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Abstract

This thesis addresses the issue of optimal sizing for a renewable energy system in a microgrid, providing a
comprehensive analysis based on economic and technical aspects using multiple criteria and indicators. The
study focuses on financial evaluation, considering that a renewable energy system in microgrids represents an
economic project that requires a thorough feasibility econom and a comprehensive investment assessment.
To develop an optimal sizing design, the research introduces the main challenges associated with this process,
particularly the uncertainty resulting from measurement and calculation errors or the variable nature of
renewable energy systems. This issue is addressed using several methods, including sensitivity analysis, Monte
Carlo simulation, and stochastic modeling to predict future values and trends under uncertain conditions
across different criteria. These methods contribute to building an effective long-term sizing approach.
Additionally, the thesis provides a comprehensive evaluation of system performance in terms of energy produc-
tion, costs, and expected profits through a case study involving three different energy systems in microgrids
within the Biskra region. The findings indicate that the proposed approach effectively achieves optimal sizing
for these systems from both economic and energy perspectives. Consequently, it enhances system efficiency in

the long term, attracts investors to this sector, and fosters trust in renewable energy projects.

Keywords: Renewable energy system, Microgrid, Sizing,Financial assessement, Optimization, Uncertainty

Résumé

Cette thése traite du dimensionnement optimal des systémes d’énergie renouvelable dans les micro-réseaux, en
s’appuyant sur une analyse économique et technique. Elle met ’accent sur I’évaluation financiére, considérant
ces systémes comme des projets nécessitant une étude de faisabilité et d’investissement. Le travail identifie les
principaux défis liés aux incertitudes de mesure, de calcul et & la variabilité des énergies renouvelables. Pour
y répondre, il mobilise des méthodes telles que 'analyse de sensibilité, la simulation de Monte Carlo et la
modélisation stochastique, permettant d’élaborer une approche de dimensionnement efficace a long terme.Une
étude de cas sur trois systémes de micro-réseaux dans la région de Biskra montre que la méthode proposée
atteint un dimensionnement optimal, améliore I'efficacité énergétique et économique, attire les investisseurs et

renforce la confiance dans les projets d’énergie renouvelable.

Mots-clés: Systéme d’énergie renouvelable, Micro-réseau, Dimensionnement,Evaluation financiére, Optimi-

sation, Incertitude.
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INTRODUCTION

Motivation

The electricity sector is exposed to significant risks from various sources, such as
fuel markets, climate and energy policy, technology advancements, weather fluctua-
tions, and climate change. Gaining a comprehensive understanding of the effects and
unpredictability of these various factors is essential for making informed decisions on
long-term energy system planning and investment. The uncertainty surrounding these
factors can significantly impact the shift towards renewable energy sources and the
formulation of policies to facilitate this transition [1].

In recent years, the integration of renewable energy sources into microgrids has
grown significantly worldwide.This expansion is primarily driven by advancements in
renewable technologies and decreasing component costs. IRENA (International of Re-
newable Energy Agency) reports that the growing popularity of solar photovoltaic
systems has led to a substantial decrease in installation costs, ranging from 48% to 88
%. Similarly, onshore wind installations have seen price reductions of 69 % to 88 % [2].
At sime time, climate change has emerged as a global emergency, predominantly driven
by the extensive use of fossil fuels. Consequently, governments are increasingly invest-
ing in new renewable technologies and actively promoting the adoption of renewable
energy.

Nevertheless, global energy consumption is projected to reach 38,700 TWh by
2050 [3]. This significant energy requirement highlights the imperative to prioritize
renewable energy sources. The microgrid power system is proposed as a powerful ap-
proach for reducing carbon intensity and achieving global decarbonization goals.

Furthermore, the orientation towards electricity generation is shifting towards de-
centralized systems, which offer benefits in reducing energy losses. Today, microgrids
represent an effective solution for critical infrastructures, campuses, remote communi-
ties, island grids, or individual buildings such as factories, shopping malls, or academic

institutions [4].



Therefore, choosing the most efficient renewable energy system sizing necessitates
meticulously evaluating factors such as solar radiation, wind speed, and hydrological
conditions. The energy potential of these resources is contingent upon factors such as
geographical location, prevailing weather conditions, and the specific technology uti-
lized. Algeria maintains one of the most remarkable solar energy capacities worldwide,
with 2,000 hours of sun radiation per year and up to 3,900 hours in the highlands and
Sahara region [5].

The yearly worldwide horizontal irradiation in the northern zone is recorded at
3,000 Wh/m?; in the southern region, it surpasses 5,000 Wh/m? [5]. In addition, NASA
meteorological data shows that wind speeds in Algeria vary between 4 m/s and 8 m/s
[6]. Despite the significant solar and wind potential in regions like Algeria, renewable
energy adoption remains limited, with only 1.5 % of its electricity generated from
these sources [5]. Therefore, this difference highlights the critical need for optimized
renewable energy solutions, particularly through microgrids, where solar and wind
power are increasingly favored for sustainable energy generation. This thesis aims to
explore the optimal integration of these energy sources into microgrids, focusing on
enhancing efficiency, sustainability, and economic feasibility. Algeria is a significant
case study owing to its renewable energy potential, offering a practical framework for
assessing and designing efficient renewable energy systems.

Consequently, it is essential to determine the optimal dimensions for a renewable
energy system that can be effectively integrated into a microgrid. A thorough analysis
of each component’s specific environmental factors and costs is necessary to achieve

optimal efficiency and sustainability.

Research questions

¢ Research Question 1:

What is the process for determining the optimal dimensions and specifications for
incorporating renewable energy sources into microgrids? How can a systematic
approach be developed to achieve the most efficient size and design of renewable

energy systems in a microgrid?

e Research Question 2:

The second question concerns the factors that should be considered when de-
termining the methodology for achieving the optimal sizing of renewable energy

systems (RES) in a microgrid.

¢ Research Question 3:

What are the implications of ignoring uncertainty factors in the sizing of renew-

able energy systems for microgrids, and which decision-making frameworks are



most effective in addressing these gaps to ensure optimal system performance

and economic feasibility?

Research Question 4:

How can energy system investment planning enhance the integration of renewable
energy systems into microgrids by optimizing their sizing and operation to ensure

a reliable, cost-effective, and sustainable energy supply?

Objectives and Contributions of Dissertation

Objectives

The aims of this doctoral dissertation are outlined in the subsequent bullet points:

1.

ii.

1il.

1v.

The primary goal is to propose a systematic approach for choosing the most
suitable microgrid configuration by assessing the economic feasibility of different
combinations of renewable energy sources in a region with abundant renewable
energy resources and a significant inflation rate. What are these projects’ finan-

cial feasibility, and what are the reasons for their lack of investment?

The second includes a comprehensive financial analysis emphasizing investment
decision-making and risk analysis. The process involves assessing multiple finan-
cial indicators such as NPV, IRR, and DPB and conducting risk analysis. It
also entails defining cost criteria and economically feasible setups to promote a
sustainable and ecologically conscious energy future while mitigating financial

risks.

Enhance the sizing design by considering the issue of uncertainty. It may be
achieved by creating a model that captures the behavior of the factors influencing
the future design of hybrid renewable energy systems. Discuss the elements that
affect the sizing and design of renewable energy hybrid systems in the long term,
considering the uncertainty and volatility nature of these parameters over time.
More precisely, the parameters that have been chosen include information on
renewable resources such as wind speed and solar radiation, the demand for

power (load), and the inflation rate of the country for installations.

It is crucial to use a stochastic process to describe and depict uncertainty related
to these aspects. Where the approach is widely used in forecasting and control-
ling the risk associated with dynamic investments. By incorporating Geometric
Brownian motion into a stochastic process, the model accurately accounts for the
uncertainties related to these elements and improves the forecast parameters for

renewable energy systems (RES).



Contributions

The structure of this thesis highlights the key contributions of this research. It begins
by exploring renewable energy systems and microgrids, emphasizing the critical role of
sizing and design before their implementation. A comprehensive literature review is
provided to clarify the study’s scope and the methodology applied.

This research introduces a systematic approach to sizing renewable energy systems
(RES) in microgrids. The methodology consists of three main phases: techno-economic
assessment, financial analysis, and reliability evaluation through sensitivity analysis.
These steps ensure accurate and reliable outcomes, fostering trust among investors and
consumers.

Additionally, the thesis examines the challenges posed by uncertainty in microgrid
design. Various sources of uncertainty are identified, along with strategies to mitigate
their impact at both input and output stages. The proposed approach includes risk
assessment for financial metrics such as Net Present Value (NPV), sensitivity analysis
for discrete variables, and deterministic Monte Carlo simulations. To enhance forecast-
ing accuracy under fluctuating conditions, stochastic uncertainties are modeled using
Geometric Brownian Motion (GBM).

A case study conducted in Biskra demonstrates the proposed methodology by an-
alyzing three different microgrid configurations. This case study provides valuable
insights into renewable energy microgrid projects’ technical and financial viability and
showcases the practical application of the approach.

This PhD research presents a comprehensive framework for designing and sizing
renewable energy systems in microgrids of different scales. It offers an in-depth analysis
of both technical and financial aspects, reinforcing confidence among investors and
consumers. Furthermore, it advocates for increased public funding to support microgrid

projects, promoting their broader adoption and long-term sustainability.



CHAPTER 1

RENEWABLE ENERGY SYSTEMS INTO
MICROGRID

Chapter One presents an overview about the utilization of renewable energy systems
(RES). Through an examination of the obstacles and benefits of incorporating renewable
energy sources into microgrids, the chapter highlights the essential significance of the
sizing phase in the development and implementation of renewable energy systems. The
chapter examines diverse studies and methodologies for attaining optimal size. By re-
viewing related works and identifying research gaps for a more profound comprehension

of the intricacies associated with sizing renewable energy systems.

1.1 Introduction

Recently, an estimated 1.1 billion people lack access to electricity, representing ap-
proximately 17 % of the global population. Around 22 % of the total population living
in remote areas of impoverished and developing countries do not have access to elec-
tricity |7]. Germany has improved its power grid by incorporating various renewable
energy sources into its planned system. Consequently, it has successfully increased
its proportion of renewable energy sources (RESs) by 30 % but has yet to encounter
significant problems. It anticipates a complete transition to a 100 % renewable en-
ergy system by 2050 [8]. Renewable Energy Sources (RESs) have played a critical role
in supplying electrical loads and reducing greenhouse gas emissions [9]. Their global
adoption has increased significantly due to the growing availability of diverse renewable
energy resources, as illustrated in the next paragraph. Despite the numerous benefits
of renewable energy systems, several challenges remain in integrating RES, which will

be addressed in the next section. After mentioning the significant keys for introducing



the renewable energy system, the primary step before planning and installing the RES
is the sizing stage. Therefore, the central question is : Why is sizing the RES impor-
tant, particularly in microgrids? This will be explored by reviewing related works and

identifying research gaps in this PhD thesis.

1.1.1 Challenges and Issues

Several challenges faced by renewable energy systems are related to the nature of
resources, types of applications, and socioeconomic factors.

The first challenge related to natural resources is the integration of photovoltaic
(PV) systems. Equipment failures can be seamlessly incorporated into the reliability
assessment process using the same methodology for analyzing fossil fuels.

However, assessing the effect of short-term unpredictable fluctuations in solar en-
ergy on the uninterrupted provision of power is considerably more difficult. At small
time intervals, the fluctuation of PV output is still subject to significant uncertainty,
which is a primary cause of power imbalances in the electrical grid. Techniques for
measuring and predicting sudden changes in energy production over short periods are
currently being developed, along with models that consider how the dispersion of power
generation across different locations can impact these fluctuations.

Accurate models are essential for adequately planning industrial microgrids, as
the influence of solar variability becomes more significant with increasing penetration
rates. Flexibility mechanisms to offset fluctuations in renewable energy generation are
crucial for maintaining system resilience. Storage systems are receiving more research
attention, while fossil fuel technologies are being overlooked because they are well-
established. However, how these technologies respond to consecutive ramps is still
uncertain, as it could substantially impact their lifespan and fuel usage. Only a few
models consider or incorporate their dynamic behavior in long-term evaluations [10].

The second issue relates to economic challenges. Hybrid systems generally involve
higher initial costs compared to single-source systems. Another challenge pertains to
regulatory and policy obstacles precisely, policy discrepancies. Different energy sources
may be subject to distinct policies and regulations, complicating the system design.
Integrating Hybrid Renewable Energy Systems (HRES) into existing electricity grids
may face regulatory hurdles, particularly if the policies governing the grids require
revision. The lack of standardized legislation for HRES might lead to ambiguity over
licensing and operation [11], as depicted in Figure 1.1 [12].
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Figure 1.1: Obstacles to renewable energy resources deployment

1.2 Global Overview of RES: Usage, Technologies,

Pricing, and Potential

The utilization of renewable energy technologies has increased dramatically in recent
years, according to the International Renewable Energy Agency (IRENA) [13]; Figure
1.2 illustrates the global electricity generation capacity by major renewable energy
technologies. It highlights hydropower as the leading source, followed by solar and wind
energy. Between 2010 and 2023, these technologies experienced substantial growth. In
2023, hydropower reached a capacity of 1.26 million MW, solar power 1.4 million MW,
and wind power 1.07 million MW.

This increasing reliance on renewable energy, particularly solar and wind, has driven
many countries to implement supportive policies to enhance their adoption. Figure 1.3
displays the adoption rates of solar PV and onshore wind technologies in selected
countries. For example, Algeria utilizes solar PV at 11 % and onshore wind at 11.4 %.
Argentina reports solar PV and onshore wind adoption rates of 13.8 %, while Australia
registers both technologies at 2.9 %. In Brazil, solar PV and onshore wind stand at
6.3 % and 4.9 %, respectively. These figures underscore the growing global reliance on
renewable energy sources for electricity generation.

While the expansion of renewable energy continues, global electricity consumption
has also witnessed substantial growth across various sectors, highlighting the urgent
need for sustainable energy solutions. Over the past 30 years, electricity demand has
surged across industries, households, and commercial establishments. The industrial
sector accounts for a substantial portion, consuming approximately 37 million TJ,

while the residential sector consumes around 23 million TJ, and commercial and public



services contribute 17 million TJ.
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Figure 1.2: The cumulative electricity capacity of the main technology of RES.
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Figure 1.3: The exploitation of Solar PV and onshore wind in countries

Global energy consumption varies across sectors, with fishing, transportation, and
agriculture showing comparatively lower usage, as illustrated in Figure 1.4. Notably,

the mining industry accounts for 38 % of total industrial energy use and 11 % of global

8



energy consumption. Without new regulatory measures, global energy demand could
potentially double by 2050, underscoring the need for sustainable energy solutions [14].

In response to this growing demand and the need for cleaner alternatives, hybridiza-
tion has become essential in modern energy systems. By integrating technologies like
photovoltaic (PV) panels, wind turbines, and energy storage systems ensures a stable
and continuous power supply. Solar and wind resources, which fluctuate due to time
of day, weather, and seasonal conditions, can be complemented by energy storage sys-
tems. These systems store surplus energy generated during peak production for use

during low-output periods, enhancing energy reliability and efficiency.
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Figure 1.4: Consumption of electricity by sector in the world (IEA, 2023)

In addition to enhancing energy reliability and efficiency, the economic viability of
renewable energy has significantly improved. A major contributor to this progress is
the decreasing levelized cost of electricity (LCOE), which has strengthened the com-
petitiveness of renewable energy compared to traditional fossil fuel generation. This
reduction is primarily driven by technological advancements, economies of scale, and
improvements in energy generation and storage systems.

Furthermore, hybrid renewable energy systems (HRES) have become increasingly
feasible solutions for meeting global energy demands while mitigating climate change
impacts. The global average cost of electricity from installed solar systems and offshore
wind has dropped to approximately 0.1 USD/kWh, reflecting substantial progress in

reducing renewable energy costs, as illustrated in Figure 1.5.
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In addition to economic advantages, renewable energy resources offer substantial
environmental benefits.Advanced technologies are essential for enhancing system re-
liability and maximizing energy output, leveraging a diverse range of resources such
as solar, wind, hydropower, and biomass. On the other hand, there exist different
types of photovoltaic (PV) technologies, including monocrystalline (m-Si), polycrys-
talline (p-Si), thin films such as amorphous silicon (a-Si), cadmium telluride (CdTe),
copper indium gallium selenide (CIGS), and the latest generation technologies known
as organic photovoltaics. However, the environmental characteristics of a region are a
crucial factor in determining and implementing PV technology in microgrids [15].

Furthermore, the prices of different components have fallen following. Figure 1.6
shows the cost of several solar panel technologies, data from 2010-2022 demonstrates the
price fluctuation [13|. The decrease in PV panel prices has a crucial role in determining
investment costs, as the cost of PV panels is a substantial portion of the initial capital

required for solar microgrids.
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Figure 1.6: Average yearly percentage increase for Solar PV module price (2010-2022)

1.2.1 Renewable Energy Potential in Algeria

The region’s potential is crucial to installing renewable energy systems. Algeria pos-
sesses significant renewable energy potential, including solar, wind, hydro, geothermal,
and biomass resources. The country aims to increase solar power production by 2030
substantially. However, progress in this field has been slow as of 2020. Energy con-
sumption has risen due to population and economic growth, increasing carbon dioxide
emissions. Algeria’s geographical location offers substantial opportunities for renewable
energy development, as it receives a high amount of direct sunlight with an estimated
irradiation of 169,440 kW /m? /year. The potential for energy generation in Algeria is
predicted to exceed 3,000 kWh/year [16].

