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Abstract

This thesis proposes a new hybrid computational method that combines the accuracy of
spectral methods with the optimization abilities of the Flower Pollination Algorithm to find
solutions of differential equations, particularly boundary value problems. The approach
uses Chebyshev polynomials for spectral approximation and combines FPA to minimize
residual errors and optimize the coefficients, leading to accurate numerical solutions.
The study begins by exploring the structures of spectral methods and metaheuristic al-
gorithms, concentrating on their mathematical properties and practical roles in optimiz-
ation. It then introduces a new three-step hybrid methodology: extracting an initial ap-
proximation, calculating the residual error, and optimizing undetermined coefficients via
FPA. The efficiency of this method is confirmed through several case studies, involving
linear and nonlinear boundary value problems.

Experimental results validate that the proposed hybrid approach improves solution ac-
curacy and computational efficiency contrast classical methods. The findings highlight
the method’s adaptability and potential in broader applications such as fluid dynamics,
structural analysis, and data-driven modeling.

This work contributes a robust and flexible approach for solving complex differential prob-
lems, paving the way for future research in advanced numerical and optimization strategies.
Keywords: Differential equations ; Metaheuristic algorithms ; Chebyshev polynomials ;

Flower Pollination Algorithm.

Resumé

Cette thése présente une nouvelle méthode hybride de calcul numérique combinant la pré-
cision des techniques spectrales avec les capacités d’optimisation de I'algorithme de pollin-
isation des fleurs (FPA) pour la résolution des équations différentielles, en particulier
les problémes aux limites. L’approche s’appuie sur les polyndémes de Chebyshev pour

I’approximation spectrale et intégre le FPA afin de minimiser les erreurs résiduelles, per-
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mettant ainsi d’obtenir des solutions approchées de haute précision.

Le travail débute par une étude des fondements des méthodes spectrales et des algorithmes
métaheuristiques, en mettant 'accent sur leurs propriétés mathématiques et leur utilité
en optimisation. Il propose ensuite une méthodologie hybride en trois étapes : dérivation
d’une approximation initiale, calcul de 'erreur résiduelle, et optimisation des coefficients
inconnus a l'aide du FPA. L’efficacité de cette approche est validée & travers plusieurs cas
d’étude, incluant des problémes aux limites linéaires et non linéaires.

Les résultats numériques confirment que la méthode hybride proposée améliore a la fois la
précision des solutions et l'efficacité du calcul par rapport aux méthodes classiques. Ces
résultats soulignent également I'adaptabilité de la méthode et son potentiel d’application
dans des domaines variés tels que la dynamique des fluides, ’analyse des structures et la
modélisation basée sur les données.

Ce travail apporte ainsi un cadre robuste et flexible pour la résolution de problémes
différentiels complexes, ouvrant la voie & de futures recherches en techniques numériques
avancées et en optimisation.

Mots clés: Equations différentielles ; Algorithmes métaheuristique ; Polynomes de Cheby-

shev ; Algorithme de pollinisation des fleurs.
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Achieved work

A significant outcome of this doctoral research is the publication of a scientific art-
icle entitled “Spectral Approximations Optimized by Flower Pollination Algorithm for
Solving Differential Equations” in the International Journal of Computational Methods
and Experimental Measurements, published by the International Information & Engin-
eering Technology Association (IIETA), Canada, Vol. 13, No. 2, pp. 343-349. ht-
tps://doi.org/10.18280/ijcmem.130211

This paper presents the core contribution of the thesis: a novel hybrid numerical approach
that integrates spectral methods with the Flower Pollination Algorithm (FPA) to solve
differential equations, involving boundary value problems with improved accuracy and
computational efficiency. The publication reflects the originality and scientific relevance
of the research, and demonstrates its applicability to a wide range of complex differential

problems.



Abreviations and Notations

Different abreviations and notations on this thesis are:

ACE
ALFPA
APP
BA
BFPA
BPFPA
CD
CEEMDAN
CFPA
CLSFPA
CS
DBP
DE
EFPA
EOFPA
FA
FPA
FPP
GGM
GSA
HSA
IBPSO
IRW
LTRW

Automatic Computing Engine
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Antenna Positioning Problem
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Conjugate Direction
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Flower Pollination Algorithm with Chaotic Local Search
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Differential Evolution
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Elite Opposition-based Fower Pollination Algorithm
Firefly Algorithm
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Fractional Programming Problem
Gradient-Guided Moves

Gravitational Search Algorithm

Harmony Search Algorithm

Improved Binary Particle Swarm Optimization
Isotropic Random Walks

Long-Tailed Scale-Free Random Walks

vi



MFPA
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National Physical Laboratory
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Introduction

Several real life problems could be illustrated as differential equations after methematical
modeling. Many of these problems aren’t simple anough to have an analytical solution,
therefore researchers tend to numerical domains to have approximate solutions. In the field
of optimization methods, numerical methods ,evolutionary and metaheuristic algorithms
play crucial role. This thesis is situated within the field of Evolutionary Algorithms (EAs),
exploring their application to developing advanced numerical techniques for solving differ-
ential equations.

Spectral methods are considered as global numerical methods, this thesis starts with an
investigation of spectral methods using Chebyshev polynomials [27], [38], [20], one of the
orthogonal polynomials that have great properties and efficient approximation capabilities,
which makes them a powerful tool to solve differential equations. Delving into examining
the mathematical properties of spectral methods and some of their practical implementa-
tions.

The optimization component of our work is driven by Evolutionary Algorithms [1], [4], [45],
[5§. Traditionally, the term 'Evolutionary Algorithm’ refers to a specific class of meta-
heuristics directly inspired by Darwinian evolution, employing operators such as selection,
crossover, and mutation. The Genetic Algorithm (GA) is the archetypal example.
However, the field of nature-inspired computation has produced a rich ecosystem of al-
gorithms that exhibit core evolutionary processes, even if they don’t use canonical genetic

operators. These processes include the maintenance of a population of solutions, iterat-
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ive improvement over generations, and a balance between exploration of the search space
and exploitation of known good solutions. For the purposes of this thesis, we adopt this
broader, more functional definition: an Evolutionary Algorithm is any population-based
technique that evolves solutions towards an optimum through stochastic operators and
selection.

Under this lens, many modern metaheuristics can be analyzed as specialized evolutionary
systems. The Flower Pollination Algorithm (FPA) [56], which is central to this study,
serves as a prime example. FPA’s mechanics directly map to core concepts of evolutionary

search discussed in this thesis. It evolves a population of solutions where:

e Global pollination serves as the primary diversification (exploration) mechanism. It
implements a long-tailed, scale-free random walk, mathematically modeled by Lévy

flights, to ensure the entire search space can be explored.

e Local pollination provides the intensification (exploitation) component, refining solu-

tions in promising regions through localized random perturbations.

e A selection mechanism, based on solution fitness, ensures that the best traits dis-

covered through this process survive and propagate into the next generation.

This evolutionary dynamic is what we harness. This thesis will therefore introduce the

broad family of EAs, from classic to modern interpretations, including:

e Genetic Algorithm (GA), the foundational EA based on selection, crossover, and

mutation [19].

e Particle Swarm Optimization (PSO), which evolves a 'swarm’ of solutions through

social learning [22].

e Flower Pollination Algorithm (FPA), which evolves solutions by mimicking the evol-

utionary reproductive strategy of flowering plants .
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e Cuckoo Search (CS), where solutions evolve by mimicking the brood parasitic beha-

vior of cuckoo .

The core processes of metaheuristic algorithms lies on trial and error just like childhood
natural behavior.

These algorithms are extremely helpful in large complex search spaces, given near-optimal
solutions within reasonable computational times. This thesis explores the definitions,
properties, and applications of metaheuristic algorithms, focussing on Flower Pollination
Algorithm.

The hybridization of algorithms is one of the famous techniques these days due to the
powerfull of the results obtained from it, where several methods are combined to obtain
the beneficts of every approach on solving various problems.

The main contribution of this research provided by the innovative hybridization of an evol-
utionary algorithm - Flower Pollination Algorithm- with the spectral collocation method.
By integrating the robust evolutionary search capabilities of FPA with the high precision
of spectral methods, a noval approach is designed for solving differential equations espe-
cially boundary value problems. The proposed method is tested on different boundary
value problems, proving its effectiveness and potential for wider applications.

Where the new approach is developed in the following manner: The first step is obtaining
an approximate formula of the solution using the first step of spectral method. The second
step based on calculating the residual using the root mean square formula. The final step
is about implementing Flower Pollination Algorithm in minimizing the error and getting
the unknown coefficients, now the approximate solution is found.

This thesis is organized as follows:

e Chapter 1 provides simple definition of differential equations is given, and an over-
view of spectral methods is provided with specific focus on Chebyshev polynomials.
It presents detailed examples and experiment results using MATLAB, to explain

how collocation method works in his simple way.

3
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e Chapter 2 dedicates for metaheuristic approach and evolutionnary algorithms,
where their definitions are provided and key properties are discussed. The chapter
enfolds various algorithms with different properties, behaviors, and nature. Discuss-
ing their different classifications depending on several effects. In the end a brief

history of metaheuristics and evolutionary algorithms is given.

e Chapter 3 focusses on Flower Pollination Algorithm as a case study in evolutionary
computation, the algorithm used for our innovative method, where it begins by mak-
ing clear the process of flowering in nature and analyzes how the algorithm abstracts
this into a set of evolutionary operators. The inspiration, structure, and operational
mechanisms of the algorithm are explained, with mentioning its properties and util-
ity in solving optimization problems. An exploration of hybridization’s potentional

with other methods, leads to the novel combination discussed in the last chapter.

e Chapter 4 introduces the innovative hybrid method developed in this research. The
intergration of the evolutionary search power of FPA with spectral methods, spe-
cifically with Chebyshev polynomials, is explained in detail. The chapter enfolds the
theoretical framework, implementation details, and the resolution of three different
boundary value problems, two linear problems and a non-linear problem, and an
intrgo-differential equation formulated as an intial value problem. The performance
of the hybrid approach is compared with the exact solution and a method introduced
by Babaei in , demonstrating its effectiveness in enhancing solution accuracy and

efficiency.

By combining advance numerical techniques with a powerful evolutionary algorithm, the
objective of this research is to contribute a novel methodology that enhances the preci-
sion and efficiency of solving complex differential equations and boundary valu problems.
The findings of this project have significant implications for various fields, giving a ro-

bust framework for further research and application in computational mathematics and



Introduction

engineering.



Chapter 1

Spectral Methods

In numerical analysis field, the accurate and efficient solution for differential equations
is very important. In the midst of various numerical methods, spectral methods have
obtained significant attention, because of their high accuracy and efficiency. This chapter
gives a brief introduction of differential equations, then discusses spectral methods, Cheby-
shev polynomials and Spectral-Collocation method, a powerful technique that sway the

properties of Chebyshev polynomials for solving differential equations.

1.1 Differential Equations and Mathematical Formu-
lation

A differential equation is an equation connecting an unknown function and one or more
of its derivatives.

The work on differential equations has three principal goals:

1. Discovering the differential equation that expresses a specified physical situation.
2. Finding the appropriate axact or approximate solution of that equation.

3. Interpreting the results.
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Let’s see some real-life problems that have been translated to differential equations.
Problem NO1
Newton’s law of cooling can be interpreted in this way: the rate of change over time ¢ of a
body’s temperature 7'(¢) is proportional to the difference between the two temperatures
that of the body T" and of the surrounding medium (A).
So,

ar

= —h(T - A), (1.1)

where k is a positive constant.

Noting that in the case of T' > A, % < 0 this means that the temperature decreases and

the body is cooling. In the inverse case (T' < A), % < 0 and T increases.

Therefore, the physical law has described by a differential equation.

If & and A are given, the formula of 7'(t) can be found, and the future temperature of the
body can be predicted.

Problem NO02

Torricelli’s law says that the rate of change with respect to time ¢ of the water’s volume
V' in a draining tank is proportional to the square root of the depth y of water in the tank

dV
2T 1.2

k is a constant.
In the case of cylinder tank with vertical sides and cross-sectional area A, V = Ay and

& = A(%). Thus the equation takes the form:

dy
— _h 1.3
h = k/A is a constant.

Problem NO03



Chapter 1. Spectral Method

In many simple cases, the rate of change over time t of a population p(t) that have got
birth and death rates constant is proportional to the population’s size.

This is expressed by:

—kp, (1.4)

where k is the proportionality constant. Observe that p(t) = Cexp(kt) is a solution for
the differential equation.

(' is an arbitary constant, therefore the differential equation admit a particular solution
could be chosen depending on additional information (initial or boundary conditions).
Mathematical Modeling

The process of mathematical modeling can be organized as:

1. Contructing of a mathematical model by formulate a real-world situation in math-

ematical terms.
2. Solving the resulting mathematical model.

3. Answering the question originally posed by interpreting the mathematical results in

the context of the real-world problem.

1.2 Differential equations and types

The writting of a differential equation is not sufficient to guarantee that it has a solution.
Taking this equation: (y')? + y*> = —1 doesn’t have a real valued solution.

Here another example where the equation has only one solution: (y')? + % = 0.
Consequently, the differential equation can has several solutions, one, or no one.

A differential equation’s order is determined by the highest-order derivative present within

it.
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Let y be an unknown function of a single independent variable z. An n—order differential

equation involving y and x is conventionally stated as:

F(z,y, 9.y, ... y™) =0, (1.5)
where F'is a function of n 4+ 2 variable in R.

e Differential equations can be subdivided into two types:

1. Odinary differential equations, where the unknown function depends only on

one independent variable in R.

1. Example 1.2.1 a(x)f" 4+ b(x)f' 4+ c(x)f = 0 (homogeneous linear differential equa-

tion of the second order).

a(x)f" 4+ b(x) '+ c(z)f = g(x) (non-homogeneous linear differential equation of the

second order).

e 1. Partial differential equations, it means that the unknown function depends on

more then one independent variable in R.

1. Example 1.2.2 % + giy]; = 0 (Laplace equation, ellipitic)

% = 02% (Wave equation, hyperbolic)

% — a% (Heat equation, parabolic)

e Differential equations equipped with conditions can be classified into:

1. Initial value problem:

Differential equation with initial condition.

Example 1.2.3

‘?)—Jtc:a,t>0, (L6)
f(t)=0,t=
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2. Boundary value problem:

1. The equation is associated with conditions at boundaries.

Example 1.2.4
9 — g,z € [a, D]

Ox
f(z) =0,z = a, (1.7)
f(z) = B =b.

1.3 Chebyshev Polynomials

"Chebyshev polynomials are everywhere dense in numerical analysis"

Philip David, George Forsythe.

Chebyshev polynomials are named after the Russian mathematician P.L. Chebyshev (1821—
1894), who originally examined them. The assembled studies of this noted savant are

provided in Ruassian and French in [3§].

Definition 1.3.1 A polynomial is a function that is possibly written as the following

shape:

p(I) = ag +a1T + a2x2 + ...+ ayx”. (1_8)

Where a; are real numbers and x is a real variable. Supposing that a, # 0, then p is of

degree n.

Polynomials have several favorable properties, that makes them notably suitable to approx-
imate more complex fcuntions. Some of the important properties are the differentiation
and integration, where they are able to be differentiated without restrictions as frequently

as needed for any value of x.

10
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1.3.1 First-Kind Chebyshev Polynomials

Definition 1.3.2 The first-kind Chebyshev polynomial T,,(x) is a polynomial in x of degree

n, introduced by the relation

T, (x) = cos(nb), z = cos(h). (1.9)

From the definition of the first-kind Chebyshev polynomials it’s obvious that z € [—1, 1],

and 6 can be taken in [0, 7] .

s(16
2cos? ) —1 =222 — 1,

= cos(30) = 4cos® 0 — 3cos O = 42> — 3z,

(@]

(
(x) = cos(16) =
Ty (z) = cos(20) =
() (30)
() = cos(40) = 8cos?  — 8cos® O + 1 = 8x* — 8z + 1.
The reccurence relation to get Chebyshev polynomials can be deduced using the trigono-
metric identity:

cos(nf) + cos(n — 2)0 = 2 cosf cos(n — 1)6 (1.10)

Thus,

Using the reccurence relation, T,,(z) can be calculated easily than via the definition of

Chebyshev polynomials.
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Chapter 1. Spectral Method

Example 1.3.1 Calculate T5(x) from T5(z) and Ty(z).
T5(.%') = 233‘T4<33‘) — Tg(l’)
= 2x(8z* — 822 + 1) — (42® — 3)

= 162° — 2023 + bHz.

The set of Chebyshev polynomials of the first kind exhibits orthogonality when integrated

with the weight function w;, = (1 — 22)~1/2.

The graphs (1.1))present a generation of the Chebyshev polynomials the first kind via

1 //
T
0.8 / \\ Tl
/ \ |
06 | // A T
/ \ T3
04 / \
| T
02 - \ T5
5{: 0 \\/
F / \
o2t \
06/ \ /
0.8 \ /

Figure 1.1: First-kind Chebyshev polynomials

1.3.2 Second-Kind Chebyshev Polynomials

Definition 1.3.3 The first-kind Chebyshev polynomial T,, () is a polynomial in = of degree

n, introduced by the relation

Up(xz) =sin(n + 1)0/sinf, x = cos 6.

it’s obvious that x € [—1,1], and 0 can be taken in [0, 7] .

12
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Using this formulaes, Chebyshev polynomials could be easy to be deduced,
sin16 = 6,

sin 260 = 2sin 6 cosf,

sin 36 = sin f(4 cos? 6 — 1),

sin46 = sin 6(8 cos® § — 4 cos b).

Thus,

Up(z) =1,

Uy(z) = 2z,
Us(z) = 42 — 1,
Us(x) = 82 — 4,

From this trigonometric formulae,

sin(n + 1)0 + sin(n — 1)8 = 2 cos 0 sin nb, (1.11)

the reccurence relation is

Un(x) = 22U, 1(z) — U,_2(x),n=2,3... (1.12)
U()(ZL‘) = 1,
Ui(z) = 2x.

The trigonometric formulae,

sin(n + 1) — sin(n — 1)0 = 2sin @ cos nd, (1.13)

yields to the relationship between the first-kind 7,,(z) and the second-kind Chebyshev
polynomials U, (z),

Un(x) — Up_o(x) = 2T, (), n = 2,3 (1.14)

13
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1.3.3 Chebyshev Polynomials in [a,b]

Since Chebyshev polynomials are in the range [—1, 1], a mapping should done to get a
Chebyshev polynomials in a general range [a, 0] .

Using the linear transformation

o 2r—(atb)

- (1.15)

Where the Chebyshev polynomials in [a, b] are T,,(s).

To(s) = To(*52) = 1,

T1(s) = Ti(*52) = 5(27 — 5),

Ty(s) = To(252) = 2(252) — 1 = (822 — 40z + 41),

Ty(s) = T5(352) = 4(3572)% — 3(252) = 5-(322° — 2402 + 5462 — 365),

Tu(s) = Tu(3552) = (1/81)(1282* — 128023 4 451222 — 6560z + 3281),

Ts(s) = T5(252) = (1/243)(5122° — 6400z* + 305602° — 692002 + 73810z — 29525),

: N\

n

T ((2x-5)/3)

o)
7,6
T,6)
T,6)
7,6
T4

X

Figure 1.2: First-kind Chebyshev Polynomials in [1,4]
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1.3.4 Shifted Chebyshev Polynomials

Real life problem are predomantly in [0, 1], therefore the shifted Chebyshev polynomials
are the Chebyshev polynomials mapped in this interval.

The shifted Chebyshev polynomials are extrated using s = 2z — 1,

Thus
Tr(x) =T,(2x — 1), (1.16)
where
T5(x) =1,
T (z) =2z — 1,
Ty (z) = 82% — 8x + 1,
Ty (z) = 322 — 4822 + 18z — 1,
T;(z) = 128x% — 25623 + 1602 — 32z + 1,
T (x) = 51225 — 1280x* + 11202% — 4002% + 50z — 1.

