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Abstract

Smart agriculture integrates digital technologies, sensors, the Internet of Things, big data,

and artificial intelligence to transform traditional farming into precision-oriented and data-

driven systems. These systems aim to improve productivity while making better use of

resources. At the beginning of each growing season, farmers must make decisions that

guide the success of the entire production cycle. The most important of these choices is

deciding which crops to plant and how to divide land among them. This choice influ-

ences all later activities, such as planning the planting schedule, preparing the soil, and

organizing the use of inputs. Because of its importance, crop selection is often described

as the first step in farm planning. The first contribution of this thesis responds to this

problem by introducing an interpretable crop selection system. The system integrates

SHAP-based explanations to show how soil properties and climate conditions affect each

recommendation. It combines strong predictive ability with clear explanations, offering a

practical tool that farmers and advisors can use with greater trust.

After the crop has been chosen, the next important question is “how much to expect.” Ac-

curate yield forecasting allows farmers to organize inputs, schedule labor, manage uncer-

tainty, and prepare for market activities. The second contribution of this thesis addresses

this by designing a stacked ensemble learning framework, developed with greenhouse

tomato production as a case study. It delivers accurate daily yield forecasts and achieves

better results than standard regression methods, providing a reliable decision-support tool

for greenhouse management.

Since both crop selection and yield forecasting depend on the quality of agricultural

data, the third contribution focuses on how this data can be kept secure, reliable, and

trustworthy. To achieve this, a blockchain-based approach is proposed that integrates

encryption, distributed file storage, and smart contracts. The approach ensures data

traceability, confidentiality, and tamper-resistance.

Keywords: Smart Predictive Agriculture; Crop Selection; Interpretable Machine Learn-

ing; SHAP; Tomato Yield Prediction; Ensemble learning, Blockchain; Data Integrity;

Decision Support Systems.
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Résumé

L’agriculture intelligente intègre les technologies numériques, les capteurs, l’Internet des

objets, le big data et l’intelligence artificielle afin de transformer l’agriculture tradition-

nelle en systèmes de production de précision guidés par les données. Ces systèmes visent

à accroître la productivité tout en optimisant l’utilisation des ressources. Au début de

chaque saison culturale, les agriculteurs doivent prendre des décisions déterminantes pour

la réussite de l’ensemble du cycle de production. La plus importante concerne le choix

des cultures à planter, décision qui influence toutes les étapes ultérieures, telles que la

planification du calendrier de semis, la préparation du sol et l’organisation des intrants.

La première contribution de cette thèse propose un système interprétable de sélection des

cultures. Ce système intègre des explications basées sur SHAP pour montrer comment

les propriétés du sol et les conditions climatiques influencent chaque recommandation. Il

associe une forte capacité de prédiction à des explications claires, offrant ainsi un outil

pratique que les agriculteurs et les conseillers peuvent utiliser en toute confiance.

Une fois la culture choisie, la question suivante est « combien espérer ». La deuxième

contribution de cette thèse traite cette problématique en concevant un cadre d’apprentis-

sage ensembliste empilé, appliqué à la production de tomates en serre comme étude de

cas. Ce modèle fournit des prévisions quotidiennes fiables du rendement et surpasse les

méthodes de régression classiques, constituant ainsi un outil efficace d’aide à la décision

pour la gestion des serres.

Étant donné que la sélection des cultures et la prévision du rendement reposent toutes

deux sur la qualité des données agricoles, la troisième contribution examine comment

garantir la sécurité, la fiabilité et la confiance dans ces données. Pour répondre à cet enjeu,

une approche basée sur la blockchain est proposée, intégrant le chiffrement, le stockage

distribué et les contrats intelligents. Cette approche assure la traçabilité, la confidentialité

et la résistance à la falsification des données.

Mots-clés : Agriculture Prédictive Intelligente ; Sélection des Cultures ; Apprentissage

Automatique Interprétable ; SHAP ; Prédiction du Rendement de la Tomate ; Apprentis-

sage d’ensemble ; Blockchain ; Intégrité des Données ; Systèmes d’Aide à la Décision.
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 ملخصال 
 

الزراعة الذكية تدمج التقنيات الرقمية وأجهزة الاستشعار وإنترنت الأشياء والبيانات الضخمة والذكاء  

الاصطناعي لتحويل الزراعة التقليدية إلى أنظمة دقيقة قائمة على البيانات. تهدف هذه الأنظمة إلى  

تحسين الإنتاجية مع الاستخدام الأمثل للموارد. في بداية كل موسم زراعي، يتعين على المزارعين  

اتخاذ قرارات تحدد نجاح دورة الإنتاج بأكملها. وأهم هذه القرارات هو اختيار المحاصيل التي سيتم  

زراعتها وكيفية توزيع الأراضي بينها. هذا القرار يؤثر على جميع الأنشطة اللاحقة مثل تخطيط  

برنامج الزراعة، تحضير التربة، وتنظيم استخدام المدخلات. وبسبب أهميته، يعُتبر اختيار المحاصيل  

غالبًا الخطوة الأولى في تخطيط المزرعة. إلا أن العديد من الأدوات الرقمية التي تدعم هذا القرار  

وقد تقلل من ثقة   تفسير تفتقر إلى السوداء, ق يد اصنالذكاء الاصطناعي و التي تعتبر ك  تعتمد على نماذج 

المزارعين. المساهمة الأولى في هذه الأطروحة تعالج هذه المشكلة من خلال تقديم نظام قابل للتفسير  

لبيان كيفية تأثير   SHAP لاختيار المحاصيل. حيث يدمج هذا النظام شروحات مبنية على تقنية 

خصائص التربة والظروف المناخية على كل توصية. كما يجمع بين قدرة تنبؤية قوية وتفسيرات  

 .واضحة، مما يوفر أداة عملية يمكن للمزارعين والمستشارين استخدامها بثقة أكبر 

إذ تسمح التوقعات   ؟"كم سيكون العائد المتوقع" :بعد اختيار المحصول، يبرز السؤال المهم التالي وهو 

الدقيقة للإنتاج للمزارعين بتنظيم المدخلات والاستعداد للأنشطة التسويقية. المساهمة الثانية في هذه  

الأطروحة تعالج هذا الجانب من خلال تصميم إطار تعلم آلي تجميعي مكدس، طُوّر باستخدام إنتاج  

الطماطم في البيوت المحمية كدراسة حالة. وقد وفر هذا الإطار تنبؤات يومية دقيقة بالمردود، وتفوق  

 .على طرق الانحدار التقليدية، مما يجعله أداة موثوقة لدعم القرار في إدارة البيوت المحمية 

ونظرًا لأن اختيار المحاصيل والتنبؤ بالمردود يعتمدان معًا على جودة البيانات الزراعية، فإن  

المساهمة الثالثة تركز على كيفية الحفاظ على هذه البيانات آمنة وموثوقة. ولتحقيق ذلك، تم اقتراح نهج  

قائم على تقنية البلوكشين يدمج التشفير، والتخزين الموزع للملفات، والعقود الذكية. هذا النهج يضمن  

تتبع البيانات، وسريتها، ومقاومتها للتلاعب. كما يتيح تبادلًا شفافًا وقابلًا للتدقيق للمعلومات بين  

 .المزارع والمؤسسات، مما يعزز الثقة في الأنظمة الزراعية المعتمدة على البيانات 

الزراعة التنبؤية الذكية؛ اختيار المحاصيل؛ التعلّم الآلي القابل للتفسير؛ التنبؤ بغلة   :الكلمات المفتاحية

 الطماطم؛ التعلم الجماعي؛ البلوك تشين؛ سلامة البيانات؛ نظم دعم القرار. 
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Chapter 1

General introduction

1.1 Context

Agriculture plays a central role in ensuring global food security, supporting economic de-

velopment, and maintaining environmental balance. It provides livelihoods for billions

of people and remains a key source of employment and income, especially in developing

regions. However, the sector faces a range of challenges that threaten its ability to remain

productive and resilient. The world population is projected to approach 10 billion by

2050, driving a sharp increase in food demand and creating pressure for higher produc-

tivity and more efficient resource use [6] . At the same time, climate variability, resource

constraints, and environmental degradation place heavy demands on farming systems,

limiting the capacity of traditional practices to adapt to changing environmental and

economic conditions [7].

This situation has encouraged the development of smart agriculture, supported by ad-

vanced technologies such as data science, artificial intelligence (AI), machine learning

(ML), and blockchain. Smart agriculture relies on combining information from many

sources, including soil sensors, satellite images, climate forecasts, and market data, to

guide accurate and data-driven decisions. This approach, often described as smart pre-

dictive agriculture, helps farmers and decision-makers improve management practices, use

resources more efficiently, and build farming systems that can adapt to changing environ-

mental and economic conditions [8] [9].

1
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Data science supports this transformation by offering analytical tools and methods that

extract useful knowledge from complex datasets. Among these tools, machine learning

enables predictive modeling for tasks such as crop selection and yield forecasting, providing

guidance for agricultural planning and resource management [10]. Despite significant

progress, important gaps remain. One key limitation is the limited interpretability of

many predictive agricultural systems, which often function as “black boxes.” This absence

of explainability reduces trust and slows adoption among farmers and practitioners, who

require clear and understandable recommendations to make confident decisions in real-

world conditions.

Furthermore, As data-driven approaches gain importance for improving agricultural pro-

ductivity, accurate yield forecasting in controlled environments such as greenhouses re-

mains a complex challenge. The interactions among environmental variables are often

nonlinear and interdependent, making precise prediction difficult and increasing economic

uncertainty. At the same time, the rapid expansion of digital farming technologies requires

strong safeguards to protect agricultural data, ensuring its integrity and maintaining re-

liable and traceable data flows that are essential for collaborative farming practices.

1.2 Problem Statement

In the rapidly changing landscape of agriculture, farmers and stakeholders are increasingly

faced with the challenge of making decisions that balance productivity, sustainability, and

resilience. The transition from traditional, experience-based practices to data-driven agri-

culture is reshaping how these decisions are made, but also introducing new complexities

and demands [11].

At the beginning of each growing season, farmers face a series of planning tasks that de-

termine the success of the entire production cycle. The first and most influential of these

tasks is deciding which crops to grow and how to allocate land among them. This early

decision serves as the foundation for all subsequent actions, including planting schedules,

soil preparation, and resource management. Agricultural research and extension services

consistently identify crop and land-use planning as the starting point of seasonal planning
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[12, 13]. Whish et al.[14] describe the question of “what to plant, when, and where” as

a complex challenge encountered by every farmer. Similarly, the University of Minnesota

Extension guide explicitly lists “Step 1: Decide what to grow” as the opening action in

farm planning[15]. Practical guides to crop rotations also begin with crop selection, rec-

ognizing that decisions on crop type and rotation shape every later stage of management.

A Kentucky Extension note likewise emphasizes land-use planning as the first decision,

asking, “Should this land be cropped? If so, with what crop or crop rotation?”[16].

In practice, farmers consider a range of factors before finalizing this critical choice, in-

cluding field conditions, crop rotations, soil health, and local climate. Once the crop is

determined, subsequent tasks such as selecting planting dates and preparing fertilizers

or soil amendments follow in a logical sequence. The decision of what to plant initiates

the entire seasonal workflow, making it the key point where accurate, data-supported

recommendations can have the greatest impact on farm productivity and resource use

[17].

After deciding what to plant, the next important question is “how much to expect?” Re-

liable yield forecasts are essential for organizing labor, planning storage, arranging mar-

keting activities, and managing farm finances. Recent progress in artificial intelligence

has advanced yield prediction by combining historical production data, satellite observa-

tions, and real-time measurements collected from the field. Machine learning methods

are able to detect complex patterns among weather conditions, soil characteristics, and

crop growth, allowing farmers to refine management practices and marketing plans as

new information becomes available during the season. These developments point to the

need for practical, context-aware forecasting tools that can deliver accurate and timely

predictions for decision-making.

The reliability of agricultural decision-making depends on the security and integrity of the

foundational data. The rapid growth of digital technologies in farming, including sensors,

automated equipment, and shared data platforms, offers new opportunities for data-driven

management but also introduces significant risks. This raises an important question: how

can the data that supports these decisions be kept secure, accurate, and trustworthy?
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Conventional data management systems often fall short in preventing tampering, unau-

thorized access, or the loss of data origin, which can weaken confidence among farmers

and other stakeholders and slow the adoption of smart agricultural practices. Protecting

data integrity and ensuring transparent data flows have therefore become essential for

developing collaborative farming systems where choices about “what to plant” and “how

much to expect” can be made with greater confidence.

1.3 Contributions
This thesis addresses the gaps and limitations identified in contemporary agricultural

practices by making three key contributions, each aimed at enhancing the effectiveness

and reliability of smart predictive agriculture:

Contribution 1: Interpretable Crop Selection System for Opti-

mized Farming Decisions

The first contribution of this thesis is the design and implementation of an interpretable

and high-accuracy crop selection system, addressing the need for both predictive reliability

and model transparency in smart agriculture. The main stages of this contribution are

outlined below:

• Dataset Construction and Characterization: A balanced dataset of 2,200

records covering 22 crop types was used. Each crop is described through key agro-

nomic features, including soil nitrogen (N), phosphorus (P), potassium (K), pH,

temperature, humidity, and rainfall.

• Exploratory Data Analysis (EDA): A detailed statistical and visual analysis

was conducted to assess feature distributions, identify influential predictors, and

examine relationships between input variables and crop classes. This stage provided

essential insights that guided the selection of suitable preprocessing techniques.

• Data Preprocessing: The preprocessing pipeline included outlier detection and

imputation, feature scaling, categorical label encoding, and data augmentation to
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expand each crop class. These steps ensured data quality and improved compati-

bility with machine learning models.

• Proposed CS-AdaRF-SHAP System: The system leverages an adaptive boost-

ing strategy that trains a sequence of Random Forest classifiers while iteratively

reweighting misclassified instances. This enhances the model’s ability to distin-

guish between crops with similar feature patterns and increases robustness across

diverse agricultural conditions. Hyperparameters were carefully tuned to achieve

optimal predictive performance. The model integrates SHapley Additive exPla-

nations (SHAP) to provide both global and local interpretability. SHAP values

quantify the contribution of each feature to the final recommendation, offering clear

and agronomically meaningful explanations suitable for stakeholders.

The proposed CS-AdaRF-SHAP system achieved high test accuracy along with

strong precision, recall, and F1-score values. Most errors occurred between agro-

nomically similar crop classes. The system consistently outperformed baseline and

ensemble models, demonstrating its suitability for real-world deployment in smart

agriculture.

Contribution 2: Data-Driven Crop Yield Prediction

The second contribution of this thesis is the development of a data-driven system for

predicting crop yield, using tomato production in greenhouse conditions as a case study.

This work addresses the practical question of “how much to expect,” which is essential

for planning inputs, scheduling labor, and organizing marketing activities. The proposed

approach employs a stacked ensemble learning framework that combines the predictive

outputs of several models to improve the accuracy of daily yield estimation.

A careful preprocessing procedure was designed to secure data quality and reliability. The

workflow included systematic cleaning, temporal alignment, normalization, data augmen-

tation, and the selection of key features that capture relevant environmental and crop

growth dynamics. The model was trained and evaluated on real multivariate greenhouse

data and achieved higher predictive accuracy than standard regression techniques.
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Contribution 3: Blockchain-Based Approach to Securing Data in

Smart Agriculture

The third contribution of this thesis is the implementation of a blockchain-based approach

to ensure the security, integrity, and reliable sharing of agricultural data in IoT-enabled

greenhouse environments. Addressing the essential challenge of “How can the data that

supports these decisions remain secure, reliable, and trustworthy?” the proposed approach

integrates blockchain technology, smart contracts, edge computing, and distributed file

storage (IPFS) into a unified framework.

The system enables all registered agricultural sites to collect, encrypt, and transmit data

to a distributed platform under the supervision of a central government institution. The

workflow incorporates cryptographic hashing (SHA256) for integrity verification, AES

encryption for data confidentiality, and IPFS for tamper-evident, decentralized storage.

Transactional metadata, including data ownership, access rights, and file hashes, is se-

curely recorded on the blockchain via custom smart contracts, ensuring immutability,

transparency, and auditable access.

1.4 Thesis Structure
The remainder of this thesis is organized as follows:

Chapter 2: Preliminaries and Basic Concepts

This chapter introduces the fundamental theories and background necessary for under-

standing the remainder of the thesis.It begins with an overview of data science, its life-

cycle, and the role of feature engineering in building predictive models. Core principles

of machine learning and deep learning are then introduced. The chapter also discusses

interpretable and explainable AI. Finally, it presents the fundamentals of blockchain tech-

nology, outlining its potential for ensuring data security and trust in smart agriculture.

Chapter 3: Smart Agriculture: State of the Art

This chapter reviews the evolution of agriculture from traditional practices to modern,

AI-driven systems. It discusses the main challenges and limitations of conventional ap-

proaches, examines recent advances in smart agriculture, including AI-based crop selec-
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tion, yield prediction, and blockchain-enabled data security, and identifies the key research

gaps that motivate and shape the contributions of this thesis.

Chapter 4: Contribution 1: Interpretable Crop Selection for Optimized Farm-

ing Decisions

This chapter presents the first contribution of the thesis, which focuses on the design of

an interpretable crop selection system. It describes the architecture and methodology of

the proposed CS-AdaRF-SHAP system, reports the experimental results demonstrating

both its performance and interpretability, and concludes with a discussion of its practical

implications for real-world agricultural decision-making.

Chapter 5: Contribution 2: Data-Driven Crop Yield Prediction

This chapter presents the second contribution of the thesis, which addresses the challenge

of predicting crop yield (with a focus on tomato) in greenhouse environments. It intro-

duces the proposed stacked ensemble learning framework, details the dataset and data

preprocessing methods, and provides a thorough evaluation of predictive performance in

comparison with baseline models.

Chapter 6: Contribution 3: Blockchain-Based Approach to Securing Data in

Smart Agriculture

This chapter presents the third contribution of the thesis, a secure approach for managing

agricultural data using blockchain and IPFS. It describes the system architecture and key

implementation steps, including smart contract deployment and data encryption. The

chapter also demonstrates the advantages of the approach in ensuring data integrity,

privacy, and reliable data sharing among agricultural stakeholders.

Chapter 7: General Conclusion and Perspectives

The final chapter integrates the main outcomes of the thesis, reviewing the challenges

addressed and the proposed solutions. It discusses the scientific and practical contribu-

tions to the field of smart agriculture, evaluates the results achieved, and concludes with

perspectives for future research and development.



Chapter 2

Preliminaries and Basic Concepts

2.1 Introduction

This chapter presents the foundational concepts central to our thesis and provides a com-

prehensive overview of the main domains that will be explored in the subsequent chapters.

Section 1.2 presents the fundamentals of Data Science, covering its lifecycle, preprocess-

ing techniques, feature engineering, and exploratory data analysis methods. Section 1.3

introduces Machine Learning (ML) and Deep Learning (DL), outlining their core con-

cepts, methodologies, and evaluation metrics. Section 1.4 focuses on Interpretable and

Explainable AI (XAI). Finally, Section 1.5 reviews Blockchain technology with attention

to the mechanisms that ensure data security, integrity, and traceability.

2.2 Data Science Fundamentals

2.2.1 Definition and Scope

Data Science is an interdisciplinary field that applies scientific methods, algorithms, and

computational systems to extract knowledge from both structured and unstructured data.

As illustrated in Figure 2.1, it integrates principles from statistics, computer science,

mathematics, and domain-specific expertise to analyze complex datasets and support

informed decision-making [18].

Each of these components plays an important role:

8
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Figure 2.1: Core components of Data Science.

• Statistics and Mathematics provide the theoretical foundations for data model-

ing, hypothesis testing, and quantitative analysis.

• Computer Science supports scalable data processing, algorithm design, and the

implementation of machine learning methods.

• Domain Expertise ensures that analytical approaches and data-driven solutions

remain relevant, interpretable, and actionable within a specific context.

The integration of these components enables Data Science to:

• Detect patterns, trends, and anomalies within complex datasets.

• Develop predictive and prescriptive models that inform and optimize decision-making.

• Support automation, real-time analytics, and adaptive systems across diverse do-

mains.

Data Science has become essential across a wide range of disciplines, including:
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• Finance: It is applied in credit risk modeling, fraud detection, and algorithmic

trading to enhance decision-making and risk management.

• Healthcare: It supports predictive diagnostics, genomics, and personalized treat-

ment strategies, enabling more accurate and patient-centered care.

• Marketing: It facilitates customer segmentation, recommendation systems, and

campaign optimization, which improves customer engagement and business out-

comes.

• Agriculture: It contributes to crop yield prediction, soil and climate analytics,

precision irrigation, and sustainable resource management, promoting efficiency and

resilience in food production [19].