The desert in Algeria is known to have highest average solar irradiation and tem-
perature levels worldwide. The country also has favorable conditions for hydropower
generation due to suitable dam locations and a consistently large amount of rainfall.
Algeria has significant wind energy potential in various regions, including M’Sila, Bou
Chekif, Djelfa, and Mecheria. Where wind conditions are favorable throughout the
year. However, despite having high wind speeds, Ain Salah and Adrar are unsuit-
able for wind generator installation due to topographical constraints and the need for
an electrical transmission network. The abundance of hot springs in Algeria makes

geothermal power a highly viable option for enhancing the integration of renewable
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energy sources. Figure 1.7 illustrates the renewable energy potential in Algeria.
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1.3 Microgrids

1.3.1 Inception of Microgrids

The global electricity landscape is undergoing a significant transformation character-
ized by the "three Ds": decentralization, decarbonization, and democratization. This
transition is motivated by the necessity to decrease electricity expenses, upgrade obso-
lete infrastructure, improve resilience and reliability, reduce carbon emissions to combat
climate change and expand dependable electricity access to underserved regions [17].

The historical development of electricity systems has been dynamic. The incep-
tion of small-scale distributed generation, initiated by Thomas Edison in the late 19th
century, signified the advent of the earliest DC microgrids. As energy demand in-
creased, this system evolved into consolidated and centralized networks. Nonetheless,
the centralized approach has encountered its constraints, confronting issues pertaining
to environmental concerns, economic vulnerabilities, and deteriorating infrastructure.
As a result, the energy sector is progressively transitioning to smaller, decentralized
systems, facilitated by innovations in Distributed Energy Resource (DER) technology
and the reorganization of utilities [18].

Beginning in the late 1990 s, researchers in the United States and Europe com-
menced the development of decentralized solutions to address the growing prevalence
of distributed energy resources (DERs). These methods were formulated to enhance
grid dependability and resilience against natural catastrophes, cybercrime, and cas-
cading failures. This initiative established the microgrid, a localized grid system that
regulates power generation and consumption inside segments of the primary grid. Mi-
crogrids can function autonomously (in island mode) or remain integrated with the
larger grid, guaranteeing the continuity of key services during extensive outages [18|.

The development of microgrids in areas with established grid infrastructure is chiefly
driven by energy security, economic advantages, and the integration of clean energy.
In the United States, microgrids have been established to improve resilience, which is
defined as the capacity to recover from disruptions and reliability swiftly, guaranteeing
consistent service availability. Essential infrastructures, including transportation, com-
munication networks, healthcare services, water and wastewater management, emer-
gency response systems, and food supply chains, significantly gain from these enhance-

ments.

1.3.2 Microgrid Definitions

Microgrids are gaining global popularity due to their ability to create versatile, de-
pendable, efficient, and intelligent electrical grid systems. They also have the potential

to provide energy to areas not connected to the primary power grid while offering eco-
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nomic advantages. Various definitions and functional classifications of microgrids are
available in the literature. The Microgrid Exchange Group provides one widely used
definition.

Definition 1 : A microgrid is a collection of interconnected loads and dispersed
energy resources, clearly defined within electrical boundaries. It functions as a single
controllable entity concerning the grid [18].

Definition 2 : A microgrid can connect to and disconnect from the primary power
grid, allowing it to operate either as part of the grid or independently in island mode.
This description outlines three specific criteria [18]. The capacity to distinguish the
microgrid segment of the distribution network from the remainder of the system.The
management of resources within the microgrid as opposed to external resources. And
the microgrid’s capacity to function autonomously from the primary grid.

Definition 3 : Microgrids, also known as multi-energy systems, are rapidly be-
coming a viable commercial solution for achieving resilience, cost reduction, and decar-
bonization [19]. Additionally, MGs are characterized as low-voltage distribution net-
works consisting of interconnected Distributed Energy Resources (DERs), controlled
loads, and critical loads. These systems can function in either a grid-connected or
islanded mode, depending on the operational characteristics of the primary grid [20].

Definition 4 : Microgrids, being smaller than utility grids, are more sensitive to
power variations. Consequently, developers must consider power dynamics, adaptabil-
ity, and production uncertainty. Microgrids may have varying technology preferences
as localized energy systems depending on the specific use case, such as commercial,

residential, military or industrial units [10].

1.3.3 Benefits of Microgrids

The factors that contribute to the creation and implementation of microgrids in
areas with established electrical grid infrastructure can be classified into three main
categories: energy security, economic benefits, and integration of clean energy. In-
vesting in microgrid solutions offers numerous benefits, including maintaining price
stability by reducing risk. Microgrids can safeguard against unexpected and poten-
tially excessive contingency or emergency energy costs and unpredictable variations in
electricity expenses. MGs can provide economic benefits by leveraging local market
regulations and initiatives. They can reduce peak load pricing, participate in demand
response markets, and offer frequency control services to the broader grid [21].

Additionally, they can generate revenue by reducing expenses during periods of high
demand, participating in demand response markets, and providing frequency regulation
services to the primary power grid. Although the electrical infrastructure in most
modern nations is generally reliable, any interruption can result in significant expenses

and potential dangers. The nation’s energy infrastructure faces increasing threats from
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extreme weather, aging, and physical attacks. Operating in island mode allows for a
continuous and uninterrupted supply of electricity by disconnecting from the primary

power grid and relying on on-site power generation.
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Figure 1.8: General structure of microgrid
[21]

Furthermore, intelligent microgrids (MGs) have significantly increased the utiliza-
tion of renewable energy systems (RES). The extensive implementation of RESs offers
multiple advantages in addressing environmental concerns and the depletion of fossil
resources. However, this growing trend must be carefully regulated in light of two
distinct concerns [22]. Therefore, renewable energy sources (RESs) substantially con-
tribute to meeting global energy needs. The current worldwide energy shortage has
created an unprecedented drive for RESs. Introducing microgrids might disrupt the
conventional centralized energy system and shift control to local communities.

Microgrids are characterized by local entities’ ownership and control of power gen-
eration and distribution, as opposed to large, centralized utilities. Microgrids can
facilitate the development of new business models and ownership arrangements that
benefit local communities economically. For instance, specific microgrid initiatives en-
able local communities to own and manage the microgrid, creating opportunities for
residents to generate income and secure jobs. Moreover, the enhanced energy autonomy
and resilience of microgrids can reduce the vulnerability of local populations to energy-
related interruptions, thus laying the foundation for broader economic progress [21].

Figure 1.8 illustrated the basic structure of microgrids.
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1.3.4 Types of Microgrid System

Microgrids can be categorized into three size-based classifications: small, medium,
and large-scale. Microgrid systems provide electricity with limited capacity by har-
nessing renewable energy sources (RESs). However, some microgrids may also use
diesel generators (DGs) as an alternative power source in conjunction with or instead
of RESs.

e A small-scale microgrid has the potential to generate up to 10 (MW) of power. It
is suitable for providing electricity to residential structures, small regional power

systems, islands, and rural areas.

e Medium-scale microgrids provide power with moderate capacity, harnessing both
RESs and conventional sources like oil or coal. The power generation capacity
of a medium-scale microgrid ranges from approximately 10 MW to 100 MW,

making it capable of supplying electricity to industrial areas.

e Large-scale microgrids produce power with significant capacity, typically using
fossil fuels such as oil or coal. The maximum power output of a large-scale
microgrid exceeds 100 MW, as noted by [17].

On the other hand, the classification of microgrids corresponds to the applications for
MGs, encompassing island and remote "off-grid" MGs, commercial and industrial MGs,

institutional and campus MGs, community and utility MGs, and advanced applications.

e Campus and institutional microgrids consist of buildings located within a spe-
cific geographic area, each with unique requirements for power supply reliability.
Similar to institutional microgrids, commercial and industrial microgrids involve
multiple participants, facilitating quick decision-making and using various energy

sources.

e Community and utility microgrids comprise private residential consumers and
occasional commercial and industrial customers. These systems may include

several distributed energy sources powered by either fossil fuels or RESs.

e Military microgrids offer a cost-effective approach to ensuring energy and fuel

availability while addressing the complexities of community management.

e Residential microgrids assess the optimal size for energy aggregation, determining

whether to connect individual customers to larger microgrids.
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[17]

Utilizing a decentralized coordinated system enables more efficient management of
energy assets and the seamless integration of various households into the power distri-
bution system. Decentralized private systems provide benefits such as reduced costs,
enhanced efficiency, and improved voltage stability in the power grid [17,18].

Based on their associated power source, MGs can also be categorized into three
distinct types: hybrid, DC, and AC microgrids. Integrating alternating current micro-
grids (AC MGs) into existing power systems is straightforward and does not require
additional control mechanisms. On the other hand, DC MGs have superior efficiency,
produce and store energy in direct current (DC), and require less conversion for power-
ing DC loads. The primary goal of hybrid MGs is to minimize the number of interface
devices and conversion stages while maintaining cost-effectiveness by integrating both
AC and DC power sources [23].

Hybrid microgrids enhance system reliability and efficiency by reducing conversion
steps and interface devices. Hybrid MGs allow users to customize their power consump-
tion by combining and switching between AC and DC loads. Power electronic convert-
ers isolate the AC and DC components of a microgrid. However, this arrangement
only sometimes results in decreased energy losses. Hybrid MGs have lower reliability
than AC MGs and require more complex controllers and management systems, mainly

operating in islanded mode. To ensure a consistent and uninterrupted power flow, em-

17



ploying appropriate control mechanisms for MGs is crucial. Microgrids are managed
by MG Central Controllers (MGCC) and are often located at distribution substations
or local control centers. Control techniques must meet the power balance, transition,
protection, power transmission, optimization, synchronization, and stability criteria.
In summary, Figure 1.9 illustrated a flowchart overview of the various categories of

microgrids.

1.3.5 Smart Microgrid

In recent years, the concept of smart microgrids has emerged as an advanced form of
traditional microgrids. The following section provides an overview of their features
and relationship with smart grid systems. The smart microgrid system, predominantly
implemented by the national grid, combines energy storage with nearby renewable
energy sources to provide electricity for industrial and residential requirements while
maintaining the stability of the national grid. Smart microgrids with safety, stability,
and robust regulating capabilities are urgently required [24]. While smart grids (SGs)
and microgrids (MGs) can be differentiated from a technical standpoint, this study
employs the term Smart MicroGrids (SMGs) to address the shift in electric systems
specifically. The term "smart power distribution network" refers to a system that
includes different loads, Distributed Energy Resources (DERs), and energy storage
devices.

This system can operate connected or disconnected from the main utility in a con-
trolled and coordinated manner, according to the definition provided by the US Depart-
ment of Energy (DOE) [25]. Smart grids are equipped with cutting-edge technologies
and devices, including the Internet of Things (IoT), smart metering infrastructure,
advanced transmission and distribution systems, subsystems, mechanisms for demand
response, dynamic pricing schemes, energy management systems (EMS), flexible loads,
and sophisticated security structures. These systems effectively regulate the equilib-
rium between power generation and demand, optimize utility expenses, and ensure
protection against cyber-crime.

The SGs’ SM infrastructure examines the power usage of end-users and determines
a utility fee using dynamic pricing. This information is then communicated to both
end-users and service providers. It allows them to make efficient decisions on the

scheduling of load and generation [26].

1.3.6 Examples of Microgrid

Microgrids are a growing trend in renewable energy systems; there are several instal-
lations of microgrids in the world, with the US and Asia having the highest market
share of miniaturized scale cluster systems.

The United States and Asia currently have 42% of the market, while Europe, Latin
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America, the Middle East, and Africa hold only 1%. The total power generation
capacity is expected to reach around 5.7 GW or 8.7 GW by 2024. Microgrids are
divided into five segments: remote (54 %), business/mechanical (5 %), network (13
%), dispersion of open services (13 %), institutional/grounds (9 %), and military (6
%) [27]. The United States currently has a minimum of 676 microgrids, generating
a reliable electrical capacity of 4,132 MW. The Department of Energy (DOE) has
documented a total of 620 microgrids that are connected to the electrical grid and 56
microgrids that operate independently from the grid in the United States. Then, some

installations are illustrated in Table 1.1.
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Table 1.1: Examples of Microgrid Installations and Their Characteristics

MIN T TomoJ e

AS10U0 IR[OG

RAUDY|

[62] 100olo1g Te
-0Q uLIRe v, I0SURY))

[0I3U0D UOI}R)S SUISIRYD AH

-osuodsal puewop OVAH MIN
01 -yue(d 1omod se$ [einjeu pue

TOsOIp MIN 679 ‘ses [[gpue] MIN
'€ uonersussd ASIoue  I(31()

(suea pLIQAY [RUOIODIIP-Iq PLIS
-0}-9]OIOA PUR SALI9})e(q MOJj dUIZ
pue Uo] Wy ) o8eio)s A81ous
[oA9] SUIP[IY MY 06 / 9581098
A310uo ewwioy) MY AGT / ([oA9]
u9)sAs pLISOIDI) 93RI0)s ABIoUa

MIN € / sorejjorojoyd rejos (N
¢'1 o8elIo)s ASIOUS pur IR[OG

SeS [elnjeu pue

$9YR)Q pajTu)

[8z] pridoin
SN TewreIN SVOIN

uorperodo I0)BId
08 9)RUIPIOOD 0O} AIIAIP II[[OI)

-u0o T -Sole}jeq (87 -Uoes MY
00T ‘smdjroaur ITeomod  -spued

Ie[0s 686 -GI0Z :OUIUO oye(]

SIO)RIOUDS [9SOIP

OM], :UOIJRIOUSS ASIoUS I9U)()

03rI101s A3I0U0
L10992q JO UMY 026°'T / Ad Te[0s

MY GO :08eI10)s AGIoU0 pUR IR[OS e

‘osorp  ‘ASIou0 IR[OG
[oSoIp
pue  AS1ous  IR[OG

S9jelg pojiu)

(¥202
"uonI[Ro)) WeAT)) PLIs

-OIDI[\ PUR[S] Ze1}ed[y

sorjsLI91oRIRY )

$90IN0SsaY ASIoury

uoIsay

pras3
-OJIDIJ\] UuoIje[[e)lsuf

1.4 Why Size Renewable Energy Systems?

The explanation of this point needs to address the following question: Why is siz-

ing the RES (Renewable Energy Systems) in a microgrid necessary? Microgrids offer

various advantages to electric power systems, including reducing line losses, promoting

high levels of renewable energy integration, and enhancing power quality, reliability,
and efficiency. Photovoltaic panels (PV) and wind generators are commonly used as
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renewable energy sources in stand-alone hybrid systems. However, other viable options
include hydrogen fuel cells, supercapacitors, superconducting magnetic energy storage,
and flywheel systems. These devices also correct power imbalances and enhance sta-
bility [30].

Despite these advantages, the unpredictable, intermittent, and seasonal behavior
of solar radiation or wind speed presents challenges. Therefore, a microgrid’s energy
conversion sources (ECS) and energy storage sources (ESS) must be carefully selected,
designed, and sized to ensure economic and reliable performance and guarantee an
adequate energy supply for the load. Sizing a microgrid is particularly challenging due
to the nonlinearity and complexity of the design requirements and the modeling of ECS
and ESS components [30].

In addition to gathering data on energy potential and local demand, the sizing
process involves defining design criteria based on implementation constraints and ob-
jectives. Therefore, a multi-objective optimization problem is formulated using these
input variables, and the optimal configuration is determined based on the selected cri-
teria. Furthermore, when these sources operate together to meet an electrical load, the

challenge lies in determining the optimal size of each component [31].

1.4.1 Load Fluctuation

Microgrids (MGs) typically include two primary types of loads: (i) critical loads,
which must be supplied under all circumstances, and (ii) deferrable loads, which can
be adjusted to support load balancing within the MG, thereby optimizing economic
power generation [17]. Microgrid-generating sources must address the imbalance be-
tween power generation and demand. Unlike more significant geographical regions,
microgrids have a limited load diversity, resulting in higher relative variability [18|.
Consequently, distributed energy systems incorporating various energy sources are cru-
cial for meeting fluctuating customer needs. Recently, there has been a growing trend
toward adopting hybrid distributed energy systems to enhance system reliability and
improve power quality. This shift aims to reduce reliance on a single traditional en-
ergy source, such as diesel generators. While these hybrid systems offer benefits, their
widespread implementation is challenged by the unpredictable and variable nature of
renewable energy sources, such as solar radiation. One potential solution to this issue
is the integration of energy storage devices, which help align energy generation with
demand [32].

Accurate load prediction is essential for new and existing projects, as it is critical
in optimizing solutions. Estimating the load profile with precision is challenging due
to its variability and dependence on unknown consumption patterns. The accuracy of
load estimation is closely tied to the operational efficiency and reliability of the system.

