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Résumé

La détection précoce du cancer du sein est essentielle pour améliorer les chances de survie, mais
le diagnostic repose encore largement sur des méthodes manuelles, comme la biopsie histologique.
Ce processus, exigeant en expertise et prenant beaucoup de temps, ralentit le diagnostic et peut
compromettre la qualité des soins. Pour surmonter ces limitations, l'introduction des systémes de
conception assistée par ordinateur (CAO) et des modeles de deep learning a considérablement
amélioré la détection d’anomalies, notamment dans le cas du cancer du sein.

Dans cette thése, l'objectif est de concevoir un modéle de réseaux de neurones profonds capables
de classer les tumeurs du sein en bénignes ou malignes, en exploitant la base de données
histopathologiques BreakHis (Breast Cancer Histopathological Database), caractérisée par un
déséquilibre marqué en faveur des tumeurs malignes. Pour atténuer Ueffet du déséquilibre des
classes, deux approches sont proposées : la génération d’images synthétiques a U'aide de réseaux
génératifs adverses convolutifs (DCGAN), et la transformation en ondelettes. Dans les deux cas,
des méthodes classiques d’augmentation de données sont également appliquées. Ces méthodes,
intégrées dans une architecture DenseNet201, ont permis une amélioration significative de la
précision dans la classification des tumeurs bénignes et malignes, contribuant ainsi au
développement d’outils d’aide au diagnostic plus performants.

Mots-clés : Classification, augmentation de données, apprentissage profond, déséquilibre,
DCGAN, ondelettes.

Abstract

Early detection of breast cancer is essential to improve the chances of survival, but diagnosis still
relies heavily on manual methods such as histological biopsy. This process, which requires a great
deal of expertise and is time-consuming, slows down diagnosis and can compromise the quality of
care. To overcome these limitations, the introduction of computer-aided design (CAD) systems and
deep learning models has significantly improved anomaly detection, particularly in breast cancer.

In this thesis, the aim is to design deep neural network model capable of classifying breast tumours
as benign or malignant, by exploiting the BreakHis (Breast Cancer Histopathological Database)
histopathological database, characterised by a marked imbalance in favour of malignant tumours.
To mitigate the effect of class imbalance, two approaches are proposed: the generation of synthetic
images using Deep Convolutional Generative Adversarial Networks (DCGAN), and wavelet
transformation. In both cases, standard data augmentation techniques are also applied. These
methods, integrated into a DenseNet201 architecture, have led to a significant improvement in the
accuracy of classification of benign and malignant tumours, contributing to the development of more

effective diagnostic tools.

Keywords: Classification, data augmentation, deep learning, imbalance, DCGAN, wavelets.
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Introduction Générale

Au cours des dernieéres décennies, le domaine de la santé a connu des
avancées technologiques sans précédent, transformant profondément les
méthodes de diagnostic, de traitement et de gestion des maladies. Parmi ces
avancées, lintelligence artificielle (IA) et, plus particuliérement,
l'apprentissage profond (Deep Learning), ont émergé comme des outils
puissants capables de relever les défis complexes a partir de données

volumineuses et variées.

Grace a ces capacités, il surpasse les méthodes traditionnelles dans des
domaines tels que la reconnaissance d’images, la classification, la prédiction
et 'analyse des données. En médecine, ces technologies se sont avérées
particulierement prometteuses pour lanalyse des images meédicales,
permettant d’identifier des pathologies avec une précision souvent

comparable, voire supérieure, a celle des experts humains.

