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ABSTRACT

Abstract

Visual servoing enables the control of robotic systems directly from visual feedback and has
become a fundamental technique in vision-based robotics. Among existing approaches,
Photometric Visual Servoing (PVS) relies on raw image intensities as visual features, avoiding
explicit feature extraction and matching. While PVS offers high accuracy and a compact
formulation, its performance is strongly affected by illumination variations, limiting its
robustness in realistic operating conditions.

This thesis proposes an enhanced photometric visual servoing framework based on
multiresolution image analysis, referred to as Lifting Wavelet Transform-based Photometric
Visual Servoing (LWT-PVS). The method integrates the lifting wavelet transform into the PVS
formulation to exploit spatial-frequency image representations while preserving the direct
nature of photometric control. By selecting appropriate wavelet sub-bands, the proposed
approach reduces sensitivity to illumination changes and photometric disturbances, while
maintaining stable convergence properties.

A unified mathematical formulation of LWT-PVS is developed, including the definition of
photometric visual features, error functions, interaction matrices, and discrete-time control
laws. The complete control architecture is implemented using the ViSP (Visual Servoing
Platform) simulator, ensuring consistency with established visual servoing tools.

Extensive simulation studies are conducted for multiple scenarios involving different initial
camera poses and both nominal and varying illumination conditions. The performance of PVS
and LWT-PVS is evaluated in terms of error convergence, camera velocity behavior, and
robustness to lighting variations. The results show that LWT-PVS significantly improves
robustness to illumination changes compared to classical PVS, while preserving convergence
accuracy and stability.

The contributions of this work demonstrate the relevance of multiresolution representations for
photometric visual servoing and provide a robust control framework suitable for real-world

robotic applications operating under challenging illumination conditions.

Keywords: Lifting Scheme; Visual servoing; Wavelet Transform; Interaction matrix;
Photometric visual servoing ; [llumination variations; ViSP simulator.
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1 General Introduction

Visual Servoing is a multidisciplinary topic that lies computer vision, robotics and automatic
control. It is a feasible technique for robotic closed-loop control that uses information extracted
from images, obtained by one or more sensors [1][2][3]. This field has advanced considerably
in recent years with applications such as medical robotics [4], autonomous drones [5], etc. In
general, visual servoing is designed to minimize the difference between a vector s(t) of current
features and a vector s* of the desired features in order to accomplish a positioning or tracking
task. Points, lines, and geometric moments were among the first features of the geometric type
taken into consideration in visual servoing [6][7][8]. For these geometric methods, the method's
capability to identify, extract, and track visual features during the robot control process is
essential.

Historically, key point coordinates or line parameters have been extensively utilized for the
purpose of computing various visual features that are derived from image data. This complex
process demands a highly accurate extraction and a meticulous tracking process that cannot be
overlooked. Geometric shapes, including rectangles, circles, and ellipses, must be efficiently
identified, monitored, and consistently followed across time in a spatiotemporal manner. This
continuous tracking is essential to maintain the integrity and positional relevance of these
shapes within different frames of reference. In the highly specialized field of visual servoing,
such precision in tracking becomes absolutely critical not only for the functionality of real-time
control systems but also for enhancing the overall performance of automated tasks. Here, the
accurate detection combined with the reliable tracking of features plays a crucial role in
effectively guiding and maneuvering robotic systems through their designated tasks and
operational environments. The precision required for these activities ensures that robotic
systems can adapt to changing conditions and execute their functions with the highest level of
efficiency and reliability. This capacity is fundamentally important for complex applications

where even slight deviations can lead to significant errors or failures in operation [9][10][11].

2 Context

Recently, the rapid development of innovative methodologies, such as Photometric Visual
Servoing (PVS), has significantly evolved, utilizing pixel intensities as the primary visual
features for enhancing precision in robotic applications and control systems [12]. Furthermore,
there are many more complex features, including mutual information [13], the total of the
image's conditional variances [14], mixtures of Gaussians [15], or photometric moments [16].

The convergence domain of these direct visual servoing methods is smaller, but they are often
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considered to be more precise than approaches that use geometric visual features. These
advanced techniques significantly enhance the precision of control and increase the resilience
of the system by employing global descriptors. Among these descriptors, photometric moments
play a crucial role as they are utilized to compute the interaction matrix. This innovative
approach enables the creation of visual feedback, which is then effectively leveraged to drive
and refine robotic movements in a more sophisticated manner [17][18][19]. Nonetheless,
variations in lighting conditions and dynamic scene elements, which include factors such as
occlusions or unexpected changes in the object’s appearance, can significantly undermine the
overall effectiveness of these techniques. These variations pose substantial challenges to their
robustness in various practical applications, making it difficult to achieve consistent results
across different situations and environments [20].

To effectively tackle this complex issue, a substantial number of rigorous studies have
thoroughly investigated the diverse application of frequency-domain image transformations in
various contexts. Among these notable methods, two of the most significant are the Discrete
Cosine Transform (DCT) and the Fast Fourier Transform (FFT) [21][22]. These advanced
techniques play a crucial role in significantly enhancing visual servoing systems, which rely
heavily on sophisticated and complex image processing for achieving highly accurate control,
along with seamless automation in a broad range of applications. The ongoing development and
continuous refinement of such innovative image transformation methods remain an essential
and vibrant area of research, contributing to impressive advancements in technology and
thereby improving overall system performance in various fields and industries [19]. However,
these methods often fail to adequately account for the inherently temporal nature of signals,
particularly when dealing with non-stationary image data, such as real-time video streams that
are continuously changing. In contrast, wavelet transforms have gained considerable
prominence due to their unique dual ability to capture both frequency and temporal information
effectively. This remarkable feature makes them particularly effective and well-suited in
managing the complexities of non-stationary signals encountered in various applications.
Wavelet-based techniques outperform traditional frequency-domain methods, providing better
robustness against lighting fluctuations and offering improved spatial resolution
[23][24][25][26].

The development of a direct visual servoing method using multi-scale representations that
describe the image's spatial and frequency information is the main objective of the work
presented in this thesis. In order to create multi-scale representations of an image, high-pass
and low-pass filters are applied to the image successively, followed by subsampling. Each

filtering level then contains continuously smaller details over the decompositions. These



methods not only enable the creation of multiple levels of detail, but they also enable the
creation of a sparse representation of the image, meaning that most of the coefficients have
values near zero, which reflects the essential information of the image. Multi-scale
representations gained importance as a result of harmonic analysis. The representation of
signals as a series of waves is the primary interest of this field, which has its roots in Fourier
analysis. An optimal wave system is constructed to describe the structure of an image in order
to develop an interesting multiscale representation. One of the main fields of research in modern
applied mathematics is the development of such systems.

Duflot et al. [27] introduced a noteworthy enhancement to wavelet-based techniques
specifically aimed at managing illumination changes effectively. This was achieved by
employing both shearlet and wavelet coefficients to model the intricate features of input images
in a more robust manner. Despite these promising advancements in the field, the computational
cost that is associated with calculating the necessary interaction matrices, which utilize such
sophisticated coefficients, continues to pose a significant hurdle in achieving efficient real-time
applications [28][29]. As such, while wavelet-based methods demonstrate considerable promise
in various applications, their overall applicability is frequently constrained by notably high
computational demands, which can significantly hinder their potential for real-time deployment

in practical scenarios [30].

3 Motivations and Objectives

The lifting scheme presents an innovative and highly effective solution to the various
computational challenges that are often inherent in wavelet transforms [31]. By utilizing a non-
Fourier approach, it provides an exceptionally efficient method for constructing biorthogonal
wavelets, which considerably reduces the computational cost when compared to traditional
methods [32]. The lifting scheme is particularly beneficial in the specific context of visual
servoing, where real-time processing capabilities are essential, and achieving computational
efficiency is paramount for successful applications. Through the lifting approach, second-
generation wavelets are constructed directly in the spatial domain, offering a more flexible,
adaptable, and computationally efficient alternative to first-generation wavelets that operate in
the frequency domain [33]. This adaptiveness highlights the lifting scheme's potential to address
the varied needs of modern computational tasks, enhancing performance while maintaining
speed and reducing resource utilization.

In the realm of signal and image processing, lifting schemes facilitate a broad array of
applications, encompassing tasks such as denoising, compression, feature extraction, and

classification [34]. Furthermore, the ability of lifting schemes to effectively segment signals
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into various frequency bands while ensuring high computational efficiency renders them
exceptionally well-suited for real-time applications in dynamic environments. These
noteworthy advantages have led to the extensive adoption of lifting schemes across diverse
fields, particularly in audio and image processing, where maintaining high computational
efficiency is of utmost importance [35]. Such versatility and effectiveness also invite further
exploration into innovative uses of lifting schemes in emerging technologies.

This study introduces a novel and innovative Photometric Visual Servoing (PVS) approach
that effectively utilizes the lifting wavelet transform (designated as LWT-PVS). The primary
aim of this research is to comprehensively address the significant shortcomings and limitations
found in conventional PVS methods, particularly in complex scenarios that involve
considerable and varying lighting conditions. By deriving and extracting visual feedback from
both the approximation coefficients and the detail coefficients obtained from the lifting wavelet
transform, this advanced approach allows for the formulation of more precise and accurate
control laws. The key advantage and significant strength of this methodology lie in its
remarkable ability to represent specific and essential spatial features, including edges, contours,
and textures, directly from the processed image data. The application of the lifting wavelet
transform directly in the spatial domain facilitates the real-time identification and extraction of
features, which is a critical capability required in applications that demand precise localization.
This includes areas such as robotic navigation, autonomous vehicles, and sophisticated image-
based control systems, where accurate and rapid responses to changing environments are
essential for successful operation and functionality [36][37][38][39][40].

In addition to significantly improving computational efficiency, the lifting scheme also
provides a reversible transformation, which means that the inverse wavelet transform can be
computed by systematically reversing the steps of the forward transform [41]. This particular
feature is especially useful in systems where maintaining data integrity and achieving lossless
recovery are crucial and of utmost importance. Furthermore, the versatility of the lifting scheme
extends remarkably to non-uniform data sampling, making it a highly powerful tool for various
scenarios where traditional Fourier-based methods might not be applicable or ideal. The
adaptability of this approach enables better handling of diverse data structures while effectively

preserving essential characteristics during the transformation process.

4 Contributions and Thesis Outline
The contributions of this research are as follows:
1. New Approach to Visual Servoing: In contrast to the method proposed by Mendoza et

al. [42], which relied on raw luminance values for visual feedback, the LWT-PVS approach



utilizes approximation and detail coefficients derived from the lifting wavelet transformation.
This represents a shift towards utilizing spatial-domain features that are more robust to
illumination changes, significantly enhancing control precision.

2. Reduction in Dimensionality and Robustness to Illumination Variations: By using
approximation coefficients, the approach provides a simplified, low-dimensional representation
of the image. The detail coefficients encapsulate high-frequency content that remains invariant
under changes in illumination, offering better robustness compared to previous PVS methods
[43].

3. Mathematical Development of Interaction Model: The interaction matrix for the LWT-
PVS method is derived by integrating the optical flow constraint equation (OFCE) with the
lifting wavelet transform. This interaction model serves as the backbone of the proposed control
law, incorporating both approximation and detail features in a unified framework [44].

4. Method Validation: Through simulation-based experiments, the proposed LWT-PVS
method is shown to outperform conventional PVS techniques in scenarios with varying
illumination, demonstrating its practical applicability in real-time visual servoing systems.

The structure of this thesis is as follows:

Chapter 1 -  Visual Servoing: The chapter presents a detailed introduction to background in
visual servoing, a brief survey of the currently existing visual servoing methods.
The traditional geometric primitives-based IBVS, PBVS and Hybrid VS methods
are first presented. This is followed by presentation of current state of the art in
visual servoing methods that use intensity.

Chapter 2 -  Lifting Wavelet Transform Overview: In this chapter, an overview on the
classical wavelet transform with its drawbacks is presented. Then, the second
generation WT, the lifting wavelet transform with its advantages is introduced.

Chapter 3-  The Proposed Features: is dedicated to LWT-PVS, the central theme of this
thesis. The formulation of LWT-PVS is introduced and detailed mathematical
developments necessary for obtaining the interaction matrix are presented.

Chapter 4 -  Simulation Results: in this chapter, proposed visual features are compared to the
pure luminance feature under illumination variations, and the results obtained were
presented. Finally, conclusions are drawn based on these results.

General conclusion and perspectives: Lastly, a conclusion on our work and

perspectives for future work are presented.



CHAPTER

VISUAL SERVOING

Contents
11 INtrOdUCION «.o.ui e 8
1.2 The Basic Components of Visual Servoing ............................., 8
1.3 Camera-robot configurations ... 12
1.3.1 Eye-in-hand configuration........................... 13
1.3.2 Eye-to-hand configuration......................... 14
1.4 Geometric Feature-based methods ....................... 15
1.4.1 Image-Based Visual Servoing (IBVS)..................... 16
1.4.1.1 Interaction Matrix for an image point........................L 19
1.4.1.2 Image Moments-Based Visual Servoing........................... 21
1.4.1.3 Visual Servoing based on Gaussian Mixture Models............................. 22
1.4.2 Pose-Based Visual Servoing (PBVS) ... 23
1.4.3 Hybrid Visual Servoing ... 28
1.5 Photometric Visual Servoing Methods............................... 30
1.5.1 Direct Visual Servoing ..................ooooiiii 31
1.5.1.1 Pure Photometric Visual Servoing....................oooi . 32
1.6 CONCIUSION ..ot e 34



CHAPTER 1. VISUAL SERVOING

1.1 Introduction

In recent years, the rapid advancements in computing capabilities have made visual servoing
an integral area of research and industry. Visual servoing refers to a feedback control system
that relies on a computer vision unit, where the information provided by a vision sensor is used
to guide the movements of a dynamic system. This system can either be physical, such as in
robotics, or virtual, such as in the animation of artificial entities or augmented reality.

Among the various visual servoing techniques, those belonging to direct visual servoing
schemes are often considered to be more accurate and robust than methods based on geometric
feature extraction. These techniques have found significant application in ultrasound-guided
medical robots, as traditional methods requiring visual feature extraction struggle with
ultrasound images. They are also widely used in fields such as medical robotics (especially in
surgery), surgical micro-robotics, and assistive robots for people with disabilities.

Regardless of the sensor configuration ranging from onboard cameras mounted on a robot’s
end effector to multiple remote cameras, it is essential to select the most relevant visual
information. Subsequently, a control law is developed to manage the appropriate degrees of
freedom to ensure that the visual data reaches a desired value, which ultimately defines the
task's success. These techniques can be applied to a wide variety of tasks, such as positioning a
system relative to its environment or tracking moving objects, by controlling one or more
degrees of freedom. This allows for compensation of inaccuracies in either the sensor or the
system being controlled.