Analyzing load profiles over specific periods can aid in forecasting high-demand periods
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and identifying usage patterns.

Moreover, to avoid underperforming microgrids and additional project investments,
it is crucial to prevent load consumption profiles that are either too small or too
large [33]. Hourly load forecasting is crucial for the optimal design of a hybrid renewable
energy system, necessitating the assessment of future load behavior changes. The
predictive model analysis is necessary to provide more precise estimations of the load
profile [34].

1.4.2 Availability of Energy Resources

Understanding the availability and variability of energy resources, such as solar irra-
diance and wind patterns, is crucial for determining the optimal amount of renewable
energy components within a microgrid. Solar power systems are significantly reliant on
the availability of sunlight, which fluctuates daily and seasonally. In areas possessing

Insufficient radiation or variable wind conditions may necessitate photovoltaic (PV)
or wind generation capacity to fulfill energy demands, as output becomes increasingly
vulnerable to these fluctuations. By precisely evaluating these variances, one may de-
sign a microgrid with optimally sized renewable energy systems that correspond to the
specific environmental attributes of the site, so providing dependable and sustainable

energy generation.

1.4.3 Renewable Energy Market

The assessment of investment expenditures and calculating the most efficient power
cost are crucial in determining the appropriate sizing of renewable energy systems
(RES). Furthermore, proficient knowledge of component prices, cutting-edge technol-
ogy, and the intricacies of the electrical market is essential for making accurate size
decisions. Several countries encounter difficulties determining a sustainable long-term
approach for their energy alternatives, given that no universally ideal renewable en-
ergy source exists. Countries are motivated to investigate various renewable energy
solutions due to significant economic, technical, and environmental differences.

Hence, it is imperative to carefully choose the most suitable technology or mix of
technologies to maximize the advantages. Energy planning is an intricate and diverse
process that necessitates the examination of various variables instead of relying on
determinants for decision-making [35].

Moreover, the price of energy in the market is impacted by various elements, such as
the expenses associated with power generation, local weather patterns, government fi-
nancial aid, transmission and distribution facilities, industry laws, market mechanisms,
and rules [36]. Understanding these variables is essential for making informed decisions

regarding renewable energy technology selection and overall energy planning.
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1.4.4 Energy Storage

Fluctuations in energy generation present difficulties in maintaining the stability and
dependability of the power grid. Consequently, to incorporate energy storage devices
and modern grid management techniques to ensure a consistent and reliable energy
supply [18]. The technical characteristics of a storage system will vary based on its
objectives, necessitating a precise selection of the suitable technology. The wide range
of storage technologies available allows for the coverage of many applications, ranging
from small, uninterruptible power systems to large-scale utility systems like pumped
hydro. Storage systems must have several megawatts capacity to meet the demands of
industrial microgrids and accompanying production units.

It is essential to ensure that the systems can supply services with response times
ranging from a few seconds to hours. Depending on the unique energy requirements,
Li-Ton batteries, flywheels, and supercapacitors are the most acceptable solutions for
these applications. For example, heat storage may be ideal if the ultimate service
demands heat, as illustrated in Table 1.2 [10].

Furthermore, the hybrid solar, wind, and energy storage (PV-WT-ES) system is
a viable alternative for isolated and rural locations. It connects PV panels and wind
turbines to a storage device, minimizing power fluctuations and fulfilling load demands.
The hybrid PV-WT-BS system is the most cost-effective for islands and isolated loca-
tions compared to other hybrid systems.

Hydrogen tanks are another possibility, but they are less cost-effective due to high
initial costs and the necessity for a fuel cell. Pumped hydro storage systems can also
be reliable but have low energy capacity compared to other methods. Supercapacitors,
with excellent power density and efficiency, have not been widely used due to their ex-
pensive cost and restricted capacity compared to batteries or other comparable energy

storage technologies [37].

Table 1.2: Technologies for reliability-constrained microgrid

Technology Advantages Drawbacks

Li-ion batteries High energy density, high Life cycle degradation due
cycling efficiency, rapid to cycling and thermal
response time, low effects.

self-discharge, applicable to
other uses (energy shifting)

Flywheels Quasi-infinite number of Low energy density, high
cycles self-discharge rate
Supercapacitors High power density, long High self-discharge rate (up

lifetime, and limited aging | to 40% a day)
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1.4.5 Energy Management

Energy management includes various operational strategies that consider factors such
as resource operation and maintenance costs, energy transactions, battery degradation,
outages, interruptions, demand response incentives, costs or losses, penalties for load
shedding, emissions, and the levelized cost of renewable energy systems. Additionally,
the Energy Management System (EMS) may incorporate technical constraints such
as electrical network capacity, energy balance, maximum output of renewable energy
sources, demand response, reactive power support, reliability, and physical resource
limitations [18].

Moreover, the establishment of microgrids requires assessing the dimensions of in-
terconnected assets and developing an effective Energy Management System (EMS)
to reduce energy consumption and costs while maintaining a reliable supply. Efficient
control mechanisms are essential for resolving the challenges related to the integration
of Renewable Energy Resources (RERs) and Energy Storage Systems (ESSs) in mi-
crogrids. Effective power management control and energy management system control
are essential, with parameters such as voltage, current, and frequency being pivotal.

The Energy Management System (EMS) is crucial for safeguarding Energy Stor-
age Systems (ESSs), optimizing renewable energy utilization, ensuring a reliable power
supply, and minimizing operational, maintenance, fuel, and replacement costs [4]. Re-
newable Energy Systems (RES) are a highly promising but relatively challenging asset
in the global energy grid [38].

1.5 Sizing and Optimization

The optimization of renewable energy systems is essential for attaining economic effi-
ciency and environmental sustainability. This technique emphasizes two primary objec-
tives: reducing costs while enhancing system performance and advantages. A variety of
optimization techniques are utilized to attain these objectives, encompassing classical
methods, artificial intelligence (AI), hybrid approaches, and software-based tools.

Minimization aims to decrease annual expenses, net current costs, electricity ex-
penditures, land utilization, emissions, and the likelihood of power supply failure. By
addressing these factors, renewable energy systems enhance their financial viability
and environmental sustainability. Conversely, maximization emphasizes the augmenta-
tion of power generation, renewable proportion, profits, longevity, and overall revenue,
guaranteeing optimal system efficacy and financial returns. These objectives are clearly
illustrated in Figure 1.10.

Diverse strategies are utilized to optimize these systems efficiently. Classical tech-
niques depend on mathematical models and deterministic optimization procedures,

yielding definitive results while occasionally encountering difficulties with intricate vari-
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ables. These methodologies encompass numerical, iterative, analytical, and probabilis-
tic techniques. Numerical techniques employ economic and reliability models to esti-
mate solutions for hybrid energy systems, whereas iterative methods forecast the most
cost-efficient configurations. Probabilistic methods address multi-objective functions,
non-linear system responses, and long-term weather fluctuations, whereas analytical
methods employ computational models to evaluate economic viability.

Conversely, artificial intelligence (AI) methodologies incorporate machine learning
and sophisticated algorithms, providing rapid, adaptable, and globally scalable solu-
tions. Hybrid optimization methods incorporate classical and Al-based techniques, im-
proving accuracy, computing efficiency, and solution reliability through the integration
of diverse methodology. Moreover, software tools are essential for modeling, simulation,
and data-driven decision-making, facilitating accurate optimization of energy systems.

A variety of sophisticated metaheuristic optimization algorithms have been devel-
oped to tackle complex multi-dimensional problems efficiently. These include the Social
Spider Optimizer, Grey Wolf Optimizer, Jaya Algorithm, Dragonfly Algorithm, Pity
Beetle Algorithm, Coyote Optimization, Deer Hunting Optimization, Forensic-Based
Investigation Algorithm, Golden Eagle Optimizer, Tunicate Swarm Algorithm, and
Jellyfish Optimizer. These algorithms enhance optimization performance and prevent
solutions from becoming trapped in local optima. However, they are not without limi-
tations, as some may prioritize suboptimal solutions, fail to explore diverse possibilities

effectively, or converge prematurely [34].

Optimization Techniques

To
maximize

Artificial
intelligence

* Annual cost
* Net present cost * Power generation
* Cost of electricity * Renewable fraction

* Land requirement * Profit Hyb.rld
* Emission + Life span techniques
* Loss of power * Total revenue

supply probability

Software tools

Figure 1.10: The strategy of optimization for sizing RES
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1.5.1 Related Works

Addressing and improving the sizing problem in planning Renewable Energy Systems
(RES) requires careful consideration of multiple vital aspects. These include select-
ing appropriate sizing methods, identifying key indicators, and incorporating crucial
considerations throughout the renewable energy project sizing process.

The issue of sizing was resolved by utilizing evolutionary multi-objective optimiza-
tion techniques and metaheuristic algorithms. For instance, in [39], a genetic algo-
rithm was employed to achieve optimal PV /battery system sizing, addressing the
techno-economic aspects. Similarly, the bee algorithm was utilized in [40], and [41]
Introduced the levy flight moth flame algorithm. Other studies, such as [42]employed
multi-objective algorithms.

Furthermore, a novel crow algorithm was proposed by [43], and a new hybrid meta-
heuristic algorithm was published in [44]; this algorithm, called the hybrid grey wolf
optimizer-sine cosine algorithm, was used to find the optimal size of system components.
Additionally, the multiple-design methodology was implemented for off-grid systems
[45], and a novel multi-objective approach with online Pareto pruning was employed
for the multi-year optimization of rural microgrids [46].

In the literature, the sizing operation for renewable energy systems is often deter-
mined using key economic indicators. One of the most commonly employed indicators
is the Net Present Cost (NPC), which represents the total cost of establishing a renew-
able energy system. It defined as the total system cost, this includes expenditures for
construction, operation, and maintenance. or life cycle cost of the system [47]. Another
crucial metric is the Levelized Cost of Electricity (LCOE), which calculates the cost
of generating a kilowatt-hour (kWh) of electricity in dollar terms, or it is the ratio of
net annual payment to the net annual electricity consumption. As discussed in this
work, these indicators provide a comprehensive basis for evaluating and optimizing the
financial feasibility of renewable energy systems.

Several papers have introduced these indicators as critical criteria for optimal sizing
of renewable energy systems. These studies use various methods and optimization
algorithms to minimize economic indicators, such as Net Present Cost (NPC) and
Levelized Cost of Electricity (LCOE) [48-50].

In addition, multiple articles employed specialized software, particularly the HOMER
optimizer, to determine microgrid systems’ lowest Cost of Energy (COE). These stud-
ies utilized various resource systems, such as Photovoltaic (PV), Wind turbine (WT),
diesel, hydrogen, and the electrical grid.

The work in [51] provides a techno-economic analysis for a hybrid PV /wind mi-
crogrid and investigates the viability of a grid-connected microgrid [52]. The planning

and design of renewable energy systems (RES) involved determining the most efficient
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size based on the lowest Net Present Cost (NPC) and reducing the Levelized Cost of
Energy (LCOE).

Recent studies have thoroughly investigated financial indicators related to prof-
itability and reliability. Key metrics such as Net Present Value (NPV) of a power
system is the difference between the present values of the total profit and total cost
of the system within its operational lifetime. Obviously, the higher the NPV, the
higher economic benefit, Internal Rate of Return (IRR), and Discounted Payback Pe-
riod (DPB) have been identified as critical for evaluating the economic feasibility of
projects. These indicators, shaped by factors such as cash flow, discount rates, and
project lifespan, serve as fundamental tools for in-depth economic analysis. Their sig-
nificance is further emphasized in developing academic strategies for the optimal sizing
and performance evaluation of renewable energy systems, ensuring both financial sus-

tainability and operational efficiency.
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Table 1.3: Some studies about sizing and optimization

References Configuration | Metaheuristic | Homer
/Algorithm Software
[39] PV /batt X
[40] X
[41] X
[51] PV/WT X
[44] X
[43] X
[46] PV/WT X
[42] X
[49] PV /batt X
[53] PV/WT /Bio- X
gene
[54] PV /DG /fuel X
cell
[55] PV/DG/WT X
[45] PV /Fuel X
gen/batt
[56] PV /batt/On- X
Grid

When examining the parameters to consider when assessing RES investment in [57],
it was discovered that economic parameters play a crucial role in energy projects. As
stated by [58], a study comparing various objective functions for the optimal design of
a microgrid found that the external rate of return, discounted payback duration, and
discounted profitability index are all financial measures. The NPV (Net Present Value)
and IRR (Internal Rate of Return) are utilized to evaluate the energy investment
to maximize profitability. These metrics are calculated based on the projected cash
flow [59].

Alternatively, certain researchers employed decision-making techniques to analyze
the investment in energy projects [60] and assess quantitative and qualitative risks in
energy investment [61]. Summarize all this in Tables; Table 1.3 summarizes various
studies focusing on optimizing configurations through advanced techniques, while Table

1.4 presents research on economic indicators related to RES sizing.

28



Table 1.4: Some studies about economic indicators

Study NPC LCOE NPV
[62] X X

[63] X

[50] X X

[45] X

[48] X X

[64] X

[57] X X
[65] X
[39] X
[66] X

58] X X X
[67] X X X
[68] X

1.5.2 Research gaps

Following the comprehensive literature evaluation presented in Section 1.5.1 and en-
capsulated in Table 1.3 and Table 1.4, the investigation gaps that have been identified
are:

Several studies have applied economic metrics to assess the financial performance
of various Renewable Energy Systems (RES). Others have concentrated on evaluating
investment projects for renewable energy integration. However, no research has in-
troduced a comprehensive, systematic approach that provides a detailed, step-by-step

methodology for determining the optimal sizing of RES into a microgrid.

e Lack of Comprehensive Methodology: While many studies have examined eco-
nomic metrics and investment project evaluations for RES, none have presented
a structured, step-by-step framework for the optimal sizing of RES with a focus

on long-term planning.

e Integration of Economic and Technical Aspects: Previous research often treats
economic analysis and technical design as separate entities, neglecting the inter-
connection between the two. Bridging this gap by integrating these dimensions
is essential for creating a holistic and effective system design, particularly in the

context of long-term investment planning and sustainability.
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e Addressing Long-Term Uncertainties:

Most existing studies fail to incorporate uncertainties in sizing design of renew-
able energy systems. To address this gap, a comprehensive methodology must
integrate uncertainty modeling and financial investment considerations to ensure

robust and adaptable system design.

The dissertation aims to address these limitations by incorporating a long-term per-
spective that accounts for uncertainties and financial investment considerations. Addi-
tionally, the research integrates financial investment metrics to ensure that the optimal
sizing framework aligns with sustainable economic goals and provides robust solutions

that remain viable under various future scenarios.

1.6 Conclusion

This chapter presented a comprehensive overview of renewable energy systems and mi-
crogrids, focusing on various sizing techniques through an extensive literature review.
It highlighted existing research gaps and emphasized the critical importance of the
sizing process in designing efficient and reliable renewable energy systems. The subse-
quent chapter will outline the proposed sizing methodology and the techno-economic

assessments conducted in this study.
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CHAPTER 2

COMPREHENSIVE STUDY OF
OPTIMAL SIZING OPERATION FOR
RENEWABLE ENERGY SYSTEMS IN

MICROGRID

Chapter Two introduces sizing operations and develops an optimal sizing for incor-
porating renewable energy systems into microgrids. The chapter presents a thorough
framework for examining sizing operations, including important factors for attaining
the best possible integration. We aim to comprehensively comprehend the optimal sizing
of renewable energy systems in microgrids, guaranteeing efficiency, dependability, and

sustainability.

2.1 Introduction

In the design of renewable energy systems, essential components encompass solar
radiation, wind speed, and hydrological conditions. The energy potential of these re-
sources depends on variables such as geographical location, climatic conditions, and the
technology utilized. Therefore, an optimal sizing methodology guarantees the proficient
and economical use of integrated renewable energy sources. This entails establishing
the optimal size to minimize expenses while maximizing the use of PV panels, wind
turbines, hydro, biomass, and battery storage. The objective is to function under
optimal circumstances, balancing system investment and power efficiency.

Through optimization methods, financial goals are considered to identify the most
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optimal solution regarding dependability and cost while assessing the system’s long-
term performance. The size of the system is optimized by regulating the energy flow
to achieve optimal integration of renewable energy systems. Energy management sys-
tems, encompassing both demand-side and production-side approaches, aim to fulfill
energy requirements while minimizing operating expenses and environmental impact.
The main goal is to reduce the costs associated with expanding the power system by
determining the most efficient size and position for the feeders and substations in the
distribution system [14].

Furthermore, Hybrid Renewable Energy Systems (HRES) offer a potential solution
to the issues posed by the intermittent nature of renewable energy. These systems
integrate many energy sources, such as wind and solar energy, to compensate for the
limitations of one source by leveraging the advantages of another [34]. HRES can incor-
porate a more reliable energy source, such as biomass fuel, which can be used whenever
needed. It can function independently in isolated regions where generating electricity
from fossil fuels or extending the power grid is impractical. Energy storage tech-
nologies, such as batteries, fuel cells, flywheels, electrochemical /super/ultracapacitors,
compressed air energy, and pumped hydro storage, can effectively deal with fluctuations
in renewable energy [54].