Les recherches et les travaux récents s’intéressent a appliquer 'apprentissage
profond dans le diagnostic du cancer du sein, ['une des principales causes de
mortalité chez les femmes dans le monde, avec 2,3 millions de cas féminins et
670 000 déces recensés en 2022 selon 'OMS. Malgré les progreés médicaux,
les erreurs de diagnostic et les retards de détection restent des défis majeurs,

compromettant les chances de survie des patientes.
1. Problématique

Le diagnostic du cancer du sein repose principalement sur l'analyse d'images
histopathologiques, une tache qui nécessite l'expertise de pathologistes pour
identifier les anomalies cellulaires. Cependant, cette évaluation reste
subjective, dépend fortement du niveau d'expérience du spécialiste et peut
étre influencée par la variabilité des échantillons. Avec l'essor du deep
learning, des modéles de classification automatique des images
histopathologiques ont été développés pour améliorer la précision du

diagnostic. Néanmoins, plusieurs défis persistent :

- Le déséquilibre des classes dans les bases de données : Les bases de
données médicales, comme BreaKHis, sont souvent déséquilibrées, avec

une prédominance d’é¢chantillons appartenant a certaines classes (ex. :



tissus malins), ce qui peut biaiser les performances des modéles
d’apprentissage profond.

- Complexité et variabilité des images : Les structures tissulaires
présentent une diversité importante, avec des variations entre malades et
des différences subtiles entre les tissus bénins et malins.

- L’extraction optimale des caractéristiques pertinentes.

Face a ces défis, une question clé émerge : Comment développer une approche

basée sur l'apprentissage profond capable d'améliorer la classification des

images histopathologiques du cancer du sein, tout en prenant en compte les
défis liés a la qualité des données, a l'extraction des caractéristiques et a la

robustesse du modéle ?

2. Objectifs

Cette thése s’articule autour des objectifs suivants :

- Développer une méthode innovante pour surmonter le déséquilibre des
classes dans les ensembles de données d’images histopathologiques, en
explorant des techniques de prétraitement, telles que la transformation
par ondelettes.

- Exploiter les capacités des modéles pré-entrainés, tels que DenseNet201,
pour améliorer I’extraction des caractéristiques discriminatives et capturer

des informations pertinentes a différents niveaux d’abstraction.

Cette thése ambitionne d’apporter une contribution significative a la recherche
en apprentissage profond appliqué au diagnostic médical, en proposant des
solutions concrétes et performantes pour l'analyse des images
histopathologiques. Ces travaux visent a renforcer le potentiel des
technologies d’IA dans les environnements cliniques, notamment pour la

détection précoce et la prise en charge du cancer.

3. Structure de la theése

La présente thése est constituée de cinq chapitres présentés comme suit :

Le premier chapitre sera consacré a l'évolution de l'intelligence artificielle (IA)

et a son exploitation croissante dans le diagnostic médical.



Dans le deuxiéme chapitre, nous aborderons les concepts fondamentaux de
l'apprentissage profond, en mettant l'accent sur la structure des réseaux

neuronaux, les approches de régularisation et les méthodes d'optimisation.

Dans le troisieme chapitre, nous approfondirons l'étude des réseaux de
neurones convolutifs (CNN) , qui constitue un pilier majeur de la vision par
ordinateur. Nous y examinerons leur architecture en détail, en mettant
l'accent sur la maniére dont les CNN sont cong¢us pour extraire des
caractéristiques visuelles. De plus, nous aborderons le concept de « transfert.
Learning », une technique qui permet d'adapter un modeéle pré-entrainé a de
nouvelles taches, facilitant ainsi l'application des CNN dans des domaines

spécifiques, tels que la classification d'images médicales.

Dans le quatriéme chapitre, nous présenterons la base de données BreakHis
utilisée pour cette étude, qui présente un déséquilibre de classe et un nombre
d'échantillons réduits. Nous explorons les défis associés a ces problémes,
notamment les biais potentiels dans les résultats du modéle. Ce chapitre
passe en revue les différentes solutions proposées dans la littérature pour
contourner ces problémes, telles que les techniques de rééchantillonnage, et

l'augmentation de données.

Nous présenterons dans le cinquiéme chapitre, les résultats expérimentaux
obtenus pour la classification des images histopathologiques du cancer du
sein, en mettant l'accent sur les méthodes utilisées pour améliorer 1'efficacité

de notre modéle proposé.

Enfin, cette thése se terminera par une conclusion générale, accompagnée de

perspectives éventuelles.