: N\

T ()

o)
™,
™,
™)
™,
L)

I I I
0.4 0.6 0.8 1
X

Figure 1.3: Shifted Chebyshev polynomials
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1.4 Numerical Methods

In the world of differential equations, numerical methods can be classified into global or

local methods.

1.4.1 Local Methods

These methods focus on segments of the problem’s domain in the approximation of PDE’s
solutions. Where they begin by dividing the domain into smaller, dicrete elements or
points and solve the differential problem within each element. Such as finite-difference
and finite-element methods.

Local methods can be considered as a well-suited method for complex geometries and
problems with regular boundaries, also they are flexible in handling no-uniform meshes
and localized refinement. But they can caused an increased computational cost as they
may require a large number of elements or points for high accuracy. In addition, the

approximation made locally can accumulate errors.

1.4.2 Global Methods

Global methods utilizes basis functions that reach the entire domain to approximate the
solutions of PDEs. They consider the entire domain rather than segmenting it into smaller
parts and solve the problem in overall the domain.

Spectral methods are global methods.

For problems with smoothness , these methods can reach superior accuracy due to the
global nature of basis functions. But in the case of complex geometries and problems
with irregular boundaries, they can be less flexible. Also, the fact that they require global

information caused intensive computational for large-scale problems.
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Weighted Residual Methods

Spectral methods belong to the family of weighted residual methods, for that reason here
a brief introduction to this family of methods. [2§]

Suppose the general problem

Owu(z,t) — Lu(x,t) = N(u)(x,t),t >0,z € Q, (1.17)

Here L is a spatial derivative operator, and N is a linear or nonlinear spatial operator
with lower-odrer, and 2 is a bounded domain on R?,d = 1,2 or 3. Adding to the equation
initial or boundary conditions.

Considering only the weighted residual method for spatial discretization, and supposing
that the time derivative is dicretized with a suitable time stepping scheme.

Considering the Crank-Nicolson leap-frog scheme for ((1.17)):

un+1 _ un—l un-i—l + un—l

2T B E( 2T

)=N(u"),n>1. (1.18)

Where 7 is the time step size, and u*(.) is an approximation of u(., k7).

The equation ([1.18)) is equivalent to

Lu(z) := au(zr) — Lu(z) = f(z),z € Q, (1.19)

here u = YA o = 771 and f = au' + N(u"). So a steady-state problem of the

form ((1.19) is needed to be solved, at each time step.
The first step of weighted residual methods is to write the approximate solution of (|1.19)

as a finite sum

u(z) ~uy(r) =Y ali(z), (1.20)
k=0

Where {®,.} are basis functions, such as Chebyshev polynomials, Fourier series and Hermite
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polynomials.
The next step is to determinate the expansion coefficients {ay}.

The residual obtained after substituting uy for u in ([1.19) is

Ry(z) = Lun(z) — f(x) # 0,2 € Q. (1.21)

Forcing the residual to zero by requiring

(Rn, ¥ /RN Jw(z)dzr = 0,0 < j < N, (1.22)

w is a positive weight function, {W;} are the test functions, where the most commonly util-
ized test functions are trigonometric functions or orthogonal polynomials, such as Cheby-

shev, Legendre, Laguerre and Hermite polynomials.

Or,

N
(Rv. )y =Y Ry(z)¥j(zp)wp = 0,0 < j < N, (1.23)
k=0

where {z;}1_, are a set of preselected collocation points, and {wy,}1_, are the weights of
a numerical quadrature formula.
The choice of the test functions distinguishes spectral methods, for example Galerkin,

collocation, Tau methods.

1.4.3 Collocation Method Using Chebyshev Polynomials

To understand the method let’s solve some problems.

Example 1.4.1 supposing the linear problem

(1.24)
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Solution of The example:
Let’s solve the example with spectral-collocation method using Chebyshev polynomials of

the first kind defined above.
The solution can be broken down into these main points:
1. Generate the grid of Chebyshev nodes with the cosine function.
2. For the function f(z) = exp(x), find its value at each node.
3. Build the associated second-order differentiation matrix D.
4. Construct the matrix A, using the collocation points to get a system Au = b.

5. Solve the linear system Au = b, and find the unkown coefficients of u, with enforcing

boundary conditions.
6. Plot and compare the numerical solution with the exact one.

Here is the graph of the solution to the problem using Chebyshev collocation method;

Chebyshev Spectral Collocation (N = 20)

0.6

—6— Numerical Solution
— = — — Exact Solution

u(x)

-0.1 L L |
-1 -0.5 0 0.5 1

X

Figure 1.4: Solution using Spectral-Collocation Method with Chebyshev Polynomials for
the Linear Example
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Example 1.4.2 Let’s solve the non-linear boundary value problem defined by

d?u
% =exp(u),r € |—1,1],
P p( ) [ ] (1.25)

u(—1)=wu(l)=0
The steps used in the resolution of this problem using spectral-collocation method are:
1. Definition of nodes number, then generation of differentiation matrix.
2. Construction of the second differentiation matrix and applying boundary conditions.
3. Use fsolve to solve the system of nonlinear equations.
4. Reapplying boundary conditions.

5. Due to that the problem doesn’t have simple exact solution, plotting the computed
values at the collocation points, showing the smooth polynomial that passes through

them, where it is the approximate solution.

The graph of the approximate solution is,

1.5 Conclusion

This chapter commences with a definition of differential equations then a proceeding of
spectral methods, giving particular attention to Chebyshev polynomials. Furthermore,
the fundamental mechanics of the spectral collocation technique are elucidated through

practical examples and experimental results implemented in MATLAB.
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Chebyshev Spectral Collocation for u™ = exp(u) (N = 20)

Interpolated Numerical Solution
®  Collocation Points

-0.05

-01

u(x)

Figure 1.5: Solution using Spectral-Collocation Method with Chebyshev Polynomials for
the Non-Linear Example
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Chapter 2

Evolutionary Algorithms: An
Introduction to Metaheuristic

Optimization

This chapter introduces the field of Evolutionary Algorithms by presenting a broad, func-
tional perspective. We will show how the core principles of evolution population based
search, diversification, and intensification provide a powerful framework for understanding

a wide range of modern metaheuristics.

2.1 Optimization

The majority of optimization challenges can be effectively written in the following generic

form:

minf;(z), (i = 1,2, ..., M), (2.1)

subject to
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with x = (z1, 29, ..., x,)" .

Where

Decision or design variables are components of x;.

fi are the cost or objective functions .

The search( design) space encompasses all possible decision variables.

Solution space is the set of the objective function values.

The equalities h; and inequalities g, are the constraints.

Quote here different classifications of optimization problems according to

1. Objective numbers:

e For M =1, it is called single-objective optimization.
e For M > 1, it can be named multi-objective, multi-criteria or even multi-
attribute optimization.
2. Constraint’s number:
e In the case where J = K = 0, the problem called an unconstrained optimization
one.
o If K =0 and J > 1, then it will be equality-constrained problem .

e If J=0and K > 1, so it named Inequality-constrained problem.

3. Linearity

e In the linearly constrained problem, h; and g; are all linear.
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e In linear programming problem, %;, gi, and all objective functions are linear.

e Or f;, hj, and g are non linear, it is a non linear optimization problem.

2.2 Search for Optimality

Once an optimization problem has been properly formulated, the subsequent step involves
applying suitable mathematical methods and systematic approaches to derive optimal
solutions. Searching for the optimal solution can be likened to a treasure hunt.

Suppose we are on a time-limited quest to discover a hidden treasure in a hilly landscape.
There are two extremes. The first one is to be blind without any instructions, leading to
arbitrary and inefficient search operations. The other extreme is to be informed about the
treasure’s location, situated on the highest summit of a known region. In this case, the
initial action involves climbing to the steepest cliff and attempting to reach the highest
peak. This framework aligns with the classic hill-climbing approach.

Often, our search is between these two extremes, indicating that we are clear-sighted, yet
simultaneously unaware of where to look. It’s not feasible to examine every single square
inch of an extensive hilly region just to find the treasure. Thus, we resort to random walks.
The preferred strategy involves employing random walks while searching for clues. We
start from a random place, move to another, and then proceed to yet another, and so
forth. In fact, contemporary search algorithms prominently feature these random walks
as a fundamental characteristic.

Moreover, the efficiency of this approach lies in its adaptability to diverse landscapes.
By initiating the search from random locations and navigating through various paths, we
increase the likelihood of discovering hidden information or potential optimal solutions.
This dynamic and exploratory method aligns with the evolving nature of search algorithms
in modern problem-solving scenarios.

Engaging in treasure hunting can occur individually, where the entire path is perceived as
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a trajectory-based search, paralleling techniques such as Simulated Annealing. Alternat-
ively, it can involve a collaborative effort with a group of individuals sharing information.
The latter approach embodies swarm intelligence, a concept applied in Particle Swarm
Optimization.

The search process can take a significant amount of time when the area is extensive,
especially if the treasure holds considerable importance. However, with an unrestricted
timeframe and accessible locations, we have the opportunity to attain the ultimate treasure
(the global optimal solution).

The search strategy can be enhanced by retaining the more effective hunters and introdu-
cing new ones, as seen in Genetic Algorithms and Evolutionary Algorithms.

It’s noteworthy that almost all metaheuristic algorithms share the following strategies:

e Employ best solutions or agents.

e Randomize (or replace) the less optimal solutions by evaluating the competence (fit-

ness) of each individual in collaboration with the system history (utilizing memory).

Better and more efficient optimization algorithms are expected to be achieved by attaining

this balance.

2.3 Understanding Evolutionary and Metaheuristic
Approaches

While classic Evolutionary Algorithms (EAs) are defined by genetic operators like crossover
and mutation, we can adopt a more functional definition. Under this lens, any population-
based algorithm can be considered ’evolutionary’ if it iteratively improves solutions by
balancing diversification (exploration) and intensification (exploitation). This perspective

allows us to analyze algorithms like Particle Swarm Optimization and Flower Pollination
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Algorithm as evolutionary systems that use different, nature-inspired operators to achieve
the same goal.

Metaheuristic algorithms are applied to a vast range of optimization problems, where these
problems are characterized as I know it when I see it problems. It means that we have
limited heuristic information about the solution to proceed, given a candidate solution,
testing it, and then assessing its effectiveness.

Using the hill-climbing strategy involves initiating a random set of solutions and introdu-
cing a small random modification to each. Subsequently, the modified solution is tested,
and if it proves to be better than the original, it replaces the latter; otherwise, the original
solution remains unchanged. This iterative process is repeated to explore the entire local
search space and optimize the solution within the defined constraints.

To explore the entire space comprehensively, it is necessary to select solutions that are
distant and distinct from each other at times. Subsequently, the process of discovering
new local spaces is repeated, akin to the initial exploration. Finally, from the diverse set

of solutions obtained, the optimal solution is chosen based on the specified criteria.

2.4 Classification of Metaheuristic Algorithms Based
on Their Nature

To understand the mechanics of the evolutionary systems discussed in this thesis, it is
essential to classify them based on their use of randomness. Evolutionary processes are
inherently stochastic, and this is reflected in the design of most EAs. Optimization al-

gorithms can be classified by their nature into:

2.4.1 Deterministic

These algorithms are designed to follow the same path, every time the program run, for

the same strating point. For this kind of algorithm, the values of the design variables,
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path and functions are repeatable, such as the hill-climbing algorithm.

Deterministic algorithms can be separated into gradient-based algorithms and gradient-
free algorithms.

Gradient-based algorithms use both the function values and their derivatives. These types
of algorithms are efficient for smooth unimodal problems but are not suitable for problems
with discontinuities in the objective functions. An example of such an algorithm is the
Newton-Raphson Algorithm.

Gradient-free algorithms use only the function values without resorting to derivatives,
exemplified by algorithms like Hooke-Jeeves pattern search and Nelder-Mead downhill
simplex. These algorithms can be used to solve problems that gradient-based algorithms

couldn’t address.

2.4.2 Stochastic

In this context, randomness plays a significant role, where in each run of the program, this
remdomness causes variations in the solution within the population. While the differences
between solutions may not be substantial, the paths of each individual are not consistent

every time, like in Genetic Algorithms.

2.4.3 Hybrid of Stochastic and Deterministic Algorithms

It employs deterministic algorithms but starts with different initial points, introducing an
element of randomness. A notable example is hill-climbing with a random restart; this
form of randomness prevents the algorithm from getting stuck in a local peak.

In optimization literature, even hybrid algorithms are classified as stochastic algorithms.
We have two types of stochastic algorithms: heuristic and metaheuristic. The difference
between them is small, and there are those who use 'heuristic’ and 'metaheuristic’
interchangeably. The term ’heuristic’ denotes 'to find” or ’to discover by trial and error.’

Algorithms of this type can generate high-quality solutions to challenging optimization
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problems within a reasonable time-frame, though they do not assure the achievement of
optimal solutions. So, these algorithms provide good solutions but not necessarily the
best solutions all the time. If we want to simplify the idea of heuristics, we can say
that heuristic is the process of generating acceptable solutions to a complex
problem within a reasonable practical time, using trial and error. The aim
of these algorithms is to find a good feasible solution to a complex problem within an
acceptable timescale.

On the flip side, 'meta’ implies "high-level,” distinguishing metaheuristic algorithms as
superior to heuristics. Metaheuristics outperform heuristics by employing a combination
of local search and randomization. This dual approach ensures an intensified exploration
of local spaces, while simultaneously leveraging randomization to transition seamlessly
from local to global search. Consequently, these algorithms prove particularly adept at
tackling global optimization challenges.

So, metaheuristic algorithms work using a combination of:

e Intensification or exploitation, it means focusing on a local region and exploiting the

information found by the current good solution.

e Diversification, it refers to the phase where the algorithms explore the search on the
global scale by generating diverse solutions. This characteristic, made via random-

ization, avoids entrapment in local optima and enhances exploration diversity.

e The process of selecting best solution, drives the system toward convergence to

optimality.
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2.5 Classification of Metaheuristic Algorithms Based
on Their Working System

Beyond their nature, Evolutionary Algorithms can be categorized by their implementa-
tion style, which often distinguishes classic from modern approaches. Procedure-based
algorithms align with classic EAs like the Genetic Algorithm, while equation-based sys-

tems represent many of the contemporary EAs that this thesis explores.

2.5.1 Procedure-Based Algorithms

The Genetic Algorithm functions as procedure-based algorithm, characterized by an iter-
ative approach in its main steps. In several algorithms, The recurring procedure follows a

general structure with three distinct parts:

1. Solution’s representations:
In most cases, a solution vector x in a D-dimensional problem is encoded as either
a fixed-length binary sequence or an array of real-valued numbers.

2. Solution’s modifications:

Changes can be achieved via mutation or crossover operations.Mutation involves
modifying individual solutions at one or several locations,whereas crossover combines
elements from two parent solutions by exchanging or blending their components to

generate new solutions.

3. Solution’s selection:

The evaluation of the fitness’s solution is achieved, according to its objective value.
A solution is selected from a population based on its fitness (lowest values for min-

imization). The best solutions are then transmitted to the next generation.
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2.5.2 Equation-Based Algorithms

Most recent nature-inspired algorithms are equation-based, where solutions are repres-
ented as vectors z;, (i = 1,2,...n), representing a population set of n solutions in the
D-dimensional search space. For the selection of solutions, these algorithms use fitness
values, wherein, for minimization problems (maximization problems), lower objective val-
ues (higher objective values) pass on to the next generation."

The distinction among these nature-inspired algorithms lies in the step of modifying solu-
tions, where they employ different mathematical forms or search mechanisms. Actually,

in iteration or generation ¢ the solution (position) vector is denoted by !, and after using

t+1

modification increment or mutation vector Az!, a new solution x™" is generated

it =2l 4+ Azl (2.2)

Usually, Ax! represents a step size or a step vector.
On the gradient-based algorithms such as the Newton-Raphson method, the step is related

to the negative gradient:

Az; = -V f(z), (2.3)

where f(z) is is the objective function, V f is the gradient of f and 7 is a positive learning
parameter.
In certain other nature-inspired algorithms, the modification is associated with the incre-

ment of velocity, expressed as:

(2.4)

The velocity of the solution (particle, agent, etc.) ¢ at iteration ¢ and iteration ¢ + 1
respectively, is presented by v! and vf*l. At is the time increment and it is the difference

in the iteration counter At =t + 1 — ¢ = 1, so, these algorithms don’t need a unit to be
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used.

In this part, various equations utilized for modifying the solutions are presented:

Differential Evolution (DE)

In Differential Evolution, the main mutation is given by the formula:

1

Ty

= ol + Axl, (2.5)

Az; = F(xf,x3).

i, o5 and x} are different solution vectors chosen from the population. The mutation

strength is controlled by the parameter F' €]0, 1].

Particle Swarm Optimization (PSO)

The swarming behavior of birds and fish serves as inspiration for creating Particle Swarm
Optimization (PSO). Using equations below, the upgrade of position and velocity of

particle ¢ at iteration ¢ is met

vitt = ol + A (2.6)
o = b+ Azl

Art = VAL =l

Avl = ag[g* — 2l] + Bea[z* — 7).

Noting that e1,e, are random numbers uniformly distributed in the interval [0,1], at
iteration ¢, the best solution of the population is ¢*, and z* presents the individual best

solution for particle i at iteration t.
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Firefly Algorithm (FA)

The main characteristics of FA are found by imitating the attraction and flashing behavior
of tropical fireflies.
At iteration ¢ the firefly i has the position vector x!, and it can be updated using the

equation:

it = 2l 4+ Azl (2.7)

where

Azl = Boe(*ng)(xz —ab). (2.8)

)

The attractiveness at zero distance (r;; = 0) is indicated by /.
The visibility of fireflies is controlled by the scale-depending parameter v, and the strength

of randomization in FA is controlled by «.

Bat Algorithm (BA)

This algorithm is inspired by the echolocation of micro-bats and the associated frequency-
tuning characteristics in a range from fui, t0 fuax, combining by varying purse emission

rate and loudness. The update of bat position is achieved through:

v = vl A (2.9)

= :c’;f*l—i-A:ct-

77

Where
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Avf = (95571 - x*)[fmin + ﬁ(fmin - fmax)]a (210)

N
Az; = v;At =,

best solution on the population of n bats is ., a random number on [0, 1] is noted by 3.

Cuckoo Search (CS)

Cuckoo Search mimic the strategy of of the aggressive reproduction done by some special
cuckoo species and their interaction with host species. A discovery or an abundance of
eggs laid by cuckoo is realized with a probability pa, the similarity of two solutions or
eggs (x;, ) is measured by the quantity (r; — ). So the position of eggs x! at iteration

t is given by:

it = 2l + Azl (2.11)

and

Azl = as® (zt — 2b). (2.12)

To limit the strength of the step size s it scaled by a parameter «, s follows lévy distribution
with an exponent A\. Some sophisticated algorithms like the Mantegna’s Algorithm is used

to create a generation of this step size.

Flower Pollination Algorithm (FPA)

The focal point of this FPA involves the pollination process and the features of flowering
plants, primarily utilizing both biotic and abiotic pollination, while emphasizing flower

constancy. The pollen z; (the solution vector) can be updated by:
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it =2l 4+ Azl (2.13)

Where

L(A) (g« — at), if f <p,
Ast = YL(A) (g ), if f<p 2.14)

e(xl — ), otherwise.

r is drawn by a uniform distribution in [0, 1], 7 is considered as a scaling parameter. At
an iteration ¢ the best solution is g., and L follows Lévy fly with an exponent A.
Additional nature-inspired algorithms are presented here:

Simulated Annealing, Gravitational Search, Charged Particle System, Black-hole Algorithm,
Eagle Strategy ...etc, where the way’s generation of Az} and Av! is the main difference
between in these algorithms.