Relevance to Agriculture

In agriculture, Data Science enables stakeholders, including farmers, agronomists, and

policymakers, to make informed and evidence-based decisions. By integrating historical

records, sensor measurements, weather forecasts, and remote sensing imagery, its appli-

cations include:

• Crop recommendation systems: Identifying suitable crops for site-specific soil

and climate conditions.

• Predictive modeling: Developing early warning systems for disease outbreaks,

pest invasions, and yield variability.

• Resource optimization: Improving the efficiency of water and fertilizer use through

data-driven strategies [19].

2.2.2 Data Science Lifecycle

The Data Science lifecycle consists of a structured sequence of phases that transform raw

data into actionable information and predictive models. This iterative process ensures

methodological robustness and adaptability across diverse domains, including smart agri-

culture. Although several models have been proposed, a comprehensive review by [20]

identifies six core phases that are common to most Data Science process frameworks:
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1. Problem Definition: Defining the research question or business objective, which

establishes the foundation for the entire Data Science project.

2. Data Acquisition: Collecting relevant data from diverse sources such as sensors,

databases, and external repositories, while ensuring data quality and relevance.

3. Data Preparation: Cleaning and transforming the data to address issues such as

missing values, outliers, and inconsistencies, which enables effective analysis.

4. Modeling: Applying statistical and machine learning algorithms to discover pat-

terns, generate predictions, or perform classification, depending on the specific prob-

lem.

5. Evaluation: Measuring model performance with appropriate metrics (e.g., accu-

racy, precision, recall) to validate reliability and robustness.

6. Deployment: Implementing the model in operational environments to support

real-time decision-making and facilitate continuous monitoring for performance im-

provement.

2.2.3 Data Preprocessing & Feature Engineering

Data preprocessing comprises a range of systematic operations designed to enhance data

quality and consistency [22, 23]:

• Handling Missing Values: Incomplete data may arise from sensor malfunctions,

recording errors, or limitations in data collection protocols. Several strategies are

commonly employed:

– Deletion: Removing records or attributes with a small proportion of missing

entries when the loss of information is minimal.

– Simple Imputation: Substituting missing values with statistical measures such

as the mean, median, or mode of the corresponding attribute.
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– Advanced Imputation: Applying more sophisticated techniques, including K-

nearest neighbors or regression-based approaches, to estimate missing values

based on observed patterns in the data.

• Outlier Detection and Treatment: The presence of Outliers can strongly affect

statistical results and reduce the accuracy of models. To identify such anomalies, a

variety of techniques are employed:

– Univariate Methods: Approaches such as Z-scores, interquartile range (IQR)

analysis, and visual inspection through boxplots.

– Multivariate Methods: Techniques including Mahalanobis distance or isolation

forests, which account for relationships across multiple variables.

Once detected, outliers may be addressed through removal, capping extreme values,

or applying suitable transformations to reduce their impact on downstream analyses.

• Feature Scaling and Normalization: Because many machine learning algo-

rithms are sensitive to differences in feature magnitudes, scaling is often an essential

step to ensure balanced contributions of all variables. Common approaches include:

– Standardization: Transforming features so that they have a mean of zero and

a standard deviation of one.

– Min–Max Normalization: Rescaling features to fall within a fixed interval, typ-

ically [0,1], which preserves relative relationships while constraining absolute

ranges.

– Robust Scaling: Applying transformations based on the median and interquar-

tile range (IQR), thereby reducing sensitivity to extreme values or outliers.

• Encoding Categorical Variables: Since many machine learning algorithms re-

quire numerical input, categorical attributes must be transformed into suitable nu-

merical representations. Common strategies include:
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– One-Hot Encoding: Generating a set of binary indicator columns, each corre-

sponding to a distinct category, thereby avoiding any assumption of order.

– Ordinal Encoding: Assigning integers to categories that possess a meaningful

order or ranking, preserving their relative structure.

– Target Encoding: Substituting categorical levels with the mean value of the

target variable, a method that can be effective but requires careful application

to reduce the risk of data leakage.

• Class Balancing: Imbalanced datasets can lead to biased models that favor ma-

jority classes, reducing overall predictive performance. To address this issue, several

techniques are commonly applied:

– Random Oversampling/Undersampling: Modifying class distributions by either

duplicating minority class samples or removing instances from the majority

class.

– SMOTE (Synthetic Minority Over-sampling Technique): Creating synthetic

examples for underrepresented classes by interpolating between existing mi-

nority samples, thereby improving class representation without simple dupli-

cation.

• Data Partitioning: To evaluate model performance reliably and prevent overfit-

ting, datasets are typically divided into distinct subsets for training, validation, and

testing. Common approaches include:

– Hold-out Validation: Splitting the dataset into independent subsets, where one

portion is used for training and another for testing model performance.

– Stratified Sampling: Creating partitions that preserve the original distribution

of classes, which is particularly important in imbalanced datasets.

– Cross-Validation: Repeatedly partitioning the data into multiple folds to assess

model stability and robustness across different training–testing splits.
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Feature Engineering

Feature engineering refers to the process of constructing new input variables from exist-

ing data with the goal of enhancing model accuracy and interpretability [24]. Within

agricultural applications, this process often includes:

• Temporal Features: Deriving time-related variables, such as growing degree days

or the number of days since planting, to capture seasonal and developmental pat-

terns in crops.

• Spectral Indices: Computing vegetation metrics, for example the Normalized

Difference Vegetation Index (NDVI), from multispectral or hyperspectral imagery

to quantify plant health and vigor.

• Soil–Weather Interactions: Integrating soil moisture measurements with tem-

perature records to generate indicators of drought stress or other environmental

constraints.

• Dimensionality Reduction: Employing statistical methods such as Principal

Component Analysis (PCA) to condense high-dimensional datasets into a smaller

set of informative features while minimizing redundancy.

Successful feature engineering typically requires a combination of domain knowledge and

iterative experimentation, as the most informative features are often context-specific and

depend on both the crop system and the modeling objective.

2.2.4 Exploratory Data Analysis & Visualization

Purpose and Significance

Exploratory Data Analysis (EDA) represents a critical stage in the data science workflow,

particularly in the context of smart agriculture. It involves the systematic examination

and summarization of key dataset characteristics, frequently supported by visual tech-

niques. Through EDA, researchers can reveal underlying patterns, identify anomalies,

evaluate assumptions, and conduct preliminary hypothesis testing using a combination of

statistical measures and graphical representations [25].



2.2. Data Science Fundamentals 15

In agricultural applications, EDA serves several important functions:

• Revealing patterns and relationships among key variables, such as soil character-

istics, weather conditions, and crop yields, which provide understanding of funda-

mental agronomic processes.

• Detecting outliers or unusual observations that may reflect measurement errors,

sensor malfunctions, or exceptional environmental events.

• Evaluating overall data quality and completeness to ensure that subsequent analyses

are based on reliable and representative information.

• Guiding the choice of suitable modeling approaches and informing feature engineer-

ing strategies by prioritizing the most relevant attributes within the dataset.

Statistical Techniques

A range of statistical methods are commonly applied during EDA to describe and interpret

the characteristics of agricultural datasets:

• Descriptive Statistics: Computing summary measures such as the mean, me-

dian, standard deviation, skewness, and kurtosis to characterize central tendency,

variability, and distributional shape.

• Correlation Analysis: Assessing the strength and direction of relationships be-

tween variables, often through Pearson correlation for linear associations or Spear-

man rank correlation for non-linear monotonic patterns.

• Hypothesis Testing: Employing inferential procedures such as analysis of variance

(ANOVA) or chi-square tests to examine group differences or evaluate associations

among categorical variables [26].

Visualization Techniques

Visualization is an essential component of EDA, offering an accessible means of inter-

preting complex datasets and uncovering patterns that may not be apparent through

numerical analyses alone. Commonly employed visualization methods include [27]:
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• Histograms and Density Plots: Depict the distribution of individual variables,

providing understanding into central tendency, spread, and overall shape.

• Box Plots: Display distributions by focusing on medians, quartiles, and variability,

while also allowing the detection of potential outliers.

• Scatter Plots: Display the relationship between two continuous variables, making

it possible to observe correlations, clusters, or emerging trends.

• Heatmaps: Represent correlation matrices or spatially referenced data in a com-

pact visual form, facilitating the recognition of systematic patterns and clusters.

• Time Series Plots: Track the evolution of variables across time, which is particu-

larly valuable for monitoring crop growth dynamics, weather conditions, or seasonal

effects.

• Geospatial Maps: Illustrate the spatial distribution of agricultural variables, sup-

porting site-specific management practices and precision farming decisions.

Integration with Data Pipeline

The findings derived from EDA play a crucial role in shaping and refining the broader

data preprocessing pipeline [26]. By systematically examining the data, EDA provides

evidence-based guidance for several subsequent steps, such as:

• Data Cleaning: Detecting missing values, inconsistencies, or anomalies that re-

quire imputation, correction, or removal to ensure data reliability.

• Feature Selection: Identifying variables that hold the greatest relevance for pre-

dictive modeling, while discarding redundant or uninformative attributes.

• Model Selection: Informing the choice of algorithms by revealing structural char-

acteristics of the data, such as linearity, dimensionality, or class imbalance.
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2.3 Machine Learning and Deep Learning

2.3.1 Machine Learning Basics

Machine Learning (ML) is an interdisciplinary domain concerned with the design of al-

gorithms that can learn patterns from data and generate predictions or decisions with-

out relying on explicit rule-based programming. Drawing upon concepts from computer

science, statistics, and applied mathematics, ML constitutes a foundational element of

artificial intelligence (AI) and has become a key driver of data-driven decision-making

across diverse fields, including agriculture [28].

In agricultural applications, ML supports the analysis of complex datasets originating

from diverse sources, including in-field sensors, satellite imagery, and historical farm

records. By leveraging these data streams, ML techniques can be used to predict crop

yields, detect the onset of diseases, optimize the allocation of resources, and improve the

efficiency and sustainability of farm management practices [29].

Prominent perspectives on ML can be framed as follows:

• Algorithmic Optimization Perspective: ML is viewed as the process of de-

signing computer programs that improve their performance on specific tasks by

optimizing objective functions through experience with data [30].

• Predictive Pattern Recognition: From this perspective, ML emphasizes the

development of methods that autonomously detect patterns within datasets and

use them to forecast future outcomes or events [31].

• Actionable Regularity Discovery: Here, ML is understood as the automated

identification of regularities or structures in data through computational algorithms,

with the goal of transforming these findings into practical, decision-oriented outputs

[32].

2.3.2 Methodologies

Machine learning (ML) methodologies are commonly classified according to the type of

input data and the corresponding learning objectives. The principal paradigms include
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supervised learning, unsupervised learning, semi-supervised learning, reinforcement learn-

ing, multitask learning, and transfer learning [33]. Each of these approaches provides

distinct advantages and is chosen with respect to the problem setting, data availability,

and desired outcomes.

Figure 2.2: Machine Learning Methodologies.

Supervised Learning

Supervised learning refers to the process of training models on labeled datasets, in which

each input vector xi is associated with a corresponding output label yi. The primary

objective is to learn a mapping function f : X → Y that predicts outputs from inputs

with high accuracy by minimizing a predefined loss function over the training set:

min
f∈F

1

N

N∑
i=1

L(f(xi), yi), (2.1)

where L denotes the chosen loss function and F represents the hypothesis space of can-

didate functions. In practice, supervised learning underpins a wide range of tasks, most

notably classification and regression, making it one of the most widely applied paradigms

in machine learning [28].
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Unsupervised Learning

Unsupervised learning addresses the analysis of datasets that lack predefined labels, with

the primary goal of discovering hidden patterns, groupings, or inherent structures within

the data. Techniques commonly employed in this paradigm include clustering methods,

dimensionality reduction approaches, and anomaly detection algorithms. [29].

Semi-Supervised Learning

Semi-supervised learning integrates a limited set of labeled examples with a substan-

tially larger pool of unlabeled data during model training. This paradigm is especially

advantageous in situations where the process of generating high-quality labels is costly,

labor-intensive, or otherwise impractical. To make effective use of the available unlabeled

data, a range of strategies can be applied, including self-training, co-training, and graph-

based approaches, each of which seeks to enhance predictive performance by exploiting

the underlying structure of the data [34].

Reinforcement Learning

Reinforcement learning (RL) is a paradigm in which an agent interacts dynamically with

an environment, gradually learning to select actions that maximize cumulative rewards

while minimizing penalties. The learning process is inherently iterative, relying on trial-

and-error exploration combined with feedback signals that shape the agent’s decision-

making policy over time. Within agricultural systems, RL shows considerable promise for

applications such as the coordination of autonomous farming machinery, optimization of

irrigation schedules, and the development of adaptive pest management strategies [28].

Multitask Learning

Multitask learning (MTL) is an approach designed to enhance generalization by train-

ing models on several related tasks at the same time, thereby enabling the sharing of

underlying representations across them. This strategy is particularly effective when the

tasks are interdependent or draw upon overlapping sources of information, as the joint

learning process allows the model to exploit shared structure and reduce overfitting to

any single task. Within agricultural applications, MTL can be employed to predict multi-
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ple crop traits or environmental variables simultaneously, offering a more comprehensive

understanding of complex agroecosystems [35].

Transfer Learning

Transfer learning focuses on transferring knowledge from a source task to improve learning

in a target task, especially when the target task has limited data. Pretrained models on

large datasets can be fine-tuned for specific agricultural tasks, such as disease detection

or yield estimation, enhancing performance with minimal labeled data [36].

2.3.3 Model Evaluation Metrics

Evaluating the performance of machine learning (ML) models is a critical step in the

development and deployment of data-driven solutions. The choice of appropriate evalua-

tion metrics determines how effectively a model’s predictions can be assessed and whether

it is suitable for practical applications. Well-defined metrics provide an objective basis

for comparing different models, guiding model selection, and ensuring robustness across

diverse problem settings. This section outlines key evaluation metrics commonly used

in classification and regression tasks, presenting their mathematical definitions and dis-

cussing their comparative advantages and limitations.

Classification Metrics

In classification problems, the goal of a model is to assign inputs to discrete categories.

The quality of these predictions is commonly evaluated through a confusion matrix, which

provides a structured summary of the model’s performance. The matrix is composed of

the following elements:

• True Positives (TP): Instances correctly identified as belonging to the positive

class.

• True Negatives (TN): Instances correctly identified as belonging to the negative

class.

• False Positives (FP): Negative instances that are incorrectly classified as positive.
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• False Negatives (FN): Positive instances that are incorrectly classified as nega-

tive.

From the confusion matrix, a number of widely used performance metrics can be derived,

each illustrating different aspects of model behavior:

Accuracy

Accuracy =
TP + TN

TP + TN + FP + FN
(2.2)

Represents the proportion of correctly classified instances relative to the total number of

cases. While useful as a general indicator, accuracy can give a distorted picture when

datasets are highly imbalanced, as it may overlook minority classes.

Precision

Precision =
TP

TP + FP
(2.3)

Quantifies the reliability of positive predictions by indicating the fraction of predicted

positives that are truly positive. High precision reflects a model that makes few false

positive errors.

Recall (Sensitivity)

Recall = TP

TP + FN
(2.4)

Assesses the model’s ability to identify all relevant positive instances. A high recall value

means that most of the actual positives are successfully detected, even if this comes at

the expense of more false positives.

F1-Score

F1-Score = 2× Precision× Recall
Precision + Recall

(2.5)

Provides a single measure that balances precision and recall by calculating their harmonic

mean. It is especially useful when one seeks to account for both types of classification

error simultaneously.
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Matthews Correlation Coefficient (MCC)

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(2.6)

Offers a more comprehensive evaluation by incorporating all four elements of the confusion

matrix. Unlike accuracy, MCC remains informative even in the presence of strong class

imbalance, making it a robust alternative [37].

Area Under the Receiver Operating Characteristic Curve (AUC-ROC) Re-

flects the model’s capacity to discriminate between classes over a range of decision thresh-

olds. A higher AUC value indicates stronger overall separability between positive and

negative classes.

Regression Metrics

Regression problems concern the prediction of continuous variables, and their evaluation

relies on metrics that quantify the accuracy and reliability of model outputs. Commonly

employed measures include:

Mean Absolute Error (MAE)

MAE =
1

n

n∑
i=1

|yi − ŷi| (2.7)

Reflects the average absolute deviation between predictions and observed values, providing

an intuitive measure of overall error magnitude without accounting for direction.

Mean Squared Error (MSE)

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2.8)

Gives greater weight to larger errors by squaring the residuals, making it particularly

sensitive to outliers.
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Root Mean Squared Error (RMSE)

RMSE =
√

MSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2.9)

Expresses the average prediction error in the same units as the target variable, thereby

facilitating direct interpretability.

Coefficient of Determination (R2)

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(2.10)

Represents the proportion of variance in the dependent variable that is explained by the

model, with values closer to 1 indicating stronger explanatory power.

Nash–Sutcliffe Efficiency (NSE)

NSE = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(2.11)

Frequently applied in hydrological and environmental modeling, where it serves as a mea-

sure of predictive skill relative to the mean of observed data [38].

2.3.4 Deep Learning

Deep Learning (DL), a specialized branch within the broader field of machine learning,

is distinguished by its reliance on artificial neural networks composed of multiple inter-

connected layers. This layered architecture allows models to capture and represent highly

complex, non-linear relationships in data with remarkable effectiveness. In recent years,

DL has gained increasing prominence as a transformative tool, particularly in domains

where large and heterogeneous datasets are prevalent. [39].

Fundamental Architectures

Several deep learning architectures have become foundational across a wide range of do-

mains, each designed to address different data types and problem settings:
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• Convolutional Neural Networks (CNNs): CNNs are particularly well suited

for image-related tasks, as they can effectively capture spatial hierarchies and local

patterns. They have been extensively used in image classification, object detection,

and computer vision more broadly, achieving state-of-the-art performance in many

benchmarks [39].

• Recurrent Neural Networks (RNNs): RNNs, including advanced variants such

as Long Short-Term Memory (LSTM) networks, are designed for sequential and

temporal data. They are widely applied in natural language processing, speech

recognition, and time-series modeling, where the ability to capture dependencies

across time is essential [40].

• Autoencoders (AEs): Autoencoders are used primarily for unsupervised feature

learning and dimensionality reduction. They are commonly employed for tasks

such as anomaly detection, data compression, and denoising, where reconstructing

meaningful latent representations of input data is advantageous [41].

• Generative Adversarial Networks (GANs): GANs generate synthetic data by

learning to approximate complex data distributions. They have proven highly effec-

tive for data augmentation, realistic image synthesis, and style transfer, providing

valuable support in scenarios where labeled data is limited [42].

• Transformers: Based on self-attention mechanisms, transformers have revolution-

ized deep learning by enabling efficient modeling of long-range dependencies. Orig-

inally developed for natural language processing, they are increasingly applied to

computer vision, multimodal learning, and other domains requiring integration of

diverse data types [43].

Mathematical Formulation

At the foundation of deep learning models lies the optimization of a loss function L

defined over a dataset D = {(xi, yi)}Ni=1, where xi denotes the input features and yi the

corresponding target labels. The central aim is to determine a function fθ, parameterized

by θ, that minimizes the average loss across the training set:
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min
θ

1

N

N∑
i=1

L(fθ(xi), yi) (2.12)

In practice, the choice of loss function depends on the nature of the task. For instance,

cross-entropy loss is widely applied in classification problems, while mean squared error

remains a standard choice for regression settings.

2.4 Interpretable and Explainable AI (XAI)
As Artificial Intelligence (AI) systems are increasingly deployed in domains where deci-

sions carry significant consequences, the importance of transparency and interpretability

has grown substantially. Explainable AI (XAI) seeks to meet this demand by developing

approaches that make the functioning of complex models more understandable. By clar-

ifying how models generate their outputs, XAI contributes to building confidence in the

technology while providing users with clearer grounds for evaluation and action [44].

2.4.1 Importance Across Domains

The relevance of XAI extends across a wide range of application areas, where transparency

and interpretability are not only desirable but often necessary:

• Healthcare: In medical diagnostics and treatment planning, understanding the basis

of AI-generated predictions is essential for clinical reliability and for preserving the

confidence of both practitioners and patients [45].

• Finance: In financial services, interpretable models are central to credit scoring and

fraud detection. Clear reasoning behind model outputs is necessary for meeting regu-

latory requirements and for maintaining trust in decisions that can significantly affect

customers [45].

• Legal Systems: Within judicial and legal contexts, explainable models help safe-

guard fairness and accountability by making automated decisions transparent and

open to review when individual rights are involved [45].

• Agriculture: As AI systems are increasingly used for tasks such as crop monitoring
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and yield estimation, interpretability ensures that farmers and other stakeholders can

make sense of the outputs and apply them with confidence [46].

