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Abstract                                                                                                                                                                

Visual servoing enables the control of robotic systems directly from visual feedback and has 

become a fundamental technique in vision-based robotics. Among existing approaches, 

Photometric Visual Servoing (PVS) relies on raw image intensities as visual features, avoiding 

explicit feature extraction and matching. While PVS offers high accuracy and a compact 

formulation, its performance is strongly affected by illumination variations, limiting its 

robustness in realistic operating conditions. 

This thesis proposes an enhanced photometric visual servoing framework based on 

multiresolution image analysis, referred to as Lifting Wavelet Transform-based Photometric 

Visual Servoing (LWT-PVS). The method integrates the lifting wavelet transform into the PVS 

formulation to exploit spatial-frequency image representations while preserving the direct 

nature of photometric control. By selecting appropriate wavelet sub-bands, the proposed 

approach reduces sensitivity to illumination changes and photometric disturbances, while 

maintaining stable convergence properties. 

A unified mathematical formulation of LWT-PVS is developed, including the definition of 

photometric visual features, error functions, interaction matrices, and discrete-time control 

laws. The complete control architecture is implemented using the ViSP (Visual Servoing 

Platform) simulator, ensuring consistency with established visual servoing tools. 

Extensive simulation studies are conducted for multiple scenarios involving different initial 

camera poses and both nominal and varying illumination conditions. The performance of PVS 

and LWT-PVS is evaluated in terms of error convergence, camera velocity behavior, and 

robustness to lighting variations. The results show that LWT-PVS significantly improves 

robustness to illumination changes compared to classical PVS, while preserving convergence 

accuracy and stability. 

The contributions of this work demonstrate the relevance of multiresolution representations for 

photometric visual servoing and provide a robust control framework suitable for real-world 

robotic applications operating under challenging illumination conditions.  

 

Keywords: Lifting Scheme; Visual servoing; Wavelet Transform; Interaction matrix; 

Photometric visual servoing ; Illumination variations; ViSP simulator.  
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 الملخص 

تمُكّن تقنية التحكم البصري من التحكم في الأنظمة الروبوتية مباشرةً من خلال التغذية الراجعة البصرية، وقد أصبحت تقنية 

( على شدة PVSأساسية في مجال الروبوتات القائمة على الرؤية. من بين الأساليب الحالية، يعتمد التحكم البصري الضوئي )

الإضاءة الخام للصورة كخصائص بصرية، متجنبًا بذلك استخراج الخصائص ومطابقتها بشكل صريح. على الرغم من أن  

PVS  يتميز بدقة عالية وصيغة مختصرة، إلا أن أداءه يتأثر بشدة بتغيرات الإضاءة، مما يحد من متانته في ظروف التشغيل

 الواقعية. 

تقترح هذه الأطروحة إطار عمل مُحسّنًا للتحكم البصري الضوئي قائمًا على تحليل الصور متعددة الدقة، ويشُار إليه باسم  

(. يدمج هذا الأسلوب تحويل المويجات الرافعة  LWT-PVSالتحكم البصري الضوئي القائم على تحويل المويجات الرافعة )

لاستغلال تمثيلات الصورة المكانية الترددية مع الحفاظ على الطبيعة المباشرة للتحكم الضوئي. من خلال   PVSفي صيغة  

اختيار نطاقات فرعية مناسبة للمويجات، يقلل الأسلوب المقترح من الحساسية لتغيرات الإضاءة والاضطرابات الضوئية، مع 

 الحفاظ على خصائص تقارب مستقرة. 

من خلال اختيار نطاقات فرعية مناسبة للمويجات، يقلل الأسلوب المقترح من الحساسية لتغيرات الإضاءة والاضطرابات  

الضوئي   البصري  التحكم  لنظام  موحدة  رياضية  صياغة  تطوير  تم  مستقرة.  تقارب  على خصائص  الحفاظ  مع  الضوئية، 

LWT-PVS  تشمل تعريف الخصائص البصرية الضوئية، ودوال الخطأ، ومصفوفات التفاعل، وقوانين التحكم في الزمن ،

)منصة التحكم البصري(، مما يضمن التوافق مع أدوات التحكم   ViSPالمتقطع. تم تطبيق بنية التحكم الكاملة باستخدام محاكي  

 البصري المعروفة. 

أجُريت دراسات محاكاة مكثفة لسيناريوهات متعددة تتضمن أوضاعًا ابتدائية مختلفة للكاميرا وظروف إضاءة اسمية ومتغيرة.  

من حيث تقارب الخطأ، وسلوك سرعة الكاميرا، ومقاومة تغيرات الإضاءة. تظُهر    LWT-PVSو  PVSتم تقييم أداء نظامي  

التقليدي، مع الحفاظ على    PVSيحُسّن بشكل ملحوظ مقاومة تغيرات الإضاءة مقارنةً بنظام    LWT-PVSالنتائج أن نظام  

 دقة التقارب والاستقرار. 

الدقة للتحكم البصري الضوئي، وتوفر إطار تحكم قويًا مناسبًا لتطبيقات   تبُرز مساهمات هذا العمل أهمية تمثيلات متعددة 

 الروبوتات في العالم الحقيقي التي تعمل في ظروف إضاءة صعبة.

 

؛ مصفوفة التفاعل؛ التوجيه البصري الضوئي؛ تغيرات  اتمخطط الرفع؛ التوجيه البصري؛ تحويل الموج:  كلمات المفتاحيةال

 . ViSPالإضاءة؛ محاكي 
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1 General Introduction 

Visual Servoing is a multidisciplinary topic that lies computer vision, robotics and automatic 

control. It is a feasible technique for robotic closed-loop control that uses information extracted 

from images, obtained by one or more sensors [1][2][3]. This field has advanced considerably 

in recent years with applications such as medical robotics [4], autonomous drones [5], etc. In 

general, visual servoing is designed to minimize the difference between a vector 𝑠(𝑠)  of current 

features and a vector 𝑠𝑠 of the desired features in order to accomplish a positioning or tracking 

task. Points, lines, and geometric moments were among the first features of the geometric type 

taken into consideration in visual servoing [6][7][8]. For these geometric methods, the method's 

capability to identify, extract, and track visual features during the robot control process is 

essential. 

Historically, key point coordinates or line parameters have been extensively utilized for the 

purpose of computing various visual features that are derived from image data. This complex 

process demands a highly accurate extraction and a meticulous tracking process that cannot be 

overlooked. Geometric shapes, including rectangles, circles, and ellipses, must be efficiently 

identified, monitored, and consistently followed across time in a spatiotemporal manner. This 

continuous tracking is essential to maintain the integrity and positional relevance of these 

shapes within different frames of reference. In the highly specialized field of visual servoing, 

such precision in tracking becomes absolutely critical not only for the functionality of real-time 

control systems but also for enhancing the overall performance of automated tasks. Here, the 

accurate detection combined with the reliable tracking of features plays a crucial role in 

effectively guiding and maneuvering robotic systems through their designated tasks and 

operational environments. The precision required for these activities ensures that robotic 

systems can adapt to changing conditions and execute their functions with the highest level of 

efficiency and reliability. This capacity is fundamentally important for complex applications 

where even slight deviations can lead to significant errors or failures in operation [9][10][11].  

 

2 Context 

Recently, the rapid development of innovative methodologies, such as Photometric Visual 

Servoing (PVS), has significantly evolved, utilizing pixel intensities as the primary visual 

features for enhancing precision in robotic applications and control systems [12]. Furthermore, 

there are many more complex features, including mutual information [13], the total of the 

image's conditional variances [14], mixtures of Gaussians [15], or photometric moments [16]. 

The convergence domain of these direct visual servoing methods is smaller, but they are often 
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considered to be more precise than approaches that use geometric visual features. These 

advanced techniques significantly enhance the precision of control and increase the resilience 

of the system by employing global descriptors. Among these descriptors, photometric moments 

play a crucial role as they are utilized to compute the interaction matrix. This innovative 

approach enables the creation of visual feedback, which is then effectively leveraged to drive 

and refine robotic movements in a more sophisticated manner [17][18][19]. Nonetheless, 

variations in lighting conditions and dynamic scene elements, which include factors such as 

occlusions or unexpected changes in the object’s appearance, can significantly undermine the 

overall effectiveness of these techniques. These variations pose substantial challenges to their 

robustness in various practical applications, making it difficult to achieve consistent results 

across different situations and environments [20]. 

To effectively tackle this complex issue, a substantial number of rigorous studies have 

thoroughly investigated the diverse application of frequency-domain image transformations in 

various contexts. Among these notable methods, two of the most significant are the Discrete 

Cosine Transform (DCT) and the Fast Fourier Transform (FFT) [21][22]. These advanced 

techniques play a crucial role in significantly enhancing visual servoing systems, which rely 

heavily on sophisticated and complex image processing for achieving highly accurate control, 

along with seamless automation in a broad range of applications. The ongoing development and 

continuous refinement of such innovative image transformation methods remain an essential 

and vibrant area of research, contributing to impressive advancements in technology and 

thereby improving overall system performance in various fields and industries [19]. However, 

these methods often fail to adequately account for the inherently temporal nature of signals, 

particularly when dealing with non-stationary image data, such as real-time video streams that 

are continuously changing. In contrast, wavelet transforms have gained considerable 

prominence due to their unique dual ability to capture both frequency and temporal information 

effectively. This remarkable feature makes them particularly effective and well-suited in 

managing the complexities of non-stationary signals encountered in various applications. 

Wavelet-based techniques outperform traditional frequency-domain methods, providing better 

robustness against lighting fluctuations and offering improved spatial resolution 

[23][24][25][26]. 

The development of a direct visual servoing method using multi-scale representations that 

describe the image's spatial and frequency information is the main objective of the work 

presented in this thesis. In order to create multi-scale representations of an image, high-pass 

and low-pass filters are applied to the image successively, followed by subsampling. Each 

filtering level then contains continuously smaller details over the decompositions. These 
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methods not only enable the creation of multiple levels of detail, but they also enable the 

creation of a sparse representation of the image, meaning that most of the coefficients have 

values near zero, which reflects the essential information of the image. Multi-scale 

representations gained importance as a result of harmonic analysis. The representation of 

signals as a series of waves is the primary interest of this field, which has its roots in Fourier 

analysis. An optimal wave system is constructed to describe the structure of an image in order 

to develop an interesting multiscale representation. One of the main fields of research in modern 

applied mathematics is the development of such systems. 

Duflot et al. [27] introduced a noteworthy enhancement to wavelet-based techniques 

specifically aimed at managing illumination changes effectively. This was achieved by 

employing both shearlet and wavelet coefficients to model the intricate features of input images 

in a more robust manner. Despite these promising advancements in the field, the computational 

cost that is associated with calculating the necessary interaction matrices, which utilize such 

sophisticated coefficients, continues to pose a significant hurdle in achieving efficient real-time 

applications [28][29]. As such, while wavelet-based methods demonstrate considerable promise 

in various applications, their overall applicability is frequently constrained by notably high 

computational demands, which can significantly hinder their potential for real-time deployment 

in practical scenarios [30]. 

 

3 Motivations and Objectives 

The lifting scheme presents an innovative and highly effective solution to the various 

computational challenges that are often inherent in wavelet transforms [31]. By utilizing a non-

Fourier approach, it provides an exceptionally efficient method for constructing biorthogonal 

wavelets, which considerably reduces the computational cost when compared to traditional 

methods [32]. The lifting scheme is particularly beneficial in the specific context of visual 

servoing, where real-time processing capabilities are essential, and achieving computational 

efficiency is paramount for successful applications. Through the lifting approach, second-

generation wavelets are constructed directly in the spatial domain, offering a more flexible, 

adaptable, and computationally efficient alternative to first-generation wavelets that operate in 

the frequency domain [33]. This adaptiveness highlights the lifting scheme's potential to address 

the varied needs of modern computational tasks, enhancing performance while maintaining 

speed and reducing resource utilization. 

In the realm of signal and image processing, lifting schemes facilitate a broad array of 

applications, encompassing tasks such as denoising, compression, feature extraction, and 

classification [34]. Furthermore, the ability of lifting schemes to effectively segment signals 
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into various frequency bands while ensuring high computational efficiency renders them 

exceptionally well-suited for real-time applications in dynamic environments. These 

noteworthy advantages have led to the extensive adoption of lifting schemes across diverse 

fields, particularly in audio and image processing, where maintaining high computational 

efficiency is of utmost importance [35]. Such versatility and effectiveness also invite further 

exploration into innovative uses of lifting schemes in emerging technologies. 

This study introduces a novel and innovative Photometric Visual Servoing (PVS) approach 

that effectively utilizes the lifting wavelet transform (designated as LWT-PVS). The primary 

aim of this research is to comprehensively address the significant shortcomings and limitations 

found in conventional PVS methods, particularly in complex scenarios that involve 

considerable and varying lighting conditions. By deriving and extracting visual feedback from 

both the approximation coefficients and the detail coefficients obtained from the lifting wavelet 

transform, this advanced approach allows for the formulation of more precise and accurate 

control laws. The key advantage and significant strength of this methodology lie in its 

remarkable ability to represent specific and essential spatial features, including edges, contours, 

and textures, directly from the processed image data. The application of the lifting wavelet 

transform directly in the spatial domain facilitates the real-time identification and extraction of 

features, which is a critical capability required in applications that demand precise localization. 

This includes areas such as robotic navigation, autonomous vehicles, and sophisticated image-

based control systems, where accurate and rapid responses to changing environments are 

essential for successful operation and functionality [36][37][38][39][40]. 

In addition to significantly improving computational efficiency, the lifting scheme also 

provides a reversible transformation, which means that the inverse wavelet transform can be 

computed by systematically reversing the steps of the forward transform [41]. This particular 

feature is especially useful in systems where maintaining data integrity and achieving lossless 

recovery are crucial and of utmost importance. Furthermore, the versatility of the lifting scheme 

extends remarkably to non-uniform data sampling, making it a highly powerful tool for various 

scenarios where traditional Fourier-based methods might not be applicable or ideal. The 

adaptability of this approach enables better handling of diverse data structures while effectively 

preserving essential characteristics during the transformation process. 

 

4 Contributions and Thesis Outline 

The contributions of this research are as follows: 

1. New Approach to Visual Servoing: In contrast to the method proposed by Mendoza et 

al. [42], which relied on raw luminance values for visual feedback, the LWT-PVS approach 
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utilizes approximation and detail coefficients derived from the lifting wavelet transformation. 

This represents a shift towards utilizing spatial-domain features that are more robust to 

illumination changes, significantly enhancing control precision. 

2. Reduction in Dimensionality and Robustness to Illumination Variations: By using 

approximation coefficients, the approach provides a simplified, low-dimensional representation 

of the image. The detail coefficients encapsulate high-frequency content that remains invariant 

under changes in illumination, offering better robustness compared to previous PVS methods 

[43]. 

3. Mathematical Development of Interaction Model: The interaction matrix for the LWT-

PVS method is derived by integrating the optical flow constraint equation (OFCE) with the 

lifting wavelet transform. This interaction model serves as the backbone of the proposed control 

law, incorporating both approximation and detail features in a unified framework [44]. 

4. Method Validation: Through simulation-based experiments, the proposed LWT-PVS 

method is shown to outperform conventional PVS techniques in scenarios with varying 

illumination, demonstrating its practical applicability in real-time visual servoing systems. 

The structure of this thesis is as follows:  

Chapter 1 -  Visual Servoing: The chapter presents a detailed introduction to background in 

visual servoing, a brief survey of the currently existing visual servoing methods. 

The traditional geometric primitives-based IBVS, PBVS and Hybrid VS methods 

are first presented. This is followed by presentation of current state of the art in 

visual servoing methods that use intensity. 

Chapter 2 - Lifting Wavelet Transform Overview:  In this chapter, an overview on the 

classical wavelet transform with its drawbacks is presented. Then, the second 

generation WT, the lifting wavelet transform with its advantages is introduced.  

Chapter 3 - The Proposed Features:  is dedicated to LWT-PVS, the central theme of this 

thesis. The formulation of LWT-PVS is introduced and detailed mathematical 

developments necessary for obtaining the interaction matrix are presented. 

Chapter 4 -  Simulation Results:  in this chapter, proposed visual features are compared to the 

pure luminance feature under illumination variations, and the results obtained were 

presented. Finally, conclusions are drawn based on these results. 
 

General conclusion and perspectives:  Lastly, a conclusion on our work and 

perspectives for future work are presented. 
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1.1 Introduction 

In recent years, the rapid advancements in computing capabilities have made visual servoing 

an integral area of research and industry. Visual servoing refers to a feedback control system 

that relies on a computer vision unit, where the information provided by a vision sensor is used 

to guide the movements of a dynamic system. This system can either be physical, such as in 

robotics, or virtual, such as in the animation of artificial entities or augmented reality. 

Among the various visual servoing techniques, those belonging to direct visual servoing 

schemes are often considered to be more accurate and robust than methods based on geometric 

feature extraction. These techniques have found significant application in ultrasound-guided 

medical robots, as traditional methods requiring visual feature extraction struggle with 

ultrasound images. They are also widely used in fields such as medical robotics (especially in 

surgery), surgical micro-robotics, and assistive robots for people with disabilities. 

Regardless of the sensor configuration ranging from onboard cameras mounted on a robot’s 

end effector to multiple remote cameras, it is essential to select the most relevant visual 

information. Subsequently, a control law is developed to manage the appropriate degrees of 

freedom to ensure that the visual data reaches a desired value, which ultimately defines the 

task's success. These techniques can be applied to a wide variety of tasks, such as positioning a 

system relative to its environment or tracking moving objects, by controlling one or more 

degrees of freedom. This allows for compensation of inaccuracies in either the sensor or the 

system being controlled. 

Visual servoing, when utilizing a vision sensor that provides 2D information, offers a wealth 

of potential visual data. For example, it is possible to use 2D data such as the coordinates of 

key points in an image, or even 3D data derived from a localization module that processes 2D 

measurements. The challenge in visual servoing lies in selecting the most relevant information 

from this abundant visual data, ensuring that the system performs effectively. This requires the 

development of real-time image processing algorithms capable of extracting and tracking 

measurements in video-frequency image sequences. 

In essence, visual servoing involves controlling actuated systems through visual feedback, 

with a broad range of closed-loop approaches. The goal of a visual servoing task is to control 

the actuator in such a way that the error between the current visual features, 𝑠(𝑠) , and the desired 

features, 𝑠𝑠, approaches zero, i.e., the difference 𝑠(𝑠)  – 𝑠𝑠 becomes negligible.  

 

1.2 The Basic Components of Visual Servoing 

Vision-based control techniques aim to control a system's behavior using visual information, 

generally captured through cameras or other imaging devices. In such techniques, the primary 
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objective is to minimize an error signal, denoted as which represents the discrepancy between 

the desired visual features and the actual visual features at a given time. This error, 𝑠(𝑠) , is 

mathematically defined as: 

 

𝑠(𝑠) = 𝑠(𝑠 (𝑠) ; 𝑠) − 𝑠𝑠  (1.1) 

 

The formulation discussed is broad and adaptable, enabling its application across various 

vision-based control methods. The image measurements, denoted as 𝑠 (𝑠) , represent a set of 

features extracted from the camera's current image at time t. These measurements can include 

quantities such as the image coordinates of points of interest, the centroid of an object, or other 

geometric features like edges and corners. Based on these measurements, a vector of 𝑠 visual 

features, 𝑠(𝑠 (𝑠) ; 𝑠) , is computed. This computation may also utilize additional system-specific 

parameters, 𝑠, which represent prior knowledge such as the intrinsic parameters of the camera 

(e.g., focal length, pixel size, or principal point) or 3D models of objects within the scene. The 

desired state of the system is captured by the vector 𝑠𝑠, which contains the target values for 

these visual features. For example, 𝑠𝑠 may define the desired pose of an object in the image 

frame or the target pose of a robotic manipulator relative to an object. The error signal, 𝑠(𝑠) =

𝑠(𝑠 (𝑠) ; 𝑠) − 𝑠𝑠, quantifies the difference between the current and desired states. The primary 

goal of vision-based control is to minimize this error over time, ensuring the system accurately 

converges to the target state. Through this formulation, a wide range of tasks, such as object 

tracking, navigation, or robotic manipulation, can be addressed using either Image-Based 

Visual Servoing (IBVS) or Pose- Based Visual Servoing (PBVS). This approach provides an 

effective framework for leveraging visual information to achieve autonomous control. 

