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Abstract

Smart agriculture integrates digital technologies, sensors, the Internet of Things, big data,
and artificial intelligence to transform traditional farming into precision-oriented and data-
driven systems. These systems aim to improve productivity while making better use of
resources. At the beginning of each growing season, farmers must make decisions that
guide the success of the entire production cycle. The most important of these choices is
deciding which crops to plant and how to divide land among them. This choice influ-
ences all later activities, such as planning the planting schedule, preparing the soil, and
organizing the use of inputs. Because of its importance, crop selection is often described
as the first step in farm planning. The first contribution of this thesis responds to this
problem by introducing an interpretable crop selection system. The system integrates
SHAP-based explanations to show how soil properties and climate conditions affect each
recommendation. It combines strong predictive ability with clear explanations, offering a
practical tool that farmers and advisors can use with greater trust.

After the crop has been chosen, the next important question is “how much to expect.” Ac-
curate yield forecasting allows farmers to organize inputs, schedule labor, manage uncer-
tainty, and prepare for market activities. The second contribution of this thesis addresses
this by designing a stacked ensemble learning framework, developed with greenhouse
tomato production as a case study. It delivers accurate daily yield forecasts and achieves
better results than standard regression methods, providing a reliable decision-support tool
for greenhouse management.

Since both crop selection and yield forecasting depend on the quality of agricultural
data, the third contribution focuses on how this data can be kept secure, reliable, and
trustworthy. To achieve this, a blockchain-based approach is proposed that integrates
encryption, distributed file storage, and smart contracts. The approach ensures data
traceability, confidentiality, and tamper-resistance.

Keywords: Smart Predictive Agriculture; Crop Selection; Interpretable Machine Learn-
ing; SHAP; Tomato Yield Prediction; Ensemble learning, Blockchain; Data Integrity;

Decision Support Systems.



Résumé

L’agriculture intelligente integre les technologies numériques, les capteurs, I'Internet des
objets, le big data et I'intelligence artificielle afin de transformer 'agriculture tradition-
nelle en systemes de production de précision guidés par les données. Ces systemes visent
a accroitre la productivité tout en optimisant 'utilisation des ressources. Au début de
chaque saison culturale, les agriculteurs doivent prendre des décisions déterminantes pour
la réussite de ’ensemble du cycle de production. La plus importante concerne le choix
des cultures a planter, décision qui influence toutes les étapes ultérieures, telles que la
planification du calendrier de semis, la préparation du sol et I'organisation des intrants.
La premiere contribution de cette these propose un systeme interprétable de sélection des
cultures. Ce systeme integre des explications basées sur SHAP pour montrer comment
les propriétés du sol et les conditions climatiques influencent chaque recommandation. I1
associe une forte capacité de prédiction a des explications claires, offrant ainsi un outil
pratique que les agriculteurs et les conseillers peuvent utiliser en toute confiance.

Une fois la culture choisie, la question suivante est « combien espérer ». La deuxieme
contribution de cette these traite cette problématique en concevant un cadre d’apprentis-
sage ensembliste empilé, appliqué a la production de tomates en serre comme étude de
cas. Ce modele fournit des prévisions quotidiennes fiables du rendement et surpasse les
méthodes de régression classiques, constituant ainsi un outil efficace d’aide a la décision
pour la gestion des serres.

Etant donné que la sélection des cultures et la prévision du rendement reposent toutes
deux sur la qualité des données agricoles, la troisieme contribution examine comment
garantir la sécurité, la fiabilité et la confiance dans ces données. Pour répondre a cet enjeu,
une approche basée sur la blockchain est proposée, intégrant le chiffrement, le stockage
distribué et les contrats intelligents. Cette approche assure la tracabilité, la confidentialité
et la résistance a la falsification des données.

Mots-clés : Agriculture Prédictive Intelligente; Sélection des Cultures; Apprentissage
Automatique Interprétable; SHAP ; Prédiction du Rendement de la Tomate; Apprentis-

sage d’ensemble ; Blockchain ; Intégrité des Données; Systemes d’Aide a la Décision.
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Chapter 1

General introduction

1.1 Context

Agriculture plays a central role in ensuring global food security, supporting economic de-
velopment, and maintaining environmental balance. It provides livelihoods for billions
of people and remains a key source of employment and income, especially in developing
regions. However, the sector faces a range of challenges that threaten its ability to remain
productive and resilient. The world population is projected to approach 10 billion by
2050, driving a sharp increase in food demand and creating pressure for higher produc-
tivity and more efficient resource use [6] . At the same time, climate variability, resource
constraints, and environmental degradation place heavy demands on farming systems,
limiting the capacity of traditional practices to adapt to changing environmental and
economic conditions [7].

This situation has encouraged the development of smart agriculture, supported by ad-
vanced technologies such as data science, artificial intelligence (AI), machine learning
(ML), and blockchain. Smart agriculture relies on combining information from many
sources, including soil sensors, satellite images, climate forecasts, and market data, to
guide accurate and data-driven decisions. This approach, often described as smart pre-
dictive agriculture, helps farmers and decision-makers improve management practices, use
resources more efficiently, and build farming systems that can adapt to changing environ-

mental and economic conditions [8] [9].
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Data science supports this transformation by offering analytical tools and methods that
extract useful knowledge from complex datasets. Among these tools, machine learning
enables predictive modeling for tasks such as crop selection and yield forecasting, providing
guidance for agricultural planning and resource management [10]. Despite significant
progress, important gaps remain. One key limitation is the limited interpretability of
many predictive agricultural systems, which often function as “black boxes.” This absence
of explainability reduces trust and slows adoption among farmers and practitioners, who
require clear and understandable recommendations to make confident decisions in real-
world conditions.

Furthermore, As data-driven approaches gain importance for improving agricultural pro-
ductivity, accurate yield forecasting in controlled environments such as greenhouses re-
mains a complex challenge. The interactions among environmental variables are often
nonlinear and interdependent, making precise prediction difficult and increasing economic
uncertainty. At the same time, the rapid expansion of digital farming technologies requires
strong safeguards to protect agricultural data, ensuring its integrity and maintaining re-

liable and traceable data flows that are essential for collaborative farming practices.

1.2 Problem Statement

In the rapidly changing landscape of agriculture, farmers and stakeholders are increasingly
faced with the challenge of making decisions that balance productivity, sustainability, and
resilience. The transition from traditional, experience-based practices to data-driven agri-
culture is reshaping how these decisions are made, but also introducing new complexities
and demands [11].

At the beginning of each growing season, farmers face a series of planning tasks that de-
termine the success of the entire production cycle. The first and most influential of these
tasks is deciding which crops to grow and how to allocate land among them. This early
decision serves as the foundation for all subsequent actions, including planting schedules,
soil preparation, and resource management. Agricultural research and extension services

consistently identify crop and land-use planning as the starting point of seasonal planning
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[12, [13]. Whish et al.[14] describe the question of “what to plant, when, and where” as
a complex challenge encountered by every farmer. Similarly, the University of Minnesota
Extension guide explicitly lists “Step 1: Decide what to grow” as the opening action in
farm planning[15]. Practical guides to crop rotations also begin with crop selection, rec-
ognizing that decisions on crop type and rotation shape every later stage of management.
A Kentucky Extension note likewise emphasizes land-use planning as the first decision,
asking, “Should this land be cropped? If so, with what crop or crop rotation?”[16].

In practice, farmers consider a range of factors before finalizing this critical choice, in-
cluding field conditions, crop rotations, soil health, and local climate. Once the crop is
determined, subsequent tasks such as selecting planting dates and preparing fertilizers
or soil amendments follow in a logical sequence. The decision of what to plant initiates
the entire seasonal workflow, making it the key point where accurate, data-supported
recommendations can have the greatest impact on farm productivity and resource use
[17].

After deciding what to plant, the next important question is “how much to expect?” Re-
liable yield forecasts are essential for organizing labor, planning storage, arranging mar-
keting activities, and managing farm finances. Recent progress in artificial intelligence
has advanced yield prediction by combining historical production data, satellite observa-
tions, and real-time measurements collected from the field. Machine learning methods
are able to detect complex patterns among weather conditions, soil characteristics, and
crop growth, allowing farmers to refine management practices and marketing plans as
new information becomes available during the season. These developments point to the
need for practical, context-aware forecasting tools that can deliver accurate and timely
predictions for decision-making.

The reliability of agricultural decision-making depends on the security and integrity of the
foundational data. The rapid growth of digital technologies in farming, including sensors,
automated equipment, and shared data platforms, offers new opportunities for data-driven
management but also introduces significant risks. This raises an important question: how

can the data that supports these decisions be kept secure, accurate, and trustworthy?
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Conventional data management systems often fall short in preventing tampering, unau-
thorized access, or the loss of data origin, which can weaken confidence among farmers
and other stakeholders and slow the adoption of smart agricultural practices. Protecting
data integrity and ensuring transparent data flows have therefore become essential for
developing collaborative farming systems where choices about “what to plant” and “how

much to expect” can be made with greater confidence.

1.3 Contributions

This thesis addresses the gaps and limitations identified in contemporary agricultural
practices by making three key contributions, each aimed at enhancing the effectiveness

and reliability of smart predictive agriculture:

Contribution 1: Interpretable Crop Selection System for Opti-

mized Farming Decisions

The first contribution of this thesis is the design and implementation of an interpretable
and high-accuracy crop selection system, addressing the need for both predictive reliability
and model transparency in smart agriculture. The main stages of this contribution are

outlined below:

e Dataset Construction and Characterization: A balanced dataset of 2,200
records covering 22 crop types was used. Each crop is described through key agro-
nomic features, including soil nitrogen (N), phosphorus (P), potassium (K), pH,

temperature, humidity, and rainfall.

« Exploratory Data Analysis (EDA): A detailed statistical and visual analysis
was conducted to assess feature distributions, identify influential predictors, and
examine relationships between input variables and crop classes. This stage provided

essential insights that guided the selection of suitable preprocessing techniques.

o Data Preprocessing: The preprocessing pipeline included outlier detection and

imputation, feature scaling, categorical label encoding, and data augmentation to
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expand each crop class. These steps ensured data quality and improved compati-

bility with machine learning models.

e Proposed CS-AdaRF-SHAP System: The system leverages an adaptive boost-
ing strategy that trains a sequence of Random Forest classifiers while iteratively
reweighting misclassified instances. This enhances the model’s ability to distin-
guish between crops with similar feature patterns and increases robustness across
diverse agricultural conditions. Hyperparameters were carefully tuned to achieve
optimal predictive performance. The model integrates SHapley Additive exPla-
nations (SHAP) to provide both global and local interpretability. SHAP values
quantify the contribution of each feature to the final recommendation, offering clear

and agronomically meaningful explanations suitable for stakeholders.

The proposed CS-AdaRF-SHAP system achieved high test accuracy along with
strong precision, recall, and F1-score values. Most errors occurred between agro-
nomically similar crop classes. The system consistently outperformed baseline and
ensemble models, demonstrating its suitability for real-world deployment in smart

agriculture.

Contribution 2: Data-Driven Crop Yield Prediction

The second contribution of this thesis is the development of a data-driven system for
predicting crop yield, using tomato production in greenhouse conditions as a case study.
This work addresses the practical question of “how much to expect,” which is essential
for planning inputs, scheduling labor, and organizing marketing activities. The proposed
approach employs a stacked ensemble learning framework that combines the predictive
outputs of several models to improve the accuracy of daily yield estimation.

A careful preprocessing procedure was designed to secure data quality and reliability. The
workflow included systematic cleaning, temporal alignment, normalization, data augmen-
tation, and the selection of key features that capture relevant environmental and crop
growth dynamics. The model was trained and evaluated on real multivariate greenhouse

data and achieved higher predictive accuracy than standard regression techniques.
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Contribution 3: Blockchain-Based Approach to Securing Data in

Smart Agriculture

The third contribution of this thesis is the implementation of a blockchain-based approach
to ensure the security, integrity, and reliable sharing of agricultural data in IoT-enabled
greenhouse environments. Addressing the essential challenge of “How can the data that
supports these decisions remain secure, reliable, and trustworthy?” the proposed approach
integrates blockchain technology, smart contracts, edge computing, and distributed file
storage (IPFS) into a unified framework.

The system enables all registered agricultural sites to collect, encrypt, and transmit data
to a distributed platform under the supervision of a central government institution. The
workflow incorporates cryptographic hashing (SHA256) for integrity verification, AES
encryption for data confidentiality, and IPFS for tamper-evident, decentralized storage.
Transactional metadata, including data ownership, access rights, and file hashes, is se-
curely recorded on the blockchain via custom smart contracts, ensuring immutability,

transparency, and auditable access.

1.4 Thesis Structure

The remainder of this thesis is organized as follows:

Chapter 2: Preliminaries and Basic Concepts

This chapter introduces the fundamental theories and background necessary for under-
standing the remainder of the thesis.It begins with an overview of data science, its life-
cycle, and the role of feature engineering in building predictive models. Core principles
of machine learning and deep learning are then introduced. The chapter also discusses
interpretable and explainable Al. Finally, it presents the fundamentals of blockchain tech-
nology, outlining its potential for ensuring data security and trust in smart agriculture.
Chapter 3: Smart Agriculture: State of the Art

This chapter reviews the evolution of agriculture from traditional practices to modern,
Al-driven systems. It discusses the main challenges and limitations of conventional ap-

proaches, examines recent advances in smart agriculture, including Al-based crop selec-
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tion, yield prediction, and blockchain-enabled data security, and identifies the key research
gaps that motivate and shape the contributions of this thesis.

Chapter 4: Contribution 1: Interpretable Crop Selection for Optimized Farm-
ing Decisions

This chapter presents the first contribution of the thesis, which focuses on the design of
an interpretable crop selection system. It describes the architecture and methodology of
the proposed CS-AdaRF-SHAP system, reports the experimental results demonstrating
both its performance and interpretability, and concludes with a discussion of its practical
implications for real-world agricultural decision-making.

Chapter 5: Contribution 2: Data-Driven Crop Yield Prediction

This chapter presents the second contribution of the thesis, which addresses the challenge
of predicting crop yield (with a focus on tomato) in greenhouse environments. It intro-
duces the proposed stacked ensemble learning framework, details the dataset and data
preprocessing methods, and provides a thorough evaluation of predictive performance in
comparison with baseline models.

Chapter 6: Contribution 3: Blockchain-Based Approach to Securing Data in
Smart Agriculture

This chapter presents the third contribution of the thesis, a secure approach for managing
agricultural data using blockchain and IPFS. It describes the system architecture and key
implementation steps, including smart contract deployment and data encryption. The
chapter also demonstrates the advantages of the approach in ensuring data integrity,
privacy, and reliable data sharing among agricultural stakeholders.

Chapter 7: General Conclusion and Perspectives

The final chapter integrates the main outcomes of the thesis, reviewing the challenges
addressed and the proposed solutions. It discusses the scientific and practical contribu-
tions to the field of smart agriculture, evaluates the results achieved, and concludes with

perspectives for future research and development.



Chapter 2

Preliminaries and Basic Concepts

2.1 Introduction

This chapter presents the foundational concepts central to our thesis and provides a com-
prehensive overview of the main domains that will be explored in the subsequent chapters.
Section 1.2 presents the fundamentals of Data Science, covering its lifecycle, preprocess-
ing techniques, feature engineering, and exploratory data analysis methods. Section 1.3
introduces Machine Learning (ML) and Deep Learning (DL), outlining their core con-
cepts, methodologies, and evaluation metrics. Section 1.4 focuses on Interpretable and
Explainable AI (XAI). Finally, Section 1.5 reviews Blockchain technology with attention

to the mechanisms that ensure data security, integrity, and traceability.

2.2 Data Science Fundamentals

2.2.1 Definition and Scope

Data Science is an interdisciplinary field that applies scientific methods, algorithms, and
computational systems to extract knowledge from both structured and unstructured data.
As illustrated in Figure [2.1] it integrates principles from statistics, computer science,
mathematics, and domain-specific expertise to analyze complex datasets and support
informed decision-making [18].

Each of these components plays an important role:

8
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Figure 2.1: Core components of Data Science.

e Statistics and Mathematics provide the theoretical foundations for data model-

ing, hypothesis testing, and quantitative analysis.

« Computer Science supports scalable data processing, algorithm design, and the

implementation of machine learning methods.

« Domain Expertise ensures that analytical approaches and data-driven solutions

remain relevant, interpretable, and actionable within a specific context.
The integration of these components enables Data Science to:
o Detect patterns, trends, and anomalies within complex datasets.
» Develop predictive and prescriptive models that inform and optimize decision-making.

e Support automation, real-time analytics, and adaptive systems across diverse do-

mains.

Data Science has become essential across a wide range of disciplines, including;:
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o Finance: [t is applied in credit risk modeling, fraud detection, and algorithmic

trading to enhance decision-making and risk management.

e Healthcare: It supports predictive diagnostics, genomics, and personalized treat-

ment strategies, enabling more accurate and patient-centered care.

e Marketing: It facilitates customer segmentation, recommendation systems, and
campaign optimization, which improves customer engagement and business out-

comes.

o Agriculture: It contributes to crop yield prediction, soil and climate analytics,
precision irrigation, and sustainable resource management, promoting efficiency and

resilience in food production [19].

Relevance to Agriculture

In agriculture, Data Science enables stakeholders, including farmers, agronomists, and
policymakers, to make informed and evidence-based decisions. By integrating historical
records, sensor measurements, weather forecasts, and remote sensing imagery, its appli-

cations include:

e Crop recommendation systems: Identifying suitable crops for site-specific soil

and climate conditions.

e Predictive modeling: Developing early warning systems for disease outbreaks,

pest invasions, and yield variability.

» Resource optimization: Improving the efficiency of water and fertilizer use through

data-driven strategies [19].

2.2.2 Data Science Lifecycle

The Data Science lifecycle consists of a structured sequence of phases that transform raw
data into actionable information and predictive models. This iterative process ensures
methodological robustness and adaptability across diverse domains, including smart agri-
culture. Although several models have been proposed, a comprehensive review by [20]

identifies six core phases that are common to most Data Science process frameworks:
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1. Problem Definition: Defining the research question or business objective, which

establishes the foundation for the entire Data Science project.

2. Data Acquisition: Collecting relevant data from diverse sources such as sensors,

databases, and external repositories, while ensuring data quality and relevance.

3. Data Preparation: Cleaning and transforming the data to address issues such as

missing values, outliers, and inconsistencies, which enables effective analysis.

4. Modeling: Applying statistical and machine learning algorithms to discover pat-
terns, generate predictions, or perform classification, depending on the specific prob-

lem.

5. Evaluation: Measuring model performance with appropriate metrics (e.g., accu-

racy, precision, recall) to validate reliability and robustness.

6. Deployment: Implementing the model in operational environments to support
real-time decision-making and facilitate continuous monitoring for performance im-

provement.

2.2.3 Data Preprocessing & Feature Engineering

Data preprocessing comprises a range of systematic operations designed to enhance data

quality and consistency [22} 23]:

« Handling Missing Values: Incomplete data may arise from sensor malfunctions,
recording errors, or limitations in data collection protocols. Several strategies are

commonly employed:
— Deletion: Removing records or attributes with a small proportion of missing
entries when the loss of information is minimal.

— Simple Imputation: Substituting missing values with statistical measures such

as the mean, median, or mode of the corresponding attribute.



12 Chapter 2. Preliminaries and Basic Concepts

— Advanced Imputation: Applying more sophisticated techniques, including K-
nearest neighbors or regression-based approaches, to estimate missing values

based on observed patterns in the data.

e Outlier Detection and Treatment: The presence of Outliers can strongly affect
statistical results and reduce the accuracy of models. To identify such anomalies, a

variety of techniques are employed:

— Univariate Methods: Approaches such as Z-scores, interquartile range (IQR)

analysis, and visual inspection through boxplots.

— Multivariate Methods: Techniques including Mahalanobis distance or isolation

forests, which account for relationships across multiple variables.

Once detected, outliers may be addressed through removal, capping extreme values,

or applying suitable transformations to reduce their impact on downstream analyses.

o Feature Scaling and Normalization: Because many machine learning algo-
rithms are sensitive to differences in feature magnitudes, scaling is often an essential

step to ensure balanced contributions of all variables. Common approaches include:

— Standardization: Transforming features so that they have a mean of zero and

a standard deviation of one.

— Min—Mazx Normalization: Rescaling features to fall within a fixed interval, typ-
ically [0,1], which preserves relative relationships while constraining absolute

ranges.

— Robust Scaling: Applying transformations based on the median and interquar-

tile range (IQR), thereby reducing sensitivity to extreme values or outliers.

e Encoding Categorical Variables: Since many machine learning algorithms re-
quire numerical input, categorical attributes must be transformed into suitable nu-

merical representations. Common strategies include:
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— One-Hot Encoding: Generating a set of binary indicator columns, each corre-

sponding to a distinct category, thereby avoiding any assumption of order.

— Ordinal Encoding: Assigning integers to categories that possess a meaningful

order or ranking, preserving their relative structure.