Chapitre I : LIA dédiée au diagnostic médical

Chapitre I

L'IA dédiée au diagnostic médical

I.1.Introduction

Le diagnostic représente 1'une des taches primordiales des cliniciens, car les
erreurs dans ce domaine ont une incidence significative sur les taux de
maladie et les pertes de vies humaines, affectant environ 10 a 15 % des cas
en raison de diagnostics incorrects ou tardifs [1]. Améliorer la précision des
diagnostics demeure un défi capital pour les systémes de santé a l'échelle
mondiale [2]. Initialement, la recherche se concentrait sur des méthodes
statistiques, mettant l'accent sur les données quantitatives mais limitant la
prise en considération des facteurs contextuels et qualitatifs. Les orientations
de recherche ont évolué par la suite vers des approches prenant en compte
des aspects cliniques, comportementaux, sociaux et psychologiques. De nos
jours, les diagnostics médicaux bénéficient de l'intégration de diverses sources
d'informations telles que 1'imagerie médicale et les avancées technologiques,
ce qui permet une prise en charge plus précise des patients [3]. Cette
transformation est en grande partie liée a lI'’émergence de l'intelligence
artificielle (IA), une branche de l'informatique dédiée a la conception de
systémes aptes a simuler certaines capacités humaines telles que la
perception, la compréhension du langage, le raisonnement, et la prise de
décision. LTA soutient les praticiens dans des taches administratives, la
documentation clinique, la sensibilisation des patients, ainsi que dans des
applications spécifiques comme l'analyse des images médicales, le suivi des
dispositifs médicaux et des patients. La figure 1.1 met en évidence neuf
applications essentielles de l'intelligence artificielle dans le domaine médical
[4]. Ce chapitre offre un apercu général sur l'histoire et les fondements de 1'TA

dans le diagnostic médical.

I.2.Histoire de I'IA
Au cours des années 1950 et 1970, les premiéres explorations de I'IA ont été
marquées par des contributions importantes de chercheurs tels qu'Alan

Turing et John McCarthy [5][6].
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Figure |.1. Contributions de l’intelligence artificielle au domaine médical.

L'article de Turing de 1950 a posé les bases de I'IA en définissant 1'objectif de
reproduire l'intelligence humaine dans des machines [7][8]. L'intelligence
artificielle a été formellement introduite lors de la conférence de Dartmouth
en 1956, Un événement marquant le début de 1'IA moderne, sous la direction
de chercheurs renommeés tels que John McCarthy et ses collaborateurs [8][9].
Au cours des années ultérieures, les chercheurs ont développé des
programmes permettant aux ordinateurs d'exécuter des taches faisant appel
a des capacités cognitives, notamment les échecs, la détection de formes et
I’analyse du langage naturel.

Toutefois, les progrés ont été freinées, en raison des limites des capacités de
traitement et des systémes de stockage des ordinateurs de 1'époque [10].
L'émergence de l'apprentissage automatique dans les années 1980 a redonné
un vif intérét a I'IA, facilitant l'apprentissage des ordinateurs a partir de
données sans étre programmes de facon directe. Ce développement a favorisé
des avancées marquantes, en particulier dans des secteurs comme la

reconnaissance vocale et la vision par ordinateur [11].
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Au cours des derniéres décennies, I'IA a enregistré un développement rapide
en raison de 1'énorme volume de données, 1'optimisation des performances des
systémes de traitement (la puissance de calcul) et l'essor des réseaux de
neurones profonds. Ces avancées ont permis a 1'1A d'accomplir des fonctions
complexes telles que la traduction automatique, la conduite autonome et la
reconnaissance faciale [12]. Ces derniéres années, le domaine de 1A a
enregistré une évolution spectaculaire, dans plusieurs secteurs notamment la
santé, les transports, la finance, le marketing, ou encore 1'éducation. Parmi
les nombreuses applications concrétes, on peut citer les assistants vocaux
(Siri et Alexa), les véhicules autonomes, ainsi que les robots collaboratifs, qui
illustrent l'intégration croissante de 1TA dans la vie quotidienne. La
technologie ne cesse de se développer rapidement, ouvrant la voie a des
innovations inédites et a une multiplication des usages potentiels [13]. Une

chronologie simplifiée des étapes importantes de I'TA est présentée dans la

figure 1.2.
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Figure I.2. Bréve chronologie de l'histoire de I'IA.