2.4.2 Foundations of Explainable AI

Explainable AI (XAI) brings together a range of methods aimed at making the internal

workings of AI models more transparent. These methods are commonly grouped into two

broad categories:

• Intrinsic Interpretability: Models that are transparent by design, such as decision

trees or linear regression, where the reasoning process can be directly followed without

additional tools.

• Post-hoc Explanations: Approaches applied after model training to shed light on

complex systems, including deep neural networks. Widely used examples are LIME

(Local Interpretable Model-agnostic Explanations) and SHAP (SHapley Additive ex-

Planations) [47].

2.4.3 Post-hoc Explanations

Post-hoc explanation methods are introduced once a model has already been trained, with

the aim of clarifying how predictions are generated without modifying the model’s internal

design. Such approaches are particularly useful when working with highly complex and

accurate models that often function as “black boxes” to users and practitioners [48].

Broadly, post-hoc techniques can be organized into the following categories:

Model-Specific Methods

Model-specific approaches make use of the internal structure and parameters of a model to

derive explanations, thus tailoring the interpretation to the architecture being analyzed.

Representative techniques include:

• Saliency Maps: These methods identify and visualize the regions of an input, such

as areas within an image, that exert the greatest influence on the model’s predic-

tion. They are particularly common in convolutional neural networks, where spatial

hierarchies are central to learning [49].
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• Integrated Gradients: This technique attributes the outcome of a deep network to

its input features by computing and aggregating gradients along a path that interpo-

lates between a baseline reference input and the actual input, thereby offering a more

principled assessment of feature relevance [50].

• Attention Mechanisms: By assigning varying levels of weight to different parts of

the input, attention mechanisms highlight which features are most influential during

prediction. This enhances model performance while simultaneously offering a clearer

perspective on the decision-making process [51].

Model-Agnostic Methods

Model-agnostic methods approach the learning system as a black box, examining only the

relationships between inputs and outputs without reference to the internal architecture.

Because of their flexibility, these techniques can be applied to a wide range of model types

and are therefore widely used in practice:

• LIME (Local Interpretable Model-Agnostic Explanations): Provides local

interpretability by fitting a simplified proxy model around a particular prediction,

thus clarifying the factors that played the greatest role in shaping that outcome [52].

• SHAP (SHapley Additive exPlanations): Grounded in cooperative game theory,

this approach assigns each feature a contribution score, quantifying its role in shaping

an individual prediction [53].

• Partial Dependence Plots (PDP): Depict the average marginal effect of one or

two selected features on the predicted response, providing a global view of feature

influence [54].

• Individual Conditional Expectation (ICE) Plots: Complement PDPs by visu-

alizing how predictions change at the level of individual instances, which uncovering

heterogeneity in feature effects [55].

• Counterfactual Explanations: Explore minimal modifications to input variables

that would alter the model’s output, which makes them especially valuable for gen-
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erating practical interpretations and clarifying how decision boundaries are formed

[56].

• Permutation Feature Importance: Evaluates the relevance of each feature by mea-

suring the reduction in predictive accuracy when its values are randomly permuted,

offering a measure of its contribution to the overall model.[57].

2.4.4 SHAP for Model Interpretability

Within the family of model-agnostic interpretability techniques, SHAP (SHapley Ad-

ditive exPlanations) has gained wide recognition as a rigorous and well-founded ap-

proach. Its strength lies in a solid theoretical basis drawn from cooperative game theory,

combined with desirable properties such as local accuracy and consistency, which make it

particularly reliable for both research and applied settings [58].

SHAP: SHapley Additive exPlanations

• Derived from the concept of Shapley values in game theory, SHAP attributes the

contribution of each feature to a prediction by systematically considering all possible

feature combinations.

• Ensures feature attributions that are both additive and consistent across predictions.

• Offers interpretability at different levels, ranging from individual predictions to overall

model behavior.

• Can be applied to virtually any machine learning model, with specialized and efficient

implementations available for tree-based models such as TreeSHAP.

• Produces outputs that are standardized and comparable across models as well as

individual instances [58].

2.4.5 Visualization and User Interfaces

Visualization is central to making model explanations understandable, particularly for

stakeholders who may not have a technical background. Well-designed visual tools can
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translate abstract computational processes into intuitive representations, thus narrowing

the gap between complex model behavior and human interpretation [59].

• SHAP Visualizations:

– Summary Plot: Integrates feature importance with the distribution of effects

across the dataset, conveying both the magnitude and direction of influence for

each feature.

– Force Plot: Demonstrates how individual features push a prediction upward or

downward, making it especially valuable for case-specific explanations.

– Dependence Plot: Depicts the relationship between a selected feature and the

model’s output, while also marking potential interaction effects with other vari-

ables.

– Decision Plot: Particularly relevant for tree-based models, tracing the sequential

influence of features as they combine to yield a final prediction.

• LIME Visualizations:

– Typically presented as bar charts that display feature weights in the local surro-

gate model, indicating positive or negative contributions to a prediction.

– While less comprehensive than SHAP for global analysis, LIME visualizations

remain effective for quick and targeted, instance-level interpretation.

• User Interfaces:

– Interactive Dashboards: Frameworks such as SHAP’s integration with Plotly,

or broader platforms like Streamlit and Dash, enable users to explore predictions

interactively and examine patterns in real time.

– Custom Interfaces for Domain Experts: In applied domains, tailored vi-

sualization tools can significantly improve usability, for example, dashboards for

agronomists or farmers that drawing attention to high-risk zones on maps or

illustrate how particular features influence expected yield.
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2.5 Blockchain Technology for Data Security

2.5.1 Fundamentals of Blockchain

Blockchain is a decentralized and distributed ledger system designed to provide secure,

transparent, and tamper-resistant record-keeping without reliance on a central authority.

At its core, it operates as a continuously expanding chain of data records, known as blocks,

which are linked together through cryptographic hashing [60].

• Block Structure: Each block contains a set of transactions, a timestamp, a crypto-

graphic hash of the preceding block, and a nonce used in consensus mechanisms such

as Proof of Work.

• Chaining Process: Blocks are connected in sequence, such that altering the contents

of one block would require simultaneous modification of all subsequent blocks, making

tampering computationally prohibitive.

• Decentralized Network: The ledger is maintained collectively by a distributed

network of nodes, each of which stores a full copy of the blockchain, thereby avoiding

single points of failure.

• Consensus Mechanisms: Protocols such as Proof of Work or Proof of Stake enable

participating nodes to reach agreement on the validity of transactions and the addition

of new blocks.

• Transparency and Immutability: Once data is validated and recorded, it becomes

immutable and publicly verifiable, ensuring both trustworthiness and long-term in-

tegrity.

2.5.2 Types of Blockchain Networks

Blockchain systems can be classified according to their access policies and governance

structures. Each category reflects a different balance between decentralization, perfor-

mance, and control, which determines their suitability for specific applications [60].
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• Public Blockchains:

– Open for anyone to join, read, or validate transactions (e.g., Bitcoin, Ethereum).

– Operate in a fully decentralized environment.

– Provide strong transparency and security, though often at the expense of scala-

bility and energy efficiency.

• Private Blockchains:

– Participation is restricted to approved or invited members.

– Typically governed by a single organization or administrative entity.

– Enable faster transaction throughput and improved privacy, but reduce the level

of decentralization.

• Consortium Blockchains:

– Managed collectively by a group of organizations or institutions.

– Aim to strike a balance between decentralization and efficiency.

– Well-suited to collaborative sectors such as supply chains, healthcare networks,

or agricultural cooperatives.

The selection of an appropriate blockchain model ultimately depends on the requirements

of the application, including its needs for trust, transparency, efficiency, and governance.

2.5.3 Security and Privacy Features

Blockchain technology establishes a robust framework for secure and reliable data man-

agement through its cryptographic foundations and distributed architecture. The follow-

ing features are central to safeguarding sensitive information and preserving the overall

integrity of the system [61].

• Data Integrity: Each block incorporates a cryptographic hash of the preceding

block, creating a chain that is resistant to tampering. Any attempt to alter a block

would invalidate the subsequent sequence unless consensus across the network is re-

established.
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• Authentication of Participants: Digital signatures verify the identity of transac-

tion initiators, ensuring that only authorized entities are able to submit valid records.

• Confidentiality of Information: While most public blockchains operate transpar-

ently, sensitive data can be protected through encryption or stored off-chain, a practice

particularly common in private and consortium-based networks.

• Non-Repudiation of Transactions: Once a transaction is confirmed and cryp-

tographically signed on the blockchain, the originator cannot plausibly deny having

initiated it.

• System Availability: Because the ledger is replicated across multiple nodes, the

network remains operational and data accessible even in the presence of node failures

or malicious attacks.

• Auditability and Traceability: Transactions are permanently recorded with time

stamps, enabling full traceability and facilitating regulatory or organizational audits.

2.6 Conclusion
This chapter presented the key concepts that form the foundation of this thesis, including

Data Science, Machine Learning, Explainable AI, and Blockchain technology. These topics

provide the theoretical and methodological basis for the approaches developed in the later

chapters. The next chapter reviews smart predictive agriculture and examines the current

state of the art in smart farming. It identifies important research gaps and practical

challenges, setting the stage for the proposed contributions of this work.
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Smart Agriculture: State of the Art

3.1 Introduction

Agriculture is entering a period of rapid transformation as established farming prac-

tices intersect with emerging technologies such as artificial intelligence, data science, and

blockchain. This chapter examines the evolution of agriculture from conventional methods

to modern, data-driven systems, with attention to the key challenges and technological

advances shaping current developments. Traditional farming methods often face limits in

productivity, exposure to climate variability, and risks related to data security, creating a

clear demand for innovative solutions. Recent progress, including AI-based crop selection

techniques, predictive approaches for greenhouse production, and blockchain frameworks

for secure and transparent data management, is beginning to address these pressing needs.

The chapter first introduces the global importance of agriculture and the main constraints

that continue to affect traditional systems, including limited yields, changing climate

conditions, and pressures on natural resources. It then examines the role of artificial

intelligence and data-driven methods in improving farming practices, describing the prin-

cipal technologies, data requirements, and their influence on productivity and sustainable

management.

Subsequent sections provide a detailed review of three key areas. The first explores crop

selection systems, assessing current methods, their strengths and limitations, and the

research gaps that remain. The second focuses on crop yield prediction in greenhouse

33
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environments, outlining existing approaches and opportunities to improve forecast ac-

curacy and adaptability. The final section discusses blockchain applications in different

sectors, with attention to their potential to enhance security, transparency, and trust in

collaborative farming networks.

3.2 Traditional Agriculture: Challenges and Limita-

tions

3.2.1 The Global Importance of Agriculture

Agriculture holds a central position in shaping global socioeconomic development, ensur-

ing food and nutritional security, and supporting environmental sustainability. As one

of the oldest and most essential human activities, it continues to provide the foundation

for survival and well-being across all regions of the world. At present, farming directly

supports the livelihoods of about 2.5 billion people, with the majority living in rural areas

of developing nations [62]. Beyond providing food, the agricultural sector contributes sig-

nificantly to economic growth, representing around 4% of global Gross Domestic Product

(GDP). In many low-income countries, this share often rises above 25%, demonstrating

its critical role in national development and poverty reduction strategies [7].

Economically, agriculture continues to serve as the world’s largest source of employment,

sustaining the livelihoods of an estimated 892 million people as of 2022 and accounting

for approximately 26.2% of total global employment [6]. The sector’s significance is even

more pronounced in certain regions: in Africa, nearly 48% of the population is employed

in agriculture, while in South Asia the proportion remains above 39% [63]. Employment

patterns over the period 2020–2025 are summarized in Table 3.1. These figures show that

agriculture is both a driver of economic activity and a key factor in reducing poverty and

maintaining rural stability. [64].

The resilience of agricultural systems has been particularly evident during recent global

disruptions, such as the COVID-19 pandemic, when the sector acted as a buffer against

economic shocks and maintained relative growth at a time when many other industries
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contracted [65]. Furthermore, the global distribution of agricultural employment aligns

closely with regions experiencing the highest levels of food insecurity, a correlation illus-

trated in Figure 3.1 [66].

Table 3.1: Agricultural employment as a share of total employment (2020–2025) [1].

Year Global (%) Sub-Saharan Africa (%) South Asia (%)

2020 27.0 54.0 43.0
2021 26.5 53.5 42.5
2022 26.2 48.0 40.0
2023 25.8 47.5 39.5
2024 25.5 47.0 39.0
2025 25.2 46.5 38.5

Figure 3.1: Global Hunger Index by severity, 2020 [3].

Agriculture’s contribution to Gross Domestic Product (GDP) varies markedly across coun-

tries, reflecting differences in income levels and structural dependence on the sector. In

2022, agriculture represented approximately 4.1% of global GDP, yet this aggregate figure

masks substantial disparities: in low-income countries, the sector’s share can reach or ex-

ceed 24%, while in high-income economies it averages only about 1.3%. These contrasts

underscore the continued centrality of agriculture in driving economic development and

reducing poverty within the world’s most vulnerable regions (see Table 3.2).

Environmentally, agriculture exerts a profound influence on global ecosystems, contribut-

ing essential services such as soil formation, carbon sequestration, water regulation, and
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Table 3.2: Agriculture, forestry, and fishing value added as a share of GDP (2020–2025)
[2].

Year Global (%) Low-Income Countries (%) High-Income Countries (%)

2020 4.3 25.0 1.5
2021 4.2 24.5 1.4
2022 4.1 24.0 1.3
2023 4.0 23.5 1.2
2024 3.9 23.0 1.1
2025 3.8 22.5 1.0

the maintenance of biodiversity [67, 68]. Agricultural activity shapes landscapes across

more than one-third of the planet’s land surface, linking farming practices directly to

questions of long-term environmental sustainability [69]. While sustainable management

techniques can enhance carbon sequestration and mitigate climate change impacts [70, 71],

the sector continues to face the pressing challenge of reconciling the demand for higher

food production with the protection of soil quality, freshwater resources, and biological

diversity. Current projections suggest that growth in total factor productivity (TFP) is

lagging behind the pace required to meet the goal of doubling global agricultural output

by 2050, with the shortfall being most acute in low-income countries (see Figure 3.2).

This widening productivity gap reinforces the need for innovation and the adoption of

strategies that enable sustainable intensification [72].

From a nutritional standpoint, agriculture remains central to ensuring global food security,

with worldwide food demand expected to increase by nearly 70% by 2050. Yet, despite

notable advances in technology and productivity, hunger continues to affect large segments

of the population. In 2023, it was estimated that 733 million people experienced hunger,

with the highest prevalence occurring in regions where agricultural livelihoods are most

widespread. These enduring disparities in food availability and nutritional outcomes

underscore the dual challenge of expanding production while at the same time fostering

more equitable and resilient food systems [73, 74].

Agriculture is fundamental to economic development, rural livelihoods, global food secu-

rity, and the health of the environment. Meeting the ambitious goals of reducing hunger,

fostering economic growth, and ensuring ecological sustainability will require sustained
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Figure 3.2: 2019 Global Agricultural Productivity (GAP) Index [4].

innovation and carefully directed investment, particularly in regions where vulnerabilities

are most acute.

3.2.2 Key Types of Agricultural Challenges

The agricultural sector is confronted with a wide range of complex and interdependent

challenges that can be grouped into environmental, economic, and technological domains.

These interconnected issues exert significant influence on global productivity, long-term

sustainability, and the overall resilience of agricultural systems [11].

Environmental Constraints: Climate change represents one of the most pressing

threats to agricultural productivity, exerting a direct influence on both crop performance

and the stability of farming systems. Rising average temperatures, shifts in precipitation

patterns, and the growing frequency of extreme weather events, such as droughts, floods,

and heatwaves, have been shown to reduce yields, compromise crop quality, and place

additional pressure on farm incomes [75, 76]. Empirical studies suggest, for instance,
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that an increase of 2.15–4.13 could lower wheat yields by approximately 9.14–10.20% in

certain regions [77]. Beyond yield reductions, extreme weather accelerates processes of

soil erosion and land degradation, diminishing the availability of fertile land and thereby

threatening long-term food security [78, 76]. At the same time, intensive agricultural

practices often intensify these problems, contributing to biodiversity loss, declining soil

health, and weakened ecosystem resilience [79].

Economic Pressures: Agriculture remains highly sensitive to economic fluctuations,

particularly in relation to market volatility, unstable commodity prices, and uneven ac-

cess to financial resources and infrastructure. Since 2020, global food prices have risen by

roughly 30%, a significant rise primarily attributed to disruptions caused by the COVID-

19 pandemic as well as ongoing geopolitical tensions. These dynamics have destabilized

food supply chains and reduced affordability for consumers worldwide [80]. The impact

is especially severe for smallholder farmers, who constitute a significant share of global

producers. Their vulnerability comes from limited access to formal markets, low bargain-

ing power, and long-term underinvestment in basic inputs and rural infrastructure, which

together reduce their ability to adapt and stay competitive. [81].

Technological Constraints: Although agricultural technologies are advancing at an

fast-growing rate, their adoption across the sector remains highly uneven, particularly in

developing regions. Persistent barriers such as inadequate infrastructure, high costs, and

shortages of technical expertise continue to limit the reach of these innovations. A large

proportion of farms worldwide, particularly small-scale farms in low- and middle-income

countries, still lack reliable digital connectivity, which restricts their capacity to benefit

from precision agriculture, smart farming tools, and data-driven decision support sys-

tems [82]. This digital divide represents a significant obstacle to sustainable productivity

growth. Furthermore, the integration of advanced technologies often requires substantial

capital investment, dependable data infrastructure, and specialized expertise, resources

that are rarely accessible to smallholder farmers [83].
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3.2.3 Traditional Agricultural Practices and Their Limitations

For centuries, traditional agricultural methods such as crop rotation, polyculture, agro-

forestry, and the use of natural soil enrichment have sustained human societies and sup-

ported ecological balance. These practices provided resilience in local food systems and

contributed to the preservation of biodiversity and soil fertility. However, in the context

of today’s rapidly growing population, climate variability, and market-oriented produc-

tion, such approaches reveal important shortcomings. While valuable for maintaining

subsistence farming, they are often insufficient to meet the scale, efficiency, and stability

required by modern agricultural systems [84].

Constraints on Productivity: Traditional farming systems generally produce lower

yields when compared to intensified or mechanized approaches. Comparative studies

suggest that smallholder farms relying on conventional techniques may achieve up to 50%

less output than farms adopting modern agronomic practices, largely due to restricted

input use, dependence on manual labor, and limited access to improved technologies [85].

Exposure to Climatic Variability: Conventional agricultural practices often lack the

technological and infrastructural resilience needed to withstand changing climate condi-

tions and extreme weather events. Heavy reliance on rainfall for irrigation, without the

support of supplementary water management systems, makes these systems particularly

vulnerable to prolonged droughts and flooding, risks that are intensifying under current

climatic shifts [75].

Environmental Sustainability Challenges: While many traditional methods promote

soil fertility and biodiversity, certain practices, most notably slash-and-burn agriculture,

contribute to serious environmental degradation. Such methods can accelerate deforesta-

tion, soil erosion, and biodiversity loss, with repeated cycles of slash-and-burn cultivation

driving long-term land degradation and ecosystem instability in tropical regions [11].

Economic and Market Barriers: Farmers relying on traditional systems frequently

experience economic disadvantages due to limited integration into markets, lack of reliable

market information, and weak logistical infrastructure. In addition, restricted access to

financial services, modern inputs, and technical support constrains their competitiveness
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and reduces profitability, leaving smallholder communities economically vulnerable [81].

3.3 AI-Driven Transformation of Agriculture

3.3.1 From Traditional Practices to Intelligent Systems

The progression of agriculture from conventional methods to intelligent, technology-

enabled systems represents a profound paradigm shift shaped by both scientific inno-

vation and the growing demand for sustainable food production. Traditional farming,

long reliant on manual labor and experience-based decision-making, is now increasingly

complemented and, in many contexts, transformed by data-driven approaches. These

approaches employ Artificial Intelligence (AI) and Machine Learning (ML) to optimize

resource use, improve productivity, and strengthen the resilience and sustainability of

agricultural systems [8].

Key Drivers of the Transition: Multiple forces are propelling the shift from tra-

ditional agriculture toward intelligent, technology-enabled systems. Global population

growth, projected to reach 9.7 billion by 2050, is placing unprecedented pressure on food

production systems. At the same time, escalating challenges such as climate change,

resource scarcity, and shortages in agricultural labor require innovative and sustainable

responses. Artificial Intelligence (AI) provides a suite of tools capable of meeting these de-

mands by supporting precise resource allocation, generating predictive knowledge through

advanced analytics, and automating tasks that have historically relied on intensive human

labor [62, 7].

Applications of AI in Agriculture: Artificial Intelligence is now widely applied across

diverse areas of agricultural practice, where it supports more efficient management and

decision-making processes [9].