Visual servoing, when utilizing a vision sensor that provides 2D information, offers a wealth
of potential visual data. For example, it is possible to use 2D data such as the coordinates of
key points in an image, or even 3D data derived from a localization module that processes 2D
measurements. The challenge in visual servoing lies in selecting the most relevant information
from this abundant visual data, ensuring that the system performs effectively. This requires the
development of real-time image processing algorithms capable of extracting and tracking
measurements in video-frequency image sequences.

In essence, visual servoing involves controlling actuated systems through visual feedback,
with a broad range of closed-loop approaches. The goal of a visual servoing task is to control

the actuator in such a way that the error between the current visual features, s ¢ , and the desired

features, s*, approaches zero, i.e., the difference s ¢ — s* becomes negligible.

1.2 The Basic Components of Visual Servoing
Vision-based control techniques aim to control a system's behavior using visual information,

generally captured through cameras or other imaging devices. In such techniques, the primary
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CHAPTER 1. VISUAL SERVOING

objective is to minimize an error signal, denoted as which represents the discrepancy between
the desired visual features and the actual visual features at a given time. This error, e ¢ , is

mathematically defined as:

et =smt;a —s* (1.1)

The formulation discussed is broad and adaptable, enabling its application across various
vision-based control methods. The image measurements, denoted as m t , represent a set of
features extracted from the camera's current image at time . These measurements can include
quantities such as the image coordinates of points of interest, the centroid of an object, or other
geometric features like edges and corners. Based on these measurements, a vector of & visual
features, s m t ;a , is computed. This computation may also utilize additional system-specific
parameters, a, which represent prior knowledge such as the intrinsic parameters of the camera
(e.g., focal length, pixel size, or principal point) or 3D models of objects within the scene. The
desired state of the system is captured by the vector s*, which contains the target values for
these visual features. For example, s* may define the desired pose of an object in the image
frame or the target pose of a robotic manipulator relative to an object. The error signal, e t =
s mt;a — s, quantifies the difference between the current and desired states. The primary
goal of vision-based control is to minimize this error over time, ensuring the system accurately
converges to the target state. Through this formulation, a wide range of tasks, such as object
tracking, navigation, or robotic manipulation, can be addressed using either Image-Based
Visual Servoing (IBVS) or Pose- Based Visual Servoing (PBVS). This approach provides an
effective framework for leveraging visual information to achieve autonomous control.

For this discussion, we focus on a specific case where the desired pose (s*) is fixed, and the
target remains immobile. In this scenario, s* is constant, and any changes in the visual
features s are solely due to the motion of the camera. Furthermore, controlling the camera’s
motion using six degrees of freedom (6-dof) is considered, corresponding to a camera mounted
on the end effector of a robotic arm with six independent movements: three translational (along
X, y, and z axes) and three rotational (roll, pitch, and yaw). The goal in this setup is to adjust the
robotic arm's motion so that the current visual features s align with the desired visual
features s*. This 1is achieved by minimizing the erroret =smt;a —s*,
where e ¢ represents the discrepancy between the current and target states.

A key distinction in visual servoing techniques lies in the design of the visual features s.

Classical approaches to visual servoing can be categorized into two main types. The first
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approach is IBVS, where s is defined as a set of features that are directly extracted from the
image, such as pixel coordinates, geometric shapes (e.g., points, lines), or image moments. The
second approach is PBVS, where s represents the pose (position and orientation) of the target
relative to the camera. In this case, the pose is computed indirectly by extracting image
measurements and using them in conjunction with additional system knowledge, such as the
intrinsic parameters of the camera or a 3D model of the target. In earlier literature, PBVS was
referred to as pose-based visual servoing rather than pose-based, but both terminologies are
now widely accepted and used interchangeably.

More advanced methods extending visual servoing beyond classical techniques will be
explored. These methods build on the foundations of IBVS and PBVS but address challenges
such as robustness to occlusions, dynamic targets, and improving the flexibility and accuracy
of control in complex, real-world scenarios. By exploring these different approaches, a
comprehensive understanding of visual servoing techniques and their applications in a variety
of contexts is intended to be provided.

Once the visual features s are defined, the design of a control scheme becomes relatively
straightforward. Among the various options, designing a velocity controller is one of the
simplest and most commonly used approaches in visual servoing. To achieve this, it is essential
to establish the mathematical relationship between the camera's spatial velocity and the
temporal variation of the visual features s. This relationship defines how changes in the
camera’s motion affect the visual features over time.

Let the camera's spatial velocity be represented by v.= (ve; w,.), where v, is the instantaneous
linear velocity of the camera's origin (i.e., the translational velocity), and w. is the instantaneous
angular velocity of the camera's frame (i.e., the rotational velocity). The time derivative of the
visual features, represented by s, is directly related to the spatial velocity of the camera through
the interaction matrix (also referred to as the image Jacobian or the feature Jacobian) denoted

by L,. This relationship is expressed as:

s= L, (1.2)

The matrix L, € R¥*6 is referred to as the interaction matrix associated with s [45]. Through
the use of Equations (1.1) and (1.2), a direct connection can be established between the camera's

velocity and the rate of change of the error over time:

e=L,v, (1.3)

10
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In this context, L, = L. If vc is used as the input to the robot controller and an exponential,

independent reduction of the error is desired (i. e., ¢ = -4 e), the controller can be derived using

Equation (1.3) as follows:
v, =—ALTe (1.4)

where L} € RS** represents the Moore-Penrose pseudoinverse of L,, which is, L=
(L LI)'L] with k> 6 and L, is of full rank 6. It is possible to invert L, when k = 6 if det
L, # 0, and the control gives v. = -AL_'e. If k <6 and L, is of full rank k, L is given by L}
=L (L ,L])™*. 1If L, is not full rank, the singular value decomposition of L, can be used to
obtain the numerical value of L. In all situations, control scheme (1.4) permits minimal
le — /\L(I(\TeH and |v,|. The desired behavior e = -le is achieved only if L, L} = Ir, where Ix
is the k x k identity matrix, that is, only if L_ is of full rank &, k£ <6.

In real-world visual servo systems, it is not feasible to exactly determine L, or its pseudo-
inverse L. As a result, one must rely on approximations or estimates of these matrices.
Henceforth, the symbol E(: is used to denote both the pseudo-inverse of the approximated

interaction matrix and the approximation of the pseudo-inverse itself. Using this representation,

the control law can then be expressed as follows:
v, = —ALfe = —AL*(s — s*) (1.5)

Assuming the robot controller can achieve perfect v., and closing the loop by inserting (1.5)

into (1.3):
e=—AL,LFe (1.6)

This equation illustrates the closed-loop system's real behavior, which is different from the
desired one (e = -le) once L(,f/(\f # Ir. Also, it is the basis for the Lyapunov theory-based
stability analysis of the system.

The majority of visual servo controllers use the fundamental concept that have been presented
above. Schematic of a robotic visual servoing system is illustrated in Fig.1.1.

The next stage involves elaborating on the intricate details of the process. One of the primary

questions is: how should the task-specific variable, s, be appropriately chosen to ensure optimal
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system performance? Following this, it is essential to determine the precise form and structure
of the interaction matrix, L, which plays a critical role in visual servoing control. Another

pressing concern is the accurate estimation of the pseudo-inverse of the interaction matrix,

denoted as E The answers to these questions are central to the development of efficient and
robust visual servoing algorithms and will be systematically addressed in the subsequent
sections of this chapter.

Additionally, the chapter will provide a comprehensive overview of the two fundamental
strategies in the field of visual servoing: IBVS and PBVS. These two classical approaches were
originally conceptualized more than two decades ago [46] and have since served as the
backbone for numerous advancements in this domain. Building upon their foundational
principles, modern research has introduced various extensions and enhancements to these
methodologies, overcoming historical limitations and improving system reliability, robustness,
and adaptability. In the later sections, these contemporary solutions, which leverage advances

in computational techniques and sensor technologies, will be presented in detail.
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Figure 1.1: Schematic of a robotic visual servoing system with eye-in-hand configuration [47]

1.3 Camera-robot configurations
In visual servoing applications, two primary configurations are commonly employed to
integrate cameras with robotic systems for perception and control. The first configuration,

referred to as the "eye-in-hand" setup, involves mounting one or more cameras directly onto
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the robot’s end effector. This placement allows the cameras to move in conjunction with the
robot, enabling close observation of the workspace or tools attached to the end effector. To
interpret and utilize the camera data effectively in this configuration, a fixed and well-calibrated
transformation is defined between the coordinate frame of the camera and that of the robot's
end effector. This transformation facilitates the conversion of motion and visual data between
the camera frame, the end effector frame, and other reference frames associated with the robot
system.

The second configuration, known as the "eye-to-hand" setup, involves positioning one or
more static cameras in the robot’s workspace. These cameras are used to observe the robot's
end effector, the target objects, or both from an external viewpoint. Unlike the eye-in-hand
configuration, in eye-to-hand systems, it is necessary to compute the relationship
(transformation) between the robot's coordinate frame and the static camera frame at each
iteration. This dynamic transformation is crucial for maintaining spatial awareness and ensuring
the accuracy of visual servoing operations. The eye-to-hand configuration is particularly useful
when a broader perspective of the workspace is needed or when multiple targets and objects
must be tracked simultaneously.

The eye-in-hand configuration is often the preferred choice in tasks where it is important to
keep the target or object of interest, as well as the tool attached to the end effector, within the
camera's field of view throughout the operation. An example of this is object-grasping tasks,
where the camera must monitor both the object being manipulated and the gripper mounted on
the end effector for precise alignment and control [48]. However, there are also instances where
hybrid configurations, combining elements of both eye-in-hand and eye-to-hand setups, are
employed to exploit the advantages of each approach [49]. These hybrid systems can offer
supplementary observations or redundancy for enhanced accuracy and flexibility in complex
manipulation tasks.

In the work described in this thesis, the focus is on a visual servoing system utilizing the
eye-in-hand configuration. This setup provides the advantage of a camera perspective tightly
coupled to the motions of the robot’s end effector, making it well-suited for tasks requiring

precise monitoring and manipulation of objects within a localized environment.

1.3.1 Eye-in-hand configuration
The integration of the camera with the robot's end-effector adopts an eye-in-hand
configuration, as depicted in Fig. 1.2. Within this framework, visual servoing control strategies

are employed to define the appropriate velocity vectors, denoted as v or q, depending on
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whether the desired motion is to be regulated in the camera space or the robot’s joint space.
These velocity commands are transmitted to the robot controller, enabling precise execution of
the corresponding movements.

To enable accurate motion control, it is essential to determine several key parameters critical
to the system's operation. These include the camera’s intrinsic parameters, the robot's Jacobian

matrix ( ¢J;), and the transformation matrix (“Mp) that describes the spatial relationship

between the camera's coordinate frame (7 .) and the robot's end-effector frame (7). The
process for identifying these parameters involves performing camera calibration, robot
calibration, and calibration of the relative pose between the camera and the end-effector. These
calibration steps ensure that the geometrical relationships and system dynamics are well-
characterized and aligned for control purposes, following standard methodologies as outlined,
for instance, in Tsai’s method [50].

One important aspect of visual servoing systems is their inherent robustness to calibration
inaccuracies. Even in the presence of small errors in the calibration parameters, the control
algorithms used in visual servoing are designed to adapt and perform reliably, which adds a
layer of resilience to the overall system. This feature makes visual servoing particularly
advantageous for robotic applications in dynamic or imperfect environments where precise

calibration may not always be feasible or may degrade over time.

Figure 1.2: Eye-in-hand camera-robot configuration

1.3.2 Eye-to-hand configuration
In the eye-to-hand configuration, the camera is mounted in a fixed position within the robot's

workspace, as illustrated in Fig. 1.3. Unlike the eye-in-hand configuration, where the camera is
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attached to the end effector and thus captures image changes resulting from both the movements
of the target and the end effector, the eye-to-hand configuration limits image variation to the
motion of the target alone. This separation simplifies certain aspects of system kinematics and
control by decoupling the camera's viewpoint from the robotic manipulator's movements.

A critical component of this configuration is the transformation matrix €M, which describes
the static relationship between the base coordinate system of the robot 7, and the camera's
coordinate frame 7 . Since the camera is stationary, M), is computed once during system
setup and remains fixed throughout operation. This matrix forms the foundation for calculating
the relative positions and orientations between various coordinate frames within the system,
particularly the relationship between the camera frame and the robot's end effector frame. By
systematically applying frame transformations, the kinematic relationships between the robot,
camera, and target can be established and utilized for control or perception tasks.

The eye-to-hand configuration offers several advantages, such as simplifying the modeling
of image-based feedback control systems and eliminating the need to recalibrate for camera
motion. As a result, it is well-suited for robotics applications where precise monitoring of a
target is required without directly coupling the camera to the manipulator's dynamics. For
further details about camera and robot configurations, readers can refer to the foundational
works on visual servoing and robotic vision, such as those by Hutchinson et al. [1], Kragic and
Christensen [51], and Chaumette and Hutchinson [52]. Their contributions provide in-depth
discussions on the principles, advantages, and use cases for different camera-robot

configurations.

Figure 1.3: Eye-to-hand camera-robot configuration
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1.4 Geometric Feature-based methods

Visual servoing (VS) is a control technique that utilizes visual information from a camera to
guide a robot's motion. The core objective of this approach is to enable the robot to interact with
its environment by processing the visual data obtained from images of objects within the scene.
In feature-based visual servoing methods, a set of image-based features or primitives, denoted
asm,; € M,p, is extracted from the image, where M, represents the collection of all
measurable quantities in the image space. These image features are derived using a variety of
image-processing techniques, such as object detection, feature matching, visual tracking, and
segmentation, all of which are critical for isolating and interpreting the relevant visual cues
within the image.

In most cases, these features correspond to the projections of certain geometric entities (F,)
that exist in the three-dimensional scene, such as points, edges, straight lines, or other geometric
structures. These 3D entities belong to the spatial domain (P, € §55,) and are projected onto
the 2D image plane through the camera's perspective projection model. The extraction of such
features creates a link between the information in the image and the physical objects in the
environment, allowing real-time control of the robotic system.

Depending on how the extracted image-based measurements are used to define visual
features, feature-based visual servoing can be categorized into three main types: IBVS, PBVS
and hybrid or 2.5D approaches. IBVS operates directly in the image space, utilizing image
features to compute control signals without explicit reliance on the scene’s 3D geometry. In
contrast, PBVS relies on estimating the pose (position and orientation) of the object in 3D space
relative to the robot, typically requiring additional computations to reconstruct 3D information.
Hybrid approaches, often referred to as 2.5D visual servoing (introduced by [53]), blend
elements of both IBVS and PBVS, leveraging the advantages of both methodologies while
mitigating their respective limitations. Specifically, hybrid techniques aim to combine the
responsiveness and simplicity of 2D visual servoing with the enriched spatial awareness of 3D
approaches.

