
People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research

University of Mohamed Khider - BISKRA
Faculty of Exact Sciences, Natural and Life Sciences

Computer Science Department

Order Number:
Serial Number:

Thesis
In Candidacy for the Degree of

Doctor 3rd Cycle in Computer Science
Option: Artificial Intelligence

Title

Formal Modeling and Verification of
Reconfigurable Systems

By:
Houimli Manel

Defended on 02 November 2025, before a jury composed of:

Chairman: Prof. Bennoui Hammadi, Professor, Biskra University, Algeria.

Supervisor: Prof. Kahloul Laid, Professor, Biskra University, Algeria.

Co-Supervisor: Prof. Khalgui Mohamed, Professor, GIU-Berlin University, Germany.

Examiner: Prof. Chaoui Allaoua, Professor, Constantine 2 University, Algeria.

Examiner: Dr. Tigane Samir, MCA, Biskra University, Algeria.

 ملخص
تطلب تعقيدات الأنظمة الحديثة وطبيعتها الديناميكية منهجيات متقدمة لضمان تكيفها وكفاءتها. ت

وتعد الأنظمة القابلة لإعادة التكوين، التي تتميز بقدرتها على التكيف بسرعة مع المتطلبات المتغيرة،

العديد من جهود البحث على استخدام من أكبر التحديات في النمذجة والتحقق والتحسين. وقد ركزت

 .الأساليب الرسمية لمواجهة هذه التحديات، بهدف تعزيز موثوقية وأداء هذه الأنظمة في تطبيقات متنوعة

، (PNs) الكلاسيكية شبكات بيتري و Automataلقد كانت الأساليب الرسمية التقليدية، مثل

التكوين. لإعادة القابلة الأنظمة تعقيدات على تطبيقها عند تعاني لكنها والتحقق، النمذجة في فعالة

فالتغييرات الهيكلية المتكررة تتطلب تقنيات تحقق تأخذ في الاعتبار الانتقالات الديناميكية. وللتعامل مع

بلية لإعادة التكوين، مما أدى إلى تطوير هذه المشكلة، قام الباحثون بتوسيع الأساليب الرسمية لتشمل القا

الاحتمالية، التوسعات model checking ،Automataتقنيات جديدة للنمذجة والتحقق)مثل توسعات

ب بيتريالخاصة ا شبكات القابلية لإعادة الاحتمالي المعتمدة على والمنطق تم PCTLلتكوين، والتي)

بعيدًا عن تصميمها خصيصًا لهذه الأنظمة. وفي الوقت نفسه، تم استكشاف تقنيات التحسين بشكل واسع

التحقق الرسمي لتحديد التكوينات المثلى في مراحل إعادة التكوين المختلفة. فعلى سبيل المثال، تعمل

الطرق مثل الخوارزميات الجينية والبحث الاسترشادي على تحسين تخصيص الموارد والأداء، لكنها

وة الضوء على الحاجة إلى تفتقر إلى الضمانات الرسمية بالنسبة للصحة والسلامة. وتسلط هذه الفج

منهجيات تجمع بين التحسين والتحقق الرسمي لضمان الكفاءة والموثوقية في الأنظمة القابلة لإعادة

 .التكوين

مبتكرين نهجين نقدم الأطروحة، هذه لإعادة لفي القابلة الأنظمة وتحسين والتحقق لنمذجة

لشبكات MAC التكوين. تساهم المساهمة الأولى بتقديم إطار قوي لنمذجة بروتوكولات الاتصال في طبقة

المتنقلة اللاسلكية تطبيقات MQTT وبروتوكول (MWSNs) الاستشعار في إنترنت المستخدم

لتحديد (PCTL) منطق الاحتماليالالاحتمالية للنمذجة و Automataمن خلال استخدام .(IoT)للأشياء

للتحقق من النماذج بشكل دقيق. لا تحسن هذه الطريقة موثوقية UPPAAL SMC الخصائص، نستخدم

الثقة هذه البروتوكولات فحسب، بل توفر أيضًا طريقة منهجية للتحقق من الخصائص الحرجة، مما يعزز

 .في تطبيقات الإنترنت للأشياء

المساهمة الثانية والرئيسية تقترح صيغة جديدة تسمى شبكات الكائنات القابلة لإعادة التكوين

نمذجة والتحقق من الهياكل الديناميكية للأنظمة القابلة لإعادة ال، والتي تمكّن من (Gen-RONs)الجينية

التكوين بينما تعمل على تحسينها. من خلال دمج النمذجة الرسمية والتحقق والتحسين في إطار متكامل،

 خاصة بالقواعدنقوم بتحديد عمليات الطفرة والتقاطع للخوارزميات الجينية من خلال تفعيل الانتقالات ال

في شبكات الكائنات القابلة لإعادة التكوين. تقدم هذه الطريقة المبتكرة تحسناً كبيرًا في قدرات الأنظمة

القابلة لإعادة التكوين، حيث توفر حلاً شاملاً يعالج تعقيدات القابلية لإعادة التكوين الديناميكي جنباً إلى

 .جنب مع استراتيجيات التحسين الفعالة

المفتاحية التحسين، :الكلمات الرسمي، التحقق الرسمية، النمذجة التكوين، القابلة لإعادة الأنظمة

 الخوارزميات الوراثية، نظرية تحويلات الرسوم البيانية.

Abstract

The increasing complexity and dynamic nature of modern systems require advanced ap-
proaches to ensure their adaptability and efficiency. Reconfigurable systems, characterized by
their ability to rapidly adjust to changing requirements, present significant challenges in mod-
eling, verification, and optimization. Numerous research efforts have focused on employing
formal methods to tackle these challenges, aiming to enhance the reliability and performance
of these systems in diverse applications.

Traditional formal methods, such as automata and classical Petri nets (PNs), have been
effective for modeling and verification but struggle with the complexity of reconfigurable sys-
tems. Frequent structural changes require verification techniques that account for dynamic tran-
sitions. To address this, research has extended formal methods to incorporate reconfigurability,
leading to new modeling and verification techniques (such as model checking extensions, prob-
abilistic automata, reconfigurability-based Petri nets extensions and Probabilistic Computation
Tree Logic) tailored to these systems. Meanwhile, optimization techniques have been widely
explored independently of formal verification to determine optimal configurations at different
reconfiguration stages. Methods like genetic algorithms and heuristic search optimize resource
allocation and performance but lack formal guarantees of correctness and safety. This gap high-
lights the need for approaches that combine optimization and formal verification to ensure both
efficiency and reliability in reconfigurable systems.

In this thesis, we present two innovative approaches for modeling, verifying, and optimiz-
ing reconfigurable systems. The first contribution introduces a robust framework for modeling
communication protocols at the Medium Access Control (MAC) layer of mobile wireless sensor
networks (MWSNs) and the MQTT protocol used in IoT applications. By utilizing probabilis-
tic automata for modeling and PCTL for property specification, we employ UPPAAL SMC for
rigorous model checking. This approach not only enhances the reliability of these protocols but
also provides a systematic method for verifying critical properties, ultimately fostering trust in
IoT applications.

The second and major contribution proposes a novel formalism called Genetic Reconfig-
urable Object Nets (Gen-RONs), which enables the modeling and verification of the dynamic
structures of reconfigurable systems while optimizing them. By integrating formal modeling,
verification, and optimization into a cohesive framework, we define mutation and crossover op-
erations of genetic algorithms through the formal firing of rule transitions in Reconfigurable
Object Nets. This innovative approach significantly advances the capabilities of reconfigurable
systems, offering a comprehensive solution that addresses the complexities of dynamic recon-
figurability alongside effective optimization strategies.

Key words: Reconfigurable Systems, Formal Modeling, Formal Verification, Optimization,
Genetic Algorithms, Graph Transformation Theory.

Résumé

La complexité croissante et la nature dynamique des systèmes modernes exigent des ap-
proches avancées pour garantir leur adaptabilité et leur efficacité. Les systèmes reconfigurables,
caractérisés par leur capacité à s’ajuster rapidement aux exigences changeantes, posent des défis
importants en matière de modélisation, de vérification et d’optimisation. De nombreux travaux
de recherche se sont concentrés sur l’utilisation des méthodes formelles pour relever ces défis,
dans le but d’améliorer la fiabilité et les performances de ces systèmes dans diverses applica-
tions.

Les méthodes formelles traditionnelles, telles que les automates et les réseaux de Petri clas-
siques (PNs), ont été efficaces pour la modélisation et la vérification, mais rencontrent des diffi-
cultés face à la complexité des systèmes reconfigurables. Les changements structurels fréquents
nécessitent des techniques de vérification qui prennent en compte les transitions dynamiques.
Pour répondre à cela, des recherches ont élargi les méthodes formelles pour intégrer la re-
configurabilité, ce qui a conduit à de nouvelles techniques de modélisation et de vérification
(telles que les extensions de la vérification de modèles, les automates probabilistes, les exten-
sions des réseaux de Petri basés sur la reconfigurabilité et la logique probabiliste des arbres
de calcul) adaptées à ces systèmes. Parallèlement, des techniques d’optimisation ont été large-
ment explorées indépendamment de la vérification formelle pour déterminer les configurations
optimales à différents stades de reconfiguration. Des méthodes comme les algorithmes géné-
tiques et la recherche heuristique optimisent l’allocation des ressources et les performances,
mais manquent de garanties formelles en matière de correction et de sécurité. Cette lacune
met en évidence la nécessité d’approches combinant optimisation et vérification formelle pour
assurer à la fois l’efficacité et la fiabilité des systèmes reconfigurables.

Dans cette thèse, nous présentons deux approches innovantes pour modéliser, vérifier et op-
timiser les systèmes reconfigurables. La première contribution introduit un cadre robuste pour
la modélisation des protocoles de communication au niveau de la couche MAC des réseaux de
capteurs sans fil mobiles (MWSNs) et du protocole MQTT utilisé dans les applications IoT. En
utilisant les automates probabilistes pour la modélisation et la logique des arbres de calcul prob-
abilistes (PCTL) pour la spécification des propriétés, nous utilisons UPPAAL SMC pour une
vérification rigoureuse des modèles. Cette approche améliore non seulement la fiabilité de ces
protocoles, mais elle fournit également une méthode systématique pour vérifier les propriétés
critiques, favorisant ainsi la confiance dans les applications IoT.

La deuxième et principale contribution propose un formalisme novateur appelé Réseaux
d’Objets Reconfigurables Génétiques (Gen-RONs), qui permet de modéliser et de vérifier les
structures dynamiques des systèmes reconfigurables tout en les optimisant. En intégrant la mod-
élisation formelle, la vérification et l’optimisation dans un cadre cohérent, nous définissons les
opérations de mutation et de croisement des algorithmes génétiques par la transition formelle
des règles dans les Réseaux d’Objets Reconfigurables. Cette approche innovante améliore de
manière significative les capacités des systèmes reconfigurables, offrant une solution complète
qui aborde les complexités de la reconfigurabilité dynamique tout en offrant des stratégies

d’optimisation efficaces.

Mots-clés : Systèmes Reconfigurables, Modélisation Formelle, Vérification Formelle, Opti-
misation, Algorithmes Génétiques, Théorie de la Transformation de Graphes.

Dedication

This thesis is dedicated to ...

To my beloved father, whose memory and wisdom continue to inspire me every day.

To my dear mother, whose tireless love and sacrifices have been my greatest source of
strength.

To my husband, whose unwavering support and encouragement have carried me through
this journey.

To my children, Adem, Taha, and Noha, whose joy and love give me purpose every day.

To my siblings, whose love and support mean the world to me.

And to everyone who has helped and supported me along the way, your kindness has
made this possible.

Acknowledgements

It is with profound gratitude that I acknowledge the invaluable support and guidance I have
received throughout this journey. I extend my deepest thanks to my supervisor, Pr. Kahloul
Laid, whose unwavering dedication and expertise have been essential to the completion of this
work. His readiness to assist and his insightful advice have been a constant source of inspiration
and strength.

I am also deeply grateful to my co-supervisor, Pr. Khalgui Mohammed for his significant
contributions, particularly in shaping the article. His guidance has greatly enhanced the quality
of my research and has been pivotal in this academic endeavor.

I am honored by the privilege of having my thesis evaluated by the esteemed members of
the jury, Pr. Bennoui Hammadi, Pr. Chaoui Allaoua, and Dr. Samir Tigane. Their acceptance
to examine this work is something I deeply appreciate, and I am grateful for their time and
consideration.

Lastly, I wish to express my sincere thanks to all my teachers of the department.

Contents

General Introduction 1

1 Comprehensive Overview of Reconfigurable Systems 6
1.1 Introduction . 7
1.2 Reconfigurable Systems (RSs) . 7

1.2.1 Characteristics of Reconfigurable Systems 8
1.2.2 Reconfigurability and its Underlying Principles 8
1.2.3 Reconfigurability vs. Flexibility . 9

1.3 Classification of Reconfigurable Systems . 10
1.3.1 Timing of Reconfiguration . 10
1.3.2 Control Mechanism . 10
1.3.3 Levels of Abstraction . 10

1.4 Reconfigurable Systems across Various Domains 11
1.5 Techniques and Methodologies for Reconfiguration 12
1.6 Future Challenges in Reconfigurable Systems 13
1.7 Reconfigurability in Networking . 13

1.7.1 Mobile Wireless Sensor Networks (MWSNs) 14
1.7.2 Internet of Things and Reconfigurability 17

1.8 Reconfigurable Manufacturing Systems (RMSs) 19
1.8.1 Definition of Reconfigurable Manufacturing Systems (RMSs) 19
1.8.2 RMS Key Characteristics . 20
1.8.3 Types of Reconfigurable Machines in RMS 21
1.8.4 Performance Objectives in RMS Optimization 22

1.9 Conclusion . 23

2 Formal Methods and Genetic Algorithms 24
2.1 Introduction . 25
2.2 Formal Methods . 25

2.2.1 Formal Methods Overview . 26
2.2.2 Formal Verification Using Model Checking 27
2.2.3 Properties Specification Formalisms 29
2.2.4 Formal Modeling Methods . 33

2.3 Introduction to Genetic Algorithms . 46
2.3.1 Fundamentals of Genetic Algorithms 46
2.3.2 Challenges in Applying GAs to RSs 49
2.3.3 GAs Variants . 50
2.3.4 Multi-Objective Genetic Algorithms (MOGAs) 51

2.4 Conclusion . 54

CONTENTS

3 Model Checking for Formal Modeling and Verification of Reconfigurable Systems:
Protocols Performance Evaluation 55
3.1 Introduction . 56

3.1.1 Context of the Work . 56
3.2 Formal Verification of Collision Free Mobility Adaptive Protocol for Wireless

Sensor Networks . 58
3.2.1 Formal Modeling Using TA and PTA 59
3.2.2 Qualitative Verification . 63
3.2.3 Quantitative Verification . 65
3.2.4 Discussion . 66

3.3 Formal specification, verification and evaluation of the MQTT protocol in the
Internet of Things . 67
3.3.1 Structure of MQTT 3.1.1 packets . 68
3.3.2 Informal Description of the MQTT 3.1.1 69
3.3.3 Formal Modeling and Verification of MQTT 3.1.1 70
3.3.4 Formal Verification of MQTT 3.1.1 70
3.3.5 Discussion . 74

3.4 Conclusion . 75

4 On Formal Modeling, Analysis and Optimization of Reconfigurable Manufactur-
ing Systems (RMSs) 76
4.1 Introduction . 77
4.2 Context of the Work . 77
4.3 Basic concepts for modeling and optimization 81

4.3.1 Concepts for RMSs’ modeling . 81
4.3.2 Concepts for RMSs’ optimization . 83

4.4 Proposed approach . 85
4.4.1 Motivation . 85
4.4.2 Problem Description . 86
4.4.3 Problem Formulation . 86
4.4.4 Genetic Reconfigurable Object Nets (Gen-RONs) 90
4.4.5 Properties Preservation through Crossover and Mutation Operators . . . 94

4.5 Gen-RONs based Genetic Algorithm . 95
4.5.1 Gen-RONs based NSGA-II principles 95
4.5.2 Entire Optimization Time Complexity 96

4.6 Experimentation . 99
4.6.1 RMS Description . 99
4.6.2 System Modeling Using Gen-RONs 99
4.6.3 Example of a Configuration L-P/T Net 102
4.6.4 Performance Evaluation . 103
4.6.5 Discussion . 112

4.7 Conclusion . 113

General Conclusion 114

Bibliography 117

List of Figures

1.1 Classification of reconfigurable systems . 11
1.2 A mobile wireless sensor network . 14

2.1 Model checking procedure. 28
2.2 Example of a timed automaton. 34
2.3 Population, chromosome and gene. 46
2.4 Workflow of the genetic algorithm. 49

3.1 Interaction during sending a frame -the running phase-. 60
3.2 Node model in the association phase. 61
3.3 Static node model in the running phase. 62
3.4 Mobile node model in the running phase. 62
3.5 Coordinator model . 63
3.6 Probabilistic model of the medium. 64
3.7 Probability of finishing the association depending on number of nodes with

runtime <= 104. 65
3.8 Probability of finishing the association depending on number of nodes with

runtime <= 105 . 65
3.9 Probability of receiving Ack deppending on number of nodes. 66
3.10 Probability of having collision depending on number of static and mobile nodes. 66
3.11 Probability of having collision. 66
3.12 Sequence diagram of MQTT 3.1.1 . 71
3.13 Model of the broker . 71
3.14 Models of (a) Subscription, (b) Unsubscription and (c) Connexion. 72
3.15 Model of the subscriber. 72
3.16 Model of the publisher. 72
3.17 Cumultative probability of a successful publication depending on the number

of nodes. 73
3.18 Cumulative probability of publisher disconnection with the successful reception

of the will from subscribers. 73
3.19 Probability of having active publishers and subscribers. 74

4.1 RON model of a simple system. 82
4.2 Morphisms on P/T nets. 83
4.3 The L-P/T gene of the operation 1. 87
4.4 An abstract L-P/T net of the example. 87
4.5 The L-P/T net of machine M1. 88
4.6 Double Pushout. 91
4.7 The L-P/T chromosome N1. 91

LIST OF FIGURES

4.8 The L-P/T chromosome N2 after the mutation of N1. 91
4.9 The production rule of the DPO1. 92
4.10 The injective morphism from L to the L-P/T chromosome N1. 92
4.11 The injective morphism from R to the "L-P/T chromosome after mutation" N2. 92
4.12 The context of the DPO1. 92
4.13 Union of L-P/T nets. 93
4.14 Two L-P/T chromosomes N1 and N2. 94
4.15 The L-P/T offspring chromosomes N3 and N4. 94
4.16 The first crossover produces the first offspring N3: N3 = N ′1⊗N ′2 where (a) N3

is DPO of N1 and (b) N3 is DPO of N2 . 94
4.17 An abstract L-P/T net of an initial configuration of the RMS. 100
4.18 The L-P/T net of machine M1. 102
4.19 The L-P/T net of machine M3. 102
4.20 The L-P/T net of machine M2. 102
4.21 True Pareto in “Gen-RONs based NSGA-II” vs. NSGA-II. 103
4.22 The optimal Pareto fronts (generation number 50) for (a) NSGA-II and (b) Gen-

RONs based NSGA-II. 106
4.23 The mean of S/N ratio plots for each level of Gen-RONs based NSGA-II pa-

rameters. 107
4.24 The mean of S/N ratio plots for each level of NSGA-II parameters. 108

List of Tables

1.1 Comparative table: Reconfigurability vs. Flexibility. 9

3.1 Satisfaction results of qualitative properties. 64
3.2 Results of some quantitative properties. 65
3.3 Satisfaction results of qualitative properties. 73
3.4 Results of some quantitative properties. 73

4.1 Notation used in RMS optimization. 89
4.2 Matrix of the operations precedence relationship of the product three parts and

Tools required for each part to be manufactured. 100
4.3 Matrix of TADs required for each operation. 101
4.4 Matrix of configurations TADs and Tools available for each machine. 101
4.6 Level values of the studied parameters. 104
4.7 Taguchi’s orthogonal arrays L9. 104
4.8 NSGAIIGen−RONs and NSGA-II results of experiment 1. 105
4.9 NSGAIIGen−RONs and NSGA-II results of expirement 9. 105
4.10 Gen-RONs based NSGA-II metrics results of the first run. 106
4.13 Gen-RONs based NSGA-II S/N ratio values for parameters by levels. 107
4.14 NSGA-II S/N ratio values for parameters by levels. 107
4.15 Tuned parameters for both algorithms. 108
4.5 Required connections to model Conf0 . 109
4.11 Experiments result of the Gen-RONs based NSGA-II. 110
4.12 Experiments result of the NSGA-II. 110
4.16 Comparative qualitative study. 111

GENERAL INTRODUCTION

1

General Introduction

Context and motivation:

In recent years, reconfigurable systems have gained prominence across various fields, in-
cluding telecommunications, manufacturing [1], and embedded systems [2]. These systems
dynamically adapt their structure and functionality in response to changing conditions or re-
quirements. This adaptability allows for enhanced performance, resource efficiency, and re-
sponsiveness to user demands [3]. This trend reflects the broader shift toward intelligent and
autonomous systems capable of reacting to a complex and rapidly evolving technological en-
vironment. With the increasing integration of cyber–physical architectures, reconfigurable sys-
tems now form the backbone of modern automation, robotics, and large-scale distributed ap-
plications [4]. However, as the complexity of these systems increases, so do the challenges
associated with their design, implementation, verification and optimization. Understanding and
addressing these challenges is essential for ensuring that reconfigurable systems operate reliably
and efficiently in real-world scenarios. The growing importance of reconfigurable systems is
tightly linked to the need for resilience and adaptivity in modern technological infrastructures.
Systems are now expected not only to perform correctly under nominal conditions but also to
maintain functionality in the presence of uncertainties, failures, and fluctuating workloads. As
a result, reconfiguration has evolved from a desirable feature to a fundamental requirement in
many applications, especially those demanding high levels of reliability and autonomy.

One of the primary challenges in managing reconfigurable systems is their inherent dynamic
nature which introduces uncertainties and unpredictabilities that complicate both verification
and optimization [5]. Ensuring that a system remains correct and efficient across all possible
configurations requires rigorous verification techniques and effective optimization strategies.
Furthermore, the interactions among various components in a reconfigurable system can lead to
emergent behaviors that are difficult to predict, raising concerns about reliability and robustness.
These challenges become even more pronounced when systems exhibit concurrent behaviors,
distributed coordination, and time-dependent constraints. Even small structural changes can
propagate and influence global system behavior, making informal reasoning insufficient and
potentially dangerous in critical applications.

In addition to dynamic behaviors, other sources of complexity arise from architectural evo-
lution, real-time constraints, and heterogeneous components operating concurrently. As sys-
tems evolve, new configurations may introduce interactions that were not originally anticipated,
making it more difficult to guarantee correctness. Such challenges highlight the importance
of adopting techniques capable of tracking structural changes, reasoning formally about their
effects, and ensuring that essential properties are preserved throughout the reconfiguration pro-
cess.

Additionally, the increasing scale of reconfigurable systems exacerbates these issues, lead-
ing to an exponential growth in the state space that must be analyzed. Traditional testing
methods often fall short in thoroughly evaluating such vast and complex systems, resulting
in undetected errors and vulnerabilities. Consequently, there is a pressing need for systematic
approaches that can rigorously model and verify the behavior of these systems, ensuring their
correctness and efficiency before deployment [6]. As systems grow in scale, the limitations
of simulation-based or empirical validation become increasingly evident, highlighting the need
for scalable mathematical tools supported by automation. However, while formal methods pro-
vide strong verification guarantees, they do not inherently address how to determine the best
reconfigurations strategies, which is where optimization techniques become essential.

Formal methods [7] provide mathematically rigorous approach for specifying and verifying
system behavior, ensuring compliance with safety, functional, and performance requirements.

2

General Introduction

Techniques such as model checking [8] and theorem proving [9] can uncover subtle errors and
confirm that systems meet their specified requirements. These tools enable a systematic ex-
ploration of system behaviors, often revealing corner cases that manual analysis would fail to
detect. They also foster a deeper understanding of system dynamics by allowing precise rea-
soning about constraints, dependencies, and execution scenarios. Despite their proven benefits,
the application of formal methods to reconfigurable systems has been limited, primarily due
to a lack of tailored methodologies that adequately address the unique characteristics of these
systems.

Optimization plays a vital role in improving the adaptability and efficiency of reconfig-
urable systems. Techniques such as genetic algorithms [10], evolutionary strategies [11], and
multi-objective optimization [12] have been widely used to determine optimal configurations
for resource allocation, scheduling, and performance tuning. In reconfigurable manufacturing
systems (RMSs), for example, selecting the best reconfiguration minimizes downtime and en-
hances productivity. Optimization is therefore indispensable when dealing with vast design
spaces and conflicting objectives, especially in industrial settings where performance, cost, and
reliability must be jointly considered. However, optimization alone does not provide formal
guarantees about system correctness, making it necessary to integrate it with formal verification
methods.

Despite the progress made in literature, many challenges remain unaddressed when dealing
with reconfigurable systems. This leads to the questions that define the problematic of this
research.

• How can we formally model and verify such systems especially the reconfiguration pro-
cess itself?

• How can we verify correctness across a potentially large number of configurations while
avoiding state-space explosion?

• What guarantees can be provided to ensure that essential properties such as safety, live-
ness, and performance are preserved after each reconfiguration?

• And finally, how can optimal configurations be identified efficiently while maintaining
rigorous correctness guarantees?

These questions constitute the central problematic of this thesis and highlight the need for a
unified methodology combining formal verification with effective optimization strategies.

This thesis aims to bridge the gap between formal methods and optimization by integrat-
ing formal modeling, verification, and optimization techniques into a unified framework for
reconfigurable systems. Our objective is to develop robust methodologies that address reconfig-
uration while ensuring both correctness and efficiency. We seek also to establish a framework
that not only enhances the reliability of reconfigurable systems, but also fosters their acceptance
and implementation across various sectors.

To achieve these goals, we have identified several key objectives:

• to formulate a comprehensive modeling approach for reconfigurable systems that captures
their dynamic behaviors and interactions,

• to develop verification techniques that ensure system correctness across various configu-
rations,

3

General Introduction

• to enhance existing optimization solutions for these systems through formal methods,
proposing new formalisms that improve performance and efficiency, and

• to provide insights into the integration of formal methods in the design process, promoting
their adoption in industry practices.

Main contributions:

This thesis presents a comprehensive study of formal modeling and verification techniques
tailored to the complexities of reconfigurable systems. The main contributions of this work are
summarized as follows:

• Advanced Modeling Framework Using UPPAAL SMC for Mobile WSNs: Development
of a robust modeling approach employing UPPAAL SMC and probabilistic automata to
capture the dynamic behaviors and intricate interactions within mobile wireless sensor
networks (MWSNs). This framework enables accurate representations of real-world sce-
narios, enhancing the reliability and performance of communication protocols.

• Comprehensive Verification Techniques with PCTL for IoT Protocols: Introduction
of innovative verification methodologies that utilize probabilistic computation tree logic
(PCTL) to ensure the correctness of IoT protocols, specifically focusing on the MQTT
protocol. These techniques leverage formal methods to systematically identify and miti-
gate potential errors, significantly improving the trustworthiness of IoT applications.

• Novel Optimization Strategies with Genetic Algorithms for Reconfigurable Manufac-
turing Systems: Proposal of enhancements to the NSGA-II genetic algorithm by integrat-
ing formal methods techniques. This contribution allows for more effective optimization
solutions in reconfigurable manufacturing systems, improving performance metrics and
facilitating better decision-making in system design and operation.

• Integration of RONs for Reconfigurable Manufacturing Systems: Establishment of a
formal modeling framework utilizing Reconfigurable Object Nets (RONs) to effectively
model and verify reconfigurable manufacturing systems. This approach not only ad-
dresses the challenges of complexity and dynamic behavior but also provides a powerful
tool for analysis and optimization.

Thesis structure:

The thesis is structured as follows:

• Chapter 1 provides a comprehensive overview of reconfigurable systems, detailing their
definition, significance, and various applications. It explores the inherent challenges these
systems face, such as complexity, reliability, and security concerns, while also reviewing
current methodologies and frameworks used in the field.

• Chapter 2 is divided into two main parts. Part 1 covers the fundamental principles and
importance of formal verification techniques, establishing the foundational knowledge
required for understanding their application in reconfigurable systems. Part 2 delves into

4

General Introduction

genetic algorithms, their fundamentals, variants and multiobjective optimization solu-
tions.

• Chapter 3 details in two parts the first contribution of the thesis, which involves using
probabilistic timed automata for the formal modeling of mobile wireless sensor networks
(MWSNs) and IoT protocols. It explains the application of UPPAAL SMC and PCTL for
performance evaluation, presenting case studies and analyzing the obtained results.

• Chapter 4 focuses on the second major contribution, this chapter discusses the formal
modeling, analysis and optimization of reconfigurable manufacturing systems using the
high level Petri nets: Reconfigurable Object Nets (RONs). It also addresses optimization
strategies enhanced by integrating RONs constructors in NSGA-II, detailing the method-
ology, results, and implications for practical applications.

• General conclusion concludes the thesis, summarises the contributions and discusses is-
sues that are open for future research.

5

Chapter 1

Comprehensive Overview of
Reconfigurable Systems

6

Chapter 1 Comprehensive Overview of Reconfigurable Systems

1.1 Introduction

In the rapidly evolving landscape of modern technology, the need for systems to adapt to
dynamic environments has become more pronounced. From telecommunications and embed-
ded systems to robotics and cloud computing, the demand for flexibility and adaptability in both
hardware and software is crucial for achieving optimized performance, cost-efficiency, and scal-
ability. Traditional static systems often fail to meet the demands of these fast-paced, variable
environments, where constant reconfigurations are necessary to maintain efficiency, respond to
failures, or upgrade functionality. As a result, the concept of flexibility in system design has
become a pivotal factor in engineering solutions that can evolve in real-time.

This drive for adaptability has inspired a shift towards systems that can be reconfigured on
demand, allowing them to evolve and self-optimize according to changing requirements. The
ability to modify a system’s structure, functionality, or behavior without extensive redesign or
manual intervention is invaluable across numerous domains. In fields like aerospace, defense,
automotive, and IoT, such capabilities lead to more resilient, efficient, and long-lived systems.
Systems that exhibit reconfigurability can adjust their internal configurations, resource alloca-
tion, or operational modes based on environmental factors, system status, or external directives,
offering a powerful tool to enhance performance and reduce operational costs.

The evolution of reconfigurable systems, however, brings with it several challenges, particu-
larly in maintaining system reliability, performance, and security as configurations change. The
increasing complexity of these systems requires novel approaches for managing their reconfig-
urability and ensuring that they operate as intended across various contexts and applications.

This chapter delves into the concept of reconfigurability, exploring why it is increasingly in-
dispensable in modern systems. We examine the various ways in which reconfigurability man-
ifests in different domains, highlighting its role in fostering innovation, efficiency, and adapt-
ability. The remainder of this chapter starts with defining reconfigurable systems in detail in
Section 1.2 and outline their key characteristics and applications, setting the stage for a deeper
discussion on three reconfigurable systems which are: mobile sensor networks (MWSNs) in
Section 1.7.1, Internet of Things (IoT) in Section 1.7.2, and reconfigurable manufacturing sys-
tems (RMSs) in Section 1.8.

1.2 Reconfigurable Systems (RSs)

Reconfigurable systems are systems designed to adapt dynamically by modifying their con-
figuration, structure, or behavior in response to changing tasks, environments, or operational
conditions. Unlike static systems, which are fixed in their design and function, reconfigurable
systems incorporate mechanisms that allow for on-the-fly adjustments, enabling them to main-
tain or enhance their performance without requiring downtime or complete redesign [4][3].

Reconfigurability centers around the ability of a system to transition between multiple con-
figurations during its operational lifecycle. According to [4], this concept is grounded in mod-
ularity and scalability, where individual system components or subsystems are designed to be
easily interchangeable or adjustable. This modularity enables targeted changes to specific parts
of the system without disrupting its overall functionality, a feature that is critical in domains
like manufacturing, aerospace, and telecommunications.

The authors in [3] expand on this by emphasizing the system’s ability to respond to real-
time stimuli, whether these are environmental changes, workload variations, or system failures.
For example, reconfigurable manufacturing systems dynamically alter their production setups

7

Chapter 1 Comprehensive Overview of Reconfigurable Systems

to accommodate different product designs, while reconfigurable network routers adjust routing
protocols to optimize data traffic.

1.2.1 Characteristics of Reconfigurable Systems
Several defining characteristics set reconfigurable systems apart from other adaptive or flex-

ible systems [13][14] [4]:

• Modularity: The design of reconfigurable systems emphasizes modular components,
each capable of independent modification or replacement. This modularity supports scal-
ability and ease of maintenance, as only specific modules need adjustment during recon-
figuration.

• Adaptability: Reconfigurable systems dynamically adapt their behavior to align with
changing operational demands. For instance, an unmanned aerial vehicle (UAV) might
alter its flight mode to optimize fuel efficiency under varying atmospheric conditions.

• Self-Optimization: These systems are equipped with mechanisms to reallocate resources
and optimize their performance under different workloads. A reconfigurable cloud com-
puting platform, for instance, adjusts its computational resources to balance energy effi-
ciency and processing speed.

• Fault Tolerance and Self-Healing: Many reconfigurable systems integrate fault detection
and recovery mechanisms, allowing them to reconfigure around failures. For example, in
wireless sensor networks, reconfigurable nodes reroute data pathways to maintain net-
work integrity despite individual node failures.

• Real-Time Operation: Reconfigurable systems support dynamic reconfiguration during
operation, enabling seamless transitions without downtime. This capability is particularly
important in mission-critical applications such as avionics or industrial automation.

1.2.2 Reconfigurability and its Underlying Principles
The principles of reconfigurability provide a framework for understanding its role in system

design [14]:

• Modularity and scalability: The ability to add, remove, or replace modules ensures that
systems remain versatile and future-proof. Modular designs are particularly useful in in-
dustries like telecommunications, where network components must be frequently updated
to meet new standards.

• Behavioral adaptation: Beyond physical changes, reconfigurable systems also adjust their
behavior. For instance, a smart thermostat alters its temperature control algorithms based
on user habits and external weather patterns, demonstrating logical reconfigurability.

• Incremental upgradability: Unlike static systems that require complete redesigns for up-
grades, reconfigurable systems allow for incremental modifications, extending their life-
cycle and reducing costs.

• Optimization of resources: By reallocating resources dynamically, reconfigurable sys-
tems ensure efficient operation, even under constrained conditions. For example, IoT de-
vices reconfigure their communication protocols to conserve energy during low-battery
scenarios.

8

Chapter 1 Comprehensive Overview of Reconfigurable Systems

1.2.3 Reconfigurability vs. Flexibility
While flexibility refers to a system’s ability to a variety of tasks or conditions, reconfig-

urability relates to the mechanisms that allow a system to change its configuration or structure
to meet these needs [15]. As described in [4], flexibility is the outcome or end goal, whereas
reconfigurability provides the means or capability to achieve that goal. For example:

A flexible robotic arm might be programmed to perform multiple tasks like assembly or
welding. A reconfigurable robotic arm, on the other hand, can alter its physical structure (e.g.,
by switching tools) or software to take on entirely new tasks beyond its initial programming.

This distinction underscores the importance of reconfigurability as the enabler that allows
flexible systems to handle high variability and unpredictability in different environments. Ta-
ble 1.1 illustrates various aspects of the comparison between reconfigurability and flexibility
according to [4][15].

Table 1.1: Comparative table: Reconfigurability vs. Flexibility.
Aspect Reconfigurability Flexibility
Scope Limited to specific Broad adaptability across

configurations. multiple dimensions.
Reversibility Changes are reversible. Changes may not be reversible.

Purpose Focused on achieving Focused on long-term
and Goals predefined goals. adaptability.
Operational Limited set of Broad and unbounded
Scope achievable configurations. range of adaptations.
Focus Predefined configurations Adaptability to a wide

for specific needs. range of conditions.
Drivers Adapting to multiple Addressing uncertainty

functions or conditions. and ensuring robustness.
Time Requires timely Often for long-term
Sensitivity reconfiguration. adaptability.
Design Modular and adaptable Robustness, evolvability,
Characteristics elements. change readiness.
Performance Ensures optimal performance Enhances capability to
Impact in specific configurations. maintain or improve performance.
Examples Modular robots, Flexible manufacturing systems,

reconfigurable manufacturing. adaptable product platforms.
Metrics and Evaluates reconfiguration Measures redesign
Evaluation effectiveness. effort and adaptability.
Complexity Involves reconfiguration Complexity in adapting

mechanisms. to unforeseen changes.
Change Requires physical Involves abstract changes
Mechanism or functional changes. without physical reconfiguration.
Stability Controlled by Relies on inherent
During Change robust systems. system robustness.
Research Optimizing reconfiguration, Balancing cost, flexibility,
Challenges minimizing costs. and adaptability.

9

Chapter 1 Comprehensive Overview of Reconfigurable Systems

1.3 Classification of Reconfigurable Systems

The classification of reconfigurable systems can be based on several core principles, each
defining the scope and functionality of the system:

1.3.1 Timing of Reconfiguration
Reconfigurable systems can be categorized by when reconfiguration occurs:

• Static reconfigurable systems: These systems can only be reconfigured before they begin
operating. Once in use, they must continue in their initial configuration until halted.
Example: programmable application-specific integrated circuits (ASICs) [4].

• Dynamic reconfigurable systems (DRS): These systems can reconfigure themselves while
in operation, without downtime. DRSs are ideal for applications like UAVs, which may
need to switch configurations during flight depending on mission requirements [3].

1.3.2 Control Mechanism
Another basis for classification is how reconfiguration is controlled:

• Manual reconfigurable systems: Human intervention is required for reconfiguration, typ-
ically seen in modular manufacturing systems where components or tools are physically
replaced by operators [3].

• Automatic reconfigurable systems: These systems adjust configurations autonomously,
often using control algorithms. A vehicle’s control system that adapts driving modes
based on sensor data is a prime example [4][3].

1.3.3 Levels of Abstraction
Reconfigurability can also be classified by the level at which reconfiguration occurs:

• Hardware reconfigurable systems: Systems like Field Programmable Gate Arrays (FP-
GAs) that allow for dynamic reconfiguration at the hardware level. These systems can
alter their internal architecture on-the-fly, making them ideal for applications like real-
time data processing [4].

• Software reconfigurable systems: Systems that adjust their operational logic or control
algorithms. In IoT devices, software-driven reconfigurations allow for modifications to
data transmission patterns or computational tasks depending on resource availability or
external factors [3].

Figure 1.1 summarizes the classification of reconfigurable systems.

10

Chapter 1 Comprehensive Overview of Reconfigurable Systems

Figure 1.1: Classification of reconfigurable systems

1.4 Reconfigurable Systems across Various Domains

Reconfigurable systems are utilized in a wide range of domains, each exploiting the flexibil-
ity and adaptability of these systems to solve complex problems. Below is a briefly exploration
of several key domains where reconfigurable systems are playing a critical role:

• Aerospace and Defense
In the aerospace sector, reconfigurable systems enable unmanned aerial vehicles (UAVs)
[16] to switch between flight modes (fixed-wing or rotor) to adapt to different environ-
ments. Reconfigurable radar systems [17] in defense also dynamically adjust frequencies
to avoid jamming, ensuring secure communication.

• Automotive Systems
Reconfigurable control systems [18] in the automotive industry are integral to the de-
velopment of autonomous driving technologies. Advanced Driver Assistance Systems
(ADAS) [19] reconfigure based on traffic conditions, switching between automated driv-
ing, lane-keeping, and parking assist. Hybrid vehicles also dynamically manage their
power systems, switching between electric and combustion engines based on energy effi-
ciency needs.

• Manufacturing Systems
In manufacturing, Reconfigurable Manufacturing Systems (RMSs) [20] adapt production
lines to handle different products or volumes. Reconfigurable systems allow for quick
tool changes, modular robotic systems, and the integration of new tasks without requiring
a full system overhaul.

• Networking and Telecommunications
Reconfigurable systems in telecommunications use Software-Defined Networking (SDN)
[21] and Network Function Virtualization (NFV) [22] to adaptively manage network traf-
fic. These systems ensure bandwidth allocation, routing, and signal processing are op-
timized in real time, maintaining network reliability during heavy traffic loads or dis-
ruptions [3]. IoT devices and WSNs benefit greatly from reconfigurability, especially
when managing energy consumption and data routing. Smart sensors in IoT reconfigure
based on environmental conditions, optimizing their communication protocols and data
transmission to conserve power. In WSNs, reconfigurable nodes adjust their behavior to
account for node failure, optimizing network stability.

11

Chapter 1 Comprehensive Overview of Reconfigurable Systems

• Healthcare and Medical Devices
Reconfigurable medical devices [23] such as adaptive wearables or smart prosthetics al-
low for real-time adjustments based on patient data. Devices like reconfigurable heart
monitors change their operational modes based on detected irregularities, providing timely
alerts to medical professionals.

• Robotics
Reconfigurable robotic systems [24] are commonly used in industrial environments where
tasks vary. Robots can switch between different tools or operational modes based on task
requirements, such as welding, assembly, or painting. Modular robots can adapt their
physical structure by adding or removing modules depending on the task’s complexity.

As we explore these domains, two areas (reconfigurable manufacturing systems and net-
working) merit more in-depth discussion due to their significant impact on modern industry
and technology. These fields are fundamental to the evolution of adaptable systems and present
unique challenges and opportunities that will be examined in separate, dedicated sections.