— Target Encoding: Substituting categorical levels with the mean value of the
target variable, a method that can be effective but requires careful application

to reduce the risk of data leakage.

o Class Balancing: Imbalanced datasets can lead to biased models that favor ma-
jority classes, reducing overall predictive performance. To address this issue, several

techniques are commonly applied:

— Random Owversampling/Undersampling: Modifying class distributions by either
duplicating minority class samples or removing instances from the majority

class.

— SMOTE (Synthetic Minority Over-sampling Technique): Creating synthetic
examples for underrepresented classes by interpolating between existing mi-
nority samples, thereby improving class representation without simple dupli-

cation.

o Data Partitioning: To evaluate model performance reliably and prevent overfit-
ting, datasets are typically divided into distinct subsets for training, validation, and

testing. Common approaches include:
— Hold-out Validation: Splitting the dataset into independent subsets, where one
portion is used for training and another for testing model performance.

— Stratified Sampling: Creating partitions that preserve the original distribution

of classes, which is particularly important in imbalanced datasets.

— Cross-Validation: Repeatedly partitioning the data into multiple folds to assess

model stability and robustness across different training—testing splits.
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Feature Engineering
Feature engineering refers to the process of constructing new input variables from exist-
ing data with the goal of enhancing model accuracy and interpretability [24]. Within

agricultural applications, this process often includes:

o Temporal Features: Deriving time-related variables, such as growing degree days
or the number of days since planting, to capture seasonal and developmental pat-

terns in crops.

e Spectral Indices: Computing vegetation metrics, for example the Normalized
Difference Vegetation Index (NDVI), from multispectral or hyperspectral imagery

to quantify plant health and vigor.

o Soil-Weather Interactions: Integrating soil moisture measurements with tem-
perature records to generate indicators of drought stress or other environmental

constraints.

e Dimensionality Reduction: Employing statistical methods such as Principal
Component Analysis (PCA) to condense high-dimensional datasets into a smaller

set of informative features while minimizing redundancy.

Successful feature engineering typically requires a combination of domain knowledge and
iterative experimentation, as the most informative features are often context-specific and

depend on both the crop system and the modeling objective.

2.2.4 Exploratory Data Analysis & Visualization

Purpose and Significance

Exploratory Data Analysis (EDA) represents a critical stage in the data science workflow,
particularly in the context of smart agriculture. It involves the systematic examination
and summarization of key dataset characteristics, frequently supported by visual tech-
niques. Through EDA, researchers can reveal underlying patterns, identify anomalies,
evaluate assumptions, and conduct preliminary hypothesis testing using a combination of

statistical measures and graphical representations [25].
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In agricultural applications, EDA serves several important functions:

» Revealing patterns and relationships among key variables, such as soil character-
istics, weather conditions, and crop yields, which provide understanding of funda-

mental agronomic processes.

o Detecting outliers or unusual observations that may reflect measurement errors,

sensor malfunctions, or exceptional environmental events.

o Evaluating overall data quality and completeness to ensure that subsequent analyses

are based on reliable and representative information.

» Guiding the choice of suitable modeling approaches and informing feature engineer-

ing strategies by prioritizing the most relevant attributes within the dataset.

Statistical Techniques

A range of statistical methods are commonly applied during EDA to describe and interpret

the characteristics of agricultural datasets:

e Descriptive Statistics: Computing summary measures such as the mean, me-
dian, standard deviation, skewness, and kurtosis to characterize central tendency,

variability, and distributional shape.

o Correlation Analysis: Assessing the strength and direction of relationships be-
tween variables, often through Pearson correlation for linear associations or Spear-

man rank correlation for non-linear monotonic patterns.

« Hypothesis Testing: Employing inferential procedures such as analysis of variance
(ANOVA) or chi-square tests to examine group differences or evaluate associations

among categorical variables [26].

Visualization Techniques
Visualization is an essential component of EDA, offering an accessible means of inter-
preting complex datasets and uncovering patterns that may not be apparent through

numerical analyses alone. Commonly employed visualization methods include [27]:
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» Histograms and Density Plots: Depict the distribution of individual variables,

providing understanding into central tendency, spread, and overall shape.

o Box Plots: Display distributions by focusing on medians, quartiles, and variability,

while also allowing the detection of potential outliers.

o Scatter Plots: Display the relationship between two continuous variables, making

it possible to observe correlations, clusters, or emerging trends.

« Heatmaps: Represent correlation matrices or spatially referenced data in a com-

pact visual form, facilitating the recognition of systematic patterns and clusters.

« Time Series Plots: Track the evolution of variables across time, which is particu-
larly valuable for monitoring crop growth dynamics, weather conditions, or seasonal

effects.

» Geospatial Maps: Illustrate the spatial distribution of agricultural variables, sup-

porting site-specific management practices and precision farming decisions.

Integration with Data Pipeline

The findings derived from EDA play a crucial role in shaping and refining the broader
data preprocessing pipeline [26]. By systematically examining the data, EDA provides

evidence-based guidance for several subsequent steps, such as:

e Data Cleaning: Detecting missing values, inconsistencies, or anomalies that re-

quire imputation, correction, or removal to ensure data reliability.

o Feature Selection: Identifying variables that hold the greatest relevance for pre-

dictive modeling, while discarding redundant or uninformative attributes.

o Model Selection: Informing the choice of algorithms by revealing structural char-

acteristics of the data, such as linearity, dimensionality, or class imbalance.
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2.3 Machine Learning and Deep Learning

2.3.1 Machine Learning Basics

Machine Learning (ML) is an interdisciplinary domain concerned with the design of al-
gorithms that can learn patterns from data and generate predictions or decisions with-
out relying on explicit rule-based programming. Drawing upon concepts from computer
science, statistics, and applied mathematics, ML constitutes a foundational element of
artificial intelligence (AI) and has become a key driver of data-driven decision-making
across diverse fields, including agriculture [28§].

In agricultural applications, ML supports the analysis of complex datasets originating
from diverse sources, including in-field sensors, satellite imagery, and historical farm
records. By leveraging these data streams, ML techniques can be used to predict crop
yields, detect the onset of diseases, optimize the allocation of resources, and improve the
efficiency and sustainability of farm management practices [29].

Prominent perspectives on ML can be framed as follows:

e Algorithmic Optimization Perspective: ML is viewed as the process of de-
signing computer programs that improve their performance on specific tasks by

optimizing objective functions through experience with data [30].

o Predictive Pattern Recognition: From this perspective, ML emphasizes the
development of methods that autonomously detect patterns within datasets and

use them to forecast future outcomes or events [31].

o Actionable Regularity Discovery: Here, ML is understood as the automated
identification of regularities or structures in data through computational algorithms,
with the goal of transforming these findings into practical, decision-oriented outputs

32].

2.3.2 Methodologies

Machine learning (ML) methodologies are commonly classified according to the type of

input data and the corresponding learning objectives. The principal paradigms include



18 Chapter 2. Preliminaries and Basic Concepts

supervised learning, unsupervised learning, semi-supervised learning, reinforcement learn-
ing, multitask learning, and transfer learning [33]. Each of these approaches provides
distinct advantages and is chosen with respect to the problem setting, data availability,

and desired outcomes.
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Figure 2.2: Machine Learning Methodologies.

Supervised Learning

Supervised learning refers to the process of training models on labeled datasets, in which
each input vector x; is associated with a corresponding output label y;. The primary
objective is to learn a mapping function f : X — )Y that predicts outputs from inputs
with high accuracy by minimizing a predefined loss function over the training set:

N
1
min — L(f(xi),9:), 2.1
iy > L)) 21)
where £ denotes the chosen loss function and F represents the hypothesis space of can-
didate functions. In practice, supervised learning underpins a wide range of tasks, most

notably classification and regression, making it one of the most widely applied paradigms

in machine learning [2§].
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Unsupervised Learning

Unsupervised learning addresses the analysis of datasets that lack predefined labels, with
the primary goal of discovering hidden patterns, groupings, or inherent structures within
the data. Techniques commonly employed in this paradigm include clustering methods,

dimensionality reduction approaches, and anomaly detection algorithms. [29)].

Semi-Supervised Learning

Semi-supervised learning integrates a limited set of labeled examples with a substan-
tially larger pool of unlabeled data during model training. This paradigm is especially
advantageous in situations where the process of generating high-quality labels is costly,
labor-intensive, or otherwise impractical. To make effective use of the available unlabeled
data, a range of strategies can be applied, including self-training, co-training, and graph-
based approaches, each of which seeks to enhance predictive performance by exploiting

the underlying structure of the data [34].

Reinforcement Learning

Reinforcement learning (RL) is a paradigm in which an agent interacts dynamically with
an environment, gradually learning to select actions that maximize cumulative rewards
while minimizing penalties. The learning process is inherently iterative, relying on trial-
and-error exploration combined with feedback signals that shape the agent’s decision-
making policy over time. Within agricultural systems, RL shows considerable promise for
applications such as the coordination of autonomous farming machinery, optimization of

irrigation schedules, and the development of adaptive pest management strategies [28].

Multitask Learning

Multitask learning (MTL) is an approach designed to enhance generalization by train-
ing models on several related tasks at the same time, thereby enabling the sharing of
underlying representations across them. This strategy is particularly effective when the
tasks are interdependent or draw upon overlapping sources of information, as the joint
learning process allows the model to exploit shared structure and reduce overfitting to

any single task. Within agricultural applications, MTL can be employed to predict multi-
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ple crop traits or environmental variables simultaneously, offering a more comprehensive

understanding of complex agroecosystems [35].

Transfer Learning

Transfer learning focuses on transferring knowledge from a source task to improve learning
in a target task, especially when the target task has limited data. Pretrained models on
large datasets can be fine-tuned for specific agricultural tasks, such as disease detection

or yield estimation, enhancing performance with minimal labeled data [36].

2.3.3 Model Evaluation Metrics

Evaluating the performance of machine learning (ML) models is a critical step in the
development and deployment of data-driven solutions. The choice of appropriate evalua-
tion metrics determines how effectively a model’s predictions can be assessed and whether
it is suitable for practical applications. Well-defined metrics provide an objective basis
for comparing different models, guiding model selection, and ensuring robustness across
diverse problem settings. This section outlines key evaluation metrics commonly used
in classification and regression tasks, presenting their mathematical definitions and dis-

cussing their comparative advantages and limitations.

Classification Metrics

In classification problems, the goal of a model is to assign inputs to discrete categories.
The quality of these predictions is commonly evaluated through a confusion matrix, which
provides a structured summary of the model’s performance. The matrix is composed of

the following elements:

o True Positives (TP): Instances correctly identified as belonging to the positive

class.

« True Negatives (TIN): Instances correctly identified as belonging to the negative

class.

« False Positives (FP): Negative instances that are incorrectly classified as positive.
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« False Negatives (FIN): Positive instances that are incorrectly classified as nega-

tive.

From the confusion matrix, a number of widely used performance metrics can be derived,

each illustrating different aspects of model behavior:

Accuracy

Accuracy = TP+ TN (2.2)
YT TP+TN+FP+FN ’

Represents the proportion of correctly classified instances relative to the total number of
cases. While useful as a general indicator, accuracy can give a distorted picture when

datasets are highly imbalanced, as it may overlook minority classes.

Precision

Precision — ——1 (2.3)
recision = TP—|—FP .

Quantifies the reliability of positive predictions by indicating the fraction of predicted
positives that are truly positive. High precision reflects a model that makes few false

positive errors.

Recall (Sensitivity)
TP

Recall = m—m (24)

Assesses the model’s ability to identify all relevant positive instances. A high recall value
means that most of the actual positives are successfully detected, even if this comes at

the expense of more false positives.

F1-Score

Precision x Recall
F1-S =2 2.5
core % Precision + Recall (2.5)

Provides a single measure that balances precision and recall by calculating their harmonic
mean. It is especially useful when one seeks to account for both types of classification

error simultaneously.
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Matthews Correlation Coefficient (MCC)

TP xTN —FP x FN
MCC = (2.6)
/(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

Offers a more comprehensive evaluation by incorporating all four elements of the confusion
matrix. Unlike accuracy, MCC remains informative even in the presence of strong class

imbalance, making it a robust alternative [37].

Area Under the Receiver Operating Characteristic Curve (AUC-ROC) Re-
flects the model’s capacity to discriminate between classes over a range of decision thresh-
olds. A higher AUC value indicates stronger overall separability between positive and

negative classes.

Regression Metrics

Regression problems concern the prediction of continuous variables, and their evaluation
relies on metrics that quantify the accuracy and reliability of model outputs. Commonly

employed measures include:

Mean Absolute Error (MAE)

1 & .
MAE = — > |y — il (2.7)
=1

Reflects the average absolute deviation between predictions and observed values, providing

an intuitive measure of overall error magnitude without accounting for direction.

Mean Squared Error (MSE)

n

1 .
MSE = n Z(yz — i)’ (2.8)
i=1

Gives greater weight to larger errors by squaring the residuals, making it particularly

sensitive to outliers.
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Root Mean Squared Error (RMSE)

n

RMSE = VMSE = %Z(yi — ;)2 (2.9)

=1

Expresses the average prediction error in the same units as the target variable, thereby

facilitating direct interpretability.

Coefficient of Determination (R?)

2 4 > iz (i — 9i)?
SR > 210

Represents the proportion of variance in the dependent variable that is explained by the

model, with values closer to 1 indicating stronger explanatory power.

Nash—Sutcliffe Efficiency (NSE)

n A~

1 Dy (Y — i)
NSE =1 ST (i )2 (2.11)

Frequently applied in hydrological and environmental modeling, where it serves as a mea-

sure of predictive skill relative to the mean of observed data [3§].

2.3.4 Deep Learning

Deep Learning (DL), a specialized branch within the broader field of machine learning,
is distinguished by its reliance on artificial neural networks composed of multiple inter-
connected layers. This layered architecture allows models to capture and represent highly
complex, non-linear relationships in data with remarkable effectiveness. In recent years,
DL has gained increasing prominence as a transformative tool, particularly in domains

where large and heterogeneous datasets are prevalent. [39].

Fundamental Architectures

Several deep learning architectures have become foundational across a wide range of do-

mains, each designed to address different data types and problem settings:
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« Convolutional Neural Networks (CNNs): CNNs are particularly well suited
for image-related tasks, as they can effectively capture spatial hierarchies and local
patterns. They have been extensively used in image classification, object detection,

and computer vision more broadly, achieving state-of-the-art performance in many

benchmarks [39)].

» Recurrent Neural Networks (RININs): RNNs; including advanced variants such
as Long Short-Term Memory (LSTM) networks, are designed for sequential and
temporal data. They are widely applied in natural language processing, speech
recognition, and time-series modeling, where the ability to capture dependencies

across time is essential [40].

o Autoencoders (AEs): Autoencoders are used primarily for unsupervised feature
learning and dimensionality reduction. They are commonly employed for tasks
such as anomaly detection, data compression, and denoising, where reconstructing

meaningful latent representations of input data is advantageous [41].

» Generative Adversarial Networks (GANs): GANs generate synthetic data by
learning to approximate complex data distributions. They have proven highly effec-
tive for data augmentation, realistic image synthesis, and style transfer, providing

valuable support in scenarios where labeled data is limited [42].

« Transformers: Based on self-attention mechanisms, transformers have revolution-
ized deep learning by enabling efficient modeling of long-range dependencies. Orig-
inally developed for natural language processing, they are increasingly applied to
computer vision, multimodal learning, and other domains requiring integration of

diverse data types [43].

Mathematical Formulation

At the foundation of deep learning models lies the optimization of a loss function £
defined over a dataset D = {(x;,y;)}Y,, where x; denotes the input features and y; the
corresponding target labels. The central aim is to determine a function fy, parameterized

by 6, that minimizes the average loss across the training set:
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min - S £0u(x), ) (2.12)

In practice, the choice of loss function depends on the nature of the task. For instance,
cross-entropy loss is widely applied in classification problems, while mean squared error

remains a standard choice for regression settings.

2.4 Interpretable and Explainable AI (XAI)

As Artificial Intelligence (AI) systems are increasingly deployed in domains where deci-
sions carry significant consequences, the importance of transparency and interpretability
has grown substantially. Explainable AT (XAI) seeks to meet this demand by developing
approaches that make the functioning of complex models more understandable. By clar-
ifying how models generate their outputs, XAl contributes to building confidence in the

technology while providing users with clearer grounds for evaluation and action [44].

2.4.1 Importance Across Domains

The relevance of XAl extends across a wide range of application areas, where transparency

and interpretability are not only desirable but often necessary:

Healthcare: In medical diagnostics and treatment planning, understanding the basis
of Al-generated predictions is essential for clinical reliability and for preserving the

confidence of both practitioners and patients [45].

e Finance: In financial services, interpretable models are central to credit scoring and
fraud detection. Clear reasoning behind model outputs is necessary for meeting regu-
latory requirements and for maintaining trust in decisions that can significantly affect

customers [45].

o Legal Systems: Within judicial and legal contexts, explainable models help safe-
guard fairness and accountability by making automated decisions transparent and

open to review when individual rights are involved [45].

o Agriculture: As Al systems are increasingly used for tasks such as crop monitoring
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and yield estimation, interpretability ensures that farmers and other stakeholders can

make sense of the outputs and apply them with confidence [46].

2.4.2 Foundations of Explainable Al

Explainable Al (XAI) brings together a range of methods aimed at making the internal
workings of AI models more transparent. These methods are commonly grouped into two

broad categories:

o Intrinsic Interpretability: Models that are transparent by design, such as decision
trees or linear regression, where the reasoning process can be directly followed without

additional tools.

o Post-hoc Explanations: Approaches applied after model training to shed light on
complex systems, including deep neural networks. Widely used examples are LIME
(Local Interpretable Model-agnostic Explanations) and SHAP (SHapley Additive ex-
Planations) [47].

2.4.3 Post-hoc Explanations

Post-hoc explanation methods are introduced once a model has already been trained, with
the aim of clarifying how predictions are generated without modifying the model’s internal
design. Such approaches are particularly useful when working with highly complex and
accurate models that often function as “black boxes” to users and practitioners [4§].

Broadly, post-hoc techniques can be organized into the following categories:

Model-Specific Methods

Model-specific approaches make use of the internal structure and parameters of a model to
derive explanations, thus tailoring the interpretation to the architecture being analyzed.

Representative techniques include:

o Saliency Maps: These methods identify and visualize the regions of an input, such
as areas within an image, that exert the greatest influence on the model’s predic-
tion. They are particularly common in convolutional neural networks, where spatial

hierarchies are central to learning [49].
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o Integrated Gradients: This technique attributes the outcome of a deep network to
its input features by computing and aggregating gradients along a path that interpo-
lates between a baseline reference input and the actual input, thereby offering a more

principled assessment of feature relevance [50].

o Attention Mechanisms: By assigning varying levels of weight to different parts of
the input, attention mechanisms highlight which features are most influential during
prediction. This enhances model performance while simultaneously offering a clearer

perspective on the decision-making process [51].

Model-Agnostic Methods

Model-agnostic methods approach the learning system as a black box, examining only the
relationships between inputs and outputs without reference to the internal architecture.
Because of their flexibility, these techniques can be applied to a wide range of model types

and are therefore widely used in practice:

o« LIME (Local Interpretable Model-Agnostic Explanations): Provides local
interpretability by fitting a simplified proxy model around a particular prediction,

thus clarifying the factors that played the greatest role in shaping that outcome [52].

« SHAP (SHapley Additive exPlanations): Grounded in cooperative game theory,
this approach assigns each feature a contribution score, quantifying its role in shaping

an individual prediction [53].

« Partial Dependence Plots (PDP): Depict the average marginal effect of one or
two selected features on the predicted response, providing a global view of feature

influence [54].

« Individual Conditional Expectation (ICE) Plots: Complement PDPs by visu-
alizing how predictions change at the level of individual instances, which uncovering

heterogeneity in feature effects [55].

o Counterfactual Explanations: Explore minimal modifications to input variables

that would alter the model’s output, which makes them especially valuable for gen-
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erating practical interpretations and clarifying how decision boundaries are formed

[56).

e Permutation Feature Importance: Evaluates the relevance of each feature by mea-
suring the reduction in predictive accuracy when its values are randomly permuted,

offering a measure of its contribution to the overall model.[57].

2.4.4 SHAP for Model Interpretability

Within the family of model-agnostic interpretability techniques, SHAP (SHapley Ad-
ditive exPlanations) has gained wide recognition as a rigorous and well-founded ap-
proach. Its strength lies in a solid theoretical basis drawn from cooperative game theory,
combined with desirable properties such as local accuracy and consistency, which make it

particularly reliable for both research and applied settings [58].

SHAP: SHapley Additive exPlanations

e Derived from the concept of Shapley values in game theory, SHAP attributes the
contribution of each feature to a prediction by systematically considering all possible

feature combinations.
o Ensures feature attributions that are both additive and consistent across predictions.

o Offers interpretability at different levels, ranging from individual predictions to overall

model behavior.

o Can be applied to virtually any machine learning model, with specialized and efficient

implementations available for tree-based models such as TreeSHAP.

e Produces outputs that are standardized and comparable across models as well as

individual instances [5§].

2.4.5 Visualization and User Interfaces

Visualization is central to making model explanations understandable, particularly for

stakeholders who may not have a technical background. Well-designed visual tools can
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translate abstract computational processes into intuitive representations, thus narrowing

the gap between complex model behavior and human interpretation [59].