The increments of the solution’s position and velocity differ from one algorithm to another,
and in some algorithms, there is no need for velocity. This distinction may be evident in the
form of updating, or not. Such as in differential evolution and particle swarm optimization,
the two equations "' = x! 4 Az! may appear similar at first glance, but a significant
distinction lies between them. In the Differential Evolution (DE) method, the increment
is achieved through random permutation, whereas in Particle Swarm Optimization (PSO),
it is calculated using a difference vector with perturbed directions, employing a uniform
distribution. For a deeper understanding, it is essential to analyze the underlying search

mechanisms along with their mathematical or statistical foundations.

2.6 Other Classifications

Researchers have delved into alternative classifications of metaheuristics. For instance,
Gendreau and Potvin [33] categorized metaheuristics into two main groups: trajectory-

based and population-based. In trajectory-based algorithms, the process initiates with
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a single solution, and at each iteration, the current best solution is substituted by a
new one. Conversely, population-based algorithms kick off by generating a population of
initial solutions randomly. This initial population undergoes iterative improvements, with
newly generated superior solutions replacing either the entire population or a portion of
it. Generally, trajectory-based solutions tend to be more exploitation-oriented, focusing
on refining the current best solution, while population-based metaheuristics lean towards
exploration, emphasizing the generation and exploration of diverse solutions within the
population.

Adding to this discourse, Fister et al. introduced another classification framework, di-
viding all existing metaheuristics into non-nature inspired and nature-inspired categories.
Within the nature-inspired category, further distinctions include swarm intelligence (SI)
based, bioinspired (excluding SI), and physics/chemistry-based metaheuristics. A mis-
cellaneous grouping is reserved for algorithms that defy classification under the previous
categories, as they draw inspiration from a variety of characteristics originating from dif-
ferent sources such as social and emotional influences. It is crucial to note that this is just
some among many classification perspectives, as a multitude of alternative frameworks

exist, underscoring the diverse nature of metaheuristic optimization techniques.

2.7 Search Mechanisms and Theoretical Foundations

The ’evolution’ in any computational evolutionary algorithm is driven by its search mech-
anisms. By analyzing these foundational components, such as random permutations and
various types of random walks, we can understand precisely how a population of solutions
improves over time.

The primary distinction among the search mechanisms of nature-inspired algorithms lies
in their probability distributions. By considering the statistical foundations and the prin-

cipal mechanisms of solution modifications, we can distinguish five ways or perturbations:
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gradient-guided moves GGM, random permutation RP, directed-based perturbations DBP,

isotropic random walks IRW, and long-tailed scale-free random walks LTRW.

2.7.1 Gradient-Guided Moves

Moves of this kind are employed in gradient-based optimization, as seen in the Newton-
Raphson method, where modifications are made parallel to the gradient direction, and the

step length can be controlled by a learning parameter.

2.7.2 Random Permutation

This permutation is performed by mixing up a set of n solutions and then randomly
selecting £ solutions to generate new ones. Several algorithms, such as DE and FPA,

utilize these random permutations.

2.7.3 Direction-based Perturbations

These moves are executed by utilizing the difference between any two vectors (x; — )
or (g« — ;). This difference determines a direction, which is then multiplied by a ran-
dom number ¢ distributed uniformly. The directions of these permutations are randomly

distributed within a cone.

2.7.4 Isotropic Random Walks

Algorithms utilizing these moves have the following equations for updating solutions:
ot = ot Wt (2.15)

t+1

%

is the solution after perturbation and w'*! are

where z! is the current solution, x
random numbers drawn from Gaussian distribution. w!™ ~ N(0,1). So, these random

walks match a Brownian motion. The pseudotime counter ¢ can be replaced by the number
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of steps, given that iteration time is discrete. This implies that the average distance dy
covered by a Brownian random walk is proportional to v/N. This square-law feature is
typical for many diffusion phenomena.

In conclusion, isotropic random walks are the moves where steps are drawn from Gaussian

distributions.

2.7.5 Long-tailed, Scale-free Random Walks

Algorithms with long-tailed, scale-free random walks, use a heavy-tailed or long-tailed
distribution to draw the steps of moves, such as Cauchy distribution
1 2

plx, p,y) = W_V(m

), —00 < & < 400, (2.16)
where p and v are two parameters, it have an infinite or an undefined mean or variance.
A very important example of long-tailed distribution is Lévy distribution.

A random walk with steps drawn from Lévy distribution is called a Lévy flight.

Lévy probability distribution can be defined by:

o0

1
p(z) = —/cos(kx)eakﬁdk,() <pf<2,a>0. (2.17)
m
0

This distribution becomes a Cauchy distribution if § = 2 and a normal distribution if

B=2.

Approximations for large steps can be used

afT(B) sin(F)
Ds) ~ T

5> 0, (2.18)

with ['(3) is the standard gamma function.
The variance or distance covered by the Brownian random walks increases much more

slowly than the distance covered by a Lévy Flight. After N steps, the mean distance
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covered by a Lévy flight becomes:

(2.19)

This power-law is a typical feature for super-diffusion phenomena.
Search mechanisms of some nature-inspired algorithms and their underlying statistical
characteristics are summarized in Table 2.1, while Table [2.2] provides a summary of their

search characteristics.

Algorithm Position Increment Az Velocity Increment Av
Newton-Raphson GGM None

DE RP, DBP None

PSO DBP DBP

FA DBP, IRW None

BA RP, DBP RP, DBP

CS RP, DBP, LTRW None

FPA DBP, LTRW None

SA IRW None

Table 2.1: Search Mechanisms of Some Nature-Inspired Algorithms

Algorithm Probability

DE Uniform
Permutation

PSO Uniform

FA Gaussian
Uniform

BA Uniform

CS Lévy flights
Long-tailed

FPA Uniform

Lévy flights

Table 2.2: search Characteristics of Some Nature-Inspired Algorithms
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2.8 Random Walks and Lévy Flights

As we have discussed earlier, the primary characteristics of metaheuristic algorithms re-
volve around diversification and intensification. Recognizing the pivotal role of randomiz-
ation in achieving these goals, the essence of such randomization lies in the concept of a
random walk. In this section, we will provide a concise overview of the fundamentals of

random walks and Lévy flights.

2.8.1 Random Variables

A random variable is an expression whose value represents the outcome or realization of
events associated with a random process, such as the noise level on a street. Random
variables can take real values and are classified as either discrete or continuous. Discrete
random variables, like the number of cars on a road, have distinct, separate values. On
the other hand, continuous random variables, such as the noise at a location, can take any
value within an interval.

Additionally, random variables can be a mix of these two types, combining discrete and
continuous characteristics. Mathematically, a random variable is a function that maps
events to real numbers in a domain called the sample space.

To represent the probability distribution of a random variable, a probability density is
employed. An illustrative example is the Poisson distribution, which models occurrences
such as the number of phone calls per minute or the number of users on a web server
per day. If the mean or expectation of the event during a unit interval is denoted as a
parameter 7 > 0, then the probability density function of the Poisson distribution is

e
p(n,A) = o (n=0,1,2,...). (2.20)

Many physical processes, such as light intensity and errors in measurements, follow the

popular Gaussian or normal distribution, where
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1 ew?
¢ 2t —00 <z < 00, (2.21)

p(x; p,0%) =
oV 2T

with p is the mean and a > 0 is the standard deviation.
In the metaheuristic world, another important probability distribution is the Lévy distri-
bution, which is the sum of NV identical and independent distributions of random variables.

The Fourier transform of these random variables is given by

Fy(k) = e N7, (2.22)
Lévy-distribution can be written as:
17 s
L(s) = — [ cos(ts)e “"dr,0 < < 2. (2.23)
T

0

It has an analytical form only for a few cases. When g = 1, the above integral becomes
the Cauchy distribution, and for § = 2, it transforms into the normal distribution, while
Lévy flights turn into the standard Brownian motion.

In mathematical terms, we can represent the preceding integral as an asymptotic series.

The leading-order approximation for the flight length yields a power-law distribution

L(S) ~ [s|7'77,

which is heavy-tailed. For 0 < 3 < 2, his variance and moments are infinite, becoming a

stumbling block for mathematical analysis.

2.8.2 Random Walks

A random walk can be defined by a process that takes series of consecutive random steps,

it means that if X; are random steps, then
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N
Sy o= Y Xi+.+Xy (2.24)
=1
- SN—1+XN7

is a random walk.

So, the next state Sy depends only on the current state Sy_; and the motion from the
current state to the next state, denoted as X . This property is characteristic of a Markov
chain. The step size in a random walk can be either the same or different.

Hence, random walks can be represented as S;,1 = S; + w;, where S; denotes the current
state at time ¢, and w; is a random variable (step) following a known distribution. If the
step adheres to a Gaussian distribution, then the random walk is classified as Brownian
motion.

According to the central limit theorem, as the number of steps N increases, the random
walk tends to approach a Gaussian distribution.

The Brownian motion follows a Gaussian distribution, meaning that 3(t) ~ N (0, 02(t)).

Where

o?(t) = |v|*t* + (2dDt). (2.25)

Here, vg is the drift velocity of the system, and D = % is the effective diffusion coefficient,
which is related to the step length s over a short time interval 7 during each jump.
The random walk can be more generalized if the step length follows a different distribution,

such as in Lévy flight ( Lévy walk), where the step length adheres to the Lévy distribution

2.8.3 Lévy Flight

Lévy flight is a type of random walk where the step length follows the Lévy distribution,

L(s) ~ |s| 7277 where 0 < 5 < 2.
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A simplified form of the Lévy distribution can be expressed as

%exp[—ﬁ]m, 1f0 < 12 < s <00,

AL(s,y,p) = (2.26)

0, otherwise.

(> 0 is a minimum step and v is a scale parameter.

a1
2 §3/27

When s — oo, we have L(s,7, 1) =~
this case can be considered as a special one of the generalized Lévy distribution.

On the other hand, in terms of the Fourier transform, the Lévy distribution is defined by:

F(k) = exp[—alk]’],0 < B < 2, (2.27)

with « is a scale parameter.

The inverse of this integral does not have an analytical form, except for special cases:

e When [ = 2, the inverse Fourier transform yields a Gaussian distribution.

e If 5 =1, the inverse Fourier transform corresponds to a Cauchy distribution

1 Y

T2+ (o — ) (229

P(z,v,p) =

where p is a parameter corresponds to the location, and + controls the scale of this

distribution.
e Generally, the inverse integral can be defined as:

[e o]

L(s) = %/cos(ks)e_"'klﬁdk‘, (2.29)

it can be estimated only when s is large, and we have

L(S) _ afBT(B) sin(wB/2)

7T|S|1+B
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[e.o]

I'(z) = / t=te~tdt, (2.30)

0

I'" is the Gamma function.

For various reasons, when exploring an unknown, large-scale search space, Lévy flights
tend to be more efficient than Brownian random walks.

One of the reasons is that the increase in variance in Lévy flights occurs much faster
compared to the linear relationship in Brownian random walks.

o2(t) ~ 3781 < B < 2 (for Lévy flights).

02(t) ~ t (for Brownian random walks).

The generation of random numbers using Lévy flights involves two stages.

The first stage entails choosing a random direction, drawn from a uniform distribution.
In the second stage, steps are generated using the Mantegna algorithm for a symmetric
Lévy stable distribution. Here, ’symmetric’ denotes that steps can take positive or negative
values. A random variable and its probability distribution can be termed stable if a linear
combination of its identical copies follows the same distribution.

Gaussian, Cauchy and Lévy distributions are stable distributions.

In Mantegna’s algorithm, the step length is calculated using the formula

5= MLW (2.31)
where
p~ N(0, ai),v ~ N(0,02), (2.32)
and
['(1+ B)sin(75/2) ;1
7 =TT gy e (2:33)

43



Chapter 2. Metaheuristics

If s represents the smallest step, then S follows a Lévy distribution for |s| > sq, where

s > 0. In reality, it is often chosen within the range of 0.1 to 1.

2.9 Intensification and Diversification:

The success of any evolutionary system, whether biological or computational, hinges on
its ability to effectively balance the fundamental trade-off between intensification and
diversification.

Metaheuristic algorithms prove their efficiency day by day by being applied to solve the
most complicated optimization problems. This efficiency is attributed to the fact that
they mimic the best features in nature. All metaheuristic algorithms share two main
characteristics: intensification and diversification. Intensification involves searching locally
and intensively, exploiting around the current best solution and selecting candidates found.
Diversification, on the other hand, involves exploring the global solution space through
large-scale randomization.

The efficiency of an algorithm is attributed to the balance between these two components,
and even a small error in this balance can adversely affect the mechanism and efficiency of
the algorithm. If the exploration is limited while exploitation is dominant, the system may
become trapped in local optima. Conversely, if the exploitation is minimal and exploration
is extensive, it can hinder the system from converging, thereby slowing down the overall
search performance.

Attaining a proper balance between intensification and diversification constitutes an op-
timization problem that requires the application of an algorithm to achieve.

Another essential mechanism in metaheuristic algorithms is the best solutions selection.
The ’survival of the fittest’ criterion is commonly used, including the continuous update of
the current best solution. Moreover, to guarantee that the fittest solutions are preserved

and not lost in the process, elitism is often incorporated.
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2.10 Ways for Intensification and Diversification:

Algorithms employ various methods to achieve a balance between diversification and in-
tensification. Typically, metaheuristic algorithms utilize a combination of randomization
and deterministic procedures to achieve exploration. This guarantees that the new gen-
erated solutions are distributed as diversely as possible within the feasible search space.

We can mention here a common randomization technique, which involves

Tpew = L+ (U — L) * ¢, (2.34)

where L is the lower bound and U is the upper bound. ¢, is a random variable distributed
uniformly in [0, 1].

In fact, the distribution used to generate random walks can be a Lévy distribution rather
than a uniform distribution, and it proves to be more efficient on a global scale. To
achieve diversification, mutation and crossover are also employed. Mutation ensures that
the newly generated solutions are as distinct as possible from the existing solutions, while
crossover generates new solutions by swapping parts of the existing solution. This helps
in limiting the degree of over-diversification.

Exploitation can be easily achieved through local random walks

Tnew = Told + SW, (235)

Here, w is drawn from a Gaussian distribution with a zero mean, and the step size of the
random walk must be very small to ensure visits only to the neighborhood.

To increase the efficiency of diversification Lévy distribution can be used to draw s with
large step sizes, any distribution with long tail will help to increase the distance between
such random walks.

A more selective or controlled walk around the current best, rather than any good solution,

can be achieved using the following equation:
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Tnew = Thest T sw, (236)

In many algorithms, there is no differentiation between exploration and exploitation; they
are often intertwined and interactive. For example, in Genetic Algorithms, Harmony
Search, and Bat Algorithms.

The consideration of selecting the best solutions is indispensable as it plays a pivotal
role in determining the success of an algorithm. While opting for the best might prove
effective in optimization problems with a unique global optimum, addressing multimodal
and multi-objective challenges requires the implementation of elitism and the retention of
the best solutions, proving to be efficient strategies for selecting the fittest candidates.

In addition, an efficient algorithm should incorporate a mechanism to discard the worse
solutions, thereby enhancing the overall quality of the populations during evolution. This
is often achieved through some form of randomization and probabilistic selection criteria,
such as mutation in genetic algorithms.

The reduction of randomization is crucial for the convergence of the system. When better
solutions are found and the system achieves convergence, failing to reduce the degree of
randomness will slow down the convergence process.

We take Particle Swarm Optimization as an example, where randomization is decreased as
the particle swarm gathers. This is due to the fact that the distance between each particle
and the current global best particle becomes smaller and smaller. Another example is

Differential Evolution, where randomness is reduced using the last term of the equation:

Tpew = Tk, + F(x; — x5), (2.37)

where it decreases as the difference vector gets smaller and smaller.
Other algorithms control randomness rather than reducing it. For instance, randomness

can be limited by employing a small mutation rate. In simulated annealing, the random-
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ness during iterations may stay the same, but the moves or solutions are selectively chosen,
and the acceptance probability becomes smaller.

Finally, in practice, the implementation’s approach to the algorithm does affect the per-
formance to some degree. Therefore, the pseudocode must provide clear guidance and
should not lead to ambiguity. Consequently, validating and testing any algorithm imple-

mentation are crucial.

2.11 A Brief History of Metaheuristic and Evolution-
ary Algorithms

The history of metaheuristics is deeply intertwined with, and in many ways propelled by,
the development of Evolutionary Algorithms. The intellectual groundwork can be traced
to figures like Alan Turing. During World War II, his "heuristic search" methods proved
highly successful in the effort to break German Enigma ciphers at Bletchley Park, demon-
strating the power of search strategies that work most of the time without guaranteeing an
optimal solution. Following the war, in a seminal 1948 report connected to his design for
the Automatic Computing Engine (ACE), Turing outlined pioneering concepts in machine
intelligence, Neural Networks, and principles that are now recognized as foundational to
evolutionary algorithms. While Turing sowed these early seeds, it was the formalization of
evolutionary concepts by pioneers such as Holland, Rechenberg, and Schwefel in the 1960s
and 70s that truly launched the field as we know it today.

In the 1960s and 1970s, Genetic Algorithms were created by John Holland with his col-
laborators at the University of Michigan [19]. Holland studied adaptive systems and
introduced crossover and recombination manipulations for modeling the system in 1962.
In 1975, his book detailing the evolution of genetic algorithms was published. At the
same time, De Jong demonstrated the potential and power of Genetic Algorithms in his

thesis, showcasing their ability to solve a wide range of objective functions, including noisy,
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multimodal, and even discontinuous ones.

At the same time, another search technique was developed by Ingo Rechenberg and Hans-
Paul Schwefel for solving optimization problems in aerospace engineering in 1963. They
named it evolutionary strategy. Subsequently, Peter Bienert collaborated with them to
construct an automatic experimenter using selection and mutation. This was a simple
trajectory-style hill-climbing algorithm combined with randomization.

"As early as 1960, Lawrence J. Fogel utilized simulated evolution to explore artificial in-
telligence. In 1966, he, along with A.J. Owen and M.J. Walsh, developed the evolutionary
programming technique. In 1943, W. McCulloch and W. Pitts employed artificial neurons
as simple information processing units. The concept of neural networks was likely first
suggested by Alan Turing in his 1948 NPL report on intelligent machinery.

Significant advancements emerged from the 1940s and 1950s through the 1990s. In 1963,
V. Vapnik proposed the support vector machine as a linear classification technique. Collab-
orating with others, he later extended it to nonlinear classification using kernel techniques
in the 1990s. In 1995, V. Vapnik consolidated these techniques in his book 'The Nature
of Statistical Learning Theory’.

In 1983, S. Kirkpatrick, C.D. Gellat, and M.P. Vecchi developed Simulated Annealing SA
as an optimization technique, drawing inspiration from the annealing process of metals.
This marked a significant milestone in metaheuristic algorithms.

Fred Glover is likely the first to have employed memory in modern metaheuristic, specific-
ally Tabu search, in 1986. Subsequently, in 1997, he published his seminal book on Tabu
search.

Ant Colony Optimization was introduced by Marco Dorigo in his PhD thesis in 1992,
drawing inspiration from the swarm intelligence of social ants. Additionally, in 1992,
following the publication of a treatise on genetic programming by John R. Koza of Stanford
University, a new era in machine learning that revolutionized computer programming

emerged.

48



Chapter 2. Metaheuristics

In 1995, the American social psychologist James Kennedy and engineer Russel C. Eberhart
drew inspiration from the swarm intelligence observed in fish and birds to develop Particle
Swarm Optimization. Since its discovery, many researchers have developed more than
twenty different variants of Particle Swarm Optimization.

Around 1996 and later in 1997, Differential Evolution was developed by R. Storn and K.
Price, marking a vector-based evolutionary algorithm.