For this discussion, we focus on a specific case where the desired pose (𝑠𝑠) is fixed, and the 

target remains immobile. In this scenario, 𝑠𝑠 is constant, and any changes in the visual 

features 𝑠 are solely due to the motion of the camera. Furthermore, controlling the camera’s 

motion using six degrees of freedom (6-dof) is considered, corresponding to a camera mounted 

on the end effector of a robotic arm with six independent movements: three translational (along 

x, y, and z axes) and three rotational (roll, pitch, and yaw). The goal in this setup is to adjust the 

robotic arm's motion so that the current visual features s align with the desired visual 

features 𝑠𝑠. This is achieved by minimizing the error 𝑠(𝑠) = 𝑠(𝑠 (𝑠) ; 𝑠) − 𝑠𝑠, 

where 𝑠(𝑠)  represents the discrepancy between the current and target states. 

A key distinction in visual servoing techniques lies in the design of the visual features 𝑠. 

Classical approaches to visual servoing can be categorized into two main types. The first 
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approach is IBVS, where s is defined as a set of features that are directly extracted from the 

image, such as pixel coordinates, geometric shapes (e.g., points, lines), or image moments. The 

second approach is PBVS, where 𝑠 represents the pose (position and orientation) of the target 

relative to the camera. In this case, the pose is computed indirectly by extracting image 

measurements and using them in conjunction with additional system knowledge, such as the 

intrinsic parameters of the camera or a 3D model of the target. In earlier literature, PBVS was 

referred to as pose-based visual servoing rather than pose-based, but both terminologies are 

now widely accepted and used interchangeably. 

More advanced methods extending visual servoing beyond classical techniques will be 

explored. These methods build on the foundations of IBVS and PBVS but address challenges 

such as robustness to occlusions, dynamic targets, and improving the flexibility and accuracy 

of control in complex, real-world scenarios. By exploring these different approaches, a 

comprehensive understanding of visual servoing techniques and their applications in a variety 

of contexts is intended to be provided. 

Once the visual features 𝑠 are defined, the design of a control scheme becomes relatively 

straightforward. Among the various options, designing a velocity controller is one of the 

simplest and most commonly used approaches in visual servoing. To achieve this, it is essential 

to establish the mathematical relationship between the camera's spatial velocity and the 

temporal variation of the visual features 𝑠. This relationship defines how changes in the 

camera’s motion affect the visual features over time. 

Let the camera's spatial velocity be represented by 𝜈𝑐= (vc; 𝑠 𝑠), where 𝜈𝑐 is the instantaneous 

linear velocity of the camera's origin (i.e., the translational velocity), and ωc is the instantaneous 

angular velocity of the camera's frame (i.e., the rotational velocity). The time derivative of the 

visual features, represented by 𝑠,̇ is directly related to the spatial velocity of the camera through 

the interaction matrix (also referred to as the image Jacobian or the feature Jacobian) denoted 

by 𝑠 𝑠 . This relationship is expressed as: 

 

      𝑠̇ =  𝑠 𝑠𝜈𝑐  (1.2) 

 

The matrix 𝑠 𝑠 𝑠 𝑠 𝑠× 6  is referred to as the interaction matrix associated with 𝑠 [45]. Through 

the use of Equations (1.1) and (1.2), a direct connection can be established between the camera's 

velocity and the rate of change of the error over time: 

 

         𝑠̇ = 𝑠 𝑠𝜈𝑐   (1.3) 



CHAPTER 1. VISUAL SERVOING 

11 

 

In this context, 𝑠 𝑠  = 𝑠 𝑠 . If vc is used as the input to the robot controller and an exponential, 

independent reduction of the error is desired (i. e., 𝑠 ̇= -λ 𝑒), the controller can be derived using 

Equation (1.3) as follows: 

 

       𝑠𝑠 = − 𝑠𝑠 𝑠
+ 𝑠     (1.4) 

 

where 𝑠 𝑠
+ 𝑠 𝑠 6× 𝑠  represents the Moore-Penrose pseudoinverse of 𝑠 𝑠 , which is, 𝑠 𝑠

+ = 

(𝑠 𝑠𝑠 𝑠
𝑠 )− 1𝑠 𝑠

𝑠  with k ≥ 6 and 𝑠 𝑠  is of full rank 6. It is possible to invert 𝑠 𝑠  when k = 6 if det 

𝑠 𝑠 ≠  0, and the control gives vc = -λ𝑠 𝑠
− 1e. If k ≤ 6 and 𝑠 𝑠  is of full rank k, 𝑠 𝑠

+  is given by 𝑠 𝑠
+  

= 𝑠 𝑠
𝑠 (𝑠 𝑠𝑠 𝑠

𝑠 )− 1 . If 𝑠 𝑠  is not full rank, the singular value decomposition of 𝑠 𝑠  can be used to 

obtain the numerical value of 𝑠 𝑠
+ . In all situations, control scheme (1.4) permits minimal 

‖𝑠̇ − 𝑠𝑠 𝑠𝑠 𝑠
+̂ 𝑠‖ and ‖𝑠𝑠‖. The desired behavior 𝑠  ̇= -λe is achieved only if 𝑠 𝑠𝑠 𝑠

+  = Ik, where Ik 

is the k × k identity matrix, that is, only if 𝑠 𝑠  is of full rank k, k ≤ 6. 

In real-world visual servo systems, it is not feasible to exactly determine 𝑠 𝑠  or its pseudo-

inverse 𝑠 𝑠
+ . As a result, one must rely on approximations or estimates of these matrices. 

Henceforth, the symbol 𝑠 𝑠
+̂  is used to denote both the pseudo-inverse of the approximated 

interaction matrix and the approximation of the pseudo-inverse itself. Using this representation, 

the control law can then be expressed as follows: 

 

                                                  𝑠𝑠 = − 𝑠𝑠 𝑠
+̂ 𝑠 = − 𝑠𝑠 𝑠

+̂ (𝑠 − 𝑠𝑠)            (1.5) 

 

Assuming the robot controller can achieve perfect vc, and closing the loop by inserting (1.5) 

into (1.3): 

 

      𝑠̇ = − 𝑠𝑠 𝑠𝑠 𝑠
+̂ 𝑠     (1.6) 

 

This equation illustrates the closed-loop system's real behavior, which is different from the 

desired one (𝑠  ̇  = -λe) once 𝑠 𝑠𝑠 𝑠
+̂ ≠  Ik. Also, it is the basis for the Lyapunov theory-based 

stability analysis of the system. 

The majority of visual servo controllers use the fundamental concept that have been presented 

above. Schematic of a robotic visual servoing system is illustrated in Fig.1.1. 

The next stage involves elaborating on the intricate details of the process. One of the primary 

questions is: how should the task-specific variable, 𝑠, be appropriately chosen to ensure optimal 
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system performance? Following this, it is essential to determine the precise form and structure 

of the interaction matrix, 𝑠 𝑠 , which plays a critical role in visual servoing control. Another 

pressing concern is the accurate estimation of the pseudo-inverse of the interaction matrix, 

denoted as 𝑠 𝑠
+̂ . The answers to these questions are central to the development of efficient and 

robust visual servoing algorithms and will be systematically addressed in the subsequent 

sections of this chapter. 

Additionally, the chapter will provide a comprehensive overview of the two fundamental 

strategies in the field of visual servoing: IBVS and PBVS. These two classical approaches were 

originally conceptualized more than two decades ago [46] and have since served as the 

backbone for numerous advancements in this domain. Building upon their foundational 

principles, modern research has introduced various extensions and enhancements to these 

methodologies, overcoming historical limitations and improving system reliability, robustness, 

and adaptability. In the later sections, these contemporary solutions, which leverage advances 

in computational techniques and sensor technologies, will be presented in detail. 

 

 

 

Figure 1.1: Schematic of a robotic visual servoing system with eye-in-hand configuration [47]  

 

 

1.3 Camera-robot configurations 

In visual servoing applications, two primary configurations are commonly employed to 

integrate cameras with robotic systems for perception and control. The first configuration, 

referred to as the "eye-in-hand" setup, involves mounting one or more cameras directly onto 
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the robot’s end effector. This placement allows the cameras to move in conjunction with the 

robot, enabling close observation of the workspace or tools attached to the end effector. To 

interpret and utilize the camera data effectively in this configuration, a fixed and well-calibrated 

transformation is defined between the coordinate frame of the camera and that of the robot's 

end effector. This transformation facilitates the conversion of motion and visual data between 

the camera frame, the end effector frame, and other reference frames associated with the robot 

system. 

The second configuration, known as the "eye-to-hand" setup, involves positioning one or 

more static cameras in the robot’s workspace. These cameras are used to observe the robot's 

end effector, the target objects, or both from an external viewpoint. Unlike the eye-in-hand 

configuration, in eye-to-hand systems, it is necessary to compute the relationship 

(transformation) between the robot's coordinate frame and the static camera frame at each 

iteration. This dynamic transformation is crucial for maintaining spatial awareness and ensuring 

the accuracy of visual servoing operations. The eye-to-hand configuration is particularly useful 

when a broader perspective of the workspace is needed or when multiple targets and objects 

must be tracked simultaneously. 

The eye-in-hand configuration is often the preferred choice in tasks where it is important to 

keep the target or object of interest, as well as the tool attached to the end effector, within the 

camera's field of view throughout the operation. An example of this is object-grasping tasks, 

where the camera must monitor both the object being manipulated and the gripper mounted on 

the end effector for precise alignment and control [48]. However, there are also instances where 

hybrid configurations, combining elements of both eye-in-hand and eye-to-hand setups, are 

employed to exploit the advantages of each approach [49]. These hybrid systems can offer 

supplementary observations or redundancy for enhanced accuracy and flexibility in complex 

manipulation tasks. 

In the work described in this thesis, the focus is on a visual servoing system utilizing the 

eye-in-hand configuration. This setup provides the advantage of a camera perspective tightly 

coupled to the motions of the robot’s end effector, making it well-suited for tasks requiring 

precise monitoring and manipulation of objects within a localized environment. 

 

 

1.3.1 Eye-in-hand configuration 

The integration of the camera with the robot's end-effector adopts an eye-in-hand 

configuration, as depicted in Fig. 1.2. Within this framework, visual servoing control strategies 

are employed to define the appropriate velocity vectors, denoted as 𝑣 or 𝑠,̇ depending on 
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whether the desired motion is to be regulated in the camera space or the robot’s joint space. 

These velocity commands are transmitted to the robot controller, enabling precise execution of 

the corresponding movements. 

To enable accurate motion control, it is essential to determine several key parameters critical 

to the system's operation. These include the camera’s intrinsic parameters, the robot's Jacobian 

matrix ( 𝑒𝐽𝑞), and the transformation matrix ( 𝒄𝑀𝒃) that describes the spatial relationship 

between the camera's coordinate frame (𝑠 𝑠) and the robot's end-effector frame (𝑠 𝑠). The 

process for identifying these parameters involves performing camera calibration, robot 

calibration, and calibration of the relative pose between the camera and the end-effector. These 

calibration steps ensure that the geometrical relationships and system dynamics are well-

characterized and aligned for control purposes, following standard methodologies as outlined, 

for instance, in Tsai’s method [50]. 

One important aspect of visual servoing systems is their inherent robustness to calibration 

inaccuracies. Even in the presence of small errors in the calibration parameters, the control 

algorithms used in visual servoing are designed to adapt and perform reliably, which adds a 

layer of resilience to the overall system. This feature makes visual servoing particularly 

advantageous for robotic applications in dynamic or imperfect environments where precise 

calibration may not always be feasible or may degrade over time. 

 

 

 
 

Figure 1.2: Eye-in-hand camera-robot configuration 

 

 

1.3.2 Eye-to-hand configuration 

In the eye-to-hand configuration, the camera is mounted in a fixed position within the robot's 

workspace, as illustrated in Fig. 1.3. Unlike the eye-in-hand configuration, where the camera is 
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attached to the end effector and thus captures image changes resulting from both the movements 

of the target and the end effector, the eye-to-hand configuration limits image variation to the 

motion of the target alone. This separation simplifies certain aspects of system kinematics and 

control by decoupling the camera's viewpoint from the robotic manipulator's movements. 

A critical component of this configuration is the transformation matrix  𝒄𝑀𝒃 which describes 

the static relationship between the base coordinate system of the robot 𝑠 𝑠 and the camera's 

coordinate frame 𝑠 𝑠. Since the camera is stationary,  𝒄𝑀𝒃 is computed once during system 

setup and remains fixed throughout operation. This matrix forms the foundation for calculating 

the relative positions and orientations between various coordinate frames within the system, 

particularly the relationship between the camera frame and the robot's end effector frame. By 

systematically applying frame transformations, the kinematic relationships between the robot, 

camera, and target can be established and utilized for control or perception tasks. 

The eye-to-hand configuration offers several advantages, such as simplifying the modeling 

of image-based feedback control systems and eliminating the need to recalibrate for camera 

motion. As a result, it is well-suited for robotics applications where precise monitoring of a 

target is required without directly coupling the camera to the manipulator's dynamics. For 

further details about camera and robot configurations, readers can refer to the foundational 

works on visual servoing and robotic vision, such as those by Hutchinson et al. [1], Kragic and 

Christensen [51], and Chaumette and Hutchinson [52]. Their contributions provide in-depth 

discussions on the principles, advantages, and use cases for different camera-robot 

configurations. 

 

 

Figure 1.3: Eye-to-hand camera-robot configuration 
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1.4 Geometric Feature-based methods 

Visual servoing (VS) is a control technique that utilizes visual information from a camera to 

guide a robot's motion. The core objective of this approach is to enable the robot to interact with 

its environment by processing the visual data obtained from images of objects within the scene. 

In feature-based visual servoing methods, a set of image-based features or primitives, denoted 

as 𝑠 𝑠 𝑠 𝑠 2𝑠 , is extracted from the image, where 𝑠 2𝑠  represents the collection of all 

measurable quantities in the image space. These image features are derived using a variety of 

image-processing techniques, such as object detection, feature matching, visual tracking, and 

segmentation, all of which are critical for isolating and interpreting the relevant visual cues 

within the image. 

In most cases, these features correspond to the projections of certain geometric entities (𝑠 𝑠) 

that exist in the three-dimensional scene, such as points, edges, straight lines, or other geometric 

structures. These 3D entities belong to the spatial domain (𝑠 𝑠 𝑠 𝑠 3𝑠 ) and are projected onto 

the 2D image plane through the camera's perspective projection model. The extraction of such 

features creates a link between the information in the image and the physical objects in the 

environment, allowing real-time control of the robotic system. 

Depending on how the extracted image-based measurements are used to define visual 

features, feature-based visual servoing can be categorized into three main types: IBVS, PBVS 

and hybrid or 2.5D approaches. IBVS operates directly in the image space, utilizing image 

features to compute control signals without explicit reliance on the scene’s 3D geometry. In 

contrast, PBVS relies on estimating the pose (position and orientation) of the object in 3D space 

relative to the robot, typically requiring additional computations to reconstruct 3D information. 

Hybrid approaches, often referred to as 2.5D visual servoing (introduced by [53]), blend 

elements of both IBVS and PBVS, leveraging the advantages of both methodologies while 

mitigating their respective limitations. Specifically, hybrid techniques aim to combine the 

responsiveness and simplicity of 2D visual servoing with the enriched spatial awareness of 3D 

approaches. 

Each of these schemes offers distinct advantages and trade-offs depending on the application 

and system requirements. For instance, IBVS is generally robust to calibration inaccuracies but 

can face challenges related to image-space singularities. PBVS, on the other hand, provides 

better spatial interpretation but is more sensitive to errors in camera calibration and pose 

estimation. Hybrid approaches attempt to balance these strengths and weaknesses by providing 

a flexible framework that preserves the benefits of both the 2D and 3D domains. Details 

regarding the advantages, limitations, and practical considerations of these methods can be 
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found in the works of Chaumette (1998) [54] and Chaumette and Hutchinson (2006) [1], which 

serve as foundational references in the field. 

 

1.4.1 Image-Based Visual Servoing (IBVS) 

Image-based control schemes use measurements of 2D primitives observed in the image-

plane to define the task function [55][47]. 

 

𝑠(𝑠) = 𝑠(𝑠 (𝑠(𝑠))) − 𝑠𝑠 (1.7) 

 

The most commonly employed visual features in visual servoing applications are the 

coordinates of n specific points located within the image plane, represented as 𝑠 𝑠

𝑠 2𝑠  [55][47]. These points, which are extracted from the camera's captured image, serve as 

essential components for guiding the visual servoing process. Each feature point is expressed 

as part of a coordinate set, denoted as 𝑠 = (𝑠 1; 𝑠 2; 𝑠 3 ; ….; 𝑠n ), where 𝑠 i  corresponds to the 2D 

coordinates of the i-th point in the image frame. These points are visual primitives detected by 

the camera, as illustrated in Figs. 1.3(a) and 1.3(b), and their locations form the basis for 

defining the robot's control objectives. 

To execute a visual servoing task, a reference or desired set of image features must first be 

specified, which corresponds to the visual features that the system should achieve when the 

robot reaches its goal pose. This desired feature set is denoted as 𝑠𝑠, where 𝑠𝑠 represents the 

image-space coordinates of the points when the object and camera are in their target relative 

positions. The control objective in visual servoing is to ensure the current set of 

features s converges to the desired feature set 𝑠𝑠, thereby guiding the robot to accomplish the 

intended task. 

The visual servoing control law is designed to minimize the error between the current feature 

set s and the desired feature set 𝑠𝑠. This error, commonly expressed as 𝑠 = 𝑠 − 𝑠𝑠, represents 

the deviation of the system's current state from the goal. The control strategy generates velocity 

commands for the robot such that e asymptotically approaches zero, hence driving the robot to 

the desired pose. Depending on the type of visual servoing method employed—image-based 

visual servoing (IBVS), pose-based visual servoing (PBVS), or hybrid methods—different 

formulations of the control law are employed to optimize the trajectory and ensure system 

stability. For instance, in IBVS, this control law operates directly in the 2D image space, while 

in PBVS, it is mapped into the 3D space of the robot's pose. 

The use of point-based features is widely popular due to their computational simplicity, ease 

of detection, and universality across various applications. However, selecting appropriate visual 
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features and establishing a robust correspondence between 𝑠 and 𝑠𝑠 are critical for achieving 

stable and accurate visual servoing performance. This process often relies on advanced 

computer vision techniques to track, match, and refine the detected points in noisy or dynamic 

environments. Future sections (or subsequent chapters) will delve into how these principles are 

applied and adapted in specific visual servoing tasks to address challenging scenarios, such as 

occlusions, calibration errors, and system constraints. 

 

                                                      𝑠𝑠 = − 𝑠𝑠 𝑠
+̂

[

𝑠1 − 𝑠1
𝑠

𝑠2 − 𝑠2
𝑠

.

..
𝑠𝑠 − 𝑠𝑠

𝑠 ]

           (1.8) 

 

The error 𝑠 in Equation (1.7) must be reduced to zero in an exponential manner. Achieving 

this requires constructing the interaction matrix corresponding to an image point, which forms 

the cornerstone for all subsequent computations involving visual features. The interaction 

matrix plays a critical role in linking the dynamics of the image features to the dynamics of the 

robotic system, laying the groundwork for effective control strategies. 

Among the many approaches proposed for robotic vision-based control, IBVS has emerged 

as a dominant technique due to its practical benefits. This method continues to attract significant 

interest in the field of robotics and computer vision research. The appeal of IBVS is rooted in 

its simplicity of implementation, its capacity to handle uncertainties in camera calibration, and 

its robustness against image noise. These characteristics make IBVS a reliable and adaptable 

solution for real-world robotic applications, even in unstructured or dynamically changing 

environments. Its resilience to errors and inaccuracies has solidified its reputation as a 

dependable approach for achieving precise image-driven robotic motion. 

Furthermore, IBVS's ability to directly operate in the 2D image space without requiring a 

precise 3D reconstruction of the environment is a key advantage. This eliminates the 

dependency on complex calibration workflows while improving overall system efficiency.  

In general, before IBVS can be used practically, a few issues need to be resolved. Among the 

existing problems are the following: 

1. IBVS technique, while widely used, is not without its challenges. One notable issue is the 

potential occurrence of image singularity, which can lead to unstable control behavior and 

numerical difficulties [54][56][57]. 

