
People�s Democratic Republic of Algeria
Ministry of Higher Education and Scienti�c Research

MOHAMED KHIDER UNIVERSITY, BISKRA

FACULTY of EXACT SCIENCES

DEPARTMENT of MATHEMATICS

Thesis Submitted in Partial Execution of the Requirements of the Degree of

DOCTOR of SCIENCES
In the �eld of: Applied Mathematics

Option: Analysis

Submitted and Defended By

GHEDJEMIS Fatiha

Titled:

Introduction to Evolutionary Algorithms on Numerical Calculations

Board of Examiners:

Pr : Tidjani Menacer University of Biskra Chairperson

Pr : KHELIL NACEUR University of Biskra Supervisor

Pr : Tiaiba Abdelmoumen University of M�sila Examiner

Pr : Saadi Khalil University of M�sila Examiner

2025

Dedicace

To my family, friends and students.

i

Acknowledgements

I begin by expressing my deepest gratitude to Allah for the strength, patience, and

unwavering support that made the completion of this research possible. Alhamdulillah.

This journey would not have been the same without the mentorship of my supervisor,

Professor Khelil Naceur, and for his expertise, I am truly grateful. I also wish to thank

my examination committee: the chairperson, Professor Tidjani Menacer, and the

examiners, Professors Tiaiba Abdelmoumen and Saadi Khalil, for their time and

constructive comments of this manuscript.

To the many people who stood by me, directly or indirectly, your encouragement meant

the world. My appreciation also extends to the entire community of the Mathematics

Department at the University of Biskra, whose collective e¤orts create an environment

where students can thrive.

ii

Abstract

This thesis proposes a new hybrid computational method that combines the accuracy of

spectral methods with the optimization abilities of the Flower Pollination Algorithm to �nd

solutions of di¤erential equations, particularly boundary value problems. The approach

uses Chebyshev polynomials for spectral approximation and combines FPA to minimize

residual errors and optimize the coe¢ cients, leading to accurate numerical solutions.

The study begins by exploring the structures of spectral methods and metaheuristic al-

gorithms, concentrating on their mathematical properties and practical roles in optimiz-

ation. It then introduces a new three-step hybrid methodology: extracting an initial ap-

proximation, calculating the residual error, and optimizing undetermined coe¢ cients via

FPA. The e¢ ciency of this method is con�rmed through several case studies, involving

linear and nonlinear boundary value problems.

Experimental results validate that the proposed hybrid approach improves solution ac-

curacy and computational e¢ ciency contrast classical methods. The �ndings highlight

the method�s adaptability and potential in broader applications such as �uid dynamics,

structural analysis, and data-driven modeling.

This work contributes a robust and �exible approach for solving complex di¤erential prob-

lems, paving the way for future research in advanced numerical and optimization strategies.

Keywords: Di¤erential equations ; Metaheuristic algorithms ; Chebyshev polynomials ;

Flower Pollination Algorithm.

Resumé
Cette thèse présente une nouvelle méthode hybride de calcul numérique combinant la pré-

cision des techniques spectrales avec les capacités d�optimisation de l�algorithme de pollin-

isation des �eurs (FPA) pour la résolution des équations di¤érentielles, en particulier

les problèmes aux limites. L�approche s�appuie sur les polynômes de Chebyshev pour

l�approximation spectrale et intègre le FPA a�n de minimiser les erreurs résiduelles, per-

iii

mettant ainsi d�obtenir des solutions approchées de haute précision.

Le travail débute par une étude des fondements des méthodes spectrales et des algorithmes

métaheuristiques, en mettant l�accent sur leurs propriétés mathématiques et leur utilité

en optimisation. Il propose ensuite une méthodologie hybride en trois étapes : dérivation

d�une approximation initiale, calcul de l�erreur résiduelle, et optimisation des coe¢ cients

inconnus à l�aide du FPA. L�e¢ cacité de cette approche est validée à travers plusieurs cas

d�étude, incluant des problèmes aux limites linéaires et non linéaires.

Les résultats numériques con�rment que la méthode hybride proposée améliore à la fois la

précision des solutions et l�e¢ cacité du calcul par rapport aux méthodes classiques. Ces

résultats soulignent également l�adaptabilité de la méthode et son potentiel d�application

dans des domaines variés tels que la dynamique des �uides, l�analyse des structures et la

modélisation basée sur les données.

Ce travail apporte ainsi un cadre robuste et �exible pour la résolution de problèmes

di¤érentiels complexes, ouvrant la voie à de futures recherches en techniques numériques

avancées et en optimisation.

Mots clés: Equations di¤érentielles ; Algorithmes métaheuristique ; Polynomes de Cheby-

shev ; Algorithme de pollinisation des �eurs.

iv

 ملخص

 حول الخوارزميات التطورية في التحليل العدديمقدمة : العنوان

تقدم هذه الأطروحة طريقة هجينة جديدة للحسابات العددية، تجمع بين دقة الطرق الطيفية وقدرات

لحل المعادلات التفاضلية، خاصةً مشاكل القيم الحدية. خوارزمية تلقيح الزهورالتحسين التي يوفرها

لتقليل الأزهار الطريقة على كثيرات الحدود تشيبيشيف للتقريب الطيفي، وتدمج خوارزمية تلقيحتعتمد

 .الأخطاء المتبقية، مما يؤدي إلى حلول تقريبية عالية الدقة

يبدأ البحث بدراسة الأسس النظرية للطرق الطيفية والخوارزميات الميتاهيروسية، مع التركيز على

ها التطبيقية في التحسين. ثم يتم عرض منهجية هجينة جديدة مكونة من خصائصها الرياضية وأدوار

 ثلاث خطوات: اشتقاق تقريب أولي، حساب الخطأ المتبقي، وتحسين المعاملات المجهولة باستخدام
التحقق من فعالية هذه الطريقة من خلال دراسات حالة تشمل مشاكل خطية يتم خوارزمية تلقيح الزهور

 .وغير خطية

تؤكد النتائج العددية أن الطريقة المقترحة تعزز دقة الحلول وكفاءتها الحسابية مقارنة بالطرق التقليدية.

كما تظهر مرونة الطريقة وقابليتها للتطبيق في مجالات متنوعة مثل ديناميكا الموائع، تحليل الهياكل،

 .والنمذجة المعتمدة على البيانات

قوي ومرن لحل المعادلات التفاضلية المعقدة، ويفتح آفاقاً جديدة للبحث يساهم هذا العمل في تقديم إطار

 .في مجال الطرق العددية وتقنيات التحسين المتقدمة

كثيرات حدود تشيبيتشاف ,اهيروسيةالخوارزميات الميت,المعادلات التفاضلية : الكلمات المفتاحية

 .رازه,خوارزمية تلقيح الأ

Achieved work

A signi�cant outcome of this doctoral research is the publication of a scienti�c art-

icle entitled �Spectral Approximations Optimized by Flower Pollination Algorithm for

Solving Di¤erential Equations� in the International Journal of Computational Methods

and Experimental Measurements, published by the International Information & Engin-

eering Technology Association (IIETA), Canada, Vol. 13, No. 2, pp. 343-349. ht-

tps://doi.org/10.18280/ijcmem.130211

This paper presents the core contribution of the thesis: a novel hybrid numerical approach

that integrates spectral methods with the Flower Pollination Algorithm (FPA) to solve

di¤erential equations, involving boundary value problems with improved accuracy and

computational e¢ ciency. The publication re�ects the originality and scienti�c relevance

of the research, and demonstrates its applicability to a wide range of complex di¤erential

problems.

v

Abreviations and Notations

Di¤erent abreviations and notations on this thesis are:

ACE Automatic Computing Engine

ALFPA Adaptive-Lévy Flower Pollination Algorithm

APP Antenna Positioning Problem

BA Bat Algorithm

BFPA Binary Fower Pollination Algorithm

BPFPA Bee Pollinated Fower Pollination Algorithm

CD Conjugate Direction

CEEMDAN Complete Ensemble Empirical Mode Decomposition Adaptive Noise

CFPA Chaos-based Flower Pollination Algorithm

CLSFPA Flower Pollination Algorithm with Chaotic Local Search

CS Cuckoo Search

DBP Directed-Based Perturbations

DE Di¤erential Evolution

EFPA Enhanced Flower Pollination Algorithm

EOFPA Elite Opposition-based Fower Pollination Algorithm

FA Fire�y Algorithm

FPA Flower Pollination Algorithm

FPP Fractional Programming Problem

GGM Gradient-Guided Moves

GSA Gravitational Search Algorithm

HSA Harmony Search Algorithm

IBPSO Improved Binary Particle Swarm Optimization

IRW Isotropic Random Walks

LTRW Long-Tailed Scale-Free Random Walks

vi

MFPA Modi�ed Flower Pollination Algorithm

MRLFPA Modi�ed Randomized-Location Flower Pollinatino Algorithm

NPL National Physical Laboratory

OPF Optimal Power Flow

PBIL Population-Based Incremental Learning

PDE Partial Di¤erential Equation

PSO Particle Swarm Optimization

RCGA Real-Coded Genetic Algorithm

RP Random Permutation

SA simulated annealing

SI Swarm Intelligence

SM Spectral Method

vii

Contents

Dedicace i

Acknowledgements ii

Abstract iii

Achieved work v

Abreviations and Notations vi

Contents vii

List of Figures ix

List of Tables x

Introduction 1

1 Spectral Methods 6

1.1 Di¤erential Equations and Mathematical Formulation 6

1.2 Di¤erential equations and types . 8

1.3 Chebyshev Polynomials . 10

1.3.1 First-Kind Chebyshev Polynomials 11

1.3.2 Second-Kind Chebyshev Polynomials 12

viii

1.3.3 Chebyshev Polynomials in [a,b] . 14

1.3.4 Shifted Chebyshev Polynomials . 15

1.4 Numerical Methods . 16

1.4.1 Local Methods . 16

1.4.2 Global Methods . 16

1.4.3 Collocation Method Using Chebyshev Polynomials 18

1.5 Conclusion . 20

2 Evolutionary Algorithms: An Introduction to Metaheuristic Optimiza-

tion 22

2.1 Optimization . 22

2.2 Search for Optimality . 24

2.3 Understanding Evolutionary and Metaheuristic Approaches 25

2.4 Classi�cation of Metaheuristic Algorithms Based on Their Nature 26

2.4.1 Deterministic . 26

2.4.2 Stochastic . 27

2.4.3 Hybrid of Stochastic and Deterministic Algorithms 27

2.5 Classi�cation of Metaheuristic Algorithms Based on Their Working System 29

2.5.1 Procedure-Based Algorithms . 29

2.5.2 Equation-Based Algorithms . 30

2.6 Other Classi�cations . 34

2.7 Search Mechanisms and Theoretical Foundations 35

2.7.1 Gradient-Guided Moves . 36

2.7.2 Random Permutation . 36

2.7.3 Direction-based Perturbations . 36

2.7.4 Isotropic Random Walks . 36

2.7.5 Long-tailed, Scale-free Random Walks 37

2.8 Random Walks and Lévy Flights . 39

ix

2.8.1 Random Variables . 39

2.8.2 Random Walks . 40

2.8.3 Lévy Flight . 41

2.9 Intensi�cation and Diversi�cation: . 44

2.10 Ways for Intensi�cation and Diversi�cation: 45

2.11 A Brief History of Metaheuristic and Evolutionary Algorithms 47

2.12 Conclusion . 50

3 Flower Pollination Algorithm 51

3.1 Flowers and Flowering . 51

3.1.1 Cross-Pollination and Self-Pollination 52

3.1.2 Flower Constancy . 52

3.2 The Algorithm . 53

3.2.1 Numerical Results . 55

3.3 Variants of Flower Pollination Algorithm 62

3.3.1 Hybridized Variants of Flower Pollination Algorithm 66

3.4 Conclusion . 73

4 Chebyshev Metaheuristic Solver Approach 74

4.1 Construction of the Chebyshev Metaheuristic Solver Approach 75

4.2 Parameters of Flower Pollination Algorithm 78

4.3 Pseudocode of Chebyshev Meatheuristic Solver Approach 79

4.4 Results . 80

4.4.1 Linear Boundary Value Problems 80

4.4.2 Non-Linear Boundary Value Problems: 99

4.4.3 Initial Value Problem . 108

4.5 Conclusion . 114

General Conclusion 116

x

Contents

Bibliography 119

Appendix A: MATLAB 125

Appendix B : MATLAB�s Code Used 126

4.6 MATLAB Code of the First Chapter . 127

4.6.1 Generation of Chebyshev Polynomials of the First Kind 127

4.6.2 Generation of Chebyshev Polynomials of the First Kind in [1,4] . . 128

4.6.3 Generation of Shifted Chebyshev Polynomials 129

4.6.4 MATLAB Code to Solve the First Example Using Chebyshev Col-

location Method . 131

4.6.5 MATLAB Code to Solve the Second Example Using Chebyshev Col-

location Method . 134

4.7 Code MATLAB for the Fourth Chapter . 137

4.7.1 Flower Pollination Algorithm . 137

xi

List of Figures

1.1 First-kind Chebyshev polynomials . 12

1.2 First-kind Chebyshev Polynomials in [1,4] 14

1.3 Shifted Chebyshev polynomials . 15

1.4 Solution using Spectral-Collocation Method with Chebyshev Polynomials

for the Linear Example . 19

1.5 Solution using Spectral-Collocation Method with Chebyshev Polynomials

for the Non-Linear Example . 21

4.1 Fig 4.1 Exact Solution vs. Approximated Results: The �rst example N=5 . 86

4.2 Fig 4.2 Exact Solution vs. Approximated Results: The �rst example N=7 88

4.3 Fig 4.3 Exact Solution vs. Approximated Results: The �rst example N=9 . 90

4.4 Fig 4.4 Exact Solution vs. Approximated Results: The second example N=5 95

4.5 Fig 4.5 Exact Solution vs. Approximated Results: The second example N=7 97

4.6 Fig 4.6 Exact Solution vs. Approximated Results: The second example N=9 99

4.7 Fig 4.7 Exact Solution vs. Approximate Results: Bernoulli Problem N=5 . 103

4.8 Fig 4.8 Exact Solution vs. Approximate Results: Bernoulli Problem N=7 . 105

4.9 Fig 4.9 Exact Solution vs. Approximate Results: Bernoulli Problem N=9 . 107

4.10 Fig 4.10. Exact Solution vs. Approximate Results: Integro-Di¤erential

Problem N=5 . 110

4.11 Fig 4.11 Exact Solution vs. Approximate Results: Integro-Di¤erential

Problem N=7 . 112

xii

List of Figures

4.12 Fig 4.12. Exact Solution vs. Approximate Results: Integro-Di¤erential

Problem N=7 . 114

xiii

List of Tables

2.1 Search Mechanisms of Some Nature-Inspired Algorithms 38

2.2 search Characteristics of Some Nature-Inspired Algorithms 38

3.1 Pollination Process and its Optimization Components 54

3.2 Flower Pollination Algorithm Pseudo-code 56

3.3 Algorithm Performance Comparison Based on the Number of Iterations . . 59

4.1 Chebyshev Polynomials, First Kind 40 . 76

4.2 Chebyshev polynomials in [0,1] . 82

4.3 Comparison table of RMSE for the linear homogeneous di¤erential problem 90

4.4 Chebyshev polynomials in [0,2] . 93

4.5 Comparison table of RMSE for the linear non-homogeneous di¤erential

problem . 99

4.6 Chebyshev polynomials in [0,1] . 102

4.7 Comparison table of RMSE for the non-linear problem 107

4.8 Comparison table of RMSE for the integro-di¤erential problem 114

xiv

Introduction

Several real life problems could be illustrated as di¤erential equations after methematical

modeling. Many of these problems aren�t simple anough to have an analytical solution,

therefore researchers tend to numerical domains to have approximate solutions. In the �eld

of optimization methods, numerical methods ,evolutionary and metaheuristic algorithms

play crucial role. This thesis is situated within the �eld of Evolutionary Algorithms (EAs),

exploring their application to developing advanced numerical techniques for solving di¤er-

ential equations.

Spectral methods are considered as global numerical methods, this thesis starts with an

investigation of spectral methods using Chebyshev polynomials [27], [38], [20], one of the

orthogonal polynomials that have great properties and e¢ cient approximation capabilities,

which makes them a powerful tool to solve di¤erential equations. Delving into examining

the mathematical properties of spectral methods and some of their practical implementa-

tions.

The optimization component of our work is driven by Evolutionary Algorithms [1], [4], [48],

[58]. Traditionally, the term �Evolutionary Algorithm�refers to a speci�c class of meta-

heuristics directly inspired by Darwinian evolution, employing operators such as selection,

crossover, and mutation. The Genetic Algorithm (GA) is the archetypal example.

However, the �eld of nature-inspired computation has produced a rich ecosystem of al-

gorithms that exhibit core evolutionary processes, even if they don�t use canonical genetic

operators. These processes include the maintenance of a population of solutions, iterat-

1

Introduction

ive improvement over generations, and a balance between exploration of the search space

and exploitation of known good solutions. For the purposes of this thesis, we adopt this

broader, more functional de�nition: an Evolutionary Algorithm is any population-based

technique that evolves solutions towards an optimum through stochastic operators and

selection.

Under this lens, many modern metaheuristics can be analyzed as specialized evolutionary

systems. The Flower Pollination Algorithm (FPA) [56], which is central to this study,

serves as a prime example. FPA�s mechanics directly map to core concepts of evolutionary

search discussed in this thesis. It evolves a population of solutions where:

� Global pollination serves as the primary diversi�cation (exploration) mechanism. It

implements a long-tailed, scale-free random walk, mathematically modeled by Lévy

�ights, to ensure the entire search space can be explored.

� Local pollination provides the intensi�cation (exploitation) component, re�ning solu-

tions in promising regions through localized random perturbations.

� A selection mechanism, based on solution �tness, ensures that the best traits dis-

covered through this process survive and propagate into the next generation.

This evolutionary dynamic is what we harness. This thesis will therefore introduce the

broad family of EAs, from classic to modern interpretations, including:

� Genetic Algorithm (GA), the foundational EA based on selection, crossover, and

mutation [19].

� Particle Swarm Optimization (PSO), which evolves a �swarm�of solutions through

social learning [22].

� Flower Pollination Algorithm (FPA), which evolves solutions by mimicking the evol-

utionary reproductive strategy of �owering plants [56].

2

Introduction

� Cuckoo Search (CS), where solutions evolve by mimicking the brood parasitic beha-

vior of cuckoo [3].

The core processes of metaheuristic algorithms lies on trial and error just like childhood

natural behavior.

These algorithms are extremely helpful in large complex search spaces, given near-optimal

solutions within reasonable computational times. This thesis explores the de�nitions,

properties, and applications of metaheuristic algorithms, focussing on Flower Pollination

Algorithm.

The hybridization of algorithms is one of the famous techniques these days due to the

powerfull of the results obtained from it, where several methods are combined to obtain

the bene�cts of every approach on solving various problems.

The main contribution of this research provided by the innovative hybridization of an evol-

utionary algorithm - Flower Pollination Algorithm- with the spectral collocation method.

By integrating the robust evolutionary search capabilities of FPA with the high precision

of spectral methods, a noval approach is designed for solving di¤erential equations espe-

cially boundary value problems. The proposed method is tested on di¤erent boundary

value problems, proving its e¤ectiveness and potential for wider applications.

Where the new approach is developed in the following manner: The �rst step is obtaining

an approximate formula of the solution using the �rst step of spectral method. The second

step based on calculating the residual using the root mean square formula. The �nal step

is about implementing Flower Pollination Algorithm in minimizing the error and getting

the unknown coe¢ cients, now the approximate solution is found.

This thesis is organized as follows:

� Chapter 1 provides simple de�nition of di¤erential equations is given, and an over-

view of spectral methods is provided with speci�c focus on Chebyshev polynomials.

It presents detailed examples and experiment results using MATLAB, to explain

how collocation method works in his simple way.

3

Introduction

� Chapter 2 dedicates for metaheuristic approach and evolutionnary algorithms,

where their de�nitions are provided and key properties are discussed. The chapter

enfolds various algorithms with di¤erent properties, behaviors, and nature. Discuss-

ing their di¤erent classi�cations depending on several e¤ects. In the end a brief

history of metaheuristics and evolutionary algorithms is given.

� Chapter 3 focusses on Flower Pollination Algorithm as a case study in evolutionary

computation, the algorithm used for our innovative method, where it begins by mak-

ing clear the process of �owering in nature and analyzes how the algorithm abstracts

this into a set of evolutionary operators. The inspiration, structure, and operational

mechanisms of the algorithm are explained, with mentioning its properties and util-

ity in solving optimization problems. An exploration of hybridization�s potentional

with other methods, leads to the novel combination discussed in the last chapter.

� Chapter 4 introduces the innovative hybrid method developed in this research. The

intergration of the evolutionary search power of FPA with spectral methods, spe-

ci�cally with Chebyshev polynomials, is explained in detail. The chapter enfolds the

theoretical framework, implementation details, and the resolution of three di¤erent

boundary value problems, two linear problems and a non-linear problem, and an

intrgo-di¤erential equation formulated as an intial value problem. The performance

of the hybrid approach is compared with the exact solution and a method introduced

by Babaei in [32], demonstrating its e¤ectiveness in enhancing solution accuracy and

e¢ ciency.

By combining advance numerical techniques with a powerful evolutionary algorithm, the

objective of this research is to contribute a novel methodology that enhances the preci-

sion and e¢ ciency of solving complex di¤erential equations and boundary valu problems.

The �ndings of this project have signi�cant implications for various �elds, giving a ro-

bust framework for further research and application in computational mathematics and

4

Introduction

engineering.

5

Chapter 1

Spectral Methods

In numerical analysis �eld, the accurate and e¢ cient solution for di¤erential equations

is very important. In the midst of various numerical methods, spectral methods have

obtained signi�cant attention, because of their high accuracy and e¢ ciency. This chapter

gives a brief introduction of di¤erential equations, then discusses spectral methods, Cheby-

shev polynomials and Spectral-Collocation method, a powerful technique that sway the

properties of Chebyshev polynomials for solving di¤erential equations.

1.1 Di¤erential Equations and Mathematical Formu-

lation

A di¤erential equation is an equation connecting an unknown function and one or more

of its derivatives.

The work on di¤erential equations has three principal goals:

1. Discovering the di¤erential equation that expresses a speci�ed physical situation.

2. Finding the appropriate axact or approximate solution of that equation.

3. Interpreting the results.

6

Chapter 1. Spectral Method

Let�s see some real-life problems that have been translated to di¤erential equations.

Problem N01

Newton�s law of cooling can be interpreted in this way: the rate of change over time t of a

body�s temperature T (t) is proportional to the di¤erence between the two temperatures

that of the body T and of the surrounding medium (A):

So,

dT

dt
= �k(T � A); (1.1)

where k is a positive constant.

Noting that in the case of T > A, dT
dt
< 0 this means that the temperature decreases and

the body is cooling. In the inverse case (T < A); dT
dt
< 0 and T increases.

Therefore, the physical law has described by a di¤erential equation.

If k and A are given, the formula of T (t) can be found, and the future temperature of the

body can be predicted.

Problem N02

Torricelli�s law says that the rate of change with respect to time t of the water�s volume

V in a draining tank is proportional to the square root of the depth y of water in the tank

dV

dt
= �kpy; (1.2)

k is a constant.

In the case of cylinder tank with vertical sides and cross-sectional area A, V = Ay and

dV
dt
= A(dy

dt
): Thus the equation takes the form:

dy

dt
= �hpy; (1.3)

h = k=A is a constant.

Problem N03

7

Chapter 1. Spectral Method

In many simple cases, the rate of change over time t of a population p(t) that have got

birth and death rates constant is proportional to the population�s size.

This is expressed by:

dP

dt
kp; (1.4)

where k is the proportionality constant. Observe that p(t) = C exp(kt) is a solution for

the di¤erential equation.

C is an arbitary constant, therefore the di¤erential equation admit a particular solution

could be chosen depending on additional information (initial or boundary conditions).

Mathematical Modeling

The process of mathematical modeling can be organized as:

1. Contructing of a mathematical model by formulate a real-world situation in math-

ematical terms.

2. Solving the resulting mathematical model.

3. Answering the question originally posed by interpreting the mathematical results in

the context of the real-world problem.

1.2 Di¤erential equations and types

The writting of a di¤erential equation is not su¢ cient to guarantee that it has a solution.

Taking this equation: (y0)2 + y2 = �1 doesn�t have a real valued solution.

Here another example where the equation has only one solution: (y0)2 + y2 = 0:

Consequently, the di¤erential equation can has several solutions, one, or no one.

A di¤erential equation�s order is determined by the highest-order derivative present within

it.

8

Chapter 1. Spectral Method

Let y be an unknown function of a single independent variable x. An n�order di¤erential

equation involving y and x is conventionally stated as:

F (x; y; y0; y00; :::; y(n)) = 0; (1.5)

where F is a function of n+ 2 variable in R:

� Di¤erential equations can be subdivided into two types:

1. Odinary di¤erential equations, where the unknown function depends only on

one independent variable in R.

1. Example 1.2.1 a(x)f 00+ b(x)f 0+ c(x)f = 0 (homogeneous linear di¤erential equa-

tion of the second order).

a(x)f 00 + b(x)f 0 + c(x)f = g(x) (non-homogeneous linear di¤erential equation of the

second order).

