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ABSTRACT

Abstract

The automated recognition of human emotion is a cornerstone of modern affective comput-
ing, yet progress is often hindered by the limitations of unimodal analysis, the performance
gap on real-world data, and a critical lack of resources for under-resourced languages. This
thesis presents a comprehensive framework to address these challenges, with a deep focus on
advancing the state-of-the-art in Automatic Speech Emotion Recognition (ASER).

The research makes three primary contributions. First, an efficient and lightweight archi-
tecture, the CBAM-DenseNet121, is proposed to resolve the trade-off between accuracy and
computational complexity. By integrating an attention mechanism with a dense convolutional
network, this model achieves highly competitive performance on the benchmark CREMA-D
dataset while utilizing substantially fewer parameters than comparable state-of-the-art models.

Second, a novel high-accuracy framework is introduced, combining a custom DeepSpec-
CNN with an architecturally diverse ensemble learning strategy. This approach reframes the
classification problem using the control dimension of the Geneva Wheel of Emotions (GWE),
establishing a new state-of-the-art performance on CREMA-D by significantly improving upon
existing methods.

Finally, to address data scarcity, this thesis introduces the Open Your Heart (OYH) corpus,
a new, large-scale dataset containing several hours of genuine emotional speech in the Algerian
Arabic dialect. Comprehensive performance baselines were established on this challenging
corpus using traditional machine learning models, providing a vital new benchmark for future
research.

Collectively, this thesis advances the field through the dual contribution of novel, high-
performance ASER models and the creation of an essential new corpus. The findings provide a
robust foundation for building more nuanced, culturally aware, and socially intelligent systems.
Keywords: Automatic Speech Emotion Recognition (ASER), Deep Learning, Convolutional
Neural Networks (CNN), Attention Mechanisms, Ensemble Learning, Spectrograms, Affective
Computing, Algerian Arabic, Speech Corpus.
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 :الملخص

 

تهدف هذه الأطروحة إلى التعرّف على المشاعر والسلوكيات الإنسانية وتحليلها، مع تركيز عميق على تطوير آخر ما  

في هذه الدراسة، نقترح ثلاث مساهمات   (ASER) . التعرّف الآلي على المشاعر من الكلام توصل إليه البحث في مجال

أساسية لمواجهة التحديات الرئيسية في هذا المجال: أولاً، نموذج تعلّم عميق فعّال ومدعّم بآلية الانتباه للتصنيف القياسي 

للمشاعر؛ ثانيًا، إطار عمل جماعي عالي الدقة يعتمد على نهج بعُدي مبتكر؛ وثالثاً، مدوّنة لغوية جديدة وواسعة النطاق 

 .للهجة الجزائرية العربية قليلة الموارد. الفقرات التالية تقدم ملخصًا موجزًا لكل مساهمة

، لمعالجة  CBAM-DenseNet121 يقترح الجزء الأول من هذا البحث معمارية خفيفة الوزن وعالية الكفاءة، وهي

يعزز هذا النموذج قدرات إعادة استخدام الميزات القوية    ASER . المفاضلة الحرجة بين الدقة والتعقيد الحسابي في أنظمة

، مما يسمح للشبكة بالتركيز بشكل   (CBAM)ةوحدة الانتباه الكتلية الالتفافي الأساسية من خلال DenseNet-121 لشبكة

الترددية الأكثر بروزًا في سبكتروغرامات ميل اللوغاريتمية. أظهرت التجارب التي أجريت  -تكيّفي على الأنماط الزمنية

أن النموذج المقترح يحقق دقة تنافسية عالية، متفوقًا على العديد من النماذج  CREMA-D   على مجموعة البيانات المعيارية

 .الحديثة مع الحفاظ على بنية خفيفة الوزن بعدد معلمات أقل بكثير

، DeepSpecCNN تقترح هذه الرسالة أيضًا إطار عمل مبتكرًا وعالي الدقة يجمع بين معمارية مصممة خصيصًا، وهي

متنوعة معماريًا. تقدم هذه الدراسة مخطط تصنيف جديدًا عبر إعادة صياغة مشكلة التصنيف  تعلّم جماعي واستراتيجية

يتم بعد ذلك تجميع تنبؤات   (GWE) . عجلة جنيف للمشاعر من بعُد التحكّم السداسي إلى مهمة ثنائية أكثر قوة، استنادًا إلى

الشبكات العصبونية الالتفافية المتعددة عبر آلية التصويت بالأغلبية لإنتاج تصنيف نهائي تآزري. عند تقييمه على مجموعة 

نماذج أداءً هو الأحدث من نوعه، محققًا تحسنًا كبيرًا على   5، أثبت النموذج الجماعي المكون من CREMA-D بيانات

 .الطرق الحالية لهذه المهمة

 

 (OYH) كافتح قلبمدوّنة  أخيرًا، ولمعالجة النقص الحاد في الموارد للكلام التلقائي وغير الإنجليزي، تقدم هذه الأطروحة

هي مجموعة بيانات جديدة وواسعة النطاق تحتوي على عدة ساعات من الكلام العاطفي الحقيقي الذي تم جمعه من  و

 GWE برنامج حواري تلفزيوني واقعي باللهجة الجزائرية العربية. تم تقطيع المدوّنة وتوصيفها بدقة باستخدام إطار 

البعُدي. تم تأسيس خطوط أساس قوية للأداء باستخدام مجموعة من نماذج التعلّم الآلي التقليدية مع استراتيجية مُحسَّنة 

لاختيار الميزات، مما أدى إلى تحقيق دقة أساسية قوية وتوفير معيار قياسي حيوي للبحوث المستقبلية في اللغات قليلة  

 .الموارد

 

 ؛ التعلّم العميق؛ الشبكات العصبونية الالتفافية(ASER) التعرّف الآلي على المشاعر من الكلامالكلمات المفتاحية: 

(CNN)؛ آليات الانتباه؛ التعلّم الجماعي؛ السبكتروغرام؛ الحوسبة العاطفية؛ اللهجة الجزائرية؛ مدوّنة لغوية صوتية. 
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GENERAL INTRODUCTION

Background and Motivation

Emotions are the bedrock of human experience, profoundly influencing our daily interac-
tions, cognitive processes, and social bonds. In an era where technology is ever more interwoven
with the fabric of society, from ubiquitous voice assistants to sophisticated social robots, the
imperative for computational systems to comprehend this emotional layer of communication
has never been greater. This need is the driving force behind the vibrant field of Affective Com-
puting, which seeks to bridge the gap between human emotion and computational technology
[1]. The ultimate goal is to create systems that can recognize, interpret, and respond to human
affects, facilitating more natural, empathetic, and effective Human-Computer Interaction (HCI)
[2, 3].

Among the various modalities for conveying emotion, speech is arguably the most direct
and information-rich channel. Unlike written text, which is limited to semantic content, the
spoken word is layered with a wealth of paralinguistic information that reveals not just what is
said, but how it is said. This information is encoded in acoustic cues such as prosody, voice
quality, and spectral characteristics. The field of Automatic Speech Emotion Recognition
(ASER) is dedicated to computationally decoding this emotional subtext from the audio signal
alone [4, 5].

The potential applications of robust ASER systems are transformative. In healthcare, ASER
can revolutionize diagnostics by detecting vocal biomarkers for mental health conditions
like depression [6]. In education and commercial sectors, it can gauge user engagement and
satisfaction in real-time. In pioneering fields like social robotics, ASER is indispensable for
creating machines that can interact with humans in a more believable and socially aware
manner [7, 8]. This technological pursuit, from its origins in traditional machine learning with
handcrafted features to the modern paradigm of deep learning with spectrograms, represents a
continuous effort to imbue technology with a fundamental aspect of human understanding.
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GENERAL INTRODUCTION

Problem Statement

Despite significant progress, the practical, real-world application of ASER is hindered by
several fundamental and interconnected challenges. The vast majority of research is conducted
on datasets of "acted" emotions recorded in sterile environments, creating a critical domain
gap; models trained on this data fail to generalize to the subtlety and variability of genuine,
"in-the-wild" spontaneous speech [9]. This issue is compounded by a profound scarcity of
resources for under-represented languages, particularly for linguistically complex regions like
North Africa and its Arabic dialects, which impedes scientific progress and limits the fairness
of affective technologies for billions of speakers [10]. Concurrently, the advent of deep learning
has introduced an accuracy versus efficiency trade-off, where state-of-the-art performance
is often achieved with massive, computationally expensive models that are impractical for
deployment on resource-constrained devices. Finally, the field has predominantly relied on
categorical emotion models (e.g., anger, joy, sadness), an approach that oversimplifies the true
nature of human affect. The ambiguity and overlap between these discrete categories create
inconsistent data labels and pose a significant challenge for classifiers, potentially limiting
their robustness and performance ceiling. This thesis identifies and addresses these four critical
problems as the core of its investigation.

Research Questions and Objectives

In response to the problems outlined above, this thesis seeks to answer the following primary
research questions:

RQ1: How can a large-scale, spontaneous speech corpus for an under-resourced dialect (Alge-
rian Arabic) be created and benchmarked to address the critical gaps in data authenticity
and availability in the ASER field?

RQ2: Can a lightweight, attention-enhanced deep learning architecture be developed to achieve
a competitive balance between accuracy and computational efficiency for standard multi-
class speech emotion recognition on a benchmark dataset?

RQ3: Can a new state-of-the-art in ASER accuracy be achieved by combining an architec-
turally diverse ensemble of models with a dimensional classification framework derived
from psychological theory to overcome the limitations of categorical emotion models?

To answer these questions, a set of clear objectives was established. The first objective
was to collect, segment, and meticulously annotate a novel corpus of spontaneous Algerian
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Arabic emotional speech, the OYH corpus, using the dimensional Geneva Wheel of Emotions
framework. Following this, the goal was to establish comprehensive performance baselines
on the new corpus using a suite of traditional machine learning classifiers and a sophisticated
feature selection algorithm. In parallel, the research aimed to design, implement, and rigorously
evaluate the CBAM-DenseNet121 architecture, a novel and efficient model for 6-class emotion
recognition on the benchmark CREMA-D dataset. The final objective was to develop and
validate a new, high-accuracy ensemble learning framework based on a custom DeepSpecCNN
and other diverse architectures, applied to a dimensional 2-class emotion task on the same
CREMA-D dataset.

Summary of Contributions

This dissertation makes four primary contributions to the field of Automatic Speech Emotion
Recognition:

1. A Novel Speech Corpus for a Low-Resource Dialect: The primary contribution is
the creation and public description of the Open Your Heart (OYH) dataset. This is
a new, large-scale (6.3 hours) corpus of spontaneous, real-world emotional speech for
the Algerian Arabic dialect. It directly addresses the critical scarcity of non-English,
non-acted data and provides a challenging new benchmark for the research community.

2. An Efficient, Attention-Enhanced ASER Model: This thesis proposes the CBAM-
DenseNet121, a novel deep learning architecture that successfully balances high accuracy
with computational efficiency. The study demonstrates that by combining a parameter-
efficient CNN backbone with a lightweight attention module, it is possible to outperform
larger, more complex models, providing a practical solution for real-world deployment.

3. A State-of-the-Art Ensemble Framework: This work introduces a novel framework that
achieves state-of-the-art accuracy on the CREMA-D benchmark. This was accomplished
by combining two key innovations: the re-formulation of the classification task using
a psychologically-grounded dimensional model (the GWE control dimension) and the
application of a strategic, architecturally diverse ensemble of CNNs.

4. Comprehensive Benchmarking on Diverse Tasks and Datasets: This thesis provides
a broad and detailed empirical evaluation of ASER techniques. It establishes strong
baselines for a new, challenging spontaneous dataset using traditional machine learning
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and, in parallel, pushes the state-of-the-art on a standard benchmark dataset using two
distinct and novel deep learning approaches.

Thesis Outline

The remainder of this thesis is organized into four chapters and a general conclusion:
Chapter 1: Background and Literature Review. This chapter lays the foundational

groundwork for the thesis. It provides a comprehensive review of emotional models, key
datasets, and the evolution of feature representation paradigms in ASER, from handcrafted
features to learned spectrograms.

Chapter 2: Methodological Framework. This chapter details the complete methodolog-
ical arsenal employed throughout this thesis. It provides a deep, pedagogical dive into the
foundational concepts of machine learning and deep learning, the specific architectures de-
veloped (including CNNs, attention, and ensembles), and the rigorous framework for model
evaluation.

Chapter 3: Experiments on the CREMA-D Benchmark Dataset. This chapter presents
the first set of experimental results, focusing on the development and validation of novel deep
learning models on a standard benchmark. It is organized into two distinct studies: one focusing
on the efficient CBAM-DenseNet121 model and the other on the high-accuracy ensemble
framework.

Chapter 4: Experiments on the Novel OYH Algerian Arabic Corpus. This chapter
directly addresses the challenges of data scarcity and real-world spontaneity. It provides a
detailed account of the creation and annotation of the OYH dataset and presents the results of a
comprehensive baseline study using traditional machine learning models.

General Conclusion. The final section concludes the thesis. It provides a holistic discussion
synthesizing the findings from all experimental chapters, summarizes the key contributions,
acknowledges the limitations of the research, and proposes several promising directions for
future work.
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Chapter 1. Background: Data and its Representation in ASER

1.1 Introduction

This chapter establishes the foundational knowledge required to understand the research
presented in this thesis. The field of Automatic Speech Emotion Recognition (ASER) is
situated at the intersection of digital signal processing, machine learning, and affective science.
A thorough understanding of its core principles, historical context, and the materials used for
research is therefore essential before delving into novel methodologies. This review aims to
provide a comprehensive overview of the theoretical models, datasets, and feature representation
paradigms that constitute the state-of-the-art in ASER.

The chapter is structured to build a logical progression from the general problem domain
to the specific technical details of data preparation. It begins by introducing the broader field
of Affective Computing and contextualizing the specific importance and challenges of ASER.
Following this, the chapter delves into the theoretical frameworks that define how emotions are
modeled, contrasting the classical categorical approaches with the more nuanced dimensional
models that are central to this thesis. We will then review the key datasets that have shaped
the field, highlighting the critical gap in resources for non-English and spontaneous speech,
particularly for the Arabic dialects of North Africa. The subsequent section provides a detailed
technical review of the two major paradigms for feature extraction from audio: the traditional,
engineered approach using handcrafted acoustic features, and the modern, learned approach
using log-Mel spectrograms.

Finally, the chapter concludes by synthesizing this information to clearly identify the
key research gaps in the literature related to data, its representation, and the need for new
resources. This discussion will directly motivate the novel methodologies and experimental
studies presented in the subsequent chapters of this thesis.

1.2 The Rise of Affective Computing and ASER

Emotions are a fundamental component of the human experience, profoundly influencing
our daily interactions, cognitive processes, perceptions, and overall mental well-being [11]. The
ability to perceive and interpret emotions in others is a cornerstone of social intelligence, en-
abling empathy, cooperation, and complex social bonding. As technology becomes increasingly
interwoven with the fabric of modern society—from ubiquitous smartphones and voice assis-
tants to sophisticated IoT ecosystems—there is a growing imperative for these computational
systems to develop their own form of social intelligence. This need has given rise to the vibrant
and rapidly expanding field of affective computing, which aims to bridge the profound gap
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between human emotion and computational technology [1]. The ultimate goal of this field is not
merely to build functional machines, but to create systems capable of recognizing, interpreting,
processing, and even simulating human affects, thereby facilitating more natural, empathetic,
and effective human-computer interaction (HCI) [2, 3].

Within this broad domain, Automatic Speech Emotion Recognition (ASER) has distin-
guished itself as a critical and highly active area of research [4, 5]. Speech is arguably the most
direct, natural, and information-rich channel for human emotional expression. Unlike written
text, which conveys only semantic content, speech is layered with a wealth of paralinguistic
information that reveals how something is said. This information is encoded in a variety of
acoustic cues. By analyzing properties such as prosody (the melody and rhythm of speech,
including intonation patterns), voice quality (the timbre and stability of the voice), and spectral
characteristics (the distribution of energy across different frequencies), ASER systems aim to
decode the underlying emotional state of a speaker [12, 13].

The potential applications of robust ASER systems are transformative and span numerous
sectors. In the domain of healthcare, ASER promises to revolutionize diagnostics and patient
monitoring. For instance, by detecting subtle vocal biomarkers such as flat affect (monotonous
speech), vocal tension, or psychomotor retardation (slowed speech rate), systems could pro-
vide early warnings for mental health conditions like depression and anxiety, or track the
progression of neurological diseases like Parkinson’s [6]. For individuals with autism spectrum
disorder, ASER-powered tools could offer real-time feedback to help them better understand the
emotional subtext in social conversations. In the commercial sector, particularly in customer
service, ASER can analyze a caller’s sentiment in real-time. By flagging calls with high levels
of frustration or anger, companies can intelligently route issues to specialized human agents,
improving customer satisfaction and retention. In education, an ASER system could gauge a
student’s engagement, confusion, or frustration from their vocal responses, allowing an intelli-
gent tutoring system to adapt its teaching strategy in real-time. Furthermore, in pioneering fields
like social robotics and virtual agents, ASER is indispensable. For a robot or virtual assistant
to be a truly effective and accepted companion, it must be able to perceive and appropriately
respond to its user’s emotional state, moving interactions from purely transactional to genuinely
relational [7, 8].

Despite this immense potential, ASER remains a formidable scientific challenge. The
acoustic manifestation of emotion is a highly complex and subtle phenomenon. It is subject
to significant inter-speaker variability, influenced by physiological factors like age and
gender, as well as idiosyncratic traits like personality and baseline speaking style [9]. Moreover,
cultural background plays a crucial role, as the norms for expressing certain emotions can
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vary significantly across different societies. This inherent complexity is further compounded
by intra-speaker variability; the same person may express the same emotion differently
depending on the context. Finally, the transition from controlled laboratory environments
to real-world applications introduces a host of environmental challenges. Factors such as
background noise, reverberation in a room, and variations in microphone quality can all
introduce artifacts that mask or distort the crucial emotional cues within the speech signal,
making robust recognition a persistent obstacle [14]. This thesis confronts these core challenges
by proposing and evaluating novel deep learning frameworks, exploring alternative emotional
models, and developing new linguistic resources designed to push the boundaries of ASER in
both benchmark and real-world conditions.

1.3 Theoretical Frameworks: Emotional Models and
Datasets

Before a system can recognize an emotion, a fundamental question must be answered:
what is an emotion, and how should it be represented? The choice of an emotional model
is a foundational step that dictates the nature of the classification task and has significant
implications for data annotation, model design, and performance evaluation.