Each of these schemes offers distinct advantages and trade-offs depending on the application
and system requirements. For instance, IBVS is generally robust to calibration inaccuracies but
can face challenges related to image-space singularities. PBVS, on the other hand, provides
better spatial interpretation but is more sensitive to errors in camera calibration and pose
estimation. Hybrid approaches attempt to balance these strengths and weaknesses by providing
a flexible framework that preserves the benefits of both the 2D and 3D domains. Details

regarding the advantages, limitations, and practical considerations of these methods can be
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found in the works of Chaumette (1998) [54] and Chaumette and Hutchinson (2006) [1], which

serve as foundational references in the field.

1.4.1 Image-Based Visual Servoing (IBVS)
Image-based control schemes use measurements of 2D primitives observed in the image-

plane to define the task function [55][47].

et =sm(lt) —s* (1.7)

The most commonly employed visual features in visual servoing applications are the
coordinates of n specific points located within the image plane, represented as s €
R2" [55][47]. These points, which are extracted from the camera's captured image, serve as
essential components for guiding the visual servoing process. Each feature point is expressed
as part of a coordinate set, denoted as s = (x;,; X, X3; ....; X, ), Where x; corresponds to the 2D
coordinates of the i-th point in the image frame. These points are visual primitives detected by
the camera, as illustrated in Figs. 1.3(a) and 1.3(b), and their locations form the basis for
defining the robot's control objectives.

To execute a visual servoing task, a reference or desired set of image features must first be
specified, which corresponds to the visual features that the system should achieve when the
robot reaches its goal pose. This desired feature set is denoted as s*, where s* represents the
image-space coordinates of the points when the object and camera are in their target relative
positions. The control objective in visual servoing is to ensure the current set of
features s converges to the desired feature set s*, thereby guiding the robot to accomplish the
intended task.

The visual servoing control law is designed to minimize the error between the current feature
set s and the desired feature set s*. This error, commonly expressed as e = s — s*, represents
the deviation of the system's current state from the goal. The control strategy generates velocity
commands for the robot such that e asymptotically approaches zero, hence driving the robot to
the desired pose. Depending on the type of visual servoing method employed—image-based
visual servoing (IBVS), pose-based visual servoing (PBVS), or hybrid methods—different
formulations of the control law are employed to optimize the trajectory and ensure system
stability. For instance, in IBVS, this control law operates directly in the 2D image space, while
in PBVS, it is mapped into the 3D space of the robot's pose.

The use of point-based features is widely popular due to their computational simplicity, ease

of detection, and universality across various applications. However, selecting appropriate visual
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features and establishing a robust correspondence between s and s* are critical for achieving
stable and accurate visual servoing performance. This process often relies on advanced
computer vision techniques to track, match, and refine the detected points in noisy or dynamic
environments. Future sections (or subsequent chapters) will delve into how these principles are
applied and adapted in specific visual servoing tasks to address challenging scenarios, such as

occlusions, calibration errors, and system constraints.

Ty — T
_|a-a)
v, =—ALT : (1.8)
T, — T

The error e in Equation (1.7) must be reduced to zero in an exponential manner. Achieving
this requires constructing the interaction matrix corresponding to an image point, which forms
the cornerstone for all subsequent computations involving visual features. The interaction
matrix plays a critical role in linking the dynamics of the image features to the dynamics of the
robotic system, laying the groundwork for effective control strategies.

Among the many approaches proposed for robotic vision-based control, IBVS has emerged
as a dominant technique due to its practical benefits. This method continues to attract significant
interest in the field of robotics and computer vision research. The appeal of IBVS is rooted in
its simplicity of implementation, its capacity to handle uncertainties in camera calibration, and
its robustness against image noise. These characteristics make IBVS a reliable and adaptable
solution for real-world robotic applications, even in unstructured or dynamically changing
environments. Its resilience to errors and inaccuracies has solidified its reputation as a
dependable approach for achieving precise image-driven robotic motion.

Furthermore, IBVS's ability to directly operate in the 2D image space without requiring a
precise 3D reconstruction of the environment is a key advantage. This eliminates the
dependency on complex calibration workflows while improving overall system efficiency.

In general, before IBVS can be used practically, a few issues need to be resolved. Among the
existing problems are the following:

1. IBVS technique, while widely used, is not without its challenges. One notable issue is the
potential occurrence of image singularity, which can lead to unstable control behavior and
numerical difficulties [54][56][57].

2. The retreat problem that is when the camera moves back and forth unnecessarily when it

should only rotate around the optical axis [54].
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3. Despite having perfect knowledge of L, the global asymptotic stability of IBVS technique
cannot be guaranteed [2][58]. Instead, only local asymptotic stability can be achieved, and this
is limited to a small neighborhood surrounding the desired pose.
4. One approach to mitigating the singularity problem in IBVS is to incorporate additional
feature points. However, using more feature points (k > 3) requires relying on the pseudo-
inverse of the interaction matrix (L*) or its transpose (L), which introduces a higher risk of
being trapped in a local minimum. This occurs when the error vector lies in the kernel
of L* or LT, preventing further progress toward the desired configuration [54][56][57].
5. Since the precise interaction matrix is unavailable [58], its approximations necessitate
estimating the object's depth [59]. Numerical issues in the computation could result from the
error created here.

As a result, in recent years, a lot of work has been attempted to enhance IBVS performance

[59][60].

+

-

(a) Visual Servoing with a set of 4 dots in the image (b) Camera view with feature trajectories

(c) Visual servoing with lines

Figure 1.4: Image-Based Visual Servoing with image points and straight lines as visual

features [96]
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1.4.1.1 Interaction Matrix for an image point

Suppose that X = (X; Y; Z) is a 3D point in the scene whose coordinates are expressed in the
camera frame. Suppose that a = (uo; vo; f; o) is the parameters of a pin-hole camera imaging the
scene, where 1y and vy are the coordinates of the principal point in the image, f'is the camera
focal length and « is the ratio of the pixel dimensions. The 3D scene point X then projects in

the image plane as a 2D point x under perspective projection, which is given by:

_ U=

_ X __ u—uy
r===——"
{ z - (1.9)
z fa

Camera velocity is linked to the velocity of the 3D point by X = —v, — w, X.

The construction of the interaction matrix is based on this fundamental kinematics relation,
which links changes in a point in the real world with camera motions [56][2]. By expanding

this relation, we get:

X=-v,—wZ+wY
Y=—v,—wZ4+w 2 (1.10)
Z=—v,—w, 4 +w,X

After differentiating Equation (1.9), the following is obtained:
T = X—xZ
{ Z (1.11)

After applying Equation (1.10) in Equation (1.11), we get

{ 7t 7 oy, y Y (1.12)

v, Yv.,,
y=—4+Z+ 1+9° w, —ryw, — 2w,

This allows for the direct writing of the interaction matrix of an image point (that satisfies x =

L,v,.):

0 % 4 1+y? —azy -—=u

L. = [L-’I’] = [;Zl 0 % ey —(142%) y (1.13)
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As a result, L, depends on the intrinsic parameters of the camera, d, depth Z, and visual
features s. Using the result of Equation (1.13), which connects the motion of the image points
to the motion of the camera, the interaction matrices of intensity-based features are developed.

The interaction matrices of each individual point are stacked to produce the interaction

matrix for a set of n points.

_Lfl:l <$17 Zl’ A) |
L:1:2 <$27 Z27 A)
L, = . (1.14)
Ly, (20, 2y, A) ]

T,

Similarly, [61] used the tracked points as visual features while transforming them to the
cylindrical coordinate system s = (p; #) with p = /22 4+ y? and 6 = arctan(y). A notable

inaccuracy in the rotational pose around the optical axis caused the camera to move backward
along this axis. Nevertheless, this issue was successfully addressed in previous research [54],
ensuring that the unintended retreat was mitigated. Beyond basic point features, various
geometric elements such as ellipses, contours, and straight lines (refer to Fig. 1.4(c)) can be
effectively leveraged within the image plane to represent three-dimensional structures like
spheres and cylinders. These higher-level visual features provide a richer set of constraints for
the servoing process, as demonstrated in prior works [46][62]. However, implementing such
methods requires robust algorithms for detecting and continuously tracking these features
throughout the visual servoing operation to maintain stability and accuracy.

By formulating the regulation error e directly in the image space, the system ensures that the
desired visual features follow well-defined trajectories at the pixel level. This approach
guarantees effective convergence of the control law in the image domain. However, a limitation
of this method is that it does not inherently provide direct regulation over the motion or final
positioning of the end-effector in Cartesian space. Consequently, the physical path followed by
the end-effector may exhibit deviations from an optimal geodesic trajectory, which can
introduce inefficiencies in certain applications. Addressing these trajectory distortions remains
an area of interest, with potential solutions involving model-based predictive control or hybrid

strategies that integrate image-based and pose-based servoing.
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1.4.1.2 Image Moments-Based Visual Servoing

The application of image moments in visual servoing was first introduced in [63], where
they were utilized as a compact and informative representation of image intensity distributions
[64]. These statistical descriptors encapsulate essential geometric and structural characteristics
of an image, making them particularly useful for controlling robotic systems through visual
feedback. One of the key advancements in this domain was the derivation of the analytical form
of the interaction matrix in [63]. This study demonstrated that leveraging visual features based
on image moments significantly improved numerical stability while ensuring a strong
decoupling effect in the servoing process.

Building on this foundation, [65] later proposed an innovative set of visual features derived
from moment invariants, further enhancing robustness to variations in viewpoint and
transformations. The computation of image moments can be performed either by segmenting a
well-defined region within the image or by using a dispersed set of points. In the latter approach,
the system operates without explicitly extracting or matching individual features, thereby
reducing computational overhead and increasing efficiency. This capability makes image
moments particularly attractive for real-time visual servoing applications where speed and

robustness are crucial.

1.4.1.3 Visual Servoing Utilizing Gaussian Mixture Models

A Gaussian mixture model (GMM) is formed by taking a convex combination of N
Gaussian probability density functions (pdfs). The image's feature points X were extracted and
then modelled as a GMM in [66]. The covariance matrix X; and mean vector ux of each of those
N pdfs parameterize a GMM. Given X, the EM (Expectation Maximization) technique can
estimate it. The Gaussian mixture model (GMM) obtained from the feature points at both the

desired and current positions is expressed as:

s=fX, & =" aN(X;Ru,+t,RY R") (1.15)

=g X =20 BNXu+ ) (1.16)

Visual servoing aims to minimize the cost function, defined as the L, norm between the

GMMs computed for the desired and current poses.

C=ls—s=[If X, & —g X |2t (1.17)
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To minimize the Lyapunov function £ = 3 (€)2, the following control input is selected:

N[

u=—(C)% (1.18)
A closed-form expression for the gradient is available % along with the L, norm of the

error provides valuable analytical insights, aiding in the optimization and stability analysis of
the control system. However, achieving full six-degree-of-freedom (6-dof) control of the robot
requires precise knowledge of the depth distribution associated with the selected feature points.
Experimental findings from [66] indicate that the trajectory traced by the camera does not
conform to a geodesic path between the initial and target poses. Additionally, the generated
control signals exhibit non-smooth variations, which may introduce undesired dynamic effects
during execution.

A key limitation of the algorithm is the uncertainty surrounding its convergence properties
when dealing with estimation errors in the Gaussian Mixture Model (GMM) parameters a; and
B; specifically, it remains unclear whether discrepancies where a; # f; could adversely impact
the stability or convergence rate of the method. Moreover, while the extraction of image points
X is an inherent requirement of this approach, it operates without the need for continuous visual
tracking, potentially simplifying computational demands but also introducing challenges in

feature association and localization.

1.4.2 Pose-Based Visual Servoing (PBVYS)
Due to the fact that the error in PBVS [6][67] is defined in pose space instead of image space,
it is termed 3D visual servoing. The error that needs to be regulated to zero is directly linked to

the robot's pose.

s=sm(It,A X (1.19)
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Figure 1.5: Pose-based visual servoing scheme

In PBVS, the accurate estimation of the camera pose “€o(t) from captured images is a crucial
step. This estimation depends on prior knowledge of the camera's intrinsic parameters and a
predefined 3D model of the observed object. By leveraging these elements, the camera pose
can be determined from a set of visual measurements captured in a single image. The challenge
of determining 3D spatial coordinates from 2D projections is a well-established problem in
computer vision, commonly referred to as 3D localization. While an in-depth discussion of this
problem lies beyond the scope of this chapter, various approaches addressing it have been
extensively documented in the literature [6][67].

Once the camera pose is estimated, its chosen parameterization is typically employed to
derive the visual feature vector s. It is important to emphasize that the parameters 4 used in
defining s, as outlined in Equation (1.19), these parameters correspond to both the intrinsic
characteristics of the camera and the 3D structural representation of the object being tracked.
They are essential for ensuring precise control and stabilization within the PBVS framework,
as they directly affect the accuracy of the computed pose and the overall servoing performance.
In robotic vision and control, it is often useful to define and work with multiple coordinate

frames. Typically, three such frames are used in this context:: the reference frame 7, which is

0’

fixed to the object of interest; the desired camera frame 7 _,, and the current camera frame J .

Cx
The standard convention for representing a coordinate system involves attaching a
superscript to indicate the specific frame in which a given set of coordinates is defined.

Consequently, the coordinates of the object's origin can be represented as vectors t, and *t,,
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where the former is expressed relative to the desired camera frame 7 ., and the latter is in terms
of the current camera frame 7 .

To model the orientation of the current camera frame relative to the desired frame, the
rotation matrix R, defined as R = “* R, is used, where “*R,_ represents the transformation
from the current camera frame to the desired one. Rotation matrices in the Special Orthogonal
group SO(3) can be expressed in different forms depending on the chosen parameterization. In
this work, the axis-angle parameterization is employed, where Bu denotes the rotation around
the axis u, and ¢ represents the translation vector.

In this framework, the control loop for the robotic system necessitates an algorithm capable
of estimating the pose of the visual sensor relative to an observable target. For instance, the
Extended Kalman Filter (EKF) is one common approach for pose estimation, as outlined in [6].
Other techniques for solving the pose estimation problem include model-based methods, such
as those described in [68] and [69], as well as virtual visual servoing (VVS), as explored in
[70]. A thorough discussion on pose estimation methods, particularly in the context of robotic
vision, can be found in [71].

PBVS can be divided into two variants according to whether the control is implemented in
the desired or current camera frames [52]. “If the object pose relative to the current sensor frame
is selected for use, s = ( “t,; Ou), s = ( €*t,; 0), then e = ( °t, - €*t,; Hu) to perform the control.

Then, the interaction matrix can be derived as

I, [<t,]
L — 3 0lXx 1.2
= L (1.20)
where
Low = Iy +8lul, + (1 - 2255 [uf? (1.21)

with [v]« represents the skew-symmetric matrix of v. sinc § = sin 6 / 6 is the sinus cardinal. The
matrix L,, contains the property L,, ' u = u. When §+2kn, where k is a non-zero integer,
the L,, matrix is non-singular. The translational velocity screw can then be computed as

follows:

V. = —A ( c*to - cto) + [ Ct()]xgu (122)

25



CHAPTER 1. VISUAL SERVOING

As an alternative, the pose of the current sensor frame expressed in the desired sensor frame
can be used to determine the control. Since s~ = 0, we have s = [ *t. Au] and e = s in this
instance.