� 1. Partial di¤erential equations, it means that the unknown function depends on

more then one independent variable in R.

1. Example 1.2.2 @2f
@x2
+ @2f

@y2
= 0 (Laplace equation, ellipitic)

@2f
@t2
= c2 @

2f
@x2

(Wave equation, hyperbolic)

@f
@t
= �@

2f
@x2

(Heat equation, parabolic)

� Di¤erential equations equipped with conditions can be classi�ed into:

1. Initial value problem:

Di¤erential equation with initial condition.

Example 1.2.3 8><>:
@f
@t
= a; t � 0;

f(t) = 0; t = 0:
(1.6)

9

Chapter 1. Spectral Method

2. Boundary value problem:

1. The equation is associated with conditions at boundaries.

Example 1.2.4 8>>>><>>>>:
@f
@x
= a; x 2 [a; b]

f(x) = 0; x = a;

f(x) = �; x = b:

(1.7)

1.3 Chebyshev Polynomials

"Chebyshev polynomials are everywhere dense in numerical analysis"

Philip David, George Forsythe.

Chebyshev polynomials are named after the Russian mathematician P.L. Chebyshev (1821�

1894), who originally examined them. The assembled studies of this noted savant are

provided in Ruassian and French in [38].

De�nition 1.3.1 A polynomial is a function that is possibly written as the following

shape:

p(x) = a0 + a1x+ a2x
2 + :::+ anx

n: (1.8)

Where aj are real numbers and x is a real variable. Supposing that an 6= 0, then p is of

degree n:

Polynomials have several favorable properties, that makes them notably suitable to approx-

imate more complex fcuntions. Some of the important properties are the di¤erentiation

and integration, where they are able to be di¤erentiated without restrictions as frequently

as needed for any value of x:

10

Chapter 1. Spectral Method

1.3.1 First-Kind Chebyshev Polynomials

De�nition 1.3.2 The �rst-kind Chebyshev polynomial Tn(x) is a polynomial in x of degree

n, introduced by the relation

Tn (x) = cos(n�); x = cos(�): (1.9)

From the de�nition of the �rst-kind Chebyshev polynomials it�s obvious that x 2 [�1; 1],

and � can be taken in [0; �] :

Thus,

T0 (x) = cos (0x) = 1;

T1 (x) = cos(1�) = x;

T2 (x) = cos(2�) = 2 cos
2 � � 1 = 2x2 � 1;

T3 (x) = cos(3�) = 4 cos
3 � � 3 cos � = 4x3 � 3x;

T4 (x) = cos(4�) = 8 cos
4 � � 8 cos2 � + 1 = 8x4 � 8x2 + 1:

The reccurence relation to get Chebyshev polynomials can be deduced using the trigono-

metric identity:

cos(n�) + cos(n� 2)� = 2 cos � cos(n� 1)� (1.10)

Thus,

Tn(x) = 2xTn�1(x)� Tn�2(x); n = 2; 3; :::

T0(x) = 1;

T1(x) = x:

Using the reccurence relation, Tn(x) can be calculated easily than via the de�nition of

Chebyshev polynomials.

11

Chapter 1. Spectral Method

Example 1.3.1 Calculate T5(x) from T3(x) and T4(x):

T5(x) = 2xT4(x)� T3(x)

= 2x(8x4 � 8x2 + 1)� (4x3 � 3x)

= 16x5 � 20x3 + 5x:

The set of Chebyshev polynomials of the �rst kind exhibits orthogonality when integrated

with the weight function !k = (1� x2)�1=2:

The graphs (1.1)present a generation of the Chebyshev polynomials the �rst kind via

MATLAB.

­1 ­0.5 0 0.5 1
x

­1

­0.8

­0.6

­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

T n(x
)

T0

T1

T2
T3

T4

T5

Figure 1.1: First-kind Chebyshev polynomials

1.3.2 Second-Kind Chebyshev Polynomials

De�nition 1.3.3 The �rst-kind Chebyshev polynomial Tn(x) is a polynomial in x of degree

n, introduced by the relation

Un(x) = sin(n+ 1)�= sin �, x = cos �:

it�s obvious that x 2 [�1; 1], and � can be taken in [0; �] :

12

Chapter 1. Spectral Method

Using this formulaes, Chebyshev polynomials could be easy to be deduced,

sin 1� = �;

sin 2� = 2 sin � cos �;

sin 3� = sin �(4 cos2 � � 1);

sin 4� = sin �(8 cos3 � � 4 cos �):

Thus,

U0(x) = 1;

U1(x) = 2x;

U2(x) = 4x
2 � 1;

U3(x) = 8x
3 � 4x; ::::

From this trigonometric formulae,

sin(n+ 1)� + sin(n� 1)� = 2 cos � sinn�; (1.11)

the reccurence relation is

Un(x) = 2xUn�1(x)� Un�2(x); n = 2; 3::: (1.12)

U0(x) = 1;

U1(x) = 2x:

The trigonometric formulae,

sin(n+ 1)� � sin(n� 1)� = 2 sin � cosn�; (1.13)

yields to the relationship between the �rst-kind Tn(x) and the second-kind Chebyshev

polynomials Un(x),

Un(x)� Un�2(x) = 2Tn(x); n = 2; 3 (1.14)

13

Chapter 1. Spectral Method

1.3.3 Chebyshev Polynomials in [a,b]

Since Chebyshev polynomials are in the range [�1; 1], a mapping should done to get a

Chebyshev polynomials in a general range [a; b] :

Using the linear transformation

s =
2x� (a+ b)

b� a : (1.15)

Where the Chebyshev polynomials in [a; b] are Tn(s):

Example 1.3.2 Deducing the four �rst Chebyshev polynomials of the �rst kind in [1; 4] :

T0(s) = T0(
2x�5
3
) = 1;

T1(s) = T1(
2x�5
3
) = 1

3
(2x� 5);

T2(s) = T2(
2x�5
3
) = 2(2x�5

3
)2 � 1 = 1

9
(8x2 � 40x+ 41);

T3(s) = T3(
2x�5
3
) = 4(2x�5

3
)3 � 3(2x�5

3
) = 1

27
(32x3 � 240x2 + 546x� 365);

T4(s) = T4(
2x�5
3
) = (1=81)(128x4 � 1280x3 + 4512x2 � 6560x+ 3281);

T5(s) = T5(
2x�5
3
) = (1=243)(512x5 � 6400x4 + 30560x3 � 69200x2 + 73810x� 29525);

1 1.5 2 2.5 3 3.5 4
x

­1

­0.8

­0.6

­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

T n((
2x

­5
)/3

)

T0(s)

T1(s)

T2(s)

T3(s)

T4(s)

T5(s)

Figure 1.2: First-kind Chebyshev Polynomials in [1,4]

14

Chapter 1. Spectral Method

1.3.4 Shifted Chebyshev Polynomials

Real life problem are predomantly in [0; 1], therefore the shifted Chebyshev polynomials

are the Chebyshev polynomials mapped in this interval.

The shifted Chebyshev polynomials are extrated using s = 2x� 1;

Thus

T �n(x) = Tn(2x� 1); (1.16)

where

T �0 (x) = 1;

T �1 (x) = 2x� 1;

T �2 (x) = 8x
2 � 8x+ 1;

T �3 (x) = 32x
3 � 48x2 + 18x� 1;

T �4 (x) = 128x
4 � 256x3 + 160x2 � 32x+ 1;

T �5 (x) = 512x
5 � 1280x4 + 1120x3 � 400x2 + 50x� 1:

0 0.2 0.4 0.6 0.8 1
x

­1

­0.8

­0.6

­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

T*
n(x

)

T* 0(x)

T* 1(x)

T* 2(x)

T* 3(x)

T* 4(x)

T* 5(x)

Figure 1.3: Shifted Chebyshev polynomials

15

Chapter 1. Spectral Method

1.4 Numerical Methods

In the world of di¤erential equations, numerical methods can be classi�ed into global or

local methods.

1.4.1 Local Methods

These methods focus on segments of the problem�s domain in the approximation of PDE�s

solutions. Where they begin by dividing the domain into smaller, dicrete elements or

points and solve the di¤erential problem within each element. Such as �nite-di¤erence

and �nite-element methods.

Local methods can be considered as a well-suited method for complex geometries and

problems with regular boundaries, also they are �exible in handling no-uniform meshes

and localized re�nement. But they can caused an increased computational cost as they

may require a large number of elements or points for high accuracy. In addition, the

approximation made locally can accumulate errors.

1.4.2 Global Methods

Global methods utilizes basis functions that reach the entire domain to approximate the

solutions of PDEs. They consider the entire domain rather than segmenting it into smaller

parts and solve the problem in overall the domain.

Spectral methods are global methods.

For problems with smoothness , these methods can reach superior accuracy due to the

global nature of basis functions. But in the case of complex geometries and problems

with irregular boundaries, they can be less �exible. Also, the fact that they require global

information caused intensive computational for large-scale problems.

16

Chapter 1. Spectral Method

Weighted Residual Methods

Spectral methods belong to the family of weighted residual methods, for that reason here

a brief introduction to this family of methods. [28]

Suppose the general problem

@tu(x; t)� Lu(x; t) = N(u)(x; t); t > 0; x 2
; (1.17)

Here L is a spatial derivative operator, and N is a linear or nonlinear spatial operator

with lower-odrer, and
 is a bounded domain on Rd; d = 1; 2 or 3. Adding to the equation

1.17 initial or boundary conditions.

Considering only the weighted residual method for spatial discretization, and supposing

that the time derivative is dicretized with a suitable time stepping scheme.

Considering the Crank-Nicolson leap-frog scheme for (1.17):

un+1 � un�1
2�

� L(u
n+1 + un�1

2�
) = N(un); n > 1: (1.18)

Where � is the time step size, and uk(:) is an approximation of u(:; k�):

The equation (1.18) is equivalent to

Lu(x) := �u(x)� Lu(x) = f(x); x 2
; (1.19)

here u = un+1+un�1

2
; � = ��1 and f = �un�1 + N(un): So a steady-state problem of the

form (1.19) is needed to be solved, at each time step.

The �rst step of weighted residual methods is to write the approximate solution of (1.19)

as a �nite sum

u(x) � uN(x) =
NX
k=0

ak�k(x); (1.20)

Where {�k} are basis functions, such as Chebyshev polynomials, Fourier series and Hermite

17

Chapter 1. Spectral Method

polynomials.

The next step is to determinate the expansion coe¢ cients fakg.

The residual obtained after substituting uN for u in (1.19) is

RN(x) = LuN(x)� f(x) 6= 0; x 2
: (1.21)

Forcing the residual to zero by requiring

(RN ;	j)! :=

Z

RN(x)	j(x)!(x)dx = 0; 0 � j � N; (1.22)

! is a positive weight function, f	jg are the test functions, where the most commonly util-

ized test functions are trigonometric functions or orthogonal polynomials, such as Cheby-

shev, Legendre, Laguerre and Hermite polynomials.

Or,

(RN ;	j)! :=
NX
k=0

RN(xk)	j(xk)!k = 0; 0 � j � N; (1.23)

where fxkgNk=0 are a set of preselected collocation points, and f!kgNk=0 are the weights of

a numerical quadrature formula.

The choice of the test functions distinguishes spectral methods, for example Galerkin,

collocation, Tau methods.

1.4.3 Collocation Method Using Chebyshev Polynomials

To understand the method let�s solve some problems.

Example 1.4.1 supposing the linear problem

8><>: �d2u
dx2
= exp(x);x 2 [�1; 1];

u(�1) = u(1) = 0:
(1.24)

18

Chapter 1. Spectral Method

Solution of The example:

Let�s solve the example with spectral-collocation method using Chebyshev polynomials of

the �rst kind de�ned above.

The solution can be broken down into these main points:

1. Generate the grid of Chebyshev nodes with the cosine function.

2. For the function f(x) = exp(x), �nd its value at each node.

3. Build the associated second-order di¤erentiation matrix D.

4. Construct the matrix A, using the collocation points to get a system Au = b.

5. Solve the linear system Au = b, and �nd the unkown coe¢ cients of u, with enforcing

boundary conditions.

6. Plot and compare the numerical solution with the exact one.

Here is the graph of the solution to the problem using Chebyshev collocation method;

­1 ­0.5 0 0.5 1
x

­0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

u(
x)

Chebyshev Spectral Collocation (N = 20)

Numerical Solution
Exact Solution

Figure 1.4: Solution using Spectral-Collocation Method with Chebyshev Polynomials for
the Linear Example

19

Chapter 1. Spectral Method

Example 1.4.2 Let�s solve the non-linear boundary value problem de�ned by

8><>:
d2u
dx2
= exp(u); x 2 [�1; 1];

u(�1) = u(1) = 0
(1.25)

The steps used in the resolution of this problem using spectral-collocation method are:

1. De�nition of nodes number, then generation of di¤erentiation matrix.

2. Construction of the second di¤erentiation matrix and applying boundary conditions.

3. Use fsolve to solve the system of nonlinear equations.

4. Reapplying boundary conditions.

5. Due to that the problem doesn�t have simple exact solution, plotting the computed

values at the collocation points, showing the smooth polynomial that passes through

them, where it is the approximate solution.

The graph of the approximate solution is,

1.5 Conclusion

This chapter commences with a de�nition of di¤erential equations then a proceeding of

spectral methods, giving particular attention to Chebyshev polynomials. Furthermore,

the fundamental mechanics of the spectral collocation technique are elucidated through

practical examples and experimental results implemented in MATLAB.

20

Chapter 1. Spectral Method

­1 ­0.5 0 0.5 1
x

­0.4

­0.35

­0.3

­0.25

­0.2

­0.15

­0.1

­0.05

0

u(
x)

Chebyshev Spectral Collocation for u" = exp(u) (N = 20)

Interpolated Numerical Solution
Collocation Points

Figure 1.5: Solution using Spectral-Collocation Method with Chebyshev Polynomials for
the Non-Linear Example

21

Chapter 2

Evolutionary Algorithms: An

Introduction to Metaheuristic

Optimization

This chapter introduces the �eld of Evolutionary Algorithms by presenting a broad, func-

tional perspective. We will show how the core principles of evolution population based

search, diversi�cation, and intensi�cation provide a powerful framework for understanding

a wide range of modern metaheuristics.

2.1 Optimization

The majority of optimization challenges can be e¤ectively written in the following generic

form:

min
x2R
fi(x); (i = 1; 2; :::;M); (2.1)

subject to

22

Chapter 2. Metaheuristics

hj(x) = 0; (j = 1; 2; :::; J); gk(x) 6 0; (k = 1; 2; :::; K);

with x = (x1; x2; :::; xn)T :

Where

� Decision or design variables are components of xi:

� fi are the cost or objective functions :

� The search(design) space encompasses all possible decision variables.

� Solution space is the set of the objective function values.

� The equalities hj and inequalities gk are the constraints:

Quote here di¤erent classi�cations of optimization problems according to

1. Objective numbers:

� For M = 1, it is called single-objective optimization.

� For M > 1, it can be named multi-objective, multi-criteria or even multi-

attribute optimization.

2. Constraint�s number:

� In the case where J = K = 0, the problem called an unconstrained optimization

one.

� If K = 0 and J � 1, then it will be equality-constrained problem .

� If J = 0 and K � 1, so it named Inequality-constrained problem.

3. Linearity

� In the linearly constrained problem, hj and gk are all linear.

23

Chapter 2. Metaheuristics

� In linear programming problem, hj, gk, and all objective functions are linear.

� Or fi, hj, and gk are non linear, it is a non linear optimization problem.

2.2 Search for Optimality

Once an optimization problem has been properly formulated, the subsequent step involves

applying suitable mathematical methods and systematic approaches to derive optimal

solutions. Searching for the optimal solution can be likened to a treasure hunt.

Suppose we are on a time-limited quest to discover a hidden treasure in a hilly landscape.

There are two extremes. The �rst one is to be blind without any instructions, leading to

arbitrary and ine¢ cient search operations. The other extreme is to be informed about the

treasure�s location, situated on the highest summit of a known region. In this case, the

initial action involves climbing to the steepest cli¤ and attempting to reach the highest

peak. This framework aligns with the classic hill-climbing approach.

Often, our search is between these two extremes, indicating that we are clear-sighted, yet

simultaneously unaware of where to look. It�s not feasible to examine every single square

inch of an extensive hilly region just to �nd the treasure. Thus, we resort to random walks.

The preferred strategy involves employing random walks while searching for clues. We

start from a random place, move to another, and then proceed to yet another, and so

forth. In fact, contemporary search algorithms prominently feature these random walks

as a fundamental characteristic.

Moreover, the e¢ ciency of this approach lies in its adaptability to diverse landscapes.

By initiating the search from random locations and navigating through various paths, we

increase the likelihood of discovering hidden information or potential optimal solutions.

This dynamic and exploratory method aligns with the evolving nature of search algorithms

in modern problem-solving scenarios.

Engaging in treasure hunting can occur individually, where the entire path is perceived as

24

Chapter 2. Metaheuristics

a trajectory-based search, paralleling techniques such as Simulated Annealing. Alternat-

ively, it can involve a collaborative e¤ort with a group of individuals sharing information.

The latter approach embodies swarm intelligence, a concept applied in Particle Swarm

Optimization.

The search process can take a signi�cant amount of time when the area is extensive,

especially if the treasure holds considerable importance. However, with an unrestricted

timeframe and accessible locations, we have the opportunity to attain the ultimate treasure

(the global optimal solution).

The search strategy can be enhanced by retaining the more e¤ective hunters and introdu-

cing new ones, as seen in Genetic Algorithms and Evolutionary Algorithms.

It�s noteworthy that almost all metaheuristic algorithms share the following strategies:

� Employ best solutions or agents.

� Randomize (or replace) the less optimal solutions by evaluating the competence (�t-

ness) of each individual in collaboration with the system history (utilizing memory).

Better and more e¢ cient optimization algorithms are expected to be achieved by attaining

this balance.

2.3 Understanding Evolutionary and Metaheuristic

Approaches

While classic Evolutionary Algorithms (EAs) are de�ned by genetic operators like crossover

and mutation, we can adopt a more functional de�nition. Under this lens, any population-

based algorithm can be considered �evolutionary� if it iteratively improves solutions by

balancing diversi�cation (exploration) and intensi�cation (exploitation). This perspective

allows us to analyze algorithms like Particle Swarm Optimization and Flower Pollination

25

Chapter 2. Metaheuristics

Algorithm as evolutionary systems that use di¤erent, nature-inspired operators to achieve

the same goal.

Metaheuristic algorithms are applied to a vast range of optimization problems, where these

problems are characterized as I know it when I see it problems. It means that we have

limited heuristic information about the solution to proceed, given a candidate solution,

testing it, and then assessing its e¤ectiveness.

Using the hill-climbing strategy involves initiating a random set of solutions and introdu-

cing a small random modi�cation to each. Subsequently, the modi�ed solution is tested,

and if it proves to be better than the original, it replaces the latter; otherwise, the original

solution remains unchanged. This iterative process is repeated to explore the entire local

search space and optimize the solution within the de�ned constraints.

To explore the entire space comprehensively, it is necessary to select solutions that are

distant and distinct from each other at times. Subsequently, the process of discovering

new local spaces is repeated, akin to the initial exploration. Finally, from the diverse set

of solutions obtained, the optimal solution is chosen based on the speci�ed criteria.

2.4 Classi�cation of Metaheuristic Algorithms Based

on Their Nature

To understand the mechanics of the evolutionary systems discussed in this thesis, it is

essential to classify them based on their use of randomness. Evolutionary processes are

inherently stochastic, and this is re�ected in the design of most EAs. Optimization al-

gorithms can be classi�ed by their nature into:

2.4.1 Deterministic

These algorithms are designed to follow the same path, every time the program run, for

the same strating point. For this kind of algorithm, the values of the design variables,

26

Chapter 2. Metaheuristics

path and functions are repeatable, such as the hill-climbing algorithm.

Deterministic algorithms can be separated into gradient-based algorithms and gradient-

free algorithms.

Gradient-based algorithms use both the function values and their derivatives. These types

of algorithms are e¢ cient for smooth unimodal problems but are not suitable for problems

with discontinuities in the objective functions. An example of such an algorithm is the

Newton-Raphson Algorithm.

Gradient-free algorithms use only the function values without resorting to derivatives,

exempli�ed by algorithms like Hooke-Jeeves pattern search and Nelder-Mead downhill

simplex. These algorithms can be used to solve problems that gradient-based algorithms

couldn�t address.

2.4.2 Stochastic

In this context, randomness plays a signi�cant role, where in each run of the program, this

remdomness causes variations in the solution within the population. While the di¤erences

between solutions may not be substantial, the paths of each individual are not consistent

every time, like in Genetic Algorithms.

2.4.3 Hybrid of Stochastic and Deterministic Algorithms

It employs deterministic algorithms but starts with di¤erent initial points, introducing an

element of randomness. A notable example is hill-climbing with a random restart; this

form of randomness prevents the algorithm from getting stuck in a local peak.

In optimization literature, even hybrid algorithms are classi�ed as stochastic algorithms.

We have two types of stochastic algorithms: heuristic and metaheuristic. The di¤erence

between them is small, and there are those who use �heuristic� and �metaheuristic�

interchangeably.The term �heuristic�denotes �to �nd�or �to discover by trial and error.�

Algorithms of this type can generate high-quality solutions to challenging optimization

27

Chapter 2. Metaheuristics

problems within a reasonable time-frame, though they do not assure the achievement of

optimal solutions. So, these algorithms provide good solutions but not necessarily the

best solutions all the time. If we want to simplify the idea of heuristics, we can say

that heuristic is the process of generating acceptable solutions to a complex

problem within a reasonable practical time, using trial and error. The aim

of these algorithms is to �nd a good feasible solution to a complex problem within an

acceptable timescale.

On the �ip side, �meta�implies �high-level,�distinguishing metaheuristic algorithms as

superior to heuristics. Metaheuristics outperform heuristics by employing a combination

of local search and randomization. This dual approach ensures an intensi�ed exploration

of local spaces, while simultaneously leveraging randomization to transition seamlessly

from local to global search. Consequently, these algorithms prove particularly adept at

tackling global optimization challenges.

So, metaheuristic algorithms work using a combination of:

� Intensi�cation or exploitation, it means focusing on a local region and exploiting the

information found by the current good solution.

� Diversi�cation, it refers to the phase where the algorithms explore the search on the

global scale by generating diverse solutions. This characteristic, made via random-

ization, avoids entrapment in local optima and enhances exploration diversity.

� The process of selecting best solution, drives the system toward convergence to

optimality.

28

Chapter 2. Metaheuristics

2.5 Classi�cation of Metaheuristic Algorithms Based

on Their Working System

Beyond their nature, Evolutionary Algorithms can be categorized by their implementa-

tion style, which often distinguishes classic from modern approaches. Procedure-based

algorithms align with classic EAs like the Genetic Algorithm, while equation-based sys-

tems represent many of the contemporary EAs that this thesis explores.

2.5.1 Procedure-Based Algorithms

The Genetic Algorithm functions as procedure-based algorithm, characterized by an iter-

ative approach in its main steps. In several algorithms, The recurring procedure follows a

general structure with three distinct parts:

1. Solution�s representations:

In most cases, a solution vector x in a D-dimensional problem is encoded as either

a �xed-length binary sequence or an array of real-valued numbers.

2. Solution�s modi�cations:

Changes can be achieved via mutation or crossover operations.Mutation involves

modifying individual solutions at one or several locations,whereas crossover combines

elements from two parent solutions by exchanging or blending their components to

generate new solutions.

3. Solution�s selection:

The evaluation of the �tness�s solution is achieved, according to its objective value.

A solution is selected from a population based on its �tness (lowest values for min-

imization). The best solutions are then transmitted to the next generation.

29

Chapter 2. Metaheuristics

2.5.2 Equation-Based Algorithms

Most recent nature-inspired algorithms are equation-based, where solutions are repres-

ented as vectors xi; (i = 1; 2; :::n), representing a population set of n solutions in the

D-dimensional search space. For the selection of solutions, these algorithms use �tness

values, wherein, for minimization problems (maximization problems), lower objective val-

ues (higher objective values) pass on to the next generation."

The distinction among these nature-inspired algorithms lies in the step of modifying solu-

tions, where they employ di¤erent mathematical forms or search mechanisms. Actually,

in iteration or generation t the solution (position) vector is denoted by xti, and after using

modi�cation increment or mutation vector �xti, a new solution x
t+1
i is generated

xt+1i = xti +�x
t
i: (2.2)

Usually, �xti represents a step size or a step vector.

On the gradient-based algorithms such as the Newton-Raphson method, the step is related

to the negative gradient:

�xti = ��rf(x); (2.3)

where f(x) is is the objective function, rf is the gradient of f and � is a positive learning

parameter.

In certain other nature-inspired algorithms, the modi�cation is associated with the incre-

ment of velocity, expressed as:

�vti = v
t+1
i � vti ; (2.4)

The velocity of the solution (particle, agent, etc.) i at iteration t and iteration t + 1

respectively, is presented by vti and v
t+1
i . �t is the time increment and it is the di¤erence

in the iteration counter �t = t + 1 � t = 1, so, these algorithms don�t need a unit to be

30

Chapter 2. Metaheuristics

used.