¢« SHAP Visualizations:

— Summary Plot: Integrates feature importance with the distribution of effects
across the dataset, conveying both the magnitude and direction of influence for

each feature.

— Force Plot: Demonstrates how individual features push a prediction upward or

downward, making it especially valuable for case-specific explanations.

— Dependence Plot: Depicts the relationship between a selected feature and the
model’s output, while also marking potential interaction effects with other vari-

ables.

— Decision Plot: Particularly relevant for tree-based models, tracing the sequential

influence of features as they combine to yield a final prediction.
« LIME Visualizations:

— Typically presented as bar charts that display feature weights in the local surro-

gate model, indicating positive or negative contributions to a prediction.

— While less comprehensive than SHAP for global analysis, LIME visualizations

remain effective for quick and targeted, instance-level interpretation.
e User Interfaces:

— Interactive Dashboards: Frameworks such as SHAP’s integration with Plotly,
or broader platforms like Streamlit and Dash, enable users to explore predictions

interactively and examine patterns in real time.

— Custom Interfaces for Domain Experts: In applied domains, tailored vi-
sualization tools can significantly improve usability, for example, dashboards for
agronomists or farmers that drawing attention to high-risk zones on maps or

illustrate how particular features influence expected yield.
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2.5 Blockchain Technology for Data Security

2.5.1 Fundamentals of Blockchain

Blockchain is a decentralized and distributed ledger system designed to provide secure,
transparent, and tamper-resistant record-keeping without reliance on a central authority.
At its core, it operates as a continuously expanding chain of data records, known as blocks,

which are linked together through cryptographic hashing [60].

Block Structure: Each block contains a set of transactions, a timestamp, a crypto-

graphic hash of the preceding block, and a nonce used in consensus mechanisms such

as Proof of Work.

e Chaining Process: Blocks are connected in sequence, such that altering the contents
of one block would require simultaneous modification of all subsequent blocks, making

tampering computationally prohibitive.

e Decentralized Network: The ledger is maintained collectively by a distributed
network of nodes, each of which stores a full copy of the blockchain, thereby avoiding

single points of failure.

e Consensus Mechanisms: Protocols such as Proof of Work or Proof of Stake enable
participating nodes to reach agreement on the validity of transactions and the addition

of new blocks.

o Transparency and Immutability: Once data is validated and recorded, it becomes
immutable and publicly verifiable, ensuring both trustworthiness and long-term in-

tegrity.

2.5.2 Types of Blockchain Networks

Blockchain systems can be classified according to their access policies and governance
structures. Each category reflects a different balance between decentralization, perfor-

mance, and control, which determines their suitability for specific applications [60].
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« Public Blockchains:

— Open for anyone to join, read, or validate transactions (e.g., Bitcoin, Ethereum).
— Operate in a fully decentralized environment.

— Provide strong transparency and security, though often at the expense of scala-

bility and energy efficiency.
« Private Blockchains:

— Participation is restricted to approved or invited members.
— Typically governed by a single organization or administrative entity.

— Enable faster transaction throughput and improved privacy, but reduce the level

of decentralization.
¢ Consortium Blockchains:

— Managed collectively by a group of organizations or institutions.
— Aim to strike a balance between decentralization and efficiency.

— Well-suited to collaborative sectors such as supply chains, healthcare networks,

or agricultural cooperatives.

The selection of an appropriate blockchain model ultimately depends on the requirements

of the application, including its needs for trust, transparency, efficiency, and governance.

2.5.3 Security and Privacy Features

Blockchain technology establishes a robust framework for secure and reliable data man-
agement through its cryptographic foundations and distributed architecture. The follow-
ing features are central to safeguarding sensitive information and preserving the overall

integrity of the system [61].

o Data Integrity: Each block incorporates a cryptographic hash of the preceding
block, creating a chain that is resistant to tampering. Any attempt to alter a block

would invalidate the subsequent sequence unless consensus across the network is re-

established.
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Authentication of Participants: Digital signatures verify the identity of transac-

tion initiators, ensuring that only authorized entities are able to submit valid records.

Confidentiality of Information: While most public blockchains operate transpar-
ently, sensitive data can be protected through encryption or stored off-chain, a practice

particularly common in private and consortium-based networks.

Non-Repudiation of Transactions: Once a transaction is confirmed and cryp-
tographically signed on the blockchain, the originator cannot plausibly deny having

initiated it.

System Availability: Because the ledger is replicated across multiple nodes, the
network remains operational and data accessible even in the presence of node failures

or malicious attacks.

Auditability and Traceability: Transactions are permanently recorded with time

stamps, enabling full traceability and facilitating regulatory or organizational audits.

2.6 Conclusion

This chapter presented the key concepts that form the foundation of this thesis, including

Data Science, Machine Learning, Explainable Al, and Blockchain technology. These topics

provide the theoretical and methodological basis for the approaches developed in the later

chapters. The next chapter reviews smart predictive agriculture and examines the current

state of the art in smart farming. It identifies important research gaps and practical

challenges, setting the stage for the proposed contributions of this work.
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Smart Agriculture: State of the Art

3.1 Introduction

Agriculture is entering a period of rapid transformation as established farming prac-
tices intersect with emerging technologies such as artificial intelligence, data science, and
blockchain. This chapter examines the evolution of agriculture from conventional methods
to modern, data-driven systems, with attention to the key challenges and technological
advances shaping current developments. Traditional farming methods often face limits in
productivity, exposure to climate variability, and risks related to data security, creating a
clear demand for innovative solutions. Recent progress, including Al-based crop selection
techniques, predictive approaches for greenhouse production, and blockchain frameworks
for secure and transparent data management, is beginning to address these pressing needs.
The chapter first introduces the global importance of agriculture and the main constraints
that continue to affect traditional systems, including limited yields, changing climate
conditions, and pressures on natural resources. It then examines the role of artificial
intelligence and data-driven methods in improving farming practices, describing the prin-
cipal technologies, data requirements, and their influence on productivity and sustainable
management.

Subsequent sections provide a detailed review of three key areas. The first explores crop
selection systems, assessing current methods, their strengths and limitations, and the

research gaps that remain. The second focuses on crop yield prediction in greenhouse

33
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environments, outlining existing approaches and opportunities to improve forecast ac-
curacy and adaptability. The final section discusses blockchain applications in different
sectors, with attention to their potential to enhance security, transparency, and trust in

collaborative farming networks.

3.2 Traditional Agriculture: Challenges and Limita-

tions

3.2.1 The Global Importance of Agriculture

Agriculture holds a central position in shaping global socioeconomic development, ensur-
ing food and nutritional security, and supporting environmental sustainability. As one
of the oldest and most essential human activities, it continues to provide the foundation
for survival and well-being across all regions of the world. At present, farming directly
supports the livelihoods of about 2.5 billion people, with the majority living in rural areas
of developing nations [62]. Beyond providing food, the agricultural sector contributes sig-
nificantly to economic growth, representing around 4% of global Gross Domestic Product
(GDP). In many low-income countries, this share often rises above 25%, demonstrating
its critical role in national development and poverty reduction strategies [7].
Economically, agriculture continues to serve as the world’s largest source of employment,
sustaining the livelihoods of an estimated 892 million people as of 2022 and accounting
for approximately 26.2% of total global employment [6]. The sector’s significance is even
more pronounced in certain regions: in Africa, nearly 48% of the population is employed
in agriculture, while in South Asia the proportion remains above 39% [63]. Employment
patterns over the period 2020-2025 are summarized in Table 3.1l These figures show that
agriculture is both a driver of economic activity and a key factor in reducing poverty and
maintaining rural stability. [64].

The resilience of agricultural systems has been particularly evident during recent global
disruptions, such as the COVID-19 pandemic, when the sector acted as a buffer against

economic shocks and maintained relative growth at a time when many other industries
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contracted [65]. Furthermore, the global distribution of agricultural employment aligns

closely with regions experiencing the highest levels of food insecurity, a correlation illus-

trated in Figure [3.1] [66].
Table 3.1: Agricultural employment as a share of total employment (2020-2025) [1].

Year Global (%) Sub-Saharan Africa (%) South Asia (%)

2020 27.0 24.0 43.0
2021 26.5 23.5 42.5
2022 26.2 48.0 40.0
2023 25.8 47.5 39.5
2024 25.5 47.0 39.0
2025 25.2 46.5 38.5

2020 GLOBAL HUNGER INDEX BY SEVERITY

Interactive World Map

B Atarming 35.0-49.9 Serious 20.0-34.9 Moderate 10.0-199 [l tow=9.9 [l Notincluded or insufficient data (see Appendix A and Box 1.3 for details)

Figure 3.1: Global Hunger Index by severity, 2020 [3].

Agriculture’s contribution to Gross Domestic Product (GDP) varies markedly across coun-
tries, reflecting differences in income levels and structural dependence on the sector. In
2022, agriculture represented approximately 4.1% of global GDP, yet this aggregate figure
masks substantial disparities: in low-income countries, the sector’s share can reach or ex-
ceed 24%, while in high-income economies it averages only about 1.3%. These contrasts
underscore the continued centrality of agriculture in driving economic development and
reducing poverty within the world’s most vulnerable regions (see Table .

Environmentally, agriculture exerts a profound influence on global ecosystems, contribut-

ing essential services such as soil formation, carbon sequestration, water regulation, and
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Table 3.2: Agriculture, forestry, and fishing value added as a share of GDP (2020-2025)
1.

Year Global (%) Low-Income Countries (%) High-Income Countries (%)

2020 4.3 25.0 1.5
2021 4.2 24.5 1.4
2022 4.1 24.0 1.3
2023 4.0 23.5 1.2
2024 3.9 23.0 1.1
2025 3.8 22.5 1.0

the maintenance of biodiversity [67, [68]. Agricultural activity shapes landscapes across
more than one-third of the planet’s land surface, linking farming practices directly to
questions of long-term environmental sustainability [69]. While sustainable management
techniques can enhance carbon sequestration and mitigate climate change impacts [70, [71],
the sector continues to face the pressing challenge of reconciling the demand for higher
food production with the protection of soil quality, freshwater resources, and biological
diversity. Current projections suggest that growth in total factor productivity (TFP) is
lagging behind the pace required to meet the goal of doubling global agricultural output
by 2050, with the shortfall being most acute in low-income countries (see Figure .
This widening productivity gap reinforces the need for innovation and the adoption of
strategies that enable sustainable intensification [72].

From a nutritional standpoint, agriculture remains central to ensuring global food security,
with worldwide food demand expected to increase by nearly 70% by 2050. Yet, despite
notable advances in technology and productivity, hunger continues to affect large segments
of the population. In 2023, it was estimated that 733 million people experienced hunger,
with the highest prevalence occurring in regions where agricultural livelihoods are most
widespread. These enduring disparities in food availability and nutritional outcomes
underscore the dual challenge of expanding production while at the same time fostering
more equitable and resilient food systems [73], [74].

Agriculture is fundamental to economic development, rural livelihoods, global food secu-
rity, and the health of the environment. Meeting the ambitious goals of reducing hunger,

fostering economic growth, and ensuring ecological sustainability will require sustained
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2019 Global Agricultural Productivity Index

Total Factor Productivity (TFP) is a ratio that measures changes in how efficiently agricultural inputs
are transformed into outputs.
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Figure 3.2: 2019 Global Agricultural Productivity (GAP) Index [4].

innovation and carefully directed investment, particularly in regions where vulnerabilities

are most acute.

3.2.2 Key Types of Agricultural Challenges

The agricultural sector is confronted with a wide range of complex and interdependent
challenges that can be grouped into environmental, economic, and technological domains.
These interconnected issues exert significant influence on global productivity, long-term
sustainability, and the overall resilience of agricultural systems [11].

Environmental Constraints: Climate change represents one of the most pressing
threats to agricultural productivity, exerting a direct influence on both crop performance
and the stability of farming systems. Rising average temperatures, shifts in precipitation
patterns, and the growing frequency of extreme weather events, such as droughts, floods,
and heatwaves, have been shown to reduce yields, compromise crop quality, and place

additional pressure on farm incomes [75, [76]. Empirical studies suggest, for instance,
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that an increase of 2.15-4.13 could lower wheat yields by approximately 9.14-10.20% in
certain regions [77]. Beyond yield reductions, extreme weather accelerates processes of
soil erosion and land degradation, diminishing the availability of fertile land and thereby
threatening long-term food security [78, [76]. At the same time, intensive agricultural
practices often intensify these problems, contributing to biodiversity loss, declining soil
health, and weakened ecosystem resilience [79].

Economic Pressures: Agriculture remains highly sensitive to economic fluctuations,
particularly in relation to market volatility, unstable commodity prices, and uneven ac-
cess to financial resources and infrastructure. Since 2020, global food prices have risen by
roughly 30%, a significant rise primarily attributed to disruptions caused by the COVID-
19 pandemic as well as ongoing geopolitical tensions. These dynamics have destabilized
food supply chains and reduced affordability for consumers worldwide [80]. The impact
is especially severe for smallholder farmers, who constitute a significant share of global
producers. Their vulnerability comes from limited access to formal markets, low bargain-
ing power, and long-term underinvestment in basic inputs and rural infrastructure, which
together reduce their ability to adapt and stay competitive. [81].

Technological Constraints: Although agricultural technologies are advancing at an
fast-growing rate, their adoption across the sector remains highly uneven, particularly in
developing regions. Persistent barriers such as inadequate infrastructure, high costs, and
shortages of technical expertise continue to limit the reach of these innovations. A large
proportion of farms worldwide, particularly small-scale farms in low- and middle-income
countries, still lack reliable digital connectivity, which restricts their capacity to benefit
from precision agriculture, smart farming tools, and data-driven decision support sys-
tems [82]. This digital divide represents a significant obstacle to sustainable productivity
growth. Furthermore, the integration of advanced technologies often requires substantial
capital investment, dependable data infrastructure, and specialized expertise, resources

that are rarely accessible to smallholder farmers [83].
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3.2.3 Traditional Agricultural Practices and Their Limitations

For centuries, traditional agricultural methods such as crop rotation, polyculture, agro-
forestry, and the use of natural soil enrichment have sustained human societies and sup-
ported ecological balance. These practices provided resilience in local food systems and
contributed to the preservation of biodiversity and soil fertility. However, in the context
of today’s rapidly growing population, climate variability, and market-oriented produc-
tion, such approaches reveal important shortcomings. While valuable for maintaining
subsistence farming, they are often insufficient to meet the scale, efficiency, and stability
required by modern agricultural systems [84].

Constraints on Productivity: Traditional farming systems generally produce lower
yields when compared to intensified or mechanized approaches. Comparative studies
suggest that smallholder farms relying on conventional techniques may achieve up to 50%
less output than farms adopting modern agronomic practices, largely due to restricted
input use, dependence on manual labor, and limited access to improved technologies [85].
Exposure to Climatic Variability: Conventional agricultural practices often lack the
technological and infrastructural resilience needed to withstand changing climate condi-
tions and extreme weather events. Heavy reliance on rainfall for irrigation, without the
support of supplementary water management systems, makes these systems particularly
vulnerable to prolonged droughts and flooding, risks that are intensifying under current
climatic shifts [75].

Environmental Sustainability Challenges: While many traditional methods promote
soil fertility and biodiversity, certain practices, most notably slash-and-burn agriculture,
contribute to serious environmental degradation. Such methods can accelerate deforesta-
tion, soil erosion, and biodiversity loss, with repeated cycles of slash-and-burn cultivation
driving long-term land degradation and ecosystem instability in tropical regions [11].
Economic and Market Barriers: Farmers relying on traditional systems frequently
experience economic disadvantages due to limited integration into markets, lack of reliable
market information, and weak logistical infrastructure. In addition, restricted access to

financial services, modern inputs, and technical support constrains their competitiveness
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and reduces profitability, leaving smallholder communities economically vulnerable [81].

3.3 AlI-Driven Transformation of Agriculture

3.3.1 From Traditional Practices to Intelligent Systems

The progression of agriculture from conventional methods to intelligent, technology-
enabled systems represents a profound paradigm shift shaped by both scientific inno-
vation and the growing demand for sustainable food production. Traditional farming,
long reliant on manual labor and experience-based decision-making, is now increasingly
complemented and, in many contexts, transformed by data-driven approaches. These
approaches employ Artificial Intelligence (AI) and Machine Learning (ML) to optimize
resource use, improve productivity, and strengthen the resilience and sustainability of
agricultural systems [§].

Key Drivers of the Transition: Multiple forces are propelling the shift from tra-
ditional agriculture toward intelligent, technology-enabled systems. Global population
growth, projected to reach 9.7 billion by 2050, is placing unprecedented pressure on food
production systems. At the same time, escalating challenges such as climate change,
resource scarcity, and shortages in agricultural labor require innovative and sustainable
responses. Artificial Intelligence (Al) provides a suite of tools capable of meeting these de-
mands by supporting precise resource allocation, generating predictive knowledge through
advanced analytics, and automating tasks that have historically relied on intensive human
labor [62] [7].

Applications of AI in Agriculture: Artificial Intelligence is now widely applied across
diverse areas of agricultural practice, where it supports more efficient management and

decision-making processes [9].

o Crop Monitoring and Management: Al-based platforms draw on satellite imagery
together with data from field sensors to track crop health, anticipate yield outcomes,
and detect the presence of pests or diseases at an early stage. These findings make

it possible for farmers to act promptly and reduce potential losses.
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e Soil and Water Management: Machine learning models process soil characteristics
to generate recommendations for fertilization strategies, while intelligent irrigation
systems regulate water distribution in response to real-time weather information

and moisture levels within the soil.

o Precision Farming: By integrating data on soil heterogeneity, crop growth patterns,
and environmental conditions, Al enables site-specific management practices that

optimize input use and contribute to higher productivity.

o Supply Chain Optimization: Predictive tools enhance efficiency along the agricul-
tural supply chain by anticipating demand patterns, coordinating logistics more

effectively, and lowering post-harvest losses.

Impact and Future Prospects: The incorporation of Artificial Intelligence into agri-
cultural systems has already produced measurable improvements that extend beyond
experimental trials and into practical applications. Studies report that the use of Al
tools has resulted in yield gains of as much as 30% while simultaneously reducing water
consumption by approximately 20% in specific production contexts. Looking ahead, as
digital technologies continue to evolve and become more widely accessible, the role of
Al in supporting sustainable, productive, and resilient farming practices is expected to
expand further, offering a pathway to address pressing challenges in food security and

environmental management [9].

3.3.2 Core Al Technologies in Smart Agriculture

A number of Artificial Intelligence technologies play a central role in shaping modern
smart agriculture.

1. Machine Learning and Predictive Analytics: Machine learning models are
applied to large and complex agricultural datasets in order to forecast crop yields, detect
emerging plant diseases, and guide the efficient use of resources. For example, predictive
models have demonstrated strong accuracy in estimating crop productivity, which allows

farmers to plan cultivation strategies more effectively and reduce potential losses [10].
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2. Computer Vision Systems: Computer vision tools supported by Al enable con-
tinuous monitoring of crop health, soil status, and pest activity. By applying image
recognition techniques, these systems can identify symptoms of plant stress or disease at
very early stages, making it possible to intervene promptly and preserve both yields and
quality [86].

3. Internet of Things (IoT): Networks of IoT devices gather continuous data on soil
conditions, crop growth, and local climate. When combined with Artificial Intelligence,
these measurements support precise management of irrigation, fertilization, and pest con-
trol, which in turn helps conserve resources and improve overall efficiency [10].

4. Cloud Computing: Cloud-based platforms provide the extensive storage capacity
and computing power required to handle the vast datasets produced in modern agriculture.
They also make it possible to deploy advanced Al models at scale, enabling farmers and
researchers to access real-time analytics and informed decision-making tools [86].

5. Blockchain Systems: Blockchain technology strengthens transparency and account-
ability across agricultural supply chains. By recording transactions and data in secure,
tamper-resistant ledgers, it contributes to food safety, supports quality assurance, and
fosters greater trust among producers, distributors, and consumers [87].

6. Data Science Approaches: Methods drawn from data science are used to process
and interpret complex agricultural datasets, allowing the discovery of patterns and rela-
tionships that would otherwise remain hidden. Such analyses guide decision-making in
areas such as crop choice, market forecasting, and risk management [88].

7. Robotics and Automation: Robotics supported by Al enable the automation
of tasks including planting, harvesting, and weed management. These systems perform
with high accuracy and efficiency, reducing reliance on manual labor while increasing
productivity, particularly in large-scale operations [89].

8. Generative AI: Generative Al models synthesize information from multiple datasets
to provide tailored recommendations on crop planning, planting schedules, and resource
allocation. Such tools can support farmers in adjusting practices to changing environ-

mental and economic conditions [88].
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3.3.3 Impact on Productivity and Sustainability

The integration of artificial intelligence (Al) and advanced digital technologies into agri-
culture has produced measurable improvements in both productivity and sustainability.
These effects are becoming increasingly evident across diverse agricultural systems world-
wide. By combining tools such as machine learning, remote sensing, and the Internet of
Things (IoT) with data-driven decision support, farms can allocate resources more effi-
ciently, carry out timely diagnostics, and implement adaptive management strategies that
respond directly to changing environmental and production conditions.