I.3.Histoire de 1'IA dans la santé

L'avéenement de 1'IA dans le domaine médical a pris racine dans les années
1960- 1970, avec le développement de MYCIN par Edward Shortliffe et son
équipe a l'Université Stanford marquant ainsi le début la premiére génération
d'IA en meédecine [14]. Ce systéme expert visait a identifier les bactéries

responsables d'infections graves (bactériémie, méningite), et a recommander
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[4

des antibiotiques. Son nom est dérivé du suffixe “-mycin” utilisé pour de
nombreux antibiotiques [8]. MYCIN utilisait une base de connaissances
d'environ 600 régles. Il interrogeait le médecin exécutant le programme via
une série de questions simples (oui/non ou textuelles). A la fin, il fournissait
une liste de bactéries suspectes classées par probabilité de diagnostic, avec
diagnostics expliqués et traitements médicamenteux adaptés [1].
Parallelement, l'utilisation de techniques d'lIA, notamment les réseaux
neuronaux, pour modéliser des processus biologiques complexes, ainsi que
I'émergence des techniques de reconnaissance de formes, ont ouvert la voie
aux systémes de diagnostic assisté par ordinateur (DAO) en radiologie et en
pathologie [15].

Les avancées réalisées au cours des années 1980 dans les domaines des
arbres de décision, des réseaux neuronaux et des machines a vecteurs de
support ont marqué un tournant pour lintégration de 1A en médecine,
contribuant ainsi a une amélioration significative du diagnostic et du
traitement des maladies [16].

Durant les années 1990, 1A a largement contribué a l'analyse d'images
meédicales, utilisant des réseaux de neurones artificiels et d'autres techniques
d'apprentissage automatique (machine Learning) pour détecter et classer les
anomalies, améliorant ainsi la précision des diagnostics radiologiques
[17][18]. Parallelement, elle a été employée pour évaluer les risques de
maladies chez les patients en analysant leurs antécédents médicaux et
d'autres données cliniques, permettant aux médecins de détecter les cas a
risque élevé et d'instaurer des actions préventives adaptées [19][20]. Dans le
cadre des études cliniques, I'IA a accéléré 1'analyse de vastes ensembles de
données, identifiant des schémas et des tendances essentiels pour la
découverte de médicaments et la compréhension des maladies, contribuant
ainsi a I'avancement des connaissances médicales [21][22].

Les avancées des années 1990 se sont poursuivies durant les années 2000,
avec l'introduction de robots dotés d'algorithmes d'IA. Ces robots ont été
utilisés dans le domaine médical pour réaliser des interventions chirurgicales
telles que le traitement de la tumeur pulmonaire, de la membrane interne de

I'utérus, des organes prostatiques et coliques [4].
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Depuis la derniére décennie (2010), les techniques de Deep Learning (DL), en
particulier les CNN (réseaux de neurones convolutifs), ont connu une adoption
croissante dans de nombreux secteurs de la santé. En radiologie, en
pathologie et en dermatologie, les CNN ont é€té massivement intégrés pour des
taches de reconnaissance d'images [23]. De plus, dans le cadre du traitement
du langage naturel (Natural Language Processing), les CNN sont utilisés pour
analyser les dossiers électroniques de santé, ouvrant ainsi de nouvelles
perspectives pour l'exploitation des données textuelles en santé [24].

Dans les années 2020, l'intelligence artificielle (IA) continue de se développer
dans les domaines de la meédecine de précision, de la découverte de
médicaments et de la génomique. On assiste également au développement de
robots et d'assistant virtuels alimentés par 1'IA pour prendre en charge les

patients et faciliter les consultations a distance (télée-médecine) [25].