1.5 Techniques and Methodologies for Reconfiguration

Reconfigurable systems rely on a variety of techniques and methodologies to achieve dy-
namic adaptation, ensuring efficient and effective transitions between configurations.

These techniques are integral to enabling reconfigurability across diverse domains, ranging
from aerospace and telecommunications to manufacturing and healthcare. While each method
has its strengths and applications, the choice of technique depends largely on the specific re-
quirements and constraints of the system.

• Control Algorithms:
Control algorithms form the backbone of many reconfigurable systems, enabling real-
time decision-making and execution of configuration changes. These algorithms typically
monitor system performance and environmental conditions, identifying when and how
reconfiguration should occur. For instance, in unmanned aerial vehicles (UAVs), control
algorithms may trigger adjustments to flight configurations based on wind conditions or
mission objectives [4]. Control algorithms are valued for their ability to execute decisions
quickly and autonomously. However, their effectiveness often depends on the quality
of the underlying logic and the availability of accurate sensor data. These factors can
influence the robustness and adaptability of the system.

• AI-Driven Reconfigurations:
Artificial intelligence (AI) has increasingly been integrated into reconfigurable systems,
particularly in applications requiring complex decision-making. Machine learning mod-
els, such as reinforcement learning algorithms, enable systems to predict optimal recon-
figurations based on historical data and real-time inputs. For example, AI-driven tech-
niques are employed in smart grids to reconfigure energy distribution dynamically, ensur-
ing stability and efficiency under varying consumption patterns [3].

AI techniques are particularly effective in environments with high variability and com-
plexity. They allow systems to learn from past experiences and adapt their reconfigura-
tion strategies over time. However, as with any heuristic-based approach, the outcomes
are only as reliable as the training data and model assumptions.

12

Chapter 1 Comprehensive Overview of Reconfigurable Systems

• Model-Driven Development:
Model-driven development is another prominent approach used to design and implement
reconfigurable systems. This methodology involves creating abstract models of the sys-
tem to simulate and evaluate various configurations before they are deployed. These
models are particularly useful in complex environments, such as avionics or industrial
automation, where safety and reliability are paramount [4].

Through simulations, engineers can anticipate the impact of reconfiguration decisions,
ensuring that they meet system requirements and constraints. While model-driven devel-
opment provides valuable insights, its effectiveness depends on the fidelity of the models
and their ability to capture real-world dynamics accurately.

The variety of existing techniques highlights the versatility and adaptability of reconfig-
urable systems across diverse challenges and applications. Each methodology brings unique
strengths, whether through rapid decision-making, data-driven optimization, or predictive mod-
eling, allowing systems to balance performance, reliability, and efficiency in dynamic environ-
ments. However, as the complexity of reconfigurable systems increases, so does the need for
more robust and comprehensive approaches.

Future advancements may benefit from integrating complementary methodologies that ad-
dress current limitations and ensure system correctness under all conditions. In particular, the
incorporation of formal modeling and verification techniques can play a pivotal role in bridg-
ing gaps, offering provable guarantees about system behavior, and providing a deeper under-
standing of configuration changes in mission-critical environments. Such techniques, when
combined with existing methodologies, can enhance the reliability, safety, and scalability of
reconfigurable systems, paving the way for more sophisticated and resilient solutions.

1.6 Future Challenges in Reconfigurable Systems

As reconfigurable systems become more widespread, several challenges need to be ad-
dressed:

• Complexity of design: Designing systems capable of dynamic reconfiguration, partic-
ularly in real-time, presents significant challenges in terms of software and hardware
integration.

• Reliability: Ensuring that reconfigurable systems operate safely in critical industries (e.g.,
healthcare and aviation) requires rigorous testing and validation.

• Resource management: Managing the computational and energy resources needed for
frequent reconfigurations is an ongoing challenge, especially in power-constrained envi-
ronments like IoT and WSNs [4][3].

1.7 Reconfigurability in Networking

Reconfigurability in networking can be referred to the ability of a network to adapt dynam-
ically to changes in its topology, structure, or operational requirements. This adaptability is es-
sential for modern systems, especially in dynamic and resource-constrained environments [25].
In the context of Mobile Wireless Sensor Networks (MWSNs) [26] and Internet of Things(IoT)
[27], mobility itself can be regarded as key form of reconfiguration [28][25].

13

Chapter 1 Comprehensive Overview of Reconfigurable Systems

MWSNs achieve reconfigurability by allowing mobile nodes to adjust their positions, en-
abling the network to self-organize and maintain functionality in response to environmental
changes [25]. Similary, IoT systems leverage reconfigurable protocols to accommodate device
mobility, scaling, and dynamic communication needs [28]. This section explores how reconfig-
urability manifests in these two domains, starting with MWSNs and their protocols, followed
by IoT and its networking solutions.

1.7.1 Mobile Wireless Sensor Networks (MWSNs)
Mobile Wireless Sensor Networks (MWSNs) [26]extend traditional Wireless Sensor Net-

works (WSNs) by incorporating mobility into sensor nodes. This mobility enables them to
adapt to dynamic environments and rapid topographic changes, enhancing their versatility.
MWSNs consist of sensor nodes equipped with sensors (e.g., light, temperature, humidity),
a radio transceiver, a microcontroller, and a power source [29]. In addition to these basic com-
ponents, there are sensor nodes equipped with additional units, such as a localization system
or a mobility unit, allowing them to move. Figure 1.2 illustrates a mobile wireless sensor net-
work, showcasing the arrangement of mobile sensor nodes, their communication links, and the
central base station for data collection. Applications of MWSNs span multiple domains, includ-

Figure 1.2: A mobile wireless sensor network

ing environmental monitoring, healthcare, military surveillance, and infrastructure protection.
However, challenges such as limited energy, dynamic topology, and efficient data routing de-
mand innovative solutions.

1. Key features of MWSNs:
MWSNs offer unique features that distinguish them from traditional wireless sensor net-
works. These features enable MWSNs to adapt to dynamic environments, making them
suitable for a wide range of applications. Some of the most notable features include [29]:

14

Chapter 1 Comprehensive Overview of Reconfigurable Systems

• Mobility: Enables nodes to reposition for optimal coverage and data collection.

• Energy efficiency: Protocols must address limited battery life and minimize energy
use.

• Dynamic topology: Nodes frequently change positions, requiring adaptive network
structures.

• Scalability: Supports large-scale deployments with numerous mobile nodes.

• Versatility: Applicable in various environments, such as undersea navigation, tac-
tical surveillance, and environmental monitoring.

2. Challenges in MWSNs:
Designing and deploying MWSNs involves overcoming a variety of challenges. These
arise due to the inherent limitations of sensor nodes and the dynamic nature of their
environments [29]. The key challenges are as follows:

• Hardware limitations
Mobile sensor nodes in MWSNs face significant constraints in terms of processing
power, memory, and energy resources. These nodes are typically battery-powered,
making energy efficiency a critical design consideration. Simple microcontrollers
and radios are used to reduce power consumption, but this often limits the complex-
ity of operations that can be supported.

• Dynamic topology
The mobility of nodes introduces frequent changes in network structure, making it
difficult to maintain reliable communication paths. Network topologies must adapt
in real-time to accommodate node movements, joinings, or departures. This dy-
namic nature places considerable strain on routing protocols, requiring them to be
highly adaptable and efficient.

• Environmental factors
Shared communication media in MWSNs increase the likelihood of interference,
particularly in dense networks. This can degrade the quality of service (QoS) and
reduce the reliability of data transmission. Additionally, topographic changes in
deployment areas, such as hilly terrains or urban environments, further complicate
network operations.

• Routing protocol design
Frequent reconfiguration due to mobility significantly impacts routing protocols.
Cluster-based routing, for instance, often requires nodes to repeatedly reconnect
with cluster heads, increasing overhead and power consumption. At the same time,
ensuring scalability, fault tolerance, and efficient data delivery remains a persistent
challenge.

1.7.1.1 MWSNs’ Protocols

In wireless sensor networks (WSNs), mobility management can be addressed at either the
MAC (Medium Access Control) or network layer [30].

1. MAC Layer Protocols

15

Chapter 1 Comprehensive Overview of Reconfigurable Systems

Several approaches for mobile wireless networks have focused on adapting existing so-
lutions designed for static scenarios. In many cases, mobile MAC protocols are derived
from S-MAC, which serves as a foundation for handling mobility and energy efficiency
[30]. The most notable protocols include:

• S-MAC (Sensor MAC) [31]: Optimizes energy usage by alternating between sleep
and listening periods. Nodes synchronize their listening schedules, reducing idle
time and energy consumption. S-MAC uses CSMA/CA for medium access and
includes synchronization messages (SYNC) to maintain clock alignment.

• MS-MAC (Mobile S-MAC) [32]: An extension of S-MAC that supports mobile
nodes by introducing shorter synchronized listening periods for neighboring nodes
within a specific range. It aims to better track mobile nodes but suffers from similar
limitations as S-MAC in dynamic environments.

• MOB-MAC (Mobile MAC) [33]: Designed to address frame loss and retransmis-
sion issues in MS-MAC, it adjusts frame sizes based on link quality. Smaller frames
are used in poor conditions to reduce energy consumption and improve transmission
reliability.

• AM-MAC (Adaptive Mobility MAC) [34]: Enhances S-MAC by introducing adap-
tive listening schedules and secondary listening periods. It organizes nodes into vir-
tual clusters, allowing mobile nodes to quickly adapt to new schedules as they move
between clusters. However, it incurs high energy usage for border nodes.

• MD-SMAC (Mobility-aware Dynamic S-MAC) [35]: Combines MS-MAC and
DS-MAC to balance mobility support with energy efficiency, particularly for delay-
sensitive applications. It adjusts the duty cycle based on the mobile node’s energy
level and optimizes the neighbor discovery process.

• CFMA (Collision-Free Mobility Adaptive MAC) [36]: Improves the back-off pro-
cess by using predefined delays based on node priorities within a cluster. It adjusts
delays according to signal strength from neighboring clusters, offering faster inte-
gration for new nodes.

• MMAC (Mobility Adaptive Collision-Free MAC) [37]: Adapts the frame time
based on node mobility and network conditions, reducing synchronization delay.
However, it assumes predictable node movement, which may not be valid in all
real-world scenarios.

In addition to the synchronous solutions mentioned earlier, several asynchronous versions
of the MAC protocol have been developed, including WiseMAC [38], B-MAC [39], X-
MAC [40], RI-MAC [41], and A-MAC [42]. These asynchronous protocols offer a sig-
nificant advantage by providing greater flexibility in handling node mobility compared
to their synchronous counterparts. However, to effectively support node mobility, cer-
tain adaptations to these solutions are required. The MOX-MAC protocol [43] is one
such adaptation. Furthermore, hybrid solutions combining both synchronous and asyn-
chronous approaches have been introduced, such as the Mobile Adaptive MAC protocol
(MAMAC) [44] and the Mobile Multimode Hybrid MAC protocol (MMHMAC) [45],
which aim to leverage the strengths of both paradigms to enhance performance in dy-
namic environments.

2. Network Layer Protocols

16

Chapter 1 Comprehensive Overview of Reconfigurable Systems

In MWSNs, the network layer protocols (routing protocols) are essential for adapting to
dynamic topologies caused by node mobility. These protocols ensure efficient routing,
maintain connectivity, and enhance the network’s reconfigurability under resource con-
straints. According to [29] some of these protocols are:

• LEACH-M (Low-Energy Adaptive Clustering Hierarchy-Mobile):
An adaptation of the LEACH protocol [46] for mobile nodes, LEACH-M [47] ad-
dresses re-clustering issues caused by node movement. While energy-efficient clus-
tering is beneficial, frequent switching between clusters can increase overhead.

• Angle-Based Dynamic Source Routing (ADSR):
ADSR [48] extends the Dynamic Source Routing (DSR) protocol [49] by incorpo-
rating location information. This ensures packets are routed optimally toward the
sink.

• Zone-Based Routing Protocol (ZRP):
ZRP [50] uses geographical data to define zones and update routing tables dynam-
ically. This reduces communication overhead and enhances scalability in mobile
environments.

• Geographical Opportunistic Routing (GOR):
GOR [51] divides the network into logical segments and forwards data opportunis-
tically, optimizing routing in mobile scenarios.

• Multipath Data Center-Based Routing (MDCR):
MDCR [52] provides fault tolerance by establishing multiple paths for data trans-
mission, minimizing delays and congestion.

1.7.2 Internet of Things and Reconfigurability
The Internet of Things (IoT) [27] is a network of interconnected devices capable of sharing

data and performing tasks autonomously. The ability of these devices to adapt to changing en-
vironments, scale efficiently, and ensure seamless communication is crucial. Reconfigurability
plays a key role in enabling IoT systems to dynamically adjust to new conditions, such as adding
or removing devices, handling mobility, and optimizing resource usage. This section explores
the protocols that support reconfigurability in IoT networks, focusing on how these protocols
allow IoT systems to adjust to varying requirements and conditions.

1.7.2.1 Definition of IoT

The Internet of Things (IoT) [27] refers to a vast network of interconnected devices that
communicate and exchange data over the internet. These devices range from simple sen-
sors and actuators to advanced computing systems, all of which are equipped with embed-
ded technologies that enable interaction with the physical and digital environments. IoT has
become an essential enabler of smart systems, where devices collect, process, and transmit
data autonomously, fostering automation and real-time decision-making in various domains
like healthcare, transportation, agriculture, and industry [53].

According to [53], IoT has revolutionized the way physical entities interact by integrating
advanced connectivity protocols, low-power communication technologies, and data manage-
ment tools to create efficient, scalable, and intelligent ecosystems.

17

Chapter 1 Comprehensive Overview of Reconfigurable Systems

At its core, IoT transforms traditional objects into "smart" devices, enabling autonomous
operations without human intervention. For instance, IoT-connected buildings, cities, and work-
places utilize protocols like Zigbee, LoRaWAN, and BLE to achieve seamless communication
and reconfigurability in response to environmental changes [54].

1.7.2.2 Characteristics of IoT

IoT is defined by several distinct characteristics that make it a transformative technology
[55]:

• Ubiquitous connectivity: IoT enables global connectivity through seamless device inte-
gration.

• Dynamic adaptability: IoT systems can reconfigure themselves to accommodate device
mobility, scaling, or failures.

• Energy efficiency: Lightweight communication protocols and optimized hardware design
ensure extended device operation.

• Interoperability: IoT systems bridge diverse devices, supporting different standards and
communication technologies.

• Real-Time analytics: Data collected by IoT devices is analyzed in real time, enabling
quick responses to changing conditions.

1.7.2.3 IoT Protocols Supporting Reconfigurability

Reconfigurability in IoT relies on protocols designed to adapt dynamically to evolving net-
work conditions, ensuring seamless communication and optimal performance. Notable among
these protocols are [53]:

1. MQTT (Message Queuing Telemetry Transport):

MQTT [56] is a lightweight publish/subscribe protocol ideal for constrained devices. Its
flexibility allows dynamic topic management and adjustable QoS levels, ensuring recon-
figurability in data delivery and device integration.

2. CoAP (Constrained Application Protocol):

CoAP [57] is a restful protocol for resource-constrained IoT systems. It supports dynamic
resource discovery, enabling devices to integrate seamlessly into existing networks while
conserving energy.

3. LoRaWAN (Long-Range Wide Area Network):

The adaptive data rate mechanism of LoRaWAN [58] dynamically adjusts transmission
power and data rates, optimizing energy use and supporting network scalability.

4. Zigbee:

A widely adopted protocol for low-power IoT applications, Zigbee [59] [60] excels in
mesh networking. Its self-healing capabilities allow the network to adapt to device fail-
ures or topology changes.

18

Chapter 1 Comprehensive Overview of Reconfigurable Systems

5. BLE (Bluetooth Low Energy)

BLE [61] enables short-range communication with adjustable connection parameters, en-
suring real-time reconfiguration for energy efficiency and low-latency communication.

1.7.2.4 IoT Applications

IoT has expanded into numerous domains, driving innovation and efficiency across indus-
tries [53]:

• Smart cities: IoT technologies enhance urban living by optimizing traffic management,
energy usage, and public safety.

• Healthcare: IoT devices enable remote patient monitoring, real-time health tracking, and
predictive diagnostics.

• Industrial IoT (IIoT): Industrial applications benefit from IoT-driven automation, predic-
tive maintenance, and supply chain optimization.

• Agriculture: IoT sensors monitor soil conditions, weather patterns, and crop health, im-
proving agricultural efficiency.

1.8 Reconfigurable Manufacturing Systems (RMSs)

The continuous pressure for faster production, lower costs, and higher customization in
manufacturing has given rise to the need for systems that can adapt quickly to new demands.
Reconfigurable Manufacturing Systems (RMSs) [20] have emerged as the answer to this chal-
lenge. RMS are designed to provide not only flexibility but also scalability and customization
to suit varying market conditions. In this chapter, we will explore the foundations of RMS,
their components, applications across different industries, and their critical role in the future of
manufacturing.

1.8.1 Definition of Reconfigurable Manufacturing Systems (RMSs)
Reconfigurable Manufacturing Systems (RMSs) [20] are advanced manufacturing setups

purposefully designed to adapt swiftly to changes in production requirements. Unlike traditional
systems, which often struggle to balance flexibility and efficiency, RMS provides the capability
to adjust production capacity and functionality in response to fluctuating market demands, new
product designs, or technological advancements. The concept of RMS revolves around creating
systems that are inherently agile, enabling manufacturers to optimize production processes with
minimal downtime or costs ([20], [62]).

The emergence of RMS in the mid-1990s was driven by the limitations of existing paradigms
such as Dedicated Manufacturing Lines (DML) and Flexible Manufacturing Systems (FMS).
DML, while efficient for mass production, lacked the flexibility needed for product variation
or fluctuating demand. Conversely, FMS offered flexibility but at the expense of higher costs
and reduced throughput. RMS bridges this gap, combining the high efficiency of DML with
the adaptability of FMS, making it ideal for industries facing frequent product changes and
unpredictable market dynamics ([20], [62]).

19

Chapter 1 Comprehensive Overview of Reconfigurable Systems

Conceptually, RMS is built to enhance responsiveness and sustainability in manufacturing.
It allows manufacturers to adapt their production processes to varying requirements with mini-
mal disruption. By focusing on rapid reconfigurability, these systems support competitive pric-
ing, optimize resource use, and reduce the costs associated with traditional system overhauls.
As highlighted by [20], RMS aims to create a “live factory,” where manufacturing setups are
not static but evolve dynamically to meet the ever-changing demands of global markets ([62]).

1.8.2 RMS Key Characteristics
Reconfigurable Manufacturing Systems (RMS) are characterized by distinct features that

enable their adaptability and responsiveness to market demands. These key characteristics set
RMS apart from traditional manufacturing systems and are integral to their functionality and de-
sign. Each characteristic plays a critical role in ensuring the system’s flexibility and scalability
while maintaining efficiency and cost-effectiveness.

• Scalability Scalability refers to the ability of an RMS to adjust its production capacity by
adding or removing resources as needed. This feature allows manufacturers to respond
effectively to increases or decreases in demand without requiring a complete overhaul of
the manufacturing system. For example, in automotive production, additional machines
can be integrated into an RMS to handle a surge in vehicle orders, ensuring rapid and
cost-effective capacity adjustments ([62]).

• Modularity Modularity involves designing the system as a collection of independent and
interchangeable units or modules. Each module performs a specific function and can be
rearranged, replaced, or upgraded without disrupting the entire system. Modularity not
only simplifies maintenance and upgrades but also reduces reconfiguration time, making
it a cornerstone of RMS design ([63], [62]).

• Convertibility Convertibility is the ability of an RMS to change its functionality to pro-
duce new products or variations within a product family. This characteristic ensures that
the system remains relevant in the face of evolving product designs and customer prefer-
ences. Convertibility is achieved through flexible hardware and software configurations
that can be reprogrammed or adapted as needed ([20], [62]).

• Diagnosability Diagnosability enables real-time monitoring and rapid identification of
issues within the system. Integrated diagnostic tools allow RMS to maintain high product
quality by detecting and addressing faults or deviations promptly. This characteristic
minimizes downtime and ensures consistent production standards, a critical requirement
in industries like aerospace and electronics ([62]).

• Customization Customization in RMS refers to the system’s ability to focus on produc-
ing specific product families with high efficiency. Unlike Flexible Manufacturing Sys-
tems (FMS), which handle a wide range of products, RMS optimizes its flexibility within
a defined product scope, balancing adaptability and production efficiency ([20]).

• Integrability Integrability is the ease with which new modules, machines, or technologies
can be integrated into the existing system. This characteristic ensures seamless upgrades
and expansions, allowing manufacturers to keep pace with technological advancements
and changing market requirements ([64], [62]).

20

Chapter 1 Comprehensive Overview of Reconfigurable Systems

These six core characteristics work together to provide RMS with the adaptability and re-
sponsiveness necessary to thrive in dynamic manufacturing environments. They enable cost-
effective reconfiguration, maintain high-quality production, and ensure that systems can evolve
to meet future demands. RMS’s unique combination of these features makes it a powerful tool
for industries requiring both flexibility and efficiency in their production processes.

1.8.3 Types of Reconfigurable Machines in RMS
Reconfigurable machines are essential components of Reconfigurable Manufacturing Sys-

tems (RMS), providing the flexibility to adjust to various production needs. These machines are
designed to support different manufacturing tasks and can be rapidly reconfigured to accommo-
date changes in product design, production volume, or process type. Below are the key types of
reconfigurable machines used in RMS, with detailed descriptions of each type [64].

1. Reconfigurable Machine Tools (RMTs)
Reconfigurable Machine Tools (RMTs) are versatile pieces of equipment used in machin-
ing operations such as turning, milling, and drilling. These machines are designed with
modular components, such as adjustable tooling, fixtures, and spindle heads, that allow
them to be rapidly reconfigured for different parts within a product family. RMTs en-
able manufacturers to perform multiple operations on various products without requiring
extensive setup times or new equipment for each product change.

RMTs are especially useful in industries like automotive and aerospace, where product
designs change frequently and high levels of precision are required. By leveraging the
flexibility of RMTs, manufacturers can reduce downtime and setup costs, making these
tools an essential part of RMS.

2. Reconfigurable Inspection Machines (RIMs)
Reconfigurable Inspection Machines (RIMs) are designed for quality control within the
RMS. These machines are equipped with advanced sensors, such as laser scanners, cam-
eras, and vision systems, to perform in-line inspections of parts and products as they
move through the production process. What distinguishes RIMs is their modular nature,
allowing them to be quickly reconfigured to inspect different parts within a product fam-
ily, thereby ensuring product quality without the need for separate dedicated inspection
machines.

It is noted that RIMs can be adapted to accommodate different product geometries or
inspection requirements, making them highly adaptable to fluctuating production needs.
This flexibility helps reduce the need for additional inspection lines when product variants
change, improving overall system efficiency and reducing inspection costs.

3. Reconfigurable Assembly Machines (RAMs)
Reconfigurable Assembly Machines (RAMs) are used to assemble different products or
product variants in a flexible and efficient manner. These machines typically use modular
workstations, robotic arms, and interchangeable tools that can be reconfigured to han-
dle various assembly tasks without requiring dedicated systems for each product type.
RAMs are essential in industries with high product variation, such as consumer electron-
ics, where frequent model changes or customizations are common.

For example, in the assembly of electronic devices, RAMs can be adapted to assemble
smartphones, tablets, or other devices with minimal downtime between product changes.

21

Chapter 1 Comprehensive Overview of Reconfigurable Systems

This allows manufacturers to maintain high throughput and flexibility, ensuring that pro-
duction lines can meet changing market demands.

4. Reconfigurable Fixtures (RMS-F)
Reconfigurable Fixtures are critical components in RMS that hold parts in place during
machining, assembly, or inspection. These fixtures are modular and can be adjusted to ac-
commodate parts of different shapes and sizes, making them highly adaptable for produc-
ing parts within a product family. The use of reconfigurable fixtures helps manufacturers
save costs by allowing the same fixtures to be used for multiple products, eliminating the
need for custom fixtures for each new product design.

Reconfigurable fixtures are particularly important in precision manufacturing industries
such as aerospace, where parts often have complex geometries and require high accuracy
during production. These fixtures can be easily modified to secure various parts in place,
ensuring that each part is accurately positioned for processing.

1.8.4 Performance Objectives in RMS Optimization
The optimization of Reconfigurable Manufacturing Systems (RMS) is evaluated using vari-

ous objective functions that are categorized into two distinct levels: machine-level and system-
level [64]. These levels address different aspects of RMS performance:

1. Machine-level objectives

At the machine level, objective functions are designed to enhance the performance of
individual reconfigurable machines, such as Reconfigurable Machine Tools (RMTs). Key
objectives include:

• Cost minimization: This includes reducing costs related to: (i) The usage and main-
tenance of machines, tools, and modules. (ii) Energy consumption incurred during
machining tasks. (iii) Reconfiguration costs, which cover changes in machine se-
tups, such as reorienting tools and replacing modules.

• Time optimization: Time-related objectives focus on: (i) Minimizing the completion
time for producing a unit product. (ii) Reducing the makespan, which represents the
total time needed to process all products in a production cycle. (iii) Lowering the
reconfiguration time, which includes the time required to adjust machine setups and
change tools.

• Enhancing machine reconfigurability: This objective evaluates the machine’s ability
to switch configurations efficiently. It measures: (i) The number of feasible alter-
native configurations. (ii) The effort needed to achieve these configurations, often
quantified by the number of modules that need to be added, removed, or reposi-
tioned.

• Improving operational capability: This ensures that machines can handle a diverse
set of manufacturing tasks without requiring extensive modifications.

2. System-level objectives

At the system level, optimization focuses on the overall performance of the RMS, en-
compassing all its components such as machines, workstations, and material handling
systems. Key objectives include:

22

Chapter 1 Comprehensive Overview of Reconfigurable Systems

• Cost minimization: System-level cost objectives are categorized as: (i) Capital
Costs: Expenses for purchasing machines, modules, and tools. (ii) Operating Costs:
Costs incurred during production, such as energy and maintenance. (iii) Reconfig-
uration Costs: Costs related to adding, removing, or repositioning machines and
equipment.

• Time optimization: Reducing delays and optimizing the overall production sched-
ule are critical. This includes minimizing: (i) Total production time for different
batches. (ii) Delays caused by reconfiguration and material handling.

• Maximizing energy efficiency: This involves reducing energy consumption across
the RMS by optimizing energy use during machining, transportation, and reconfig-
uration processes.

• Enhancing system flexibility and scalability: (i) Flexibility: The ability of the RMS
to adapt to new product designs or variations with minimal disruptions. (ii) Scalabil-
ity: Adjusting the production capacity of the RMS to align with fluctuating market
demands.

• Improving system utilization: Ensuring that all resources, including machines and
workstations, are used efficiently.

The objectives at both levels are often interdependent. For example, reducing reconfigura-
tion time at the machine level contributes to higher throughput at the system level. Similarly,
minimizing costs at the system level requires efficient utilization of individual machines. This
interconnected nature underscores the importance of defining clear and measurable performance
objectives for RMS.

1.9 Conclusion

In this chapter, we provided a comprehensive overview of reconfigurable systems, explor-
ing their definition, characteristics, and the principles underlying their reconfigurability. We
compared reconfigurability with flexibility and discussed the various classifications of reconfig-
urable systems across different domains. Emphasis was placed on the wide-reaching applica-
tions of reconfigurability, particularly in networking domains such as Mobile Wireless Sensor
Networks (MWSNs) and the Internet of Things (IoT), as well as in the context of Reconfig-
urable Manufacturing Systems (RMS).

As we transition to the next chapter, the focus will shift toward formal methods and opti-
mization techniques. This will include a detailed exploration of the formal modeling, verifi-
cation, and optimization approaches essential for ensuring the reliability and performance of
reconfigurable systems. Through the application of these methods, we can address the com-
plexities of reconfigurability and move towards more robust and efficient system designs.

23

Chapter 2

Formal Methods and Genetic Algorithms

24

Chapter 2 Formal methods and genetic algorithms

2.1 Introduction

In the field of system design, reconfigurability has become a core requirement, enabling
systems to adapt dynamically to new conditions, changes in requirements, or different environ-
mental constraints. This adaptability is crucial for industries such as manufacturing, network-
ing, and embedded systems, where systems must cope with uncertainties and variability in their
operating environments.

To manage this complexity, two powerful approaches come into play: formal methods [7]
and genetic algorithms (GAs). Formal methods provide a rigorous mathematical framework
to model and verify systems, ensuring correctness and predictability. These methods are dis-
cussed in Section 2.2, which gives an overview of the techniques and details their application in
reconfigurable systems. Subsection 2.2.2 focuses on formal verification using model checking,
explaining how this approach ensures system correctness through exhaustive state-space explo-
ration. Subsection 2.2.3 addresses properties specification, outlining how to formally specify
desired system behaviors and constraints. In Subsection 2.2.4, formal modeling methods are
examined, demonstrating how abstract models can predict and verify reconfiguration behavior.
On the other hand, GAs offer a robust optimization framework inspired by natural selection to
find near-optimal solutions in large search spaces. Section 2.3 introduces genetic algorithms,
starting with their fundamentals in Section 2.3.1. Section 2.3.3 discusses variants of GAs, ex-
ploring different adaptations and improvements for specific applications. Finally, Subsection
2.3.4.1 focuses on multiobjective genetic algorithms, detailing how they handle optimization
tasks with multiple competing objectives. This chapter explores these two approaches in depth
and demonstrates how they can be applied to reconfigurable systems.

2.2 Formal Methods

Formal methods [7] are mathematical techniques used for the specification, development,
and verification of systems, particularly in software and hardware design. Unlike empirical
testing, formal methods provide a rigorous framework that guarantees certain properties of the
system. In reconfigurable systems, which need to adapt dynamically, formal methods ensure
that these adaptations do not compromise the correctness or performance of the system. The
key characteristics of formal methods are:

• Precision: Formal models eliminate ambiguity in system specifications.

• Verification: Using formal verification, one can mathematically prove properties like
safety, liveness, and performance bounds.

• Scalability: While formal methods can be computationally expensive, they are indis-
pensable for verifying large systems with high complexity.

Formal methods have been employed extensively in fields like cyber-physical systems, em-
bedded systems, and reconfigurable manufacturing to ensure reliability in systems that must
frequently adapt to new configurations. This section will explore formal methods broadly, then
delve into specific techniques like model checking [8], automata [65], and Petri nets [66], with
a special focus on Reconfigurable Object Nets (RONs) [67]. We will also cover the key aspects
of formal verification, formal modeling, and properties specification formalisms.

25

Chapter 2 Formal methods and genetic algorithms

2.2.1 Formal Methods Overview
Formal methods are employed to ensure that systems behave as intended and meet their

requirements. They provide the means to define system behaviors unambiguously, verify these
behaviors rigorously, and refine system designs in an incremental and controlled manner [68].
Formal methods can be divided into [69]:

1. Specification:
The specification is the act of defining a system’s behavior using formal languages. By us-
ing mathematical notations, formal specification eliminates ambiguity, providing a clear
understanding of how the system should operate under various conditions. Several spec-
ification formalisms are widely used [70], [71]: (i) Z Notation: [72] Based on set theory
and predicate logic, Z is often used for data-intensive systems. It defines the system’s
states and operations in a formalized manner, ensuring consistency between what is spec-
ified and what is ultimately implemented. (ii) B Method: [73] This method formalizes
systems as abstract machines. Operations are modeled mathematically to transform sys-
tem states, and the B method emphasizes refinement, incrementally transforming abstract
models into implementable systems. (iii) VDM (Vienna Development Method): Like
Z, VDM focuses on specifying software and hardware systems through abstraction and
modularity. VDM is used for complex systems, especially in industrial settings [74].
(iv) Temporal Logic: Temporal logic, particularly Linear Temporal Logic (LTL) [75] and
Computational Tree Logic (CTL) [76], is used to specify the ordering of events and be-
haviors in reactive systems, such as real-time or distributed systems.

2. Verification:
The verification is the process of ensuring that a system adheres to its specification. Un-
like traditional testing, which can only cover a limited number of scenarios, formal ver-
ification guarantees that all possible states of a system have been accounted for. Formal
verification methods include:

• Model Checking: An automated technique where a model of the system is exhaus-
tively explored to check for properties, typically expressed in temporal logic. Model
checking ensures that every possible execution of a system meets the specified re-
quirements. The key Tools are: UPPAAL [77], PRISM [78].

• Theorem Proving [9]: is a formal verification technique used to ensure that a system
or program adheres to its specification through rigorous logical deduction. It in-
volves defining the system’s behavior in formal logic, generating proof obligations
that must be satisfied, and using theorem provers to attempt to prove these obli-
gations. The process may be automated or require human intervention, depending
on the complexity of the proof [79]. There are different types of theorem provers:
automated theorem provers attempt to automatically prove properties, interactive
theorem provers (e.g., Coq [80], Isabelle [81]) require human guidance for complex
proofs, and decision procedures specialize in specific kinds of logical formulas, such
as arithmetic or bit-vectors.
The advantages of theorem proving include providing strong mathematical guaran-
tees of correctness, handling infinite state spaces (useful for verifying systems with
recursive or unbounded behaviors), and being applicable across various domains
such as software, hardware, and cryptography. However, it also has disadvantages,

26

Chapter 2 Formal methods and genetic algorithms

such as high computational complexity, scalability issues for large systems, the need
for expert human intervention in interactive tools, and steep learning curves for users
unfamiliar with the tools.

3. Refinement:
Refinement transforms an abstract system specification into a detailed design or imple-
mentation. The key goal is to ensure that each step of refinement preserves the properties
established in the original specification. There are two types of refinement: (i) Data Re-
finement: transforms abstract data structures into concrete implementations. For example,
an abstract set may be implemented as a list or array in the final system. (ii) Operation
Refinement: Replaces high-level operations with more concrete steps. An abstract oper-
ation like “assemble” in a manufacturing system could be refined into specific robot arm
movements and conveyor belt actions.

The three aspects of formal methods (specification, verification, and refinement) are closely
linked. Specification provides the foundation by defining what the system should do. Verifica-
tion ensures that the system actually behaves as specified. Refinement allows the abstract model
to be gradually transformed into a concrete system while preserving correctness.

In reconfigurable systems, this link is crucial. A formal specification might define how the
system should behave across different configurations. Verification techniques such as model
checking or theorem proving ensure that these behaviors are maintained, even as the system
changes. Finally, refinement ensures that each component is implemented correctly, allowing
the system to evolve without introducing errors.

2.2.2 Formal Verification Using Model Checking
Model checking [82][8] is one of the most widely used formal verification techniques, en-

abling the automatic verification of a system’s operation by systematically exploring all possible
states to ensure that specific properties hold. This technique is particularly beneficial for veri-
fying concurrent, distributed, or reactive systems, where numerous states and transitions exist.
The model checking process involves several key steps:

• Modeling the system: The system is represented as a finite-state machine or automaton,
capturing the states and transitions between them.

• Defining properties: The properties to be verified are expressed in temporal logics, such
as Linear Temporal Logic (LTL) or Computation Tree Logic (CTL). These properties
specify how the system should behave over time, covering safety, liveness, and fairness
requirements.

• Verification process: A model checker explores the entire state space of the system to
verify whether the defined properties hold. If a property is violated, the tool provides a
counterexample showing how the error occurs.

• Error correction: Counterexamples provided by model checking allow developers to
trace and fix bugs in the system’s design.

The model checking approach has been extensively applied across fields such as communi-
cation protocol verification, multimedia applications, and computer security, highlighting its

27

Chapter 2 Formal methods and genetic algorithms

Figure 2.1: Model checking procedure.

versatility and effectiveness. The overall verification process consists of aforementioned steps,
as illustrated in Figure 2.1.

The advantages of model checking are:

• Exhaustive: It explores all possible system states.

• Automated: Once the model and properties are defined, the process is fully automated.

• Debugging: Counterexamples help identify and resolve issues efficiently.

However, the disadvantage of model checking is the problem of combinatorial state space
explosion, caused by the exponential growth of the state space size of a concurrent system with
respect to the number of processes and the number of components per process [83]. For ex-
ample, considering a system composed of n processes, each having m states, the asynchronous
composition of these processes will have m× n states [83].

To mitigate this combinatorial state explosion, several approaches have been proposed [84]:

1. Symbolic Model Checking [85]: Symbolic model checking is a more efficient technique
than classical model checking. It considers a large number of states simultaneously in a
single step, rather than traversing accessible states one at a time.

2. Bounded Model Checking [86]: A Boolean formula is constructed that is satisfiable if
and only if there exists a counterexample of length k. By incrementing the bound k,
additional counterexamples can be searched. After a certain number of iterations, we can
conclude that no counterexample exists.

28

Chapter 2 Formal methods and genetic algorithms

3. Probabilistic Model Checking [87]: Various approaches have been proposed for build-
ing tools for probabilistic model checking. PRISM [78] is an example of a probabilistic
model checking tool that can be used for accessibility analysis and protocol verification.
Probabilistic model checking mitigates the state-explosion problem by using symbolic
data structures, such as Multi-Terminal Binary Decision Diagrams (MTBDDs), to repre-
sent Markov chains and Markov decision processes compactly. Instead of enumerating
every individual state and transition, probabilistic model checking groups similar prob-
abilistic behaviors together and represents transition matrices symbolically. This allows
the model checker to analyze very large systems by solving sets of linear equations over
these compact symbolic structures rather than exploring the full underlying state graph.

4. Statistical Model Checking: Statistical model checking (SMC) [88][89] is an extension
of classical model checking based on stochastic simulation. This extension was proposed
to express the probabilistic aspects necessary for evaluating the performance of certain
systems. SMC is an approach for the automatic verification of quantitative properties with
a probabilistic aspect. An SMC model checker generates a number of random simulations
(executions) and then uses algorithms to make probabilistic decisions about the validity
of certain properties.

The advantage of the statistical approach lies in its complexity growing proportionally
with the size of the model. Indeed, it does not store the entire state graph when gen-
erating a path (sample); it only stores the current state. In SMC, there must always be
an algorithm for generating random simulations (an algorithm used in the Uppaal tool is
presented in the paper [90]).

This approach is implemented in numerous tools such as COSMOS [91], UPPAAL [77],
and VESTA [92].

2.2.3 Properties Specification Formalisms
Properties specification formalisms are used to express the requirements a system must meet

during verification. In model checking, the most commonly used formalisms are LTL (Lin-
ear Temporal Logic) and CTL (Computation Tree Logic). These two logics have extensions
designed to explicitly incorporate time and probabilities, such as PLTL (Probabilistic LTL),
TLTL (Timed LTL), PCTL (Probabilistic CTL), TCTL (Timed CTL), and PTCTL (Probabilis-
tic Timed CTL) and Other important formalisms include: (i) Metric Temporal Logic (MTL): An
extension of LTL that allows real-time constraints, making it suitable for real-time systems, (ii)
Alternating-time Temporal Logic (ATL): An extension of CTL, used for multi-agent systems
where the actions of different agents influence system states.

1. Linear Temporal Logic (LTL):
LTL [75] is used to specify properties over linear sequences of events, making it use-
ful for verifying sequential system behaviors. Examples of LTL properties include: (i)
Safety: "The system never reaches a deadlock state.". (ii) Liveness: "Every request will
eventually be granted.

An LTL formula ϕ has the following syntax:

ϕ ::= p|(¬ϕ)|(ϕ ∧ ϕ)|(ϕUϕ)|(G ϕ)|(F ϕ)|(X ϕ)

where:

29

Chapter 2 Formal methods and genetic algorithms

- p is an atomic proposition,

- Xϕ: ϕ holds next time,

- Fϕ: ϕ holds sometime in the future,

- Gϕ: ϕ holds globally,

- pUq: p holds until q holds.

2. Computation Tree Logic (CTL):
Computational Tree logic [76] allows for the expression of properties related to execution
trees that represent the evolution of a system. CTL formulas are expressed using the
following language:

• Atomic propositions: p, q, . . . , true, false which are directly interpreted at a state.

• Boolean connectors: ¬ (negation), ∧ (logical and), ∨ (logical or),⇔ (equivalence),
⇒ (implication).

• Temporal connectors: EFp|EGp|EpUq|EXp|AFp|AGp|ApUq|AXpwhereE and
A are path quantifiers.

(a) Syntax of a CTL Formula:
Let φ and Ψ denote two CTL formulas. CTL formulas can be interpreted as follows:
φ,Ψ ::= | ¬φ|φ ∧Ψ|φ ∨Ψ|φ⇔ Ψ|φ⇒ Ψ: propositional logic operators,

ssss |EFφ: There exists a sequence of states (operator E) that leads to a state
where property φ holds (Finally operator F),
ssss |EGφ There exists a sequence of states where property φ is always satisfied
(Globally operator G),
ssss |EφUΨ: There exists a sequence of states where property φ is satisfied
until property Ψ holds,
ssss |EXφ: There exists a sequence of states where there is a state whose
successor state (Next operator X) satisfies property φ,
ssss |AFφ: For every sequence of states (operator A), there exists a state where
property φ holds,
ssss |AGφ: For every sequence of states, property φ is always satisfied,
ssss |AφUΨ: For every sequence of states, property φ is satisfied until property
Ψ holds,
ssss |AXφ: Property φ is satisfied in all immediately succeeding states of the
current state.

(b) CTL Semantics:
Formally, CTL is interpreted over the states of a transition system (which character-
izes the trees stemming from these states).