Productivity Gains: Empirical evidence shows that farms adopting Al-enabled preci-
sion practices achieve yield increases of 18% to 34%, depending on crop type and agro-
ecological conditions. A multi-country study in Asia and Sub-Saharan Africa, for example,
reported average gains of 22% in smallholder rice and maize systems, largely through bet-
ter timing and dosage of inputs. In addition, Al-supported pest and disease detection has
been shown to reduce crop losses by 14 to 21% in key horticultural supply chains [93].
Resource Efficiency and Environmental Sustainability: Al-guided variable-rate
technologies and sensor-based irrigation systems contribute to substantial reductions in
input use and environmental impacts. Studies document water savings of 18 to 25% and
fertilizer reductions of up to 28% without yield penalties, reflecting the benefits of more
precise and adaptive management. Likewise, predictive analytics and monitoring tools
strengthen integrated pest management, decreasing pesticide applications and supporting
ecological resilience [93].

Supply Chain and Food Loss Reduction: The integration of cloud-based analytics
with blockchain platforms has improved transparency, traceability, and logistics across
agri-food supply chains. Such systems have reduced post-harvest losses by 10 to 15%
through real-time tracking and optimized distribution, thereby enhancing food security
and promoting more circular production models [87].

Societal and Environmental Implications: Beyond immediate gains in productivity
and resource use, these digital innovations contribute to broader development objectives,

including poverty reduction, climate action, and sustainable consumption. For instance,
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smallholders using Al-driven systems have reported average income increases of around
12% due to lower production costs and improved market access. Environmentally, smarter
input management reduces nitrogen leaching and eutrophication risks, with studies noting
up to 20% lower nitrate runoff in areas where smart agriculture platforms are deployed

92].

3.4 Literature Review on Crop Selection Systems

3.4.1 Descriptive Analysis

This section provides a detailed descriptive overview of existing research on crop selection
systems. The discussion reviews major dimensions of the literature, including publica-
tion trends, document types, geographical distribution, and the frequency of recurring
keywords. By examining these aspects, the analysis seeks to clarify how the field has de-
veloped over time and to characterize its present state. Such an approach offers a clearer
understanding of dominant research themes while also pointing to areas that remain un-
derexplored and may serve as directions for future studies.

The review began with a systematic search of the Scopus database, which is recognized as
the largest source of peer-reviewed scientific literature. The search was restricted to the
period between 2020 and 2024 and was carried out using a set of predefined keywords such

M

as “crop recommendation system,” "crop selection system,” and "machine learning in crop
recommendation.” To preserve consistency and ensure relevance, the results were filtered
to include only publications written in English, while dissertations and other non-journal
sources were excluded. Applying these criteria produced a final set of 310 articles, which
constitute the foundation for the analysis presented in this study.

An analysis of the yearly distribution shows a steady increase in research on crop selection
systems Figure . The field began with 22 publications in 2020 and grew steadily,
reaching 52 publications by 2022. In 2023, the number rose sharply to 114, a growth
that can be associated with progress in machine learning, the Internet of Things, and

smart agriculture technologies. Although a modest decline was recorded in 2024 with 92

publications, the volume remains well above the earlier years, reflecting the continued
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interest of the research community in this area.
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Figure 3.3: Yearly distribution of publications on crop selection systems from 2020 to
2024.

The body of literature consists of several categories of publications, including conference
papers, journal articles, book chapters, and review papers, each contributing in a distinct
way to the development of the field (Figure . Conference papers are the most numer-
ous, with 217 contributions, indicating that much of the research has been shared through
venues that prioritize recent advances and rapid communication of results. Journal ar-
ticles make up 75 publications, offering more comprehensive, peer-reviewed studies that
provide depth and methodological rigor. The collection also contains 13 book chapters
that deliver specialized discussions on particular aspects of crop selection systems, along
with 5 review papers that synthesize existing knowledge and outline potential research
directions. Taken together, this distribution reflects the active and evolving character of
the field, with conferences serving as a primary platform for presenting emerging work.

A geographical examination of the literature reveals that research on crop selection sys-
tems is distributed across a wide range of countries (Figure . India stands out with
249 publications, reflecting sustained efforts to apply agricultural technologies in response

to diverse climatic and agronomic conditions. The United States follows with 14 contribu-
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Figure 3.4: Publications classified by document type within the field of crop selection
systems.

tions, while Bangladesh accounts for 11, indicating notable engagement from both regions.
Other countries, including China (5), Egypt (5), and Sri Lanka (5), also demonstrate re-
search activity directed toward improving agricultural productivity in their respective
contexts. Nations such as Algeria, Iraq, and Italy, although represented by fewer studies,
point to a growing interest in the topic. Moreover, contributions from Australia, France,
and Ethiopia confirm that the subject has attracted attention across multiple continents,
even though research intensity varies according to national capacity and available re-
sources.

An analysis of keywords provides an overview of the main themes and recurring patterns

within the literature on crop selection systems (Figure [3.6). Frequently occurring terms

” N ” N

such as "crops,” "crop selection,” "crop recommendation,” and "learning systems” point to

the central focus on applying artificial intelligence to improve decision-making in agricul-

N

ture. Keywords including "Internet of Things (IoT),” "precision farming,” and "machine
learning” demonstrate how data-driven technologies are being incorporated into agricul-
tural practices to promote efficiency and long-term sustainability. Additional groups of

terms, such as ”soil conditions,” "fertilizers,” and ”agricultural productivity,” draw atten-
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Figure 3.5: Geographical distribution of publications on crop selection systems between
2020 and 2024.

tion to the importance of environmental and resource management when designing crop

N

selection models. The presence of keywords like ”decision trees,” "support vector regres-
sion,” and "genetic algorithms” shows the range of machine learning methods employed
in this field. Broader interdisciplinary themes, represented by terms such as ”"economics,”
"logistics,” and "food supply,” reveal the strong connections between technological de-
velopment and socioeconomic considerations. Furthermore, keywords including "climate

N

conditions,” "weather prediction,” and ”"soil moisture” reflect the growing attention given
to external environmental factors that shape agricultural choices. Together, these clusters
demonstrate how artificial intelligence, environmental sciences, and agricultural economics

intersect to advance research on crop selection systems.

3.4.2 Related Works

The evolution of crop recommendation systems has progressed steadily through the appli-
cation of machine learning (ML), deep learning (DL), ensemble techniques, IoT integra-
tion, and hybrid predictive frameworks. Early studies frequently relied on conventional
ML algorithms, which were appreciated for their ease of implementation and capacity
to establish baseline predictive performance. Within this context, Alsowaiq et al. [94]

examined several classifiers, including Random Forest, Support Vector Machine (SVM),
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Figure 3.6: Keyword network analysis of research on crop selection systems between 2020
and 2024.

Decision Tree, K-Nearest Neighbors (KNN), and Naive Bayes. Their analysis demon-
strated that Random Forest offered the highest predictive accuracy (99.45%) in identi-
fying appropriate crops for arid regions when standard agronomic features were used as
input variables.

As research advanced, greater emphasis was placed on incorporating multiple and het-
erogeneous data sources to enhance both accuracy and practical utility. Palle and Raut
[95] developed a multi-stage framework that combined weather forecasting, implemented
through ARIMA models, with profitability assessment. Their system relied on logistic

regression classifiers and achieved an accuracy of 94.2%. A limitation of their approach,
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however, was the dependence on synthetic crop price data, which reduced its applicability
in real-world agricultural markets. Expanding on this direction, Janrao and Shah [96] in-
troduced a return-on-investment-driven framework that employed several regression tech-
niques, including an optimized multilayer perceptron regressor, and demonstrated highly
consistent predictive performance (R2 > 0.999).

Ensemble learning methods have attracted growing attention in the development of crop
recommendation systems. Bandi et al. [97] used a voting ensemble that combined Decision
Tree, Random Forest, and KNN models, and their approach reached an accuracy of 99.3%.
While the results were strong, the absence of hyperparameter optimization showed that
further refinement was still needed. Kumar et al. [98] designed a stacking ensemble
that brought together Random Forest and Naive Bayes, using Random Forest again as
a meta-learner. This framework clearly outperformed the individual models, achieving
an accuracy of 99.54%. Extending these efforts, Motamedi and Villanyi [99] introduced
Bayesian-optimized decision trees enhanced with PCA-based dimensionality reduction,
which produced an Fl-score of 99.54%.

The adoption of deep learning methods marked another step forward in the development
of crop recommendation systems, especially through the application of convolutional neu-
ral networks (CNNs) and recurrent neural networks (RNNs). Elghamrawy et al. [100]
designed an 18-layer CNN optimized with Grey Wolf Optimization to generate crop rec-
ommendations under climate change conditions, reporting predictive accuracies between
98.2% and 98.7%. The model proved highly effective in handling complex climate-related
variables, but its lack of attention to socio-economic aspects limited its wider practical
use. In a related study, Rani et al. [LI01] employed Long Short-Term Memory (LSTM) net-
works for weather forecasting, which subsequently improved crop recommendation when
combined with a Random Forest model, achieving 97.24% accuracy.

The integration of the Internet of Things (IoT) has also become an important direction
in the design of crop recommendation systems, mainly because it supports real-time data
collection and decision-making. Bakthavatchalam et al. [102] developed an IoT-based

precision agriculture framework that combined sensor data with machine learning clas-
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sifiers, including Multilayer Perceptron (MLP), JRip, and Decision Table, and reported
an accuracy of 98.2%. While effective, this framework did not provide clear mechanisms
for interpretability. Building on this idea, Villanueva et al. [I03] introduced IoT-driven
soil analytics integrated with artificial neural networks, offering user-friendly interfaces
and achieving 98.62% accuracy. In another contribution, Abdullahi et al. [104] used IoT
sensor networks together with Decision Trees, which produced recommendations with an
accuracy of 99.2%, although the system was limited by the availability of regional data.
Palakshappa et al. [I05] further advanced this line of work by combining IoT integration
with Random Forest models within digital platforms designed for practical use, reaching
an accuracy of 98%.

Hybrid predictive systems have increasingly made use of advanced optimization meth-
ods to improve both accuracy and adaptability in crop recommendation. Kiruthika and
Karthika [106] introduced a framework that applied Improved Distribution-based Chicken
Swarm Optimization (IDCSO) for feature selection together with a Weight-based LSTM
for prediction, achieving 92.68% accuracy. In a related study, Mahale et al. [107] combined
expectation maximization preprocessing with Random Forest classification and LSTM-
based weather forecasting, which resulted in a system that produced 92.7% accuracy.
Progress has also been made in region-specific frameworks that integrate agronomic and
economic considerations. Musanase et al. [L08] presented a system tailored to Rwanda
that used neural network-based recommendations along with rule-based fertilizer guid-
ance, reaching 97% accuracy.

The comparative analysis in Table |3.3| shows that most earlier studies on crop selection
concentrate on achieving high predictive accuracy, with reported values typically ranging
between 92% and 99%, without giving attention to model interpretability. Many of these
works apply machine learning classifiers such as Random Forest, Decision Tree, KNN;,
and neural networks. In some cases, additional modules for weather prediction, including
LSTM or ARIMA models, are used to improve the quality of recommendations. A smaller
group of studies experiments with ensemble approaches such as voting or stacking, which

provide strong predictive performance. Despite these promising results, the limited trans-
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parency of these models reduces their usefulness in agricultural practice, since farmers
may be reluctant to rely on predictions that are not supported by clear explanations.
To address this issue, Explainable AT (XAI) methods are needed to make model outputs

more understandable and to encourage adoption in real farming environments.

3.4.3 Research Gaps and Contribution

A key gap in the current literature is the absence of an effective balance between predic-
tive accuracy and interpretability. Many previous works achieve high performance with
machine learning or deep learning models, yet these models function as black boxes and
provide no explainable Al (XAI) mechanisms to clarify the reasoning behind their recom-
mendations. This is a serious limitation in agriculture, where farmers and decision makers
need transparent explanations to trust automated suggestions. Without such reasoning,
it becomes difficult to justify why one crop is recommended while another is not, which
discourages adoption even when accuracy is high.

Another shortcoming is the limited attention to the impact of different types of prediction
errors. Most studies emphasize overall accuracy but rarely examine the consequences of
specific errors. In particular, false positives are critical in a crop recommendation context.
A false positive occurs when the system advises planting a crop that is unsuitable for the
local soil or climate. Such an error can lead to wasted resources, lower yields, and loss of
confidence in data-driven systems.

The present work addresses these gaps by proposing a crop selection framework, CS-
AdaRF-SHAP, that aims to combine high predictive performance with clear interpretabil-
ity while reducing false positive errors. The system uses the AdaBoost algorithm as the
main classifier and Random Forest as the base learner. AdaBoost iteratively adjusts the
weight of misclassified samples, forcing the model to focus on difficult cases and thereby
reducing systematic mistakes such as repeated false positives. Random Forest contributes
robustness against noisy data and captures complex, nonlinear relationships among soil
properties, weather factors, and nutrient levels.

To overcome the black-box nature of ensemble models, the framework integrates SHapley

Additive Explanations (SHAP) to provide transparent reasoning for each recommenda-
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tion. SHAP produces feature-level explanations that show how variables such as nitrogen,
phosphorus, potassium, pH, temperature, humidity, and rainfall influence the predicted
suitability of each crop. Two types of explanations are generated. Global explanations
reveal which features generally increase or decrease the likelihood of selecting a crop, while
local explanations clarify why, in a specific case, one crop is recommended over another.
By combining robust prediction with detailed explanations, the proposed system supports

trustworthy and informed decision making in real agricultural settings.

3.5 Literature Review on Data-Driven Crop Yield

Prediction

Accurate prediction of crop yields is a key factor in ensuring food security and supporting
the economic stability of agricultural systems worldwide. Reliable forecasts allow farm-
ers, policymakers, and supply chain stakeholders to plan cultivation schedules, manage
resources efficiently, and reduce production risks. However, yield prediction remains a
complex task due to the interaction of many variables, including soil conditions, climate
patterns, farming practices, and crop-specific growth characteristics [109, [110].
Traditional yield estimation methods have generally relied on manual field inspections,
historical yield records, and expert judgment. While these approaches have been widely
used, they are prone to inconsistencies and often fail to capture the intricate relationships
between environmental factors and plant growth [I1I]. In greenhouse and open-field
settings alike, such methods may produce inaccurate forecasts, limiting their usefulness
for precision farming and large-scale production planning.

Recent developments in smart agriculture are transforming the way crop production is
monitored and managed. Technologies such as the Internet of Things (IoT), Artificial In-
telligence (Al), blockchain-based systems, and robotics have introduced new opportunities
to collect and analyze large volumes of agricultural data [112, [I113]. Within this context,
Machine Learning (ML) has emerged as a critical tool for data-driven yield prediction.
By learning from historical and real-time data, ML models can uncover hidden patterns

and complex relationships, enabling more accurate and timely predictions. These ad-
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vances support more efficient resource allocation, improved decision-making, and farming
practices that are both economically viable and environmentally sustainable [114} [1T5].
This section reviews published research on crop yield prediction to provide context for
recent advances in modeling strategies across different crops. Several studies have applied
a range of machine learning and deep learning techniques to improve forecasting accuracy.
For example, the authors of [I00] evaluated multiple machine learning and deep learning
methods for winter wheat yield prediction. Using a dataset that combined weather, soil,
and phenological information from 271 German counties collected between 1999 and 2019,
they compared deep neural networks (DNNs), convolutional neural networks (CNNs),
decision trees, random forests, XGBoost, and linear regression. Among these models, the
CNN achieved the best performance, reducing RMSE by 7-14%, lowering MAE by 3-15%,
and improving correlation coefficients by 4-50% compared with the other approaches.

In [94], an early yield estimation method for tomato crops was introduced by combin-
ing Decision Tree Ensembles (DTE) with data captured by Unmanned Aerial Vehicles
(UAVs). Their DTE-Bag model achieved a prediction accuracy of 92.5%, demonstrating
the potential of UAV-based data for supporting farm management decisions.

In another study [95], a transformer-based model was applied to rice yield prediction
using satellite observations and climate variables. The model outperformed four other
machine learning techniques (LASSO, RF, XGBoost, and AtLSTM), achieving the highest
R? (0.78), the lowest RMSE (0.44 t/ha), the lowest MAPE (16.56%), and an overall
accuracy of 0.72. The authors noted, however, that soil characteristics, tillage practices,
and fertilizer inputs were not included as predictive features, which may limit the model’s
generalizability.

Similarly, [97] proposed a hybrid framework for greenhouse yield forecasting that com-
bined outputs from a biophysical model (Tomgro) with a deep learning model. The Tom-
gro component used environmental inputs such as temperature, humidity, and light, while
the CNN-RNN network was trained on historical yield and environmental data. The com-
bined approach delivered the highest accuracy, with mean RMSE, R?, and Nash-Sutcliffe

efficiency (NSE) values of 17.69 + 3.47.
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Finally, in [102], climatic factors including temperature, rainfall, and solar radiation
were used to estimate national wheat yields. Among the tested models, Random For-
est achieved the best performance, yielding RMSE values of 9.1% for Brazil, 6.7% for
France, and 6.4% for Russia.

In [98], rice yield prediction was evaluated using multiple linear regression (MLR), random
forest (RF), and a traditional regression (TR) method, based on agronomic traits such
as plant density and plant height. Field experiments conducted in Jilin Province, China,
showed that the RF model achieved the highest accuracy under varying conditions.

In [110], several regression algorithms were applied to tomato yield prediction, including
Random Forest (RF), K-Nearest Neighbors (KNN), Support Vector Regression (SVR),
Lasso Regression, and Linear Regression, across multiple datasets. Among these datasets,
the third proved to be the most reliable and comprehensive. Although RF required more
computational resources, it delivered the best predictive accuracy, while KNN and Lasso
Regression provided competitive performance with lower computational costs.

Building on the results of previous studies, the present research seeks to improve crop yield
prediction by advancing modeling techniques with an emphasis on ensemble learning. A
Stacked Ensemble Model is applied to combine multiple algorithms for daily yield esti-
mation, using tomato production as a case study. This approach leverages the strengths
of different models while reducing their individual limitations, leading to predictions that

are more robust and reliable across diverse datasets.

3.6 Literature Review on Blockchain Applications for

Data Security

The rapid growth of smart agriculture has increased the importance of collecting, storing,
and protecting large volumes of digital data. In modern farming systems, Internet of
Things (IoT) devices continuously generate real-time information that supports data-
driven decision-making. Reliable raw data forms the backbone of these systems, and
secure storage is essential to ensure that decisions are accurate, traceable, and resistant

to tampering.
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Similar concerns about data security and integrity extend well beyond agriculture to many
scientific and industrial fields. Researchers handling large datasets often face significant
challenges related to privacy, transparency, and trust. Blockchain technology has emerged
as a promising solution to these issues because of its decentralized architecture, which
ensures immutability and strengthens data integrity. By recording transactions across a
distributed network, blockchain provides an auditable and tamper-resistant ledger that
enhances trust among stakeholders.

Despite these advantages, blockchain has technical and economic limitations when applied
to data-intensive tasks. Storing large datasets directly on-chain is impractical because
of high storage costs, limited capacity, and slower transaction verification as file sizes
increase. These constraints reduce performance and hinder the scalability of blockchain-
based systems, making it unsuitable as a standalone solution for applications that require
frequent handling of large files.

To address these limitations, recent studies have explored integrating blockchain with
distributed storage systems such as the InterPlanetary File System (IPFS). IPFS enables
efficient off-chain storage by distributing files across a peer-to-peer network while main-
taining a unique cryptographic hash for each file. The hash is stored on the blockchain,
creating a permanent and verifiable link between the ledger and the stored content. This
hybrid approach allows blockchain to maintain its strengths in security and transparency,
while IPF'S provides scalable and cost-effective file management.

Several research efforts illustrate the effectiveness of this integration. For example, [94]
proposed a framework that combines blockchain with IPFS to enhance the management
of Open Educational Resources (OER). In their system, providers create and share ed-
ucational content, while consumers access and use these materials. Providers generate
a digital contract containing metadata such as the resource title, creation time, creator
identity, and content hash. The resource itself is uploaded to IPFS, and its hash is per-
manently recorded on the blockchain. This design ensures data provenance and provides

a secure, verifiable record of the resource without overloading the blockchain with large

files.
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A related study in [95] applied the same blockchain-IPFS combination to the field of
healthcare data management. In this design, sensitive medical files are encrypted and
stored on IPFS, while associated metadata, including file identifiers, patient IDs, and
cryptographic hashes, are recorded on an Ethereum blockchain. Only the hashes are
stored on-chain, which reduces storage requirements and transaction costs. When a file
is requested by an authorized party such as a doctor, technician, or patient, the system
retrieves it from IPFS and compares its hash with the blockchain entry. If the two values
match, the file is decrypted and made available to the user, thereby ensuring both data
integrity and patient privacy.

In the field of e-learning, the security and privacy of Electronic Learning Records (ELRs)
remain a challenge, largely because of dependence on third-party storage platforms. To ad-
dress these risks, [98] proposed MOOCs Chain, a blockchain-based framework designed for
the management of ELRs in Massive Open Online Courses (MOOCs). In this model, only
course providers are required to join the blockchain network, while learners remain anony-
mous to preserve their privacy. Core components of ELRs are stored on the blockchain,
whereas the original course materials are kept on IPFS. The framework also introduces
inter-authentication, anonymization, and strong mechanisms to ensure secure storage and
controlled distribution of ELRs.