1.3.1 From Categorical to Dimensional Emotion Models

Historically, much of the research in ASER has been guided by two competing yet comple-
mentary psychological frameworks for conceptualizing emotion: categorical and dimensional
models. The choice between these frameworks is not merely a theoretical preference; it is a
foundational decision that dictates the nature of the data annotation process, the structure of the
classification task, and the very interpretation of a model’s output.

1.3.1.1 The Categorical Approach: Basic Emotions Theory

The categorical approach, which has long been the dominant paradigm in ASER, is heavily
influenced by the cross-cultural research of psychologist Paul Ekman and his colleagues
[12]. Based on groundbreaking studies in the 1960s and 70s involving the analysis of facial
expressions across different cultures (including the Fore people of Papua New Guinea, who
had minimal exposure to the outside world), Ekman posited the existence of a small set of
discrete, universal, and biologically innate "basic" emotions. This theory suggests that these
core emotions are recognized and expressed similarly by all humans, regardless of language

8



Chapter 1. Background: Data and its Representation in ASER

or culture. The most commonly cited set in ASER includes anger, happiness, sadness, fear,
disgust, and a non-emotional ’neutral’ state [15].

The adoption of this framework by the ASER community was driven by its practical
advantages. Firstly, its labels are intuitive and align with everyday human language, which
simplifies the process of data annotation where annotators assign one label from a fixed set.
Secondly, it frames the complex problem of emotion recognition as a standard multi-class
classification problem, which is a well-understood problem in machine learning and maps
directly to standard algorithms like Support Vector Machines or the softmax output layer of a
neural network.

However, the elegance and simplicity of the categorical approach belies the complexity
of human affect. Its primary limitation is its potential for oversimplification. Real-world
emotional experiences are rarely pure; they are often blended, subtle, or exist on a continuum.
This leads to several significant challenges:

• The "Affect Blend" Problem: Humans frequently experience multiple emotions simul-
taneously, such as the bittersweet feeling of nostalgia (a blend of happiness and sadness).
A strict categorical model cannot represent these mixed states, forcing an artificial choice
that loses crucial information [9].

• Lack of Intensity Representation: The model does not inherently account for emotional
intensity. It treats ‘irritation‘, ‘anger‘, and ‘rage‘ as the single category of "Anger,"
despite their vastly different levels of arousal and acoustic manifestations.

• Annotation Ambiguity: The "forced-choice" nature of the annotation process can lead
to significant ambiguity and low inter-annotator agreement. When an expression is
ambiguous between, for example, ‘fear‘ and ‘surprise‘, different annotators may select
different labels, introducing noise and inconsistency into the ground-truth data.

• Cultural Display Rules: While the recognition of basic emotions may be universal,
the social norms or "display rules" governing their expression are heavily culturally
modulated. This can affect the way emotions are vocalized, posing a challenge for
models trained on one cultural group and applied to another.

1.3.1.2 The Dimensional Approach: Mapping the Affective Space

To overcome the rigidity of the categorical model, many researchers have advocated for
dimensional models. These models do not treat emotions as independent classes but rather as
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points within a continuous multi-dimensional space, aiming to capture the underlying structure
and relationships of emotional experience [16, 17].

The most influential of these is James A. Russell’s circumplex model of affect [18]. This
model maps emotional states onto a two-dimensional circular space defined by two orthogonal
axes:

• Valence: The hedonic tone of the emotion, representing the pleasure-displeasure contin-
uum. It ranges from highly positive (e.g., ‘ecstatic‘) to highly negative (e.g., ‘miserable‘).

• Arousal: The level of physiological and psychological activation, ranging from low (e.g.,
‘sleepy‘, ‘calm‘) to high (e.g., ‘excited‘, ‘frenzied‘).

Within this space, any emotion can be represented as a point. For instance, ‘anger‘ is a high-
arousal, negative-valence emotion, while ‘sadness‘ is a low-arousal, negative-valence emotion.
This approach is powerful because it can represent emotional intensity (distance from the
origin), similarity between emotions (proximity in the space), and transitions between states.

Building on this, other models introduced a third dimension. The Pleasure-Arousal-
Dominance (PAD) model, for example, added the dimension of Dominance (or Control) to
represent the sense of power or control the individual feels in a situation [19]. This brings
us to the more recent and nuanced framework used in this thesis: the Geneva Wheel of
Emotions (GWE), shown in Figure 1.1. The GWE can be seen as a sophisticated hybrid model
that organizes 20 distinct emotion families (providing intuitive categorical labels) within a
two-dimensional space defined by Valence and Control/Power [20, 21].

The Control dimension is particularly relevant for ASER, as it has strong correlates in vocal
production. A feeling of high control or agency is often associated with a more assertive and
stable vocal pattern—a steady pitch, strong intensity, and clear articulation. Conversely, a feeling
of low control or helplessness can manifest acoustically as a more hesitant, unstable, or weak
voice—for instance, with a trembling pitch (high jitter), a breathy quality (low HNR), or a lower
intensity. In this thesis, we leverage this strong theoretical link by using the control dimension
as a novel classification strategy, grouping emotions into High Control (anger, happiness,
disgust) and Low Control (fear, sadness, neutrality). The central hypothesis, supported by
recent findings, is that such psychologically grounded dimensional groupings can lead to more
stable and robust classification by clustering emotions that share more consistent underlying
acoustic correlates than purely categorical labels might [22].
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No emotion felt

High control

Negative 
valence

Positive
valence

Low control

Other emotion felt

Involvement / Interest

Amusement / Laughter

Pride / Elation

Happiness / Joy

Enjoyement / Pleasure

Irritation /Anger

Contempt / Scorn

Disgust / Repulsion

Envy / Jealousy

Disappointment / Regret

Guilt / Remorse

Embarrassment / Shame

Worry / Fear

Sadness / Despair

Pity / Compassion

Tenderness / Feeling love

Wonderment / Feeling awe

Feeling disburdened / Relief

Astonishment / Surprise

Longing / Nostalgia

Figure 1.1: The Geneva Wheel of Emotions (GWE), illustrating the two primary dimensions of
valence and control. The model organizes 40 emotion words into 20 distinct emotion families,
providing a nuanced dimensional framework for affect.[21].

1.3.2 Corpora for Speech Emotion Recognition

The development and validation of ASER systems are fundamentally dependent on the
availability of high-quality, annotated speech corpora. The nature of the dataset—particularly
whether the speech is acted or spontaneous—profoundly impacts a model’s real-world perfor-
mance.

The field has matured thanks to several benchmark English-language datasets, which
primarily feature acted emotions:

• IEMOCAP (Interactive Emotional Dyadic Motion Capture Database): One of the
most widely used datasets in the community, IEMOCAP features approximately 12 hours
of audiovisual data. It contains scripted readings but is most famous for its improvisational
scenarios between pairs of actors, designed to elicit more natural emotional expressions.
The data is annotated with both categorical labels and dimensional ratings (valence,
arousal, dominance), making it invaluable for studying complex emotional phenomena
[23].
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• CREMA-D (Crowd-sourced Emotional Multimodal Actors Dataset): As a primary
dataset for this thesis, CREMA-D offers 7,442 audio-visual clips from a large and
ethnically diverse cohort of 91 actors. Actors uttered 12 specific sentences in six different
emotional styles. The high-quality, noise-free recordings and the reliability of its labels,
validated through a large-scale crowd-sourcing effort, make it an ideal benchmark for
developing and comparing models under controlled conditions [24].

• RAVDESS (Ryerson Audio-Visual Database of Emotional Speech and Song): This
dataset is notable for its systematic design. It provides over 7,300 recordings from 24
actors expressing eight emotions at two distinct levels of intensity (normal, strong)
and across two modalities (speech and song). This controlled variation is excellent for
studying the nuances of how emotional intensity is encoded in the voice [25].

While these corpora have been instrumental, their predominance highlights a critical
limitation in the field: a significant bias towards English and acted, laboratory-controlled
speech. Acted data, while clean and emotionally balanced, may not accurately reflect the
subtlety and messiness of genuine, spontaneous emotions. This creates a significant gap
between model performance on benchmarks and their effectiveness in real-world applications.
This gap is exacerbated by the lack of resources for the vast majority of the world’s languages
and dialects.

This issue is especially acute for Arabic. Despite being a major world language, research in
Arabic ASER has been historically hindered by a lack of suitable corpora [26]. While important
efforts have been made to create datasets for Modern Standard Arabic (MSA) and various
national dialects (summarized in Table 1.1), these are often small in scale or, like their English
counterparts, rely on acted speech. Furthermore, the significant linguistic diversity within
the Arabic-speaking world means that a model trained on one dialect (e.g., from the Gulf) is
unlikely to generalize well to another (e.g., from North Africa).

The Algerian linguistic landscape, as shown in Figure 1.2, is a prime example of this
complexity. Daily life is dominated by spoken dialects (collectively known as "Darija"), which
are themselves diverse and heavily influenced by Berber languages and French [27]. This
creates a situation where models trained on MSA are poorly suited for practical applications.
This critical lack of a large-scale, spontaneous speech corpus for the Algerian dialect served
as a primary motivation for one of the core contributions of this thesis: the development of the
"Open Your Heart" (OYH) dataset, a corpus collected from a real-world talk show to capture
genuine emotional speech [10].
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Figure 1.2: Map illustrating the rich diversity of Algerian dialects, highlighting the complex
linguistic landscape that necessitates dialect-specific resources. Models trained on MSA or
other Arabic dialects often fail to capture these local variations. (Source:[27]).

Table 1.1: An overview of major speech emotion databases (based on Table C1 from the OYH
dataset paper).

Dataset Language Type Emotions Cov-
ered

Classification
Methods Used

IEMOCAP
[23]

English Actor-based Happy, Sad,
Anger, Neutral,
etc.

Various

VAM Audio
[28]

German Spontaneous Valence, Activa-
tion, Dominance

Various

CREMA-D
[24]

English Actor-based Anger, Disgust,
Fear, Happy, Sad,
Neutral

Various (CNN,
Transformers)

RAVDESS
[25]

English Actor-based 8 emotions (Calm,
Happy, etc.)

Various

MELD [29] English Spontaneous
(TV)

Anger, Disgust,
Fear, Joy, Neutral,
Sadness, Surprise

Multimodal
Baselines

ShEMO [30] Persian Semi-
spontaneous

Anger, Fear, Joy,
Sadness, Surprise,
Neutral

SVM, k-NN,
Decision Tree
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Dataset Language Type Emotions Cov-
ered

Classification
Methods Used

KEDAS [31] MSA Actor-based Sadness, Fear,
Anger, Happiness,
Neutral

/

REGIM-TES
[32]

Tunisian
Arabic

Actor-based Neutral, Sadness,
Fear, Anger, Hap-
piness

Naive Bayes,
SVM

Emirati
Speech DB
[33]

Emirati
Arabic

Spontaneous Happiness, Sad-
ness, Disgust,
Anger, Fear

GMM-DNN,
SVM, MLP

ADED [34] Algerian
Arabic

Actor-based Anger, Fear, Sad-
ness, Neutral

k-NN

1.4 From Signal to Representation: A Review of Feature
Extraction in ASER

The process of converting a raw, continuous audio waveform into a structured format that a
machine learning model can process is known as feature extraction. This is a critical stage that
determines what information from the signal is preserved for classification, and the field has
seen a major paradigm shift from handcrafted, engineered features to automatically learned
representations.

1.4.1 Handcrafted Acoustic Features

The traditional approach to ASER, which dominated the field for decades, is predicated on a
feature engineering paradigm. This methodology involves the meticulous design and extraction
of a wide range of acoustic features believed to be correlated with emotional expression. These
features, often called Low-Level Descriptors (LLDs), are quantitative measures that capture
specific physical properties of the speech signal from short analysis frames (typically 20-40
ms in length). To create a single feature vector for an entire utterance, statistical functionals
(e.g., mean, standard deviation, minimum, maximum, percentiles, regression coefficients) are
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applied to the contours of these LLDs over time, resulting in a set of High-Level Statistical
Features (HSFs).

This complex extraction process is typically automated using specialized toolkits. The most
prominent among these is the openSMILE (open-source Speech and Music Interpretation
by Large-space Extraction) toolkit [35], which provides standardized and reproducible feature
sets. For instance, the ComParE (Computational Paralinguistics Challenge) feature set, used in
one of the studies in this thesis, contains 6,373 HSFs, demonstrating the high dimensionality
inherent in this approach [36]. These vast feature sets are typically organized into three principal
categories, grounded in the principles of acoustic phonetics: prosodic, spectral, and voice quality
features [37].

1.4.1.1 Prosodic Features

Prosodic features, often described as the "melody" of speech, relate to the suprasegmental
aspects of an utterance, including its pitch, loudness, and rhythm. They are considered among
the most powerful indicators of emotional state.

• Fundamental Frequency (F0): The F0 is derived from the rate of vibration of the
vocal folds and is the primary acoustic correlate of perceived pitch. Its contour over an
utterance carries immense emotional weight. Key metrics derived from the F0 contour
include its mean (reflecting the speaker’s baseline pitch), standard deviation (reflecting
pitch range or vocal animation), and overall shape. For example, high-arousal emotions
like Anger or Joy are often characterized by a high mean F0 and a wide F0 range,
indicating an excited state. Conversely, low-arousal emotions like Sadness typically
exhibit a low mean F0, a narrow, monotonous pitch range, and a slowly declining contour
toward the end of phrases. The F0 in Fear can be exceptionally high, often with abrupt,
uncontrolled jumps.

• Energy and Intensity: The energy of a speech signal, typically measured as the Root-
Mean-Square (RMS) of the amplitude within a frame, corresponds to its perceived
loudness. Like F0, the energy contour and its statistical properties are strong emotional
cues. Anger is a classic high-energy emotion, characterized by sharp increases in intensity.
Joy is also associated with high energy, though often with more dynamic variation than
anger. Sadness, in contrast, is marked by low and decaying energy levels.

• Duration and Speech Rate: The temporal characteristics of speech are also highly
modulated by emotion. This includes the overall speech rate (e.g., syllables per second),
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the relative duration of voiced and unvoiced segments, and the length and frequency of
pauses. A fast speech rate is a common indicator of Joy or Anger, while a significantly
slowed speech rate is a hallmark of Sadness. The duration of pauses can also be revealing;
for instance, longer and more frequent pauses might indicate the hesitation associated
with Sadness or the tension before an outburst of Anger.

1.4.1.2 Spectral Features

Spectral features describe the frequency content of the speech signal, which is primarily
shaped by the resonant properties of the vocal tract (i.e., the throat, mouth, and nasal cavities).
While heavily tied to the phonetic content of what is being said, the spectral characteristics are
also subtly modulated by emotion.

• Mel-Frequency Cepstral Coefficients (MFCCs): For decades, MFCCs have been the
most dominant spectral features in both speech and speaker recognition, and they have
been widely adopted in ASER. They provide a compact representation of the spectral
envelope (the overall shape of the spectrum). Their calculation involves several steps
inspired by human auditory perception: the Fast Fourier Transform (FFT) of a windowed
frame is mapped onto the non-linear Mel frequency scale, its logarithm is taken, and
finally, a Discrete Cosine Transform (DCT) is applied. The DCT decorrelates the spectral
components, making them more suitable for statistical modeling [38]. While MFCCs
primarily encode phonetic information, emotional states can alter articulation—for exam-
ple, the tense articulation in Anger can shift spectral energy towards higher frequencies,
which is captured by the MFCCs.

• Formants: These are the resonant peaks in the frequency spectrum, which are determined
by the shape of the vocal tract and are fundamental to distinguishing vowels. The position
and bandwidth of the first few formants (F1, F2, F3) can be influenced by the muscular
tension in the vocal tract associated with different emotions.

• Other Spectral Descriptors: A variety of other features, such as the spectral centroid
(the "center of mass" of the spectrum), spectral flux (the rate of change of the spectrum),
and spectral roll-off, can also provide useful information about the timbre and brightness
of the voice, which in turn relate to emotional expression.
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1.4.1.3 Voice Quality Features

Voice quality features describe the characteristics of the glottal source—the sound produced
by the vibrating vocal folds—and relate to perceptions of breathiness, roughness, or strain.

• Jitter and Shimmer: These are micro-prosodic perturbation measures. Jitter refers to
the cycle-to-cycle variation in the fundamental frequency, while Shimmer refers to the
cycle-to-cycle variation in amplitude. In a perfectly stable voice, these values would be
near zero. Increased jitter and shimmer indicate instability in vocal fold vibration, which
can be a sign of vocal tension or stress, often present in emotions like Anger or Fear. A
creaky or harsh voice quality, sometimes associated with Sadness, can also result in high
perturbation values.

• Harmonic-to-Noise Ratio (HNR): The HNR quantifies the ratio of periodic (harmonic)
energy to aperiodic (noise) energy in the voice signal. A high HNR corresponds to a clear,
resonant voice, while a low HNR corresponds to a noisy or breathy voice. Breathiness,
a classic acoustic correlate of low-arousal states, is directly captured by a low HNR,
making it a powerful feature for identifying Sadness or some expressions of Fear.

While this feature engineering paradigm is foundational and provides interpretable, pho-
netically grounded descriptors, it has significant limitations. The "curse of dimensionality"
from extracting thousands of features necessitates complex and computationally expensive
feature selection steps. More importantly, this approach struggles with the "semantic gap"—the
fact that these low-level physical descriptors often have a complex, non-linear, and context-
dependent relationship with high-level emotional concepts. It was precisely these limitations
that motivated the field’s shift towards the end-to-end learned representations discussed in the
next section.

1.4.2 Learned Representations: Log-Mel Spectrograms

The advent of deep learning, particularly Convolutional Neural Networks (CNNs), rev-
olutionized feature extraction in ASER. It enabled a paradigm shift away from handcrafted
features towards end-to-end models that learn the optimal representations directly from a semi-
raw, visually intuitive format: the spectrogram. The key innovation was the adoption of the
spectrogram as a standard input, which effectively transforms the audio analysis problem into
an image recognition task. The generation pipeline, illustrated in Figure 1.3, is a multi-stage
signal processing workflow designed to convert a 1D audio waveform into a 2D representation
that is both information-rich and perceptually relevant.
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1.4.2.1 Pre-Processing: Pre-Emphasis

Before the main transformation, a pre-emphasis filtering step is often applied to the raw
audio signal, x[n]. The primary purpose of this step is to balance the frequency spectrum.
Speech signals naturally have more energy at lower frequencies than at higher frequencies
(a spectral tilt of approximately -6 dB/octave). Pre-emphasis is a high-pass filter that boosts
the energy in the higher frequencies, which helps to improve the numerical stability of the
subsequent Fourier Transform and can enhance the representation of important high-frequency
details like fricatives. The filter is defined by the first-order difference equation:

y[n] = x[n]−αx[n −1] (1.1)

where y[n] is the filtered signal and α is the pre-emphasis coefficient, typically set to a value
between 0.95 and 0.98 [39].