Pose estimation algorithms typically produce the target's relative pose as represented in the
sensor frame ©X . Next, the sensor's relative pose represented in the desired sensor frame is

obtained using the following relation:
“*X, = *X, X, (1.23)

The structure of the interaction matrix in this case is as follows:

L :[ "R, 0} (1.24)

0 L Ou

The translational and rotational motions are decoupled, as may be seen from Eq (1.24). Here,

the translational velocity screw is obtained as
v, = —A“R, “t, (1.25)

The matrix representing interactions for rotational movements is identical in Equations
(1.20) and (1.24) [53][2]. The corresponding control law for these degrees of freedom is

expressed as:
w, = —A0u (1.26)

In PBVS, the control laws are designed to ensure that errors in the rotational pose diminish
exponentially along a geodesic path, leading to smooth convergence. This results in a more
efficient alignment of the camera’s pose with the target, as the system progressively reduces
the rotational error over time. On the other hand, when using control law (1.24), the camera
follows a straight-line trajectory, which contrasts with the behavior seen in PBVS using control
law (1.20), where the camera’s movement is more curvilinear and dynamic in nature.

It is important to note the differences in how depth Z affects the system in PBVS and IBVS.
In PBVS, the depth Z directly influences the pose features, meaning that any change in depth
alters the camera's positional features in the image plane. In contrast, IBVS simplifies this by

making the features independent of depth, with the interaction matrix being the only component
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that depends on Z. This distinction significantly influences the overall behavior and
performance of visual servoing systems, especially in terms of control and trajectory planning.

Another important consideration in visual servoing is the potential for features to leave the
field of view. Many studies have highlighted this limitation, noting that PBVS has limited
control over trajectories in the feature space, as the features may move out of the camera’s sight.
However, [72] demonstrated that, despite this concern, image trajectories can indeed be
controlled indirectly within certain constraints. This holds true unless major assumptions are
made to simplify the interaction matrix, in which case some of the control over the trajectory
might be lost. This finding challenges the traditional view of PBVS's limitations and opens
avenues for more refined control strategies in visual servoing applications.

This version provides more context, expands on the distinctions between PBVS and IBVS,

and further elaborates on the findings of [72].

Stability in PBVS:

The stability of a general dynamical system, denoted as x = f{x; u), can be examined through
the application of Lyapunov stability theory. The system state x is determined by the function
/, which may be either linear or nonlinear and might not be fully characterized. The evolution
of the state is influenced by the control inputs u and the intrinsic properties of the system, which
define the form of f'and its interactions with the environment. According to Lyapunov, x =0 is
an equilibrium point of the system if and only if there exists a function £ such that £ >0 for all
x, and £ (0) = 0. This function is indicative of the system's energy. The energy function, referred
to as the Lyapunov function of the system, should exhibit a decreasing trend along the
trajectories of the system state. A straightforward Lyapunov function will be selected for the

visual servoing system:

£=4el? (1.27)

Let us note that £ > 0 and £ = 0 if and only if ¢ = 0. Differentiating £ with respect to

time gives:

L=cee (1.28)
Using (1.3) in (1.28):

L=e'L, (1.29)
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Substituting (1.6) in (1.29) yields to:

L=-Xe"L,Lte = —Xe' Qe (1.30)

where @ = (Léff) According to the fundamental theorems of Lyapunov stability, if the
Lyapunov function £ (e; ¢) > 0 and its derivative £ (e; t) < 0 in a neighborhood around the
equilibrium point, then the equilibrium point (desired system state) is considered locally stable
in the Lyapunov sense. By definition, Equation (1.31) is positive. Therefore, for the system to
achieve stability, Equation (1.30) must be negative. This condition is satisfied if and only if the

matrix () is positive definite (PD), denoted ) > 0. However, it is insufficient to merely assert

the condition LSE > 0 and draw conclusions about stability without examining the specifics
of the number of features and the neighborhood where the condition is applicable. The stability

criterion can be expressed by
L.L¥ =0 when k<n (1.31)

where n represents the number of actuated degrees of freedom. If this condition is met, then, as
previously stated, the derivative of the Lyapunov function will be negative for all system states
except at the desired equilibrium where e = 0. In other words, the following condition is

satisfied:
L <0 Ve #0 (1.32)

If condition (1.32) is satisfied for configurations throughout the robot workspace, global
asymptotic stability (GAS) is guaranteed. Conversely, if condition (1.32) is valid only within a
vicinity of the equilibrium state, this is referred to as local asymptotic stability. Although the
size of this vicinity has not been analytically determined, it is notably large for visual servoing

methods [2].

Since LSE = Is, the stability requirement in Equation (1.31) for PBVS can be easily
ensured, assuming that the pose is precisely estimated [2]. This holds true for every 0+2kn as
previously stated in Equations (1.20), and (1.24), when L,,, is non-singular. Visual feature
measurements in the image are used to estimate the pose features used in the control law. The
above strong assumption is broken when these measurements are inaccurate since the pose
estimation is not precise. Therefore, inaccuracies in pose estimation have a negative impact on

the PBVS method.
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A concise overview of IBVS and PBVS, including their relative advantages and stability
characteristics, is provided in [2], to which the reader is referred. A formal, comprehensive
treatment is provided in [72], where a common framework for comparing IBVS and PBVS is
given from the perspectives of performance in image and Cartesian spaces, stability, robustness,

and sensitivity to modeling errors.

1.4.3 Hybrid Visual Servoing

In hybrid visual servoing, the measurement vector x integrates both three-dimensional
spatial information and image-based primitives. This approach represents a balanced
compromise between two-dimensional (2D) and three-dimensional (3D) visual servoing,
aiming to simultaneously control both the camera's trajectory within its workspace and the
movement of certain image-based primitives. Hybrid visual servoing allows for more flexibility
by combining the advantages of both 2D and 3D techniques, ensuring that both the camera and
the features it observes are actively managed during the task.

The first scheme of hybrid visual servoing, known as 2D1/2, was introduced by Malis in
1998 [73]. This method provides a partial reconstruction of the object’s pose without requiring
prior knowledge of the full 3D model of the object. Instead, it relies on the estimation of the
homography matrix, or a homogeneous transformation matrix, which describes the relationship
of the object to a reference plane. This approach allows for pose estimation by leveraging
available image information, reducing the computational burden associated with full 3D model
reconstruction.

In the 2D1/2 scheme, the task function is designed with two distinct components. The first
component involves the image coordinates of a point, along with a term that accounts for the
relative depth of the point between the current and desired camera poses. This depth component
is crucial for tracking the 3D position of the point in the image space. The second component
of the task function addresses the rotational aspect, representing the rotation between the current
and desired camera poses. This dual-component structure enables the hybrid visual servoing
system to manage both the motion in the image plane and the 3D trajectory of the camera,
achieving precise control over both aspects simultaneously.

This expanded explanation provides more insight into the hybrid visual servoing method,
detailing the functionality of the 2D1/2 approach and its components. s is then defined as
follows: s = [s,; 6u] where s, is a set of 2D primitives allowing the control of translational
movements and Ou is the rotation between the current and desired poses, typically used in PBVS
approaches. In hybrid visual servoing, the visual information vector s is constructed by

combining both 2D and 3D data, enabling the system to leverage the advantages of both
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domains. This combination provides a more comprehensive representation of the visual task,
allowing for the control of both image-based features and spatial trajectories. The interaction
matrix corresponding to this task function takes on a simplified and partially decoupled
structure, which offers analytical benefits, such as facilitating formal stability analysis in the
presence of modeling errors. This feature makes hybrid visual servoing appealing in situations
where a balance of accuracy and efficiency is required, particularly when dealing with imperfect
models or noisy data.

However, one of the challenges with this approach is that it requires a partial reconstruction
of the camera displacement at each iteration of the control loop. This step, although necessary
for accurate tracking and control, is inherently unstable, especially as the system approaches
convergence. The instability is particularly pronounced when the camera nears the desired pose,
where small errors in the pose estimation can have a significant impact on the system’s
behavior, leading to oscillations or even divergence if not carefully controlled.

Additionally, maintaining the visibility of all the required image primitives for estimating
the homography matrix is not trivial. The system relies on the availability of certain features in
the image, and ensuring that these features remain within the camera's field of view throughout
the operation is a key challenge. This becomes even more complex in dynamic environments
or situations where the object’s pose changes rapidly, as the camera may lose sight of essential
features, leading to inaccuracies in the homography estimation. Therefore, careful planning of
the camera's trajectory and the selection of robust visual features are critical for ensuring the
success of the hybrid visual servoing method.

The PBVS control law was found to produce rotational errors that follow a geodesic, as
described in Section 1.4.2. The following visual features were suggested by the 2.5D approach
[53]:

€T
5= [5;] - loeguZ (1.33)
s=[L, L] [ﬂ =L, +Lw, (1.34)

where the feature set responsible for controlling the translational motions is denoted by s:. It
includes Z € R, which is the depth of that image point, and x € R?, which is an image point
used in IBVS (as in Section 1.4.1). The rotational pose used in PBVS is fu € R*. The

interaction matrix for the feature log Z is given by
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Liyyz=%0 0 =1 —y z 0 (1.35)

By combining (1.13) and (1.35), the translational control input's interaction matrix can be

expressed as follows:

[ -1 0 ][ 2 —(+2%) y ﬂ
L, = |3 [ 0 -1 y {1 + 92 —zy —xJ | (1.36)
Lo o -l —y . 0

The 3 x 3 matrix on the left has a block triangular structure. The diagonal values indicate a
significant correlation between the relevant translational degree of freedom and the selected
features. Equation (1.20), therefore, shows that the rotations and translations are decoupled.
The 2.5D VS is globally asymptotically stable, assuming that the pose estimation algorithm is

precise and there are no coarse modeling errors [74].

1.5 Photometric Visual Servoing Methods

According to Sonka [75], a camera image is essentially a spatial sampling of brightness
variations, which are influenced by the geometry of the scene, the ambient lighting conditions,
and the reflectance properties of the objects in view. In feature-based visual servoing
approaches, after image processing, the original image is typically reduced to a set of discrete
points or geometric primitives. This reduction leads to a loss of rich information present in the
image, such as intricate intensity patterns, which are discarded and not utilized in further
processing.

In contrast, photometric visual servoing methods exploit the intensity information directly
from the image. These techniques focus on the pixel intensity values rather than geometric
features like points, straight lines, or homographies, and are sometimes referred to as
"correspondenceless" visual servoing methods. The term "correspondenceless" arises because
these methods do not rely on the need for feature tracking or matching, which simplifies the
process and eliminates the computational complexity typically associated with these tasks.

One of the main advantages of photometric visual servoing is its robustness. It does not
require precise depth information to calculate the interaction matrix, and it is less sensitive to
errors in coarse depth approximations. Additionally, photometric techniques are more resilient

to partial occlusions of the scene, as the intensity values remain available even when some
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features are obscured. This makes them particularly advantageous in real-world applications
where occlusions and imprecise depth data are common challenges.

In general, methods that utilize the image’s intensity information are grouped under the
category of photometric visual servoing. These methods allow for more flexible and efficient
control of robotic systems, as they avoid the need for explicit feature extraction and matching,

offering a practical solution in scenarios with limited or challenging visual features.

1.5.1 Direct Visual Servoing

Direct visual servoing techniques do not rely on tracking or matching intermediate geometric
entities in the image. Instead, the control law directly utilizes pixel intensity. Determining
appropriate control inputs for visual servoing essentially involves solving a nonlinear

optimization problem.

&= argmgin@’ ¢, (1.37)

with
Ce =Llelg I |? (1.38)

Equation (1.38) defines the cost function to be minimized, which aligns with the Lyapunov
function used to ensure stability. Here, & signifies the robot pose, while e denotes the error
measure computed from the current image and the image associated with the desired pose (I* =
I(£¥)). In direct visual servoing techniques, the error e is not based on measurements derived
from geometric features extracted from the image. Instead, it is a photometric error, defined by

the intensity distribution of the image

1.5.1.1 Pure Photometric Visual Servoing
The difference in intensities (luminance) between the images captured at the desired and
present poses is the direct definition of the error function in pure photometric visual servoing

[Collewet 11]: e = (&) - I(§*). The cost function to be optimized is the following:
E=arg mim Zm[_f x(&) — 1 x(&) ]? (1.39)

where x = (x; y) € R? denotes the pixel indexing variable. The KLT technique uses the SSD

(Sum of the Squared Differences) function for image registration, and this function is exactly
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the error norm [76].
The total number of pixels observed within the image, or a subset of them, is a subset of

visual features.
‘ (1.40)

where N is the number of pixels. This subset must be made available frame-by-frame when only
a particular subset of the image's pixels are used. The derivative of s can be used to determine
the interaction matrix associated with pixel illumination.

I= LIU(: = [LI Ty - >LI<$N>]TU (141)

C

The interaction matrix of an individual image pixel's luminance was developed in [12] using
the traditional brightness constancy assumption [77]. This constraint states that a moving image

point's brightness remains constant during a short interval of time ot
I(x; y; ) =I(x + ox; y + oy, t + O¢f) (1.42)
Taylor's expansion of this equation at the first order yields:

VIx+VILy + I=0 (1.43)

where VIT = [VI, VI T = [g—{ %] " is the gradient of the image pixel at (x, y).

After that, it is simple to derive the interaction matrix of the luminance of pixel (x, y).
L;x =-VITL, (1.44)

Here, Lx represents the interaction matrix for the image point, as derived in Section 1.4.1 and
given in Equation (1.13). An important observation is that the depth Z of the image point, which
is transferred from L, to L;, remains present. Additionally, when surfaces and light sources

move relative to one another, the brightness constancy assumption may no longer hold, even
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for Lambertian surfaces. In such cases, the process of deriving the interaction matrix becomes
more complex. To address this, the Phong Illumination Model [78] is employed to derive the
interaction matrix, as detailed in [79].

In non-linear optimization problems, the convergence to an optimal solution is heavily
influenced by the initial conditions and the distance between the starting point and the target
state. This principle also applies to visual servoing, which, depending on the method chosen to
tackle the problem, presents both advantages and challenges. A variety of iterative non-linear
optimization techniques are available for addressing problems like those formulated in Equation
(1.38) [80]. These methods generally revolve around selecting a specific direction of descent
within the solution space, thereby guiding the process towards achieving the optimization goal.

The control mechanism employed in this context typically takes the following form:
v =Xd(§) (1.45)

where ¢ indicates robot posture and d(¢) is the direction of descent. The following control law

is derived using the Levenberg-Marquardt method of descent.

v=—A <H+Mdig(H>1Z}<I §-I1¢ >>

(1.46)

where the scalars 4 and u are positive. H is an approximation of the Hessian matrix that is H =
L,TL,, where L, is the interaction matrix at any pose .

This approach has high accuracies at convergence since it uses a redundant feature set and does
not use intermediate measures from the image.