• Crop Monitoring and Management: AI-based platforms draw on satellite imagery

together with data from field sensors to track crop health, anticipate yield outcomes,

and detect the presence of pests or diseases at an early stage. These findings make

it possible for farmers to act promptly and reduce potential losses.
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• Soil and Water Management: Machine learning models process soil characteristics

to generate recommendations for fertilization strategies, while intelligent irrigation

systems regulate water distribution in response to real-time weather information

and moisture levels within the soil.

• Precision Farming: By integrating data on soil heterogeneity, crop growth patterns,

and environmental conditions, AI enables site-specific management practices that

optimize input use and contribute to higher productivity.

• Supply Chain Optimization: Predictive tools enhance efficiency along the agricul-

tural supply chain by anticipating demand patterns, coordinating logistics more

effectively, and lowering post-harvest losses.

Impact and Future Prospects: The incorporation of Artificial Intelligence into agri-

cultural systems has already produced measurable improvements that extend beyond

experimental trials and into practical applications. Studies report that the use of AI

tools has resulted in yield gains of as much as 30% while simultaneously reducing water

consumption by approximately 20% in specific production contexts. Looking ahead, as

digital technologies continue to evolve and become more widely accessible, the role of

AI in supporting sustainable, productive, and resilient farming practices is expected to

expand further, offering a pathway to address pressing challenges in food security and

environmental management [9].

3.3.2 Core AI Technologies in Smart Agriculture

A number of Artificial Intelligence technologies play a central role in shaping modern

smart agriculture.

1. Machine Learning and Predictive Analytics: Machine learning models are

applied to large and complex agricultural datasets in order to forecast crop yields, detect

emerging plant diseases, and guide the efficient use of resources. For example, predictive

models have demonstrated strong accuracy in estimating crop productivity, which allows

farmers to plan cultivation strategies more effectively and reduce potential losses [10].
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2. Computer Vision Systems: Computer vision tools supported by AI enable con-

tinuous monitoring of crop health, soil status, and pest activity. By applying image

recognition techniques, these systems can identify symptoms of plant stress or disease at

very early stages, making it possible to intervene promptly and preserve both yields and

quality [86].

3. Internet of Things (IoT): Networks of IoT devices gather continuous data on soil

conditions, crop growth, and local climate. When combined with Artificial Intelligence,

these measurements support precise management of irrigation, fertilization, and pest con-

trol, which in turn helps conserve resources and improve overall efficiency [10].

4. Cloud Computing: Cloud-based platforms provide the extensive storage capacity

and computing power required to handle the vast datasets produced in modern agriculture.

They also make it possible to deploy advanced AI models at scale, enabling farmers and

researchers to access real-time analytics and informed decision-making tools [86].

5. Blockchain Systems: Blockchain technology strengthens transparency and account-

ability across agricultural supply chains. By recording transactions and data in secure,

tamper-resistant ledgers, it contributes to food safety, supports quality assurance, and

fosters greater trust among producers, distributors, and consumers [87].

6. Data Science Approaches: Methods drawn from data science are used to process

and interpret complex agricultural datasets, allowing the discovery of patterns and rela-

tionships that would otherwise remain hidden. Such analyses guide decision-making in

areas such as crop choice, market forecasting, and risk management [88].

7. Robotics and Automation: Robotics supported by AI enable the automation

of tasks including planting, harvesting, and weed management. These systems perform

with high accuracy and efficiency, reducing reliance on manual labor while increasing

productivity, particularly in large-scale operations [89].

8. Generative AI: Generative AI models synthesize information from multiple datasets

to provide tailored recommendations on crop planning, planting schedules, and resource

allocation. Such tools can support farmers in adjusting practices to changing environ-

mental and economic conditions [88].
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3.3.3 Impact on Productivity and Sustainability

The integration of artificial intelligence (AI) and advanced digital technologies into agri-

culture has produced measurable improvements in both productivity and sustainability.

These effects are becoming increasingly evident across diverse agricultural systems world-

wide. By combining tools such as machine learning, remote sensing, and the Internet of

Things (IoT) with data-driven decision support, farms can allocate resources more effi-

ciently, carry out timely diagnostics, and implement adaptive management strategies that

respond directly to changing environmental and production conditions.

Productivity Gains: Empirical evidence shows that farms adopting AI-enabled preci-

sion practices achieve yield increases of 18% to 34%, depending on crop type and agro-

ecological conditions. A multi-country study in Asia and Sub-Saharan Africa, for example,

reported average gains of 22% in smallholder rice and maize systems, largely through bet-

ter timing and dosage of inputs. In addition, AI-supported pest and disease detection has

been shown to reduce crop losses by 14 to 21% in key horticultural supply chains [93].

Resource Efficiency and Environmental Sustainability: AI-guided variable-rate

technologies and sensor-based irrigation systems contribute to substantial reductions in

input use and environmental impacts. Studies document water savings of 18 to 25% and

fertilizer reductions of up to 28% without yield penalties, reflecting the benefits of more

precise and adaptive management. Likewise, predictive analytics and monitoring tools

strengthen integrated pest management, decreasing pesticide applications and supporting

ecological resilience [93].

Supply Chain and Food Loss Reduction: The integration of cloud-based analytics

with blockchain platforms has improved transparency, traceability, and logistics across

agri-food supply chains. Such systems have reduced post-harvest losses by 10 to 15%

through real-time tracking and optimized distribution, thereby enhancing food security

and promoting more circular production models [87].

Societal and Environmental Implications: Beyond immediate gains in productivity

and resource use, these digital innovations contribute to broader development objectives,

including poverty reduction, climate action, and sustainable consumption. For instance,
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smallholders using AI-driven systems have reported average income increases of around

12% due to lower production costs and improved market access. Environmentally, smarter

input management reduces nitrogen leaching and eutrophication risks, with studies noting

up to 20% lower nitrate runoff in areas where smart agriculture platforms are deployed

[92].

3.4 Literature Review on Crop Selection Systems

3.4.1 Descriptive Analysis

This section provides a detailed descriptive overview of existing research on crop selection

systems. The discussion reviews major dimensions of the literature, including publica-

tion trends, document types, geographical distribution, and the frequency of recurring

keywords. By examining these aspects, the analysis seeks to clarify how the field has de-

veloped over time and to characterize its present state. Such an approach offers a clearer

understanding of dominant research themes while also pointing to areas that remain un-

derexplored and may serve as directions for future studies.

The review began with a systematic search of the Scopus database, which is recognized as

the largest source of peer-reviewed scientific literature. The search was restricted to the

period between 2020 and 2024 and was carried out using a set of predefined keywords such

as ”crop recommendation system,” ”crop selection system,” and ”machine learning in crop

recommendation.” To preserve consistency and ensure relevance, the results were filtered

to include only publications written in English, while dissertations and other non-journal

sources were excluded. Applying these criteria produced a final set of 310 articles, which

constitute the foundation for the analysis presented in this study.

An analysis of the yearly distribution shows a steady increase in research on crop selection

systems Figure 3.3). The field began with 22 publications in 2020 and grew steadily,

reaching 52 publications by 2022. In 2023, the number rose sharply to 114, a growth

that can be associated with progress in machine learning, the Internet of Things, and

smart agriculture technologies. Although a modest decline was recorded in 2024 with 92

publications, the volume remains well above the earlier years, reflecting the continued
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interest of the research community in this area.

Figure 3.3: Yearly distribution of publications on crop selection systems from 2020 to
2024.

The body of literature consists of several categories of publications, including conference

papers, journal articles, book chapters, and review papers, each contributing in a distinct

way to the development of the field (Figure 3.4). Conference papers are the most numer-

ous, with 217 contributions, indicating that much of the research has been shared through

venues that prioritize recent advances and rapid communication of results. Journal ar-

ticles make up 75 publications, offering more comprehensive, peer-reviewed studies that

provide depth and methodological rigor. The collection also contains 13 book chapters

that deliver specialized discussions on particular aspects of crop selection systems, along

with 5 review papers that synthesize existing knowledge and outline potential research

directions. Taken together, this distribution reflects the active and evolving character of

the field, with conferences serving as a primary platform for presenting emerging work.

A geographical examination of the literature reveals that research on crop selection sys-

tems is distributed across a wide range of countries (Figure 3.5). India stands out with

249 publications, reflecting sustained efforts to apply agricultural technologies in response

to diverse climatic and agronomic conditions. The United States follows with 14 contribu-
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Figure 3.4: Publications classified by document type within the field of crop selection
systems.

tions, while Bangladesh accounts for 11, indicating notable engagement from both regions.

Other countries, including China (5), Egypt (5), and Sri Lanka (5), also demonstrate re-

search activity directed toward improving agricultural productivity in their respective

contexts. Nations such as Algeria, Iraq, and Italy, although represented by fewer studies,

point to a growing interest in the topic. Moreover, contributions from Australia, France,

and Ethiopia confirm that the subject has attracted attention across multiple continents,

even though research intensity varies according to national capacity and available re-

sources.

An analysis of keywords provides an overview of the main themes and recurring patterns

within the literature on crop selection systems (Figure 3.6). Frequently occurring terms

such as ”crops,” ”crop selection,” ”crop recommendation,” and ”learning systems” point to

the central focus on applying artificial intelligence to improve decision-making in agricul-

ture. Keywords including ”Internet of Things (IoT),” ”precision farming,” and ”machine

learning” demonstrate how data-driven technologies are being incorporated into agricul-

tural practices to promote efficiency and long-term sustainability. Additional groups of

terms, such as ”soil conditions,” ”fertilizers,” and ”agricultural productivity,” draw atten-
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Figure 3.5: Geographical distribution of publications on crop selection systems between
2020 and 2024.

tion to the importance of environmental and resource management when designing crop

selection models. The presence of keywords like ”decision trees,” ”support vector regres-

sion,” and ”genetic algorithms” shows the range of machine learning methods employed

in this field. Broader interdisciplinary themes, represented by terms such as ”economics,”

”logistics,” and ”food supply,” reveal the strong connections between technological de-

velopment and socioeconomic considerations. Furthermore, keywords including ”climate

conditions,” ”weather prediction,” and ”soil moisture” reflect the growing attention given

to external environmental factors that shape agricultural choices. Together, these clusters

demonstrate how artificial intelligence, environmental sciences, and agricultural economics

intersect to advance research on crop selection systems.

3.4.2 Related Works

The evolution of crop recommendation systems has progressed steadily through the appli-

cation of machine learning (ML), deep learning (DL), ensemble techniques, IoT integra-

tion, and hybrid predictive frameworks. Early studies frequently relied on conventional

ML algorithms, which were appreciated for their ease of implementation and capacity

to establish baseline predictive performance. Within this context, Alsowaiq et al. [94]

examined several classifiers, including Random Forest, Support Vector Machine (SVM),
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Figure 3.6: Keyword network analysis of research on crop selection systems between 2020
and 2024.

Decision Tree, K-Nearest Neighbors (KNN), and Naïve Bayes. Their analysis demon-

strated that Random Forest offered the highest predictive accuracy (99.45%) in identi-

fying appropriate crops for arid regions when standard agronomic features were used as

input variables.

As research advanced, greater emphasis was placed on incorporating multiple and het-

erogeneous data sources to enhance both accuracy and practical utility. Palle and Raut

[95] developed a multi-stage framework that combined weather forecasting, implemented

through ARIMA models, with profitability assessment. Their system relied on logistic

regression classifiers and achieved an accuracy of 94.2%. A limitation of their approach,
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however, was the dependence on synthetic crop price data, which reduced its applicability

in real-world agricultural markets. Expanding on this direction, Janrao and Shah [96] in-

troduced a return-on-investment-driven framework that employed several regression tech-

niques, including an optimized multilayer perceptron regressor, and demonstrated highly

consistent predictive performance (R² > 0.999).

Ensemble learning methods have attracted growing attention in the development of crop

recommendation systems. Bandi et al. [97] used a voting ensemble that combined Decision

Tree, Random Forest, and KNN models, and their approach reached an accuracy of 99.3%.

While the results were strong, the absence of hyperparameter optimization showed that

further refinement was still needed. Kumar et al. [98] designed a stacking ensemble

that brought together Random Forest and Naïve Bayes, using Random Forest again as

a meta-learner. This framework clearly outperformed the individual models, achieving

an accuracy of 99.54%. Extending these efforts, Motamedi and Villányi [99] introduced

Bayesian-optimized decision trees enhanced with PCA-based dimensionality reduction,

which produced an F1-score of 99.54%.

The adoption of deep learning methods marked another step forward in the development

of crop recommendation systems, especially through the application of convolutional neu-

ral networks (CNNs) and recurrent neural networks (RNNs). Elghamrawy et al. [100]

designed an 18-layer CNN optimized with Grey Wolf Optimization to generate crop rec-

ommendations under climate change conditions, reporting predictive accuracies between

98.2% and 98.7%. The model proved highly effective in handling complex climate-related

variables, but its lack of attention to socio-economic aspects limited its wider practical

use. In a related study, Rani et al. [101] employed Long Short-Term Memory (LSTM) net-

works for weather forecasting, which subsequently improved crop recommendation when

combined with a Random Forest model, achieving 97.24% accuracy.

The integration of the Internet of Things (IoT) has also become an important direction

in the design of crop recommendation systems, mainly because it supports real-time data

collection and decision-making. Bakthavatchalam et al. [102] developed an IoT-based

precision agriculture framework that combined sensor data with machine learning clas-
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sifiers, including Multilayer Perceptron (MLP), JRip, and Decision Table, and reported

an accuracy of 98.2%. While effective, this framework did not provide clear mechanisms

for interpretability. Building on this idea, Villanueva et al. [103] introduced IoT-driven

soil analytics integrated with artificial neural networks, offering user-friendly interfaces

and achieving 98.62% accuracy. In another contribution, Abdullahi et al. [104] used IoT

sensor networks together with Decision Trees, which produced recommendations with an

accuracy of 99.2%, although the system was limited by the availability of regional data.

Palakshappa et al. [105] further advanced this line of work by combining IoT integration

with Random Forest models within digital platforms designed for practical use, reaching

an accuracy of 98%.

Hybrid predictive systems have increasingly made use of advanced optimization meth-

ods to improve both accuracy and adaptability in crop recommendation. Kiruthika and

Karthika [106] introduced a framework that applied Improved Distribution-based Chicken

Swarm Optimization (IDCSO) for feature selection together with a Weight-based LSTM

for prediction, achieving 92.68% accuracy. In a related study, Mahale et al. [107] combined

expectation maximization preprocessing with Random Forest classification and LSTM-

based weather forecasting, which resulted in a system that produced 92.7% accuracy.

Progress has also been made in region-specific frameworks that integrate agronomic and

economic considerations. Musanase et al. [108] presented a system tailored to Rwanda

that used neural network-based recommendations along with rule-based fertilizer guid-

ance, reaching 97% accuracy.

The comparative analysis in Table 3.3 shows that most earlier studies on crop selection

concentrate on achieving high predictive accuracy, with reported values typically ranging

between 92% and 99%, without giving attention to model interpretability. Many of these

works apply machine learning classifiers such as Random Forest, Decision Tree, KNN,

and neural networks. In some cases, additional modules for weather prediction, including

LSTM or ARIMA models, are used to improve the quality of recommendations. A smaller

group of studies experiments with ensemble approaches such as voting or stacking, which

provide strong predictive performance. Despite these promising results, the limited trans-
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parency of these models reduces their usefulness in agricultural practice, since farmers

may be reluctant to rely on predictions that are not supported by clear explanations.

To address this issue, Explainable AI (XAI) methods are needed to make model outputs

more understandable and to encourage adoption in real farming environments.

3.4.3 Research Gaps and Contribution

A key gap in the current literature is the absence of an effective balance between predic-

tive accuracy and interpretability. Many previous works achieve high performance with

machine learning or deep learning models, yet these models function as black boxes and

provide no explainable AI (XAI) mechanisms to clarify the reasoning behind their recom-

mendations. This is a serious limitation in agriculture, where farmers and decision makers

need transparent explanations to trust automated suggestions. Without such reasoning,

it becomes difficult to justify why one crop is recommended while another is not, which

discourages adoption even when accuracy is high.

Another shortcoming is the limited attention to the impact of different types of prediction

errors. Most studies emphasize overall accuracy but rarely examine the consequences of

specific errors. In particular, false positives are critical in a crop recommendation context.

A false positive occurs when the system advises planting a crop that is unsuitable for the

local soil or climate. Such an error can lead to wasted resources, lower yields, and loss of

confidence in data-driven systems.

The present work addresses these gaps by proposing a crop selection framework, CS-

AdaRF-SHAP, that aims to combine high predictive performance with clear interpretabil-

ity while reducing false positive errors. The system uses the AdaBoost algorithm as the

main classifier and Random Forest as the base learner. AdaBoost iteratively adjusts the

weight of misclassified samples, forcing the model to focus on difficult cases and thereby

reducing systematic mistakes such as repeated false positives. Random Forest contributes

robustness against noisy data and captures complex, nonlinear relationships among soil

properties, weather factors, and nutrient levels.

To overcome the black-box nature of ensemble models, the framework integrates SHapley

Additive Explanations (SHAP) to provide transparent reasoning for each recommenda-
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tion. SHAP produces feature-level explanations that show how variables such as nitrogen,

phosphorus, potassium, pH, temperature, humidity, and rainfall influence the predicted

suitability of each crop. Two types of explanations are generated. Global explanations

reveal which features generally increase or decrease the likelihood of selecting a crop, while

local explanations clarify why, in a specific case, one crop is recommended over another.

By combining robust prediction with detailed explanations, the proposed system supports

trustworthy and informed decision making in real agricultural settings.

3.5 Literature Review on Data-Driven Crop Yield

Prediction

Accurate prediction of crop yields is a key factor in ensuring food security and supporting

the economic stability of agricultural systems worldwide. Reliable forecasts allow farm-

ers, policymakers, and supply chain stakeholders to plan cultivation schedules, manage

resources efficiently, and reduce production risks. However, yield prediction remains a

complex task due to the interaction of many variables, including soil conditions, climate

patterns, farming practices, and crop-specific growth characteristics [109, 110].

Traditional yield estimation methods have generally relied on manual field inspections,

historical yield records, and expert judgment. While these approaches have been widely

used, they are prone to inconsistencies and often fail to capture the intricate relationships

between environmental factors and plant growth [111]. In greenhouse and open-field

settings alike, such methods may produce inaccurate forecasts, limiting their usefulness

for precision farming and large-scale production planning.

Recent developments in smart agriculture are transforming the way crop production is

monitored and managed. Technologies such as the Internet of Things (IoT), Artificial In-

telligence (AI), blockchain-based systems, and robotics have introduced new opportunities

to collect and analyze large volumes of agricultural data [112, 113]. Within this context,

Machine Learning (ML) has emerged as a critical tool for data-driven yield prediction.

By learning from historical and real-time data, ML models can uncover hidden patterns

and complex relationships, enabling more accurate and timely predictions. These ad-
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vances support more efficient resource allocation, improved decision-making, and farming

practices that are both economically viable and environmentally sustainable [114, 115].

This section reviews published research on crop yield prediction to provide context for

recent advances in modeling strategies across different crops. Several studies have applied

a range of machine learning and deep learning techniques to improve forecasting accuracy.

For example, the authors of [100] evaluated multiple machine learning and deep learning

methods for winter wheat yield prediction. Using a dataset that combined weather, soil,

and phenological information from 271 German counties collected between 1999 and 2019,

they compared deep neural networks (DNNs), convolutional neural networks (CNNs),

decision trees, random forests, XGBoost, and linear regression. Among these models, the

CNN achieved the best performance, reducing RMSE by 7–14%, lowering MAE by 3–15%,

and improving correlation coefficients by 4–50% compared with the other approaches.

In [94], an early yield estimation method for tomato crops was introduced by combin-

ing Decision Tree Ensembles (DTE) with data captured by Unmanned Aerial Vehicles

(UAVs). Their DTE-Bag model achieved a prediction accuracy of 92.5%, demonstrating

the potential of UAV-based data for supporting farm management decisions.

In another study [95], a transformer-based model was applied to rice yield prediction

using satellite observations and climate variables. The model outperformed four other

machine learning techniques (LASSO, RF, XGBoost, and AtLSTM), achieving the highest

R2 (0.78), the lowest RMSE (0.44 t/ha), the lowest MAPE (16.56%), and an overall

accuracy of 0.72. The authors noted, however, that soil characteristics, tillage practices,

and fertilizer inputs were not included as predictive features, which may limit the model’s

generalizability.