1.4.2.2 Framing and Windowing

Speech signals are non-stationary, meaning their statistical properties change over time.
However, over very short durations (e.g., 20-40 ms), they can be considered quasi-stationary.
The process of framing involves segmenting the signal into these short, stationary frames. To
avoid information loss at the boundaries of each frame, the frames are typically designed to
overlap, with a common overlap being 50-75%.

A raw rectangular frame would result in sharp discontinuities at its edges, which introduces
spurious high-frequency components in the frequency domain, an artifact known as spectral
leakage. To mitigate this, each frame is multiplied by a window function that tapers the signal
to zero or near-zero at its boundaries. A common choice, and the one used in this work, is the
Hamming window, defined as:

w[n] = 0.54−0.46cos

(
2πn

L−1

)
, 0 ≤ n ≤ L−1 (1.2)

where L is the length of the window (frame size).

1.4.2.3 Short-Time Fourier Transform (STFT) and the Power Spectrogram

With the signal segmented into windowed frames, the Short-Time Fourier Transform
(STFT) is applied to each frame to determine its frequency content. The STFT computes the
Discrete Fourier Transform (DFT) for each frame, yielding a series of complex-valued spectra
over time. The discrete STFT is defined as:

STFT(m,k) =
L−1∑
n=0

ym[n] ·e− j 2π
N kn (1.3)
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where ym[n] is the m-th windowed frame, N is the FFT size (number of frequency bins), and
STFT(m,k) is the resulting complex coefficient for the k-th frequency bin [40].

Since the phase information from the complex STFT output is often discarded in ASER
as it is highly sensitive to noise, the analysis proceeds using the magnitude or power. The
power spectrogram is computed by taking the squared magnitude of the STFT result for each
time-frequency point:

P (m,k) = |STFT(m,k)|2 (1.4)

This results in a 2D matrix where the value at each point P (m,k) represents the energy of the
signal at a specific time m and frequency k.

1.4.2.4 Mel Scale Transformation

The linear frequency scale of the power spectrogram does not align well with human
auditory perception. The human ear is far more sensitive to changes in low frequencies than in
high frequencies. To model this, the linear frequency axis is warped onto the Mel scale, which
is linear below 1 kHz and logarithmic above. The conversion is given by:

Mel( f ) = 2595log10

(
1+ f

700

)
(1.5)

where f is the frequency in Hertz. This transformation is implemented using a Mel filterbank,
which is a set of triangular band-pass filters (typically 20-128 filters) spaced according to the
Mel scale. Each filter in the bank is multiplied by the power spectrum of a frame and the results
are summed to obtain the energy in that specific Mel frequency band. This process effectively
simulates the frequency resolution of the human cochlea and has been shown to be highly
effective for both speech recognition and emotion recognition tasks [41].

1.4.2.5 Logarithmic Compression and Final Representation

The final step is to apply a logarithmic compression to the amplitudes of the Mel spectro-
gram. This serves two critical purposes:

1. It compresses the dynamic range of the values, making the features less sensitive to
variations in signal energy (i.e., how loudly someone is speaking).

2. It aligns the amplitude representation with the human perception of loudness, which
follows the decibel (dB) scale, a logarithmic unit.
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The final log-Mel spectrogram is computed as follows:

Slog-mel(m, l ) = log

(
N /2−1∑

k=0
P (m,k) ·Hl (k)

)
(1.6)

where Hl (k) represents the weight of the k-th frequency bin for the l -th Mel filter.
The significance of this entire transformation cannot be overstated. By converting a 1D

time-series signal into a 2D "image," it became possible to leverage the immense power of
Convolutional Neural Networks (CNNs). A CNN can "look" at a spectrogram and auto-
matically learn a hierarchical set of features—from simple, localized patterns like horizontal
lines (stable tones), vertical lines (plosives), and basic formant shapes in the early layers, to
complex, time-varying harmonic structures indicative of specific emotions in deeper layers.
This end-to-end learning approach removes the need for manual feature engineering, bridges
the "semantic gap," and has been shown to be a superior method for capturing the rich, nuanced
information required for robust emotion recognition [42].

Figure 1.3: The log-Mel spectrogram feature extraction pipeline, converting a 1D audio wave-
form into a 2D representation suitable for deep learning models. (Source: [40]).
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1.5 Research Gap and Thesis Positioning

This comprehensive review of the emotional models, datasets, and feature representations
used in ASER reveals a field rich with opportunity but also defined by significant challenges.
The groundwork laid by existing resources and techniques allows this thesis to be specifically
positioned to address the following critical research gaps:

1. The Need for Advanced Models to Interpret Rich Features: While spectrograms pro-
vide a rich, high-dimensional representation of speech, they require sophisticated models
to effectively learn the subtle, hierarchical patterns that encode emotion. The limitations
of traditional models when applied to such complex data motivate the exploration of
advanced deep learning architectures, which will be the central topic of the next chapter.
There is a clear need for models that can not only achieve high accuracy but also operate
efficiently, and for frameworks like ensemble learning that can maximize robustness.

2. The Gap Between Lab-Based and Real-World Data: The vast majority of high-
quality corpora consist of acted speech recorded in sterile lab environments. This creates
a significant "domain gap" between the data used for training models and the noisy,
spontaneous speech encountered in real-world applications. This gap severely limits the
generalizability of current state-of-the-art models.

3. The Critical Scarcity of Low-Resource and Dialectal Corpora: The focus on English
and other high-resource languages has left many linguistic communities, including
speakers of Arabic dialects like Algerian, underserved. Without appropriate in-domain
data that captures local linguistic and cultural nuances, developing effective and fair
ASER technology for these populations is impossible.

In summary, the field has established powerful methods for representing emotional speech
but requires new, robust, and efficient models to analyze these representations. Furthermore, it
desperately needs new, diverse, and realistic datasets to ensure that these models are not just
accurate in the lab but are also effective and equitable in the real world. This thesis directly
confronts these challenges. The following chapter will detail the specific classification models
and experimental protocols designed to process the feature representations discussed here,
applied to both a standard benchmark dataset and a novel, spontaneous dialectal corpus created
to address the critical resource gap.
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1.6 Conclusion

This chapter has laid the essential groundwork for the research presented in this thesis
by providing a comprehensive review of the foundational elements of Automatic Speech
Emotion Recognition. We began by contextualizing ASER within the broader field of affective
computing, establishing its importance, applications, and the significant scientific challenges
that motivate this work. We then delved into the theoretical frameworks that define how
emotions are modeled, contrasting the traditional categorical approach with the more nuanced
dimensional models, such as the Geneva Wheel of Emotions, which are central to the novel
classification schemes explored in this research.

Furthermore, a critical review of the key datasets that have shaped the field highlighted
a significant gap in resources, particularly the lack of large-scale, spontaneous speech cor-
pora for under-resourced languages like the Arabic dialects of North Africa. Finally, the
chapter examined the evolution of feature representation, moving from the interpretable but
limited handcrafted acoustic features to the rich, high-dimensional data provided by log-Mel
spectrograms.

The review has made it clear that while powerful representations like spectrograms exist,
they require advanced computational models to effectively interpret the subtle, hierarchical
patterns that encode emotion. Having established this foundation of data and its representation,
the subsequent chapter will now introduce the specific computational methodologies—from
traditional machine learning to advanced deep learning architectures—that will be employed to
analyze this data and address the research gaps identified herein.
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2.1 Introduction

This chapter details the core technical methodologies employed in this thesis to address the
research gaps identified in the previous chapter. Having established the foundational concepts
of data representation in ASER, this chapter now focuses on the models and frameworks used
to classify those representations. The purpose of this chapter is to provide a comprehensive and
self-contained guide to the algorithmic principles, architectural families, and specific models
that underpin the experimental work of this thesis.

The chapter is structured to build from the general to the specific. It begins with an
overview of the foundational principles of machine learning and deep learning, establishing the
theoretical context for the models used. It then transitions into a deep and detailed examination
of the specific architectures developed and employed in this thesis. This includes a thorough
breakdown of the custom DeepSpecCNN, the DenseNet-121 backbone, the CBAM attention
module, and the final proposed CBAM-DenseNet121 model. The principles of ensemble
learning are also detailed. The chapter concludes by establishing the rigorous experimental
framework for the subsequent chapters, formally defining the datasets, classification tasks, and
the full suite of evaluation metrics used to assess model performance.

2.2 Foundational Concepts in Machine Learning

Machine Learning (ML) is a field of artificial intelligence in which algorithms and systems
are designed to learn patterns and make predictions directly from data, without being explicitly
programmed for each task [43]. The core principle of ML is to develop models that can learn a
mapping function, f , from an input space, X , to an output space, Y , by optimizing their internal
parameters based on the data it is exposed to. The field can be broadly categorized into several
learning paradigms, defined by the nature of the available data and the learning objective [44].

2.2.1 Supervised vs. Unsupervised Learning

The vast landscape of machine learning is largely defined by the type of data and the
problem to be solved. The two most fundamental paradigms are supervised and unsupervised
learning.

2.2.1.1 Supervised Learning

This is the most common paradigm in machine learning and forms the basis for all classifi-
cation experiments in this thesis. In supervised learning, the algorithm learns from a dataset
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where each input sample x ∈ X is paired with a correct, ground-truth output label y ∈ Y . The
presence of these labels provides the "supervision" that guides the learning process. The model’s
objective is to learn a generalizable function f (x) ≈ y that can accurately predict the output for
new, unseen inputs. This is achieved by iteratively adjusting the model’s internal parameters
to minimize the difference (or "error") between its predictions and the true labels. Supervised
learning encompasses two primary task types:

• Classification: The goal is to predict a discrete class label from a finite set of categories.
The output space Y is categorical. In the context of this thesis, this corresponds directly
to the task of ASER, where the input is an audio feature vector and the output is an
emotional category, such as {’Anger’, ’Joy’, ’Sadness’, ...}. Classification can be binary
(two classes), multi-class (more than two mutually exclusive classes), or multi-label (an
instance can belong to multiple classes simultaneously, e.g., a speech sample could be
both "happy" and "excited").

• Regression: The goal is to predict a continuous numerical value. The output space Y is
composed of real-valued numbers. In ASER, this is relevant for dimensional emotion
modeling, where the task could be to predict a valence score on a continuous scale from
-1.0 to +1.0, or an arousal score from 1 to 9. The performance of regression models is
typically measured using error metrics like Mean Squared Error (MSE).

2.2.1.2 Unsupervised Learning

In this paradigm, the model is provided with data that has no explicit labels. The objective
is to discover inherent structures, patterns, or relationships within the data itself without any
external guidance. Common unsupervised tasks include:

• Clustering: The task of grouping similar data points together into clusters, such that
points within the same cluster are more similar to each other than to those in other clusters.
For example, an unsupervised clustering algorithm like K-Means could be applied to
thousands of unlabeled speech segments to see if natural acoustic-emotional groupings
emerge from the data itself.

• Dimensionality Reduction: The process of compressing data into a lower-dimensional
representation while preserving as much important information as possible. This is highly
relevant for ASER when dealing with high-dimensional handcrafted feature sets (as
described in Chapter 1), where techniques like Principal Component Analysis (PCA) can
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be used to reduce a feature vector of several thousand dimensions to a more manageable
size, combating the "curse of dimensionality" and improving computational efficiency.

2.2.2 Traditional Machine Learning Paradigms for ASER

Before the widespread adoption of deep learning, ASER research relied on a suite of tradi-
tional, or "classical," machine learning models. These models typically operate on handcrafted
acoustic feature vectors and serve as powerful and interpretable baselines. The classifiers
employed in the baseline study of this thesis are detailed below.

• Support Vector Machines (SVM): An SVM is a powerful discriminative classifier
that operates by finding an optimal separating hyperplane between classes in a high-
dimensional feature space [45]. For a two-class problem, the "optimal" hyperplane is
the one that has the largest margin—the maximum distance to the nearest data points
(the "support vectors") of any class. This maximization of the margin leads to better
generalization. For data that is not linearly separable, SVMs employ the kernel trick.
This technique uses a kernel function (such as the polynomial, sigmoid, or Radial Basis
Function (RBF) kernel) to implicitly map the data into a much higher-dimensional space
where a linear separation is possible, without ever having to explicitly compute the
coordinates of the data in that space. The SVM is then controlled by hyperparameters
like ‘C‘, which manages the trade-off between a smooth decision surface and classifying
training points correctly, and ‘gamma‘, which defines the influence of a single training
example in the RBF kernel.

• K-Nearest Neighbors (KNN): KNN is a simple, non-parametric instance-based learning
algorithm. Unlike other models, it does not learn an explicit function during training;
instead, it memorizes the entire training dataset. To classify a new data point, it finds the
’k’ closest training samples in the feature space using a distance metric (e.g., Euclidean
distance). The new point is then assigned the class that is most common among its k
neighbors. KNN is easy to interpret but can be computationally slow during inference
and its performance can degrade significantly in high-dimensional feature spaces (the
"curse of dimensionality"), where the concept of distance becomes less meaningful.

• Decision Trees and Random Forest: A Decision Tree is a non-parametric supervised
learning method that predicts the class of a target variable by learning simple decision
rules inferred from the data features. It builds a tree-like structure where internal nodes
represent tests on features (e.g., "is mean F0 > 150 Hz?") and leaf nodes represent the
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final class labels. While a single, deep decision tree is highly interpretable, it is prone
to overfitting. A Random Forest is a powerful ensemble method that addresses this
limitation by constructing a multitude of deep decision trees at training time [46]. It
introduces randomness through two key mechanisms: bagging (each tree is trained on a
random bootstrap sample of the data) and feature randomness (only a random subset
of features is considered at each split). The final prediction is the mode of the classes
predicted by the individual trees, which averages out their variances and results in a much
more robust and accurate model.

• Boosting Algorithms: This family of ensemble algorithms builds a strong classifier by
sequentially training a series of weak learners (typically shallow decision trees). Each
new learner in the sequence focuses on correcting the errors made by the previous ones.

– AdaBoost (Adaptive Boosting): The original boosting algorithm, AdaBoost itera-
tively trains weak learners and, at each step, increases the weights of the training
samples that were misclassified by the previous learner. The final model is a
weighted sum of all the weak learners, with more accurate learners receiving a
higher weight [47].

– Gradient Boosting Machines (GBM): A more generalized and powerful boosting
framework. Instead of re-weighting samples, each new weak learner is trained to
predict the pseudo-residuals (the gradient of the loss function) of the predecessor
ensemble [48]. This makes it a direct gradient-based optimization algorithm.

– XGBoost, LightGBM, and CatBoost: These are modern, highly optimized and
scalable implementations of gradient boosting. XGBoost [49] is known for its
performance and includes advanced regularization techniques. LightGBM [50]
offers significant speed improvements using novel algorithms for building trees.
CatBoost [51] is specialized for handling categorical features with high efficiency.

2.3 The Deep Learning Paradigm for ASER

Deep Learning (DL) is a subfield of machine learning based on artificial neural networks
with multiple hidden layers (hence "deep"). The availability of vast datasets and powerful
computational resources has allowed these deep architectures to achieve state-of-the-art perfor-
mance on a wide range of tasks, including ASER [52]. The key advantage of deep learning is its
ability to learn feature hierarchies automatically from the data, which is particularly beneficial
for complex, high-dimensional inputs like audio spectrograms.
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2.3.1 The Artificial Neuron: From Perceptron to Modern Activations

The simplest form of a neural network is the perceptron, a model of a single artificial
neuron first proposed by Frank Rosenblatt in 1958 [53]. It was inspired by the biological
neuron, which receives electrochemical signals through dendrites, integrates them in the cell
body (soma), and, if a certain threshold is met, fires an output signal down the axon.

The artificial perceptron mimics this process mathematically. It takes a set of numerical
inputs, X = {x1, x2, ..., xn}, each multiplied by a corresponding weight, W = {w1, w2, ..., wn}.
These weights represent the "synaptic strength" of each input, determining its influence on
the neuron’s output. The weighted inputs are then summed together along with a bias term, b,
which acts as an independent, learnable offset that can shift the activation function’s decision
boundary. This weighted sum, or pre-activation, S, is given by [54]:

S =
n∑

i=1
(xi ·wi )+b =W ·X +b (2.1)

This sum is then passed through an activation function, f , to produce the final output, Y . The
activation function introduces essential non-linearity into the model, allowing it to learn complex
patterns. While early models used simple step functions, modern networks use differentiable
functions like the Sigmoid, Hyperbolic Tangent (tanh), and, most commonly, the Rectified
Linear Unit (ReLU), defined as [55]:

f (S) = max(0,S) (2.2)

ReLU is computationally efficient and helps mitigate the vanishing gradient problem, making
it the standard choice for most deep hidden layers today.

2.3.2 The Multilayer Perceptron (MLP) and Hierarchical Features

A single perceptron is limited to learning only linearly separable patterns. This was famously
demonstrated by Minsky and Papert, who showed that it cannot solve the simple logical XOR
problem [56]. To overcome this fundamental limitation, perceptrons are stacked together in
layers to form a Multilayer Perceptron (MLP).

An MLP consists of an input layer, one or more hidden layers, and an output layer. The key
principle is that the presence of hidden layers, combined with non-linear activation functions,
gives the MLP the power of a universal approximator, meaning it can theoretically approximate
any continuous function [57]. This power comes from its ability to learn a hierarchy of
features. For an ASER task, the first hidden layer might learn to combine raw acoustic features
into basic phonetic detectors. A second hidden layer might combine these phonetic detectors to
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recognize more complex syllabic or rhythmic patterns. Deeper layers can then combine these
patterns to capture the high-level prosodic contours that are indicative of emotion.

2.3.3 Network Training: Backpropagation and Optimization

Neural networks learn by iteratively adjusting their weights and biases to minimize a loss
function, which quantifies the error between the model’s predictions and the true labels. For
multi-class classification, the standard loss function is Categorical Cross-Entropy, which
heavily penalizes confident but incorrect predictions. This minimization is achieved through an
optimization algorithm, most commonly a variant of gradient descent.