The hybrid renewable energy system can operate independently of the power grid
or in a connected mode to the power grid, offering versatility and dependability. By
maximizing the benefits of hybrid energy systems, microgrids serve as a key component
in facilitating the efficient distribution of power generation. They are vital for ensur-
ing smooth operations and maintaining high reliability within the power system [32].
Therefore, the analysis of hybrid systems for optimization purposes is challenging due
to various generating systems. The objective is to achieve the most favorable op-
erating conditions and perform an economic assessment, ensuring that the system’s
performance adheres to all economic and technical constraints. The effective utiliza-
tion of sustainable energy sources depends on the techno-economic evaluation of the
hybrid system. The efficient and successful design of hybrid renewable energy systems
relies on the application of optimal sizing methodologies, which are becoming increas-
ingly common. This research framework focuses on developing a sizing methodology

for renewable energy systems, whether standalone or hybrid.

2.2 Sizing Concept

Determining the appropriate capacity for renewable energy systems (RES) is crucial
before installation. The process entails assessing the system’s expenses and energy
generation to guarantee the reliable fulfillment of local demand, even in the face of

probable disruptions in production and storage. Microgrids that have significant stor-
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age capability necessitate high investment and maintenance expenses. Therefore, it is
crucial to maintain a careful equilibrium between operational costs and energy system
expenses to guarantee profitability.

Sizing optimization uses different objective functions to find the most efficient and
high-performing solutions while considering unique limitations, developing renewable
energy sources inside microgrid systems entails several economic factors such as ex-
penses, financial viability, and energy efficacy. Optimization is the systematic Pro-
cedure of determining a mathematical function’s lowest or highest value by carefully
choosing suitable variables while considering any limitations or restrictions. Simulation
tools are commonly employed for this purpose. Nevertheless, optimization techniques
only sometimes ensure the identification of an optimal solution owing to the intricacy
of the problem.

The selection of the optimization method is contingent upon the specific cost func-
tion being targeted. The ultimate dimensioning of a microgrid can vary considerably
depending on the optimization methodology employed [58]. The HES optimization
problem is to achieve the optimal capacity of components by minimizing/maximizing

objective functions with considering system constraints as depicted in Figure 2.1.

Objectives for optimal sizing of RES in standalone/ Grid-connected

v v
Air pollution Grid autonomy
\ 4 \ 4
Net present
cost Excess Fuel Loss of Power Energy
energy consumption supply autonomy
Annual cost
of energy
Payback Purchased energy Loss of load Power
period from Grid probability autonomy

Cost of energy

Figure 2.1: Objective functions for optimal sizing of HRES
[47]
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2.2.1 Environmental Assessment

The environmental assessment of integrating renewable energy sources (RES) into mi-
crogrids is a crucial step in the sizing process. This assessment is considered to reduce
air pollution, which varies depending on the operational mode of the hybrid energy
system (HES). In a standalone HES, air pollution can be minimized by reducing diesel
generator (DG) fuel consumption, while in a grid-connected HES, it is achieved by
decreasing reliance on energy imports from fossil-fuel-dominated grids [47].

A critical factor influencing emissions in both modes is the renewable fraction (RF),
as higher RF values are directly associated with lower pollutant emissions. By incor-
porating these environmental and operational considerations into the sizing process,
the system can achieve optimal economic and technical performance while ensuring
long-term sustainability.

Furthermore, Life Cycle Assessment (LCA) is widely used to evaluate the energy
consumption and environmental impact of a system throughout its entire lifespan. This
approach was applied to a hybrid microgrid (MG) system that combined diesel, photo-
voltaic (PV), and wind energy sources for rural electrification on an island. The analysis
revealed that, among various environmental impacts, the hybrid MG system exhibited
the lowest global warming potential, particularly when compared to acidification and

human toxicity potential [69].
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Design Constraints for optimization in standalone/grid-connected RES
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Figure 2.2: Constraints for optimal sizing of standalone/grid-connected HRES

2.2.2 Economic and Reliability Assessment

An essential aspect of effectively and economically harnessing renewable energy re-
sources (RER) is the use of an optimal sizing approach [70]. RES optimization takes
into account many techno-economic parameters, including net present cost (NPC), an-
nualized system cost (ASC), life cycle cost (LCC), and cost of energy (COE). sizing
primarily examines the ability of energy production to meet load demands, utilizing
technical indicators such as loss of load expectation (LOLE), loss of energy expectation
(LOEE), deficiency of power supply probability (DPSP), loss of load hours (LOLH),
unmet load (UL), equivalent loss factor (ELF), loss of power supply probability (LPSP),
and renewable energy fraction (RF) in both standalone and grid-connected systems.

The constraints for Hybrid Energy Systems (HES) are categorized based on their
application to standalone, grid-connected, or combined systems. For grid-connected
HES, constraints include import/export power limitations and load restrictions to fa-
cilitate demand response. Where the primary constraint in optimizing standalone HES
is the power equilibrium between generation and consumption. By considering relia-
bility limits, a targeted decrease in load can be achieved, resulting in reduced system
costs as illustrated in Figure 2.2.

Moreover, the renewable energy system can function autonomously or be linked

35



to the power grid, and limitations are classified according to their relevance to either
standalone, grid-connected, or both types of energy system. Typical limitations in-
volve batteries’ state-of-charge (SOC), which must be kept within specific minimum
and maximum levels. The availability of land and rooftops is a substantial constraint
for installing wind turbines (WT) and photovoltaic (PV) systems due to their space
requirements. Investment limits and national policies may impose some limitations
and technical constraints are another common consideration in optimal sizing proce-
dures. One such constraint is the scalability factor, which ensures the designed system
can be scaled effectively. Resiliency constraints enhance the robustness of the system,
making it capable of withstanding severe disturbances like grid outages or natural dis-
asters. Additionally, operational flexibility is crucial, particularly given the increasing

integration of renewable energy sources into power systems [47,49].

2.3 Proposed Method

The proposed method thoroughly examines the financial and technical viability of
different combinations of renewable energy sources in microgrid systems. Moreover,
this methodology is adaptable to any renewable energy system and can be applied to
microgrids of different scales. This study combines the distinctive geographical features
of a region known for its substantial solar and wind energy capacity. It incorporates a
sensitivity analysis to ascertain the influence of input parameters on different expenses,
such as solar radiation, wind speed, power demand, inflation rate, and discount rate.

Moreover, this doctoral dissertation comprehensively examines the practicality of
technology and economics and evaluates the potential risks associated with investing.
The use of HOMER software enables the optimal sizing of renewable energy systems
(RES) through three different combinations:

e Isolated Photovoltaic Microgrid: Exclusively reliant on photovoltaic energy.

e The Hybrid Renewable Microgrid is a technology that integrates solar and wind

power generation with a storage system.

e The Hybrid Renewable System with Backup Diesel Generator combines solar and
wind power sources with energy storage capabilities, supplemented by a diesel

generator for backup purposes.

As shown in Figure 2.3, the proposed framework outlines the process for selecting
the most efficient combination by considering the lowest Cost of Energy (COE) and the
Net Present Cost (NPC) of the system configuration. Each microgrid is regarded as
an economic project, evaluating financial metrics and determining investment choices.

It involves examining the cash flow and assessing the levels of financial indicators. In
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addition, the risk analysis of Net Present Value (NPV) is performed by utilizing Monte

Carlo simulation, as explained in the next chapter.
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Figure 2.3: Procedure of financial analysis of the RES

2.3.1 Techno-Economic Analysis

The HOMER program employs two main optimizing approaches. The grid search al-
gorithm systematically evaluates every potential system configuration inside the Search
Space. Subsequently, the HOMER Optimizer employs a distinctive methodology that
does not depend on derivatives to determine the system configuration, which results in
the minimum cost. Afterward, the software presents a list of configurations, arranged
based on their Net Present Cost (NPC), allowing for assessing different system design
options. HOMER is utilized for techno-economic analysis of hybrid renewable energy
systems, evaluating them based on practical criteria and constraints to determine the

system’s net present cost [62].

2.3.1.1 Costs

Researchers in various fields of economics, including energy, environmental economics,
energy system modeling, and finance, are focused on understanding the investment and

financing of renewable energy assets. These academics hold varying conceptualizations
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on the cost of capital or discount rates [71]. To improve the intelligibility of our
subject matter, we will provide a concise explication of financing frameworks. Capital
expenditures (CAPEX) are the expenses incurred while investing in the initial capital

components, as indicated by equation 2.1 [72].

CAPEX;, = Y CRF - Ceomp,i (2.1)
i=1
Moreover, it can be defined as the primary cost associated with generating power
and storing energy in a microgrid. This includes the charges for the necessary equip-
ment and the costs related to its installation. In annual calculations, two economic
terms determine the objective function: the capital recovery factor (CRF) and the
sinking fund factor (SFF). The capital recovery factor calculates the present worth of
annual costs, while the sinking fund factor (SFF) calculates the annuity of any future
value. The capital recovery factor (CRF) is calculated using the following formula
(equation 2.2) [73].
(1 41,)Y
CRF(i,,y) = uiz% (2.2)
Where the discounted rate (i.) is correlated with all economic variables, as seen in
equation (2.1) to (2.6), the nominal/discount rate is calculated by combining the risk-
free rate and the risk-premium rate, as these rates have a significant effect on the values
of economic indicators that are influenced by the inflation rate (ijn¢) and the nominal
discount rate (in) [74].
According to the Bank of Algeria, the nominal discount rate will be 3 % in 2022,
with the inflation rate ranging between 10 % and 11 % [75].
Furthermore, Operational Expenditures (OPEX) are defined explicitly as the expen-
ditures associated with the maintenance and operation of components, as represented
by equations (2.1) to (2.3) [76].

OPEX;, = » (co&m,i,y +) SFF- crepﬂ) (2.3)

i=1 i=1
The variables used in this equation are as follows: C,, represents the replacement cost,
Co&m represents the operational cost, and n represents the number of components. The
life cycle cost of replacing the microgrid system’s primary components is considered.
The replacement cost is determined as the ultimate stage of a microgrid system’s Life
Cycle Cost (LCC) study. The sinking fund factor (SFF) measures the relationship
between the component’s lifespan and the annual replacements. The formula for it is

as follows equation 2.4 [77] :
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i,
(I+4.)y—1
The operation and maintenance costs of each component of the planned microgrid
are included in the Life Cycle Cost (LCC). One can estimate the O&M expenditures for

each component by considering its projected lifespan. The operational and maintenance

SFF = (2.4)

(O&M) expenses of a microgrid system during its entire lifespan encompass the fuel
costs of the diesel generator, which constitute the majority of the running expenses for
the reciprocating engine. The operation and maintenance costs of the microgrid system
are contingent upon the inflation rate and interest rate and are subject to change based
on the system’s utilization [7].

Furthermore, the maintenance of the energy mix system, capital expenditure (CAPEX),
and operating expenditure (OPEX) might vary significantly based on the load condi-
tions. For instance, batteries may require replacement due to increased demand and
limited durability, and the cost of batteries may fluctuate periodically, depending on
demand and the discharge procedure |72].

2.3.1.2 Economic Indicators

Economic indicators such as Net Present Cost (NPC) and Levelized Cost of Electricity
(LCOE) are crucial for determining the optimal size and cost of Renewable Energy
Systems (RES) in a microgrid. The NPC provides a comprehensive measure of the
total cost of a system over its lifetime, including initial capital costs, operation and
maintenance costs, and the cost of fuel and replacements. In contrast, the LCOE
reflects the average cost per unit of electricity the system generates, accounting for all
expenses over its operational life. By analyzing these indicators, decision-makers can
optimize the design and operation of the microgrid to minimize costs and maximize

efficiency, ensuring the economic viability and sustainability of the RES microgrid.

A) Net present cost (NPC): The primary goal of determining the size of the mi-
crogrid system is to minimize the Net Present Cost (NPC), which is computed by
subtracting the entire cost from the revenues generated throughout the project’s

lifespan, as indicated by equation 2.5 [64, 78|.

NTL’L
NPC(i,y) = Z (CAPEX,, + OPEX;,, — Cuavageiy) (2.5)

y=0

CRFzy

Where the Cgalvage is the salvage cost. The equation 2.6 is utilized to compute
the residual value of the power components upon the completion of the project’s

lifespan [79]. Lyem represents the remaining duration of the project, while Loy
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represents the component’s lifespan.

Lrem
Csalvage =C|

re
P Lcom

(2.6)

B) Levelized cost of electricity: The term "levelized cost of energy" denotes the
mean revenue generated per energy unit produced, which is utilized to cover the
costs linked to the design and operation of the system throughout its anticipated
financial duration and operational cycle. It is regarded as an economic indicator
that is utilized to evaluate the economic feasibility of the project [76,80] , as

expressed in equation 2.7.

N,
e
LCOEp = 2050 (2.7)

S ES,
Cy represents the system’s expenses, whereas ES represents the energy served
or he amount of electricity (kWh or MWh) that the system successfully delivers
to the load [58]. The Levelized Cost of Energy is the ratio of all discounted
expenses incurred over a system’s usable lifetime to the discounted total of the

actual energy values distributed.

2.3.2 Objective Function and Constraints
2.3.2.1 Objective Function

Several factors must be considered when designing renewable energy systems inte-
grated into microgrid systems. These include economic considerations such as cost,
profitability, and energy efficiency, particularly when the system generates the antici-
pated electricity. The primary purpose of this work is to enhance the efficiency of the
microgrid system by optimizing multiple objective functions. The objectives include
minimizing the Net Present Cost (NPC) during the system’s lifespan, lowering the
Levelized Cost of Energy (LCOE), and reducing fuel usage and CO5 emissions.

2.3.2.2 Constraints

The proposed optimization model has several design limitations that must be ad-

dressed for technical and environmental considerations.

a. The power balance and battery charge constraints are critical from a technical
perspective. These constraints can be mathematically represented in equation
2.8, which ensures that the total power consumption does not exceed the maxi-

mum power generated from available energy sources [81]:
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N
Z (PE + Pbat - Pload) =0 (28)

Jj=1

Pg represents the power generated by energy resources, while Py, denotes the
battery’s power output. A positive Py, value indicates the battery discharges,
whereas a negative value indicates charging. Additionally, it is essential to ad-
here to the operational limits of power generation units and battery systems.
The terms Pcharge max and Pgischarge max define the upper bounds for the battery’s

charging and discharging power, respectively, as defined in equation 2.9.

max S Pbat S Pmax (29)

charge discharge

. From an environmental standpoint, diesel generators contribute significantly to
greenhouse gas emissions, with carbon dioxide (COy ) being the predominant
byproduct. The amount of CO, emissions generated by a unit of type n during
time t (in ton/MWh) is denoted by E,, , while g,, represents the energy produced
by the non-renewable generation units during the same period (in MWh) [82].

As expressed in equation 2.10.

B =YY" gunEalt) (2.10)
t neN
. The loss of power supply probability (LPSP) measures the likelihood of experi-
encing a power shortage. It is determined by comparing the combined output
of stored energy and energy needs to the load demand divided by the total load
demand [14]. LPSP is the proportion of power supply that cannot meet the load
demand. Currently, it is the most widely used measure for assessing the de-
pendability of HRESs. There are two approaches to calculating LPSP: the first
method relies on chronological simulation, which is computationally complex and
requires data over a specific time; the second method utilizes probabilistic tech-
niques that account for load and energy fluctuations, eliminating the need for
time-series data [82]. The term 100 % LPSP refers to a hybrid power system
(HRES) that is reliable and free from capacity shortages. To attain 90 %, the
maximum annual capacity shortage specified for HOMER as an input variable is

set to zero.

. Various measures evaluate how much renewable energy contributes to the system.
Renewable fraction (RF) is used to decrease the amount of non-renewable energy
in the context of diesel-powered hybrid renewable energy systems (HRES) [73].

The renewable fraction (RF) helps determine the percentage of renewable energy

41



sources in the total energy supplied for a specific demand. RF is the proportion
of energy provided to the load that originates from renewable power sources, and

it may be expressed mathematically as equation 2.11 [81]:

Enon—ren ann
RF = (1 - —> x 100% (2.11)
Et,ann

E+,a nn represents the total amount of electricity consumed annually, while E, o, —rensa nn

refers to the total yearly electricity generation not derived from renewable sources.
In this study, the purpose is to maximize the function RF, which is subject to

constraints. Specifically, RF cannot exceed 100 % or be less than 50 %.

2.3.3 Load Profile and System Modeling

Accurately determining the required amount of energy and the accessibility of re-
newable resources are essential in determining the appropriate size of renewable energy
systems (RES) in a microgrid. Precise estimation guarantees that the system is ad-
equately sized to fulfill energy requirements while maximizing the use of accessible
renewable resources. This entails gathering and examining past consumption data to
comprehend patterns and highest demands and constructing load profiles based on the
time of day, season, and specific customer needs. Assessing the availability of renewable
resources involves evaluating solar radiance levels by satellite data, ground measure-
ments, and meteorological data for solar resource. It also includes utilizing wind speed
data, anemometer readings, and geographical information for wind resources.