Similarly, [97] proposed a hybrid framework for greenhouse yield forecasting that com-

bined outputs from a biophysical model (Tomgro) with a deep learning model. The Tom-

gro component used environmental inputs such as temperature, humidity, and light, while

the CNN-RNN network was trained on historical yield and environmental data. The com-

bined approach delivered the highest accuracy, with mean RMSE, R2, and Nash–Sutcliffe

efficiency (NSE) values of 17.69 ± 3.47.
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Finally, in [102], climatic factors including temperature, rainfall, and solar radiation

were used to estimate national wheat yields. Among the tested models, Random For-

est achieved the best performance, yielding RMSE values of 9.1% for Brazil, 6.7% for

France, and 6.4% for Russia.

In [98], rice yield prediction was evaluated using multiple linear regression (MLR), random

forest (RF), and a traditional regression (TR) method, based on agronomic traits such

as plant density and plant height. Field experiments conducted in Jilin Province, China,

showed that the RF model achieved the highest accuracy under varying conditions.

In [110], several regression algorithms were applied to tomato yield prediction, including

Random Forest (RF), K-Nearest Neighbors (KNN), Support Vector Regression (SVR),

Lasso Regression, and Linear Regression, across multiple datasets. Among these datasets,

the third proved to be the most reliable and comprehensive. Although RF required more

computational resources, it delivered the best predictive accuracy, while KNN and Lasso

Regression provided competitive performance with lower computational costs.

Building on the results of previous studies, the present research seeks to improve crop yield

prediction by advancing modeling techniques with an emphasis on ensemble learning. A

Stacked Ensemble Model is applied to combine multiple algorithms for daily yield esti-

mation, using tomato production as a case study. This approach leverages the strengths

of different models while reducing their individual limitations, leading to predictions that

are more robust and reliable across diverse datasets.

3.6 Literature Review on Blockchain Applications for

Data Security

The rapid growth of smart agriculture has increased the importance of collecting, storing,

and protecting large volumes of digital data. In modern farming systems, Internet of

Things (IoT) devices continuously generate real-time information that supports data-

driven decision-making. Reliable raw data forms the backbone of these systems, and

secure storage is essential to ensure that decisions are accurate, traceable, and resistant

to tampering.
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Similar concerns about data security and integrity extend well beyond agriculture to many

scientific and industrial fields. Researchers handling large datasets often face significant

challenges related to privacy, transparency, and trust. Blockchain technology has emerged

as a promising solution to these issues because of its decentralized architecture, which

ensures immutability and strengthens data integrity. By recording transactions across a

distributed network, blockchain provides an auditable and tamper-resistant ledger that

enhances trust among stakeholders.

Despite these advantages, blockchain has technical and economic limitations when applied

to data-intensive tasks. Storing large datasets directly on-chain is impractical because

of high storage costs, limited capacity, and slower transaction verification as file sizes

increase. These constraints reduce performance and hinder the scalability of blockchain-

based systems, making it unsuitable as a standalone solution for applications that require

frequent handling of large files.

To address these limitations, recent studies have explored integrating blockchain with

distributed storage systems such as the InterPlanetary File System (IPFS). IPFS enables

efficient off-chain storage by distributing files across a peer-to-peer network while main-

taining a unique cryptographic hash for each file. The hash is stored on the blockchain,

creating a permanent and verifiable link between the ledger and the stored content. This

hybrid approach allows blockchain to maintain its strengths in security and transparency,

while IPFS provides scalable and cost-effective file management.

Several research efforts illustrate the effectiveness of this integration. For example, [94]

proposed a framework that combines blockchain with IPFS to enhance the management

of Open Educational Resources (OER). In their system, providers create and share ed-

ucational content, while consumers access and use these materials. Providers generate

a digital contract containing metadata such as the resource title, creation time, creator

identity, and content hash. The resource itself is uploaded to IPFS, and its hash is per-

manently recorded on the blockchain. This design ensures data provenance and provides

a secure, verifiable record of the resource without overloading the blockchain with large

files.



3.6. Literature Review on Blockchain Applications for Data Security 57

A related study in [95] applied the same blockchain–IPFS combination to the field of

healthcare data management. In this design, sensitive medical files are encrypted and

stored on IPFS, while associated metadata, including file identifiers, patient IDs, and

cryptographic hashes, are recorded on an Ethereum blockchain. Only the hashes are

stored on-chain, which reduces storage requirements and transaction costs. When a file

is requested by an authorized party such as a doctor, technician, or patient, the system

retrieves it from IPFS and compares its hash with the blockchain entry. If the two values

match, the file is decrypted and made available to the user, thereby ensuring both data

integrity and patient privacy.

In the field of e-learning, the security and privacy of Electronic Learning Records (ELRs)

remain a challenge, largely because of dependence on third-party storage platforms. To ad-

dress these risks, [98] proposed MOOCs Chain, a blockchain-based framework designed for

the management of ELRs in Massive Open Online Courses (MOOCs). In this model, only

course providers are required to join the blockchain network, while learners remain anony-

mous to preserve their privacy. Core components of ELRs are stored on the blockchain,

whereas the original course materials are kept on IPFS. The framework also introduces

inter-authentication, anonymization, and strong mechanisms to ensure secure storage and

controlled distribution of ELRs.

Similarly, [102] introduced a blockchain-based prototype for supply chain management,

aiming to improve transparency, traceability, scalability, and the security of third-party

transactions. Since storing large records directly on the blockchain is inefficient, the

authors employed IPFS as a distributed storage layer. This hybrid setup enabled process

automation and supported secure and reliable data exchange across different points in the

supply chain.

A review of these studies shows that IPFS is widely adopted as the distributed stor-

age layer in blockchain-based data management systems. Its popularity stems from its

scalability, efficient peer-to-peer architecture, and flexibility to integrate with diverse ap-

plications that require secure and verifiable storage of large files.

Building on this foundation, our work proposes a unified framework that connects mul-
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tiple agricultural sites with government institutions through a secure blockchain-enabled

architecture. The framework is designed to manage the collection, storage, and controlled

exchange of greenhouse data while preserving data integrity and confidentiality. Access

is strictly regulated so that one site cannot retrieve or modify another site’s information

without explicit authorization, while institutional oversight ensures that data sharing

remains transparent and accountable.

3.7 Conclusion
This chapter reviewed the development of smart agriculture, outlining the limitations of

traditional farming and the potential of digital technologies to overcome these challenges.

The next chapter presents the first contribution of this thesis, an interpretable crop se-

lection system designed to combine predictive accuracy with explainability to support

reliable farming decisions.



Chapter 4

Contribution 1: Interpretable Crop

Selection for Optimized Farming

Decisions

4.1 Introduction

Deciding what to plant is the first and most fundamental challenge in agriculture, as it

shapes the entire production cycle and strongly influences profitability, resource manage-

ment, and environmental sustainability. Farmers must make this decision before any other

management step, yet traditional approaches to crop selection often fall short when fac-

ing changing conditions such as soil variability, shifting climate patterns, and fluctuating

nutrient availability. Artificial intelligence (AI) offers considerable potential to support

this crucial choice by analyzing diverse sources of information and adapting to complex

environmental factors. Nevertheless, a major obstacle remains: most AI-based systems

do not provide clear explanations for their recommendations. Farmers, whose income and

long-term planning depend on this initial decision, are often reluctant to adopt systems

that deliver predictions without transparent reasoning, even when those predictions are

statistically sound.

In this context, interpretability means the ability to explain why a specific crop is rec-

ommended. For instance, a model should indicate whether factors such as nitrogen,

59
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phosphorus, potassium levels, rainfall, or temperature had the greatest influence on its

decision. Transparency is closely related and refers to making the internal reasoning of

the model understandable, such as showing how much each factor contributes to the final

recommendation. Without interpretability and transparency, AI systems may be seen as

“black boxes,” which weakens trust and limits their practical value. Many current ap-

proaches focus mainly on predictive accuracy while giving little attention to explainability,

creating a gap between technical performance and farmers’ readiness to use these tools.

Agricultural decisions demand accurate predictions together with clear explanations that

farmers can understand and use in their planning.

To answer the fundamental question of “what we plant?” and respond to the challenge of

providing both accuracy and transparency, this chapter presents a crop selection system

that integrates strong predictive performance with clear interpretability. The proposed

CS-AdaRF-SHAP framework combines an ensemble learning approach with explainable

AI techniques to deliver recommendations that are both dependable and understandable.

Adaptive boosting is employed to improve predictions by concentrating on harder-to-

classify cases, which strengthens the model’s ability to handle varied environmental con-

ditions. In addition, feature attribution methods are applied to measure the influence of

variables such as soil nutrients and climate conditions on final outcomes.

The remainder of this chapter is organized as follows. First, an exploratory analysis of

the dataset is presented to describe its key characteristics. Next, the preprocessing steps

and feature selection process are explained in detail. This is followed by a comparison of

several machine learning models for crop selection to assess and validate the preprocessing

strategy. Finally, the proposed system is introduced and evaluated with respect to both

predictive accuracy and clarity of explanations, and the chapter concludes with a brief

summary of the main outcomes.

4.2 Methodology Overview

The proposed system CS-AdaRF-SHAP is designed to provide strong predictive accuracy

while also offering clear and practical explanations of its recommendations. This dual
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focus supports the use of AI-based tools in agricultural decision making and helps farmers

understand the reasoning behind each crop suggestion. As shown in Figure 4.1, the system

architecture is organized into two main phases: offline phase and online phase.

Figure 4.1: The general architecture of the proposed system.

Offline Phase The offline stage focuses on constructing a reliable crop selection model.

The process begins with an exploratory data analysis (EDA) to check the distribution of

each variable, study univariate and bivariate analysis, and measure correlations. After this

analysis, data preparation includes detecting and handling outliers, the use of Min–Max

scaling to align feature ranges, and the creation of additional synthetic samples to ex-

pand each crop class from 100 to 300 records. All seven agronomic variables (nitrogen,

phosphorus, potassium, pH, temperature, humidity, and rainfall) are kept to maintain es-

sential soil and climate information. To confirm that each preprocessing step contributes

to better predictions, several scenarios were examined using five machine learning algo-

rithms (RF, DT, Naïve Bayes, SVM, and KNN). The results of these tests guided the

construction of the final preprocessing pipeline.

The cleaned and enriched dataset is then used to train the AdaBoost classifier, which

combines a series of decision tree learners to form a strong ensemble model.

Online Phase In the online phase, the system operates in real time to provide farmers

and agricultural practitioners with crop recommendations. The trained AdaBoost model
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processes new input data and returns suitability predictions with very low response time,

allowing users to make timely decisions. Each recommendation is accompanied by in-

terpretability measures produced with SHapley Additive exPlanations (SHAP). SHAP

calculates and displays how each soil and climate variable contributes to the suggested

crop, giving clear and practical explanations for every prediction. Interactive visual tools

present these explanations in an accessible way, helping users compare the results with

their own field conditions and build confidence in the model’s guidance.

4.3 Exploratory Data Analysis

4.3.1 Data Acquisition and Characteristics

The dataset used in this study was obtained from a public repository available on Kaggle

[116]. It contains a total of 2,200 records, distributed equally across 22 crop species of

agricultural importance. Each crop class is represented by exactly 100 entries, which

provides a balanced distribution across categories. This balance is particularly important

for supervised learning, as it reduces bias during training and supports fair evaluation of

model performance.

The crop categories represent a wide range of agronomic groups. For clarity of analysis,

they can be organized into four main sectors:

• Cereals: Staple food crops including rice, wheat, and maize.

• Legumes: Protein-rich pulses such as chickpea, lentil, and kidney beans.

• Fruits: Seasonal and perennial fruit crops including watermelon, muskmelon, pa-

paya, and mango.

• Plantation or Cash Crops: Crops of high economic value, such as cotton, jute,

and coffee.

Each record in the dataset includes seven independent variables that play an essential

role in determining crop growth and suitability (Figure 4.2).
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Table 4.1: Descriptive statistics of agricultural parameters.

Features Min Max Median SD Mean Skewness Kurtosis

N (mg/kg) 0 140 37 36.9 50.55 0.5 -1.05
P (mg/kg) 5 145 51 33.05 53.36 1.01 0.85
K (mg/kg) 5 205 32 50.6 48.14 2.4 4.4
Temp. (°C) 8.8 43.7 25.6 5.06 25.61 0.18 1.2

Humidity (%) 14.3 100 80.5 22.3 71.48 -1 0.3
pH 3.5 9.94 6.43 0.77 6.46 0.3 1.6

Rainfall (mm) 20 299 95 55 103.46 0.96 0.6

4.3.2 Univariate Analysis and Distribution Visualization

Univariate analysis examines each variable independently to describe its general behav-

ior and statistical properties. This step helps reveal the distribution, central tendency,

variability, and overall shape of the data. It also assists in detecting skewed features,

unusual values, or quality issues that may influence the performance of predictive models.

Descriptive statistics are provided in Table 4.1, and feature-level patterns are considered

in the discussion that follows.

• Nitrogen (N):

– Range: 0 to 140 mg/kg; Median = 37 mg/kg.

– The distribution is mildly right-skewed (skewness ≈ 0.5), and kurtosis is neg-

ative (-1.05), indicating a relatively flat distribution with few extreme values.

– Interpretation: Over half of the samples show nitrogen values at or below

37 mg/kg, suggesting that many crops in the dataset grow under low to mod-

erate N conditions. The slightly right-skewed shape indicates the presence of

soils with higher nitrogen, which are likely associated with crops that require

greater nutrient input.

• Phosphorus (P):

– Range: 5 to 145 mg/kg; Mean = 53.36 mg/kg; SD = 32.99 mg/kg.

– Right-skewed distribution (skewness ≈ 1.01) with some high-value outliers.
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(a) Distribution of Nitrogen (b) Distribution of Phosphorus

(c) Distribution of Potassium (d) Distribution of Temperature

(e) Distribution of Humidity (f) Distribution of Rainfall

(g) Distribution of Soil pH

Figure 4.2: Distributions of soil macronutrients (N, P, K), environmental factors (tem-
perature, humidity, rainfall), and soil acidity (pH).
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– Interpretation: The mean and median place most samples in a moderate phos-

phorus range. The right skew reveals fewer but notable cases of high-P soils,

which may correspond to crop groups with stronger phosphorus demand. This

pattern indicates that while moderate P conditions are common, certain crops

adapt to higher levels.

• Potassium (K):

– Range: 5 to 205 mg/kg; Median = 32 mg/kg; Mean = 48.15 mg/kg.

– Strongly right-skewed (skewness = 2.40) and leptokurtic (kurtosis = 4.4).

– Interpretation: With a median near 32 mg/kg, most samples fall into a low

to moderate potassium range, which suits many of the crops represented. The

pronounced skewness and high kurtosis reflect a small fraction of samples with

very high potassium, likely linked to crop types requiring stronger K availabil-

ity.

• Temperature (°C):

– Range: 8.83 to 43.68°C; Mean = 25.62°C.

– Near-normal distribution with slight right skew.

– Interpretation: Most values lie between 22 and 29 °C, which represents optimal

conditions for many of the crops included in the dataset. The higher values

reflect environments suitable for heat-tolerant crops, while the lower values

correspond to species adapted to cooler climates.

• Humidity (%):

– Range: 14.26% to 99.98%; Mean = 71.48%.

– Bimodal distribution.

– Interpretation: The presence of two peaks indicates that the dataset covers

both dry and humid conditions. This suggests inclusion of crops grown in arid

environments as well as crops requiring high atmospheric moisture.
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• Rainfall (mm):

– Range: 20.21 to 298.56 mm; Mean = 103.46 mm.

– Strong right-skewed distribution.

– Interpretation: Most records fall below 150 mm, showing that many crops in

the dataset grow under moderate rainfall. The presence of a few very high

values reflects crops cultivated in regions with heavy rainfall.

Soil pH:

– Range: 3.50 to 9.94; Mean = 6.47.

– Nearly normal distribution centered around 6.4.

– Interpretation: Most samples fall within a neutral to slightly acidic range. This

range is favorable for a wide group of crops. A smaller number of samples at

the extremes show strongly acidic or alkaline soils, suggesting conditions suited

only for crops adapted to those specific environments.

4.3.3 Bivariate Analysis

A bivariate analysis was carried out to explore the relationships between each independent

variable and the target crop label. This examination helps to understand how much each

numerical feature varies across different crop classes and to detect variables that may be

redundant or strongly discriminative. The analysis was organized into two main parts

according to the types of variables: (1) relationships between pairs of numerical variables,

and (2) relationships between numerical variables and the categorical crop label.

Numerical–Numerical Analysis

To examine relationships among the numerical features and to check for possible mul-

ticollinearity, a Pearson correlation matrix was computed (Figure 4.3). The coefficient

values range from −1 (perfect negative correlation) to +1 (perfect positive correlation).

The main observations are as follows:

• Phosphorus (P) and Potassium (K) show a moderately strong positive correla-

tion (r ≈ 0.74). This means that higher levels of P are often accompanied by higher
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Figure 4.3: Correlation matrix showing pairwise relationships among numerical features.

levels of K across the samples. In machine learning applications, such a correlation

may introduce redundancy, particularly in linear models such as Logistic Regression

or Linear Discriminant Analysis, where multicollinearity can affect performance.

• Temperature and Humidity have a weak negative correlation (r ≈ −0.14), sug-

gesting only a slight inverse relationship between the two variables.

• Other variable pairs, including Nitrogen with Rainfall or pH, show negligible cor-

relation (|r| < 0.1). Such low associations reduce the risk of overlapping information

and help maintain model stability.

Interpretation: The correlations observed are generally low to moderate, which indicates

that most features contribute distinct information. This diversity among predictors is

beneficial for building machine learning models, as it reduces redundancy and supports
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clearer interpretation of results.

Numerical–Categorical Analysis

This analysis explored how each numerical feature varies across the 22 crop categories

in the dataset. Two complementary approaches were applied to evaluate the ability of

these features to separate crop types. First, one-way ANOVA was used to test whether

the mean values differ significantly among crops, which is helpful for detecting linear

separability relevant to models such as logistic regression. Second, Mutual Information

(MI) was calculated to measure the strength of non-linear relationships between each

feature and the crop labels, a property that can guide the use of non-linear algorithms

such as decision trees.

1. One-Way ANOVA (Analysis of Variance):

A one-way ANOVA test was applied to check whether the mean of each numerical feature

varies significantly across the 22 crop types. The results are presented in Table 4.2.

Table 4.2: One-Way ANOVA Results for Numerical Features

Feature F-statistic p-value
Nitrogen (N) 897.57 < 1× 10−300

Phosphorus (P) 1885.66 < 1× 10−300

Potassium (K) 27,238.36 < 1× 10−300

pH 60.34 6.49× 10−199

Temperature 102.19 4.02× 10−305

Humidity 3103.71 < 1× 10−300

Rainfall 605.53 < 1× 10−300

Interpretation: All p-values are extremely small, showing that the mean values of every

feature differ significantly across the crop categories. Potassium (K) recorded the highest

F-statistic, making it the most discriminative variable among the tested features. Hu-

midity and Phosphorus also display strong variation between crops, indicating that these

factors play an important role in distinguishing growing conditions.

2. Mutual Information (MI):

Mutual Information (MI) was used to measure how strongly each numerical feature is

related to the crop labels while also capturing possible non-linear relationships. The
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ranked scores in Table 4.3 show the strength of these feature–label connections.

Table 4.3: Mutual Information Scores for Feature–Label Relationships

Feature Mutual Information Score
Humidity 1.730
Rainfall 1.637
Potassium (K) 1.630
Phosphorus (P) 1.298
Temperature 1.018
Nitrogen (N) 0.993
pH 0.686

Interpretation: Humidity, Rainfall, and Potassium show the strongest connections with

crop type, each with MI values above 1.6. Nitrogen, although important in the ANOVA

results, ranks lower here, which points to a relationship that is more linear and therefore

less captured by MI. The lowest score belongs to pH, suggesting that this feature varies

less across crops and is generally more uniform in its effect.

3. Feature Distributions Across Crops:

To support the statistical findings, graphical summaries were prepared to show how the

numerical features vary among the 22 crop types. Boxplots were created for each vari-

able grouped by crop label (Figures 4.4, 4.5). These visualizations help reveal natural

groupings, differences in spread, and possible extreme values.

• Rainfall: Crops such as rice and jute require much higher rainfall, while legumes

and pulses remain tightly clustered at lower values.

• Humidity: Separates water-demanding crops like rice and sugarcane from dry-land

crops such as lentil and gram.

• pH: Most crops grow best in a near-neutral pH range (around 6.0–7.5), although

crops like coffee and grapes tolerate a wider range.

Interpretation: These visual patterns support the ANOVA and MI outcomes by showing

clear differences in key variables across crop groups. They also help identify outliers

and overlapping regions, which is valuable when selecting features or preparing data for

classification models.
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Figure 4.4: Feature distributions across crops for Nitrogen (N), Phosphorus (P), and
Potassium (K).