2. The retreat problem that is when the camera moves back and forth unnecessarily when it 

should only rotate around the optical axis [54]. 
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3. Despite having perfect knowledge of 𝑠 , the global asymptotic stability of IBVS technique 

cannot be guaranteed [2][58]. Instead, only local asymptotic stability can be achieved, and this 

is limited to a small neighborhood surrounding the desired pose. 

4. One approach to mitigating the singularity problem in IBVS is to incorporate additional 

feature points. However, using more feature points (k > 3) requires relying on the pseudo-

inverse of the interaction matrix (𝑠 + ) or its transpose (𝑠 𝑠 ), which introduces a higher risk of 

being trapped in a local minimum. This occurs when the error vector lies in the kernel 

of 𝑠 +  or 𝑠 𝑠 , preventing further progress toward the desired configuration [54][56][57]. 

5. Since the precise interaction matrix is unavailable [58], its approximations necessitate 

estimating the object's depth [59]. Numerical issues in the computation could result from the 

error created here. 

As a result, in recent years, a lot of work has been attempted to enhance IBVS performance 

[59][60]. 

 

 

Figure 1.4: Image-Based Visual Servoing with image points and straight lines as visual 

features [96] 

 



CHAPTER 1. VISUAL SERVOING 

20 

 

1.4.1.1 Interaction Matrix for an image point 

Suppose that X = (X; Y; Z) is a 3D point in the scene whose coordinates are expressed in the 

camera frame. Suppose that a = (u0; v0; f; α) is the parameters of a pin-hole camera imaging the 

scene, where u0 and v0 are the coordinates of the principal point in the image, f is the camera 

focal length and α is the ratio of the pixel dimensions. The 3D scene point X then projects in 

the image plane as a 2D point x under perspective projection, which is given by: 

 

{
𝑠 = 𝑠

𝑠
= 𝑠 − 𝑠 0

𝑠𝑠

𝑠 = 𝑠
𝑠

= 𝑠− 𝑠0

𝑠𝑠

           (1.9) 

 

Camera velocity is linked to the velocity of the 3D point by 𝑠 ̇ = − 𝑠𝑠 − 𝑠 𝑠𝑠 . 

The construction of the interaction matrix is based on this fundamental kinematics relation, 

which links changes in a point in the real world with camera motions [56][2]. By expanding 

this relation, we get: 

 

                                                

{

𝑠 ̇ = − 𝑠𝑠 − 𝑠 𝑠𝑠 + 𝑠 𝑠𝑠

𝑠 ̇ = − 𝑠𝑠 − 𝑠 𝑠𝑠 + 𝑠 𝑠𝑠

𝑠 ̇ = − 𝑠𝑠 − 𝑠 𝑠𝑠 + 𝑠 𝑠𝑠

  (1.10) 

 

After differentiating Equation (1.9), the following is obtained: 

 

  {
𝑠 ̇ = 𝑠 ̇ − 𝑠𝑠 ̇

𝑠

𝑠̇ = 𝑠 ̇ − 𝑠𝑠 ̇

𝑠

           (1.11) 

 

After applying Equation (1.10) in Equation (1.11), we get 

 

                                    {
𝑠 ̇ = − 𝑠𝑠

𝑠
+ 𝑠𝑠𝑠

𝑠
+ 𝑠𝑠𝑠 𝑠 − (1 + 𝑠2 )𝑠 𝑠 + 𝑠𝑠 𝑠

𝑠̇ = −
𝑠𝑠

𝑠
+ 𝑠𝑠𝑠

𝑠
+ (1 + 𝑠2 )𝑠 𝑠 − 𝑠𝑠𝑠 𝑠 − 𝑠𝑠 𝑠

          (1.12) 

 

This allows for the direct writing of the interaction matrix of an image point (that satisfies 𝑠̇ =  

𝑠 𝑠 𝑠𝑠): 

 

                                      𝑠 𝑠 = [
𝑠 𝑠

𝑠 𝑠
] = [

− 1
𝑠 0 𝑠

𝑠          𝑠𝑠  − ( 1+ 𝑠 2 ) 𝑠

0 − 1
𝑠  𝑠

𝑠      1+ 𝑠2 − 𝑠𝑠  − 𝑠
]            (1.13) 
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As a result, 𝑠 𝑠  depends on the intrinsic parameters of the camera, â, depth Z, and visual 

features 𝑠. Using the result of Equation (1.13), which connects the motion of the image points 

to the motion of the camera, the interaction matrices of intensity-based features are developed. 

The interaction matrices of each individual point are stacked to produce the interaction 

matrix for a set of n points. 

 

                                                  𝑠 𝑠 =

[

𝑠 𝑠 1
(𝑠1 , 𝑠 1 , 𝑠 )̂

𝑠 𝑠 2
(𝑠2 , 𝑠 2 , 𝑠 )̂

.

..

𝑠 𝑠 𝑠
(𝑠𝑠 , 𝑠 𝑠 , 𝑠 )̂ ]

           (1.14) 

 

Similarly, [61] used the tracked points as visual features while transforming them to the 

cylindrical coordinate system 𝑠 = (ρ; θ) with ρ = √ 𝑠2 + 𝑠2  and θ = arctan(𝑠
𝑠
). A notable 

inaccuracy in the rotational pose around the optical axis caused the camera to move backward 

along this axis. Nevertheless, this issue was successfully addressed in previous research [54], 

ensuring that the unintended retreat was mitigated. Beyond basic point features, various 

geometric elements such as ellipses, contours, and straight lines (refer to Fig. 1.4(c)) can be 

effectively leveraged within the image plane to represent three-dimensional structures like 

spheres and cylinders. These higher-level visual features provide a richer set of constraints for 

the servoing process, as demonstrated in prior works [46][62]. However, implementing such 

methods requires robust algorithms for detecting and continuously tracking these features 

throughout the visual servoing operation to maintain stability and accuracy. 

By formulating the regulation error 𝑠 directly in the image space, the system ensures that the 

desired visual features follow well-defined trajectories at the pixel level. This approach 

guarantees effective convergence of the control law in the image domain. However, a limitation 

of this method is that it does not inherently provide direct regulation over the motion or final 

positioning of the end-effector in Cartesian space. Consequently, the physical path followed by 

the end-effector may exhibit deviations from an optimal geodesic trajectory, which can 

introduce inefficiencies in certain applications. Addressing these trajectory distortions remains 

an area of interest, with potential solutions involving model-based predictive control or hybrid 

strategies that integrate image-based and pose-based servoing. 
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1.4.1.2 Image Moments-Based Visual Servoing 

The application of image moments in visual servoing was first introduced in [63], where 

they were utilized as a compact and informative representation of image intensity distributions 

[64]. These statistical descriptors encapsulate essential geometric and structural characteristics 

of an image, making them particularly useful for controlling robotic systems through visual 

feedback. One of the key advancements in this domain was the derivation of the analytical form 

of the interaction matrix in [63]. This study demonstrated that leveraging visual features based 

on image moments significantly improved numerical stability while ensuring a strong 

decoupling effect in the servoing process. 

Building on this foundation, [65] later proposed an innovative set of visual features derived 

from moment invariants, further enhancing robustness to variations in viewpoint and 

transformations. The computation of image moments can be performed either by segmenting a 

well-defined region within the image or by using a dispersed set of points. In the latter approach, 

the system operates without explicitly extracting or matching individual features, thereby 

reducing computational overhead and increasing efficiency. This capability makes image 

moments particularly attractive for real-time visual servoing applications where speed and 

robustness are crucial. 

 

1.4.1.3 Visual Servoing Utilizing Gaussian Mixture Models 

A Gaussian mixture model (GMM) is formed by taking a convex combination of 𝒩 

Gaussian probability density functions (pdfs). The image's feature points 𝑠  were extracted and 

then modelled as a GMM in [66]. The covariance matrix Σk and mean vector µk of each of those 

𝒩 pdfs parameterize a GMM. Given 𝑠 , the EM (Expectation Maximization) technique can 

estimate it. The Gaussian mixture model (GMM) obtained from the feature points at both the 

desired and current positions is expressed as: 

 

                                𝑠 =  𝑠(𝑠 , 𝑠) = ∑ 𝑠 𝑠𝑠 (𝑠 ; 𝑠 𝑠𝑠 + 𝑠, 𝑠 ∑ 𝑠 𝑠 )
𝑠

𝑠

𝑠= 1
  (1.15) 

 

                                         𝑠𝑠 =  𝑠(𝑠 ) = ∑ 𝑠𝑠𝑠 (𝑠 ; 𝑠𝑠
𝑠 + ∑ )𝑠

𝑠

𝑠

𝑠= 𝑠
  (1.16) 

 

Visual servoing aims to minimize the cost function, defined as the L 2  norm between the 

GMMs computed for the desired and current poses. 

 

                                        𝑠 = ‖𝑠 − 𝑠𝑠‖ = ∫ [𝑠(𝑠 , 𝑠) − 𝑠(𝑠 )]2𝑠𝑠  (1.17) 
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To minimize the Lyapunov function 𝑠 = 1
2

(𝑠 )2 , the following control input is selected: 

 

                                                            𝑠 = − (𝑠 ) 𝑠𝑠
𝑠𝑠

  (1.18) 

 

A closed-form expression for the gradient is available 𝑠𝑠
𝑠𝑠

  along with the L 2  norm of the 

error provides valuable analytical insights, aiding in the optimization and stability analysis of 

the control system. However, achieving full six-degree-of-freedom (6-dof) control of the robot 

requires precise knowledge of the depth distribution associated with the selected feature points. 

Experimental findings from [66] indicate that the trajectory traced by the camera does not 

conform to a geodesic path between the initial and target poses. Additionally, the generated 

control signals exhibit non-smooth variations, which may introduce undesired dynamic effects 

during execution. 

A key limitation of the algorithm is the uncertainty surrounding its convergence properties 

when dealing with estimation errors in the Gaussian Mixture Model (GMM) parameters αi  and 

βj  specifically, it remains unclear whether discrepancies where αi ≠  βj could adversely impact 

the stability or convergence rate of the method. Moreover, while the extraction of image points 

𝑠  is an inherent requirement of this approach, it operates without the need for continuous visual 

tracking, potentially simplifying computational demands but also introducing challenges in 

feature association and localization. 

 

1.4.2 Pose-Based Visual Servoing (PBVS) 

Due to the fact that the error in PBVS [6][67] is defined in pose space instead of image space, 

it is termed 3D visual servoing. The error that needs to be regulated to zero is directly linked to 

the robot's pose. 

 

𝑠 =  𝑠(𝑠 (𝑠(𝑠) , 𝑠 , 𝑠 )   (1.19) 
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Figure 1.5: Pose-based visual servoing scheme 

 

 

In PBVS, the accurate estimation of the camera pose cξo(t) from captured images is a crucial 

step. This estimation depends on prior knowledge of the camera's intrinsic parameters and a 

predefined 3D model of the observed object. By leveraging these elements, the camera pose 

can be determined from a set of visual measurements captured in a single image. The challenge 

of determining 3D spatial coordinates from 2D projections is a well-established problem in 

computer vision, commonly referred to as 3D localization. While an in-depth discussion of this 

problem lies beyond the scope of this chapter, various approaches addressing it have been 

extensively documented in the literature [6][67]. 

Once the camera pose is estimated, its chosen parameterization is typically employed to 

derive the visual feature vector 𝑠. It is important to emphasize that the parameters A used in 

defining 𝑠, as outlined in Equation (1.19), these parameters correspond to both the intrinsic 

characteristics of the camera and the 3D structural representation of the object being tracked. 

They are essential for ensuring precise control and stabilization within the PBVS framework, 

as they directly affect the accuracy of the computed pose and the overall servoing performance. 

In robotic vision and control, it is often useful to define and work with multiple coordinate 

frames. Typically, three such frames are used in this context:: the reference frame 𝑠 𝑠 , which is 

fixed to the object of interest; the desired camera frame 𝑠 𝑠𝑠, and the current camera frame 𝑠 𝑠. 

The standard convention for representing a coordinate system involves attaching a 

superscript to indicate the specific frame in which a given set of coordinates is defined. 

Consequently, the coordinates of the object's origin can be represented as vectors  𝒄𝑡𝑜 and  𝒄∗𝑡𝑜, 
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where the former is expressed relative to the desired camera frame 𝑠 𝑠𝑠, and the latter is in terms 

of the current camera frame 𝑠 𝑠. 

To model the orientation of the current camera frame relative to the desired frame, the 

rotation matrix 𝑠 , defined as 𝑠  =  𝑠𝑠𝑠 𝑠 is used, where  𝑠𝑠𝑠 𝑠  represents the transformation 

from the current camera frame to the desired one. Rotation matrices in the Special Orthogonal 

group SO(3) can be expressed in different forms depending on the chosen parameterization. In 

this work, the axis-angle parameterization is employed, where 𝜃𝑢 denotes the rotation around 

the axis u, and t represents the translation vector. 

In this framework, the control loop for the robotic system necessitates an algorithm capable 

of estimating the pose of the visual sensor relative to an observable target. For instance, the 

Extended Kalman Filter (EKF) is one common approach for pose estimation, as outlined in [6]. 

Other techniques for solving the pose estimation problem include model-based methods, such 

as those described in [68] and [69], as well as virtual visual servoing (VVS), as explored in 

[70]. A thorough discussion on pose estimation methods, particularly in the context of robotic 

vision, can be found in [71]. 

PBVS can be divided into two variants according to whether the control is implemented in 

the desired or current camera frames [52]. “If the object pose relative to the current sensor frame 

is selected for use, 𝑠 = ( 𝒄𝑡𝑜; 𝑠𝑠), 𝑠* = ( 𝒄∗𝑡𝑜; 0), then 𝑠 = ( 𝒄𝑡𝑜 - 𝒄∗𝑡𝑜; 𝑠𝑠) to perform the control. 

Then, the interaction matrix can be derived as 

 

𝑠 𝑠 = [
− 𝑠3 [ 𝑠𝑠𝑠 ]×

0 𝑠 𝑠𝑠

]  (1.20)       

  

where 

                                             𝑠 𝑠𝑠 = 𝑠3 + 𝑠
2

[𝑠]× + ( 1 − 𝑠𝑠𝑠𝑠  𝑠
𝑠𝑠𝑠𝑠 2  𝑠2

) [𝑠]×
2            (1.21) 

 

with [v]× represents the skew-symmetric matrix of v. sinc 𝑠 = sin 𝑠 / 𝑠 is the sinus cardinal. The 

matrix 𝑠 𝑠𝑠  contains the property 𝑠 𝑠𝑠
− 1  𝑠𝑠 = 𝑠𝑠. When θ≠ 2kπ, where k is a non-zero integer, 

the 𝑠 𝑠𝑠  matrix is non-singular. The translational velocity screw can then be computed as 

follows: 

 

                                              𝑠𝑠 = − 𝑠((  𝑠𝑠𝑠𝑠 −  𝑠𝑠𝑠 ) + [ 𝑠𝑠𝑠]× 𝑠𝑠)            (1.22) 
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As an alternative, the pose of the current sensor frame expressed in the desired sensor frame 

can be used to determine the control. Since 𝑠* = 0, we have 𝑠 = [ 𝒄∗𝑡c  𝑠𝑠] and 𝑠 = 𝑠 in this 

instance. 

Pose estimation algorithms typically produce the target's relative pose as represented in the 

sensor frame  𝑠𝑠 𝑠 . Next, the sensor's relative pose represented in the desired sensor frame is 

obtained using the following relation: 

 

                                                         𝑠𝑠𝑠 𝑠 =  𝑠𝑠𝑠 𝑠  𝑠𝑠 𝑠
− 1            (1.23) 

 

The structure of the interaction matrix in this case is as follows: 

 

𝑠 𝑠 = [
 𝑠𝑠𝑠 𝑠     0

     0    𝑠 𝑠𝑠

]            (1.24) 

 

The translational and rotational motions are decoupled, as may be seen from Eq (1.24). Here, 

the translational velocity screw is obtained as 

 

 𝑠𝑠 = − 𝑠  𝑠𝑠𝑠 𝑠  𝑠𝑠𝑠𝑠           (1.25) 

 

The matrix representing interactions for rotational movements is identical in Equations 

(1.20) and (1.24) [53][2]. The corresponding control law for these degrees of freedom is 

expressed as: 

 

                                                                𝑠 𝑠 = − 𝑠𝑠𝑠                                                           (1.26) 

 

In PBVS, the control laws are designed to ensure that errors in the rotational pose diminish 

exponentially along a geodesic path, leading to smooth convergence. This results in a more 

efficient alignment of the camera’s pose with the target, as the system progressively reduces 

the rotational error over time. On the other hand, when using control law (1.24), the camera 

follows a straight-line trajectory, which contrasts with the behavior seen in PBVS using control 

law (1.20), where the camera’s movement is more curvilinear and dynamic in nature. 

It is important to note the differences in how depth Z affects the system in PBVS and IBVS. 

In PBVS, the depth Z directly influences the pose features, meaning that any change in depth 

alters the camera's positional features in the image plane. In contrast, IBVS simplifies this by 

making the features independent of depth, with the interaction matrix being the only component 
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that depends on Z. This distinction significantly influences the overall behavior and 

performance of visual servoing systems, especially in terms of control and trajectory planning. 

Another important consideration in visual servoing is the potential for features to leave the 

field of view. Many studies have highlighted this limitation, noting that PBVS has limited 

control over trajectories in the feature space, as the features may move out of the camera’s sight. 

However, [72] demonstrated that, despite this concern, image trajectories can indeed be 

controlled indirectly within certain constraints. This holds true unless major assumptions are 

made to simplify the interaction matrix, in which case some of the control over the trajectory 

might be lost. This finding challenges the traditional view of PBVS's limitations and opens 

avenues for more refined control strategies in visual servoing applications. 

This version provides more context, expands on the distinctions between PBVS and IBVS, 

and further elaborates on the findings of [72]. 

 

Stability in PBVS:  

The stability of a general dynamical system, denoted as 𝑠̇ = f(𝑠 ; 𝑠 ), can be examined through 

the application of Lyapunov stability theory. The system state x is determined by the function 

f, which may be either linear or nonlinear and might not be fully characterized. The evolution 

of the state is influenced by the control inputs u and the intrinsic properties of the system, which 

define the form of f and its interactions with the environment. According to Lyapunov, x = 0 is 

an equilibrium point of the system if and only if there exists a function 𝑠  such that 𝑠  >0 for all 

x, and 𝑠  (0) = 0. This function is indicative of the system's energy. The energy function, referred 

to as the Lyapunov function of the system, should exhibit a decreasing trend along the 

trajectories of the system state. A straightforward Lyapunov function will be selected for the 

visual servoing system: 

      𝑠 = 1
2
‖𝑠‖2   (1.27) 

 

Let us note that 𝑠  > 0 and 𝑠  = 0 if and only if 𝑠 = 0. Differentiating 𝑠  with respect to 

time gives: 

 

       𝑠 ̇ = 𝑠𝑠 𝑠 ̇  (1.28) 

 

Using (1.3) in (1.28): 

 

     ℒ̇ = 𝑒⊺𝐿𝑠𝑣𝑐  (1.29) 
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Substituting (1.6) in (1.29) yields to: 

 

                                                  𝑠 ̇ = − 𝑠𝑠𝑠 𝑠 𝑠𝑠 𝑠
+̂ 𝑠 = − 𝑠𝑠𝑠 𝑠𝑠   (1.30) 

where 𝑠 = (𝑠 𝑠𝑠 𝑠
+̂ ). According to the fundamental theorems of Lyapunov stability, if the 

Lyapunov function 𝑠  (𝑠; t) > 0 and its derivative 𝑠  ̇ (𝑠; t) < 0 in a neighborhood around the 

equilibrium point, then the equilibrium point (desired system state) is considered locally stable 

in the Lyapunov sense. By definition, Equation (1.31) is positive. Therefore, for the system to 

achieve stability, Equation (1.30) must be negative. This condition is satisfied if and only if the 

matrix 𝑠  is positive definite (PD), denoted 𝑠 𝑠  0. However, it is insufficient to merely assert 

the condition 𝑠 𝑠𝑠 𝑠
+̂ 𝑠  0 and draw conclusions about stability without examining the specifics 

of the number of features and the neighborhood where the condition is applicable. The stability 

criterion can be expressed by 

𝑠 𝑠𝑠 𝑠
+̂ 𝑠 0     when  𝑘 ≤ 𝑛  (1.31) 

where 𝑠  represents the number of actuated degrees of freedom. If this condition is met, then, as 

previously stated, the derivative of the Lyapunov function will be negative for all system states 

except at the desired equilibrium where 𝑠 = 0. In other words, the following condition is 

satisfied: 

  𝑠 ̇ < 0      𝑠 𝑠 ≠ 0  (1.32) 

If condition (1.32) is satisfied for configurations throughout the robot workspace, global 

asymptotic stability (GAS) is guaranteed. Conversely, if condition (1.32) is valid only within a 

vicinity of the equilibrium state, this is referred to as local asymptotic stability. Although the 

size of this vicinity has not been analytically determined, it is notably large for visual servoing 

methods [2]. 