In this part, various equations utilized for modifying the solutions are presented:

Di¤erential Evolution (DE)

In Di¤erential Evolution, the main mutation is given by the formula:

xt+1i = xti +�x
t
i; (2.5)

�xti = F (xtj; x
t
k):

xti; x
t
j and x

t
k are di¤erent solution vectors chosen from the population. The mutation

strength is controlled by the parameter F 2]0; 1[.

Particle Swarm Optimization (PSO)

The swarming behavior of birds and �sh serves as inspiration for creating Particle Swarm

Optimization (PSO). Using equations below, the upgrade of position and velocity of

particle i at iteration t is met

vt+1i = vti +�v
t
i ; (2.6)

xt+1i = xti +�x
t
i;

�xti = vt+1i �t = vt+1i ;

�vti = �"1[g
� � xti] + �"2[x� � xti]:

Noting that "1; "2 are random numbers uniformly distributed in the interval [0; 1], at

iteration t, the best solution of the population is g�, and x� presents the individual best

solution for particle i at iteration t.

31

Chapter 2. Metaheuristics

Fire�y Algorithm (FA)

The main characteristics of FA are found by imitating the attraction and �ashing behavior

of tropical �re�ies.

At iteration t the �re�y i has the position vector xti, and it can be updated using the

equation:

xt+1i = xti +�x
t
i; (2.7)

where

�xti = �0e
(�
r2ij)(xji � xti): (2.8)

The attractiveness at zero distance (rij = 0) is indicated by �0.

The visibility of �re�ies is controlled by the scale-depending parameter
, and the strength

of randomization in FA is controlled by �.

Bat Algorithm (BA)

This algorithm is inspired by the echolocation of micro-bats and the associated frequency-

tuning characteristics in a range from fmin to fmax, combining by varying purse emission

rate and loudness. The update of bat position is achieved through:

vti = vt�1i +�vti ; (2.9)

xti = xt�1i +�xti;

Where

32

Chapter 2. Metaheuristics

�vti = (xt�1i � x�)[fmin + �(fmin � fmax)]; (2.10)

�xti = vti�t = v
t
i ;

best solution on the population of n bats is x�, a random number on [0; 1] is noted by �.

Cuckoo Search (CS)

Cuckoo Search mimic the strategy of of the aggressive reproduction done by some special

cuckoo species and their interaction with host species. A discovery or an abundance of

eggs laid by cuckoo is realized with a probability p�, the similarity of two solutions or

eggs (xj; xk) is measured by the quantity (xj � xk). So the position of eggs xti at iteration

t is given by:

xt+1i = xti +�x
t
i; (2.11)

and

�xti = �s
 (xti � xtk): (2.12)

To limit the strength of the step size s it scaled by a parameter �, s follows lévy distribution

with an exponent �. Some sophisticated algorithms like the Mantegna�s Algorithm is used

to create a generation of this step size.

Flower Pollination Algorithm (FPA)

The focal point of this FPA involves the pollination process and the features of �owering

plants, primarily utilizing both biotic and abiotic pollination, while emphasizing �ower

constancy. The pollen xi (the solution vector) can be updated by:

33

Chapter 2. Metaheuristics

xt+1i = xti +�x
t
i: (2.13)

Where

�xti =

8><>:
L(�)(g� � xti); if f < p;

"(xti � xtk); otherwise.
(2.14)

r is drawn by a uniform distribution in [0; 1],
 is considered as a scaling parameter. At

an iteration t the best solution is g�, and L follows Lévy �y with an exponent �.

Additional nature-inspired algorithms are presented here:

Simulated Annealing, Gravitational Search, Charged Particle System, Black-hole Algorithm,

Eagle Strategy ...etc, where the way�s generation of �xti and �v
t
i is the main di¤erence

between in these algorithms.

The increments of the solution�s position and velocity di¤er from one algorithm to another,

and in some algorithms, there is no need for velocity. This distinction may be evident in the

form of updating, or not. Such as in di¤erential evolution and particle swarm optimization,

the two equations xt+1i = xti + �x
t
i,may appear similar at �rst glance, but a signi�cant

distinction lies between them. In the Di¤erential Evolution (DE) method, the increment

is achieved through random permutation, whereas in Particle Swarm Optimization (PSO),

it is calculated using a di¤erence vector with perturbed directions, employing a uniform

distribution. For a deeper understanding, it is essential to analyze the underlying search

mechanisms along with their mathematical or statistical foundations.

2.6 Other Classi�cations

Researchers have delved into alternative classi�cations of metaheuristics. For instance,

Gendreau and Potvin [33] categorized metaheuristics into two main groups: trajectory-

based and population-based. In trajectory-based algorithms, the process initiates with

34

Chapter 2. Metaheuristics

a single solution, and at each iteration, the current best solution is substituted by a

new one. Conversely, population-based algorithms kick o¤ by generating a population of

initial solutions randomly. This initial population undergoes iterative improvements, with

newly generated superior solutions replacing either the entire population or a portion of

it. Generally, trajectory-based solutions tend to be more exploitation-oriented, focusing

on re�ning the current best solution, while population-based metaheuristics lean towards

exploration, emphasizing the generation and exploration of diverse solutions within the

population.

Adding to this discourse, Fister et al. [21] introduced another classi�cation framework, di-

viding all existing metaheuristics into non-nature inspired and nature-inspired categories.

Within the nature-inspired category, further distinctions include swarm intelligence (SI)

based, bioinspired (excluding SI), and physics/chemistry-based metaheuristics. A mis-

cellaneous grouping is reserved for algorithms that defy classi�cation under the previous

categories, as they draw inspiration from a variety of characteristics originating from dif-

ferent sources such as social and emotional in�uences. It is crucial to note that this is just

some among many classi�cation perspectives, as a multitude of alternative frameworks

exist, underscoring the diverse nature of metaheuristic optimization techniques.

2.7 Search Mechanisms and Theoretical Foundations

The �evolution�in any computational evolutionary algorithm is driven by its search mech-

anisms. By analyzing these foundational components, such as random permutations and

various types of random walks, we can understand precisely how a population of solutions

improves over time.

The primary distinction among the search mechanisms of nature-inspired algorithms lies

in their probability distributions. By considering the statistical foundations and the prin-

cipal mechanisms of solution modi�cations, we can distinguish �ve ways or perturbations:

35

Chapter 2. Metaheuristics

gradient-guided moves GGM, random permutation RP, directed-based perturbations DBP,

isotropic random walks IRW, and long-tailed scale-free random walks LTRW.

2.7.1 Gradient-Guided Moves

Moves of this kind are employed in gradient-based optimization, as seen in the Newton-

Raphson method, where modi�cations are made parallel to the gradient direction, and the

step length can be controlled by a learning parameter.

2.7.2 Random Permutation

This permutation is performed by mixing up a set of n solutions and then randomly

selecting k solutions to generate new ones. Several algorithms, such as DE and FPA,

utilize these random permutations.

2.7.3 Direction-based Perturbations

These moves are executed by utilizing the di¤erence between any two vectors (xj � xk)

or (g� � xi). This di¤erence determines a direction, which is then multiplied by a ran-

dom number " distributed uniformly. The directions of these permutations are randomly

distributed within a cone.

2.7.4 Isotropic Random Walks

Algorithms utilizing these moves have the following equations for updating solutions:

xt+1i = xti + !
t+1; (2.15)

where xti is the current solution, x
t+1
i is the solution after perturbation and !t+1 are

random numbers drawn from Gaussian distribution. !t+1 � N(0; 1). So, these random

walks match a Brownian motion. The pseudotime counter t can be replaced by the number

36

Chapter 2. Metaheuristics

of steps, given that iteration time is discrete. This implies that the average distance dN

covered by a Brownian random walk is proportional to
p
N . This square-law feature is

typical for many di¤usion phenomena.

In conclusion, isotropic random walks are the moves where steps are drawn from Gaussian

distributions.

2.7.5 Long-tailed, Scale-free Random Walks

Algorithms with long-tailed, scale-free random walks, use a heavy-tailed or long-tailed

distribution to draw the steps of moves, such as Cauchy distribution

p(x; �;
) =
1

�

(

2

(x� �)2 +
2);�1 < x < +1; (2.16)

where � and
 are two parameters, it have an in�nite or an unde�ned mean or variance.

A very important example of long-tailed distribution is Lévy distribution.

A random walk with steps drawn from Lévy distribution is called a Lévy �ight.

Lévy probability distribution can be de�ned by:

p(x) =
1

�

1Z
0

cos(kx)e��jkj
�

dk; 0 < � � 2; � > 0: (2.17)

This distribution becomes a Cauchy distribution if � = 2 and a normal distribution if

� = 2.

Approximations for large steps can be used

L(s) �
���(�) sin(��

2
)

�jsj1+� ; s� 0; (2.18)

with �(�) is the standard gamma function.

The variance or distance covered by the Brownian random walks increases much more

slowly than the distance covered by a Lévy Flight. After N steps, the mean distance

37

Chapter 2. Metaheuristics

covered by a Lévy �ight becomes:

dN _ N
(3� �)
2

: (2.19)

This power-law is a typical feature for super-di¤usion phenomena.

Search mechanisms of some nature-inspired algorithms and their underlying statistical

characteristics are summarized in Table 2.1, while Table 2.2 provides a summary of their

search characteristics.

Algorithm Position Increment �x Velocity Increment �v
Newton-Raphson GGM None
DE RP, DBP None
PSO DBP DBP
FA DBP, IRW None
BA RP, DBP RP, DBP
CS RP, DBP, LTRW None
FPA DBP, LTRW None
SA IRW None

Table 2.1: Search Mechanisms of Some Nature-Inspired Algorithms

Algorithm Probability
DE Uniform

Permutation
PSO Uniform
FA Gaussian

Uniform
BA Uniform
CS Lévy �ights

Long-tailed
FPA Uniform

Lévy �ights

Table 2.2: search Characteristics of Some Nature-Inspired Algorithms

38

Chapter 2. Metaheuristics

2.8 Random Walks and Lévy Flights

As we have discussed earlier, the primary characteristics of metaheuristic algorithms re-

volve around diversi�cation and intensi�cation. Recognizing the pivotal role of randomiz-

ation in achieving these goals, the essence of such randomization lies in the concept of a

random walk. In this section, we will provide a concise overview of the fundamentals of

random walks and Lévy �ights.

2.8.1 Random Variables

A random variable is an expression whose value represents the outcome or realization of

events associated with a random process, such as the noise level on a street. Random

variables can take real values and are classi�ed as either discrete or continuous. Discrete

random variables, like the number of cars on a road, have distinct, separate values. On

the other hand, continuous random variables, such as the noise at a location, can take any

value within an interval.

Additionally, random variables can be a mix of these two types, combining discrete and

continuous characteristics. Mathematically, a random variable is a function that maps

events to real numbers in a domain called the sample space.

To represent the probability distribution of a random variable, a probability density is

employed. An illustrative example is the Poisson distribution, which models occurrences

such as the number of phone calls per minute or the number of users on a web server

per day. If the mean or expectation of the event during a unit interval is denoted as a

parameter
 > 0, then the probability density function of the Poisson distribution is

p(n; �) =
�e��

n!
; (n = 0; 1; 2; :::): (2.20)

Many physical processes, such as light intensity and errors in measurements, follow the

popular Gaussian or normal distribution, where

39

Chapter 2. Metaheuristics

p(x;�; �2) =
1

�
p
2�
e
(�x��)2

2�2 ;�1 < x <1; (2.21)

with � is the mean and � > 0 is the standard deviation.

In the metaheuristic world, another important probability distribution is the Lévy distri-

bution, which is the sum of N identical and independent distributions of random variables.

The Fourier transform of these random variables is given by

FN(k) = e
�N jkj� : (2.22)

Lévy-distribution can be written as:

L(s) =
1

�

1Z
0

cos(�s)e��r
3

d� ; 0 < � � 2: (2.23)

It has an analytical form only for a few cases. When � = 1, the above integral becomes

the Cauchy distribution, and for � = 2, it transforms into the normal distribution, while

Lévy �ights turn into the standard Brownian motion.

In mathematical terms, we can represent the preceding integral as an asymptotic series.

The leading-order approximation for the �ight length yields a power-law distribution

L(S) � jsj�1��;

which is heavy-tailed. For 0 < � < 2, his variance and moments are in�nite, becoming a

stumbling block for mathematical analysis.

2.8.2 Random Walks

A random walk can be de�ned by a process that takes series of consecutive random steps,

it means that if Xi are random steps, then

40

Chapter 2. Metaheuristics

SN =
NX
i=1

X1 + :::+XN (2.24)

= SN�1 +XN ;

is a random walk.

So, the next state SN depends only on the current state SN�1 and the motion from the

current state to the next state, denoted as XN . This property is characteristic of a Markov

chain. The step size in a random walk can be either the same or di¤erent.

Hence, random walks can be represented as St+1 = St + wt, where St denotes the current

state at time t, and wt is a random variable (step) following a known distribution. If the

step adheres to a Gaussian distribution, then the random walk is classi�ed as Brownian

motion.

According to the central limit theorem, as the number of steps N increases, the random

walk tends to approach a Gaussian distribution.

The Brownian motion follows a Gaussian distribution, meaning that �(t) � N(0; �2(t)).

Where

�2(t) = jvj2t2 + (2dDt): (2.25)

Here, v0 is the drift velocity of the system, and D = s2

2�
is the e¤ective di¤usion coe¢ cient,

which is related to the step length s over a short time interval � during each jump.

The random walk can be more generalized if the step length follows a di¤erent distribution,

such as in Lévy �ight (Lévy walk), where the step length adheres to the Lévy distribution

2.8.3 Lévy Flight

Lévy �ight is a type of random walk where the step length follows the Lévy distribution,

L(s) � jsj�1�� where 0 < � � 2.

41

Chapter 2. Metaheuristics

A simpli�ed form of the Lévy distribution can be expressed as

�L(s;
; �) =

8><>:
p

2�
exp[�

2(s��)]
1

(s��)3=2 ; if 0 < � < s <1;

0; otherwise.
(2.26)

� > 0 is a minimum step and
 is a scale parameter.

When s!1, we have L(s;
; �) �
p

2�

1
s3=2
,

this case can be considered as a special one of the generalized Lévy distribution.

On the other hand, in terms of the Fourier transform, the Lévy distribution is de�ned by:

F (k) = exp[��jkj�]; 0 < � � 2; (2.27)

with � is a scale parameter.

The inverse of this integral does not have an analytical form, except for special cases:

� When � = 2, the inverse Fourier transform yields a Gaussian distribution.

� If � = 1, the inverse Fourier transform corresponds to a Cauchy distribution

P (x;
; �) =
1

�

2 + (x� �)2 ; (2.28)

where � is a parameter corresponds to the location, and
 controls the scale of this

distribution.

� Generally, the inverse integral can be de�ned as:

L(s) =
1

�

1Z
0

cos(ks)e��jkj
�

dk; (2.29)

it can be estimated only when s is large, and we have

L(s)! ���(�) sin(��=2)
�jsj1+�

42

Chapter 2. Metaheuristics

�(z) =

1Z
0

tz�1e�tdt; (2.30)

� is the Gamma function.

For various reasons, when exploring an unknown, large-scale search space, Lévy �ights

tend to be more e¢ cient than Brownian random walks.

One of the reasons is that the increase in variance in Lévy �ights occurs much faster

compared to the linear relationship in Brownian random walks.

�2(t) � t3��; 1 � � � 2 (for Lévy �ights).

�2(t) � t (for Brownian random walks).

The generation of random numbers using Lévy �ights involves two stages.

The �rst stage entails choosing a random direction, drawn from a uniform distribution.

In the second stage, steps are generated using the Mantegna algorithm for a symmetric

Lévy stable distribution. Here, �symmetric�denotes that steps can take positive or negative

values. A random variable and its probability distribution can be termed stable if a linear

combination of its identical copies follows the same distribution.

Gaussian, Cauchy and Lévy distributions are stable distributions.

In Mantegna�s algorithm, the step length is calculated using the formula

s =
�

jvj1=� ; (2.31)

where

� � N(0; �2�); v � N(0; �2v); (2.32)

and

�� = [
�(1 + �) sin(��=2)

�((1 + �)=2)2(��1)=2
]
1
� : (2.33)

43

Chapter 2. Metaheuristics

If s0 represents the smallest step, then S follows a Lévy distribution for jsj > s0, where

s� 0. In reality, it is often chosen within the range of 0:1 to 1.

2.9 Intensi�cation and Diversi�cation:

The success of any evolutionary system, whether biological or computational, hinges on

its ability to e¤ectively balance the fundamental trade-o¤ between intensi�cation and

diversi�cation.

Metaheuristic algorithms prove their e¢ ciency day by day by being applied to solve the

most complicated optimization problems. This e¢ ciency is attributed to the fact that

they mimic the best features in nature. All metaheuristic algorithms share two main

characteristics: intensi�cation and diversi�cation. Intensi�cation involves searching locally

and intensively, exploiting around the current best solution and selecting candidates found.

Diversi�cation, on the other hand, involves exploring the global solution space through

large-scale randomization.

The e¢ ciency of an algorithm is attributed to the balance between these two components,

and even a small error in this balance can adversely a¤ect the mechanism and e¢ ciency of

the algorithm. If the exploration is limited while exploitation is dominant, the system may

become trapped in local optima. Conversely, if the exploitation is minimal and exploration

is extensive, it can hinder the system from converging, thereby slowing down the overall

search performance.

Attaining a proper balance between intensi�cation and diversi�cation constitutes an op-

timization problem that requires the application of an algorithm to achieve.

Another essential mechanism in metaheuristic algorithms is the best solutions selection.

The �survival of the �ttest�criterion is commonly used, including the continuous update of

the current best solution. Moreover, to guarantee that the �ttest solutions are preserved

and not lost in the process, elitism is often incorporated.

44

Chapter 2. Metaheuristics

2.10 Ways for Intensi�cation and Diversi�cation:

Algorithms employ various methods to achieve a balance between diversi�cation and in-

tensi�cation. Typically, metaheuristic algorithms utilize a combination of randomization

and deterministic procedures to achieve exploration. This guarantees that the new gen-

erated solutions are distributed as diversely as possible within the feasible search space.

We can mention here a common randomization technique, which involves

xnew = L+ (U � L) � ��; (2.34)

where L is the lower bound and U is the upper bound. �� is a random variable distributed

uniformly in [0; 1].

In fact, the distribution used to generate random walks can be a Lévy distribution rather

than a uniform distribution, and it proves to be more e¢ cient on a global scale. To

achieve diversi�cation, mutation and crossover are also employed. Mutation ensures that

the newly generated solutions are as distinct as possible from the existing solutions, while

crossover generates new solutions by swapping parts of the existing solution. This helps

in limiting the degree of over-diversi�cation.

Exploitation can be easily achieved through local random walks

xnew = xold + sw; (2.35)

Here, w is drawn from a Gaussian distribution with a zero mean, and the step size of the

random walk must be very small to ensure visits only to the neighborhood.

To increase the e¢ ciency of diversi�cation Lévy distribution can be used to draw s with

large step sizes, any distribution with long tail will help to increase the distance between

such random walks.

A more selective or controlled walk around the current best, rather than any good solution,

can be achieved using the following equation:

45

Chapter 2. Metaheuristics

xnew = xbest + sw; (2.36)

In many algorithms, there is no di¤erentiation between exploration and exploitation; they

are often intertwined and interactive. For example, in Genetic Algorithms, Harmony

Search, and Bat Algorithms.

The consideration of selecting the best solutions is indispensable as it plays a pivotal

role in determining the success of an algorithm. While opting for the best might prove

e¤ective in optimization problems with a unique global optimum, addressing multimodal

and multi-objective challenges requires the implementation of elitism and the retention of

the best solutions, proving to be e¢ cient strategies for selecting the �ttest candidates.

In addition, an e¢ cient algorithm should incorporate a mechanism to discard the worse

solutions, thereby enhancing the overall quality of the populations during evolution. This

is often achieved through some form of randomization and probabilistic selection criteria,

such as mutation in genetic algorithms.

The reduction of randomization is crucial for the convergence of the system. When better

solutions are found and the system achieves convergence, failing to reduce the degree of

randomness will slow down the convergence process.

We take Particle Swarm Optimization as an example, where randomization is decreased as

the particle swarm gathers. This is due to the fact that the distance between each particle

and the current global best particle becomes smaller and smaller. Another example is

Di¤erential Evolution, where randomness is reduced using the last term of the equation:

xnew = xk + F (xi � xj); (2.37)

where it decreases as the di¤erence vector gets smaller and smaller.

Other algorithms control randomness rather than reducing it. For instance, randomness

can be limited by employing a small mutation rate. In simulated annealing, the random-

46

Chapter 2. Metaheuristics

ness during iterations may stay the same, but the moves or solutions are selectively chosen,

and the acceptance probability becomes smaller.

Finally, in practice, the implementation�s approach to the algorithm does a¤ect the per-

formance to some degree. Therefore, the pseudocode must provide clear guidance and

should not lead to ambiguity. Consequently, validating and testing any algorithm imple-

mentation are crucial.

2.11 A Brief History of Metaheuristic and Evolution-

ary Algorithms

The history of metaheuristics is deeply intertwined with, and in many ways propelled by,

the development of Evolutionary Algorithms. The intellectual groundwork can be traced

to �gures like Alan Turing. During World War II, his "heuristic search" methods proved

highly successful in the e¤ort to break German Enigma ciphers at Bletchley Park, demon-

strating the power of search strategies that work most of the time without guaranteeing an

optimal solution. Following the war, in a seminal 1948 report connected to his design for

the Automatic Computing Engine (ACE), Turing outlined pioneering concepts in machine

intelligence, Neural Networks, and principles that are now recognized as foundational to

evolutionary algorithms. While Turing sowed these early seeds, it was the formalization of

evolutionary concepts by pioneers such as Holland, Rechenberg, and Schwefel in the 1960s

and 70s that truly launched the �eld as we know it today.

In the 1960s and 1970s, Genetic Algorithms were created by John Holland with his col-

laborators at the University of Michigan [19]. Holland studied adaptive systems and

introduced crossover and recombination manipulations for modeling the system in 1962.

In 1975, his book detailing the evolution of genetic algorithms was published. At the

same time, De Jong demonstrated the potential and power of Genetic Algorithms in his

thesis, showcasing their ability to solve a wide range of objective functions, including noisy,

47

Chapter 2. Metaheuristics

multimodal, and even discontinuous ones.

At the same time, another search technique was developed by Ingo Rechenberg and Hans-

Paul Schwefel for solving optimization problems in aerospace engineering in 1963. They

named it evolutionary strategy. Subsequently, Peter Bienert collaborated with them to

construct an automatic experimenter using selection and mutation. This was a simple

trajectory-style hill-climbing algorithm combined with randomization.

"As early as 1960, Lawrence J. Fogel utilized simulated evolution to explore arti�cial in-

telligence. In 1966, he, along with A.J. Owen and M.J. Walsh, developed the evolutionary

programming technique. In 1943, W. McCulloch and W. Pitts employed arti�cial neurons

as simple information processing units. The concept of neural networks was likely �rst

suggested by Alan Turing in his 1948 NPL report on intelligent machinery.

Signi�cant advancements emerged from the 1940s and 1950s through the 1990s. In 1963,

V. Vapnik proposed the support vector machine as a linear classi�cation technique. Collab-

orating with others, he later extended it to nonlinear classi�cation using kernel techniques

in the 1990s. In 1995, V. Vapnik consolidated these techniques in his book �The Nature

of Statistical Learning Theory�.

In 1983, S. Kirkpatrick, C.D. Gellat, and M.P. Vecchi developed Simulated Annealing SA

as an optimization technique, drawing inspiration from the annealing process of metals.

This marked a signi�cant milestone in metaheuristic algorithms.

Fred Glover is likely the �rst to have employed memory in modern metaheuristic, speci�c-

ally Tabu search, in 1986. Subsequently, in 1997, he published his seminal book on Tabu

search.

Ant Colony Optimization was introduced by Marco Dorigo in his PhD thesis in 1992,

drawing inspiration from the swarm intelligence of social ants. Additionally, in 1992,

following the publication of a treatise on genetic programming by John R. Koza of Stanford

University, a new era in machine learning that revolutionized computer programming

emerged.

48

Chapter 2. Metaheuristics

In 1995, the American social psychologist James Kennedy and engineer Russel C. Eberhart

drew inspiration from the swarm intelligence observed in �sh and birds to develop Particle

Swarm Optimization. Since its discovery, many researchers have developed more than

twenty di¤erent variants of Particle Swarm Optimization.

Around 1996 and later in 1997, Di¤erential Evolution was developed by R. Storn and K.

Price, marking a vector-based evolutionary algorithm.

In 1997, D.H. Wolpert andW.G. Macready published �No Free Lunch Theorems for Optim-

ization,�proving that there is no universally best optimization algorithm for all problems.

If algorithm A performs better than algorithm B for a speci�c problem, then algorithm B

will outperform algorithm A for other problems. Subsequently, researchers shifted their

focus to discovering the best and most e¢ cient algorithm(s) for a given problem rather

than seeking a universal solution for all problems.

In 2001, the Harmony Search algorithm was developed by Zang Woo Geem et al. and

found widespread applications in solving di¤erent optimization problems, involving water

distribution, transport modeling, and scheduling. In 2004, the Honey Bee Algorithm was

proposed by S. Nakrani and C. Tovey, initially applied for optimizing Internet hosting

centers. Subsequently, in 2005, D.T. Pharm et al. developed a novel Bee Algorithm. In

the same year, D. Karaboga introduced the Arti�cial Bee Colony algorithm.