4.3.4 EDA-Driven Strategy

Table 4.4 summarizes the key observations from the exploratory data analysis and the

actions taken during dataset preparation. Each action is supported by statistical tests

and visual checks to improve data quality and guide later modeling steps.
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Figure 4.5: Feature distributions across crops for Temperature, Humidity, pH, and Rain-
fall.
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Table 4.4: Summary of EDA Results and Applied Actions

Analysis Main Observations Actions / Decisions
Numerical–Numerical
Correlation

Most feature pairs show very low
correlation. Only Phosphorus
and Potassium have a moderate
positive relationship (r ≈ 0.74).

Keep all features but moni-
tor Phosphorus and Potas-
sium when using linear
models. If multicollinear-
ity affects model stability,
remove or combine one of
them.

One-Way ANOVA All numerical features differ
strongly in their mean values
across the 22 crop types (p-values
close to zero). Potassium, Hu-
midity, and Phosphorus show the
highest F-statistics.

Retain all features for
modeling. Give priority to
Potassium and Humidity
as main predictors. If
dimensionality reduction
is needed, start by drop-
ping features with lower
F-statistics.

Mutual Information
(MI)

Humidity, Rainfall, and Potas-
sium show the strongest non-
linear relationship with crop la-
bels. Nitrogen has moderate
scores, and pH records the low-
est value.

Use Humidity, Rainfall, and
Potassium as key inputs for
non-linear models. Con-
sider removing pH if feature
reduction is required since it
carries limited information.

Feature Distributions Rainfall, Humidity, and pH vary
clearly across crops. Some crops
share overlapping ranges and a
few outliers appear in nutrient
levels.

Apply scaling to maintain
balanced influence of all
variables. Identify and treat
extreme nutrient values to
reduce the effect of outliers.

Class Balance Each crop class contains 100 sam-
ples.

No action required; keep the
natural class balance with-
out oversampling or under-
sampling.

4.4 Data Preprocessing

This section explains the operations performed to prepare the dataset before applying ma-

chine learning models. The objective was to ensure that all features were clean, complete,

and ready for analysis.



4.4. Data Preprocessing 73

4.4.1 Data Cleaning

Missing Value Detection

The dataset was examined to confirm that each numerical feature and the crop label

were fully recorded. Let xij represent the value of feature j for observation i, and let the

indicator function be

Mij =


1, if xij is missing

0, otherwise.
(4.1)

The number of missing entries for each feature is then calculated as
∑n

i=1Mij, where n is

the total number of records.

Result: All seven numerical predictors (Nitrogen, Phosphorus, Potassium, Temperature,

Humidity, pH, Rainfall) and the crop label were complete, with no missing entries de-

tected. Because the dataset is fully populated, no imputation or record removal was

required.

The same inspection was applied to check for duplicate rows and inconsistent values. No

duplicates or irregular entries were found, confirming that the raw data could be used

directly in later preprocessing steps.

Outlier Detection

Potential outliers were examined using the Z-score method, a standard statistical ap-

proach that measures how far a value lies from the mean of a given feature. For each

observation xi of a feature x, the Z-score is computed as

Zi =
xi − µ

σ
(4.2)

where µ is the mean and σ is the standard deviation of the feature. Values with an

absolute Z-score greater than three (|Zi| > 3) were flagged as possible outliers. This

threshold represents the outer 0.3% of values in a normal distribution, based on the

empirical 68–95–99.7 rule. This procedure allows the detection of unusually high or low

measurements that may result from recording errors or extreme natural variation.
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Global Outlier Detection and Observations The univariate analysis in Section 4.3.2

showed that several features depart from a normal distribution, as reflected by their skew-

ness and kurtosis. These measures correspond to the number of extreme values identified

by the Z-score method:

• Potassium (K) displayed the highest skewness (2.40) and kurtosis (4.40). This

pattern matches its large count of Z-score outliers and points to the presence of

many very high measurements.

• Phosphorus (P) and Rainfall presented moderate positive skew (around 1.0),

which agrees with their moderate outlier counts driven by occasional high readings.

• pH showed low skewness and a nearly normal distribution, in line with the small

number of detected outliers.

Figure 4.6: Global outlier count for each feature using Z-score.

The global Z-score analysis (Figure 4.6) showed that Potassium (K) contained about

200 extreme values, Phosphorus (P) around 135, Temperature about 85, pH nearly

60, Rainfall close to 100, and Humidity roughly 30. In contrast, Nitrogen (N) dis-

played no outliers under the standard Z-score threshold (|z| > 3), which indicates a stable

distribution for this feature.
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Limits of Global Z-Scores Global Z-score analysis can detect unusual values when

the data come from a single population, but this condition does not fully match the

present dataset. The data include 22 different crop types, each with its own physiological

traits and environmental needs. As a result, values that appear extreme when viewed

across the entire dataset may be normal within certain crop groups. This limits the use

of a single global threshold for detecting outliers in such a varied, class-dependent setting.

Figures 4.4 and 4.5 illustrate this point by showing the distribution of key numerical

features for each crop type. The boxplots display the interquartile range (IQR) through

their whiskers, providing a clearer view of variability within individual crop classes.

To address this variability, outlier detection was refined using a class-conditional Z-

score, where the score is computed separately for each crop type. For a given crop c and

feature j, the Z-score is calculated as

Z
(c)
ij =

x
(c)
ij − µ

(c)
j

σ
(c)
j

for i = 1, . . . , nc (4.3)

Here, µ(c)
j and σ

(c)
j represent the mean and standard deviation of feature j within crop c,

and nc is the number of observations for that crop. This method identifies extreme values

relative to the natural distribution of each crop and avoids labeling valid crop-specific

measurements as outliers.

The percentage of detected outliers for each crop and feature is shown in Figure 4.7. This

figure provides a clear view of how the share of extreme values changes across crops and

measured features.

Detected outliers were handled using median imputation. Each extreme value was

replaced with the median of the same feature within the corresponding crop, which keeps

the typical value of each group while reducing the effect of rare extreme points.

4.4.2 Feature Scaling

To give all numerical features an equal effect during model training, Min–Max scaling

was applied. This method rescales each feature to the range [0, 1] using its observed

minimum and maximum values. Scaling prevents variables with wide numeric ranges
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Figure 4.7: Percentage of detected outliers for each crop and feature using class-
conditional Z-scores.

from dominating those with smaller ranges, improves numerical stability, and helps the

optimization process converge more smoothly. The transformation is defined as

Xscaled =
X −Xmin

Xmax −Xmin
(4.4)

where X is the original feature value, and Xmin and Xmax are the minimum and maximum

values of that feature.

4.4.3 Categorical Encoding

The dataset includes categorical variable, the crop type labels, which need to be expressed

as numbers to be used in machine learning models. Label encoding was applied to give

each crop type a unique integer value. This approach keeps the class distinctions clear

and allows categorical and numerical features to be combined during model training and

evaluation.

4.4.4 Feature Selection

Feature selection was guided by EDA using correlation checks, ANOVA tests, mutual

information, and examination of feature distributions.
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Correlation results revealed one moderate relationship between Phosphorus and Potas-

sium (r ≈ 0.74), while all other feature pairs were nearly independent. To reduce the risk

of multicollinearity in linear models, Potassium was kept and Phosphorus considered for

removal.

ANOVA showed that all numerical features differ across crop types, with Potassium,

Humidity, and Phosphorus giving the highest F-statistics. Mutual information supported

this by ranking Humidity, Rainfall, and Potassium as the most informative, while pH had

the lowest score and showed strong overlap between crop classes.

Based on these results, four features were selected for model training:

• Potassium: high ANOVA score and strong mutual information,

• Humidity: high ANOVA score and highest mutual information,

• Rainfall: strong mutual information and clear separation between classes,

• Temperature: moderate but stable predictive value.

The remaining features pH, Phosphorus, and Nitrogen were removed. pH contributed

little useful information and overlapped heavily across classes. Phosphorus was dropped to

avoid redundancy with Potassium, which showed stronger predictive strength. Nitrogen,

although important for soil analysis, provided only moderate mutual information and

lower discriminative value than Temperature.

To confirm whether the four selected features can achieve performance similar to the full

seven-feature set, the next section compares machine learning models trained on both

configurations.

4.4.5 Data Augmentation

The dataset was augmented to raise the number of samples in each crop class from 100

to 300, giving a total of 6,600 records. This step widened the range of feature values

and provided a stronger basis for model training. The target of 300 samples per class

was chosen as a compromise between diversity and computational cost. Preliminary tests



78Chapter 4. Contribution 1: Interpretable Crop Selection for Optimized Farming Decisions

showed that 200 samples offered limited variability, while 400 samples added little benefit

but increased training time.

The augmentation process is given by

Raugmented = Noriginal + (Rtarget −Roriginal)× C (4.5)

where

• Raugmented is the total number of rows after augmentation (6, 600),

• Noriginal is the initial number of rows (2, 200),

• Rtarget is the desired rows per class (300),

• Roriginal is the rows per class before augmentation (100),

• C is the number of crop classes (22).

This expansion allowed evaluation of model performance on a larger training set while

keeping computation manageable. Because the extra records are synthetic, model results

were validated on the augmented data to ensure reliability.

4.5 Assessment of Data Preprocessing
This section reviews the preprocessing steps applied to the dataset and examines their

effect on model reliability. A set of baseline machine learning models is evaluated to

provide a performance benchmark and to verify the effectiveness of the preprocessing

procedure.

4.5.1 Experimental Design

The effect of the preprocessing pipeline described in Section 4.4 was examined through a

set of controlled experiments. Each experiment modified a single preprocessing step while

keeping the remaining steps unchanged, allowing a clear view of how individual choices

influence model behavior.



4.5. Assessment of Data Preprocessing 79

The prepared dataset was then used to train and test several machine learning algorithms

for crop recommendation. The evaluated models include Multi-Layer Perceptron (MLP),

Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), K-Nearest

Neighbors (KNN), and Naïve Bayes (NB). Their performance serves as a reference for

validating the preprocessing approach.

The experiments addressed the following aspects:

• Dataset Splitting: Tested 50:50 and 80:20 partitions to study how training set

size influences performance.

• Data Cleaning: Compared median imputation of class-conditional outliers with

direct removal to examine the impact on model stability and data coverage.

• Feature Scaling: Tested Min-Max scaling to assess its effect on model perfor-

mance.

• Feature Selection: Trained models first on the key variables identified during ex-

ploratory analysis and then on the complete feature set to measure the contribution

of additional attributes.

• Data augmentation: Evaluated the effect of increasing the number of samples

per crop on prediction accuracy.

4.5.2 Results

Before presenting the detailed comparisons, it is useful to describe the starting conditions

that served as a reference for all experiments. The first set of tests was carried out using

the following baseline configuration:

• Data cleaning: The raw dataset was used as collected, with no cleaning or impu-

tation of missing or extreme values.

• Dataset split: Training and testing sets were divided evenly using a 50:50 ratio.

• Data augmentation: No additional samples were generated or added to the

dataset.
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• Feature selection: Only four key features were selected from the seven available

variables.

This setup provides a practical reference point for examining how later preprocessing

choices influence model accuracy and stability.

Dataset Splitting

Table 4.8 shows the effect of changing the train–test split from 50:50 to 80:20. All clas-

sifiers obtained higher accuracy when a larger share of the data was used for training,

which allowed the models to learn more representative patterns before evaluation. The

largest improvement was observed for KNN, which increased from 82.45% to 87.72% (a

gain of 5.27%). Decision Tree and Random Forest also benefited, with increases of 2.45%

and 1.59%, respectively. SVM improved by 1.91%, while Naïve Bayes showed only a slight

change of 0.04%.

Table 4.5: Impact of dataset splitting on classification accuracy.

Classifier 50:50 Split 80:20 Split Accuracy Gain

RF 94.54% 96.13% +1.59%
DT 92.27% 94.72% +2.45%
NB 94.27% 94.31% +0.04%

SVM 68.09% 70.00% +1.91%
KNN 82.45% 87.72% +5.27%

Data Cleaning

To examine how different treatments of outliers influence model accuracy, three strategies

were applied:

1. Raw data: The dataset was used without any cleaning to reflect original field

conditions.

2. Outlier removal: Records with extreme values were deleted in an attempt to

reduce skewed distributions.

3. Median imputation: Outliers were replaced with the feature-wise median to keep

the full sample size while limiting the effect of extremes.
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Table 4.6: Impact of Outlier Processing Techniques on Accuracy with Gains or Losses
Relative to Raw Data.

Classifier Raw Data Outlier Removal
(Gain/Loss)

Median Imputation
(Gain/Loss)

RF 94.54% 93.00% (-1.54%) 94.72% (+0.18%)
DT 92.27% 89.54% (-2.73%) 92.27% (+0.00%)
NB 94.27% 91.72% (-2.55%) 94.27% (+0.00%)

SVM 68.09% 61.72% (-6.37%) 68.27% (+0.18%)
KNN 82.45% 77.45% (-5.00%) 82.72% (+0.27%)

A direct comparison between the raw dataset and the version with outlier removal shows

a drop in accuracy for every classifier (Table 4.6). The reduction is small for RF (-1.54%)

but large for SVM (-6.37%), which suggests that deleting extreme records removed some

data points that carry useful information. When outliers were replaced by the median,

the models kept nearly the same accuracy as the raw data and in a few cases achieved

slight gains. For example, RF rose from 94.54% to 94.72% (+0.18%), and KNN improved

from 82.45% to 82.72% (+0.27%).

Feature Scaling

To reduce bias caused by different feature ranges, we tested Min–Max scaling in the range

[0,1] against models trained on raw values:

• Unscaled: Original feature ranges kept without adjustment.

• Scaled: All features transformed to the [0,1] range using the Min–Max method.

Table 4.7: Impact of Feature Scaling on Accuracy

Classifier Without Scaling With Scaling Accuracy Gain

RF 94.54% 95.18% +0.64%
DT 92.27% 92.81% +0.54%
NB 94.27% 94.27% +0.00%

SVM 68.09% 88.63% +20.54%
KNN 82.45% 88.36% +5.91%

Normalization mainly improved models that depend on distance calculations (Table 4.7).

SVM gained 20.54% because kernel functions are sensitive to unequal feature ranges.

KNN increased by 5.91% as neighbor comparisons require features on a similar scale.
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Tree-based methods showed only minor changes (RF: +0.64%, DT: +0.54%), and Naïve

Bayes remained unchanged, reflecting their scale-invariant structure.

Feature Selection

We compared two different feature sets using an 80:20 train–test split to examine the

effect of dimensionality on model accuracy:

• Selected features: a reduced set containing Potassium, Temperature, Humidity,

and Rainfall.

• All features: the complete group of seven variables.

Table 4.8: Impact of Feature Count on Accuracy

Classifiers 4 features
(80:20 split)

7 features
(80:20 split) Accuracy Gain

RF 96.13% 99.09% +2.96%
DT 94.72% 98.18% +3.46%
NB 94.31% 99.31% +5.00%

SVM 70.00% 96.59% +26.59%
KNN 87.72% 97.50% +9.78%

Expanding the input to seven features improved accuracy for all models (Table 4.8). Gains

ranged from +2.96% for RF to +26.59% for SVM. Tree-based models such as RF and

DT showed smaller gains, while SVM and KNN benefited most from the extra variables.

This shows that the four-feature set retains most of the useful signal, but using all seven

features gives the best overall accuracy.

Data Augmentation

Two dataset versions were evaluated using an 80:20 train–test split to assess how data

augmentation affects model accuracy:

• Without augmentation: The original dataset contained 2,200 records, with 100

samples for each of the 22 crop classes.

• With augmentation: The dataset was expanded to 6,600 records by generating

synthetic samples so that each class increased from 100 to 300 samples.
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Table 4.9: Impact of Data Augmentation on Accuracy

Classifier Without Augmentation
(80:20 split)

With Augmentation
(80:20 split) Accuracy Gain

RF 96.13% 96.85% +0.72%
DT 94.72% 95.41% +0.69%
NB 94.31% 94.88% +0.57%

SVM 70.00% 71.26% +1.26%
KNN 87.72% 88.65% +0.93%

As shown in Table 4.9, adding synthetic samples gave a modest accuracy increase for every

model. Tree-based classifiers such as RF and DT gained about 0.7%, which reflects their

ability to use a larger training set even when their performance was already high. Naïve

Bayes improved by only 0.57%, a small change that matches its lower dependence on

sample size once class probabilities are well estimated. Distance-based methods benefited

the most: KNN accuracy rose by 0.93%, and SVM achieved the largest gain of 1.26%,

suggesting that extra data helped these algorithms draw more precise decision boundaries

in the feature space.

Preprocessing Outcomes

Testing showed that an 80:20 split, median imputation, Min–Max scaling, full seven-

feature input, and data augmentation each improved model accuracy. Scaling mainly

boosted SVM and KNN, while tree models gained from median imputation and larger

training data. These choices were combined to build the final preprocessing pipeline for

the AdaBoost crop selection model.

4.6 Development and Workflow of the CS-AdaRF-

SHAP Model

We introduce CS-AdaRF-SHAP, an AdaBoost ensemble with Random Forest base

learners and post hoc explanations provided by SHAP.
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4.6.1 CS-AdaRF Development and Optimization

Rationale for Selecting AdaBoost

In agricultural decision-making, particularly in crop selection, classification errors can

have serious effects. A false positive (FP), which occurs when the system recom-

mends an unsuitable crop, may lead to wasted inputs, poor yields, and financial loss. In

contrast, a false negative (FN), where a suitable crop is not recommended, can cause

farmers to miss profitable and productive options.

AdaBoost is well suited because it trains models in sequence and gives more weight to

difficult samples, helping to lower both types of errors. Its exponential loss function places

strong penalties on confident mistakes, adding an extra layer of protection against costly

outcomes.

When combined with strong base learners such as Random Forests, AdaBoost provides a

solid compromise between predictive power and resistance to overfitting. Because mini-

mizing wrong recommendations and maintaining farmer confidence are critical for a prac-

tical crop selection system, AdaBoost was chosen as the main model even when other

algorithms achieved similar accuracy in early experiments.

CS-AdaRF Framework

AdaBoost (Adaptive Boosting) is an ensemble learning method that builds a strong pre-

dictive model by combining many weak classifiers in a sequential manner. As shown in

Figure 4.8, the algorithm begins by assigning the same weight to every training sample.

During each iteration, a weak base learner is trained on the weighted data. After each

round, the weights of misclassified samples are increased so that the next learner pays

more attention to the cases that are hardest to classify. Through this adaptive weighting,

the model gradually focuses on the most challenging observations and improves its ability

to separate the classes. In the final step, AdaBoost merges the outputs of all weak learn-

ers, usually through a weighted voting scheme, to produce a single classifier that achieves

higher accuracy than any individual learner.
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Figure 4.8: AdaBoost architecture.

Mathematical Foundations and Learning Procedure

Given a training dataset D = {(xi, yi)}Ni=1, where xi ∈ Rd denotes the feature vector and

yi ∈ {1, 2, . . . , 22} the crop class label, CS-AdaRF operates as follows:

1. Initialization: Assign each sample an equal initial weight:

w
(1)
i =

1

N
, ∀i = 1, . . . , N.
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This ensures every data point is equally important at the start.

2. Boosting Rounds: For each iteration t = 1, . . . , T :

(a) Base Classifier Training: Train a Random Forest classifier ht(x) using the

weighted dataset. Samples that were harder to classify in previous rounds will

have higher weights.

(b) Weighted Error Calculation: Compute the weighted error rate:

εt =

∑N
i=1 w

(t)
i · I(ht(xi) 6= yi)∑N

i=1w
(t)
i

where I(·) is the indicator function that equals 1 when the prediction is incor-

rect.

(c) Model Weight Computation: Calculate the importance (weight) of the

current model:

αt = ln
(
1− εt
εt

)
+ ln(K − 1)

where K = 22 is the number of classes. This step ensures that models with

lower error rates contribute more to the final prediction.

(d) Weight Update: Increase the weights of misclassified samples so that future

classifiers focus on them:

w
(t+1)
i = w

(t)
i · exp (αt · I(ht(xi) 6= yi))

(e) Normalization: Normalize weights so they sum to 1:

N∑
i=1

w
(t+1)
i = 1

This maintains the weights as probabilities for the next round.

3. Final Ensemble Prediction: For a new sample x, the ensemble predicts the class
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with the highest weighted sum of votes:

H(x) = arg max
k∈{1,...,22}

T∑
t=1

αt · I(ht(x) = k)

Each ht(x) is a Random Forest model trained in the t-th boosting round.