The degree of planar rotation error between the images of the initial and final robot poses
decreases the convergence domain [12]. The significant degree of non-linearity in Equation
(1.44) helps to explain this. Conversely, simpler solutions (such as the Gauss-Newton method)
are adequate for the servoing in the case of classical visual servoing methods.

The study in [12] demonstrated that a robot motion could be controlled by the pixel intensity
of the image. Additionally, visual servoing was shown without the use of feature tracking or
detection. However, the gradients in (1.44) had to be calculated as part of the image processing
step. Only local stability may be demonstrated, much like with other IBVS methods.
Additionally, the method has a problem with lighting variations, which directly affect the cost

function's minimum.
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1.6 Conclusion

This chapter has presented a comprehensive overview of the visual servoing control
paradigm, with particular emphasis on its fundamental configurations, modeling tools, and
visual feature representations. The two main camera configurations—eye-in-hand and eye-to-
hand—were examined, highlighting their respective advantages and limitations depending on

task requirements, workspace constraints, and precision needs.

The chapter also detailed the role of the interaction matrix, a central element in visual
servoing that links the temporal evolution of visual features to the camera’s kinematic motion.
Understanding this relationship is essential for designing effective control laws capable of

driving robotic systems toward desired visual configurations using real-time feedback.

Different categories of visual features were reviewed, distinguishing between geometric
approaches, which rely on explicit feature extraction and tracking, and direct approaches,
which exploit global image information without intermediate processing. While geometric
methods can offer high accuracy, they often require complex and computationally demanding
image-processing pipelines. Direct methods, by contrast, provide a simpler and more efficient

alternative, albeit with increased sensitivity to photometric disturbances.

Particular attention was given to photometric visual servoing, which leverages raw image
intensities to achieve high precision through data redundancy. Despite its effectiveness under
stable lighting conditions, its sensitivity to illumination variations limits robustness in
dynamic environments. Alternative strategies, such as Gaussian mixture-based methods, were
also discussed, demonstrating improved convergence properties in situations involving

lighting changes or partial occlusions.

Overall, this chapter has highlighted that the choice of visual features remains a critical and
unresolved issue in visual servoing, directly impacting stability, convergence, and robustness.
Addressing this challenge is especially important in complex and unstructured environments.
The concepts and limitations identified here establish the foundations for the subsequent
chapters, which investigate advanced modeling and control strategies aimed at improving

robustness while preserving the advantages of direct visual servoing approaches.
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CHAPTER 2. LIFTING WAVELET TRANSFORM

2.1 Introduction

Wavelet transforms are essential tools for signal and image analysis. They enable the
decomposition of a signal into distinct frequency components, thus facilitating multi-resolution
analysis. Typically, classical wavelet constructions employ Fourier transformations to provide
basis functions, which are based on the translation and dilation principles. These approaches
have issues with irregularly sampled data, adaptive processing, and computational efficiency.
The Lifting Wavelet Transform (LWT) solves these limitations by offering a more flexible and
computationally efficient framework. Initially developed to optimize existing wavelet
transforms, the Lifting Scheme evolved into a method for constructing second-generation
wavelets, which depart from strict translation and dilation constraints. By dividing wavelet
transforms into elementary lifting steps, this method preserves excellent reconstruction qualities
while lowering computing complexity.

The first section of this chapter considers generalizations about the wavelet transform,
including historical wavelet families, types of wavelets, and the paramount question of selecting
the optimal wavelet. The second section of this chapter considers the conception of lifting

technique, which is a way to generate wavelets, and that includes the phases.

2.2 Wavelet Transform

The term wavelet refers to a function that oscillates during a “given time” (if the variable is
time) or over a finite length interval (if the variable is of spatial type). Beyond that, the function
decreases very quickly towards zero. Wavelets are primarily employed for the decomposition
of functions. This process involves representing a function as a weighted sum of functions
derived from basic operations performed on a primary function known as the mother wavelet.
These operations encompass translations and dilatations of the variable.Depending on whether
these translations and dilatations are chosen to be continuous or discrete, the resulting transform

is referred to as a continuous or discrete wavelet transform, respectively.

2.2.1 Continuous Wavelet Transform

A wavelet transform is said to be continuous when the structural parameters of the functions
used (i.e. the translations and dilations) can take any value from the set of real numbers R (the
dilations must nevertheless be positive). Wavelets were introduced by Grossmann and Morlet

[83] as a family of functions Wap of L?(R). They are generated by translations and dilations

of a finite energy basis function (belongs to L?(R)) called the mother wavelet y.
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— _1 . t=b
Vop t —\/Hv,b = a,beR,a+0 (2.1)
The coefficients a and b denote respectively the scale factor for the dilation of y, and the

translation coefficients. If the function y (X) is integrable and sufficiently oscillating to be of

zero integral:

Mk:f_f;twtdt:o 0<k<N (2.2)

The continuous wavelet transform (CWT) of a function f is defined by:

Wyla,b)=(f v a,b) (2.3)

where the symbol (. ) corresponds to the scalar product in L2().

If the wavelet y satisfies the admissibility condition

_ okl
Cy = fO wa < 400 (2.4)

Then the continuous wavelet transform W (a, b) admits an inverse

Tt = Clw f()"" f;"o Xy a,b 59 22 dbda (2.5)

From the admissibility condition, 1A|) (0)=01s observed, implying that y must oscillate, hence
its name "wavelet". It should be noted that the CWT converts a one-variable function into a
two-variable function. The representation of a function by its CWT is redundant and the inverse
transform is not always unique. Moreover, not all functions W(a, b) are necessarily the CWT

of the function f.

The advantage of this characterization over the Fourier transform is that it not only gives

information on the type of singularity but also its location in time.

2.2.2 Properties of a first generation wavelets
e Zero moments: this is the most important property for a wavelet. a wavelet yhas N

zero moments if’

+o0
Mk:/ thp t dt =0 0<k<N

—00
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According to the last equation A, any wavelet must have at least one zero moment (the
case where k£ = 0).

e Compact stand: as long as the wavelet has less zero moments and its support is
compact, a more exact high frequency analysis is possible. Wavelets like Daubechies'
family exhibit compact support, making them highly localized in time and
computationally efficient.

e Regularity: The regularity of a wavelet is the property allowing to locate singularities
in a signal. It can be noted that there is a link between regularity and null moments. As
much as we have null moments as much the signal is regular.

e Symmetry: like the number of zero moments, the symmetry of the wavelet conditions
its regularity over an interval.

e Orthogonality: The orthogonality of a wavelet is the property allowing eliminate
information redundancy. Many wavelet bases, such as Haar and Daubechies wavelets,
are orthogonal, which ensures energy conservation and the ease of reconstruction, hence

stable computational results.

2.2.3 Discrete Wavelet Transform DWT

The Discrete Wavelet Transform (DWT) has been demonstrated to offer a computationally
efficient alternative to the CWT by discretizing the scale and translation parameters. In the
discrete case, the values of the parameters a and b are restricted to a discrete grid. In this case
a dilation step ao>1 and bo>0 is fixed and by setting a = a™ and b = nboao™ with m and n €Z.
The wavelet bases are defined by the functions [84].

m
Vo T = a,’ Y ag™x — nb, (2.6)

Therefore, the wavelet decomposition and the inverse transform are determined by the

following equations:

W, (m,n) = (0,0 = [ L%, (x)dx (2.7)

=X €22 W, m,n ,,,, coverin L*(R) (2.8)
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Thus, the wavelet transform associates with the function f € L?(R) a discrete set of
coefficients Wy (m, n). [85] constructed a dyadic wavelet transform for which ap=2 and bo=1,

showed that for particular functions y of L?(R), the family:

Yoy © =272 27"z —n ¥V m,n €Z? (2.9)

Py, Constitutes an orthonormal basis of L*(R).

2.3 Multi-resolution analysis

The multi-resolution analysis method is a mathematical structure formalized Mallat on the
finite real axis [84][86][21][87]. In this regard, wavelets provide an effective instrument. The
fundamental concept of multi-resolution analysis involves the hierarchical representation of a
function by a lower-resolution component, which is characterized by the wavelet coefficients

necessary to restore the original function [88].
2.3.1 Theoretical framework

The notion of multiresolution wavelet analysis of a function /' € L?(R) consists in its
projection onto function bases, giving increasingly less fine approximations of the original

function. A sequence {VJ }jE  of closed subspaces of L?(R)) is a multiresolution approximation

if it verifies the following properties: [89][90]

1- V; is invariant under translation of length 2)
V(j, k) €Z% f(t) eV, <= f(t—2'k) €V, (2.10)
2- Causality property: the spaces {V/}/e , define a sequence of nested spaces.
Vir1 C Vg (2.11)
3- The details between V) ; and V; are increased by a factor of 2.
ViE€EZ f(t) EV, <= f(t/2) €V, (2.12)

4- The intersection of the nested spaces contains only the zero element.
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Jim Vi = N5V (2.13)
5- The union of nested spaces {VJ} jez 18 dense in L?(R). In other words, the adherence of this
union is identified with the space L?(R).

lim V; =U/ V; =L*R) (2.14)

J—+00

6- There exists f'such that { ¥ — n) }nez is a Riesz basis

Condition (6) implies that an orthonormal basis of V; can be deduced from the basis of V},

from a single function ¢(¢), the scaling function, by constructing the family:

¢, (t) = 2‘%(2% —n) (2.15)

Since operations are performed in nested spaces, any function in V; can be expressed as a
linear combination of the functions in V;_, . In particular ¢ € V;, = V_,, and subsequently the
existence of a sequence & € L?(R) such that

¢(t) = V23 h(n)¢(2t —n) (2.16)

n=

where the A(n) are the coordinates of @#(t) in the basis {2¢(2t — k), k € Z}, or the coefficients of
the coarse discrete filter. These /(n) verify the following two properties, for an orthonormal

basis:
$(t) = V2 [T h(n)p(2t —n) with T2 h*(n) =1 (2.17)

Mallat combines the concept of multiresolution analysis and wavelet theory by considering
wavelets as functions containing the details needed to move from a coarse resolution to a finer
resolution.

The orthogonal complement of V in V,_, is defined by the vector space W,

Vi =V; @W, (2.18)
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The wavelets (yjn)nez belong to the space W,;. Under certain conditions, they constitute an
orthonormal basis of IV, the orthogonal projection of a function fon V;_; can be written:

pTOjUj_1 I = prOjU_j f+>

T

2 WFGi) (2.19)

The odelet associated with this multi-resolution analysis is determined by the existence of a

sequence (gn)nez € L?(R) such that

() = V222, g(n) (2t — n) (2.20)

The orthogonality condition on the spaces V; and W, allows to establish the relationship

between the two sequences /(n) and g(n) [33].
gn)= —1"h(-n+1) (2.21)

The biorthogonal multiresolution analysis is defined using the two spaces {V} }xez , {V} }kez.

The associated scaling functions {¢; , }nez and {¢; , }nez constitute the two non-orthogonal

bases of the approximation spaces V, and V,, the biorthogonal wavelet bases {1, , }nez and

Jn
{1} Inez constitute the bases of the complementary spaces of V}, and V,in V,_, and V}_, i.e.

the spaces W, and W,ﬁ
Viei =V, oW, Vii =Vio W, (2.22)

The spaces are not orthogonal to their complement, but to the complement of the dual space.
VLW, And W,J_Wk the biorthogonal conditions translate:
(QSJ"/C ;aj7k/) = 5k—k’ Vj, k, k'ez (223)

WD) =0k Vikk €Z (2.24)

2.3.2 One-dimensional fast wavelet transform
In practice, the signals that are encountered are discrete. Consequently, it is necessary to

implement a discrete version of the wavelet transform. This discrete version can be derived

42



CHAPTER 2. LIFTING WAVELET TRANSFORM

from the scale equations. To illustrate, consider the scale function ¢(t). For a discrete signal
C={¢|k=-,-2,-1,0,1,2,...}, on associate C with a function f{t) in V: ft =
Z;:ioo cd(t —k)

Mallat created the fast wavelet transform algorithm, which uses the wavelet function y(t) to

express the signal f{(t). The following is the definition of the algorithm:
Cik = Dm0 ln—9kCj—1.m (2.25)
djy = ZonZ—co Gk CiLm (2.26)
Based on the two earlier equations:
C;={cjs\k=-,-2,-1,0,1,2,... } (2.27)
D;={djs\k="-,-2,-1,0,1,2,... } (2.28)
are respectively the result of the convolution of C; ; with the filters H* = {h_,| k=

ey, —=2,-1,0,1,2,...} and G* ={g | k=-,-2,-1,0,1,2,...} followed by down-

sampling of factor 2. The previous two equations can be written more compactly as follows:
Ci=HxCj_ (2.29)
D;=Gx*Cj, (2.30)
The process of decomposition starts from C, = C up to J levels of decomposition.

Subsequent to level J levels, undergoes a transformation, resulting in a sequence of novel

signals: { C;;Dy; Dy q;...5 Dy}

- ~ s N ( \ ( \
* *
Cj » H lz —’Cj+1 » H lz —>Cj+2—>---
| J . J \ / \ )
4 N ' ' S
* *
» G 12 = Dj+ » G 12 —> Dj.,
\ J . J — |

Figure 2.1: Discrete signal decomposition algorithm.
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2.3.3 Principle of decomposition and reconstruction in the case of 2-D transform

The principle of decomposition and reconstruction for the 2-D transform is presented in a
general manner in Figs. 2.2 and 2.3 [33].
The wavelet decomposition of an image (NXN) therefore proceeds as follows:
- First, each column of the 2-D image is decomposed using vertically the 1-D filters. This
produces two images (NxN/2), one corresponding to the low vertical frequencies, the other to
the high vertical frequencies.
- Secondly, the same 1-D filters are applied to the lines of these two images. Each of them is
decomposed into two new images (N/2xN/2), one corresponding to the low horizontal
frequencies, the other to the high horizontal frequencies.

In total, four images (LL, HL, LH, HH) are therefore generated at each level of
decomposition. The following decomposition performs the same process on LL, corresponding

to the low horizontal and vertical frequencies.

Columns l

ho P (2 +—» L, Image
_l_ L ) resolution

—» h0 —» 2 in level N
A, ht (> |2 > HLy
resolutlon’
in level N l Image
hO ‘2 —>  LHy | details
in level N

ht m 2 —» HH,

Figure 2.2: Filter Bank analysis for the wavelet transform
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Columns Rows
Image
resolution LLy TZ > 90
nlevelN t2 > g0 >
HLy ] T2 > g1 Image
Image resolution
details < LH, ¥ Tz > g0 in level N-1
in level N T2 |, g
LLy-1
_ HHy > 12 | g

Figure 2.3: Inverse Wavelet Transform

2.4 Lifting Scheme Theory

In order to create and apply wavelet transforms, the lifting scheme is offered as an effective
tool. This leads to the creation of so-called "second generation" wavelets. Consequently, the
lifting scheme will be described as a general and flexible technique.