Furthermore, it is crucial to examine fluctuations in seasons and daily cycles to com-
prehend the fluctuations in resource availability over time and to consider the collective
potential of numerous renewable resources to improve dependability and consistency.
After estimating the load demand and resource availability, the mathematical mod-
els for each constituent of the microgrid, such as solar systems, wind energy systems,
storage systems (batteries), and backup systems (diesel generators). By integrating
these models, microgrid operations can be optimized by maintaining energy balance,

prioritizing renewable sources, and effective management of battery cycles.

2.3.3.1 Photovoltaic System

The output power of the photovoltaic (PV) panels manufactured by Solar Max Inc. is
calculated using a specific equation implemented within the HOMER, software, which
is based on mathematical modeling as expressed in equation 2.12. This calculation
considers various factors such as solar irradiance, temperature, and panel efficiency to
accurately estimate the power generated under different conditions. Detailed simula-

tion results and their implications are thoroughly discussed in Chapter Four.
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Ir(t)
I

Pov(t) = Rev - fov K ) (1 + a (Tu(t) — Tosrc) (2.12)

Rpy: Rated capacity of the PV array, meaning its power output under standard
test conditions [kW]|

fpy : PV derating factor [%]

Ir: Solar radiation incident on the PV array in the current time step [kW/m?|

Is : Incident radiation at standard test conditions [1 kW /m?|

ap : Temperature coefficient of power [%/°C]

T, : PV cell temperature in the current time step | °C|

T.,s 7c : PV cell temperature under standard test conditions [25° C]

2.3.3.2 Wind Power

The study examines the power generated by the Gaia WT, a wind turbine with a
capacity of 11 kW and a hub height of 18 m. The turbine has a lifetime of 25 years
and does not require any replacement costs. The power output can be mathematically
represented by a function that takes wind speed (v) as input, as shown in equation
2.13 [83].

0, ifv< Vi orv> Vo
Pwr(t) = { pwn - 5250, if Vi, <v <V, (2.13)
PWTI‘? if‘/;~§7}<‘/;)ut

The power output of wind turbines at simulation step t is denoted as Py r(t),
whereas the wind speed at that same step is denoted as v(t). The power output
of a wind turbine grows linearly as the wind speed increases from the cut-in wind
speed (V;;,) to the rated wind speed (V,) when the wind speed (v) reaches the cut-in
wind speed (V). When the velocity v falls inside the interval [V, V.|, where V.,
represents the cut-off speed, the wind turbines (WTs) will consistently operate at the
rated power Py r,.. When the velocity (v) is greater than the output velocity (V,¢), the
wind turbines (WTs) are deactivated as a safety measure. This deactivation indicates
the wind turbines’ performance under standard temperature and pressure conditions
(STP). To adapt the wind turbine power to the existing conditions, the expected power
value is multiplied by the power curve, considering the air density ratio, as indicated
by the equation 2.14 [84].

Pyrg = (pﬁ) - Pyra st (2.14)
0

Where:
Pwre: Wind turbine power output [kW]
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Pwra,srp: Wind turbine power output at standard temperature and pressure (kW)

p: Actual air density [kg/m3|

p o: Air density at standard temperature and pressure (1.225 kg/ m?)

The values of speed are measured at a certain level of height, and then these mea-
sured values are transformed according to the real turbine height using the following
formula [85]:

Zhu
thb:VOx( hb)x)\ (2.15)
Zo

Where V},,; is the wind turbine speed, V,, is the wind speed at reference height, Zj,
is the actual height of the wind turbine, Z, is the height of wind speed measurement

and )\ is a power law.

2.3.3.3 Diesel Power

Equation 2.16 mathematically represents the diesel generator (DG). The fuel curve
slope « for a 100 kW capacity is 0.253 L/hr/kW, and § is the coefficient fuel curve
intercept [85]. Rpe represents the rated capacity of 100 kW, whereas Pp¢ represents

the power generation within a specific time.

FDg(t) = aRpg + ﬁPDg(t) (2.16)

2.3.3.4 Storage System

Lead-acid batteries are employed for modeling. They can absorb surplus energy and
subsequently replenish power when there are inadequate resources to fulfill the load
demands. Equations 2.17 and 2.18 mathematically depict the behavior of these bat-

teries.

_ kQs(t)e™ + Q(t)k, (1 — e %)

Poen(t) = 1 —e kAt 4 ¢ (kAL — 1 — ekAY) (2.17)
_chmaX + ch(t)e_kAt
Poao(t) = 1= i 4 ¢ O Er=ry (2.18)

Qs (t) represents the amount of charge available at the beginning of the time step,
which is more than the minimum state of charge (SOC,,;, is 40%). Equation 2.17
defines QQ(t) as the initial total energy at the beginning of the time step. The variables
c, k, and t represent the storage capacity ratio, storage rate constant, and time step,
respectively. Q.q. is the total capacity storage used to calculate power discharge in
Equation 2.18 [49,50|. The selected replacement cost of the batteries is 300 USD per
unit, as determined by equation 2.3, including SFF.
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2.3.3.5 Data Collection

Figure 2.4 displays a dataset requiring specific inputs.

consumption for the commercial load at site Biskra in July, with a peak load of 460
kW. The output power of the PV generator can be determined by considering the
global solar radiation values depicted in Figure 2.5, which range from 0.2 kW/m? to

0.88 kW/m?. The wind speed is acquired from a meteorological station operated by

NASA [6].

It represents the electricity
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Figure 2.4: Day profile in monthly demand load
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Figure 2.5: Daily climatic data for Biskra region
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2.3.4 Sensitivity Analysis

Sensitivity analysis is performed to assess the impact of any significant or moderate
changes on the results obtained, thereby evaluating the effectiveness of the findings.
Examining the accuracy of renewable energy alternatives is crucial, as even a slight
variation in weight can lead to significant fluctuations in the conclusions drawn [86].

Furthermore, sensitivity analysis is conducted to evaluate the resilience of the
method. This study involves the creation of various configurations of renewable en-
ergy systems (RESs) and applying sensitivity analysis to examine how design variables
influence economic metrics. Additionally, a thorough sensitivity analysis is carried
out to assess the impact of altering economic variables on different components. This
approach is the most direct method for capturing uncertainties. Sensitivity analysis
involves adjusting individual input parameters of the model and evaluating their im-
pact on the output. This assessment allows for determining the effects of parameter
variability on the results [87].

In this dissertation, sensitivity analysis is utilized to assess the influence of both
economic and technical input variables on economic indicators such as NPC and LCOE
to optimize the design of system sizing. The findings of this analysis are presented in

Chapter Four.

2.3.5 Investment Evaluation Criteria

The construction of a microgrid system is considered an investment project, where
economists establish procedures and criteria for selecting the most favorable projects
to support [88]. They employ financial metrics such as Net Present Value (NPV),
Internal Rate of Return (IRR), and Discounted Payback Period (DPB) [57]. The
goal is to identify the most suitable microgrid project, make informed decisions while
considering uncertainty, and conduct sensitivity analysis [57].

NPV and IRR are used to evaluate energy investments to maximize profitability.
These metrics are calculated based on the projected cash flows. A group of researchers

has applied decision-making techniques to assess investments in energy projects |60].

2.3.5.1 Financial Metrics

Financial metrics are essential for assessing a project’s projected expenses and pos-
sible income. They provide vital insights that are necessary for making educated de-
cisions. The measures, including Net Present Value (NPV), Internal Rate of Return
(IRR), and Discounted Payback Period (DPB), enable stakeholders to evaluate the
financial feasibility of a project by forecasting future cash flows and comparing them
to the initial and ongoing investments. These indicators assist in estimating the an-

ticipated financial results, identifying the most lucrative projects, managing risk, and
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ensuring that the selected investments comply with the leading financial objectives and

strategy. Therefore, financial analysis that relies on these indicators is crucial in the

decision-making process, as it helps choose and support initiatives that provide the

highest returns while maintaining an acceptable level of risk.

1)

Net present value: Is the sum of the annual cash flow returned to the project’s
starting value, as stated in equation 2.19, where cash flow (CF) represents the
difference between income and expenses associated with system /project operation
(OPEX), and Cj is the number of one-time investment costs, as revealed in
equation 2.20 [45,57,88|.

N,
~ CF,
NPV = 2 Ty~ Co (2.19)
y:

The net present value (NPV) approach, also known as the discounted cash flow
approach, utilizes the concept of the time worth of money to transform a series of
annual cash flows generated by a project into a single value at a specific discount
rate. This technique also includes income tax ramifications and other fluctuating
cash flows. The discounted cash flow or net present value approach calculates

the cumulative present value by discounting a series of cash flows over a specific

period.

Furthermore, the NPV is a valuable tool when evaluating different investment op-
tions. When comparing several investment options, the project with the largest
cumulative Net Present Value (NPV) is the most appealing. An important con-
straint of this technique is that it is unsuitable for comparing projects with dif-

ferent durations.

CF, = Ciny — Coxy (2.20)

Internal rate of return (IRR): This discount rate corresponds to a value that
neutralizes the net present value of (NPV). Using this indicator yields a more
accurate return than the investment cost for each project, providing the investor
with some insight into potential returns. It has much potential for more profitable
microgrid systems based on energy storage systems [89]. The IRR is calculated

using the subsequent formula (equation 2.21).

Ny
IRR (NPV =0) = ) (1(:1—]?)?/ —Cy=0 (2.21)
y=1 "
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The internal rate of return (IRR) is a critical financial metric that represents
the rate at which the net present value (NPV) of all cash flows from a project
equals zero. Essentially, it indicates the actual profitability of a system for a
project, providing a time-adjusted measure of return on investment (ROI). By
calculating the IRR, investors can gain valuable insights into the potential re-
turns of a project compared to its initial investment cost, making it an essential
tool for decision-making. This metric is particularly promising for microgrid sys-
tems incorporating energy storage solutions, as these systems often yield higher
profitability. However, while the IRR is useful for determining whether a project
is worth pursuing, it has limitations. One significant drawback is that the IRR
does not account for the project size when comparing different investment op-

portunities, potentially leading to biased comparisons [89)].

Additionally, the IRR is widely used in feasibility studies as a criterion for assess-
ing the economic viability of a project. It identifies the interest rate at which the
NPV of a project’s cash flows becomes zero, serving as a benchmark for investors.
An investment is considered economically viable if the IRR exceeds a predefined
acceptance threshold [90]. This makes the IRR a valuable metric for evaluating
potential investments, though it should be used with other financial indicators

to provide a comprehensive analysis.

Discounted paybacks (DPB): DPB indicates the time required after an in-
vestment to recover the initial costs. The project is considered economically
unavailable when the PB is longer than the evaluated systems’ useful lifetime
and is used as an alternative to NPV. However, it does not consider the value
of money over time. In other words, it is a more straightforward criterion with
a more significant potential for imprecision. It is interesting to highlight that
this indicator was used in a way that was complementary to others considered
more accurate, or else, it was adopted as a financial indicator in the optimization
of more comprehensive mathematical models, which justifies its relatively high
occurrence [90]. Using equation 2.22, the DPB is defined as the amount of time
required to reach the initial investment, which corresponds to the point at which
the sum of the discounted cash flows equals zero [57,58|.R, is the annual revenue

from electricity, and m is a percentage of C.

—1In (1 — _C;; )
DPB = oy~ mCo (2.22)
In(1 +14,)

Return on investment (ROI): It has become increasingly popular to guide
investment decisions. As a result, investors have found it helpful to have a stan-

dard measure to compare the benefits of their investments [66]. It was calculated
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using the following equation 2.23 :

(PVC — PVB)
pPVC
PVC denotes the cost’s present value, and PVB is the present value of the ben-

ROI = x 100% (2.23)

efits. ROI is another essential metric that describes and evaluates the return on

ivestment.

2.3.6 NPV Rule

Net Present Value (NPV) is a widely used metric for evaluating investment projects.
According to the traditional NPV rule, a project should be accepted if its NPV ;the sum
of its discounted cash flows is positive, while projects with a negative NPV should be
rejected. However, this approach has limitations, as it does not account for the inherent
uncertainties of investment projects. Investors often consider various criteria, including
the NPV rule, the Internal Rate of Return (IRR) rule, and the payback period [88|.
Each of these metrics provides different insights and can be used to provide a more

comprehensive assessment of an investment’s potential.

2.4 Conclusion

The chapter has introduced an approach to determining the most efficient size of
renewable energy systems (RES) in microgrid system. It has provided a structured
approach to identifying the optimal dimensioning and arrangement of renewable en-
ergy system components, including economic and technical factors. The methodology
commences with a comprehensive examination of energy requirements and the acces-
sibility of resources, subsequently employing diverse financial measures to assess the
viability and cost-efficiency of distinct renewable energy systems (RES). Net Present
Value (NPV), Internal Rate of Return (IRR), and payback period are used to evaluate
the economic feasibility of renewable energy system (RES) projects. The chapter also
covers the technical aspects of incorporating renewable energy sources (RESs) into the
microgrid, which includes evaluating the energy balance, reliability, and performance.
The methodology proposes optimizing the microgrid system’s efficiency and sustain-

ability by integrating financial and technical evaluation.
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CHAPTER 3

RISK ANALYSIS AND
UNCERTAINTY MODELING IN
SIZING DESIGN

The Chapter focuses on improving the sizing design by evaluating risk using Net
Present Value (NPV) and incorporating uncertainty through stochastic modeling of

different components in microgrid renewable energy systems.

3.1 Introduction

Renewable energy sources (RESs) have a favorable environmental impact and are in-
creasingly accepted; however, their implementation encounters various problems, such
as the lack of reliability in accurately measuring and consistently designing power sys-
tems. In addition, the rapid development of renewable energy production, specifically
photovoltaic (PV) and wind power (WP), has resulted in substantial variations and
a high degree of unpredictability in electricity production [91]. Multiple sources con-
tribute to the emergence of various unknown aspects, including demand predictions,
wind and solar energy generation, hydro inflow, fuel costs, CO, prices, market dynam-
ics, and the availability of generating and transmission infrastructure [92].

Another important category of uncertainty, the size uncertainties in renewable en-
ergy systems pertain to the difficulties in accurately determining the optimal capacity

and arrangement of the infrastructure needed for generating renewable energy [10].
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The variability in energy demand exacerbates these issues, as the variable availability
of resources and technological advancements can contribute to increased complexity
and ultimately lead to inefficient system design.

In addition to sizing uncertainties, these problems are worsened by the uncertainty
in determining the anticipated efficiency of renewable energy sources (RESs). Assessing
the integration of renewable energy is of utmost importance, considering sustainabil-
ity and technological perspectives. Factors such as energy efficiency and operational
expenses should be considered.

Therefore, it is crucial to tackle the challenges of sizing and implementing a hybrid
energy system [93]. Thus, to reduce the unpredictable fluctuations in power generation
from renewable energy sources (RESs), a microgrid can integrate traditional power
generating and energy storage technologies, resulting in a more stable and depend-
able hybrid microgrid [9]. A notable utilization of Renewable Energy Systems (RES)
involves the implementation of microgrids to supply energy in rural areas and commu-
nities.

In addition to technical uncertainties, economic uncertainties must also be assessed,
the assessment of investment based on the financial metric of net present value (NPV)
is impacted by several aspects related to the system’s inputs. The intermittent nature
of these factors creates uncertainties, leading to a problem. The diffusion of renewable
sources has impacted electricity prices and prompted the investigation of the relation-
ship between the penetration of renewable sources and the detrended system electricity
price [94].

As a result, the system’s Net Present Value (NPV) has been impacted since NPV
is directly linked to cash flow. In addition, the price has affected energy components
since the market prices for various renewable technologies present significant obstacles
to the shift to renewable energy sources [95] [1]. Neglecting the influence of these
uncertainties could have a detrimental effect on the operation schedule, potentially
leading to the projected optimal solution not being the perfect operating point in real-
ity. The fluctuation in the load impacts decision-making and long-term investment for
determining the appropriate size, as stated by [33|. Subsequently, the unpredictabil-
ity of solar radiation significantly impacts the optimal sizing of microgrids, leading to
increased uncertainty [96].

The presence of uncertainty in a system generates a state of constant change. It
significantly affects important indicators essential for economic viability and decision-
making, which is necessary for stakeholders. Hence, it is crucial to mitigate uncertain-
ties in the dimensioning and modeling of Renewable Energy Systems (RES) to guar-
antee the viability and effectiveness of renewable energy initiatives. A sufficient risk
evaluation can result in below-par system performance, heightened costs, and failure

to meet sustainability goals. These uncertainties present substantial risks to investors,
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policymakers, and stakeholders involved in renewable energy projects, ultimately erod-
ing trust in the reliability and effectiveness of renewable energy solutions.

The literature has put forth many solutions employing theoretical methodologies to
solve and depict these uncertainties. In the context of microgrids, it is no longer prac-
tical to depend on deterministic energy scheduling methods that ignore uncertainties.
Several studies have shown that using probabilistic methodologies reduces operational
expenses compared to deterministic solutions. Creating and testing fuzzy mathemat-
ical programming models and extensions have been conducted effectively [97]. The
probability density function (PDF) is used to determine the distribution of the design
variables, considering their continuous nature. The samples used to determine the opti-
mal size of the microgrid are chosen based on appropriate probability density functions
(PDFs) and Monte Carlo simulation, with the statistical method as presented by [66].