Xin-She Yang has developed various optimization algorithms, including the Fire�y Al-

gorithm in 2008 and Cuckoo Search in 2009 in collaboration with Suash Deb. In 2010, he

introduced the Bat-inspired Algorithm for continuous optimization. Since then, several

metaheuristic algorithms have been developed. We can mention some of them:

� Harmony Search (2001)

� Arti�cial Immune System (2002)

� Chemical Reaction Inspired Optimization (2010)

� Flower Pollination Algorithm (2012)

49

Chapter 2. Metaheuristics

� Water Wave Optimization Algorithm (2015)

� Sine Cosine Algorithm (2016)...etc

2.12 Conclusion

Having established this broad framework for understanding algorithms as evolutionary

systems based on their management of diversi�cation and intensi�cation, we are now

prepared to analyze a speci�c case study. The next chapter will deconstruct the Flower

Pollination Algorithm through this evolutionary lens.

50

Chapter 3

Flower Pollination Algorithm

Flowers, enchanting embodiments of plant life, possess a unique charm for humanity.

They are cultivated in our gardens, adorn the interiors of our homes, and have left a

lasting impact on our artistic legacy, embedding themselves deeply within the fabric of

our lives. Beyond their visual appeal, �owers have sparked signi�cant scienti�c interest,

giving rise to a rich tradition of botanical research aimed at deciphering the complexities

of their structure and ecology. This profound connection between humans and �owers

goes beyond simple aesthetic enjoyment, extending into the realms of art, science, and a

collective admiration for the natural world�s marvels. Recently, this fascination has led

humanity to leverage these characteristics, incorporating them into an algorithmwithin the

�eld of arti�cial intelligence, inspired by their remarkable methods and organization. In the

forthcoming chapter, we will analyze these biological features through an evolutionary lens,

deconstructing the Flower Pollination Algorithm to understand its structure, mechanisms,

and potential applications.

3.1 Flowers and Flowering

Commencing our exploration, we delve into the intricate mechanisms of pollination, un-

veiling the sophisticated processes and adaptations that foster successful pollen transfer.

51

Chapter 3. Flower Pollination Algorithm

3.1.1 Cross-Pollination and Self-Pollination

Cross-pollination is when pollen from one �ower�s male part goes to another �ower�s female

part in a di¤erent plant, ensuring successful reproduction among a group of �owering

plants.

In contrast, self-pollination happens when pollen moves from the male part of a �ower to

the female part within the same �ower or between di¤erent �owers on the same plant.

Due to their stationary nature, plants rely on a pollen vector to facilitate the transfer

of pollen between them. This essential transport mechanism can be facilitated by either

abiotic or biotic agents acting as vectors.

Pollen relies on both non-living agents, mainly wind and water as abiotic vectors, and living

organisms predominantly insects, birds, bats, and select vertebrates as biotic vectors for

its essential transfer between �owers.

3.1.2 Flower Constancy

Honeybees exemplify e¤ective pollinators or biotic vectors, showcasing a behavior known as

�ower constancy. This phenomenon entails these pollinators consistently visiting speci�c

�ower species while disregarding others. Flower constancy is believed to confer evolu-

tionary advantages by optimizing the transfer of pollen to the same or conspeci�c plants,

thereby maximizing the reproductive success of particular �ower species. This behavioral

trait may also bene�t the pollinators themselves, ensuring a reliable nectar supply with

their limited memory and minimizing the costs associated with learning or exploration.

Rather than expending energy on unpredictable but potentially more rewarding new �ower

species, �ower constancy demands minimal investment costs and provides a more secure

intake of nectar.

In biotic cross-pollination, the process can extend over signi�cant distances, facilitated

by pollinators like bees, bats, birds, and �ies that possess the ability to cover vast areas,

earning them the designation of global pollinators. Notably, bees and birds may exhibit

52

Chapter 3. Flower Pollination Algorithm

Lévy �ight behavior, where their movement involves jumps or �ights conforming to a Lévy

distribution. Additionally, the concept of �ower constancy serves as an incremental step,

incorporating the similarity or di¤erence between two �owers into the pollination process.

3.2 The Algorithm

We can distill the characteristics of the pollination process, �ower constancy, and pollinator

behavior into the following rules:

� Biotic cross-pollination acts as a global pollination process, where pollen-carrying

pollinators execute Lévy �ights.

� Abiotic and self-pollination are categorized as local pollination.

� Flower constancy can be seen as the probability of reproduction being directly linked

to the similarity of the two �owers involved.

� Local pollination and global pollination are governed by a switch probability, denoted

as p 2 [0; 1]. Owing to physical proximity and factors like wind, local pollination can

contribute a signi�cant fraction, denoted as p, to the overall pollination activities.

In reality, each plant usually has multiple �owers, and a single �ower patch often releases

millions, if not billions, of pollen gametes. However, for simplicity, Xin-She Yang assumes

that each plant has only one �ower, and each �ower produces a single pollen gamete. This

simpli�cation allows him to consider a solution xi as interchangeable with a �ower and/or

a pollen gamete, eliminating the need to distinguish between them in problem-solving

scenario.

The primary attributes and components of the Flower Pollination Algorithm (FPA) are

concisely depicted in Table 3.1 This table elucidates the correlation or equivalency between

the terminologies used in optimization strategies and their counterparts in the context of

53

Chapter 3. Flower Pollination Algorithm

Flower Pollination Optimization Components
Pollinators(insects, butter�ies, birds) Moves/ modi�cation of variables
Biotic Global search
Abiotic Local search
Lévy �ight Step size (obeying power law)
Pollen/�ower Solution vectors
Flower constancy Similarity in solution vector
Evolutionof �owers Iteration evolution of solutions
Optimal �ower reproduction Optimal solution set

Table 3.1: Pollination Process and its Optimization Components

�oral pollination. By drawing these parallels, the table e¤ectively bridges the concep-

tual gap between the natural processes that inspire FPA and its application in solving

optimization problems.

Based on the aforementioned characteristics, the Flower Pollination Algorithm is made up

of two fundamental steps: global pollination and local pollination.

During the global pollination step, pollinators such as insects move �ower pollen over long

distances, bene�tting from their ability to �y and cover extensive ranges. This process

guarantees the pollination and reproduction of the �ttest, represented as g�. The �rst

rule, along with the concept of �ower constancy, can be expressed mathematically as

xt+1i = xti + L(x
t
i � g�): (3.1)

Here, xti denotes the pollen i or solution vector xi at iteration t, and g� represents the cur-

rent best solution among all solutions in the current generation/iteration. The parameter

L denotes the strength of pollination, essentially serving as a step size.

As insects often traverse long distances with varying step lengths, employing a Lévy �ight

allows us to e¢ ciently mimic this characteristic. Where

L � ��(�) sin(��=2)

�

1

s1+�
; s� s0 > 0 (3.2)

54

Chapter 3. Flower Pollination Algorithm

Where �(�) signi�es the standard gamma function, and this distribution is suitable for

large steps (s > 0). In all simulations of the algorithm presented below � = 1:5.

Expressing the local pollination (Rule 2) and �ower constancy can be done as follows:

xt+1i = xti + �(x
t
j � xtk); (3.3)

where xtj and x
t
k represent pollens obtained from distinct �owers within the same plant

species.

This e¤ectively simulates �ower constancy within a limited neighborhood. Mathematically,

if xtj and x
t
k originate from the same species or are chosen from the same population, this

process transforms into a local random walk, especially when we draw � from a uniform

distribution in [0; 1].

The dynamics of �ower pollination extend across various scales, encompassing both local

and global levels.

In practice, nearby �ower patches or those within the immediate vicinity are more likely to

receive pollination from local �ower pollen than those situated farther away. To account

for this, we introduce a switch probability (Rule 4) or proximity probability p to transition

between widespread global pollination and concentrated local pollination.

Initially, set p to 0:5, and subsequently, conduct a parametric study to determine the

optimal parameter range. Through simulations, it has been observed that p = 0:8 proves

to be more e¤ective across various applications.

The two critical steps mentioned above, along with the switch condition, are succinctly

encapsulated in the pseudocode presented by the Table 3.2

3.2.1 Numerical Results

Any novel optimization technique requires thorough validation, including a comprehensive

comparison with other existing algorithms. While there exist numerous test functions-well

over a hundred, each serving speci�c evaluation purposes-there is a notable absence of a

55

Chapter 3. Flower Pollination Algorithm

Flower Pollination Algorithm Pseudo-code
Objective min f(x),x 2 Rd
Initialize a population of n �owers/pollen with random solutions
Find the best solution B in the initial population
De�ne a switch probability p 2 [0; 1]
Calculate all f(x) for n solutions
t = 0
While t � max generation do
for i = 1; :::; n do
if rnd � p then
Draw a (d-dimensional) step vector L which obeys a Lévy distribution
Global pollination via xt+1i = xti + L � (B � xti)

else
Draw from a uniform distribution U 2 [0; 1]
Randomly choose j and k among all solutions
Do local pollination via xt+1i = xti + U � (xtj � xtk)
end if
Calculate all new f(xt+1i)
if f(xt+1i) � f(xti) then
xti = x

t+1
i

end if
end for
Find the current best solution B among all xti
t = t+ 1

end While

Table 3.2: Flower Pollination Algorithm Pseudo-code

universally agreed-upon set of test functions for validating emerging algorithms.

In the original research paper introducing the Flower Pollination Algorithm (FPA), the

author thoughtfully curated a diverse subset of these test functions. This subset was

speci�cally chosen to rigorously evaluate and validate the e¢ cacy of the proposed FPA

against established benchmarks.

Test Functions

The Ackley function can be expressed as

56

Chapter 3. Flower Pollination Algorithm

a exp[�b

vuut1

d

2X
i=1

x2i]� exp[
1

d

dX
i=1

cos(2�xi)] + a+ exp(1); (3.4)

where a; b and c are constants that determine the characteristics of the function. Common

choices for these constants are a = 20, b = 0:2 and c = 2=�.

nnewline

which attains its global minimum, denoted as f� = 0, precisely at the point (0; 0; :::; 0).

The most basic among De Jong�s functions is the sphere function, represented by:

dX
i=1

x2;�5:12 � x � 5:12; (3.5)

Manifesting a clear global minimum at f� = 0; situated at the origin (0; 0; :::; 0), the sphere

function is characterized by its unimodal nature and convexity.

Easom�s function is a mathematical optimization test function often used to assess the

performance of optimization algorithms. It is de�ned in two dimensions as:

f(x) = � cos(x) cos(y) exp[�(x� �)2 + (y � �)2]; (3.6)

Its global minimum occurs when f� = �1 at the point x� = (�; �) within �100 � x � 100.

It possesses numerous local minima.

Griewank�s function is a commonly used mathematical optimization benchmark. It is

expressed by the following equation:

f(x) = 1 +
1

4000

dX
i=1

x2i �
dY
i=0

cos(
xip
i
);�600 � xi � 600: (3.7)

This function is characterized by its complex landscape, involving a balance between the

quadratic term and a product of cosine functions. Griewank�s function is often employed

to evaluate the robustness and e¢ ciency of optimization algorithms due to its multimodal

nature.

57

Chapter 3. Flower Pollination Algorithm

Michaelwicz�s function

f(x) = �
dX
i=1

sin(xi):[sin(
2x2i
�
)]2m; (3.8)

m is a constant typically set to 10 and 0 � xi � � for i = (1; 2; :::; d). In the case of two

dimensions, the Michaelwicz�s function will be:

f(x; y) = � sin(x) sin20(x
2

�
)� sin(y) sin20(2y

2

�
); (3.9)

Where (x; y) 2 [0; 5] � [0; 5]. It has a global mimnimum f� = �1:8013 at x� = (x�; y�) =

(2:20319; 1:57049).

Rastrigin�s function is a non-convex mathematical function commonly used for testing

optimization algorithms. It is named after its creator, Leonid Rastrigin, a Russian math-

ematician. The function is often employed to evaluate the performance of optimization

algorithms due to its multimodal and rugged nature.

The d-dimensional version of Rastrigin�s function is de�ned as follows:

f(x) = A:d+
dX
i=1

[x2i � A: cos(2�xi)];�5:12 � xi � 5:12; (3.10)

where A is a constant, often set to 10. Rastrigin�s function is characterized by numerous

local minima, and the global minimum is at f� = f(0; 0; :::; 0) = 0:

The Rosenbrock�s function, often referred to as the Rosenbrock�s valley or the Banana

function, is a non-convex mathematical function used for testing optimization algorithms.

It is named after Howard H. Rosenbrock, who introduced it in 1960. The function is

particularly interesting due to its long, narrow, parabolic shape, which poses challenges

for optimization methods.

The n-dimensional version of Rosenbrock�s function is presented as follows:

58

Chapter 3. Flower Pollination Algorithm

f(x) =
d�1X
i=1

[100:(xi+1 � x2i)2 + (1� xi)2]; (3.11)

Rosenbrock�s function has a global minimum at f� = f(1; 1; :::; 1); in the domain �5 �

xi � 5 for i = 1; 2; :::; d.

For d = 2, banana function is often written as:

f(x; y) = (x� 1)2 + 100:(y � x2)2: (3.12)

Schwefel�s function is a mathematical optimization problem frequently used in benchmark-

ing and testing optimization algorithms. It was introduced by R. M. Schwefel, a German

computer scientist, and it is known for its challenging and rugged landscape.

Schwefel�s Problem is expressed in n dimensions and de�ned as follows:

f(x) = �
dX
i=1

xi sin(
p
jxij);�500 � xi � 500: (3.13)

With a global minimum f� = �418:9829d achieved at 420:9687 for all i = 1; 2; :::; d:

Function/Algorithms GA PSO FPA
Michalewiez (d = 16) 89325� 7914(95%) 6922� 537 (98%) 3341� 649 (100%)
Rosenbrock (d = 16) 55723� 8901 (90%) 32756� 5325 (98%) 5532� 1464 (100%)
De Jong (d = 256) 25412� 1237 (100%) 17040� 1123 (100%) 4245� 545 (100%)
Schwefel (d = 128) 227329� 7572 (95%) 14522� 1275 (97%) 6851� 448 (100%)
Ackley (d = 128) 32720� 3327 (90%) 23407� 4325 (92%) 3357� 968 (100%)
Rastrigin 110523� 5199 (77%) 79491� 3715 (90%) 10840� 2689 (100%)
Easom 19239� 3307 (92%) 17273� 2929 (90%) 4017� 982 (100%)
Griewank 70925� 7652 (90%) 55970� 4223 (92%) 4918� 1429 (100%)

Table 3.3: Algorithm Performance Comparison Based on the Number of Iterations

Xin-She Yang employed three algorithms Genetic Algorithm (GA), Particle Swarm Op-

timization (PSO), and the novel Flower Pollination Algorithm (FPA) to determine their

optimal solutions within a speci�ed tolerance of 10�5. For each algorithm, he conducted

100 independent simulations, utilizing a population size of d = 25 and setting p = 0:8 for

59

Chapter 3. Flower Pollination Algorithm

the FPA, a crossover probability of 0:95 and a mutation probability of 0:05 for the GA,

along with learning parameters set to 2 for the PSO. The outcomes of these simulations

are concisely summarized in Table 3.3, where the results are presented as the mean �

standard deviation, alongside the success rate. For instance, a result of 3341� 649(100%)

indicates an average number of iterations at 3341, with a standard deviation of 649, and

a success rate of 100%.

The total number of function evaluations is calculated as d times the average number

of iterations. For example, with 3341 iterations listed in the table, the total number of

function evaluations is computed as 3341� d = 3341� 25 = 83525.

Out of the three methods, the proposed Flower Pollination Algorithm (FPA) achieved the

optimal outcome and demonstrated the fastest convergence.

Design Optimization

Design optimization embodies a systematic approach to enhance and re�ne the attributes

of a product or system, with the objective of achieving the best possible performance

according to speci�c criteria and objectives. In the realm of bottle design, this entails a

thorough evaluation of various aspects to bolster the bottle�s functionality, sustainability,

aesthetics, and market attractiveness.

For a speci�ed volume and operating pressure, the primary goal in designing a cylindrical

vessel is to minimize the total cost. Typically, the design variables include the thickness

d1 of the head, the thickness d2 of the body, the inner radius r, and the length L of the

cylindrical section. This scenario presents a classic optimization challenge, which can be

articulated as follows:

minimize f(x) = 0:6224d1rL+ 1:7781d2r2 + 3:1661d21L+ 19:84d
2
1r; guided by the ensuing

constraints:

� g1(x) = �d1 + 0:0193r � 0;

� g2(x) = �d2 + 0:00954r � 0;

60

Chapter 3. Flower Pollination Algorithm

� g3(x) = ��r2L� 4�
3
r3 + 1296000 � 0;

� g4(x) = L� 240 � 0;

with simple bounded

0:06251d2 � 99� 0:0625; where 10 � r; L � 200:

In 2008, Cagnina et al. employed an advanced Particle Swarm Optimization technique to

address this issue, successfully identifying the optimal solution:

f� � 6059:714;

at

x� � (0:8125; 0:4375; 42:0984; 176:6366):

This implies that the minimum price is approximately 6059:71.

Utilizing the suggested Flower Pollination Algorithm, Xin-She Yang e¤ortlessly obtained

a solution, f� � 6059:714; which aligns with the result achieved by Cagnina et al.

This conclusively establishes the e¤ectiveness and robust performance of the proposed

Flower Pollination Algorithm (FPA).

Discussion

Flowering plants exhibit intriguing characteristics in their �ower pollination processes,

inspiring the successful development of a novel �ower algorithm by the author. Simu-

lation outcomes robustly demonstrate the exceptional e¢ ciency of the proposed �ower

pollination algorithm, surpassing the performance of both genetic algorithms and particle

swarm optimization. Notably, the algorithm exhibits an exponential convergence rate, as

evidenced by the comparison presented in the previously.

61

Chapter 3. Flower Pollination Algorithm

The e¢ ciency of the FPA can be attributed to two main factors: long-distance pollination

and �ower consistency. Insects, serving as long-distance pollinators, possess the capability

to traverse vast distances, enabling them to escape local landscapes and explore larger

search spaces. This aspect facilitates exploration within the algorithm. Conversely, �ower

consistency ensures that similar solutions from the same species of �owers are selected more

frequently, thereby promoting quicker convergence. This aspect serves as an exploitation

step. The synergy between these key components and the selection of the best solution g�

guarantee the algorithm�s high e¢ ciency.

3.3 Variants of Flower Pollination Algorithm

Though the standard FPA works well for many applications [23], it can still be improved.

Given the complex nature of real-world optimization problems, researchers have modi�ed

the basic structure of FPA to enhance its performance. The modi�cations have been made

in various parts of the FPA structure. Furthermore, several FPA hybridization schemes

have been implemented to accelerate convergence and improve the balance between ex-

ploration and exploitation. Researchers have also produced a multi-objective version of

FPA speci�cally designed for the category of multi-objective optimization [60].

Modi�ed Flower Pollination Algorithm Based on Operators

Yamany et al. [50] introduced a modi�ed FPA based on an attribute reduction approach.

The primary objective of their algorithm is to address the challenges posed by a potentially

large search space. This approach recommends a minimal set of attributes while achieving

comparable, if not superior, classi�cation accuracy compared to utilizing all attributes and

traditional attribute reduction techniques. The algorithm�s strategy enhances three new

initialization phases, driven by forward selection and backward selection. Their proposed

technique was evaluated on eight datasets from the UCI machine learning benchmarks,

62

Chapter 3. Flower Pollination Algorithm

demonstrating superior performance compared to other metaheuristic algorithms such as

GA and PSO.

Zhou et al. [59] introduced an elite Opposition-based Flower Pollination Algorithm (EOFPA),

a novel variant designed for solving function optimization and structure designs. EOFPA

demonstrated an enhancement in the balance between exploration and exploitation. The

authors evaluated their proposed algorithm across 18 standard benchmark functions, yield-

ing impressive results.

For addressing economic load dispatch problems in power generation systems, Sarjiya et al.

[46] presented a modi�ed FPA (MFPA). This approach incorporated a dynamic switching

probability, employed real-coded GA (RCGA) as a mutation for both global and local

search, and distinguished between temporary local search and the optimal solution. The

performance of MFPA was then assessed across 10 benchmarks of power systems, with

experimental results indicating a lower fuel cost compared to that obtained by the standard

FPA and other similarly applicable solutions for comparable economic dispatch problems.

In a separate study, Regalado et al. [25] proposed MFPA to optimize fuel cost value and

the time required to achieve a global optimal solution. When tested on the IEEE 30-

bus test system, MFPA demonstrated superior results over the standard FPA and other

metaheuristic optimization algorithms.

To reduce real power losses and enhance bus voltages, Namachivayam et al. [15] proposed

the Modi�ed Flower Pollination Algorithm (MFPA) for network recon�guration and op-

timal placement of shunt capacitors. The proposed algorithm incorporates the adaptation

of the local search from the standard Flower Pollination Algorithm (FPA) and augments

the global search through a dynamic switching probability approach. The e¢ cacy of their

proposed MFPA was assessed using 118-bus, 69-bus, and 33-bus radial distribution test

feeders. The results demonstrated superior performance compared to other metaheuristic

algorithms, including Harmony Search algorithm (HS), Simulated Annealing (SA), and

Improved Binary Particle Swarm Optimization (IBPSO).

63

Chapter 3. Flower Pollination Algorithm

The Modi�ed Flower Pollination Algorithm (MFPA) introduced by Dubey et al. [17] o¤ers

a solution to economic dispatch issues in large-scale power systems through a two-phase

enhancement process. Initially, it incorporates a scaling factor to improve the algorithm�s

local search capability. The second phase intensi�es the search for the optimum solution

by focusing on exploitation. Tested across various mathematical benchmarks and four

substantial power systems, the MFPA�s performance was benchmarked against recent

economic dispatch methods, showcasing its e¤ectiveness and the promising results of this

novel approach.

Binary Versions of Flower Pollination Algorithm

The initial Flower Pollination Algorithm (FPA) was speci�cally crafted to address continu-

ous optimization challenges. However, to extend its application to discrete and combinat-

orial optimization problems, signi�cant adjustments are necessary. Rodrigues et al. [10]

introduced a variant of this algorithm, termed the Binary Flower Pollination Algorithm

(BFPA), which was speci�cally engineered for feature selection tasks. Upon evaluating the

performance of BFPA across six distinct datasets, it was found that BFPA outperformed

several established algorithms in this domain, including Particle Swarm Optimization

(PSO), Harmony Search (HS), and the Fire�y Algorithm (FA), showcasing its superior

e¢ cacy in handling feature selection challenges.

Later, Rodrigues et al. [11] employed the Binary Flower Pollination Algorithm (BFPA)

to tackle the challenge of minimizing the number of sensors necessary for identifying in-

dividuals through EEG signals. The BFPA was strategically utilized to identify the most

e¤ective subset of channels that could deliver the highest accuracy in recognition. The out-

comes of experiments utilizing BFPA demonstrated that it could achieve recognition rates

as high as 87% based on the Optimum-Path Forest classi�er, underscoring the algorithm�s

potential in enhancing sensor e¢ ciency for EEG-based person identi�cation.

Shilaja et al. [6] introduced a method named CEED, aimed at addressing 20 photovoltaic

64

Chapter 3. Flower Pollination Algorithm

and 5 thermal power generation challenges. The CEED approach integrates the Eco-

nomic Dispatch Euclidean A¢ ne Flower Pollination Algorithm with the Binary Flower

Pollination Algorithm (BFPA). Furthermore, when the CEED method was applied to the

IEEE 30 bus and IEEE 57 bus systems for testing, it demonstrated superior performance

compared to traditional techniques.

Dahi et al. [61] undertook a comprehensive investigation to assess the e¢ cacy of the Bin-

ary Flower Pollination Algorithm (BFPA) in tackling the Antenna Positioning Problem

(APP). The evaluation of BFPA was conducted using a mix of realistic, synthetic, and

randomly generated datasets of varying dimensions. Its performance was benchmarked

against that of population-based incremental learning (PBIL) and the Di¤erential Evol-

ution (DE) algorithm, both recognized as pro�cient solutions within the APP �eld. The

outcomes revealed that BFPA delivered more competitive results in the domain of APP

when compared to PBIL and DE, showcasing its robustness and e¢ ciency.

Integrating Chaos for Enhanced Flower Pollination Performance

The conventional Flower Pollination Algorithm (FPA) relies on random numbers, and

additional randomization can be introduced through the incorporation of chaotic maps.

In the realm of mechanical engineering, Meng et al. [37] have introduced a re�ned version

termed the Modi�ed Flower Pollination Algorithm (MFPA) designed to address a speci�c

design problem. This enhanced algorithm integrates adaptive inertia weight and chaos

theory to bolster local search capabilities. When assessing the performance of MFPA

across �ve mechanical engineering benchmarks-speed reducer, gear train, tubular column

design, pressure vessel, and tension/compression spring design the outcomes surpassed

those of alternative algorithms, demonstrating its superior e¢ cacy in solving mechanical

engineering problems.