In 1997, D.H. Wolpert and W.G. Macready published ’No Free Lunch Theorems for Optim-
ization,” proving that there is no universally best optimization algorithm for all problems.
If algorithm A performs better than algorithm B for a specific problem, then algorithm B
will outperform algorithm A for other problems. Subsequently, researchers shifted their
focus to discovering the best and most efficient algorithm(s) for a given problem rather
than seeking a universal solution for all problems.

In 2001, the Harmony Search algorithm was developed by Zang Woo Geem et al. and
found widespread applications in solving different optimization problems, involving water
distribution, transport modeling, and scheduling. In 2004, the Honey Bee Algorithm was
proposed by S. Nakrani and C. Tovey, initially applied for optimizing Internet hosting
centers. Subsequently, in 2005, D.T. Pharm et al. developed a novel Bee Algorithm. In
the same year, D. Karaboga introduced the Artificial Bee Colony algorithm.

Xin-She Yang has developed various optimization algorithms, including the Firefly Al-
gorithm in 2008 and Cuckoo Search in 2009 in collaboration with Suash Deb. In 2010, he
introduced the Bat-inspired Algorithm for continuous optimization. Since then, several

metaheuristic algorithms have been developed. We can mention some of them:

e Harmony Search (2001)
e Artificial Immune System (2002)
e Chemical Reaction Inspired Optimization (2010)

e Flower Pollination Algorithm (2012)
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e Water Wave Optimization Algorithm (2015)

e Sine Cosine Algorithm (2016)...etc

2.12 Conclusion

Having established this broad framework for understanding algorithms as evolutionary
systems based on their management of diversification and intensification, we are now
prepared to analyze a specific case study. The next chapter will deconstruct the Flower

Pollination Algorithm through this evolutionary lens.
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Flower Pollination Algorithm

Flowers, enchanting embodiments of plant life, possess a unique charm for humanity.
They are cultivated in our gardens, adorn the interiors of our homes, and have left a
lasting impact on our artistic legacy, embedding themselves deeply within the fabric of
our lives. Beyond their visual appeal, flowers have sparked significant scientific interest,
giving rise to a rich tradition of botanical research aimed at deciphering the complexities
of their structure and ecology. This profound connection between humans and flowers
goes beyond simple aesthetic enjoyment, extending into the realms of art, science, and a
collective admiration for the natural world’s marvels. Recently, this fascination has led
humanity to leverage these characteristics, incorporating them into an algorithm within the
field of artificial intelligence, inspired by their remarkable methods and organization. In the
forthcoming chapter, we will analyze these biological features through an evolutionary lens,
deconstructing the Flower Pollination Algorithm to understand its structure, mechanisms,

and potential applications.

3.1 Flowers and Flowering

Commencing our exploration, we delve into the intricate mechanisms of pollination, un-

veiling the sophisticated processes and adaptations that foster successful pollen transfer.
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3.1.1 Cross-Pollination and Self-Pollination

Cross-pollination is when pollen from one flower’s male part goes to another flower’s female
part in a different plant, ensuring successful reproduction among a group of flowering
plants.

In contrast, self-pollination happens when pollen moves from the male part of a flower to
the female part within the same flower or between different flowers on the same plant.
Due to their stationary nature, plants rely on a pollen vector to facilitate the transfer
of pollen between them. This essential transport mechanism can be facilitated by either
abiotic or biotic agents acting as vectors.

Pollen relies on both non-living agents, mainly wind and water as abiotic vectors, and living
organisms predominantly insects, birds, bats, and select vertebrates as biotic vectors for

its essential transfer between flowers.

3.1.2 Flower Constancy

Honeybees exemplify effective pollinators or biotic vectors, showcasing a behavior known as
flower constancy. This phenomenon entails these pollinators consistently visiting specific
flower species while disregarding others. Flower constancy is believed to confer evolu-
tionary advantages by optimizing the transfer of pollen to the same or conspecific plants,
thereby maximizing the reproductive success of particular flower species. This behavioral
trait may also benefit the pollinators themselves, ensuring a reliable nectar supply with
their limited memory and minimizing the costs associated with learning or exploration.
Rather than expending energy on unpredictable but potentially more rewarding new flower
species, flower constancy demands minimal investment costs and provides a more secure
intake of nectar.

In biotic cross-pollination, the process can extend over significant distances, facilitated
by pollinators like bees, bats, birds, and flies that possess the ability to cover vast areas,

earning them the designation of global pollinators. Notably, bees and birds may exhibit
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Lévy flight behavior, where their movement involves jumps or flights conforming to a Lévy
distribution. Additionally, the concept of flower constancy serves as an incremental step,

incorporating the similarity or difference between two flowers into the pollination process.

3.2 The Algorithm

We can distill the characteristics of the pollination process, flower constancy, and pollinator

behavior into the following rules:

e Biotic cross-pollination acts as a global pollination process, where pollen-carrying

pollinators execute Lévy flights.
e Abiotic and self-pollination are categorized as local pollination.

e Flower constancy can be seen as the probability of reproduction being directly linked

to the similarity of the two flowers involved.

e Local pollination and global pollination are governed by a switch probability, denoted
as p € [0, 1]. Owing to physical proximity and factors like wind, local pollination can

contribute a significant fraction, denoted as p, to the overall pollination activities.

In reality, each plant usually has multiple flowers, and a single flower patch often releases
millions, if not billions, of pollen gametes. However, for simplicity, Xin-She Yang assumes
that each plant has only one flower, and each flower produces a single pollen gamete. This
simplification allows him to consider a solution x; as interchangeable with a flower and/or
a pollen gamete, eliminating the need to distinguish between them in problem-solving
scenario.

The primary attributes and components of the Flower Pollination Algorithm (FPA) are
concisely depicted in Table[3.1| This table elucidates the correlation or equivalency between

the terminologies used in optimization strategies and their counterparts in the context of
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Flower Pollination Optimization Components
Pollinators(insects, butterflies, birds) | Moves/ modification of variables
Biotic Global search

Abiotic Local search

Lévy flight Step size (obeying power law)
Pollen/flower Solution vectors

Flower constancy Similarity in solution vector
Evolutionof flowers Iteration evolution of solutions
Optimal flower reproduction Optimal solution set

Table 3.1: Pollination Process and its Optimization Components

floral pollination. By drawing these parallels, the table effectively bridges the concep-
tual gap between the natural processes that inspire FPA and its application in solving

optimization problems.

Based on the aforementioned characteristics, the Flower Pollination Algorithm is made up
of two fundamental steps: global pollination and local pollination.

During the global pollination step, pollinators such as insects move flower pollen over long
distances, benefitting from their ability to fly and cover extensive ranges. This process
guarantees the pollination and reproduction of the fittest, represented as g,. The first

rule, along with the concept of flower constancy, can be expressed mathematically as

i = at 4 L(a! - g.). (3.1)

Here, z! denotes the pollen 7 or solution vector z; at iteration ¢, and g, represents the cur-
rent best solution among all solutions in the current generation/iteration. The parameter
L denotes the strength of pollination, essentially serving as a step size.

As insects often traverse long distances with varying step lengths, employing a Lévy flight

allows us to efficiently mimic this characteristic. Where

AT'(A) sin(mA/2) 1

L~ T JSEDY

s> 50> 0 (3.2)
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Where I'(\) signifies the standard gamma function, and this distribution is suitable for
large steps (s > 0). In all simulations of the algorithm presented below A = 1.5.

Expressing the local pollination (Rule 2) and flower constancy can be done as follows:

ot =gl 4 e(x) — xp,), (3.3)

where xj and ! represent pollens obtained from distinct flowers within the same plant
species.

This effectively simulates flower constancy within a limited neighborhood. Mathematically,
if xﬁ and 2! originate from the same species or are chosen from the same population, this
process transforms into a local random walk, especially when we draw e from a uniform
distribution in [0, 1].

The dynamics of flower pollination extend across various scales, encompassing both local
and global levels.

In practice, nearby flower patches or those within the immediate vicinity are more likely to
receive pollination from local flower pollen than those situated farther away. To account
for this, we introduce a switch probability (Rule 4) or proximity probability p to transition
between widespread global pollination and concentrated local pollination.

Initially, set p to 0.5, and subsequently, conduct a parametric study to determine the
optimal parameter range. Through simulations, it has been observed that p = 0.8 proves
to be more effective across various applications.

The two critical steps mentioned above, along with the switch condition, are succinctly

encapsulated in the pseudocode presented by the Table

3.2.1 Numerical Results

Any novel optimization technique requires thorough validation, including a comprehensive
comparison with other existing algorithms. While there exist numerous test functions-well

over a hundred, each serving specific evaluation purposes-there is a notable absence of a
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Flower Pollination Algorithm Pseudo-code
Objective min f(z),xr € R?
Initialize a population of n flowers/pollen with random solutions
Find the best solution B in the initial population
Define a switch probability p € [0,1]
Calculate all f(x) for n solutions
t=20
While ¢ < max generation do
fori=1,...,n do
if rnd < p then
Draw a (d-dimensional) step vector L which obeys a Lévy distribution
Global pollination via 2! = 2t + L % (B — zt)
else
Draw from a uniform distribution U € [0, 1]
Randomly choose j and k£ among all solutions
Do local pollination via 2{™" =zl + U * (2! — x})
end if
Calculate all new f(z
if f(2'*!) < f(a!) then
ot = ottt
end if
end for
Find the current best solution B among all z!
t=t+1
end While

)

Table 3.2: Flower Pollination Algorithm Pseudo-code

universally agreed-upon set of test functions for validating emerging algorithms.

In the original research paper introducing the Flower Pollination Algorithm (FPA), the
author thoughtfully curated a diverse subset of these test functions. This subset was
specifically chosen to rigorously evaluate and validate the efficacy of the proposed FPA

against established benchmarks.

Test Functions

The Ackley function can be expressed as
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d
Z cos(2mz;)] + a + exp(1), (3.4)
i=1

— exp|

1
d

where a, b and ¢ are constants that determine the characteristics of the function. Common
choices for these constants are a = 20, b = 0.2 and ¢ = 2/7.

\newline

which attains its global minimum, denoted as f, = 0, precisely at the point (0,0, ..., 0).

The most basic among De Jong’s functions is the sphere function, represented by:

d
Y 2’ -512 < <512, (3.5)

i=1
Manifesting a clear global minimum at f, = 0, situated at the origin (0,0, ..., 0), the sphere
function is characterized by its unimodal nature and convexity.

Easom’s function is a mathematical optimization test function often used to assess the

performance of optimization algorithms. It is defined in two dimensions as:

f(@) = — cos(w) cos(y) exp[—(z — m)* + (y — )7, (3.6)

Its global minimum occurs when f, = —1 at the point x, = (7, 7) within —100 < z < 100.
It possesses numerous local minima.
Griewank’s function is a commonly used mathematical optimization benchmark. It is

expressed by the following equation:

_ _ —600 < z; < 600. .
f(x) 400023: Hcos 600 < x; < 600 (3.7)

This function is characterized by its complex landscape, involving a balance between the
quadratic term and a product of cosine functions. Griewank’s function is often employed
to evaluate the robustness and efficiency of optimization algorithms due to its multimodal

nature.
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Michaelwicz’s function

2
%

I (3.8)

d
: . 2w
flz)=— izlsm(xz).[sm( -
m is a constant typically set to 10 and 0 < z; < 7 for i = (1,2, ...,d). In the case of two
dimensions, the Michaelwicz’s function will be:

2 2 2

f(z,y) = —sin(x) sin20(%) — sin(y) sin20(7), (3.9)

Where (z,y) € [0,5] x [0,5]. It has a global mimnimum f, = —1.8013 at x, = (z.,y.) =
(2.20319, 1.57049).
Rastrigin’s function is a non-convex mathematical function commonly used for testing
optimization algorithms. It is named after its creator, Leonid Rastrigin, a Russian math-
ematician. The function is often employed to evaluate the performance of optimization
algorithms due to its multimodal and rugged nature.
The d-dimensional version of Rastrigin’s function is defined as follows:

d

flo) = Ad+) a7 — A cos(2mx;)], —5.12 < z; < 5.12, (3.10)

i=1
where A is a constant, often set to 10. Rastrigin’s function is characterized by numerous
local minima, and the global minimum is at f, = f(0,0,...,0) = 0.
The Rosenbrock’s function, often referred to as the Rosenbrock’s valley or the Banana
function, is a non-convex mathematical function used for testing optimization algorithms.
It is named after Howard H. Rosenbrock, who introduced it in 1960. The function is
particularly interesting due to its long, narrow, parabolic shape, which poses challenges
for optimization methods.

The n-dimensional version of Rosenbrock’s function is presented as follows:
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SH

-1
[100. (2541 — 22)% + (1 — ),
1

fz) =

7

(3.11)

Rosenbrock’s function has a global minimum at f, = f(1,1,...,1), in the domain —5 <
x; <bHfori=1,2,..,d.
For d = 2, banana function is often written as:

f(z,y) = (v —1)* +100.(y — 2%)%. (3.12)

Schwefel’s function is a mathematical optimization problem frequently used in benchmark-
ing and testing optimization algorithms. It was introduced by R. M. Schwefel, a German
computer scientist, and it is known for its challenging and rugged landscape.

Schwefel’s Problem is expressed in n dimensions and defined as follows:

d
fz)=— Zmz sin(+/]z;), =500 < x; < 500. (3.13)
i=1
With a global minimum f, = —418.9829d achieved at 420.9687 for all : = 1,2, ..., d.
Function/Algorithms | GA PSO FPA
Michalewiez (d = 16) | 89325 4+ 7914(95%) 6922 + 537 (98%) 3341 4+ 649 (100%)

Rosenbrock (d = 16)

55723 + 8901 (90%)

32756 + 5325 (98%)

5532 + 1464 (100%)

De Jong (d = 256)

25412 + 1237 (100%)

17040 + 1123 (100%)

4245 + 545 (100%)

(
Schwefel (d = 128) | 227329 + 7572 (95%) | 14522 £ 1275 (97%) | 6851 & 448 (100%)
Ackley (d = 128) 32720 & 3327 (90%) | 23407 & 4325 (92%) | 3357 + 968 (100%)
Rastrigin 110523 + 5199 (77%) | 79491 + 3715 (90%) | 10840 & 2639 (100%)
Easom 10239 + 3307 (92%) | 17273 + 2929 (90%) | 4017 & 982 (100%)
Griewank 70925 & 7652 (90%) | 55970 £ 4223 (92%) | 4918 + 1429 (100%)

Table 3.3: Algorithm Performance Comparison Based on the Number of Iterations

Xin-She Yang employed three algorithms Genetic Algorithm (GA), Particle Swarm Op-
timization (PSO), and the novel Flower Pollination Algorithm (FPA) to determine their
optimal solutions within a specified tolerance of 10~°. For each algorithm, he conducted

100 independent simulations, utilizing a population size of d = 25 and setting p = 0.8 for
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the FPA, a crossover probability of 0.95 and a mutation probability of 0.05 for the GA,
along with learning parameters set to 2 for the PSO. The outcomes of these simulations
are concisely summarized in Table 3.3, where the results are presented as the mean +
standard deviation, alongside the success rate. For instance, a result of 3341 £+ 649(100%)
indicates an average number of iterations at 3341, with a standard deviation of 649, and
a success rate of 100%.

The total number of function evaluations is calculated as d times the average number
of iterations. For example, with 3341 iterations listed in the table, the total number of
function evaluations is computed as 3341 x d = 3341 x 25 = 83525.

Out of the three methods, the proposed Flower Pollination Algorithm (FPA) achieved the

optimal outcome and demonstrated the fastest convergence.

Design Optimization

Design optimization embodies a systematic approach to enhance and refine the attributes
of a product or system, with the objective of achieving the best possible performance
according to specific criteria and objectives. In the realm of bottle design, this entails a
thorough evaluation of various aspects to bolster the bottle’s functionality, sustainability,
aesthetics, and market attractiveness.

For a specified volume and operating pressure, the primary goal in designing a cylindrical
vessel is to minimize the total cost. Typically, the design variables include the thickness
dy of the head, the thickness ds of the body, the inner radius r, and the length L of the
cylindrical section. This scenario presents a classic optimization challenge, which can be
articulated as follows:

minimize f(z) = 0.6224d,rL + 1.7781dyr? + 3.1661d3 L + 19.84d3r, guided by the ensuing

constraints:
e gi(x) = —d; +0.0193r <0,

e go(z) = —dy + 0.00954r < 0,
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o g3(x) = —mriL — &% + 1296000 < 0,
o gi(x)=L—240<0,

with simple bounded

0.06251dy <99 x 0.0625, where 10 < r, L < 200.

In 2008, Cagnina et al. employed an advanced Particle Swarm Optimization technique to

address this issue, successfully identifying the optimal solution:

£, ~ 6059.714,

at

z, ~ (0.8125,0.4375,42.0984, 176.6366).

This implies that the minimum price is approximately 6059.71.

Utilizing the suggested Flower Pollination Algorithm, Xin-She Yang effortlessly obtained
a solution, f, ~ 6059.714, which aligns with the result achieved by Cagnina et al.

This conclusively establishes the effectiveness and robust performance of the proposed

Flower Pollination Algorithm (FPA).

Discussion

Flowering plants exhibit intriguing characteristics in their flower pollination processes,
inspiring the successful development of a novel flower algorithm by the author. Simu-
lation outcomes robustly demonstrate the exceptional efficiency of the proposed flower
pollination algorithm, surpassing the performance of both genetic algorithms and particle
swarm optimization. Notably, the algorithm exhibits an exponential convergence rate, as

evidenced by the comparison presented in the previously.
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The efficiency of the FPA can be attributed to two main factors: long-distance pollination
and flower consistency. Insects, serving as long-distance pollinators, possess the capability
to traverse vast distances, enabling them to escape local landscapes and explore larger
search spaces. This aspect facilitates exploration within the algorithm. Conversely, flower
consistency ensures that similar solutions from the same species of flowers are selected more
frequently, thereby promoting quicker convergence. This aspect serves as an exploitation
step. The synergy between these key components and the selection of the best solution g,

guarantee the algorithm’s high efficiency.

3.3 Variants of Flower Pollination Algorithm

Though the standard FPA works well for many applications , it can still be improved.
Given the complex nature of real-world optimization problems, researchers have modified
the basic structure of FPA to enhance its performance. The modifications have been made
in various parts of the FPA structure. Furthermore, several FPA hybridization schemes
have been implemented to accelerate convergence and improve the balance between ex-
ploration and exploitation. Researchers have also produced a multi-objective version of

FPA specifically designed for the category of multi-objective optimization [60].

Modified Flower Pollination Algorithm Based on Operators

Yamany et al. introduced a modified FPA based on an attribute reduction approach.
The primary objective of their algorithm is to address the challenges posed by a potentially
large search space. This approach recommends a minimal set of attributes while achieving
comparable, if not superior, classification accuracy compared to utilizing all attributes and
traditional attribute reduction techniques. The algorithm’s strategy enhances three new
initialization phases, driven by forward selection and backward selection. Their proposed

technique was evaluated on eight datasets from the UCI machine learning benchmarks,
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demonstrating superior performance compared to other metaheuristic algorithms such as
GA and PSO.

Zhou et al. introduced an elite Opposition-based Flower Pollination Algorithm (EOFPA),
a novel variant designed for solving function optimization and structure designs. EOFPA
demonstrated an enhancement in the balance between exploration and exploitation. The
authors evaluated their proposed algorithm across 18 standard benchmark functions, yield-
ing impressive results.

For addressing economic load dispatch problems in power generation systems, Sarjiya et al.
presented a modified FPA (MFPA). This approach incorporated a dynamic switching
probability, employed real-coded GA (RCGA) as a mutation for both global and local
search, and distinguished between temporary local search and the optimal solution. The
performance of MFPA was then assessed across 10 benchmarks of power systems, with
experimental results indicating a lower fuel cost compared to that obtained by the standard
FPA and other similarly applicable solutions for comparable economic dispatch problems.
In a separate study, Regalado et al. proposed MFPA to optimize fuel cost value and
the time required to achieve a global optimal solution. When tested on the IEEE 30-
bus test system, MFPA demonstrated superior results over the standard FPA and other
metaheuristic optimization algorithms.