I.4. Application de IA dans le diagnostic médical

L'exploitation de I'TA dans les systémes de diagnostic médical, présente un
immense potentiel pour améliorer la précision, la rapidité et l'efficacité des
diagnostics, tout en réduisant les erreurs humaines. En analysant des
volumes importants de données (images médicales, tests sanguins et des
antécédents), elle fournit des diagnostics a la fois fiables et précis. Cette revue
présente quelques travaux publiés sur les méthodes d'apprentissage profond

et examine leurs succés dans le diagnostic.

Diwakaran et al ont développé un modeéle, de diagnostic du cancer du sein
basé sur la BCP-TL (Breast Cancer Prognosis Based Transfer Learning) a 1'aide
d'architectures CNN telles que Xception et Channel Boosted CNN sur la base
de données MIAS (Mammographic Image Analysis Society). Ce modéle a
démontré d'excellentes performances, avec une précision globale de 98,96%
grace a la combinaison de Xception et de Channel Boosted CNN [26].

Izadkhah et al, ont proposé un modeéle de deep learning pour la classification
du cancer du sein, atteignant une précision élevée sur des images
échographiques et histopathologiques. Inspiré des architectures GooglLeNet et
ResNet, ce modéle intégre des connexions courtes, des convolutions 1x1 pour

réduire les couts de calcul et améliorer les performances, ainsi que
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l'informatique granulaire pour une extraction fine des caractéristiques. Les
précisions obtenues s'élévent respectivement a 93 % et 95 % [27].

Khan et Elfouly ont développé un modeéele de diagnostic des maladies
cardiovasculaires basé sur un réseau neuronal convolutionnel
unidimensionnel (1D CNN), utilisant des parameétres cliniques issus du
NHANES (National Health and Nutrition Examination Survey). Pour pallier le
déséquilibre des données, ils ont appliqué des techniques de sous-
échantillonnage et de pondération des classes. Les résultats indiquent que le
modele 1D CNN surpasse les algorithmes d'apprentissage automatique
traditionnels en termes de précision ainsi que de réduction des erreurs
positives et négatives [28].

Hassan et al ont développé ont con¢cu un modéle de diagnostic du COVID-19
spécifiquement destiné aux patients cardiaques, en s'appuyant sur
l'apprentissage profond et l'analyse d'images ECG. Ce modéle combine des
techniques d'apprentissage par transfert et ensembliste, intégrant les
architectures pré-entrainées VGG-19, AlexNet et ResNet-101. L'utilisation de
techniques d'augmentation des données a permis d'améliorer ses
performances, atteignant une précision globale de 99,1 %, une sensibilité de
99 % et une précision de 100 %. Cette étude met en avant l'importance de
modéles adaptés a des populations spécifiques pour optimiser le diagnostic
malgré des données limitées [29].

L’article de Hameed et al présente une méthode basée sur un ensemble de
modéles d'apprentissage profond pour classifier les images histopathologiques
du cancer du sein en carcinome (malin) et non-carcinome (bénin ou normal).
En utilisant des variantes des architectures VGG16 et VGG19, les auteurs ont
combiné les prédictions des modeéles ajustés via une stratégie d'ensemble.
Cette méthode a atteint une précision globale de 95,29 % et une sensibilité de
97,73 % pour le carcinome, démontrant son efficacité [30].

L’article de Wang et al présente une méthode de classification de la sclérose
en plaques basée sur DenseNet-201 et wune stratégie de facteur
d'apprentissage composite (CLF). En exploitant le transfert d'apprentissage,
cette approche optimise l'entrainement des couches et utilise un pré-calcul
pour réduire les besoins en stockage. Avec une sensibilité de 98,27 %, une

spécificité de 98,35 %, et une précision de 98,31 %, DenseNet-201 (réglage D)
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surpasse les méthodes classiques et avancées. Les auteurs soulignent son
efficacité et proposent d'explorer des modeéles combinés et d'autres modalités
[31].