The core mechanism is the backpropagation algorithm [58]. The process works as follows:

1. Forward Pass: A batch of inputs is fed through the network to generate predictions.

2. Loss Calculation: The loss function compares the predictions to the true labels to
calculate a single error value.

3. Backward Pass: Using the chain rule from calculus, the algorithm computes the gradient
(or derivative) of the loss function with respect to every single weight and bias in the
network, starting from the output layer and moving backward. These gradients represent
the direction and magnitude of the change needed for each parameter to reduce the error.

4. Parameter Update: The optimizer updates the parameters by taking a small step in the
direction opposite to their gradient.

While standard gradient descent is effective, more advanced optimizers like Adam (Adaptive
Moment Estimation) [59] are now standard. Adam adapts the learning rate for each parameter
individually and incorporates momentum, leading to faster and more stable convergence.

2.3.4 Training Strategies

The process of teaching a deep learning model is known as training. The strategies employed
can significantly impact performance.

• Training from Scratch: All network weights are initialized randomly and the model
learns exclusively from the target dataset. This requires a very large dataset to avoid
overfitting.

• Transfer Learning & Fine-Tuning: A more common approach is to use a model pre-
trained on a massive dataset and adapt it to the target task. Recent work has demonstrated
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the power of this approach by fine-tuning large, self-supervised models like WavLM on
various speech and audio tasks, showing their ability to transfer learned representations
effectively [60].

2.4 Architectures for Speech Emotion Recognition

This section provides a deep and detailed breakdown of the specific deep learning archi-
tectures and frameworks that were developed and utilized in the experimental work of this
thesis.

2.4.1 Convolutional Neural Networks (CNNs) for Spectrogram Analysis

As established in Chapter 2, CNNs are exceptionally well-suited for analyzing spectrograms
by treating them as images. The core components that enable this are the convolutional and
pooling layers, which learn a hierarchy of time-frequency patterns. The specific models in this
thesis build upon these foundational principles.

2.4.2 The DeepSpecCNN Architecture

For the study on dimensional emotion classification, a custom CNN architecture named
DeepSpecCNN was designed specifically for the task of spectral analysis. As illustrated in
Figure 2.1, the model is constructed for efficient hierarchical feature extraction.

The architecture is composed of four main convolutional blocks. Each block utilizes uniform
33 convolutions with "same" padding to preserve spatial dimensions during feature mapping,
followed by a Rectified Linear Unit (ReLU) activation to introduce non-linearity. After each of
the first three blocks, a max-pooling layer with a 22 kernel is applied for spatial down-sampling,
progressively reducing the feature map dimensionality. After the final convolutional block, the
feature maps are flattened into a 1D vector and passed to a dense layer with a softmax activation
function to perform the final classification.

2.4.3 The DenseNet-121 Architecture

The second major architecture used in this thesis is DenseNet-121, a state-of-the-art CNN
that is renowned for its parameter efficiency and strong performance [61]. Unlike traditional
sequential networks, DenseNet is predicated on the principle of maximizing feature reuse
through dense connectivity. As illustrated in Figure 2.2, the core of the architecture is the
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Figure 2.1: The proposed DeepSpecCNN architecture, designed for hierarchical feature extrac-
tion from spectrograms. It consists of four convolutional blocks followed by a dense classifier.

Dense Block. Within a dense block, each layer receives the feature maps from all preceding
layers as its input, and its own output feature maps are passed on to all subsequent layers by
concatenation. Between the dense blocks, Transition Layers are used to down-sample the
feature maps.

2.4.4 Convolutional Block Attention Module (CBAM)

To enhance the representational power of the DenseNet121 backbone, this thesis integrates
the Convolutional Block Attention Module (CBAM). CBAM is a lightweight, "plug-and-
play" module that refines feature maps sequentially along two separate dimensions: Channel
and Spatial.

As illustrated in Figure 2.3, the CBAM sequentially infers attention maps to emphasize
"what" features are important and "where" they are located.

The overall attention process for an input feature map F ∈RC HW is summarized by:

F′ = Mc (F)⊗F (2.3)

F′′ = Ms(F′)⊗F′ (2.4)
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Figure 2.2: The architecture of DenseNet-121, illustrating the use of dense blocks and transition
layers to encourage feature reuse and efficient information flow. (Source: [61, 62]).

where ⊗ denotes element-wise multiplication. The detailed structure of these sub-modules is
illustrated in Figure 2.4.
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Figure 2.3: Overview of the Convolutional Block Attention Module (CBAM) illustrating the
sequential application of channel and spatial attention. Source: [63].
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Figure 2.4: Detailed diagram illustrating the sub-modules of the CBAM: (a) Channel Attention
Module and (b) Spatial Attention Module. Source: [63].

2.4.4.1 Channel Attention Module

This module exploits the inter-channel relationship of features. Since each channel is
considered a feature detector, channel attention focuses on ’what’ is meaningful. It uses both
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average-pooling and max-pooling to aggregate spatial info, computed as:

Mc (F ) =σ(MLP(AvgPool(F ))+MLP(MaxPool(F )))

=σ(W1(W0(F c
av g ))+W1(W0(F c

max)))
(2.5)

2.4.4.2 Spatial Attention Module

This module focuses on ’where’ informative parts are located. It applies average and max
pooling along the channel axis, concatenates them, and uses a 77 convolution to generate the
spatial attention map:

Ms(F ) =σ( f 77([AvgPool(F );MaxPool(F )]))

=σ( f 77([F s
av g ;F s

max]))
(2.6)

2.4.5 The Proposed CBAM-DenseNet121 Architecture

The first novel architecture proposed in this thesis, CBAM-DenseNet121, is formed by
integrating the CBAM module into the DenseNet-121 backbone. The input spectrogram passes
through the DenseNet-121 feature extractor, and the feature map produced after the final
dense block is then fed into the CBAM module for refinement before being passed to the final
classifier.

2.5 Ensemble Learning Framework

The second major framework proposed in this thesis is an ensemble learning approach.
The specific strategy employed is a Voting Ensemble, which uses a majority vote from a
committee of architecturally diverse CNNs (including DeepSpecCNN, LeNet, ResNet50, etc.).
By aggregating their predictions, the uncorrelated errors of individual models tend to cancel
out, leading to a more accurate and reliable final decision [64].

2.5.1 Ensemble Learning for Enhanced Robustness

While the development of a single, highly optimized model is a primary goal in machine
learning, another powerful paradigm is ensemble learning. The core idea of this approach is
that a "committee" of diverse models, when their predictions are combined, can often achieve
better performance, robustness, and generalization than any single model in the ensemble could
on its own [65]. The effectiveness of an ensemble relies on two key principles: accuracy and
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diversity. The individual models (or "base learners") must perform better than random chance,
and, crucially, they must be diverse, meaning they make different types of errors.

The power of ensembling can be formally understood through the lens of the bias-variance
tradeoff [66]. A model’s prediction error can be decomposed into three parts: bias (error from
erroneous assumptions in the learning algorithm), variance (error from sensitivity to small
fluctuations in the training set), and irreducible error. A single, complex model (like a deep
decision tree) might have low bias but high variance, meaning it fits the training data perfectly
but fails to generalize. Conversely, a simple model might have high bias but low variance.
Ensemble methods are powerful because they provide strategies to reduce one or both of these
error sources. There are several standard methods for creating effective ensembles:

• Bagging (Bootstrap Aggregating): Bagging is a technique designed primarily to reduce
variance. It is particularly effective with high-variance, low-bias models like deep
decision trees. The process is as follows:

1. From the original training dataset of size N , create M new "bootstrap" datasets
by sampling N instances with replacement. Each bootstrap dataset is a slightly
different view of the original data.

2. Train an independent base learner on each of the M bootstrap datasets. Because the
training sets are different, the resulting models will be diverse.

3. For a new prediction, aggregate the outputs of all M models. For classification, this
is done via a majority vote (hard voting); for regression, the outputs are averaged.

The Random Forest algorithm is a canonical and powerful extension of bagging, where
in addition to training on bootstrap samples, each decision tree is further decorrelated by
only considering a random subset of features at each split [46].

• Boosting: In contrast to the parallel nature of bagging, boosting trains base learners
sequentially, with the primary goal of reducing bias. Each new model in the sequence is
trained to correct the errors made by the existing ensemble.

– AdaBoost (Adaptive Boosting): This method iteratively trains weak learners and,
at each step, increases the weights of the training samples that were misclassified
by the previous learner. This forces the next learner to focus more on these "hard"
examples. The final model is a weighted sum of all the weak learners, where more
accurate learners are given a higher weight in the final vote [47].
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– Gradient Boosting Machines (GBM): A more generalized and powerful boosting
framework where each new weak learner is trained to predict the pseudo-residuals
(the gradient of the loss function with respect to the predictions) of the predecessor
ensemble. This turns the process into a direct, stage-wise optimization of the loss
function [48].

• Stacking (Stacked Generalization): Stacking is a more advanced and often higher-
performing ensemble technique that learns how to best combine the predictions from
multiple different models [67]. The process involves two levels:

1. Level 0 (Base Models): Several different base models (e.g., an SVM, a Random
Forest, a CNN) are trained on the full training dataset.

2. Level 1 (Meta-Model): A new model, the "meta-learner," is trained. The input
features for this meta-learner are the outputs (predictions) of the base models from
Level 0. The meta-learner’s job is to learn the optimal combination of the base
models’ predictions to produce the final, improved prediction.

The approach used in this thesis falls into the category of a Voting Ensemble. Specifically,
it uses a majority vote (or "hard voting") from a committee of architecturally diverse CNNs
(including the custom DeepSpecCNN, LeNet, ResNet50, etc.). This strategy’s success hinges on
the principle of architectural diversity. Because each CNN has a different depth, connectivity
pattern (e.g., residual vs. dense), and number of parameters, each one learns a slightly different
representation of the data and is therefore likely to make uncorrelated errors. By taking a
majority vote, the ensemble leverages this diversity to produce a final prediction that is more
robust and accurate than any of its individual components. This strategy has proven highly
effective in recent studies for both medical imaging and other complex classification tasks
[68, 69].

2.6 Experimental Design and Evaluation Framework

The validity and impact of any computational study rest upon a meticulously designed
and rigorously executed experimental framework. This section details the comprehensive
methodology established for this thesis to ensure the scientific rigor, reproducibility, and
objective evaluation of all models and findings. The framework is built upon three pillars: (1)
the strategic selection and use of distinct datasets to address different research challenges; (2)
the formulation of specific, hypothesis-driven classification tasks; and (3) a robust protocol
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for model evaluation, including a clear data partitioning strategy and a suite of well-justified
performance metrics. This systematic approach allows for a fair comparison between models
and provides a solid empirical foundation for the conclusions drawn in this dissertation.

2.6.1 Corpora and Rationale for Selection

The experimental work in this thesis is strategically grounded in the use of two distinct
datasets, each chosen to serve a specific research purpose and to address a different facet of the
ASER problem.

• CREMA-D (Crowd-sourced Emotional Multimodal Actors Dataset) [24]: This cor-
pus serves as the primary benchmark dataset for the development and validation of
the novel deep learning architectures proposed in this thesis. As a high-quality, English-
language collection of acted emotion, CREMA-D provides a controlled and acoustically
clean environment ideal for testing new models. Its large number of speakers (91), clear
categorical labels, and balanced class distribution make it a standard in the field, allowing
for direct and meaningful performance comparisons with other state-of-the-art methods.
The use of this benchmark is critical for demonstrating the architectural merits of the
proposed models in a reproducible, standardized setting.

• OYH (Open Your Heart) Dataset: This novel corpus, a primary contribution of this
thesis, was created to serve as a real-world challenge dataset. Comprising 6.3 hours of
spontaneous emotional speech from an Algerian television talk show, it directly confronts
the critical research gaps of domain mismatch and data scarcity for under-resourced
dialects. Its defining characteristics—spontaneous "in-the-wild" speech, linguistic speci-
ficity to Algerian Arabic, and nuanced dimensional annotations—provide a challenging
and ecologically valid testbed. The OYH corpus is used to establish baselines for a
new, difficult problem domain and to ground the thesis in a practical, culturally relevant
context.

2.6.2 Experimental Tasks and Hypotheses

The methodologies described in this chapter were applied to three distinct classification
tasks, each designed to investigate a specific research question and test a core hypothesis of
this thesis.

1. Task 1: Dimensional Classification on the OYH Corpus. The objective of this task
is to establish a robust machine learning baseline for predicting Valence and Control
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(each on a 3-point scale: Low, Medium, High) on the novel, spontaneous OYH dataset
using traditional ML models. The central hypothesis is that for such complex, real-
world data, performance is critically dependent on task-specific feature engineering, and
that an advanced feature selection algorithm (BE-AWF) can identify distinct and more
discriminative acoustic feature subsets for valence and control, respectively.

2. Task 2: Categorical 6-Class Classification on CREMA-D. This experiment addresses
the standard ASER benchmark task of 6-class emotion recognition on the CREMA-D
dataset. Its purpose is to investigate the trade-off between model accuracy and compu-
tational efficiency. The underlying hypothesis is that a lightweight, parameter-efficient
CNN architecture enhanced with a targeted attention mechanism (the proposed CBAM-
DenseNet121) can achieve a competitive performance against larger, more complex
state-of-the-art models, making it a more practical solution for deployment.

3. Task 3: Dimensional 2-Class Classification on CREMA-D. The final experimental task
aims to push the boundaries of classification accuracy on the CREMA-D benchmark. It
involves a novel classification scheme based on the Geneva Wheel of Emotions (GWE),
classifying emotions into a binary High-Control vs. Low-Control task. The hypothesis is
twofold: first, that this psychologically-grounded dimensional grouping provides a more
robust and less ambiguous classification target than discrete categories, and second, that
an ensemble of architecturally diverse models will leverage this framework to achieve a
new state-of-the-art accuracy by aggregating diverse "perspectives" on the data.

2.6.3 Evaluation Protocol and Performance Metrics

A standardized and rigorous evaluation protocol is essential for producing objective and
reliable results. This protocol encompasses the data partitioning strategy and the selection of
appropriate performance metrics.

2.6.3.1 Data Partitioning and Validation Strategy

To prevent data leakage and ensure that models are evaluated on entirely unseen data, a strict
data partitioning strategy was employed. Each dataset was split into three mutually exclusive
sets:

• A Training Set, which constitutes the largest portion of the data, used exclusively for
learning the model’s parameters.
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• A Validation (or Development) Set, used during the training phase to tune model hyper-
parameters (e.g., learning rate, dropout rate) and for model selection (e.g., identifying
the optimal training epoch to prevent overfitting).

• A Test Set, which is held out and used only once after all training and model selection is
complete to provide a final, unbiased estimate of the model’s generalization performance
on new data.

The specific ratios for these splits (e.g., 70%/20%/10% or 70%/15%/15%) were chosen based
on the dataset size and the specific requirements of each experimental study, as detailed in the
corresponding chapters.

2.6.3.2 The Confusion Matrix

The cornerstone of performance analysis for any classification task is the confusion matrix.
For a problem with N classes, this is an N N matrix where the rows represent the true, ground-
truth labels and the columns represent the labels predicted by the model. Each cell (i , j ) in the
matrix contains the count of samples from true class i that were predicted as class j .

From this matrix, we can derive four key quantities for any given class Ci :

• True Positives (T Pi ): The number of samples of class Ci that were correctly classified
as Ci .

• False Positives (F Pi ): The number of samples from other classes that were incorrectly
classified as Ci .

• False Negatives (F Ni ): The number of samples of class Ci that were incorrectly classified
as a different class.

• True Negatives (T Ni ): The number of samples from all other classes that were correctly
not classified as Ci .

These fundamental counts form the basis for all other standard evaluation metrics.

2.6.3.3 Standard Evaluation Metrics

To provide a comprehensive and objective assessment of model performance, a standard
suite of metrics was used. While Accuracy—the overall proportion of correct predictions—is a
common metric, it can be highly misleading on datasets with imbalanced class distributions, a
frequent issue in emotion recognition. Therefore, a more nuanced set of metrics, calculated on
a per-class basis, was prioritized:
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• Precision: This metric measures exactness for a single class Ci , answering the question:
"Of all the samples the model predicted as class Ci , what fraction were actually class
Ci ?" It is crucial in applications where False Positives are costly. The per-class precision
is calculated as:

Precisioni = TPi

TPi +FPi

• Recall (Sensitivity): This metric measures completeness for a class Ci , answering the
question: "Of all the true samples of class Ci in the dataset, what fraction did the model
correctly identify?" It is vital in scenarios where missing a positive instance (a False
Negative) is a critical error.

Recalli = TPi

TPi +FNi

• F1-Score: This is the harmonic mean of Precision and Recall for a given class Ci . It
provides a single, balanced measure of a model’s performance for that class. The use of
the harmonic mean ensures that the score is high only if both metrics are high. These
per-class scores are often averaged to produce a single F1-score for the model.

F1-Scorei = 2
Precisioni Recalli

Precisioni +Recalli

• Unweighted Average Recall (UAR): The UAR is the macro-average of the recall scores
calculated for each individual class (Recalli ). It is arguably the most important single
metric for evaluating ASER models on imbalanced datasets, as it treats each emotional
category as equally important, regardless of its prevalence in the test set. This provides
a fair and robust measure of how well the model performs across the entire emotional
spectrum.

2.6.4 Implementation and Computational Environment

To ensure the reproducibility of the research presented, all experiments were conducted
using publicly available and well-documented software libraries. The primary programming
language was Python (version 3.8+). For the traditional machine learning experiments, the
Scikit-learn library was used. For the deep learning experiments, the PyTorch framework was
employed. Audio processing and feature extraction were performed using the Librosa library
for spectrogram generation and the standardized openSMILE toolkit for handcrafted features.
Model training was accelerated using NVIDIA Tesla T4 and V100 Graphics Processing Units
(GPUs) in a cloud computing environment.
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2.7 Conclusion

This chapter has detailed the complete methodological arsenal that underpins the exper-
imental work of this thesis. The objective was to build a comprehensive and foundational
understanding of the algorithms and frameworks used, moving from general principles to
the specific architectural families and models relevant to ASER. We began with an overview
of machine learning, covering the principles of supervised learning and the mechanics of
traditional classifiers like SVMs and Random Forests that serve as a performance baseline.