Since 𝑠 𝑠𝑠 𝑠
+̂  = I6, the stability requirement in Equation (1.31) for PBVS can be easily 

ensured, assuming that the pose is precisely estimated [2]. This holds true for every θ≠ 2kπ as 

previously stated in Equations (1.20), and (1.24), when 𝑠 𝑠𝑠  is non-singular. Visual feature 

measurements in the image are used to estimate the pose features used in the control law. The 

above strong assumption is broken when these measurements are inaccurate since the pose 

estimation is not precise. Therefore, inaccuracies in pose estimation have a negative impact on 

the PBVS method. 
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A concise overview of IBVS and PBVS, including their relative advantages and stability 

characteristics, is provided in [2], to which the reader is referred. A formal, comprehensive 

treatment is provided in [72], where a common framework for comparing IBVS and PBVS is 

given from the perspectives of performance in image and Cartesian spaces, stability, robustness, 

and sensitivity to modeling errors. 

1.4.3 Hybrid Visual Servoing 

In hybrid visual servoing, the measurement vector x integrates both three-dimensional 

spatial information and image-based primitives. This approach represents a balanced 

compromise between two-dimensional (2D) and three-dimensional (3D) visual servoing, 

aiming to simultaneously control both the camera's trajectory within its workspace and the 

movement of certain image-based primitives. Hybrid visual servoing allows for more flexibility 

by combining the advantages of both 2D and 3D techniques, ensuring that both the camera and 

the features it observes are actively managed during the task. 

The first scheme of hybrid visual servoing, known as 2D1/2, was introduced by Malis in 

1998 [73]. This method provides a partial reconstruction of the object’s pose without requiring 

prior knowledge of the full 3D model of the object. Instead, it relies on the estimation of the 

homography matrix, or a homogeneous transformation matrix, which describes the relationship 

of the object to a reference plane. This approach allows for pose estimation by leveraging 

available image information, reducing the computational burden associated with full 3D model 

reconstruction. 

In the 2D1/2 scheme, the task function is designed with two distinct components. The first 

component involves the image coordinates of a point, along with a term that accounts for the 

relative depth of the point between the current and desired camera poses. This depth component 

is crucial for tracking the 3D position of the point in the image space. The second component 

of the task function addresses the rotational aspect, representing the rotation between the current 

and desired camera poses. This dual-component structure enables the hybrid visual servoing 

system to manage both the motion in the image plane and the 3D trajectory of the camera, 

achieving precise control over both aspects simultaneously. 

This expanded explanation provides more insight into the hybrid visual servoing method, 

detailing the functionality of the 2D1/2 approach and its components. 𝑠 is then defined as 

follows: 𝑠 = [𝑠𝑠; 𝑠𝑠 ] where 𝑠𝑠 is a set of 2D primitives allowing the control of translational 

movements and θu is the rotation between the current and desired poses, typically used in PBVS 

approaches. In hybrid visual servoing, the visual information vector 𝑠 is constructed by 

combining both 2D and 3D data, enabling the system to leverage the advantages of both 
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domains. This combination provides a more comprehensive representation of the visual task, 

allowing for the control of both image-based features and spatial trajectories. The interaction 

matrix corresponding to this task function takes on a simplified and partially decoupled 

structure, which offers analytical benefits, such as facilitating formal stability analysis in the 

presence of modeling errors. This feature makes hybrid visual servoing appealing in situations 

where a balance of accuracy and efficiency is required, particularly when dealing with imperfect 

models or noisy data. 

However, one of the challenges with this approach is that it requires a partial reconstruction 

of the camera displacement at each iteration of the control loop. This step, although necessary 

for accurate tracking and control, is inherently unstable, especially as the system approaches 

convergence. The instability is particularly pronounced when the camera nears the desired pose, 

where small errors in the pose estimation can have a significant impact on the system’s 

behavior, leading to oscillations or even divergence if not carefully controlled. 

Additionally, maintaining the visibility of all the required image primitives for estimating 

the homography matrix is not trivial. The system relies on the availability of certain features in 

the image, and ensuring that these features remain within the camera's field of view throughout 

the operation is a key challenge. This becomes even more complex in dynamic environments 

or situations where the object’s pose changes rapidly, as the camera may lose sight of essential 

features, leading to inaccuracies in the homography estimation. Therefore, careful planning of 

the camera's trajectory and the selection of robust visual features are critical for ensuring the 

success of the hybrid visual servoing method. 

The PBVS control law was found to produce rotational errors that follow a geodesic, as 

described in Section 1.4.2. The following visual features were suggested by the 2.5D approach 

[53]: 

 

𝑠 = [
𝑠𝑠
𝑠𝑠

] = [

𝑠
𝑠𝑠𝑠𝑠

𝑠𝑠
]            (1.33) 

 

                                              𝑠̇ = [𝑠 𝑠 𝑠 𝑠 ] [
𝑠𝑠
𝑠 𝑠

] = 𝑠 𝑠𝑠𝑠 + 𝑠 𝑠 𝑠 𝑠           (1.34) 

 

where the feature set responsible for controlling the translational motions is denoted by st. It 

includes Z 𝑠 𝑠 , which is the depth of that image point, and x 𝑠 𝑠 2 , which is an image point 

used in IBVS (as in Section 1.4.1). The rotational pose used in PBVS is 𝑠𝑠  𝑠 𝑠 3 . The 

interaction matrix for the feature log Z is given by 
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                                               𝑠 𝑠𝑠𝑠𝑠 = 1
𝑠

[0 0 − 1 − 𝑠 𝑠 0]           (1.35) 

 

By combining (1.13) and (1.35), the translational control input's interaction matrix can be 

expressed as follows: 

 

                           𝑠 𝑠𝑠
=

[

1
𝑠

[
− 1 0 𝑠
0 − 1 𝑠
0 0 − 1

]

[

𝑠𝑠 − (1 + 𝑠2 ) 𝑠

1 + 𝑠2 − 𝑠𝑠 − 𝑠
− 𝑠 𝑠 0 ] ]

          (1.36) 

 

The 3 × 3 matrix on the left has a block triangular structure. The diagonal values indicate a 

significant correlation between the relevant translational degree of freedom and the selected 

features. Equation (1.20), therefore, shows that the rotations and translations are decoupled. 

The 2.5D VS is globally asymptotically stable, assuming that the pose estimation algorithm is 

precise and there are no coarse modeling errors [74]. 

 

1.5 Photometric Visual Servoing Methods 

According to Sonka [75], a camera image is essentially a spatial sampling of brightness 

variations, which are influenced by the geometry of the scene, the ambient lighting conditions, 

and the reflectance properties of the objects in view. In feature-based visual servoing 

approaches, after image processing, the original image is typically reduced to a set of discrete 

points or geometric primitives. This reduction leads to a loss of rich information present in the 

image, such as intricate intensity patterns, which are discarded and not utilized in further 

processing. 

In contrast, photometric visual servoing methods exploit the intensity information directly 

from the image. These techniques focus on the pixel intensity values rather than geometric 

features like points, straight lines, or homographies, and are sometimes referred to as 

"correspondenceless" visual servoing methods. The term "correspondenceless" arises because 

these methods do not rely on the need for feature tracking or matching, which simplifies the 

process and eliminates the computational complexity typically associated with these tasks. 

One of the main advantages of photometric visual servoing is its robustness. It does not 

require precise depth information to calculate the interaction matrix, and it is less sensitive to 

errors in coarse depth approximations. Additionally, photometric techniques are more resilient 

to partial occlusions of the scene, as the intensity values remain available even when some 
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features are obscured. This makes them particularly advantageous in real-world applications 

where occlusions and imprecise depth data are common challenges. 

In general, methods that utilize the image’s intensity information are grouped under the 

category of photometric visual servoing. These methods allow for more flexible and efficient 

control of robotic systems, as they avoid the need for explicit feature extraction and matching, 

offering a practical solution in scenarios with limited or challenging visual features. 

 

1.5.1 Direct Visual Servoing 

Direct visual servoing techniques do not rely on tracking or matching intermediate geometric 

entities in the image. Instead, the control law directly utilizes pixel intensity. Determining 

appropriate control inputs for visual servoing essentially involves solving a nonlinear 

optimization problem. 

 

𝑠̂ = 𝑠𝑠𝑠𝑠𝑠𝑠
𝑠

𝑠 (𝑠(𝑠) , 𝑠𝑠)   (1.37) 

 

with 

 𝑠 (𝑠) = 1
2
‖𝑠(𝑠(𝑠) , 𝑠𝑠)‖2   (1.38) 

 

Equation (1.38) defines the cost function to be minimized, which aligns with the Lyapunov 

function used to ensure stability. Here, ξ signifies the robot pose, while 𝑠 denotes the error 

measure computed from the current image and the image associated with the desired pose (I∗ = 

I(ξ∗)). In direct visual servoing techniques, the error 𝑠 is not based on measurements derived 

from geometric features extracted from the image. Instead, it is a photometric error, defined by 

the intensity distribution of the image 

 

1.5.1.1 Pure Photometric Visual Servoing 

The difference in intensities (luminance) between the images captured at the desired and 

present poses is the direct definition of the error function in pure photometric visual servoing 

[Collewet 11]: 𝑠 = I(ξ) - I(ξ∗). The cost function to be optimized is the following: 

 

                                              𝑠̂ = 𝑠𝑠𝑠𝑠𝑠𝑠
𝑠

∑ [𝑠(𝑠 (𝑠)) − 𝑠(𝑠 (𝑠𝑠))]2
𝑠

  (1.39) 

 

where x = (x; y) 𝑠 𝑠 2  denotes the pixel indexing variable. The KLT technique uses the SSD 

(Sum of the Squared Differences) function for image registration, and this function is exactly 
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the error norm [76]. 

The total number of pixels observed within the image, or a subset of them, is a subset of 

visual features. 

 

𝑠 = 𝑠 =

[

𝑠(𝑠1 )

𝑠(𝑠2 )
.
..

𝑠(𝑠𝑠 )]

           (1.40) 

 

where N is the number of pixels. This subset must be made available frame-by-frame when only 

a particular subset of the image's pixels are used. The derivative of 𝑠 can be used to determine 

the interaction matrix associated with pixel illumination. 

 

                                              𝑠 ̇ = 𝑠 𝑠𝑠𝑠 = [𝑠 𝑠 (𝑠1 ) , … , 𝑠 𝑠 (𝑠𝑠 )]𝑠 𝑠𝑠           (1.41) 

 

The interaction matrix of an individual image pixel's luminance was developed in [12] using 

the traditional brightness constancy assumption [77]. This constraint states that a moving image 

point's brightness remains constant during a short interval of time δt. 

 

                                               I(x; y; t) = I(x + δx; y + δy; t + δt)                                        (1.42) 

 

Taylor's expansion of this equation at the first order yields: 

 

                                                    𝑠 𝑠𝑠𝑠̇ + 𝑠 𝑠𝑠𝑠̇  +  𝑠 ̇ = 0                                                (1.43) 

 

where 𝑠 𝑠𝑠 = [𝑠 𝑠𝑠 𝑠 𝑠𝑠 ]𝑠 = [ 𝑠𝑠𝑠𝑠
𝑠𝑠
𝑠𝑠 ]

𝑠
 is the gradient of the image pixel at (x, y). 

After that, it is simple to derive the interaction matrix of the luminance of pixel (x, y). 

 

                                                         𝑠 𝑠 (𝑠 ) = − 𝑠 𝑠𝑠 𝑠 𝑠                                                      (1.44) 

 

Here, Lx represents the interaction matrix for the image point, as derived in Section 1.4.1 and 

given in Equation (1.13). An important observation is that the depth Z of the image point, which 

is transferred from 𝑠 𝑠  to 𝑠 𝑠 , remains present. Additionally, when surfaces and light sources 

move relative to one another, the brightness constancy assumption may no longer hold, even 
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for Lambertian surfaces. In such cases, the process of deriving the interaction matrix becomes 

more complex. To address this, the Phong Illumination Model [78] is employed to derive the 

interaction matrix, as detailed in [79]. 

In non-linear optimization problems, the convergence to an optimal solution is heavily 

influenced by the initial conditions and the distance between the starting point and the target 

state. This principle also applies to visual servoing, which, depending on the method chosen to 

tackle the problem, presents both advantages and challenges. A variety of iterative non-linear 

optimization techniques are available for addressing problems like those formulated in Equation 

(1.38) [80]. These methods generally revolve around selecting a specific direction of descent 

within the solution space, thereby guiding the process towards achieving the optimization goal. 

The control mechanism employed in this context typically takes the following form: 

 

                                                                v = λd(𝑠)                                                             (1.45) 

 

where ξ indicates robot posture and d(ξ) is the direction of descent. The following control law 

is derived using the Levenberg-Marquardt method of descent. 

 

                                      𝑠 = − 𝑠 ( 𝑠 + 𝑠𝑠𝑠𝑠(𝑠 )− 1𝑠 𝑠
+̂ ( 𝑠(𝝃) − 𝑠(𝝃∗)) )                             

(1.46) 

 

where the scalars λ and µ are positive. 𝑯 is an approximation of the Hessian matrix that is 𝑯 = 

𝑠 𝑠
T𝑠 𝑠 , where 𝑠 𝑠  is the interaction matrix at any pose ξ. 

This approach has high accuracies at convergence since it uses a redundant feature set and does 

not use intermediate measures from the image. 

The degree of planar rotation error between the images of the initial and final robot poses 

decreases the convergence domain [12]. The significant degree of non-linearity in Equation 

(1.44) helps to explain this. Conversely, simpler solutions (such as the Gauss-Newton method) 

are adequate for the servoing in the case of classical visual servoing methods. 

The study in [12] demonstrated that a robot motion could be controlled by the pixel intensity 

of the image. Additionally, visual servoing was shown without the use of feature tracking or 

detection. However, the gradients in (1.44) had to be calculated as part of the image processing 

step. Only local stability may be demonstrated, much like with other IBVS methods. 

Additionally, the method has a problem with lighting variations, which directly affect the cost 

function's minimum. 
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1.6 Conclusion 

This chapter has presented a comprehensive overview of the visual servoing control 

paradigm, with particular emphasis on its fundamental configurations, modeling tools, and 

visual feature representations. The two main camera configurations—eye-in-hand and eye-to-

hand—were examined, highlighting their respective advantages and limitations depending on 

task requirements, workspace constraints, and precision needs. 

 

The chapter also detailed the role of the interaction matrix, a central element in visual 

servoing that links the temporal evolution of visual features to the camera’s kinematic motion. 

Understanding this relationship is essential for designing effective control laws capable of 

driving robotic systems toward desired visual configurations using real-time feedback. 

 

Different categories of visual features were reviewed, distinguishing between geometric 

approaches, which rely on explicit feature extraction and tracking, and direct approaches, 

which exploit global image information without intermediate processing. While geometric 

methods can offer high accuracy, they often require complex and computationally demanding 

image-processing pipelines. Direct methods, by contrast, provide a simpler and more efficient 

alternative, albeit with increased sensitivity to photometric disturbances. 

 

Particular attention was given to photometric visual servoing, which leverages raw image 

intensities to achieve high precision through data redundancy. Despite its effectiveness under 

stable lighting conditions, its sensitivity to illumination variations limits robustness in 

dynamic environments. Alternative strategies, such as Gaussian mixture-based methods, were 

also discussed, demonstrating improved convergence properties in situations involving 

lighting changes or partial occlusions. 

 

Overall, this chapter has highlighted that the choice of visual features remains a critical and 

unresolved issue in visual servoing, directly impacting stability, convergence, and robustness. 

Addressing this challenge is especially important in complex and unstructured environments. 

The concepts and limitations identified here establish the foundations for the subsequent 

chapters, which investigate advanced modeling and control strategies aimed at improving 

robustness while preserving the advantages of direct visual servoing approaches. 
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2.1 Introduction 

Wavelet transforms are essential tools for signal and image analysis. They enable the 

decomposition of a signal into distinct frequency components, thus facilitating multi-resolution 

analysis. Typically, classical wavelet constructions employ Fourier transformations to provide 

basis functions, which are based on the translation and dilation principles. These approaches 

have issues with irregularly sampled data, adaptive processing, and computational efficiency. 

The Lifting Wavelet Transform (LWT) solves these limitations by offering a more flexible and 

computationally efficient framework. Initially developed to optimize existing wavelet 

transforms, the Lifting Scheme evolved into a method for constructing second-generation 

wavelets, which depart from strict translation and dilation constraints. By dividing wavelet 

transforms into elementary lifting steps, this method preserves excellent reconstruction qualities 

while lowering computing complexity. 

The first section of this chapter considers generalizations about the wavelet transform, 

including historical wavelet families, types of wavelets, and the paramount question of selecting 

the optimal wavelet. The second section of this chapter considers the conception of lifting 

technique, which is a way to generate wavelets, and that includes the phases. 

 

2.2 Wavelet Transform 

The term wavelet refers to a function that oscillates during a “given time” (if the variable is 

time) or over a finite length interval (if the variable is of spatial type). Beyond that, the function 

decreases very quickly towards zero. Wavelets are primarily employed for the decomposition 

of functions. This process involves representing a function as a weighted sum of functions 

derived from basic operations performed on a primary function known as the mother wavelet. 

These operations encompass translations and dilatations of the variable.Depending on whether 

these translations and dilatations are chosen to be continuous or discrete, the resulting transform 

is referred to as a continuous or discrete wavelet transform, respectively. 

 

2.2.1 Continuous Wavelet Transform 

A wavelet transform is said to be continuous when the structural parameters of the functions 

used (i.e. the translations and dilations) can take any value from the set of real numbers R (the 

dilations must nevertheless be positive). Wavelets were introduced by Grossmann and Morlet 

[83] as a family of functions a,b of 𝑠 𝑠 (𝑠 ) . They are generated by translations and dilations 

of a finite energy basis function (belongs to 𝑠 𝑠 (𝑠 )) called the mother wavelet y. 
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                                               𝑠 𝑠 ,𝑠 (𝑠) = 𝑠
√ |𝑠 |

𝑠 (𝑠− 𝑠
𝑠

) ,            𝑠 , 𝑠 𝑠 𝑠 , 𝑠 ≠ 𝑠      (2.1) 

The coefficients a and b denote respectively the scale factor for the dilation of y, and the 

translation coefficients. If the function  (x) is integrable and sufficiently oscillating to be of 

zero integral: 

                                       𝑠 𝑠 = ∫ 𝑠𝑠 𝑠 (𝑠)𝑠𝑠 = 𝑠       , 𝑠 ≤ 𝑠 ≤ 𝑠
+ ∞

− ∞
 (2.2) 

 

The continuous wavelet transform (CWT) of a function f is defined by: 

 

                                                W f (a, b) = 𝑠𝑠  ,  𝑠 , 𝑠𝑠                                 (2.3) 

 

where the symbol 𝑠. 𝑠 corresponds to the scalar product in 𝑠 𝑠 () . 

If the wavelet  satisfies the admissibility condition 

                                                  𝑠 𝑠 = ∫
|𝑠 (𝑠 )̂|

2

𝑠

∞

0
𝑠𝑠 < + ∞  (2.4) 

 

Then the continuous wavelet transform W (a, b) admits an inverse 

 

                                     𝑠(𝑠) = 1
𝑠 𝑠

∫ ∫ 𝑠 𝑠𝑠 (𝑠, 𝑠) 1
𝑠 2 𝑠 (𝑠− 𝑠

𝑠
)𝑠𝑠𝑠𝑠

+ ∞

_∞

∞

0
 (2.5) 

 

 

From the admissibility condition, 𝑠̂  (0)= 0 is observed, implying that  must oscillate, hence 

its name "wavelet". It should be noted that the CWT converts a one-variable function into a 

two-variable function. The representation of a function by its CWT is redundant and the inverse 

transform is not always unique. Moreover, not all functions W(a, b) are necessarily the CWT 

of the function f.  