• Labeled Transition System S: A transition system S is a tuple (Q, q0, A,→, L)
such that: Q is a (finite) set of states, q0 ∈ Q is the initial state, A is a (finite)
alphabet of actions,→⊆ Q× A×Q is the transition relation of S. We denote
q → q′ if (q, a, q′) ∈→, and L : Q → 2AP where AP is a set of atomic
propositions. L(q) gives the set of propositions that hold at state q.

30

Chapter 2 Formal methods and genetic algorithms

• Path in a Transition System: A path in a transition system is a sequence of
states σ = q0, q1, q2, . . . such that (qi, qi+1) for all i > 0.

• Let q be a state of S. The semantics of CTL is defined inductively as follows:
– ϕ ∈ AP, q |= ϕ⇔ ϕ ∈ L(q),
– q |= ϕ ∨ ψ ⇔ q |= ϕ or q |= ψ,
– q |= ¬ϕ⇔ ¬ϕ ∈ L(q),
– q |= AXϕ⇔ ∀q′ such that (q, q′) ∈→, q′ |= ϕ,
– q |= EXϕ⇔ ∃q′ such that (q, q′) ∈→, q′ |= ϕ,
– q |= AFϕ⇔ ∀σ a path such that σ(0) = q, ∃j such that σ(j) |= ϕ,
– q |= EFϕ⇔ ∃ a path σ such that σ(0) = q and ∃j such that σ(j) |= ϕ,
– q |= AGϕ⇔ ∀σ a path such that σ(0) = q, ∀j, σ(j) |= ϕ,
– q |= EGϕ⇔ ∃σ such that σ(0) = q and ∀j, σ(j) |= ϕ,
– q |= A(ϕUψ) ⇔ ∀σ such that σ(0) = q, ∃j such that σ(j) |= ψ and ∀k

such that k < j, σ(k) |= ϕ,
– q |= E(ϕUψ)⇔ ∃ a path σ such that σ(0) = q,∃j such that σ(j) |= ψ and
∀k such that k < j, σ(k) |= ϕ.

3. CTL’s Extensions:
Temporal logic has gradually expanded, giving rise to other, much more expressive tem-
poral logics such as Timed Computational Tree Logic (TCTL) [93] and Probabilistic
Computational Tree Logic (PCTL) [94].

(a) Timed Computation Tree Logic(TCTL)
TCTL [93] is an extension of CTL temporal logic that allows for the expression of
properties involving temporal quantifications (e.g., properties like ’event i occurs
in less than four seconds before another event j occurs’). The syntax of TCTL
temporal logic is based on the formalism of CTL temporal logic, using propositions
that involve constraints on clocks. Let ϕ and ψ denote two CTL formulas. TCTL
formulas can be interpreted as follows:
ϕ, ψ ::= p: is an atomic proposition,

ssss|¬ϕ| ∨ ∧ψ|ϕ ∨ ψ|ϕ⇔ ψ|ϕ⇒ ψ: propositional logic operators,
ssss|EFϕ|EGϕ|EϕUψ|AϕUψ|EXϕ|AFϕ|AGϕ|AXϕ: CTL Operators,
ssss|x ∼ c|x− y ∼ c: x and y are clocks, ∼∈ {<,>,≤,≥,=}, c ∈ N.

For example, AG(error⇒ AF (x ≤ 3∧ alarm)) is a TCTL formula that verifies the
eventual triggering of an alarm within three time units in the case of an error.

(b) Probabilistic Computation Tree Logic(PCTL)
PCTL [94] allows for specifying properties over discrete-time Markov chains. It
was defined in 1994 by Hans Hansson and Bengt Jonsson, extending CTL temporal
logic by adding the probabilistic operator P , along with quantitative extensions of
the A and E operators.
a. The syntax of a PCTL formula is defined as:

• State formulas: ϕ := true|a|ϕ ∧ ϕ|¬ϕ|P∼p[ψ] ;
• Path formulas: ψ := Xϕ|ϕU≤kϕ|ϕUϕ where:
• a is an atomic proposition used to identify the states of interest for the analysis;

31

Chapter 2 Formal methods and genetic algorithms

• ∼∈ {<,>,≤,≥} and p ∈ [0, 1] is a probability;
• k ∈ N;
• Xϕ means ϕ is true at the next step (next operator);
• ϕ1U

≤kϕ2 means ϕ2 is true in k steps and ϕ1 is true up to that point (bounded
until operator);

• ϕ1Uϕ2 means ϕ2 is eventually true and ϕ1 is true up to that point (until opera-
tor).

• A property is always expressed using a state formula. Path formulas can only
appear within the probabilistic operator P . The state formula P∼p[ψ] means that
(the path formula ψ is true with probability ∼ p). The result of analyzing this
qualitative property is either true or false. Furthermore, it is possible to evaluate
the probability that the path formula ψ is true. The corresponding quantitative
property is P = [ψ]. For example, in Figure 1.3, the probability formula for
accessing state e1 is: P=[e1] = 0.99 + 0.01 ∗ 0.95.

2.2.3.1 Classifications of Temporal Properties

There are five major classes of properties that can be expressed in temporal logic [95]. In
this section, we present these different classes of properties.

• Liveness Property:

A liveness property expresses that a state or event will necessarily occur in the future.
This type of property can be expressed in LTL logic using the operator F (eventually)
and the operator U (until). This property can also be expressed in CTL logic using the
operator AF . Example: AFGOAL allows us to verify that the process will inevitably
reach its target state GOAL.

• Safety Property:

A safety property expresses that something bad will never happen. This property can be
expressed using the temporal operator G (always). Example: AGNOT FAIL allows us to
verify that the process never enters a failure state.

• Reachability Property:

A reachability property expresses that a certain situation can be reached. This property is
weaker than liveness, which expresses that a certain situation must necessarily be reached.
The reachability property can be expressed using the temporal operator EF . To verify a
reachability property, one simply needs to traverse the state graph and stop when such a
state is reached or all states have been explored. Example: EFFAIL expresses that the
process can fail.

• Fairness Property:

A fairness property expresses that something good will happen infinitely often. Fairness
can be expressed using LTL temporal logic. However, it cannot be expressed using CTL
temporal logic since CTL does not support A type operators (like FGp). Indeed, in CTL,
the operators X , F , G, and U must be directly preceded by A or E.

• Deadlock Freeness:

32

Chapter 2 Formal methods and genetic algorithms

A deadlock freeness property expresses that a system does not get stuck in a state where
it can no longer progress (no transition to another state is possible). A deadlock freeness
property can be expressed by the CTL formula: AG(EXtrue). Another method to con-
clude the absence of deadlock is to verify that deadlock states are not part of the set of
reachable states.

• Logical Properties with "Costs" and "Probability":

It is beneficial to verify properties that represent an extension of CTL with probabilistic
and cost aspects. A logic called PWCTL is introduced [90]. This logic allows for ex-
pressing properties of the form:

– P(♢C≤cφ) ∼ p: comparing with a given probability p, the probability that in the
future there will be a state where property φ is satisfied before the condition (C ≤ c)
is violated;

– P(□C ≤ cφ) ∼ p: comparing with a given probability p, the probability that in all
states property φ is satisfied before the condition (C ≤ c) is violated.

The authors of [90] indicate that verifying the property: A |= P(♢C≤cφ) ∼ p amounts to
verifying the property: A |= PA∗(

⋃
σ∈Σ∗ π(s0, σoφ)) ∼ p. The automaton A∗ is obtained

by modifying A by:

– The invariant C ≤ c is conjoined with all invariants of the locations in A;

– The arc (l, φ, oφ, ϕ, l) is added to all locations l in A.

2.2.4 Formal Modeling Methods
Formal modeling refers to the creation of abstract models that describe the structure and be-

havior of a system using mathematical or logical formalisms. These models serve as a blueprint
for understanding, analyzing, and verifying systems. Formal modeling methods are essential
for system design, allowing engineers to reason about the system before its implementation.

2.2.4.1 Automata

Automata [65] are foundational models in formal methods, used to represent systems with
discrete states and transitions. Automata are widely applied in the modeling of sequential and
concurrent systems. They are often used in model checking and other verification techniques.

• Finite Automata (FA): FA represent systems with a finite number of states and are widely
used in language recognition, parsing, and simple control systems.

• Timed Automata (TA): A variation of automata, timed automata incorporate clocks to
model real-time systems where timing constraints are critical. Tools like UPPAAL are
based on timed automata and are used for real-time verification.

• Probabilistic Automata: Used for systems with probabilistic behavior, these automata
model systems that exhibit randomness in state transitions, such as in stochastic pro-
cesses.

33

Chapter 2 Formal methods and genetic algorithms

1. Timed Automata (TA)
TA [96] [97] are classical automata equipped with non-negative real variables called
clocks. Each automaton has a finite number of states, referred to as locations, and a
finite set of transitions labeled by guards and clock-resetting actions. Each location is
associated with a constraint on the clocks, called an invariant, which determines the du-
ration of stay in a state before transitioning to the next one. In a state, a clock progresses
continuously and synchronously with time. Its value represents the time elapsed since its
last reset. A timed automaton allows for two types of transitions:

• An action transition, which occurs when its guard is true.

• A duration transition, which involves staying in the same state while the clocks
progress continuously, respecting the invariant.

As an illustration, consider the simple timed automaton in Figure 2.2, consisting of a
clock x and two states e0 and e1. The automaton remains in state e0 for up to one unit of
time. When the clock x equals to 1, the automaton instantly takes the transition for which
the guard is satisfied (x == 1) and resets the clock x. Since there is no invariant defined
for state e1, the automaton can stay there at least until the guard for its next destination is
satisfied (x ≥ 3). In other words, the automaton must remain in state e1 for at least three
units of time.

Figure 2.2: Example of a timed automaton.

Formally, A timed automaton A is defined as:

A = (L, l0, X,Σ, Inv, T)

where:

• L is a finite and non-empty set of states or locations,

• l0 ∈ L is the initial location,

• X is a finite set of clocks. Let C(X) be the set of clock constraints called invariants,
and 2X the set of all subsets of X ,

• Σ is a finite alphabet defining a set of actions,

• Inv : L → C(X) is a function that associates each state with a set of clock con-
straints of the form x ∼ c where ∼∈ {<,≤,=,≥, >}, c is a constant, and x ∈ X ,

• T ⊆ L × C(X) × Σ × 2X × L is a finite set of transitions. Each element t =
(l, g, a, r, l′) ∈ T represents a transition from l to l′ such that g is the guard associ-
ated with t, which belongs to C(X) and contains the set of constraints on the clocks,
r is the set of clocks to be reset, and a is an action.

34

Chapter 2 Formal methods and genetic algorithms

2. Probabilistic Timed Automata (PTA):
Formally, a probabilistic timed automaton [98] is a tuple (L, l̄, χ,Σ, inv, prob) where:

• L: a finite set of locations (or states) and l̄ ⊆ L;

• Σ: a set of events,

• χ: a set of variables (called clocks). χ ∈ T and T ∈ {R,N};
• inv: L→ Zone{χ} is a function that associates each location with an invariant.

• Zone{χ} is the set of logical expressions (guards) of the form: x ∼ c, such that
x ∈ χ, ∼∈ {≤,=,≥}, and c ∈ N;

• prob: a finite set of probabilistic transitions: prob ⊆ L×Zone(χ)×Σ×Dist(2χ×
L). Dist(2χ × L) is the set of probabilistic distributions over all countable sub-
sets of the product 2χ × L. In other words, each transition links one location to
another, labeled by: an event, a guard, a set of variables to be reset, and finally, a
transition probability. Thus, a probabilistic transition is a tuple (l, g, σ, p) where p
is a probability function p = µ(X, l′) defined for each pair (X, l′) ∈ 2χ × L; with
X ⊆ χ.

(a) Dynamics of PTA:
A state in a ProbTA is a pair (l, v) ∈ L×2χ where l is a location and v is a valuation
of the set of clocks in that location l. The valuation v(l) must satisfy the invariant of
l, denoted v(l) ∈ inv(l). Initially, the system is in an initial state (l0, v(l0)) where all
clocks are at 0, noted as v(l0) = 0. From any state (l, v(l)), the system can evolve
indeterministically in two possible ways:

• Stay in the state (l, v(l)) as long as the elapsed time does not violate the guard:
we always have v(l) ∈ inv(l). This is called a "delay transition."

• Or execute a discrete transition t = (l, g, σ, p) allowing the system to move to
another location l′, with a probability p = µ(X, l′) where X ′ is the set of clocks
to be reset. This is denoted as (l, v)→t (l′, v′). This transition is only possible
if v(l) satisfies the guard g and v′(l′) satisfies the invariant of l′: inv(l′).

(b) Networks of PTA:
Let PTAi = (Li, l̄i, χi,Σi, invi, probi) be a ProbTA. The composition of two Prob-
TAs PTA1 and PTA2 is the ProbTA defined by (L1 × L2, (l̄1, l̄2), χ1 ∪ χ2,Σ1 ∪
Σ2, inv, prob), such that: inv(l, l′) = inv(l)∧ inv(l′) and ((l1, l2), g, σ, p) ∈ prob if
and only if one of the following conditions is satisfied:

• An evolution in the first automaton: σ = σ1 ∈ Σ1, and there is a transition
(l1, g, σ, p1) ∈ prob1 such that: p = p1 ⊗ µ(∅, l2). The transition probability
equals the product of the probability of changing states in the first automaton
and the probability of remaining in the same state in the second automaton;

• An evolution in the second automaton: σ = σ2 ∈ Σ2, and there is a transition
(l2, g, σ, p2) ∈ prob2 such that: p = p2 ⊗ µ(∅, l1).

• A synchronized evolution in both automata: σ ∈ Σ1 ∩ Σ2, and there is a tran-
sition (l1, g1, σ, p1) ∈ prob1 and a transition (l2, g2, σ, p2) ∈ prob2, such that:
p = p1 ⊗ p2. The probability of transitioning is equal to the product of the
probability of changing the state in the first automaton and the probability of
changing the state in the second automaton.

35

Chapter 2 Formal methods and genetic algorithms

2.2.4.2 Petri Nets (PNs)

Petri nets (PNs) [66] are a graphical and mathematical modeling tool used to represent
concurrent and distributed systems. Petri nets excel at capturing the flow of information and
control in systems with parallel processes. They are particularly useful in analyzing deadlock,
synchronization, and resource allocation issues in complex systems. Petri Nets provide several
benefits [99, 100, 101]:

• Strong mathematical foundation with intuitive graphical modeling, making complex sys-
tems easier to understand.

• Support for abstraction, refinement, and extensions (e.g., colored, timed, stochastic) to
handle large, varied systems.

• Well-suited for qualitative and quantitative analysis with manageable state space repre-
sentation.

However, they have certain limitations [99]:

• State space explosion: Increased complexity can rapidly expand the state space.

• Modeling complexity: Extensions can complicate modeling or affect verification.

Petri nets are widely used in both formal verification and modeling. Their graphical nature
makes them intuitive for visualizing system dynamics, while their mathematical basis allows
for rigorous analysis. A Petri net is a directed bipartite graph comprising places, transitions,
and arcs that connect them.

1. Petri Net Structure
A Petri net is defined as a 4-tuple N = ⟨P, T, F,M0⟩ where

• P is a finite, non-empty set of places,

• T is a finite, non-empty set of transitions that does not overlap with P ,

• F : (P × T) ∪ (T × P) −→ N is a flow relation representing the arcs,

• M0 : P −→ N represents the initial marking.

The inputs (preset) and outputs (postset) for places and transitions are defined as follows:

• The preset of place p, denoted by •p, is •p = {t ∈ T |F (t, p) > 0}.
• The postset of place p, denoted by p•, is p• = {t ∈ T |F (p, t) > 0}.
• The preset of transition t, denoted by •t, is •t = {p ∈ P |F (p, t) > 0}.
• The postset of transition t, denoted by t•, is t• = {p ∈ P |F (t, p) > 0}.

2. Dynamic Behavior of Petri Nets
The dynamic evolution of the marking in a Petri net governed by two rules: the "enabling
rule" and the "firing rule." These rules rely on arc multiplicities and place markings.

• Enabling rule: is concerned with the input arcs of a transition, while the firing
rule considers both input and output arcs. A transition t is enabled at marking M ,
denoted by M [t⟩, if M(p) ≥ F (p, t), ∀ p ∈ •t.

36

Chapter 2 Formal methods and genetic algorithms

• Firing rule: firing a transition represents the occurrence of its associated event. A
transition is considered enabled if its pre-conditions are satisfied. Firing transition
t that is enabled at marking M results in a new marking M ′, denoted by M [t⟩M ′,
such that M ′(p) = M(p) + F (t, p)F (p, t), ∀ p ∈ P . Firing transition t removes
tokens from each place in its preset according to the multiplicity of the arcs and adds
tokens to each place in its postset in a similar manner.

In the following, fundamental definitions in Petri Net dynamics:

Definition 1 Transition Sequence. A sequence of transitions, denoted as σ = t1, t2, . . . , tn,
is considered fireable from an initial marking M1 if there exists a sequence of markings
M1,M2, . . . ,Mn such that for each i ∈ 1, 2, . . . , n, the marking Mi can transition to
Mi+1 by firing ti.

The notationM1[σ⟩Mn+1 indicates that the markingMn+1 can be reached from the initial
marking M1 by firing the transition sequence σ.

Definition 2 Reachability Set. The reachability set for a Petri net with initial marking
M0, represented as RS(M0), is defined as the set of all markings M that can be reached
from M0 by some fireable sequence of transitions, i.e., RS(M0) = M | M0[σ⟩M and σ
is a fireable sequence.

Definition 3 Reachability Graph. The reachability graph of a Petri netN = ⟨P, T, F,M0⟩,
denoted as RG(M0) = ⟨V,E⟩, is a directed graph where:

i) V represents the set of markings in the reachability set RS(M0),

ii) E is the set of directed edges (Mi, t,Mj), where Mi,Mj ∈ RS(M0) and t ∈ T is a
transition such that Mi

t−→Mj is a valid firing step.

In addition to its modeling capabilities, one of the main reasons for utilizing Petri nets is
their analysis potential. Various techniques have been developed for the verification of
Petri nets, allowing for the assessment of numerous properties associated with concurrent
systems. These properties can be analyzed based on the reachability graph (behavioral
properties) or independently of it (structural properties).

3. Properties of Petri Nets
Petri nets are widely used for their strong analysis capabilities, enabling the verification
of key properties in concurrent systems. These properties can be examined through be-
havioral analysis via the reachability graph or through structural analysis independently.

• Reachability: The reachability problem for Petri nets involves determining if a
marking M can be reached from the initial marking. This problem has been shown
to be decidable.

• Liveness and Deadlock-freedom: A Petri net is considered live if every transition
can be fired again in the future at any reachable marking. The liveness problem is
decidable, as it is recursively equivalent to the reachability problem. A transition in
a Petri net can be classified into various levels of liveness.

37

Chapter 2 Formal methods and genetic algorithms

• Boundedness: A Petri net is bounded if its reachable set is finite. The boundedness
property is also decidable. A Petri net is said to be k-bounded if any reachable
marking contains at most k tokens in any place. A safe Petri net is 1-bounded.

• Home state and Reversibility: A marking is considered a home state if it can be
reached from all other reachable markings. The problem of identifying a home state
is decidable. A Petri net is reversible if its initial marking is a home state.

• Conservation: A Petri net is conservative if the number of tokens in any reachable
marking remains constant, meaning that the total number of consumed tokens equals
the total number of produced tokens.

• Persistence: A Petri net is persistent if the firing of one transition does not disable
another transition when both are enabled at any reachable marking. This property is
decidable.

• Fairness: Fairness can be categorized into bounded-fairness and unconditional fair-
ness, with definitions and properties that can be analyzed through various tech-
niques.

2.2.4.3 Reconfigurability-Based Petri Nets Extensions

Reconfigurable systems are evolving to become more complex and adaptable, designed to
change their configurations during operation to better meet shifting needs. This dynamic recon-
figurability must occur in real time, and research emphasizes its importance. Petri nets are a
key tool in studying these systems, but traditional Petri nets struggle to represent systems with
changing structures, making modeling and verification difficult. To address this, extensions to
Petri nets that incorporate dynamic structures have been proposed. Additionally, rule-based
graph transformations offer a graphical way to model reconfigurations. However, increasing
a model’s flexibility can reduce its ability to make decisions, creating a trade-off in the de-
velopment of reconfigurable systems. The goal is to develop models that accurately reflect
real-world adaptive systems, though this can complicate analysis, making some properties un-
decidable. Despite these challenges, research continues to advance in improving the analysis of
reconfigurable systems.

2.2.4.4 Nested Petri Nets (NP-nets)

Nested Petri Nets (NP-nets) [102] extend colored Petri nets based on the "nets-within-nets"
paradigm. Tokens in NP-nets are either atomic or net tokens, which are themselves marked Petri
nets. The NP-nets formalism allows modeling hierarchical and multilevel systems, enabling
interaction and synchronization between the system net and its nested nets. Formally, an NP-
net is defined as:

NP-net = (N1, . . . , Nk, SN)

where:

• N1, . . . , Nk: Element nets, which are marked Petri nets representing the behavior of net
tokens.

• SN : System net, a high-level Petri net managing the element nets.

Each place in the system net SN is typed by:

38

Chapter 2 Formal methods and genetic algorithms

• A set S of atomic tokens, or

• A net token M(N,S), which is a marked net derived from an element net N .

The system net is defined as:

SN = (PSN , TSN , FSN , ν, ρ,Λ)

where:

• PSN : Set of places.

• TSN : Set of transitions.

• FSN : Set of arcs.

• ν: Typing function mapping each place to S or M(N,S).

• ρ: Arc labeling function.

• Λ: Transition labeling function, including synchronization labels and silent transitions
(τ).

The behavior of NP-nets is described by three types of steps:

• Element-autonomous steps: Transitions within a net token fire independently of the
system net.

• System-autonomous steps: Transitions in the system net manipulate tokens without al-
tering their internal markings.

• Synchronization steps: Simultaneous firing of a transition in the system net and associ-
ated transitions in the net tokens.

2.2.4.5 Reconfigurable Timed Net Condition/Event Systems (R-TNCES)

Reconfigurable Timed Net Condition/Event Systems (R-TNCES) [103] are an extension of
Timed Net Condition/Event Systems (TNCES) [104] tailored to model and analyze reconfig-
urable discrete event control systems (RDECS). This formalism integrates dynamic reconfig-
uration mechanisms into the TNCES framework, enabling the system to adapt automatically
to changes at runtime while maintaining coherence and correctness. In order to understand
R-TNCES, we define, at first, TNCES.

1. Timed Net Condition/Event Systems (TNCES):
A TNCES is a foundational framework for modeling modular, real-time systems. It
extends Petri nets by incorporating condition and event signals for interaction between
modules and adds time constraints for handling real-time behavior. A TNCES is formally
defined as:

Γ = (P, T, F,W,CN,EN,DC, V, Z0)

where:

• P, T, F,W : Define the structure of the net (places, transitions, arcs, and weights).

• CN,EN : Represent condition and event signals for inter-module communication.

39

Chapter 2 Formal methods and genetic algorithms

• DC: Specifies time constraints for input arcs, ensuring real-time behavior.

• V : Defines the event-processing mode (AND/OR) for transitions.

• Z0 = (M0, D0): Represents the initial marking and clock positions.

While TNCES are effective for static systems, they lack inherent support for dynamic
reconfiguration scenarios, such as runtime modifications of components, arcs, or condi-
tion/event signals.

2. Reconfigurable Timed Net Condition/Event Systems (R-TNCES)
R-TNCES extend TNCES to address the limitations by incorporating dynamic reconfig-
uration capabilities. The formalism allows modeling systems that can adapt at runtime in
response to environmental changes, errors, or user requirements. An R-TNCES is defined
as:

RTN = (B,R)

where:

• B: Behavior Module, representing the union of all possible configurations modeled
as TNCES.

• R: Control Module, a set of reconfiguration functions enabling transitions between
configurations.

The behavior module B is represented as:

B = (P, T, F,W,CN,EN,DC, V, Z0)

with components similar to TNCES but encompassing multiple possible configurations.
Each configuration is a valid TNCES.

• Reconfiguration Functions: Reconfiguration is managed by functions r ∈ R, each
defined as:

r = (Cond, s, x)

– Cond: A precondition specifying when the reconfiguration is applicable.
– s: A structural modification instruction (e.g., adding/removing places, transi-

tions, or signals).
– x: A state-mapping function ensuring coherence between the states of configu-

rations before and after reconfiguration.

• Dynamic Behavior:
– Reconfiguration Events: When a reconfiguration function r is triggered, the

current TNCES is updated to a new configuration.
– State Coherence: The state-mapping function x ensures the transition between

configurations does not disrupt the system’s functionality.
– Temporal Constraints: Time intervals and deadlines are preserved during re-

configuration, ensuring real-time behavior.

40

Chapter 2 Formal methods and genetic algorithms

2.2.4.6 Self-Modifying Nets

Self-Modifying nets (SM-nets) were introduced in [105, 106] to extend the expressive ca-
pabilities of Petri nets by incorporating dynamic reconfiguration. These nets enhance the tra-
ditional Petri net framework by allowing the enabling and firing conditions of transitions to
change based on the marking of places or specific arc weights, adding flexibility and complex-
ity to their behavior.

In an SM-net, the weight of an arc can be influenced by the marking of a place, meaning
that the number of tokens required or produced by firing a transition can vary dynamically.
This introduces reconfigurability, where firing a transition can affect the enabling and firing
conditions of subsequent transitions. For example, if the marking of a place becomes zero,
the arc weight to a transition may become zero, making that transition a source transition (a
transition with an empty preset).

A Self-Modifying net is formally defined as a quadruple SM = ⟨P, T, F,M0⟩, where:

• P is a finite set of places,

• T is a finite set of transitions, disjoint from P ,

• F : (P × P1 × T) ∪ (T × P1 × P) −→ N is a flow relation that assigns weights (multi-
plicities) to arcs. Here, P1 = P ∪ {1}, and 1 /∈ P represents a special identifier used in
the flow relation. Specifically:

– If F (x, 1, z) = m, it indicates that the arc from x to z has a weight m,

– If F (x, y, z) = n, it means the weight of the arc from x to z is n ·M(y), where
M(y) is the marking of place y.

• M0 : P −→ N is the initial marking function, which assigns an initial number of tokens
to each place.

2.2.4.7 Reconfigurable Object Nets (RONs)

Reconfigurable Object Nets (RONs), introduced in [67], are a type of high-level net that in-
corporates the concept of "nets and rules as tokens". They extend the "nets as tokens" paradigm,
first presented in [107, 108, 109]. Thus, two distinct classes of tokens are defined: token-nets
and token-rules. This formalism allows not only the manipulation of token markings but also
the dynamic transformation of net structures during execution, which is particularly useful for
reconfigurable systems, by distinguishing between two levels of nets: the system level and the
token level.

• The system level consists of a high-level net and a rule system, where a place can contain
either token-nets or token-rules. The marking at this level represents the distribution of
nets and rules across different places. The firing behavior at the system level dictates how
token-nets move between places and how the structures of token-nets change.

• At the token level, a token-net can fire independently, without undergoing movement or
transformation, to represent a marking change within the token-level net. Alternatively, a
token-net firing can be synchronized with the firing of a system transition, in which case
the token-net is moved or transformed only if a token-net transition occurs.

41

Chapter 2 Formal methods and genetic algorithms

The concept presented in [67] involves treating the modification of the net structure as a rule-
based transformation of Petri nets, viewed through the lens of graph transformation systems.
To gain a clearer understanding, we need to explore graph transformation systems and define
transformation rules.

1. Graph Transformation Systems (GTSs)
GTSs[110] provide a versatile and intuitive framework for modeling systems with evolv-
ing structures. At the core of a GTS lies an initial graph G0, which represents the starting
configuration of the system G. Accompanying this graph is a set of transformation rules
R that define how the structure changes over time. Each rule consists of a left-hand side
(LHS) and a right-hand side (RHS), which describe how one configuration is transformed
into another. Formally, A graph transformation system G = ⟨G0,R⟩, where:

• G0 is an initial graph,

• R is a set of transformation rules.

A graph G is said to be generated by G if it is derived from G0 through the sequential
application of rules fromR. For a given graph G, which represents the current state of G,
a rule can be applied if there is a matching subgraph of G that corresponds to the LHS.
This matching is determined via a graph morphism, which maps the LHS to a subgraph
of G. When a match is found, the LHS is removed and replaced with the RHS, resulting
in a new graph configuration. Some GTS frameworks also make use of an interface
graph to indicate which parts of the structure must remain unchanged and how the RHS
is integrated into the existing graph. In the following, we define the Petri nets morphisms
and transformation rule.

2. Petri Net Morphism
Given two Petri nets:

PN1 = (P1, T1, F1,W1,M1)

PN2 = (P2, T2, F2,W2,M2)

A Petri net morphism f : PN1 → PN2 is a pair of functions:

f = (fP , fT)

where:

• fP : P1 → P2: A function mapping places in PN1 to places in PN2.

• fT : T1 → T2: A function mapping transitions in PN1 to transitions in PN2.

The functions fP and fT must satisfy the following:

• Preservation of Flow Relation:

∀(x, y) ∈ F1, (f(x), f(y)) ∈ F2

where x, y ∈ P1 ∪ T1, and f is extended to the union of places and transitions.

• Preservation of Weights:

∀(x, y) ∈ F1, W1(x, y) = W2(f(x), f(y))

ensuring that the weights of arcs between corresponding elements are preserved.

42

Chapter 2 Formal methods and genetic algorithms

• Preservation of Initial Marking:

∀p ∈ P1, M2(fP (p)) =M1(p)

meaning that the initial marking of places in PN1 is mapped to the corresponding
marking in PN2.

3. Transformation Rule
In Double-Pushout approach for Petri nets, A transformation rule provides a formal mech-
anism for modifying a Petri net’s structure by replacing specific sub-nets with new ones
while preserving consistency and correctness. The rule defines the conditions under
which a transformation can be applied, the parts of the net to be removed, and the parts
to be added. A transformation rule is formally defined as:

r = (L
i1←− I

i2−→ R)

where:

• L: The left-hand side net, representing the part of the net to be replaced.

• I: The interface net, a shared substructure that ensures consistency during the trans-
formation.

• R: The right-hand side net, specifying the new structure to replace L.

• i1 : I → L: A strict morphism mapping the interface I to the left-hand side L.

• i2 : I → R: A strict morphism mapping the interface I to the right-hand side R.

The application of a transformation rule is based on two graph gluing constructions, com-
monly referred to as pushouts. These constructions ensure consistency and correctness
in the transformation process. Applying a rule r to a Petri net G involves the following
steps:

• Match identification by locating a sub-net in G that matches L via a morphism
m : L→ G.

• Obsolete and fresh elements identification by identifying elements in L not in the
image of i1 (obsolete elements to be removed) and elements in R not in the image
of i2 (fresh elements to be added).

• First pushout by constructing the context net C by removing obsolete elements of L
from G along the interface I , ensuring that G = C +I L.

• Second pushout by gluing C and R along I , resulting in the transformed Petri net
G′, such that G′ = C +I R.

The transformation is denoted by: G
r,m−−→ G′ where G′ is the resulting Petri net. The

resulting Petri net G′ = ⟨PG′ , TG′ , FG′ ,M0
G′⟩ is defined as:

PG′ = PC ⊎ (PR \ PI)

TG′ = TC ⊎ (TR \ TI)

43

Chapter 2 Formal methods and genetic algorithms

where ⊎ represents disjoint union, and \ represents set difference. The flow and marking
functions are given by:

FG′(v, w) =


FC(v, w) if v, w ∈ PC ∪ TC
FR(v, w) if v, w ∈ PR ∪ TR
0 otherwise

M0
G′(p) =


M0

C(p) if p ∈ PC \ PR

M0
R(p) if p ∈ PR \ PC

M0
C(p) +M0

R(p)−M0
I (p) otherwise

2.2.4.8 Net Rewriting Systems (NRSs) and its Extensions

NRSs [111, 112] was introduced to enhance the capabilities of standard Petri net (PN)
frameworks. They represents a combination Petri nets elements with graph transformation sys-
tems. In the following, the NRSs and its extensions are presented.

1. Net Rewriting Systems (NRSs)
An NRS is defined as N = ⟨G0,M0,R⟩, where:

• G0 is the initial unmarked Petri net.

• M0 is the initial marking.

• R is a set of rewriting rules.

Each rewriting rule r = ⟨L,R, I, O⟩ consists of:

• L: the left-hand side (LHS) Petri net (unmarked),

• R: the right-hand side (RHS) Petri net (unmarked),

• I ⊆ (PL × PR) ∪ (TL × TR): the input interface,

• O ⊆ (PL × PR) ∪ (TL × TR): the output interface.

Applying a Rewriting Rule is as follows:

• Matching: A morphism m is used to find a matchM for the LHS L in the original
Petri net G, ignoring markings.

• Context Graph: The part of G not matched by m forms the context graph, ensuring
that the input and output interface conditions are met.

• Rewriting: After matching, the LHS part of G is replaced by the RHS, creating a
new Petri net H = ⟨PH , TH , FH ,M

0
H⟩.

- The marking M0
H is computed by summing the markings of places in G that cor-

respond to places in R:

M0
H(p) =

∑
p′∈π(p)

M(m(p′))

where π(p) = {p′ | (p′, p) ∈ I ∪O}.

44

Chapter 2 Formal methods and genetic algorithms

- The flow function FH is updated based on the interface relations:

FH(v, w) =
∑

w′∈πI(w)

FG(v,m(w′))

for transitions between places and transitions in the new net.

2. Improved Net Rewriting Systems (INRSs)
INRSs [113, 114, 115, 116, 117] extend NRSs by allowing the reconfiguration of live,
bounded, and reversible (LBR) Petri nets (PNs) while preserving these properties, elimi-
nating the need for re-verification. INRSs consist of three key components:

• NRSs as the foundational framework,

• Well-Behaved Nets (WBNs) to define interface relations between the left and right
sides of rules,

• A Net Block Type Library that specifies allowable subnet types for rule components.

INRSs enable the replacement of subnets while preserving LBR properties. The system
applies rules to subnets from the defined library (e.g., state machines, marked graphs).

An INRS is defined as N = ⟨G0,R,L⟩, where:

• G0 is the initial PN configuration,

• R is a set of rewriting rules,

• L is the net block library.

A rule is a 4-tuple r = ⟨L,R, I, O⟩, where:

• L and R are the left and right sides of the rule (PNs from L),

• I and O are the input and output interface relations (sets of places or transitions).

Rules apply if, in addition to the NRS conditions, the context graph satisfies the preset
and postset conditions for the input and output interfaces.

3. Reconfigurable Petri Nets (RPNs)
RPNs [118, 111, 112] extend traditional Petri Nets (PNs) by enabling dynamic recon-
figuration through rewriting rules that modify flow relations, while keeping places and
transitions unchanged. RPNs combine features of Petri Nets and Self-Modifiying Nets
(SM-nets).

An RPN is defined as N = ⟨P, T,R, γ0⟩, where:

• P and T are sets of places and transitions,

• R is a set of rewriting rules,

• γ0 is the initial configuration.

A rule r = ⟨D,• r, r•,C,M⟩ modifies flow relations in D and is applicable if the current
markings meet preconditions.

RPNs can be transformed into equivalent Petri nets, which can be analyzed using standard
Petri net analysis methods like reachability graphs.

Example: The equivalent Petri net includes cloned places, configuration-specific transi-
tions, and rule-based transitions, enabling traditional PN analysis techniques.

45

Chapter 2 Formal methods and genetic algorithms

2.3 Introduction to Genetic Algorithms

Genetic Algorithms (GAs) are a class of optimization and search techniques inspired by the
principles of natural selection and genetics [119]. They belong to the broader field of evolution-
ary algorithms, which also includes methods like genetic programming, evolution strategies,
and differential evolution. GAs use mechanisms inspired by biological evolution, such as selec-
tion, crossover (recombination), and mutation, to evolve solutions to complex problems. These
algorithms are particularly effective in solving optimization problems that are high-dimensional,
non-linear, and poorly defined or lack a smooth search space.

To understand genetic algorithms, it’s important to grasp key concepts which are: (1) Pop-
ulation: A subset of all possible solutions to a problem, maintained within the search space.
(2) Chromosome (Individual): A solution represented as a finite-length vector of components
called genes, Figure 2.3 illustrates the population contents, with each gene being a variable part
of the solution. (3) Fitness Function: A measure that assigns a fitness score to each individ-
ual, reflecting its ability to solve the problem and compete with others. (4) Genetic Operators:
Methods that alter the genetic makeup of offspring, improving their performance over their
parents. Together, these elements help drive the evolutionary process in genetic algorithms.

Figure 2.3: Population, chromosome and gene.

GAs are powerful tools for optimization, especially in cases where the search space is large,
complex, and poorly understood. Unlike traditional optimization methods that may require
differentiability or continuity, GAs can handle discrete, non-continuous, and noisy functions.
They are particularly useful in:

• Multi-modal optimization: GAs are effective in exploring multiple peaks or optima in a
fitness landscape, helping find global optima in situations where traditional optimization
methods struggle with local optima.

• Large, complex search spaces: GAs can efficiently explore large solution spaces with-
out requiring an exhaustive search or domain-specific knowledge, making them ideal for
high-dimensional problems.

• Non-differentiable objective functions: Since GAs do not rely on gradient-based methods,
they can be applied to problems where the objective function is not smooth or continuous.

2.3.1 Fundamentals of Genetic Algorithms
A genetic algorithm operates by simulating the process of natural selection. The core idea

is to represent potential solutions to a problem as individuals in a population. These individuals
undergo processes of reproduction and survival, guided by a fitness function that measures their
performance in solving the problem. GAs proceed through generations, with each generation
evolving to improve the population’s quality. Key components of a GA include [120]:

46

Chapter 2 Formal methods and genetic algorithms

• Representation (Encoding): Solutions are encoded as chromosomes (strings or arrays),
where each chromosome represents a candidate solution. The choice of encoding depends
on the problem domain, with common schemes including binary, octal, hexadecimal,
permutation, value-based, and tree encoding.

– Binary encoding is widely used, where genes are represented as strings of 1s and
0s. It allows fast crossover and mutation but requires effort in conversion and may
struggle with certain engineering problems.

– Octal and hexadecimal encoding use octal (0–7) and hexadecimal (0–9, A-F) num-
bers to represent genes, respectively.

– Permutation encoding is used for ordering problems, where genes are represented
by sequences of numbers.

– Value-based encoding represents genes as strings of real, integer, or character values
and is useful for complex problems, especially in neural networks.

– Tree encoding represents genes as trees of functions or commands, often used in
evolving programs or expressions.

Each encoding scheme has its advantages depending on the problem being solved.

• Population Initialization: A population of candidate solutions is randomly generated,
though initial populations can also be seeded to cover specific regions of the solution
space, depending on the problem.

• Selection: Selection determines which individuals will reproduce and form the next gen-
eration. It is a key step in GAs that determines which individuals will reproduce. The con-
vergence rate of a GA depends on the selection pressure. Common selection techniques
include roulette wheel, rank, tournament, Boltzmann, and stochastic universal sampling.

– Roulette wheel selection assigns a portion of the wheel to each individual based on
their fitness and randomly selects solutions. However, it can suffer from errors due
to its stochastic nature. Modifications like deterministic roulette wheel selection
reduce these errors.

– Rank selection ranks individuals based on fitness, giving each individual a chance
according to their rank, which helps avoid premature convergence.

– Tournament selection involves selecting individuals in pairs based on fitness, with
the higher fitness individual advancing to the next generation.

– Stochastic universal sampling (SUS) is a variation of roulette wheel selection, using
a random starting point and selecting individuals at evenly spaced intervals, offering
equal chances to all individuals.

– Boltzmann selection uses entropy and sampling methods to address premature con-
vergence, with a higher probability of selecting the best individual but a risk of
information loss, which can be mitigated by elitism.

– Elitism ensures that the best individual always moves to the next generation, im-
proving performance by retaining high-quality solutions.

47

Chapter 2 Formal methods and genetic algorithms

• Crossover (Recombination): Crossover is the process of combining parts of two parent
chromosomes to produce offspring. This simulates genetic recombination in biological
systems and allows the GA to explore new solutions by mixing traits from both parents.
Common crossover techniques include single-point, two-point, k-point, uniform, partially
matched (PMX), order (OX), precedence-preserving (PPX), shuffle, reduced surrogate
(RCX), and cycle crossover.

– Single-point crossover randomly selects a crossover point and swaps genetic mate-
rial beyond this point between two parents, generating offspring from the swapped
parts.

– Two-point and k-point crossover [121] select multiple random crossover points, ex-
changing genetic material between parents based on these points.

– Uniform crossover treats each gene independently, randomly deciding whether to
swap each gene between parents.

– Partially matched crossover (PMX) [122] is a frequently used operator, where part
of one parent’s genetic material is swapped with the corresponding part of the other
parent. The remaining genes are copied from the second parent.

– Order crossover (OX) [123] copies parts of one parent to the offspring and fills the
remaining spaces with genes from the second parent that aren’t already included,
useful for ordering problems.

– Precedence-preserving crossover (PPX) [124] maintains the ordering of genes from
the parent solutions, ensuring certain constraints are preserved in the offspring.

– Shuffle crossover [125] randomizes the genes before crossover and restores their
original order after, minimizing bias from the crossover point.

– Reduced surrogate crossover (RCX) [126] reduces unnecessary crossovers by pre-
venting swapping when parents have identical genetic sequences.

– Cycle crossover [127] generates offspring by taking genes from alternating cycles
of parents, ensuring that all positions are filled by referencing their positions in the
parents.

In terms of performance, single-point and k-point crossover are easy to implement, while
uniform crossover is suited for large gene subsets. Order and cycle crossovers offer better
exploration, and PMX is particularly effective. However, RCX and cycle crossover can
suffer from premature convergence.