To reduce real power losses and enhance bus voltages, Namachivayam et al. proposed
the Modified Flower Pollination Algorithm (MFPA) for network reconfiguration and op-
timal placement of shunt capacitors. The proposed algorithm incorporates the adaptation
of the local search from the standard Flower Pollination Algorithm (FPA) and augments
the global search through a dynamic switching probability approach. The efficacy of their
proposed MFPA was assessed using 118-bus, 69-bus, and 33-bus radial distribution test
feeders. The results demonstrated superior performance compared to other metaheuristic
algorithms, including Harmony Search algorithm (HS), Simulated Annealing (SA), and

Improved Binary Particle Swarm Optimization (IBPSO).
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The Modified Flower Pollination Algorithm (MFPA) introduced by Dubey et al. offers
a solution to economic dispatch issues in large-scale power systems through a two-phase
enhancement process. Initially, it incorporates a scaling factor to improve the algorithm’s
local search capability. The second phase intensifies the search for the optimum solution
by focusing on exploitation. Tested across various mathematical benchmarks and four
substantial power systems, the MFPA’s performance was benchmarked against recent
economic dispatch methods, showcasing its effectiveness and the promising results of this

novel approach.

Binary Versions of Flower Pollination Algorithm

The initial Flower Pollination Algorithm (FPA) was specifically crafted to address continu-
ous optimization challenges. However, to extend its application to discrete and combinat-
orial optimization problems, significant adjustments are necessary. Rodrigues et al.
introduced a variant of this algorithm, termed the Binary Flower Pollination Algorithm
(BFPA), which was specifically engineered for feature selection tasks. Upon evaluating the
performance of BFPA across six distinct datasets, it was found that BFPA outperformed
several established algorithms in this domain, including Particle Swarm Optimization
(PSO), Harmony Search (HS), and the Firefly Algorithm (FA), showcasing its superior
efficacy in handling feature selection challenges.

Later, Rodrigues et al. employed the Binary Flower Pollination Algorithm (BFPA)
to tackle the challenge of minimizing the number of sensors necessary for identifying in-
dividuals through EEG signals. The BFPA was strategically utilized to identify the most
effective subset of channels that could deliver the highest accuracy in recognition. The out-
comes of experiments utilizing BFPA demonstrated that it could achieve recognition rates
as high as 87% based on the Optimum-Path Forest classifier, underscoring the algorithm’s
potential in enhancing sensor efficiency for EEG-based person identification.

Shilaja et al. @ introduced a method named CEED, aimed at addressing 20 photovoltaic
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and 5 thermal power generation challenges. The CEED approach integrates the Eco-
nomic Dispatch Euclidean Affine Flower Pollination Algorithm with the Binary Flower
Pollination Algorithm (BFPA). Furthermore, when the CEED method was applied to the
IEEE 30 bus and IEEE 57 bus systems for testing, it demonstrated superior performance
compared to traditional techniques.

Dahi et al. undertook a comprehensive investigation to assess the efficacy of the Bin-
ary Flower Pollination Algorithm (BFPA) in tackling the Antenna Positioning Problem
(APP). The evaluation of BFPA was conducted using a mix of realistic, synthetic, and
randomly generated datasets of varying dimensions. Its performance was benchmarked
against that of population-based incremental learning (PBIL) and the Differential Evol-
ution (DE) algorithm, both recognized as proficient solutions within the APP field. The
outcomes revealed that BFPA delivered more competitive results in the domain of APP

when compared to PBIL and DE, showcasing its robustness and efficiency.

Integrating Chaos for Enhanced Flower Pollination Performance

The conventional Flower Pollination Algorithm (FPA) relies on random numbers, and
additional randomization can be introduced through the incorporation of chaotic maps.
In the realm of mechanical engineering, Meng et al. have introduced a refined version
termed the Modified Flower Pollination Algorithm (MFPA) designed to address a specific
design problem. This enhanced algorithm integrates adaptive inertia weight and chaos
theory to bolster local search capabilities. When assessing the performance of MFPA
across five mechanical engineering benchmarks-speed reducer, gear train, tubular column
design, pressure vessel, and tension/compression spring design the outcomes surpassed
those of alternative algorithms, demonstrating its superior efficacy in solving mechanical
engineering problems.

Metwalli et al. proposed an innovative approach to address fractional programming

problems (FPPs) by leveraging the development of a Chaos-based Flower Pollination Al-
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gorithm (CFPA). The efficacy of CFPA was validated across various FPP benchmarks,
showcasing its robust performance. A comparative analysis with other metaheuristic solu-
tion methods for FPPs demonstrated the clear superiority of the proposed algorithm,
solidifying its position as a leading approach for addressing fractional programming prob-
lems.

Numerous techniques for wind speed forecasting in power systems have been proposed,
but a common limitation is the absence of an efficient model for data preprocessing.
Addressing this gap, Zhang et al. [51] introduced an innovative model that integrates
three short-term techniques for wind speed forecasting. Their novel system incorporates
Complete Ensemble Empirical Mode Decomposition Adaptive Noise (CEEMDAN), Flower
Pollination Algorithm with Chaotic Local Search (CLSFPA), five neural networks, and
the no negative constraint theory. CLSFPA is specifically designed to optimize the weight
coefficients of the combined model. Through the evaluation of 15-minute wind speed
data from four distinct farms in eastern China, the study demonstrated the remarkable

effectiveness of their combined algorithms in accurately forecasting wind speed.

3.3.1 Hybridized Variants of Flower Pollination Algorithm

One primary challenge faced by metaheuristic methods lies in finding the optimal bal-
ance between comprehensive global exploration and focused local exploitation throughout
the search process. Some approaches excel at extensively exploring diverse regions of the
problem landscape but may fall short in fully exploiting each region. Typically, these
algorithms belong to the category of population-based or swarm-based methods. Con-
versely, other techniques prove adept at exploiting favorable elements within a specific
region of the search space, often at the cost of simultaneously exploring multiple regions.
This characteristic is common in gradient-based methods or trust-region methods.

Recognizing this trade-off, research communities have endeavored to enhance the Flower

Pollination Algorithm (FPA) by combining it with other algorithms. The aim is to leverage
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the strengths of different methods and improve the overall performance of FPA. The

various forms of such hybridization approaches are summarized below.

Hybridization with Local-Based Search Algorithms

The integration of Flower Pollination Algorithm (FPA) with Simulated Annealing (SA)
for engineering optimization problems, denoted as FPSA, was pioneered in . In this
approach, solutions generated by FPA undergo local refinement through the SA algorithm,
resulting in an enhanced search performance and accelerated convergence. Notably, FPSA
demonstrated superior performance compared to existing methods documented in the
literature.

Jensi and Jiji [39] introduced a hybridization of the flower pollination algorithm (FPA)
with the K-Means algorithm for data clustering. They employed the K-Means algorithm
to bolster the local exploitation capabilities of FPA. The hybrid algorithm they proposed
exhibited superior performance compared to utilizing either classical K-Means or FPA in
isolation.

Emad Nabil unveiled an enhanced hybrid variant of the Flower Pollination Algorithm
(FPA), fusing elements from the Modified FPA (MFPA) and the cuckoo search algorithm
(CSA). In the evaluation of MFPA’s performance, a total of 23 optimization benchmark
problems were employed for testing. The efficiency of MFPA was benchmarked against
Simulated Annealing (SA), Genetic Algorithm (GA), FPA, Bat Algorithm (BA), and
Firefly Algorithm (FA). The outcomes revealed that the proposed hybrid MFPA consist-
ently outperformed both the standard FPA and the other four metaheuristic algorithms,
demonstrating its enhanced efficacy in optimization tasks.

A novel hybridization of the flower pollination algorithm (FPA) with the Path Relinking
metaheuristic was introduced in specifically applied in the creation of health-conscious
and nutritious meals for older adults. This innovative combination sought to enhance the

exploration of optimal or near-optimal personalized menu recommendations, focusing on
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improving both execution time and solution quality. Performance testing of this hybrid
version, conducted on real-world datasets, revealed the algorithm’s superiority over the

conventional FPA in terms of both solution quality and execution time.

Hybridization with Population-Based Algorithms

Abdel-Raouf et al. proposed an innovative hybrid approach known as the hybrid
FPA for addressing optimization challenges. This unique method combines the strengths
of the Flower Pollination Algorithm with the Particle Swarm Optimization (PSO) al-
gorithm, strategically enhancing the search accuracy for optimal solutions. Their findings
demonstrated that this hybrid methodology outperformed existing techniques in terms of
precision, reliability, and efficiency. Notably, the hybrid FPA showcased superior perform-
ance, making it a promising and advanced solution for tackling optimization problems
compared to other methods documented in the literature.

Nigdeli et al. ingeniously combined the Flower Pollination Algorithm (FPA) with the
Harmony Search (HS) algorithm to fine-tune mass dampers. In their approach, they em-
ployed four distinct generations, incorporating both the global and local search processes
of HS and the global and local pollination mechanisms of FPA. The determination of the
generation type in constructing new solutions was achieved through a probability-based
method. This probability was computed based on the optimization objective, revealing
that their innovative probability-based FPA outperformed the classical FPA in terms of
convergence rates. This signifies a significant advancement in optimizing mass dampers
for structural applications.

In a notable development outlined in reference [24], a pioneering hybridization of Arti-
ficial Bee Colony (ABC) with Flower Pollination Algorithm (FPA) gave rise to the Bee
Pollinated Flower "Pollination Algorithm (BPFPA), specifically tailored for solar PV para-
meter estimation. Within the BPFPA framework, the discarding of pollen, inspired by bee

behavior, is seamlessly integrated with FPA, and a mutation operation based on elite in-
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dividuals replaces FPA’s local pollination process. These strategic modifications not only
enriched the randomness of FPA but also endowed the hybrid method with accelerated
execution speed and heightened robustness, surpassing the performance of other methods
in the domain.

The integration of Differential Evolution (DE) with the Flower Pollination Algorithm
(FPA), forming the DE-FPA hybrid as proposed in [7] for addressing benchmark optimiz-
ation problems, represents a strategic fusion of the distinctive strengths of both algorithms.
This fusion is designed to achieve an optimal balance between exploration and exploitation
capabilities, leveraging the complementary attributes of DE and FPA. The DE algorithm’s
role as a potent explorer is retained, strategically combined with FPA’s strong exploitation
characteristics.

In this hybrid approach, the DE-FPA algorithm harnesses DE’s inherent exploration cap-
abilities while capitalizing on FPA’s efficiency in exploitation. The resulting synergy not
only maintains the exploration prowess of DE but also enhances the exploitation charac-
teristics crucial for navigating optimization landscapes. Experimental results validate the
efficacy of DE-FPA, showcasing its superior performance and convergence rates compared
to classical DE and FPA.

In their work detailed in [44], Kalra and Arora enhanced the performance of the Flower
Pollination Algorithm (FPA) by integrating it with the Firefly Algorithm (FA) to effect-
ively address multimodal optimization functions and mitigate the individual shortcomings
of each algorithm. This synergistic approach not only accelerated the convergence speed
of FPA but also mitigated the risk of being trapped within local optima by diminishing
the impact of randomness inherent in FA.

The hybrid algorithm proposed by Kalra and Arora demonstrates notable improvements
in terms of both accuracy and convergence speed when compared to the standalone FA and
FPA counterparts. Through experimental validation, it was observed that the integrated

approach yielded superior results, highlighting its efficacy in navigating complex optimiz-
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ation landscapes. The reduction in the influence of randomness within FA, coupled with
the strengths of FPA, contributed to the enhanced performance of the hybrid algorithm,
showcasing its potential as a robust solution for addressing multimodal optimization chal-
lenges.

In their study outlined in , Chakraborty et al. devised an effective integration by com-
bining the global search capabilities of the Flower Pollination Algorithm (FPA) with the
local search behavior of the Gravitational Search Algorithm (GSA) for training feedfor-
ward neural networks. This integration aimed to strike a balanced approach between
exploration and exploitation during the search process. To enhance performance, the
authors introduced dynamic switch probabilities and adaptive weights for the GSA velo-
city operator. These adjustments aimed to prevent getting trapped in local minima and
guide the search toward global minima, respectively. The authors assessed their approach
using a variety of real-world benchmark datasets obtained from the UCI Machine Learn-
ing Repository, encompassing domains such as cancer, glass, iris, vertebral column, and
wine. The numerical experiments clearly demonstrated the superior performance of their
method across all datasets when compared to standalone FPA and GSA, showcasing its

effectiveness in tackling diverse real-world challenges.

Hybridization with Other Components

Zawbaa et al. developed a novel approach for multi-objective feature selection by com-
bining the Flower Pollination Algorithm (FPA) with rough set theory in [18], aiming to
pinpoint the most effective features for classification purposes. This innovative strategy
melds the best aspects of filter-based and wrapper-based feature selection methods the
former focusing on the data itself, and the latter on how well the features improve classi-
fication accuracy. The effectiveness of this method was thoroughly evaluated using eight
UCI datasets, revealing its impressive competitiveness against traditional algorithms such

as the classic FPA, Particle Swarm Optimization (PSO), and Genetic Algorithms (GA).
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This advancement underscores the potential of their approach in enhancing feature selec-
tion processes.

Abdel-Baset and Hezam ingeniously merged the Flower Pollination Algorithm (FPA) with
the Conjugate Direction (CD) method to address the challenge of solving ill-conditioned
systems of linear and nonlinear equations [31]. The FPA component was strategically
employed to achieve rapid convergence and the capability to discover multiple roots. In
contrast, the CD method was integrated to refine the accuracy of the outcomes and prevent
the algorithm from being trapped in local minima. The efficacy of this hybrid approach was
demonstrated through numerical simulations, which revealed that their method stands out
for its competitiveness when juxtaposed with other existing techniques in the literature.
Valenzuela et al. introduced FFPA , a novel hybrid method that combines the Flower
Pollination Algorithm (FPA) with a fuzzy inference system. Their innovation lies in using
the fuzzy inference system to adjust the probability of transitioning between local and
global pollination phases. This adaptive feature brings an extra layer of sophistication
to their algorithm. Tested on eight benchmark mathematical functions, FFPA showed
outstanding performance, proving itself as a strong contender among other advanced ap-
proaches in the field.

Xu and Wang presented an enhanced hybrid version of the Flower Pollination Algorithm
(FPA) tailored for the precise estimation of solar cell and photovoltaic (PV) module para-
meters . Their approach integrates FPA with the Nelder-Mead simplex method to
bolster the local search capabilities inherent in classical FPA. Additionally, they incor-
porated a generalized opposition-based learning mechanism to steer clear of local optima
pitfalls. The evaluation of their method encompassed three distinct solar models, including
the single diode model, double diode model, and a PV module.

Numerical results compellingly illustrated the superiority of the proposed hybrid FPA over
alternative methods, particularly in terms of solution accuracy, convergence speed, and

overall stability. This novel hybridization not only elevates the FPA’s local search efficacy

71



Chapter 3. Flower Pollination Algorithm

but also establishes its prowess in accurately estimating parameters critical for solar cell
and PV module optimization.

The integration of the Flower Pollination Algorithm (FPA) with a randomized-location
modification operator resulted in a novel approach termed the modified randomized-
location Flower Pollination Algorithm (MRLFPA) for medical image segmentation, as
detailed in [42]. The introduction of the randomized-location strategy in MRLFPA ef-
fectively addressed the limitations of the classical FPA. The algorithm’s performance was
systematically assessed using eight medical images with diverse characteristics. A com-
prehensive comparative evaluation against other algorithms underscored the efficacy of

MRLFPA, showcasing superior solution quality, stability, and computational efficiency.

Multi-Objective Versions of Flower Pollination Algorithm

In a pioneering effort, Yang et al. [52] introduced the first extension of the Flower Pol-
lination Algorithm (FPA) to address multi-objective engineering optimization problems
(MOFPA). This innovative adaptation utilized a random weighted sum method to enhance
the algorithm’s capacity in handling multiple conflicting objectives. The effectiveness of
MOFPA was systematically assessed across various engineering optimization problems,
demonstrating its capability to yield optimal results.

Subsequently, the same authors advanced their approach , introducing a novel tech-
nique for MOFPA. This iteration involved the incorporation of diverse multi-objective
test functions and two bi-objective design benchmarks. The outcomes of this enhanced
algorithm proved highly efficient when compared with alternative algorithms, establishing
its prowess in efficiently navigating the complexities of multi-objective optimization chal-
lenges. Yang et al.’s contributions mark significant strides in extending the applicability
of FPA to the realm of multi-objective engineering optimization.

Shilaja et al. [6] proposed the Enhanced Flower Pollination Algorithm (EFPA) as a solu-

tion for the optimal power flow (OPF) problem. EFPA was intricately crafted to optimize
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various objectives, encompassing transmission loss, power plant emissions, generation cost
minimization, and voltage stability improvement. The team then implemented EFPA
and assessed its performance through the standard IEEE 30 test. The findings revealed
EFPA’s superiority over other optimization algorithms, underscoring its efficacy in tackling
the intricate challenges of power system optimization.

Emary et al. [12] implemented a multi-objective Flower Pollination Algorithm (FPA)
coupled with pattern search (PS) for retinal vessel localization. The FPA was employed
to optimize the clustering within a given retinal image, while PS served as a local search
strategy to refine segmentation results. Testing on the DRIVE dataset, a standard bench-
mark, demonstrated the proposed technique’s competitive performance in terms of accur-

acy, sensitivity, and specificity, along with promising extendable features.

3.4 Conclusion

On this chapter a powerful metaheuristic algorithm was discussed with an explication of
its properties. the algorithm has been pass by alot of hybridizations because of his features

and capacity on solving optimization problems.
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Chebyshev Metaheuristic Solver

Approach

Differential equations present always challenges for researchers, there are huge quantity
of problems to be solved. Actually the differential equations are just the problems that
human confront on their daily lives. The majority of this problems can’t be solved using
analytical methods, so researchers go to the method that gives approximate solution to
this redundant (or hard to solve) problems.

Regarding to the power of classic numerical methods on solving differential equations, and
to the efficiency and rapidity of metaheuristic algorithms, we thought about combining
them to have a new approach. On this chapter, we chose spectral method and Flower
Pollination Algorithm to create a new method for solving different types of boundary
value problems and an integro-differential equation.

The proposed method is constructed by the following manner:

First, use the initial step of spectral method to have an approximate solution formula.
Then, using the root mean square to compute the global residue function. Finally, im-
plement Flower Pollination Algorithm to minimize the constructed residual and find the

unknowns on the approximate solution.
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4.1 Construction of the Chebyshev Metaheuristic Solver

Approach

The aim of this new approach is to find good approximate solutions for a wide range of
differential equations, independent from their forms, order or linearity.
Beginning by the well-posed differential equation problem:

Lu(z) = f(z),2 € Q, (4.1)

Where d; are initial or boundary conditions. Let {xk}fj:o € ) be the pre-selected points.