Similarly, [102] introduced a blockchain-based prototype for supply chain management,
aiming to improve transparency, traceability, scalability, and the security of third-party
transactions. Since storing large records directly on the blockchain is inefficient, the
authors employed IPFS as a distributed storage layer. This hybrid setup enabled process
automation and supported secure and reliable data exchange across different points in the
supply chain.

A review of these studies shows that IPFS is widely adopted as the distributed stor-
age layer in blockchain-based data management systems. Its popularity stems from its
scalability, efficient peer-to-peer architecture, and flexibility to integrate with diverse ap-
plications that require secure and verifiable storage of large files.

Building on this foundation, our work proposes a unified framework that connects mul-
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tiple agricultural sites with government institutions through a secure blockchain-enabled
architecture. The framework is designed to manage the collection, storage, and controlled
exchange of greenhouse data while preserving data integrity and confidentiality. Access
is strictly regulated so that one site cannot retrieve or modify another site’s information
without explicit authorization, while institutional oversight ensures that data sharing

remains transparent and accountable.

3.7 Conclusion

This chapter reviewed the development of smart agriculture, outlining the limitations of
traditional farming and the potential of digital technologies to overcome these challenges.
The next chapter presents the first contribution of this thesis, an interpretable crop se-
lection system designed to combine predictive accuracy with explainability to support

reliable farming decisions.



Chapter 4

Contribution 1: Interpretable Crop
Selection for Optimized Farming

Decisions

4.1 Introduction

Deciding what to plant is the first and most fundamental challenge in agriculture, as it
shapes the entire production cycle and strongly influences profitability, resource manage-
ment, and environmental sustainability. Farmers must make this decision before any other
management step, yet traditional approaches to crop selection often fall short when fac-
ing changing conditions such as soil variability, shifting climate patterns, and fluctuating
nutrient availability. Artificial intelligence (AI) offers considerable potential to support
this crucial choice by analyzing diverse sources of information and adapting to complex
environmental factors. Nevertheless, a major obstacle remains: most Al-based systems
do not provide clear explanations for their recommendations. Farmers, whose income and
long-term planning depend on this initial decision, are often reluctant to adopt systems
that deliver predictions without transparent reasoning, even when those predictions are
statistically sound.

In this context, interpretability means the ability to explain why a specific crop is rec-

ommended. For instance, a model should indicate whether factors such as nitrogen,

29
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phosphorus, potassium levels, rainfall, or temperature had the greatest influence on its
decision. Transparency is closely related and refers to making the internal reasoning of
the model understandable, such as showing how much each factor contributes to the final
recommendation. Without interpretability and transparency, Al systems may be seen as
“black boxes,” which weakens trust and limits their practical value. Many current ap-
proaches focus mainly on predictive accuracy while giving little attention to explainability,
creating a gap between technical performance and farmers’ readiness to use these tools.
Agricultural decisions demand accurate predictions together with clear explanations that
farmers can understand and use in their planning.

To answer the fundamental question of “what we plant?” and respond to the challenge of
providing both accuracy and transparency, this chapter presents a crop selection system
that integrates strong predictive performance with clear interpretability. The proposed
CS-AdaRF-SHAP framework combines an ensemble learning approach with explainable
AT techniques to deliver recommendations that are both dependable and understandable.
Adaptive boosting is employed to improve predictions by concentrating on harder-to-
classify cases, which strengthens the model’s ability to handle varied environmental con-
ditions. In addition, feature attribution methods are applied to measure the influence of
variables such as soil nutrients and climate conditions on final outcomes.

The remainder of this chapter is organized as follows. First, an exploratory analysis of
the dataset is presented to describe its key characteristics. Next, the preprocessing steps
and feature selection process are explained in detail. This is followed by a comparison of
several machine learning models for crop selection to assess and validate the preprocessing
strategy. Finally, the proposed system is introduced and evaluated with respect to both
predictive accuracy and clarity of explanations, and the chapter concludes with a brief

summary of the main outcomes.

4.2 Methodology Overview

The proposed system CS-AdaRF-SHAP is designed to provide strong predictive accuracy

while also offering clear and practical explanations of its recommendations. This dual
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focus supports the use of Al-based tools in agricultural decision making and helps farmers
understand the reasoning behind each crop suggestion. As shown in Figure[d.1] the system
architecture is organized into two main phases: offline phase and online phase.

Offline Stage
Bad metrics

—> Data Analysis Featu_re
Selection
_ Metrics
'lr ‘1' LT Checking
Data Data
Pre-processing Augmentation i
Liyputaiamateca] Good metrics
Tuning 1
Online Stage : l
v
DataSet
Testing Data Data Model Recommended
Pre-processing Storage Crops

Figure 4.1: The general architecture of the proposed system.

Offline Phase The offline stage focuses on constructing a reliable crop selection model.
The process begins with an exploratory data analysis (EDA) to check the distribution of
each variable, study univariate and bivariate analysis, and measure correlations. After this
analysis, data preparation includes detecting and handling outliers, the use of Min—Max
scaling to align feature ranges, and the creation of additional synthetic samples to ex-
pand each crop class from 100 to 300 records. All seven agronomic variables (nitrogen,
phosphorus, potassium, pH, temperature, humidity, and rainfall) are kept to maintain es-
sential soil and climate information. To confirm that each preprocessing step contributes
to better predictions, several scenarios were examined using five machine learning algo-
rithms (RF, DT, Naive Bayes, SVM, and KNN). The results of these tests guided the
construction of the final preprocessing pipeline.

The cleaned and enriched dataset is then used to train the AdaBoost classifier, which

combines a series of decision tree learners to form a strong ensemble model.

Online Phase In the online phase, the system operates in real time to provide farmers

and agricultural practitioners with crop recommendations. The trained AdaBoost model
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processes new input data and returns suitability predictions with very low response time,
allowing users to make timely decisions. Each recommendation is accompanied by in-
terpretability measures produced with SHapley Additive exPlanations (SHAP). SHAP
calculates and displays how each soil and climate variable contributes to the suggested
crop, giving clear and practical explanations for every prediction. Interactive visual tools
present these explanations in an accessible way, helping users compare the results with

their own field conditions and build confidence in the model’s guidance.

4.3 Exploratory Data Analysis

4.3.1 Data Acquisition and Characteristics

The dataset used in this study was obtained from a public repository available on Kaggle
[116]. It contains a total of 2,200 records, distributed equally across 22 crop species of
agricultural importance. Each crop class is represented by exactly 100 entries, which
provides a balanced distribution across categories. This balance is particularly important
for supervised learning, as it reduces bias during training and supports fair evaluation of
model performance.

The crop categories represent a wide range of agronomic groups. For clarity of analysis,

they can be organized into four main sectors:

o Cereals: Staple food crops including rice, wheat, and maize.
o Legumes: Protein-rich pulses such as chickpea, lentil, and kidney beans.

e Fruits: Seasonal and perennial fruit crops including watermelon, muskmelon, pa-

paya, and mango.

o Plantation or Cash Crops: Crops of high economic value, such as cotton, jute,

and coffee.

Each record in the dataset includes seven independent variables that play an essential

role in determining crop growth and suitability (Figure [4.2)).
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Table 4.1: Descriptive statistics of agricultural parameters.

Features Min Max Median SD Mean Skewness Kurtosis

N (mg/kg) 0 140 37 36.9  50.55 0.5 -1.05
P (mg/kg) 5 145 51 33.05 53.36 1.01 0.85
K (mg/kg) 5 205 32 50.6  48.14 2.4 4.4
Temp. (°C) 88 43.7 25.6 5.06  25.61 0.18 1.2
Humidity (%) 14.3 100 80.5 22.3 7148 -1 0.3
pH 3.5 994 6.43 0.77  6.46 0.3 1.6
Rainfall (mm) 20 299 95 55 103.46 0.96 0.6

4.3.2 Univariate Analysis and Distribution Visualization

Univariate analysis examines each variable independently to describe its general behav-
ior and statistical properties. This step helps reveal the distribution, central tendency,
variability, and overall shape of the data. It also assists in detecting skewed features,
unusual values, or quality issues that may influence the performance of predictive models.
Descriptive statistics are provided in Table 4.1}, and feature-level patterns are considered

in the discussion that follows.
« Nitrogen (N):

— Range: 0 to 140 mg/kg; Median = 37 mg/kg.

— The distribution is mildly right-skewed (skewness ~ 0.5), and kurtosis is neg-

ative (-1.05), indicating a relatively flat distribution with few extreme values.

— Interpretation: Over half of the samples show nitrogen values at or below
37 mg/kg, suggesting that many crops in the dataset grow under low to mod-
erate N conditions. The slightly right-skewed shape indicates the presence of
soils with higher nitrogen, which are likely associated with crops that require

greater nutrient input.
« Phosphorus (P):

— Range: 5 to 145 mg/kg; Mean = 53.36 mg/kg; SD = 32.99 mg/kg.

— Right-skewed distribution (skewness =~ 1.01) with some high-value outliers.
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perature, humidity, rainfall), and soil acidity (pH).
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— Interpretation: The mean and median place most samples in a moderate phos-
phorus range. The right skew reveals fewer but notable cases of high-P soils,
which may correspond to crop groups with stronger phosphorus demand. This
pattern indicates that while moderate P conditions are common, certain crops

adapt to higher levels.
« Potassium (K):

— Range: 5 to 205 mg/kg; Median = 32 mg/kg; Mean = 48.15 mg/kg.
— Strongly right-skewed (skewness = 2.40) and leptokurtic (kurtosis = 4.4).

— Interpretation: With a median near 32 mg/kg, most samples fall into a low
to moderate potassium range, which suits many of the crops represented. The
pronounced skewness and high kurtosis reflect a small fraction of samples with

very high potassium, likely linked to crop types requiring stronger K availabil-

ity.
o Temperature (°C):

— Range: 8.83 to 43.68°C; Mean = 25.62°C.
— Near-normal distribution with slight right skew.

— Interpretation: Most values lie between 22 and 29 °C, which represents optimal
conditions for many of the crops included in the dataset. The higher values
reflect environments suitable for heat-tolerant crops, while the lower values

correspond to species adapted to cooler climates.
o Humidity (%):

— Range: 14.26% to 99.98%:; Mean = 71.48%.
— Bimodal distribution.

— Interpretation: The presence of two peaks indicates that the dataset covers
both dry and humid conditions. This suggests inclusion of crops grown in arid

environments as well as crops requiring high atmospheric moisture.
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« Rainfall (mm):

— Range: 20.21 to 298.56 mm; Mean = 103.46 mm.
— Strong right-skewed distribution.

— Interpretation: Most records fall below 150 mm, showing that many crops in
the dataset grow under moderate rainfall. The presence of a few very high

values reflects crops cultivated in regions with heavy rainfall.
Soil pH:

— Range: 3.50 to 9.94; Mean = 6.47.
— Nearly normal distribution centered around 6.4.

— Interpretation: Most samples fall within a neutral to slightly acidic range. This
range is favorable for a wide group of crops. A smaller number of samples at
the extremes show strongly acidic or alkaline soils, suggesting conditions suited

only for crops adapted to those specific environments.

4.3.3 Bivariate Analysis

A bivariate analysis was carried out to explore the relationships between each independent
variable and the target crop label. This examination helps to understand how much each
numerical feature varies across different crop classes and to detect variables that may be
redundant or strongly discriminative. The analysis was organized into two main parts
according to the types of variables: (1) relationships between pairs of numerical variables,
and (2) relationships between numerical variables and the categorical crop label.
Numerical-Numerical Analysis

To examine relationships among the numerical features and to check for possible mul-
ticollinearity, a Pearson correlation matrix was computed (Figure . The coefficient

values range from —1 (perfect negative correlation) to +1 (perfect positive correlation).

The main observations are as follows:

o Phosphorus (P) and Potassium (K) show a moderately strong positive correla-

tion (r ~ 0.74). This means that higher levels of P are often accompanied by higher
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Figure 4.3: Correlation matrix showing pairwise relationships among numerical features.

levels of K across the samples. In machine learning applications, such a correlation
may introduce redundancy, particularly in linear models such as Logistic Regression

or Linear Discriminant Analysis, where multicollinearity can affect performance.

« Temperature and Humidity have a weak negative correlation (r ~ —0.14), sug-

gesting only a slight inverse relationship between the two variables.

e Other variable pairs, including Nitrogen with Rainfall or pH, show negligible cor-
relation (|r| < 0.1). Such low associations reduce the risk of overlapping information

and help maintain model stability.

Interpretation: The correlations observed are generally low to moderate, which indicates
that most features contribute distinct information. This diversity among predictors is

beneficial for building machine learning models, as it reduces redundancy and supports
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clearer interpretation of results.

Numerical-Categorical Analysis

This analysis explored how each numerical feature varies across the 22 crop categories
in the dataset. Two complementary approaches were applied to evaluate the ability of
these features to separate crop types. First, one-way ANOVA was used to test whether
the mean values differ significantly among crops, which is helpful for detecting linear
separability relevant to models such as logistic regression. Second, Mutual Information
(MI) was calculated to measure the strength of non-linear relationships between each
feature and the crop labels, a property that can guide the use of non-linear algorithms

such as decision trees.

1. One-Way ANOVA (Analysis of Variance):
A one-way ANOVA test was applied to check whether the mean of each numerical feature

varies significantly across the 22 crop types. The results are presented in Table 4.2

Table 4.2: One-Way ANOVA Results for Numerical Features

Feature F-statistic p-value

Nitrogen (N) 897.57 <1 x 107300
Phosphorus (P) 1885.66 <1x1073%
Potassium (K) 27,238.36 <1 x1073%

pH 60.34 6.49 x 107199
Temperature 102.19 4.02 x 1073%
Humidity 3103.71 <1x1073%
Rainfall 605.53 <1 x1073%

Interpretation: All p-values are extremely small, showing that the mean values of every
feature differ significantly across the crop categories. Potassium (K) recorded the highest
F-statistic, making it the most discriminative variable among the tested features. Hu-
midity and Phosphorus also display strong variation between crops, indicating that these

factors play an important role in distinguishing growing conditions.

2. Mutual Information (MI):
Mutual Information (MI) was used to measure how strongly each numerical feature is

related to the crop labels while also capturing possible non-linear relationships. The
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ranked scores in Table show the strength of these feature-label connections.

Table 4.3: Mutual Information Scores for Feature-Label Relationships

Feature Mutual Information Score
Humidity 1.730
Rainfall 1.637
Potassium (K) 1.630
Phosphorus (P) 1.298
Temperature 1.018
Nitrogen (N) 0.993
pH 0.686

Interpretation: Humidity, Rainfall, and Potassium show the strongest connections with
crop type, each with MI values above 1.6. Nitrogen, although important in the ANOVA
results, ranks lower here, which points to a relationship that is more linear and therefore
less captured by MI. The lowest score belongs to pH, suggesting that this feature varies

less across crops and is generally more uniform in its effect.

3. Feature Distributions Across Crops:
To support the statistical findings, graphical summaries were prepared to show how the
numerical features vary among the 22 crop types. Boxplots were created for each vari-

able grouped by crop label (Figures , . These visualizations help reveal natural

groupings, differences in spread, and possible extreme values.

o Rainfall: Crops such as rice and jute require much higher rainfall, while legumes

and pulses remain tightly clustered at lower values.

o Humidity: Separates water-demanding crops like rice and sugarcane from dry-land

crops such as lentil and gram.

o pH: Most crops grow best in a near-neutral pH range (around 6.0-7.5), although

crops like coffee and grapes tolerate a wider range.

Interpretation: These visual patterns support the ANOVA and MI outcomes by showing
clear differences in key variables across crop groups. They also help identify outliers
and overlapping regions, which is valuable when selecting features or preparing data for

classification models.
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Figure 4.4: Feature distributions across crops for Nitrogen (N), Phosphorus (P), and
Potassium (K).

4.3.4 EDA-Driven Strategy

Table summarizes the key observations from the exploratory data analysis and the
actions taken during dataset preparation. Each action is supported by statistical tests

and visual checks to improve data quality and guide later modeling steps.
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Table 4.4: Summary of EDA Results and Applied Actions

Analysis

Main Observations

Actions / Decisions

Numerical-Numerical
Correlation

Most feature pairs show very low
correlation.  Only Phosphorus
and Potassium have a moderate
positive relationship (r ~ 0.74).

Keep all features but moni-
tor Phosphorus and Potas-
sium when wusing linear
models. If multicollinear-
ity affects model stability,
remove or combine one of
them.

One-Way ANOVA

All numerical features differ
strongly in their mean values
across the 22 crop types (p-values
close to zero). Potassium, Hu-
midity, and Phosphorus show the
highest F-statistics.

Retain all features for
modeling. Give priority to
Potassium and Humidity
as main predictors. If
dimensionality =~ reduction
is needed, start by drop-
ping features with lower
F-statistics.

Mutual Information

(MI)

Humidity, Rainfall, and Potas-
sium show the strongest non-
linear relationship with crop la-
bels.  Nitrogen has moderate
scores, and pH records the low-
est value.

Use Humidity, Rainfall, and
Potassium as key inputs for
non-linear models.  Con-
sider removing pH if feature
reduction is required since it
carries limited information.

Feature Distributions

Rainfall, Humidity, and pH vary
clearly across crops. Some crops
share overlapping ranges and a
few outliers appear in nutrient
levels.

Apply scaling to maintain
balanced influence of all
variables. Identify and treat
extreme nutrient values to
reduce the effect of outliers.

Class Balance

Each crop class contains 100 sam-
ples.

No action required; keep the
natural class balance with-
out oversampling or under-
sampling.

4.4 Data Preprocessing

This section explains the operations performed to prepare the dataset before applying ma-

chine learning models. The objective was to ensure that all features were clean, complete,

and ready for analysis.
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4.4.1 Data Cleaning

Missing Value Detection

The dataset was examined to confirm that each numerical feature and the crop label
were fully recorded. Let x;; represent the value of feature j for observation ¢, and let the

indicator function be

1, if x;; is missing
M;; = (4.1)

0, otherwise.
The number of missing entries for each feature is then calculated as >~ | M,;, where n is
the total number of records.
Result: All seven numerical predictors (Nitrogen, Phosphorus, Potassium, Temperature,
Humidity, pH, Rainfall) and the crop label were complete, with no missing entries de-
tected. Because the dataset is fully populated, no imputation or record removal was
required.
The same inspection was applied to check for duplicate rows and inconsistent values. No

duplicates or irregular entries were found, confirming that the raw data could be used

directly in later preprocessing steps.

Outlier Detection

Potential outliers were examined using the Z-score method, a standard statistical ap-
proach that measures how far a value lies from the mean of a given feature. For each

observation x; of a feature x, the Z-score is computed as

g, = Bk (4.2)

where p is the mean and o is the standard deviation of the feature. Values with an
absolute Z-score greater than three (|Z;] > 3) were flagged as possible outliers. This
threshold represents the outer 0.3% of values in a normal distribution, based on the
empirical 68-95-99.7 rule. This procedure allows the detection of unusually high or low

measurements that may result from recording errors or extreme natural variation.
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Global Outlier Detection and Observations The univariate analysis in Section[4.3.2]
showed that several features depart from a normal distribution, as reflected by their skew-
ness and kurtosis. These measures correspond to the number of extreme values identified

by the Z-score method:

« Potassium (K) displayed the highest skewness (2.40) and kurtosis (4.40). This
pattern matches its large count of Z-score outliers and points to the presence of

many very high measurements.

« Phosphorus (P) and Rainfall presented moderate positive skew (around 1.0),

which agrees with their moderate outlier counts driven by occasional high readings.

o pH showed low skewness and a nearly normal distribution, in line with the small

number of detected outliers.

200

100

Outlier Count

Feature

Figure 4.6: Global outlier count for each feature using Z-score.

The global Z-score analysis (Figure showed that Potassium (K) contained about
200 extreme values, Phosphorus (P) around 135, Temperature about 85, pH nearly
60, Rainfall close to 100, and Humidity roughly 30. In contrast, Nitrogen (IN) dis-
played no outliers under the standard Z-score threshold (|z| > 3), which indicates a stable

distribution for this feature.
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Limits of Global Z-Scores Global Z-score analysis can detect unusual values when
the data come from a single population, but this condition does not fully match the
present dataset. The data include 22 different crop types, each with its own physiological
traits and environmental needs. As a result, values that appear extreme when viewed
across the entire dataset may be normal within certain crop groups. This limits the use
of a single global threshold for detecting outliers in such a varied, class-dependent setting.
Figures and illustrate this point by showing the distribution of key numerical
features for each crop type. The boxplots display the interquartile range (IQR) through
their whiskers, providing a clearer view of variability within individual crop classes.

To address this variability, outlier detection was refined using a class-conditional Z-
score, where the score is computed separately for each crop type. For a given crop ¢ and

feature j, the Z-score is calculated as

Z.@:% fori=1,...,n, (4.3)

©
J

) represent the mean and standard deviation of feature j within crop ¢,

Here, ;7 and a](.c
and n. is the number of observations for that crop. This method identifies extreme values
relative to the natural distribution of each crop and avoids labeling valid crop-specific
measurements as outliers.