Furthermore, the stochastic method utilizes a mathematical model, specifically
Markov chain Monte Carlo simulations, to effectively capture and handle risk by rep-
resenting many scenarios and modeling uncertainty [98].

In addition, the strategies used to forecast and resolve uncertainty in microgrid plan-
ning are significantly impacted by different approaches to modeling uncertainty [99].
Stochastic frameworks, which utilize probability distributions to depict uncertainty,

are more prevalent and have shown considerable efficiency in modeling uncertainty.

3.2 Risk Analysis and Decision Making

Energy investment decisions are complex and uncertain due to their variable and
stochastic nature, which introduces risks. The energy sector is transforming quickly,
primarily driven by market dynamics, regulatory frameworks, and technological ad-
vancements. Hence, performing risk analysis with other evaluations is crucial while
making energy investment decisions [100]. A risk-neutral and profit-maximizing eco-
nomic agent who possesses a power-generating asset or a possible investment project
can either sell the asset or invest in the project later. This agent faces the risk of
uncertain revenue and uncertainty about future scenarios. The revenues generated by
the asset before the project is closed after investment are calculated based on the fu-
ture values of risk variables such as fuel, electricity, and carbon prices. The evolution
of these risk factors is uncertain, and their distribution relies on the actual transition
scenario, as discussed by [101].

Moreover, computational modeling has employed several methods to simulate in-
vestment choices in the presence of uncertainty and risks. Investments in the real
option-based analysis are a risk-neutral mechanism and thus do not allow for exam-
ining how the interplay of uncertainty and risk aversion affects investment decisions.

The fundamental principle is that, at a specific anticipated return level (the mean), an

52



investment portfolio is constructed to minimize risk (measured by variance or standard

deviation) or at a specific risk level [102].

3.2.1 NPV Risk

Investments frequently entail a remote future characterized by uncertainty. Risk is a
type of uncertainty involving knowledge about future occurrences but with a probabil-
ity of less than one. There are four distinct levels of uncertainty: precise enough future,
alternate futures, continuous uncertainty, and real uncertainty. In the contemporary
global landscape, many variables influence economic mechanisms, complicating eco-
nomic choices when knowledge is limited. The scientific challenges of decision-making
in uncertain and risky economic situations are significant. Research efforts focused on
creating robust methodologies for measuring the financial risks of investment projects
in uncertain conditions are of great significance [103].

The risk analysis must include Probability Distribution Functions (PDF) for critical
metrics such as Net Present Value (NPV), Levelized Cost of Energy (LCOE), and
Internal Rate of Return (IRR) To ensure the evaluation of the project. This is especially
beneficial when addressing pertinent uncertainties. The risk analysis is performed
through Monte Carlo simulation, employing random sampling techniques based on
the probability distributions specified for each input. The convergence requirement
determines the delay conditions for the Monte Carlo method, which has a tolerance of
1 % and a confidence level of 95 %. Multiple studies validate the correlation among
net present value (NPV), internal rate of return (IRR), and payback period.

This PhD thesis also focuses on risk analysis concerning Net Present Value (NPV).
The findings of this simulation are outlined in Chapter Four. Monte Carlo Simulation
(MCS) is a statistical sampling technique that effectively addresses quantitative prob-
lems by modeling random variables. The random net present value is estimated by
considering the time series of cash flows (CF) and the anticipated probability distribu-
tion of NPV.

3.2.2 Treatment of Uncertainty Problem

The PhD thesis focuses on addressing the issue of uncertainty to enhance the design
of optimal size for renewable energy systems incorporated into microgrids. Uncertainty
can occur at different levels, such as input variables, sizing considerations, and financial
measures. This thesis addresses uncertainty at many levels, utilizing diverse method-
ologies, as depicted in Figure 3.1. Sensitivity analysis is used to capture the uncertainty
of input variables, as explained extensively in Chapter Two. The thesis analyzes finan-
cial indicators using the Net Present Value (NPV) rule. It incorporates risk analysis
at the NPV level by employing deterministic Monte Carlo Simulation. In addition, the

thesis suggests using stochastic modeling to represent for the uncertainty associated
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with different input elements. These methods jointly improve the dependability and

precision of the size design for renewable energy systems in microgrids.

Optimal economic
indicators (NPC, LCOE):
» Cimate data

* Economic data

+ Load profil

Sensitivity analysis:

« Impact of prices and
inflation rate

» Impact of variability
resources

Monte Carlo simulation:
+ Probability distribution of cash

Figure 3.1: The framework of treatment of the uncertainty problem

3.3 Stochastic Optimization and Uncertainties

Stochastic optimization provides numerous potential solutions that more precisely rep-
resent real-world conditions, assisting operators and customers in assessing the risks
linked to the uncertainties of renewable energy generation. Thus, the characteristics
of stochastic optimization methods are more suitable for tackling the variable and
sporadic nature of renewable energy systems [104]. This thesis presents the issue of
uncertainties and underscores the significance of uncertainty modeling in stochastic

optimization for robust design sizing and long-term planning of microgrids.

3.3.1 Overview of Stochastic Optimization

In electric power systems, optimization is employed for several functions, encompassing
real-time operation and long-term planning. System operators, generation businesses,
and consumers depend on diverse input data to establish parameters in the development
of a mathematical optimization model that facilitates optimal decision-making.
Parameters of this nature encompass projections of load and renewable energy,
insights into forthcoming electricity pricing, and enduring climate change patterns.
Unfortunately, numerous parameters remain unclear. The prediction of load and re-
newable energy generation is influenced by uncertainties in weather forecasts, whereas
electricity prices are determined by fluctuations in load and renewable energy gener-

ation, as well as the actions of other market participants. Predicting future climate

o4



change trends is challenging due to insufficient understanding of emission trajectories
and their consequent effects on the grid. Despite the lack of precise values for these
ambiguous characteristics, we must proceed with decision-making at this time [105].
Furthermore , decision-making in electricity systems must account for the unique char-
acteristics of EMDE (emerging markets and developing economies) countries from three
critical perspectives: engineering (power delivery), policy (regulation), and financial
(cost recovery). Key decisions, such as choosing between on-grid and off-grid genera-
tion, expanding the grid, undertaking maintenance, or investing in renewable energy
coupled with battery storage, must incorporate relevant uncertainties to ensure effec-
tiveness [106].

Uncertainty, by its nature, limits the ability to predict outcomes with precision.
Two primary types of uncertainty influence decision-making: exogenous and endoge-
nous. Exogenous uncertainty is external to the decision process and includes factors
like weather forecasts or technology costs. In contrast, endogenous uncertainty depends
on the decisions made, such as demand growth influenced by supply reliability, gen-
eration technology choices, or tariff structures. In both cases, decision-making can be
conceptualized as an agent responding to observations and inputs from its surrounding
environment [106].

Stochastic optimization is a mathematical methodology employed to achieve opti-
mal decisions under uncertainty by integrating random variables into the optimization
framework. Stochastic optimization in microgrid sizing and design mitigates uncer-
tainty associated with renewable energy output, load demand, fuel prices, and meteo-
rological variables. This approach guarantees that the microgrid system is economically

efficient and robust against fluctuations.

3.3.2 Uncertainty Modeling

Demonstrating uncertainty is essential in stochastic optimizations. Every uncertainty
modeling technique yields a unique representation of the systems. Thus, the careful
selection of uncertainty modeling approaches is crucial. Uncertainty modeling is a con-
ventional method to depict the stochastic nature of renewable systems. Rather than
presuming complete knowledge of the parameters (such as wind speed, solar irradia-
tion, and load demand) in contrast to a deterministic method, random distributions
are incorporated as inputs into a stochastic optimization framework to replicate the
probabilistic nature of a renewable energy system [104].

Therefore, uncertainty modeling often focuses on several techniques to assess the
influence of uncertain input parameters on system output parameters. Soroudi and Am-
raee suggest a classification of uncertainty modeling for decision-making in energy sys-
tems, encompassing probabilistic, possibilistic, hybrid possibilistic-probabilistic tech-

niques, information gap decision theory, resilient optimization, and interval analy-
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sis [92].

The use of Monte Carlo Simulation (MCS) in renewable energy applications has
been a topic of interest. MCS is a method that minimizes economic risks and maximizes
financial returns by analyzing random variables such as water inflow, wind speed,
solar irradiance, PV panel temperature, and average generation capacity. It has been
applied to investigate the economic risk analysis of decentralized renewable energy
infrastructures and has been implemented in various studies.

Furthermore, the MCS model is a prevalent method that has been used to predict
the stochastic behavior of uncertainty sources in the planning of stand-alone RES-
based microgrids [98]. Stochastic models may be structured as either single-stage or
multi-stage situations. Decisions are made at the start of the planning phase before
uncertainty is realized, and there are no recourse options available in single-stage formu-
lations. In multi-stage formulations, decisions are made at various temporal intervals as
uncertainty is progressively disclosed, allowing for adjustments when new information

emerges [92].

3.4 Proposed Modeling

The sizing operation has been assessed utilizing metrics such as net present cost
(NPC), net present value (NPV), and levelized cost of electricity (LCOE). These vari-
ables, which pertain to energy production and load demand, are influenced by uncer-
tainties and risks associated with the inputs of renewable energy systems, as demon-
strated in many articles. This proposed solution mitigates these risks using mathemat-
ical techniques commonly employed in the literature.

Stochastic systems necessitate meticulous approaches due to uncertainty and prob-
ability, which define decision-making in such situations. Stochastic dynamics employ
stochastic elements, such as Geometric Brownian Motion (GBM), to represent the
unexpected temporal evolution of a system. The selection of GBM is based on its
effectiveness in capturing the unpredictable and random characteristics of different in-
puts [107]. Using stochastic differential equations allows for a dynamic representation
of power systems that accounts for continuous time uncertainties, including a GBM
component [108].

Furthermore, the stochastic characteristics of GBM are vital for accurately repre-
senting the inherent uncertainties in the system, and prediction models are also crucial
for investors to mitigate investment risk [109]. Consequently, given the system’s unpre-
dictable character, the design of renewable energy systems necessitates analyzing the
behaviors shown by different components. This method employs a stochastic frame-
work to model and simulate the uncertainty associated with many factors affecting

renewable energy systems’ sizing and design.
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The stages of this work include determining the most suitable criteria for the sys-
tem’s design, which involves identifying key aspects that significantly impact the sys-
tem’s performance. After identifying these factors, the next step is to gather historical
data. This data provides a factual basis for understanding the behavior of the selected
elements over time. Following data collection, the volatility and drift are computed.
Volatility measures the extent of variation in the components, while drift represents
the average rate of change over time. These calculations are essential for accurately
replicating the behavior of the elements. Subsequently, the GBM (Geometric Brownian
Motion) modeling technique is applied, using the obtained volatility and drift values to
predict the future behavior of the factors. GBM is a commonly used stochastic process
that represents the continuous-time behavior of variables.

A Monte Carlo simulation uses the GBM model to explore several possible results.
This procedure involves producing numerous simulated trajectories by random sam-
pling, which helps to understand the potential variations and uncertainties inside the

system.

3.4.1 Stochastic Model

The stochastic model is based on the stochastic differential equation with geomet-
ric Brownian motion (GBM), which accurately represents real-world occurrences as
they evolve. This model has been extensively employed in the dynamic investment
sector to accommodate the fluctuation of prices and market models, and the GBM is
distinguished by its drift p and volatility o .

In this context, X(t) denotes the input parameter as it changes over time, while
W(t) represents a Wiener process that follows a normal distribution n (0,1), with a
mean of 0 and a variance of 1. The equation 3.1 represents the stochastic differential
equation using the Geometric Brownian Motion (GBM) model, with the term dW

representing Brownian motion [107].
dX(t) = pX(t)dt + o X (t) dW (t) (3.1)
Where:
e 1 is the drift coefficient,

e o is the diffusion coefficient,

e WW(t) is a Wiener process (or Brownian motion).

3.4.2 GBM Parametres Estimation

The Geometric Brownian Motion (GBM) model is a stochastic variable restricted to

positive values only [68]. To simulate the trajectories of factors using the Geometric
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Brownian Motion (GBM) model. Which requires estimating the sample mean and
variance for the GBM model by computing the average and standard deviation of the
logarithmic returns R (t ;) for i=1,....... N [108].

Definition 1: Let X represent the value of the data, t represents the time moment
within the interval (0, T), T represents the total time, and At represents the time
lag, which equals the reciprocal of T. The logarithmic return R(t) of x inside the time
interval (¢,t 4 At) is accurately determined according to the references cited [110,111].
In equation 3.2, the function R(t) is defined as the natural logarithm of the ratio
between X (t + At) and X(t).

R(t) = In (%) (3.2)

Definition 2: Brownian motion is a stochastic process {W (¢),t > 0} that fulfills the
following conditions [110]:

e The differences {W (t;11) — W(t;),i = 1,...,n— 1} are statistically independent,
where 0 < t; < Tivt-

e W(0) =0.

The solution to equation 3.1 for any arbitrary initial value X (0) is provided in equation
3.3 [109]:
X(t) = X(0) exp (ut — 1o%t + oW (1))
p=mean(R(t)), o= Std(R(t)) (3.3)
W=+Vt-e e~N(1)

Furthermore, Monte Carlo simulation (MCS) captures the uncertainty and forecasts
future behavior. It offers a viable approach to simulated intricate dynamics due to

their unpredictable and stochastic nature [110].

3.4.3 Renewable Energy System

The characteristics of the installation area, specifically Biskra, Algeria, are crucial
in examining the factors that impact the selection of renewable energy systems. The
integrated system comprises solar panels, wind turbines, and a battery energy storage
device. It is essential to identify the most relevant variables while thoroughly analyzing
the architecture of this renewable energy system (RES). The discussion has focused on
three main elements: climatic variables, economic issues, and load demand. The initial
categorization concerning climatic elements encompasses unpredictable and variable
aspects such as sun radiation and wind speed. Gaining a comprehensive understanding
of the characteristics of these components is essential for maximizing the efficiency of

the renewable energy system (RES). The size and efficiency of photovoltaic (PV) panels
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and wind turbines are directly impacted by the strength of solar radiation and wind

patterns.

Load demand

Solar irradiation

Factors

Wind speed

Inflation rate

Net Present Cost

Levelized Cost

Indicators of Energy

NetPresent Value

Assessment
Energy
Production

Figure 3.2: Factors and indicators for the planning of RES into microgrid

The economic aspect of the second category is affected by factors such as the in-
flation rate. Economic factors substantially influence renewable energy projects and
long-term viability, as shown in Figure 3.2.This figure presents the criteria and indica-
tors used to determine the appropriate size and design of the renewable energy system,
including the levelized cost of electricity (LCOE), net present cost (NPC), net present
value (NPV), and energy production.

Furthermore, load demand specifically pertains to the quantity of electrical energy
utilized. Precisely forecasting the load demand profile is crucial for determining the
appropriate capacity of Renewable Energy Sources (RESs). The system’s sizing and
design are influenced by peak demand hours, seasonal swings in energy consumption,
and load fluctuations. A comprehensive analysis of these components using several
parameters guarantees the most suitable sizing and structure of the renewable energy
system (RES), improving reliability, cost-effectiveness, and sustainability in fulfilling

energy requirements.

3.4.4 Historical Data

Collecting data from numerous factors is essential to assess the anticipated change
in value for each data point. This step facilitates the calculation of the drift term
and volatility in the Geometric Brownian Motion (GBM) model. To achieve precise

modeling and analysis, data should be collected at latitude 34.9 © and longitude 5.81°.
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Figure 3.3 depicts the variations in solar irradiance and wind speed over time. The
data used for this analysis was received annually from NASA [6]; the data from NASA’s
2023 report reveals that solar irradiance saw variations ranging from 5.1 kWh/m?/d to
6 kWh/m?/d during the years 1984 and 2022. Concurrently, the wind speed fluctuated,
including values between 4.8 m/s and 5.7 m/s over time. The wind speed range spans
11 m/s to 20 m/s, covering its broader variation.