• Mutation: Mutation is a key operator in genetic algorithms that preserves genetic di-
versity between populations. Common mutation operators include displacement, simple
inversion, and scramble mutation [128].

– Displacement mutation (DM) moves a substring within an individual solution to a
random position, ensuring the new solution remains valid. Variants of DM include
exchange mutation, which swaps parts of the solution, and insertion mutation, which
inserts a part of the solution at a different location.

– Simple inversion mutation (SIM) reverses a substring between two specified points
within the solution.

– Scramble mutation (SM) rearranges elements within a specific range of the solution
randomly, checking if the new solution improves the fitness value.

48

Chapter 2 Formal methods and genetic algorithms

The process of the genetic algorithm is depicted in Figure 2.4

Figure 2.4: Workflow of the genetic algorithm.

2.3.2 Challenges in Applying GAs to RSs
While GAs have shown great promise in optimizing reconfigurable systems, several chal-

lenges must be addressed:

• Computational Complexity: GAs can be computationally expensive, particularly when
dealing with large populations or complex systems with many variables. The need to
evaluate fitness for each individual in the population across multiple generations can lead
to high computation costs, especially in real-time applications.

• Premature Convergence: GAs are susceptible to premature convergence, where the pop-
ulation becomes too similar, leading to a loss of genetic diversity and stagnation in the
search process. To combat this, techniques such as maintaining diversity through muta-
tion, using adaptive mutation rates, or employing multi-objective optimization are often
applied.

• Scalability: As reconfigurable systems grow in complexity (e.g., more parameters, larger
system sizes), the search space increases exponentially, making the optimization problem
harder. Hybrid approaches that combine GAs with other techniques can help improve
scalability and efficiency.

• Real-Time Constraints: In certain reconfigurable systems, such as robotics or autonomous
vehicles, real-time optimization is required. GAs can be slow to converge, which may
be a disadvantage in time-sensitive applications. Parallelism, multi-threading, or more
efficient genetic operators are some ways to speed up the algorithm.

49

Chapter 2 Formal methods and genetic algorithms

Despite these challenges, the flexibility and robustness of GAs make them an attractive op-
tion for reconfigurable systems optimization. Advances in parallel computing, multi-objective
optimization, and hybrid algorithms are expected to further improve their performance and ap-
plicability.

2.3.3 GAs Variants
GAs have been modified into several variants to enhance their performance across different

problem types. These variants are generally grouped into five categories: real and binary coded
GAs, multi-objective GAs, parallel GAs, chaotic GAs, and hybrid GAs. Overall, these GA
variants address specific challenges and improve performance in diverse applications, such as
multi-objective optimization, parallel computing, and chaotic problem-solving, etc.

1. Binary Coded GAs:
These represent solutions using binary strings. Although effective for specific tasks, bi-
nary GAs face challenges like difficulty achieving precision.

2. Real-Coded GAs:
Used for problems where the solution naturally involves real values. They are robust and
efficient but prone to premature convergence, requiring modifications to genetic operators
to improve performance.

3. Multi-objective GAs (MOGAs):
Multi-objective Genetic Algorithm (MOGAs) is an enhanced version of the standard Ge-
netic Algorithm (GA), differing primarily in how fitness functions are assigned. While
the core steps remain similar to GA, MOGA aims to generate an optimal Pareto Front
in the objective space, ensuring that no fitness function can be improved without nega-
tively impacting others. The key goals of MOGA are to achieve convergence, maintain
diversity, and ensure broad coverage of solutions.

4. Parallel GAs:
Parallel GAs aim to improve computational efficiency by distributing the work across
multiple processors. They include:

(i) Master-Slave Parallel GAs: Fitness evaluation is distributed among several processors,
but these systems may have high computational time. (ii) Fine-Grained Parallel GAs:
Involve more localized interactions among individuals, used for real-life problems. (iii)
Coarse-Grained Parallel GAs: Individuals exchange solutions among sub-populations,
and the system may involve complex management of resources like GPUs.

5. Chaotic GAs:
Chaotic systems are integrated into GAs to address premature convergence. Chaotic
maps replace traditional randomization in genetic operators, enhancing solution accuracy.
However, they tend to suffer from high computational complexity.

6. Hybrid GAs:
Hybrid GAs combine genetic algorithms with other optimization techniques to improve
solution quality, efficiency, and feasibility, especially for complex problems. This vari-
ant’s algorithms enhance the search capability by improve the solution quality, and are
used to fine-tune the parameters of the genetic algorithm.

50

Chapter 2 Formal methods and genetic algorithms

2.3.4 Multi-Objective Genetic Algorithms (MOGAs)
MOGAs [129] are a class of genetic algorithms designed to solve optimization problems

with multiple, often conflicting objectives. MOGAs are applied in various domains, such as: (i)
Reliability optimization: Balancing reliability and cost in systems like nuclear power plants. (ii)
Resource allocation: Optimizing time, cost, and resources in manufacturing systems. MOGAs
have advantages, such as robustness in handling non-convex, multi-modal problems, simulta-
neous generation of diverse trade-off solutions and eliminating the need for predefined weights
or scaling. However, these algorithms have limitations, such as, computationally intensive due
to large populations and multiple objectives, performance degrades with an increasing number
of objectives (scalability issues), and hyperparameter sensitivity requires careful tuning [130].

2.3.4.1 Introduction to Multi-objective Optimization

Multi-objective optimization involves solving problems with multiple conflicting objectives.
Unlike single-objective optimization, which seeks a single optimal solution, multiobjective op-
timization aims to find a set of trade-off solutions that balance the objectives. The solutions
are evaluated based on Pareto optimality, where no improvement in one objective is possible
without sacrificing performance in another [131].

A multi-objective optimization problem can be formally defined as [132]:

Minimize z(x) = {z1(x), z2(x), . . . , zK(x)}, x ∈ X

where:

• z(x) is the vector of K objective functions.

• x = {x1, x2, . . . , xn} is the decision variable vector.

• X is the feasible solution space, defined by constraints such as gj(x) ≤ bj .

A solution x∗ ∈ X is Pareto optimal if no other solution x ∈ X dominates x∗. For two
solutions x, y ∈ X , x dominates y (x ≺ y) if:

zi(x) ≤ zi(y) ∀i ∈ {1, 2, . . . , K}, and zj(x) < zj(y) for at least one j.

The set of all non-dominated solutions forms the Pareto front, representing the trade-offs
among objectives. Multi-objective genetic algorithms (MOGAs) aim to approximate this Pareto
front.

2.3.4.2 MOGAs Fundamentals

MOGAs aim to generate a set of diverse, non-dominated solutions, approximating the Pareto
front. The following covers the key components of MOGAs [131].

1. Pareto Dominance and Optimization Goals
Pareto dominance is central to MOGAs. Solutions are evaluated based on whether they
are dominated by others in the population. The main goals of MOGAs are:

(a) Convergence: Ensure that the solutions are as close as possible to the true Pareto
front.

(b) Diversity: Maintain a uniform distribution of solutions along the Pareto front.

51

Chapter 2 Formal methods and genetic algorithms

(c) Completeness: Capture the entire spectrum of trade-offs, including extreme points.

2. Fitness Assignment
Fitness assignment in MOGAs is typically based on Pareto ranking, which divides the
population into non-dominated fronts. Another approach is the weighted sum method,
which converts multiple objectives into a single scalar function:

Minimize Z(x) =
K∑
i=1

wizi(x)

where:

• wi are weights for each objective, with
∑K

i=1wi = 1.

• Z(x) is the scalarized objective function.

While simple, this method struggles with non-convex Pareto fronts and requires careful
selection of weights.

3. Diversity Preservation
Diversity is crucial for ensuring a uniform spread of solutions across the Pareto front.
Techniques include:

• Fitness Sharing Reduces the fitness of solutions in densely populated regions. The
niche count for a solution xi is calculated as:

nc(xi) =
N∑
j=1

max

(
0, 1− d(xi, xj)

σshare

)
where:

– d(xi, xj) is the distance between solutions xi and xj in the objective space.
– σshare is the niche size.

Fitness is adjusted as:

f ′(xi) =
f(xi)

nc(xi)
.

• Crowding Distance Measures the sparsity of solutions around a candidate xi:

cd(xi) =
K∑
k=1

zk(xi+1)− zk(xi−1)
zmax
k − zmin

k

where:

– xi+1 and xi−1 are adjacent solutions in the sorted list for the k-th objective.
– zmax

k and zmin
k are the maximum and minimum values of the k-th objective.

4. Elitism
Elitism ensures the preservation of high-quality solutions across generations. Two com-
mon strategies are:

• Retaining non-dominated solutions directly within the population.

• Maintaining an external archive of non-dominated solutions.

52

Chapter 2 Formal methods and genetic algorithms

2.3.4.3 Prominent Multi-objective Genetic Algorithms

Several MOGAs have been proposed. In the following, brief descriptions for the popular
multiobjective genetic algorithms are presented:

1. Vector Evaluated Genetic Algorithm (VEGA)
VEGA [133] is the first MOGA designed to approximate the Pareto front. This algorithm
divides the population into subgroups, each optimized for a single objective. Solutions
from these subgroups are recombined through crossover and mutation. However, while
simple to implement, VEGA often produces solutions biased toward extreme objectives,
failing to achieve a well-distributed Pareto front.

2. Niched Pareto Genetic Algorithm (NPGA)
NPGA [134] employs a tournament selection mechanism based on Pareto dominance. As
innovations, it uses a niching strategy to maintain diversity and employs dominance-based
comparisons instead of aggregating objectives. This algorithm ensures better exploration
of the solution space and avoids convergence to a specific region of the Pareto front.

3. Nondominated Sorting Genetic Algorithm (NSGA)
NSGA [135] is considered as one of the first Pareto-based evolutionary algorithms. Its
key Features: (i) Ranks the population based on Pareto dominance. (ii) Assigns fitness in-
versely proportional to rank, favoring non-dominated solutions. However, as a drawback,
it suffers from computational complexity due to sorting, especially for large populations.

4. Fast Nondominated Sorting Genetic Algorithm (NSGA-II)
An enhancement of NSGA, NSGA-II [136] addresses its computational limitations. The
algorithm’s innovations: (i) Fast Sorting: Reduces complexity to, where is the number of
objectives and is the population size. (ii) Crowding Distance: Maintains diversity without
introducing additional parameters. (iii) Elitism: Ensures preservation of the best solutions
across generations. NSGA-II remains one of the most widely used MOGAs.

5. Strength Pareto Evolutionary Algorithm (SPEA)
SPEA [137] incorporates an external archive to store non-dominated solutions. The algo-
rithm’s core Components: (i) Strength Value: Solutions are assigned fitness based on the
number of dominated individuals. (ii) Archive Maintenance: Prunes the archive to en-
sure diversity and manageable size. This algorithm effectively balances exploration and
exploitation.

6. Pareto Archived Evolution Strategy (PAES)
PAES [138] is considered as the simple yet powerful algorithm. It is based on evolution
strategies. PAES maintains a single candidate solution and an external archive of non-
dominated solutions. It uses a grid-based mechanism to ensure diversity in the archive.
It, particularly, suited for problems with low-dimensional objectives.

7. Random Weighted Genetic Algorithm (RWGA)
RWGA [139] generates random weight vectors for each solution during the selection
phase, allowing simultaneous optimization in multiple directions.RWGA doesn’t need
for predefining weight vectors. However, it performs poorly on non-convex Pareto fronts.

53

Chapter 2 Formal methods and genetic algorithms

8. Multi-objective Genetic Algorithm (MOGA)
This approach is developed to address the limitations of VEGA. MOGA [129] introduces
Pareto-based ranking and a niching strategy to maintain diversity. It produces a more
uniform distribution of solutions.

9. Rank-Density Based Genetic Algorithm (RDGA)
RDGA [140] incorporates rank and density information to guide the search. RDGA pe-
nalizes regions with high population density to encourage exploration of sparsely popu-
lated areas for improving coverage of the Pareto front.

2.4 Conclusion

This chapter has provided a comprehensive overview of two key areas fundamental to this
thesis: formal methods and genetic algorithms. In the first section, we explored formal methods
as a rigorous foundation for the analysis and verification of complex systems. We discussed
formal verification techniques, with an emphasis on model checking, as well as property spec-
ification formalisms, highlighting the role of temporal logics such as LTL and CTL, and their
extensions. The section also addressed formal modeling methods, with a particular focus on
the extensions of automata and Petri nets that support reconfigurability, which are crucial for
analyzing reconfigurable systems.

In the second section, we delved into genetic algorithms, covering their definition, fun-
damentals, and variants, with a specific focus on multi-objective genetic algorithms. We also
analyzed the challenges of applying genetic algorithms in the context of reconfigurable systems,
laying the groundwork for their application in optimization problems.

The insights from this chapter serve as a foundation for the contributions outlined in the
subsequent chapters.

The next chapter will introduce the first contribution of this thesis: the use of model check-
ing and probabilistic automata for the analysis of reconfigurability in Mobile wireless sensor
networks and Internet of Things. By leveraging formal verification methods, this contribution
aims to ensure the correctness and adaptability of reconfigurable networks.

Following this, the thesis will present a second major contribution focusing on the appli-
cation of high-level Petri nets RONs (Reconfigurable Object Nets) and genetic algorithms to
propose new formalism that can model, analysis and optimize reconfigurable manufacturing
systems. These contributions demonstrate the synergy between formal methods and genetic
algorithms in tackling complex and reconfigurable systems.

54

Chapter 3

Model Checking for Formal Modeling and
Verification of Reconfigurable Systems:
Protocols Performance Evaluation

55

Chapter 3 Model Checking for Formal Modeling and Verification of Reconfigurable Systems

3.1 Introduction

Reconfigurability is a fundamental property in modern systems, enabling them to adapt and
evolve based on changing operational conditions or requirements. While Chapter 1 provided
a broad overview of reconfigurable systems, this chapter focuses on the application of formal
methods in verifying and evaluating the performance of reconfigurable communication proto-
cols. Specifically, it highlights our two key contributions [141], [142] that explore how formal
modeling and verification can be applied to reconfigurable systems.

The chapter is organized as follows. Section 3.2 presents the first contribution, which in-
volves the formal modeling and performance evaluation of the CFMA MAC protocol used in
mobile wireless sensor networks. In this section, we use formal methods, including probabilis-
tic timed automata and the UPPAAL SMC tool, to assess both the correctness and performance
of the protocol, ensuring its efficiency and reliability in a mobile wireless sensor network envi-
ronment.

Section 3.3 introduces the second contribution, which focuses on applying similar formal
methods to the MQTT 3.1.1 protocol, a widely-used communication protocol in the Internet of
Things (IoT). This section extends the approach from Section 1 to study the protocol’s behavior
and performance in IoT systems, which are highly dynamic and require adaptability to varying
network conditions. Formal verification of the MQTT protocol in such environments helps to
ensure that it meets both qualitative and quantitative performance expectations.

Section 3.4 concludes the chapter by summarizing the key insights from the two contribu-
tions and reflecting on the implications of these findings for reconfigurable systems in commu-
nication protocols.

3.1.1 Context of the Work
Wireless Sensor Networks (WSNs) and Internet of Things (IoT) systems are foundational

technologies enabling pervasive connectivity in various domains. With the increasing deploy-
ment of mobility-based WSNs and dynamic IoT networks, the challenges of ensuring reliable
communication, optimal energy utilization, and robust performance under changing topologies
are paramount. Existing studies on WSNs and IoT protocols, particularly in static environments,
have leveraged formal methods to ensure compliance with standards and verify properties such
as liveness, safety, and reachability ([143, 144, 145, 146]). However, the formal analysis of
mobile WSNs remains limited, with most performance evaluations relying on simulation such
as in ([147, 148, 149, 150]).

Similarly, while IoT protocols have been extensively simulated for performance metrics
([151, 152, 153, 154]), formal methods have only been applied sporadically. Notable works
([155, 156, 157]) have focused on testing IoT protocols like MQTT and CoAP, yet a compre-
hensive formal study addressing mobility dynamics and essential networking properties remains
scarce.

The formal verification has been used in networking domain to verify communication pro-
tocols in both levels: network layer ([158], [159], [160]) and MAC layer ([143], [144], [145],
[161], [162], [163], [164]). In [143], the authors proposed protocols dedicated to WSNs us-
ing Model Driven Software Engineering (MDSE). They used CPN-tool (coloured Petri Nets)
[165] to perform the formal study. The authors in [144] proposed an extension of Carrier Sense
Multiple Access/Collision Avoidance (CSMA/CA) protocol where the Distributed Coordina-
tion Function (DCF) mode was introduced. They used UPPAAL tool for the formal modeling
with the timed automata and a qualitative verification of some properties was accomplished.

56

Chapter 3 Model Checking for Formal Modeling and Verification of Reconfigurable Systems

The latter work [144] was extended by [145] where the quantitative verification of the afore-
mentioned protocol was considered. In [145], the authors used UPPAAL SMC tool for making
a performance analysis using the statistical model checking. In the work reported in [161], the
authors studied the protocol IEEE 802.11 CSMA/CA using Markov chain. Likewise, the afore-
mentioned protocol were studied in [162] where the authors used also Markov chain to model
the exponential backoff process. On another hand, the authors in [166] took a sub-protocol of
the standard IEEE 802.11 called two-way handshake and used both the UPPAAL and PRISM
tools for the qualitative and quantitative verification. Another WSNs protocol was studied in
[163] which is Timing-sync protocol [167] where the authors used stochastic timed automata
for the modeling and UPPAAL tool for the verification of qualitative properties. A compara-
tive study was made in [164] between IEEE 802.11 protocol for wireless ad-hoc and Sensor
MAC (S-MAC) using PRISM and Probabilistic Computation Tree Logic (PCTL) to define the
properties.

All the aforementioned works used formal methods in the case of static nodes. Indeed, few
works investigated the formal study of mobile WSNs. The majority of these works used ex-
tensive simulation for their performance evaluation in their studies as reported in ([147], [148],
[149], [150]). Among the few works tackling the formal study of mobile WSNs protocols, the
two works reported in [168] and [169]. In [168], the authors presented a formal approach for the
specification, verification and simulation of wireless sensor network with mobile nodes using
Prototype Verification System (PVS) tool. The formal study of the mobility was also addressed
in [169] where the authors proposed an approach for the formal modeling and verification of
ad-hoc wireless networks using stochastic Petri nets.

In the literature, many works studied the performance of their proposed protocols for IoT.
From the works that performed simulation for evaluating the performance, we find in the lit-
erature [151], [152], [153] and [154]. In [151], the authors proposed an enhanced version of
Routing Protocol for Low-Power and Lossy Networks (RPL) for Internet of Multimedia Things.
[152] proposed a new authentication protocol for Mobile IoT (MIoT) in order to construct a se-
cure network. The protocol was tested and simulated as well as modeled using Alloy model.
In [153], another performance analysis of IoT security protocols (IPSec [170] and Datagram
Transport Layer Security (DTLS) [171]) was performed. The authors analyzed the impact of
these protocols on the embedded devices resources. Furthermore, the authors in [154] proposed
a new protocol and used OMNET++ simulator to test some properties such as end-to-end delay,
energy efficient, etc, as well as they compared their proposal to traditional solution of RPL.

Many surveys were carried out in order to study and compare the protocols performance of
IoT such as [172] and [173]. In [172], the authors made a survey by summarizing thoroughly
the most relevant protocols and compared their work to other survey papers. In [173], another
survey was made by performing an exhaustive analysis on existing mechanisms and protocols
to secure communication on the IoT.

In term of studying formally IoT protocols, few works exist in the literature such as [155],
[156], [174] and [157]. In [155], the authors developed two applications of test to study the
performance of IoT web application. The first test application concerns the latencies of the
communication protocols encodings and the performance of graphics renderings. The second
test application measured the latency and the rate of message throughput of certain IoT messag-
ing protocols for comparing their performances. The test has also been taken into consideration
in [156] where the Internet of things application layer protocols Constrained Application Pro-
tocol (CoAP) [57] and MQTT were tested and their latencies were compared for high packet
loss by creating a middle-ware component. In [174], the authors proposed a formal computa-
tional framework for publish/subscribe systems and studied the completeness and minimality

57

Chapter 3 Model Checking for Formal Modeling and Verification of Reconfigurable Systems

properties. Talking also about publish/subscribe systems, the BonjourGrid[175] protocol which
is based on these asynchronous systems was also studied in [157] by the formal modeling and
verification using colored Petri nets.

The work presented in this chapter bridges these gaps by employing Probabilistic Timed
Automata (PTA) and UPPAAL Statistical Model Checking (UPPAAL SMC) to formally model
and verify:

• The Collision-Free Mobility Adaptive (CFMA) MAC protocol, specifically designed for
mobile WSNs, addressing challenges of collision-free communication and adaptive en-
ergy efficiency.

• The MQTT 3.1.1 protocol, focusing on its robustness in dynamic IoT environments with
mobility, ensuring critical properties like liveness, safety, and reliability, while analyzing
performance metrics such as latency and throughput.

The contributions of this study are:

• Innovative Modeling Approach: This is the first formal study of the CFMA/MAC pro-
tocol, using PTAs to model the protocol’s behavior under dynamic mobility scenarios.
The robustness of the approach ensures that both static and mobile nodes are handled
seamlessly.

• Comprehensive Verification Framework: Unlike existing works relying solely on simula-
tion, this study uses UPPAAL SMC to quantitatively evaluate performance and formally
verify properties, providing a stronger validation.

• Extension to IoT Protocols: This study extends formal methods to MQTT 3.1.1, demon-
strating its adaptability and scalability in mobile IoT scenarios. The performance evalua-
tion of crucial metrics ensures practical applicability.

The robustness of this work lies in its dual focus on formal verification and performance
evaluation, combining rigorous mathematical modeling with real-world applicability. By ad-
dressing mobility, this study provides a robust framework for designing and analyzing future
protocols in dynamic environments.

3.2 Formal Verification of Collision Free Mobility Adaptive
Protocol for Wireless Sensor Networks

The main idea of CFMA/MAC protocol is the allocation of different backoff delays to the
nodes.

The successful transmission of a frame begins with the coordinator assigning backoff delays
based on node priorities. Nodes request association and send their priorities to the coordinator.
Mobile nodes always have the highest priority and are allocated the shortest delays. If multiple
nodes share the same priority, the first requester is assigned the shortest delay. Wait_timers are
introduced to prevent collisions, particularly during the association phase when data might be
transmitted. If a mobile node detects signals from another coordinator, it assumes it is moving
towards an adjacent cluster and requests a delay from that cluster. Nodes with data to transmit
must enter a backoff period, with delays assigned by the coordinator. After sending a Request
to Send signal (RTS), the node waits for an acknowledgment. Following data transmission,

58

Chapter 3 Model Checking for Formal Modeling and Verification of Reconfigurable Systems

the coordinator updates the delay values for nodes based on their priorities, ensuring fairness
among all nodes. Therefore, this algorithm is divided into two phases: the association phase
and the data transmission phase (running phase).

1. Association phase:
In the association phase, nodes use the slotted CSMA/CA [176] protocol during the con-
tention access period (CAP) to access the medium. Nodes send their priorities to the
coordinator to receive different backoff delays. In CSMA/CA slotted, nodes follow these
key steps [176]:

• Initialization: Default parameters are set, including backoff period, contention win-
dow, maximum retries, and random backoff time.

• Random Backoff: A random backoff time is chosen for the node to wait before
attempting transmission.

• Synchronization: Nodes align their backoff periods with the superframe to ensure
enough time for transmission and acknowledgment.

• Clear Channel Assessment (CCA): After the backoff time:

• If the channel is busy, the node increments retry counters and may abandon the
transmission if the retries exceed the maximum.

• If the channel is clear, the node decrements the contention window. If the window
reaches zero, the node sends its frame; otherwise, it retries after waiting for the next
backoff period. This process ensures that nodes transmit only when the channel is
clear, avoiding collisions.

2. Running phase:
In this phase, the node with data (i.e., in its buffer) to be transmitted, must enter a backoff
period before transmitting this data. Then, it sends Request to Send (RTS) signal and
initializes the response timer to transmit data. Finally, An acknowledgement of the frame
is sent from the coordinator with new values of backoff delays.

In order to facilitate the construction of the formal models, a semi formal modeling based
on the Unified Modeling Language (UML)[177] is performed. This semi formal modeling is
presented as sequence diagrams. These latter diagrams show clearly the interactions between
the nodes and their coordinator. Figure 3.12 shows one of the sequence diagrams that we have
made. This diagram depicts the main functionalities of the protocol in the running phase where
it illustrates the necessary interactions for the transmission of a frame as described above.

3.2.1 Formal Modeling Using TA and PTA
This section presents the formal modeling of the CFMA/MAC protocol using Timed Au-

tomata (TA) and Probabilistic Timed Automata (PTA). The modeling concerns the behaviors of
the five entities: the node (static or mobile) in the association phase, the static node in the run-
ning phase, the mobile node in the running phase, the coordinator and the medium. UPPAAL
SMC allows to define the probability laws on the locality or the transition. In the models shown
in Figure 3.4 and Figure 3.5, we associate a rate = 1 for any locality without invariant. In the
probabilistic model of the medium, we used probabilities on transitions. We associate a proba-
bility of 1/10 for each transition leading to a synchronous fail action. A probability of 9/10 is

59

Chapter 3 Model Checking for Formal Modeling and Verification of Reconfigurable Systems

Figure 3.1: Interaction during sending a frame -the running phase-.

associated for each transition leading to a transmission of a frame. These rates can be updated
to show the response of the protocol for several values. In practice, such rates must be identified
from statistics and experiments related to the nodes characteristics and the environment where
these nodes are deployed.

3.2.1.1 Model of a Node in the Association Phase

Each node nd waits for beacons (control frames) for a period that does not exceed Time_wait_beacon,
and if this is not the case the node receives a fail. The reception of a beacon is represented by
a pair of synchronous actions (BeginSendBeacon, EndSendBeacon). The node, then, follows
the slotted CSMA/CA algorithm to transmit a frame respecting the invariants of the locali-
ties. These invariants represent the transmission delay "duration", the delay to perform a CCA
"CCA_time" and the delay to wait for an acknowledgement "timeout". A clock x, initialized to 0,
is used on the incoming transitions of the localities containing these invariants. The node leaves
the locality when its clock is equal to the threshold of the invariant or it receives a synchronous
action. A synchronous action Runing_Phase[nd] represents the link between the association

60

Chapter 3 Model Checking for Formal Modeling and Verification of Reconfigurable Systems

phase and the running phase of a node nd. Figure 3.2 illustrates the stochastic model of a node
in the association phase (in UPPAAL SMC).

Figure 3.2: Node model in the association phase.

3.2.1.2 Model of a Static Node in the Running Phase

Once the node nd enters the execution phase by receiving the synchronous action Run-
ing_Phase[nd], it waits for the beacon. It performs its backoff delay. Then, it tries to transmit
its frame by sending respectively (BeginSendRTS, EndSendRTS) and (BeginSendPDU, End-
SendPDU). After sending an RTS it receives a CTS which is represented by (BeginReceiveCTS,
EndReceiveCTS) and after sending a PDU it receives an acknowledgement (BeginReceiveAck,
EndReceiveAck) from the medium. Figure 3.3 illustrates the stochastic model of a static node
in the running phase (in UPPAAL SMC).

3.2.1.3 Model of a Mobile Node in the Running Phase

A mobile node follows the same behavior as a static node except that it can migrate and
change coordinators when it detects the signal strength of another coordinator. The mobility of
a node is represented by the Moving locality. When it leaves this locality, it performs a change of
coordinates after each reception of a beacon. The signal strength is modeled by the calculation,
on the part of the medium, of the Euclidean distance between the node and the coordinators.
Figure 3.4 illustrates the stochastic model of a mobile node in the running phase (in UPPAAL
SMC).

61

Chapter 3 Model Checking for Formal Modeling and Verification of Reconfigurable Systems

Figure 3.3: Static node model in the running phase.

Figure 3.4: Mobile node model in the running phase.

3.2.1.4 Coordinator Model

The Contention Access Period CAP is the activity period of the coordinator. A coordinator
co must listen to the medium during the CAP, if it receives an RTS or a PDU, it must send, re-

62

Chapter 3 Model Checking for Formal Modeling and Verification of Reconfigurable Systems

spectively, (BeginSendCTS, EndSendCTS) or (BeginSendAck, EndSendAck). If the coordinator
receives the identity (in an RTS) of the adjacent coordinator in the request sent by a mobile node
then it sends SendPrio[co] to the adjacent coordinator in order to associate the requesting mo-
bile node with this latter coordinater. Figure 3.5 shows the stochastic model of the coordinator
(in UPPAAL SMC).

Figure 3.5: Coordinator model

3.2.1.5 Medium model

The medium model seems complicated (as seen in Figure 3.6) due to the number of syn-
chronous actions between a coordinator and a node. After receiving a BeginSend synchronous
action, the medium state will be occupied by changing a boolean M_free = false then it sends a
BeginReceive or fail action. The same idea is done when it receives an EndSend, where it sends
an EndReceive with M_free = true. When the medium receives Send_S_S with the coordinates
of a mobile node, it calculates the distance between the coordinates of this node and the coor-
dinates of the set of coordinators and then sends the identity of the new coordinator, which has
the smallest distance, to the mobile node.

3.2.2 Qualitative Verification
We opt to verify some properties before assigning the probabilities to the localities and the

transitions. Among the main classes of properties that can be expressed in temporal logics, we
have studied the following properties using the query language provided in UPPAAL:

• Liveness property: a liveness property allows to express that a state or an event will
necessarily occur in the future. we examine whether the node nd_assoc0 will receive its
acknowledgment.

• Safety property: this property is of the form: some bad thing will never happen. For
example, whether a deadlock must never occur in the model.

63

Chapter 3 Model Checking for Formal Modeling and Verification of Reconfigurable Systems

Figure 3.6: Probabilistic model of the medium.

Table 3.1: Satisfaction results of qualitative properties.

Property Query Satisfied / Not satisfied
Reachability 1 E<>nd_assoc0.End_Receiving_Ack Satisfied

Reachability 2 E<>nd_rp0.End_Receiving_Ack Satisfied

With T= 1000
E<>(nd_rp0.End_Receving_Ack and
nd_rp0.C<= 1000)

Satisfied

With T= 80
E<>(nd_assoc0.may_be_collision and
nd_assoc0.C<= 80)

Satisfied

Liveness A<>nd_assoc0.End_Receiving_Ack Satisfied

Safety A [] not deadlock State space explosion

• Reachability property: we examine whether a node can finish the reception of its ac-
knowledgment by the formula: E<>nd_assoc0.End_Receiving_Ack. We also exmine
whether a mobile node can receive its acknowledgment.

In our case, we added a clock C to both node models (in association and running phases) to
verify whether the nodes nd_assoc0 and nd_rp0 can reach the state "end of reception of an
acknowledgment" before that the clock C reaches a threshold T = 1000 and whether a node
nd_assoc0 occurs a collision before a threshold T less or equal to 80. The verification results
of the aforementioned properties are depicted in the Table 3.1.

Discussion: Due to the state space explosion in the classical model checking with UPPAAL,
it becomes challeging to verify certain properties, such as the safety property shown in Table
3.1. The statistical model checker, the probabilistic timed automata and PCTL, all supported
by UPPAAL SMC, solve this problem. After making the medium model probabilistic, we opt
to perform a quantitative verification using SMC and PCTL for specifying the properties. This

64

Chapter 3 Model Checking for Formal Modeling and Verification of Reconfigurable Systems

phase is presented in the following subsection.

3.2.3 Quantitative Verification
After the assignment of the probabilities to the localities and the transitions and making

the models probabilistic. We can estimate the satisfaction rate (as seen in the Table 3.2) of each
property by making the following queries: (i) Pr[<= 100](<> nd_assoc0.End_Receiving_Ack):
this query examines whether a node can reach the state of End_Receiving_Ack. (ii) We also
examine whether a node can finish its association (i.e., it can reach the state End_association).
(iii) The query Pr[<= 100](<> mnd_rp0.End_Receiving_Ack) examines whether a mobile
node can receive an acknowledgment.

Table 3.2: Results of some quantitative properties.

Query Probability interval Confidence

Pr[<= 100](<>
nd_assoc0.End_Receiving_Ack)

[0.811702, 0.911483] 0.95

Pr[<= 100000](<>
nd_assoc0.End_association)

[0.902606,1] 0.95

Pr[<= 100](<>
mnd_rp0.End_Receiving_Ack)

[0.214981,0.314847] 0.95

UPPAAL SMC provides the possibility to draw the characteristic function of probability
and hereafter some results with discussions.

We expect that the probability of finishing successfully the association decreases as the
number of nodes increases. However, we note that this is not too clear due to the duration of
the runtime. Figures 3.7 and 3.8 confirm the expected result by increasing the runtime value.

Figure 3.7: Probability of finishing the asso-
ciation depending on number of nodes with
runtime <= 104.

Figure 3.8: Probability of finishing the as-
sociation depending on number of nodes
with runtime <= 105

Figure 3.9 shows the probability of finishing a transmission by receiving an ACK, according
to the number of nodes, for a duration of runtime <= 103. Likewise, we studied the probability

65

Chapter 3 Model Checking for Formal Modeling and Verification of Reconfigurable Systems

of a collision depending on the number of static and mobile nodes in a runtime <= 103 as
depicted in Figure 3.10.

Figure 3.9: Probability of receiving Ack dep-
pending on number of nodes.

Figure 3.10: Probability of having collision
depending on number of static and mobile
nodes.

The probabilities of a collision depending on the number of nodes and depending on the
runtime duration are depicted in Figures 3.11a and 3.11b, respectively.

(a) depending on number of nodes. (b) depending on runtime.

Figure 3.11: Probability of having collision.

3.2.4 Discussion
The plots depicted in Figures 3.7 and 3.8 compare the probability of completing the asso-

ciation process under different runtime constraints (runtime <= 104 and runtime <= 105,
respectively). In the first plot with runtime <= 104, The probability increases gradually
with runtime, showing a consistent trend across different node counts. The curves are closely
aligned, indicating similar behavior for different number of nodes. In the second plot with
runtime <= 105, the probability of completion stabilizes at higher values, showing clearer

66

Chapter 3 Model Checking for Formal Modeling and Verification of Reconfigurable Systems

distinctions between node counts. The association probability improves significantly for all
cases, with fewer nodes reaching higher probabilities faster. Overall, increasing runtime en-
hances the probability of successful association, with fewer nodes consistently achieving better
results.

The plot in Figure 3.9 illustrates the probability of receiving an acknowledgment increases
over time, with different trends for different static nodes counts. In configuration with 2 nodes,
the probability reaches a high value quickly, indicating efficient communication. In configu-
ration with 3 nodes, it shows steady but slower increase, suggesting a more gradual acknowl-
edgment process. In configuration with 4 nodes, it exhibits the slowest growth, likely due to
increased complexity in message exchanges. Overall, fewer static nodes result in faster ac-
knowledgment reception, while more nodes introduce delays but still trend toward higher prob-
abilities over time.

The plot depicted in Figure 3.10 illustrates that the probability of collision increases over
time for all configurations. In configuration with 3 static nodes, the probability shows a rela-
tively steady increase. In configuration with 3 static nodes and one mobile node, it increases
faster than the purely static setup, suggesting mobility introduces more contention. In config-
uration with 4 static nodes and one mobile node, it has the steepest increase, indicating that
adding more nodes (both static and mobile) significantly raises the collision probability. There-
fore, higher node density and mobility contribute to greater risk of collisions, affecting network
performance.

The plots of Figures 3.11a and 3.11b present the probibility of collisions based on two
factors: (i) Number of Nodes: As the number of nodes increases (from 2 to 5), the probability
of collisions rises significantly and the sharpest increase occurs in the transition from 2 to 3
nodes, with diminishing gowth beyond 4 nodes. (ii) Runtime: Collision probability increases
over time, with different probabilities for various time intervals and the probability stabilizes at
longer durations but remains higher for lower thresholds (e.g., <=1000). Overall, a higher node
count and longer runtime both lead to a greater likelihood of collision, reinforcing the impact
of network density and prolonged activity on interference.

3.3 Formal specification, verification and evaluation of the
MQTT protocol in the Internet of Things

Message Queue Telemetry Transport (MQTT) was invented by Andy Stanford-Clark and
Arlen Nipper in 1999 and it is considered as an open-source Machine-to-Machine (M2M) pro-
tocol. MQTT 3.1.1 is a messaging protocol based on the publish/subscribe which qualifies it as
an excellent candidate for communications within the Internet of Things.

MQTT 3.1.1 is a message publishing and subscribing protocol. Clients do not communicate
directly with each other, they publish messages on a broker, and the messages are composed
of a content and a topic. The broker stores the last message for each topic. Clients who are
interested in a subject’s messages can retrieve them by signing in to the broker. This solution
has the advantage to allow for several clients to communicate even if they are never connected
at the same time to the broker.

This communication is performed by exchanging a set of MQTT control packets. The fol-
lowing subsections present the format, the types of these packets and the levels of quality of
services used by MQTT in its version 3.1.1.

67

Chapter 3 Model Checking for Formal Modeling and Verification of Reconfigurable Systems

3.3.1 Structure of MQTT 3.1.1 packets
This subsection describes the format of MQTT 3.1.1 control packets.
An MQTT 3.1.1 control packet consists of up to three parts, always in the following order:

(i) Fixed header: all the control packets of MQTT 3.1.1 contains a fixed header, (ii) Variable
header: some types of MQTT 3.1.1 control packets contain this header where the content varies
according to the type of packet, (iii) Payload: it is considered as the last part of some MQTT
3.1.1 control packets.

3.3.1.1 MQTT 3.1.1 Control Packets Types

The MQTT 3.1.1 protocol works by exchanging a series of MQTT 3.1.1 control packets
which are briefly recalled hereinafter.

• CONNECT is the first packet which must be sent to the server by the client after the
establishment of a network by requesting a client a connection to a server. If a second
CONNECT packet received by the server, the latter must processed it as a protocol viola-
tion and the client must be disconnected.

• CONNACK is a packet of acknowledgment connection request sent by the server in re-
sponse to a CONNECT packet. It is the first packet sent from the server to the client. If
the time of receiving CONNACK packet exceeds a reasonable amount of time, the client
should close the network connection.

• PUBLISH is the packet which can be sent by both server and client to transport an appli-
cation message.

• PUBACK is a packet of PUBLISH acknowledgment with the quality of service (QoS)
level.

• PUBREC is the response to a PUBLISH packet with QoS 2.

• PUBREL is the response to a PUBREC packet.

• PUBCOMP is the response to a PUBREL packet.

• SUBSCRIBE can be sent by a client to create one or more Subscriptions which registers
a client’s interest in one or more topics. The SUBSCRIBE packet also specifies (for each
Subscription) the maximum QoS with which the server can send application messages to
the client.

• SUBACK is a packet of SUBSCRIBE acknowledgment that confirms the reception and
processing of a SUBSCRIBE packet.

• UNSUBSCRIBE can be sent by a client to unsubscribe from topics.

• UNSUBACK is a packet of UNSUBSCRIBE acknowledgment that confirms the recep-
tion of an UNSUBSCRIBE packet.

• PINGREQ can be sent by a client when there is no control packet to be sent to the server.
This packet indicates to the server that the client is alive. It is also used for exercising the
network to indicate that the network connection is active.

68

Chapter 3 Model Checking for Formal Modeling and Verification of Reconfigurable Systems

• PINGRESP can be sent by the server in response to a PINGREQ packet. It indicates that
the server is alive.

• DISCONNECT can be sent by a client as the last control packet to the server in order to
indicate the clean disconnection of the client.

3.3.1.2 Quality of Service Levels

The delivery protocol of MQTT 3.1.1 considers both server and client as sender and receiver.
The delivery of an application message can be either from a single sender to a single receiver or
from a server to more than one client. MQTT 3.1.1 delivers application messages according to
the Quality of Service (QoS) levels defined hereinafter.

• QoS 0 (At most once delivery): the sender must send a PUBLISH packet with QoS=0,
DUP=0 and the receiver accepts ownership of the message when it receives the PUBLISH
packet.

• QoS 1 (At least once delivery): the sender must assign an unused packet identifier, must
send a PUBLISH packet with QoS=1, DUP=0, and must treat the PUBLISH packet as
"acknowledged" until it has received the corresponding PUBACK packet from the re-
ceiver.

On the other side, the receiver must respond with a PUBACK packet and must treat any
incoming PUBLISH packet that contains the same Packet Identifier.

• QoS 2: the sender must do the same delivery protocol of QoS 1 with the difference in
sending the PUBLISH packet with QoS=2, DUP=0. In addition, it must send and treat the
packet PUBREL when it receives PUBREC. The receiver must respond with a PUBREC
packet. When receiving PUBREL, it must not cause duplicate messages to be delivered
and it must respond to a PUBREL packet by sending a PUBCOMP packet containing the
same Packet Identifier as the PUBREL.

3.3.2 Informal Description of the MQTT 3.1.1
MQTT 3.1.1 follows an operating mode which is explained in the following subsections.

3.3.2.1 Connection/Disconnection

MQTT 3.1.1 uses persistent connections between clients and the broker, and it uses net-
work protocols that guarantee a high level of reliability such as TCP. Before sending control
commands, a client must first register with the broker, which is done with the CONNECT com-
mand. Various connection parameters can then be exchanged such as the client identifier or
the desired persistence mode. The broker must confirm to the client that the registration has
been taken into account, (i.e., it indicates that an error has occurred by returning a CONNACK
accompanied by a return code). There is a PINGREQ command to let the broker know that the
client is still active, the broker will respond with a PINGRESP to tell the client that the connec-
tion is still active. When the client wants to disconnect, it sends a DISCONNECT command to
the broker. Otherwise, the broker will consider the disconnection to be abnormal and will send
accordingly the message of WILL on behalf of the client to all the subscribers.