The percentage of detected outliers for each crop and feature is shown in Figure 1.7 This
figure provides a clear view of how the share of extreme values changes across crops and
measured features.

Detected outliers were handled using median imputation. FEach extreme value was

replaced with the median of the same feature within the corresponding crop, which keeps

the typical value of each group while reducing the effect of rare extreme points.

4.4.2 Feature Scaling

To give all numerical features an equal effect during model training, Min-Max scaling
was applied. This method rescales each feature to the range [0, 1] using its observed

minimum and maximum values. Scaling prevents variables with wide numeric ranges
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Figure 4.7: Percentage of detected outliers for each crop and feature using class-
conditional Z-scores.

from dominating those with smaller ranges, improves numerical stability, and helps the
optimization process converge more smoothly. The transformation is defined as
X — Xmin

KNocaled = 5 — 44
fed Xmax - Xmin ( )

where X is the original feature value, and X,,;, and X, are the minimum and maximum

values of that feature.

4.4.3 Categorical Encoding

The dataset includes categorical variable, the crop type labels, which need to be expressed
as numbers to be used in machine learning models. Label encoding was applied to give
each crop type a unique integer value. This approach keeps the class distinctions clear
and allows categorical and numerical features to be combined during model training and

evaluation.

4.4.4 Feature Selection

Feature selection was guided by EDA using correlation checks, ANOVA tests, mutual

information, and examination of feature distributions.
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Correlation results revealed one moderate relationship between Phosphorus and Potas-
sium (r & 0.74), while all other feature pairs were nearly independent. To reduce the risk
of multicollinearity in linear models, Potassium was kept and Phosphorus considered for
removal.

ANOVA showed that all numerical features differ across crop types, with Potassium,
Humidity, and Phosphorus giving the highest F-statistics. Mutual information supported
this by ranking Humidity, Rainfall, and Potassium as the most informative, while pH had
the lowest score and showed strong overlap between crop classes.

Based on these results, four features were selected for model training;:

o Potassium: high ANOVA score and strong mutual information,

o Humidity: high ANOVA score and highest mutual information,

Rainfall: strong mutual information and clear separation between classes,

o Temperature: moderate but stable predictive value.

The remaining features pH, Phosphorus, and Nitrogen were removed. pH contributed
little useful information and overlapped heavily across classes. Phosphorus was dropped to
avoid redundancy with Potassium, which showed stronger predictive strength. Nitrogen,
although important for soil analysis, provided only moderate mutual information and
lower discriminative value than Temperature.

To confirm whether the four selected features can achieve performance similar to the full
seven-feature set, the next section compares machine learning models trained on both

configurations.

4.4.5 Data Augmentation

The dataset was augmented to raise the number of samples in each crop class from 100
to 300, giving a total of 6,600 records. This step widened the range of feature values
and provided a stronger basis for model training. The target of 300 samples per class

was chosen as a compromise between diversity and computational cost. Preliminary tests
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showed that 200 samples offered limited variability, while 400 samples added little benefit
but increased training time.

The augmentation process is given by

Raugmented = Noriginal + (Rtarget - Roriginal) X C (45)

where
o Raugmented 15 the total number of rows after augmentation (6, 600),
o Noriginal 1S the initial number of rows (2,200),
o Riarget is the desired rows per class (300),
* Roriginal 1S the rows per class before augmentation (100),
o (' is the number of crop classes (22).

This expansion allowed evaluation of model performance on a larger training set while
keeping computation manageable. Because the extra records are synthetic, model results

were validated on the augmented data to ensure reliability.

4.5 Assessment of Data Preprocessing

This section reviews the preprocessing steps applied to the dataset and examines their
effect on model reliability. A set of baseline machine learning models is evaluated to
provide a performance benchmark and to verify the effectiveness of the preprocessing

procedure.

4.5.1 Experimental Design

The effect of the preprocessing pipeline described in Section was examined through a
set of controlled experiments. Each experiment modified a single preprocessing step while
keeping the remaining steps unchanged, allowing a clear view of how individual choices

influence model behavior.
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The prepared dataset was then used to train and test several machine learning algorithms
for crop recommendation. The evaluated models include Multi-Layer Perceptron (MLP),
Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), K-Nearest
Neighbors (KNN), and Naive Bayes (NB). Their performance serves as a reference for
validating the preprocessing approach.

The experiments addressed the following aspects:

o Dataset Splitting: Tested 50:50 and 80:20 partitions to study how training set

size influences performance.

o Data Cleaning: Compared median imputation of class-conditional outliers with

direct removal to examine the impact on model stability and data coverage.

o Feature Scaling: Tested Min-Max scaling to assess its effect on model perfor-

mance.

» Feature Selection: Trained models first on the key variables identified during ex-
ploratory analysis and then on the complete feature set to measure the contribution

of additional attributes.

o« Data augmentation: Evaluated the effect of increasing the number of samples

per crop on prediction accuracy.

4.5.2 Results

Before presenting the detailed comparisons, it is useful to describe the starting conditions
that served as a reference for all experiments. The first set of tests was carried out using

the following baseline configuration:

o Data cleaning: The raw dataset was used as collected, with no cleaning or impu-

tation of missing or extreme values.
o Dataset split: Training and testing sets were divided evenly using a 50:50 ratio.

o« Data augmentation: No additional samples were generated or added to the

dataset.
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o Feature selection: Only four key features were selected from the seven available

variables.

This setup provides a practical reference point for examining how later preprocessing

choices influence model accuracy and stability.

Dataset Splitting

Table shows the effect of changing the train—test split from 50:50 to 80:20. All clas-
sifiers obtained higher accuracy when a larger share of the data was used for training,
which allowed the models to learn more representative patterns before evaluation. The
largest improvement was observed for KNN, which increased from 82.45% to 87.72% (a
gain of 5.27%). Decision Tree and Random Forest also benefited, with increases of 2.45%
and 1.59%, respectively. SVM improved by 1.91%, while Naive Bayes showed only a slight

change of 0.04%.

Table 4.5: Impact of dataset splitting on classification accuracy.

Classifier 50:50 Split 80:20 Split Accuracy Gain

RF 94.54% 96.13% +1.59%
DT 92.27% 94.72% +2.45%
NB 94.27% 94.31% +0.04%
SVM 68.09% 70.00% +1.91%
KNN 82.45% 87.72% +5.27%

Data Cleaning
To examine how different treatments of outliers influence model accuracy, three strategies

were applied:

1. Raw data: The dataset was used without any cleaning to reflect original field

conditions.

2. Outlier removal: Records with extreme values were deleted in an attempt to

reduce skewed distributions.

3. Median imputation: Outliers were replaced with the feature-wise median to keep

the full sample size while limiting the effect of extremes.
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Table 4.6: Impact of Outlier Processing Techniques on Accuracy with Gains or Losses
Relative to Raw Data.

Outlier Removal Median Imputation

Classifier Raw Data

(Gain/Loss)

(Gain/Loss)

RF 94.54%  93.00% (-1.54%)  94.72% (+0.18%)
DT 92.27%  89.54% (-2.73%)  92.27% (40.00%)
NB 94.27%  91.72% (-2.55%)  94.27% (+0.00%)
SVM 68.09%  61.72% (-6.37%)  68.27% (+0.18%)
KNN 82.45%  77.45% (-5.00%)  82.72% (+0.27%)

A direct comparison between the raw dataset and the version with outlier removal shows
a drop in accuracy for every classifier (Table[4.6). The reduction is small for RF (-1.54%)
but large for SVM (-6.37%), which suggests that deleting extreme records removed some
data points that carry useful information. When outliers were replaced by the median,
the models kept nearly the same accuracy as the raw data and in a few cases achieved
slight gains. For example, RF rose from 94.54% to 94.72% (4+0.18%), and KNN improved
from 82.45% to 82.72% (+0.27%).

Feature Scaling
To reduce bias caused by different feature ranges, we tested Min—Max scaling in the range

[0,1] against models trained on raw values:

o Unscaled: Original feature ranges kept without adjustment.
o Scaled: All features transformed to the [0,1] range using the Min—Max method.

Table 4.7: Impact of Feature Scaling on Accuracy

Classifier Without Scaling With Scaling Accuracy Gain
RF 94.54% 95.18% +0.64%
DT 92.27% 92.81% +0.54%
NB 94.27% 94.27% +0.00%

SVM 68.09% 88.63% +20.54%
KNN 82.45% 88.36% +5.91%

Normalization mainly improved models that depend on distance calculations (Table .
SVM gained 20.54% because kernel functions are sensitive to unequal feature ranges.

KNN increased by 5.91% as neighbor comparisons require features on a similar scale.
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Tree-based methods showed only minor changes (RF: +0.64%, DT: +0.54%), and Naive

Bayes remained unchanged, reflecting their scale-invariant structure.

Feature Selection

We compared two different feature sets using an 80:20 train—test split to examine the

effect of dimensionality on model accuracy:

o Selected features: a reduced set containing Potassium, Temperature, Humidity,

and Rainfall.

o All features: the complete group of seven variables.

Table 4.8: Impact of Feature Count on Accuracy

. 4 features 7 features .
Classifiers (80:20 split)  (80:20 split) Accuracy Gain
RF 96.13% 99.09% +2.96%
DT 94.72% 98.18% +3.46%
NB 94.31% 99.31% +5.00%
SVM 70.00% 96.59% +26.59%
KNN 87.72% 97.50% +9.78%

Expanding the input to seven features improved accuracy for all models (Table. Gains
ranged from +2.96% for RF to +26.59% for SVM. Tree-based models such as RF and
DT showed smaller gains, while SVM and KNN benefited most from the extra variables.
This shows that the four-feature set retains most of the useful signal, but using all seven

features gives the best overall accuracy.

Data Augmentation

Two dataset versions were evaluated using an 80:20 train—test split to assess how data

augmentation affects model accuracy:

o Without augmentation: The original dataset contained 2,200 records, with 100

samples for each of the 22 crop classes.

« With augmentation: The dataset was expanded to 6,600 records by generating

synthetic samples so that each class increased from 100 to 300 samples.
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Table 4.9: Impact of Data Augmentation on Accuracy

Without Augmentation With Augmentation

Classifier Accuracy Gain

(80:20 split) (80:20 split)
RF 96.13% 96.85% +0.72%
DT 94.72% 95.41% +0.69%
NB 94.31% 94.88% +0.57%
SVM 70.00% 71.26% +1.26%
KNN 87.72% 88.65% +0.93%

As shown in Table[4.9] adding synthetic samples gave a modest accuracy increase for every
model. Tree-based classifiers such as RF and DT gained about 0.7%, which reflects their
ability to use a larger training set even when their performance was already high. Naive
Bayes improved by only 0.57%, a small change that matches its lower dependence on
sample size once class probabilities are well estimated. Distance-based methods benefited
the most: KNN accuracy rose by 0.93%, and SVM achieved the largest gain of 1.26%,
suggesting that extra data helped these algorithms draw more precise decision boundaries

in the feature space.

Preprocessing Outcomes

Testing showed that an 80:20 split, median imputation, Min—Max scaling, full seven-
feature input, and data augmentation each improved model accuracy. Scaling mainly
boosted SVM and KNN, while tree models gained from median imputation and larger
training data. These choices were combined to build the final preprocessing pipeline for

the AdaBoost crop selection model.

4.6 Development and Workflow of the CS-AdaRF-
SHAP Model

We introduce CS-AdaRF-SHAP, an AdaBoost ensemble with Random Forest base

learners and post hoc explanations provided by SHAP.
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4.6.1 CS-AdaRF Development and Optimization

Rationale for Selecting AdaBoost

In agricultural decision-making, particularly in crop selection, classification errors can
have serious effects. A false positive (FP), which occurs when the system recom-
mends an unsuitable crop, may lead to wasted inputs, poor yields, and financial loss. In
contrast, a false negative (FN), where a suitable crop is not recommended, can cause
farmers to miss profitable and productive options.

AdaBoost is well suited because it trains models in sequence and gives more weight to
difficult samples, helping to lower both types of errors. Its exponential loss function places
strong penalties on confident mistakes, adding an extra layer of protection against costly
outcomes.

When combined with strong base learners such as Random Forests, AdaBoost provides a
solid compromise between predictive power and resistance to overfitting. Because mini-
mizing wrong recommendations and maintaining farmer confidence are critical for a prac-
tical crop selection system, AdaBoost was chosen as the main model even when other

algorithms achieved similar accuracy in early experiments.

CS-AdaRF Framework

AdaBoost (Adaptive Boosting) is an ensemble learning method that builds a strong pre-
dictive model by combining many weak classifiers in a sequential manner. As shown in
Figure [4.8] the algorithm begins by assigning the same weight to every training sample.
During each iteration, a weak base learner is trained on the weighted data. After each
round, the weights of misclassified samples are increased so that the next learner pays
more attention to the cases that are hardest to classify. Through this adaptive weighting,
the model gradually focuses on the most challenging observations and improves its ability
to separate the classes. In the final step, AdaBoost merges the outputs of all weak learn-
ers, usually through a weighted voting scheme, to produce a single classifier that achieves

higher accuracy than any individual learner.
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Given a training dataset D = {(z;,y;)},, where z; € R? denotes the feature vector and

y; € {1,2,...,22} the crop class label, CS-AdaRF operates as follows:

1. Initialization: Assign each sample an equal initial weight:

wf = <

N, VZ:L,N
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This ensures every data point is equally important at the start.

2. Boosting Rounds: For each iteration t =1,...,7"

(a)

Base Classifier Training: Train a Random Forest classifier h;(z) using the
weighted dataset. Samples that were harder to classify in previous rounds will

have higher weights.

Weighted Error Calculation: Compute the weighted error rate:

SN W U(he(2;) # i)
Zi]\il wz@

[
where I(-) is the indicator function that equals 1 when the prediction is incor-

rect.

Model Weight Computation: Calculate the importance (weight) of the

current model:

atzln(1_6t> +In(K —1)

€t
where K = 22 is the number of classes. This step ensures that models with

lower error rates contribute more to the final prediction.

Weight Update: Increase the weights of misclassified samples so that future

classifiers focus on them:
w™ = w - exp (o - I(hy(x;) # y2)

Normalization: Normalize weights so they sum to 1:

N
sz(ﬂrl) 1
i=1

This maintains the weights as probabilities for the next round.

3. Final Ensemble Prediction: For a new sample z, the ensemble predicts the class
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with the highest weighted sum of votes:

T

H(z) = arg _max 2 ay - I(he(z) = k)

Each hi(z) is a Random Forest model trained in the ¢-th boosting round.

Algorithm 1 CS-AdaRF-SHAP for Crop Selection

1: Input: Preprocessed dataset D = {(x;,y;)} Y ,; number of boosting rounds 7'; Ran-
dom Forest hyperparameters
2: Output: Final ensemble classifier H(x)

3: Initialize sample weights: wgl) < 1/N for all
4: fort =1to T do
5: Train Random Forest h;(x) with weights wgt)
Yy wz(t)
7 Compute model weight: o, < In (t—:t) +In(K —1)
8: fori=1to N do

6: Compute weighted error: ¢; <

9: Update: w§t+1) — wl@ exp (o l(he(x;) # yi))
10: end for

11:  Normalize w®) so 3N W =1

12: end for

13: Prediction: For test sample z,

14: Compute SHAP values for H(z) to explain predictions.

Hyperparameter Selection and Optimization

To obtain strong predictive performance, the training setup and model hyperparameters
were adjusted through several trial runs until a stable and accurate configuration was

reached. The main parameter settings are listed below:

e Number of estimators: n_estimators = 50
Defines how many weak learners (Random Forest classifiers) are combined in the

ensemble to build a reliable prediction model.

« Base estimator: RandomForestClassifier
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Serves as the weak learner within AdaBoost, providing the ability to capture com-

plex feature patterns and reduce variance.

e Learning rate: 0.001
Regulates the weight given to each weak learner when forming the final ensemble,

allowing careful control of the learning process and helping the model generalize.

« Random state: 0
Sets the random seed for all stochastic operations so that experiments can be re-

peated and results can be reproduced.

4.6.2 SHAP-Based Interpretability

In our system, CS-AdaRF builds an ensemble of Random Forest classifiers, where each
successive model pays more attention to the errors made by the previous ones. This
iterative process produces a model with strong predictive accuracy but leaves the decision
process as a black box. To make the decision process understandable, SHAP (SHapley
Additive exPlanations) is applied post hoc after the CS-AdaRF model has been fully
trained. SHAP is used only during model evaluation on the test data and does not affect
the training procedure or the optimization of the model.

Theoretical Basis of SHAP: SHAP builds on Shapley values from cooperative game
theory, which assign to each feature its fair share of the average contribution to a model’s
prediction. In the CS-AdaRF-SHAP system, SHAP evaluates the adaptive, weighted
outputs of all base classifiers and produces explanations that satisfy the key properties of
local accuracy, additivity, and missingness. These properties are important for producing
clear and reliable interpretations in agricultural decision support.

For a problem with K = 22 crop classes and d = 7 input features (soil nitrogen, phospho-
rus, potassium, pH, temperature, humidity, and rainfall), the SHAP value for feature x;
and class £ is given by:

[STEAE] = 15T = 1)!
1!

SHAP(f,z;, k)= [fr(zs U{x}) — fulzs)]  (4.6)

SCF\{z;}
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Where:
o f: the trained CS-AdaRF model,
e x;: the i-th input feature,
o k: the predicted crop class (k= 1,...,22),
o [": the complete set of input features,
e S: asubset of I' that does not contain x;,

o fr(xg): the model’s predicted probability (or score) for class k using only the fea-

tures in S,

o S|, (JF| = |S| — 1)!, |F|!: factorial terms used to average fairly over all possible

subsets of features.

Algorithmic Workflow:

Algorithm 2 Interpretable Crop Selection with SHAP

Require: Trained AdaBoost model f, evaluation dataset X, number of crop classes K =
22

1: for k< 1to K do
2 explainer), < Initialize SHAP explainer for class k
3 shap_values; < Compute SHAP values for all x € X and class k
4: end for

5. for k< 1 to K do

6

7

8

Feature__importance, < Aggregate SHAP values for class k
: end for
: return Feature_importancey,

Algorithm Description: After training the proposed CS-AdaRF model, SHAP values
are computed for every feature and crop class using the evaluation data. The procedure

includes:

o Creating a SHAP explainer for each crop class.

o Calculating the SHAP value of each feature for every sample to measure its effect

on the model prediction.
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o Aggregating the computed values over all samples to obtain the overall importance

of each feature for each crop class.

These aggregated SHAP values reveal which soil and environmental variables play the
largest role in each crop recommendation and provide a clear basis for practical agricul-
tural decisions.

Reading the SHAP Values:

» Positive values: Indicate that the feature raises the probability of selecting a

specific crop.

o Negative values: Indicate that the feature lowers the probability of selecting that

crop.

o Magnitude: Shows how strongly the feature affects the model’s recommendation,

with larger values meaning a greater effect.

4.7 Results

4.7.1 Evaluation of the CS-AdaRF Model

This section presents a detailed assessment of the predictive ability of the proposed CS-
AdaRF model, which combines AdaBoost with Random Forest base learners for multi-
class crop selection. The evaluation covers accuracy, precision, recall, Fl-score, training
time, and class-wise results, and includes a direct comparison with other classification

methods.

Training and Testing Behavior:

Figure shows the progression of accuracy and error rate for the CS-AdaRF model
during training and testing. The error steadily decreases from 0.06 to 0.003 on the training
set and from 0.054 to 0.004 on the testing set, indicating efficient learning and strong
generalization. At the same time, both training and testing accuracy increase from about
0.95 to nearly 0.999, demonstrating effective reduction of misclassification without signs

of overfitting.
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Figure 4.9: Accuracy and error rate of the CS-AdaRF Model during training and testing.

Comparison with Alternative Models

Table and Figure present the comparative evaluation of CS-AdaRF against

several well-established classifiers, including SVM, KNN, Decision Tree (DT), Bagging,

XGBoost, and LightGBM. CS-AdaRF achieves the highest overall accuracy (99.77%)

and records perfect values for precision, recall, and Fl-score. These results show that

the model produces highly accurate predictions while maintaining balanced control over

false positives and false negatives. In addition, the recorded testing time of 0.57 seconds

demonstrates the suitability of CS-AdaRF for practical deployment.
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Figure 4.10: Performance metrics comparison across multiple models.
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Table 4.10: Performance metrics comparison across multiple models.

Models Correct Incorrect  Accu- Pre- Recall F1 score Testing
Instances Instances racy cision (%) (%) time (s)
(%) (%)
SVM 1308 12 99.09 99 99 99 0.07
KNN 1299 21 98.41 99 98 98 0.003
DT 1299 21 98.41 98 98 98 0.037
Bagging 1314 6 99.54 100 100 100 9.7
XGBoost 1311 9 99.31 99 99 99 12.3
Light GBM 1305 15 98.86 99 99 99 4.5
CS-AdaRF 1317 3 99.77 100 100 100 0.57
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Figure 4.11: Confusion matrix for the CS-AdaRF model.