Assuming that the approximate solution take the following form,

2) = > uTi(a). (4.2)

{T;(z)} are Chebyshev basis polynomials.
The combination of this form of approximate solution and the differential equation written

above gives this system of equations,

Lu(zy) — f(xr) =0, 1<k<N-1,

(4.3)
Replacing u(x) by u(z Z u;T;(x), the previous system of equations becomes,
N
> ILTj(x)uy; — flze) =0, 1<k<N-—1,
j=0 (4.4)
Ci(u) =d;; 1 <i < m.
Thus,

[6)
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n |1,

0 |1

1 |z

2 202 — 1

3 | 423 — 32

4 | 8x*—8z%2+1

5 | 162° — 202% + 5z

6 | 322% —482% + 1822 — 1

7 | 642" — 1122° + 562> — Tx

8 | 1282% — 2562° 4+ 160x* — 3222 + 1

9 | 2562Y — 57627 4+ 4322° — 12023 + 9z

10 | 512210 — 128048 + 11202° — 4002* + 5022 — 1

11 | 1024z — 28162” + 28162 — 12322° + 22023 — 11z

12 | 2048212 — 6144219 + 961228 — 358425 + 840x* — 7222 + 1

13 | 4096213 — 133122 + 166402° — 998427 + 29122° — 3642° + 13z

14 | 8192z — 28672212 + 39424210 — 268802° + 94082 — 1568z* 4+ 9822 — 1
15 | 163842 — 614402 + 921602 — 704002 + 2880027 — 6048z° + 5602 — 15z

Table 4.1: Chebyshev Polynomials, First Kind [40]

So,
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In spectral method this system must be solved using some numerical tools, to find the
coefficients u; in the approximate solution .

In Chebyshev metaheuristic solver approach, this last step (solving the equations system)
will be eliminated, instead of that, Flower Pollination Algorithm will be used to find the
unknowns coefficients u;.

The aim of the implementation of Flower Pollination Algorithm is minimizing the residual
R constructed by calculating the mean square error obtained from the first side of every

equation defined in the system [4.6]

Thus,
N-1[ N 2 o
R = Z Z [LTj(x)]u; — flzg)| + Z w;Condition Penalty;. (4.7)
k=1 | j=0 i=0

Where the Condition Penalty; = (Ci(u) — d;)*,1 <i < m.

The minimization of the residual R offers the coefficients u; for an optimum solution u(x)
written in the form (4.2

The construction of spectral metaheuristic algorithm can be summarized on these main

steps:

e Transfer the differential equation into a system of algebraic equations using Cheby-

shev polynomials.

e Transfer the boundary or initial conditions to algebraic equations utilizing the same

mechanism that has been carried out for the differential equation.
e Compute the residual of every equation by subtracting the both sides in each one.

e Construct the global residual by making the sum of all square residual gotten from

the previous equations.
e Implement a metaheuristic algorithm to minimize the constructed residual.

e Use the unknowns found in the last step for building an approximate solution.

7



Chapter 4. Chebyshev Metaheuristic Solver Approach

Remark 4.1.1 In the results shown bellow, ConditionPenalty; are treated as small re-
siduals where w; = 1.

For dfifferent boundaries then [-1,1], Chebyshev polynomials must be transformed using the

2z—(b+a) ) .

mapping T (z) = T,( -

4.2 Parameters of Flower Pollination Algorithm

The step of implementing Flower Pollination Algorithm, aiming to minimize the value of
Rgi0b, controlled by some parameters, where the outcome solutions vary depending on their
values modifications, it means that if we change one of these parameters we get different
results.

The way to choose the best solution is to observe the path of f;, offered by the algorithm,
after each execution.

Where on a particular execution the f,;, will be constant and doesn’t want to reduce more
then that, here we get the best solution and the best parameters for the operation.

The parameters of Flower Pollination Algorithm can be summarized in:

e The bounds Ub and Lb, where Lb presents the lower bound of the solution’s space,

and Ub presents the upper bound of the solution’s space.

The intensification and the diversification on the solution’s search process is con-

trolled by the selection of these bounds.
If the bounds are nearer the examination of the solution will be more intense, in

contrast the examination of the solution is expected to be more diverse.

e The population size n, n controls the intensification of the searching operation,
where it’s by default from 10 to 25, this number are proposed by the creator of this

algorithm Xin-She Yang.
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e The probability switch p, it controls the transfers between global (diversification)

and local pollination (intensification).

e In wide range of the algorithm’s application, the p is chosen between 0.5 and 0.8
toward the local pollination, for example in the case of p = 0.8, it means that for

80% the local pollination is selected. Mostly, p = 0.8 gives more efficient results.

[56]

e The number of iterations Nj.,.

In every iteration, each individual from the population is a suggested solution. There-
fore, in an execution of an algorithm with 25 population size and 10000 iterations,
there are 10000 x 25 selected solutions, whose been tested. So the total number of

evaluations is 250000.

e d is a parameter that depends only on the dimension of the solution. [23]

4.3 Pseudocode of Chebyshev Meatheuristic Solver
Approach

1. Define Solution Structure:

Assume the solution is a Chebyshev series: y(z) = Z a; * T;(z).

2. Define a Fitness Function fitness(a):

This function takes coefficients a and returns a total error, combining:

e The error from not satisfying the differential equation.

e The error from not meeting the boundary conditions.

3. Find Best Coeflicients:
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Use the Flower Pollination Algorithm to find the coefficient vector a_best that

minimizes fitness(a).

4. Final Answer:

The approximate solution is the Chebyshev series constructed with a_ best.

END

4.4 Results

On this part we will apply the proposed Chebyshev metaheuristic solver approach to solve
some boundary value problems and an integro-differential equation, the application will
be done in different types for boundary value problems beginning by linear problems, then
a nonlinear problem, after that an integro-differential equation will be solved using the

new approach.

4.4.1 Linear Boundary Value Problems

Here we will treat two different type of linear boundary value problems, first an homogen-
eous problem, then a non-homogeneous one.

Homogeneous Problems

On this part we will solve an homogeneous linear boundary value problem just to see how
works the new approach.

Considering the following problem

u —u=0,if x €0,1]
u(0) =2, (4.8)

u(1) = exp(1) + exp(—1)
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Analytical solution We will start by getting the exact solution of this simple linear
homogeneous boundary value problem. After that, we calculate the approximate solu-
tions using spectral method, then Chebyshev metaheuristic solver approach. Finally, we
compare the exact solution with their approximations.

Let’s find the exact solution.

We have,

V—u=0cu"=u

Supposing that u(z) = exp(rz), it means that u’ = r exp(rz) and u” = r? exp(rz).

Thus, our differential equation becomes

r? exp(rz) — exp(rz) = 0

exp(rz)(r*—1)=0

2 —-1=0

Here the differential equation has been reduced to a characteristic equation.

After factorizing the first side of the equation to (r — 1)(r + 1), we get r =1 or r = —1.
So we have two special solutions,

u(z) = exp(x), and u(x) = exp(—x) .

To get more general solution we combine different multiples of those two solutions, and

the general solution becomes

u(x) = Aexp(x) + Bexp(—z).

Let’s return to our problem, after subtituting by the boundary conditions, the constants
A and B will be found.

u(0) = 2 <= Aexp(0) + Bexp(0) = 2,

S0,

A+B=2 (4.9)
u(1l) = exp(1l) + exp(—1) <= Aexp(1l) + Bexp(—1) = exp(1) + exp(—1) (4.10)
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Concluding from [4.9 and [4.10] the coefficients are A =1 and B = 1.

Here we find the exact solution of this problem, which is

u(z) = exp(x) + exp(—x).

Chebyshev metaheuristic solver approach: Let’s Solve the homogeneous linear
problem using the new approach.

The principal idea of this novel method is to minimize the error and get an approximate
solution, so on the initial step is, calculate the error.

First, we choose the order of Chebyshev polynomial to have a solution’s formula. After,
we calculate the residual. Then, we implement Flower Pollination Algorithm to minimize
the residual.

The interval of the problem is not [—1, 1], therefore we will use Chebyshev polynomials

after mapping in [0, 1],

=

Chebyshev ploynomials in [0, 1]

T*( )=T(2z —1) =1,

1) =

1) =

2
T;(x) = 322° — 482 + 18z — 1,

Ty (x) = 1282% — 25623 + 16022 — 32z + 1,

Ty (z) = 204825 — 6144x° + 69122* — 35843 + 84022 — T2 + 1,

~

*(z) = 81922 — 28672x° + 39422° — 268802 + 94082 — 1567x% + 98z — 1,

Ty (x)
y ()
(z)
(z)
¥(z) = 5122° — 12802 4+ 112023 — 40022 + 50x — 1,
(z)
(z)
(z)

Ty (z) = 327682° — 13107227 + 2129922° — 1802242° + 84480z* — 2150423 + 2816x% — 1287 + 1,

©o| oo | o or| x| | po| = o
~

Ty (x) = 13107229 — 5898242% + 1118208z — 1146880x° + 6589442° — 215040z* + 4224023
—4352x? + 162z — 1.

Table 4.2: Chebyshev polynomials in [0,1]
N
Supposing that u(z) = ZUJTJ*(ZL‘) with N =5, N =T7and N =09.
§=0
N=5 First, we choose the pre-selected points, N = 5, it means that we have to choose

from N — 1 pre-selected points.
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x1 =0,
e = —1/3,
ry=1/3,
Ty = 1.

\

There the equation’s system becomes,
(

u(0) = 2,
£"(0) — u(0) = 0,
W"(1/3) —u(1/3) = 0,
W"(2/3) — u(2/3) = 0,
W'(1) — u(l) =0,

\ u(l) = exp(1l) + exp(—1).
The global residual is:

Rgoy = Re + R} + R3 + R; + R} + R:. (4.11)

There are 6 small residuals, because here on our example we chose to use Chebyshev
polynomials with 5" order. So we have 6 unknowns, it means that we have 6 equations,
and instead of solving them, we use FPA.

Ry represents the error given from the first equation, R; which is the error given from the

second equation, ...

p
Ro = U(O) - 27
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Therefore,

Rgop = [u(0) = 2J* + [u"(0) — u(0))* (4.12)
+Hu"(1/3) — u(1/3))"
+Hu"(2/3) — u(2/3))"

+[u"(1) — w(1)]* + [u(1) — exp(1) + exp(=1)].

The next step, is implementing the algorithm to minimize the value of R, subsequent
to many changes of the algorithm’s parameters we found our best approximate solution

when:

Niser = 10000

d = 6 because we have 6 unknowns a,b,c,d, e, f to be found, so the dimension of the

search space is 6,

w = 1, just for simplification.

The evaluations total number is considered as 200000, and the f,;, obtained is 1.864280 x
10717,

The best solutions given by Flower Pollination Algorithm are:
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( a = 2.3984,

b = 0.5376,

c = 0.1439,

d = 0.0055,

e = 0.0007,

\ f =0.0000.
Therefore,

uppa(z) = 2.3984T7 (2)+0.5376 T (x)40.1439T (2)+0.0055T% () +0.0007T; () 40.0000T7 ().
(4.13)

We conclude that the approximate solution given by the new method is

uppa(z) = 1.999999990674 — 0.000040337537x + 0.999576672282z% + 0.00398 78868404}

+0.073817304084z* + 0.0088197439682°.

Here we present the graphs produced by the exact and the approximate solutions produced
by the new approach in the case of N = 5, for our homogeneous linear boundary value
problem [4.§]

urppa presents the approximate solution obtained from Chebyshev metaheuristic solver
approach.

Uezact Presents the exact solution.

The figure displays the graphs generated by the exact solution, the Chebyshev meta-

heuristic solver approach’s solution.

e [t’s obvious that Chebyshev metaheuristic solver approach’s approximation graph is

identical to the curve produced by the exact solution.

For N=7: Using Chebyshev polynomials for N = 7 and the residual,
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u(x)

0 0.2 0.4 0.6 0.8 1
X

Figure 4.1: Fig 4.1 Exact Solution vs. Approximated Results: The first example N=5

Rgo = Ry + R} + R + R5 + R} + R: + R + R3. (4.15)

Parameters of Flower Pollination Algorithm utilized for problem are,

p = 0.5;

Niter = 10000;
d=38,

w = 1.

The coefficients got from FPA are,
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(0 —2.3984,
b = 0.5376,
¢ = 0.1439,
d = 0.0055,
e = 0.0007,
£ = 0.0000,
g = 0.0000,

| A = 0.0000.

From this results we conclude the value of u(x),

uppa = 2.3984T;(x) + 0.5376T% () + 0.1439T5 (z) + 0.00557% (x) + 0.0007T () + 0.00000(6)

+0.0000T¢ () + 0.0000T% ().

Therefore,

upps = 2.000000000001 — 0.000000079607z + 0.9999995103642> + 0.0000179081762%(4.17)

+0.083227911527z* + 0.0002668868742° + 0.0024402026362° + 0.000208929657x".

The figure reveals that ,the exact solution and the approximate solution resulted from
the new method for N = 7, are similar and we can’t distinguish the difference between

them in the graph.

For N=9 Using Chebyshev polynomials for N = 9 and the residual,

Ryop = R+ R} + Ry + R + R + R + R + R + Ry + Ry, (4.18)
Parameters of Flower Pollination Algorithm utilized for problem are,
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X

Figure 4.2: Fig 4.2 Exact Solution vs. Approximated Results: The first example N=7

Ub =3;

Lb = 3;

n = 29;

p = 0.5;

Niter = 10000;
d = 10,

w = 1.

The coefficients got from FPA are,
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(0= 2.3084
b = 0.5376,
¢ = 0.1439,
d = 0.0055,
e = 0.0007,
£ = 0.0000,
g = 0.0000,
h = 0.0000,
i = 0.0000,
| Jj = 0.0000.

From this results we conclude the value of u(x),

uppa = 2.3984T; (x) + 0.5376T7 (z) + 0.1439T% () 4 0.00557T% (2) + 0.0007T () + 0.00007% (z) + 0.0

++0.00007% () + 0.00007% () + 0.00007 ().

Therefore,

upps = 2.000000000000 — 0.000000000097z + 0.999999999821x2 + 0.00000003604520)
10.0833329438012* 4 0.0000018431362° + 0.002773030964°

40.00000711833927 4 0.0000434039372° + 0.000002893686°.

The figure [4.3| confirms that the resulted solution for N = 9 is approximately the same as
the exact one.

The table illustrates the Root Mean Square Error and the Mean Square Error given
from the approximate solution of the linear homogeneous problem [4.8] utilizing the Cheby-
shev metaheuristic solver approach. The RMSE and the MSE given by the CMSA, for
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X

Figure 4.3: Fig 4.3 Exact Solution vs. Approximated Results: The first example N=9

Optimizer RMSE MSE

CMSA N =5 | 5.509954 x 107% | 3.035960 x 10~
CMSA N =7 | 5.137463 x 1079 | 2.639352 x 10~%7
CMSA N =9 | 2.900512 x 10~'2 | 8.412970 x 10~2*

Table 4.3: Comparison table of RMSE for the linear homogeneous differential problem

N =5and N =7, and N = 9 are nearly negligible, specially for N = 9. As the error
decreases the N increases.
Non-homogeneous Problems

Let’s use Chebyshev metaheuristic solver approach to find an approximate solution for a
non-homogeneous boundary value problem.

Supposing the non-homogeneous problem defined by:

u —2u +u=ux,

u(0) =0, (4.21)
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Analytical solution To solve a non-homogeneous second order differential equation we
will first find the complementary function, where it is the homogeneous equation’s solution.

Our homogeneous equation is

u'—=2u" +u=0 (4.22)
Supposing that
u = exp(rx),
u'(zr) = rexp(rx),
u'(z) = riexp(rz).

The equation becomes,

r?exp(rz) — rexp(rz) + exp(rz) = 0,
exp(rz)[r? —2r + 1] =0,

2 —2r+1=0.

We find two real equal roots to this characteristic equation r; = ro = 1, it means that the

solution of the equation is

u. = Aexp(z) + Brexp(z). (4.23)

Now , let’s find the particular solution for the differential equation defined in the problem
Assuming that

u, = az? + Bx + 7,

e. iu, =2ar+f3,

and uy = 2a.

Substitute in the equation from

u" —2u' +u=ur,
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200 — 2(2ax + B) + (ax? + fr +v) = =,
ar? + (—4a+ B)r — 2B+ v + 2a = =z,
( a =0,

<4y —4da+pB=1,

\ —2B8+v+2a=0.

(

a=0,
<=y =1
v =2

\
thus,

Yyp =T+ 2.

The general solution for the problem [4.21], is presented by
u = u,+u. = Aexp(z) + Brexp(z) + = + 2. (4.24)

The final step to get the analytical solution is finding the constants A and B, using the
bounday conditions,

u(0) =0, gives A = —2,

u(2) =4, affords B = 1.

Therefore,

u(z) = exp(x)(z — 2) +z + 2. (4.25)

Chebyshev metaheuristic solver approach Begining by choosing the order of Cheby-
shev polynomials and calculate the residual,

N
Supposing that u(z) = Zuﬂ}*(x) with N =5, N =7and N =9.
=0

N=5 First, we choose the pre-selected points, N = 5, it means that we have to choose

from N — 1 pre-selected points, and calculate the global residual:
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N | Chebyshev ploynomials in [0, 2]

0 |Ti(@)=T(x—1) =1,

[ [ Tiw=o-1,

2 | Ti(z) =222 — 4w + 1,

3 | Ti(x) =423 — 1222 + 92 — 1,

4 | Tj(z) = 8z — 322° + 482% — 24w + 1,

5 | Tz (x) = 162° — 80z* + 1602° — 1602% + 70x — 5.

6 | 17 (z) = 322° — 19225 + 4802% — 64027 + 44022 — 144z + 1,

7 | Ty (z) = 12827 — 448x° + 1344x° — 2240z* + 224023 — 13442% + 3922 — 7,

8 | Ty(r) = 1282% — 1024x" + 3584x° — 71682° + 8960x* — 7168z + 358412 — 896z + 1,
9 | Tg(x) = 2562° — 23042° + 921627 — 215042° + 322562° — 322562 + 2150423

—921622 + 2040z — 9.

Table 4.4: Chebyshev polynomials in [0,2]

Rgop = RE + R} + R + R + Ri + R:. (4.26)

There are 6 small residuals, because here on our example we chose to use Chebyshev

polynomials with 5t order. So we have 6 unknowns, it means that we have 6 equations,

and

instead of solving them, we use FPA.

The next step, is implementing the algorithm to minimize the value of Ry subsequent

to many changes of the algorithm’s parameters we found our best approximate solution

when:
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The best solutions given by Flower Pollination Algorithm are:

( a = 1.0949,

b= 1.7379,

c = 0.8571,

d = 0.2557,

e = 0.0482,

\ f =0.0062.
Therefore,

uppa(x) = 1.09497; (2)+1.7379T7 (z)+0.857175 (x)+0.2557T5 (x)+0.0482T; (x)+0.006277 (z).
(4.27)

We conclude that the approximate solution given by the new method is

uppa(r) = 0.000321039110 — 0.005009143962x — 0.0474246098292> (4.28)

+0.3495977269602° — 0.1107923735302* + 0.099225981229°.

Here we present the graphs produced by the exact and the approximate solutions produced
by the new approach in the case of N = 5, for our homogeneous linear boundary value
problem

uppa Ppresents the approximate solution obtained from Chebyshev metaheuristic solver
approach.

Uezact Presents the exact solution.

The figure [4.4] displays the graphs generated by the exact solution, the Chebyshev meta-

heuristic solver approach’s solution for N = 5.

e [t’s obvious that Chebyshev metaheuristic solver approach’s approximation graph is

identical to the curve produced by the exact solution.

For N=7: Using Chebyshev polynomials for N = 7 and the residual,
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u(x)

X

Figure 4.4: Fig 4.4 Exact Solution vs. Approximated Results: The second example N=5

Rgo = Ry + R} + R + R5 + R} + R: + R + R3. (4.29)

Parameters of Flower Pollination Algorithm utilized for problem are,

p = 0.5;

Niter = 10000;
d=38,

w = 1.

The coefficients got from FPA are,
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(0 —1.0047,
b= 1.7380,
¢ = 0.8585,
d = 0.2559,
e — 0.0461,
£ = 0.0060,
g = 0.0006,
| = 0.0001.

From this results we conclude the value of u(x),

uppa = 1.0947T;(x) + 1.7380T% () + 0.85857T5 (x) + 0.25597% (x) + 0.04617% () + 0.0060(20)

+0.0006T7 () + 0.00017% ().