Algorithm 1 CS-AdaRF-SHAP for Crop Selection
1: Input: Preprocessed dataset D = {(xi, yi)}Ni=1; number of boosting rounds T ; Ran-

dom Forest hyperparameters
2: Output: Final ensemble classifier H(x)

3: Initialize sample weights: w
(1)
i ← 1/N for all i

4: for t = 1 to T do
5: Train Random Forest ht(x) with weights w

(t)
i

6: Compute weighted error: εt ←
∑N

i=1 w
(t)
i I(ht(xi) 6=yi)∑N
i=1 w

(t)
i

7: Compute model weight: αt ← ln
(

1−εt
εt

)
+ ln(K − 1)

8: for i = 1 to N do
9: Update: w

(t+1)
i ← w

(t)
i exp (αtI(ht(xi) 6= yi))

10: end for
11: Normalize w(t+1) so

∑N
i=1w

(t+1)
i = 1

12: end for
13: Prediction: For test sample x,

H(x) = arg max
k∈{1,...,22}

T∑
t=1

αtI(ht(x) = k)

14: Compute SHAP values for H(x) to explain predictions.

Hyperparameter Selection and Optimization

To obtain strong predictive performance, the training setup and model hyperparameters

were adjusted through several trial runs until a stable and accurate configuration was

reached. The main parameter settings are listed below:

• Number of estimators: n_estimators = 50

Defines how many weak learners (Random Forest classifiers) are combined in the

ensemble to build a reliable prediction model.

• Base estimator: RandomForestClassifier
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Serves as the weak learner within AdaBoost, providing the ability to capture com-

plex feature patterns and reduce variance.

• Learning rate: 0.001

Regulates the weight given to each weak learner when forming the final ensemble,

allowing careful control of the learning process and helping the model generalize.

• Random state: 0

Sets the random seed for all stochastic operations so that experiments can be re-

peated and results can be reproduced.

4.6.2 SHAP-Based Interpretability

In our system, CS-AdaRF builds an ensemble of Random Forest classifiers, where each

successive model pays more attention to the errors made by the previous ones. This

iterative process produces a model with strong predictive accuracy but leaves the decision

process as a black box. To make the decision process understandable, SHAP (SHapley

Additive exPlanations) is applied post hoc after the CS-AdaRF model has been fully

trained. SHAP is used only during model evaluation on the test data and does not affect

the training procedure or the optimization of the model.

Theoretical Basis of SHAP: SHAP builds on Shapley values from cooperative game

theory, which assign to each feature its fair share of the average contribution to a model’s

prediction. In the CS-AdaRF-SHAP system, SHAP evaluates the adaptive, weighted

outputs of all base classifiers and produces explanations that satisfy the key properties of

local accuracy, additivity, and missingness. These properties are important for producing

clear and reliable interpretations in agricultural decision support.

For a problem with K = 22 crop classes and d = 7 input features (soil nitrogen, phospho-

rus, potassium, pH, temperature, humidity, and rainfall), the SHAP value for feature xi

and class k is given by:

SHAP(f, xi, k) =
∑

S⊆F\{xi}

|S|! (|F | − |S| − 1)!

|F |!
[
fk(xS ∪ {xi})− fk(xS)

]
(4.6)
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Where:

• f : the trained CS-AdaRF model,

• xi: the i-th input feature,

• k: the predicted crop class (k = 1, . . . , 22),

• F : the complete set of input features,

• S: a subset of F that does not contain xi,

• fk(xS): the model’s predicted probability (or score) for class k using only the fea-

tures in S,

• |S|!, (|F | − |S| − 1)!, |F |!: factorial terms used to average fairly over all possible

subsets of features.

Algorithmic Workflow:

Algorithm 2 Interpretable Crop Selection with SHAP
Require: Trained AdaBoost model f , evaluation dataset X, number of crop classes K =

22
1: for k ← 1 to K do
2: explainerk ← Initialize SHAP explainer for class k
3: shap_valuesk ← Compute SHAP values for all x ∈ X and class k
4: end for
5: for k ← 1 to K do
6: Feature_importancek ← Aggregate SHAP values for class k
7: end for
8: return Feature_importancek

Algorithm Description: After training the proposed CS-AdaRF model, SHAP values

are computed for every feature and crop class using the evaluation data. The procedure

includes:

• Creating a SHAP explainer for each crop class.

• Calculating the SHAP value of each feature for every sample to measure its effect

on the model prediction.
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• Aggregating the computed values over all samples to obtain the overall importance

of each feature for each crop class.

These aggregated SHAP values reveal which soil and environmental variables play the

largest role in each crop recommendation and provide a clear basis for practical agricul-

tural decisions.

Reading the SHAP Values:

• Positive values: Indicate that the feature raises the probability of selecting a

specific crop.

• Negative values: Indicate that the feature lowers the probability of selecting that

crop.

• Magnitude: Shows how strongly the feature affects the model’s recommendation,

with larger values meaning a greater effect.

4.7 Results

4.7.1 Evaluation of the CS-AdaRF Model

This section presents a detailed assessment of the predictive ability of the proposed CS-

AdaRF model, which combines AdaBoost with Random Forest base learners for multi-

class crop selection. The evaluation covers accuracy, precision, recall, F1-score, training

time, and class-wise results, and includes a direct comparison with other classification

methods.

Training and Testing Behavior:

Figure 4.9 shows the progression of accuracy and error rate for the CS-AdaRF model

during training and testing. The error steadily decreases from 0.06 to 0.003 on the training

set and from 0.054 to 0.004 on the testing set, indicating efficient learning and strong

generalization. At the same time, both training and testing accuracy increase from about

0.95 to nearly 0.999, demonstrating effective reduction of misclassification without signs

of overfitting.
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Figure 4.9: Accuracy and error rate of the CS-AdaRF Model during training and testing.

Comparison with Alternative Models

Table 4.10 and Figure 4.10 present the comparative evaluation of CS-AdaRF against

several well-established classifiers, including SVM, KNN, Decision Tree (DT), Bagging,

XGBoost, and LightGBM. CS-AdaRF achieves the highest overall accuracy (99.77%)

and records perfect values for precision, recall, and F1-score. These results show that

the model produces highly accurate predictions while maintaining balanced control over

false positives and false negatives. In addition, the recorded testing time of 0.57 seconds

demonstrates the suitability of CS-AdaRF for practical deployment.

Figure 4.10: Performance metrics comparison across multiple models.
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Table 4.10: Performance metrics comparison across multiple models.

Models Correct
Instances

Incorrect
Instances

Accu-
racy
(%)

Pre-
cision
(%)

Recall
(%)

F1 score
(%)

Testing
time (s)

SVM 1308 12 99.09 99 99 99 0.07
KNN 1299 21 98.41 99 98 98 0.003
DT 1299 21 98.41 98 98 98 0.037
Bagging 1314 6 99.54 100 100 100 9.7
XGBoost 1311 9 99.31 99 99 99 12.3
LightGBM 1305 15 98.86 99 99 99 4.5
CS-AdaRF 1317 3 99.77 100 100 100 0.57

Figure 4.11: Confusion matrix for the CS-AdaRF model.

Analysis of Misclassifications

The confusion matrix in Figure 4.11 provides a detailed view of classification errors across

the 22 crop categories. The proposed model misclassifies only three samples, a very small

number considering the complexity of the task. These errors are not random but occur

in crop pairs that share closely related agronomic characteristics:

• Rice predicted as Jute: Rice and jute are often cultivated in similar floodplain

areas and require comparable soil nutrients and climate conditions. The single error

most likely reflects a data point located near the decision boundary in the feature

space, where high rainfall and overlapping nutrient profiles could describe either
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crop.

• Blackgram predicted as Mothbeans: Both crops belong to the legume family

and thrive under similar soil and environmental conditions, especially in regions

with moderate rainfall and similar nitrogen needs. Their feature representations in

the dataset are so close that even a strong classifier may confuse a small number of

cases.

Practical Impact of Misclassification and Computational Efficiency

In agricultural decision support, even rare classification errors can have practical conse-

quences. For example, recommending jute instead of rice could lead to lower yield or

inefficient use of inputs if the field is better suited to rice. Similarly, confusing blackgram

with mothbeans may affect fertilizer selection, irrigation planning, and marketing deci-

sions. However, the very small number of errors (3 out of 1320 samples) and the fact that

these mix-ups occur between crops with similar biological and environmental requirements

indicate that the model is highly reliable and presents minimal risk to farmers.

The proposed CS-AdaRF model achieves top predictive performance with near-perfect

classification across all crop types and a testing time of only 0.57 seconds. This level

of efficiency stands out when compared to other strong ensemble methods: Bagging (9.7

seconds), XGBoost (12.3 seconds), and LightGBM (4.5 seconds) require considerably

longer training while delivering slightly lower accuracy and F1 scores.

CS-AdaRF reaches the highest accuracy (99.77%) and perfect precision, recall, and F1-

score, while maintaining a training time far shorter than Bagging and XGBoost. Although

simpler models such as SVM (0.07 s), KNN (0.003 s), and Decision Tree (0.037 s) train

somewhat faster, they do so at the cost of reduced predictive power and a higher rate of

misclassification.

This combination of strong predictive accuracy and low computational cost makes CS-

AdaRF well suited for real-world crop selection tasks, particularly when rapid retraining

and scalability are important. Its efficiency supports quick deployment and model updates

while lowering computing requirements, which is valuable for agricultural decision support

in environments with limited resources.
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4.7.2 Assessment of Model Interpretability

Understanding which input features guide the model’s decisions is essential for scientific

validation and for building trust among agricultural practitioners. To explore this aspect,

the permutation feature importance method was applied to the CS-AdaRF model in

order to measure how each variable affects prediction accuracy. The ranking shown in

Figure 4.12 reveals the features that contribute most to changes in prediction error.

Despite its usefulness, permutation importance has known limitations. When features are

strongly correlated, the method can produce biased rankings. In this dataset, for example,

phosphorus (P) and potassium (K) show a correlation coefficient of 0.74, which may cause

their importance to be overestimated or underestimated. Such multicollinearity compli-

cates the interpretation of their individual roles. Moreover, permutation importance does

not indicate whether a feature promotes or suppresses a particular crop recommenda-

tion, nor does it express the strength or direction of its effect. These missing details are

important for translating model outputs into practical agronomic advice.

Figure 4.12: Permutation-based ranking of feature importance.
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SHAP overcomes the limitations of permutation importance by using concepts from game

theory to assign each feature a precise contribution to every individual prediction. In

contrast to permutation importance, SHAP offers two key advantages:

• It can reliably separate the contribution of each feature even when strong correla-

tions are present, producing stable and meaningful attributions.

• It provides both the direction of influence (whether a feature increases or decreases

the probability of selecting a specific crop) and the magnitude of this effect.

The SHAP summary plot in Figure 4.13 presents the overall impact of all input variables

on crop recommendations. Humidity appears as the most influential factor, followed by

nitrogen (N) and potassium (K). These results are consistent with well-known agronomic

relationships and also reveal data-driven details about how soil and climate conditions

shape crop suitability.

Figure 4.13: SHAP-based analysis of feature importance for crop recommendations.

Crop-Specific Explanations and Case Studies

A key advantage of SHAP is its ability to provide explanations for individual predictions

and specific crop classes. To demonstrate this capability, SHAP values were examined for

four representative crops, rice, maize, chickpea, and banana (Figures 4.14 and 4.15). The

analysis shows the following patterns:
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• Rice: Rainfall is the primary factor driving suitability, reflecting rice’s high water

requirement. Nitrogen and humidity also contribute, though to a lesser extent. The

model correctly reduces the likelihood of rice selection in areas with low rainfall,

matching known agronomic limits.

• Maize: Nitrogen availability is the strongest positive driver, consistent with maize’s

high demand for N. Humidity and potassium also support suitability, while excessive

rainfall slightly lowers the recommendation because maize is prone to waterlogging.

• Chickpea: Potassium and moderate humidity play the most important roles. Very

high humidity or low potassium reduce the predicted suitability, showing the model’s

ability to balance interacting environmental and nutrient factors.

• Banana: Nitrogen, potassium, and phosphorus are all essential. Rainfall has a

moderate but complex effect, where both excess and shortage of key nutrients can

reduce the predicted suitability.

Figure 4.14: SHAP summary plot showing feature influence for rice, maize, chickpea, and
banana.
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Figure 4.15: Decision plot illustrating the contribution of key features to individual pre-
dictions for the same crops.

The use of SHAP explanations makes the decision process transparent by identifying how

each input variable contributes to each crop recommendation. This level of detail allows

farmers, agronomists, and policy makers to verify the reasoning behind every prediction

and ensures that the system operates as a clear and reliable decision support tool grounded

in agronomic principles.

4.8 Discussion
Improving crop selection systems in modern agriculture requires a careful balance between

predictive accuracy and interpretability. Because soils differ widely, climate conditions

change over time, and farming decisions carry significant economic risk, the practical

use of machine learning (ML) models depends not only on high performance but also on

clear explanations. Incorrect crop recommendations can lead to yield reduction, wasted

resources, and reduced confidence among farmers and stakeholders. For this reason, both

reliable prediction and understandable reasoning are essential to support real-world agri-

cultural decisions.

The proposed CS-AdaRF-SHAP framework shows strong performance, mainly through
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its adaptive reweighting strategy that gives greater attention to difficult cases during

training. This mechanism allows the ensemble to handle variation within crop classes and

to separate crops with similar characteristics, such as maize and chickpea. The model

achieves very low rates of false positives and false negatives, a property that is especially

important in agricultural applications where even a single incorrect recommendation, for

example, suggesting maize in a nitrogen-deficient area, can lead to economic loss and

environmental harm. The high accuracy and minimal error rates observed in the test

results indicate a direct and practical benefit for farming decisions.

A comparative evaluation shows that the CS-AdaRF model performs better than the

other tested methods, reaching a test accuracy of 99.77%. This score exceeds the results

of Random Forest (99.45%), IoT-based frameworks (98%) [94, 102], and ACRM (98.7%

for maize and 98.1% for rice) [100]. The model also achieved perfect values for F1-score,

precision, and recall, a result supported by the balanced dataset and the careful design of

the experiments. In addition, the testing time was efficient at 0.57 seconds, providing a

clear advantage over more computationally demanding approaches such as XGBoost and

Bagging.

Interpretability provided by SHAP analysis is a key element of the model’s usefulness.

SHAP ranks feature importance at the global level and also measures how each input,

such as humidity, nitrogen, or potassium, affects individual crop selection. The model’s

reasoning agrees with established agronomic knowledge. For example, the strong role of

humidity in SHAP results matches its well-known influence on crop water use, while nitro-

gen and potassium remain essential nutrients for healthy plant growth. This agreement

with agricultural science strengthens trust and supports reliable recommendations.

Clear explanations are also offered through SHAP visualizations, which allow farmers

to see the soil and climate factors that guide each recommendation. For instance, the

system shows how rainfall affects rice selection or how humidity influences mung bean

decisions. These visual outputs connect machine learning results to practical farming

choices, encouraging user confidence, easing technology adoption, and supporting the

design of decision tools that serve real agricultural needs.
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Despite the strong performance of the proposed framework, some limitations remain. Al-

though the dataset covers a wide range of crops and environmental conditions, it does

not fully represent all global agro-ecological settings. Future studies should examine how

well the model adapts to new regions and how robust it remains when inputs contain

noise or measurement errors. From the perspective of interpretability, SHAP explana-

tions, while effective, can be computationally demanding for large ensembles and may

lose accuracy when features are highly correlated. Addressing these issues will require

enlarging the dataset to capture broader variability, testing the model under real-world

uncertainties, and exploring advanced interpretability techniques such as feature grouping

or dimensionality reduction.

In addition, future research should focus on user-centered evaluation. Structured usability

studies with farmers and agricultural advisors are essential to improve how explanations

are presented, ensuring that outputs are clear, trusted, and practical. Feedback from

stakeholders will play an important role in shaping the next generation of explainable

crop recommendation systems and in strengthening both the scientific and practical value

of AI in agriculture.

4.9 Conclusion
This chapter introduced an interpretable crop selection system designed to deliver both

accurate predictions and clear explanations. The proposed CS-AdaRF-SHAP framework

generates dependable crop recommendations while revealing the influence of key soil and

climate variables on each decision. The results show that high predictive performance

can be combined with transparent reasoning, supporting practical and trusted decision-

making in agriculture.

After addressing the question “what to plant?”, the next logical challenge is “how much to

expect?”. The following chapter examines this issue by focusing on crop yield estimation,

aiming to predict the expected production level.



Chapter 5

Contribution 2: Data-Driven Crop

Yield Prediction

5.1 Introduction

The previous chapter showed how interpretable machine learning can support strategic

crop selection by providing farmers and agronomists with transparent, easily explained,

and data-based recommendations. However, choosing the most suitable crop is only the

first step in the broader set of decisions involved in precision agriculture. Once the

question of “what to plant?” is resolved, the next challenge is estimating the expected

yield, or “how much to expect?” This stage is essential for guiding farm management

practices, planning the use of resources, and preparing for participation in agricultural

markets.

In this chapter, we focus on the problem of forecasting tomato yields in greenhouse produc-

tion. To address this task, we develop and evaluate a Stacked Ensemble Learning Model

designed to integrate diverse sources of information and improve predictive accuracy.

The structure of this chapter is organized as follows. Section 5.2 describes the system ar-

chitecture, including an outline of the stacked ensemble framework, the characteristics of

the greenhouse tomato dataset, and the preprocessing steps such as data cleaning, tempo-

ral alignment, normalization, augmentation, and feature selection. Section 5.3 examines

the predictive performance of the proposed model, comparing it with alternative machine

100
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learning approaches and interpreting the outcomes using both numerical indicators and

visual analysis.

5.2 Materials and Methods

5.2.1 System Architecture Overview

The proposed system is built on a Stacked Ensemble Learning framework designed to

provide reliable daily predictions of tomato yield in greenhouse settings. As shown in

Figure 5.1, the architecture is organized into two main phases: an offline phase dedicated

to model development and an online phase for real-time prediction.

In the offline phase, historical greenhouse data are collected, including environmental

variables, crop growth characteristics, and yield records. These data pass through sev-

eral preprocessing steps such as cleaning, normalization, and feature engineering. The

resulting dataset is then used to train the Stacked Ensemble Model.

In the online phase, the trained model is applied to test data in order to generate yield

predictions. Its performance is carefully evaluated and compared with alternative regres-

sion models, including KNN, Random Forest, and LightGBM, to determine the most

accurate and operationally suitable approach for greenhouse management.

Figure 5.1: General architecture of the proposed system.
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5.2.2 Dataset Description

The dataset used in this work is obtained from the second edition of the Autonomous

Greenhouse Challenge (AGC) [117]. It offers detailed records of tomato production and

crop management carried out under controlled greenhouse conditions. The data were

collected between November 1, 2019 and April 30, 2020 from several teams responsible

for 96 m2 greenhouse units at Wageningen University & Research in Bleiswijk. The

dataset contains information on key environmental variables such as air temperature,

natural and supplemental light, heating inputs, and CO2 concentration. It also includes

cultivation parameters, for example plant density and stem density, which reflect the

structural management of the crop.

5.2.3 Data Preprocessing

Preparing the dataset is an important stage in the development of a tomato yield pre-

diction model. This stage includes several tasks designed to improve the quality and

reliability of the data before modeling. Missing values are addressed through suitable re-

placement methods, while unusual or extreme measurements are detected and corrected

to reduce their impact. Since the raw data were collected at different time intervals, they

are aligned to a daily frequency to create a consistent timeline. All variables are then

scaled to a common range so that they can be compared fairly. To increase the amount

of training data, augmentation techniques are applied, and finally, the Boruta algorithm

is used to select the most informative features for model training.

Handling Missing Values

Missing data were managed through median imputation. For every feature that contained

missing entries, the absent values were replaced with the median of the available observa-

tions within that feature. The choice of the median, rather than the mean, helps reduce

the influence of extreme values and skewed distributions. This method provides a simple

yet reliable way to maintain the general characteristics of the dataset without introducing

strong biases.



5.2. Materials and Methods 103

Handling Outliers

Outliers were identified using the interquartile range (IQR) method. In this approach,

any observation that fell below the first quartile minus 1.5 times the IQR or above the

third quartile plus 1.5 times the IQR was marked as an outlier. Instead of removing these

values, which could lead to the loss of useful data, they were replaced with the median of

the corresponding feature. Using the median in this way reduces the influence of extreme

points while preserving the overall distribution of the dataset.

Data Transformation

For the construction of a unified model, it is important that all features in the dataset

are aligned in time and expressed on a consistent scale. This requirement is particularly

relevant when dealing with heterogeneous time series data. In the present case, the

raw dataset contains several subsets recorded at different temporal resolutions, including

measurements taken every five minutes, as well as daily and weekly records. Without

adjusting these differences, the data cannot be combined in a meaningful way, which

makes temporal harmonization an essential part of the preparation process.

To prepare a coherent dataset for supervised learning, all variables were expressed on a

common daily interval. This transformation allowed different subsets of the data to be

integrated into a single structure suitable for analysis and modeling.

• 5-Minute to Daily Aggregation: The “Weather” and “Greenhouse Climate”

subsets were originally collected at 5-minute intervals. To convert these into daily

values, the mean for each variable was calculated across all records for a given day.