Metwalli et al. [35] proposed an innovative approach to address fractional programming

problems (FPPs) by leveraging the development of a Chaos-based Flower Pollination Al-

65

Chapter 3. Flower Pollination Algorithm

gorithm (CFPA). The e¢ cacy of CFPA was validated across various FPP benchmarks,

showcasing its robust performance. A comparative analysis with other metaheuristic solu-

tion methods for FPPs demonstrated the clear superiority of the proposed algorithm,

solidifying its position as a leading approach for addressing fractional programming prob-

lems.

Numerous techniques for wind speed forecasting in power systems have been proposed,

but a common limitation is the absence of an e¢ cient model for data preprocessing.

Addressing this gap, Zhang et al. [51] introduced an innovative model that integrates

three short-term techniques for wind speed forecasting. Their novel system incorporates

Complete Ensemble Empirical Mode Decomposition Adaptive Noise (CEEMDAN), Flower

Pollination Algorithm with Chaotic Local Search (CLSFPA), �ve neural networks, and

the no negative constraint theory. CLSFPA is speci�cally designed to optimize the weight

coe¢ cients of the combined model. Through the evaluation of 15-minute wind speed

data from four distinct farms in eastern China, the study demonstrated the remarkable

e¤ectiveness of their combined algorithms in accurately forecasting wind speed.

3.3.1 Hybridized Variants of Flower Pollination Algorithm

One primary challenge faced by metaheuristic methods lies in �nding the optimal bal-

ance between comprehensive global exploration and focused local exploitation throughout

the search process. Some approaches excel at extensively exploring diverse regions of the

problem landscape but may fall short in fully exploiting each region. Typically, these

algorithms belong to the category of population-based or swarm-based methods. Con-

versely, other techniques prove adept at exploiting favorable elements within a speci�c

region of the search space, often at the cost of simultaneously exploring multiple regions.

This characteristic is common in gradient-based methods or trust-region methods.

Recognizing this trade-o¤, research communities have endeavored to enhance the Flower

Pollination Algorithm (FPA) by combining it with other algorithms. The aim is to leverage

66

Chapter 3. Flower Pollination Algorithm

the strengths of di¤erent methods and improve the overall performance of FPA. The

various forms of such hybridization approaches are summarized below.

Hybridization with Local-Based Search Algorithms

The integration of Flower Pollination Algorithm (FPA) with Simulated Annealing (SA)

for engineering optimization problems, denoted as FPSA, was pioneered in [31]. In this

approach, solutions generated by FPA undergo local re�nement through the SA algorithm,

resulting in an enhanced search performance and accelerated convergence. Notably, FPSA

demonstrated superior performance compared to existing methods documented in the

literature.

Jensi and Jiji [39] introduced a hybridization of the �ower pollination algorithm (FPA)

with the K-Means algorithm for data clustering. They employed the K-Means algorithm

to bolster the local exploitation capabilities of FPA. The hybrid algorithm they proposed

exhibited superior performance compared to utilizing either classical K-Means or FPA in

isolation.

Emad Nabil [13] unveiled an enhanced hybrid variant of the Flower Pollination Algorithm

(FPA), fusing elements from the Modi�ed FPA (MFPA) and the cuckoo search algorithm

(CSA). In the evaluation of MFPA�s performance, a total of 23 optimization benchmark

problems were employed for testing. The e¢ ciency of MFPA was benchmarked against

Simulated Annealing (SA), Genetic Algorithm (GA), FPA, Bat Algorithm (BA), and

Fire�y Algorithm (FA). The outcomes revealed that the proposed hybrid MFPA consist-

ently outperformed both the standard FPA and the other four metaheuristic algorithms,

demonstrating its enhanced e¢ cacy in optimization tasks.

A novel hybridization of the �ower pollination algorithm (FPA) with the Path Relinking

metaheuristic was introduced in 29, speci�cally applied in the creation of health-conscious

and nutritious meals for older adults. This innovative combination sought to enhance the

exploration of optimal or near-optimal personalized menu recommendations, focusing on

67

Chapter 3. Flower Pollination Algorithm

improving both execution time and solution quality. Performance testing of this hybrid

version, conducted on real-world datasets, revealed the algorithm�s superiority over the

conventional FPA in terms of both solution quality and execution time.

Hybridization with Population-Based Algorithms

Abdel-Raouf et al. [36] proposed an innovative hybrid approach known as the hybrid

FPA for addressing optimization challenges. This unique method combines the strengths

of the Flower Pollination Algorithm with the Particle Swarm Optimization (PSO) al-

gorithm, strategically enhancing the search accuracy for optimal solutions. Their �ndings

demonstrated that this hybrid methodology outperformed existing techniques in terms of

precision, reliability, and e¢ ciency. Notably, the hybrid FPA showcased superior perform-

ance, making it a promising and advanced solution for tackling optimization problems

compared to other methods documented in the literature.

Nigdeli et al. [45] ingeniously combined the Flower Pollination Algorithm (FPA) with the

Harmony Search (HS) algorithm to �ne-tune mass dampers. In their approach, they em-

ployed four distinct generations, incorporating both the global and local search processes

of HS and the global and local pollination mechanisms of FPA. The determination of the

generation type in constructing new solutions was achieved through a probability-based

method. This probability was computed based on the optimization objective, revealing

that their innovative probability-based FPA outperformed the classical FPA in terms of

convergence rates. This signi�es a signi�cant advancement in optimizing mass dampers

for structural applications.

In a notable development outlined in reference [24], a pioneering hybridization of Arti-

�cial Bee Colony (ABC) with Flower Pollination Algorithm (FPA) gave rise to the Bee

Pollinated Flower¨ Pollination Algorithm (BPFPA), speci�cally tailored for solar PV para-

meter estimation. Within the BPFPA framework, the discarding of pollen, inspired by bee

behavior, is seamlessly integrated with FPA, and a mutation operation based on elite in-

68

Chapter 3. Flower Pollination Algorithm

dividuals replaces FPA�s local pollination process. These strategic modi�cations not only

enriched the randomness of FPA but also endowed the hybrid method with accelerated

execution speed and heightened robustness, surpassing the performance of other methods

in the domain.

The integration of Di¤erential Evolution (DE) with the Flower Pollination Algorithm

(FPA), forming the DE-FPA hybrid as proposed in [7] for addressing benchmark optimiz-

ation problems, represents a strategic fusion of the distinctive strengths of both algorithms.

This fusion is designed to achieve an optimal balance between exploration and exploitation

capabilities, leveraging the complementary attributes of DE and FPA. The DE algorithm�s

role as a potent explorer is retained, strategically combined with FPA�s strong exploitation

characteristics.

In this hybrid approach, the DE-FPA algorithm harnesses DE�s inherent exploration cap-

abilities while capitalizing on FPA�s e¢ ciency in exploitation. The resulting synergy not

only maintains the exploration prowess of DE but also enhances the exploitation charac-

teristics crucial for navigating optimization landscapes. Experimental results validate the

e¢ cacy of DE-FPA, showcasing its superior performance and convergence rates compared

to classical DE and FPA.

In their work detailed in [44], Kalra and Arora enhanced the performance of the Flower

Pollination Algorithm (FPA) by integrating it with the Fire�y Algorithm (FA) to e¤ect-

ively address multimodal optimization functions and mitigate the individual shortcomings

of each algorithm. This synergistic approach not only accelerated the convergence speed

of FPA but also mitigated the risk of being trapped within local optima by diminishing

the impact of randomness inherent in FA.

The hybrid algorithm proposed by Kalra and Arora demonstrates notable improvements

in terms of both accuracy and convergence speed when compared to the standalone FA and

FPA counterparts. Through experimental validation, it was observed that the integrated

approach yielded superior results, highlighting its e¢ cacy in navigating complex optimiz-

69

Chapter 3. Flower Pollination Algorithm

ation landscapes. The reduction in the in�uence of randomness within FA, coupled with

the strengths of FPA, contributed to the enhanced performance of the hybrid algorithm,

showcasing its potential as a robust solution for addressing multimodal optimization chal-

lenges.

In their study outlined in [8], Chakraborty et al. devised an e¤ective integration by com-

bining the global search capabilities of the Flower Pollination Algorithm (FPA) with the

local search behavior of the Gravitational Search Algorithm (GSA) for training feedfor-

ward neural networks. This integration aimed to strike a balanced approach between

exploration and exploitation during the search process. To enhance performance, the

authors introduced dynamic switch probabilities and adaptive weights for the GSA velo-

city operator. These adjustments aimed to prevent getting trapped in local minima and

guide the search toward global minima, respectively. The authors assessed their approach

using a variety of real-world benchmark datasets obtained from the UCI Machine Learn-

ing Repository, encompassing domains such as cancer, glass, iris, vertebral column, and

wine. The numerical experiments clearly demonstrated the superior performance of their

method across all datasets when compared to standalone FPA and GSA, showcasing its

e¤ectiveness in tackling diverse real-world challenges.

Hybridization with Other Components

Zawbaa et al. developed a novel approach for multi-objective feature selection by com-

bining the Flower Pollination Algorithm (FPA) with rough set theory in [18], aiming to

pinpoint the most e¤ective features for classi�cation purposes. This innovative strategy

melds the best aspects of �lter-based and wrapper-based feature selection methods the

former focusing on the data itself, and the latter on how well the features improve classi-

�cation accuracy. The e¤ectiveness of this method was thoroughly evaluated using eight

UCI datasets, revealing its impressive competitiveness against traditional algorithms such

as the classic FPA, Particle Swarm Optimization (PSO), and Genetic Algorithms (GA).

70

Chapter 3. Flower Pollination Algorithm

This advancement underscores the potential of their approach in enhancing feature selec-

tion processes.

Abdel-Baset and Hezam ingeniously merged the Flower Pollination Algorithm (FPA) with

the Conjugate Direction (CD) method to address the challenge of solving ill-conditioned

systems of linear and nonlinear equations [31]. The FPA component was strategically

employed to achieve rapid convergence and the capability to discover multiple roots. In

contrast, the CDmethod was integrated to re�ne the accuracy of the outcomes and prevent

the algorithm from being trapped in local minima. The e¢ cacy of this hybrid approach was

demonstrated through numerical simulations, which revealed that their method stands out

for its competitiveness when juxtaposed with other existing techniques in the literature.

Valenzuela et al. introduced FFPA [30], a novel hybrid method that combines the Flower

Pollination Algorithm (FPA) with a fuzzy inference system. Their innovation lies in using

the fuzzy inference system to adjust the probability of transitioning between local and

global pollination phases. This adaptive feature brings an extra layer of sophistication

to their algorithm. Tested on eight benchmark mathematical functions, FFPA showed

outstanding performance, proving itself as a strong contender among other advanced ap-

proaches in the �eld.

Xu and Wang presented an enhanced hybrid version of the Flower Pollination Algorithm

(FPA) tailored for the precise estimation of solar cell and photovoltaic (PV) module para-

meters [47]. Their approach integrates FPA with the Nelder-Mead simplex method to

bolster the local search capabilities inherent in classical FPA. Additionally, they incor-

porated a generalized opposition-based learning mechanism to steer clear of local optima

pitfalls. The evaluation of their method encompassed three distinct solar models, including

the single diode model, double diode model, and a PV module.

Numerical results compellingly illustrated the superiority of the proposed hybrid FPA over

alternative methods, particularly in terms of solution accuracy, convergence speed, and

overall stability. This novel hybridization not only elevates the FPA�s local search e¢ cacy

71

Chapter 3. Flower Pollination Algorithm

but also establishes its prowess in accurately estimating parameters critical for solar cell

and PV module optimization.

The integration of the Flower Pollination Algorithm (FPA) with a randomized-location

modi�cation operator resulted in a novel approach termed the modi�ed randomized-

location Flower Pollination Algorithm (MRLFPA) for medical image segmentation, as

detailed in [42]. The introduction of the randomized-location strategy in MRLFPA ef-

fectively addressed the limitations of the classical FPA. The algorithm�s performance was

systematically assessed using eight medical images with diverse characteristics. A com-

prehensive comparative evaluation against other algorithms underscored the e¢ cacy of

MRLFPA, showcasing superior solution quality, stability, and computational e¢ ciency.

Multi-Objective Versions of Flower Pollination Algorithm

In a pioneering e¤ort, Yang et al. [52] introduced the �rst extension of the Flower Pol-

lination Algorithm (FPA) to address multi-objective engineering optimization problems

(MOFPA). This innovative adaptation utilized a random weighted sum method to enhance

the algorithm�s capacity in handling multiple con�icting objectives. The e¤ectiveness of

MOFPA was systematically assessed across various engineering optimization problems,

demonstrating its capability to yield optimal results.

Subsequently, the same authors advanced their approach [53], introducing a novel tech-

nique for MOFPA. This iteration involved the incorporation of diverse multi-objective

test functions and two bi-objective design benchmarks. The outcomes of this enhanced

algorithm proved highly e¢ cient when compared with alternative algorithms, establishing

its prowess in e¢ ciently navigating the complexities of multi-objective optimization chal-

lenges. Yang et al.�s contributions mark signi�cant strides in extending the applicability

of FPA to the realm of multi-objective engineering optimization.

Shilaja et al. [6] proposed the Enhanced Flower Pollination Algorithm (EFPA) as a solu-

tion for the optimal power �ow (OPF) problem. EFPA was intricately crafted to optimize

72

Chapter 3. Flower Pollination Algorithm

various objectives, encompassing transmission loss, power plant emissions, generation cost

minimization, and voltage stability improvement. The team then implemented EFPA

and assessed its performance through the standard IEEE 30 test. The �ndings revealed

EFPA�s superiority over other optimization algorithms, underscoring its e¢ cacy in tackling

the intricate challenges of power system optimization.

Emary et al. [12] implemented a multi-objective Flower Pollination Algorithm (FPA)

coupled with pattern search (PS) for retinal vessel localization. The FPA was employed

to optimize the clustering within a given retinal image, while PS served as a local search

strategy to re�ne segmentation results. Testing on the DRIVE dataset, a standard bench-

mark, demonstrated the proposed technique�s competitive performance in terms of accur-

acy, sensitivity, and speci�city, along with promising extendable features.

3.4 Conclusion

On this chapter a powerful metaheuristic algorithm was discussed with an explication of

its properties. the algorithm has been pass by alot of hybridizations because of his features

and capacity on solving optimization problems.

73

Chapter 4

Chebyshev Metaheuristic Solver

Approach

Di¤erential equations present always challenges for researchers, there are huge quantity

of problems to be solved. Actually the di¤erential equations are just the problems that

human confront on their daily lives. The majority of this problems can�t be solved using

analytical methods, so researchers go to the method that gives approximate solution to

this redundant (or hard to solve) problems.

Regarding to the power of classic numerical methods on solving di¤erential equations, and

to the e¢ ciency and rapidity of metaheuristic algorithms, we thought about combining

them to have a new approach. On this chapter, we chose spectral method and Flower

Pollination Algorithm to create a new method for solving di¤erent types of boundary

value problems and an integro-di¤erential equation.

The proposed method is constructed by the following manner:

First, use the initial step of spectral method to have an approximate solution formula.

Then, using the root mean square to compute the global residue function. Finally, im-

plement Flower Pollination Algorithm to minimize the constructed residual and �nd the

unknowns on the approximate solution.

74

Chapter 4. Chebyshev Metaheuristic Solver Approach

4.1 Construction of the ChebyshevMetaheuristic Solver

Approach

The aim of this new approach is to �nd good approximate solutions for a wide range of

di¤erential equations, independent from their forms, order or linearity.

Beginning by the well-posed di¤erential equation problem:

8><>: Lu(x) = f(x); x 2
;

Ci(u) = di; 1 � i � m
(4.1)

Where di are initial or boundary conditions. Let fxkgNk=0 2
 be the pre-selected points.

Assuming that the approximate solution take the following form,

u(x) =
NX
j=0

ujTj(x): (4.2)

fTj(x)g are Chebyshev basis polynomials.

The combination of this form of approximate solution and the di¤erential equation written

above gives this system of equations,

8><>: Lu(xk)� f(xk) = 0; 1 � k � N � 1;

Ci(u) = di; 1 � i � m
(4.3)

Replacing u(x) by u(x) =
NX
j=0

ujTj(x); the previous system of equations becomes,

8>><>>:
NX
j=0

[LTj(xk)]uj � f(xk) = 0; 1 � k � N � 1;

Ci(u) = di; 1 � i � m:
(4.4)

Thus,

75

Chapter 4. Chebyshev Metaheuristic Solver Approach

n Tn
0 1
1 x
2 2x2 � 1
3 4x3 � 3x
4 8x4 � 8x2 + 1
5 16x5 � 20x3 + 5x
6 32x6 � 48x4 + 18x2 � 1
7 64x7 � 112x5 + 56x3 � 7x
8 128x8 � 256x6 + 160x4 � 32x2 + 1
9 256x9 � 576x7 + 432x5 � 120x3 + 9x
10 512x10 � 1280x8 + 1120x6 � 400x4 + 50x2 � 1
11 1024x11 � 2816x9 + 2816x7 � 1232x5 + 220x3 � 11x
12 2048x12 � 6144x10 + 9612x8 � 3584x6 + 840x4 � 72x2 + 1
13 4096x13 � 13312x11 + 16640x9 � 9984x7 + 2912x5 � 364x3 + 13x
14 8192x14 � 28672x12 + 39424x10 � 26880x8 + 9408x6 � 1568x4 + 98x2 � 1
15 16384x15 � 61440x13 + 92160x11 � 70400x9 + 28800x7 � 6048x5 + 560x3 � 15x

Table 4.1: Chebyshev Polynomials, First Kind 40

8>><>>:
NX
j=0

[LTj(xk)]uj � f(xk) = 0; 1 � k � N � 1;

Ci(u)� di = 0; 1 � i � m
(4.5)

So,

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

NX
j=0

[LTj(x1)]uj � f(x1) = 0;

NX
j=0

[LTj(x2)]uj � f(x2) = 0;

:

:

:
NX
j=0

[LTj(xN�1)]uj � f(xN�1) = 0;

Ci(u)� di = 0; 1 � i � m:

(4.6)

76

Chapter 4. Chebyshev Metaheuristic Solver Approach

In spectral method this system must be solved using some numerical tools, to �nd the

coe¢ cients uj in the approximate solution 4.2.

In Chebyshev metaheuristic solver approach, this last step (solving the equations system)

will be eliminated, instead of that, Flower Pollination Algorithm will be used to �nd the

unknowns coe¢ cients uj.

The aim of the implementation of Flower Pollination Algorithm is minimizing the residual

R constructed by calculating the mean square error obtained from the �rst side of every

equation de�ned in the system 4.6.

Thus,

R =
N�1X
k=1

"
NX
j=0

[LTj(xk)]uj � f(xk)
#2
+

mX
i=0

wiConditionPenaltyi: (4.7)

Where the ConditionPenaltyi = (Ci(u)� di)2; 1 � i � m:

The minimization of the residual R o¤ers the coe¢ cients uj for an optimum solution u(x)

written in the form 4.2.

The construction of spectral metaheuristic algorithm can be summarized on these main

steps:

� Transfer the di¤erential equation into a system of algebraic equations using Cheby-

shev polynomials.

� Transfer the boundary or initial conditions to algebraic equations utilizing the same

mechanism that has been carried out for the di¤erential equation.

� Compute the residual of every equation by subtracting the both sides in each one.

� Construct the global residual by making the sum of all square residual gotten from

the previous equations.

� Implement a metaheuristic algorithm to minimize the constructed residual.

� Use the unknowns found in the last step for building an approximate solution.

77

Chapter 4. Chebyshev Metaheuristic Solver Approach

Remark 4.1.1 In the results shown bellow, ConditionPenaltyi are treated as small re-

siduals where wi = 1:

For d�¤erent boundaries then [-1,1], Chebyshev polynomials must be transformed using the

mapping T �n(x) = Tn(
2x�(b+a)
b�a):

4.2 Parameters of Flower Pollination Algorithm

The step of implementing Flower Pollination Algorithm, aiming to minimize the value of

Rglob, controlled by some parameters, where the outcome solutions vary depending on their

values modi�cations, it means that if we change one of these parameters we get di¤erent

results.

The way to choose the best solution is to observe the path of fmin o¤ered by the algorithm,

after each execution.

Where on a particular execution the fmin will be constant and doesn�t want to reduce more

then that, here we get the best solution and the best parameters for the operation.

The parameters of Flower Pollination Algorithm can be summarized in:

� The bounds Ub and Lb, where Lb presents the lower bound of the solution�s space,

and Ub presents the upper bound of the solution�s space.

The intensi�cation and the diversi�cation on the solution�s search process is con-

trolled by the selection of these bounds.

If the bounds are nearer the examination of the solution will be more intense, in

contrast the examination of the solution is expected to be more diverse.

� The population size n, n controls the intensi�cation of the searching operation,

where it�s by default from 10 to 25, this number are proposed by the creator of this

algorithm Xin-She Yang.

78

Chapter 4. Chebyshev Metaheuristic Solver Approach

� The probability switch p, it controls the transfers between global (diversi�cation)

and local pollination (intensi�cation).

� In wide range of the algorithm�s application, the p is chosen between 0:5 and 0:8

toward the local pollination, for example in the case of p = 0:8, it means that for

80% the local pollination is selected. Mostly, p = 0:8 gives more e¢ cient results.

[56]

� The number of iterations Niter.

In every iteration, each individual from the population is a suggested solution. There-

fore, in an execution of an algorithm with 25 population size and 10000 iterations,

there are 10000 � 25 selected solutions, whose been tested. So the total number of

evaluations is 250000.

� d is a parameter that depends only on the dimension of the solution. [23]

4.3 Pseudocode of Chebyshev Meatheuristic Solver

Approach

1. De�ne Solution Structure:

Assume the solution is a Chebyshev series: y(x) =
X

ai � Ti(x).

2. De�ne a Fitness Function fitness(a):

This function takes coe¢ cients a and returns a total error, combining:

� The error from not satisfying the di¤erential equation.

� The error from not meeting the boundary conditions.

3. Find Best Coe¢ cients:

79

Chapter 4. Chebyshev Metaheuristic Solver Approach

Use the Flower Pollination Algorithm to �nd the coe¢ cient vector a_best that

minimizes fitness(a).

4. Final Answer:

The approximate solution is the Chebyshev series constructed with a_best.

END

4.4 Results

On this part we will apply the proposed Chebyshev metaheuristic solver approach to solve

some boundary value problems and an integro-di¤erential equation, the application will

be done in di¤erent types for boundary value problems beginning by linear problems, then

a nonlinear problem, after that an integro-di¤erential equation will be solved using the

new approach.

4.4.1 Linear Boundary Value Problems

Here we will treat two di¤erent type of linear boundary value problems, �rst an homogen-

eous problem, then a non-homogeneous one.

Homogeneous Problems

On this part we will solve an homogeneous linear boundary value problem just to see how

works the new approach.

Considering the following problem

8>>>><>>>>:
u00 � u = 0; if x 2 [0; 1]

u(0) = 2;

u(1) = exp(1) + exp(�1)

(4.8)

80

Chapter 4. Chebyshev Metaheuristic Solver Approach

Analytical solution We will start by getting the exact solution of this simple linear

homogeneous boundary value problem. After that, we calculate the approximate solu-

tions using spectral method, then Chebyshev metaheuristic solver approach. Finally, we

compare the exact solution with their approximations.

Let�s �nd the exact solution.

We have,

u00 � u = 0, u00 = u

Supposing that u(x) = exp(rx), it means that u0 = r exp(rx) and u00 = r2 exp(rx):

Thus, our di¤erential equation becomes

r2 exp(rx)� exp(rx) = 0

exp(rx)(r2 � 1) = 0

r2 � 1 = 0

Here the di¤erential equation has been reduced to a characteristic equation.

After factorizing the �rst side of the equation to (r � 1)(r + 1), we get r = 1 or r = �1:

So we have two special solutions,

u(x) = exp(x); and u(x) = exp(�x) .

To get more general solution we combine di¤erent multiples of those two solutions, and

the general solution becomes

u(x) = A exp(x) +B exp(�x):

Let�s return to our problem, after subtituting by the boundary conditions, the constants

A and B will be found.

u(0) = 2() A exp(0) +B exp(0) = 2;

so,

A+B = 2 (4.9)

u(1) = exp(1) + exp(�1)() A exp(1) +B exp(�1) = exp(1) + exp(�1) (4.10)

81

Chapter 4. Chebyshev Metaheuristic Solver Approach

Concluding from 4.9 and 4.10 the coe¢ cients are A = 1 and B = 1:

Here we �nd the exact solution of this problem, which is

u(x) = exp(x) + exp(�x):

Chebyshev metaheuristic solver approach: Let�s Solve the homogeneous linear

problem using the new approach.

The principal idea of this novel method is to minimize the error and get an approximate

solution, so on the initial step is, calculate the error.

First, we choose the order of Chebyshev polynomial to have a solution�s formula. After,

we calculate the residual. Then, we implement Flower Pollination Algorithm to minimize

the residual.