Therefore,

upps = 0.000000042834 — 0.0000656515342 — 0.00041210011322 + 0.1716623987182% + 0.069765419¢

+0.0410908525892° — 0.003765513897x° + 0.003424370017x".

In the figure 4.5 the etwo graphs of exact solution and approximate solution via Chebyshev

metaheuristic solver approach’s solution for N = 7 are somewhat identical.

For N=9 Using Chebyshev polynomials for N = 9 and the residual,

Ryop = RS+ R} + Ry + Ry + R + RE + R + R + Ry + Ry (4.32)

Parameters of Flower Pollination Algorithm utilized for problem are,

Ub =3;
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u(x)

X

Figure 4.5: Fig 4.5 Exact Solution vs. Approximated Results: The second example N=7

Lb = 3;
n = 295;
p = 0.5;

Niter = 10000;
d =10,
w=1.

The coefficients got from FPA are,
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(0 = 1.0047,
b= 1.7380,
¢ = 0.8585,
d = 0.2559,
e = 0.0461,
£ = 0.0060,
g = 0.0006,
h = 0.0001,
i = 0.0000,
| Jj = 0.0000.

From this results we conclude the value of u(x),

uppa = 1.0947T;(z) + 1.7380T% () + 0.85857T5 (x) + 0.25597% (x) + 0.046177 () + 0.0060(LE3)

+0.0006T¢ () + 0.0001T% () + 0.0000T% () + 0.0000T ().

Therefore,

upps = 0.000000000003 — 0.0000003732462 — 0.00000136078422 + 0.16671747442034)
40.083071329901z* 4- 0.0256025116732° + 0.004804667279°

40.001529402208z" — 0.0000678075522° + 0.0000623853262°.

In the figure the etwo graphs of exact solution and approximate solution via Chebyshev
metaheuristic solver approach’s solution for N = 9 are roughly the same.

The table shows the Root Mean Square Error and the Mean Square Error obtained
from the approximate solution of the linear diffrential problem introduced in [4.21] using

the Chebyshev metaheuristic solver approach. The RMSE and the MSE given by the
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u(x)

X

Figure 4.6: Fig 4.6 Exact Solution vs. Approximated Results: The second example N=9

Optimizer RMSE MSE

CMSA N =5 | 2.176850 x 1079 | 4.738677 x 10~%
CMSA N =7 | 1.089595 x 107% | 1.187218 x 10~
CMSA N =9 | 3.378533 x 1079 | 1.141448 x 10~1°

Table 4.5: Comparison table of RMSE for the linear non-homogeneous differential problem

CMSA, for N =5and N =7, and N = 9 are nearly negligible, specially for N = 9. As

the error decreases the N increases.

4.4.2 Non-Linear Boundary Value Problems:

On this section we will use the Chebyshev metaheuristic solver approach to give an ap-

proximate solution to a non-linear boundary value problem.

Bernoulli equation

Assuming the non-linear boundary value problem (Bernoulli equation): [40]

u” + (u')? — 2exp(—u) = 0, (4.35)
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accompanied with the endpoints

(4.36)

Analytical solution: beginning by transforming the non-linear equation to a Bernoulli

equation, where we use the method of substituting where:

du dPu  dv B dv du B dv

U:%andﬁza—@x%—%.
Hence,
d*u du .,
e T (@) = 2exp(—u),
ie. Z—Zv—l—vQ = 2exp(—u),

putting exp(—u) = 2 [5] yields to

dv dvdz dv " (—u) dv
— = ——=——Xexp(—u) = —2z—.
du  dzdu dz P dz
Thus,
dv L2 5
—z—+v° = -2z
dz ’
d
vzd—z —? = -2z
: d dv
Set = v* imply % = 209
The equation becomes,
z du
S, = -9
2 % dz s =
dp — p
——2— = -
dz z
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This final result is a Bernoulli equation.
Let’s return to the first equation where we could solve it just by the substituting method.
The equation is,

d*u du

By multiplying with exp(u), we’ve got

d*u du
exp(u) X e + exp(u) X (%)2 =2.
Assuming that ¢ = exp(u), so &£ = 2 exp(u) and % = % exp(u) + exp(u) 2.
The equation becomes,
?t
de? 7

imply that % = 22 + A, it means that t = 2% + Az + B.
Therefore,
exp(u) = 22 + Az + B.
So, u = In|z* + Az + B].
Boundary conditions give
y(0)=0= B =1,
y(l)=0=A=—1.

Here the final solution of our problem

u=In|r*—x+1]|. (4.37)

Chebyshev metaheuristic solver approach solution: This problem has been solved
previoulsy by Babaei in [32], using Particle Swarm Optimization, for that reason we will
solve it using the new approach by upgrading the degree of Chebyshev polynomials until
getting better results.

The Chebyshev used are
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Chebyshev ploynomials

Ti(x) =T2x —1) =1,

=2x—1,

@OO\]CDCN%COL\DHOZ
S
8

Ty (x) = 2562 — 23042° + 921627 — 21502° + 322562° — 322562 + 215023
—92162* + 2040z — 9

—
e}

Ty (z) = 51221 — 51202 + 230402° — 6144027 + 1075202° — 1209602° + 806402
—33600x3 + 7560x* — 880x + 1

Table 4.6: Chebyshev polynomials in [0,1]

For N=5: Calculating the residual using Chebyshev polynomials same as previous ex-

amples.

Ryop = RE+ R} + R+ R+ R + RE. (4.38)

Parameters of Flower Pollination Algorithm utilized for problem are,
Ub=2;

Lb= -2,

n = 25;

p = 0.5;

Niter = 10000;

d=6,

w = 1.

Here the results,
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( a = 0.03728,
b= —0.20964,
c = —0.030246,
d =0.27013,
e = —0.067533,
| f=16928 x 1017},

From this results we conclude the value of u(x),

uppa = 0.03728Tp(z) — 0.20964T (z) — 0.030246T3(z) + 0.27013T3(x) — 0.067533(7L69)

+1.6928 x 1081375 (x).

Therefore,

upps = —7x 1007 —1.02240.479822 +1.080522° — 0.5403x* +2.7069 x 1017162 2°. (4.40)

FPA [

-0.05 - X
0.1
-0.15 \ P
02 r

-0.25

-0.3

Figure 4.7: Fig 4.7 Exact Solution vs. Approximate Results: Bernoulli Problem N=5
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The figure [4.7] shows two curves representing solutions to the non-linear problem
presented on this example. The black line denotes the exact solution, while the pink one
shows the approximations obtained by Chebyshev metaheuristic solver approach for
N = 5. The approximations are close to the exact solution, demonstrating great

accuracy.

For N=7: Using Chebyshev polynomials for N = 7 and the residual,

Ryoy = Ry + RI + R3 + R; + Ry + R: + R + R2. (4.41)

Parameters of Flower Pollination Algorithm utilized for problem are,

p = 0.5;

Niter = 10000;
d =8,

w = 1.

The coefficients got from FPA are,

(4 = —0.00082011,

b= —0.13476,

¢ = —0.096989,

d = 0.32353,

e = —0.10515,

£ = 0.020998,

g = —0.0089923,
| = 0.002038.

From this results we conclude the value of u(x),
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uppa = —0.000820117} (x) — 0.13476T7 (x) — 0.096989T% (x) + 0.323537T% () — 0.1051577 () + 0.020¢

—0.00899237 () + 0.0020387T7 ().

Therefore,

upps = —1.01462+0.48542°40.98832° —0.40962" +0.10772° —0.28782°+0.13042". (4.43)

0.05

EXACT

005 |
01}
015 f
02}

-0.25

-0.3

Figure 4.8: Fig 4.8 Exact Solution vs. Approximate Results: Bernoulli Problem N=7

The figure [4.§ illustrates the exceptional concordance between the numerical solution
generated by our proposed algorithm and the exact analytical solution, confirming the

method’s high efficiency and successful convergence.

For N=9 Using Chebyshev polynomials for N = 9 and the residual,
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Ryo» = R} + R} + Ry + R; + R + R + Rg + R + Ri + Ry, (4.44)

Parameters of Flower Pollination Algorithm utilized for problem are,
Ub =2,

Lb = -2,

n = 295;

p = 0.5;

Niter = 10000;

d =10,

w = 1.

The coefficients got from FPA are,

(0 = —0.047647,
b= —0.044291,
¢ = —0.17647,
d = 0.38347,
e = —0.14118,
£ = 0.034289,
g = —0.007565,
h = —0.0045317,
i = 0.0044153,

| Jj = —0.0010502.

From this results we conclude the value of u(x),

uppa = —0.047647T7 () — 0.044201T7 () — 0.17647T5 (x) + 0.38347T% (x) — 0.14118T% (x) + 0.03428

—0.0045317T% (x) + 0.004415377 () — 0.0010502T7 ().
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Therefore,

upps = —0.0001 — 1.0010z + 0.4990z° + 0.72032> — 0.0599z" + 0.60252° (4.46)

—1.372425 + 0.31492" + 0.56522% — 0.2689°.

uEXA cT

N u
§ FPA
-0.05

-0.1
-0.15 -
-0.2 |

-0.25 -

-0.3

Figure 4.9: Fig 4.9 Exact Solution vs. Approximate Results: Bernoulli Problem N=9

As illustrated in the figure [4.9] the proposed algorithm significantly outperforms prior nu-
merical schemes. Its solution is visually indistinguishable from the exact solution, a result
that is quantitatively supported by it yielding the lowest error norm in our comparative

analysis.

Optimizer RMSE
CMSAN=5[19x10"%
CMSAN=7[11x10"%
CMSA N =9 | 2.8144 x 107%™
PSO 3.0503 x 10~

Table 4.7: Comparison table of RMSE for the non-linear problem

The table shows the Root Mean Square Error obtained from the approximate solution

of the Bernoulli problem, using the Chebyshev metaheuristic solver approach and the
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approach introduced in [32]. The RMSE given by the CMSA, for N =5 and N = 7, are
smaller then the RMSE obtained by the method introduced in . The RMSE obtained
from the CMSA is the smaller one for N = 9.

As seen in the table the error decreases when the IV increases, and it gives te lowest error

comparing by the method proposed in [32].

4.4.3 Initial Value Problem

Let’s solve an integro-differential problem as an initial value problem, using the proposed

method

Integro-Differential Equation

Supposing the linear integro-differential equation

/(@) + 2u(e) +5 [ u(t)dt = H(x), z € [0,7], (447)

u(0) = 0.
Where H(x) is the Heaviside step function,
H(z)=1, ifx >0,
H(z) =0, else.

After differentiating the problem it can be converted to this ordinary differential equation,

u’(z) + 2/ (z) + bu(x) = 0,2 € [0, 7],

(4.48)
u(0) = 0,4'(0) = 1.
Analytical solution:
The exact solution of the proposed problem is
Uegact () = 1/2exp(—x) sin(2z). (4.49)
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Chebyshev metaheuristic solver approach solution:

This problem also has been solved previoulsy by Babaei in , using Particle Swarm
Optimization, there we will solve it using the new approach by upgrading the degree of

Chebyshev polynomials until getting better results, like in the previous problem.

2r—
xﬂﬂ)

The Chebyshev polynomials used are calculated using the mapping 7% (x) = T (

For N=5: Calculating the residual using Chebyshev polynomials,

Ryop = RE+ BRI+ R+ R+ R+ RE. (4.50)

Parameters of Flower Pollination Algorithm utilized for problem are,

Ub =2

p = 0.5;

Niter = 10000;
d=6,

w = 1.

Here the results,

( a = —0.37182,
b = 0.87766,
c = —0.3681,
d = 0.036336,
e = —0.0037344,
f=1.44 x 10195},

From this results we conclude the value of u(x),
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uppa = —0.37182Tp(z) + 0.87766T}(z) — 0.3681T%(x) + 0.036336T3(x) — 0.0037344Th5i)

+1.44 x 108993 Ty ().

Thus,

uppa(z) = 1.4400 x 10879} 40.76602 — 0.76612 +0.15592° +0.02992* — 0.00852°. (4.52)

-0.05 -

-0.1

-0.15

Figure 4.10: Fig 4.10. Exact Solution vs. Approximate Results: Integro-Differential
Problem N=5

This graph [4.10] shows our new method’s approximate solution with the exact solution to
the integro-differential problem. the approximate solution is near to the exact one but

there are some deviations in several points.

For N=7 Calculating the residual using Chebyshev polynomials,

Ryop = R2+ R+ R2 + R2 + R2 + R} + R2 + R2. (4.53)
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Parameters of Flower Pollination Algorithm utilized for problem are,

p = 0.5;

Niter = 10000;
d=38,

w = 1.

Here the results,

(0 = —0.257686,
b= 0.671156,
¢ = —0.17463,
d = —0.13963,
e — 0.084822,
£ = —0.01814,
j = 0.00177379,

[ 7= —0.000067.
From this results we conclude the value of u(x),

uppa = —0.257686Ty(x) + 0.671156T}(x) — 0.17463T5(x) — 0.13963T5(x) + 0.084822 7 bat)

—0.01814T5(z) + 0.00177379T(x) — 0.000067T%(x).

Thus,

uppa(r) = —7.7900x 1046 40.99982—0.995922 —0.19952°+0.59342* —0.28272°4-0.05682° —0.00432".
(4.55)

The graph shows that increasing N gives more efficient approximate solution, and a
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Uepa

u 4
exact

-0.05

-0.1

Figure 4.11: Fig 4.11 Exact Solution vs. Approximate Results: Integro-Differential Prob-
lem N=7

smaller deviation from the exact solution.

For N=9 Using Chebyshev polynomials for N =9 and the residual,

Ryop = Ry + Ri + R+ R + R} + R2+ Rf + R2+ Ry + Ry, (4.56)

Parameters of Flower Pollination Algorithm utilized for problem are,
Ub=2;

Lb = —2;

n = 30;

p = 0.5;

Niter = 10000;

d = 10,

w=1.

The coefficients got from FPA are,
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(0 = 0.055832,
b= —0.096777,
¢ = —0.004309,
d = 0.091663,
e = —0.055955,
# = 0.006679,
g = 0.004310,
h = —0.001654,
i = 0.000083,

| Jj = 0.000057.

We conclude that,

uppa = 0.0558327Tp(x) — 0.096777T;(z) — 0.004309T(x) + 0.09166375(z) — 0.055955T4(4:57)

+0.006679T5 () + 0.004310T5(z) — 0.0016547% () 4+ 0.000083Tx () + 0.000057T(z).

Therefore,

uppy = —0.000007004795304 + 0.999995920626303x — 0.9999544852205022% — 0.17773371046904.585
40.5385490523014672* — 0.2136830226766132° + 0.0100935176824702°

40.01294697595849127 — 0.0032849306475762° + 0.0002526649335462°.

This graph illustrates the powerful convergence of our method, as increasing N yields
an approximate solution that is nearly indistinguishable from the exact solution. The
exceptional alignment underscores the precision and reliability of our approach.

The table shows the Root Mean Square Error obtained by the approximate solution of
integro-differential equation, using the Chebyshev metaheuristic solver approach and the

approach introduced in [32]. The RMSE given by the CMSA, for N =5 and N = 7, are
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0.3

—o—
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0.25 1

-0.05

-0.1

Figure 4.12: Fig 4.12. Exact Solution vs. Approximate Results: Integro-Differential
Problem N=7

Optimizer RMSE

CMSA N =5 | 3.14 x 107%
CMSA N =7 |1.05x 107
CMSA N =9 | 7.704629 x 107%
PSO [32] 1.805 x 10~

Table 4.8: Comparison table of RMSE for the integro-differential problem

smaller then the RMSE obtained by the method introduced in [32]. The RMSE obtained
from the CMSA is the smaller one for N = 9.

4.5 Conclusion

In this chapter, a novel method for calculating approximate solutions have been introduced
called Chebyshev metaheuristic solver approach, which was tested for different types of
boundary value problems and an initial value problem. We solved several boundary prob-
lems and an integdo-diffrential problem using the new proposed method for different de-
grees N, accompanied by a comparison between the results given by the new method and

the method introduced in and the exact solution. The exact solutions were given for
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all cases.

Our comparative analysis showed that the Chebyshev metaheuristic solver approach con-
sistently yielded superior approximations. These findings emphasizes the effectiveness and
accuracy of the proposed approach, validating its potential to enhance boundary value
problem solving capabilities.

The results validate the theoretical framework discussed earlier, proving the practical
viability of the new method.

Future explorations should research on the applicability of this method across different
domains and problem sets, potentially give rise to further advancements. Other studies
can be made to inhence the method by changing the parameters of the algorithm.

This chapter’s victory in achieving better approximations underscores the importance of

continual innovation in mathematical problem-solving techniques.
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This research has conducted a comprehensive exploration of merging numerical compu-
tation techniques with intelligent optimization algorithms, resulting in the creation of an
innovative hybrid approach for differential equation resolution. The primary goal was to
address the shortcomings of conventional solution methods by establishing a dependable,
precise, and broadly applicable framework. This study effectively illustrates the substan-
tial benefits of merging the exceptional precision characteristics of spectral techniques with
the robust global optimization capabilities of the Flower Pollination Algorithm (FPA).
The developed framework, designated as the Chebyshev Metaheuristic Solver Approach,
constitutes a noteworthy advancement in computational mathematics.

The academic exploration commenced with a fundamental examination of spectral tech-
niques in Chapter 1, where we demonstrated their theoretical advantages for differen-
tial equation solutions, with particular emphasis on the Chebyshev collocation approach.
This method’s effectiveness stems from its capacity to reach spectral precision by con-
verting complex differential equations into algebraic equation systems through Chebyshev
polynomial approximation. Nevertheless, resolving the resulting system, particularly for
nonlinear scenarios, creates a significant optimization challenge.

Chapter 2 addressed this challenge through an extensive examination of the evolutionary
algorithms and metaheuristic domain. This section explored the theoretical foundations of
optimization, categorizing algorithms and analyzing their fundamental search strategies,

spanning from random walks to Lévy flights. This investigation highlighted the essential
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equilibrium between intensification and diversification, which is critical for avoiding local
optima and achieving global convergence. This theoretical foundation supported the choice
of an advanced, nature-inspired algorithm over traditional gradient-based approaches.
Chapter 3 concentrated on the specific metaheuristic selected for this research: the Flower
Pollination Algorithm (FPA). We examined its biological foundation, the pollination mech-
anisms of flowering plants and transformed its cross-pollination principles (global search
through Lévy flights) and self-pollination (local search) into an effective optimization al-
gorithm. An extensive review of FPA variations and parameter optimization strategies
demonstrated our dedication to not merely implementing, but thoroughly comprehending
and enhancing the optimization methodology.

The integration of these separate domains is outlined in Chapter 4, which describes the
development and verification of the proposed Chebyshev Metaheuristic Solver Approach.
This chapter represents the primary contribution of this thesis. The differential equation is
initially discretized using the Chebyshev collocation method, generating a residual function
as the objective function for an optimization problem. The FPA is subsequently utilized
to systematically identify the optimal Chebyshev coefficients that minimize this residual,
thus providing the solution to the original equation. The effectiveness of this hybrid
solver was thoroughly evaluated using various benchmark problems, encompassing both
linear (homogeneous and non-homogeneous), nonlinear boundary value problems, and an
integro-differential problem. The computational results consistently showed outstanding
accuracy and stability, confirming the hypothesis that this hybrid approach successfully
combines the spectral precision of Chebyshev polynomials with the powerful optimization
capabilities of the FPA.

Considering future prospects, the significance of this research extends considerably bey-
ond the specific problems examined here. The adaptability and proven performance of the
Chebyshev metaheuristic solver approach indicate its potential for significantly broader

applications across scientific and engineering domains. This encompasses complex, multi-
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dimensional challenges in areas such as fluid mechanics, thermal transfer, structural ana-
lysis, and quantum mechanics. Additionally, the concept of transforming complex math-
ematical problems into optimization tasks and solving them using metaheuristics has sig-
nificant relevance in emerging fields.