Subsequently, the chapter provided a deep and pedagogical dive into the deep learning
paradigm, constructing the conceptual framework from the fundamental artificial neuron
up to the modern mechanics of network training. Building on this, we examined the core
architectures for spectrogram analysis, providing a thorough, illustrated explanation of the
proposed DeepSpecCNN and CBAM-DenseNet121 models, as well as the robust strategy of
ensemble learning. Finally, the complete experimental protocol and a rigorous framework for
performance assessment were established.

With this comprehensive methodological framework now in place, we are fully equipped to
apply these powerful tools to concrete research problems. The following chapters will transition
from theory to practice, presenting the experimental application of these models and evaluation
principles to the benchmark CREMA-D dataset and the novel OYH corpus to develop and
validate new state-of-the-art solutions for speech emotion recognition.
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Chapter 3. Experiments on the CREMA-D Benchmark Dataset

3.1 Introduction

Having established the foundational data representations and methodological principles
in the preceding chapters, this chapter transitions from theory to practice. It presents the core
of the deep learning experimentation conducted for this thesis, focusing on the development
and validation of novel models on a standard, high-quality benchmark dataset. The use of a
benchmark like the Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D)
is a critical step in any rigorous research endeavor. It provides a controlled, clean, and widely
accepted environment for testing new architectures, allowing for direct and fair comparison
with state-of-the-art methods from the broader research community.

This chapter details two distinct but complementary studies performed on the CREMA-D
dataset, each designed to address a key challenge in modern ASER. These studies correspond
to two central research questions of this thesis:

1. Can a single, lightweight Convolutional Neural Network architecture, enhanced with
modern attention mechanisms, achieve a competitive balance between classification
accuracy and computational efficiency for the standard 6-class emotion recognition task?

2. Can reframing the classification problem using a psychologically-grounded dimensional
model and leveraging an ensemble of diverse architectures push the boundaries of state-
of-the-art accuracy?

To answer these questions, the chapter is structured into two main sections. Study 1 details
the development, training, and evaluation of the CBAM-DenseNet121 model. This study
focuses on the crucial trade-off between performance and efficiency, presenting a detailed
analysis of the model’s performance on the 6-class task and validating its architectural compo-
nents through a rigorous ablation study. Study 2 then shifts focus from efficiency to achieving
maximal accuracy. It introduces a novel classification framework based on the Geneva Wheel
of Emotions and presents the DeepSpecCNN model and its integration into a powerful, high-
performance ensemble learning framework.

Together, these two studies provide a comprehensive exploration of deep learning for
ASER on benchmark data, yielding both a practical, efficient model and a state-of-the-art,
high-accuracy framework. The findings from this chapter will lay the groundwork for the
subsequent chapter, which will investigate the challenges of applying these methods to a more
complex, real-world dataset.
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3.2 Study 1: An Efficient Attention-Enhanced Architecture
for 6-Class Emotion Recognition

The first study addresses the pressing need for ASER models that are not only accurate but
also computationally efficient and practical for real-world deployment. While large, complex
models often achieve the highest accuracy, their significant computational overhead limits
their feasibility. This study investigates the potential of a carefully designed, lightweight CNN
architecture enhanced with an attention mechanism to achieve a competitive balance between
these two goals.

3.2.1 Experimental Setup

3.2.1.1 Dataset and Task

The foundation of this study is the Crowd-sourced Emotional Multimodal Actors Dataset
(CREMA-D) [24], a prominent and widely-used English-language benchmark in the affective
computing community. The selection of this corpus was deliberate and strategic for several
reasons. First, as a benchmark, it provides a standardized platform for evaluating the proposed
CBAM-DenseNet121 architecture, enabling direct and fair comparisons against a large body of
existing state-of-the-art methods. Second, the dataset consists of high-quality, acoustically clean
recordings captured in a controlled laboratory environment. This minimizes the influence of
confounding variables like background noise or reverberation, thereby isolating the evaluation
to the architectural merits of the model itself—a critical requirement when the primary goal is to
assess the impact of specific design choices, such as the integration of an attention mechanism.
Finally, the corpus features a large and ethnically diverse set of 91 actors, which provides a
degree of speaker variability that is essential for training a generalizable model. Although
CREMA-D is a multimodal dataset containing both audio and video, this study operates within
a strictly unimodal ASER framework, utilizing only the audio channel.

The experimental objective is framed as the quintessential ASER problem: a 6-class cate-
gorical emotion recognition task. While Chapter 1 acknowledged the theoretical limitations
of discrete emotion models, this categorical approach was intentionally chosen for this study to
align with the predominant paradigm in the literature, thus ensuring the comparability of our
results. The model is tasked with classifying each speech utterance into one of the six canonical
"basic" emotions: Anger, Disgust, Fear, Happy, Sad, or a non-emotional Neutral state.

As detailed in Table 3.1, the CREMA-D dataset is exceptionally well-suited for this task
due to its balanced class distribution. The five core emotional categories contain an identical
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number of samples (1,271 each), with the Neutral class being only slightly less represented
(1,087 samples). This high degree of balance mitigates the risk of the model developing a
bias towards a majority class during training and simplifies the interpretation of performance
metrics. It provides an ideal scenario for rigorously assessing the model’s ability to discriminate
between distinct emotional expressions.

Table 3.1: Label Distribution of the CREMA-D Dataset for the 6-Class Task.

Emotion Abbreviation Number of Samples

Anger ANG 1271
Disgust DIS 1271
Fear FEA 1271
Happy HAP 1271
Sad SAD 1271
Neutral NEU 1087

Total 7442

3.2.1.2 Data Partitioning and Preprocessing

A robust and unbiased evaluation protocol requires a meticulous data partitioning and
preprocessing strategy. This section details the steps taken to prepare the CREMA-D dataset
for model training and to ensure that the final performance evaluation is a true measure of the
model’s generalization capability.

The dataset was partitioned into three distinct, non-overlapping sets: a training set (70%),
a validation set (20%), and a test set (10%). This 70/20/10 split is a standard practice that
allocates a substantial majority of the data for model learning, provides a sufficiently large
validation set for reliable hyperparameter tuning and prevention of overfitting, and reserves a
final holdout set for an unbiased performance assessment. Crucially, this split was performed
with speaker independence. This means that all utterances from any single actor were confined
to only one of the three sets. This practice is essential in ASER to prevent the model from
simply memorizing the vocal characteristics of specific speakers, forcing it instead to learn
generalizable acoustic patterns of emotion that are speaker-agnostic. The partitioning was
also stratified, ensuring that the proportional representation of each of the six emotion classes
was maintained across all three sets, thereby guaranteeing that the validation and test sets are
representative of the overall data distribution. The resulting sample distribution is detailed in
Table 3.2.
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Table 3.2: Data Partitioning for Study 1.

Total Samples Train Set (70%) Validation Set (20%) Test Set (10%)

7442 5209 1488 745

The preprocessing pipeline was designed to convert the raw audio signals into a format
suitable for consumption by a Convolutional Neural Network. As established in Chapter 1, all
audio files were transformed into log-Mel spectrograms. This two-dimensional representation
is perceptually motivated, mimicking the frequency response of the human ear, and has become
the de facto standard for ASER, effectively reframing the audio classification problem as an
image recognition task.

To ensure uniformity for batch processing, the resulting spectrograms were resized to a
fixed dimension of 128×256 pixels. Here, 128 represents the number of Mel frequency bins,
a resolution that captures sufficient spectral detail, while 256 represents the number of time
frames, achieved by padding or truncating the audio clips. This size strikes a balance between
preserving spectro-temporal information and maintaining computational feasibility. Finally, to
leverage the power of transfer learning, a critical step was performed. Although spectrograms
are inherently single-channel (grayscale), the channel dimension was replicated three times
to match the 224×224×3 input shape expected by the DenseNet121 backbone, which was
pre-trained on the massive, three-channel RGB ImageNet dataset. This technique allows the
model to utilize the rich, hierarchical visual features learned from millions of natural images as
a powerful starting point for learning the patterns within the speech spectrograms.

3.2.1.3 Data Augmentation

To enhance the model’s ability to generalize and to mitigate the risk of overfitting, data aug-
mentation techniques were applied exclusively to the training set. During training, spectrogram
images were subjected to random color jittering with a 50% probability. This included minor,
random adjustments to the image’s brightness, contrast, saturation, and hue. This process
creates new, slightly modified training examples at each epoch, forcing the model to learn more
robust and invariant features. Validation and test spectrograms were not augmented.

3.2.1.4 Model Architecture and Training Protocol

This study employs the novel CBAM-DenseNet121 architecture, the design principles of
which were established in Chapter 2. The choice of this specific architecture is grounded in
a strategic effort to balance high classification accuracy with computational efficiency. The
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model is built upon a DenseNet-121 backbone, which was selected for its characteristic dense
connectivity pattern. This design encourages feature reuse throughout the network, improves
the flow of information and gradients, and has been shown to achieve competitive performance
with significantly fewer parameters than comparable architectures like ResNet.

To further enhance the representational power of this efficient backbone, a Convolutional
Block Attention Module (CBAM) was integrated after the final dense block. The purpose
of this lightweight module is to enable the model to perform feature refinement, adaptively
learning to emphasize the most informative features both along the channel axis ("what"
is important) and the spatial axis ("where" in the spectrogram is important). The complete
layer-wise architecture and parameter distribution are summarized in Table 3.3. With a total of
approximately 7.1 million trainable parameters, the resulting model is positioned as a relatively
lightweight yet powerful solution, designed for practical applicability where computational
resources may be constrained.

Table 3.3: Layer-wise Parameter Summary of the CBAM-DenseNet121 Model.

Block Output Shape Parameters

Input [batch, 3, 128, 256] 0
Conv0 [batch, 64, 64, 128] 9,408
DenseBlock 1 [batch, 256, 32, 64] 335,040
Transition 1 [batch, 128, 16, 32] 33,280
DenseBlock 2 [batch, 512, 16, 32] 919,680
Transition 2 [batch, 256, 8, 16] 132,096
DenseBlock 3 [batch, 1024, 8, 16] 2,837,760
Transition 3 [batch, 512, 4, 8] 526,336
DenseBlock 4 [batch, 1024, 4, 8] 2,158,080
CBAM [batch, 1024, 4, 8] 132,260
Classifier [batch, 6] 8,198

Total Trainable Parameters - 7,092,138

The model was trained using a carefully selected set of modern deep learning practices
and hyperparameters. The optimization was driven by the Categorical Cross-Entropy loss
function, which is the standard and most appropriate choice for multi-class classification tasks.
For parameter updates, the AdamW optimizer was employed. This optimizer is a robust
variant of the popular Adam algorithm that decouples weight decay from the gradient updates,
a modification that has been shown to improve generalization performance.

The training was configured to run for a maximum of 100 epochs with a batch size of 32.
The initial learning rate was set to 110−3 with a weight decay of 110−4 for regularization. To
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dynamically manage the learning rate, a cosine annealing scheduler was used. This scheduler
gradually decreases the learning rate following a cosine curve over the course of an epoch,
which can help the model settle into broader and more robust minima in the loss landscape.
Furthermore, to prevent overfitting and reduce unnecessary computation, an early stopping
mechanism was implemented. The training process was monitored, and if the validation loss
did not show improvement for a patience of 10 consecutive epochs, the training was halted,
and the model weights from the epoch with the best validation performance were saved for the
final evaluation.

3.2.2 Results and Analysis

3.2.2.1 Training Dynamics

The learning process of the model over 100 epochs is visualized in Figure 3.1. A detailed
analysis of the curves reveals several key dynamics. The training accuracy (blue line) exhibits a
steep and rapid increase, reaching nearly 100% (99.98%) by the end of training. This indicates
that the model has sufficient capacity to fully memorize or "fit" the training data. The validation
accuracy (orange line) also shows a healthy learning trajectory, rising steadily before beginning
to plateau around epoch 40 at a final value of 67.49%.

The loss curves provide a complementary view. The training loss (blue) steadily decreases
towards zero, confirming that the optimization process was successful. The validation loss
(orange) decreases in tandem for the first 40 epochs, after which it flattens and shows slight
fluctuations. The divergence point between the training and validation loss curves (around epoch
40) is the classic indicator of the onset of overfitting. However, the fact that the validation loss
remains stable and does not significantly increase suggests that the regularization techniques
(like weight decay and dropout) were effective in preventing severe overfitting.

3.2.2.2 Test Set Performance and Confusion Matrix Analysis

The final, definitive performance of the trained model was evaluated on the unseen test set.
The model achieved a strong overall test accuracy of 71.26%. To ensure a fair assessment given
the slight class imbalance, the F1-Score and Unweighted Average Recall (UAR) are the most
critical metrics. The model obtained an excellent F1-Score of 71.25% and a UAR of 71.01%,
demonstrating a robust and balanced performance across all six emotion classes.

A detailed, class-wise analysis is provided by the confusion matrix in Figure 3.2. The
diagonal elements, representing correct predictions, show the model’s strengths. It performs
exceptionally well in identifying Angry (ANG), Happy (HAP), and Neutral (NEU) emotions,
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Figure 3.1: Analysis of Training and Validation Performance for the CBAM-DenseNet121
model, showing accuracy and loss curves over 100 epochs.

correctly classifying 104, 95, and 91 samples respectively for these classes. However, the
off-diagonal elements reveal specific areas of confusion. The most significant challenge for
the model is distinguishing between low-arousal, negative-valence emotions. For instance, out
of 127 true Fear (FEA) samples, 21 were misclassified as Sad (SAD). Similarly, Disgust
(DIS) was most often confused with Sad (16 samples). These results indicate that the acoustic
features of these emotions have significant overlap in the learned feature space, a common and
persistent challenge in the field of ASER.

3.2.2.3 Comparison with State-of-the-Art (SOTA)

A central goal of this study was to achieve competitive accuracy while maintaining com-
putational efficiency. Table 3.4 compares our proposed model against other state-of-the-art
architectures on the CREMA-D dataset. Our CBAM-DenseNet121 model achieves a test ac-
curacy of 71.26% with only ~7.1 million trainable parameters. This performance modestly
surpasses more complex transformer-based models like LeRaC + SepTr (70.95%), while using
less than half the number of parameters. It significantly outperforms the much larger Vision
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Figure 3.2: Confusion Matrix of the CBAM-DenseNet121 model on the CREMA-D test set for
the 6-class task.

Transformer (ViT), which has ~86M parameters but achieves only 67.81% accuracy. This
highlights the strength of a well-designed CNN architecture with strong inductive biases for
processing spectrograms. The efficiency of our model is a direct result of the parameter-efficient
DenseNet backbone and the lightweight nature of the CBAM module, demonstrating a clear
advantage for practical applications where computational resources are limited.

Table 3.4: Performance and Complexity Comparison of Proposed Model Against Baseline and
SOTA Architectures on CREMA-D. Our model is in bold.

Model Accuracy (%) Parameters (Approx.)

Lin et al. (2025) [70] 82.00 Large (not specified)
CBAM-DenseNet121 (Ours) 71.26 ~7.1M
LeRaC + SepTr [71] 70.95 ~15M
SepTr [72] 70.47 ~15M
ResNet-18 + SPEL [73] 68.12 ~11.7M
ViT (Audio Spectrogram Transformer) [74] 67.81 ~86M
SpectoResNet [75] 65.20 ~11.3M
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3.2.3 Ablation Study

To scientifically validate the architectural choices made in this study, a rigorous ablation
study was conducted to isolate and evaluate the impact of the two key components: the CBAM
attention mechanism and the dropout rate.

3.2.3.1 Evaluating the Impact of CBAM

To scientifically validate the architectural design of the proposed model, a rigorous ablation
study was conducted. This process is critical in deep learning research as it isolates the
contribution of individual components to the overall performance, moving beyond conjecture to
provide empirical evidence of their efficacy. In this study, the primary goal was to quantify the
impact of the Convolutional Block Attention Module (CBAM). To achieve this, the module
was integrated into several distinct, pre-trained CNN backbones, and the performance was
compared against the baseline versions of those same architectures.

The results, presented in Table 3.5, reveal a nuanced and architecture-dependent impact. The
most compelling finding is the clear synergistic effect between CBAM and the DenseNet121
backbone. Integrating the attention module provided a substantial performance boost across all
key metrics, most notably increasing the overall accuracy by over 2 percentage points from
69.25% to 71.26% and the UAR from 69.34% to 71.01%. This strong positive interaction is
likely due to DenseNet’s core mechanism of feature concatenation; as each layer receives a
rich pool of feature maps from all preceding layers, the CBAM module can effectively act as a
selection filter, learning to prioritize the most discriminative features for the final classification.
As visualized in Figure 3.3, this enhancement was particularly impactful for acoustically similar
and challenging classes like ’Disgust’ (DIS) and ’Fear’ (FEA), strongly suggesting that the
attention mechanism successfully guided the model’s focus toward the subtle spectro-temporal
cues that differentiate these easily confused emotions.

The effect on other backbones was less pronounced. Adding CBAM to ResNet50 yielded a
modest but consistent improvement, suggesting that standard residual blocks can also benefit
from explicit feature recalibration. Conversely, and quite interestingly, adding CBAM to the
highly optimized MobileNetV2 architecture resulted in a slight degradation in performance. A
plausible hypothesis for this counterintuitive result is architectural redundancy. MobileNetV2’s
inverted residual blocks already contain an inherent form of feature gating through their linear
bottlenecks, which may make an external attention module functionally redundant or even
disruptive to its finely-tuned information flow.

In summary, this ablation study empirically confirms that the CBAM module is a valuable
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component of the proposed architecture. However, it also critically demonstrates that the
benefits of attention are not universal but are highly dependent on the base architecture with
which they are paired. The results validate our central hypothesis that a synergy exists between
the feature aggregation of DenseNet and the feature refinement of CBAM, making their
combination particularly potent for this ASER task.

Table 3.5: Ablation Study: Evaluating the performance impact of adding the CBAM module to
different CNN architectures.

Model Accuracy (%) F1 (%) Precision (%) UAR (%) Recall (%)

MobileNetV2 69.92 69.79 69.97 69.72 69.73
MobileNetV2 + CBAM 67.91 67.93 68.17 67.92 68.51

ResNet50 55.21 54.56 56.64 55.40 57.74
ResNet50 + CBAM 56.95 56.41 56.87 56.95 57.78

DenseNet121 (Finetuned) 69.25 69.05 69.44 69.34 69.67
DenseNet121 (FT + CBAM) 71.26 71.25 71.30 71.01 70.34
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Figure 3.3: Class-wise recall for each model in the ablation study, highlighting the significant
improvement for ’Disgust’ (DIS) and ’Fear’ (FEA) after adding CBAM to DenseNet121.