Furthermore, Figure 3.4 depicts the hourly-monthly statistics of wind speed and
solar radiation for each month throughout 24 hours. Through data analysis, it is evident
that there is a continuous pattern in solar radiation levels. The lowest values, which
average (.04 kWh/m?/d, are typically appreciated in January and continue throughout
winter. The maximum values measured in July were 0.6 kWh/m?/d. The wind speed
exhibited significant variability, spanning from 0.5 m/s to & m/s.
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Figure 3.3: Annual climate data for Biskra, Algeria
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Figure 3.5: Monthly load demand in kWh/d

Regarding the load demand statistics, Figure 3.5 displays an average monthly day,

illustrating substantial hour-to-hour variability. The maximum power usage between
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10:00 and 16:00 is 300 kWh/day, while the minimum power usage is 50 kWh /day. Typ-
ically, the highest value occurs during the summer season. However, this demonstrates

the inconsistency and instability in selecting days to depict this fluctuation.
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Inflation rate 2023 in Algeria
Figure 3.6: Inflation rate for Algeria in 2023
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Moreover, the economic dimension, which has been considered essential, encom-
passes the inflation rate data for 2023, as illustrated in Figure 3.6. The inflation rate
exhibited irregular fluctuations within the range of 8.2 % to 10.1 % over the months.
The fluctuation of this factor underscores its significance in economic research. Fur-
thermore, Figure 3.7 presents the historical statistics on the inflation rate in Algeria
spanning from 1970 to 2023 [112]. Exhibiting significant variations over time. This
variation underlines the substantial instability in the inflation rate. This data is cru-
cial for conducting analysis, allowing for a more profound comprehension of long-term
patterns and variations, thereby providing vital insights into the dynamics of the fi-

nancial system over time.
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Figure 3.7: Historical data of annual inflation rate for Algeria
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3.5 Results

The results were obtained by employing geometric Brownian motion for elements
involved in planning and sizing the microgrid’s renewable energy system (RES). The
Monte Carlo simulations of the Geometric Brownian Motion (GBM) model were con-
ducted for individual factors across periods of 5 years, 10 years, 15 years, and 25 years.
The process commences with estimating the drift and volatility values for each element.
Afterward, Python code executed in a Jupyter Notebook generates pathways for these

factors using simulation parameters shown in Table 3.1.

Table 3.1: Simulation parameters of MCS

N Number of paths
T 9, 10, 15, 25 years
X(0) The initial value of each state

Number of steps 50

MCS-GBM for wind speed MCS-GBM for wind speed
6 1 =0.00434, 0 = 0.02826 M =0.00434, 0 = 0.02826
Mean path = 4.73 Mean path = 4.
95% Cl final = [4.22, 5.40] 6.5 95% Cl final = [4.09, 5.80)
=== actual Wind Speed = 4.68 m/s === actual Wind Speed = 4.68 m/s
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Figure 3.8: Forecasting the paths for future wind speeds
Figure 3.8 illustrates the Monte Carlo Simulation (MCS) showing the change in
wind speed over five years, ranging from 4 m/s to 5.8 m/s. The simulation includes a

drift value of 2.8 % and a volatility of 0.4 %. The expected wind speed values range
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from 4 m/s to 6.5 m/s during ten years. Significantly, 60 % of the expected values
are within a more limited range of 4 to 5.5 m/s. Over ten years, the anticipated
wind speeds range from 3 m/s to 6.5 m/s. This underscores the dependability and
uniformity of the anticipated wind velocities, underscoring assurance in forecasts for

energy generation.
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Figure 3.9: Forcasting uncertainties for solar irradiance

Furthermore, Figure 3.9 illustrates the probabilistic paths that predict the future of
solar irradiation. The volatility 0.015 signifies a substantial degree of unpredictability
in solar irradiation compared to the anticipated pattern. According to the model,
solar irradiation levels will range from 5 to 5.6 kWh/m?/d over the next five years.
This forecast considers solar irradiation’s expected path (drift) and inherent variations
(volatility).

About the 10-year forecast, the projected range of solar irradiation is anticipated to
be similar to the short-term estimate, indicating constant growth within the same time
frame. Solar irradiation levels are predicted to stay between 5 to 5.6 kWh/m?/d for the
next 25 years. This projection considers incremental shifts in the fundamental pattern
and unexpected fluctuations in unforeseen circumstances. The calculated values aid
in reducing risks in strategic energy planning and environmental impact evaluations.
Therefore, stakeholders can improve their decision-making process by using stochastic

modeling to account for the inherent uncertainty in future solar irradiation predictions.
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Additionally, Figure 3.10 illustrates the projected trajectories of inflation rates
throughout different periods, characterized by a descending trend of -0.0006 and a
level of volatility of 0.049. The GBM projection predicts that inflation rates will
range from 9 % to 16 % during the next five years. This range encompasses the inher-
ent decrease in value over time and the unpredictability of the inflation rate. During
the next decade, the projected inflation rates will range from 9 % to 18 %. This analy-
sis examines the long-term influence of inflation patterns and instability on investment
choices. The model predicts that inflation rates will vary between 7 % and 20 % during
the next 20 years. A long-term perspective provides investors with significant insights
into possible inflation rates and how they impact project economics. Precisely fore-
casting inflation rates is essential for investors in renewable energy projects since they
directly affect project costs, net present cost (NPC), levelized cost of energy (LCOE),
net present value (NPV), investment risk, and profitability. By comprehending the an-
ticipated trajectories of the inflation rate, investors can enhance their decision-making,

risk mitigation, and dependability of renewable energy projects in the long term.
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Figure 3.10: Forecasting uncertainties for the inflation rate

In addition, Figure 3.11 provides a detailed depiction of Geometric Brownian Mo-
tion (GBM) trajectories to reliably predict anticipated power usage based on historical
data. The GBM model incorporates a drift value of -0.057 and a volatility of 0.28.
These elements are crucial for precisely capturing the underlying pattern and fluctua-
tions in power consumption over time. The depicted trajectories depict the projected
rise in demand for electricity, emphasizing the planned increase in consumption levels

by 50 %. This tool is valuable for understanding the potential trajectories of electricity
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use. It facilitates decision-making about resource allocation, infrastructure develop-

ment, and risk management in the energy project.
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Figure 3.11: Uncertainties evolution for load demand

3.6 Conclusion

Long-term planning and sizing are necessary for designing microgrids that rely on
renewable resources to assess investment costs and electricity production. This proce-
dure entails evaluating multiple indicators, including net present cost (NPC), levelized
cost of electricity (LCOE), and net present value (NPV). The availability of renewable
resources impacts these parameters, the level of energy consumption (load demand),
and the inflation rate.

Moreover, the sizing and design of renewable energy systems are subject to uncer-
tainties arising from the inherent characteristics of these components, the quantification
of risks, and government economics. This study presents a technique for describing and
capturing the uncertainty involved in the size and planning of renewable energy sys-
tems (RES) in a microgrid. Resolving these uncertainties is achieved by utilizing a
mathematical methodology that is frequently employed to effectively handle the risk
associated with dynamic investments and the fluctuations in the stock market.

Stochastic modeling employs Geometric Brownian Motion (GBM) with historical

data for each element. The approach starts by calculating the critical components of
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GBM, namely drift and volatility, to forecast the random fluctuations of size factors
over time intervals of 5, 10, 15, and 25 years. The choice of factors is contingent upon
the particular microgrid system. The hybrid renewable microgrid utilizes both wind
and solar energy sources. Hence, the elements considered include wind speed, solar
irradiation, power demand, and the inflation rate.

Stochastic Monte Carlo simulations with 10,000 paths illustrate future predictions
of various behavior characteristics. This technique effectively captures uncertainty at
the individual factor level, successfully predicting pathways with an accuracy of 60 %.
Furthermore, it offers enduring perspectives on these aspects by fostering trust among
investors in the renewable energy sector and supporting the dependability of renewable
energy sources within microgrids. Consequently, it plays a crucial role in determining

the viability of renewable energy projects.
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CHAPTER 4

OPTIMAL DESICN AND SIZING OF
RENEWABLE ENERGIES IN
MICROGRIDS WITH FINANCIAL
CONSIDERATIONS A CASE STUDY OF
BISKRA, ALCERIA

In this chapter, we present a detailed discussion of the results obtained from the
comprehensive sizing procedure proposed in Chapter Two. The method focuses on the
optimal sizing of three renewable energy combinations. Our approach incorporates mul-
tiple considerations to ensure robustness and practicality, including financial analysis,

sensitivity analysis, and handling uncertainties and decision-making processes.

4.1 Introduction

To accomplish the objective of this doctoral research, we conducted simulations of the
proposed approach for determining the most efficient configuration of renewable energy
systems within microgrids. This chapter presents the primary findings by examining
expenses, energy generation, economic indicators, and financial measures. We evalu-
ate the economic feasibility of renewable energy projects by utilizing essential financial
metrics, such as the Net Present Value (NPV) criterion, to determine their profitability.
We utilize the Monte Carlo simulation to mitigate the risks and uncertainties associ-

ated with renewable energy projects. This simulation effectively simulates and analyses
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the effects of different uncertainties on the outcomes of the projects. These visual aids
improve understanding of the data, allowing stakeholders to make well-informed deci-
sions based on thorough insights. By incorporating economic and risk assessments into
the decision-making process, we enhance the design of the most efficient dimensioning
for renewable energy sources (RES) in microgrids. This chapter provides the efficacy of
the suggested approach in facilitating improved decision-making for renewable energy

projects.

4.2 Cost and Evaluation of Energy

For this investigation, three energy sources were used and integrated into three
different configurations, as shown in Figure 4.1. The choice of these arrangements was
motivated by the region’s characteristics, including abundant solar energy potential and
many remote locations that require off-grid microgrid solutions. The configurations are

as stated below:

e Photovoltaic (PV) systems combined with battery banks: This configuration

utilizes photovoltaic panels in conjunction with battery storage.

e PV/WT /Battery Banks integrates solar panels and wind turbines with battery

storage.

e The system combines photovoltaic panels, wind turbines, battery storage, and a

diesel generator to provide backup power.

The selected configurations were particularly adapted to coordinate with the energy
consumption and generation patterns of the place under consideration while addressing
the social and economic requirements of the Biskra region. In this case study, the
demand corresponds to the commercial load for the Biskra site in July, with a peak
load reaching 460 kW. Table 4.1 displays the values for the fundamental simulation
inputs. The solar scale average is selected as a moderate value of 3 kWh /m?/day,
while the fuel cost is determined to be 0.214 USD /L based on local prices [113].

In addition, this analysis presents numerous values and parameters sourced from
the Homer library [114] in Table 4.2.

Table 4.1: Variables and Values
Variable Value

Inflation rate | 9.8%
Average solar | 3 kWh/m?/d
Wind speed | 3 m/s

Fuel price 0.214 $/L
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Table 4.2: Component Characteristics
Component Lifetime | O&M Capital cost
PV generator 25 years | 10 $/yr | 3000 $/kW
Battery 10 years | 10 §/yr | 300 $
Wind turbine 25 years | 850 $/yr | 60 k$
Diesel generator | 15000 h | 2 $/h 40 k$
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Figure 4.1: RES combinations of microgrids: (a) PV MG, (b) PV/WT MG, (c)
PV/WT/DG MG

4.2.1 Cost Analysis

The ensuing paragraphs explain the important findings of the simulation for the
suggested combinations. Figure 4.2 illustrates the annual costs associated with the first
project, consisting of capital expenditure of 66.000 k USD and operational expenses
totaling 14,600 USD. The PV generator does not require any expenses for replacement.
However, the batteries and system converter require repair because of their limited
lifespans, resulting in additional costs. The batteries carry a replacement value of 82
k USD, whereas the system converter has a replacement value of 5,000 k USD. The
combined salvage cost for both components amounts to 41 k USD.

Figure 4.3 depicts the annual costs linked to the different elements of the second
project. The PV system requires an initial investment of 245.5 k USD while the wind

turbines are expected to have operating expenses of 28.05 k USD. The batteries possess
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a notable expense for replacement, with a salvage value of 599 k USD reflecting the

worth of the potential reserve.
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Figure 4.2: The annual costs for Project N°1
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Figure 4.3: The annual costs for Project N°2

According to Figure 4.4, the yearly costs for the third project show substantial
starting expenses for the photovoltaic (PV) system and the highest expenditures for
battery replacement. Furthermore, the diesel generator necessitates a resource outlay
of 40 k USD and carries a capital expense of 581.350 k USD. One of the most critical
economic indicators is the total net present cost (NPC), which assesses the system’s

financial viability over time.
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Figure 4.4: The annual costs for Project N°3

Figure 4.5 shows the system’s minimum NPC over 25 years for the first project.
The project involves high capital costs for the PV system, at 4.4 million USD, high
operating costs for batteries, at 2.13 million USD, and a total salvage value of 2.73
million. The high NPC for batteries is primarily due to their replacement cost, given

their 9 to 10 years lifespan.
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Figure 4.5: NPC of project N°1
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Similarly, Figure 4.6 illustrates the second project’s optimal configuration with the
minimum NPC of each component over 25 years. The NPC for capital costs ranges
from 1 million to 5.06 million USD, while the operating costs for wind turbines are high
at 1.96 million USD. This analysis highlights the significant impact of each component
on the overall cost. For the third project, the simulation results indicate that the NPC
for the diesel generator is 2.7 million USD, and the capital NPC is 3 million USD.
Figure 4.7 shows that the operational costs for this project are substantial, exceeding
2.3 million USD. These results provide a comprehensive understanding of the economic

impact of each component in the microgrid configurations, offering valuable insights

Figure 4.7: NPC of project N°3

for optimizing costs and enhancing system performance.
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4.2.2 Optimal Indicators
Net Present Cost (NPC) and Levelized Cost of Energy (LCOE) are essential indi-

cators in choosing the best system configuration to achieve cost efficiency. Table 4.3

displays the most favourable indicator values for each project configuration:

First Project: The total NPC (Net Present Cost) is 11 million USD, while the
LCOE(Levelized Cost of Electricity) is 0.197 USD/ kWh.

Second Project: The project’s net present cost (NPC) is 13 million USD, with a
levelized cost of electricity (LCOE) of USD/kWh. This project is entirely fuel-free and

produces no CO, emissions, as it achieves a 100% renewable percentage (RF).

Third Project: The Net Present Cost (NPC) is 9.45 million USD, and the Levelized
Cost of Electricity (LCOE) is 0.188 USD/kWh. The current setup utilizes 39.000 L of
fuel annually and releases 104,321 kg of CO5 annually, with 85% of the energy coming
from renewable sources. The third project exhibits the most favourable Levelized Cost
of Electricity (LCOE) and the lowest Net Present Cost (NPC) compared to the previous
configurations. However, it also substantially influences CO5 emissions due to its fuel

use.

Table 4.3: Comparison of Project Indicators

Indicators 1%t Project | 2°! Project | 3" Project
NPC (M USD) 11.7 13.3 9.45
Capex (M USD) 5.50 8.25 3.06
Opex (K USD) 94.6 201 92.7
LCOE (USD/kWh) 0.197 0.728 0.188
CO; emitted (kg/yr) 0 0 104,321
Fuel consumption (L/yr) 0 0 39,000

4.2.3 Energy Produced

In order to assess the technical performance of the suggested configurations in meet-
ing the required load, a time-based simulation was carried out to analyze the sufficiency
of the power generated from all sources in each configuration. Figure 4.8 displays the
power generated by the PV-only configuration over 72 hours. During this time, elec-
tricity production is solely derived from the photovoltaic (PV) source. The maximum
power output reaches around 500 kW at noon, which completely satisfies the fluctu-
ating load requirement that ranges from 100 kW to 200 kW throughout the day. The
battery system has a stored energy capacity ranging from 2300 kWh to 2800 kWh. The
battery’s State of Charge (SOC) varies between 80 % and 100 %, offsetting the changes
in PV power output. It guarantees that the load demand is consistently fulfilled, re-

gardless of the fluctuations in solar power generation.
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Figure 4.8: 72 hours of system’s power and battery capacity for the 15 project

Furthermore, Figure 4.9 presents a comprehensive depiction of energy generation
from various sources throughout a 72-hour duration in the winter season: - During
the initial 24-hour period, wind energy is the primary source of energy generation. In
contrast, solar energy production is low, mainly when the demand for electricity does
not surpass 200 kW. As a result, the battery’s storage capacity swings between 1100
and 1200 kWh as it adjusts to the changing energy inputs. Following days: Solar energy
output experiences a substantial increase, especially during daylight hours, reaching its
highest point in the afternoon. During this period, intense energy generation of over
200 kW guarantees sufficient coverage of the load demand even in the absence of solar
energy, such as during nighttime hours. The technology efficiently employs battery
storage to fill gaps and ensure a steady supply.