Suganya et al, ont proposé une approche de diagnostic automatique et
interprétable de la maladie de Parkinson (PD), en combinant l'imagerie par
résonance magneétique quantitative et les images pondérées T1. Leur pipeline
se compose de deux étapes : (1) une segmentation des régions d'intérét
cérébrales (noyaux gris profonds) a l'aide d'un CNN (réseau de neurones
convolutifs), et (2) un modéle de classification basé sur un CNN avec un
mécanisme d'attention anatomique pour différencier les patients atteints de
PD des sujets sains. Les résultats obtenus montrent une précision de 92,0 %
et une aire sous la courbe (AUC) de 0,901 pour le diagnostic de la PD.
L'utilisation du mécanisme d'attention anatomique renforce l'interprétabilité
du modeéle en identifiant les régions cérébrales les plus pertinentes pour le
diagnostic, ce qui en fait un outil réellement applicable en clinique pour la
détection précoce et le suivi de la maladie [32].

Yoo et al ont proposé un algorithme basé sur l'apprentissage profond (DL) pour
diagnostiquer la myopathie et la neuropathie a partir des résultats
d'électromyographie (EMG) a l'aiguille. Les chercheurs ont développé un
réseau neuronal convolutif unidimensionnel et ont comparé les performances
de leur modeéle avec celles de six médecins expérimentés. Les résultats ont
révelé que l'algorithme basé sur le DL a obtenu une Accuracy de 0,875, un
Recall de 0,820 et une spécificité de 0,904, tandis que les médecins ont obtenu
une précision moyenne de 0,694, une sensibilité de 0,537 et une spécificité de
0,773. L'étude suggére que l'apprentissage profond (DL) pourrait jouer un role
clé dans le diagnostic des maladies neuromusculaires, offrant une méthode
plus précise et efficace pour interpréter les données EMG [33].

Podder et coll. ont une approche développée basée sur le deep learning pour
détecter la COVID-19, la pneumonie et distinguer les patients normaux a
partir d'images radiographiques pulmonaires. En utilisant DenseNet-169 et
DenseNet-201 optimisés avec transfert d'apprentissage, prétraitement et
augmentation des données, ils ont obtenu des précisions de 91,95 % et 92,35

%, surpassant les modéles existants. Cette étude met en évidence l'impact de
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l'optimisation des architectures et des techniques d'augmentation sur le
diagnostic précoce des maladies pulmonaires.[34].

Sfayyih et coll. ont réalisé une revue complete des architectures de réseaux de
neurones profonds basées sur l'analyse acoustique pour le diagnostic des
maladies pulmonaires. Leur travail aborde le prétraitement des signaux
acoustiques, incluant la détection des bruits de fond et la normalisation, ainsi
que l'extraction de caractéristiques telles que les Coefficients cepstraux en
fréequence de Mel (MFCC) et les transformés en ondelette. Ils comparent
ensuite diverses architectures de réseau, comme VGG, ResNet, LeNet,
Inception Net et AlexNet, en se référant a des bases de données telles que RSD
ICBHI 2017, HF_Lung V1 et Respiratory-Database@TR. Les auteurs
soulignent également les défis tels que le déséquilibre et la qualité des
données, ainsi que les perspectives pour des applications cliniques. Leur revue
inclut des exemples de performances des modeéles et discute des méthodes
d'augmentation des données, tout en mettant en lumiére les avantages et
inconvénients des DNN par rapport a d'autres méthodes de classification. [35].
L'article de Podder propose un nouveau cadre de deep learning (DL) pour
l'analyse des maladies pulmonaires infectieuses, y compris le COVID-19 et la
pneumonie, a partir de scanners thoraciques et d'images radiographiques
(CXR). Le modele proposé, appelé LDDNet, est basé sur DenseNet201 optimisé
avec des couches supplémentaires de pooling global 2D, des couches denses
et de dropout, et la normalisation par lot. LDDNet a été évalué sur trois
ensembles de données multiclasse de maladies pulmonaires provenant de
sources open access. Les résultats montrent que LDDNet offre une meilleure
performance que les modéles ResNet152V2 et XceptionNet existants pour la
détection de COVID-19 et la pneumonie. LDDNet peut étre considéré comme
un modeéle potentiel pour la classification multiclasse des images de scanners
thoraciques et radiographiques pour le diagnostic des maladies pulmonaires
infectieuses [36].