The advantage of this characterization over the Fourier transform is that it not only gives 

information on the type of singularity but also its location in time. 

 

2.2.2 Properties of a first generation wavelets  

• Zero moments: this is the most important property for a wavelet. a wavelet ψhas N 

zero moments if: 

 

𝑠 𝑠 = ∫ 𝑠𝑠𝑠 (𝑠)𝑠𝑠 = 0        ,0 ≤ 𝑠 ≤ 𝑠
+ ∞

− ∞
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According to the last equation  𝑠 𝑠 , any wavelet must have at least one zero moment (the 

case where 𝑠 = 0). 

• Compact stand: as long as the wavelet has less zero moments and its support is 

compact, a more exact high frequency analysis is possible. Wavelets like Daubechies' 

family exhibit compact support, making them highly localized in time and 

computationally efficient. 

• Regularity: The regularity of a wavelet is the property allowing to locate singularities 

in a signal. It can be noted that there is a link between regularity and null moments. As 

much as we have null moments as much the signal is regular. 

• Symmetry: like the number of zero moments, the symmetry of the wavelet conditions 

its regularity over an interval. 

• Orthogonality: The orthogonality of a wavelet is the property allowing eliminate 

information redundancy. Many wavelet bases, such as Haar and Daubechies wavelets, 

are orthogonal, which ensures energy conservation and the ease of reconstruction, hence 

stable computational results. 

 

2.2.3 Discrete Wavelet Transform DWT 

The Discrete Wavelet Transform (DWT) has been demonstrated to offer a computationally 

efficient alternative to the CWT by discretizing the scale and translation parameters. In the 

discrete case, the values of the parameters a and b are restricted to a discrete grid. In this case 

a dilation step a0>1 and b0>0 is fixed and by setting a = a0
m and b = nb0a0

m with m and 𝑛 Z. 

The wavelet bases are defined by the functions [84]. 

 

                                                  𝑠 𝑠 ,𝑠 (𝑠) = 𝑠
0

− 𝑠
2 𝑠 (𝑠0

− 𝑠 𝑠 − 𝑠𝑠0 )  (2.6) 

 

Therefore, the wavelet decomposition and the inverse transform are determined by the 

following equations: 

 

                                   ==
R

nmnmf dxxxffnmW )(*)(,),( ,,                                 (2.7) 

 

                                    𝑠 = ∑ 𝑠 𝑠 (𝑠 , 𝑠 )𝑠 𝑠 ,𝑠  𝑠𝑠𝑠𝑠𝑠 𝑠𝑠  𝑠 2 (𝑠 )
(𝑠 ,𝑠 )𝑠 𝑠 2

 (2.8) 
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Thus, the wavelet transform associates with the function f  𝑠 2 (R )  a discrete set of 

coefficients Wf (m, n). [85] constructed a dyadic wavelet transform for which a0=2 and b0=1, 

showed that for particular functions y of 𝑠 2 (R ) , the family: 

 

                                  𝑠 𝑠 ,𝑠 (𝑠) = 2− 𝑠
2 𝑠 (2− 𝑠 𝑠 − 𝑠 )      𝑠 (𝑠 , 𝑠 ) 𝑠 𝑠 2  (2.9) 

 ψm ,𝑠   Constitutes an orthonormal basis of   L 2 (R ) . 

 

2.3 Multi-resolution analysis 

       The multi-resolution analysis method is a mathematical structure formalized Mallat on the 

finite real axis [84][86][21][87]. In this regard, wavelets provide an effective instrument. The 

fundamental concept of multi-resolution analysis involves the hierarchical representation of a 

function by a lower-resolution component, which is characterized by the wavelet coefficients 

necessary to restore the original function [88].  

 

2.3.1 Theoretical framework 

The notion of multiresolution wavelet analysis of a function f  𝑠 2 (R )  consists in its 

projection onto function bases, giving increasingly less fine approximations of the original 

function. A sequence { 𝑠𝑠} 𝑠𝑠𝑠  of closed subspaces of 𝑠 2 (R )  is a multiresolution approximation 

if it verifies the following properties: [89][90] 

 

1- 𝑠𝑠 is invariant under translation of length 2j 

 

                                       ∀(𝑗, 𝑘) ∈ 𝑍2, 𝑓(𝑡) ∈ 𝑠𝑠 𝑠  𝑓(𝑡 − 2𝑗𝑘) ∈ 𝑠𝑠 (2.10) 

 

2- Causality property: the spaces { 𝑠𝑠} 𝑠𝑠𝑠  define a sequence of nested spaces.  

 

        𝑠𝑠+ 1 𝑠 𝑠𝑠 (2.11) 

 

3- The details between 𝑠𝑠+ 1  and 𝑠𝑠 are increased by a factor of 2. 

 

                                           ∀𝑗 ∈ 𝑍, 𝑓(𝑡) ∈ 𝑠𝑠 𝑠  𝑓(𝑡/2) ∈ 𝑠𝑠+ 1 (2.12) 

 

4- The intersection of the nested spaces contains only the zero element. 
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                                                        𝑠𝑠𝑠
𝑠→+ ∞

𝑠𝑠 = ⋂ 𝑠𝑠
+ ∞
𝑠→− ∞  (2.13) 

 

5- The union of nested spaces { 𝑠𝑠} 𝑠𝑠 𝑠  is dense in 𝑠 2 (R ) . In other words, the adherence of this 

union is identified with the space 𝑠 2 (R ) . 

 

                                                𝑠𝑠𝑠
𝑠→+ ∞

𝑠𝑠 = ⋃ 𝑠𝑠
+ ∞
𝑠→− ∞

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐿2(𝑅) (2.14)  

 

6- There exists f such that (t − n)nZ is a Riesz basis 

Condition (6) implies that an orthonormal basis of 𝑠𝑠 can be deduced from the basis of 𝑠0  

from a single function (t), the scaling function, by constructing the family: 

 

                                                     𝑠
𝑠,𝑠

(𝑠) = 2−
𝑠

2𝑠 (2− 𝑠𝑠− 𝑠 )  (2.15) 

 

Since operations are performed in nested spaces, any function in 𝑠𝑠  can be expressed as a 

linear combination of the functions in 𝑠𝑠− 1  . In particular   𝑠0   𝑠− 1 , and subsequently the 

existence of a sequence h  𝑠 2 (R )  such that 

 

                                              𝑠 (𝑠) =
√

2 ∑ 𝑠(𝑠 )𝑠 (2𝑠− 𝑠 )+ ∞

𝑠 = − ∞
 (2.16) 

 

where the h(n) are the coordinates of (t) in the basis 2(2t − k), k  Z, or the coefficients of 

the coarse discrete filter. These h(n) verify the following two properties, for an orthonormal 

basis: 

 

                          𝑠 (𝑠) =
√

2 ∫ 𝑠(𝑠 )𝑠 (2𝑠− 𝑠 )
+ ∞

− ∞
   with   ∑ 𝑠2(𝑠) = 1+ ∞

𝑠= − ∞                     (2.17) 

 

Mallat combines the concept of multiresolution analysis and wavelet theory by considering 

wavelets as functions containing the details needed to move from a coarse resolution to a finer 

resolution. 

The orthogonal complement of 𝑠𝑠 in 𝑠𝑠− 1  is defined by the vector space 𝑠 𝑠  

 

 𝑠𝑠− 1 = 𝑠𝑠  𝑠 𝑠  (2.18) 
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The wavelets (j,n)nZ belong to the space 𝑠 𝑠. Under certain conditions, they constitute an 

orthonormal basis of 𝑠 𝑠, the orthogonal projection of a function f on 𝑠𝑠− 1  can be written: 

 

                                    𝑠𝑠𝑠𝑠𝑠𝑠− 1 (𝑠) = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑠) + ∑ 𝑠𝑠 (𝑠, 𝑠 )
𝑠 𝑠 𝑠

       (2.19) 

 

The odelet associated with this multi-resolution analysis is determined by the existence of a 

sequence (gn)nZ  𝑠 2 (R )  such that 

 

                                                 (𝑠) = √2 ∑ 𝑠(𝑠)𝑠(2𝑠− 𝑠)+ ∞
𝑠= _∞  (2.20) 

 

The orthogonality condition on the spaces 𝑠𝑠 and 𝑠 𝑠 allows to establish the relationship 

between the two sequences h(n) and g(n) [33]. 

  

                                                        𝑠(𝑠 ) = (−1)𝑛ℎ(−𝑛 + 1) (2.21) 

 

The biorthogonal multiresolution analysis is defined using the two spaces 𝑠𝑠kZ , 𝑠 𝑠̃kZ. 

The associated scaling functions 𝑠𝑠,𝑠 nZ and 𝑠 𝑠̃,𝑠 nZ constitute the two non-orthogonal 

bases of the approximation spaces 𝑠𝑠  and 𝑠 𝑠̃ , the biorthogonal wavelet bases 𝑠 𝑠,𝑠 nZ and 

𝑠 𝑠̃,𝑠 nZ constitute the bases of the complementary spaces of 𝑠𝑠  and 𝑠 𝑠̃ in 𝑠𝑠− 1  and 𝑠 𝑠̃− 1  i.e. 

the spaces 𝑠 𝑠  and 𝑠̃ 𝑠  

  

                                         𝑠𝑠− 1 = 𝑠𝑠 𝑠 𝑠 𝑠                 𝑠𝑠− 1 = 𝑠𝑠 𝑠 𝑠 𝑠  (2.22) 

 

The spaces are not orthogonal to their complement, but to the complement of the dual space. 

𝑠𝑠⊥𝑠 𝑠  And 𝑠 𝑠̃⊥𝑠̃ 𝑠  the biorthogonal conditions translate:  

                                                    〈𝑠
𝑠,𝑠

 , 𝑠
𝑠,𝑠′

〉 = 𝑠𝑠− 𝑠′      ∀𝑗, 𝑘, 𝑘′ ∈ 𝑍 (2.23) 

 

                                                    〈𝑠
𝑠,𝑠

 , 𝑠
𝑠,𝑠′

〉 = 𝑠𝑠− 𝑠′      ∀𝑗, 𝑘, 𝑘′ ∈ 𝑍 (2.24) 

 

2.3.2 One-dimensional fast wavelet transform 

In practice, the signals that are encountered are discrete. Consequently, it is necessary to 

implement a discrete version of the wavelet transform. This discrete version can be derived 
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from the scale equations. To illustrate, consider the scale function ϕ(t). For a discrete signal 

C = { ck | k = 𝑠 , − 2 , − 1, 0 , 1, 2 , … } , on associate C  with a function f(t) in V 0 : 𝑠(t) =

∑ ckϕ(t − k)+ ∞

k = − ∞
 

Mallat created the fast wavelet transform algorithm, which uses the wavelet function ψ(t) to 

express the signal f(t). The following is the definition of the algorithm: 

 

                                                    𝑠𝑠,𝑠 = ∑ 𝑠𝑠 − 2𝑠𝑠𝑠− 1,𝑠
+ ∞
𝑠 = − ∞  (2.25) 

 

                                                     𝑠𝑠,𝑠 = ∑ 𝑠
𝑠 − 2𝑠

𝑠𝑠− 1,𝑠
+ ∞
𝑠 = − ∞  (2.26) 

 

Based on the two earlier equations: 

 

                                       𝑠 𝑠 = {𝑠𝑠,𝑠\𝑠 = 𝑠  , − 2, − 1, 0, 1, 2, …   } (2.27) 

 

                                       𝑠 𝑠 = {𝑠𝑠,𝑠\𝑠 = 𝑠  , − 2, − 1, 0, 1, 2, …   } (2.28) 

 

are respectively the result of the convolution of C j− 1  with the filters H 𝑠  = { h− k | k =

𝑠 , − 2 , − 1, 0, 1, 2, … }  and G 𝑠  = { g− k | k = 𝑠 , − 2 , − 1, 0 , 1, 2 , … }  followed by down-

sampling of factor 2. The previous two equations can be written more compactly as follows: 

 

  𝑠 𝑠 = 𝑠 𝑠 𝑠 𝑠− 1 (2.29) 

 

  𝑠 𝑠 = 𝑠 𝑠 𝑠 𝑠− 1 (2.30) 

 

The process of decomposition starts from C 0 = C  up to J  levels of decomposition. 

Subsequent to level J  levels, undergoes a transformation, resulting in a sequence of novel 

signals: {  𝑠 𝑠; 𝑠 𝑠; 𝑠 𝑠− 𝑠 ;… ;  𝑠 𝑠 } . 

 

 
                          

Figure 2.1: Discrete signal decomposition algorithm. 
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2.3.3 Principle of decomposition and reconstruction in the case of 2-D transform 

The principle of decomposition and reconstruction for the 2-D transform is presented in a 

general manner in Figs. 2.2 and 2.3 [33]. 

 The wavelet decomposition of an image (N×N) therefore proceeds as follows: 

- First, each column of the 2-D image is decomposed using vertically the 1-D filters. This 

produces two images (N×N/2), one corresponding to the low vertical frequencies, the other to 

the high vertical frequencies.  

- Secondly, the same 1-D filters are applied to the lines of these two images. Each of them is 

decomposed into two new images (N/2×N/2), one corresponding to the low horizontal 

frequencies, the other to the high horizontal frequencies. 

In total, four images (LL, HL, LH, HH) are therefore generated at each level of 

decomposition. The following decomposition performs the same process on LL, corresponding 

to the low horizontal and vertical frequencies. 

 

 

 

 

 

Figure 2.2: Filter Bank analysis for the wavelet transform 
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Figure 2.3: Inverse Wavelet Transform  

 

 

2.4 Lifting Scheme Theory 

In order to create and apply wavelet transforms, the lifting scheme is offered as an effective 

tool. This leads to the creation of so-called "second generation" wavelets. Consequently, the 

lifting scheme will be described as a general and flexible technique.  

Originally, the aim of the lifting scheme, introduced by Sweldens [91], was to propose a 

method for constructing biorthogonal wavelets whose moments cancel each other for 

increasingly higher orders: "a lift" towards high zero moments. It is an interesting alternative 

to the classic convolutional filtering scheme of the transform, because it is much less complex. 

Indeed, the number of operations is divided by a ratio of up to two compared to a classic scheme.  

Among the advantages of lifting, the following may be noted:  

- The possibility of measuring wavelet transforms in points without going through the Fourier 

domain  

- Obtaining a lower computational complexity and a simpler and more efficient implementation.  

- The possibility of implementing the inverse transform, on the other hand in the case of 

classical wavelets it is not obvious that the synthesis filters are exactly the inverse of the analysis 

filters.  

The lifting scheme [92][93][94][95][91] is carried out in three steps presented in Figs. 2.4, 2.5: 
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Figure 2.4: Block diagram of 1D lifting scheme steps [96]  

 

 

 
 

Figure 2.5: Block diagram of 2D separable lifting steps [96] 

 

1- Polyphase transform: is a process that can be described in relatively simple terms. Given a 

signal as input, the transform separates it into two components, the even and odd components. 

To be more precise, the application of the polyphase transform to the original signal f results in 

the partitioning of f into two disjoint subsets: fe, which contains the samples belonging to f with 

an even index, and f0, which contains the samples belonging to f with an odd index. This process 

is referred to as the "Lazy Wavelet Transform". 

 

Polyphase transform:   f → (fe, f0) 
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2- Prediction operation: is based on the finding that most imaging signals exhibit a local 

correlation structure in both the frequency and spatial domains. In other words, samples with 

highly correlated frequencies in the same neighborhood will show a high correlation rate, 

whereas samples with highly correlated frequencies outside of the same neighborhood will only 

show a low correlation rate. The two sub-signals, fe and f0, will be highly correlated if the signal 

f displays such a structure, making it possible to predict f0 from fe. To predict f0, the operator P 

is applied to the subset fe. The wavelet coefficients, or detail of the signal, are the difference d 

between f0 and its prediction. 

 

d = f0 − P(fe) 

 

The calculation of the prediction and storage of the details are performed through a dual lifting 

step. Therefore, the second step of the lifting scheme is expressed as follows: 

 

Dual lifting step: (fe, f0) → (fe, d) 

 

3- Update operation: is the final step in the process, and it is essential for acquiring a more 

precise low-frequency representation of the signal while preserving its fundamental global 

properties. Two subsets are identified: fe and de. The subset de is derived through a process 

analogous to high-pass filtering, followed by sub-sampling. The subset fe is obtained by 

straightforward sub-sampling, resulting in the signal's distribution across the entire frequency 

band of the original signal. It is important to note that Shannon's conditions are not met in this 

scenario, necessitating the implementation of a third step to ensure an adequate representation 

of the low-frequency signal. This third step involves the application of an update operator on 

the detailed signal [87].  

 

s = fe +U(d) 

 

The second step is referred to as a lifting step, which involves the transformation of (fe, d) to 

(s, d). 

 

Lifting step: (fe, d) → (s, d). 

 

2.4.1 Properties of the Lifting Scheme 

Faster calculation: Lifting enables the execution of calculations within the same memory 

location as the input signal, thereby facilitating significant reductions in memory requirements.  
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Efficiency: In the majority of cases, the number of operations is reduced in comparison to the 

independent filtering of the two sub-bands. Indeed, lifting calculates the low and high frequency 

bands simultaneously.  

Reversible: The implementation of the inverse lifting scheme is elementary. It is obtained by 

reversing the order of the operations and undoing them.  

General: The transform is implemented without any reference to the Fourier domain. 

Furthermore, the extension of the scheme to other application frameworks is extremely easy. 

[90]. 

 

2.5 Conclusion 

The wavelet transform is a tool that can provide a one-dimensional signal a multiresolution 

representation. Data compression and transmission, image and signal processing, and numerical 

solutions of differential and integral equations are just a few of the application areas in which 

it has seen significant success. The reason the wavelet transform works so well is because, for 

a certain class of functions, the majority of the function's information is concentrated in a 

limited number of wavelet coefficients. 

In the context of multidimensional signals, such as images, the construction of wavelet bases 

that are separable by tensor product is a viable option. However, it should be noted that these 

bases possess an undeformable square support and are isotropic. Consequently, they are not 

optimally suited for the representation of regions in images that exhibit contours or local 

singularities. To address this limitation, numerous anisotropic wavelet bases, including 

curvelets, contourlets, bandelets, and oriented wavelets, have been proposed to facilitate a more 

efficient representation of images. 

Meanwhile, the discovery of the lifting structure has made it easier to construct simple 

multiresolution transforms, which are invertible by nature and allow for the use of non-linear 

operators that can capture the singularities present in a signal. By minimizing the necessary 

arithmetic operations, the lifting scheme also improves the wavelet transform's efficiency. 

Using the lifting scheme, the direct and inverse transforms are implemented without having to 

go through the Fourier domain. 
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3.1 Introduction 

In this chapter, an introduction is provided to the central focus of this thesis: Lifting Wavelet 

Transform-based Photometric Visual Servoing (LWT-PVS). A camera image provides a wealth 

of information about the world perceived by the robot, encoded in varying intensity levels, 

commonly referred to as luminance. The core idea behind LWT-PVS is to capture this rich 

information, encoded as pixel intensities, and transform it into useful features for visual 

servoing tasks. By leveraging the Lifting Wavelet Transform (LWT), multi-resolution features 

are extracted with the aim of guiding the robot’s movements with high precision. 

One of the key contributions of this chapter is the development of an interaction matrix for 

LWT-PVS, which is formulated in analytical form. This interaction matrix establishes the 

relationship between the changes in the visual features and the spatial velocity of the vision 

sensor, providing the necessary framework for the visual servoing task. It is demonstrated that 

the proposed method can perform visual servoing without relying on traditional image 

processing techniques, such as image matching and visual tracking. This makes the approach 

more efficient and less computationally intensive, while maintaining robustness and accuracy 

in various operational scenarios. 