The interval of the problem is not [�1; 1], therefore we will use Chebyshev polynomials

after mapping in [0; 1];

N Chebyshev ploynomials in [0; 1]
0 T �0 (x) = T (2x� 1) = 1;
1 T �1 (x) = 2x� 1;
2 T �2 (x) = 8x

2 � 8x+ 1;
3 T �3 (x) = 32x

3 � 48x2 + 18x� 1;
4 T �4 (x) = 128x

4 � 256x3 + 160x2 � 32x+ 1;
5 T �5 (x) = 512x

5 � 1280x4 + 1120x3 � 400x2 + 50x� 1;
6 T �6 (x) = 2048x

6 � 6144x5 + 6912x4 � 3584x3 + 840x2 � 72x+ 1;
7 T �7 (x) = 8192x

7 � 28672x6 + 3942x5 � 26880x4 + 9408x3 � 1567x2 + 98x� 1;
8 T �8 (x) = 32768x

8 � 131072x7 + 212992x6 � 180224x5 + 84480x4 � 21504x3 + 2816x2 � 128x+ 1;
9 T �9 (x) = 131072x

9 � 589824x8 + 1118208x7 � 1146880x6 + 658944x5 � 215040x4 + 42240x3
�4352x2 + 162x� 1:

Table 4.2: Chebyshev polynomials in [0,1]

Supposing that u(x) =
NX
j=0

ujT
�
j (x) with N = 5, N = 7 and N = 9.

N=5 First, we choose the pre-selected points, N = 5, it means that we have to choose

from N � 1 pre-selected points.

82

Chapter 4. Chebyshev Metaheuristic Solver Approach

8>>>>>>><>>>>>>>:

x1 = 0;

x2 = �1=3;

x3 = 1=3;

x4 = 1:

There the equation�s system becomes,8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

u(0) = 2;

u00(0)� u(0) = 0;

u00(1=3)� u(1=3) = 0;

u00(2=3)� u(2=3) = 0;

u00(1)� u(1) = 0;

u(1) = exp(1) + exp(�1):
The global residual is:

Rglob = R
2
0 +R

2
1 +R

2
2 +R

2
3 +R

2
4 +R

2
5: (4.11)

There are 6 small residuals, because here on our example we chose to use Chebyshev

polynomials with 5th order. So we have 6 unknowns, it means that we have 6 equations,

and instead of solving them, we use FPA.

R0 represents the error given from the �rst equation, R1 which is the error given from the

second equation, ...8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

R0 = u(0)� 2;

R1 = u
00(0)� u(0);

R2 = u
00(1=3)� u(1=3);

R3 = u
00(2=3)� u(2=3);

R4 = u
00(1)� u(1);

R5 = u(1)� exp(1) + exp(�1):

83

Chapter 4. Chebyshev Metaheuristic Solver Approach

Therefore,

Rglob = [u(0)� 2]2 + [u00(0)� u(0)]2 (4.12)

+[u00(1=3)� u(1=3)]2

+[u00(2=3)� u(2=3)]2

+[u00(1)� u(1)]2 + [u(1)� exp(1) + exp(�1)]2:

The next step, is implementing the algorithm to minimize the value of Rglob subsequent

to many changes of the algorithm�s parameters we found our best approximate solution

when:

Ub = 3;

Lb = �2;

n = 20;

p = 0:8;

Niter = 10000;

d = 6 because we have 6 unknowns a; b; c; d; e; f to be found, so the dimension of the

search space is 6,

w = 1, just for simpli�cation.

The evaluations total number is considered as 200000, and the fmin obtained is 1:864280�

10�17.

The best solutions given by Flower Pollination Algorithm are:

84

Chapter 4. Chebyshev Metaheuristic Solver Approach

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

a = 2:3984;

b = 0:5376;

c = 0:1439;

d = 0:0055;

e = 0:0007;

f = 0:0000:

Therefore,

uFPA(x) = 2:3984T
�
0 (x)+0:5376T

�
1 (x)+0:1439T

�
2 (x)+0:0055T

�
3 (x)+0:0007T

�
4 (x)+0:0000T

�
5 (x):

(4.13)

We conclude that the approximate solution given by the new method is

uFPA(x) = 1:999999990674� 0:000040337537x+ 0:999576672282x2 + 0:003987886840x3(4.14)

+0:073817304084x4 + 0:008819743968x5:

Here we present the graphs produced by the exact and the approximate solutions produced

by the new approach in the case of N = 5, for our homogeneous linear boundary value

problem 4.8.

uFPA presents the approximate solution obtained from Chebyshev metaheuristic solver

approach.

uexact presents the exact solution.

The �gure 4.1 displays the graphs generated by the exact solution, the Chebyshev meta-

heuristic solver approach�s solution.

� It�s obvious that Chebyshev metaheuristic solver approach�s approximation graph is

identical to the curve produced by the exact solution.

For N=7: Using Chebyshev polynomials for N = 7 and the residual,

85

Chapter 4. Chebyshev Metaheuristic Solver Approach

0 0.2 0.4 0.6 0.8 1
x

1.8

2

2.2

2.4

2.6

2.8

3

3.2

u(
x)

uFPA
uexact

Figure 4.1: Fig 4.1 Exact Solution vs. Approximated Results: The �rst example N=5

Rglob = R
2
0 +R

2
1 +R

2
2 +R

2
3 +R

2
4 +R

2
5 +R

2
6 +R

2
7: (4.15)

Parameters of Flower Pollination Algorithm utilized for problem are,

Ub = 3;

Lb = �3;

n = 25;

p = 0:5;

Niter = 10000;

d = 8;

w = 1:

The coe¢ cients got from FPA are,

86

Chapter 4. Chebyshev Metaheuristic Solver Approach

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

a = 2:3984;

b = 0:5376;

c = 0:1439;

d = 0:0055;

e = 0:0007;

f = 0:0000;

g = 0:0000;

h = 0:0000:

From this results we conclude the value of u(x);

uFPA = 2:3984T �0 (x) + 0:5376T
�
1 (x) + 0:1439T

�
2 (x) + 0:0055T

�
3 (x) + 0:0007T

�
4 (x) + 0:0000T �5 (x)(4.16)

+0:0000T �6 (x) + 0:0000T
�
7 (x):

Therefore,

uFPA = 2:000000000001� 0:000000079607x+ 0:999999510364x2 + 0:000017908176x3(4.17)

+0:083227911527x4 + 0:000266886874x5 + 0:002440202636x6 + 0:000208929657x7:

The �gure 4.2 reveals that ,the exact solution and the approximate solution resulted from

the new method for N = 7, are similar and we can�t distinguish the di¤erence between

them in the graph.

For N=9 Using Chebyshev polynomials for N = 9 and the residual,

Rglob = R
2
0 +R

2
1 +R

2
2 +R

2
3 +R

2
4 +R

2
5 +R

2
6 +R

2
7 +R

2
8 +R

2
9: (4.18)

Parameters of Flower Pollination Algorithm utilized for problem are,

87

Chapter 4. Chebyshev Metaheuristic Solver Approach

0 0.2 0.4 0.6 0.8 1
x

2

2.2

2.4

2.6

2.8

3

3.2

u(
x)

uFPA
uexact

Figure 4.2: Fig 4.2 Exact Solution vs. Approximated Results: The �rst example N=7

Ub = 3;

Lb = 3;

n = 25;

p = 0:5;

Niter = 10000;

d = 10;

w = 1:

The coe¢ cients got from FPA are,

88

Chapter 4. Chebyshev Metaheuristic Solver Approach

8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

a = 2:3984;

b = 0:5376;

c = 0:1439;

d = 0:0055;

e = 0:0007;

f = 0:0000;

g = 0:0000;

h = 0:0000;

i = 0:0000;

j = 0:0000:

From this results we conclude the value of u(x);

uFPA = 2:3984T �0 (x) + 0:5376T
�
1 (x) + 0:1439T

�
2 (x) + 0:0055T

�
3 (x) + 0:0007T

�
4 (x) + 0:0000T �5 (x) + 0:0000T

�
6 (x)(4.19)

+0:0000T �7 (x) + 0:0000T
�
8 (x) + 0:0000T

�
9 (x):

Therefore,

uFPA = 2:000000000000� 0:000000000097x+ 0:999999999821x2 + 0:000000036043x3(4.20)

+0:083332943801x4 + 0:000001843136x5 + 0:002773030964x6

+0:000007118339x7 + 0:000043403937x8 + 0:000002893686x9:

The �gure 4.3 con�rms that the resulted solution for N = 9 is approximately the same as

the exact one.

The table 4.5 illustrates the Root Mean Square Error and the Mean Square Error given

from the approximate solution of the linear homogeneous problem 4.8, utilizing the Cheby-

shev metaheuristic solver approach. The RMSE and the MSE given by the CMSA, for

89

Chapter 4. Chebyshev Metaheuristic Solver Approach

0 0.2 0.4 0.6 0.8 1
x

2

2.2

2.4

2.6

2.8

3

3.2

u(
x)

uFPA
uexact

Figure 4.3: Fig 4.3 Exact Solution vs. Approximated Results: The �rst example N=9

Optimizer RMSE MSE
CMSA N = 5 5:509954� 10�06 3:035960� 10�11
CMSA N = 7 5:137463� 10�09 2:639352� 10�17
CMSA N = 9 2:900512� 10�12 8:412970� 10�24

Table 4.3: Comparison table of RMSE for the linear homogeneous di¤erential problem

N = 5 and N = 7; and N = 9 are nearly negligible, specially for N = 9. As the error

decreases the N increases.

Non-homogeneous Problems

Let�s use Chebyshev metaheuristic solver approach to �nd an approximate solution for a

non-homogeneous boundary value problem.

Supposing the non-homogeneous problem de�ned by:

8>>>><>>>>:
u00 � 2u0 + u = x;

u(0) = 0;

u(2) = 4:

(4.21)

90

Chapter 4. Chebyshev Metaheuristic Solver Approach

Analytical solution To solve a non-homogeneous second order di¤erential equation we

will �rst �nd the complementary function, where it is the homogeneous equation�s solution.

Our homogeneous equation is

u00 � 2u0 + u = 0 (4.22)

Supposing that

u = exp(rx);

u0(x) = r exp(rx);

u00(x) = r2 exp(rx):

The equation 4.22 becomes,

r2 exp(rx)� r exp(rx) + exp(rx) = 0;

exp(rx)[r2 � 2r + 1] = 0;

r2 � 2r + 1 = 0:

We �nd two real equal roots to this characteristic equation r1 = r2 = 1; it means that the

solution of the equation 4.22 is

uc = A exp(x) +Bx exp(x): (4.23)

Now , let�s �nd the particular solution for the di¤erential equation de�ned in the problem

4.21 Assuming that

up = �x
2 + �x+
;

e. i u0p = 2�x+ �;

and u00p = 2�:

Substitute in the equation from 4.21,

u00 � 2u0 + u = x;

91

Chapter 4. Chebyshev Metaheuristic Solver Approach

2�� 2(2�x+ �) + (�x2 + �x+
) = x;

�x2 + (�4�+ �)x� 2� +
 + 2� = x;

,

8>>>><>>>>:
� = 0;

�4�+ � = 1;

�2� +
 + 2� = 0:

,

8>>>><>>>>:
� = 0;

� = 1;

 = 2:

thus,

yp = x+ 2:

The general solution for the problem 4.21, is presented by

u = up + uc = A exp(x) +Bx exp(x) + x+ 2: (4.24)

The �nal step to get the analytical solution is �nding the constants A and B, using the

bounday conditions,

u(0) = 0; gives A = �2;

u(2) = 4, a¤ords B = 1:

Therefore,

u(x) = exp(x)(x� 2) + x+ 2: (4.25)

Chebyshev metaheuristic solver approach Begining by choosing the order of Cheby-

shev polynomials and calculate the residual,

Supposing that u(x) =
NX
j=0

ujT
�
j (x) with N = 5, N = 7 and N = 9.

N=5 First, we choose the pre-selected points, N = 5, it means that we have to choose

from N � 1 pre-selected points, and calculate the global residual:

92

Chapter 4. Chebyshev Metaheuristic Solver Approach

N Chebyshev ploynomials in [0; 2]
0 T �0 (x) = T (x� 1) = 1;
1 T �1 (x) = x� 1;
2 T �2 (x) = 2x

2 � 4x+ 1;
3 T �3 (x) = 4x

3 � 12x2 + 9x� 1;
4 T �4 (x) = 8x

4 � 32x3 + 48x2 � 24x+ 1;
5 T �5 (x) = 16x

5 � 80x4 + 160x3 � 160x2 + 70x� 5:
6 T �6 (x) = 32x

6 � 192x5 + 480x4 � 640x3 + 440x2 � 144x+ 1;
7 T �7 (x) = 128x

7 � 448x6 + 1344x5 � 2240x4 + 2240x3 � 1344x2 + 392x� 7;
8 T �8 (x) = 128x

8 � 1024x7 + 3584x6 � 7168x5 + 8960x4 � 7168x3 + 3584x2 � 896x+ 1;
9 T �9 (x) = 256x

9 � 2304x8 + 9216x7 � 21504x6 + 32256x5 � 32256x4 + 21504x3
�9216x2 + 2040x� 9:

Table 4.4: Chebyshev polynomials in [0,2]

Rglob = R
2
0 +R

2
1 +R

2
2 +R

2
3 +R

2
4 +R

2
5: (4.26)

There are 6 small residuals, because here on our example we chose to use Chebyshev

polynomials with 5th order. So we have 6 unknowns, it means that we have 6 equations,

and instead of solving them, we use FPA.

The next step, is implementing the algorithm to minimize the value of Rglob subsequent

to many changes of the algorithm�s parameters we found our best approximate solution

when:

Ub = 3;

Lb = �2;

n = 20;

p = 0:8;

Niter = 10000;

d = 6

w = 1.

93

Chapter 4. Chebyshev Metaheuristic Solver Approach

The best solutions given by Flower Pollination Algorithm are:8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

a = 1:0949;

b = 1:7379;

c = 0:8571;

d = 0:2557;

e = 0:0482;

f = 0:0062:

Therefore,

uFPA(x) = 1:0949T
�
0 (x)+1:7379T

�
1 (x)+0:8571T

�
2 (x)+0:2557T

�
3 (x)+0:0482T

�
4 (x)+0:0062T

�
5 (x):

(4.27)

We conclude that the approximate solution given by the new method is

uFPA(x) = 0:000321039110� 0:005009143962x� 0:047424609829x2 (4.28)

+0:349597726960x3 � 0:110792373530x4 + 0:099225981229x5:

Here we present the graphs produced by the exact and the approximate solutions produced

by the new approach in the case of N = 5, for our homogeneous linear boundary value

problem 4.21.

uFPA presents the approximate solution obtained from Chebyshev metaheuristic solver

approach.

uexact presents the exact solution.

The �gure 4.4 displays the graphs generated by the exact solution, the Chebyshev meta-

heuristic solver approach�s solution for N = 5.

� It�s obvious that Chebyshev metaheuristic solver approach�s approximation graph is

identical to the curve produced by the exact solution.

For N=7: Using Chebyshev polynomials for N = 7 and the residual,

94

Chapter 4. Chebyshev Metaheuristic Solver Approach

0 0.5 1 1.5 2
x

­0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

u(
x)

uFPA
uexact

Figure 4.4: Fig 4.4 Exact Solution vs. Approximated Results: The second example N=5

Rglob = R
2
0 +R

2
1 +R

2
2 +R

2
3 +R

2
4 +R

2
5 +R

2
6 +R

2
7: (4.29)

Parameters of Flower Pollination Algorithm utilized for problem are,

Ub = 3;

Lb = �3;

n = 25;

p = 0:5;

Niter = 10000;

d = 8;

w = 1:

The coe¢ cients got from FPA are,

95

Chapter 4. Chebyshev Metaheuristic Solver Approach

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

a = 1:0947;

b = 1:7380;

c = 0:8585;

d = 0:2559;

e = 0:0461;

f = 0:0060;

g = 0:0006;

h = 0:0001:

From this results we conclude the value of u(x);

uFPA = 1:0947T �0 (x) + 1:7380T
�
1 (x) + 0:8585T

�
2 (x) + 0:2559T

�
3 (x) + 0:0461T

�
4 (x) + 0:0060T �5 (x)(4.30)

+0:0006T �6 (x) + 0:0001T
�
7 (x):

Therefore,

uFPA = 0:000000042834� 0:000065651534x� 0:000412100113x2 + 0:171662398718x3 + 0:069765419240x4(4.31)

+0:041090852589x5 � 0:003765513897x6 + 0:003424370017x7:

In the �gure 4.5 the etwo graphs of exact solution and approximate solution via Chebyshev

metaheuristic solver approach�s solution for N = 7 are somewhat identical.

For N=9 Using Chebyshev polynomials for N = 9 and the residual,

Rglob = R
2
0 +R

2
1 +R

2
2 +R

2
3 +R

2
4 +R

2
5 +R

2
6 +R

2
7 +R

2
8 +R

2
9: (4.32)

Parameters of Flower Pollination Algorithm utilized for problem are,

Ub = 3;

96

Chapter 4. Chebyshev Metaheuristic Solver Approach

0 0.5 1 1.5 2
x

­0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

u(
x)

uFPA
uexact

Figure 4.5: Fig 4.5 Exact Solution vs. Approximated Results: The second example N=7

Lb = 3;

n = 25;

p = 0:5;

Niter = 10000;

d = 10;

w = 1:

The coe¢ cients got from FPA are,

97

Chapter 4. Chebyshev Metaheuristic Solver Approach

8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

a = 1:0947;

b = 1:7380;

c = 0:8585;

d = 0:2559;

e = 0:0461;

f = 0:0060;

g = 0:0006;

h = 0:0001;

i = 0:0000;

j = 0:0000:

From this results we conclude the value of u(x);

uFPA = 1:0947T �0 (x) + 1:7380T
�
1 (x) + 0:8585T

�
2 (x) + 0:2559T

�
3 (x) + 0:0461T

�
4 (x) + 0:0060T �5 (x)(4.33)

+0:0006T �6 (x) + 0:0001T
�
7 (x) + 0:0000T

�
8 (x) + 0:0000T

�
9 (x):

Therefore,

uFPA = 0:000000000003� 0:000000373246x� 0:000001360784x2 + 0:166717474422x3(4.34)

+0:083071329901x4 + 0:025602511673x5 + 0:004804667279x6

+0:001529402208x7 � 0:000067807552x8 + 0:000062385326x9:

In the �gure 4.6 the etwo graphs of exact solution and approximate solution via Chebyshev

metaheuristic solver approach�s solution for N = 9 are roughly the same.

The table 4.5 shows the Root Mean Square Error and the Mean Square Error obtained

from the approximate solution of the linear di¤rential problem introduced in 4.21, using

the Chebyshev metaheuristic solver approach. The RMSE and the MSE given by the

98

Chapter 4. Chebyshev Metaheuristic Solver Approach

0 0.5 1 1.5 2
x

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

u(
x)

uFPA
uexact

Figure 4.6: Fig 4.6 Exact Solution vs. Approximated Results: The second example N=9

Optimizer RMSE MSE
CMSA N = 5 2:176850� 10�03 4:738677� 10�06
CMSA N = 7 1:089595� 10�05 1:187218� 10�10
CMSA N = 9 3:378533� 10�08 1:141448� 10�15

Table 4.5: Comparison table of RMSE for the linear non-homogeneous di¤erential problem

CMSA, for N = 5 and N = 7; and N = 9 are nearly negligible, specially for N = 9. As

the error decreases the N increases.

4.4.2 Non-Linear Boundary Value Problems:

On this section we will use the Chebyshev metaheuristic solver approach to give an ap-

proximate solution to a non-linear boundary value problem.

Bernoulli equation

Assuming the non-linear boundary value problem (Bernoulli equation): [40]

u00 + (u0)2 � 2 exp(�u) = 0; (4.35)

99

Chapter 4. Chebyshev Metaheuristic Solver Approach

accompanied with the endpoints

u(0) = 0; u(1) = 0: (4.36)

Analytical solution: beginning by transforming the non-linear equation to a Bernoulli

equation, where we use the method of substituting where:

v =
du

dx
and

d2u

dt2
=
dv

dt
=
dv

du
� du
dx
=
dv

dx
:

Hence,

d2u

dt2
+ (
du

dx
)2 = 2 exp(�u);

i.e.
dv

du
v + v2 = 2 exp(�u);

putting exp(�u) = z [5] yields to

dv

du
=
dv

dz

dz

du
= �dv

dz
� exp(�u) = �zdv

dz
:

Thus,

�zdv
dz
+ v2 = �2z;

vz
dv

dz
� v2 = �2z:

Set � = v2 imply d�
dz
= 2v dv

dz
:

The equation becomes,

z

2
� d�
dz
� � = �2z;

d�

dz
� 2�

z
= �4:

100

Chapter 4. Chebyshev Metaheuristic Solver Approach

This �nal result is a Bernoulli equation.

Let�s return to the �rst equation where we could solve it just by the substituting method.

The equation is,
d2u

dx2
+ (
du

dx
)2 � 2 exp(�u) = 0:

By multiplying with exp(u), we�ve got

exp(u)� d
2u

dx2
+ exp(u)� (du

dx
)2 = 2:

Assuming that t = exp(u), so dt
dx
= du

dx
exp(u) and d2t

dx2
= d2u

dx2
exp(u) + exp(u)du

dx
:

The equation becomes,
d2t

dx2
= 2;

imply that dt
dx
= 2x+ A; it means that t = x2 + Ax+B:

Therefore,

exp(u) = x2 + Ax+B:

So, u = ln jx2 + Ax+Bj:

Boundary conditions give8><>: y(0) = 0) B = 1;

y(1) = 0) A = �1:
Here the �nal solution of our problem

u = ln jx2 � x+ 1j: (4.37)

Chebyshev metaheuristic solver approach solution: This problem has been solved

previoulsy by Babaei in [32], using Particle Swarm Optimization, for that reason we will

solve it using the new approach by upgrading the degree of Chebyshev polynomials until

getting better results.

The Chebyshev used are

101

Chapter 4. Chebyshev Metaheuristic Solver Approach

N Chebyshev ploynomials
0 T �0 (x) = T (2x� 1) = 1;
1 T �1 (x) = 2x� 1;
2 T �2 (x) = 8x

2 � 8x+ 1;
3 T �3 (x) = 32x

3 � 48x2 + 18x� 1;
4 T �4 (x) = 128x

4 � 256x3 + 160x2 � 32x+ 1;
5 T �5 (x) = 512x

5 � 1280x4 + 1120x3 � 400x2 + 50x� 1:
6 T �6 (x) = 32x

6 � 192x5 + 480x4 � 640x3 + 440x2 � 144x+ 1
7 T �7 (x) = 64x

7 � 448x6 + 1344x5 � 2240x4 + 2240x3 � 1344x2 + 392x� 7
8 T �8 (x) = 128x

8 � 1024x7 + 3584x6 � 7168x5 + 8960x4 � 7168x3 + 3584x2 � 896x+ 1
9 T �9 (x) = 256x

9 � 2304x8 + 9216x7 � 2150x6 + 32256x5 � 32256x4 + 2150x3
�9216x2 + 2040x� 9

10 T �10(x) = 512x
10 � 5120x9 + 23040x8 � 61440x7 + 107520x6 � 120960x5 + 80640x4

�33600x3 + 7560x2 � 880x+ 1

Table 4.6: Chebyshev polynomials in [0,1]

For N=5: Calculating the residual using Chebyshev polynomials same as previous ex-

amples.

Rglob = R
2
0 +R

2
1 +R

2
2 +R

2
3 +R

2
4 +R

2
5: (4.38)

Parameters of Flower Pollination Algorithm utilized for problem are,

Ub = 2;

Lb = �2;

n = 25;

p = 0:5;

Niter = 10000;

d = 6;

w = 1:

Here the results,

102

Chapter 4. Chebyshev Metaheuristic Solver Approach

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

a = 0:03728;

b = �0:20964;

c = �0:030246;

d = 0:27013;

e = �0:067533;

f = 1:6928� 10f�17g:
From this results we conclude the value of u(x);

uFPA = 0:03728T0(x)� 0:20964T1(x)� 0:030246T2(x) + 0:27013T3(x)� 0:067533T4(x)(4.39)

+1:6928� 10f�17gT5(x):

Therefore,

uFPA = �7�10f�6g�1:02x+0:4798x2+1:08052x3�0:5403x4+2:7069�10f�16gx5: (4.40)

0 0.2 0.4 0.6 0.8 1
­0.3

­0.25

­0.2

­0.15

­0.1

­0.05

0
uFPA

uexact

Figure 4.7: Fig 4.7 Exact Solution vs. Approximate Results: Bernoulli Problem N=5

103

Chapter 4. Chebyshev Metaheuristic Solver Approach

The �gure 4.7 shows two curves representing solutions to the non-linear problem

presented on this example. The black line denotes the exact solution, while the pink one

shows the approximations obtained by Chebyshev metaheuristic solver approach for

N = 5. The approximations are close to the exact solution, demonstrating great

accuracy.