69

Chapter 3 Model Checking for Formal Modeling and Verification of Reconfigurable Systems

3.3.2.2 Subscriptions and Publications

Each published message is necessarily associated with a topic, which allows its distribution
to the subscribers. Topics can be organized in tree hierarchy, so subscriptions can be based
on filtering patterns.Subscription management is very simple and consists of three essential
commands:

• SUBSCRIBE: Allows a subscriber to subscribe to a topic, once subscribed,it will then
receive all the publications concerning this topic. A subscription, also, defines a quality
of service level.The successful reception of this command is confirmed when the broker
sends a SUBACK carrying the same packet identifier.

• UNSUBSCRIBE: Gives the possibility to cancel a subscription, and thus, no longer re-
ceives subsequent publications. The successful reception of this command is confirmed
when the broker sends a UNSUBACK carrying the same packet identifier.

• PUBLISH: Initiated by a client, it allows to publish a message which will be transmitted
by the broker to the possible subscribers. The same command will be sent by the broker
to the subscribers to deliver the message.

If the required quality of service is greater than zero, messages will be exchanged to confirm
the publication support.

3.3.3 Formal Modeling and Verification of MQTT 3.1.1
This section presents the semi-formal modeling based on UML[177], the formal modeling

and the formal verification using UPPAAL SMC.

3.3.3.1 Semi Formal Modeling

To understand the operation of the MQTT 3.1.1 protocol and as a first step we opt for
semi formal modeling of the protocol, which is performed using UML language diagram. This
diagram is the sequence diagram to show the interactions between the clients and the broker.

Figure 3.12 shows the protocol sequence diagram. This figure shows a summary of the
necessary interactions for the transmission of a frame according to the protocol already de-
scribed. These interactions involve three entities: the publisher, the subscriber and a broker. At
this stage, the phase of semi formal modeling of the main principles of the protocol is estab-
lished. In the following subsections, we use UPPAAL SMC [178] for the formal modeling and
verification of the protocol MQTT 3.1.1.

3.3.3.2 Formal Modeling Using Stochastic Timed Automata

The stochastic models of the entities that participate in the communication using this proto-
col are shown in Figures 3.13a, 3.13b, 3.14a, 3.14b, 3.14c, 3.15 and 3.16.

3.3.4 Formal Verification of MQTT 3.1.1
We opt to verify some qualitative properties, such as reachability, safety and liveness, using

the query language provided in the UPPAAL.
Verifying whether a subscriber and a publisher can arrive at an initialization state (S18 and

P9 respectively) is formulated by the formulas: E<>sub1.S18 andE<>pub1.P9, respectively.

70

Chapter 3 Model Checking for Formal Modeling and Verification of Reconfigurable Systems

Figure 3.12: Sequence diagram of MQTT 3.1.1

(a) Side of Subscriber. (b) Side of Publisher.

Figure 3.13: Model of the broker

Likewise, the liveness property is verified using the following query: A<>publish_sub.END_RECEIVE.
In addition, the safety property is verified using the formula: A [] not deadlock which means
that a deadlock must never occur in the model.

UPPAAL SMC gives us the possibility of adding temporal constraints to the formulas of the
properties to be verified. Using this query language, we have examined whether the subscriber
can receive a publication before that the waiting time exceeds or the value ofX reaches a certain
threshold where X is a clock added to the model of the broker in the publication phase at the
publisher side, in order to present the "keep alive" property. We opt to verify this later property
with the thresholds T = 45000, 1000 and 100.

The results obtained for the aforementioned properties are depicted in Table 3.3.
Discussion: In some cases, it becomes challeging to verify certain properties such as safety

71

Chapter 3 Model Checking for Formal Modeling and Verification of Reconfigurable Systems

(a) (b) (c)

Figure 3.14: Models of (a) Subscription, (b) Unsubscription and (c) Connexion.

Figure 3.15: Model of the subscriber.

(as seen in Table3.3) and the reachability, in the case of 3 subscribers and 3 publishers. And that
is due to the state space explosion in the model-checker. However the utilization of UPPAAL
SMC and probabilistic CTL in specifying the properties, solve this problem. Thus the property
examined before (with 3 subscribers and 3 publishers) becomes satisfied with probability inter-
val as seen in Table 3.4. This later table demonstrates also the subscriber probability of arriving
at an initialization phase with a runtime lower or equal to 100 in the case of 9 publishers and 9
subscribers.

We opt to draw (as seen in Figure 3.17) the cumultative probability confidence interval of
finishing the reception of a publication according to the number of nodes for a runtime <= 103

units of time. Likewise, the probability that a publisher disconnects and that its subscribers
receives the will during a runtime <= 103 time units also studied and the results are depicted in

Figure 3.16: Model of the publisher.

72

Chapter 3 Model Checking for Formal Modeling and Verification of Reconfigurable Systems

Table 3.3: Satisfaction results of qualitative properties.

Property Query Satisfied / Not satisfied
Reachability 1 E<>sub1.S18 Satisfied

Reachability 2 E<>pub1.P9 Satisfied

With T= 45000
E<>(sub1.PUB_ACK and
pub_publish.X1 < 45000)

Satisfied

With T= 1000
E<>(sub1.PUB_ACK and
pub− publish.X1 < 1000)

Satisfied

With T= 100
E<>(sub1.PUB_ACK and
pub_publish.X1 < 100)

Satisfied

Liveness A<>publish_sub Satisfied

Safety A [] not deadlock State space explosion

Table 3.4: Results of some quantitative properties.

Query Satisfied / Not
satisfied Probability interval Confidence

Pr[<=100]<>sub1.S18 Satisfied [0.303567,0.403432] 0.95

Pr[<=100]<>(NNI_P>1 and
NNL_P>=2)

Satisfied [0.902606,1] 0.95

Figure 3.18.

Figure 3.17: Cumultative probability of
a successful publication depending on the
number of nodes.

Figure 3.18: Cumulative probability of publisher
disconnection with the successful reception of the
will from subscribers.

Figure 3.19a and Figure 3.19b show the probabilities of having active publishers and active
subscribers for a runtime <= 104 and 103 units of time, respectively.

73

Chapter 3 Model Checking for Formal Modeling and Verification of Reconfigurable Systems

(a) For a runtime <= 104 time units (b) For a runtime <= 103 time units

Figure 3.19: Probability of having active publishers and subscribers.

3.3.5 Discussion
The plot in Figure 3.17 illustrates the cumulative probability of a successful publication

acknowledgment (PUB_ACK) as a function of the number of nodes involved in the process.
The different curves represent varying numbers of publishers and subscribers, demonstrating
how the publication success rate evolves with network density. From the observed trends, the
probability of a successful publication increases as the number of nodes grows. Configurations
with a higher number of publishers and subscribers tend to exhibit a faster convergence towards
higher success probabilities. This indicates that a denser network enhances the likelihood of
successful PUB_ACK due to increased redundancy and multiple paths for message transmis-
sion. However, variations among the curves suggest that beyond a certain threshold, adding
more nodes does not necessarily lead to a proportional improvement in publication success.
This could be due to network congestion, increased collisions, or limitations in the underlying
protocol. The confidence intervals highlight the range of uncertainty in the measurements, rein-
forcing the reliability of the observed trends. Overall, these results emphasize the importance of
balancing network density and communication overhead to optimize publication success rates
in IoT-based communication systems.

The figure 3.18 illustrates the cumulative probability of publisher disconnection while en-
suring that subscribers successfully receive the "will" message. In MQTT, the "will" message is
a Last Will and Testament (LWT) feature, ensuring that if a publisher disconnects unexpectedly,
a predefined message is sent to subscribers. The different probability curves indicate how vari-
ous conditions (e.g., topic subscriptions and publisher states) affect the likelihood of successful
message reception upon disconnection. The results provide insights into MQTT reliability, par-
ticularly in handling unexpected failures.

Figures 3.19a and 3.19b present cumulative probability distributions for having active pub-
lishers and subscribers within specified runtime limits: (i) The plot of Figure 3.19a shows the
probability of having more than a certain number (NNL_P > X) of active publishers over time.
The different curves correspond to thresholds (3, 4, and 6). The probability increases as time
progresses, stabilizing near 1. (ii) The plot in Figure 3.19b illustrates the probability of main-
taining a certain number (NNL_S = X) of active subscribers. The different lines indicate thresh-
olds (4, 5, and 6). The probability grows rapidly and reaches saturation. These results highlight
system stability, showing how long it takes for a reliable number of publishers and subscribers
to be active.

74

Chapter 3 Model Checking for Formal Modeling and Verification of Reconfigurable Systems

3.4 Conclusion

In conclusion, this chapter has presented a detailed examination of the application of formal
modeling and verification techniques to reconfigurable communication systems. The two main
contributions (evaluating the CFMA/MAC protocol for mobile wireless sensor networks and
analyzing the MQTT 3.1.1 protocol for IoT systems) demonstrate the power of formal methods
in ensuring both the reliability and performance of protocols operating within reconfigurable en-
vironments. By incorporating probabilistic timed automata and leveraging the UPPAAL SMC
tool, we have been able to verify not only the correctness of the systems but also their perfor-
mance under various operational scenarios.

Looking ahead to the next chapter, we will shift focus from communication protocols to an-
other domain of reconfigurable systems: reconfigurable manufacturing systems (RMS). In this
domain, dynamic reconfigurability and the need to optimize performance under ever-changing
operational requirements present unique challenges. The upcoming chapter will introduce a
novel approach combining Petri nets, their extension as Reconfigurable Object Nets, and multi-
objective genetic algorithms to address these challenges. This approach aims to provide a for-
mal framework that accounts for dynamic reconfigurability while optimizing the system’s per-
formance which is an important step forward in understanding and improving reconfigurable
systems in manufacturing settings.

75

Chapter 4

On Formal Modeling, Analysis and
Optimization of Reconfigurable
Manufacturing Systems (RMSs)

76

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

4.1 Introduction

Currently, companies are vigorously pursuing strategies to maintain competitiveness by pro-
viding rapid and cost-effective responses to dynamic and fluctuating markets. To achieve this
goal, there is a growing trend towards the adoption of Reconfigurable manufacturing systems
(RMSs). RMSs represent the cutting-edge in manufacturing technology enabling rapid adjust-
ments in both hardware and software system configurations to meet dynamic customer demands
of costumers and effectively handle unpredictable failures for the system protection [179].

The hardware reconfiguration involves physical activities such as adding/removing ma-
chines or machine modules, altering layouts and changing material handling devices [180].
However, these activities can result in costly and time-consuming reconfigurations [181]. On
the other hand, the software reconfiguration, also known as logical reconfiguration, consists
of adjusting planning, route, schedule [180]. Such activities are widely adopted to increase
operational capacity [181].

This chapter focuses on the application of formal modeling and analysis techniques, as well
as optimization methods, in designing reconfigurable manufacturing systems (RMSs). It also
emphasizes ensuring that optimal configurations are verified during the reconfiguration process.

The rest of this chapter is organized as follows: Section 4.2 presents the related works and
context of the work. Section 4.3 introduces the formal background of the proposed formalism.
Section 4.4 gives the informal and formal definitions of Gen-RONs and how it is equipped with
optimization abilities inspired from genetic algorithms. Section 4.5 introduces the proposed
algorithms used in Gen-RONs and analyzes their complexities. Section 4.6 shows how Gen-
RONs are used to specify and optimize an RMS case study, and finally Section 4.7 concludes
this chapter and discusses the future work.

4.2 Context of the Work

An RMS is considered as a set of reconfigurations, each defined by its unique structure
and properties. The reconfiguration process in an RMS involves evolving from one configura-
tion to another. Consequently, it is crucial to (i) preserve the good properties of the previous
configuration (such as reliability, performance, deadlock-freeness, etc.), (ii) achieve an opti-
mal configuration (in terms of optimal cost, system adjustment, etc.) and (iii) ensure reliable
scheduling. These factors must be rigorously checked and satisfied after each reconfiguration
step throughout the lifespan of an RMS.

Recent advancements in RMS technology have sparked a surge of innovative research en-
deavors such as [182], [183], [184], [185], [186], [187]. The work reported in [182] identi-
fies key RMS enablers (RMSEs) through an extensive literature review and expert input. The
study develops a structural framework using hybrid methods (Robust Best Worst method and
Interpretive Structural Modeling) to analyze and categorize enabler interactions to guide RMS
implementation and facilitate its adoption in industry. RMSEs’ study is also discussed in [183].
It reviews literature on reconfigurability enablers in manufacturing by consolidating fragmented
concepts, providing classification frameworks for system components and identifying new in-
dustry 4.0 enablers. The research outlined in [184] proposes decentralized decision-making
strategies to enhance RMSs’ adaptability, responsiveness and sustainability. The work reported
in [185] highlights the importance of RMS in aerospace. It introduces an Ontology-based engi-
neering (OBE) methodology called Models for Manufacturing (MfM). This method integrates
design processes and preserves company knowledge. The study in [186] proposes a systematic

77

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

methodology by combining existing and new development tools for the design and develop-
ment of changeable and reconfigurable manufacturing systems to enhance competitiveness in
a dynamic industrial environments. The Digital Twin technology is integrated with RMSs in
[187] to address new challenges in manufacturing. The study presents a Digital Twin Moni-
toring and Simulation Integrated Platform (DTMSIP) that enables real-time online supervision
and high-fidelity offline simulation of RMS production. These studies have primarily focused
on operational adaptability and system integration within specific industrial contexts.

While existing researches have extensively explored various dimensions of RMSs, there
remains a significant opportunity to integrate advanced formalisms and optimization techniques
systematically.

Petri nets are a formalism used in the modeling, verification and diagnosis of concurrent and
distributed systems [188], [189], [190], [191], [192]. Using formal methods in RMSs design has
attracted many researchers in the field. In literature, numerous studies have utilized Petri nets
[193] and their extensions to analyze configuration properties or formalize the reconfiguration
process, including works such as [194], [179], [195], [196], [197], [67], [198], [199], [200],
[201], [202], [203], [204], [205], [206], [207], [208], [209], [210], [211], [212], [213], [214],
and [215]. On the other hand, to study the performance of reconfiguration process, several
studies have employed evolutionary techniques such as genetic algorithms [10] to model the
evolution process in RMSs and optimize their performance, including works such as [216],
[217], [218], [219], [220], [221], [222], [223],[224], [225], [226], [227], [228].

The aforementioned research studies have focused on either the optimization problems such
as using evolutionary algorithms or the formalization problems using Petri nets. Existing lit-
erature includes studies that have effectively addressed formal specification and optimization
techniques in manufacturing using a unified formal method such as [229], [230], [231], [232],
[233], [234], [235], [236] and [237]. The formal method used in [229], [230], [231] and [232]
is first-order hybrid Petri nets (FOHPNs) [238]. This formalism is an extension of Petri nets
that designs, analyzes and optimizes manufacturing systems using time-driven and event-driven
dynamics and traditionally linear programming approach. In [233], simulated annealing is com-
bined with stochastic PNs for the modeling, evaluation and optimization in manufacturing sys-
tems. The work reported in [234] proposes an approach based on Petri nets and A* search
algorithm for modeling and optimizing manufacturing systems. It uses Petri nets to model
blocking constraints, job routings and resources and A* for scheduling. The work reported in
[235] tackles scheduling optimization problem in flexible job shop using PNs and local search
algorithms. The work outlined in [236] proposes a combination of mixed integer programming
(MIP) and a branch-and bound algorithm (B&B) using timed Petri nets to model FMSs and
optimize the scheduling. The approach includes methods to minimize the makespan of FMSs.
The work reported in [237] addresses the optimization of dynamic scheduling in unreliable flex-
ible manufacturing systems (UFMSs) through predictive maintenance using Internet of Things
(IoT) data. It utilizes timed Petri nets to model the systems and formulate mixed-integer lin-
ear programming (MILP) instances. This study aims to prevent equipment failures, minimize
downtime and improve reliability. The combination of evolutionary algorithms particularly
genetic algorithms (GAs) with Petri nets in solving manufacturing systems optimization and
formal specification problems has garnered significant research interest such as works in [239],
[240], [241], [242], [243], [244], [245], [246], [247], [248], [249], [250], [251], [252], [253]
and [254].

The work reported in [239] presents a hybrid approach that combines queueing Petri net
(Q-PN) and the genetic algorithm. It has been proposed for the formal modeling and perfor-
mance evaluation of manufacturing systems and for producing an optimal scheduling policy.

78

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

The study in [240] models the resource allocation by colored Petri nets (CPNs) to obtain the
near-optimal one and the event-driven schedule, and the operation schedule is done through
a genetic algorithm. In [241], the scheduling problem was solved using CPNs and GAs in
FMSs. The research outlined in [242] resolves the scheduling problem of semiconductor man-
ufacturing systems using colored timed Petri nets to model generalized schedule generator and
GAs to develop a scheduling strategy provider. In [244], flow-line system Petri nets (FPNs)
are combined with GAs to find optimal schedule to avoid deadlocks in automated guided ve-
hicle jobs. Evolutionary PNs (EPNs) are introduced where places can be added or deleted to
define mutation and crossover for PNs in [246]. The work reported in [246] applies EPNs in
reverse engineering of biochemical reaction networks instead of RMSs. The combination of
PNs and GA in FMSs scheduling is reported in [243, 249]. In [249], simplified timed Petri nets
(Simplified TPN) is introduced and new mutation and crossover operators are defined. PNGA
(Petri net and genetic algorithm) and Improved PNGA are introduced, respectively, in [245]
and [247]. The two formalisms are used to estimate, simulate and optimize flexible job shop.
Process planning nets (PP-nets) have been introduced and combined with GAs in [248] for
scheduling manufacturing systems. The work reported in [250] is oriented towards business
processes and uses PNs and GAs to optimize resource allocation. However, the reconfiguration
is not considered. The work [251] explores supervisor simplification in automated manufactur-
ing using GAs within discrete event systems. It develops optimal simplification methods using
GA for supervisors under fixed and variable specification parameters, emphasizing Petri nets
for modeling. The research work presented in [252] focuses on optimizing flexible job shop
schedules by integrating PNs and GAs. This work employs a single-objective GA to minimize
makespan. It deals with static scheduling problems rather than dynamic reconfigurations. Flex-
ible job shop scheduling challenges is also addressed in [253]. The study models production
systems using timed coloured Petri nets to describe flexible computerized numerical control
(CNC) machines. It uses a Particle Swarm Optimization (PSO) algorithm to optimize the job
type sequencing and throughput in the manufacturing system. While this study utilizes PSO as
a well-known meta-heuristic approach, it does not employ genetic algorithms. Although both
PSO and GAs algorithms fall under the category of meta-heuristics and used for optimization
in complex problems, they are distinct techniques with different mechanisms. The work out-
lined in [254] addresses the challenges of automated guided vehicles (AVGs) scheduling and
processing sequence conflicts (PSC) in no-buffer assembly lines. The study proposes a Petri net
model to handle these issues and introduces a genetic algorithm-based look-ahead scheduling
algorithm to optimize the makespan, enhancing flexibility and efficiency assembly lines. This
study remains focused on FMSs, considering that assembly lines are crucial type of FMSs.

The above research considered the combination of optimization techniques (particularly
GAs) and PNs; however, the following issues arise: (i) all the above works focus on FMSs and
classical manufacturing systems rather than RMSs, (ii) the scheduling algorithms proposed in
the aforementioned works are limited to the classical schedule problems and are therefore not
suitable for RMSs, (iii) the use of Petri nets is primarily for simulation purposes, (iv) Some
works are characterized by a specific methodologies, limiting their application to other frame-
works’ problems, (v) certain research studies focus on a single objective in their optimization
approaches, such as makespan, cost, due-date, number of machines, tardiness, etc.

Few works have explored the formal study and optimization of RMSs such as [255], [256]
and [257]. The work reported in [255] proposes a genetic algorithm combined with deter-
ministic timed-place Petri nets for reconfigurable production lines (RPLs). It utilizes PNs to
model the behaviors of RPLs. The crossover and mutation operators are oriented towards the
elements of Petri nets. The authors use weighted-sum method to study the optimization crite-

79

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

ria. However, this approach has drawbacks, such as its inability to detect optimal solutions in
non-convex regions. Additionally, the absence of formal definition for mutation and crossover
operators within the Petri net framework. The process of restructuring (or the rearrangement)
required to define these operators within PNs remains undefined, thus lacking a solid mathe-
matical foundation. This lack of formalization hinders the decisions regarding which properties
(both quantitative and qualitative) should be preserved from one generation to the next genera-
tion during the evolution process.

In [256], a distributed approach based on multi-agent system (MAS) is presented for study-
ing the capacity scalability problem (CSP) in RMS. PNs are employed to model the processes
and interactions of agents within the RMS. The CSP is formulated as an optimization problem,
and classical Lagrange relaxation optimization theory is applied to solve it. The contract net
protocol (CNP) is utilized for task allocation and coordination among agents, thereby mini-
mizing the number of required resources and ensuring timely completion of operations. The
specific optimization methods used in solving operation agent scheduling problem (OASP) are
not thoroughly detailed which limits the understanding of the efficiency and robustness of the
optimization process. In addition, the distributed nature and local decision-making of agents
can lead to sub-optimal solutions (required resources and operation allocations) and may not
always yield globally optimal solutions. The work is limited in its detailed analysis of system
performance metrics. Meanwhile, multi-objective optimization is crucial in RMS for balancing
trade-offs (e.g., cost, time, resource allocation), so it is better handled by evolutionary algo-
rithms as acknowledged in the current work.

[257] explores another MAS-based distributed method that addresses the design and op-
timization issues of context-aware workflow management systems for cyber-physical system
(CPS) in IoT-enabled manufacturing environment (as RMS). The research focuses on the com-
plexities of modeling and managing CPS operations. This approach uses discrete timed Petri
nets (DTPN) to model the cyber world of the entities in the system and MAS architecture.
Adopting discrete-valued firing time mean that transitions can only fire at specified discrete
time intervals (e.g., integers or multiples of a base time unit). This specification can model dig-
ital systems and scenarios where time is naturally quantized such as computer simulations and
digital control systems. Using discrete-valued firing time simplifies the modeling and analysis
especially in computational models but may be less precise. Moreover, adopting Real-valued
firing time in Petri nets models allow for continuous-time modeling. This specification is useful
in systems where the precision of time is critical for optimizing processes that depend on exact
timing. The current work focuses on fine-grained timing adjustments and ensuring the desired
accuracy and optimal performance in the RMS to be studied.

In this contribution [258], we are interested to achieve the combination of “Petri Nets” and
“Genetic Algorithms” by proposing a new formalism. The original idea involves extending
reconfigurable object nets (RONs) [67] to deal with evolution (mutation and crossover). The
versatility and effectiveness of Reconfigurable Object Nets (RONs) in various applications were
presented in several researches. The works [259], [260], [261], [262] highlight RONs’ theoret-
ical underpinnings, practical implementations, and comprehensive frameworks for managing
dynamic protocols. [259] presents foundational research on RONs, emphasizing their theoreti-
cal aspects and potential for managing dynamic protocol changes. [260] discusses the practical
applications of RONs in distributed systems and it demonstrates how RONs can effectively
manage complex interactions and maintain system integrity amidst evolving demands. [261]
outlines a systematic approach to leveraging RONs for reconfiguring communication protocols,
thereby accommodating new requirements and technological advancements. [261] proposes a
framework that emphasizes the scalability and adaptability of RONs in handling the evolution

80

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

of protocols in dynamic environments. Finally, [262] illustrates how RONs can be utilized to
manage distributed interactions efficiently, ensuring that the system can cope with changes and
continue functioning optimally.

In this approach, the new centralized extension called Genetic RONs (Gen-RONs) intro-
duces mutation and crossover into PNs and provides them with a mathematical foundation based
on graph transformation theory. Thus, the reproduction of generations using the mutation and
crossover of Gen-RONs defines the reconfiguration process in RMSs. Hence, the Gen-RONs
formalism integrates modeling/analysis capabilities of PNs with the optimization abilities of-
fered by genetic algorithms. This combination effectively addresses (i) the scheduling problem
by modeling the RMS configurations as Petri nets, unlike other approaches that rely on complex
encoding/decoding procedures, (ii) the reconfiguration problem using the RONs formalism en-
riched with reconfiguration rules to ensure preservation of “required properties” from the initial
RMS configurations.

This contribution study extends our work of [263]. We introduce a new algorithm based
on the inorder traversal rank of the binary tree structure in the population initialization step to
prevent deadlock. This ensures the generations of new Petri nets without deadlock. Addition-
ally, the Taguchi’s method [264] is applied to Gen-RONs to enhance solutions quality in the
subsequent generations by tuning the parameters of the genetic algorithm.

To illustrate the contribution of the present chapter, a reconfigurable manufacturing sys-
tem inspired by the case study reported in [217] is proposed to optimize the conflicting criteria
of cost and completion time for system configurations. Additionally, the performance of the
proposed approach is evaluated through extensive experiments utilizing Taguchi’s method, as-
sessing both convergence and diversity metrics. Comparative results between NSGA-II and
Gen-RONs demonstrate that the Gen-RONs algorithm generates a greater number of solutions
(configurations) than NSGA-II, achieving significant improvements in both completion time
and cost. Importantly, the solutions obtained are deadlock-free and safe, preserving these qual-
itative properties from the initial configurations. This enhancement is attributed to the novel
definition of genetic operators introduced by the proposed approach.

To the best of current knowledge, no existing research has applied reconfigurable object nets
(RONs) to optimize of multi-criteria problems in RMSs using these methods. The following
points highlight the originality of this contribution.

• We propose a new formalism that combines the RONs and GAs with a deadlock-free
approach.

• The reconfiguration process is modeled by applying RONs’ rules to PNs, facilitated by the
proposed mutation and crossover mechanisms of Gen-RONs. This innovative approach
ensures the preservation of the good properties after each reconfiguration, leveraging the
robustness of the RONs formalism.

4.3 Basic concepts for modeling and optimization

This section presents key elements used for the modeling and optimizing RMSs.

4.3.1 Concepts for RMSs’ modeling
The proposed Gen-RONs represent an innovative formalism derived from reconfigurable

object nets (RONs). This subsection details the essential elements of RONs that facilitate the
effective modeling of RMSs.

81

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

4.3.1.1 Reconfigurable Object Nets

RONs formalism was first introduced in [67] as an extension of Petri nets. RONs aim to
provide a formal framework for the specification and simulation of reconfigurable systems.
This formalism exploits graph transformation theories to implement reconfiguration over Petri
nets. The basic characteristics of RONs is to provide two new types of tokens, which are “nets”
and “rules”. Thus, places of a RON can contain either net-tokens or rule-tokens. Net-tokens
(called also object-nets) are represented as classical place/transition nets (P/T nets) and rule-
tokens formalize the reconfiguration of P/T nets as a graph transformation process. Following
this description, two levels are defined in an RON, the inside level (net-tokens: a set of P/T
nets) and the outside level (the system net or the RON). The dynamic of the RONs is defined,
basically, through three kinds of transitions: (i) Fire transition which changes the marking of a
net-token (P/T net) by firing some transitions in this net-token, (ii) Transform transition which
takes a rule-token and a net-token to yield a new net-token (the result of applying the rule onto
the net-token), and (iii) Ordinary transition which acts as normal transitions in Petri nets and
changes the location of a net-token from one place to another in the RON. Figure 4.1 shows
an example of modeling a simple system by RONs formalism. In this example, there are four

Figure 4.1: RON model of a simple system.

places in the RON model (P1, P2, P3, P4). P1, P3 and P4 are three token-net places and
P2 is a token-rule place. Fire transition takes net N as parameter and updates the marking of
N by firing t (if this last one is enabled) i.e., respecting the guard [enabled(t) = true]. Once
t is fired, a new net is produced by computing the function fire(N, t). Transform transition
takes net N and rule r1 as parameters, then, it applies this rule to transform N respecting the
guard [applicable(N, r1)]. Thus a new net with a new structure is produced using function
transform(N, r1). Ordinary transition takes as parameter net N and changes its location from
P3 to P4.

As previously mentioned, the reconfiguration of the structure in RONs pertains exclusively
to the object nets (i.e., net-tokens at the inner level), meaning the overall structure of the net at
the system level remains unchanged. This reconfiguration is inspired by “graph transformation
techniques” [110]. Two primary graph transformation operators are utilized in Petri nets: (i)
Union (referred to as the single push-out) and (ii) Transformation (known as the double push-
out). The union operator takes two P/T nets N1 and N2, to produces another P/T net N3.
Conversely, the Transformation operator takes one P/T net N1 and yields another net N2. Basic

82

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

definitions related to P/T nets and morphisms over P/T nets, which are essential for the union
and transformation operators, are presented below.

4.3.1.2 Place/Transition Nets (P/T nets)

A place/transition net (P/T net) is a quadruplet (T, P, Pre, Post), where:

• T is a non-empty finite set {t1, . . . , tn} of n transitions.

• P is a non-empty finite set {p1, . . . , pm} of m places. In the following paragraphs, P⊕

denotes the set of finite multi-sets over set P . If w is an element in P⊕, then it can be
written as: w = Σp∈Pλp × p, such that λp is a natural number λp ∈ N. It is also possible
to consider w as a function, thus w : P → N.

• Pre (i.e., pre-domain) and Post (i.e., post-domain) define respectively two mapping
functions as follows. Pre, Post : T → P⊕.

4.3.1.3 Morphisms over P/T nets

Consider two P/T nets defined asN1 = (T1, P1, P re1, Post1) andN2 = (T2, P2, P re2, Post2).
A morphism f relating the nets N1 and N2 is defined as a function f : N1 → N2. This mor-
phism can be expressed as f = (fT , fp), where fT : T1 → T2 maps transitions to transitions, and
fP : P1 → P2 maps places to places. The two mappings fT and fP must satisfy the following
two conditions.

• Pre2 ◦ fT = f⊕P ◦ Pre1

• Post2 ◦ fT = f⊕P ◦ Post1

Figure 4.2 [67] summarizes the previous concepts.

T1 P⊕1

T2 P⊕2

pre1

post1
f⊕PfT

pre2

post2

Figure 4.2: Morphisms on P/T nets.

4.3.2 Concepts for RMSs’ optimization
This subsection introduces key elements related to optimization within the proposed formal-

ism, highlighting their significance and application.

83

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

4.3.2.1 Tuning Parameters using Taguchi’s Method

The quality of solutions obtained through multi-objective evolutionary algorithms (MOEAs)
depends on the input parameters of genetic algorithms. We employ Taguchi’s method [264] to
tune these parameters. The primary objective of Taguchi’s method is to design experiments
efficiently. This method uses orthogonal arrays to select combinations of levels (in the current
approach, defining new values for each parameter is considered a level) for the input design
variables (in our case, the variables are the GA parameters) for each experiment. By employing
this method, we can gather comprehensive information about all factors influencing perfor-
mance parameter in a minimal number of experiments. For result analysis, Taguchi’s method
applies two approaches: (i) variance analysis for experiments that repeat once, (ii) signal to
noise ratio (S/N where S is controllable factors and N is noise factors) for experiments with
multiple runs. The latter approach focusing on the signal to noise ratio is emphasized due to the
multiple runs employed in this method, aimed at achieving best solutions. Overall, the applica-
tion of Taguchi’s method in this context not only facilitates effective parameter tuning but also
contributes significantly to the robustness and quality of the solutions generated.

4.3.2.2 Genetic Algorithm Parameters: Choice and Discussion

Genetic algorithms, including NSGA-II [136], involve several parameters that significantly
influence their effectiveness. The most commonly studied parameters are population size,
crossover rate, mutation rate and number of generations. Population size and the number
of generations impact the diversity of solutions and the algorithm’s convergence, respectively.
Larger values for these two parameters generally ensure better convergence while maintaining
a diverse set of solutions. It is also essential to consider the rates of crossover and mutation,
as these determine whether a chromosome will undergo crossover and/or mutation operations.
The values assigned to these rates are typically drawn from the literature where the common
practice is to assign a high value to the crossover rate and a low value to the mutation rate.

4.3.2.3 Performance Metrics

Several evolutionary algorithms have been proposed over the last few decades. Conse-
quently, many performance metrics have been defined to compare these algorithms by mea-
suring their effectiveness, efficiency and the quality of the solutions set produced. The three
principal aspects that define the performance metrics for solutions obtained through evolution-
ary algorithms are [265]: (i) the convergence, (ii) the diversity and (iii) the number of solutions.
Based on these aspects, we choose to evaluate our algorithm and compare it with NSGA-II us-
ing the coverage and spacing metrics which have been used also in [225]. Additionally, they
will compare the algorithms in terms of the solutions’ number. This comprehensive evaluation
aims to provide a clearer understanding of the strengths and weaknesses of the proposed algo-
rithm in relation to established benchmarks.

The coverage metric (CM) differentiates two Pareto fronts generated by two algorithms.
It represents the rate of solutions obtained from one algorithm that are not dominated by any
solutions obtained from the other algorithm. This metric is formally presented in Equation 4.1.

CM(Pi) =
∥Pi − {X ∈ Pi/∃Y ∈ P : Y > X}∥

∥Pi∥
(4.1)

where: i = 1, 2 therefore P1, P2 are two different sets of non-dominated solutions obtained by
two different algorithms; P = P1 ∪ P2; Y,X are two non-dominated solutions; Y > X means

84

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

Y dominates X . Pi with CM closer to 1 is considered a better set of solutions. This metric
provides a measure of the algorithm’s convergence.

Example: Let P1 and P2 denote the Pareto front sets of algorithm 1 and algorithm 2, re-
spectively, with ∥P1∥ = 5 and ∥P2∥ = 7. It is assumed that three solutions in P2 dominate four
solutions in P1, while only one solution in P1 dominates two solutions in P2. Using Equation
4.1, it is found that CM(P1) = 0.2 and CM(P2) = 0.71. Since CM(P2) is closer to 1, P2

is considered the better set of solutions. Thus, algorithm 2 performs better than algorithm 1 in
terms of the better solutions set.

The spacing metric (SP) measures the well distribution of solutions in the non-dominated
sets produced by the multi-objective evolutionary algorithms. This metric is presented in Equa-
tion 4.2. It measures the distance variance of neighboring vectors within the non-dominated
sets.

SP =

√√√√ 1

n

n∑
i=1

(d̄− di)2 (4.2)

such that di is computed as presented in Equation 4.3

di = minj(∥f1(xi)− f1(xj∥+ ∥f2(xi)− f2(xj)∥) (4.3)

where: n is the number of non-nominated solutions found so far; d̄ =
∑n

i=1(
di
n
) ; f1 and f2 are

two objective functions; i, j = 1, 2, 3....., n. A smaller value of this metric indicates a better
distribution of the solutions.

4.4 Proposed approach

In this section, we introduce the newly proposed formalism Gen-RONs. Subsection 4.4.1
begins with a comprehensive overview of this formalism. Subsection 4.4.2 outlines the problem
description, followed by Subsection 4.4.3, which delves into the problem formulation. Finally,
Subsection 4.4.4 elaborates on the proposed approach providing a detailed description and for-
malization of both the mutation and crossover operators.

4.4.1 Motivation
RMSs must be capable of making rapid changes at both hardware and software levels at

runtime ensuring that system components do not encounter deadlocks. These requirements are
for essential adjusting production capacity and features as well as for avoiding or addressing
failures. However, any issues in such systems can lead to serious bugs.

To address these challenges, design of RMSs must consider two important aspects: the
properties of configurations and the reconfiguration process itself. Assessing configuration
properties allows for the management of critical aspects offline during the design phase such
as deadlock freedom, safety, reliability, performance, cost, etc. On the other hand, focusing
on the reconfiguration process involves determining optimal configurations in terms of sev-
eral criteria. To achieve these objectives, the authors propose a new formalism Gen-RONs for
specifying, analyzing and optimizing RMSs ensuring deadlock-free and safe solutions (config-
urations). This formalism uses reconfigurable object nets (RONs) to model RMS configurations
as P/T nets with the reconfiguration process formulated as transformations over these nets. In
addition to specifying RMSs, Gen-RONs optimize RMSs in terms of the required criteria using

85

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

genetic algorithms. Reconfigurations of RMSs, specified as RONs reconfigurations, are consid-
ered mutation and crossover operators within the Gen-RONs framework. Thus, mutation and
crossover are defined to preserve required properties, such as deadlock freedom, liveness and
safety, of the initial configurations. Furthermore, the authors integrate the technique of inorder
traversal rank [266] in the first step of the genetic algorithm, to prevent deadlocks during the
generation of the initial population. Consequently, Gen-RONs ensure deadlock-free and safe
configurations throughout the reproduction process. In addition to these innovations, we an-
ticipate further improvements in the number of optimized configurations obtained through the
encoding technique using P/T nets.

4.4.2 Problem Description
Reconfigurable manufacturing systems are characterized by the use of reconfigurable ma-

chines. These machines change their configurations depending on the tools available and the
specifications of the product design. The authors assume that each configuration provides dif-
ferent degrees of freedom along the three-dimensional axes x, y, and z. A product type is con-
sidered a set of parts. Each part has a set of operations that must be performed while respecting
precedence relationship among them. Therefore, the authors aim to determine the appropriate
scheduling of the different operations for a product type within RMSs focusing on properties
such as reliability, deadlock-freedom, cost-effectiveness and optimal scheduling.

4.4.3 Problem Formulation
This subsection presents the problem formulation by exploring two critical phases: the mod-

eling phase and the optimization phase.

4.4.3.1 RMS Modeling

The modeling phase enhances the formal definition of P/T nets by incorporating critical
information related to time and cost to effectively model RMSs. The new extension is called
labeled-P/T nets (L-P/T nets). Formally, a labeled-P/T net LN = (N , LT , LC), where:

• N = (P, T, Pre, Post) is a P/T net.

• LT and LC are two label functions that associate time and cost to each transition t ∈ T
as follows. LT,LC : T → R+.

The reconfiguration in RMSs will not change the labels of the transitions.
L-P/T nets are employed to model the chromosomes representing the initial configurations

of the population. Consequently, a solution is referred to as an L-P/T chromosome. An L-P/T
chromosome consists of a set of L-P/T genes. Each L-P/T gene models an operation to be
performed in an RMS with its required machine. Each operation is modeled by a transition opi
where i is the operation number. Each machine mopi is initially represented by a place in the
abstract model, while its behavior is modeled by another L-P/T net. Other places and transitions
are included such as the start places (Pstart), the transfer transitions (tr), after-operation places
(pi) and before-operation places (bopi). The start and after-operation places serve as gluing
places to connect L-P/T genes, forming the complete L-P/T chromosome. Figure 4.3 shows an
example of an L-P/T gene for modeling an RMS operation op1.

Running example. Consider an RMS with two machines M1 (equipped with two tools t1
and t2) and M2 (equipped with one tool t3). Each tool has a specific configuration. A product

86

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

Pstart

tr

bop1

op1

mop1

p1

Figure 4.3: The L-P/T gene of the operation 1.

pr1 with one part is to be produced, requiring three operations: op1, op2 and op3. The operation
op1 can be performed on M1 with tool t1, op2 can be performed on M2 with tool t3 and op3 can
be performed on M1 with tool t1. It is assumed that op1 must be performed first followed by
op3 and finally op2. Figure 4.4 illustrates the complete abstract RMS configuration model.

pstart

cm1

tr0

bf1

op1
p1

mop1

cm2

tr1

bf2

op3
p2

mop1

cm2

tr2

bf3

op2
p3

mop2

Figure 4.4: An abstract L-P/T net of the example.

To enhance the clarity and readability of the L-P/T net model for the RMS configuration,
it is designed in a modular manner. Specifically, the entire model is divided into an abstract
template and a set of L-P/T nets that model the machines. The abstract template model and
the machine models are connected through a set of communication places, denoted by double
circles in the models, as depicted in Figures 4.4 and 4.5.

In Figure 4.4, place Pstart represents the input of raw material needed to produce product
Pr1, while place p3 receives the final product as the output of the RMS. The three operations
are modeled by transitions (filled black color) op1, op2 and op3. These operations are realized
through two configurations (machines with specific tools) abstractly modeled by places mop1,
and mop2. These places, denoted by red double circles, link the template to the L-P/T nets of
machines and are defined based on the chosen configuration of the RMS. Each operation is ini-
tiated at an appropriate time by a specific command. The commands that launch the operations
are modeled by places cm1, cm2 and cm3. These command places, represented as blue double
circles, also connect the template to the L-P/T nets of the machines. Finally, transitions (filled in
grey color) tr0, tr1 and tr2 model the transfer of product from one operation to another during
runtime.