Originally, the aim of the lifting scheme, introduced by Sweldens [91], was to propose a
method for constructing biorthogonal wavelets whose moments cancel each other for
increasingly higher orders: "a lift" towards high zero moments. It is an interesting alternative
to the classic convolutional filtering scheme of the transform, because it is much less complex.
Indeed, the number of operations is divided by a ratio of up to two compared to a classic scheme.
Among the advantages of lifting, the following may be noted:

- The possibility of measuring wavelet transforms in points without going through the Fourier
domain

- Obtaining a lower computational complexity and a simpler and more efficient implementation.
- The possibility of implementing the inverse transform, on the other hand in the case of
classical wavelets it is not obvious that the synthesis filters are exactly the inverse of the analysis
filters.

The lifting scheme [92][93][94][95][91] is carried out in three steps presented in Figs. 2.4, 2.5:
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) Y
S
—>1 SPLIT -P U

S 1) T >D

Figure 2.4: Block diagram of 1D lifting scheme steps [96]

A (F)—> 4
5 f
A ~+)———spLIT| | -P* U
f A;—ré > H
—>{ SPLIT -P U ‘ i
\ D, G*—)—) |2
n "
/. >+ > spLIT| | -P*| | U
¢ N D' k
D, —)é > D

Figure 2.5: Block diagram of 2D separable lifting steps [96]

1- Polyphase transform: is a process that can be described in relatively simple terms. Given a
signal as input, the transform separates it into two components, the even and odd components.
To be more precise, the application of the polyphase transform to the original signal fresults in
the partitioning of f'into two disjoint subsets: f., which contains the samples belonging to ' with
an even index, and fo, which contains the samples belonging to f with an odd index. This process

is referred to as the "Lazy Wavelet Transform".

Polyphase transform: f— (fe, fo)
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2- Prediction operation: is based on the finding that most imaging signals exhibit a local
correlation structure in both the frequency and spatial domains. In other words, samples with
highly correlated frequencies in the same neighborhood will show a high correlation rate,
whereas samples with highly correlated frequencies outside of the same neighborhood will only
show a low correlation rate. The two sub-signals, f. and fo, will be highly correlated if the signal
fdisplays such a structure, making it possible to predict fo from f.. To predict fo, the operator P
is applied to the subset fe. The wavelet coefficients, or detail of the signal, are the difference d

between fy and its prediction.

d=fo—P(fe)

The calculation of the prediction and storage of the details are performed through a dual lifting

step. Therefore, the second step of the lifting scheme is expressed as follows:

Dual lifting step: (fe, fo) = (fe, d)

3- Update operation: is the final step in the process, and it is essential for acquiring a more
precise low-frequency representation of the signal while preserving its fundamental global
properties. Two subsets are identified: fec and de. The subset de is derived through a process
analogous to high-pass filtering, followed by sub-sampling. The subset f. is obtained by
straightforward sub-sampling, resulting in the signal's distribution across the entire frequency
band of the original signal. It is important to note that Shannon's conditions are not met in this
scenario, necessitating the implementation of a third step to ensure an adequate representation
of the low-frequency signal. This third step involves the application of an update operator on

the detailed signal [87].

s = fo+Uld)

The second step is referred to as a lifting step, which involves the transformation of (fe, d) to

(s, d).

Lifting step: (fe, d) — (s, d).

2.4.1 Properties of the Lifting Scheme
Faster calculation: Lifting enables the execution of calculations within the same memory

location as the input signal, thereby facilitating significant reductions in memory requirements.
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Efficiency: In the majority of cases, the number of operations is reduced in comparison to the
independent filtering of the two sub-bands. Indeed, lifting calculates the low and high frequency
bands simultaneously.

Reversible: The implementation of the inverse lifting scheme is elementary. It is obtained by
reversing the order of the operations and undoing them.

General: The transform is implemented without any reference to the Fourier domain.
Furthermore, the extension of the scheme to other application frameworks is extremely easy.

[90].

2.5 Conclusion

The wavelet transform is a tool that can provide a one-dimensional signal a multiresolution
representation. Data compression and transmission, image and signal processing, and numerical
solutions of differential and integral equations are just a few of the application areas in which
it has seen significant success. The reason the wavelet transform works so well is because, for
a certain class of functions, the majority of the function's information is concentrated in a
limited number of wavelet coefficients.

In the context of multidimensional signals, such as images, the construction of wavelet bases
that are separable by tensor product is a viable option. However, it should be noted that these
bases possess an undeformable square support and are isotropic. Consequently, they are not
optimally suited for the representation of regions in images that exhibit contours or local
singularities. To address this limitation, numerous anisotropic wavelet bases, including
curvelets, contourlets, bandelets, and oriented wavelets, have been proposed to facilitate a more
efficient representation of images.

Meanwhile, the discovery of the lifting structure has made it easier to construct simple
multiresolution transforms, which are invertible by nature and allow for the use of non-linear
operators that can capture the singularities present in a signal. By minimizing the necessary
arithmetic operations, the lifting scheme also improves the wavelet transform's efficiency.
Using the lifting scheme, the direct and inverse transforms are implemented without having to

go through the Fourier domain.
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CHAPTER 3. LIFTING WAVELET TRANSFORM-BASED
PHOTOMETRIC VISUAL SERVOING

3.1 Introduction

In this chapter, an introduction is provided to the central focus of this thesis: Lifting Wavelet
Transform-based Photometric Visual Servoing (LWT-PVS). A camera image provides a wealth
of information about the world perceived by the robot, encoded in varying intensity levels,
commonly referred to as luminance. The core idea behind LWT-PVS is to capture this rich
information, encoded as pixel intensities, and transform it into useful features for visual
servoing tasks. By leveraging the Lifting Wavelet Transform (LWT), multi-resolution features
are extracted with the aim of guiding the robot’s movements with high precision.
One of the key contributions of this chapter is the development of an interaction matrix for
LWT-PVS, which is formulated in analytical form. This interaction matrix establishes the
relationship between the changes in the visual features and the spatial velocity of the vision
sensor, providing the necessary framework for the visual servoing task. It is demonstrated that
the proposed method can perform visual servoing without relying on traditional image
processing techniques, such as image matching and visual tracking. This makes the approach
more efficient and less computationally intensive, while maintaining robustness and accuracy

in various operational scenarios.

3.2 Interaction Matrix for Lifting Scheme Coefficient
The interaction matrix, denoted as L, is constructed based on the chosen visual features and
is expressed within the camera reference frame. This matrix plays a fundamental role in
establishing the relationship between the changes in visual features and the spatial velocity of
the vision sensor, represented by v.. Essentially, it serves as the mathematical framework that
links the sensor’s motions to the observed feature variations in the camera’s field of view. This
relationship can be expressed in the following manner, as described in [2]:
s = Ly, (3.1
For the purpose of the visual servoing task, the proposed visual features, denoted as W, are
derived by incorporating both the stacked approximation A and the detail components H, V,
and D. These components are obtained through the application of two-dimensional separable
lifting operations performed on the image I(x, y). In this context, (x, y) represent the normalized
pixel coordinates within the image plane, which correspond to the three-dimensional spatial
coordinates X=(X, Y, Z) in the camera reference frame. The visual features effectively capture

multi-resolution characteristics of the image and are mathematically expressed as follows:
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X= w0 VT Tew (3-2)

In this context, the image point coordinates m = (u,; v) are expressed in pixel units and are
influenced by the intrinsic parameters of the camera, collectively represented as a = (cu, ¢, f,
a). Here, ¢, and ¢, denote the pixel coordinates of the camera's principal point, which is the
point where the optical axis intersects the image plane. The focal length of the camera is given
by f, while a represents the aspect ratio, which captures the relationship between the pixel
dimensions in the horizontal and vertical directions. These intrinsic parameters form a key
component of the camera model, enabling the mapping of three-dimensional scene points to

their corresponding two-dimensional image points.

As shown in Fig. 2.5, and with assuming the function f'is the captured image I, A, H, V and D

arc expressed as:

H = A, — P*(A}) (3.3)

A=A+ U*(H) (3.4)

D = D, — P*(D}) (3.5)

V =D} + U*(D) (3.6)

where

I =1(x0,¥) (3.7)

Ie = 1(xc,y) (3.8)

Ay = A (Xe, Yo) (3.9)

A, = A (xe,Ye) (3.10)

Dy = D'(x0,¥5) (3.11)
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De = D'(x0, ye) (3.12)
Such that
D'=1I, —P(l,) (3.13)
A=1,+U(D) (3.14)

Coordinates with odd and even indexes, x,, y» and xe, ye, are x and y such that # and v in
Equation (3.2) are odd or even.

The primary objective of this section is to derive the interaction matrix that establishes the
relationship between the features obtained via the Lifting Scheme and the spatial velocity of
the camera. By doing so, this matrix acts as a bridge connecting the variations in the lifted
image features to the motion dynamics of the vision sensor, providing a vital foundation for

tasks such as control and motion estimation in visual servoing applications.

W = Lww, (3.15)
where:
H
A
W = 3.16
N (3.16)
Vv
and:
Ly
L
L= |4 3.17
w LD ( )
Ly,
with:
H =Ly, (3.18)
A=1L,v, (3.19)
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D=Ly, (3.20)

V =Ly, (3.21)

The predictor P and updater U operators, along with their Hermitian transposes P* and U*,
can be formulated using convolution filters denoted as p, u, p*, and u*. These convolutional
representations simplify the mathematical expressions and allow the corresponding Equations,
specifically (3.3), (3.4), (3.5), (3.6), (3.13), and (3.14), to be rewritten in an equivalent, more

compact form as follows:

H = A, — [[ A, (. y, Op* (x — 11,y — 7o) dedy (3.22)
A=A, + [[H(z,y,)u* (x — 7,y — 7o)dxdy (3.23)
D =D; — [[ Dg(x,y, )p*(x — 11,y — To)dxdy (3.24)
V=D,+ [[D(z,y, )u*(x — 71,y — T2 )dxdy (3.25)
D' =1, — [[ Io(z,y, )" (x — 71,y — 7o) dxdy (3.26)
A =1,+ [[ D'(z,y, )u*(x — 71,y — 7o )dxdy (3.27)

The derivative of approximations and details can be written as:

dA! zy.t ~dAl z,y,t p*(z—T1,y—To) _ dAl .yt ~dAl Tyt
H === —Jf dt drdy = = —Jf P (@ — T,y —

Ty )dxdy (3.28)

dAr) wvya dH ‘layat u (‘B T17y_T2) p— dA?} w’y7t _ dH x Y, t . _
A= dt + ff dt dxdy - dt fj dt l’ THY

Ty )dxdy (3.29)
D = PLput [ AP St Pt gy = APt [ ADLEME (s
Ty)dzdy (3.30)
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V:(]D 11/, +fde1ufu(1 —T1,Y—To) dxdy—dD‘ x,y,t _+_ff(1D1uf $—le—

dt dt dt
T, ) dxdy (3.31)
D = dI, ;;,y,t o f[ dl, zy,t p(é::—‘rl,’y—‘rz) dxdy _ dI, (’Z,y,t . f[ dl, (Zyy,t p(iL’ — Ty )da:dy
(3.32)
A/:dl T 1/, +fde’1 1/1‘111 —T1,Y—To) dxdy—dl x,y,t +fde dltl/f — Ty —
Ty )dxdy (3.33)

Relying on the temporal luminance constancy hypothesis, it is assumed that the intensity (or
luminance) of a specific point x remains unchanged over time. This assumption proves to be
applicable across various components, including I, lo, AL, AL, D., D, H and D, i.e. these
entities collectively represent the different luminance attributes or transform components
derived from the image, and the constancy hypothesis provides the foundation for modeling

their temporal behavior, as indicated in the following formulation:
I(x+dx;t+dt) =1(x;t) (3.34)

Here, dx represents the displacement of the point x occurring during the time interval dt. By
performing a first-order Taylor series expansion of Equation (4.34) around the point x, it is
possible to derive the optical flow constraint equation. This equation establishes a linear
approximation relating the temporal and spatial variations of intensity, laying the groundwork

for computing the motion field.
VITx+1,=0 (3.35)

where VI7 = [& %] = [I, 1,] is the spatial gradient of the image I(x,t) at point x.

Thus:
I1=—-VITx (3.36)

Taking into account the interaction matrix L, associated with x (i.e. x = L, v,.):
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- 0
0 =

N[&

PHOTOMETRIC VISUAL SERVOING
L, = ( (3.37)

ry — 1+ 2? y)
- 2 1+y? —zy —x
By assuming a planar scene, a relationship connecting the depth of scene points to the

coordinates of their corresponding image points can be established as follows:
3 =Az+By+C (3.38)
Relation (3.35) gives:
I=-VITL v, (3.39)
As a result, the interaction matrix corresponding to image intensities can be expressed as:
L,=-VITL, (3.40)
where L; is given by:

I,(Ax + By + C)
I,(Ar+ By + C)
i (—xl, —yl,)(Az + By + C) (341)
! —ayl, — (1+y*)I, '
1+ 2* I, +ayl,

—yl, +zl,

Thus (3.28), (3.29), (3.30) and (3.31) become:

H= [La, — 1) L p*(x — 11,y — 7o) dady] ve (3.42)
A= [Lar + If Lpu*(x — 71,y — 7)dxdy] v, (3.43)
D= [Lp; — I LD{,p*<$ — 71,y — To)dxdy| v, (3.44)

V= [Lp + [ Lpu*(z — 71,y — 7o) dxdy] ve (3.45)
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with:
D = (L, — [J Li,p(x — 71,y — To)dzdy] v,
/.l/ = [L;, + JI Lyu(z — 71,y — 7)dzdy] v,
So we get:
Ly =1Ly — ff[LA{,p*(x — 71,y — T2)dxdy)
Ly = [Ly + [[ Lpu*(z — 1,y — 72)dxdy]
Lp = [Lpy — [f Lpyp"(z — 11,y — m9)dady]

Ly = [Lpy + [ Lpu*(x — 11,y — 7o) dady]

After substitution of (3.9) into (3.11), the following result is obtained:

Wy

L= (L L} Ly Ly Ly LY

v,

La= (LY Ly L% Ly LY LY)
Lp=(L% Ly Ly Ly L LY)
v

With setting Ax + By + C' = a we get:

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)
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L;; = aIAf:w —//aIA:)wp* T — T, Y — Ty dxdy

L;IU = (ZIAZU — // OCIA:)U;D* T—T1,Y, — To d.Tdy
L%:a(_-TIA/ —yl 4 >_//0((—$]A, —yly )p* T — T,y — Ty dudy
Co ey Ox Oy

Ly = —wyly, — 1+ 1> IA::y — // [—xyIA:)w — 1492 IA:)y] Pt x— T,y — Ty drdy
LZ’” = 1+ a2 IA::J; + gcyIAéy — // [ 1+ 22 IA:)J; + xyIA;y] p*r—T1,y— Ty dzdy

(3.56)

L’Xr — aIA:)m + //CZIku* X — T, Y — Ty dxdy

v

LAy =al, —}—//anyu* T — Ty, Y, — Ty dzxdy

Oy

O Oy @ Y
L= —oyly, — 149" Iy + // (el = 14y Iy, |u w—m,y =7y dudy
L) = 1+a%1Ty +ayly +//[1+x2 Th +$yIH/]u*x_Tl’y_72 dudy

O Oy €T !