 
3.2 Interaction Matrix for Lifting Scheme Coefficient 

The interaction matrix, denoted as L, is constructed based on the chosen visual features and 

is expressed within the camera reference frame. This matrix plays a fundamental role in 

establishing the relationship between the changes in visual features and the spatial velocity of 

the vision sensor, represented by vc. Essentially, it serves as the mathematical framework that 

links the sensor’s motions to the observed feature variations in the camera’s field of view. This 

relationship can be expressed in the following manner, as described in [2]: 

 

                                                                   𝑠̇ = 𝑠 𝑠𝑠𝑠                                                             (3.1) 

 

For the purpose of the visual servoing task, the proposed visual features, denoted as W, are 

derived by incorporating both the stacked approximation A and the detail components H, V, 

and D. These components are obtained through the application of two-dimensional separable 

lifting operations performed on the image I(x, y). In this context, (x, y) represent the normalized 

pixel coordinates within the image plane, which correspond to the three-dimensional spatial 

coordinates X=(X, Y, Z) in the camera reference frame. The visual features effectively capture 

multi-resolution characteristics of the image and are mathematically expressed as follows: 
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                                                   𝑥 =
𝑋

𝑍=
(𝑢−𝑐𝑢)

𝑓𝛼

   ,    𝑦 =
𝑌

𝑍=
(𝑣−𝑐𝑣)

𝑓   

                                          (3.2) 

 

In this context, the image point coordinates m = (u; v) are expressed in pixel units and are 

influenced by the intrinsic parameters of the camera, collectively represented as a = (cu, cv, f, 

α). Here, cu and cv denote the pixel coordinates of the camera's principal point, which is the 

point where the optical axis intersects the image plane. The focal length of the camera is given 

by f, while α represents the aspect ratio, which captures the relationship between the pixel 

dimensions in the horizontal and vertical directions. These intrinsic parameters form a key 

component of the camera model, enabling the mapping of three-dimensional scene points to 

their corresponding two-dimensional image points. 

 

As shown in Fig. 2.5, and with assuming the function f is the captured image 𝐼, A, H, V and D 

are expressed as: 

 

𝐻 = 𝐴𝑒
′ − 𝑃∗(𝐴𝑜

′ )           (3.3) 

 

𝐴 = 𝐴𝑜
′ + 𝑈∗(𝐻)         (3.4) 

 

𝐷 = 𝐷𝑒
′ − 𝑃∗(𝐷𝑜

′ )         (3.5) 

 

𝑉 = 𝐷𝑜
′ + 𝑈∗(𝐷)       (3.6) 

 

where 

 

    𝐼𝑜 = 𝐼(𝑥𝑜 , 𝑦)     (3.7) 

 

    𝐼𝑒 = 𝐼(𝑥𝑒 , 𝑦)       (3.8) 

 

  𝐴𝑜
′ = 𝐴′(𝑥𝑒 , 𝑦𝑜)         (3.9) 

 

  𝐴𝑒
′ = 𝐴′(𝑥𝑒 , 𝑦𝑒)          (3.10) 

 

  𝐷𝑜
′ = 𝐷′(𝑥𝑜 , 𝑦𝑜)        (3.11) 



CHAPTER 3. LIFTING WAVELET TRANSFORM-BASED 

PHOTOMETRIC VISUAL SERVOING 

 52   

 

  𝐷𝑒
′ = 𝐷′(𝑥𝑜 , 𝑦𝑒)      (3.12) 

 

Such that 

 

𝐷′ = 𝐼𝑒  −  𝑃 ( 𝐼𝑜 )                                                 (3.13) 

 

𝐴′ =  𝐼𝑜  +  𝑈 ( 𝐷′)      (3.14) 

 

Coordinates with odd and even indexes, xo, yo and xe, ye, are x and y such that u and v in 

Equation (3.2) are odd or even. 

The primary objective of this section is to derive the interaction matrix that establishes the 

relationship between the features obtained via the Lifting Scheme and the spatial velocity of 

the camera. By doing so, this matrix acts as a bridge connecting the variations in the lifted 

image features to the motion dynamics of the vision sensor, providing a vital foundation for 

tasks such as control and motion estimation in visual servoing applications. 

 

                                                              𝑠 ̇ = 𝑠 𝑠 𝑠𝑠                                                           (3.15) 

 

where: 

                                                              𝑠 ̇ =

(

𝑠

𝑠 ̇

𝑠 ̇

̇

𝑠 ̇ )

                                                           (3.16) 

and: 

 

                                                             𝑠 𝑠 =

(

𝑠 𝑠

𝑠 𝑠

𝑠 𝑠

𝑠 𝑠 )

                                                        (3.17) 

 

with: 

                                                                𝑠 ̇ = 𝑠 𝑠 𝑠𝑠                                                           (3.18) 

 

                                                               𝑠 ̇ = 𝑠 A 𝑠𝑠                                                             (3.19) 
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                                                               𝑠 ̇ = 𝑠 𝑠 𝑠𝑠                                                            (3.20) 

   

                                                                𝑠 ̇ = 𝑠 𝑠 𝑠𝑠                                                            (3.21) 

 

The predictor P and updater U operators, along with their Hermitian transposes P* and U*, 

can be formulated using convolution filters denoted as p, u, p*, and u*. These convolutional 

representations simplify the mathematical expressions and allow the corresponding Equations, 

specifically (3.3), (3.4), (3.5), (3.6), (3.13), and (3.14), to be rewritten in an equivalent, more 

compact form as follows: 

 

                                    𝐻 = 𝐴𝑒
′ − ∬ 𝐴𝑜

′ (𝑠, 𝑠, 𝑠)𝑝∗(𝑠 − 𝑠1, 𝑠 − 𝑠2)𝑠𝑠𝑠𝑠                             (3.22) 

 

                                    𝐴 = 𝐴𝑜
′ + ∬ 𝐻(𝑠, 𝑠, 𝑠)𝑢∗(𝑠 − 𝑠1, 𝑠 − 𝑠2)𝑠𝑠𝑠𝑠                               (3.23) 

 

                                   𝐷 = 𝐷𝑒
′ − ∬ 𝐷𝑜

′ (𝑠, 𝑠, 𝑠)𝑝∗(𝑠 − 𝑠1, 𝑠 − 𝑠2)𝑠𝑠𝑠𝑠                              (3.24) 

 

                                    𝑉 = 𝐷𝑜
′ + ∬ 𝐷(𝑠, 𝑠, 𝑠)𝑢∗(𝑠 − 𝑠1, 𝑠 − 𝑠2)𝑠𝑠𝑠𝑠                               (3.25) 

 

                                    𝐷′ = 𝐼𝑒 − ∬ 𝐼𝑜(𝑠, 𝑠, 𝑠)𝑝∗(𝑠 − 𝑠1, 𝑠 − 𝑠2)𝑠𝑠𝑠𝑠                               (3.26) 

 

                                    𝐴′ = 𝐼𝑜 + ∬ 𝐷′(𝑠, 𝑠, 𝑠)𝑢∗(𝑠 − 𝑠1, 𝑠 − 𝑠2)𝑠𝑠𝑠𝑠                              (3.27) 

 

The derivative of approximations and details can be written as: 

 

𝑠 ̇ = 𝑠𝑠 𝑠
′ (𝑠 ,𝑠 ,𝑠)
𝑠𝑠

− 𝑠 𝑠𝑠 𝑠
′ (𝑠 ,𝑠 ,𝑠)𝑠𝑠(𝑠− 𝑠1 ,𝑠− 𝑠2 )

𝑠𝑠
𝑠𝑠𝑠𝑠 = 𝑠𝑠 𝑠

′ (𝑠 ,𝑠,𝑠)
𝑠𝑠

− 𝑠 𝑠𝑠 𝑠
′ (𝑠 ,𝑠,𝑠)
𝑠𝑠

𝑠𝑠(𝑠 − 𝑠1 , 𝑠 −

𝑠2 )𝑠𝑠𝑠𝑠                             (3.28) 

 

𝑠 ̇ = 𝑠𝑠 𝑠
′ (𝑠 ,𝑠 ,𝑠)
𝑠𝑠

+ 𝑠 𝑠𝑠 (𝑠 ,𝑠 ,𝑠)𝑠 𝑠(𝑠− 𝑠1 ,𝑠− 𝑠2 )
𝑠𝑠

𝑠𝑠𝑠𝑠 = 𝑠𝑠 𝑠
′ (𝑠 ,𝑠 ,𝑠)
𝑠𝑠

− 𝑠 𝑠𝑠 (𝑠 ,𝑠 ,𝑠)
𝑠𝑠

𝑠𝑠(𝑠 − 𝑠1 , 𝑠 −

𝑠2 )𝑠𝑠𝑠𝑠                             (3.29) 

 

𝑠 ̇ = 𝑠𝑠 𝑠
′ (𝑠 ,𝑠 ,𝑠)
𝑠𝑠

− 𝑠 𝑠𝑠 𝑠
′ (𝑠 ,𝑠 ,𝑠)𝑠𝑠(𝑠− 𝑠1 ,𝑠− 𝑠2 )

𝑠𝑠
𝑠𝑠𝑠𝑠 = 𝑠𝑠 𝑠

′ (𝑠 ,𝑠 ,𝑠)
𝑠𝑠

− 𝑠 𝑠𝑠 𝑠
′ (𝑠 ,𝑠 ,𝑠)
𝑠𝑠

𝑠𝑠(𝑠 − 𝑠1 , 𝑠 −

𝑠2 )𝑠𝑠𝑠𝑠                             (3.30) 
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𝑠 ̇ = 𝑠𝑠 𝑠
′ (𝑠 ,𝑠 ,𝑠)
𝑠𝑠

+ 𝑠 𝑠𝑠 (𝑠 ,𝑠,𝑠)𝑠 𝑠(𝑠− 𝑠1 ,𝑠− 𝑠2 )
𝑠𝑠

𝑠𝑠𝑠𝑠 = 𝑠𝑠 𝑠
′ (𝑠 ,𝑠,𝑠)
𝑠𝑠

+ 𝑠 𝑠𝑠 (𝑠 ,𝑠 ,𝑠)
𝑠𝑠

𝑠𝑠(𝑠 − 𝑠1 , 𝑠 −

𝑠2 )𝑠𝑠𝑠𝑠                             (3.31) 

 

𝑠 ′̇ = 𝑠𝑠𝑠 (𝑠 ,𝑠 ,𝑠)
𝑠𝑠

− 𝑠 𝑠𝑠𝑠 (𝑠 ,𝑠 ,𝑠)𝑠(𝑠− 𝑠1 ,𝑠− 𝑠2 )
𝑠𝑠

𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠 (𝑠 ,𝑠 ,𝑠)
𝑠𝑠

− 𝑠 𝑠𝑠𝑠 (𝑠 ,𝑠 ,𝑠)
𝑠𝑠

𝑠(𝑠 − 𝑠1 , 𝑠 − 𝑠2 )𝑠𝑠𝑠𝑠                                            

                              (3.32) 

 

𝑠 ′̇ = 𝑠𝑠𝑠 (𝑠 ,𝑠 ,𝑠)
𝑠𝑠

+ 𝑠 𝑠𝑠 ′ (𝑠 ,𝑠 ,𝑠)𝑠 (𝑠− 𝑠1 ,𝑠− 𝑠2 )
𝑠𝑠

𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠 (𝑠 ,𝑠 ,𝑠)
𝑠𝑠

+ 𝑠 𝑠𝑠 ′ (𝑠 ,𝑠 ,𝑠)
𝑠𝑠

𝑠(𝑠 − 𝑠1 , 𝑠 −

𝑠2 )𝑠𝑠𝑠𝑠                               (3.33) 

 

Relying on the temporal luminance constancy hypothesis, it is assumed that the intensity (or 

luminance) of a specific point x remains unchanged over time. This assumption proves to be 

applicable across various components, including Ie, Io, 𝑠 𝑠
′ , 𝑠 𝑠

′ , 𝑠 𝑠
′ , 𝑠 𝑠

′ , H 𝑠𝑠𝑠  𝑠 , i.e. these 

entities collectively represent the different luminance attributes or transform components 

derived from the image, and the constancy hypothesis provides the foundation for modeling 

their temporal behavior, as indicated in the following formulation: 

 

                                                  𝑠(𝑠 + 𝑠𝑠 ; 𝑠+ 𝑠𝑠) = 𝑠(𝑠 ; 𝑠)                                               (3.34) 

 

Here, dx represents the displacement of the point x occurring during the time interval dt. By 

performing a first-order Taylor series expansion of Equation (4.34) around the point 𝑠 , it is 

possible to derive the optical flow constraint equation. This equation establishes a linear 

approximation relating the temporal and spatial variations of intensity, laying the groundwork 

for computing the motion field. 

 

                                                             𝑠 𝑠𝑠 𝑠̇ + 𝑠𝑠 = 0                                                      (3.35) 

 

where 𝑠 𝑠𝑠 = [𝑠𝑠𝑠𝑠
𝑠𝑠
𝑠𝑠 ] = [𝑠𝑠   𝑠𝑠 ] is the spatial gradient of the image I(𝑠 ,t) at point x. 

Thus: 

 

                                                                𝑠 ̇ = − 𝑠 𝑠𝑠 𝑠̇                                                        (3.36) 

 

Taking into account the interaction matrix 𝑠 𝑠  associated with x (i.e. 𝑠̇ = 𝑠 𝑠 𝑠𝑠 ): 
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                    𝑠 𝑠 = (
− 1
𝑠

0 𝑠
𝑠

         𝑠𝑠  − (1 + 𝑠2 ) 𝑠

0 − 1
𝑠

 𝑠
𝑠

     1 + 𝑠2 − 𝑠𝑠  − 𝑠
)                      (3.37)  

 

By assuming a planar scene, a relationship connecting the depth of scene points to the 

coordinates of their corresponding image points can be established as follows:   

 

                                                         1
𝑠

= 𝑠𝑠 + 𝑠𝑠 + 𝑠                                                      (3.38) 

 

Relation (3.35) gives: 

 

                                                            𝑠 ̇ = − 𝑠 𝑠𝑠 𝑠 𝑠 𝑠𝑠                                                      (3.39) 

 

As a result, the interaction matrix corresponding to image intensities can be expressed as: 

 

                                                            𝑠 𝑠 = − 𝑠 𝑠𝑠 𝑠 𝑠                                                        (3.40) 

 

where 𝑠 𝑠  is given by: 

 

                                    𝑠 𝑠
𝑠 =

(

𝑠𝑠 (𝑠𝑠 + 𝑠𝑠 + 𝑠 )

𝑠𝑠 (𝑠𝑠 + 𝑠𝑠 + 𝑠 )

(− 𝑠𝑠𝑠 − 𝑠𝑠𝑠 )(𝑠𝑠 + 𝑠𝑠 + 𝑠 )

− 𝑠𝑠𝑠𝑠 − (1 + 𝑠2 )𝑠𝑠

(1 + 𝑠2 )𝑠𝑠 + 𝑠𝑠𝑠𝑠
− 𝑠𝑠𝑠 + 𝑠𝑠𝑠 )

                                      (3.41) 

 

Thus (3.28), (3.29), (3.30) and (3.31) become: 

 

                               𝑠 ̇ = [𝐿𝐴𝑒
′ − ∬ 𝑠𝐴𝑜

′ 𝑠𝑠(𝑠 − 𝑠1, 𝑠 − 𝑠2)𝑠𝑠𝑠𝑠 ]𝑠𝑠   (3.42) 

 

                                𝑠 ̇ = [𝐿𝐴𝑜
′ + ∬ 𝑠 𝑠 𝑠

𝑠(𝑠 − 𝑠1, 𝑠 − 𝑠2)𝑠𝑠𝑠𝑠 ]𝑠𝑠    (3.43) 

 

                                 𝑠 ̇ = [𝐿𝐷𝑒
′ − ∬ 𝑠 𝐷𝑜

′𝑠𝑠(𝑠 − 𝑠1, 𝑠 − 𝑠2)𝑠𝑠𝑠𝑠 ]𝑠𝑠    (3.44) 

 

                                  𝑠̇ = [𝐿𝐷𝑜
′ + ∬ 𝑠 𝑠 𝑠

𝑠(𝑠 − 𝑠1, 𝑠 − 𝑠2)𝑠𝑠𝑠𝑠 ]𝑠𝑠  (3.45) 
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with: 

 

                                  𝑠 ′̇ = [𝐿𝐼𝑒
− ∬ 𝑠 𝐼𝑜

𝑠(𝑠 − 𝑠1, 𝑠 − 𝑠2)𝑠𝑠𝑠𝑠 ]𝑠𝑠      (3.46) 

 

                                  𝑠 ′̇ = [𝐿𝐼𝑜
+ ∬ 𝑠

𝑠 ′𝑠(𝑠 − 𝑠1, 𝑠 − 𝑠2)𝑠𝑠𝑠𝑠 ]𝑠𝑠        (3.47) 

 

So we get: 

 

                                  𝑠 𝑠 = [𝐿𝐴𝑒
′ − ∬[𝐿𝐴𝑜

′ 𝑠𝑠(𝑠 − 𝑠1, 𝑠 − 𝑠2)𝑠𝑠𝑠𝑠 ]                                   (3.48) 

 

                                  𝑠 𝑠 = [𝐿𝐴𝑜
′ + ∬ 𝑠 𝑠 𝑠

𝑠(𝑠 − 𝑠1, 𝑠 − 𝑠2)𝑠𝑠𝑠𝑠 ]                                    (3.49) 

 

                                  𝑠 𝑠 = [𝐿𝐷𝑒
′ − ∬ 𝑠 𝐷𝑜

′𝑠𝑠(𝑠 − 𝑠1, 𝑠 − 𝑠2)𝑠𝑠𝑠𝑠 ]                                   (3.50) 

 

                                  𝑠 𝑠 = [𝐿𝐷𝑜
′ + ∬ 𝑠 𝑠 𝑠

𝑠(𝑠 − 𝑠1, 𝑠 − 𝑠2)𝑠𝑠𝑠𝑠 ]                                     (3.51) 

 

After substitution of (3.9) into (3.11), the following result is obtained: 

 

                                    𝑠 𝑠 = (𝑠 𝑠
𝑠𝑠 𝑠 𝑠

𝑠𝑠 𝑠 𝑠
𝑠𝑠 𝑠 𝑠

𝑠 𝑠 𝑠 𝑠

𝑠 𝑠 𝑠 𝑠
𝑠 𝑠)          (3.52) 

 

                                   𝑠 𝑠 = (𝑠 𝑠
𝑠𝑠 𝑠 𝑠

𝑠𝑠 𝑠 𝑠
𝑠𝑠 𝑠 𝑠

𝑠 𝑠 𝑠 𝑠

𝑠 𝑠 𝑠 𝑠
𝑠 𝑠)              (3.53) 

 

                                    𝑠 𝑠 = (𝑠 𝑠
𝑠𝑠 𝑠 𝑠

𝑠𝑠 𝑠 𝑠
𝑠𝑠 𝑠 𝑠

𝑠 𝑠 𝑠 𝑠

𝑠 𝑠 𝑠 𝑠
𝑠 𝑠)             (3.54) 

 

                                    𝑠 𝑠 = (𝑠 𝑠
𝑠𝑠 𝑠 𝑠

𝑠𝑠 𝑠 𝑠
𝑠𝑠 𝑠 𝑠

𝑠 𝑠 𝑠 𝑠

𝑠 𝑠 𝑠 𝑠
𝑠 𝑠)             (3.55) 

 

With setting 𝑠𝑠 + 𝑠𝑠 + 𝑠 = 𝛼 we get: 
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{

𝑠
𝑠

𝑠𝑠 = 𝛼𝑠𝑠 𝑠 𝑠
′ − 𝑠 𝛼𝑠𝑠 𝑠 𝑠

′ 𝑠𝑠(𝑠 − 𝑠1 , 𝑠 − 𝑠2 )𝑠𝑠𝑠𝑠                                                                 

𝑠
𝑠

𝑠𝑠 = 𝛼𝑠𝑠 𝑠 𝑠
′ − 𝑠 𝛼𝑠𝑠 𝑠 𝑠

′ 𝑠𝑠(𝑠 − 𝑠1 , 𝑠𝑠 − 𝑠2 )𝑠𝑠𝑠𝑠                                                                

𝑠
𝑠

𝑠𝑠 = 𝛼 ( − 𝑠𝑠𝑠 𝑠 𝑠
′ − 𝑠𝑠𝑠 𝑠 𝑠

′ ) − 𝑠 𝛼 ( − 𝑠𝑠𝑠 𝑠 𝑠
′ − 𝑠𝑠𝑠 𝑠 𝑠

′ ) 𝑠𝑠(𝑠 − 𝑠1 , 𝑠 − 𝑠2 )𝑠𝑠𝑠𝑠                           
  

𝑠
𝑠

𝑠 𝑠 =  − 𝑠𝑠𝑠𝑠 𝑠 𝑠
′ − (1 + 𝑠2 )𝑠𝑠 𝑠 𝑠

′ − 𝑠 [ − 𝑠𝑠𝑠𝑠 𝑠 𝑠
′ − (1 + 𝑠2 )𝑠𝑠 𝑠 𝑠

′ ] 𝑠𝑠(𝑠 − 𝑠1 , 𝑠 − 𝑠2 )𝑠𝑠𝑠𝑠              

𝑠
𝑠

𝑠 𝑠 =  (1 + 𝑠2 )𝑠𝑠 𝑠 𝑠
′ + 𝑠𝑠𝑠𝑠 𝑠 𝑠

′ − 𝑠 [ (1 + 𝑠2 )𝑠𝑠 𝑠 𝑠
′ + 𝑠𝑠𝑠𝑠 𝑠 𝑠

′ ] 𝑠𝑠(𝑠 − 𝑠1 , 𝑠 − 𝑠2 )𝑠𝑠𝑠𝑠                  

𝑠
𝑠

𝑠 𝑠 =  − 𝑠𝑠𝑠 𝑠 𝑠
′ + 𝑠𝑠𝑠 𝑠 𝑠

′ − 𝑠 [ − 𝑠𝑠𝑠 𝑠 𝑠
′ + 𝑠𝑠𝑠 𝑠 𝑠

′ ] 𝑠𝑠(𝑠 − 𝑠1 , 𝑠 − 𝑠2 )𝑠𝑠𝑠𝑠                                  

 