In Figure 4.5, placeM1_idle indicates that machineM1 is idle. Places tl1 and tl2 denote that
the two tools are free. Transitions get_tl1 and get_tl2 are used to acquire one of the two tools,
respectively. These transitions are conditioned by the presence of the machine in an idle state,
a free tool, and a command in one of the places cm_tl1 and cm_tl2. Places cm_tl1 and cm_tl2

87

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

cm_tl1 cm_tl2
tl1

tl2
M1_idle

no_tl1
no_tl2

get_tl1 get_tl2

Cfg_M1

ch_cfg1 ch_cfg2

cm_cfg1
cm_cfg2

M1_cfg1 M1_cfg2

ret_cfg1 ret_cfg2

ret_tl
ret_tl1

ret_tl2

Figure 4.5: The L-P/T net of machine M1.

are communication places that will be marked by a token when one of the communication
places (cm1, cm2, cm3) in the abstract model (Figure 4.4) is marked. Once the tool is acquired,
places no_t1 or no_t2 will be marked as "no more free". Then, machine M1 will be in one of
its configurations M1_cfg1 or M1_cfg2, depending on the available command in cm_cfg1 or
cm_cfg2. PlacesM1_cfg1 andM1_cfg2 are communication places that link theM1 model with
the abstract model. When place M1_cfg1 or M1_cfg2 is marked, place mop1 (in Figure 4.4)
will be marked, triggering one of the operations op1 or op3. Places cm_cfg1 and cm_cfg2 are
communication places that will be marked when one of the places cm1, cm2 or cm3 in Figure
4.4 is marked. From any of its configurations (i.e., M1_cfg1, M1_cfg2), M1 can return to its
idle state when either transition ret_cfg1 or ret_cfg2 is fired. The tool becomes free after firing
either transition ret_tl1 or ret_tl2. Figure 4.5 models machine M1. M2 is modeled in a similar
manner.

4.4.3.2 RMS Optimization

Significant related works on RMSs optimization focus on two key criteria: cost and/or the
completion time, as demonstrated in studies such as [249], [250], [225], [222] and [267]. This
study addresses the challenge of identifying optimal RMS configurations by simultaneously
minimizing both completion time and cost, which are often in conflict. The notations used in
this context are defined in Table 4.1.

The objective functions are : Min ftime and Min fcost where ftime and fcost denote the total
time and total cost, respectively.

• Total cost:
Total cost fcost is the sum of the machining usage cost (MUC), the configuration chang-
ing cost (CCC), the tool usage cost (TUC) and the tool changing cost (TCC).

fcost =MUC + CCC + TUC + TCC, (4.4)

where:

88

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

Table 4.1: Notation used in RMS optimization.

Symbol/Variable Meaning

Partnbr the parts number in a product
OPnbr the operations number
OPNi the operations number of part i
m the machines number in an RMS
NCi the configurations number of the ith machine
MC[i][c] the matrix of available configuration c for machine i

MT [i][t] the matrix of available tool t for machine i

Cop[c][op] the matrix of the configuration c of the operation op

Top[t][op] the matrix of the required tool t for performing operation op

C[c][6] the matrix of the three-dimensional axis configurations x, y and z (+x, -x, +y, -y,
+z, -z)

PR[op][op] the precedence relationship between the operations
MCi the utilization cost of machine i

TC[t] the tool t utilization cost
ChM [i][j] the matrix of the costs of changing machine i to machine j

ChCm[i][j] the matrix of the costs of changing configuration i to configuration j for machine
m

ChTm[i][j] the matrix of the costs of changing tool i to tool j for machine m

ChCT [i][j] the matrix of the time of changing configuration i to configuration j for each ma-
chine

ChTT [i][j] the matrix of the time of changing tool i to tool j for each machine
ChTM [i][j] the matrix of changing machine i to machine j

PT [op] the processing time of operation op

T i
l the tool l used to accomplish the operation i

TnextOP
l′ the tool l′ used to accomplish the operation to be performed after the operation i

ChTl,l′ the cost of changing the tool l to the tool l′ in the same machine

– MUC depends on PT [OP] of Partj for a specific machine i.

MUC =
OPN−1∑

i=0

MCi × PTPartj [OPi]. (4.5)

– CCC depends on the current operation i and the next operation nextOp and their
machine configurations.

CCC =
OPN∑
i=1

Φ(Cop[c][i], Cop[c′][nextOp])× ChC[c, c′], (4.6)

where;

Φ(Cop[c][i], Cop[c′][nextOp]) =

{
0, if Cop[c][i] = Cop[c′][nextOp]

1, otherwise
(4.7)

89

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

– TUC depends on the tool used and the processing time PT of part Partj .

TUC =
OPN−1∑

i=0

TC[i]× PTPartj [OPi], (4.8)

– TCC depends on the current operation i and the next operation nextOp and their
tool used in the same machine.

TCC =
OPN−1∑

i=1

Φ(T i
l , T

nextOp
l′)× ChTl,l′ , (4.9)

where;

Φ(T i
l , T

nextOp
l′) =

{
0, if T i

l = T nextOp
l′

1, otherwise
(4.10)

• Total time:
Total time ftime is the sum of the processing time of a specific operation (PT), the time
for tool changeover (TCT) and the time for the configuration changing (CCT).

ftime = PT + TCT + CCT, (4.11)

where:

– PT depends on the machine, its configuration and the type of the operation.

PT =

OPNpartk∑
i=1

PTMCi
, (4.12)

where;

OPNpartk is the total number of the operations in each part and PTMCi
is the time

required for the machine m with the configuration c to perform the operation i of
the part k.

– TCT depends on the type of the operation to be performed.

TCT =
OPN−1∑

i=1

ChTT [T i
l , T

nextOp
l′], (4.13)

– CCT depends on the machine and its current and next configurations.

CCT =
OPN−1∑

i=1

ChCT (Cop[c][i], Cop[c′][nextOp]), (4.14)

4.4.4 Genetic Reconfigurable Object Nets (Gen-RONs)
In this section, the proposed formalism, Gen-RONs, is introduced, providing new formal

definitions for the genetic algorithm operators of crossover and mutation. Furthermore, an
important characteristic achieved by this formalism is also discussed.

90

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

4.4.4.1 Formalization of Mutation Operator

In genetic algorithms, mutation randomly alters a chromosome by updating one or more
genes within it. When considering a chromosome as an L-P/T net, the genes represent the
fundamental components of the net, including places, transitions, arcs, places’ marking and
arcs’ labels. Applying mutation to an L-P/T net involves reconfiguring its structure by updating
components. However, this mutation must adhere to a set of syntactic constraints to ensure that
the resulting chromosome remains a valid L-P/T net (e.g., each arc must have a source and a
target nodes, and the source and target nodes of an arc must not be of the same type, etc.). In
Gen-RONs, the mutation operator (denoted as MutGenRON can modify various features of the
L-P/T net nodes, including names, layout, places’ marking. The mutation operation is treated
as a transformation of the L-P/T net (i.e., double push-out). The double push-out over L-P/T
nets combines two unions (i.e., two single push-outs). Let L, I, R, and C represent four L-P/T
nets. A transformation is defined as an operator f : f : N1 → N2 that transforms L-P/T net N1

into L-P/T net N2 using the rule r = (L, I, R) and match m : L→ N1. Figure 4.6 illustrates a
transformation operator constructed using two single push-outs.

L I R

N1 C N2

k1 k2

m c n

Figure 4.6: Double Pushout.

In Figure 4.6, k1, k2, m, c, and n are morphisms. Net C is the context of the transformation.
C must satisfy the following conditions.

• TC = (T1 \mT (TL)) ∪mT (k1T (TI));

• PC = (P1 \mP (PL)) ∪mP (k1P (PI));

• PreC = Pre1|TC
(PreC is the subset of Pre1 which concerns only set of transitions TC);

• PostC = Post1|TC
(PostC is the subset of Post1 which concerns only the set of transi-

tions TC).

Example: an illustrative example is presented in Figures 4.7 and 4.8. Figure 4.7 shows
the L-P/T chromosome N1, while its mutated version, resulting in L-P/T chromosome N2, is
depicted in Figure 4.8.

p1 t1 p2 t2 p3

t3

t4

p4

p5

t5

t6

Figure 4.7: The L-P/T chromosome N1.

p3

t3 p1 t1 p2 t2

t4

p4

p5

t5

t6

Figure 4.8: The L-P/T chromosomeN2 after the
mutation of N1.

The above mutation must be justified within the framework of L-P/T nets transformation
theory. This mutation is proposed to be defined as a Double-Push Out (DPO) in the graph
transformation theory. To confirm the validity of the mutation, it is necessary to demonstrate

91

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

the existence of a DPO, referred to as DPO1. Figure 4.9 illustrates an existing production rule
p = (L, I, R) used in DPO1, while the morphisms from L to L-P/T chromosome N1 and from
R to L-P/T chromosome N2 are graphically represented in Figures 4.10 and 4.11, respectively.
Finally, Figure 4.12 presents the context of DPO1.

p1

L
t1 p2 t2

p1

I
p2

p1

R
t1 p2 t2 p4 t5

Figure 4.9: The production rule of the DPO1.

p1

L
t1 p2 t2

p1

N1

t1 p2 t2 p3

t3

t4

p4

p5

t5

t6

Figure 4.10: The injective morphism from L
to the L-P/T chromosome N1.

p1

R
t1 p2 t2 p4 t5

p3

N2
t3 p1 t1 p2 t2

t4

p4

p5

t5

t6

Figure 4.11: The injective morphism from
R to the "L-P/T chromosome after mutation"
N2.

p1 p2 p3

t3

t4

p4

p5

t5

t6

Figure 4.12: The context of the DPO1.

This proof validates that the mutation N1 → N2 adheres to the principles of L-P/T nets
transformation theory.

92

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

4.4.4.2 Formalization of Crossover Operator

In Gen-RONs, the crossover operation is defined as a union constructor. The crossover op-
erator, denoted as CrosGenRON , requires two parent L-P/T nets chromosomes, Net1 and Net2,
and produces two new offspring, Net3 and Net4. The construction of the offspring proceeds
as follows: first, two subnets Net′1, Net

′′
1 are extracted from Net1, and two subnets Net′2 and

Net′′2, are extracted from Net2. Subsequently, Net′1 and Net′2 are glued using the union opera-
tion to form chromosome Net3. Finally, Net′′1 and Net′′2 are glued to create chromosome Net4.
Applying crossover to an L-P/T net involves reconfiguring its structure by adding, deleting or
updating components. Importantly, resulting L-P/T net chromosomes, Net3 and Net4, must
adhere to the transformation graph constraints, ensuring that both Net3 and Net4 are DPOs of
one of the parent chromosomes, Net1 or Net2.

The union is a binary operator constructed over morphisms and L-P/T nets. Consider the
following three L-P/T nets: N1 = (T1, P1, P re1, Post1), N2 = (T2, P2, P re2, Post2), and
I = (T0, P0, P re0, Post0). Furthermore, let f : I → N1 and g : I → N2 represent two
morphisms. Net I serves as a common interface between N1 and N2. The union operator of N1

and N2 produces a new net N = (T, P, Pre, Post), for which two morphisms f ′ : N1 → N
and g′ : N2 → N exist. The notation N = N1 +I N2 indicates that the operator +I represents
the union, referred to as a single pushout construction or the gluing operator, as illustrated in
Figure 4.13.

I N1

N2 N

g

f

f ′

g′

Figure 4.13: Union of L-P/T nets.

Indeed, union net N is built as follows:

• T = T1 +T0 T2. T is said a disjoint union of the two sets T1 and T2, where the authors
glue together all couples of transitions: (fT (t), gT (t)) such that t ∈ T0;

• P = P1 +P0 P2. P is said a disjoint union of the two sets P1 and P2, where the authors
glue together all couples of places: (fP (p), gP (p)) such that p ∈ P0;

• Pre(t) = Pre1(t1) (resp, Pre2(t2)) if g′T (t1) = t (resp, if f ′T (t2) = t);

• Post(t) = Post1(t1) (resp, Post2(t2)) if g′T (t1) = t (resp, if f ′T (t2) = t).

Example: Consider the example of crossover where N1 and N2 are the two L-P/T chromo-
somes depicted in Figure 4.14. Within the red boxes, two subnets N ′1 and N ′2 are highlighted,
derived from N1 and N2, respectively. The subnets outside the red boxes represent the remain-
ing components, N ′′1 and N ′′2 , of N1 and N2, respectively. Figure 4.15 illustrates offspring, N3

and N4, which are the resulting L-P/T chromosomes derived from the two parent nets N1 and
N2.

The crossover depicted in the union part of Figure 4.16 produces L-P/T offspring N3 (de-
rived from N ′1 and N ′2) and employs a simple interface I , which consists only of one place p.
This place is mapped to p3 in N ′1 (and to p8 in N ′2), resulting in k(p) = p3 and k′(p) = p8.
Morphisms l : N ′1 → N3 and l′ : N ′2 → N3 are defined as follows: l = {(p3, p3), (p4, p4),

93

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

p1 t1 p2 t2 p3

t3

t4

p4

p5

t5

t6

p6

t7

p7

p8 t8 p9 t9

Figure 4.14: Two L-P/T chromo-
somes N1 and N2.

p6

t7

p7

p3

t3

t4

p4

p5

t5

t6

p1 t1 p2 t8 p9 t9

Figure 4.15: The L-P/T offspring chromosomes
N3 and N4.

(p5, p5), (t3, t3), (t4, t4), (t5, t5), (t6, t6)} and l′ = {(p6, p6), (p7, p7), (p8, p3), (t7, t7)}. Using
the definition of the union, it can be expressed as N3 = N ′1 +I N

′
2. Informally, I serves as the

disjoint union of N ′1 and N ′2 up to the interface I . Consequently, the places l(p3) and l′(p8)
are glued as single place p3 in N3. Additionally, N3 is computed using the double push-out to
ensure it represents a valid transformation of either N1 or N2, similar to the mutation example
discussed previously. Following the same method, the second offspring, N4, can be generated
using another union based on N ′′1 and N ′′2 .

As illustrated in Figure 4.16, I represents an interface for the single push-out "SPO", facili-
tating the initial union of the two subnets N ′1 and N ′2 from N1 and N2, respectively, to produce
the first offspring, N3. Meanwhile, I ′ serves as the interface for the double push-out "DOP",
confirming that N3 is a valid transformation of N1).

I N ′1

N ′2 N3 C N1

R I ′ L

k

lk′

l′

k1k2

cn m

Figure 4.16: The first crossover produces the first offspring N3: N3 = N ′1⊗N ′2 where (a) N3 is
DPO of N1 and (b) N3 is DPO of N2

4.4.5 Properties Preservation through Crossover and Mutation Opera-
tors

As mentioned, Gen-RONs formalism is based on reconfigurable object nets [67], which
utilize graph transformations applied to P/T nets. These transformations have been proved to
preserve specific properties from the source P/T net to the resulting P/T net after transforma-
tion (see page 534, about achieved results in [110]). Consequently, the proposed formalism
preserves the good properties. This important characteristic, on one hand, guarantees essen-
tial properties such as deadlock-freedom, liveness and safety. On the other hand, it optimizes

94

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

and enhances the verification process. This is achieved by executing the verification process
solely on the initial population, ensuring that the good properties remain verified throughout
the production process using the proposed mutation and crossover. Therefore, if N genera-
tions are computed, then checking properties is required only for the first generation. The next
N − 1 generations do not require further checking, resulting in a verification efficiency gain of
(N −1)/N . The authors focus on three fundamental properties: liveness, safety and deadlock-
freedom. These properties are preserved when applying Petri nets’ transformations to a P/T net
or an L-P/T net. The following paragraphs provide both informal and formal definitions of live,
safe and deadlock-free Petri nets.

Definition 4 (Liveness), a liveness property imposes that it will be always possible for “good
things” to occur in the future. For example, in RMSs a raw material must always be treated by
the required machines.

Definition 5 (Safety), a safety property imposes that some “bad thing” will not occur during
the systems execution. Safety includes several requirements like: mutual exclusion, deadlock
freedom, etc. For example, in an RMS a failed product must never pass the test stage.

Definition 6 (Live Petri net), Formally, A live Petri net can be defined (as defined in [268]) as
follows. Let (N,M0) be a Petri net with its initial marking M0. Let R(M0) be the set of all
reachable markings from M0. A Petri net N is live if all its transitions are live. A transition
t ∈ T is live iff ∀M ∈ R(M0), ∃M ∈ R(M) such thatM [t >. Thus, transition t will eventually
be enabled at some marking reachable from M0.

Definition 7 (Safe Petri net), as defined in [268], a Petri net N is k-bounded if the M(p) < k,
∀p ∈ P and ∀M ∈ R(M0). A Petri net N is safe if it is 1-bounded.

Definition 8 (Deadlock-free Petri net) as defined in [268], a marked Petri net (N,M0) is
deadlock-free iff forallM ∈ R(M0) there is some transition t ∈ T that is enabled. A deadlock
has no enabled transitions.

4.5 Gen-RONs based Genetic Algorithm

This section presents the proposed algorithms used in Gen-RONs and discusses their com-
plexities. At this stage, a new formalism has been defined, enriched with the following capabil-
ities: (i) modeling distributed systems with causality/concurrency relations among components,
similar to ordinary Petri nets, and (ii) enabling reconfiguration through the restructuring of
models via mutation and crossover operations typically employed in genetic algorithms.

4.5.1 Gen-RONs based NSGA-II principles
To elaborate on the evolution steps, Gen-RONs can leverage any existing genetic algorithm.

The key impact of Gen-RONs lies in the encoding of chromosomes and the evolution operators.
Specifically, Gen-RONs mutation and crossover operators are employed in the reproduction of
offspring, leading to the proposal of a Gen-RONs-based genetic algorithm. This algorithm is
based on the following principles.

95

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

• Chromosome encoding in Gen-RONs: The first step in implementing the genetic algo-
rithm involves encoding, where the chromosomes are L-P/T nets. Thus, a solution is
represented by a single L-P/T chromosome that represents the entire system. An L-P/T
chromosome is viewed as a set of L-P/T genes. Each L-P/T gene models one operation to
be performed in an RMS with the machine that completes this operation. Gluing places
are utilized to connect these L-P/T genes.

• Initialization of the Gen-RONs based algorithm: The initial population is generated ran-
domly. However, to prevent deadlocks within the configurations (i.e., L-P/T chromo-
somes), a technique based on the inorder traversal rank of the binary tree structure is
used, as illustrated in Algorithm 5.

• Crossover and mutation operators: Mutation and crossover operators are denoted as
MutGenRON and CrosGenRON , respectively. They are applied after selecting a subset
from the initial population. However, the processes may produce infeasible chromo-
somes. In this approach, an L-P/T gene (i.e., a sub L-P/T net within in an L-P/T chro-
mosome) models a single operation. Consequently, a crossover between two L-P/T chro-
mosomes may result in an RMS with an inappropriate set of operations or include an
operation more times than necessary. To avoid these problems, a crossover between two
parents N1 and N2 (i.e., two L-P/T nets) must respect the following constraints. Parents
N1 and N2 are selected randomly. A sub L-P/T N ′1 is randomly chosen from first par-
ent N1. Subsequently, a sub L-P/T N ′2 is selected from N2 and must include the same
operation specified in L-P/T N ′1. Finally, the proposed crossover operator, along with
its associated rate (crossover probability), is applied to the two selected L-P/T nets N1

and N2. In the mutation process, an L-P/T gene L is randomly selected from the L-P/T
chromosome N1. A mutation point is chosen while adhering to the constraints of the
operations’ precedence relationships. Finally, the proposed mutation operator is applied
with the specified rate. Operators MutGenRON and CrosGenRON (formalized in Sections
4.4.4.1 and 4.4.4.2) use: (i) Algorithm 2 to verify morphisms between L-P/T nets, (ii)
and Algorithm 3 to check for the existence of DPO between an offspring generated by
CrosGenRON and its parents (N1 orN2), or to determine the existence of DPO between an
L-P/T chromosome N and its mutant N ′ generated by MutGenRON . Thus, both crossover
and mutation serve as transformations within the evolution process. Preserving the essen-
tial properties of safety and liveness. Finally, Algorithm 4 employs these two operators
to define the evolution process across generations which will be integral to overall opti-
mization outlined in Algorithm 1.

Algorithm 1 illustrates the previously discussed Gen-RONs steps integrated with NSGA-II
algorithm [136]. NSGA-II is a widely used genetic algorithm for optimizing multi-objective
problems. It is relies on non-dominated sorting, a crowded comparison operator and elitism-
based selection. As a benchmark, NSGA-II has been referenced in numerous recent studies for
comparative purposes, including works such as [267], [222], [269], [270], [271] and [272].

4.5.2 Entire Optimization Time Complexity
After randomly generating an initial population, Gen-RONs employs the technique of in-

order traversal rank to avoid deadlocks, as implemented in Algorithm 5. Then, Gen-RONs
performs optimization using a pre-existing genetic algorithm that incorporates the proposed
mutation (MutGenRON) and crossover (CrosGenRON). These operators utilize Algorithms 2

96

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

Algorithm 1 NSGA-II algorithm based on Gen-RONs.
1: procedure NSGA-II_GEN-RONS

Require:

Pop = {N1, ..., Nl} ▷ a population of L-P/T chromosomes
max_nb_it ▷ the maximum number of iterations
PopSize ▷ the size of population

Ensure:
Pop = {N1, ..., Nl} ▷ a population with the best L-P/T chromosomes

2: Pop← initializePop(PopSize)
3: Pop← DeadlockAvoidance(Pop)
4: Check_liveness_and_safety(Pop)
5: Fronts← FastNonDominatedSort(Pop)
6: for each individual in Fronts do
7: CrowdingDistance-Computation(individual)
8: end for
9: SortByCrowdedComparaisonOperator(Pop)

10: PrtPop ← Select(Pop, PopSize)
11: Children← Evolution(PrtPop)
12: Pop← PrtPop

⋃
Children

13: i← 0 ▷ the number of current iterations
14: while i <= max_nb_it do
15: Fronts← FastNonDominatedSort(Pop)
16: for each individual in Fronts do
17: CrowdingDistance-Computation(individual)
18: end for
19: SortByCrowdedComparaisonOperator(Pop)
20: PrtPop ← Select(Pop, PopSize)
21: Children← Evolution(PrtPop)
22: Pop← PrtPop

⋃
Children

23: i← i+ 1
24: end while
25: end procedure

and 3 during the reproduction of offspring. Thus, the complexity of the entire Gen-RONs-based
genetic algorithm is influenced by the complexities of the binary tree-based deadlock avoidance
algorithm, the genetic algorithm used for optimization and the morphism and double-pushout
algorithms. First, the complexity of the deadlock avoidance algorithm based on the inorder
traversal of a binary tree structure is O(n), where n is the number of nodes (i.e., the number
of L-P/T genes in an L-P/T chromosome, which represents the number of operations to be per-
formed in RMSs). Secondly, Gen-RONs employ NSGA-II as a GA; the overall complexity of
NSGA-II is O(M ∗ N2), where M is the number of objectives and N is the population size
as mentioned in the original NSGA-II [136]. This complexity arises from the non-dominated
sorting process (line 15 in Algorithm 1). Finally, the complexity of morphism algorithm is
O(o ∗N), where o is the number of L-P/T genes in an L-P/T chromosome (i.e., number of op-
erations to be performed in an RMS) and N is the population size. For the DPO test algorithm,
the complexity is O(N) where N is the population size. Therefore, the overall time complexity
of the proposed Gen-RONs-based NSGA-II still remains O(M ∗N2).

97

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

Algorithm 2 Morphism.
1: procedure MORPHISM

Input:

N ′ ▷ an L-P/T gene
N ▷ an L-P/T chromosome

Output:
mor true or false ▷ if true, mor is a morphism defined by: mor : N ′ → N

2: mor ← false
3: for each L− P/Tgene ∈ N do
4: if N ′ ⊆ L-P/T gene then
5: mor← true
6: break
7: end if
8: end for
9: end procedure

Algorithm 3 Double Push-Out test.
1: procedure DPO TEST

Input:

L, R ▷ two L-P/T genes
N1, N2 ▷ two L-P/T chromosomes

Output:
DOP true or false ▷ if true, N2 is a DPO of N1: N1→N2

2: DPO ← false
3: I← L ∩ R ▷ I is an interface
4: if morphism(I , L) and morphism(I ,R) then
5: C← N1 − (L∪ I) ▷ C is the context
6: if morphism(I , C) and morphism(C, N1) and morphism(C, N2) then
7: DPO← true
8: else DPO ← false
9: end if

10: end if
11: end procedure

Algorithm 4 Evolution process in Gen-RONs.
1: procedure EVOULTION

Input:

Pop = {N1, ..., Nl} ▷ Parent population
Output:

Children ▷ Offspring

2: Pop← Apply MutGenRON on Pop
3: Children← Apply CrosGenRON on Pop
4: end procedure

98

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

Algorithm 5 Binary tree based deadlock avoidance.

1: procedure DEADLOCKAVOIDANCE
Input:

Population ={L− P/Tchrom_1,...,L− P/Tchrom_n}
Output:

Population of L-P/T chromosomes without deadlock

2: for each L− P/Tchromosome in Population do
3: Generate randomly the L− P/Tchromosome
4: i← 1
5: while i <= Nbr_operations do
6: label1 : root← ith_operation
7: label2 : leaf ← i+ 1th_operation
8: if precedence(root, leaf)==True then
9: if LeftChild(root) == None then

10: Insert_Left(leaf)
11: i← i+ 1

12: else if LeftChild(root) != None then
13: root← root_LeftNodePoint
14: goto label2
15: end if
16: else if precedence(root, leaf)==False then
17: if RightChild(root) == None then
18: Insert_Right(leaf)
19: i← i+ 1
20: else if RightChild(root) != None then
21: root← root_RightNodePoint
22: goto label2
23: end if
24: end if
25: end while
26: end for
27: end procedure

4.6 Experimentation

This section presents the application of Gen-RONs in a case study of an RMS, inspired
from [217]. The results are computed using a prototype that implements the Gen-RONs-based
NSGA-II algorithm. More information about this tool and the case study can be found at
https://kahloul2006.wixsite.com/laid-kahloul/projects.

4.6.1 RMS Description
Consider an RMS comprising three reconfigurable machines (M1, M2 and M3) capable

of achieving various functionalities based on their configurations. The operations performed by
each machine depend on its available tools. Consequently, at any given time, a machine operates
in a specific configuration with a defined set of available tools. The machine’s configuration
determines the degrees of freedom (motion along x, y and z axes) for each tool, known as
the tool approach directions (TAD). In this case study, the RMS produces a single product
consisting of three independent parts. A sequence of 12 operations must be carried out to
complete each of the three parts. Tables 4.2, 4.3, 4.4 provide a detailed description of this RMS.

4.6.2 System Modeling Using Gen-RONs
Gen-RONs formalism specifies each RMS configuration as an L-P/T net. The initial pop-

ulation is generated randomly as a set of L-P/T nets. The proposed algorithm (Algorithm 1)
iteratively applies selection, mutation, crossover, and evaluation, to identify optimal configu-
rations. Using the previously described modeling technique, the abstract template model and
the machine models are illustrated in Figures 4.17, 4.18, 4.20, and 4.19. Each configuration
has a specific structure; however, a common sub-structure exists among all possible configu-
rations (i.e., L-P/T nets of population generations). This common sub-structure serves as an
abstract template for the RMS, specialized for each configuration. This template is illustrated
in Figure 4.17. It shows the 12 operations, their order, the required commands (represented by
double blue circles) and the machine configurations (represented by double red circles) for each
operation.

99

https://kahloul2006.wixsite.com/laid-kahloul/projects

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

Table 4.2: Matrix of the operations precedence relationship of the product three parts and Tools
required for each part to be manufactured.

Part1 OP1 OP2 OP3 Tools
required

OP1 0 0 0 1

OP2 0 0 1 2

OP3 1 0 0 1

Part2 OP1 OP2 OP3 OP4 OP5 Tools
required

OP1 0 0 0 0 0 3

OP2 1 0 0 0 0 5

OP3 1 0 0 0 0 4

OP4 1 0 1 0 0 1

OP5 1 0 1 0 0 1

Part3 OP1 OP2 OP3 OP4 Tools
required

OP1 0 0 0 0 3

OP2 1 0 0 0 4

OP3 1 0 0 0 4

OP4 1 1 1 0 2

p0

cm1

tr0

bf1

op1
p1

mop1

cm2

tr1

bf2

op2
p2

mop2

cm2

tr2

bf3

op3
p3

mop3

cm4

tr3

bf4

op4
p4

mop4

cm5

tr4

bf5

op5
p5

mop5

cm6

tr5

bf6

op6 p6

mop6
cm7

tr6

bf7

op7
p7

mop7

cm8

tr7

op8
p8

mop8

cm9

tr8

bf8

op9
p9

mop9

cm10

tr9

bf9

op10
p10

mop10

cm11

tr10

bf10

op11
p11

mop11

cm12

tr11

bf11

op12 p12

mop12

bf12

Figure 4.17: An abstract L-P/T net of an initial configuration of the RMS.

All operations must be performed using only three reconfigurable machines. These ma-

100

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

Table 4.3: Matrix of TADs required for each operation.

Part1 X −X Y −Y Z −Z
OP1 1 1 0 0 0 0

OP2 0 0 0 0 1 1

OP3 1 0 0 0 0 0

Part2
OP1 0 1 0 0 0 0

OP2 0 0 0 0 1 1

OP3 0 1 0 0 0 1

OP4 0 0 0 0 1 0

OP5 0 0 1 1 0 0

Part3
OP1 0 0 0 0 0

OP2 1 0 0 0 0

OP3 1 0 0 0 0

OP4 1 1 1 0 0

Table 4.4: Matrix of configurations TADs and Tools available for each machine.

X −X Y −Y Z −Z Tools

M1 1, 4, 2

C1 1 1 1 0 0 0

C2 1 0 1 0 1 0

C3 1 1 0 1 0 1

M2 2, 3, 1, 6

C1 1 0 0 0 1 1

C2 0 1 1 1 0 0

C3 0 1 0 1 0 1

C4 0 0 1 1 1 1

M3 1, 7, 5

C1 0 0 0 0 1 1

C2 1 1 0 0 0 0

chines are modeled by three L-P/T nets, as shown in Figures 4.18, 4.20, and 4.19.

101

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

cm_tl1 cm_tl2
cm_tl4

tl1
tl2

tl4

M1_idle

no_tl1 no_tl2
no_tl4

get_tl1 get_tl2 get_tl4

Cfg_M1

ch_cfg1
ch_cfg2

ch_cfg3

cm_cfg1
cm_cfg2

cm_cfg3

M1_cfg1 M1_cfg2 M1_cfg3

ret_cfg1 ret_cfg2 ret_cfg3

ret_tl
ret_tl1

ret_tl2
ret_tl4

Figure 4.18: The L-P/T net of ma-
chine M1.

cm_tl1 cm_tl5 cm_tl7
tl1

tl5
tl7

M3_idle

no_tl1 no_tl5
no_tl7

get_tl1 get_tl5 get_tl7

Cfg_M3

ch_cfg1 ch_cfg2

cm_cfg1
cm_cfg2

M3_cfg1
M3_cfg2

ret_cfg1
ret_cfg2

ret_tl

ret_tl1

ret_tl5 ret_tl7

Figure 4.19: The L-P/T net of machine M3.

cm_tl1 cm_tl2 cm_tl3
tl1

tl2 tl3

M2_idle

no_tl1 no_tl2
no_tl3

get_tl1 get_tl2 get_tl3

Cfg_M2

ch_cfg1
ch_cfg2

ch_cfg3

cm_cfg1

cm_cfg2

cm_cfg3

M2_cfg1 M2_cfg2 M2_cfg3

ret_cfg1 ret_cfg2 ret_cfg3

ret_tl
ret_tl1

ret_tl2
ret_tl3

ch_cfg4

cm_cfg4

M2_cfg4

ret_cfg4

cm_tl6

ret_tl6

get_tl6

tl6

no_tl6

Figure 4.20: The L-P/T net of machine M2.

4.6.3 Example of a Configuration L-P/T Net
Based on the description provided in section 4.6.1 and the set of P/T nets models, several

configurations are possible. For example, configuration Conf0 of the system may include:
M2(C1) (performing OP2 in Part1), M1(C1) (performing OP3 and OP1 in Part1), M3(C1)
(performing OP2 in Part2), M1(C3) (performing OP5 in Part2), M1(C2) (performing OP3 and
OP4 in Part2), M2(C2) (performing OP1 in Part2), M1(C1) (performing OP4, OP2 and OP3 in
Part3), an finally M2(C1) (performing OP1 in Part3). This configuration requires establishing
a set of connections between the four models (depicted in Figures 4.17, 4.18, 4.20 and 4.19),
as detailed in Table 4.5. Other configurations can be derived by updating connections between
these models.

102

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

4.6.4 Performance Evaluation
Once the modeling of the RMS is completed using Gen-RONs formalism, Algorithm 1

(presented in Section 4.5) is employed to identify an optimal configuration based on the de-
sired objective functions. This subsection presents the performance evaluation of the proposed
formalism, divided into three parts: 1) a comparison with classical NSGA-II using the same
genetic operator parameters; 2) a comparison using Taguchi’s method; and finally 3) a compar-
ative study with related works. The implementation of the NSGA-II based on Gen-RONs was
conducted on Microsoft Windows 7 Professional with 64 bits, featuring a 2.50 GHz Intel(R) i5-
2520M processor and 8.00 GB RAM. The programming tools used include Python Interpreter
3.4.0 and PyCharm IDE 2016.3.1.

4.6.4.1 Comparison with the Classical NSGA-II Using Identical Genetic Operator Pa-
rameters

In this subsection, a comparison is made between the computational time of the proposed
approach and that of NSGA-II, used in [218]. An approach for encoding and decoding the indi-
viduals (solutions) for the optimization process using NSGA-II is proposed in [218]. The RMS
case study, described previously, is adopted in [218] for consistency. A total of 25 runs were
executed, featuring a population size of 40, a maximum of 15 generations, a crossover rate of
0.6 and a mutation rate of 0.08. Notably, the computational time for the NSGA-II method ex-
ceeds 3 hours (approximately 3 hours and 13 minutes). In clear contrast, the proposed approach
demonstrates significantly enhanced performance, requiring only 26 minutes (about one minute
per run). This significant difference in computational time can be primarily attributed to the
complexity of the encoding and decoding procedures used in [218], where the decoding process
is particularly CPU-intensive. The true Pareto fronts are depicted in Figure 4.21.

Figure 4.21: True Pareto in “Gen-RONs based NSGA-II” vs. NSGA-II.

4.6.4.2 Comparison Using Taguchi’s Method

In this subsection, Taguchi’s method is employed to determine the optimal solution after
tuning the parameters and to compare Gen-RONs-based NSGA-II with classical NSGA-II. For
the implementation of Taguchi’s method, an experiment is conducted with the following four

103

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

parameters: (i) population size, (ii) number of generations to stop the algorithm, (iii) crossover
rate, and (iv) mutation rate, each having three levels (i.e., three sets of values), as shown in Table
4.6. Therefore, Taguchi’s orthogonal arrays design L9 is utilized, as depicted in Table 4.7. To
ensure accuracy, 15 runs were performed for each experiment. Tables 4.8 and 4.9 illustrate the
results of the fifteen runs of the proposed approach for the first and last experiments. The first
experiment uses the parameter values of level 1: population size = 50, generation number = 25,
crossover rate = 0.7 and mutation rate = 0.2. The last experiment uses the parameter values
of: level 3 for population size (100) and generation number (50), level 2 for the crossover rate
(0.8), and level 1 for the mutation rate (0.2). Similarly, the same experiments were conducted
for classical NSGA-II. Tables 4.8 and 4.9 present the results.

Table 4.6: Level values of the studied parameters.

Parameters Level 1 Level 2 Level 3

Population size 50 80 100

Generation number 25 30 50

Crossover rate 0.7 0.8 0.9

Mutation rate 0.2 0.08 0.01

Table 4.7: Taguchi’s orthogonal arrays L9.

Experiment Popsize Nbrgen Crosrate Mutrate

1 1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2 1 2 3

5 2 2 3 1

6 2 3 1 2

7 3 1 3 2

8 3 2 1 3

9 3 3 2 1

104

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

Table 4.8: NSGAIIGen−RONs and NSGA-II results of experiment 1.

Run NSGA-
IIGEn−RONs

NSGA-II

Cost Time solutions Cost Time Solutions

average average number average average number

1 760.66 149.33 3 1011.91 151.83 12

2 914.79 148.28 63 988 147 1

3 791.68 150.75 16 990.33 150 3

4 762.30 154.15 13 997.16 151.33 6

5 846.8 151.8 5 1016 145.5 2

6 954.75 154.0 32 1017 151 5

7 821.08 151.02 46 1009 149.8 5

8 777.0 151.7 10 1018.72 152 11

9 832.85 151.28 7 1011.66 148.33 3

10 816.25 155.5 4 1004.5 148 2

11 866.1 151.0 10 1009 149.83 6

12 765.57 151.57 7 997 148.16 6

13 784.33 150.83 6 985 146 1

14 929.72 150.36 11 993 149 1

15 828.27 152.09 11 991 150.66 6

Table 4.9: NSGAIIGen−RONs and NSGA-II results of expirement 9.

Run NSGA-
IIGEn−RONs

NSGA-II

Cost Time solutions Cost Time Solutions

average average number average average number

1 872.09 147.88 137 992 147 1

2 747.40 148.42 177 996.4 147.4 5

3 845.83 147.47 160 985 145 3

4 727.6 146.7 200 994.9 149.5 10

5 730.61 148.77 145 986 145 1

6 743.27 150.49 151 1019 146.85 14

7 767.4 148.95 40 989 146.6 5

8 743.20 148.39 175 997.5 145 2

9 732.49 148.01 184 1004 148.4 10

10 746.59 147.49 195 1005.09 149 11

11 748.58 147.17 17 992.4 149.2 5

12 741.12 147.67 195 998.81 148.72 11

13 746.70 146.53 179 989.25 146 4

14 877.62 148.35 139 1012.36 149.09 11

15 727.98 146.50 185 997.33 146.66 3

As seen in Tables 4.8 and 4.9, the number of solutions obtained by Gen-RONs-based NSGA-
II exceeds that of classical NSGA-II. Furthermore, the best solutions in terms of cost and time
are achieved by Gen-RONs. Specifically, average costs of 760.66 (in the first run of the first
experiment) and 727.6 (in the fourth run of the last experiment) are recorded, with average times
of 149.33 and 146.7, respectively. In contrast, classical NSGA-II shows average costs of 993 (in
the fourteenth run of the first experiment) and 989 (in the seventh run of the last experiment).
Although the average times for classical NSGA-II runs are similar to those of Gen-RONs, the
costs are significantly higher.

The optimal Pareto fronts (i.e., the solutions sets of the last generation, number 50) from the
final run of the experiment 9 for both algorithms, Gen-RONs-based NSGA-II and NSGA-II, are
depicted in Figure 4.22.

105

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

Figure 4.22: The optimal Pareto fronts (generation number 50) for (a) NSGA-II and (b) Gen-
RONs based NSGA-II.

Using the performance metrics defined in Section 4.3.2.3, extensive experiments are con-
ducted to tune the parameter of the genetic algorithm. The S/N ratio, a metric for assessing
product performance sensitivity to noise [273], is computed. In this context, Taguchi’s method
is employed to identify the maximum S/N ratio, which is known as the bigger-the-best metric,
as defined in Equation 4.15.

S/N = −10 log 1

n

n∑
i=1

1

sum2
i

(4.15)

Where sumi represents the summation of the two computed metrics (spacing and coverage) for
each run. For example, Table 4.10 presents the metric values obtained in the first run for each
experiment, long with their summation for both algorithms: Gen-RONs-based NSGA-II and
classical NSGA-II. Tables 4.11 and 4.12 show the S/N ratios for the two algorithms.

Table 4.10: Gen-RONs based NSGA-II metrics results of the first run.

Exp NSGA-
IIGen−RONs

NSGA-II

SP CM Sum SP CM Sum

metric metric metric metric

1 1.2079 1 2.2079 0.6088 0 0.6088

2 0.8971 1 1.8971 0.7460 0 0.7460

3 1.9591 1 2.9591 0.6768 1 1.6768

4 1.9746 0.3157 2.2904 0.6251 1 1.6251

5 1.9746 1 2.9746 0.7997 0.1428 0.9425

6 1.9746 1 2.9746 0.8061 0.125 0.9311

7 1.2576 1 2.2576 0.7326 0.6666 1.3993

8 1.9797 1 2.9797 0.6902 0.1666 0.8569

9 1.9797 1 2.9797 0.8551 0 0.8551

From Tables 4.11 and 4.12, the S/N ratio values for each parameter by level can be deduced
for both algorithms: Gen-RONs-based NSGA-II and NSGA-II. These values are detailed in
Tables 4.13 and 4.14, respectively.

106

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

Table 4.13: Gen-RONs based NSGA-II S/N ratio values for parameters by levels.

Level Population Generation Crossover Mutation

size number rate rate

1 7.05 6.42 7.28 7.52

2 7.43 6.88 7.31 7.34

3 7.47 8.65 7.35 7.09

Table 4.14: NSGA-II S/N ratio values for parameters by levels.

Level Population Generation Crossover Mutation

size number rate rate

1 -0.11 -0.23 -0.55 0,01

2 -1.03 -0.42 0.05 -1.09

3 0.42 -0.06 0.08 0.34

Figures 4.23 and 4.24 illustrate the effect of the parameters on both algorithms.

Figure 4.23: The mean of S/N ratio plots for each level of Gen-RONs based NSGA-II parame-
ters.

107

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

Figure 4.24: The mean of S/N ratio plots for each level of NSGA-II parameters.

The effect of parameters on Gen-RONs-based NSGA-II algorithm is shown in Figure 4.23.
The analysis reveals that the highest mean S/N ratio value for the population size parameter
occurs at level 3, and the same level applies to number of generations. In contrast, the S/N ratio
values for the crossover rate and mutation rate are at level 2 and 1, respectively. Figure 4.23
indicates that the generations number parameter yields the maximum S/N ratio; thus, generation
number of 50 is selected. This choice is expected to enhance the algorithm’s effectiveness,
given that the other parameters, while less impactful on the S/N ratio, significantly influence the
overall performance of the algorithm.