Solano et al ont présenté une comparaison de différentes architectures de
réseaux de neurones pour la segmentation des vaisseaux sanguins rétiniens
dans le cadre du diagnostic de la rétinopathie diabétique. Les architectures

étudiées comprennent U-Net (CNN), UNETR et Swin-UNET et ConvMixer).
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Les résultats montrent que ConvMixer, avec moins de parametres, atteint les
performances les plus remarquables sur les plans de la précision et de la
robustesse. Les auteurs concluent que les architectures hybrides comme
ConvMixer peuvent offrir un bon compromis entre complexité et performance
pour les taches de segmentation d'images médicales [37].

Aslan et al ont développé une approche originale fondée sur l'apprentissage
profond permettant la prédiction du diabéte en convertissant les données
cliniques numeériques en images. L'étude utilise l'algorithme de sélection de
caractéristiques Relief pour déterminer l'importance des caractéristiques et les
convertir en images. Des techniques d'augmentation de données sont
appliquées sur les images pour améliorer la diversité et la robustesse de
l'ensemble de données. Les modéles CNN pré-entrainés ResNet18 et ResNet50
sont utilisés pour extraire des parametres profonds a partir des images, qui
sont ensuite fusionnées et classées avec un algorithme SVM pour prédire le
statut du diabéte. Les performances de différentes architectures CNN et de
différentes fonctions noyau SVM sont comparées pour évaluer la méthode
proposée. Les résultats révelent que la méthode atteint une précision de
classification de 92,19 %, dépassant les résultats de la plupart des études
antérieures sur le méme ensemble de données [38].

Xu et al ont présenté un modeéle de prédiction de diabéte innovant qui combine
l'apprentissage profond et l'intégration de représentations de connaissances
meédicales. Il construit un graphe de connaissances en utilisant les plages
normales des indices de bilan de santé et les valeurs de détection, puis utilise
la représentation de connaissances pour encoder ces données en vecteurs.
Ces vecteurs sont ensuite intégrés dans un modeéle d'apprentissage profond
utilisant un meécanisme d'auto-attention et des réseaux de neurones
convolutifs (CNN) pour extraire les parameétres pertinents. Les résultats
montrent une amélioration significative en termes d'exactitude et de rappel
par rapport aux méthodes de machine Learning et d'apprentissage profond
existantes. L'étude de I'impact des changements de la dimension des vecteurs
de représentation des connaissances montre que la performance est optimale
avec une dimension de 256. Enfin, la visualisation des poids de l'auto-
attention illustre l'interprétabilité du modéle et sa capacité a capturer les

relations pertinentes entre les indices de bilan de santé et les valeurs de
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détection. Cette approche novatrice offre des performances améliorées et une
interprétabilité accrue pour la prédiction du diabete, avec des implications
importantes pour les applications médicales et la recherche en intelligence
artificielle [39].

Aptekarev et al ont présenté une méthode innovante de diagnostic de 1'asthme
bronchial basée sur 1'analyse de sons respiratoires en utilisant des techniques
d'apprentissage profond. Les chercheurs ont constitué une base de données
anonyme comprenant des enregistrements de sons respiratoires de patients
atteints de diverses maladies respiratoires et de volontaires en bonne santé.
Les enregistrements ont été capturés a quatre points clés : dans la cavité
buccale, au-dessus de la trachée, sur la poitrine et sur le dos. Le logiciel
développé fournit des classifications binaires, notamment "malade/sain" et
"patient asthmatique/non-patient asthmatique et sain", en utilisant des
modeles d'apprentissage profond entrainés sur la base de données. Les
meétriques de sensibilité, de spécificité et d'exactitude pour les deux
classifieurs ont été évaluées sur des échantillons de test allant de S50
enregistrements dans le groupe de controle (personnes en bonne santé) a 50
enregistrements dans le groupe de comparaison (patients atteints de maladies

respiratoires), avec des résultats allant de 82% a 93% [40].