Analysis of Misclassifications

The confusion matrix in Figure provides a detailed view of classification errors across
the 22 crop categories. The proposed model misclassifies only three samples, a very small
number considering the complexity of the task. These errors are not random but occur

in crop pairs that share closely related agronomic characteristics:

e Rice predicted as Jute: Rice and jute are often cultivated in similar floodplain
areas and require comparable soil nutrients and climate conditions. The single error
most likely reflects a data point located near the decision boundary in the feature

space, where high rainfall and overlapping nutrient profiles could describe either
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crop.

o Blackgram predicted as Mothbeans: Both crops belong to the legume family
and thrive under similar soil and environmental conditions, especially in regions
with moderate rainfall and similar nitrogen needs. Their feature representations in
the dataset are so close that even a strong classifier may confuse a small number of

cases.

Practical Impact of Misclassification and Computational Efficiency

In agricultural decision support, even rare classification errors can have practical conse-
quences. For example, recommending jute instead of rice could lead to lower yield or
inefficient use of inputs if the field is better suited to rice. Similarly, confusing blackgram
with mothbeans may affect fertilizer selection, irrigation planning, and marketing deci-
sions. However, the very small number of errors (3 out of 1320 samples) and the fact that
these mix-ups occur between crops with similar biological and environmental requirements
indicate that the model is highly reliable and presents minimal risk to farmers.

The proposed CS-AdaRF model achieves top predictive performance with near-perfect
classification across all crop types and a testing time of only 0.57 seconds. This level
of efficiency stands out when compared to other strong ensemble methods: Bagging (9.7
seconds), XGBoost (12.3 seconds), and LightGBM (4.5 seconds) require considerably
longer training while delivering slightly lower accuracy and F1 scores.

CS-AdaRF reaches the highest accuracy (99.77%) and perfect precision, recall, and F1-
score, while maintaining a training time far shorter than Bagging and XGBoost. Although
simpler models such as SVM (0.07 s), KNN (0.003 s), and Decision Tree (0.037 s) train
somewhat faster, they do so at the cost of reduced predictive power and a higher rate of
misclassification.

This combination of strong predictive accuracy and low computational cost makes CS-
AdaRF well suited for real-world crop selection tasks, particularly when rapid retraining
and scalability are important. Its efficiency supports quick deployment and model updates
while lowering computing requirements, which is valuable for agricultural decision support

in environments with limited resources.
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4.7.2 Assessment of Model Interpretability

Understanding which input features guide the model’s decisions is essential for scientific
validation and for building trust among agricultural practitioners. To explore this aspect,
the permutation feature importance method was applied to the CS-AdaRF model in
order to measure how each variable affects prediction accuracy. The ranking shown in
Figure [4.12| reveals the features that contribute most to changes in prediction error.

Despite its usefulness, permutation importance has known limitations. When features are
strongly correlated, the method can produce biased rankings. In this dataset, for example,
phosphorus (P) and potassium (K) show a correlation coefficient of 0.74, which may cause
their importance to be overestimated or underestimated. Such multicollinearity compli-
cates the interpretation of their individual roles. Moreover, permutation importance does
not indicate whether a feature promotes or suppresses a particular crop recommenda-
tion, nor does it express the strength or direction of its effect. These missing details are

important for translating model outputs into practical agronomic advice.
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Figure 4.12: Permutation-based ranking of feature importance.
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SHAP overcomes the limitations of permutation importance by using concepts from game
theory to assign each feature a precise contribution to every individual prediction. In

contrast to permutation importance, SHAP offers two key advantages:

o It can reliably separate the contribution of each feature even when strong correla-

tions are present, producing stable and meaningful attributions.

o It provides both the direction of influence (whether a feature increases or decreases

the probability of selecting a specific crop) and the magnitude of this effect.

The SHAP summary plot in Figure [4.13| presents the overall impact of all input variables
on crop recommendations. Humidity appears as the most influential factor, followed by
nitrogen (N) and potassium (K). These results are consistent with well-known agronomic
relationships and also reveal data-driven details about how soil and climate conditions
shape crop suitability.
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Figure 4.13: SHAP-based analysis of feature importance for crop recommendations.

Crop-Specific Explanations and Case Studies

A key advantage of SHAP is its ability to provide explanations for individual predictions
and specific crop classes. To demonstrate this capability, SHAP values were examined for
four representative crops, rice, maize, chickpea, and banana (Figures and [4.15)). The

analysis shows the following patterns:
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o Rice: Rainfall is the primary factor driving suitability, reflecting rice’s high water
requirement. Nitrogen and humidity also contribute, though to a lesser extent. The
model correctly reduces the likelihood of rice selection in areas with low rainfall,

matching known agronomic limits.

o Maize: Nitrogen availability is the strongest positive driver, consistent with maize’s
high demand for N. Humidity and potassium also support suitability, while excessive

rainfall slightly lowers the recommendation because maize is prone to waterlogging.

o Chickpea: Potassium and moderate humidity play the most important roles. Very
high humidity or low potassium reduce the predicted suitability, showing the model’s

ability to balance interacting environmental and nutrient factors.

« Banana: Nitrogen, potassium, and phosphorus are all essential. Rainfall has a
moderate but complex effect, where both excess and shortage of key nutrients can

reduce the predicted suitability.
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Figure 4.14: SHAP summary plot showing feature influence for rice, maize, chickpea, and
banana.
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Figure 4.15: Decision plot illustrating the contribution of key features to individual pre-

dictions for the same crops.

The use of SHAP explanations makes the decision process transparent by identifying how
each input variable contributes to each crop recommendation. This level of detail allows
farmers, agronomists, and policy makers to verify the reasoning behind every prediction
and ensures that the system operates as a clear and reliable decision support tool grounded

in agronomic principles.

4.8 Discussion

Improving crop selection systems in modern agriculture requires a careful balance between
predictive accuracy and interpretability. Because soils differ widely, climate conditions
change over time, and farming decisions carry significant economic risk, the practical
use of machine learning (ML) models depends not only on high performance but also on
clear explanations. Incorrect crop recommendations can lead to yield reduction, wasted
resources, and reduced confidence among farmers and stakeholders. For this reason, both
reliable prediction and understandable reasoning are essential to support real-world agri-
cultural decisions.

The proposed CS-AdaRF-SHAP framework shows strong performance, mainly through
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its adaptive reweighting strategy that gives greater attention to difficult cases during
training. This mechanism allows the ensemble to handle variation within crop classes and
to separate crops with similar characteristics, such as maize and chickpea. The model
achieves very low rates of false positives and false negatives, a property that is especially
important in agricultural applications where even a single incorrect recommendation, for
example, suggesting maize in a nitrogen-deficient area, can lead to economic loss and
environmental harm. The high accuracy and minimal error rates observed in the test
results indicate a direct and practical benefit for farming decisions.

A comparative evaluation shows that the CS-AdaRF model performs better than the
other tested methods, reaching a test accuracy of 99.77%. This score exceeds the results
of Random Forest (99.45%), IoT-based frameworks (98%) [94, [102], and ACRM (98.7%
for maize and 98.1% for rice) [I00]. The model also achieved perfect values for F1-score,
precision, and recall, a result supported by the balanced dataset and the careful design of
the experiments. In addition, the testing time was efficient at 0.57 seconds, providing a
clear advantage over more computationally demanding approaches such as XGBoost and
Bagging.

Interpretability provided by SHAP analysis is a key element of the model’s usefulness.
SHAP ranks feature importance at the global level and also measures how each input,
such as humidity, nitrogen, or potassium, affects individual crop selection. The model’s
reasoning agrees with established agronomic knowledge. For example, the strong role of
humidity in SHAP results matches its well-known influence on crop water use, while nitro-
gen and potassium remain essential nutrients for healthy plant growth. This agreement
with agricultural science strengthens trust and supports reliable recommendations.
Clear explanations are also offered through SHAP visualizations, which allow farmers
to see the soil and climate factors that guide each recommendation. For instance, the
system shows how rainfall affects rice selection or how humidity influences mung bean
decisions. These visual outputs connect machine learning results to practical farming
choices, encouraging user confidence, easing technology adoption, and supporting the

design of decision tools that serve real agricultural needs.
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Despite the strong performance of the proposed framework, some limitations remain. Al-
though the dataset covers a wide range of crops and environmental conditions, it does
not fully represent all global agro-ecological settings. Future studies should examine how
well the model adapts to new regions and how robust it remains when inputs contain
noise or measurement errors. From the perspective of interpretability, SHAP explana-
tions, while effective, can be computationally demanding for large ensembles and may
lose accuracy when features are highly correlated. Addressing these issues will require
enlarging the dataset to capture broader variability, testing the model under real-world
uncertainties, and exploring advanced interpretability techniques such as feature grouping
or dimensionality reduction.

In addition, future research should focus on user-centered evaluation. Structured usability
studies with farmers and agricultural advisors are essential to improve how explanations
are presented, ensuring that outputs are clear, trusted, and practical. Feedback from
stakeholders will play an important role in shaping the next generation of explainable
crop recommendation systems and in strengthening both the scientific and practical value

of Al in agriculture.

4.9 Conclusion

This chapter introduced an interpretable crop selection system designed to deliver both
accurate predictions and clear explanations. The proposed CS-AdaRF-SHAP framework
generates dependable crop recommendations while revealing the influence of key soil and
climate variables on each decision. The results show that high predictive performance
can be combined with transparent reasoning, supporting practical and trusted decision-
making in agriculture.

After addressing the question “what to plant?”, the next logical challenge is “how much to
expect?”. The following chapter examines this issue by focusing on crop yield estimation,

aiming to predict the expected production level.



Chapter 5

Contribution 2: Data-Driven Crop
Yield Prediction

5.1 Introduction

The previous chapter showed how interpretable machine learning can support strategic
crop selection by providing farmers and agronomists with transparent, easily explained,
and data-based recommendations. However, choosing the most suitable crop is only the
first step in the broader set of decisions involved in precision agriculture. Once the
question of “what to plant?” is resolved, the next challenge is estimating the expected
yield, or “how much to expect?” This stage is essential for guiding farm management
practices, planning the use of resources, and preparing for participation in agricultural
markets.

In this chapter, we focus on the problem of forecasting tomato yields in greenhouse produc-
tion. To address this task, we develop and evaluate a Stacked Ensemble Learning Model
designed to integrate diverse sources of information and improve predictive accuracy.
The structure of this chapter is organized as follows. Section describes the system ar-
chitecture, including an outline of the stacked ensemble framework, the characteristics of
the greenhouse tomato dataset, and the preprocessing steps such as data cleaning, tempo-
ral alignment, normalization, augmentation, and feature selection. Section examines

the predictive performance of the proposed model, comparing it with alternative machine

100
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learning approaches and interpreting the outcomes using both numerical indicators and

visual analysis.

5.2 Materials and Methods

5.2.1 System Architecture Overview

The proposed system is built on a Stacked Ensemble Learning framework designed to
provide reliable daily predictions of tomato yield in greenhouse settings. As shown in
Figure the architecture is organized into two main phases: an offline phase dedicated
to model development and an online phase for real-time prediction.

In the offline phase, historical greenhouse data are collected, including environmental
variables, crop growth characteristics, and yield records. These data pass through sev-
eral preprocessing steps such as cleaning, normalization, and feature engineering. The
resulting dataset is then used to train the Stacked Ensemble Model.

In the online phase, the trained model is applied to test data in order to generate yield
predictions. Its performance is carefully evaluated and compared with alternative regres-
sion models, including KNN, Random Forest, and LightGBM, to determine the most

accurate and operationally suitable approach for greenhouse management.
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Figure 5.1: General architecture of the proposed system.
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5.2.2 Dataset Description

The dataset used in this work is obtained from the second edition of the Autonomous
Greenhouse Challenge (AGC) [117]. It offers detailed records of tomato production and
crop management carried out under controlled greenhouse conditions. The data were
collected between November 1, 2019 and April 30, 2020 from several teams responsible
for 96 m? greenhouse units at Wageningen University & Research in Bleiswijk. The
dataset contains information on key environmental variables such as air temperature,
natural and supplemental light, heating inputs, and COs concentration. It also includes
cultivation parameters, for example plant density and stem density, which reflect the

structural management of the crop.

5.2.3 Data Preprocessing

Preparing the dataset is an important stage in the development of a tomato yield pre-
diction model. This stage includes several tasks designed to improve the quality and
reliability of the data before modeling. Missing values are addressed through suitable re-
placement methods, while unusual or extreme measurements are detected and corrected
to reduce their impact. Since the raw data were collected at different time intervals, they
are aligned to a daily frequency to create a consistent timeline. All variables are then
scaled to a common range so that they can be compared fairly. To increase the amount
of training data, augmentation techniques are applied, and finally, the Boruta algorithm

is used to select the most informative features for model training.

Handling Missing Values

Missing data were managed through median imputation. For every feature that contained
missing entries, the absent values were replaced with the median of the available observa-
tions within that feature. The choice of the median, rather than the mean, helps reduce
the influence of extreme values and skewed distributions. This method provides a simple
yet reliable way to maintain the general characteristics of the dataset without introducing

strong biases.
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Handling Outliers

Outliers were identified using the interquartile range (IQR) method. In this approach,
any observation that fell below the first quartile minus 1.5 times the IQR or above the
third quartile plus 1.5 times the IQR was marked as an outlier. Instead of removing these
values, which could lead to the loss of useful data, they were replaced with the median of
the corresponding feature. Using the median in this way reduces the influence of extreme

points while preserving the overall distribution of the dataset.

Data Transformation

For the construction of a unified model, it is important that all features in the dataset
are aligned in time and expressed on a consistent scale. This requirement is particularly
relevant when dealing with heterogeneous time series data. In the present case, the
raw dataset contains several subsets recorded at different temporal resolutions, including
measurements taken every five minutes, as well as daily and weekly records. Without
adjusting these differences, the data cannot be combined in a meaningful way, which
makes temporal harmonization an essential part of the preparation process.

To prepare a coherent dataset for supervised learning, all variables were expressed on a
common daily interval. This transformation allowed different subsets of the data to be

integrated into a single structure suitable for analysis and modeling.

e 5-Minute to Daily Aggregation: The “Weather” and “Greenhouse Climate”
subsets were originally collected at 5-minute intervals. To convert these into daily
values, the mean for each variable was calculated across all records for a given day.
This step reduces the overall data volume and lowers computational requirements,
while still capturing the main daily patterns. In addition, the use of daily averages

helps smooth out short-term fluctuations and potential noise from sensors:

Ng
1
Daily Mean, = N Z Tid (5.1)
d =1

where Ny is the number of 5-minute observations in day d, and z; 4 represents the

1-th measurement on that day.
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e Weekly to Daily Interpolation: The “Production” and “Crop Parameter” sub-
sets were recorded on a weekly basis. To align them with the daily series, values
were estimated using Lagrange polynomial interpolation. This method produces a
smooth daily curve that reflects the underlying variation in the original weekly data.
The resulting series allows the inclusion of crop-related variables in day-level anal-
yses and supports the training of predictive models that require uniform temporal

resolution.

After temporal harmonization, the various subsets were merged into a unified daily
dataset. In this structure, the harvest variable was expressed on a daily scale and aligned
with the corresponding predictors, as illustrated in Figure 5.2l This step ensures that
each record contains both the input features and the target variable in a synchronized

manner, providing a reliable foundation for model development.
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Figure 5.2: Schematic representation of the transformation of harvest data to a daily
resolution.
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Data Normalization

To place all features on a comparable scale, Min-Max normalization was applied. This
method transforms each value into the range [0, 1], which supports stable training and
improves the efficiency of the learning process.

X — Xmin

Xscae - v v 2
fed Xmax - Xmin (5 )

where X is the original value, X, and X,,., are the minimum and maximum values of

the feature, and Xcaeq is the normalized output.

Data Augmentation

Since the dataset contained only 166 samples, data augmentation was applied to increase
its size and reduce the risk of overfitting. We used random noise augmentation [118],
where small variations were added to the original values. This creates new samples that
reflect realistic variability in greenhouse conditions, helping the model learn more robust
patterns.

The augmentation process is mathematically defined as:

Xaugmented = Xoriginal +e€ (53)

where

e ~ N (0, (0.01 - std(Xorigina))) (5.4)

Here, € is a vector of random noise sampled from a normal distribution with zero mean and
a standard deviation equal to 1% of the feature’s standard deviation. This design ensures
that the added noise remains small in scale, preserving the original statistical properties
while introducing enough variability to improve model robustness. After augmentation,

the dataset was expanded to 500 samples, providing a stronger basis for model training.

Feature Selection

Tomato yield depends on a wide range of environmental, physiological, and management

factors. Using too many input variables, however, can make the model unnecessarily
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complex, increase computational requirements, and raise the risk of overfitting. To reduce
these issues, a structured feature selection method was applied in order to retain only those
variables that provide meaningful predictive value for yield estimation.

For this purpose, we used the Boruta algorithm [119], a wrapper-based method built
around Random Forests. The approach works by comparing the importance of actual
features with that of “shadow” features, which are created by randomly permuting the
data. Only variables that show statistically significant predictive power compared to the

shadow features are kept. The main steps of the Boruta procedure are summarized in

Algorithm

Algorithm 3 Boruta Feature Selection

1: Input: Dataset X with n samples and p features, target variable y

2: Output: Subset of important features S

3: Generate m shadow features by randomly permuting each original feature

4: while feature importance ranking not stable do

5: Train a Random Forest regressor on the extended dataset (X + shadow features)

6: Compute importance scores for all features

7: For each original feature, compare its importance with the maximum importance
among the shadow features

8: Keep features that show higher importance than the shadow features; remove
those that do not

9: end while

10: Return Final set S of selected features

Applying the Boruta method to our dataset, which originally included 39 features, reduced
the number of inputs to 11. This represents a reduction of about 77% in dimensionality.
Such a decrease not only lowers computational cost but also improves the clarity of the
model by directing attention toward variables that are most relevant to tomato production.
Table lists the features selected by Boruta for yield prediction, along with their de-

scriptions and measurement units.

5.3 Results and Discussion

This section presents and discusses the results of the comparative study on tomato yield
prediction. Four machine learning models were evaluated: K-Nearest Neighbors (KNN),

Random Forest, Light GBM, and the proposed Stacked Ensemble Model. The dataset was
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Table 5.1: Features selected by Boruta for tomato yield prediction

Feature Description Unit

Tair Greenhouse air temperature °C

Rhair Relative humidity in greenhouse %

CO2air COg concentration ppm
Tot_ PAR Total inside PAR (Sun + HPS + LED) pmol/m? s
pH_drain_ PC Drainage pH -
EC_drain_ PC Drainage electrical conductivity dS/m
Cum__irr Cumulative irrigation per day L/m?
Stem__elong Stem growth cm/week
Stem__ dens Stem density Stems,/m?
Plant_dens Plant density Plants/m?
Stem thick Stem thickness mm

Prod Tomato yield (target) kg/m?

divided into two subsets, with 80% allocated for training and 20% reserved for testing.
To ensure a fair comparison, all models were tuned through hyperparameter optimization

before the evaluation.

5.3.1 Predictive Performance Comparison

Table reports the main performance measures used to evaluate the models, namely
mean squared error (MSE), mean absolute error (MAE), root mean squared error (RMSE),
and the coefficient of determination (R?). These results are based on the test set. For
clarity, graphical comparisons of the performance are also provided in Figures 5.4]
and 5.5

Table 5.2: Performance Evaluation of Tomato Yield Prediction Models

Model MSE MAE RMSE R?

KNN 0.023 0.110 0.150 0.712
Random Forest 0.009 0.046 0.095 0.884
Light GBM 0.013 0.083 0.114 0.831

Stacked Ensemble 0.0080 0.065 0.090 0.896

As shown in Figure the Stacked Ensemble Model obtained the highest R? value
(0.896), followed by Random Forest (0.884), LightGBM (0.831), and KNN (0.712). This
outcome suggests that the ensemble approach captured the variability in tomato yield

more effectively, offering a stronger and more reliable fit than the other models.
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R2 Score

Figure 5.3: R? scores for the tested models.

5.3.2 Error Analysis and Robustness

Figure[5.4|presents a comparison of the error metrics for all models. The Stacked Ensemble
Model achieved the lowest mean squared error (0.008) and root mean squared error (0.09),
showing that it can deliver accurate yield predictions with only small deviations from
observed values. Random Forest and LightGBM also performed well, but the stacking
approach provided a modest improvement by drawing on the strengths of multiple base
learners.

The robustness of the ensemble is reflected in its ability to reduce both bias and variance.
By combining predictions from different learners such as Ridge, Random Forest, and
XGBoost, the stacked model counterbalances the tendency of single algorithms to either
underfit or overfit. This leads to stronger generalization on unseen data, which is par-
ticularly important in agricultural applications where variability and complex non-linear

relationships are common.
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Figure 5.4: Error metrics (MSE, MAE, RMSE) for the evaluated models.

5.3.3 Alignment of Predicted and Actual Yields

Figure shows the relationship between predicted and observed yields for all models. In
the ideal case, predictions would fall exactly on the diagonal line, representing a perfect
match with the measured values.

Among the tested approaches, the Stacked Ensemble Model produced predictions that
lie closest to the diagonal, indicating strong agreement with the actual harvest data.
The other models show more scattered points and visible deviations, which reflects lower
accuracy and reduced reliability in capturing yield variation.