L = —yly +xly + // [~vln, + @l |ut =7y =7 dudy
o 0y g ¢

(3.57)
L%m = al . —//a] :)mp* T — T,y — Ty dady
L"g = al ., —//0{] :)Up* x— Ty, Y, — Ty dxdy
Ly =a(=olo, —yl @)‘//“(‘“ =yl )P =Ty =Ty dady
Ly = —wylp, — 1+y* 1 éu_// [_xyf 1Ayt zu]p* x =1,y — Ty ddy

L= 1+a2% Iy +ayly —//[1+$21/ +xyl/]p*x—7'1,y—7'2 dxdy
er ey O Oy
Ly = —yID::I + xIDéy - // [_QID{,Z + xID:)J Pt T —T1,y— Ty dzdy

(3.58)
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Ly =al . +//aIDwu* T — T,y — Ty dady

L’;;“ =al » + //aIDyu* T — Ty, Y, — Ty dzdy

Ly =a <_ﬂ  —ylp; > + //a<_$ID;,, _?JIDy>u* T — T,y — Ty dudy

l)y

Oy

L) = 1+2® Ip +aylp +//[1+3€2 IDJ:+9€Z/IDU}U*$_7'1»CU_7'2 dxdy

Oy

LY = —ylp +alpy +//[—?JID,.+$IDJ“* Ty =Ty dudy
Oy Oy * '

(3.59)

3.3 Control Scheme
In this section, the methodological considerations underlying the selection of filters for the
Lifting scheme are presented. The predict and update filters are accordingly selected to be Lazy

wavelets, as detailed below:

w=T[1/2 1/2, UZG@ (3.60)
p=[1/4 174 p:(ijj) (3.61)

The control strategy applied to the chosen features is the same as presented in [2]:
ve = —ALyy (W—W") (3.62)

Here, A\>0 represents the control gain, and Lj;, denotes the Moore-Penrose pseudo inverse
of the interaction matrix Ly, .

Object and image planes are assumed to be parallel, which means A = B = 0 [2], and the
depth Z is held at the desired position Z". So (3.6) becomes:

C= (3.63)

1
VA
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The computation of the visual servoing control law can be formulated as an optimization
problem aimed at minimizing a visual error function in the image space. Several numerical
optimization strategies have been employed in the visual servoing literature, each presenting
specific advantages and limitations.

First-order gradient-based methods, such as steepest descent, are simple and computationally
efficient but often suffer from slow convergence and sensitivity to step-size tuning, particularly
in nonlinear visual servoing problems [2]. Gauss—Newton methods improve convergence speed
by exploiting a local quadratic approximation of the cost function; however, their effectiveness
strongly depends on the validity of the linearization and may degrade in the presence of large
initial errors or poorly conditioned interaction matrices [74]. Full Newton-based methods, while
theoretically attractive, are generally impractical for real-time visual servoing due to the
computational burden associated with Hessian estimation [80].

To overcome these limitations, this work adopts the Levenberg—Marquardt (LM) approach,
which combines the robustness of gradient descent with the fast local convergence of Gauss—
Newton optimization [60]. By introducing an adaptive damping factor, the LM method ensures
stable convergence when the system is far from the solution and progressively accelerates
convergence as the error decreases. This property is particularly important in visual servoing,
where nonlinearities and variations in the interaction matrix are common.

The Levenberg—Marquardt strategy therefore provides a suitable compromise between
numerical stability, convergence speed, and computational efficiency, making it well adapted
to the visual servoing framework considered in this thesis.

Consequently, Equation (3.13) is reformulated as follows:
ve = —A\(H + pdiag(H)) ™ Liy (W—W") (3.64)
Here, H = LL L, serves as an approximation of the Hessian matrix, and p represents a
damping factor. To enhance the convergence characteristics of the control law, the
parameters A and u in the Levenberg-Marquardt optimization algorithm are made adaptive,
following the approach described in [27]:

A\ = 10/0910 Ne =75 (3.65)

= 102l0g1“ Ne —21 (366)
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Here, IV, represents the norm of the difference between the current image and the target

image. The values 7.5 and 21 were determined empirically.

3.4 Conclusion

In conclusion, this chapter introduces a novel approach to visual servoing by
incorporating multi-resolution wavelet features derived from the lifting scheme. The
primary contribution is the formulation of an interaction matrix that connects the variations
in image features with the spatial velocities of the camera. This matrix serves as the
mathematical backbone for relating visual feature dynamics to sensor motion, enabling
precise control in 6-dof positioning tasks. The visual features are derived from stacked
approximations and detail components, which are obtained through two-dimensional
separable lifting operations on the image. By utilizing this multi-scale representation, the
image’s rich characteristics are effectively captured, thereby enhancing the system’s ability
to perform visual servoing tasks.

The proposed method integrates Lazy/Haar wavelets as the prediction and update filters,
and employs the Levenberg-Marquardt optimization technique to ensure robust
convergence. This optimization approach is preferred over traditional methods, as it expands
the convergence domain and improves the efficiency of the control law. The interaction
matrix is further enhanced through the use of Moore-Penrose pseudoinversion, allowing for
accurate estimation of the motion required to bring the visual features into alignment with
the desired target.

The framework presented here eliminates the need for complex image processing
techniques, such as image matching and visual tracking, which are typically computationally
expensive and prone to errors under variable conditions. Instead, the use of lifted wavelet
coefficients provides a more efficient and stable solution for visual servoing applications.
The adaptive nature of the control parameters, A and i, ensures that the system can handle

varying conditions in real-time, making the approach both effective and versatile.
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CHAPTER 4. SIMULATION RESULTS

4.1 Introduction

This chapter presents a comprehensive simulation-based evaluation of photometric visual
servoing strategies, with particular emphasis on the robustness and stability of the control loop
under varying illumination conditions and different initial camera configurations. The study
focuses on the comparison between classical PVS and the proposed LWT-PVS.

Photometric visual servoing directly exploits image intensity information as visual features,
thereby avoiding explicit geometric modeling and feature extraction. While this dense
representation provides rich visual feedback, it is well known to be highly sensitive to
photometric disturbances such as illumination variations, shadows, and global intensity
changes. These limitations often restrict the practical applicability of classical PVS in real-
world environments.

The approach proposed in this thesis aims to address these limitations by introducing a
wavelet-domain representation within the photometric visual servoing framework. By
decomposing image intensities using the lifting wavelet transform, the proposed method
separates structural information from illumination-dependent components, thereby improving
robustness while preserving the core advantages of photometric control.

The objective of this chapter is to quantitatively and qualitatively evaluate the impact of this
representation on closed-loop behavior. The analysis is conducted through a systematic set of
simulations organized into two distinct scenarios, corresponding to moderate and large initial
camera displacements. For each scenario, both PVS and LWT-PVS are evaluated under
nominal illumination conditions and under deliberately introduced illumination variations. This
experimental design allows a clear assessment of convergence properties, stability margins, and
robustness to photometric disturbances.

The results are analyzed in terms of photometric error evolution, camera velocity profiles,
and overall convergence behavior. Particular attention is devoted to the smoothness and
boundedness of the control signals, which are critical for safe and reliable robotic operation.
The simulation results presented in this chapter are intended to validate the theoretical
developments introduced in the previous chapters and to provide strong motivation for the
experimental validation presented in the subsequent chapter.

The remainder of this chapter is organized as follows. Section 4.2 describes the simulation
framework and implementation details. Sections 4.3.1 and 4.3.2 present and analyze the results
obtained for the two scenarios under consideration. Finally, Section 4.4 provides a comparative

discussion and concludes the chapter.
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4.2 Implementation Details and Simulation Configuration

This section describes in detail the simulation environment, software framework, and
implementation parameters used to evaluate classical Photometric Visual Servoing (PVS) and
the proposed Lifting Wavelet Transform—based Photometric Visual Servoing (LWT-PVS). All
simulations are performed under strictly identical conditions to ensure a fair and reproducible

comparison.

Simulation Environment and Software Framework

All simulations are conducted using the ViSP (Visual Servoing Platform) library [82], which
provides a dedicated and well-established framework for the implementation and evaluation of
visual servoing algorithms. ViSP is widely used in the visual servoing community and offers
native support for photometric visual servoing, interaction matrix computation, and camera
motion simulation.

The simulations follow a kinematic eye-in-hand configuration, where a monocular camera
is rigidly attached to the robot end-effector. Robot motion is simulated kinematically using
camera velocity commands, without considering joint-level dynamics, which is consistent with
standard visual servoing studies.

The same ViSP-based simulation pipeline is used for both PVS and LWT-PVS to guarantee

identical numerical conditions, control loop timing, and integration schemes.

Camera Model and Image Acquisition

The camera is modeled using a pinhole projection model with known intrinsic parameters.
Lens distortion is neglected. The camera frame is denoted by 7 ..

Images are acquired in grayscale format with a fixed resolution of 240 x 320 pixels. This
image size is used consistently throughout all simulations and corresponds to the resolution
employed in the implementation of photometric visual servoing in ViSP.

The reference image I*is captured at the desired camera pose and remains fixed during the
servoing process. At each iteration k, the current image I(k)is generated by the simulator

according to the current camera pose.

Visual Features and Photometric Error Definition
For classical Photometric Visual Servoing, the visual feature vector is defined as the stacked
vector of pixel intensity values:
s(k) = L(k),
and the corresponding photometric error is defined as:

e(k) = I(k) — I,
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This formulation directly follows the photometric visual servoing framework introduced by
Collewet and Marchand [12].

For the proposed LWT-PVS approach, both the current and reference images are
decomposed using the lifting wavelet transform described in Chapter 3. The wavelet
decomposition is applied to the entire image at a fixed number of decomposition levels. The
resulting approximation and detail coefficients are concatenated to form the visual feature
vector:

spwr (k) = W(I(k)),
and the photometric error is defined in the wavelet domain as:
eLwr (k) = W(I(k)) — W(I").
This representation preserves the dense photometric nature of the control law while

introducing multi-resolution information.

Control Law and Motion Representation
For both PVS and LWT-PVS, the camera velocity screw is computed using the same

velocity-based control law:

V.= [ZJ] = _)\L+e7

Where v = (v,,v,,v,) denotes translational velocities and w = (w,,w,,w, )" denotes
rotational velocities.

The camera pose error is characterized for analysis purposes by translational displacement
t = (t,,t,,t,), and rotational displacement 8 = (0,,,0,,0.).

These quantities are not used in the control law but are monitored to evaluate convergence

behavior.

Discrete-Time Control Loop
The visual servoing loop is implemented in discrete time with a fixed sampling period 7',.
At each iteration:
1. Image acquisition from the ViSP simulator
Computation of visual features and photometric error
Evaluation of the interaction matrix

Computation of the camera velocity

w»ok »w N

Camera pose update using first-order integration
This loop is repeated until convergence. Both PVS and LWT-PVS share the same discrete-
time control architecture implemented in the ViSP simulator. The control loop, illustrated in

Fig. 4.1, differs only in the definition of the visual features and the associated interaction matrix.
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Image Acquisition

—»| Image acquisition from the VISP simulator
vpCamera::acquire()

Visual Features & Photometric Error

Computation of photometric visual features and error
vpBasicFeature::error()

Interaction Matrix Evaluation

Computation of the interaction matrix
vpFeatureLuminance::interaction()

Camera Velocity Computation

Control law evaluation
vpServo::computeControlLaw()

Camera Pose Update

First-order pose integration
vpServo::computeControlLaw()

Convergence Test

First-order pose integration
vpServo::applyControl()

No Convergence Test
lell <e?

Yes

Figure 4.1: Discrete-time control loop for PVS and LWT-PVS implemented using the
ViSP framework
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Ilumination Variation Modeling

[llumination variations are introduced by modifying the intensity distribution of the
simulated images during the servoing process. Both global illumination changes and spatial
intensity variations are applied, thereby violating the brightness constancy assumption.

The same illumination perturbations are applied to both PVS and LWT-PVS to ensure a fair

robustness comparison.

Stopping Criteria

The servoing process is stopped when one of the following conditions is met:
o the norm of the photometric error falls below a predefined threshold, or
e amaximum number of iterations is reached.

The stopping criteria are identical for all experiments.

Summary of the Simulation Protocol

The implementation described above is used consistently for all experiments presented in
this chapter. Only the initial camera pose—defined by translational and rotational
displacements—and the illumination conditions are varied to define the two scenarios analyzed
in Sections 4.3.1 and 4.3.2.

The resulting evolutions of the photometric error, camera velocity components, and
convergence behavior are presented in Fig. 4.3 to Fig. 4.6 and Fig. 4.8 to Fig. 4.11, and analyzed

in detail in the following sections.

4.3 Simulation Results
4.3.1 Scenario 1

This first scenario is designed to evaluate the behavior of photometric visual servoing
schemes under moderate initial camera displacement with respect to the desired pose. The initial
configuration is deliberately chosen to place the camera sufficiently far from the target pose to
activate the nonlinear characteristics of the control law, while remaining within a realistic
operational range for practical robotic applications. The initial pose error is defined by a
translational displacement AT; = [3 cm, 3 c¢cm, 10 cm] and a rotational displacement AR; =
[—30°, —25°, 20°].

Such a configuration ensures that all six degrees of freedom are simultaneously excited,
allowing the evaluation of coupling effects between translational and rotational motions. At the
same time, the magnitude of the displacement remains representative of typical industrial or

laboratory conditions in which visual servoing is activated after a coarse positioning stage.
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The objective of this scenario is twofold. First, it serves as a baseline configuration for
assessing the nominal convergence properties of classical PVS and the proposed LWT-PVS
approach under controlled conditions. Second, it enables a detailed analysis of the transient
behavior of the control loop, including error oscillations, coupling effects between motion
components, numerical conditioning of the interaction matrix, and the smoothness of the
generated control signals.

By considering both normal illumination conditions and artificial illumination variations,
this scenario highlights the intrinsic sensitivity of photometric control laws to photometric
disturbances, even when geometric displacements remain moderate. The results obtained in this
scenario therefore provide valuable insight into the robustness of each method and establish a
meaningful reference point for the more challenging conditions investigated in Scenario 2.

The figures associated with Scenario 1 (Figs. 4.3(a—c) to 4.6(a—c)) illustrate the evolution of
the photometric error, camera velocities, and convergence behavior over time. These results
allow a direct and quantitative comparison between classical PVS and LWT-PVS in terms of
stability margins, convergence speed, transient smoothness, and robustness to illumination

changes.

4.3.1.1 Normal Illumination

The results obtained for classical PVS under normal illumination conditions in Scenario 1
are presented in Fig. 4.3(a—c). The norm of the photometric error exhibits a global decreasing
trend, confirming convergence toward the desired visual configuration. However, the transient
phase is characterized by noticeable oscillations in the error evolution, particularly during the
early iterations of the servoing process.