                             (3.56) 

 

{

𝑠
𝑠

𝑠𝑠 = 𝛼𝑠𝑠 𝑠 𝑠
′ + 𝑠 𝛼𝑠𝑠 𝑠

𝑠𝑠(𝑠 − 𝑠1 , 𝑠 − 𝑠2 )𝑠𝑠𝑠𝑠                                                             

𝑠
𝑠

𝑠𝑠 = 𝛼𝑠𝑠 𝑠 𝑠
′ + 𝑠 𝛼𝑠𝑠 𝑠

𝑠𝑠(𝑠 − 𝑠1 , 𝑠𝑠 − 𝑠2 )𝑠𝑠𝑠𝑠                                                            

𝑠
𝑠

𝑠𝑠 = 𝛼 ( − 𝑠𝑠𝑠 𝑠 𝑠
′ − 𝑠𝑠𝑠 𝑠 𝑠

′ ) + 𝑠 𝛼( − 𝑠𝑠𝑠 𝑠
− 𝑠𝑠𝑠 𝑠

) 𝑠𝑠(𝑠 − 𝑠1 , 𝑠 − 𝑠2 )𝑠𝑠𝑠𝑠                         
  

𝑠
𝑠

𝑠 𝑠 =  − 𝑠𝑠𝑠𝑠 𝑠 𝑠
′ − (1 + 𝑠2 )𝑠𝑠 𝑠 𝑠

′ + 𝑠 [− 𝑠𝑠𝑠𝑠 𝑠
− (1 + 𝑠2 )𝑠𝑠 𝑠

]𝑠𝑠(𝑠 − 𝑠1 , 𝑠 − 𝑠2 )𝑠𝑠𝑠𝑠            

𝑠
𝑠

𝑠 𝑠 =  (1 + 𝑠2 )𝑠𝑠 𝑠 𝑠
′ + 𝑠𝑠𝑠𝑠 𝑠 𝑠

′ + 𝑠 [ (1 + 𝑠2 )𝑠𝑠 𝑠
+ 𝑠𝑠𝑠𝑠 𝑠

]𝑠𝑠(𝑠 − 𝑠1 , 𝑠 − 𝑠2 )𝑠𝑠𝑠𝑠                

𝑠
𝑠

𝑠 𝑠 =  − 𝑠𝑠𝑠 𝑠 𝑠
′ + 𝑠𝑠𝑠 𝑠 𝑠

′ + 𝑠 [− 𝑠𝑠𝑠 𝑠
+ 𝑠𝑠𝑠 𝑠

]𝑠𝑠(𝑠 − 𝑠1 , 𝑠 − 𝑠2 )𝑠𝑠𝑠𝑠                                

 

                             (3.57) 

 

{

𝑠
𝑠

𝑠𝑠 = 𝛼𝑠𝑠 𝑠 𝑠
′ − 𝑠 𝛼𝑠𝑠 𝑠 𝑠

′ 𝑠𝑠(𝑠 − 𝑠1 , 𝑠 − 𝑠2 )𝑠𝑠𝑠𝑠                                                                 

𝑠
𝑠

𝑠𝑠 = 𝛼𝑠𝑠 𝑠 𝑠
′ − 𝑠 𝛼𝑠𝑠 𝑠 𝑠

′ 𝑠𝑠(𝑠 − 𝑠1 , 𝑠𝑠 − 𝑠2 )𝑠𝑠𝑠𝑠                                                                

𝑠
𝑠

𝑠𝑠 = 𝛼 ( − 𝑠𝑠𝑠 𝑠 𝑠
′ − 𝑠𝑠𝑠 𝑠 𝑠

′ ) − 𝑠 𝛼 ( − 𝑠𝑠𝑠 𝑠 𝑠
′ − 𝑠𝑠𝑠 𝑠 𝑠

′ ) 𝑠𝑠(𝑠 − 𝑠1 , 𝑠 − 𝑠2 )𝑠𝑠𝑠𝑠                          
  

𝑠
𝑠

𝑠 𝑠 =  − 𝑠𝑠𝑠𝑠 𝑠 𝑠
′ − (1 + 𝑠2 )𝑠𝑠 𝑠 𝑠

′ − 𝑠 [ − 𝑠𝑠𝑠𝑠 𝑠 𝑠
′ − (1 + 𝑠2 )𝑠𝑠 𝑠 𝑠

′ ] 𝑠𝑠(𝑠 − 𝑠1 , 𝑠 − 𝑠2 )𝑠𝑠𝑠𝑠             

𝑠
𝑠

𝑠 𝑠 =  (1 + 𝑠2 )𝑠𝑠 𝑠 𝑠
′ + 𝑠𝑠𝑠𝑠 𝑠 𝑠

′ − 𝑠 [ (1 + 𝑠2 )𝑠𝑠 𝑠 𝑠
′ + 𝑠𝑠𝑠𝑠 𝑠 𝑠

′ ] 𝑠𝑠(𝑠 − 𝑠1 , 𝑠 − 𝑠2 )𝑠𝑠𝑠𝑠                 

𝑠
𝑠

𝑠 𝑠 =  − 𝑠𝑠𝑠 𝑠 𝑠
′ + 𝑠𝑠𝑠 𝑠 𝑠

′ − 𝑠 [ − 𝑠𝑠𝑠 𝑠 𝑠
′ + 𝑠𝑠𝑠 𝑠 𝑠

′ ] 𝑠𝑠(𝑠 − 𝑠1 , 𝑠 − 𝑠2 )𝑠𝑠𝑠𝑠                                 

 

                             (3.58) 
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{

𝑠
𝑠

𝑠𝑠 = 𝛼𝑠𝑠 𝑠 𝑠
′ + 𝑠 𝛼𝑠𝑠 𝑠

𝑠𝑠(𝑠 − 𝑠1 , 𝑠 − 𝑠2 )𝑠𝑠𝑠𝑠                                                        

𝑠
𝑠

𝑠𝑠 = 𝛼𝑠𝑠 𝑠 𝑠
′ + 𝑠 𝛼𝑠𝑠 𝑠

𝑠𝑠(𝑠 − 𝑠1 , 𝑠𝑠 − 𝑠2 )𝑠𝑠𝑠𝑠                                                       

𝑠
𝑠

𝑠𝑠 = 𝛼 ( − 𝑠𝑠𝑠 𝑠 𝑠
′ − 𝑠𝑠𝑠 𝑠 𝑠

′ ) + 𝑠 𝛼( − 𝑠𝑠𝑠 𝑠
− 𝑠𝑠𝑠 𝑠

) 𝑠𝑠(𝑠 − 𝑠1 , 𝑠 − 𝑠2 )𝑠𝑠𝑠𝑠                    
  

𝑠
𝑠

𝑠 𝑠 =  − 𝑠𝑠𝑠𝑠 𝑠 𝑠
′ − (1 + 𝑠2 )𝑠𝑠 𝑠 𝑠

′ + 𝑠 [− 𝑠𝑠𝑠𝑠 𝑠
− (1 + 𝑠2 )𝑠𝑠 𝑠

]𝑠𝑠(𝑠 − 𝑠1 , 𝑠 − 𝑠2 )𝑠𝑠𝑠𝑠       

𝑠
𝑠

𝑠 𝑠 =  (1 + 𝑠2 )𝑠𝑠 𝑠 𝑠
′ + 𝑠𝑠𝑠𝑠 𝑠 𝑠

′ + 𝑠 [ (1 + 𝑠2 )𝑠𝑠 𝑠
+ 𝑠𝑠𝑠𝑠 𝑠

]𝑠𝑠(𝑠 − 𝑠1 , 𝑠 − 𝑠2 )𝑠𝑠𝑠𝑠

𝑠
𝑠

𝑠 𝑠 =  − 𝑠𝑠𝑠 𝑠 𝑠
′ + 𝑠𝑠𝑠 𝑠 𝑠

′ + 𝑠 [− 𝑠𝑠𝑠 𝑠
+ 𝑠𝑠𝑠 𝑠

]𝑠𝑠(𝑠 − 𝑠1 , 𝑠 − 𝑠2 )𝑠𝑠𝑠𝑠                  

          

 

                             (3.59) 

 

3.3 Control Scheme 

In this section, the methodological considerations underlying the selection of filters for the 

Lifting scheme are presented. The predict and update filters are accordingly selected to be Lazy 

wavelets, as detailed below: 

 

                                                 𝑠 = [1/ 2 1/ 2],     𝑠𝑠 = (
1/ 2

1/ 2
)         (3.60) 

 

                                                  𝑠 = [1/ 4 1/ 4],     𝑠𝑠 = (
1/ 4

1/ 4
)         (3.61) 

 

The control strategy applied to the chosen features is the same as presented in [2]: 

 

                                                     𝑠𝑠 = − 𝑠𝑠 𝑠
+  (𝑠 − 𝑠 𝑠)             (3.62) 

 

Here, 𝑠>0 represents the control gain, and 𝑠 𝑠
+  denotes the Moore-Penrose pseudo inverse 

of the interaction matrix 𝑠 𝑠 . 

Object and image planes are assumed to be parallel, which means 𝑠  = 𝑠  = 0 [2], and the 

depth Z is held at the desired position Z*. So (3.6) becomes: 

 

                                                                    𝑠 = 1
𝑠 𝑠                                            (3.63) 
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The computation of the visual servoing control law can be formulated as an optimization 

problem aimed at minimizing a visual error function in the image space. Several numerical 

optimization strategies have been employed in the visual servoing literature, each presenting 

specific advantages and limitations. 

First-order gradient-based methods, such as steepest descent, are simple and computationally 

efficient but often suffer from slow convergence and sensitivity to step-size tuning, particularly 

in nonlinear visual servoing problems [2]. Gauss–Newton methods improve convergence speed 

by exploiting a local quadratic approximation of the cost function; however, their effectiveness 

strongly depends on the validity of the linearization and may degrade in the presence of large 

initial errors or poorly conditioned interaction matrices [74]. Full Newton-based methods, while 

theoretically attractive, are generally impractical for real-time visual servoing due to the 

computational burden associated with Hessian estimation [80]. 

To overcome these limitations, this work adopts the Levenberg–Marquardt (LM) approach, 

which combines the robustness of gradient descent with the fast local convergence of Gauss–

Newton optimization [60]. By introducing an adaptive damping factor, the LM method ensures 

stable convergence when the system is far from the solution and progressively accelerates 

convergence as the error decreases. This property is particularly important in visual servoing, 

where nonlinearities and variations in the interaction matrix are common. 

The Levenberg–Marquardt strategy therefore provides a suitable compromise between 

numerical stability, convergence speed, and computational efficiency, making it well adapted 

to the visual servoing framework considered in this thesis. 

Consequently, Equation (3.13) is reformulated as follows: 

 

                                    𝑠𝑠 = − 𝑠(𝑠 + 𝑠𝑠𝑠𝑠𝑠(𝑠 ))
− 1
𝑠 𝑠

𝑠  (𝑠 − 𝑠 𝑠)         (3.64) 

 

Here, H = 𝑠 𝑠
𝑠 𝑠 𝑠  serves as an approximation of the Hessian matrix, and μ represents a 

damping factor. To enhance the convergence characteristics of the control law, the 

parameters λ and μ in the Levenberg-Marquardt optimization algorithm are made adaptive, 

following the approach described in [27]: 

 

𝑠 = 10𝑠𝑠𝑠10 (𝑠𝑠 )− 7.5  (3.65) 

 

𝑠 = 102𝑠𝑠𝑠10 (𝑠𝑠 )− 21  (3.66) 
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Here, 𝑠 𝑠  represents the norm of the difference between the current image and the target 

image. The values 7.5 and 21 were determined empirically. 

 

3.4 Conclusion 

In conclusion, this chapter introduces a novel approach to visual servoing by 

incorporating multi-resolution wavelet features derived from the lifting scheme. The 

primary contribution is the formulation of an interaction matrix that connects the variations 

in image features with the spatial velocities of the camera. This matrix serves as the 

mathematical backbone for relating visual feature dynamics to sensor motion, enabling 

precise control in 6-dof positioning tasks. The visual features are derived from stacked 

approximations and detail components, which are obtained through two-dimensional 

separable lifting operations on the image. By utilizing this multi-scale representation, the 

image’s rich characteristics are effectively captured, thereby enhancing the system’s ability 

to perform visual servoing tasks. 

The proposed method integrates Lazy/Haar wavelets as the prediction and update filters, 

and employs the Levenberg-Marquardt optimization technique to ensure robust 

convergence. This optimization approach is preferred over traditional methods, as it expands 

the convergence domain and improves the efficiency of the control law. The interaction 

matrix is further enhanced through the use of Moore-Penrose pseudoinversion, allowing for 

accurate estimation of the motion required to bring the visual features into alignment with 

the desired target. 

The framework presented here eliminates the need for complex image processing 

techniques, such as image matching and visual tracking, which are typically computationally 

expensive and prone to errors under variable conditions. Instead, the use of lifted wavelet 

coefficients provides a more efficient and stable solution for visual servoing applications. 

The adaptive nature of the control parameters, λ and μ, ensures that the system can handle 

varying conditions in real-time, making the approach both effective and versatile. 
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4.1 Introduction 

This chapter presents a comprehensive simulation-based evaluation of photometric visual 

servoing strategies, with particular emphasis on the robustness and stability of the control loop 

under varying illumination conditions and different initial camera configurations. The study 

focuses on the comparison between classical PVS and the proposed LWT-PVS. 

Photometric visual servoing directly exploits image intensity information as visual features, 

thereby avoiding explicit geometric modeling and feature extraction. While this dense 

representation provides rich visual feedback, it is well known to be highly sensitive to 

photometric disturbances such as illumination variations, shadows, and global intensity 

changes. These limitations often restrict the practical applicability of classical PVS in real-

world environments. 

The approach proposed in this thesis aims to address these limitations by introducing a 

wavelet-domain representation within the photometric visual servoing framework. By 

decomposing image intensities using the lifting wavelet transform, the proposed method 

separates structural information from illumination-dependent components, thereby improving 

robustness while preserving the core advantages of photometric control. 

The objective of this chapter is to quantitatively and qualitatively evaluate the impact of this 

representation on closed-loop behavior. The analysis is conducted through a systematic set of 

simulations organized into two distinct scenarios, corresponding to moderate and large initial 

camera displacements. For each scenario, both PVS and LWT-PVS are evaluated under 

nominal illumination conditions and under deliberately introduced illumination variations. This 

experimental design allows a clear assessment of convergence properties, stability margins, and 

robustness to photometric disturbances. 

The results are analyzed in terms of photometric error evolution, camera velocity profiles, 

and overall convergence behavior. Particular attention is devoted to the smoothness and 

boundedness of the control signals, which are critical for safe and reliable robotic operation. 

The simulation results presented in this chapter are intended to validate the theoretical 

developments introduced in the previous chapters and to provide strong motivation for the 

experimental validation presented in the subsequent chapter. 

The remainder of this chapter is organized as follows. Section 4.2 describes the simulation 

framework and implementation details. Sections 4.3.1 and 4.3.2 present and analyze the results 

obtained for the two scenarios under consideration. Finally, Section 4.4 provides a comparative 

discussion and concludes the chapter. 
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4.2 Implementation Details and Simulation Configuration 

This section describes in detail the simulation environment, software framework, and 

implementation parameters used to evaluate classical Photometric Visual Servoing (PVS) and 

the proposed Lifting Wavelet Transform–based Photometric Visual Servoing (LWT-PVS). All 

simulations are performed under strictly identical conditions to ensure a fair and reproducible 

comparison. 

 

Simulation Environment and Software Framework 

All simulations are conducted using the ViSP (Visual Servoing Platform) library [82], which 

provides a dedicated and well-established framework for the implementation and evaluation of 

visual servoing algorithms. ViSP is widely used in the visual servoing community and offers 

native support for photometric visual servoing, interaction matrix computation, and camera 

motion simulation. 

The simulations follow a kinematic eye-in-hand configuration, where a monocular camera 

is rigidly attached to the robot end-effector. Robot motion is simulated kinematically using 

camera velocity commands, without considering joint-level dynamics, which is consistent with 

standard visual servoing studies. 

The same ViSP-based simulation pipeline is used for both PVS and LWT-PVS to guarantee 

identical numerical conditions, control loop timing, and integration schemes. 

 

Camera Model and Image Acquisition 

The camera is modeled using a pinhole projection model with known intrinsic parameters. 

Lens distortion is neglected. The camera frame is denoted by 𝑠 𝑠. 

Images are acquired in grayscale format with a fixed resolution of 240 × 320 pixels. This 

image size is used consistently throughout all simulations and corresponds to the resolution 

employed in the implementation of photometric visual servoing in ViSP. 

The reference image 𝑠𝑠is captured at the desired camera pose and remains fixed during the 

servoing process. At each iteration 𝑠, the current image 𝑠(𝑠) is generated by the simulator 

according to the current camera pose. 

 

Visual Features and Photometric Error Definition 

For classical Photometric Visual Servoing, the visual feature vector is defined as the stacked 

vector of pixel intensity values: 

𝑠(𝑠) = 𝑠(𝑠) , 

and the corresponding photometric error is defined as: 

𝑠(𝑠) = 𝑠(𝑠) − 𝑠𝑠. 
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This formulation directly follows the photometric visual servoing framework introduced by 

Collewet and Marchand [12]. 

For the proposed LWT-PVS approach, both the current and reference images are 

decomposed using the lifting wavelet transform described in Chapter 3. The wavelet 

decomposition is applied to the entire image at a fixed number of decomposition levels. The 

resulting approximation and detail coefficients are concatenated to form the visual feature 

vector: 

𝑠LWT (𝑠) = 𝑠 (𝑠(𝑠)) , 

and the photometric error is defined in the wavelet domain as: 

𝑠LWT (𝑠) = 𝑠 (𝑠(𝑠)) − 𝑠 (𝑠𝑠) . 

This representation preserves the dense photometric nature of the control law while 

introducing multi-resolution information. 

 

Control Law and Motion Representation 

For both PVS and LWT-PVS, the camera velocity screw is computed using the same 

velocity-based control law: 

𝑠 𝑠 = [
𝑠
𝑠

] = − 𝑠𝑠 + 𝑠, 

Where 𝑠 = (𝑠𝑠 , 𝑠𝑠 , 𝑠𝑠)𝑠 denotes translational velocities and 𝑠 = (𝑠 𝑠 , 𝑠 𝑠 , 𝑠 𝑠)𝑠 denotes 

rotational velocities. 

The camera pose error is characterized for analysis purposes by translational displacement 

𝑠 = (𝑠𝑠 , 𝑠𝑠 , 𝑠𝑠) , and rotational displacement 𝑠 = (𝑠𝑠 , 𝑠𝑠 , 𝑠𝑠) . 

These quantities are not used in the control law but are monitored to evaluate convergence 

behavior. 

 

Discrete-Time Control Loop 

The visual servoing loop is implemented in discrete time with a fixed sampling period 𝑠𝑠 . 