53



Chapter 3. Experiments on the CREMA-D Benchmark Dataset

3.2.3.2 Impact of Dropout Rate

Dropout is a critical stochastic regularization technique designed to combat overfitting in
deep neural networks. By randomly setting the activations of a fraction of neurons to zero during
each forward pass of training, dropout prevents neurons from forming complex co-adaptations
on the training data. This forces the network to learn more robust and redundant feature repre-
sentations, thereby improving its ability to generalize to unseen data. The dropout rate, which
defines the probability of a neuron being deactivated, is therefore a critical hyperparameter that
must be carefully tuned to find the optimal balance between underfitting and overfitting.

To empirically determine this optimal rate for the proposed CBAM-DenseNet121 architec-
ture, an ablation study was conducted, with the results summarized in Table 3.6. The analysis
of the performance across different rates reveals a clear trend. At lower rates (e.g., 0.1 to 0.3),
the model’s performance improves steadily, but it is not yet optimal. This suggests that the
regularization effect is insufficient to fully prevent the model from overfitting to the intricacies
of the training set.

The peak performance is clearly achieved at a dropout rate of 0.5, which emerged as
the empirical "sweet spot" for this architecture and task. At this level, the regularization is
aggressive enough to effectively break up spurious co-adaptations and promote generalization,
leading to the best scores across all key metrics, including an accuracy of 71.26% and a
UAR of 71.01%. As the dropout rate increases beyond this point (e.g., hypothetically to 0.6
or 0.7), one would expect performance to decline due to underfitting, where the network’s
capacity is so heavily penalized that it struggles to learn the underlying patterns in the data.
This meticulous tuning was a crucial step in finalizing the model’s configuration, confirming
that a 50% dropout rate provides the ideal regularization strength to maximize the performance
of the CBAM-DenseNet121 model.

Table 3.6: Ablation Study: Effect of Dropout Rate on the final CBAM-DenseNet121 model’s
performance.

Dropout Accuracy (%) UAR (%) Precision (%) F1 Score (%)
0.1 67.65 67.70 67.79 67.61
0.2 68.18 68.05 68.60 67.79
0.3 69.92 69.66 70.04 69.57
0.4 68.05 67.96 67.88 67.87
0.5 71.26 71.01 71.30 71.25
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3.2.4 Discussion of Study 1

The results of this first study successfully demonstrate that a carefully designed, attention-
enhanced CNN can achieve a highly competitive balance between classification accuracy
and computational efficiency for the standard 6-class ASER task. The proposed CBAM-
DenseNet121 architecture provides a strong affirmative answer to our first research question,
presenting a validated, lightweight, and effective model for practical speech emotion recognition.
The analysis, however, merits a deeper interpretation of the findings and their implications.

A key insight from this study is the validation of a well-crafted CNN architecture in an era
increasingly dominated by larger Transformer-based models. The fact that the ~7M parameter
CBAM-DenseNet121 outperformed the significantly larger ~86M parameter Vision Trans-
former is particularly telling. This result underscores the continued importance of architectural
inductive bias. CNNs, with their inherent properties of locality and translation invariance, are
naturally suited to processing the grid-like structure of spectrograms. This innate structural
understanding makes them highly data-efficient for this task. Transformers, lacking this built-in
bias, often require vast amounts of data to learn spatial hierarchies, which may explain their
comparatively lower performance here.

Furthermore, the ablation study provided strong empirical evidence for the contribution
of the CBAM module. Its success highlights that for ASER, not all parts of a spectrogram
are equally important. Emotional cues are often encoded in subtle, localized spectro-temporal
events—such as formant shifts, pitch inflections, or bursts of energy. The attention mechanism’s
ability to adaptively focus on these salient regions, while suppressing less relevant information,
proved crucial for improving the model’s ability to distinguish between challenging, easily
confused emotions like ’Fear’ and ’Disgust’.

It is crucial, however, to contextualize these findings within the limitations of the study’s
experimental setup. The use of the CREMA-D dataset, while ideal for controlled architectural
benchmarking, means the model was exclusively tested on acted, acoustically clean speech.
The impressive performance achieved here does not guarantee similar success in real-world
scenarios, which are characterized by spontaneous emotional expressions, background noise,
and dialectal variations. This well-known “domain gap” between laboratory data and “in-the-
wild” speech remains a formidable challenge.

This study acts as a fundamental first step by establishing an efficient modeling method un-
der controlled conditions. The successful performance of the CBAM-DenseNet121 architecture
on benchmark data validates the transition toward more difficult research areas, specifically
evaluating the model’s effectiveness against spontaneous speech and identifying appropriate
methodologies for emotion recognition within under-resourced dialectal contexts.
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3.3 Study 2: State-of-the-Art Accuracy via Ensemble
Learning on a Dimensional Emotion Framework

While Study 1 successfully developed an efficient, lightweight model for practical appli-
cations, this second study shifts the research objective from a balance of performance and
efficiency to the pursuit of the highest possible classification accuracy. The central research
question here is how to overcome the inherent performance ceilings of single-model, categorical
ASER systems to establish a new state-of-the-art on a benchmark dataset. To accomplish this, a
two-pronged strategy was devised, combining a theoretically-grounded reformulation of the
classification task with a powerful, multi-model learning paradigm.

The first strategy directly confronts the limitations of the categorical emotion model, a core
problem identified in Chapter 1. The ambiguity and acoustic overlap between discrete classes
like ’Fear’ and ’Sadness’ often create a noisy learning signal, limiting a classifier’s performance.
To mitigate this, this study reframes the complex 6-class problem into a simpler, more robust
binary task based on the control dimension of the Geneva Wheel of Emotions (GWE). The
underlying hypothesis is that by grouping emotions along a psychologically meaningful axis
that has strong acoustic correlates (e.g., vocal stability, intensity, and articulation), we can
create a classification task with a clearer and more learnable decision boundary than one based
on discrete categorical labels alone.

The second strategy leverages the principle of ensemble learning to push beyond the
capabilities of any single architecture. Even a highly optimized model has its own intrinsic
biases and will make certain types of errors. The core hypothesis of this approach is that a
committee of architecturally diverse CNNs, each learning a slightly different representation of
the data, will produce uncorrelated errors. By aggregating their individual predictions through
a majority voting mechanism, these errors can be effectively cancelled out, resulting in a
collective decision that is more robust and accurate than that of any individual constituent
model. This study therefore investigates the combined power of these two strategies, aiming
to demonstrate that a psychologically-informed task representation paired with a strategic
ensemble framework provides a superior pathway to achieving state-of-the-art accuracy in
speech emotion recognition.

3.3.1 The Dimensional Classification Framework

As established in Chapter 1, a significant performance bottleneck in ASER arises from the
inherent ambiguity and acoustic overlap between discrete emotion categories. The confusion
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between classes like ’Fear’ and ’Sadness’ introduces label noise and creates a complex, often
ill-defined decision boundary for classifiers. To circumvent this limitation, this study proposes
a strategic reformulation of the classification task itself, moving from a purely categorical
approach to one grounded in a dimensional model of affect: the Geneva Wheel of Emotions
(GWE) [20], previously illustrated in Figure 1.1.

Instead of treating emotions as six independent classes, we map them onto the GWE’s
control dimension. This dimension, distinct from the more common arousal (activation) axis,
pertains to an individual’s sense of power, agency, and control over a situation. This choice
is theoretically motivated by its strong and intuitive link to vocal production. A state of High
Control—a feeling of power or assertiveness—is often acoustically manifested through a
more stable and controlled voice: a steady pitch contour (low jitter), consistent intensity, clear
articulation, and often a faster speech rate. Conversely, a state of Low Control—a feeling of
helplessness or submissiveness—is typically associated with less regulated vocal patterns: a
trembling or unstable pitch (high jitter and shimmer), a weaker or breathier voice quality (low
Harmonic-to-Noise Ratio), and more hesitant speech.

Based on this strong theoretical and acoustic link, the six emotions from the CREMA-D
dataset were mapped into two psychologically-grounded macro-classes. The High Control
class comprises emotions where the speaker feels a sense of agency, namely Anger, Happiness,
and Disgust. The Low Control class consists of emotions associated with a lack of agency or
power: Fear, Sadness, and Neutrality.

This transformation simplifies the complex 6-class problem into a more tractable binary
classification task. As detailed in Table 3.7, this re-mapping also has the practical benefit
of creating a highly balanced dataset, which is ideal for training and evaluation. The central
hypothesis of this framework is that this binary task will prove more robust and yield higher
classification accuracy, as the model is learning to distinguish between two macro-classes
defined by a clearer and more consistent set of underlying acoustic correlates than those of the
six discrete emotions.

Table 3.7: Class Distribution for the Binary Dimensional Task.

Macro-Class Number of Samples Percentage of Dataset

High Control 3630 48.76%
Low Control 3812 51.24%

Total 7442 100%
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3.3.2 Experimental Setup

3.3.2.1 Data Partitioning and Base Model Selection

For this study, the CREMA-D dataset was partitioned into a training set (70%), a valida-
tion set (15%), and a test set (15%). This 70/15/15 split was chosen to provide a substantial
corpus for training while dedicating a larger and more statistically robust test set for the fi-
nal performance evaluation, which is critical when the goal is to confidently establish a new
state-of-the-art. As in the previous study, the partitioning was conducted with strict speaker
independence to ensure that the model’s generalization capability to new speakers was being
fairly assessed.

The cornerstone of the ensemble learning strategy is the principle of diversity. A successful
ensemble relies on combining base learners that are not only individually accurate but also make
different types of errors. To achieve this, a diverse set of 11 CNN architectures, representing
different families and eras of computer vision research, were selected as base learners. The
hypothesis is that their varied architectural designs, depths, and connectivity patterns will
cause them to learn complementary feature representations, leading to the decorrelated errors
necessary for a high-performing ensemble. The selected models include:

• Custom Architecture: The bespoke DeepSpecCNN, designed in Chapter 2 specifically
for spectrogram analysis.

• Pioneering Architectures: Foundational models like LeNet-5 and AlexNet that estab-
lished the core principles of CNNs.

• Very Deep Sequential Architectures: Models like VGG16 and VGG19, known for
their deep, homogenous stacks of 3x3 convolutions.

• Architectures with Advanced Connectivity: ResNet50, which introduced residual
connections to train extremely deep networks, and DenseNet121, which uses dense
connections to maximize feature reuse.

• Lightweight, Efficient Architectures: Modern models designed for computational
efficiency, including SqueezeNet, MobileNet, and EfficientNetB0.

By curating this architecturally diverse portfolio, we create a rich pool of base learners,
forming a robust foundation for testing our ensemble learning hypothesis.
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3.3.2.2 Ensemble Strategy and Training Protocol

The core of this study’s methodology is its ensemble strategy, designed to be both powerful
and nuanced. The specific approach employed was soft voting. In this framework, each of the
k base models in an ensemble outputs a vector of predicted probabilities for each class. These
probability vectors are then averaged across all models, and the final ensemble prediction is the
class that corresponds to the highest average probability. This method was chosen over hard
(majority) voting as it leverages more information from each model—not just its final decision,
but also its confidence in that decision. This often leads to superior performance, particularly
when the constituent models are well-calibrated.

To determine the optimal composition of the ensemble, several configurations of increas-
ing size were systematically constructed. This was done by progressively adding the best-
performing individual models in a greedy, forward-selection manner. This approach allows for
a clear analysis of how performance scales with ensemble size and helps identify the point at
which adding more models ceases to provide a benefit, ensuring a final ensemble that is both
accurate and as efficient as possible.

To ensure a fair comparison and a consistent foundation for the ensemble, all 11 base models
were trained independently but under an identical training protocol. The optimization was
guided by the Binary Cross-Entropy loss function, which is the standard and mathematically
appropriate choice for a binary classification task. The Adam optimizer was used for its
adaptive learning rate capabilities and fast convergence. Each model was trained for a maximum
of 64 epochs, with an early stopping mechanism based on the validation set’s performance to
prevent overfitting and save the best-performing version of each model. To accommodate the
diverse set of selected architectures, all input Log-Mel spectrograms were resized to a uniform
dimension of 224224 pixels. This specific size is the standard input dimension for many of the
ImageNet-pre-trained models used in this study (e.g., VGG, ResNet), ensuring compatibility
across the entire model portfolio.

3.3.3 Results and Analysis

3.3.3.1 Individual Model Performance

The independent training and evaluation of the 11 diverse CNN architectures served a dual
purpose: first, to assess their individual merits on the dimensional classification task, and second,
to generate a pool of base learners for the subsequent ensemble experiments. The performance
of each model on the held-out test set is summarized in Table 3.8. The analysis reveals a stark
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stratification in performance, providing critical insights into architectural suitability for this
ASER task.

A clear group of top-performing models emerged, led by the custom-designed DeepSpec-
CNN, which achieved the highest accuracy of any single model at 74.75%. Notably, the classic
and relatively simple LeNet architecture also performed exceptionally well (74.57% accuracy),
suggesting that for this well-defined binary task, a direct and less complex architecture is highly
effective at capturing the most salient spectro-temporal features.

Conversely, a distinct group of modern, lightweight models designed for computational
efficiency were significant underperformers. Architectures such as MobileNet, SqueezeNet,
and EfficientNetB0 failed to learn the task effectively, achieving accuracies near 52%, which
is only slightly above the chance baseline given the class distribution. The extremely low
precision scores (~26%) for these models indicate a probable model collapse, where they were
unable to learn discriminative features and defaulted to a simplistic prediction strategy. A strong
hypothesis for this failure is that the aggressive parameter-reduction techniques central to these
models (e.g., depthwise separable convolutions) may discard the subtle, fine-grained harmonic
and textural information within the spectrograms that is crucial for distinguishing between the
nuanced vocal states of high and low control.

Table 3.8: Performance evaluation of the individual CNN models on the binary High/Low
Control task.

Model Metrics (%)

Accuracy Precision F1-Score Recall

DeepSpecCNN (Ours) 74.75 74.70 74.70 74.69
LeNet 74.57 74.55 74.55 74.60
AlexNet 72.87 72.85 72.75 72.72
DenseNet121 70.99 71.80 70.91 71.36
ResNet50 70.54 71.10 70.50 70.84
VGG16 70.18 70.24 70.18 70.27
VGG19 70.09 70.09 69.92 69.89
ZFNet 68.84 68.81 68.81 68.84
MobileNet 52.19 26.09 34.29 50.00
EfficientNetB0 52.19 26.09 34.29 50.00
SqueezeNet 52.19 26.09 34.29 50.00

Deeper insights are revealed by the training dynamics, illustrated by the validation accuracy
and loss curves in Figure 3.4 and Figure 3.5, respectively. The top-performing models like
DeepSpecCNN and LeNet can be characterized as high-variance “specialists”; they learn very
quickly and achieve high peak accuracy, but their validation loss begins to increase after 12-15
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epochs, signaling a rapid onset of overfitting. In contrast, more complex models with advanced
regularization properties, like DenseNet121 and ResNet50, behave as more stable “generalists.”
While their peak accuracy is slightly lower, they maintain a very low and stable validation loss
throughout training, suggesting superior generalization. This diversity in learning behavior is
not a weakness but is, in fact, the ideal condition for ensembling. It provides a mix of high-
accuracy “specialist” models and robust “generalist” models, setting a perfect foundation to
test the hypothesis that their combination will yield a more accurate and reliable final classifier.

Figure 3.4: Validation accuracy for each individual model over 64 epochs.

3.3.3.2 Ensemble Model Performance

The core finding of this study, summarized in Table 3.9, is the validation of our primary
hypothesis: that a strategically constructed ensemble of diverse models can significantly out-
perform any single architecture. By combining the predictions of the individual models via
soft voting, a substantial boost in performance was immediately realized. A 3-model ensemble
comprising the top performers (DeepSpecCNN, LeNet, AlexNet) already achieved an accuracy
of 77.26%, a significant leap of nearly 2.5 percentage points over the best individual model.

The peak performance was achieved with the 5-model ensemble, which reached a final test
accuracy of 77.70%. The composition of this optimal ensemble provides a compelling insight
into the power of diversity. The peak performance was not achieved by simply aggregating
the five best models, but by combining the high-accuracy, high-variance “specialist” models
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Figure 3.5: Validation loss for each individual model over 64 epochs.

(DeepSpecCNN, LeNet, AlexNet) with the two most stable and robust “generalist” models
(DenseNet121 and ResNet50). This suggests an optimal synergy: the well-regularized predic-
tions of the generalists likely tempered the overfitting tendencies of the specialists, creating
a more balanced and robust collective decision. The confusion matrix for this 5-model en-
semble, shown in Figure 3.6, confirms its highly balanced predictive performance for the two
macro-classes.

Crucially, the study also demonstrated that the benefits of ensembling are not limitless.
Adding more, weaker models beyond this 5-member committee led to a slight but consistent
degradation in performance. This is because including less accurate or poorly-calibrated
models in a soft voting scheme can introduce more noise than signal, diluting the high-
confidence predictions of the stronger members. This result underscores a key principle of
ensemble construction: strategic, selective ensembling that prioritizes both model quality and
diversity is more effective than indiscriminately aggregating all available models. The 5-model
configuration therefore represents the empirically-determined optimal balance for this task.

3.3.3.3 Comparison with State-of-the-Art

The culminating result of this study is the establishment of a new state-of-the-art accuracy
on the CREMA-D dataset for this classification task. As detailed in the comparative evaluation
in Table 3.10, the proposed 5-model ensemble achieved a final accuracy of 77.70%. This
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Table 3.9: Performance metrics for the ensemble models of increasing size.

Metric 3-Model (%) 5-Model (%) 7-Model (%) All-Model (%)

Precision 77.22 75.70 77.51 76.10
Recall 77.24 78.70 77.56 76.15
F1 Score 77.23 77.20 77.51 76.08
Accuracy 77.26 77.70 77.52 76.09
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Figure 3.6: The confusion matrix for the 5-model ensemble, which achieved the highest
accuracy of 77.70% on the binary High/Low Control task.

represents a substantial advance over previously reported methods, marking a 5 percentage
point absolute increase over the prior leading ensemble approach (ResNet-18 with SPEL at
72.70%), a relative improvement of nearly 7%.