The findings show that the Stacked Ensemble Model offers clear advantages for predicting
yield in greenhouse tomato production. Its lower error values and higher R? scores indicate
that it can be a practical tool for use in precision agriculture. Reliable forecasts of
yield can support better planning of resources, guide crop management decisions, and

improve marketing strategies, which together can increase productivity, reduce waste,
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and strengthen economic returns for growers.

5.4 Conclusion

Actual Values

Figure 5.5: Predicted versus observed yields for the evaluated models.

This chapter presented a Stacked Ensemble Learning Model for predicting crop yields

in greenhouse environments, with tomato production serving as a case study. The next

chapter turns to a key question in data-driven agriculture: “How can the data supporting

these decisions remain secure, reliable, and trustworthy?” To address this, we examine

blockchain-based approaches for safeguarding data integrity and enhancing security in

smart agriculture.



Chapter 6

Contribution 3: Blockchain-Based
Approach to Securing Data in Smart

Agriculture

6.1 Introduction

The previous chapters of the thesis have addressed two central aspects of precision agri-
culture: an interpretable crop selection system and a data-driven crop yield prediction
in greenhouse environments. The first contribution addressed the question of “what to
plant?” by developing an interpretable crop selection system that combines strong pre-
dictive accuracy with clear explanations of the factors influencing each recommendation.
This transparency enables farmers and agronomists to understand why a particular crop
is suggested, fostering confidence and supporting real-world adoption. The second contri-
bution addressed the question of “how much to expect?” by applying machine learning to
predict tomato yield as a case study, focusing on greenhouse production where rich and
structured data are available.

Having answered these two questions, a third and equally critical challenge now emerges
at the heart of data-driven agriculture: “How can the data that supports these decisions
remain secure, reliable, and trustworthy?”

Modern smart farming generates and exchanges massive volumes of data, from sensor
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measurements to operational records, across networks of farms, research institutions, and
service providers. The value of intelligent decision-support systems built on this informa-
tion depends on its integrity and security. Without reliable safeguards to ensure accuracy,
privacy, and controlled access, even advanced predictive models risk producing unreliable
results, as their outputs rely on data that may be incomplete, altered, or inaccessible.
To address these challenges, this chapter introduces a blockchain-based aproach for se-
curing and managing agricultural data. Building on the IoT-driven infrastructure, the
proposed system combines edge computing, blockchain technology, and distributed file
storage (IPFS) to deliver a secure and transparent approach to agricultural data man-
agement. Through the use of cryptographic methods and smart contracts, the system
ensures that all transactions remain immutable and auditable, while also supporting data
privacy and controlled access.

The remainder of this chapter is structured as follows: Section presents the proposed
approach and its overall architecture. Section [6.3] describes the implementation process,
covering development tools, smart contract deployment, data encryption, secure storage,
and performance evaluation. Section [6.4] concludes the chapter with a summary of the

main contributions and results.

6.2 Proposed Solution

Digitalisation has become a key driver of economic growth in many sectors, including agri-
culture. In Algeria, agriculture remains central to both social and economic development,
and the government has placed strong attention on digital transformation programs to
improve efficiency and sustainability.

The proposed system is designed to connect all agricultural sites (AS) under a single
secure platform managed by the government institution (GI). This framework enables a
unified process for collecting, storing, and sharing agricultural data between the sites and
the GI. To guarantee data security and integrity, blockchain technology is used as the
foundation of the data management system.

As shown in Fig.[6.1] the architecture places the GI as the main authority supervising data
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exchanges. Raw data gathered from greenhouses is first stored at the edge to preserve
authenticity. After encryption, the data is shared across the network, where access is
limited to authorized users. This process protects ownership and confidentiality while

preventing unauthorized use or alteration of the information.
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Figure 6.1: Hierarchy of the proposed system

6.2.1 Architecture of the Proposed Approach

The proposed approach involves two main actors: the agricultural sites (AS) and the
government institution (GI). Each site is formally registered with the GI and is given a
unique address. This address allows the site to access the platform securely and to carry
out authorized operations within the system.

The current design concentrates on handling raw data produced by IoT devices installed
in greenhouses. At the same time, the architecture has been built with flexibility in mind,
making it possible to expand to other forms of information such as farmer records, crop
production logs, and weather conditions when needed.

To safeguard data throughout its entire lifecycle, the architecture integrates blockchain

technology, smart contracts, the InterPlanetary File System (IPFS), and strong encryption
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Figure 6.2: General architecture of the proposed system

methods. These components work together to provide security, transparency, and integrity
in the management of agricultural data. The complete system architecture is presented
in Fig. [6.2]

The workflow for data processing starts with the collection of raw data from each green-
house, which is first stored locally at the edge. At this point, the data remains unchanged
to preserve its original form. To maintain integrity, a SHA256 hash is calculated for the
collected data. After this step, the data is encrypted using the AES algorithm, as shown
in Fig. [6.3]

The encrypted files are then uploaded to the InterPlanetary File System (IPFS) for decen-
tralized storage. Each file stored in IPFS is assigned a unique Content Identifier (CID),
which acts as a cryptographic hash to ensure accurate retrieval and verification. Once
this is done, a smart contract records a transaction that contains the key metadata. This
transaction is written to the blockchain, creating a permanent and verifiable record of the

data submission process.

6.2.2 Structure of Blocks and Transactions

In the proposed approach, each block is divided into two main parts: the header and the

body. The header stores the key metadata of the block, which includes the block index,
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Figure 6.3: Sequence diagram of the proposed system.

timestamp, nonce (a value used only once), the hash of the previous block, and the hash
of the current block. This arrangement guarantees the link between consecutive blocks
and preserves the immutability of the entire chain.

The body of the block contains the transactions recorded at that point. Depending on the
circumstances, it may hold a single transaction or a group of several transactions bundled
together.

Each transaction in the system is described by the following fields:
e Transaction: A unique hash that identifies the transaction.
e From: The address of the agricultural data owner.
e To: The address of the government institution.

« Data: Details about the shared data, including the IPFS hash (Content Identifier),

the file name, and the file hash.

All transactions and data transfers are encrypted, which ensures that only the legitimate



116Chapter 6. Contribution 3: Blockchain-Based Approach to Securing Data in Smart Agriculture

data owner can decrypt and access the original information. To maintain integrity, the
system allows nodes to display past transactions and their related data, providing a clear
record for auditing. When data is decrypted, a verification step is carried out by compar-
ing it with the locally stored hash. This guarantees that the data remains genuine and

unchanged throughout its entire lifecycle.

6.3 Implementation

This section explains how the proposed system was implemented in practice. It presents

the development environment and outlines the main technologies used to build the system.

6.3.1 Development Environment and Tools

The implementation of the system relied on a set of tools and platforms chosen for their

suitability in building secure and distributed applications:

e Ethereum Blockchain: Used to support smart contracts and decentralized oper-
ations. All transactions and contract logic were deployed and tested on the Goerli

network, which provides a safe environment for development and experimentation.

e Solidity: The programming language employed to design and implement the smart

contract logic.

o IPFS: Adopted for decentralized storage of encrypted agricultural data, ensuring

integrity and protection against tampering.

6.3.2 Smart Contract Deployment and Data Transactions

Several Ethereum test networks are available, such as Ropsten, Rinkeby, and Goerli. In
this work, the Goerli network was selected, and four nodes were simulated to represent
the participants and simplify the operational setup. As shown in Fig. [6.4] the deployed
smart contract records essential metadata for every transaction, including the sender,
recipient, date, timestamp, IPFS hash, file name, and file hash. The transaction hash
is automatically generated by the network, ensuring that each transaction is uniquely

identifiable and permanently stored.
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pragma solidity "0.8.0;

contract Transactions {
uint256 transactionCount;

event Transfer{address from, address to, string date, string fileName,
string ipfsHash, string fileHash, uint256 timestamp);

struct TransferStruct {

address from;
address to;

string date;
string fileName;
string ipfsHash;
string fileHash;
uint256 timestamp;

Figure 6.4: Excerpt from the smart contract.

6.3.3 Data Encryption and Secure Storage

Raw agricultural data, an example of which is shown in Fig. 6.5} is first collected from
greenhouse IoT devices. Before storage, the data is converted into a standardized text
format and encrypted using the AES algorithm (Fig. . This process ensures that

only authorized users can access the information, thereby maintaining confidentiality and

privacy.
date M20 gN/ha/d CO2gC/ha/d CH4 gC/ha/d Air Temp degC Soil Temp degC Soil Moisture % vol Soil Moisture Depth em
2022-05-01T10:00:00 ©647.9774971 49486.21763 0.189218583 20.26666667 19.425 0.39375 10
2022-05-02T10:00:00  467.019451 43150.84593 0.676567621 20.13333333 16.022 0.373 10
2022-05-03T10:00:00  286.001405  36815.47423 -0.326441147 20.13333333 14.225 0.3734 10
2022-05-04T10:00:00 105.1033589 30480.10252 -0.584271011 16.06666667 16.025 0.3735 10
2022-05-05T10:00:00 103.4419307 32481.76393 -0.676567621 18.13333333 17.022 0.3321 10
2022-05-06T10:00:00 101.7805025 34483.42533 -0.768864231 20.13333333 18.975 0.388 10
2022-05-07T10:00:00 130.76495 48052.90715 0.472990913  20.13333333 20.002 0.3735 10
2022-05-08T10:00:00 159.7493974 61622.38896 1.714846056 23.46666667 21.025 0.3845 10
2022-05-09T10:00:00 133.2795102 51421.63716 3.592741259 25.86666667 18.332 0.3778 10
2022-05-10T10:00:00 106.8096229 41220.88536 5.470036462 16.006006067 16.012 0.3735 10
2022-05-11T10:00:00 80.33973565 31020.13357 7.348531665 18.13333333 17.875 0.37775 10
2022-05-12T10:00:00 80.56000428 32696.10044 5.493049549 16.06666667 17 0.3735 10
2022-05-13T10:00:00  80.7802729  34372.06732 3.637567434 21.63333333 19 0.35975 10
2022-05-14T10:00:00 96.69642376 35832.44765 1.630248867 18.13333333 14.9 0.3735 10
2022-05-15T10:00:00 112.6125746 37292.82797 -0.377069701 25.86666667 22,225 0.36825 10
2022-05-16T10:00:00  92.8962847  32837.26164 -0.057493893 18.13333333 19.2 0.35789 10
2022-05-17T10:00:00 73.17999478 28381.69531 0.262081915 25.86666667 20 0.3654 10
2022-05-18T10:00:00 53.46370486 23926.12898 0.581657723 16.86666667 15.875 0.36225 10
2022-05-19T10:00:00  36.9691422 21106.37379 -0.186466524 25.86666667 17.03 0.3735 10
2022-05-20T10:00:00 20.47457954 18286.61859 -0.954590771 22.26666667 184 0.337 10
2022-05-21T10:00:00 17.26250455 18738.05905 -0.384553221 20.13333333 19.6 0.3735 10
MNINEITIN-NN=NN 14 NsSNATQ87 191249 4949572 n 12542427% TR R2222222 22 ATS n 1R n

Figure 6.5: Example of raw agricultural data.

After encryption, the files are uploaded to IPFS, which assigns a unique Content Identifier
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var crypto = require('crypto’);

const algorithm
initVector = crypto.r
st Securitykey = "c38f

const cipher = crypto.
Let encryptedData = cipher.upd

encryptedData += cipher.fina

Figure 6.6: AES encryption process.

(CID) to each entry. The CID serves as a cryptographic fingerprint, enabling both retrieval
and verification of the stored data. Fig. provides an example of encrypted agricultural

data stored and accessed through the IPFS network.

W Store App

@ ipfs.infura.iofipfs/Qml

[IFRMtIpdUawYp+4QvdoxmAau Jdq 7] g QET 4mzw/+75RCWYS
+CfufKAS?M]BLxB?SUnXe@EepulwceB@1y8Qe01313tBquchHgchvEHtJSdd?QR6m6X3x4HTXLxB?SUnXe@Eepul
OoP8u/QeaofDSBsGXB4sbjtDcADaoTPBWPQBYfvttkROVAVHFGKKEKZ1V4CRBSyzGxmZ5T4xcGnOn2k4yE3YHGU /Hgq
+q3Uvp3YyqiZ+1/mlqubem7BZft LQ8NWMBKIYMOtRIqQzZN6TNOL5KZc68MfvRvy fYTsbhY7rHNTIn5y0U
+toTAKjNQpO60QT4rvacoark+5bgsoT6/Yt8jMDSDN1WAYS ITHYdLMYSVEIStVWMDesCTUISIEQnpZW,/WYUKFKe8IPma
tUxNHcoFOu3B /3ccpl7rwkIzIujg7EL3CmOgBe /VhnS3VPnzw49LPMBF7HYb9DyYL1/41Dyok+CLYQybgglfapWmX2x6
+313dIwRvmdmsYCeskPp+HGswRBt1eSb11+d9dN3s3IHIPIA1IxS2TOhZpj3KN
+20TtMHR3Zneq77M8f35v3odnFuMOiOwHLRTmX3 /5CP7PDgUpq4ILr023LxB7SUnXedEepulwceBO1y8Qed1I13tBHg
+EMAIMQ67WDQ7EVPHp j+fIfCCZVZUCZUWY3IvMYZnfOWEILIttQ64EWVMjsv2TV58xzztQ6cmIPMdO5v6yikzSTPDWG
ya9jeoruYhsN2mAZUxbsSMcRYIt jPelL2Gzq7hKdmi0oFlmuE761Z/
+W3sVY7Y)gVInKhkmR1m1nCWHQM3iLeC7dyP1xhM12uqGV5ATAQzZyI9+MXpzeEYmBwo
+u6zfj6bCof/9c3BMZ6zryPWUOKGahqAKvmturNiJP1cXGeySikI65CVByxFIfbUFEZWYgtaslr/
UooIygEk24xd9LpdAkY0@8dI671KMbn/USNVEDR31VhjRIu53My1kMIXD+rVP6WQA+EUOdLBBp7mFF1PS28E/1MhNGT
+errav5zJ175IHVvUHXp/Z jHbulilszRQelQELtGxboKSCc+N71VImi7029
+10MATPNWgZGrKVkr5g7g91XcGbIrhvdfrsgsGUbuk1yipLrB+ghV1r11GuYsZVQNncBxPDIk3/P19yS+tgV
+pHSMMK4SNWBIVEPSMBODTWDMpSKQIHGré+ySrTBSASCASIfviESMUUCKxzYdyrh8LJuwStTmghy9D+cK6ulolyOP53
+Vqz4GfpnG5dAyN37I1IelaamFZdGLlh2r3R4gzoeS26LfHYKKaj41C71lDFO+PUOQUFki+ZVupvlsAYaPOYt1195003]
+6sXnMBx3x /FHfvioVnb1lUBX0eMhrUxs jfek01C717K00V5IsLIaIMOyWuXwRip /
VygT8neY5ZPEahQc6npBSanFFDe8gqOPjLss2KNSrEWAr217KM3hR97U3VA2kT7scppxBOmMPCbzCiMzmuanvZIGgMSvsE
QHlv2cZDe2B6dzHxyYPt4aWGrzm2KfXb /yIUkIUKZ4JYpwFhTt+OPaH3Kw
+mdw3omYp7m3tx0KOVrHCAAGRLtuiDz4ak7PX9XzNCVvOHDMDY5jvYhafryZLvYMV0a53XQ2P fdx6TKQXN2451pA6/
WroGY4ZFoMxbnN1wTzA713hXwLIbGic1xB3m/CbMTyu/GB/mfWbg1ICMKv3IBMzpYgqkMHfd2FpltmzAea780tPLTVX
+CQYOW2ELOaeTFkssh81lu51kvUIHmzk8OHCSIS5IKLI /dWIUu4ADEQQYZoKrTvQf igPVnmwmZwkqulMGieNCdCQek]

Figure 6.7: Encrypted agricultural data stored on IPFS.

6.3.4 Performance and Security Analysis

The main goal of the system is to manage agricultural data collected by [oT devices in
a secure and reliable manner. This includes not only safe storage but also protection of

data integrity and controlled sharing between agricultural sites (AS) and the government
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institution (GI).

Security and integrity are achieved through two complementary layers:

o Large files are stored off-chain on IPFS, while key references such as the IPFS hash
and file hash are stored on-chain. This approach improves efficiency while keeping

verification straightforward.

e The blockchain ledger guarantees immutability. Once data is written, it cannot
be changed or removed. Even in the case of network attacks or attempts to al-
ter records, cryptographic validation and distributed storage ensure that the data

remains intact and accessible.

During development and testing, the system showed reliable performance in recording,
encrypting, storing, and retrieving agricultural data. Smart contracts executed transac-
tions securely and in a transparent way, while the use of IPFS made it possible to retrieve
and verify files using their unique CID. These results demonstrate the feasibility of the

proposed architecture and its suitability for deployment in real agricultural environments.

6.4 Conclusion

This chapter presented a blockchain-based approach to secure agricultural data, ensuring
integrity, confidentiality, and controlled sharing. By integrating edge computing, en-
cryption, IPFS storage, and a private blockchain, the system protects agricultural data

throughout its lifecycle and fosters trust among farmers and stakeholders.



Chapter 7

General Conclusion and Perspectives

This chapter presents the main contributions of this thesis and points to several research

directions that deserve additional investigation in the future.

7.1 Summary

The research conducted in this thesis produced three principal contributions that address
the questions introduced at the beginning of the work. These contributions are outlined

below:

» Interpretable crop selection (“what to plant”) The first contribution proposes
an interpretable and accurate system for crop selection. The proposed CS-AdaRF-
SHAP system combines two key elements. First, an Adaptive Boosting of Random
Forest (AdaRF) ensemble iteratively reweights misclassified instances to improve
separation between crops with similar characteristics and to achieve stable predic-
tive performance under different agricultural conditions. Second, SHapley Additive
exPlanations (SHAP) provide both global and local interpretability by measuring
the influence of each feature—such as soil nutrients, pH, temperature, humidity,
and rainfall—on individual predictions. This allows farmers and agronomists to

understand the reasoning behind each recommendation.

Experiments showed that the CS-AdaRF-SHAP system reached a test accuracy of

99.77%, with precision, recall, and F1-score all close to 100%. The combination of

120
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strong predictive ability and transparent decision-making supports trust in Al-based

agricultural decision systems and encourages their practical adoption.

« Data-Driven Crop Yield Prediction (“how much to expect”) Building on
the crop selection framework, the second contribution focuses on yield prediction
using tomato production in greenhouse conditions as a case study. The work re-
lied on greenhouse data consisting of multivariate time-series measurements of key

environmental variables.

A stacked ensemble learning architecture was developed by combining Gradient
Boosting Regressors, Random Forests, and Support Vector Regression within a
meta-learner to capture nonlinear interactions and improve generalization. This
design produced higher predictive accuracy than standard regression methods and
enabled reliable daily yield forecasts, which support the planning of storage, labor,

and marketing activities in controlled agricultural settings.

» Blockchain-Based Approach to Securing Data in Smart Agriculture (“How
can the data that supports these decisions remain secure, reliable, and
trustworthy?”) The third contribution addresses the protection and reliability of
agricultural data by introducing a blockchain-based management framework. The
proposed system integrates blockchain technology, smart contracts, edge computing,
and the InterPlanetary File System (IPFS) into a unified architecture to guarantee
data integrity and secure sharing among stakeholders. All transactional metadata,
including information on data ownership, access permissions, and file hashes, is
recorded on the blockchain through custom smart contracts, providing immutabil-

ity, transparency, and auditable access for all participants.

7.2 Perspectives

Several improvements could be made to the work done in this thesis, and research di-
rections that require further investigations in the future. We listed some of them in the

items below:
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e The current crop selection framework was trained on a balanced dataset covering

22 crop types with 7 features. Future work could incorporate larger and more
diverse datasets that include additional crops, regional soil profiles, and seasonal
variations. Integrating satellite imagery and remote sensing indices would further
enrich the feature space and allow the system to operate effectively across different

geographic scales.

The yield prediction model focused on tomato production in greenhouse environ-
ments. Future studies could extend the same methodology to other crops or to
open-field cultivation, where external factors such as weather fluctuations and pest
outbreaks introduce additional uncertainty. Combining ensemble learning with deep
learning architectures, such as recurrent or transformer-based models, may improve
the capacity to capture long-term temporal dependencies and produce more accu-

rate forecasts.

Another perspective is to extend the blockchain framework toward advanced data
analytics and decision automation. By combining blockchain with machine learning
modules deployed at the edge, the system could support on-chain analysis of sensor
data for tasks such as anomaly detection, quality assessment, and predictive main-
tenance. This integration would provide verifiable analytical results directly on the
blockchain, strengthening trust among stakeholders while enabling faster and more

autonomous agricultural operations.

Another promising direction is the creation of user-friendly decision support systems
that unify crop selection, yield prediction, and secure data management within a
single integrated platform. Such a system could take the form of a mobile or web
application that delivers predictions, explanatory analyses, and blockchain-based
verification through an intuitive interface, enabling farmers, agronomists, and policy
makers to access reliable information and adopt these technologies with minimal

technical effort.
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