This step reduces the overall data volume and lowers computational requirements,

while still capturing the main daily patterns. In addition, the use of daily averages

helps smooth out short-term fluctuations and potential noise from sensors:

Daily Meand =
1

Nd

Nd∑
i=1

xi,d (5.1)

where Nd is the number of 5-minute observations in day d, and xi,d represents the

i-th measurement on that day.
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• Weekly to Daily Interpolation: The “Production” and “Crop Parameter” sub-

sets were recorded on a weekly basis. To align them with the daily series, values

were estimated using Lagrange polynomial interpolation. This method produces a

smooth daily curve that reflects the underlying variation in the original weekly data.

The resulting series allows the inclusion of crop-related variables in day-level anal-

yses and supports the training of predictive models that require uniform temporal

resolution.

After temporal harmonization, the various subsets were merged into a unified daily

dataset. In this structure, the harvest variable was expressed on a daily scale and aligned

with the corresponding predictors, as illustrated in Figure 5.2. This step ensures that

each record contains both the input features and the target variable in a synchronized

manner, providing a reliable foundation for model development.

Figure 5.2: Schematic representation of the transformation of harvest data to a daily
resolution.
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Data Normalization

To place all features on a comparable scale, Min-Max normalization was applied. This

method transforms each value into the range [0, 1], which supports stable training and

improves the efficiency of the learning process.

Xscaled =
X −Xmin

Xmax −Xmin
(5.2)

where X is the original value, Xmin and Xmax are the minimum and maximum values of

the feature, and Xscaled is the normalized output.

Data Augmentation

Since the dataset contained only 166 samples, data augmentation was applied to increase

its size and reduce the risk of overfitting. We used random noise augmentation [118],

where small variations were added to the original values. This creates new samples that

reflect realistic variability in greenhouse conditions, helping the model learn more robust

patterns.

The augmentation process is mathematically defined as:

Xaugmented = Xoriginal + ε (5.3)

where

ε ∼ N
(
0, (0.01 · std(Xoriginal))

2
)

(5.4)

Here, ε is a vector of random noise sampled from a normal distribution with zero mean and

a standard deviation equal to 1% of the feature’s standard deviation. This design ensures

that the added noise remains small in scale, preserving the original statistical properties

while introducing enough variability to improve model robustness. After augmentation,

the dataset was expanded to 500 samples, providing a stronger basis for model training.

Feature Selection

Tomato yield depends on a wide range of environmental, physiological, and management

factors. Using too many input variables, however, can make the model unnecessarily
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complex, increase computational requirements, and raise the risk of overfitting. To reduce

these issues, a structured feature selection method was applied in order to retain only those

variables that provide meaningful predictive value for yield estimation.

For this purpose, we used the Boruta algorithm [119], a wrapper-based method built

around Random Forests. The approach works by comparing the importance of actual

features with that of “shadow” features, which are created by randomly permuting the

data. Only variables that show statistically significant predictive power compared to the

shadow features are kept. The main steps of the Boruta procedure are summarized in

Algorithm 3.

Algorithm 3 Boruta Feature Selection
1: Input: Dataset X with n samples and p features, target variable y
2: Output: Subset of important features S
3: Generate m shadow features by randomly permuting each original feature
4: while feature importance ranking not stable do
5: Train a Random Forest regressor on the extended dataset (X + shadow features)
6: Compute importance scores for all features
7: For each original feature, compare its importance with the maximum importance

among the shadow features
8: Keep features that show higher importance than the shadow features; remove

those that do not
9: end while

10: Return Final set S of selected features

Applying the Boruta method to our dataset, which originally included 39 features, reduced

the number of inputs to 11. This represents a reduction of about 77% in dimensionality.

Such a decrease not only lowers computational cost but also improves the clarity of the

model by directing attention toward variables that are most relevant to tomato production.

Table 5.1 lists the features selected by Boruta for yield prediction, along with their de-

scriptions and measurement units.

5.3 Results and Discussion
This section presents and discusses the results of the comparative study on tomato yield

prediction. Four machine learning models were evaluated: K-Nearest Neighbors (KNN),

Random Forest, LightGBM, and the proposed Stacked Ensemble Model. The dataset was
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Table 5.1: Features selected by Boruta for tomato yield prediction

Feature Description Unit
Tair Greenhouse air temperature ◦C
Rhair Relative humidity in greenhouse %
CO2air CO2 concentration ppm
Tot_PAR Total inside PAR (Sun + HPS + LED) µmol/m² s
pH_drain_PC Drainage pH –
EC_drain_PC Drainage electrical conductivity dS/m
Cum_irr Cumulative irrigation per day L/m2

Stem_elong Stem growth cm/week
Stem_dens Stem density Stems/m²
Plant_dens Plant density Plants/m²
Stem_thick Stem thickness mm
Prod Tomato yield (target) kg/m2

divided into two subsets, with 80% allocated for training and 20% reserved for testing.

To ensure a fair comparison, all models were tuned through hyperparameter optimization

before the evaluation.

5.3.1 Predictive Performance Comparison

Table 5.2 reports the main performance measures used to evaluate the models, namely

mean squared error (MSE), mean absolute error (MAE), root mean squared error (RMSE),

and the coefficient of determination (R2). These results are based on the test set. For

clarity, graphical comparisons of the performance are also provided in Figures 5.3, 5.4,

and 5.5.

Table 5.2: Performance Evaluation of Tomato Yield Prediction Models

Model MSE MAE RMSE R2

KNN 0.023 0.110 0.150 0.712
Random Forest 0.009 0.046 0.095 0.884
LightGBM 0.013 0.083 0.114 0.831
Stacked Ensemble 0.0080 0.065 0.090 0.896

As shown in Figure 5.3, the Stacked Ensemble Model obtained the highest R2 value

(0.896), followed by Random Forest (0.884), LightGBM (0.831), and KNN (0.712). This

outcome suggests that the ensemble approach captured the variability in tomato yield

more effectively, offering a stronger and more reliable fit than the other models.
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Figure 5.3: R2 scores for the tested models.

5.3.2 Error Analysis and Robustness

Figure 5.4 presents a comparison of the error metrics for all models. The Stacked Ensemble

Model achieved the lowest mean squared error (0.008) and root mean squared error (0.09),

showing that it can deliver accurate yield predictions with only small deviations from

observed values. Random Forest and LightGBM also performed well, but the stacking

approach provided a modest improvement by drawing on the strengths of multiple base

learners.

The robustness of the ensemble is reflected in its ability to reduce both bias and variance.

By combining predictions from different learners such as Ridge, Random Forest, and

XGBoost, the stacked model counterbalances the tendency of single algorithms to either

underfit or overfit. This leads to stronger generalization on unseen data, which is par-

ticularly important in agricultural applications where variability and complex non-linear

relationships are common.
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Figure 5.4: Error metrics (MSE, MAE, RMSE) for the evaluated models.

5.3.3 Alignment of Predicted and Actual Yields

Figure 5.5 shows the relationship between predicted and observed yields for all models. In

the ideal case, predictions would fall exactly on the diagonal line, representing a perfect

match with the measured values.

Among the tested approaches, the Stacked Ensemble Model produced predictions that

lie closest to the diagonal, indicating strong agreement with the actual harvest data.

The other models show more scattered points and visible deviations, which reflects lower

accuracy and reduced reliability in capturing yield variation.

The findings show that the Stacked Ensemble Model offers clear advantages for predicting

yield in greenhouse tomato production. Its lower error values and higher R2 scores indicate

that it can be a practical tool for use in precision agriculture. Reliable forecasts of

yield can support better planning of resources, guide crop management decisions, and

improve marketing strategies, which together can increase productivity, reduce waste,
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Figure 5.5: Predicted versus observed yields for the evaluated models.

and strengthen economic returns for growers.

5.4 Conclusion
This chapter presented a Stacked Ensemble Learning Model for predicting crop yields

in greenhouse environments, with tomato production serving as a case study. The next

chapter turns to a key question in data-driven agriculture: “How can the data supporting

these decisions remain secure, reliable, and trustworthy?” To address this, we examine

blockchain-based approaches for safeguarding data integrity and enhancing security in

smart agriculture.



Chapter 6

Contribution 3: Blockchain-Based

Approach to Securing Data in Smart

Agriculture

6.1 Introduction

The previous chapters of the thesis have addressed two central aspects of precision agri-

culture: an interpretable crop selection system and a data-driven crop yield prediction

in greenhouse environments. The first contribution addressed the question of “what to

plant?” by developing an interpretable crop selection system that combines strong pre-

dictive accuracy with clear explanations of the factors influencing each recommendation.

This transparency enables farmers and agronomists to understand why a particular crop

is suggested, fostering confidence and supporting real-world adoption. The second contri-

bution addressed the question of “how much to expect?” by applying machine learning to

predict tomato yield as a case study, focusing on greenhouse production where rich and

structured data are available.

Having answered these two questions, a third and equally critical challenge now emerges

at the heart of data-driven agriculture: “How can the data that supports these decisions

remain secure, reliable, and trustworthy?”

Modern smart farming generates and exchanges massive volumes of data, from sensor

111
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measurements to operational records, across networks of farms, research institutions, and

service providers. The value of intelligent decision-support systems built on this informa-

tion depends on its integrity and security. Without reliable safeguards to ensure accuracy,

privacy, and controlled access, even advanced predictive models risk producing unreliable

results, as their outputs rely on data that may be incomplete, altered, or inaccessible.

To address these challenges, this chapter introduces a blockchain-based aproach for se-

curing and managing agricultural data. Building on the IoT-driven infrastructure, the

proposed system combines edge computing, blockchain technology, and distributed file

storage (IPFS) to deliver a secure and transparent approach to agricultural data man-

agement. Through the use of cryptographic methods and smart contracts, the system

ensures that all transactions remain immutable and auditable, while also supporting data

privacy and controlled access.

The remainder of this chapter is structured as follows: Section 6.2 presents the proposed

approach and its overall architecture. Section 6.3 describes the implementation process,

covering development tools, smart contract deployment, data encryption, secure storage,

and performance evaluation. Section 6.4 concludes the chapter with a summary of the

main contributions and results.

6.2 Proposed Solution

Digitalisation has become a key driver of economic growth in many sectors, including agri-

culture. In Algeria, agriculture remains central to both social and economic development,

and the government has placed strong attention on digital transformation programs to

improve efficiency and sustainability.

The proposed system is designed to connect all agricultural sites (AS) under a single

secure platform managed by the government institution (GI). This framework enables a

unified process for collecting, storing, and sharing agricultural data between the sites and

the GI. To guarantee data security and integrity, blockchain technology is used as the

foundation of the data management system.

As shown in Fig. 6.1, the architecture places the GI as the main authority supervising data
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exchanges. Raw data gathered from greenhouses is first stored at the edge to preserve

authenticity. After encryption, the data is shared across the network, where access is

limited to authorized users. This process protects ownership and confidentiality while

preventing unauthorized use or alteration of the information.

Figure 6.1: Hierarchy of the proposed system

6.2.1 Architecture of the Proposed Approach

The proposed approach involves two main actors: the agricultural sites (AS) and the

government institution (GI). Each site is formally registered with the GI and is given a

unique address. This address allows the site to access the platform securely and to carry

out authorized operations within the system.

The current design concentrates on handling raw data produced by IoT devices installed

in greenhouses. At the same time, the architecture has been built with flexibility in mind,

making it possible to expand to other forms of information such as farmer records, crop

production logs, and weather conditions when needed.

To safeguard data throughout its entire lifecycle, the architecture integrates blockchain

technology, smart contracts, the InterPlanetary File System (IPFS), and strong encryption
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Figure 6.2: General architecture of the proposed system

methods. These components work together to provide security, transparency, and integrity

in the management of agricultural data. The complete system architecture is presented

in Fig. 6.2.

The workflow for data processing starts with the collection of raw data from each green-

house, which is first stored locally at the edge. At this point, the data remains unchanged

to preserve its original form. To maintain integrity, a SHA256 hash is calculated for the

collected data. After this step, the data is encrypted using the AES algorithm, as shown

in Fig. 6.3.

The encrypted files are then uploaded to the InterPlanetary File System (IPFS) for decen-

tralized storage. Each file stored in IPFS is assigned a unique Content Identifier (CID),

which acts as a cryptographic hash to ensure accurate retrieval and verification. Once

this is done, a smart contract records a transaction that contains the key metadata. This

transaction is written to the blockchain, creating a permanent and verifiable record of the

data submission process.

6.2.2 Structure of Blocks and Transactions

In the proposed approach, each block is divided into two main parts: the header and the

body. The header stores the key metadata of the block, which includes the block index,
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Figure 6.3: Sequence diagram of the proposed system.

timestamp, nonce (a value used only once), the hash of the previous block, and the hash

of the current block. This arrangement guarantees the link between consecutive blocks

and preserves the immutability of the entire chain.

The body of the block contains the transactions recorded at that point. Depending on the

circumstances, it may hold a single transaction or a group of several transactions bundled

together.

Each transaction in the system is described by the following fields:

• Transaction: A unique hash that identifies the transaction.

• From: The address of the agricultural data owner.

• To: The address of the government institution.

• Data: Details about the shared data, including the IPFS hash (Content Identifier),

the file name, and the file hash.

All transactions and data transfers are encrypted, which ensures that only the legitimate
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data owner can decrypt and access the original information. To maintain integrity, the

system allows nodes to display past transactions and their related data, providing a clear

record for auditing. When data is decrypted, a verification step is carried out by compar-

ing it with the locally stored hash. This guarantees that the data remains genuine and

unchanged throughout its entire lifecycle.

6.3 Implementation
This section explains how the proposed system was implemented in practice. It presents

the development environment and outlines the main technologies used to build the system.

6.3.1 Development Environment and Tools

The implementation of the system relied on a set of tools and platforms chosen for their

suitability in building secure and distributed applications:

• Ethereum Blockchain: Used to support smart contracts and decentralized oper-

ations. All transactions and contract logic were deployed and tested on the Goerli

network, which provides a safe environment for development and experimentation.

• Solidity: The programming language employed to design and implement the smart

contract logic.

• IPFS: Adopted for decentralized storage of encrypted agricultural data, ensuring

integrity and protection against tampering.

6.3.2 Smart Contract Deployment and Data Transactions

Several Ethereum test networks are available, such as Ropsten, Rinkeby, and Goerli. In

this work, the Goerli network was selected, and four nodes were simulated to represent

the participants and simplify the operational setup. As shown in Fig. 6.4, the deployed

smart contract records essential metadata for every transaction, including the sender,

recipient, date, timestamp, IPFS hash, file name, and file hash. The transaction hash

is automatically generated by the network, ensuring that each transaction is uniquely

identifiable and permanently stored.
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Figure 6.4: Excerpt from the smart contract.

6.3.3 Data Encryption and Secure Storage

Raw agricultural data, an example of which is shown in Fig. 6.5, is first collected from

greenhouse IoT devices. Before storage, the data is converted into a standardized text

format and encrypted using the AES algorithm (Fig. 6.6). This process ensures that

only authorized users can access the information, thereby maintaining confidentiality and

privacy.

Figure 6.5: Example of raw agricultural data.

After encryption, the files are uploaded to IPFS, which assigns a unique Content Identifier
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Figure 6.6: AES encryption process.

(CID) to each entry. The CID serves as a cryptographic fingerprint, enabling both retrieval

and verification of the stored data. Fig. 6.7 provides an example of encrypted agricultural

data stored and accessed through the IPFS network.

Figure 6.7: Encrypted agricultural data stored on IPFS.

6.3.4 Performance and Security Analysis

The main goal of the system is to manage agricultural data collected by IoT devices in

a secure and reliable manner. This includes not only safe storage but also protection of

data integrity and controlled sharing between agricultural sites (AS) and the government
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institution (GI).

Security and integrity are achieved through two complementary layers:

• Large files are stored off-chain on IPFS, while key references such as the IPFS hash

and file hash are stored on-chain. This approach improves efficiency while keeping

verification straightforward.

• The blockchain ledger guarantees immutability. Once data is written, it cannot

be changed or removed. Even in the case of network attacks or attempts to al-

ter records, cryptographic validation and distributed storage ensure that the data

remains intact and accessible.

During development and testing, the system showed reliable performance in recording,

encrypting, storing, and retrieving agricultural data. Smart contracts executed transac-

tions securely and in a transparent way, while the use of IPFS made it possible to retrieve

and verify files using their unique CID. These results demonstrate the feasibility of the

proposed architecture and its suitability for deployment in real agricultural environments.

6.4 Conclusion
This chapter presented a blockchain-based approach to secure agricultural data, ensuring

integrity, confidentiality, and controlled sharing. By integrating edge computing, en-

cryption, IPFS storage, and a private blockchain, the system protects agricultural data

throughout its lifecycle and fosters trust among farmers and stakeholders.



Chapter 7

General Conclusion and Perspectives

This chapter presents the main contributions of this thesis and points to several research

directions that deserve additional investigation in the future.

7.1 Summary
The research conducted in this thesis produced three principal contributions that address

the questions introduced at the beginning of the work. These contributions are outlined

below:

• Interpretable crop selection (“what to plant”) The first contribution proposes

an interpretable and accurate system for crop selection. The proposed CS-AdaRF-

SHAP system combines two key elements. First, an Adaptive Boosting of Random

Forest (AdaRF) ensemble iteratively reweights misclassified instances to improve

separation between crops with similar characteristics and to achieve stable predic-

tive performance under different agricultural conditions. Second, SHapley Additive

exPlanations (SHAP) provide both global and local interpretability by measuring

the influence of each feature—such as soil nutrients, pH, temperature, humidity,

and rainfall—on individual predictions. This allows farmers and agronomists to

understand the reasoning behind each recommendation.

Experiments showed that the CS-AdaRF-SHAP system reached a test accuracy of

99.77%, with precision, recall, and F1-score all close to 100%. The combination of

120
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strong predictive ability and transparent decision-making supports trust in AI-based

agricultural decision systems and encourages their practical adoption.

• Data-Driven Crop Yield Prediction (“how much to expect”) Building on

the crop selection framework, the second contribution focuses on yield prediction

using tomato production in greenhouse conditions as a case study. The work re-

lied on greenhouse data consisting of multivariate time-series measurements of key

environmental variables.

A stacked ensemble learning architecture was developed by combining Gradient

Boosting Regressors, Random Forests, and Support Vector Regression within a

meta-learner to capture nonlinear interactions and improve generalization. This

design produced higher predictive accuracy than standard regression methods and

enabled reliable daily yield forecasts, which support the planning of storage, labor,

and marketing activities in controlled agricultural settings.

• Blockchain-Based Approach to Securing Data in Smart Agriculture (“How

can the data that supports these decisions remain secure, reliable, and

trustworthy?”) The third contribution addresses the protection and reliability of

agricultural data by introducing a blockchain-based management framework. The

proposed system integrates blockchain technology, smart contracts, edge computing,

and the InterPlanetary File System (IPFS) into a unified architecture to guarantee

data integrity and secure sharing among stakeholders. All transactional metadata,

including information on data ownership, access permissions, and file hashes, is

recorded on the blockchain through custom smart contracts, providing immutabil-

ity, transparency, and auditable access for all participants.

7.2 Perspectives
Several improvements could be made to the work done in this thesis, and research di-

rections that require further investigations in the future. We listed some of them in the

items below:
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• The current crop selection framework was trained on a balanced dataset covering

22 crop types with 7 features. Future work could incorporate larger and more

diverse datasets that include additional crops, regional soil profiles, and seasonal

variations. Integrating satellite imagery and remote sensing indices would further

enrich the feature space and allow the system to operate effectively across different

geographic scales.

• The yield prediction model focused on tomato production in greenhouse environ-

ments. Future studies could extend the same methodology to other crops or to

open-field cultivation, where external factors such as weather fluctuations and pest

outbreaks introduce additional uncertainty. Combining ensemble learning with deep

learning architectures, such as recurrent or transformer-based models, may improve

the capacity to capture long-term temporal dependencies and produce more accu-

rate forecasts.

• Another perspective is to extend the blockchain framework toward advanced data

analytics and decision automation. By combining blockchain with machine learning

modules deployed at the edge, the system could support on-chain analysis of sensor

data for tasks such as anomaly detection, quality assessment, and predictive main-

tenance. This integration would provide verifiable analytical results directly on the

blockchain, strengthening trust among stakeholders while enabling faster and more

autonomous agricultural operations.

• Another promising direction is the creation of user-friendly decision support systems

that unify crop selection, yield prediction, and secure data management within a

single integrated platform. Such a system could take the form of a mobile or web

application that delivers predictions, explanatory analyses, and blockchain-based

verification through an intuitive interface, enabling farmers, agronomists, and policy

makers to access reliable information and adopt these technologies with minimal

technical effort.
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