These oscillations can be attributed to the nonlinear nature of the photometric interaction
matrix and to the sensitivity of raw intensity-based features to local intensity variations. In this
operating regime, small local discrepancies in image intensity can generate corrective actions
that propagate through the control law. The corresponding camera velocity profiles display
irregular fluctuations, especially at the beginning of the servoing process, reflecting these
corrective actions induced by local photometric inconsistencies.

Although convergence is ultimately achieved, the system operates close to its stability limits,
and the lack of smoothness in the control signals indicates limited robustness, even under
nominal illumination conditions. Such behavior may lead to undesirable mechanical stress or
reduced positioning accuracy in real robotic systems.

The corresponding results obtained with LWT-PVS are shown in Fig. 4.4(a—c). In contrast

to classical PVS, the pose errors converge more smoothly, with significantly reduced
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oscillations throughout the servoing process. Both translational and rotational components
exhibit a near-monotonic decay toward zero, indicating improved stability and damping
characteristics.

Moreover, the camera velocity profiles are smoother and present lower peak magnitudes,
reflecting improved numerical conditioning of the interaction matrix. The norm of the visual
error decreases faster and more regularly, demonstrating enhanced convergence behavior.
These observations indicate that, even under nominal illumination conditions, the wavelet-
based representation provides greater robustness and improved transient behavior compared to

classical photometric visual servoing.

4.3.1.2 Illumination Variations

When illumination variations are introduced, the limitations of classical PVS become more
pronounced, as illustrated in Fig. 4.5(a—c). The photometric error no longer decreases
monotonically and may temporarily increase, indicating a violation of the brightness constancy
assumption underlying the photometric control formulation. As a consequence, the camera
velocity commands become irregular and may exhibit abrupt variations, reflecting instability in
the control loop.

These behaviors confirm the strong sensitivity of classical photometric visual servoing to
illumination disturbances, even in scenarios where geometric displacement remains moderate.
In such conditions, the control law struggles to maintain consistent convergence, and the
interaction matrix becomes poorly conditioned due to photometric inconsistencies.

The results obtained with LWT-PVS under the same illumination variations are presented in
Fig. 4.6(a—). Despite the degraded visual conditions, the pose errors maintain stable
convergence trends. Although the convergence rate is slightly reduced compared to nominal
illumination, no divergence or sustained oscillatory behavior is observed.

The velocity profiles remain smooth and bounded, and the norm of the visual error decreases
steadily throughout the servoing process. This behavior confirms that the wavelet-based visual
features effectively attenuate illumination-induced disturbances while preserving the structural
information required for control.

Notably, the system achieves a high level of precision, with final translational errors as small
as [—0.069 mm, — 0.112 mm, — 0.186 mm] and rotational errors reaching values as low as
[—1.119°, —0.274°, 0.011°].

These results clearly demonstrate the ability of the proposed approach to maintain accurate

alignment despite significant illumination perturbations.
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(a) Initial image I (b) Desired image I

(c) Error between desired images in normal conditions and with illumination variations (I - I"
+255)/2 (used for visualization)

Figure 4.2: Simulation Images for scenario 1
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Figure 4.3: Simulation Results of PVS for scenario 1 in Normal [llumination

70



CHAPTER 4. SIMULATION RESULTS

v(m/s), w(rad/s) 0.95
d(m),\dr(rad) dx
0.77}
0.56 dy
020 0.50}F dz
0.16fF ‘{.\‘/fl =AY ; 041k o
dry
0.53F 0.23f drz
080k 0.05
VX
126k -0.14%
VY —
162k vz 0.32}
WX |
1.98¢ -0.50
wy
2.35p W2z 0.68F
-2.71 N N N 1 L 2 I L L 0.88 N 2 N . N N . N 2
0 160 320 480 640 800 960 1120 1280 1440 Y0 160 320 480 640 800 960 1120 1280 1440
iterations iferations

(a) Robot velocities applied (b) Errors in positioning (in m and rad)

1.84x 108

1.66}
el ——

1.47k

1.29k

0.92
0.74

0.55

0 160 320 480 640 800 960 1120 1280 1440
iterations

(©) [Is - sl

Figure 4.4: Simulation Results of LWT-PVS for scenario 1 in Normal Illumination
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Figure 4.5: Simulation Results of PVS for scenario 1 in [llumination Variations
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Figure 4.6: Simulation Results of LWT-PVS for scenario 1 in Illumination Variations
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4.3.2 Scenario 2

The second scenario addresses a significantly more challenging configuration, characterized
by a large initial camera displacement involving substantial translational and rotational offsets
relative to the desired pose. This scenario is intentionally designed to stress the photometric
visual servoing framework and to evaluate the limits of stability, convergence, and robustness
of both classical PVS and the proposed LWT-PVS approach.

Large initial displacements are known to exacerbate nonlinearities in the interaction matrix
and to amplify sensitivity to photometric inconsistencies. As a result, this scenario constitutes
a stringent test of the domain of attraction and the robustness margins of the control schemes
under study. The initial pose error is defined by a rotational displacement
AR, = [—40°, 35°, 30°] and a translational displacement AT, = [5cm, — 5 cm, 30 cm].

As in Scenario 1, both normal illumination conditions and illumination variations are
considered. However, in this scenario, the combination of large motion amplitudes and
photometric disturbances represents a particularly adverse configuration for classical
photometric visual servoing. The objective is to assess whether the proposed wavelet-based
representation can preserve stability and convergence under such extreme conditions.

The results corresponding to Scenario 2, illustrated in Figs. 4.8(a—c) to 4.11(a—c), allow a
direct comparison between PVS and LWT-PVS in terms of convergence behavior, smoothness
of the control signals, and robustness to illumination changes. This scenario plays a critical role
in demonstrating the extended convergence domain and enhanced robustness of the proposed

LWT-PVS framework.

4.3.2.1 Normal Illumination

For Scenario 2, the initial camera displacement is significantly larger than in Scenario 1,
resulting in reduced visual overlap and increased nonlinearity in the control dynamics. The
results obtained with classical PVS under normal illumination conditions are presented in Fig.
4.8(a—c).

The photometric error decreases slowly and exhibits pronounced oscillations throughout
the transient phase. These oscillations reflect the difficulty of accurately modeling the
interaction matrix far from the desired pose and the strong coupling between motion
components. The corresponding camera velocity profiles display large fluctuations, indicating
strong nonlinear effects and limited convergence margins.

Although convergence may eventually occur, the transient phase is long and unstable, and

the lack of smoothness in the control signals highlights the reduced robustness of classical PVS
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under large initial displacements. Such behavior may compromise both precision and
mechanical safety in practical robotic systems.

The results obtained with LWT-PVS under nominal illumination are shown in Fig. 4.9(a—c).
In contrast to classical PVS, the proposed approach ensures smooth and stable convergence
despite the large initial displacement. Both translational and rotational pose errors decrease
steadily with minimal oscillations, demonstrating improved damping and numerical
conditioning of the interaction matrix.

Moreover, the camera velocity profiles remain continuous and bounded, with significantly
reduced peak magnitudes compared to classical PVS. The norm of the visual error decreases at
a faster and more regular rate, indicating an enlarged domain of attraction and improved

convergence efficiency under challenging geometric conditions.

4.3.2.2 Illumination Variations

When illumination variations are combined with large initial displacements, classical PVS
exhibits severe instability, as illustrated in Fig. 4.10(a—c). The photometric error oscillates
significantly and may increase over time, indicating a breakdown of the brightness constancy
assumption underlying the photometric control formulation. The resulting velocity commands
become erratic, reflecting a loss of closed-loop stability.

These results clearly demonstrate the limitations of classical photometric visual servoing in
challenging environments where strong nonlinearities and photometric disturbances coexist.
Under such conditions, the control law fails to maintain reliable convergence and becomes
highly sensitive to illumination-induced inconsistencies.

The corresponding results obtained with LWT-PVS are presented in Fig. 4.11(a—c). Despite
the combined challenges of large initial displacement and illumination variations, the system
maintains stable and consistent convergence. Although the transient phase is longer than
under nominal illumination, all pose error components eventually converge toward zero without
divergence or sustained oscillatory behavior.

The velocity profiles remain smooth and bounded, and the norm of the visual error decreases
monotonically. Notably, the system achieves high positioning accuracy, with final translational
errors of [0.027 mm, — 0.038 mm, — 0.574 mm] and rotational errors of [0.408°, —
0.548°, 0.006°].

These results confirm the strong robustness of the proposed wavelet-based approach and
demonstrate its ability to preserve stability and precision under extreme visual and geometric

perturbations.
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(@) Initial image I (b) Desired image I’

(¢) Error between desired images in normal conditions and with illumination variations (I - I"
+255)/2 (used for visualization)

Figure 4.7: Simulation Images for scenario 2
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Figure 4.8: Simulation Results of PVS for scenario 2 in Normal [llumination
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Figure 4.9: Simulation Results of LWT-PVS for scenario 2 in Normal Illumination
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Figure 4.11: Simulation Results of LWT-PVS for scenario 2 in Illumination Variations
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4.4 Conclusion

In conclusion, the simulation results presented in this chapter demonstrate the effectiveness
and robustness of the Lifting Wavelet Transform-based photometric features for 6-dof
positioning tasks, even in the presence of significant illumination variations. The proposed
method outperforms traditional photometric visual servoing (PVS) techniques, successfully
converging to the desired pose in both simulation scenarios. This is particularly noteworthy
given the dynamic nature of the visual conditions, where portions of the scene appear and
disappear as the camera moves, highlighting the challenges posed by changing lighting
conditions.

Across both scenarios and illumination conditions, LWT-PVS consistently outperforms
classical PVS. The key advantages of the proposed method can be summarized as follows:

o Faster and more regular convergence.

e Reduced oscillatory behavior.

e Improved numerical conditioning of the interaction matrix.
o Enlarged convergence domain.

e Strong robustness to illumination variations

The results demonstrate that robustness is achieved not by modifying the control law, but
by redefining the visual representation. The lifting wavelet transform separates illumination-
dependent components from structural information, enabling the control system to focus on
invariant features.

From a practical standpoint, the smoother velocity profiles produced by LWT-PVS reduce
the risk of actuator saturation and mechanical stress, making the approach suitable for real
robotic systems.

Despite the slight nonzero convergence of the error norm, primarily due to discrepancies in
pixel intensities between the initial and desired images, the overall performance of the proposed
method is exemplary. The controlled lighting variations introduced in both scenarios were
effectively handled by the system, confirming the robustness of the Lifting Scheme-derived
features in overcoming the challenges associated with illumination changes. These findings not
only validate the proposed modeling approach but also demonstrate its potential for real-world
applications, where lighting conditions can be unpredictable and dynamic.

Although the simulation results are highly encouraging, certain limitations must be

acknowledged. The computational overhead associated with wavelet decomposition is higher
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than that of classical PVS, although the lifting scheme significantly mitigates this issue.
Additionally, extreme lighting conditions or severe occlusions may still affect performance.
These limitations motivate further investigation through experimental validation and real-
time optimization.
Overall, the results confirm the superiority of the proposed method in terms of precision,
robustness, and reliability in comparison to traditional visual servoing techniques, making it a
promising approach for a wide range of positioning and tracking tasks in robotics and other

dynamic systems.
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1 General Conclusion

In this thesis, the introduction of a novel method for visual servoing, referred to as Lifting
Wavelet Transform-based Photometric Visual Servoing (LWT-PVS), is presented. This
method leverages wavelet coefficients computed using the lifting scheme as the primary
features for visual servoing tasks, providing an innovative approach to overcoming challenges
associated with illumination variations. A key contribution of this work is the derivation of a
closed-form interaction matrix that relates the temporal variations in wavelet coefficients to the
spatial velocities of the vision sensor.

Extensive simulations have been conducted to validate the proposed method against classical
photometric visual servoing techniques, which typically employ raw image intensities as
features. The results demonstrated the effectiveness of LWT-PVS in achieving accurate and
robust 6-dof positioning, even in the presence of significant illumination changes. The proposed
method showed superior performance in dynamic lighting conditions, outperforming traditional
photometric approaches in maintaining stability and precision. However, the system was found
to experience performance degradation for larger translational and rotational displacements,
and it required more computation time for convergence compared to methods that rely on
geometric features.

Despite these challenges, the LWT-PVS method offers a promising framework for visual
servoing applications, particularly in environments where lighting conditions are unpredictable
and where traditional feature extraction methods struggle. The use of multi-resolution wavelet
features provides a richer and more robust representation of the image, which enhances the
system’s ability to perform under variable conditions, offering a solid foundation for future

developments in this area.

2 Future works
While the proposed LWT-PVS method has shown significant promise, several avenues for
improvement and further research remain:
1. Global Descriptors for Large Displacements: One limitation identified in this work
is the deterioration of performance for large translational and rotational displacements.
Future research will focus on incorporating global descriptors, such as moments of
wavelet coefficients, to mitigate this issue. By capturing more comprehensive
information from the image, these global descriptors could help maintain robustness and
accuracy even for large displacements.
2. Real-Time Visual Servoing: Another area for future work is the real-time

implementation of LWT-PVS in dynamic environments. While this study focused on
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simulations, real-world applications demand the integration of real-time algorithms
capable of handling environmental variations. Efforts will be made to develop real-time
visual servoing algorithms based on wavelet lifting schemes, optimizing computational
efficiency while maintaining performance.

3. Optimization of Convergence Time: The method’s convergence time, particularly for
large displacements, could be further optimized. Investigating more efficient
optimization techniques or adaptive control schemes that adjust parameters dynamically
based on the system's state may improve convergence rates and reduce the
computational burden.

4. Integration with Geometric Features: To balance the advantages of photometric and
geometric methods, a hybrid approach could be developed. This would combine
wavelet-based photometric features with traditional geometric features, ensuring that
the system can handle a wide range of tasks with varying complexity and accuracy
requirements.

5. Handling Occlusions and Partial Visibility: The impact of occlusions or partial
visibility of the target object remains a challenge in visual servoing. Future work could
explore methods for handling partial occlusions, perhaps by incorporating machine
learning techniques for feature selection and adaptation under these conditions.

6. Expansion to 3D Visual Servoing: While the current work focuses on 2D visual
features, extending the approach to 3D visual servoing tasks is a logical next step. This
would involve integrating depth information and handling 3D object interactions,
allowing the system to operate in more complex, three-dimensional environments.

7. Exploration of Other Wavelet Variants: Finally, it would be valuable to explore the
use of different wavelet transforms beyond the lifting scheme. By experimenting with
other variants, such as curvelets or shearlets, the system’s sensitivity to higher
frequencies could potentially be improved, and the representation of complex image
structures could be enhanced.

In conclusion, while the proposed LWT-PVS method represents a significant advancement
in visual servoing, there is still considerable room for improvement. By addressing the
aforementioned challenges and exploring new techniques, future research could further enhance
the robustness, efficiency, and versatility of visual servoing systems, expanding their

applicability to a wider range of real-world tasks.
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