 

 107 
  

General Conclusion 

This part provides a summary of the contributions made in this thesis and outlines the attained 

results. Additionally, it proposes directions for future research and improvement. 

1. Summary 

Ensuring traffic safety in smart cities is a primary focus in the development of urban areas, 

necessitating innovative methods for managing and preventing traffic accidents. 

With recent advancements in Internet-of-Vehicle (IOV) technology, wireless communications, 

and computational systems, new opportunities have emerged for enhancing road traffic safety. 

Predicting traffic accident risk plays a pivotal role in achieving this objective, machine learning 

(ML) is considered as a promising tool for forecasting this risk. These all technologies offer 

drivers early warnings and valuable information to help them avoid potential hazards on the 

road. In this framework, we have employed machine learning methodologies, specifically deep 

learning and deep reinforcement learning algorithms. While deep learning and deep 

reinforcement learning are highly proficient in addressing intricate challenges within 

transportation systems, they require substantial resources for optimal performance. Therefore, 

exploring efficient resource utilization strategies is essential for their effective implementation 

in enhancing road traffic safety.  On the other hand, the data generated by the ensemble of IOV 

devices on the road is highly voluminous, making their collection and processing within the 

vehicle impossible. To address this challenge, a collaborative Cloud-V.Edge driver assistance 

system (ICEDAS) that utilizes machine learning-based IOV has been proposed. To leverage 

the advantages and mitigate the drawbacks of both platforms, the proposed framework includes 

two models. 

• The first model, CLOUD_DRL, achieves an accuracy of 94% and utilizes a substantial 

amount of crash data stored in the cloud. It suggests various preventive actions, 

including stopping, decelerating, or not changing lanes in cases of negligible risk. The 

cloud serves as a centralized location to aggregate all continuously generated data by 

IOV devices inside or outside of vehicles, making it an ideal location for training the 

two proposed ML algorithms (DL and DRL), leveraging the storage and computing 

capacity provided by this platform. 
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• The second model, V.Edge_DL, achieves an accuracy of 92% and is deployed at the 

edge (vehicle) to perform real-time inference. It provides a solution for cases of internet 

disconnection or bandwidth overload by utilizing locally collected data. This inference 

involves predicting the likelihood of accidents based on trained patterns and learned 

correlations. By leveraging edge computing, this model enables faster response times 

and reduces dependency on cloud resources, thereby enhancing the overall efficiency 

and effectiveness of the driver assistance system. 

To evaluate the effectiveness of the collaborative framework in reducing the risk of accidents, 

we conducted tests on a randomly selected sample of past road accidents, running it through 

80 epochs. The results obtained indicate that the collaboration between the two models 

significantly reduces the risk (from 8200 to less than1 800), surpassing the performance of 

either model alone. This demonstrates its capability to decrease the incidence of traffic 

accidents. 

2. Perspective 

The future work will also explore the synergies between machine learning and Cloud-Edge 

Computing to develop advanced systems for preventing accidents and enhancing road safety. 

By incorporating computer vision technologies, the system will be able to analyze images and 

videos captured from various sources such as vehicle-mounted cameras, traffic cameras, and 

drones. This analysis will enable the detection of hazardous situations, identification of risky 

behaviors among road users, and assessment of real-time road conditions. 

Furthermore, the integration of computer vision will enhance the system's ability to detect and 

respond to complex scenarios on the road, such as identifying pedestrians, cyclists, and other 

vehicles in challenging environments like low-light conditions or adverse weather. By 

leveraging the power of machine learning algorithms, the system can continuously learn and 

improve its accuracy in recognizing and predicting potential risks on the road. 

This approach holds great promise for further advancements, particularly in the field of self-

driving vehicles. By equipping autonomous vehicles with advanced computer vision 

capabilities, they can better perceive and understand their surroundings, leading to safer 

navigation and reduced accident rates. 

Moreover, beyond road safety, the system's capabilities can extend to other areas such as fire 

detection and industrial risk management. By adapting the algorithms and methodologies 
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developed for road safety applications, the system can be applied to analyze images and videos 

in industrial settings to detect potential hazards, monitor equipment performance, and ensure 

workplace safety. 
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