Moreover, Figure 4.10 comprehensively depicts the power flow dynamics in the third
arrangement within a 72-hour. This arrangement typically supports an electrical load
ranging from 200 kW to 300 kW. The primary sources of electricity to meet the overall
demand are renewable, specifically photovoltaic (PV) panels and wind turbines (WT).
Renewable energy sources significantly fulfil the load demand when generating electric-
ity at their highest capacity. A diesel generator is utilized to complement the system
to guarantee uninterrupted power supply when there is a shortage of renewable energy.
The system’s output varies from 50 kW to 100 kW, efficiently maintaining a stable
power flow and assuring a continuous supply of electricity to match fluctuations in
demand. The hybrid arrangement demonstrates the adaptability and dependability of
combining renewable energy sources with backup diesel power in microgrid systems. It
showcases the capabilities of these systems to efficiently handle fluctuating energy sup-

ply while ensuring operational stability and satisfying electricity demand over diverse
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Figure 4.9: 72 hours system’s power and battery capacity for the project
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Figure 4.10: 72 hours system’s power for the 3"project

Furthermore, Figure 4.11 illustrates the electrical summary, emphasizing notable
distinctions among the projects examined. The First Project depends exclusively on a
single energy source, most likely solar power. Consequently, its output fluctuates more,
resulting in a more significant deficit in capacity compared to projects with several
sources. The second project, in contrast, utilizes a combination of photovoltaic (PV)
and wind turbine (WT) power generation, resulting in additional benefits. The data
indicates a significant surplus of 63 % in energy and a deficit of 4.8 % in capacity. This
excess highlights the effectiveness of incorporating various renewable energy sources to

supply the electricity demand more dependably. The third project shows a reduced
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unmet load since the PV, WT sources, and diesel generator complement each other.
This hybrid structure helps reduce the unpredictability inherent in individual renewable
sources, improving the system’s reliability. In addition, the battery capacity for these
systems is specified. The first project is expected to handle around 130,692 kWh /y, and
the battery’s expected lifespan is approximately 9 years. These measurements highlight
the essential importance of energy storage in stabilizing and optimizing energy usage

in microgrid systems, especially in fluctuating renewable energy sources.
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Figure 4.11: Electric production summary for each configuration

Additionally, Figure 4.12 illustrates the monthly electricity generation for each
power source in the three examined setups. The first chart (Figure 4.12a) shows that
the electric power is solely derived from photovoltaic sources, reaching a peak of 145
MWh in July. The second chart, depicted in Figure 4.12b, illustrates the electric-
ity generation in the second project, which reaches 220 MWh. Notably, the project
exhibits significant photovoltaic power output throughout the year. In Figure 4.12c,
the photovoltaic (PV) power source accounts for over 60 % of the total power gen-
erated. The wind turbine (WT) generates between 20 MWh and 40 MWh, and the
backup diesel generator (DG) produces between 5 MWh and 10 MWh every month to

compensate for the intermittent nature of renewable energy.
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Figure 4.12: Monthly electric energy output
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4.2.4 Cost Analysis Assessment

The assessment of the three proposed configurations can be based on Comparing
earlier studies with comparable structures. Three configurations have been identified
as possible combinations with the lowest levelized cost of electricity (LCOE). These
configurations include a PV-battery combination with an LCOE of 0.502 USD/kWh
and a PV/Wind/Diesel/battery combination with an LCOE of 0.27 USD/kWh, as
observed in the examples analyzed in Bangladesh [50].

A PV/Wind/Diesel /battery system was implemented in Popova island, result-
ing in a Levelized Cost of Electricity (LCOE) ranging from 0.24 USD/kWh to 0.7
USD/kWh [72]. In Thailand, the levelized cost of electricity (LCOE) for different photo-
voltaic (PV) and battery scenarios ranges from .24 USD /kWh to 0.275 USD /kWh [48|.
The levelized cost of electricity (LCOE) for the PV/Wind setup varied between 0.341
USD/kWh and 0.69 USD/kWh across different sites [51].

4.2.5 Sensitivity Analysis

Sensitivity analysis is essential for assessing the reliability of the proposed method,
particularly by examining uncertainties related to renewable energy sources, load de-
mand, and economic inputs. This analysis evaluates the influence of changing these
parameters for each combination examined in this work, offering a valuable under-
standing of the system’s performance in diverse situations.

Figure 4.13 depicts the first project’s Net Present Cost (NPC) across load demand
and average solar irradiation scenarios. The load demand fluctuates between 2400 kWh
and 2850 kWh. In contrast, the average solar irradiation varies from 3 kWh/m?/day
to 5.8 kWh/m?/day, with a 25% deviation in solar input. The results indicate that
increased average solar irradiation leads to a drop in the Net Present Cost (NPC) and
the Levelized Cost of Energy (LCOE) due to enhanced solar energy availability.

On the other hand, when load demand rises, the net present cost (NPC) also in-
creases. This is mainly because the expenses for replacing and operating the system
increase.

The second experiment investigates the impact of PV and wind power output vari-
ations on the system’s costs, as shown in Figure 4.14. The operational expenses linked
to energy generation extensively impact the NPC (Net Present Cost) and LCOE (Lev-
elized Cost of Energy). As the wind speed and the intensity of solar radiation rise,
the energy production of wind turbines and photovoltaic (PV) panels also increases,
impacting the system’s total cost. The number of wind turbines and photovoltaic (PV)
power generation capacity are crucial factors in determining the results. Although the
Levelized Cost of Electricity (LCOE) is somewhat affected by these variations, the Net

Present Cost (NPC) generally rises as the quantity of wind turbines increases, primarily
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because of increased capital and operational costs.

Table 4.5 shows the inputs that impacted the third project. The average load
demand increased from 2460 kWh/d to 2850 kWh/d, resulting in a shift in the NPC
from 13.2 M USD to 16.2 M USD. Additionally, the LCOE changed slightly from 0.216
USD/kWh to 0.255 USD/kWh.

In addition, capital expenditure (CAPEX) and operational expenditure (OPEX)
are increasing as the demand load rises. At the same time, the levelized cost of elec-
tricity (LCOE) and net present cost (NPC) remain in equilibrium. The second factor
determining its impact is the inflation rate, which ranges from 9 % to 11%. During this
range, all economic indicators experienced a significant increase while still maintaining
appropriate values. Subsequently, the analysis examines the impact of fuel price on
other parameters. It is shown that CO, emissions increase in direct proportion to the
rise in power demand while they decrease in inverse proportion to wind speed and solar

radiation.

15,000,000
14,300,000
13,600,000
12,900,000
12,200,000
11,500,000
10,800,000
10,100,000
3,400,000
£,700,000
8,000,000

Solar: Scaled Average (kKWh,/m*/day)

249000 2,580.00 26700 276000 285
Electric Load: Scaled Average (kWh/d)

Figure 4.13: NPC and LCOE with average load sensitivity and solar irradiation for the
1% project
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Figure 4.14: NPC and LCOE in different sizes of WT and PV for the 2" project

4.3 Metrics Influencing Financial Decision-Making

This part examines crucial financial metrics necessary for making well-informed de-
cisions in project investments, specifically focusing on assessment and evaluation con-
cepts. Essential economic procedures such as Net Present Value (NPV), Internal Rate
of Return (IRR), and Payback Period (DBP) are based on the analysis of annual cash
flows.

Net Present Value (NPV): NPV is a financial metric determining the current
value of all cash inflows and outflows during a project’s duration. This calculation
considers the project’s cost of capital and applies a discount rate to adjust for the
time value of money. A positive net present value (NPV) signifies that the project is
anticipated to yield more significant cash inflows than outflows, suggesting profitability.
Its purpose is to compare projects and evaluate their financial appeal based on their
ability to generate profits.

The Internal Rate of Return:(IRR) is the discount rate that makes cash inflows’
present value equal to cash outflows’ present value. Essentially, it denotes the antici-
pated rate of return for the project and is employed to assess its profitability regarding
capital expenditures. Higher internal rate of return (IRR) numbers generally indicate
more advantageous investment prospects.

Payback Period (DBP): The Payback Period is a measure that determines the

amount of time it takes for the total cash inflows to match the initial investment (cash
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outflow). It offers a direct assessment of the ease of converting an investment into cash
and the level of uncertainty, showing the speed at which the investment can recover its
initial expenses. Shorter payback times are typically favoured due to their ability to
provide faster returns on investment and less risk.

The evaluation of renewable energy projects relies heavily on these essential finan-
cial parameters, which enable choices based on comprehensive financial analysis that
considers the timing and size of cash flows. They assist stakeholders in evaluating the
economic viability, profitability, and risk involved in proposed investments in sustain-
able energy solutions [88].

Thus, the second project has a higher Internal Rate of Return (IRR) of 15.8%.
The Payback Period (DBP) for all projects falls within the range of 6 to 9 years, and
the Return on Investment (ROI) ranges from 20 % to 29 %, as depicted in Table
4.4. Tt calculates the duration required for investors to recover their initial investment
expenses. The three projects have been approved based on a positive net present
value (NPV) of zero, following the specified rule: A project is accepted if the following

conditions are met:

NPV(p) >0 and IRR(p) >i, and DPB(p) <y (4.1)

Moreover, Net Present Value (NPV) is a vital financial measure that is essential
for making investment decisions, particularly in identifying the most effective project
design. The Net Present Value (NPV), together with metrics such as Internal Rate
of Return (IRR) and Payback Period (DPB), provide a thorough understanding of
the financial feasibility of PV /wind turbine setups, whether they are integrated with
diesel backup or not. Projects 1 and 2, which are distinguished by their lack of carbon
emissions, have environmental advantages that increase their attractiveness as prudent
investments. The inclusion of environmental sustainability further enhances the appeal
of these initiatives, as they align with both financial and environmental objectives.
The significance of NPV in assessing both financial returns and broader implications

on sustainability and investment feasibility is emphasized by such factors.

Table 4.4: Project Evaluation Metrics
Projects NPV (M USD) IRR (%) ROI (%) DPB (yr)

Project 1 0.76 13.9 20 6.03
Project 2 2.31 15.8 24 9.61
Project 3 10.2 13.0 29 8.9
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Table 4.5: Economic Sensitivity Analysis for 3 ™ project
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4.3.1 Risk Analysis

The decision-making process entails a thorough risk analysis, where Net Present Value
(NPV) plays a vital financial tool for evaluating investments. The probability values
obtained from the distribution function indicate the reliability of forecasts and the
degree of agreement between the calculated NPV and the simulated results. Standard
deviation serves a dual purpose as both a measure of predictability and an indicator of
risk. It represents the level of uncertainty in NPV values within a specific confidence
range, usually about 60 %. The mean value criterion is used to choose profitable
projects.

The Monte Carlo simulation of NPV utilized The mean values (1), standard devi-
ations (o), and the minimum and highest NPV values from the three projects. This
simulation evaluated each project’s probability distribution function f(x,o,u) by pro-
ducing 1000 samples. Projects 2 and 3 demonstrated a notable occurrence of favourable
Net Present Value (NPV) values, suggesting they are profitable and appealing for in-
vestment. In contrast, Project 1 demonstrated occurrences of negative Net Present
Value (NPV) figures, indicating substantial risk and demonstrating that hybrid sys-
tems generally surpass PV-only microgrid systems in terms of NPV.

Figure 4.15 demonstrates the approval of the PV project based on many factors,
validating the decision-making process. Sensitivity analysis is another result of the
risk analysis process. It helps identify the critical risk input variables that have the
most significant impact on the uncertainty of NPV estimates. This all-encompassing
strategy guarantees well-informed decision-making and effective risk management when

assessing investments in renewable energy microgrids.
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4.4 Conclusion

This chapter presented the results of a systematic approach designed to enhance the
sizing of renewable energy systems in microgrids, particularly emphasizing a compre-
hensive examination in the Biskra region of Algeria. It highlights three main dimen-

sions:

i. Assessment of the cost: The analysis considers three different scenarios: inde-
pendent photovoltaic (PV) systems, PV systems combined with wind turbines
(PV/WT), and PV/WT systems enhanced by a diesel generator (PV/WT/DG).
Every situation is evaluated to determine the most suitable size, considering im-
portant economic indicators such as Net Present Cost (NPC) and Levelized Cost
of Energy (LCOE). The analytical model incorporates uncertainties and risks
related to crucial input parameters. At the same time, sensitivity analysis finds
the variables that influence Capital Expenditure (CAPEX), Operational Expen-
diture (OPEX), Levelized Cost of Electricity (LCOE), and Net Present Cost
(NPC). The results indicate a decline in the net primary productivity (NPC)
from Project 1 to Project 3. Notably, Project 3 is the only scenario where CO,

emissions occur as a result of the operation of the diesel generator.

ii. Technical Feasibility Assessment: The study assesses the technical feasibility of
these scenarios by analyzing comparative financial metrics such as Net Present
Value (NPV), Internal Rate of Return (IRR), Return on Investment (ROI), and
Payback Period (DPB). These metrics offer crucial insights for making well-
informed investment decisions in renewable energy systems by considering both

economic feasibility and technical efficiency.

iii. Risk Analysis: The risk assessment utilizes Monte Carlo simulation for NPV to
evaluate the reliability and security of investment choices. Project 1 exhibits min-
imal risk; however, Project 2 stands out as the most beneficial choice regarding
economic, environmental, and production aspects, emphasizing its appropriate-

ness for maximizing the region’s energy potential.

To achieve optimal sizing for microgrid renewable energy systems, costs must be opti-
mized and financial aspects thoroughly evaluated, such as predicted cash flows and risk
assessments of variable factors over time. This methodological approach provides es-
sential direction to investors who assess and implement new renewable energy projects,

ensuring that decisions align with economic feasibility and sustainability goals.

86



CONCLUSION AND FUTURE WORKS

Conclusion

The transition to renewable energy systems is essential for addressing the challenges
related to energy demand, environmental sustainability, and economic viability. Plan-
ning and sizing renewable energy systems for their integration into microgrids is a
complex study due to the interaction of technical, economic, and environmental fac-
tors.

This PhD dissertation proposes an analytical approach to tackle these challenges

by focusing on the following aspects:

e Techno-economic optimization: Development of a comprehensive framework
to optimize key economic indicators, including Net Present Cost (NPC) and
Levelized Cost of Electricity (LCOE), using HOMER-Pro software.

¢ Financial assessment: Evaluation of the financial feasibility of renewable en-
ergy systems using indicators such as Net Present Value (NPV), Internal Rate
of Return (IRR), and Discounted Payback Period (DBP) to assess cash flow and
profitability.

e Integrated design approach: Adoption of an integrated design approach that
considers environmental, technical, and economic factors to develop a comprehen-
sive and practical sizing methodology, emphasizing the importance of selecting

the optimal combination of energy resources.

e Case study: The proposed methodology was validated through a case study
conducted in Biskra, Algeria, analyzing three renewable energy system combina-
tions (PV/WT/Batt, PV /Batt, and PV/WT/DG/Batt).

The results demonstrate that the proposed approach provides a practical and
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robust solution for optimizing renewable energy systems in microgrids, balancing

cost-effectiveness, sustainability, and feasibility.

To address the uncertainties inherent in sizing renewable energy systems, this dis-
sertation explores input-level and output-level analyses:

Input-level analysis

At the input level, the analysis focuses on key parameters that significantly influence
the sizing process, such as wind speed, solar radiation, load demand, and inflation rate.

To assess their impact, the dissertation employs the following methods:

e Sensitivity analysis: This method evaluates the impact of variations in deter-
ministic factors such as solar irradiation, wind speed, inflation rate, load demand,
and fuel price. By analyzing how these variables affect economic indicators like
NPC and LCOE, sensitivity analysis provides a solid foundation for the proposed

sizing methodology, ensuring its effectiveness under different conditions.

e Stochastic modeling: Recognizing the need to account for continuous uncer-
tainty, this dissertation applies a stochastic process based on Geometric Brownian
Motion (GBM). This approach models the future trajectories of key input factors
that could influence the long-term performance and cost-effectiveness of the re-
newable energy system. By forecasting these potential future trends, stochastic

modeling enhances the reliability of the sizing process.

Output-level analysis

While input-level analysis focuses on managing uncertainties in the sizing process,
this dissertation extends its scope to output-level analysis by conducting a risk assess-
ment of NPV using Monte Carlo simulations. This probabilistic approach provides
a detailed evaluation of the risks associated with the renewable energy project, offer-
ing valuable insights into the proposed system’s efficiency, feasibility, and reliability.
The Monte Carlo simulation results play a crucial role in decision-making processes,
ensuring that the renewable energy system proposed in this dissertation accounts for

uncertainties and remains sustainable.
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Consequently, this PhD dissertation introduces a robust methodology for sizing re-
newable energy systems for microgrids and provides a comprehensive framework for
addressing uncertainties and risks inherent in such projects. The research systemat-
ically examines the process of determining the optimal dimensions and specifications

for integrating renewable energy systems into microgrids.

i. By developing a structured approach, this study ensures the efficient sizing and
design of renewable energy systems, optimizing both technical performance and
economic feasibility. The methodology incorporates key factors such as resource
availability, load demand, and system components, emphasizing their role in

achieving an optimal configuration for microgrid integration.

ii. To address uncertainties, the dissertation evaluates the implications of disre-
garding variability in renewable energy sources and proposes decision-making
frameworks, including stochastic modeling and Monte Carlo simulations. These
methods effectively capture and mitigate risks, confirming reliable system perfor-

mance under varying conditions.

iii. The dissertation highlights the importance of investment planning in enhancing
the integration of renewable energy systems into microgrids. It demonstrates how
optimized sizing and operation can lead to a reliable, cost-effective, and sustain-
able energy supply, contributing to broader sustainability and energy efficiency

goals.

The results and methods developed in this dissertation have significant implications
for the design and sizing of renewable energy systems. They provide actionable insights
for creating resilient, scalable, and economically viable microgrids that address global

energy challenges.

Future works

Future work will prioritize enhancing the dynamic microgrid size and design process
through advanced methodologies and sophisticated economic analysis. Which aims
to improve the system’s efficiency and cost-effectiveness by utilizing real-time data,
predictive modeling, advanced machine learning, and resilient optimization techniques.
The objective is to enhance dependability and durability and offer a more profound

understanding for decision-makers in the energy sector.
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