Multiple promising directions for future investigation arise from this work. Initially, the
methodology can be expanded to address more complex systems, including partial dif-
ferential equations (PDEs), integral equations, and coupled differential equation systems.
Additionally, while the FPA demonstrated high effectiveness, a comparative analysis in-
corporating other advanced metaheuristics or hybrid versions could produce additional
performance improvements. Finally, exploring adaptive parameter control within the FPA
could automate the optimization process, making the solver more autonomous and effi-
cient.

In summary, this thesis successfully developed, implemented, and validated a powerful
hybrid numerical-optimization framework. Through carefully combining the advantages
of Chebyshev spectral methods and the Flower Pollination Algorithm, this work not only
delivers a highly accurate solution tool for a challenging category of differential equations
but also establishes a solid and innovative foundation for developing future high-precision
computational approaches. The demonstrated capabilities of this methodology promise to
enhance computational efficiency and accuracy, creating pathways for new discoveries and

innovations across multiple scientific fields.
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Appendix A: MATLAB

MATLAB (short for MATrix LABoratory) is a high-level programming environ-
ment and numeric computing platform widely used across scientific research, engineering,
and applied mathematics domains. Originating in the late 1970s to facilitate matrix com-
putations, MATLAB has evolved into a versatile tool integrating numerical analysis, visu-
alization, algorithm development, and system simulation. Its intuitive syntax, extensive
function libraries, and powerful graphical capabilities enable efficient handling of complex
data, numerical modeling, and iterative algorithmic design.

Distinctive for its matrix-based architecture, MATLAB allows users to seamlessly perform
vectorized operations, linear algebra, differential equations, signal processing, and other
computational tasks with remarkable ease and speed. The environment supports script
and function development, interactive command execution, and integration with external
codebases, enhancing reproducibility and extensibility in research workflows.

In the context of this thesis, MATLAB served as a critical computational backbone—
enabling rigorous data analysis, automated simulations, and visualization of results. Its
contributions span from preliminary data preprocessing and model prototyping to the final
validation stages, ensuring robustness and accuracy. This appendix aims to provide readers
unfamiliar with MATLAB a concise overview of its foundational features, operational

philosophy, and relevance to contemporary scientific inquiry.
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4.6 MATLAB Code of the First Chapter

4.6.1 Generation of Chebyshev Polynomials of the First Kind

% Define the Chebyshev polynomial function recursively
function T = chebyshev T(n,x)

if n==

T=ones(size(x));

elseif n==

T=x;

else
T=2*x.*chebyshevT(n-1,x)-chebyshevT(n-2,x);
end

end

% Example N=5

n_max=>o;

x=linspace(-1,1,100);

figure;

hold on;
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for n=0:n_max

T=chebyshevT (n,x);

plot(x,T,'DisplayName’, /T _/mum?2str(n)]);

end

hold off;

legend;

title(’Chebyshev Polynomials of the First Kind’);
xlabel(’x’);

ylabel("T n(x)’);

4.6.2 Generation of Chebyshev Polynomials of the First Kind in
[1,4]

clear;

cle;

close all;

x = linspace(1, 4, 500);
T0s = ones(size(x));

Tls = (1/3) * (2*x - b);
T2s = (1/9) * (8*x.72 - 40*x + 41);
= (1/27) * (32*x.73 - 240*x.”2 4 546*x - 365);
Tds = (1/81) * (128*x.74 - 1280*x.”3 + 4512*x."2 - 6560*x + 3281);
Ths = (1/243) * (512*x.”5 - 6400*x.”4 + 30560*x."3 - 69200*x.~2 + 73810*x - 29525);
figure;
hold on;

plot(x, TOs, 'LineWidth’, 2);
plot(x, T1s, 'LineWidth’, 2);
plot(x, T2s, 'LineWidth’, 2);
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plot(x, T3s, 'LineWidth’, 2);

plot(x, T4s, 'LineWidth’, 2);

plot(x, T5s, 'LineWidth’, 2);

hold off;

xlabel(’x’);

ylabel('T _n((2x-5)/3));

legend("T_0(s)’, 'T _1(s)’, 'T_2(s)’, 'T_3(s)’, "T_4(s)’, "T_5(s)’, 'Location’, "best’);
grid on;

ylim([-1.1, 1.1]); % Focus on the interesting part of the graph

4.6.3 Generation of Shifted Chebyshev Polynomials

clear;

clc;

close all;

x = linspace(0, 1, 500);

TO _star = ones(size(x));

T1 star = 2*x - 1;

T2 star = 8*x.72 - 8*x + 1;

T3 star = 32*%x.73 - 48%x.”2 + 18*x - 1;

T4 star = 128%x.74 - 256*x.73 + 160*x.”2 - 32*x + 1;
T5 star = 512*x.”5 - 1280*x."4 + 1120*x.73 - 400*x.”2 4+ 50*x - 1;
figure;

hold on;

Y

plot(x, TO star, 'LineWidth’,

)

)

( 2)
plot(x, T1 star, 'LineWidth’, 2)
plot(x, T2 star, 'LineWidth’, 2);
plot(x, T3 _star, 'LineWidth’, 2)
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plot(x, T4 star, 'LineWidth’, 2);

plot(x, T5 star, 'LineWidth’, 2);

hold off;

xlabel (’x’);

ylabel'T* n(x)’);

legend("T* 0(x)’, "T* 1(x)’, 'T* 2(x)’, "T* 3(x)’, 'T* 4(x)’, "T* 5(x)’, 'Location’,
"best’);

grid on;

ylim([-1.1, 1.1]);

clear;

cle;

close all;

x = linspace(0, 1, 500);

TO star = ones(size(x));

T1 star = 2*x - 1;

T2 star = 8%x.72 - 8*x + 1;

T3 star = 32*%x.73 - 48%x.”2 + 18*x - 1;

T4 star = 128*x.74 - 256*x.”3 + 160*x.”2 - 32*x + 1;
T5 star = 512*x.”5 - 1280*x."4 + 1120*x.73 - 400*x.”2 + 50*x - 1;
figure;

hold on;

)

plot(x, TO star, 'LineWidth’,

Y

plot(x, T1 star, 'LineWidth’,

I

(
(
plot(x, T2 star, 'LineWidth’,
( :
(
(

?

plot(x, T3 star, 'LineWidth’,

Y

plot(x, T4 star, 'LineWidth’,

I

2)
2)
2)
2)
2)
plot(x, T5 star, 'LineWidth’, 2)
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hold off;

title(’Verification Plot using Explicit Formulas’);

xlabel(’x’);

ylabel"T* n(x)’);

legend("T* 0(x)’, 'T* 1(x)’, 'T* 2(x)’, "T* 3(x)’, 'T* 4(x)’, "T* 5(x)’, 'Location’,
"best’);

grid on;

ylim([-1.1, 1.1]);

4.6.4 MATLAB Code to Solve the First Example Using Cheby-

shev Collocation Method

% MATLAB code to solve -d~2u/dx~2=exp(x) with u(-1)=u(1)=0 using Chebyshev spec-
tral collocation

% 1. Define the number of collocation points (N+1)

N=20; % Degree of the polynomial approximation. More points = higher accuracy.
% 2. Compute Chebyshev-Gauss-Lobatto (CGL) points

% These are the roots of T _N/(x) and are given by x k=cos(pi*k/N)

k=0:N;

x=cos(pi*k/N)’; % Column vector of collocation points

%3. Construct the second-order Chebyshev differentiation matrix (D2)

% We use a function for this, often provided in spectral methods libraries

% For demonstration, we’ll construct it directly.

% For N=0,D=0. For N=1,D=[-1/2,1/2:1/2,-1/2].

% Building the full D and then D2 is more robust.

D= zeros(N+1,N+1);

for i=1:N+1

for j=1:N-+1
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if i==j

if i==1% x_0=1

D(i,j)=(2*N"2+1)/6;

elseif i==N+1% x_N=-1

D(i,j)=-(2*N~2+1)/6;

else % x_k internal point

D(i)=-x(0)/(2*(1-x(1)"2));

end

else

c_i=l;ifi==1 || i==N+1, ¢_i=2;

end

c_j=1; ifji==1 |[j==N+1,c_j=2;

end

D(i,j)=(c_i*(-1)"(i+J))/ (c_j*(x()-x(j)));

end

end

end

D2=D*D; % Second differentiation matrix

% 4. Apply boundary conditions and set up the linear system
% The boundary conditions are u(-1)=0 and u(1)=0.

% In our CGL points, x(1)=1 (for k=0) and x(N+1)=-1 (for k=N).
% So, u(1) corresponds to u(x(1)) and u(-1) corresponds to u(x(N+1)).
% The system we need to solve is -D2*u_ vec=f vec

% where u_ vec is the vector of u values at collocation points.
% The original system is -D2*¥*U=F, where F=exp(x)
F=exp(x);

% Modify D2 and F to incorporate boundary conditions
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% The first and last rows of D2 correspond to x=1 and x=-1 respectively.
% For Dirichlet boundary conditions, we effectively replace these rows
% with identity rows that enforce u(1)=0 and u(-1)=0.

% Create a modified D2_mod and F_mod

D2 mod=-D2; % The left-hand side is -d"2u/dx"2

% Set boundary condition rows

D2 mod(1,:)=0; % Clear the first row

D2 mod(1,1)=1; % Set u(x_1)=0 (which is u(1)=0)

F(1)=0;

D2 mod(N+1,:)=0; % Clear the last row

D2 mod(N+1,N+1)=1; % Set u(x_N+1)=0 (which is u(-1)=0)
F(N+1)=0;

% 5. Solve the linear system

u_numerical=D2 mod\F;

% 6. Plot the numerical solution

figure;

plot(x, u_numerical, ’o-’, 'LineWidth’, 1.5, 'DisplayName’, ’Numerical Solution’);
hold on;

% Compare with the exact solution

% The exact solution for —u” = exp(z) with u(-1)=u(1)=0

% is u(x)=exp(x)-(cosh(1)+sinh(1)*x)/cosh(1)

% or u(x)=exp(x)-(e"1*(x+1)+e~-1*(1-x))/2

% or u(x)=exp(x)-((e-e~-1)/2*x+(e+e"-1)/2)

% Let’s use the integrated form: u(x)=-exp(x)+Ax+B

% u(—=1) = —eaxp(—1) = A+ B=0= B=A+exp(—1)

% u(l) = —exp(1) + A+ B=0= —exp(l)+ A+ A+ exp(—-1)=0
% 2A = exp(l) — exp(—1) = A = (exp(l) — exp(—1))/2 = sinh(1)
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% B = sinh(1) + exp(—1)

% Exact solution is u_ exact(x)=-exp(x)+sinh(1)*x+sinh(1)+exp(-1)

% Let’s derive it correctly: u”(z) = —exp(z) = w/(zx) = —exp(z) + C1 = u(z) =
—exp(z) + Clxz + C2

% u(-1)=-exp(-1)-C1+C2=0

% u(1)=-exp(1)+C1+C2=0

% Subtracting the first from the second: (-exp(1)+exp(-1))+2*C1=0=2*Cl=exp(1)-exp(-
1)=-Cl=(exp(1)-exp(-1))/2=sinh(1)

% Add the two equations: -(exp(1)+exp(-1))+2*C2=0=-2*C2=exp(1)+exp(-1)=C2=(exp(1)+exp(-
1))/2=cosh(1)

u_exact=-exp(x)+sinh(1)*x+cosh(1);

plot(x,u_exact, 'r—’, 'LineWidth’, 1, 'DisplayName’, "Exact Solution’);

title([’Chebyshev Spectral Collocation (N=/num2str(N), ’)’]);

xlabel(’x’);

ylabel("u(x)’);

legend (’show’);

grid on;

4.6.5 MATLAB Code to Solve the Second Example Using Cheby-

shev Collocation Method

% MATLAB code to solve d~2u/dx"2=exp(u) with u(-1)=u(1)=0
clear; clc; close all;

%% 1. Define the number of collocation points (N+1)

N = 20;

%% 2. Compute Chebyshev-Gauss-Lobatto (CGL) points

k = 0:N;

x = cos(pi*k/N)’;
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%% 3. Construct the second-order Chebyshev differentiation matrix (D2)
if N ==

D =0;

else

¢ = [2; ones(N-1,1); 2] .* (-1).”(0:N)’;

X = repmat(x, 1, N+1);

dX = X - X’;

D = (c*(1./c)’)./(dX + eye(N+1)); % First derivative matrix

D = D - diag(sum(D,2)); % Correcting the diagonal

end

D2 = D*D; % Second differentiation matrix

% 4. Set up the NONLINEAR system of equations

residual = @Q(U) bvp_residual(U, D2, N);

U_guess = zeros(N+1, 1);

%% 5. Solve the nonlinear system using fsolve

options = optimoptions(’fsolve’, 'Display’, ’iter’, "TolFun’, le-12);
% Call fsolve to find the root U of the residual function.

[U_ numerical, fval, exitflag] = fsolve(residual, U guess, options);
% Check for convergence

if exitflag <=0

error(’fsolve did not converge. Try a different initial guess or change solver options.’);
end

fprintf(*\nSolver converged successfully.\n’);

%% 6. Plot the solution

x_fine = linspace(-1, 1, 200)’;

u_fine = barycentric_interp(x, U numerical, x_fine);

figure;
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plot(x_fine, u_fine, ’b-’, "LineWidth’, 2, 'DisplayName’, ’Interpolated Numerical Solu-
tion’);

hold on;

plot(x, U_numerical, 'ro’, ’MarkerFaceColor’, 'r’; 'MarkerSize’, 6, 'DisplayName’, ’Col-
location Points’);

title([’Chebyshev Spectral Collocation for u" = exp(u) (N =, num2str(N), ’)’]);
xlabel(’x’, "FontSize’, 12);

ylabel(’u(x)’, "FontSize’, 12);

legend(’show’, "Location’, 'best’);

grid on;

box on;

%% Helper Functions

function F = bvp _residual(U, D2, N)

interior eqs = D2(2:N, :) * U - exp(U(2:N));

bel = U(1) - 0;

bc_negl = U(N+1) - 0;

F = [bcl; interior _eqs; be__negl];

end

function u_interp = barycentric_interp(x_nodes, u_nodes, x _eval)

N = length(x_nodes) - 1;

w = [0.5; ones(N-1, 1); 0.5] .* (-1).7(0:N)’;

numerator = zeros(size(x__eval));

denominator = zeros(size(x _eval));

for j = 1:length(x_nodes)

exact__match = abs(x_eval - x_nodes(j)) < le-12;

if any(exact match)

u_interp(exact _match) = u_nodes(j);
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end

non match = “exact match;

term = w(j) ./ (x_eval(non_match) - x_mnodes(j));

numerator(non _match) = numerator(non_match) + term * u_nodes(j);

denominator(non match) = denominator(non match) + term;

end

u_ interp(~ (denominator==0)) = numerator(~ (denominator==0)) ./ denominator(~ (denominator==0

end

4.7 Code MATLAB for the Fourth Chapter

4.7.1 Flower Pollination Algorithm

% %

% Flower pollenation algorithm (FPA), or flower algorithm %

% Programmed by Xin-She Yang @ May 2012 %

% %

%%% %% %% % %% %% % % % %% % % %% %% %6 % % %0 %% %6 % % %0 % %% % %0 % 0% %6 %0 % %% %6 %0 % %0 % %6 % % %0 %

% Notes: This demo program contains the very basic components of %
% the flower pollination algorithm (FPA), or flower algorithm (FA), %

% for single objective optimization. It usually works well for %

% unconstrained functions only. For functions/problems with %

% limits/bounds and constraints, constraint-handling techniques %

% should be implemented to deal with constrained problems properly. %
% %

% Citation details: %

%1)Xin-She Yang, Flower pollination algorithm for global optimization,%

% Unconventional Computation and Natural Computation, %
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% Lecture Notes in Computer Science, Vol. 7445, pp. 240-249 (2012). %
%2)X. S. Yang, M. Karamanoglu, X. S. He, Multi-objective flower %
% algorithm for optimization, Procedia in Computer Science, %

% vol. 18, pp. 861-868 (2013). %

%%0%% % %% % % %% % %% % % %% %0 %0 %0 %0 0 %0 %0 %0 %0 %0 %0 %0 %0 %0 %0 % %0 %0 %0 %0 %0 %0 %0 %0 %0 %0 %0 %0 %0 %0 %o %0 %0 %0 %o o
function [best,fmin,N iter|]=fpa_demo(para)

% Default parameters

if nargin<1,

para=[20 0.8];

end

n=para(1); % Population size, typically 10 to 25

p=para(2); % probabibility switch

% Tteration parameters

N _iter=2000; % Total number of iterations

% Dimension of the search variables

d=3;

Lb=-2*ones(1,d);

Ub=2%ones(1,d);

% Initialize the population/solutions

for i=1:n,

Sol(i,:)=Lb+(Ub-Lb).*rand(1,d);

Fitness(i)=Fun(Sol(i,:));

end

% Find the current best

[fmin,I]=min(Fitness);

best=Sol(I,:);

S=Sol;
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% Start the iterations — Flower Algorithm

for t=1:N_iter,

% Loop over all bats/solutions

for i=1:n,

% Pollens are carried by insects and thus can move in
% large scale, large distance.

% This L should replace by Levy flights

% Formula: x_i~{t+1}=x_i"t+ L (x_i"t-gbest)
if rand>p,

%% L=rand;

L=Levy(d);

dS=L.*(Sol(i,:)-best);

S(i,:)=Sol(i,:)+dS;

% Check if the simple limits/bounds are OK
S(i,:)=simplebounds(S(i,:),Lb,Ub);

% If not, then local pollenation of neighbor flowers
else

epsilon=rand;

% Find random flowers in the neighbourhood
JK=randperm(n);

% As they are random, the first two entries also random
% If the flower are the same or similar species, then
% they can be pollenated, otherwise, no action.

% Formula: x_i~{t+1}+epsilon*(x_j t-x_k"t)
S(i,:)=S(i,:)+epsilon™(Sol(JK(1),:)-Sol(JK(2),:));

% Check if the simple limits/bounds are OK
S(i,:)=simplebounds(S(i,:),Lb,Ub);
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end

% Evaluate new solutions

Fnew=Fun(S(i,:));

% If fitness improves (better solutions found), update then
if (Fnew<=Fitness(i)),

Sol(i,:)=S(i,:);

Fitness(i)=Fnew;

end

% Update the current global best

if Fnew<=fmin,

best=S(i,:) ;

fmin=Fnew ;

end

end

% Display results every 100 iterations

if round(t/100)==t/100,

best

fmin

end

end

% Output/display

disp(['Total number of evaluations: ’,num2str(N _iter*n)]);
disp(['Best solution="num2str(best),” fmin=",num?2str(fmin)]|);
% Application of simple constraints

function s=simplebounds(s,Lb,Ub)

% Apply the lower bound

ns tmp=s;
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I=ns tmp<Lb;

ns__tmp(I)=Lb(I);

% Apply the upper bounds

J=ns_tmp>Ub;

ns_tmp(J)=Ub(J);

% Update this new move

s=ns_tmp;

% Draw n Levy flight sample

function L=Levy(d)

% Levy exponent and coefficient

% For details, see Chapter 11 of the following book:

% Xin-She Yang, Nature-Inspired Optimization Algorithms, Elsevier, (2014).
beta=3/2;
sigma=(gamma(1+beta)*sin(pi*beta/2)/(gamma((1+beta)/2)*beta*2"~ ((beta-1)/2))) "~ (1/beta);
u=randn(1,d)*sigma;

v=randn(1,d);

step=u./abs(v).” (1/beta);

L=0.01*step;

% Objective function and here we used Rosenbrock’s 3D function

function z=Fun(u)

z=(1-u(1))~24+100*(u(2)-u(1)~2)~24+100*(u(3)-u(2)~2)"2;
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