For N=7: Using Chebyshev polynomials for N = 7 and the residual,

Rglob = R
2
0 +R

2
1 +R

2
2 +R

2
3 +R

2
4 +R

2
5 +R

2
6 +R

2
7: (4.41)

Parameters of Flower Pollination Algorithm utilized for problem are,

Ub = 2;

Lb = �2;

n = 25;

p = 0:5;

Niter = 10000;

d = 8;

w = 1:

The coe¢ cients got from FPA are,8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

a = �0:00082011;

b = �0:13476;

c = �0:096989;

d = 0:32353;

e = �0:10515;

f = 0:020998;

g = �0:0089923;

h = 0:002038:

From this results we conclude the value of u(x);

104

Chapter 4. Chebyshev Metaheuristic Solver Approach

uFPA = �0:00082011T �0 (x)� 0:13476T �1 (x)� 0:096989T �2 (x) + 0:32353T �3 (x)� 0:10515T �4 (x) + 0:020998T �5 (x)(4.42)

�0:0089923T �6 (x) + 0:002038T �7 (x):

Therefore,

uFPA = �1:0146x+0:4854x2+0:9883x3�0:4096x4+0:1077x5�0:2878x6+0:1304x7: (4.43)

0 0.2 0.4 0.6 0.8 1
­0.3

­0.25

­0.2

­0.15

­0.1

­0.05

0

0.05
uEXACT

uFPA

Figure 4.8: Fig 4.8 Exact Solution vs. Approximate Results: Bernoulli Problem N=7

The �gure 4.8 illustrates the exceptional concordance between the numerical solution

generated by our proposed algorithm and the exact analytical solution, con�rming the

method�s high e¢ ciency and successful convergence.

For N=9 Using Chebyshev polynomials for N = 9 and the residual,

105

Chapter 4. Chebyshev Metaheuristic Solver Approach

Rglob = R
2
0 +R

2
1 +R

2
2 +R

2
3 +R

2
4 +R

2
5 +R

2
6 +R

2
7 +R

2
8 +R

2
9: (4.44)

Parameters of Flower Pollination Algorithm utilized for problem are,

Ub = 2;

Lb = �2;

n = 25;

p = 0:5;

Niter = 10000;

d = 10;

w = 1:

The coe¢ cients got from FPA are,8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

a = �0:047647;

b = �0:044291;

c = �0:17647;

d = 0:38347;

e = �0:14118;

f = 0:034289;

g = �0:007565;

h = �0:0045317;

i = 0:0044153;

j = �0:0010502:
From this results we conclude the value of u(x);

uFPA = �0:047647T �0 (x)� 0:044291T �1 (x)� 0:17647T �2 (x) + 0:38347T �3 (x)� 0:14118T �4 (x) + 0:034289T �5 (x)� 0:007565T �6 (x)(4.45)

�0:0045317T �7 (x) + 0:0044153T �8 (x)� 0:0010502T �9 (x):

106

Chapter 4. Chebyshev Metaheuristic Solver Approach

Therefore,

uFPA = �0:0001� 1:0010x+ 0:4990x2 + 0:7203x3 � 0:0599x4 + 0:6025x5 (4.46)

�1:3724x6 + 0:3149x7 + 0:5652x8 � 0:2689x9:

0 0.2 0.4 0.6 0.8 1
­0.3

­0.25

­0.2

­0.15

­0.1

­0.05

0
uEXACT

uFPA

Figure 4.9: Fig 4.9 Exact Solution vs. Approximate Results: Bernoulli Problem N=9

As illustrated in the �gure 4.9, the proposed algorithm signi�cantly outperforms prior nu-

merical schemes. Its solution is visually indistinguishable from the exact solution, a result

that is quantitatively supported by it yielding the lowest error norm in our comparative

analysis.

Optimizer RMSE
CMSA N = 5 1:9� 10�03
CMSA N = 7 1:1� 10�03
CMSA N = 9 2:8144� 10�04
PSO [32] 3:0503� 10�04

Table 4.7: Comparison table of RMSE for the non-linear problem

The table 4.7 shows the Root Mean Square Error obtained from the approximate solution

of the Bernoulli problem, using the Chebyshev metaheuristic solver approach and the

107

Chapter 4. Chebyshev Metaheuristic Solver Approach

approach introduced in [32]. The RMSE given by the CMSA, for N = 5 and N = 7; are

smaller then the RMSE obtained by the method introduced in [32]. The RMSE obtained

from the CMSA is the smaller one for N = 9:

As seen in the table the error decreases when the N increases, and it gives te lowest error

comparing by the method proposed in [32].

4.4.3 Initial Value Problem

Let�s solve an integro-di¤erential problem as an initial value problem, using the proposed

method

Integro-Di¤erential Equation

Supposing the linear integro-di¤erential equation

8><>: u0(x) + 2u(x) + 5
R x
0
u(t)dt = H(x); x 2 [0; �];

u(0) = 0:
(4.47)

Where H(x) is the Heaviside step function,8><>: H(x) = 1; if x � 0;

H(x) = 0; else.

After di¤erentiating the problem it can be converted to this ordinary di¤erential equation,

8><>: u00(x) + 2u0(x) + 5u(x) = 0; x 2 [0; �];

u(0) = 0; u0(0) = 1:
(4.48)

Analytical solution:

The exact solution of the proposed problem is

uexact(x) = 1=2 exp(�x) sin(2x): (4.49)

108

Chapter 4. Chebyshev Metaheuristic Solver Approach

Chebyshev metaheuristic solver approach solution:

This problem also has been solved previoulsy by Babaei in [32], using Particle Swarm

Optimization, there we will solve it using the new approach by upgrading the degree of

Chebyshev polynomials until getting better results, like in the previous problem.

The Chebyshev polynomials used are calculated using the mapping T �N(x) = TN(
2x��
�
)

For N=5: Calculating the residual using Chebyshev polynomials,

Rglob = R
2
0 +R

2
1 +R

2
2 +R

2
3 +R

2
4 +R

2
5: (4.50)

Parameters of Flower Pollination Algorithm utilized for problem are,

Ub = 2;

Lb = �2;

n = 25;

p = 0:5;

Niter = 10000;

d = 6;

w = 1:

Here the results,8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

a = �0:37182;

b = 0:87766;

c = �0:3681;

d = 0:036336;

e = �0:0037344;

f = 1:44� 10f�05g:
From this results we conclude the value of u(x);

109

Chapter 4. Chebyshev Metaheuristic Solver Approach

uFPA = �0:37182T0(x) + 0:87766T1(x)� 0:3681T2(x) + 0:036336T3(x)� 0:0037344T4(x)(4.51)

+1:44� 10f�05gT5(x):

Thus,

uFPA(x) = 1:4400�10f�05g+0:7660x�0:7661x2+0:1559x3+0:0299x4�0:0085x5: (4.52)

0 0.5 1 1.5 2 2.5 3 3.5
­0.15

­0.1

­0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
uFPA

uexact

Figure 4.10: Fig 4.10. Exact Solution vs. Approximate Results: Integro-Di¤erential
Problem N=5

This graph 4.10 shows our new method�s approximate solution with the exact solution to

the integro-di¤erential problem. the approximate solution is near to the exact one but

there are some deviations in several points.

For N=7 Calculating the residual using Chebyshev polynomials,

Rglob = R
2
0 +R

2
1 +R

2
2 +R

2
3 +R

2
4 +R

2
5 +R

2
6 +R

2
7: (4.53)

110

Chapter 4. Chebyshev Metaheuristic Solver Approach

Parameters of Flower Pollination Algorithm utilized for problem are,

Ub = 2;

Lb = �2;

n = 25;

p = 0:5;

Niter = 10000;

d = 8;

w = 1:

Here the results,8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

a = �0:257686;

b = 0:671156;

c = �0:17463;

d = �0:13963;

e = 0:084822;

f = �0:01814;

j = 0:00177379;

h = �0:000067:
From this results we conclude the value of u(x);

uFPA = �0:257686T0(x) + 0:671156T1(x)� 0:17463T2(x)� 0:13963T3(x) + 0:084822T4(x)(4.54)

�0:01814T5(x) + 0:00177379T6(x)� 0:000067T7(x):

Thus,

uFPA(x) = �7:7900�10f�06g+0:9998x�0:9959x2�0:1995x3+0:5934x4�0:2827x5+0:0568x6�0:0043x7:

(4.55)

The graph 4.11 shows that increasing N gives more e¢ cient approximate solution, and a

111

Chapter 4. Chebyshev Metaheuristic Solver Approach

0 0.5 1 1.5 2 2.5 3 3.5
­0.1

­0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
uFPA

uexact

Figure 4.11: Fig 4.11 Exact Solution vs. Approximate Results: Integro-Di¤erential Prob-
lem N=7

smaller deviation from the exact solution.

For N=9 Using Chebyshev polynomials for N = 9 and the residual,

Rglob = R
2
0 +R

2
1 +R

2
2 +R

2
3 +R

2
4 +R

2
5 +R

2
6 +R

2
7 +R

2
8 +R

2
9: (4.56)

Parameters of Flower Pollination Algorithm utilized for problem are,

Ub = 2;

Lb = �2;

n = 30;

p = 0:5;

Niter = 10000;

d = 10;

w = 1:

The coe¢ cients got from FPA are,

112

Chapter 4. Chebyshev Metaheuristic Solver Approach

8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

a = 0:055832;

b = �0:096777;

c = �0:004309;

d = 0:091663;

e = �0:055955;

f = 0:006679;

g = 0:004310;

h = �0:001654;

i = 0:000083;

j = 0:000057:

We conclude that,

uFPA = 0:055832T0(x)� 0:096777T1(x)� 0:004309T2(x) + 0:091663T3(x)� 0:055955T4(x)(4.57)

+0:006679T5(x) + 0:004310T6(x)� 0:001654T7(x) + 0:000083T8(x) + 0:000057T9(x):

Therefore,

uFPA = �0:000007004795304 + 0:999995920626303x� 0:999954485220502x2 � 0:177733710469917x3(4.58)

+0:538549052301467x4 � 0:213683022676613x5 + 0:010093517682470x6

+0:012946975958491x7 � 0:003284930647576x8 + 0:000252664933546x9:

This graph 4.12 illustrates the powerful convergence of our method, as increasing N yields

an approximate solution that is nearly indistinguishable from the exact solution. The

exceptional alignment underscores the precision and reliability of our approach.

The table shows the Root Mean Square Error obtained by the approximate solution of

integro-di¤erential equation, using the Chebyshev metaheuristic solver approach and the

approach introduced in [32]. The RMSE given by the CMSA, for N = 5 and N = 7; are

113

Chapter 4. Chebyshev Metaheuristic Solver Approach

0 0.5 1 1.5 2 2.5 3 3.5
x

­0.1

­0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

y(
x)

uFPA
uexact

Figure 4.12: Fig 4.12. Exact Solution vs. Approximate Results: Integro-Di¤erential
Problem N=7

Optimizer RMSE
CMSA N = 5 3:14� 10�02
CMSA N = 7 1:05� 10�02
CMSA N = 9 7:704629� 10�05
PSO [32] 1:805� 10�01

Table 4.8: Comparison table of RMSE for the integro-di¤erential problem

smaller then the RMSE obtained by the method introduced in [32]. The RMSE obtained

from the CMSA is the smaller one for N = 9:

4.5 Conclusion

In this chapter, a novel method for calculating approximate solutions have been introduced

called Chebyshev metaheuristic solver approach, which was tested for di¤erent types of

boundary value problems and an initial value problem. We solved several boundary prob-

lems and an integdo-di¤rential problem using the new proposed method for di¤erent de-

grees N , accompanied by a comparison between the results given by the new method and

the method introduced in [32] and the exact solution. The exact solutions were given for

114

Chapter 4. Chebyshev Metaheuristic Solver Approach

all cases.

Our comparative analysis showed that the Chebyshev metaheuristic solver approach con-

sistently yielded superior approximations. These �ndings emphasizes the e¤ectiveness and

accuracy of the proposed approach, validating its potential to enhance boundary value

problem solving capabilities.

The results validate the theoretical framework discussed earlier, proving the practical

viability of the new method.

Future explorations should research on the applicability of this method across di¤erent

domains and problem sets, potentially give rise to further advancements. Other studies

can be made to inhence the method by changing the parameters of the algorithm.

This chapter�s victory in achieving better approximations underscores the importance of

continual innovation in mathematical problem-solving techniques.

115

General Conclusion

This research has conducted a comprehensive exploration of merging numerical compu-

tation techniques with intelligent optimization algorithms, resulting in the creation of an

innovative hybrid approach for di¤erential equation resolution. The primary goal was to

address the shortcomings of conventional solution methods by establishing a dependable,

precise, and broadly applicable framework. This study e¤ectively illustrates the substan-

tial bene�ts of merging the exceptional precision characteristics of spectral techniques with

the robust global optimization capabilities of the Flower Pollination Algorithm (FPA).

The developed framework, designated as the Chebyshev Metaheuristic Solver Approach,

constitutes a noteworthy advancement in computational mathematics.

The academic exploration commenced with a fundamental examination of spectral tech-

niques in Chapter 1, where we demonstrated their theoretical advantages for di¤eren-

tial equation solutions, with particular emphasis on the Chebyshev collocation approach.

This method�s e¤ectiveness stems from its capacity to reach spectral precision by con-

verting complex di¤erential equations into algebraic equation systems through Chebyshev

polynomial approximation. Nevertheless, resolving the resulting system, particularly for

nonlinear scenarios, creates a signi�cant optimization challenge.

Chapter 2 addressed this challenge through an extensive examination of the evolutionary

algorithms and metaheuristic domain. This section explored the theoretical foundations of

optimization, categorizing algorithms and analyzing their fundamental search strategies,

spanning from random walks to Lévy �ights. This investigation highlighted the essential

116

General Conclusion

equilibrium between intensi�cation and diversi�cation, which is critical for avoiding local

optima and achieving global convergence. This theoretical foundation supported the choice

of an advanced, nature-inspired algorithm over traditional gradient-based approaches.

Chapter 3 concentrated on the speci�c metaheuristic selected for this research: the Flower

Pollination Algorithm (FPA). We examined its biological foundation, the pollination mech-

anisms of �owering plants and transformed its cross-pollination principles (global search

through Lévy �ights) and self-pollination (local search) into an e¤ective optimization al-

gorithm. An extensive review of FPA variations and parameter optimization strategies

demonstrated our dedication to not merely implementing, but thoroughly comprehending

and enhancing the optimization methodology.

The integration of these separate domains is outlined in Chapter 4, which describes the

development and veri�cation of the proposed Chebyshev Metaheuristic Solver Approach.

This chapter represents the primary contribution of this thesis. The di¤erential equation is

initially discretized using the Chebyshev collocation method, generating a residual function

as the objective function for an optimization problem. The FPA is subsequently utilized

to systematically identify the optimal Chebyshev coe¢ cients that minimize this residual,

thus providing the solution to the original equation. The e¤ectiveness of this hybrid

solver was thoroughly evaluated using various benchmark problems, encompassing both

linear (homogeneous and non-homogeneous), nonlinear boundary value problems, and an

integro-di¤erential problem. The computational results consistently showed outstanding

accuracy and stability, con�rming the hypothesis that this hybrid approach successfully

combines the spectral precision of Chebyshev polynomials with the powerful optimization

capabilities of the FPA.

Considering future prospects, the signi�cance of this research extends considerably bey-

ond the speci�c problems examined here. The adaptability and proven performance of the

Chebyshev metaheuristic solver approach indicate its potential for signi�cantly broader

applications across scienti�c and engineering domains. This encompasses complex, multi-

117

General Conclusion

dimensional challenges in areas such as �uid mechanics, thermal transfer, structural ana-

lysis, and quantum mechanics. Additionally, the concept of transforming complex math-

ematical problems into optimization tasks and solving them using metaheuristics has sig-

ni�cant relevance in emerging �elds.

Multiple promising directions for future investigation arise from this work. Initially, the

methodology can be expanded to address more complex systems, including partial dif-

ferential equations (PDEs), integral equations, and coupled di¤erential equation systems.

Additionally, while the FPA demonstrated high e¤ectiveness, a comparative analysis in-

corporating other advanced metaheuristics or hybrid versions could produce additional

performance improvements. Finally, exploring adaptive parameter control within the FPA

could automate the optimization process, making the solver more autonomous and e¢ -

cient.

In summary, this thesis successfully developed, implemented, and validated a powerful

hybrid numerical-optimization framework. Through carefully combining the advantages

of Chebyshev spectral methods and the Flower Pollination Algorithm, this work not only

delivers a highly accurate solution tool for a challenging category of di¤erential equations

but also establishes a solid and innovative foundation for developing future high-precision

computational approaches. The demonstrated capabilities of this methodology promise to

enhance computational e¢ ciency and accuracy, creating pathways for new discoveries and

innovations across multiple scienti�c �elds.

118

Bibliography

[1] A. E. Eiben, J.E. Smith. (2015). Introduction to Evolutionary Computing. Springer-

Verlag Berlin Heidelberg, Natural Computing Series, Natural computing series, 2.

[2] A. S. Walter. (2007). Parial Di¤erential Equations, an Introduction, second edition.

Wiley.

[3] A. H. Gandomi, X. S. Yang, A. H. Alavi. (2013). Cuckoo search algorithm: a meta-

heuristic approach to solve structural optimization problems. Engineering with Com-

puters, 29(2): 17�35.

[4] C. Grosan, A. Abraham. (2011). Evolutionary Algorithms. Intelligent Systems. Intel-

ligent Systems Reference Library. Springer, Berlin, Heidelberg, 17:345�386.

[5] C. H. Edwards, D. E. Penney. (2008). Elementary di¤erential equations, sixth edition.

Pearson Education, Inc.

[6] C. Shilaja, K. Ravi. (2007). Optimization of emission/economic dispatch using euc-

lidean a¢ ne Flower Pollination Algorithm (EFPA) and binary FPA (BFPA) in solar

photo voltaic generation. Renewable Energy, 107:550-566.

[7] D. Chakraborty, S. Saha, O. Dutta. (2014). DE-FPA: A hybrid Di¤erential Evolution-

Flower Pollination Algorithm for function minimization. 2014 International Confer-

ence on High Performance Computing and Applications (ICHPCA),IEEE, 1-6.

119

Bibliography

[8] D. Chakraborty, S. Saha, S. Maity (2015). Training feedforward Neural Networks

using hybrid Flower Pollination-Gravitational Search Algorithm. 2015 International

Conference on Futuristic Trends on Computational Analysis and Knowledge Manage-

ment (ABLAZE),IEEE, pages: 261-266.

[9] D. Karaboga. (2010). Arti�cial Bee Colony Algorithm. Scholarpedia, 5(3):6915.

[10] D. Rodrigues, X.-S. Yang, A. N. de Souza, J. P. Papa. (2014). Binary Flower Pollin-

ation Algorithm and its application to feature selection. Recent Advances in Swarm

Intelligence and Evolutionary Computation, Springer, 585:85-100.

[11] D. Rodrigues, G. F. A. Silva, J. P. Papa, A. N. Marana, X.-S. Yang. (2016). EEG-

based person identi�cation through binary Flower Pollination Algorithm. Expert

systms with applications, 62:81-90.

[12] E. Emary, H. M. Zawbaa, A. A. Hassanien, B. Parv. (2017). Multi-objective retinal

vessel localization using Flower Pollination Search Algorithm with pattern search.

Advances in Data Analysis and Classi�cation, 11:611-627.

[13] E. Nabil. (2016). A modi�ed Flower Pollination Algorithm for global optimization.

Expert Systems with Applications, 57:192-203

[14] F. Ghedjemis, N. Khelil. (2025). Spectral approximations optimized by �ower pollin-

ation algorithm for solving di¤erential equations. International Journal of Computa-

tional Methods and Experimental Measurements, 13(2):343-349.

[15] G. Namachivayam, C. Sankaralingam, S. K. Perumal, S. T. Devanathan. (2016).

Recon�guration and capacitor placement of radial distribution systems by modi�ed

Flower Pollination Algorithm. Electric Power Components and Systems, 44(13):1492-

1502.

[16] G. S. McDonald. (2004). Di¤erential equation second order (inhomogeneous). Pro-

moting Phisics Learning & Teaching opportunities.

120

Bibliography

[17] H. M. Dubey, M. Pandit, B. K. Panigrahi. (2015). A biologically inspired modi-

�ed Flower Pollination Algorithm for solving economic dispatch problems in modern

power systems. Cognitive Computation, 7(5):594-608.

[18] H. M. Zawbaa,A. E. Hassanien, W. Yamani, B. Parv. (2015). Hybrid Flower Pollin-

ation Algorithm with rough sets for feature selection. 11th International Computer

Engineering Conference (ICENCO),IEEE, 278-283.

[19] J. H. Holland. (1975). Genetic Algorithms and Adaptation. Adaptive Control of Ill-

De�ned Systems. NATO Conference Series, Springer, Boston, MA, 16:317-333.

[20] J. P. Boyed. (2000). Chebyshev and fourier spectral methods, second edition. Univer-

sity of Michigan, DOVER Publications, INC.

[21] I. Fister Jr, X.-S. Yang, I. Fister, J. Brest ,D. Fister. (2013). A Brief Review of

nature-inspired algorithms for optimization. Elektrotehni�ki Vestnik, 80(3).

[22] J. Kennedy, R. Eberhart. (1995). Particle Swarm Optimization. Proceeding of

ICNN�95-International Conference on Neural Networks 4, 1942-1948.

[23] I. E. Mergos Jr, X.-S. Yang. (2021). Flower Pollination Algorithm parameters tuning.

Soft Computing, Springer, 25:1429-1447.

[24] J. P. Ram, T. S. Babu, T. Dragicevic, N. Rajasekar. (2017). A new hybrid Bee

Pollinator Flower Pollination Algorithm for solar PV parameter estimation. Energy

Conversion and Management, 135:463-476.

[25] J. A. Regalado, B. E. Emilio, E. Cuevas. (2015). Optimal power �ow solution using

Modi�ed Flower Pollination Algorithm. 2015 IEEE International Autumn Meeting

on Power, Electronics and Computing (ROPEC), 1-6.

[26] I. Sehili.(2018). On Numerical resolution of boundary value problems using spectral

methods. University of Mohamed Khider, Biskra.

121

Bibliography

[27] J. C. Mason, D. C. Handscomb. (2002). Chebyshev polynomials. A CRC Press Com-

pany.

[28] J. Shen, T. Tang and L.L. Wang. (2011). Spectral methods algorithms, analysis and

applications. Springer Series in Computational Mathematics 41.

[29] K. B. Pop, V. R. Chifu, I. Salomie, D. S. Racz, R. M. Bonta. (2017). Hybridiza-

tion of the Flower Pollination Algorithm: a case study in the problem of generating

healthy nutritional meals for older adults. Nature-Inspired Computing and Optimiz-

ation, Springer,151-183.

[30] L. Valenzuela, F. Valdez, P. Melin. (2016). Flower Pollination Algorithm with fuzzy

approach for solving optimization problems. Nature-Inspired Design of Hybrid Intel-

ligent Systems, 667:357-369.

[31] M. Abdel-Baset, I. Hezam. (2016). A hybrid Flower Pollination Algorithm for en-

gineering optimization problems. International Journal of Computer Applications,

140(12):10-23.

[32] M. Babaei. (2013). A general approach to approximate solutions of non-

linear di¤erential equations using Particle Swarm Optimization. Applied Soft

Computing,13(7):3354-3365.

[33] M. Gendreau, J.-Y. Potvin. (2005). Metaheuritics in combinational optimization. An-

nals of Operations Research, 140(1):189-213.

[34] M. J. Kochenderfer, T.A. Wheeler. (2019). Algorithms for Optimization. The MIT

Press, Cambridge, Massachusetts, London, England.

[35] M. Metwalli, M. abdel-Baset, I. Hazem. (2015). A modi�ed Flower Pollination Al-

gorithm for fractional programming problems. International Journal of Intelligent

Systems and Applications in Engineering, 3(3):116-123.

122

Bibliography

[36] O. Abdel-Raouf, M. Abdel-Baset, I. El-Henawy. (2014). A new hybrid Flower Pol-

lination Algorithm for solving constrained global optimization problems. Computer

Science International Journal of Applied Operational Research, 4(2):1-13.

[37] O. K. Meng, O. Pauline, S. C. Kiong, A. Waheb Hanani, N. Ja¤eri. (2016). Ap-

plication of Modi�ed Flower Pollination Algorithm on mechanical engineering design

problem. IOP Conference Series: Materials Science and Engineering, 165.

[38] R. L. Adler, T. J. Rivlin. (1964). Ergodic and mixing properties of Chebyshev poly-

nomials. Proceedings of the American Methematical Society, 15: 794-796.

[39] R. Jensi, G. W. Jiji. (2015). Hybrid data clustering approach using K-Means and

Flower Pollination Algorithm. arXiv:1505.03236.

[40] R. Rastogi, O.P. Misra, R. Mishra. (2023). A Chebyshev polynomial approach to ap-

proximate solution of di¤erential equations using Di¤erential Evolution. Engineering

Application of Arti�cial Intelligence, 126.

[41] R. Salgotra, U. Singh. (2017). Application of mutation operators to Flower Pollination

Algorithm. Expert Systems with Applications, 79:112-129.

[42] R. Wang, Y. Zhou, C. Zhao, H. Wu. (2015). A hybrid Flower Pollination Algorithm

based modi�ed randomized location for multi-threshold medical image segmentation.

Biomedical Materials and Engineering, 26(1):45-51.

[43] S. Dan. (2013). Evolutionary optimization algorithms: Biologically-inspired and

population- based approaches to computer intelligence. John Wiley & Sons, Inc.

[44] S. Kalra, S. Arora. (2016). Fire�y algorithm hybridized with Flower Pollination Al-

gorithm for multimodal functions. Proceedings of the International Congress on In-

formation and Communication Technology, Springer, 207-219.