For the NSGA-II algorithm, the effect of parameters is illustrated in Figure 4.24. The anal-
ysis shows that the population size and mutation rate parameters yield the highest S/N ratios.
Consequently, a population size of 100 and a mutation rate of 0.2 are selected. These values are
expected to enhance the algorithm’s effectiveness, as the other parameters, while having mini-
mal impact on the S/N ratio, significantly influence the overall performance of the algorithm.

After computing the S/N ratio, the highest S/N value corresponds to the best combination of
the parameter values. Based on Tables 4.11 and 4.12, the largest S/N ratio obtained from both
algorithms occurs Experiment 9. Therefore, the optimal parameters are the underlined values
in Table 4.15.

Table 4.15: Tuned parameters for both algorithms.

parameters Level 1 Level 2 Level 3

Population size 50 80 100
Generation
number

25 30 50

Crossover rate 0.7 0.8 0.9

Mutation rate 0.2 0.08 0.01

4.6.4.3 Comparative qualitative study

Finally, Table 4.16 summarizes some characteristics and qualitative differences between this
work and the most closely related studies.

108

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

Table 4.5: Required connections to model Conf0

Connected communication places

Operation Abstract model M1 model M2 model M3 model

(OP2: Part1) on cm1 _ cm_cfg1, _

M2(C1) cm_tl2
mop1 _ M2_cfg1 _

(OP3: Part1) on cm2 cm_cfg1, _ _

M1(C1) cm_tl1
mop2 M1_cfg1 _ _

(OP1: Part1) on cm3 cm_cfg1, _ _

M1(C1) cm_tl2
mop3 M1_cfg1 _ _

(OP2: Part2) on cm4 _ _ cm_cfg1,

M3(C1) cm_tl5
mop4 _ _ M3_cfg1

(OP5: Part2) on cm5 _ _ cm_cfg3,

M1(C3) cm_tl1
mop5 _ _ M3_cfg3

(OP3: Part2) on cm6 cm_cfg2, _ _

M1(C2) cm_tl4
mop6 M1_cfg2 _ _

(OP4: Part2) cm7 cm_cfg2, _

M1(C2) cm_tl1
mop7 M1_cfg2 _ _

(OP1: Part2) on cm8 _ cm_cfg2, _

M2(C2) cm_tl3
mop8 _ M2_cfg2 _

(OP4: Part3) on cm9 cm_cfg1, _ _

M1(C1) cm_tl2
mop9 M1_cfg1 _ _

(OP2: Part3) on cm10 cm_cfg1, _ _

M1(C1) cm_tl4
mop10 M1_cfg1 _ _

(OP3: Part3) on cm11 cm_cfg1, _ _

M1(C1) cm_tl4
mop11 M1_cfg1 _ _

(OP1: Part3) on cm12 _ cm_cfg1, _

M2(C1) cm_tl3
mop12 _ M2_cfg1 _

109

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

Table 4.11: Experiments result of the Gen-RONs based NSGA-II.

Metrics Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp7 Exp8 Exp9

sum

sum1 2.207923 1.897102 2.959183 2.290473 2.9746831 2.974683 2.257651 2.979797 2.97979

sum2 2.795918 2.126545 1.959183 1.911267 2.309988 2.974683 2.076675 2.247128 2.979797

sum3 2.041924 2.261522 2.959183 1.989359 2.949367 2.974683 1.955162 2.011660 2.979797

sum4 1.988754 1.908263 2.959183 2.122383 2.565352 2.974683 2.159906 1.850763 2.979797

sum5 2.007621 2.123203 2.959183 2.159144 2.062122 2.415267 2.211966 2.181216 2.979797

sum6 1.738962 2.201417 1.969148 2.010019 2.370845 2.974683 2.959595 2.205863 2.939393

sum7 2.527298 2.918367 2.448765 2.019649 2.298192 2.974683 2.125042 2.041848 2.220573

sum8 2.213756 2.918367 2.959183 1.848057 2.325029 2.004360 2.155193 2.298596 2.979797

sum9 2.106817 1.981631 2.375293 2.140329 1.934840 2.974683 2.281718 1.970958 2.979797

sum10 2.019110 1.927755 2.959183 1.921316 2.370909 2.974683 2.050418 2.979797 2.979797

sum11 2.202680 2.170674 2.959183 1.922367 2.148975 2.148975 2.318047 2.318047 2.147233

sum12 2.049843 1.988135 2.405881 2.062407 2.166575 2.974683 2.057653 1.958387 2.979797

sum13 2.035595 2.273932 2.184990 2.323042 2.113503 2.974683 1.910912 2.335480 2.979797

sum14 1.981212 2.118557 2.959183 1.937694 2.300580 2.974683 2.005897 2.183397 2.979797

sum15 1.892188 2.141895 2.959183 2.898734 2.297459 2.900214 2.125219 2.028874 2.979797

S/N ratio 6.329805 6.635045 8.195981 6.314578 7.240627 8.753045 6.634964 6.781311 9.003407

Table 4.12: Experiments result of the NSGA-II.

Metrics Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp7 Exp8 Exp9

sum

sum1 0.608838 0.746082 1.676841 1.625173 0.942517 0.931123 1.399335 0.856915 0.855100

sum2 0.630358 0.653811 1.586067 0.939181 0.841215 1.294556 0.768235 1.716581 1.318659

sum3 1.043806 1.784253 0.902421 1.081761 1.064970 1.721852 1.423027 0.642098 1.490878

sum4 0.805102 1.373085 0.998981 1.405153 1.109585 1.235853 0.695442 0.707525 0.870646

sum5 1.767910 0.973783 0.864435 1.157427 0.736598 0.740122 1.047722 1.688668 1.764139

sum6 1.247485 0.649334 1.207050 1.805257 0.756605 0.823010 1.790439 1.640093 1.615704

sum7 1.044450 1.542687 1.180931 1.100750 1.496083 1.144016 1.208074 1.608076 1.255215

sum8 0.536280 1.722835 0.723407 1.058635 0.710047 1.040294 0.671102 0.652262 1.894098

sum9 1.652340 0.993969 1.811730 1.658635 1.213786 1.647117 1.656357 1.551326 1.683055

sum10 1.574681 0.621739 1.070918 0.657518 0.756222 0.889321 0.904397 1.047455 1.595377

sum11 0.945542 1.379780 1.684810 1.681605 1.133535 0.874279 1.718248 1.750369 0.790294

sum12 1.724419 0.698009 1.360885 0.607723 1.315060 0.287140 0.908594 1.651332 1.589821

sum13 1.776935 1.635992 1.492963 0.684289 1.484753 1.060523 1.255773 1.726219 1.045506

sum14 1.713393 0.675918 0.873695 1.252406 2.004485 0.764409 1.797188 0.698319 0.773811

sum15 1.087458 1.681260 1.402053 0.864450 0.617654 1.772514 0.656395 1.760779 1.108000

S/N ratio -0.481465 -0.853340 0.979274 -0.140561 -0.634741 -2.341944 -0.085110 0.203664 1.164607

110

C
hapter4

O
n

Form
alM

odeling,A
nalysis

and
O

ptim
ization

ofR
M

Ss

Table 4.16: Comparative qualitative study.

Work Approach Use of PNs PNs class Systems OptimizationMetrics Taguchi

[249] GA+PNs Simulation Simplified Timed FMS Single- Scheduling Yes

Petri Nets objective time

[250] GA+PNs PNs model Colored Business Process Multi- Scheduling time, No

GAs Petri Nets objective total cost

[225] GA Not used Not used Mixed-model Multi- Line efficiency, No

two-sided objective smoothness index,

assembly line cost

[222] GA Not used Not used RMS Multi- Tardiness, No

objective cost

[267] GA Not used Not used Vendor managed Multi- Inventory cost, Yes

inventory model objective warehouse space

[232] PNs+linear PNs model First-Order Low-Automated Single- Process speeds No

programming production Hybrid production objective

process Petri nets Process

[252] GA+PNs PNs model Place/Transition Flexible Single- Makespan No

scheduling Petri nets job shop objective

Gen-RONs GA+PNs PNs model Reconfigurable RMS Multi- Cost, Yes

chromosomes Object Nets objective completion time

"PNs model GAs" means that Petri nets are used to model the entire genetic algorithms.
"PNs model scheduling" means that Petri nets are used to model the scheduling problem.
"PNs model chromosomes" means that Petri nets are used to model only the chromosomes (i.e., RMS configurations).

111

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

4.6.5 Discussion
This subsection presents a comprehensive discussion of the proposed approach, focusing on

its scalability, impact, and connections to related work.

4.6.5.1 Scalability of the Proposed Approach

Addressing scalability is crucial for ensuring the RMSs’ adaptability to volatile market de-
mands and uncertain future requirements. The work reported in [274] focuses on the importance
of evaluating the scalability of RMSs during the design phase. It integrates modular design prin-
ciples in methodologies for scalability assessment. By incorporating formal methods, the work
reported in [275] uses discrete timed Petri nets (DTPNs) to model and evaluate RMSs’ scala-
bility, resilience and robustness. It provides a comprehensive method for assessing the system
adaptability. In this subsection of the present work, the authors emphasize modularity and the
use of formal methods (Petri nets), as further validated individually in the aforementioned stud-
ies, to discuss the scalability.

Increasing the number of operations in an RMS can increase the number of transitions in
the RMS Petri net model, thus, potential increasing in the number of places and transitions that
model the machines behaviors too. The user must consider the RMS model as sub-models. Each
module (i.e., sub-Petri net model) represents the operation to be performed and the machine
(with its configurations if needed). Then, the entire RMS model is constructed by connecting
these modules using gluing places. Thus, the scalability of the proposed approach touches three
phases. (i) Modeling phase: This modularity reduces the effort and time of modeling. (ii)
Analysis phase: the modularity of the RMS Petri net model provides a rational analysis. The
TINA tool (a symbolic model-checker) optimizes the checking phase. (iii) Optimization phase:
the impact of the number of operation influences only on the length of a chromosome. The
proposal uses a pre-existing genetic algorithm. In the present work, the authors choose NSGA-
II [136] as a genetic algorithm. Since this algorithm is considered as a meta-heuristic with a
complexity of polynomial time computational, it is applicable for mid-to-large-scale problems.
Thus, Gen-RONs formalism, in this case, is applicable for mid-to-large-scale problems.

4.6.5.2 Discussion of the impact of the proposed approach

The minimal impact of evolutionary operations on algorithm performance in the current pro-
posed method is primarily due to strict constraints imposed by reconfigurability requirements
ensuring system properties such as deadlock-freeness and liveness are maintained. The current
proposed approach balances these constraints by employing carefully designed genetic oper-
ators suited for reconfigurability challenges. While improvements in performance may seem
incremental, they are significant in preserving essential system properties and achieving feasi-
ble reconfigurations. Further work could involve developing more detailed metrics that reflect
the dual objectives of performance optimization and property preservation.

4.6.5.3 Connection with related work

Advancing the field of RMSs requires both cutting-edge optimization techniques and strate-
gic implementation frameworks. The novel formalism Gen-RONs combines PNs and GAs to
assess formally RMS and optimize its configurations dynamically. This ensures not only fluc-
tuating production demands but also preserves essential system properties such as deadlock-
freeness. Complementing the current proposed optimization-centric formal approach, the re-

112

Chapter 4 On Formal Modeling, Analysis and Optimization of RMSs

search presented in [182] offers a strategic perspective by identifying and prioritizing key RMS
enablers (RMSEs). Through a detailed framework, the study provides the practical implemen-
tation of RMSs focusing on critical factors necessary for successful adoption and operation.
The synergy between this study and the current proposed approach lies in the integration of
these two approaches. While Gen-RONs focus on computational efficiency and real-time adapt-
ability, the strategic guidance from the study [182] provides a robust foundation for practical
implementation. This combination bridges the gap between theoretical optimization and real-
world application ensuring that the benefits of advanced RMS configurations are fully realized
in practical settings. By leveraging both computational and strategic strengths, this integra-
tion significantly enhances the performance and adoption of RMSs offering a comprehensive
solution to the challenges faced by modern manufacturing environments.

4.7 Conclusion

The design and implementation of reconfigurable manufacturing systems (RMSs) present
new challenges for both industry and researchers, including issues related to concurrency, syn-
chronization, distribution, optimization, and maintenance. To ensure the reliability of RMSs and
achieve optimal performance, researchers typically employ Petri nets [193] for formal modeling
alongside evolutionary and genetic methods for optimization. Formal methods are frequently
used for the formal specification of RMSs, analysis of their qualitative properties (deadlock-
freedom, liveness and safety), and evaluation of their quantitative metrics (including through-
put, time, and cost). Evolutionary and genetic methods have been explored to address optimiza-
tion problems in RMSs, specifically to ensure that the reconfiguration of an RMS meets the
required objectives. Traditionally, evolutionary/genetic approaches and Petri nets based meth-
ods have been applied independently. However, few studies have attempted to unify these two
approaches.

In the present work, the authors have combined high level Petri nets with genetic algorithm.
The newly proposed approach is called Gen-RONs (genetic reconfigurable object nets), which
extends the previous formalism known as RONs (reconfigurable object nets) [198]. The objec-
tive is to integrate the basic operators of genetic algorithms, mutation and crossover, into the
Petri net formalism. Consequently, formal definitions of these two operators are established
within the Petri nets framework, treating both mutation and crossover as graph transformation
operators defined over Place/Transition (P/T) nets. Building on these new formalizations, a
genetic algorithm, Gen-RONs-based NSGA-II, is proposed. In this algorithm, chromosomes
are represented as labeled P/T nets. This formalism and algorithm are utilized to optimize re-
configurable manufacturing systems, and the results obtained underscore the significance of the
proposed approach in comparison to existing methods.

This study opens several promising perspectives at both theoretical and practical levels.
Theoretically, future research will focus on the preservation of various critical properties within
reconfigurable manufacturing systems. These systems are characterized by key quantitative
properties (such as time, cost, and throughput) that can be maintained during configuration
changes. Currently no formalism exists to ensure the preservation of these essential properties,
presenting a significant challenge for the field. Extending reconfigurable Petri nets to address
this issue represents a vital perspective for future investigation. On the practical side, the authors
are dedicated to enhancing the tools developed for optimizing systems through the Gen-RONs
approach, thereby improving the efficiency and effectiveness of RMS implementations.

113

GENERAL CONCLUSION

114

General Conclusion

Thesis summary

In an era of increasing reliance on complex systems, ensuring their correctness and reli-
ability is no longer optional, it is essential to prevent catastrophic failures that could disrupt
industries or endanger lives. Reconfigurable systems, designed to adapt dynamically to evolv-
ing requirements, present both immense opportunities and critical challenges. For example, in
industrial settings, undetected flaws in reconfigurable manufacturing systems could lead to pro-
duction defects, equipment failures, or even workplace hazards. Verification of such systems is
vital to safeguarding their operation and ensuring that adaptability does not compromise safety
or efficiency. This thesis responds to these pressing needs by providing rigorous methodologies
to verify, optimize, and enhance reconfigurable systems.

The research contributes significantly to the field, integrating formal methods and advanced
optimization strategies to address the challenges of system design, verification, and optimiza-
tion. By exploring both theoretical foundations and practical implementations, it lays the
groundwork for systems that are not only adaptable but also robust, efficient, and safe. These
innovations have the potential to revolutionize domains such as manufacturing, IoT, and net-
working, where reconfigurability is a critical enabler of innovation and resilience.

Through targeted case studies, the thesis demonstrates the transformative impact of com-
bining formal verification techniques with optimization algorithms. It provides practical frame-
works for addressing complex, real-world challenges, ensuring that reconfigurable systems meet
their performance and safety requirements even under dynamic conditions.

This thesis makes the following key contributions:

• Advanced Modeling Framework for Mobile WSNs: Development of a robust framework
employing UPPAAL SMC and probabilistic automata to model dynamic behaviors and
ensure reliable communication protocols.

• Comprehensive Verification Techniques for IoT Protocols: Introduction of PCTL-based
methodologies to verify the correctness of IoT protocols like MQTT, significantly en-
hancing their trustworthiness.

• Enhanced Optimization Strategies with Properties Preservation in Gen-RONs: Inte-
gration of Gen-RONs into the NSGA-II genetic algorithm, ensuring optimization while
preserving essential system properties during crossover and mutation.

• Formal Modeling Using Reconfigurable Object Nets: Establishment of a structured
framework for modeling and verifying reconfigurable manufacturing systems, address-
ing complexities in dynamic environments with a focus on analysis and optimization.

Open Issues and Future Research Directions

Despite these contributions, several open issues and future research directions remain:

• Scalability: Future research should focus on scaling our modeling techniques to handle
larger and more complex systems, ensuring applicability as system requirements grow.

• Integration with Machine Learning: Exploring the incorporation of machine learning
techniques into formal methods could enhance predictive capabilities and further opti-
mize system performance.

115

General Conclusion

• Real-Time Adaptation: Investigating real-time verification methods that allow systems
to dynamically adapt to changing conditions will be crucial, particularly in fast-evolving
environments like IoT.

• Cross-Domain Applications: Expanding the applicability of our methodologies to other
fields, such as autonomous systems and smart cities, could provide insights that enhance
the utility of formal methods across diverse industries.

116

Bibliography

[1] Tayfur Altiok. Performance analysis of manufacturing systems. Springer Science &
Business Media, 1997.

[2] Daniel D Gajski, Frank Vahid, Sanjiv Narayan, and Jie Gong. Specification and design
of embedded systems. Prentice-Hall, Inc., 1994.

[3] Gabriel Fornari and Valdivino Alexandre de Santiago Júnior. Dynamically reconfig-
urable systems: a systematic literature review. Journal of Intelligent & Robotic Systems,
95:829–849, 2019.

[4] Scott Ferguson, Afreen Siddiqi, Kemper Lewis, and Olivier L de Weck. Flexible and
reconfigurable systems: Nomenclature and review. In International Design Engineer-
ing Technical Conferences and Computers and Information in Engineering Conference,
volume 48078, pages 249–263, 2007.

[5] CH Koo, M Vorderer, S Junker, S Schröck, and A Verl. Challenges and requirements
for the safety compliant operation of reconfigurable manufacturing systems. Procedia
CIRP, 72:1100–1105, 2018.

[6] P-Y Piriou, J-M Faure, and J-J Lesage. From safety analysis of reconfigurable systems
to design of fault-tolerant control strategies. In 2016 3rd Conference on Control and
Fault-Tolerant Systems (SysTol), pages 624–629. IEEE, 2016.

[7] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. Formal meth-
ods: Practice and experience. ACM computing surveys (CSUR), 41(4):1–36, 2009.

[8] Edmund M Clarke. Model checking. In Foundations of Software Technology and The-
oretical Computer Science: 17th Conference Kharagpur, India, December 18–20, 1997
Proceedings 17, pages 54–56. Springer, 1997.

[9] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

[10] Lothar M Schmitt. Theory of genetic algorithms ii: models for genetic operators over the
string-tensor representation of populations and convergence to global optima for arbitrary
fitness function under scaling. Theoretical Computer Science, 310(1-3):181–231, 2004.

[11] Irene Ring. Evolutionary strategies in environmental policy. Ecological Economics,
23(3):237–249, 1997.

[12] Hisashi Tamaki, Hajime Kita, and Shigenobu Kobayashi. Multi-objective optimization
by genetic algorithms: A review. In Proceedings of IEEE international conference on
evolutionary computation, pages 517–522. IEEE, 1996.

117

Bibliography

[13] James C Lyke, Christos G Christodoulou, G Alonzo Vera, and Arthur H Edwards. An
introduction to reconfigurable systems. Proceedings of the IEEE, 103(3):291–317, 2015.

[14] Amro M Farid. Measures of reconfigurability and its key characteristics in intelligent
manufacturing systems. Journal of intelligent manufacturing, 28(2):353–369, 2017.

[15] Durga Prasad and SC Jayswal. A review on flexibility and reconfigurability in man-
ufacturing system. Innovation in Materials Science and Engineering: Proceedings of
ICEMIT 2017, Volume 2, pages 187–200, 2018.

[16] Murillo Augusto da Silva Ferreira, Guilherme Cano Lopes, Esther Luna Colombini, and
Alexandre da Silva Simões. A novel architecture for multipurpose reconfigurable un-
manned aerial vehicle (uav): concept, design and prototype manufacturing. In 2018
Latin American robotic symposium, 2018 Brazilian symposium on robotics (SBR) and
2018 workshop on robotics in education (WRE), pages 443–450. IEEE, 2018.

[17] Raji George, CRS Kumar, SA Gangal, and Makarand Joshi. A low profile reconfigurable
antenna for defense aircrafts. SN Applied Sciences, 1(6):608, 2019.

[18] Safa Guellouz, Adel Benzina, Mohamed Khalgui, Georg Frey, Zhiwu Li, and Valeriy
Vyatkin. Designing efficient reconfigurable control systems using iec61499 and sym-
bolic model checking. IEEE Transactions on Automation Science and Engineering,
16(3):1110–1124, 2018.

[19] Aneesh Paul, Rohan Chauhan, Rituraj Srivastava, and Mriganka Baruah. Advanced
driver assistance systems. Technical report, SAE Technical Paper, 2016.

[20] Yoram Koren, Uwe Heisel, Francesco Jovane, Toshimichi Moriwaki, Gumter Pritschow,
Galip Ulsoy, and Hendrik Van Brussel. Reconfigurable manufacturing systems. CIRP
Annals-Manufacturing Technology, 48(2):527–540, 1999.

[21] Normaziah A Aziz, Teddy Mantoro, M Aiman Khairudin, et al. Software defined net-
working (sdn) and its security issues. In 2018 International conference on computing,
engineering, and design (ICCED), pages 40–45. IEEE, 2018.

[22] Christian Tipantuna and Paúl Yanchapaxi. Network functions virtualization: An
overview and open-source projects. In 2017 IEEE Second Ecuador Technical Chapters
Meeting (ETCM), pages 1–6. IEEE, 2017.

[23] Tammara Massey, Foad Dabiri, Roozbeh Jafari, Hyduke Noshadi, Philip Brisk, William
Kaiser, and Majid Sarrafzadeh. Towards reconfigurable embedded medical systems. In
2007 Joint Workshop on High Confidence Medical Devices, Software, and Systems and
Medical Device Plug-and-Play Interoperability (HCMDSS-MDPnP 2007), pages 178–
180. IEEE, 2007.

[24] Jacek Feczko, Michal Manka, Pawel Krol, Mariusz Giergiel, Tadeusz Uhl, and Andrzej
Pietrzyk. Review of the modular self reconfigurable robotic systems. In 2015 10th
International Workshop on Robot Motion and Control (RoMoCo), pages 182–187. IEEE,
2015.

[25] Helen C Leligou, Luis Redondo, Theodore Zahariadis, Daniel Rodriguez Retamosa,
Panagiotis Karkazis, Ioannis Papaefstathiou, and Stamatis Voliotis. Reconfiguration in

118

Bibliography

wireless sensor networks. In 2010 Developments in E-systems Engineering, pages 59–63.
IEEE, 2010.

[26] Javad Rezazadeh, Marjan Moradi, and Abdul Samad Ismail. Mobile wireless sensor
networks overview. International Journal of Computer Communications and Networks,
2(1):17–22, 2012.

[27] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu Palaniswami.
Internet of things (iot): A vision, architectural elements, and future directions. Future
Generation Computer Systems, 29(7):1645 – 1660, 2013. Including Special sections:
Cyber-enabled Distributed Computing for Ubiquitous Cloud and Network Services &
Cloud Computing and Scientific Applications — Big Data, Scalable Analytics, and Be-
yond.

[28] Khalida S Rijab and Saif Muqdad Sadiq. Implementing a reconfigurable internet of
things nodes using non-ip network based on wireless sensor network. 2019.

[29] Ramaasamy Velmani. Mobile wireless sensor networks: an overview. Wireless Sensor
Networks. IntechOpen Limited: London, UK, 2017.

[30] Ricardo Silva, Jorge Sa Silva, and Fernando Boavida. Mobility in wireless sensor
networks–survey and proposal. Computer Communications, 52:1–20, 2014.

[31] Wei Ye, John Heidemann, and Deborah Estrin. An energy-e cient mac protocol for wire-
less sensor networks. In Proceedings of the 21st International Annual Joint Conference
of the IEEE Computer and Communications Societies (INFOCOM 2002), page 1, 2009.

[32] Huan Pham and Sanjay Jha. Addressing mobility in wireless sensor media access proto-
col. International Journal of Distributed Sensor Networks, 1(2):269–280, 2005.

[33] Prasad Raviraj, Hamid Sharif, Michael Hempel, and Song Ci. Mobmac-an energy effi-
cient and low latency mac for mobile wireless sensor networks. In 2005 Systems Com-
munications (ICW’05, ICHSN’05, ICMCS’05, SENET’05), pages 370–375. IEEE, 2005.

[34] Sung-Chan Choi, Jang-Won Lee, and Yeonsoo Kim. An adaptive mobility-supporting
mac protocol for mobile sensor networks. In VTC Spring 2008-IEEE Vehicular Technol-
ogy Conference, pages 168–172. IEEE, 2008.

[35] SA Hameed, EM Shaaban, HM Faheem, and MS Ghoniemy. Mobility-aware mac pro-
tocol for delay-sensitive wireless sensor networks. In 2009 International Conference on
Ultra Modern Telecommunications & Workshops, pages 1–8. IEEE, 2009.

[36] Bilal Muhammad Khan and Falah H Ali. Collision free mobility adaptive (cfma) mac for
wireless sensor networks. Telecommunication Systems, 52:2459–2474, 2013.

[37] Muneeb Ali, Tashfeen Suleman, and Zartash Afzal Uzmi. Mmac: A mobility-adaptive,
collision-free mac protocol for wireless sensor networks. In PCCC 2005. 24th IEEE
International Performance, Computing, and Communications Conference, 2005., pages
401–407. IEEE, 2005.

[38] Amre El-Hoiydi and J-D Decotignie. Wisemac: an ultra low power mac protocol for
the downlink of infrastructure wireless sensor networks. In Proceedings. ISCC 2004.
Ninth International Symposium on Computers And Communications (IEEE Cat. No.
04TH8769), volume 1, pages 244–251. IEEE, 2004.

119

Bibliography

[39] Joseph Polastre, Jason Hill, and David Culler. Versatile low power media access for wire-
less sensor networks. In Proceedings of the 2nd international conference on Embedded
networked sensor systems, pages 95–107, 2004.

[40] Michael Buettner, Gary V Yee, Eric Anderson, and Richard Han. X-mac: a short pream-
ble mac protocol for duty-cycled wireless sensor networks. In Proceedings of the 4th
international conference on Embedded networked sensor systems, pages 307–320, 2006.

[41] Yanjun Sun, Omer Gurewitz, and David B Johnson. Ri-mac: a receiver-initiated asyn-
chronous duty cycle mac protocol for dynamic traffic loads in wireless sensor networks.
In Proceedings of the 6th ACM conference on Embedded network sensor systems, pages
1–14, 2008.

[42] Prabal Dutta, Stephen Dawson-Haggerty, Yin Chen, Chieh-Jan Mike Liang, and Andreas
Terzis. Design and evaluation of a versatile and efficient receiver-initiated link layer for
low-power wireless. In Proceedings of the 8th ACM Conference on Embedded Networked
Sensor Systems, pages 1–14, 2010.

[43] Papa Dame Ba, Bamba Gueye, Ibrahima Niang, and Thomas Noel. Mox-mac: A low
power and efficient access delay for mobile wireless sensor networks. In 2011 4th Joint
IFIP Wireless and Mobile Networking Conference (WMNC 2011), pages 1–6. IEEE,
2011.

[44] Bing Liu, Ke Yu, Lin Zhang, and Huimin Zhang. Mac performance and improvement
in mobile wireless sensor networks. In Eighth ACIS International Conference on Soft-
ware Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Comput-
ing (SNPD 2007), volume 3, pages 109–114. IEEE, 2007.

[45] Luís Bernardo, H Agua, M Pereira, Rodolfo Oliveira, Rui Dinis, and Paulo Pinto. A mac
protocol for mobile wireless sensor networks with bursty traffic. In 2010 IEEE Wireless
Communication and Networking Conference, pages 1–6. IEEE, 2010.

[46] MJ Handy, Marc Haase, and Dirk Timmermann. Low energy adaptive clustering hierar-
chy with deterministic cluster-head selection. In 4th international workshop on mobile
and wireless communications network, pages 368–372. IEEE, 2002.

[47] G Santhosh Kumar, Paul MV Vinu, and K Poulose Jacob. Mobility metric based leach-
mobile protocol. In 2008 16th International conference on advanced computing and
communications, pages 248–253. IEEE, 2008.

[48] Petros Spachos, Dimitris Toumpakaris, and Dimitrios Hatzinakos. Angle-based dynamic
routing scheme for source location privacy in wireless sensor networks. In 2014 IEEE
79th Vehicular Technology Conference (VTC Spring), pages 1–5. IEEE, 2014.

[49] David B Johnson and David A Maltz. Dynamic source routing in ad hoc wireless net-
works. In Mobile computing, pages 153–181. Springer, 1996.

[50] Muni Venkateswarlu Kumaramangalam, Kandasamy Adiyapatham, and Chandrasekaran
Kandasamy. Zone-based routing protocol for wireless sensor networks. International
scholarly research notices, 2014(1):798934, 2014.

120

Bibliography

[51] Ilias Leontiadis and Cecilia Mascolo. Geopps: Geographical opportunistic routing for
vehicular networks. In 2007 IEEE international symposium on a world of wireless, mo-
bile and multimedia networks, pages 1–6. Ieee, 2007.

[52] Omair Fatmi and Deng Pan. Distributed multipath routing for data center networks based
on stochastic traffic modeling. In Proceedings of the 11th IEEE International Conference
on Networking, Sensing and Control, pages 536–541. IEEE, 2014.

[53] Mohammad Mansour, Amal Gamal, Ahmed I Ahmed, Lobna A Said, Abdelmoniem
Elbaz, Norbert Herencsar, and Ahmed Soltan. Internet of things: A comprehensive
overview on protocols, architectures, technologies, simulation tools, and future direc-
tions. Energies, 16(8):3465, 2023.

[54] Riccardo Bonetto, Nicola Bui, Vishwas Lakkundi, Alexis Olivereau, Alexandru Serba-
nati, and Michele Rossi. Secure communication for smart iot objects: Protocol stacks,
use cases and practical examples. In 2012 IEEE international symposium on a world of
wireless, mobile and multimedia networks (WoWMoM), pages 1–7. IEEE, 2012.

[55] Keyur K Patel, Sunil M Patel, and P Scholar. Internet of things-iot: definition, character-
istics, architecture, enabling technologies, application & future challenges. International
journal of engineering science and computing, 6(5), 2016.

[56] Mqtt version 3.1.1 plus errata 01. http://docs.oasis-open.org/mqtt/
mqtt/v3.1.1/mqtt-v3.1.1.html. Accessed: 2017-July-09.

[57] Zach Shelby, Klaus Hartke, and Carsten Bormann. The constrained application protocol
(coap). Technical report, 2014.

[58] Jeferson Rodrigues Cotrim and João Henrique Kleinschmidt. Lorawan mesh networks:
A review and classification of multihop communication. Sensors, 20(15):4273, 2020.

[59] Farzad Samie, Lars Bauer, and Jörg Henkel. Iot technologies for embedded computing:
A survey. In Proceedings of the Eleventh IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, pages 1–10, 2016.

[60] Shahin Farahani. ZigBee wireless networks and transceivers. newnes, 2011.

[61] Syed Rafiul Hussain, Shagufta Mehnaz, Shahriar Nirjon, and Elisa Bertino. Secure seam-
less bluetooth low energy connection migration for unmodified iot devices. IEEE Trans-
actions on Mobile Computing, 17(4):927–944, 2017.

[62] Yoram Koren, Xi Gu, and Weihong Guo. Reconfigurable manufacturing systems: Princi-
ples, design, and future trends. Frontiers of Mechanical Engineering, 13:121–136, 2018.

[63] Zhuming M Bi, Sherman YT Lang, Weiming Shen, and Lihui Wang. Reconfigurable
manufacturing systems: the state of the art. International journal of production research,
46(4):967–992, 2008.

[64] Abdelkrim R Yelles-Chaouche, Evgeny Gurevsky, Nadjib Brahimi, and Alexandre Dol-
gui. Reconfigurable manufacturing systems from an optimisation perspective: a focused
review of literature. International Journal of Production Research, 59(21):6400–6418,
2021.

121

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

Bibliography

[65] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to automata
theory, languages, and computation. Acm Sigact News, 32(1):60–65, 2001.

[66] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541–580, 1989.

[67] Kathrin Hoffmann, Hartmut Ehrig, and Till Mossakowski. High-level nets with nets and
rules as tokens. In Gianfranco Ciardo and Philippe Darondeau, editors, Proc. Applica-
tions and Theory of Petri Nets 2005, pages 268–288, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg.

[68] Farid Arfi, Anne-Lise Courbis, Thomas Lambolais, François Bughin, and Maurice
Hayot. Formal verification of a telerehabilitation system through an abstraction and re-
finement approach using uppaal. IET Software, 17(4):582–599, 2023.

[69] José Bacelar Almeida, Maria João Frade, Jorge Sousa Pinto, and Simão Melo de Sousa.
An overview of formal methods tools and techniques. Rigorous Software Development:
An Introduction to Program Verification, pages 15–44, 2011.

[70] Robert M Hierons, Kirill Bogdanov, Jonathan P Bowen, Rance Cleaveland, John Derrick,
Jeremy Dick, Marian Gheorghe, Mark Harman, Kalpesh Kapoor, Paul Krause, et al. Us-
ing formal specifications to support testing. ACM Computing Surveys (CSUR), 41(2):1–
76, 2009.

[71] M-C Gaudel. Formal specification techniques. In Proceedings of 16th International
Conference on Software Engineering, pages 223–227. IEEE, 1994.

[72] Jeannette M Wing. A specifier’s introduction to formal methods. Computer, 23(9):8–22,
1990.

[73] Robert W Floyd. Assigning meanings to programs. In Program Verification: Fundamen-
tal Issues in Computer Science, pages 65–81. Springer, 1993.

[74] VS Alagar, K Periyasamy, VS Alagar, and K Periyasamy. Vienna development method.
Specification of Software Systems, pages 405–459, 2011.

[75] Kristin Y Rozier. Linear temporal logic symbolic model checking. Computer Science
Review, 5(2):163–203, 2011.

[76] Hillel Kugler, David Harel, Amir Pnueli, Yuan Lu, and Yves Bontemps. Temporal logic
for scenario-based specifications. In Tools and Algorithms for the Construction and Anal-
ysis of Systems: 11th International Conference, TACAS 2005, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh,
UK, April 4-8, 2005. Proceedings 11, pages 445–460. Springer, 2005.

[77] Peter Bulychev, Alexandre David, Kim Gulstrand Larsen, Marius Mikučionis,
Danny Bøgsted Poulsen, Axel Legay, and Zheng Wang. Uppaal-smc: Statistical model
checking for priced timed automata. arXiv preprint arXiv:1207.1272, 2012.

[78] David Parker. Verification of probabilistic real-time systems. Proc. 2013 Real-time Sys-
tems Summer School (ETR’13), 2013.

122

Bibliography

[79] Stephen A Cook. The complexity of theorem-proving procedures. In Logic, automata,
and computational complexity: The works of Stephen A. Cook, pages 143–152. 2023.

[80] Yves Bertot and Pierre Castéran. Interactive theorem proving and program development:
Coq’Art: the calculus of inductive constructions. Springer Science & Business Media,
2013.

[81] Lawrence C Paulson. Isabelle: A generic theorem prover. Springer, 1994.

[82] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.

[83] Edmund M Clarke, William Klieber, Miloš Nováček, and Paolo Zuliani. Model checking
and the state explosion problem. In LASER Summer School on Software Engineering,
pages 1–30. Springer, 2011.

[84] Junaid Qadir and Osman Hasan. Applying formal methods to networking: theory, tech-
niques, and applications. IEEE Communications Surveys & Tutorials, 17(1):256–291,
2014.

[85] Jerry R Burch, Edmund M Clarke, Kenneth L McMillan, David L Dill, and Lain-Jinn
Hwang. Symbolic model checking: 1020 states and beyond. Information and computa-
tion, 98(2):142–170, 1992.

[86] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic model
checking without bdds. In Tools and Algorithms for the Construction and Analysis of
Systems: 5th International Conference, TACAS’99 Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS’99 Amsterdam, The Nether-
lands, March 22–28, 1999 Proceedings 5, pages 193–207. Springer, 1999.

[87] Marta Kwiatkowska, Gethin Norman, and David Parker. Prism: probabilistic model
checking for performance and reliability analysis. ACM SIGMETRICS Performance
Evaluation Review, 36(4):40–45, 2009.

[88] Koushik Sen, Mahesh Viswanathan, and Gul Agha. Statistical model checking of black-
box probabilistic systems. In Rajeev Alur and Doron Peled, editors, CAV, pages 202–215,
2004.

[89] Alexandre David, Kim G Larsen, Axel Legay, Marius Mikučionis, and Zheng Wang.
Time for statistical model checking of real-time systems. In Computer Aided Verifica-
tion: 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings 23, pages 349–355. Springer, 2011.

[90] Alexandre David, Kim G Larsen, Axel Legay, Marius Mikučionis, Danny Bøgsted
Poulsen, Jonas Van Vliet, and Zheng Wang. Statistical model checking for networks
of priced timed automata. In Formal Modeling and Analysis of Timed Systems: 9th In-
ternational Conference, FORMATS 2011, Aalborg, Denmark, September 21-23, 2011.
Proceedings 9, pages 80–96. Springer, 2011.

[91] Paolo Ballarini, Hilal Djafri, Marie Duflot, Serge Haddad, and Nihal Pekergin. Cosmos:
a statistical model checker for the hybrid automata stochastic logic. In 2011 Eighth
International Conference on Quantitative Evaluation of SysTems, pages 143–144. IEEE,
2011.

123

Bibliography

[92] Musab AlTurki and José Meseguer. Pvesta: A parallel statistical model checking and
quantitative analysis tool. In International Conference on Algebra and Coalgebra in
Computer Science, pages 386–392. Springer, 2011.

[93] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking in dense real-time.
Information and computation, 104(1):2–34, 1993.

[94] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability.
Formal aspects of computing, 6:512–535, 1994.

[95] Majda Moussa. Vérification et configuration automatiques de pare-feux par Model
Checking et synthèse de contrôleur. PhD thesis, École Polytechnique de Montréal, 2014.

[96] Rajeev Alur and David Dill. Automata for modeling real-time systems. In Automata,
Languages and Programming: 17th International Colloquium Warwick University, Eng-
land, July 16–20, 1990 Proceedings 17, pages 322–335. Springer, 1990.

[97] Rajeev Alur and David L Dill. A theory of timed automata. Theoretical computer science,
126(2):183–235, 1994.

[98] Marta Kwiatkowska, Gethin Norman, and Jeremy Sproston. Symbolic Computation of
Maximal Probabilisti Reachability, pages 169–183. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2001.

[99] James Lyle Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1981.

[100] M. Kamath and N. Viswanadham. Applications of Petri net based models in the mod-
elling and analysis of flexible manufacturing systems. In Proceedings. 1986 IEEE In-
ternational Conference on Robotics and Automation, volume 3, pages 312–317, April
1986.

[101] Claude Girault and Rudiger Valk. Petri Nets for System Engineering: A Guide to Model-
ing, Verification, and Applications. Springer-Verlag, Berlin, Heidelberg, 2001.

[102] Irina A Lomazova. Nested petri nets—a formalism for specification and verification of
multi-agent distributed systems. Fundamenta informaticae, 43(1-4):195–214, 2000.

[103] Jiafeng Zhang, Mohamed Khalgui, Zhiwu Li, Olfa Mosbahi, and Abdulrahman M Al-
Ahmari. R-tnces: A novel formalism for reconfigurable discrete event control systems.
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43(4):757–772, 2013.

[104] H-M Hanisch, J Thieme, Arndt Luder, and O Wienhold. Modeling of plc behavior by
means of timed net condition/event systems. In 1997 IEEE 6th International Conference
on Emerging Technologies and Factory Automation Proceedings, EFTA’97, pages 391–
396. IEEE, 1997.

[105] Rüdiger Valk. Self-modifying nets, a natural extension of Petri nets. In International Col-
loquium on Automata, Languages, and Programming, pages 464–476. Springer, 1978.

[106] Rüdiger Valk. On the computational power of extended Petri nets. In International Sym-
posium on Mathematical Foundations of Computer Science, pages 526–535. Springer,
1978.

124

Bibliography

[107] Rüdiger Valk. Petri nets as token objects. In International Conference on Application
and Theory of Petri Nets, pages 1–24. Springer, 1998.

[108] Rüdiger Valk. Concurrency in communicating object Petri nets. In Concurrent Object-
Oriented Programming and Petri Nets, pages 164–195. Springer, 2001.

[109] Rüdiger Valk. Object Petri nets. In Lectures on Concurrency and Petri Nets, pages
819–848. Springer, 2004.

[110] Hartmut Ehrig and Julia Padberg. Graph Grammars and Petri Net Transformations,
pages 496–536. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[111] Marisa Llorens and Javier Oliver. Introducing structural dynamic changes in Petri nets:
Marked-controlled reconfigurable nets. In Proc. of Second International Conference on
Automated Technology for Verification and Analysis, pages 310–323. Springer, 2004.

[112] Marisa Llorens and Javier Oliver. Structural and dynamic changes in concurrent systems:
Reconfigurable Petri nets. IEEE Transactions on Computers, 53(9):1147–1158, 2004.