This significant performance gain is not attributable to a single architectural tweak but to the
synergistic effect of the two core strategies employed in this study. First, a major contribution
to this result is the psychologically-grounded task reformulation. By shifting from a noisy
6-class categorical problem to a more robust binary task based on the ’control’ dimension, we
provided the models with a cleaner, more discriminative learning signal. This fundamental
change in the problem definition likely raised the potential performance ceiling for any given
architecture.

Second, the strategic use of architectural diversity within the ensemble proved superior to
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other approaches. Unlike methods that ensemble variations of a single model, our framework
combines fundamentally different CNN families—from high-variance “specialists” like LeNet
to stable “generalists” like DenseNet121. This curated diversity ensured that the constituent
models learned complementary representations of the emotional speech, leading to a more
powerful and reliable collective decision.

In conclusion, this result validates the central hypothesis of Study 2. The combination
of a dimensional emotion model that simplifies the classification task and a strategically
diverse ensemble that maximizes predictive power provides a superior framework for achieving
high-accuracy speech emotion recognition.

Table 3.10: A Comparative Performance Evaluation of Our Proposed Ensemble Models Against
State-of-the-Art Methods on CREMA-D.

Method Approach Accuracy (%)

Audio Spectrogram Transformer [74] Transformer-based global attention 67.81
SpectoResNet [75] CNN with residual connections 65.20
SepTr with LeRaC [71] Separable transformer with learning

curriculum
70.95

ResNet-18 with SPEL [73] Ensemble with self-paced learning 72.70

Our DeepSpecCNN (Individual) Custom CNN for spectral analysis 74.75
Our 5-Model Ensemble Strategic Ensemble with Majority

Voting
77.70

3.3.4 Discussion of Study 2

The findings of this second study provide a strong and unequivocal answer to our second
research question. The results demonstrate that the proposed two-pronged strategy—reframing
the ASER task using a psychologically-grounded dimensional model and applying a strategic
ensemble of diverse architectures—is a highly effective method for maximizing classification
accuracy. The fact that the individual DeepSpecCNN model already surpassed existing state-of-
the-art methods, and that the 5-model ensemble pushed this boundary even further to achieve a
new benchmark accuracy of 77.70%, validates the efficacy of this novel framework.

The success of this approach can be deconstructed into two synergistic contributions. First,
the task reformulation based on the GWE’s control dimension was a foundational element. By
simplifying the problem from a noisy 6-class categorical task to a more robust and theoretically-
grounded binary one, we effectively “cleaned” the learning signal, providing the models with
a less ambiguous and more acoustically consistent target. This highlights a critical, often-
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overlooked principle: integrating insights from psychological theory directly into the problem
definition can be as impactful as purely architectural innovations. Second, the success of the
selective ensemble design confirmed that it is the diversity of the constituent models, not
just their quantity, that drives performance gains. The optimal 5-model ensemble combined
high-variance “specialists” with stable “generalists,” creating a robust committee that leveraged
the complementary strengths of each member.

This study, when contrasted with Study 1, illuminates a crucial trade-off in applied ASER
research. The CBAM-DenseNet121 model from Study 1 represents the “practical” solution: a
single, efficient architecture optimized for deployment in resource-constrained environments.
The ensemble framework from this study represents the “maximal performance” solution: a
more computationally complex approach designed to achieve the highest possible accuracy,
suitable for offline analysis or high-stakes applications where performance is the paramount
concern. Together, these studies provide two distinct and valuable contributions to the field.

However, it is essential to acknowledge the context of this achievement. This new state-
of-the-art was established on the CREMA-D dataset—a corpus of acted, acoustically clean
speech. While this is a critical step for validating the framework under controlled conditions,
its robustness and performance on genuine, “in-the-wild” spontaneous speech remain unproven.
This work on a benchmark dataset, therefore, serves as a crucial but preliminary phase. It has
yielded a powerful set of validated techniques, paving the way for the next and most critical
challenge: applying these insights to the noisy, complex, and culturally specific domain of
spontaneous dialectal speech, which will be the central focus of the next chapter.

3.4 Conclusion

This chapter presented a comprehensive and systematic investigation of novel deep learning
frameworks on the benchmark CREMA-D dataset, successfully achieving two distinct but
equally important goals in ASER research. The first core contribution, detailed in Study 1,
was the development and validation of the CBAM-DenseNet121, an efficient, lightweight
architecture. This study demonstrated that a carefully designed, attention-enhanced CNN
can resolve the critical trade-off between accuracy and computational efficiency, yielding a
practical model suitable for real-world deployment. The second major contribution, presented
in Study 2, was a novel framework that achieved a new state-of-the-art accuracy on the dataset.
This was accomplished not merely through architectural improvements, but by synergistically
combining a psychologically-grounded task reformulation with the collective predictive power
of a strategic, architecturally diverse ensemble of CNNs.

65



Chapter 3. Experiments on the CREMA-D Benchmark Dataset

Taken together, the findings from these two studies provide a holistic and insightful view
of modern deep learning approaches to ASER. They deliver strong empirical evidence for the
value of targeted attention mechanisms in refining feature representations for complex acoustic
signals. Furthermore, they powerfully illustrate the capacity of ensemble learning to break
through the performance ceilings of single-model systems, confirming that curated diversity is
a key driver of state-of-the-art performance.

Having developed and rigorously validated this powerful toolkit of modeling techniques on
the clean, controlled proving ground of a benchmark dataset, the research has reached a critical
juncture. The logical and necessary next step is to test the true robustness and applicability
of these advanced methods. The subsequent chapter will therefore pivot from the idealized
laboratory setting to confront the far more challenging and ecologically valid domain of
spontaneous, noisy, and dialectal speech, applying these learnings to the novel OYH Algerian
Arabic corpus.
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4.1 Introduction

Having developed and validated advanced deep learning frameworks on a standardized
benchmark dataset in the previous chapter, this chapter now confronts one of the most significant
challenges in modern ASER: the domain gap between clean, acted laboratory data and noisy,
spontaneous, real-world speech. As established in Chapter 1, a critical barrier to progress,
particularly for non-English languages, is the scarcity of suitable corpora that reflect authentic
emotional expression.

This chapter details a study designed to address this critical resource gap for the Arabic
language, with a specific focus on the under-resourced Algerian dialect. The primary objective
is twofold. First, this chapter introduces and meticulously documents the creation, annotation,
and composition of the Open Your Heart (OYH) corpus, a novel and substantial dataset
of spontaneous emotional speech collected from a real-world television talk show. This con-
tribution provides a valuable new resource to the research community for studying genuine
emotional expression in a complex linguistic environment.

Second, the chapter aims to establish a comprehensive and robust performance baseline
on this new corpus. To achieve this, a suite of eleven traditional machine learning models
are systematically evaluated. This study moves beyond simple classification to investigate the
crucial role of data preprocessing and feature engineering, employing a sophisticated, iterative
feature selection algorithm, the Backward Elimination of All Worst Features (BE-AWF), to
identify the most discriminative acoustic features for the dimensional emotion tasks of valence
and control. The findings presented herein not only quantify the performance of classical ASER
techniques on this challenging new dataset but also provide critical insights into the acoustic
correlates of emotion in spontaneous Algerian Arabic speech.

4.2 The OYH Corpus: A Novel Dataset for Algerian Arabic

The creation of a new dataset is a significant undertaking, motivated by a clear and pressing
need within the research community. The OYH corpus was developed to address the limitations
of existing resources and to provide a foundation for future research in Arabic ASER.

4.2.1 Motivation and Data Collection

The impetus for creating the OYH corpus stems directly from two critical, intersecting
research gaps identified in Chapter 1: the domain gap between acted and spontaneous speech,
and the data scarcity gap for under-resourced languages. The vast majority of ASER research
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has relied on acted datasets recorded in sterile, acoustically controlled environments. While
valuable for benchmarking, this has produced models with poor generalizability to the com-
plexities of authentic, “in-the-wild” human interaction. This problem is severely compounded
for the Arabic language, where immense dialectal variation means models trained on Modern
Standard Arabic (MSA) or one regional dialect fail to capture the unique phonetic and prosodic
nuances of another.

The Algerian dialect, “Darija,” is a prime example of this challenge. It is not a monolith but
a complex continuum of local dialects heavily influenced by Berber and French, making it a
particularly under-resourced linguistic environment (as shown in Figure 1.2). To address this
gap, data was sourced from a place of genuine emotional expression: the popular and culturally
significant Algerian television talk show, "Open Your Heart" (Eftah Qalbak). This program
was uniquely suited for this research due to its format, which centers on mediating deeply
personal issues like family reconciliations and lost friendships. This context naturally elicits a
wide spectrum of powerful, unscripted emotions from its participants.

The unscripted dialogues provide a rich source of ecologically valid data. This means the
corpus captures emotional speech as it occurs in a naturalistic social setting, complete with the
hesitations, emotional blends, and subtle paralinguistic cues that are characteristic of genuine
communication and starkly absent in the often-exaggerated portrayals found in acted corpora.

Data was collected by recording 14 full episodes of the show that aired between October
2016 and April 2019. This “in-the-wild” collection method presents a classic methodological
trade-off between control and authenticity. While laboratory recordings offer high control
over emotional balance and acoustic quality, they do so at the cost of authenticity. Conversely,
our approach sacrifices control over the emotional content and recording environment to gain
unparalleled authenticity. For the primary objective of this research—to build a corpus that
reflects the true nature of spontaneous emotional speech—this trade-off was a deliberate and
necessary choice.

4.2.2 Dataset Statistics and Segmentation

The resulting OYH dataset is a substantial collection, comprising approximately 6.3 hours
of audio recordings, segmented into 6,167 individual clips. The data features 43 unique
speakers (27 male, 16 female) with a diverse age range from 21 to 81 years old. A detailed
breakdown of the dataset’s composition is provided in Figure 4.1.

The initial recordings were processed to create a standardized, high-quality dataset. All au-
dio extracts were converted to a mono channel format and downsampled to a 16 kHz sampling
rate to balance audio fidelity with computational efficiency. An advanced normalization process,
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Figure 4.1: Statistical overview of the OYH dataset, showing the distribution of audio files and
total duration by speaker gender.

using the Min-Max scaling approach, was applied to ensure consistent acoustic characteristics
and equalize volume across all clips.

The segmentation process involved several stages. Full one-hour recordings were first
divided into smaller segments containing a single thematic discussion. These video clips
were then manually segmented into distinct turns of speech, and subsequently into individual
sentences for fine-grained analysis. To ensure data quality, any utterances that were distorted
by background applause, music, or other significant disruptions were excluded from the final
dataset. The speakers were categorized into four groups: guests (G), moderators (M), main
speakers (P), and supporting speakers (S). This classification allows for a more nuanced analysis
of the interaction dynamics. Figure 4.2 shows the distribution of utterances and speakers across
these categories, highlighting that the majority of the data comes from the main guest speakers.

4.2.3 Annotation Methodology

A core contribution of the OYH corpus is its nuanced annotation, designed to move beyond
the limitations of simplistic categorical labels. To achieve this, the dataset was annotated using
the dimensional framework of the Geneva Wheel of Emotions (GWE), as detailed in Chapter
1 and shown again in Figure 1.1. This model was specifically chosen because its two primary
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Figure 4.2: Number of utterances and unique speakers per speaker category within the OYH
dataset.

axes, valence (the pleasantness of an emotion) and control (the sense of agency or power), are
particularly well-suited for speech analysis, as the control dimension has strong, direct acoustic
correlates.

The annotation was a meticulous, multi-stage process performed by a team of three trained
annotators, all of whom are native speakers of Algerian Arabic. This was essential to ensure
that the subtle linguistic and cultural-specific cues within the speech were accurately interpreted.
For each of the 6,167 audio clips, each annotator independently assigned a continuous score on
a scale from -5 (highly negative/low control) to +5 (highly positive/high control) for both the
valence and control dimensions. To ensure reliability, the final score for each clip was derived
by averaging the three ratings. In cases of significant disagreement between annotators (defined
as a standard deviation greater than 1.5), the raters convened to discuss the specific clip and
reach a consensus, thereby strengthening the consistency and quality of the final ground-truth
labels.

To frame the problem for standard machine learning classifiers, the resulting continuous
scores were then discretized into three conceptually meaningful classes for each dimension:
Low, Medium, and High. This three-level scheme provides a good balance between capturing
emotional nuance and ensuring that the classes are sufficiently distinct for a classification task.
The thresholds were set as follows: scores in the range [-5.0, -1.5] were mapped to ’Low’,
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scores between (-1.5, 1.5) were mapped to ’Medium’, and scores in the range [1.5, 5.0] were
mapped to ’High’.

The final distribution of utterances, shown in Figure 4.3, reveals a natural class imbalance.
This is not an artifact of the binning process but rather an authentic reflection of the corpus’s
content; the prevalence of ’Medium’ valence (49%) and ’High’ control (41.2%) is characteristic
of the often intense and emotionally charged but varied nature of the talk-show dialogues. This
inherent imbalance makes the OYH corpus a more realistic and challenging benchmark for
ASER research. As will be detailed in the methodology, this imbalance was addressed during
the experimental phase through up-sampling techniques.
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Figure 4.3: Distribution of utterances across the three discretized classes (Low, Medium, High)
for the Valence and Control dimensions in the OYH dataset.
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Table 4.1: Mapping of emotion families from the Geneva Wheel of Emotions to their corre-
sponding valence and control scores. The columns labeled 1 through 5 represent five increasing
levels of emotional intensity for each family.

((a))

Emotions with High Control and Negative
Valence.

Emotions Levels 1 2 3 4 5

Irritation Valence -0.25 -0.5 -0.75 -0.75 -1
Anger Control 2 2.5 3 4 5

Contempt Valence -1 -1.25 -1.5 -1.75 -2
Scorn Control 1.75 2.25 2.75 3.5 4.25

Disgust Valence -1.5 -1.75 -2.25 -2.75 -3.25
Repulsion Control 1.5 1.75 2.25 2.75 3.25

Envy Valence -1.75 -2.25 -2.75 -3.5 -4.25
Jealousy Control 1 1.25 1.5 1.75 2

Disappointment Valence -2 -2.5 -3 -4 -5
Regret Control 0.25 0.5 0.75 0.75 1

((b))

Emotions with High Control and Positive
Valence.

Emotions Levels 1 2 3 4 5

Involvement Valence 0.25 0.5 0.75 0.75 1
Interest Control 2 2.5 3 4 5

Amusement Valence 1 1.25 1.5 1.75 2
Laughter Control 1.75 2.25 2.75 3.5 4.25

Pride Valence 1.5 1.75 2.25 2.75 3.25
Elation Control 1.5 1.75 2.25 2.75 3.25

Happiness Valence 1.75 2.25 2.75 3.5 4.25
Joy Control 1 1.25 1.5 1.75 2

Enjoyment Valence 2 2.5 3 4 5
Pleasure Control 0.25 0.5 0.75 0.75 1

((c))

Emotions with Low Control and Negative
Valence.

Emotions Levels 1 2 3 4 5

Guilt Valence -2 -2.5 -3 -4 -5
Remorse Control -0.25 -0.5 -0.75 -0.75 -1

Embarrassment Valence -1.75 -2.25 -2.75 -3.5 -4.25
Shame Control -1 -1.25 -1.5 -1.75 -2

Worry Valence -1.5 -1.75 -2.25 -2.75 -3.25
Fear Control -1.5 -1.75 -2.25 -2.75 -3.25

Sadness Valence -1 -1.25 -1.5 -1.75 -2
Despair Control -1.75 -2.25 -2.75 -3.5 -4.25

Pity Valence -0.25 -0.5 -0.75 -0.75 -1
Compassion Control -2 -2.5 -3 -4 -5

((d))

Emotions with Low Control and Positive
Valence.

Emotions Levels 1 2 3 4 5

Tenderness Valence 2 2.5 3 4 5
Felling love Control -0.25 -0.5 -0.75 -0.75 -1

Wonderment Valence 1.75 2.25 2.75 3.5 4.25
Felling awe Control -1 -1.25 -1.5 -1.75 -2

Disburdened Valence 1.5 1.75 2.25 2.75 3.25
Relief Control -1.5 -1.75 -2.25 -2.75 -3.25

Astonishment Valence 1 1.25 1.5 1.75 2
Surprise Control -1.75 -2.25 -2.75 -3.5 -4.25

Longing Valence 0.25 0.5 0.75 0.75 1
Nostalgia Control -2 -2.5 -3 -4 -5
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4.3 Experimental Methodology

This section details the specific methods used to establish a machine learning baseline on
the OYH corpus.

4.3.1 Acoustic Feature Extraction and Selection

To establish a robust and interpretable baseline on the novel OYH corpus, this study em-
ployed the traditional handcrafted feature paradigm. This methodological choice was deliberate.
While end-to-end deep learning models, as explored in the previous chapter, are powerful,
their features are often uninterpretable. The handcrafted approach, in contrast, allows for an
explanatory analysis to identify the specific, physically-meaningful acoustic properties that
are most salient for expressing emotion in spontaneous Algerian Arabic—a key scientific goal
when introducing a new corpus for an under-resourced dialect.

Following this paradigm, a comprehensive set of 6,373 acoustic features was extracted
from each audio clip using the renowned openSMILE toolkit [35] with its standard ComParE
2013 configuration file. This feature set is designed to be exhaustive, capturing a wide range
of acoustic phenomena including prosodics (fundamental frequency, energy contours), voice
quality (jitter, shimmer, harmonic-to-noise ratio), and spectral characteristics (Mel-Frequency
Cepstral Coefficients (MFCCs), spectral flux, formants).

However, working with such a high-dimensional feature set introduces the well-known
“curse of dimensionality,” which increases the risk of model overfitting, raises computational
costs, and demands larger amounts of training data. To mitigate this, a robust feature selection
process was essential to distill this large set into a more compact, informative, and generalizable
subset. For this purpose, we employed wrapper-based feature selection methods. Unlike
simpler filter methods that evaluate features independently of a model, wrapper methods
use the performance of a specific classifier to score and select feature subsets. While more
computationally intensive, this approach is often superior as it finds features that are optimally
suited for the chosen learning algorithm.