At each iteration: 

1. Image acquisition from the ViSP simulator 

2. Computation of visual features and photometric error 

3. Evaluation of the interaction matrix 

4. Computation of the camera velocity 

5. Camera pose update using first-order integration 

This loop is repeated until convergence. Both PVS and LWT-PVS share the same discrete-

time control architecture implemented in the ViSP simulator. The control loop, illustrated in 

Fig. 4.1, differs only in the definition of the visual features and the associated interaction matrix. 
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Figure 4.1:  Discrete-time control loop for PVS and LWT-PVS implemented using the 

ViSP framework 
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Illumination Variation Modeling 

Illumination variations are introduced by modifying the intensity distribution of the 

simulated images during the servoing process. Both global illumination changes and spatial 

intensity variations are applied, thereby violating the brightness constancy assumption. 

The same illumination perturbations are applied to both PVS and LWT-PVS to ensure a fair 

robustness comparison. 

 

Stopping Criteria 

The servoing process is stopped when one of the following conditions is met: 

• the norm of the photometric error falls below a predefined threshold, or 

• a maximum number of iterations is reached. 

The stopping criteria are identical for all experiments. 

 

Summary of the Simulation Protocol 

The implementation described above is used consistently for all experiments presented in 

this chapter. Only the initial camera pose—defined by translational and rotational 

displacements—and the illumination conditions are varied to define the two scenarios analyzed 

in Sections 4.3.1 and 4.3.2. 

The resulting evolutions of the photometric error, camera velocity components, and 

convergence behavior are presented in Fig. 4.3 to Fig. 4.6 and Fig. 4.8 to Fig. 4.11, and analyzed 

in detail in the following sections. 

 

4.3 Simulation Results 

4.3.1 Scenario 1 

This first scenario is designed to evaluate the behavior of photometric visual servoing 

schemes under moderate initial camera displacement with respect to the desired pose. The initial 

configuration is deliberately chosen to place the camera sufficiently far from the target pose to 

activate the nonlinear characteristics of the control law, while remaining within a realistic 

operational range for practical robotic applications. The initial pose error is defined by a 

translational displacement Δ𝐓1 = [3 cm,  3 cm,  10 cm] and a rotational displacement Δ𝐑1 =

[−30∘,   − 25∘,  20∘]. 

Such a configuration ensures that all six degrees of freedom are simultaneously excited, 

allowing the evaluation of coupling effects between translational and rotational motions. At the 

same time, the magnitude of the displacement remains representative of typical industrial or 

laboratory conditions in which visual servoing is activated after a coarse positioning stage. 
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The objective of this scenario is twofold. First, it serves as a baseline configuration for 

assessing the nominal convergence properties of classical PVS and the proposed LWT-PVS 

approach under controlled conditions. Second, it enables a detailed analysis of the transient 

behavior of the control loop, including error oscillations, coupling effects between motion 

components, numerical conditioning of the interaction matrix, and the smoothness of the 

generated control signals. 

By considering both normal illumination conditions and artificial illumination variations, 

this scenario highlights the intrinsic sensitivity of photometric control laws to photometric 

disturbances, even when geometric displacements remain moderate. The results obtained in this 

scenario therefore provide valuable insight into the robustness of each method and establish a 

meaningful reference point for the more challenging conditions investigated in Scenario 2. 

The figures associated with Scenario 1 (Figs. 4.3(a–c) to 4.6(a–c)) illustrate the evolution of 

the photometric error, camera velocities, and convergence behavior over time. These results 

allow a direct and quantitative comparison between classical PVS and LWT-PVS in terms of 

stability margins, convergence speed, transient smoothness, and robustness to illumination 

changes. 

 

4.3.1.1 Normal Illumination 

The results obtained for classical PVS under normal illumination conditions in Scenario 1 

are presented in Fig. 4.3(a–c). The norm of the photometric error exhibits a global decreasing 

trend, confirming convergence toward the desired visual configuration. However, the transient 

phase is characterized by noticeable oscillations in the error evolution, particularly during the 

early iterations of the servoing process. 

These oscillations can be attributed to the nonlinear nature of the photometric interaction 

matrix and to the sensitivity of raw intensity-based features to local intensity variations. In this 

operating regime, small local discrepancies in image intensity can generate corrective actions 

that propagate through the control law. The corresponding camera velocity profiles display 

irregular fluctuations, especially at the beginning of the servoing process, reflecting these 

corrective actions induced by local photometric inconsistencies. 

Although convergence is ultimately achieved, the system operates close to its stability limits, 

and the lack of smoothness in the control signals indicates limited robustness, even under 

nominal illumination conditions. Such behavior may lead to undesirable mechanical stress or 

reduced positioning accuracy in real robotic systems. 

The corresponding results obtained with LWT-PVS are shown in Fig. 4.4(a–c). In contrast 

to classical PVS, the pose errors converge more smoothly, with significantly reduced 
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oscillations throughout the servoing process. Both translational and rotational components 

exhibit a near-monotonic decay toward zero, indicating improved stability and damping 

characteristics. 

Moreover, the camera velocity profiles are smoother and present lower peak magnitudes, 

reflecting improved numerical conditioning of the interaction matrix. The norm of the visual 

error decreases faster and more regularly, demonstrating enhanced convergence behavior. 

These observations indicate that, even under nominal illumination conditions, the wavelet-

based representation provides greater robustness and improved transient behavior compared to 

classical photometric visual servoing. 

 

4.3.1.2 Illumination Variations 

When illumination variations are introduced, the limitations of classical PVS become more 

pronounced, as illustrated in Fig. 4.5(a–c). The photometric error no longer decreases 

monotonically and may temporarily increase, indicating a violation of the brightness constancy 

assumption underlying the photometric control formulation. As a consequence, the camera 

velocity commands become irregular and may exhibit abrupt variations, reflecting instability in 

the control loop. 

These behaviors confirm the strong sensitivity of classical photometric visual servoing to 

illumination disturbances, even in scenarios where geometric displacement remains moderate. 

In such conditions, the control law struggles to maintain consistent convergence, and the 

interaction matrix becomes poorly conditioned due to photometric inconsistencies. 

The results obtained with LWT-PVS under the same illumination variations are presented in 

Fig. 4.6(a–c). Despite the degraded visual conditions, the pose errors maintain stable 

convergence trends. Although the convergence rate is slightly reduced compared to nominal 

illumination, no divergence or sustained oscillatory behavior is observed. 

The velocity profiles remain smooth and bounded, and the norm of the visual error decreases 

steadily throughout the servoing process. This behavior confirms that the wavelet-based visual 

features effectively attenuate illumination-induced disturbances while preserving the structural 

information required for control. 

Notably, the system achieves a high level of precision, with final translational errors as small 

as [−0.069 mm,   − 0.112 mm,   − 0.186 mm] and rotational errors reaching values as low as 

[−1.119∘,   − 0.274∘,  0.011∘]. 

These results clearly demonstrate the ability of the proposed approach to maintain accurate 

alignment despite significant illumination perturbations. 
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(a) Initial image I                               (b)  Desired image I* 
 

 

 
 

 

 
 

 
 
 

(c) Error between desired images in normal conditions and with illumination variations (I - I* 

+ 255)/2 (used for visualization) 
 

 

 

Figure 4.2:  Simulation Images for scenario 1 
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       (a)  Robot velocities applied            (b)  Errors in positioning (in m and rad) 

 

 

 
 

(c)  ||s - s∗|| 

 

 
Figure 4.3:  Simulation Results of PVS for scenario 1 in Normal Illumination 
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       (a)  Robot velocities applied            (b)  Errors in positioning (in m and rad) 

 

 

 
 

(c)  ||s - s∗|| 

 

 
Figure 4.4:  Simulation Results of LWT-PVS for scenario 1 in Normal Illumination 
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       (a)  Robot velocities applied            (b)  Errors in positioning (in m and rad) 

 

 

 
 

(c)  ||s - s∗|| 

 

 

Figure 4.5:  Simulation Results of PVS for scenario 1 in Illumination Variations 
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       (a)  Robot velocities applied            (b)  Errors in positioning (in m and rad) 

 

 

 

 
 

(c)  ||s - s∗|| 

 

 

Figure 4.6:  Simulation Results of LWT-PVS for scenario 1 in Illumination Variations 
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4.3.2 Scenario 2 

The second scenario addresses a significantly more challenging configuration, characterized 

by a large initial camera displacement involving substantial translational and rotational offsets 

relative to the desired pose. This scenario is intentionally designed to stress the photometric 

visual servoing framework and to evaluate the limits of stability, convergence, and robustness 

of both classical PVS and the proposed LWT-PVS approach. 

Large initial displacements are known to exacerbate nonlinearities in the interaction matrix 

and to amplify sensitivity to photometric inconsistencies. As a result, this scenario constitutes 

a stringent test of the domain of attraction and the robustness margins of the control schemes 

under study. The initial pose error is defined by a rotational displacement 

Δ𝐑2 = [−40∘,  35∘,  30∘] and a translational displacement Δ𝐓2 = [5 cm,   − 5 cm,  30 cm]. 

As in Scenario 1, both normal illumination conditions and illumination variations are 

considered. However, in this scenario, the combination of large motion amplitudes and 

photometric disturbances represents a particularly adverse configuration for classical 

photometric visual servoing. The objective is to assess whether the proposed wavelet-based 

representation can preserve stability and convergence under such extreme conditions. 

The results corresponding to Scenario 2, illustrated in Figs. 4.8(a–c) to 4.11(a–c), allow a 

direct comparison between PVS and LWT-PVS in terms of convergence behavior, smoothness 

of the control signals, and robustness to illumination changes. This scenario plays a critical role 

in demonstrating the extended convergence domain and enhanced robustness of the proposed 

LWT-PVS framework. 

 

4.3.2.1 Normal Illumination 

For Scenario 2, the initial camera displacement is significantly larger than in Scenario 1, 

resulting in reduced visual overlap and increased nonlinearity in the control dynamics. The 

results obtained with classical PVS under normal illumination conditions are presented in Fig. 

4.8(a–c). 

The photometric error decreases slowly and exhibits pronounced oscillations throughout 

the transient phase. These oscillations reflect the difficulty of accurately modeling the 

interaction matrix far from the desired pose and the strong coupling between motion 

components. The corresponding camera velocity profiles display large fluctuations, indicating 

strong nonlinear effects and limited convergence margins. 

Although convergence may eventually occur, the transient phase is long and unstable, and 

the lack of smoothness in the control signals highlights the reduced robustness of classical PVS 
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under large initial displacements. Such behavior may compromise both precision and 

mechanical safety in practical robotic systems. 

The results obtained with LWT-PVS under nominal illumination are shown in Fig. 4.9(a–c). 

In contrast to classical PVS, the proposed approach ensures smooth and stable convergence 

despite the large initial displacement. Both translational and rotational pose errors decrease 

steadily with minimal oscillations, demonstrating improved damping and numerical 

conditioning of the interaction matrix. 

Moreover, the camera velocity profiles remain continuous and bounded, with significantly 

reduced peak magnitudes compared to classical PVS. The norm of the visual error decreases at 

a faster and more regular rate, indicating an enlarged domain of attraction and improved 

convergence efficiency under challenging geometric conditions. 

 

4.3.2.2 Illumination Variations 

When illumination variations are combined with large initial displacements, classical PVS 

exhibits severe instability, as illustrated in Fig. 4.10(a–c). The photometric error oscillates 

significantly and may increase over time, indicating a breakdown of the brightness constancy 

assumption underlying the photometric control formulation. The resulting velocity commands 

become erratic, reflecting a loss of closed-loop stability. 

These results clearly demonstrate the limitations of classical photometric visual servoing in 

challenging environments where strong nonlinearities and photometric disturbances coexist. 

Under such conditions, the control law fails to maintain reliable convergence and becomes 

highly sensitive to illumination-induced inconsistencies. 

The corresponding results obtained with LWT-PVS are presented in Fig. 4.11(a–c). Despite 

the combined challenges of large initial displacement and illumination variations, the system 

maintains stable and consistent convergence. Although the transient phase is longer than 

under nominal illumination, all pose error components eventually converge toward zero without 

divergence or sustained oscillatory behavior. 

The velocity profiles remain smooth and bounded, and the norm of the visual error decreases 

monotonically. Notably, the system achieves high positioning accuracy, with final translational 

errors of [0.027 mm,   − 0.038 mm,   − 0.574 mm] and rotational errors of [0.408∘,   −

0.548∘,  0.006∘]. 

These results confirm the strong robustness of the proposed wavelet-based approach and 

demonstrate its ability to preserve stability and precision under extreme visual and geometric 

perturbations. 

 



CHAPTER 4. SIMULATION RESULTS 

76 

 

   

 
 

(a) Initial image I     (b)  Desired image I* 

 

 

 

 
 

 
 

(c) Error between desired images in normal conditions and with illumination variations (I - I* 

+ 255)/2 (used for visualization) 

 

 

 
Figure 4.7:  Simulation Images for scenario 2 

 

 

 

 

 



CHAPTER 4. SIMULATION RESULTS 

77 

 

   

        

 (a)  Robot velocities applied            (b)  Errors in positioning (in m and rad) 

 

 

 
 

(c)  ||s - s∗|| 

 

 

Figure 4.8:  Simulation Results of PVS for scenario 2 in Normal Illumination 
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 (a)  Robot velocities applied            (b)  Errors in positioning (in m and rad) 

 

 

 

 
 

(c)  ||s - s∗|| 

 

 

Figure 4.9:  Simulation Results of LWT-PVS for scenario 2 in Normal Illumination 
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       (a)  Robot velocities applied            (b)  Errors in positioning (in m and rad) 

 

 

 

 
 

(c)  ||s - s∗|| 

 

 

Figure 4.10:  Simulation Results of PVS for scenario 2 in Illumination Variations 
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       (a)  Robot velocities applied            (b)  Errors in positioning (in m and rad) 

 

 

 
 

(c)  ||s - s∗|| 

 

 

Figure 4.11:  Simulation Results of LWT-PVS for scenario 2 in Illumination Variations 
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4.4 Conclusion 

In conclusion, the simulation results presented in this chapter demonstrate the effectiveness 

and robustness of the Lifting Wavelet Transform-based photometric features for 6-dof 

positioning tasks, even in the presence of significant illumination variations. The proposed 

method outperforms traditional photometric visual servoing (PVS) techniques, successfully 

converging to the desired pose in both simulation scenarios. This is particularly noteworthy 

given the dynamic nature of the visual conditions, where portions of the scene appear and 

disappear as the camera moves, highlighting the challenges posed by changing lighting 

conditions. 

Across both scenarios and illumination conditions, LWT-PVS consistently outperforms 

classical PVS. The key advantages of the proposed method can be summarized as follows: 

• Faster and more regular convergence. 

• Reduced oscillatory behavior. 

• Improved numerical conditioning of the interaction matrix. 

• Enlarged convergence domain. 

• Strong robustness to illumination variations 

The results demonstrate that robustness is achieved not by modifying the control law, but 

by redefining the visual representation. The lifting wavelet transform separates illumination-

dependent components from structural information, enabling the control system to focus on 

invariant features. 

From a practical standpoint, the smoother velocity profiles produced by LWT-PVS reduce 

the risk of actuator saturation and mechanical stress, making the approach suitable for real 

robotic systems. 

Despite the slight nonzero convergence of the error norm, primarily due to discrepancies in 

pixel intensities between the initial and desired images, the overall performance of the proposed 

method is exemplary. The controlled lighting variations introduced in both scenarios were 

effectively handled by the system, confirming the robustness of the Lifting Scheme-derived 

features in overcoming the challenges associated with illumination changes. These findings not 

only validate the proposed modeling approach but also demonstrate its potential for real-world 

applications, where lighting conditions can be unpredictable and dynamic. 

Although the simulation results are highly encouraging, certain limitations must be 

acknowledged. The computational overhead associated with wavelet decomposition is higher 



CHAPTER 4. SIMULATION RESULTS 

82 

 

than that of classical PVS, although the lifting scheme significantly mitigates this issue. 

Additionally, extreme lighting conditions or severe occlusions may still affect performance. 

These limitations motivate further investigation through experimental validation and real-

time optimization. 

Overall, the results confirm the superiority of the proposed method in terms of precision, 

robustness, and reliability in comparison to traditional visual servoing techniques, making it a 

promising approach for a wide range of positioning and tracking tasks in robotics and other 

dynamic systems. 



 

   

 

 

 

 

GENERAL CONCLUSION AND 

PERSPECTIVES 

 

 

 

Contents 

1 General conclusion ............................................................................................... 84 

2 Future works ........................................................................................................ 84 

  

 

 
 

 

 

 

 

 

 

 

 

 

 

 



GENERAL CONCLUSION AND PERSPECTIVES 

84 

 

1 General Conclusion 

In this thesis, the introduction of a novel method for visual servoing, referred to as Lifting 

Wavelet Transform-based Photometric Visual Servoing (LWT-PVS), is presented. This 

method leverages wavelet coefficients computed using the lifting scheme as the primary 

features for visual servoing tasks, providing an innovative approach to overcoming challenges 

associated with illumination variations. A key contribution of this work is the derivation of a 

closed-form interaction matrix that relates the temporal variations in wavelet coefficients to the 

spatial velocities of the vision sensor. 

Extensive simulations have been conducted to validate the proposed method against classical 

photometric visual servoing techniques, which typically employ raw image intensities as 

features. The results demonstrated the effectiveness of LWT-PVS in achieving accurate and 

robust 6-dof positioning, even in the presence of significant illumination changes. The proposed 

method showed superior performance in dynamic lighting conditions, outperforming traditional 

photometric approaches in maintaining stability and precision. However, the system was found 

to experience performance degradation for larger translational and rotational displacements, 

and it required more computation time for convergence compared to methods that rely on 

geometric features. 

Despite these challenges, the LWT-PVS method offers a promising framework for visual 

servoing applications, particularly in environments where lighting conditions are unpredictable 

and where traditional feature extraction methods struggle. The use of multi-resolution wavelet 

features provides a richer and more robust representation of the image, which enhances the 

system’s ability to perform under variable conditions, offering a solid foundation for future 

developments in this area. 

 

2 Future works 

While the proposed LWT-PVS method has shown significant promise, several avenues for 

improvement and further research remain: 

1. Global Descriptors for Large Displacements: One limitation identified in this work 

is the deterioration of performance for large translational and rotational displacements. 

Future research will focus on incorporating global descriptors, such as moments of 

wavelet coefficients, to mitigate this issue. By capturing more comprehensive 

information from the image, these global descriptors could help maintain robustness and 

accuracy even for large displacements. 

2. Real-Time Visual Servoing: Another area for future work is the real-time 

implementation of LWT-PVS in dynamic environments. While this study focused on 
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simulations, real-world applications demand the integration of real-time algorithms 

capable of handling environmental variations. Efforts will be made to develop real-time 

visual servoing algorithms based on wavelet lifting schemes, optimizing computational 

efficiency while maintaining performance. 

3. Optimization of Convergence Time: The method’s convergence time, particularly for 

large displacements, could be further optimized. Investigating more efficient 

optimization techniques or adaptive control schemes that adjust parameters dynamically 

based on the system's state may improve convergence rates and reduce the 

computational burden. 

4. Integration with Geometric Features: To balance the advantages of photometric and 

geometric methods, a hybrid approach could be developed. This would combine 

wavelet-based photometric features with traditional geometric features, ensuring that 

the system can handle a wide range of tasks with varying complexity and accuracy 

requirements. 

5. Handling Occlusions and Partial Visibility: The impact of occlusions or partial 

visibility of the target object remains a challenge in visual servoing. Future work could 

explore methods for handling partial occlusions, perhaps by incorporating machine 

learning techniques for feature selection and adaptation under these conditions. 

6. Expansion to 3D Visual Servoing: While the current work focuses on 2D visual 

features, extending the approach to 3D visual servoing tasks is a logical next step. This 

would involve integrating depth information and handling 3D object interactions, 

allowing the system to operate in more complex, three-dimensional environments. 

7. Exploration of Other Wavelet Variants: Finally, it would be valuable to explore the 

use of different wavelet transforms beyond the lifting scheme. By experimenting with 

other variants, such as curvelets or shearlets, the system’s sensitivity to higher 

frequencies could potentially be improved, and the representation of complex image 

structures could be enhanced. 

In conclusion, while the proposed LWT-PVS method represents a significant advancement 

in visual servoing, there is still considerable room for improvement. By addressing the 

aforementioned challenges and exploring new techniques, future research could further enhance 

the robustness, efficiency, and versatility of visual servoing systems, expanding their 

applicability to a wider range of real-world tasks. 

. 
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