[113] Jun Li, Xianzhong Dai, and Zhengda Meng. Improved net rewriting systems-based rapid
reconfiguration of Petri net logic controllers. In 31st Annual Conference of IEEE Indus-
trial Electronics Society, 2005. IECON 2005. IEEE, 2005.

[114] Jun Li, Xianzhong Dai, and Zhengda Meng. Improved net rewriting system-based ap-
proach to model reconfiguration of reconfigurable manufacturing systems. The Interna-
tional Journal of Advanced Manufacturing Technology, 37(11-12):1168–1189, 2008.

[115] Jun Li, Xianzhong Dai, Zhengda Meng, and Libo Xu. Improved net rewriting system-
extended Petri net supporting dynamic changes. Journal of Circuits, Systems, and Com-
puters, 17(06):1027–1052, 2008.

[116] J. Li, X. Dai, and Z. Meng. Automatic reconfiguration of Petri net controllers for recon-
figurable manufacturing systems with an improved net rewriting system-based approach.
IEEE Transactions on Automation Science and Engineering, 6(1):156–167, 2009.

[117] Jun Li, Xianzhong Dai, Zhengda Meng, Jianping Dou, and Xianping Guan. Rapid de-
sign and reconfiguration of Petri net models for reconfigurable manufacturing cells with
improved net rewriting systems and activity diagrams. Computers & Industrial Engi-
neering, 57(4):1431–1451, 2009.

[118] Eric Badouel, Marisa Llorens, and Javier Oliver. Modeling concurrent systems: Recon-
figurable nets. In Proc. PDPTA, pages 1568–1574, 2003.

[119] Zbigniew Michalewicz and Marc Schoenauer. Evolutionary algorithms for constrained
parameter optimization problems. Evolutionary computation, 4(1):1–32, 1996.

[120] Sourabh Katoch, Sumit Singh Chauhan, and Vijay Kumar. A review on genetic algo-
rithm: past, present, and future. Multimedia tools and applications, 80:8091–8126, 2021.

[121] Gan Kim Soon, Tan Tse Guan, Chin Kim On, Rayner Alfred, and Patricia Anthony. A
comparison on the performance of crossover techniques in video game. In 2013 IEEE
international conference on control system, computing and engineering, pages 493–498.
IEEE, 2013.

125

Bibliography

[122] David E Goldberg and Robert Lingle. Alleles, loci, and the traveling salesman prob-
lem. In Proceedings of the first international conference on genetic algorithms and their
applications, pages 154–159. Psychology Press, 2014.

[123] Shubhra Sankar Ray, Sanghamitra Bandyopadhyay, and Sankar K Pal. New operators of
genetic algorithms for traveling salesman problem. In Proceedings of the 17th Interna-
tional Conference on Pattern Recognition, 2004. ICPR 2004., volume 2, pages 497–500.
IEEE, 2004.

[124] Kazi Shah Nawaz Ripon, Nazmul H Siddique, and Jim Torresen. Improved precedence
preservation crossover for multi-objective job shop scheduling problem. Evolving Sys-
tems, 2:119–129, 2011.

[125] Forbes J Burkowski. Shuffle crossover and mutual information. In Proceedings of the
1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), volume 2,
pages 1574–1580. IEEE, 1999.

[126] Siew Mooi Lim, Abu Bakar Md Sultan, Md Nasir Sulaiman, Aida Mustapha, and
Kuan Yew Leong. Crossover and mutation operators of genetic algorithms. Interna-
tional journal of machine learning and computing, 7(1):9–12, 2017.

[127] Devasenathipathi N Mudaliar and Nilesh K Modi. Unraveling travelling salesman prob-
lem by genetic algorithm using m-crossover operator. In 2013 International Conference
on Signal Processing, Image Processing & Pattern Recognition, pages 127–130. IEEE,
2013.

[128] Khalid Jebari, Mohammed Madiafi, et al. Selection methods for genetic algorithms.
International Journal of Emerging Sciences, 3(4):333–344, 2013.

[129] Carlos M Fonseca and Peter J Fleming. Multiobjective genetic algorithms. In IEE collo-
quium on genetic algorithms for control systems engineering, pages 6–1. Iet, 1993.

[130] MC Bhuvaneswari and G Subashini. Introduction to multi-objective evolutionary algo-
rithms. Application of Evolutionary Algorithms for Multi-objective Optimization in VLSI
and Embedded Systems, pages 1–20, 2015.

[131] Kalyanmoy Deb. Multi-objective genetic algorithms: Problem difficulties and construc-
tion of test problems. Evolutionary computation, 7(3):205–230, 1999.

[132] Abdullah Konak, David W Coit, and Alice E Smith. Multi-objective optimization using
genetic algorithms: A tutorial. Reliability engineering & system safety, 91(9):992–1007,
2006.

[133] J David Schaffer. Multiple objective optimization with vector evaluated genetic algo-
rithms. In Proceedings of the first international conference on genetic algorithms and
their applications, pages 93–100. Psychology Press, 2014.

[134] Jeffrey Horn, Nicholas Nafpliotis, and David E Goldberg. A niched pareto genetic al-
gorithm for multiobjective optimization. In Proceedings of the first IEEE conference
on evolutionary computation. IEEE world congress on computational intelligence, pages
82–87. Ieee, 1994.

126

Bibliography

[135] Nidamarthi Srinivas and Kalyanmoy Deb. Muiltiobjective optimization using nondomi-
nated sorting in genetic algorithms. Evolutionary computation, 2(3):221–248, 1994.

[136] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2):182–197,
Apr 2002.

[137] Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms: a compara-
tive case study and the strength pareto approach. IEEE transactions on Evolutionary
Computation, 3(4):257–271, 1999.

[138] Joshua D Knowles and David W Corne. Approximating the nondominated front using
the pareto archived evolution strategy. Evolutionary computation, 8(2):149–172, 2000.

[139] Tadahiko Murata, Hisao Ishibuchi, et al. Moga: multi-objective genetic algorithms. In
IEEE international conference on evolutionary computation, volume 1, pages 289–294.
IEEE Piscataway, 1995.

[140] Haiming Lu and Gary G Yen. Rank-density-based multiobjective genetic algorithm
and benchmark test function study. IEEE transactions on evolutionary computation,
7(4):325–343, 2003.

[141] Manel Houimli, Laid Kahloul, and Siham Benaoune. Performance analysis of internet
of things application layer protocol. In Lecture Notes in Real-Time Intelligent Systems,
pages 225–234. Springer, 2019.

[142] Manel Houimli and Laid Kahloul. Formal verification of collision free mobility adaptive
protocol for wireless sensor networks. 2017.

[143] S. A. Ajith Kumar and Kent I. F. Simonsen. Towards a model-based development
approach for wireless sensor-actuator network protocols. In Proceedings of the 4th
ACM SIGBED International Workshop on Design, Modeling, and Evaluation of Cyber-
Physical Systems, CyPhy ’14, pages 35–39, New York, NY, USA, 2014. ACM.

[144] Y. Hammal, J. Ben-Othman, L. Mokdad, and A. Abdelli. Formal modeling and verifica-
tion of an enhanced variant of the ieee 802.11 csma/ca protocol. Journal of Communica-
tions and Networks, 16(4):385–396, Aug 2014.

[145] Zohra Hmidi, Laïd Kahloul, Benharzallah Saber, and Cherifa Othmane. Statistical model
checking of CSMA/CA in wsns. In Proceedings of the 10th Workshop on Verification
and Evaluation of Computer and Communication System, VECoS 2016, Tunis, Tunisia,
October 6-7, 2016., pages 27–42, 2016.

[146] Zhi Chen, Ya Peng, and Wenjing Yue. Modeling and analyzing csma/ca protocol for
energy-harvesting wireless sensor networks. International Journal of Distributed Sensor
Networks, 11(9):257157, 2015.

[147] Z. Li, Y. Liu, M. Li, J. Wang, and Z. Cao. Exploiting ubiquitous data collection for
mobile users in wireless sensor networks. IEEE Transactions on Parallel and Distributed
Systems, 24(2):312–326, Feb 2013.

127

Bibliography

[148] C. Tunca, S. Isik, M. Y. Donmez, and C. Ersoy. Ring routing: An energy-efficient routing
protocol for wireless sensor networks with a mobile sink. IEEE Transactions on Mobile
Computing, 14(9):1947–1960, Sept 2015.

[149] J. He, P. Cheng, J. Chen, L. Shi, and R. Lu. Time synchronization for random mobile
sensor networks. IEEE Transactions on Vehicular Technology, 63(8):3935–3946, Oct
2014.

[150] M. J. Nene, R. S. Deodhar, and L. M. Patnaik. Algorithm for autonomous reorganization
of mobile wireless camera sensor networks to improve coverage. IEEE Sensors Journal,
15(8):4428–4441, Aug 2015.

[151] Sheeraz A Alvi, Ghalib A Shah, and Waqar Mahmood. Energy efficient green routing
protocol for internet of multimedia things. In Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP), 2015 IEEE Tenth International Conference on, pages
1–6. IEEE, 2015.

[152] Adarsh Kumar, Krishna Gopal, and Alok Aggarwal. Simulation and analysis of authen-
tication protocols for mobile internet of things (miot). In Parallel, Distributed and Grid
Computing (PDGC), 2014 International Conference on, pages 423–428. IEEE, 2014.

[153] Antonio De Rubertis, Luca Mainetti, Vincenzo Mighali, Luigi Patrono, Ilaria Sergi,
Maria Laura Stefanizzi, and Stefano Pascali. Performance evaluation of end-to-end se-
curity protocols in an internet of things. In Software, Telecommunications and Computer
Networks (SoftCOM), 2013 21st International Conference on, pages 1–6. IEEE, 2013.

[154] Quan Le, Thu Ngo-Quynh, and Thomaz Magedanz. Rpl-based multipath routing pro-
tocols for internet of things on wireless sensor networks. In Advanced Technologies for
Communications (ATC), 2014 International Conference on, pages 424–429. IEEE, 2014.

[155] Zoran B Babovic, Jelica Protic, and Veljko Milutinovic. Web performance evaluation for
internet of things applications. IEEE Access, 4:6974–6992, 2016.

[156] Matteo Collina, Marco Bartolucci, Alessandro Vanelli-Coralli, and Giovanni Emanuale
Corazza. Internet of things application layer protocol analysis over error and delay prone
links. In Advanced Satellite Multimedia Systems Conference and the 13th Signal Pro-
cessing for Space Communications Workshop (ASMS/SPSC), 2014 7th, pages 398–404.
IEEE, 2014.

[157] Leila Abidi, Christophe Cérin, and Sami Evangelista. A petri-net model for the publish-
subscribe paradigm and its application for the verification of the bonjourgrid middleware.
In Services Computing (SCC), 2011 IEEE International Conference on, pages 496–503.
IEEE, 2011.

[158] K. Saghar, W. Henderson, D. Kendall, and A. Bouridane. Formal modelling of a robust
wireless sensor network routing protocol. In 2010 NASA/ESA Conference on Adaptive
Hardware and Systems, pages 281–288, June 2010.

[159] Maissa Elleuch, Osman Hasan, Sofiène Tahar, and Mohamed Abid. Formal probabilistic
analysis of a wireless sensor network for forest fire detection. In Adel Bouhoula, Tetsuo
Ida, and Fairouz Kamareddine, editors, SCSS, volume 122 of EPTCS, pages 1–9, 2012.

128

Bibliography

[160] Juan Antonio Cordero. A probabilistic study of the delay caused by jittering in wireless
flooding. Wireless Personal Communications, 73(3):415–439, Dec 2013.

[161] Tien-Shin Ho and Kwang-Cheng Chen. Performance analysis of ieee 802.11 csma/ca
medium access control protocol. In Personal, Indoor and Mobile Radio Communications,
1996. PIMRC’96., Seventh IEEE International Symposium on, volume 2, pages 407–411
vol.2, Oct 1996.

[162] Hongqiang Zhai, Younggoo Kwon, and Yuguang Fang. Performance analysis of ieee
802.11 mac protocols in wireless lans. Wireless Communications and Mobile Computing,
4(8):917–931, 2004.

[163] Fengling Zhang, Lei Bu, Linzhang Wang, Jianhua Zhao, Xin Chen, Tian Zhang, and
Xuandong Li. Modeling and evaluation of wireless sensor network protocols by stochas-
tic timed automata. Electronic Notes in Theoretical Computer Science, 296:261 – 277,
2013. Proceedings the Sixth International Workshop on the Practical Application of
Stochastic Modelling (PASM) and the Eleventh International Workshop on Parallel and
Distributed Methods in Verification (PDMC).

[164] Paolo Ballarini and Alice Miller. Model checking medium access control for sensor net-
works. In Proceedings of the 2nd International Symposium on Leveraging Applications
of Formal Methods, (ISoLA’06), pages 255–262, 2006.

[165] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured petri nets and cpn tools
for modelling and validation of concurrent systems. International Journal on Software
Tools for Technology Transfer, 9(3):213–254, Jun 2007.

[166] Marta Kwiatkowska, Gethin Norman, and Jeremy Sproston. Probabilistic Model Check-
ing of the IEEE 802.11 Wireless Local Area Network Protocol, pages 169–187. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2002.

[167] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. Timing-sync protocol for
sensor networks. In Proceedings of the 1st International Conference on Embedded Net-
worked Sensor Systems, SenSys ’03, pages 138–149, New York, NY, USA, 2003. ACM.

[168] Cinzia Bernardeschi, Paolo Masci, and Holger Pfeifer. Analysis of Wireless Sensor Net-
work Protocols in Dynamic Scenarios, pages 105–119. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

[169] C. Zhang and M. Zhou. A stochastic petri net-approach to modeling and analysis of
ad hoc network. In International Conference on Information Technology: Research and
Education, 2003. Proceedings. ITRE2003., pages 152–156, Aug 2003.

[170] Stephen Kent and Karen Seo. Security architecture for the internet protocol. Technical
report, 2005.

[171] Eric Rescorla and Nagendra Modadugu. Datagram transport layer security version 1.2.
Technical report, 2012.

[172] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, and
Moussa Ayyash. Internet of things: A survey on enabling technologies, protocols, and
applications. IEEE Communications Surveys & Tutorials, 17(4):2347–2376, 2015.

129

Bibliography

[173] Jorge Granjal, Edmundo Monteiro, and Jorge Sá Silva. Security for the internet of things:
a survey of existing protocols and open research issues. IEEE Communications Surveys
& Tutorials, 17(3):1294–1312, 2015.

[174] Roberto Baldoni, Mariangela Contenti, Sara Tucci Piergiovanni, and Antonino Virgillito.
Modeling publish/subscribe communication systems: towards a formal approach. In
Object-Oriented Real-Time Dependable Systems, 2003.(WORDS 2003). Proceedings of
the Eighth International Workshop on, pages 304–311. IEEE, 2003.

[175] Heithem Abbes, Christophe Cérin, and Mohamed Jemni. Bonjourgrid as a decentralised
job scheduler. In 2008 IEEE Asia-Pacific Services Computing Conference, pages 89–94.
IEEE, 2008.

[176] Ahmad Naseem Alvi, Syed Saud Naqvi, Safdar Hussain Bouk, Nadeem Javaid, Umar
Qasim, and Zahoor Ali Khan. Evaluation of slotted csma/ca of ieee 802.15. 4. In 2012
seventh international conference on broadband, wireless computing, communication and
applications, pages 391–396. IEEE, 2012.

[177] What is uml? http://www.uml.org/. Accessed: 2017-06-29.

[178] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikuăionis, and Danny BOg-
sted Poulsen. Uppaal smc tutorial. Int. J. Softw. Tools Technol. Transf., 17(4):397–415,
August 2015.

[179] Manfredi Bruccoleri, Zbigniew J Pasek, and Yoram Koren. Operation management in
reconfigurable manufacturing systems: Reconfiguration for error handling. International
Journal of Production Economics, 100(1):87–100, 2006.

[180] M Maniraj, V Pakkirisamy, and R Jeyapaul. An ant colony optimization–based approach
for a single-product flow-line reconfigurable manufacturing systems. Proceedings of
the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,
231(7):1229–1236, 2017.

[181] Xuemei Liu, Jiawei Chen, and Aiping Li. Optimisation of line configuration and bal-
ancing for reconfigurable transfer lines considering demand uncertainty. International
Journal of Production Research, pages 1–23, 2019.

[182] Rajesh Pansare, Gunjan Yadav, and Madhukar R Nagare. Development of a structural
framework to improve reconfigurable manufacturing system adoption in the manufactur-
ing industry. International Journal of Computer Integrated Manufacturing, 36(3):349–
380, 2023.

[183] Alessia Napoleone, Ann-Louise Andersen, Thomas Ditlev Brunoe, and Kjeld Nielsen.
Towards human-centric reconfigurable manufacturing systems: Literature review of re-
configurability enablers for reduced reconfiguration effort and classification frameworks.
Journal of Manufacturing Systems, 67:23–34, 2023.

[184] Jelena Milisavljevic-Syed, Jiahong Li, and Hanbing Xia. Realisation of responsive and
sustainable reconfigurable manufacturing systems. International Journal of Production
Research, 62(8):2725–2746, 2024.

130

http://www.uml.org/

Bibliography

[185] Rebeca Arista, Fernando Mas, Domingo Morales-Palma, and Carpoforo Vallellano. An
ontology-based engineering methodology applied to aerospace reconfigurable manufac-
turing systems design. International Journal of Production Research, 62(6):2286–2304,
2024.

[186] Rasmus Andersen, Alessia Napoleone, Ann-Louise Andersen, Thomas Ditlev Brunoe,
and Kjeld Nielsen. A systematic methodology for changeable and reconfigurable manu-
facturing systems development. Journal of Manufacturing Systems, 74:449–462, 2024.

[187] Bohan Leng, Shuo Gao, Tangbin Xia, Ershun Pan, Joachim Seidelmann, Hao Wang, and
Lifeng Xi. Digital twin monitoring and simulation integrated platform for reconfigurable
manufacturing systems. Advanced Engineering Informatics, 58:102141, 2023.

[188] Iwona Grobelna, Remigiusz Wiśniewski, Michał Grobelny, and Monika Wiśniewska.
Design and verification of real-life processes with application of petri nets. IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, 47(11):2856–2869, 2017.

[189] Jun Li, Xianghu Meng, MengChu Zhou, and Xianzhong Dai. A two-stage approach to
path planning and collision avoidance of multibridge machining systems. IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, 47(7):1039–1049, 2017.

[190] Dimitri Lefebvre, Sara Rachidi, Edouard Leclercq, and Yoann Pigné. Diagnosis of struc-
tural and temporal faults for k-bounded non-markovian stochastic petri nets. IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, 2018.

[191] Jianhong Ye, MengChu Zhou, Zhiwu Li, and Abdulrahman Al-Ahmari. Structural de-
composition and decentralized control of petri nets. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 48(8):1360–1369, 2018.

[192] Jun Li, Xiaolong Yu, and MengChu Zhou. Analysis of unbounded petri net with lean
reachability trees. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018.

[193] Tadao Murata. Petri nets: Properties, analysis and applications. Proc. IEEE, 77(4):541–
580, 1989.

[194] Mu Der Jeng. Petri nets for modeling automated manufacturing systems with error re-
covery. IEEE Transactions on Robotics and Automation, 13(5):752–760, 1997.

[195] Xiuli Meng. Modeling of reconfigurable manufacturing systems based on colored timed
object-oriented petri nets. Journal of Manufacturing Systems, 29(2):81–90, 2010.

[196] NaiQi Wu and MengChu Zhou. Intelligent token petri nets for modelling and control of
reconfigurable automated manufacturing systems with dynamical changes. Transactions
of the Institute of Measurement and Control, 33(1):9–29, 2011.

[197] Lianfeng Zhang and Brian Rodrigues. Modelling reconfigurable manufacturing sys-
tems with coloured timed petri nets. International journal of production research,
47(16):4569–4591, 2009.

[198] Enrico Biermann and Tony Modica. Independence analysis of firing and rule-based net
transformations in reconfigurable object nets. Electronic Communications of the EASST,
10, 2008.

131

Bibliography

[199] Ulrike Prange, Hartmut Ehrig, Kathrin Hoffmann, and Julia Padberg. Transformations
in Reconfigurable Place/Transition Systems, pages 96–113. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008.

[200] Eric Badouel and Javier Oliver. Reconfigurable nets, a class of high level Petri nets
supporting dynamic changes within workflow systems. PhD thesis, INRIA, 1998.

[201] Jun Li, Xianzhong Dai, Zhengda Meng, Jianping Dou, and Xianping Guan. Rapid de-
sign and reconfiguration of petri net models for reconfigurable manufacturing cells with
improved net rewriting systems and activity diagrams. Computers & Industrial Engi-
neering, 57(4):1431–1451, 2009.

[202] Huixia Liu, Keyi Xing, MengChu Zhou, Libin Han, and Feng Wang. Transition cover-
based design of petri net controllers for automated manufacturing systems. IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, 44(2):196–208, 2014.

[203] Jiafeng Zhang, Mohamed Khalgui, Zhiwu Li, Georg Frey, Olfa Mosbahi, and Hela Ben
Salah. Reconfigurable coordination of distributed discrete event control systems. IEEE
Trans. Contr. Sys. Techn., 23(1):323–330, 2015.

[204] Bo Huang, Hang Zhu, Gongxuan Zhang, and Xianling Lu. On further reduction of con-
straints in “nonpure petri net supervisors for optimal deadlock control of flexible man-
ufacturing systems”. IEEE Transactions on Systems, Man, and Cybernetics: Systems,
45(3):542–543, 2015.

[205] Bo Huang, MengChu Zhou, GongXuan Zhang, Ahmed Chiheb Ammari, Ahmed Alab-
dulwahab, and Ayman G Fayoumi. Lexicographic multiobjective integer programming
for optimal and structurally minimal petri net supervisors of automated manufacturing
systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45(11):1459–
1470, 2015.

[206] JianChao Luo, KeYi Xing, MengChu Zhou, XiaoLing Li, and XinNian Wang. Deadlock-
free scheduling of automated manufacturing systems using petri nets and hybrid heuristic
search. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45(3):530–541,
2015.

[207] Huixia Liu, Keyi Xing, Weimin Wu, MengChu Zhou, and Hailin Zou. Deadlock preven-
tion for flexible manufacturing systems via controllable siphon basis of petri nets. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 45(3):519–529, 2015.

[208] Yanxiang Feng, Keyi Xing, Zhenxin Gao, and Yunchao Wu. Transition cover-based
robust petri net controllers for automated manufacturing systems with a type of unreliable
resources. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016.

[209] Olatunde T Baruwa, Miquel Angel Piera, and Antoni Guasch. Deadlock-free scheduling
method for flexible manufacturing systems based on timed colored petri nets and any-
time heuristic search. IEEE Transactions on Systems, Man, and Cybernetics: Systems,
45(5):831–846, 2015.

[210] QingHua Zhu, MengChu Zhou, Yan Qiao, and NaiQi Wu. Petri net modeling and
scheduling of a close-down process for time-constrained single-arm cluster tools. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 2016.

132

Bibliography

[211] Laid Kahloul, Samir Bourekkache, and Karim Djouani. Designing reconfigurable man-
ufacturing systems using reconfigurable object petri nets. International Journal of Com-
puter Integrated Manufacturing, 29(8):889–906, 2016.

[212] O. Khlifi, O. Mosbahi, M. Khalgui, G. Frey, and Z. Li. Modeling, simulation and veri-
fication of probabilistic reconfigurable discrete-event systems under energy and memory
constraints. Iranian Journal of Science and Technology, Transactions of Electrical Engi-
neering, Jul 2018.

[213] S. Guellouz, A. Benzina, M. Khalgui, G. Frey, Z. Li, and V. Vyatkin. Designing efficient
reconfigurable control systems using iec61499 and symbolic model checking. IEEE
Transactions on Automation Science and Engineering, pages 1–15, 2018.

[214] Samir Tigane, Laid Kahloul, Nadia Hamani, Mohamed Khalgui, and Masood Ashraf
Ali. On quantitative properties preservation in reconfigurable generalized stochastic petri
nets. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022.

[215] Samir Tigane, Fayçal Guerrouf, and Laid Kahloul. A gspn-based formalism under
infinite-server semantics for reconfigurable wanets. Computing, pages 1–29, 2023.

[216] N Ismail, F Musharavati, ASM Hamouda, and AR Ramli. Manufacturing process plan-
ning optimisation in reconfigurable multiple parts flow lines. Journal of achievements in
materials and manufacturing engineering, 31(2):671–677, 2008.

[217] Abderrahmane Bensmaine, Mohammed Dahane, and Lyes Benyoucef. A non-dominated
sorting genetic algorithm based approach for optimal machines selection in reconfig-
urable manufacturing environment. Computers & Industrial Engineering, 66(3):519–
524, 2013.

[218] Anuch Chaube, Lyès Benyoucef, and Manoj Kumar Tiwari. An adapted nsga-2 algo-
rithm based dynamic process plan generation for a reconfigurable manufacturing system.
Journal of Intelligent Manufacturing, 23(4):1141–1155, 2012.

[219] Wencai Wang and Yoram Koren. Scalability planning for reconfigurable manufacturing
systems. Journal of Manufacturing Systems, 31(2):83–91, 2012.

[220] Abderrahmane Bensmaine, Mohamed Dahane, and Lyes Benyoucef. A new heuristic
for integrated process planning and scheduling in reconfigurable manufacturing systems.
International Journal of Production Research, 52(12):3583–3594, 2014.

[221] Xie Xiaowen, Zheng Beirong, and Xue Wei. Configuration optimization method of re-
configurable manufacturing systems. Research Journal of Applied Sciences, Engineering
and Technology, 6(8):389–1393, 2013.

[222] Jianping Dou, Jun Li, and Chun Su. Bi-objective optimization of integrating configura-
tion generation and scheduling for reconfigurable flow lines using nsga-ii. The Interna-
tional Journal of Advanced Manufacturing Technology, 86(5-8):1945–1962, 2016.

[223] Yousra Hafidi, Laïd Kahloul, Mohamed Khalgui, Zhiwu Li, Khalid Alnowibet, and Ting
Qu. On methodology for the verification of reconfigurable timed net condition/event
systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, (99):1–15,
2018.

133

Bibliography

[224] Wafa Lakhdhar, Rania Mzid, Mohamed Khalgui, Zhiwu Li, Georg Frey, and Abdulrah-
man Al-Ahmari. Multiobjective optimization approach for a portable development of
reconfigurable real-time systems: From specification to implementation. IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems, 2018.

[225] Dashuang Li, Chaoyong Zhang, Guangdong Tian, Xinyu Shao, and Zhiwu Li. Mul-
tiobjective program and hybrid imperialist competitive algorithm for the mixed-model
two-sided assembly lines subject to multiple constraints. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 48(1):119–129, 2018.

[226] Sihan Huang, Jiaxin Tan, Yuqian Lu, Shokraneh K Moghaddam, Guoxin Wang, and Yan
Yan. A multi-objective joint optimisation method for simultaneous part family forma-
tion and configuration design in delayed reconfigurable manufacturing system (d-rms).
International Journal of Production Research, pages 1–18, 2023.

[227] Wei Niu, Jun-qing Li, Hui Jin, Rui Qi, and Hong-yan Sang. Bi-objective optimiza-
tion using an improved nsga-ii for energy-efficient scheduling of a distributed assembly
blocking flowshop. Engineering Optimization, 55(5):719–740, 2023.

[228] Mingkun Yang, Yuhang Zhang, Chao Ai, Guishan Yan, and Wenguang Jiang. Multi-
objective optimisation of k-shape notch multi-way spool valve using cfd analysis, dis-
charge area parameter model, and nsga-ii algorithm. Engineering Applications of Com-
putational Fluid Mechanics, 17(1):2242721, 2023.

[229] Mariagrazia Dotoli, Maria Pia Fanti, Alessandro Giua, and Carla Seatzu. First-order hy-
brid petri nets. an application to distributed manufacturing systems. Nonlinear Analysis:
Hybrid Systems, 2(2):408–430, 2008.

[230] Fabio Balduzzi, Alessandro Giua, and Carla Seatzu. Modelling and simulation of manu-
facturing systems with first-order hybrid petri nets. International Journal of Production
Research, 39(2):255–282, 2001.

[231] Graziana Cavone, Mariagrazia Dotoli, and Carla Seatzu. Management of intermodal
freight terminals by first-order hybrid petri nets. IEEE Robotics and Automation Letters,
1(1):2–9, 2015.

[232] G Cavone, M Dotoli, N Epicoco, M Franceschelli, and C Seatzu. Hybrid petri nets
to re-design low-automated production processes: the case study of a sardinian bakery.
IFAC-PapersOnLine, 51(7):265–270, 2018.

[233] Armin Zimmermann, Diego Rodriguez, and M Silva. A two phase optimization method
for petri net models of manufacturing systems. Journal of Intelligent Manufacturing,
12(5-6):409–420, 2001.

[234] Gonzalo Mejía and Carlos Montoya. Scheduling manufacturing systems with blocking:
a petri net approach. International Journal of Production Research, 47(22):6261–6277,
2009.

[235] Gašper Mušič. Generation of feasible petri net based scheduling problem solutions.
IFAC-PapersOnLine, 48(1):856 – 861, 2015. 8th Vienna International Conferenceon
Mathematical Modelling.

134

Bibliography

[236] Jeongsun Ahn and Hyun-Jung Kim. A branch and bound algorithm for scheduling of
flexible manufacturing systems. IEEE Transactions on Automation Science and Engi-
neering, 2023.

[237] Abdulmajeed Dabwan, Husam Kaid, Abdulrahman Al-Ahmari, Khaled N Alqahtani, and
Wadea Ameen. An internet-of-things-based dynamic scheduling optimization method for
unreliable flexible manufacturing systems under complex operational conditions. Ma-
chines, 12(3):192, 2024.

[238] Fabio Balduzzi, Alessandro Giua, and Giuseppe Menga. First-order hybrid petri nets:
a model for optimization and control. IEEE transactions on robotics and automation,
16(4):382–399, 2000.

[239] Hung-We Wen, Li-Chen Fu, and Shih-Shinh Huang. Modeling, scheduling, and pre-
diction in wafer fabrication systems using queueing petri net and genetic algorithm. In
Proc. Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Con-
ference on, volume 4, pages 3559–3564. IEEE, 2001.

[240] Kazuhiro Saitou, Samir Malpathak, and Helge Qvam. Robust design of flexible manu-
facturing systems using, colored petri net and genetic algorithm. Journal of intelligent
manufacturing, 13(5):339–351, 2002.

[241] Napalkova Liana, Merkuryeva Galina, and Piera Miquel Angel. Development of genetic
algorithm for solving scheduling tasks in fms with coloured petri nets. In Proc. of the
International Mediterranean Modeling Multiconference, 2006.

[242] C-F Chien and C-H Chen. Using genetic algorithms (ga) and a coloured timed petri net
(ctpn) for modelling the optimization-based schedule generator of a generic production
scheduling system. International Journal of Production Research, 45(8):1763–1789,
2007.

[243] Gonzalo Mejía, Carlos Montoya, Julian Cardona, and Ana Lucía Castro. Petri nets and
genetic algorithms for complex manufacturing systems scheduling. International Journal
of Production Research, 50(3):791–803, 2012.

[244] Anita Gudelj, Danko Kezić, and Stjepan Vidačić. Planning and optimization of agv jobs
by petri net and genetic algorithm. Journal of Information and Organizational Sciences,
36(2):99–122, 2012.

[245] Albert WL Yao and YM Pan. A petri nets and genetic algorithm based optimal scheduling
for job shop manufacturing systems. In Proc. System Science and Engineering (ICSSE),
2013 International Conference on, pages 99–104. IEEE, 2013.

[246] Marco S Nobile, Daniela Besozzi, Paolo Cazzaniga, and Giancarlo Mauri. The founda-
tion of evolutionary petri nets. In Proc. BioPPN at Petri Nets, pages 60–74, 2013.

[247] Juan Pablo Caballero-Villalobos, Gonzalo Enrique Mejía-Delgadillo, and
Rafael Guillermo García-Cáceres. Scheduling of complex manufacturing systems
with petri nets and genetic algorithms: a case on plastic injection moulds. The
International Journal of Advanced Manufacturing Technology, 69(9-12):2773–2786,
2013.

135

Bibliography

[248] D Sreeramulu, Y Sagar, P Suman, and A Satish Kumar. Integration of process planning
and scheduling of a manufacturing systems using petri nets and genetic algorithm. Indian
Journal of Science and Technology, 9(41), 2016.

[249] Li Tingpeng, Wang Nantian, Li Yue, and Qian Yanling. An improved optimization al-
gorithm for timed petri net based on genetic algorithm. In Proc. 3rd International Con-
ference on Materials Engineering, Manufacturing Technology and Control (ICMEMTC
2016), pages 956–966. Atlantis Press, 2016.

[250] Yain-Whar Si, Veng-Ian Chan, Marlon Dumas, and Defu Zhang. A petri nets based
generic genetic algorithm framework for resource optimization in business processes.
Simulation Modelling Practice and Theory, 86:72–101, 2018.

[251] Chen Chen, Chan Gu, and Hesuan Hu. Optimal supervisor simplification in ams based
on petri nets and genetic algorithm. In 2021 60th IEEE Conference on Decision and
Control (CDC), pages 1757–1764. IEEE, 2021.

[252] Gašper Mušič. Pn-ga based optimization of flexible job shop schedules. IFAC-
PapersOnLine, 55(20):517–522, 2022.

[253] Gaetano Volpe, Agostino Marcello Mangini, and Maria Pia Fanti. Job shop sequencing
in manufacturing plants by timed coloured petri nets and particle swarm optimization.
IFAC-PapersOnLine, 55(28):350–355, 2022.

[254] Xingkai WANG, Weimin WU, Zichao XING, Tingqi ZHANG, and Haoyi NIU. A look-
ahead agv scheduling algorithm with processing sequence conflict-free for a no-buffer
assembly line. Journal of Advanced Mechanical Design, Systems, and Manufacturing,
17(5):JAMDSM0063–JAMDSM0063, 2023.

[255] Aiping Li and Nan Xie. A robust scheduling for reconfigurable manufacturing system
using petri nets and genetic algorithm. In Proc. Intelligent Control and Automation, 2006.
WCICA 2006. The Sixth World Congress on, volume 2, pages 7302–7306. IEEE, 2006.

[256] Fu-Shiung Hsieh. Design of scalable agent-based reconfigurable manufacturing systems
with petri nets. International Journal of Computer Integrated Manufacturing, 31(8):748–
759, 2018.

[257] Fu-Shiung Hsieh. A dynamic context-aware workflow management scheme for
cyber-physical systems based on multi-agent system architecture. Applied Sciences,
11(5):2030, 2021.

[258] Manel Houimli, Laid Kahloul, and Mohamed Khalgui. On formal modeling, analy-
sis and optimization of reconfigurable manufacturing systems. International Journal of
Computer Integrated Manufacturing, pages 1–31, 2024.

[259] Enrico Biermann, Claudia Ermel, Frank Hermann, and Tony Modica. A visual editor
for reconfigurable object nets based on the eclipse graphical editor framework. Arbeits-
berichte aus dem Arbeitsberichte aus dem Fachbereich Informatik, 2, 2007.

[260] Claudia Ermel, Sarkaft Shareef, and Winzent Fischer. Rons revisited: General approach
to model reconfigurable object nets based on algebraic high-level nets. Electronic Com-
munications of the EASST, 40, 2011.

136

Bibliography

[261] Radja Hamli, Allaoua Chaoui, Raida Elmansouri, and Ali Khebizi. Comprehensive
framework-based reconfigurable object nets for managing dynamic protocols evolution.
International Journal of Organizational and Collective Intelligence (IJOCI), 13(1):1–33,
2023.

[262] Julia Padberg, Marvin Ede, Gerhard Oelker, and Kathrin Hoffmann. Reconnet: a tool for
modeling and simulating with reconfigurable place/transition nets. Electronic Communi-
cations of the EASST, 54, 2012.

[263] Manel Houimli, Laid Kahloul, and Mohamed Khalgui. Multi-objective optimization and
formal specification of reconfigurable manufacturing system using adaptive nsga-ii. In
2017 First International Conference on Embedded & Distributed Systems (EDiS), pages
1–6. IEEE, 2017.

[264] Genichi Taguchi, Subir Chowdhury, Yuin Wu, et al. Taguchi’s quality engineering hand-
book, volume 1736. John Wiley & Sons Hoboken, NJ, 2005.

[265] Nery Riquelme, Christian Von Lücken, and Benjamin Baran. Performance metrics in
multi-objective optimization. In 2015 Latin American Computing Conference (CLEI),
pages 1–11. IEEE, 2015.

[266] H-E Tseng. Guided genetic algorithms for solving a larger constraint assembly problem.
International Journal of Production Research, 44(3):601–625, 2006.

[267] Javad Sadeghi and Seyed Taghi Akhavan Niaki. Two parameter tuned multi-objective
evolutionary algorithms for a bi-objective vendor managed inventory model with trape-
zoidal fuzzy demand. Applied Soft Computing, 30:567–576, 2015.

[268] Gonzalo Mejía, Juan Pablo Caballero-Villalobos, and Carlos Montoya. Petri nets and
deadlock-free scheduling of open shop manufacturing systems. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 48(6):1017–1028, 2017.

[269] Sarah Nazari, Behrang Sajadi, and Iman Sheikhansari. Optimisation of commercial
buildings envelope to reduce energy consumption and improve indoor environmen-
tal quality (ieq) using nsga-ii algorithm. International Journal of Ambient Energy,
44(1):918–928, 2023.

[270] Bruno Ferreira, André Antunes, Nelson Carriço, and Dídia Covas. Nsga-ii parameteriza-
tion for the optimal pressure sensor location in water distribution networks. Urban Water
Journal, 20(6):738–750, 2023.

[271] Mostafa Akbari and Hossein Rahimi Asiabaraki. Modeling and optimization of tool
parameters in friction stir lap joining of aluminum using rsm and nsga ii. Welding Inter-
national, 37(1):21–33, 2023.

[272] Eduardo H Haro, Omar Avalos, Jorge Gálvez, and Octavio Camarena. An integrated
process planning and scheduling problem solved from an adaptive multi-objective per-
spective. Journal of Manufacturing Systems, 75:1–23, 2024.

[273] Shin-ichi Inage. Proposal of the “total error minimization method” for robust design.
Engineering Science and Technology, an International Journal, 22(2):656–666, 2019.

137

Bibliography

[274] Audrey Cerqueus and Xavier Delorme. Evaluating the scalability of reconfigurable man-
ufacturing systems at the design phase. International Journal of Production Research,
61(23):8080–8093, 2023.

[275] Fu-Shiung Hsieh. An efficient method to assess resilience and robustness properties of a
class of cyber-physical production systems. Symmetry, 14(11):2327, 2022.

138

	General Introduction
	Comprehensive Overview of Reconfigurable Systems
	Introduction
	Reconfigurable Systems (RSs)
	Characteristics of Reconfigurable Systems
	Reconfigurability and its Underlying Principles
	Reconfigurability vs. Flexibility

	Classification of Reconfigurable Systems
	Timing of Reconfiguration
	Control Mechanism
	Levels of Abstraction

	Reconfigurable Systems across Various Domains
	Techniques and Methodologies for Reconfiguration
	Future Challenges in Reconfigurable Systems
	Reconfigurability in Networking
	Mobile Wireless Sensor Networks (MWSNs)
	Internet of Things and Reconfigurability

	Reconfigurable Manufacturing Systems (RMSs)
	Definition of Reconfigurable Manufacturing Systems (RMSs)
	RMS Key Characteristics
	Types of Reconfigurable Machines in RMS
	Performance Objectives in RMS Optimization

	Conclusion

	Formal Methods and Genetic Algorithms
	Introduction
	Formal Methods
	Formal Methods Overview
	Formal Verification Using Model Checking
	Properties Specification Formalisms
	Formal Modeling Methods

	Introduction to Genetic Algorithms
	Fundamentals of Genetic Algorithms
	Challenges in Applying GAs to RSs
	GAs Variants
	Multi-Objective Genetic Algorithms (MOGAs)

	Conclusion

	Model Checking for Formal Modeling and Verification of Reconfigurable Systems: Protocols Performance Evaluation
	Introduction
	Context of the Work

	Formal Verification of Collision Free Mobility Adaptive Protocol for Wireless Sensor Networks
	Formal Modeling Using TA and PTA
	Qualitative Verification
	Quantitative Verification
	Discussion

	Formal specification, verification and evaluation of the MQTT protocol in the Internet of Things
	Structure of MQTT 3.1.1 packets
	Informal Description of the MQTT 3.1.1
	Formal Modeling and Verification of MQTT 3.1.1
	Formal Verification of MQTT 3.1.1
	Discussion

	Conclusion

	On Formal Modeling, Analysis and Optimization of Reconfigurable Manufacturing Systems (RMSs)
	Introduction
	Context of the Work
	Basic concepts for modeling and optimization
	Concepts for RMSs' modeling
	Concepts for RMSs' optimization

	Proposed approach
	Motivation
	Problem Description
	Problem Formulation
	Genetic Reconfigurable Object Nets (Gen-RONs)
	Properties Preservation through Crossover and Mutation Operators

	Gen-RONs based Genetic Algorithm
	Gen-RONs based NSGA-II principles
	Entire Optimization Time Complexity

	Experimentation
	RMS Description
	System Modeling Using Gen-RONs
	Example of a Configuration L-P/T Net
	Performance Evaluation
	Discussion

	Conclusion

	General Conclusion
	Bibliography