123

Bibliography

[45] S. M. Nigdeli, G. Bekdas, X.-S. Yang. (2017). Optimum tuning of mass dampers

by using a hybrid method using harmony search and Flower Pollination Algorithm.

International Conference on Harmony Search Algorithm, Springer, 222-231

[46] S. Sarjiya, P. H. Putra, T. A. Saputra. (2016). Modi�ed Flower Pollination Algorithm

for nonsmooth and multiple fuel options economic dispatch. International Conference

on Information & Communication Technology and Systems (ICTS), 1-5.

[47] S. Xu, Y. Wang. (2017). Parameter estimation of photovoltaic modules using a hybrid

Flower Pollination Algorithm. Energy Conversion and Management, 144:53-68.

[48] T. Bäck. (1996). Evolutionary algorithms in theory and practice. Oxford University

Press, New York.

[49] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. (2007). Numerical

recipes the art of scienti�c computing, third edition. Cambridge University Press.

[50] W. Yamany, H. M. Zawbaa, E. Emary, A. E. Hassanien. (2015). Attribute reduc-

tion approach based on Modi�ed Flower Pollination Algorithm. IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE),1-7.

[51] W. Zhang, Z. Qu, K. Zhang, W. Mao, Y. Ma, X. Fan. (2017). A combined model

based on CEEMDAN and Modi�ed Flower Pollination Algorithm for wind speed

forecasting. Energy Conversion and Management, 136:439-451.

[52] X.-S. Yang, M. Karamanoglu, X. He. (2013). Multi-objective Flower Pollination Al-

gorithm for optimization. Procedia Computer Science, 18:861-868.

[53] X.-S. Yang, M. Karamanoglu, X. He. (2014). Flower Pollination Algorithm: a novel

approach for multiobjective optimization. Engineering Optimization, 46(9):1222-

1237.

124

Bibliography

[54] X.-S. Yang. (2010). Bat Inspired Algorithm, A new metaheuristic Bat-Inspired Al-

gorithm. Nature inspired cooperative strategies for opitimization, 65-74.

[55] X.-S. Yang. (2010). Fire�y Algorithm: An introduction with metaheuristic applic-

ations. Research and Development in Intelligent Systems, Springer-Verlag London

limited, 209-218.

[56] X.-S. Yang. (2012). Flower Pollination Algorithm for global optimization. Unconven-

tional Computation and Natural Computation, Springer, 7445:240-249.

[57] X.-S. Yang. (2010). Nature-Inspired Metaheuristic Algorithms. Luniver Press.

[58] Y. Xinjie, G. Mitsuo. (2010). Introduction to evolutionary algorithms. Springer Verlag

London Limited.

[59] Y. Zhou, R. Wang, Q. Luo. (2016). Elite opposition-based Flower Pollination Al-

gorithm. Neurocomputing, 188:294-310.

[60] Z. A. Alkareem Alyasseri, A. T. Khader, M.A. AlBetar, M.A. Awadallah, X.S. Yang.

(2018). Variants of the Flower Pollination Algorithm: A review. Nature-Inspired Al-

gorithms and Applied Optimization, 744:91-118.

[61] Z. A. E. Moiz Dahi, C. Mezioud, A. Draa. (2016). On the e¢ ciency of the Binary

Flower Pollination Algorithm: Application on the antenna positioning problem. Ap-

plied Soft Computing, 47:395-414.

125

Appendix A: MATLAB

MATLAB (short for MATrix LABoratory) is a high-level programming environ-

ment and numeric computing platform widely used across scienti�c research, engineering,

and applied mathematics domains. Originating in the late 1970s to facilitate matrix com-

putations, MATLAB has evolved into a versatile tool integrating numerical analysis, visu-

alization, algorithm development, and system simulation. Its intuitive syntax, extensive

function libraries, and powerful graphical capabilities enable e¢ cient handling of complex

data, numerical modeling, and iterative algorithmic design.

Distinctive for its matrix-based architecture, MATLAB allows users to seamlessly perform

vectorized operations, linear algebra, di¤erential equations, signal processing, and other

computational tasks with remarkable ease and speed. The environment supports script

and function development, interactive command execution, and integration with external

codebases, enhancing reproducibility and extensibility in research work�ows.

In the context of this thesis, MATLAB served as a critical computational backbone�

enabling rigorous data analysis, automated simulations, and visualization of results. Its

contributions span from preliminary data preprocessing and model prototyping to the �nal

validation stages, ensuring robustness and accuracy. This appendix aims to provide readers

unfamiliar with MATLAB a concise overview of its foundational features, operational

philosophy, and relevance to contemporary scienti�c inquiry.

126

Appendix B : MATLAB�s Code Used

4.6 MATLAB Code of the First Chapter

4.6.1 Generation of Chebyshev Polynomials of the First Kind

% De�ne the Chebyshev polynomial function recursively

function T = chebyshev T(n,x)

if n==0

T=ones(size(x));

elseif n==1

T=x;

else

T=2*x.*chebyshevT(n-1,x)-chebyshevT(n-2,x);

end

end

% Example N=5

n_max=5;

x=linspace(-1,1,100);

�gure;

hold on;

127

Appendix B : MATLAB�s Code Used

for n=0:n_max

T=chebyshevT(n,x);

plot(x,T,�DisplayName�, [0T_0num2str(n)]);

end

hold o¤;

legend;

title(�Chebyshev Polynomials of the First Kind�);

xlabel(�x�);

ylabel(�T_n(x)�);

4.6.2 Generation of Chebyshev Polynomials of the First Kind in

[1,4]

clear;

clc;

close all;

x = linspace(1, 4, 500);

T0s = ones(size(x));

T1s = (1/3) * (2*x - 5);

T2s = (1/9) * (8*x.^2 - 40*x + 41);

T3s = (1/27) * (32*x.^3 - 240*x.^2 + 546*x - 365);

T4s = (1/81) * (128*x.^4 - 1280*x.^3 + 4512*x.^2 - 6560*x + 3281);

T5s = (1/243) * (512*x.^5 - 6400*x.^4 + 30560*x.^3 - 69200*x.^2 + 73810*x - 29525);

�gure;

hold on;

plot(x, T0s, �LineWidth�, 2);

plot(x, T1s, �LineWidth�, 2);

plot(x, T2s, �LineWidth�, 2);

128

Appendix B : MATLAB�s Code Used

plot(x, T3s, �LineWidth�, 2);

plot(x, T4s, �LineWidth�, 2);

plot(x, T5s, �LineWidth�, 2);

hold o¤;

xlabel(�x�);

ylabel(�T_n((2x-5)/3)�);

legend(�T_0(s)�, �T_1(s)�, �T_2(s)�, �T_3(s)�, �T_4(s)�, �T_5(s)�, �Location�, �best�);

grid on;

ylim([-1.1, 1.1]); % Focus on the interesting part of the graph

4.6.3 Generation of Shifted Chebyshev Polynomials

clear;

clc;

close all;

x = linspace(0, 1, 500);

T0_star = ones(size(x));

T1_star = 2*x - 1;

T2_star = 8*x.^2 - 8*x + 1;

T3_star = 32*x.^3 - 48*x.^2 + 18*x - 1;

T4_star = 128*x.^4 - 256*x.^3 + 160*x.^2 - 32*x + 1;

T5_star = 512*x.^5 - 1280*x.^4 + 1120*x.^3 - 400*x.^2 + 50*x - 1;

�gure;

hold on;

plot(x, T0_star, �LineWidth�, 2);

plot(x, T1_star, �LineWidth�, 2);

plot(x, T2_star, �LineWidth�, 2);

plot(x, T3_star, �LineWidth�, 2);

129

Appendix B : MATLAB�s Code Used

plot(x, T4_star, �LineWidth�, 2);

plot(x, T5_star, �LineWidth�, 2);

hold o¤;

xlabel(�x�);

ylabel(�T*_n(x)�);

legend(�T*_0(x)�, �T*_1(x)�, �T*_2(x)�, �T*_3(x)�, �T*_4(x)�, �T*_5(x)�, �Location�,

�best�);

grid on;

ylim([-1.1, 1.1]);

clear;

clc;

close all;

x = linspace(0, 1, 500);

T0_star = ones(size(x));

T1_star = 2*x - 1;

T2_star = 8*x.^2 - 8*x + 1;

T3_star = 32*x.^3 - 48*x.^2 + 18*x - 1;

T4_star = 128*x.^4 - 256*x.^3 + 160*x.^2 - 32*x + 1;

T5_star = 512*x.^5 - 1280*x.^4 + 1120*x.^3 - 400*x.^2 + 50*x - 1;

�gure;

hold on;

plot(x, T0_star, �LineWidth�, 2);

plot(x, T1_star, �LineWidth�, 2);

plot(x, T2_star, �LineWidth�, 2);

plot(x, T3_star, �LineWidth�, 2);

plot(x, T4_star, �LineWidth�, 2);

plot(x, T5_star, �LineWidth�, 2);

130

Appendix B : MATLAB�s Code Used

hold o¤;

title(�Veri�cation Plot using Explicit Formulas�);

xlabel(�x�);

ylabel(�T*_n(x)�);

legend(�T*_0(x)�, �T*_1(x)�, �T*_2(x)�, �T*_3(x)�, �T*_4(x)�, �T*_5(x)�, �Location�,

�best�);

grid on;

ylim([-1.1, 1.1]);

4.6.4 MATLAB Code to Solve the First Example Using Cheby-

shev Collocation Method

%MATLAB code to solve -d^2u/dx^2=exp(x) with u(-1)=u(1)=0 using Chebyshev spec-

tral collocation

% 1. De�ne the number of collocation points (N+1)

N=20; % Degree of the polynomial approximation. More points = higher accuracy.

% 2. Compute Chebyshev-Gauss-Lobatto (CGL) points

% These are the roots of T_N0(x) and are given by x_k=cos(pi*k/N)

k=0:N;

x=cos(pi*k/N)�; % Column vector of collocation points

%3: Construct the second-order Chebyshev di¤erentiation matrix (D2)

% We use a function for this, often provided in spectral methods libraries

% For demonstration, we�ll construct it directly.

% For N=0,D=0. For N=1,D=[-1/2,1/2;1/2,-1/2].

% Building the full D and then D2 is more robust.

D= zeros(N+1,N+1);

for i=1:N+1

for j=1:N+1

131

Appendix B : MATLAB�s Code Used

if i==j

if i==1% x_0=1

D(i,j)=(2*N^2+1)/6;

elseif i==N+1% x_N=-1

D(i,j)=-(2*N^2+1)/6;

else % x_k internal point

D(i,j)=-x(i)/(2*(1-x(i)^2));

end

else

c_i=1; if i==1 jj i==N+1, c_i=2;

end

c_j=1; ifj==1 jjj==N+1,c_j=2;

end

D(i,j)=(c_i*(-1)^(i+j))/(c_j*(x(i)-x(j)));

end

end

end

D2=D*D; % Second di¤erentiation matrix

% 4. Apply boundary conditions and set up the linear system

% The boundary conditions are u(-1)=0 and u(1)=0.

% In our CGL points, x(1)=1 (for k=0) and x(N+1)=-1 (for k=N).

% So, u(1) corresponds to u(x(1)) and u(-1) corresponds to u(x(N+1)).

% The system we need to solve is -D2*u_vec=f_vec

% where u_vec is the vector of u values at collocation points.

% The original system is -D2*U=F, where F=exp(x)

F=exp(x);

% Modify D2 and F to incorporate boundary conditions

132

Appendix B : MATLAB�s Code Used

% The �rst and last rows of D2 correspond to x=1 and x=-1 respectively.

% For Dirichlet boundary conditions, we e¤ectively replace these rows

% with identity rows that enforce u(1)=0 and u(-1)=0.

% Create a modi�ed D2_mod and F_mod

D2_mod=-D2; % The left-hand side is -d^2u/dx^2

% Set boundary condition rows

D2_mod(1,:)=0; % Clear the �rst row

D2_mod(1,1)=1; % Set u(x_1)=0 (which is u(1)=0)

F(1)=0;

D2_mod(N+1,:)=0; % Clear the last row

D2_mod(N+1,N+1)=1; % Set u(x_N+1)=0 (which is u(-1)=0)

F(N+1)=0;

% 5. Solve the linear system

u_numerical=D2_modnF;

% 6. Plot the numerical solution

�gure;

plot(x, u_numerical, �o-�, �LineWidth�, 1.5, �DisplayName�, �Numerical Solution�);

hold on;

% Compare with the exact solution

% The exact solution for �u�= exp(x) with u(-1)=u(1)=0

% is u(x)=exp(x)-(cosh(1)+sinh(1)*x)/cosh(1)

% or u(x)=exp(x)-(e^1*(x+1)+e^-1*(1-x))/2

% or u(x)=exp(x)-((e-e^-1)/2*x+(e+e^-1)/2)

% Let�s use the integrated form: u(x)=-exp(x)+Ax+B

% u(�1) = �exp(�1)� A+B = 0) B = A+ exp(�1)

% u(1) = �exp(1) + A+B = 0) �exp(1) + A+ A+ exp(�1) = 0

% 2A = exp(1)� exp(�1)) A = (exp(1)� exp(�1))=2 = sinh(1)

133

Appendix B : MATLAB�s Code Used

% B = sinh(1) + exp(�1)

% Exact solution is u_exact(x)=-exp(x)+sinh(1)*x+sinh(1)+exp(-1)

% Let�s derive it correctly: u�(x) = �exp(x)) u0(x) = �exp(x) + C1) u(x) =

�exp(x) + C1 � x+ C2

% u(-1)=-exp(-1)-C1+C2=0

% u(1)=-exp(1)+C1+C2=0

% Subtracting the �rst from the second: (-exp(1)+exp(-1))+2*C1=0)2*C1=exp(1)-exp(-

1))C1=(exp(1)-exp(-1))/2=sinh(1)

%Add the two equations: -(exp(1)+exp(-1))+2*C2=0)2*C2=exp(1)+exp(-1))C2=(exp(1)+exp(-

1))/2=cosh(1)

u_exact=-exp(x)+sinh(1)*x+cosh(1);

plot(x,u_exact, �r��, �LineWidth�, 1, �DisplayName�, �Exact Solution�);

title([�Chebyshev Spectral Collocation (N=0,num2str(N), �)�]);

xlabel(�x�);

ylabel(�u(x)�);

legend(�show�);

grid on;

4.6.5 MATLABCode to Solve the Second Example Using Cheby-

shev Collocation Method

% MATLAB code to solve d^2u/dx^2=exp(u) with u(-1)=u(1)=0

clear; clc; close all;

%% 1. De�ne the number of collocation points (N+1)

N = 20;

%% 2. Compute Chebyshev-Gauss-Lobatto (CGL) points

k = 0:N;

x = cos(pi*k/N)�;

134

Appendix B : MATLAB�s Code Used

%% 3. Construct the second-order Chebyshev di¤erentiation matrix (D2)

if N == 0

D = 0;

else

c = [2; ones(N-1,1); 2] .* (-1).^(0:N)�;

X = repmat(x, 1, N+1);

dX = X - X�;

D = (c*(1./c)�)./(dX + eye(N+1)); % First derivative matrix

D = D - diag(sum(D,2)); % Correcting the diagonal

end

D2 = D*D; % Second di¤erentiation matrix

% 4. Set up the NONLINEAR system of equations

residual = @(U) bvp_residual(U, D2, N);

U_guess = zeros(N+1, 1);

%% 5. Solve the nonlinear system using fsolve

options = optimoptions(�fsolve�, �Display�, �iter�, �TolFun�, 1e-12);

% Call fsolve to �nd the root U of the residual function.

[U_numerical, fval, exit�ag] = fsolve(residual, U_guess, options);

% Check for convergence

if exit�ag <= 0

error(�fsolve did not converge. Try a di¤erent initial guess or change solver options.�);

end

fprintf(�nnSolver converged successfully.nn�);

%% 6. Plot the solution

x_�ne = linspace(-1, 1, 200)�;

u_�ne = barycentric_interp(x, U_numerical, x_�ne);

�gure;

135

Appendix B : MATLAB�s Code Used

plot(x_�ne, u_�ne, �b-�, �LineWidth�, 2, �DisplayName�, �Interpolated Numerical Solu-

tion�);

hold on;

plot(x, U_numerical, �ro�, �MarkerFaceColor�, �r�, �MarkerSize�, 6, �DisplayName�, �Col-

location Points�);

title([�Chebyshev Spectral Collocation for u" = exp(u) (N = �, num2str(N), �)�]);

xlabel(�x�, �FontSize�, 12);

ylabel(�u(x)�, �FontSize�, 12);

legend(�show�, �Location�, �best�);

grid on;

box on;

%% Helper Functions

function F = bvp_residual(U, D2, N)

interior_eqs = D2(2:N, :) * U - exp(U(2:N));

bc1 = U(1) - 0;

bc_neg1 = U(N+1) - 0;

F = [bc1; interior_eqs; bc_neg1];

end

function u_interp = barycentric_interp(x_nodes, u_nodes, x_eval)

N = length(x_nodes) - 1;

w = [0.5; ones(N-1, 1); 0.5] .* (-1).^(0:N)�;

numerator = zeros(size(x_eval));

denominator = zeros(size(x_eval));

for j = 1:length(x_nodes)

exact_match = abs(x_eval - x_nodes(j)) < 1e-12;

if any(exact_match)

u_interp(exact_match) = u_nodes(j);

136

Appendix B : MATLAB�s Code Used

end

non_match = ~exact_match;

term = w(j) ./ (x_eval(non_match) - x_nodes(j));

numerator(non_match) = numerator(non_match) + term * u_nodes(j);

denominator(non_match) = denominator(non_match) + term;

end

u_interp(~(denominator==0)) = numerator(~(denominator==0)) ./ denominator(~(denominator==0));

end

4.7 Code MATLAB for the Fourth Chapter

4.7.1 Flower Pollination Algorithm

% �� �%

% Flower pollenation algorithm (FPA), or �ower algorithm %

% Programmed by Xin-She Yang @ May 2012 %

% �%

%%%

% Notes: This demo program contains the very basic components of %

% the �ower pollination algorithm (FPA), or �ower algorithm (FA), %

% for single objective optimization. It usually works well for %

% unconstrained functions only. For functions/problems with %

% limits/bounds and constraints, constraint-handling techniques %

% should be implemented to deal with constrained problems properly. %

% %

% Citation details: %

%1)Xin-She Yang, Flower pollination algorithm for global optimization,%

% Unconventional Computation and Natural Computation, %

137

Appendix B : MATLAB�s Code Used

% Lecture Notes in Computer Science, Vol. 7445, pp. 240-249 (2012). %

%2)X. S. Yang, M. Karamanoglu, X. S. He, Multi-objective �ower %

% algorithm for optimization, Procedia in Computer Science, %

% vol. 18, pp. 861-868 (2013). %

%%%

function [best,fmin,N_iter]=fpa_demo(para)

% Default parameters

if nargin<1,

para=[20 0.8];

end

n=para(1); % Population size, typically 10 to 25

p=para(2); % probabibility switch

% Iteration parameters

N_iter=2000; % Total number of iterations

% Dimension of the search variables

d=3;

Lb=-2*ones(1,d);

Ub=2*ones(1,d);

% Initialize the population/solutions

for i=1:n,

Sol(i,:)=Lb+(Ub-Lb).*rand(1,d);

Fitness(i)=Fun(Sol(i,:));

end

% Find the current best

[fmin,I]=min(Fitness);

best=Sol(I,:);

S=Sol;

138

Appendix B : MATLAB�s Code Used

% Start the iterations �Flower Algorithm

for t=1:N_iter,

% Loop over all bats/solutions

for i=1:n,

% Pollens are carried by insects and thus can move in

% large scale, large distance.

% This L should replace by Levy �ights

% Formula: x_i^{t+1}=x_i^t+ L (x_i^t-gbest)

if rand>p,

%% L=rand;

L=Levy(d);

dS=L.*(Sol(i,:)-best);

S(i,:)=Sol(i,:)+dS;

% Check if the simple limits/bounds are OK

S(i,:)=simplebounds(S(i,:),Lb,Ub);

% If not, then local pollenation of neighbor �owers

else

epsilon=rand;

% Find random �owers in the neighbourhood

JK=randperm(n);

% As they are random, the �rst two entries also random

% If the �ower are the same or similar species, then

% they can be pollenated, otherwise, no action.

% Formula: x_i^{t+1}+epsilon*(x_j^t-x_k^t)

S(i,:)=S(i,:)+epsilon*(Sol(JK(1),:)-Sol(JK(2),:));

% Check if the simple limits/bounds are OK

S(i,:)=simplebounds(S(i,:),Lb,Ub);

139

Appendix B : MATLAB�s Code Used

end

% Evaluate new solutions

Fnew=Fun(S(i,:));

% If �tness improves (better solutions found), update then

if (Fnew<=Fitness(i)),

Sol(i,:)=S(i,:);

Fitness(i)=Fnew;

end

% Update the current global best

if Fnew<=fmin,

best=S(i,:) ;

fmin=Fnew ;

end

end

% Display results every 100 iterations

if round(t/100)==t/100,

best

fmin

end

end

% Output/display

disp([�Total number of evaluations: �,num2str(N_iter*n)]);

disp([�Best solution=�,num2str(best),�fmin=�,num2str(fmin)]);

% Application of simple constraints

function s=simplebounds(s,Lb,Ub)

% Apply the lower bound

ns_tmp=s;

140

Appendix B : MATLAB�s Code Used

I=ns_tmp<Lb;

ns_tmp(I)=Lb(I);

% Apply the upper bounds

J=ns_tmp>Ub;

ns_tmp(J)=Ub(J);

% Update this new move

s=ns_tmp;

% Draw n Levy �ight sample

function L=Levy(d)

% Levy exponent and coe¢ cient

% For details, see Chapter 11 of the following book:

% Xin-She Yang, Nature-Inspired Optimization Algorithms, Elsevier, (2014).

beta=3/2;

sigma=(gamma(1+beta)*sin(pi*beta/2)/(gamma((1+beta)/2)*beta*2^((beta-1)/2)))^(1/beta);

u=randn(1,d)*sigma;

v=randn(1,d);

step=u./abs(v).^(1/beta);

L=0.01*step;

% Objective function and here we used Rosenbrock�s 3D function

function z=Fun(u)

z=(1-u(1))^2+100*(u(2)-u(1)^2)^2+100*(u(3)-u(2)^2)^2;

141

	a7750c1d2d839c5441f670bf57d62de2e10e96cea98c7b9002fa80578732040e.pdf
	Dedicace
	Acknowledgements
	Abstract
	Achieved work
	 Abreviations and Notations
	Contents

	d6f5ed0b07ac1347f6c0b95e81fd379b6522aee501d1ef142e18dde87e124448.pdf
	a7750c1d2d839c5441f670bf57d62de2e10e96cea98c7b9002fa80578732040e.pdf
	List of Figures
	List of Tables
	Introduction
	blueSpectral Methods
	Differential Equations and Mathematical Formulation
	Differential equations and types
	Chebyshev Polynomials
	First-Kind Chebyshev Polynomials
	Second-Kind Chebyshev Polynomials
	Chebyshev Polynomials in [a,b]
	Shifted Chebyshev Polynomials

	Numerical Methods
	Local Methods
	Global Methods
	Collocation Method Using Chebyshev Polynomials

	Conclusion

	blueEvolutionary Algorithms: An Introduction to Metaheuristic Optimization
	Optimization
	Search for Optimality
	Understanding Evolutionary and Metaheuristic Approaches
	Classification of Metaheuristic Algorithms Based on Their Nature
	Deterministic
	Stochastic
	Hybrid of Stochastic and Deterministic Algorithms

	Classification of Metaheuristic Algorithms Based on Their Working System
	Procedure-Based Algorithms
	Equation-Based Algorithms

	Other Classifications
	Search Mechanisms and Theoretical Foundations
	Gradient-Guided Moves
	Random Permutation
	Direction-based Perturbations
	Isotropic Random Walks
	Long-tailed, Scale-free Random Walks

	Random Walks and Lévy Flights
	Random Variables
	Random Walks
	Lévy Flight

	Intensification and Diversification:
	Ways for Intensification and Diversification:
	A Brief History of Metaheuristic and Evolutionary Algorithms
	Conclusion

	blueFlower Pollination Algorithm
	Flowers and Flowering
	Cross-Pollination and Self-Pollination
	Flower Constancy

	The Algorithm
	Numerical Results

	Variants of Flower Pollination Algorithm
	Hybridized Variants of Flower Pollination Algorithm

	Conclusion

	blueChebyshev Metaheuristic Solver Approach
	Construction of the Chebyshev Metaheuristic Solver Approach
	Parameters of Flower Pollination Algorithm
	Pseudocode of Chebyshev Meatheuristic Solver Approach
	Results
	Linear Boundary Value Problems
	Non-Linear Boundary Value Problems:
	Initial Value Problem

	Conclusion

	General Conclusion
	Bibliography
	Appendix A: MATLAB
	Appendix B : MATLAB's Code Used
	MATLAB Code of the First Chapter
	Generation of Chebyshev Polynomials of the First Kind
	Generation of Chebyshev Polynomials of the First Kind in [1,4]
	Generation of Shifted Chebyshev Polynomials
	MATLAB Code to Solve the First Example Using Chebyshev Collocation Method
	MATLAB Code to Solve the Second Example Using Chebyshev Collocation Method

	Code MATLAB for the Fourth Chapter
	Flower Pollination Algorithm