Two specific backward elimination algorithms were used, as illustrated in Figure 4.4 and
Figure 4.5. The first is the standard Backward Feature Elimination (BFE), an iterative
algorithm that starts with the full feature set and greedily removes one feature at a time based
on which removal least degrades (or most improves) classifier performance. The second, an
enhanced version developed for this work, is the Backward Elimination of All Worst Features
(BE-AWF). This approach improves upon BFE by being less greedy; at each iteration, it re-
evaluates the entire remaining feature set to remove the feature that has the least overall impact
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on model performance. This more exhaustive search aims to find a more robust and globally
optimal feature subset. For both algorithms, a Support Vector Machine (SVM) was used as the
core classifier to guide the selection process.

k= Selected Features Categories Number
bestAccuracy = Selected Features Accuracy
BestSelectedFeatures = [Selected Features]
SelectedFeatures = [Selected Features]

K > 0

Yes

Remove k feature from SelectedFeatures[ ]

Accuracy        Average accuracy of Leave-one-out

Accuracy >= 
bestAccuracy

bestAccuracy = Accuracy
BestSelectedFeatures = Best Features …
 withot k    feature (worse feature)th

Insert k    featureback to ...
SelectedFeatures[ ]
k--

th

STOP

Yes

No
K is the iteration #

No

Figure 4.4: Flowchart illustrating the standard Backward Feature Elimination (BFE) algorithm
used for feature selection.
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Number of Selected Features Categories =#TotalFeatures
Selected Features Accuracy = Accuracy of All Features
Selected Features = [ All Features ]

BFE 

STOP

BestSelectedFeatures[]=
SelectedFeatures[]

Yes

Number of Selected Features Categories =#TotalFeatures
Selected Features Accuracy = bestAccuracy
Selected Features = [BestSelectedFeatures ]

No

Figure 4.5: Flowchart illustrating the enhanced Backward Elimination of All Worst Features
(BE-AWF) algorithm developed for feature selection.

4.3.2 Classification Models

To establish a comprehensive performance baseline on the OYH corpus, a wide-ranging
comparative analysis was conducted using a suite of eleven traditional machine learning
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classifiers. The selection was deliberately diverse, spanning several major families of algorithms
to determine which class of model is most effective for this novel task. The chosen models,
whose theoretical principles were detailed in Chapter 2, include:

• Kernel-based Methods: A Support Vector Machine (SVM), renowned for its ability
to find optimal separating hyperplanes in high-dimensional feature spaces.

• Instance-based Methods: K-Nearest Neighbors (KNN), a simple yet effective non-
parametric model that serves as a strong baseline.

• Ensemble Methods (Bagging): The Random Forest classifier, a powerful model known
for its robustness against overfitting by averaging the predictions of many decorrelated
decision trees.

• Ensemble Methods (Boosting): A comprehensive set of state-of-the-art gradient boost-
ing models, including AdaBoost, Gradient Boosting Machines (GBM), XGBoost,
LightGBM, and CatBoost. This family of models is often dominant in tasks involving
tabular or structured data and was included to test the upper limits of performance with
classical methods.

This systematic evaluation across different algorithmic families ensures a thorough and
unbiased assessment, aimed at identifying the most suitable and highest-performing models for
dimensional emotion recognition on spontaneous Algerian Arabic speech.

4.3.3 Data Partitioning and Preprocessing

A rigorous protocol for data handling was established to ensure the validity and reproducibil-
ity of the experimental results. The OYH dataset, containing 6,167 clips from 43 speakers, was
methodically partitioned into three subsets with strict speaker independence. This means all
clips from any given speaker were confined to a single set, which is a critical step to ensure
the model is evaluated on its ability to generalize to new, unseen speakers, not on its ability to
recognize speakers it was trained on. The final split was 70% for the training set, 20% for
the development (validation) set, and 10% for the test set.

Two critical preprocessing steps were then applied to the feature sets to prepare them for
the classifiers.

First, to address the natural class imbalance documented in the previous section (and shown
in Figure ??), a strategy of up-sampling was employed. Standard classifiers are often biased
towards the majority class, as their optimization objective is typically to maximize overall
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accuracy. To counteract this, instances from the minority classes were randomly duplicated in
the training set to create a balanced class distribution for the model to learn from. Crucially,
this up-sampling was applied only to the training data, ensuring that the validation and test
sets remained in their original, natural distribution for an unbiased evaluation of the model’s
real-world performance.

Second, all acoustic features were normalized using Min-Max scaling. This is an essential
step for the many machine learning algorithms (like SVM and KNN) whose performance
is dependent on the scale of the input features. Normalization transforms every feature to a
common range of [0, 1], ensuring that features with large value ranges (like energy) do not
disproportionately influence the model’s learning process over features with smaller ranges
(like jitter). The profound and necessary impact of this step is demonstrated empirically in
Table 4.2 and Table 4.3. As shown, normalization dramatically improved the SVM’s F1-score
on the valence task from a near-random 16.96% to a meaningful 43.34%, confirming its status
as an indispensable part of the preprocessing pipeline.

Table 4.2: Impact of Normalization on SVM performance for the Valence task.

complexity Without Normalization With Normalization
Accuracy (%) F1 score (%) Accuracy (%) F1 score (%)

1e-4 32.11 16.96 42.57 41.38
1e-3 32.11 16.96 41.11 42.5
1e-2 32.11 16.96 40.79 41.72
1e-1 32.11 16.96 41.11 42.08
1 32.11 16.96 42.66 43.34

Table 4.3: Impact of Normalization on SVM performance for the Control task.

complexity Without Normalization With Normalization
Accuracy (%) F1 score (%) Accuracy (%) F1 score (%)

1e-4 46.55 33.46 48.74 46.74
1e-3 46.55 33.46 49.96 48.4
1e-2 46.55 33.46 45.5 43.79
1e-1 46.55 33.46 43.14 42.09
1 46.55 33.46 43.8 43.59
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4.4 Results and Analysis

4.4.1 Impact of Feature Selection and Acoustic Correlates

The application of the BE-AWF feature selection algorithm was a critical step, not only
for model optimization but also as an analytical tool to uncover the most salient acoustic
correlates of emotion in spontaneous Algerian Arabic. The process successfully distilled the
vast 6,373-feature set into compact, more powerful subsets and, most significantly, provided
strong empirical evidence that the dimensions of valence and control have distinct acoustic
footprints.

Analysis for the Valence Dimension

As illustrated in Figure 4.6, the optimal feature subset for predicting valence was found
to be a combination of F0, HNR, MFCCs, and general spectral features. This is a highly
informative result. The inclusion of MFCCs and other spectral descriptors, which capture
the resonant properties of the vocal tract, suggests that the valence of an emotion is strongly
encoded in the overall timbre and articulatory setting of the voice. For instance, positive
emotions are often associated with a more relaxed vocal tract and clearer articulation, while
negative emotions can lead to pharyngeal tension that alters the spectral shape. The retention of
F0 (pitch contour) and HNR (voice quality) confirms that prosodic modulation and the degree
of breathiness or harshness are also key carriers of valence information in this dialect.

Analysis for the Control Dimension

The analysis for the control dimension yielded a different, equally insightful feature set: F0,
HNR, RMS Energy, and ZCR (Figure 4.7). While F0 and HNR are shared, indicating their
fundamental role in affect, the unique inclusion of RMS Energy (Root-Mean-Square energy,
a direct measure of signal intensity or loudness) and ZCR (Zero-Crossing Rate, a correlate
of spectral brightness and noisiness) is the critical finding. This strongly implies that the
psychological dimension of control and agency is conveyed through more direct physical cues
of vocal effort and physiological activation. High-control states (e.g., assertiveness, anger) are
intuitively linked to higher vocal intensity (high RMS Energy), while low-control states (e.g.,
sadness, submission) are linked to lower intensity. This clear acoustic separability between the
feature sets for valence and control is a major finding of this study. It empirically validates the
use of this dimensional framework for ASER, demonstrating that these psychological constructs
have distinct physical manifestations in the speech signal.
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Figure 4.6: Performance of SVM classification on the valence dimension as feature categories
are eliminated using the BE-AWF Algorithm.

4.4.2 Classifier Performance for Valence Prediction

Using the optimal feature subset identified for valence, the full suite of eleven machine
learning classifiers was evaluated. The comparative results, shown in Figures 4.8 and 4.9, clearly
indicate that tree-based ensemble models significantly outperformed other algorithmic families.
The Random Forest classifier emerged as the top-performing model, achieving a peak accuracy
of 58.47% and an F1-score of 52.41%. This superiority suggests that the decision boundaries
separating the valence classes in this high-dimensional acoustic space are highly complex and
non-linear, a challenge for which tree-based ensembles are particularly well-suited.

It is crucial to contextualize this performance. While an accuracy of 58.47% may seem
modest compared to results on acted data, it is a strong and significant outcome for a three-class
classification task on spontaneous, noisy, “in-the-wild” speech, where the chance baseline is
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Figure 4.7: Performance of SVM classification on the control dimension as feature categories
are eliminated using the BE-AWF Algorithm.

33.3%. This result establishes a robust baseline for this challenging new corpus.
However, a deeper analysis of the best model’s confusion matrix (Figure 4.10) reveals a

critical challenge that pervades real-world ASER. While the model demonstrates high precision
and recall for the majority ’Medium’ valence class, its ability to correctly identify the minority
’Low’ valence class is severely limited. This finding highlights the profound difficulty of
recognizing under-represented emotional states in spontaneous data. Even with up-sampling
applied during training, the model struggles, which suggests that the acoustic cues for ’Low’
valence are either too subtle and acoustically similar to neutral speech, or that the limited
number of unique examples in the original data was insufficient for the model to learn a
generalizable pattern.

The detailed performance metrics for the Random Forest classifier across various estimator
counts (summarized in Table 4.4) reveal a consistent upward trend in predictive reliability. As
the number of estimators increases from 100 to 600, the model achieves its peak F1-score of
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Figure 4.8: Model performance comparison: accuracy across different estimators for the valence
dimension task.
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Figure 4.9: Model performance comparison: F1-score across different estimators for the valence
dimension task.
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52.41%, demonstrating that a larger ensemble of decision trees is better equipped to handle the
vocal variability inherent in the OYH dataset.

Table 4.4: Detailed performance metrics for the Random Forest classifier on the valence
dimension across various estimator counts.

Estimators Accuracy F1 Score Precision UAR Class L
Recall

Class M
Recall

Class H
Recall

100 51.09 46.96 45.53 34.9 2.1 74.67 27.82
200 54.66 50.16 49.54 37.6 2.8 79.02 31.08
300 55.96 51.00 50.30 38.1 1.4 81.48 31.33
400 57.42 52.04 51.93 39.0 1.4 83.94 31.58
500 57.42 51.71 51.99 38.8 1.4 84.80 30.08
600 58.47 52.41 53.85 39.4 1.4 86.83 29.82
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Figure 4.10: Confusion Matrix for the best-performing Random Forest classifier on the valence
dimension task.

83



Chapter 4. Experiments on the Novel OYH Algerian Arabic Corpus

4.4.3 Classifier Performance for Control Prediction

A parallel comparative analysis was performed for the control dimension using its own
distinct, optimal feature set. The results, presented in Figures 4.11 and 4.12, reveal another
compelling finding: the best-performing classifier for control was different from that for valence.

Interestingly, the Support Vector Machine (SVM) emerged as the top-performing model
for this task, achieving a peak accuracy of nearly 59.53% and an F1-score of over 57%. The
success of a margin-based classifier like SVM, in contrast to the tree-based ensembles that
excelled on the valence task, further reinforces the distinction between the two dimensions. This
suggests that the relationship between the more direct acoustic cues for control (RMS Energy,
ZCR) and their corresponding classes may form a more cohesively separable decision boundary
within a high-dimensional feature space, a problem for which SVMs are exceptionally powerful.
Random Forests, conversely, were better suited to the more complex, fragmented decision
space defined by the spectral and timbral features of valence.

Similar to the valence task, an accuracy of nearly 60% is a strong and significant result
for this challenging three-class problem, establishing another robust baseline. The analysis of
the SVM’s confusion matrices at different complexity levels (Figure 4.13) also highlights a
classic bias-variance trade-off. At lower complexity, the model is more regularized, leading
to more balanced performance across all classes but with a lower overall accuracy. At higher
complexity, the model achieves higher overall accuracy by fitting the data more closely, but this
comes at the cost of reduced performance on the minority classes. This trade-off between peak
accuracy and balanced, equitable performance across emotional classes is a central challenge
in real-world affective computing.

The detailed performance indicators for the SVM classifier across different complexity
levels (summarized in Table 4.5) reveal how the regularization parameter C dictates the model’s
predictive reliability.

Table 4.5: Detailed performance indicators for the SVM classifier on the control dimension at
different complexity levels.

Complexity Accuracy F1 Score Precision UAR Class L
recall

Class M
recall

Class H
recall

1e-5 48.42 31.98 38.08 33.2 0 0.37 99.33
1e-4 59.53 57.04 54.86 42.9 0 60.52 68.28
1e-3 53.61 52.22 51.09 39.3 2.06 57.36 58.6
1e-2 48.01 46.81 45.91 35.4 3.09 45.62 57.43
1e-1 45.42 44.12 43.46 33.6 4.12 37.62 59.1
1.0 44.36 42.89 42.37 32.8 4.12 33.89 60.27
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Figure 4.11: Model performance comparison: accuracy across different estimators/complexities
for the control dimension task.
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Figure 4.12: Model performance comparison: F1-score across different estimators/complexities
for the control dimension task.
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Figure 4.13: Confusion Matrices for the SVM classifier on the control dimension task at two
different complexity levels, showing the trade-off between overall accuracy and balanced class
performance.

4.5 Conclusion

This chapter successfully detailed two major contributions to the field of Speech Emotion
Recognition. The first and most significant is the creation, annotation, and public presentation
of the OYH corpus, a novel, large-scale dataset for the under-resourced Algerian Arabic dialect.
By capturing over six hours of spontaneous, genuine emotional speech, this corpus provides a
vital resource for moving ASER research beyond the limitations of acted, English-language
data and into more realistic and diverse domains.

The second contribution is the establishment of comprehensive and robust machine learning
baselines on this new corpus. Through a meticulous methodology involving advanced feature
selection and the comparative evaluation of eleven classifiers, this study established the state-
of-the-art performance for this task, achieving a peak accuracy of 58.47% with a Random
Forest model for valence prediction and 59.53% with an SVM for control prediction. The
research also yielded critical insights, most notably that the acoustic features most salient for
predicting valence are different from those for predicting control, underscoring the importance
of task-specific feature optimization.

The performance levels achieved, while strong for such a challenging task, also highlight
the immense difficulty of spontaneous, dialectal ASER when compared to the higher accuracies
obtained on the clean, benchmark CREMA-D data in Chapter 3. This contrast sets the stage
perfectly for the final discussion of this thesis. The following chapter will synthesize the findings
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from both experimental chapters, comparing and contrasting the challenges and outcomes of
working on benchmark versus in-the-wild data and discussing the broader implications for the
field.
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GENERAL CONCLUSION

This dissertation embarked on a systematic investigation into the complex and challenging
domain of Automatic Speech Emotion Recognition (ASER). Motivated by the imperative for
more accurate, efficient, and culturally inclusive affective computing systems, this research
confronted several of the field’s most persistent problems: the performance gap between acted
and spontaneous speech, the scarcity of resources for under-resourced languages, the trade-off
between model accuracy and efficiency, and the limitations of categorical emotion models.
Through a series of methodical studies, this work has contributed novel deep learning architec-
tures, validated new classification frameworks, and presented a vital new dataset to the research
community. In doing so, it has successfully answered its primary research questions, affirming
that it is possible to create and benchmark a new spontaneous corpus for a low-resource dialect;
that a lightweight, attention-enhanced model can master the accuracy-efficiency trade-off;
and that a new state-of-the-art in performance can be achieved by synergistically combining
psychological theory with an architecturally diverse ensemble of models.

The research presented in this dissertation has made four principal and lasting contributions
to the field. First and foremost is the creation of the OYH dataset, a large-scale corpus of
spontaneous Algerian Arabic speech that not only addresses the critical need for more eco-
logically valid data but also promotes greater equity and inclusivity in affective computing
research. Second, this thesis proposed and validated the CBAM-DenseNet121, a novel archi-
tecture that provides a pragmatic blueprint for developing ASER systems that are both highly
accurate and computationally efficient enough for real-world deployment. Third, it introduced a
state-of-the-art ensemble framework, validating a powerful paradigm wherein insights from
psychology are fused with diverse computational models to overcome the performance plateaus
of single-model systems. Finally, as a whole, this thesis represents a comprehensive cross-
corpus empirical analysis, bridging the gap between theoretical benchmarking on clean data
(CREMA-D) and the challenges of real-world applicability on a noisy, spontaneous dialectal
corpus (OYH).
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Limitations and Future Directions

In the interest of academic rigor, the deliberate scoping of this research defines clear and
exciting avenues for future inquiry. The experimental work remained unimodal, focusing
exclusively on the rich information within the audio signal. A natural and significant extension
would be to incorporate the visual modality, exploring the fusion of the acoustic features
developed herein with visual cues from facial expressions, such as action units and gaze patterns,
to build a more holistic and robust multimodal emotion recognition system. Furthermore, while
the findings are grounded in two primary datasets, the generalizability of these models to other
types of spontaneous speech or other dialects presents an open and important research question.

These limitations directly inspire several promising directions for future work. The most
immediate step is to apply the advanced deep learning models from Chapter 3 to the OYH
corpus to establish a deep learning benchmark on spontaneous dialectal speech. This would also
enable a formal investigation of the domain gap via cross-corpus generalization experiments,
exploring domain adaptation techniques to improve model robustness. Finally, a state-of-the-art
approach would be to leverage large, self-supervised foundation models for speech, such as
WavLM [60]. Pre-training such a model on a large, unlabeled corpus of Algerian Arabic before
fine-tuning on the OYH dataset could unlock unprecedented performance and potentially enable
effective few-shot learning on other under-resourced Arabic dialects.

Closing Remarks

In closing, the research presented in this thesis has navigated the complex landscape of
ASER, from the controlled environment of benchmark datasets to the challenging, authentic
nature of real-world dialectal speech. By systematically addressing key problems of model
efficiency, accuracy, and data scarcity, this work has delivered a tripartite contribution: a
practical attention-based model, a novel state-of-the-art ensemble framework, and a vital new
corpus for the under-resourced Algerian Arabic dialect. The findings herein reinforce the
immense power of deep learning to capture the intricate patterns of human emotion, while
simultaneously highlighting the critical importance of psychologically-grounded frameworks
and the foundational need for diverse, representative data. It is hoped that the models and, in
particular, the OYH corpus provided by this research will serve as a valuable resource for the
scientific community, paving the way for future innovations and contributing to the ultimate
goal of creating computational systems that are not just emotionally intelligent, but more
humane, responsible, and culturally aware.
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