I.5.Approches de classification des images du cancer du sein

Dans le domaine de la classification des images histopathologiques du cancer
du sein, plusieurs études ont été réalisées en se concentrant sur des modeéles
d’apprentissage profond . Ces travaux utilisent des approches d'apprentissage
profond pour relever des défis complexes, tels que le déséquilibre des classes
et la variabilité des données.

Afin d'établir une comparaison pertinente avec les contributions de cette
thése, un tableau récapitulatif est présenté ci-dessous. Il met en évidence Le
prétraitement des données, les modeéles appliqués et les performances

obtenues.
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Reference | Prétraitement des Méthode/Modéle Performances Conclusion
données
Das et al. - Ensemble avec - Précision : 98.08% |- Méthode
[41]. - Décomposition des MLP combinant sur la base de d'apprentissage
images avec EWT et les sorties des données de cancer profond en ensemble
VMD. : du sein efficace pour la
e . trois CNN. : . , .

- Utilisation de trois histopathologique. détection du cancer du
CNN pour sein, améliorant les
classificateurs de performances avec
base. EWT et VMD.

Khan et |- Plusieurs - Utilisation de - 99% de précision |- Le cadre MultiNet a
al. (2022) techniques plusieurs pour la montré une
[42] d'augmentation des modéles CNN classification Précision élevée
données sont pré-entrainés binaire. dans la classification
appliquées suivie d'une - Aire sous la des images,

- le nombre d'images fusion de ces courbe ROC

dans le dataset caractéristiques (AUC) : 0.993.
BreakHis est passé pour la
de 7909 a 54403. classification.

- Le - Amélioration de |- La méthode Une précision et une
rééchantillonnage l'apprentissage combine généralisation
corrige le en utilisant l'apprentissage améliorées.
déséquilibre des DenseNet . en profondeur et Le rééchantillonnage
classes. - XGBoost XGBoost pour et 'augmentation

- La normalisation remplace la une des données

Liew et al. | des couleurs couche classification permettent de
(2021) [43] | atténue les entierement efficace, avec corriger efficacement
variations. connectée une précision de les biais et le

- Les images sont d'origine dans 97 %. surajustement.
redimensionnées et DenseNet201. - La robustesse des
augmentées taches binaires est

démontrée.
Hiren et |- Les images ont été - Une structure - La méthode L'intégration des
al.(2020) divisées en patches de CNN qui intégre Proposée a atteint Caractéristiques
(44] 512x512 pixels avec des - Une précision Spectrales et
un chevauchement de caractéristiques Moyenne de . 1
50 %. spatiales et 97,58 % Spatllal?s améliore

- Des transformations spectrales cot‘ls'ld.erablement la
telles que la rotation, obtenues a partir précision de la
mirroring vertical et le d'une classification.
décalage ont été transformation en
appliquées. ondelettes

- La normalisation

par lots est

appliquée aprés

chaque couche

pour améliorer la

convergence.
Saini and | Redimensionnées a une |- Combinaison de - Une précision de - L’approche de
Susan taille uniforme de 224 x DCGAN pour 96,5 % transfert
(2020) [45] §24 x 3 (RVB) & laide | T'augmentation des d'apprentissage

une interpolation | Jonnées de la D

bilinéaire classe minoritaire associee a .

Métpode DCGAN pour | ¢ 4y transfert l'augmentation des

générer des données d'apprentissage données avec

synthétiques DCGAN est efficace

avec le modéle
pré-entrainé
VGG16.

pour traiter les
déséquilibres dans
la classification des
images
histopathologiques.
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I.6. Conclusion

Ce chapitre a exploré l'application de l'intelligence artificielle (IA) au diagnostic
meédical, soulignant son potentiel & améliorer la précision et la rapidité des
diagnostics, tout en dépassant les limites des approches traditionnelles. En
intégrant des données variées comme l'imagerie médicale, 1'IA contribue a
l'optimisation des systémes de santé, de l'analyse d'images au suivi des
patients. Parmi ses avancées, le Deep Learning s'impose grace a sa capacité a
traiter de grandes quantités de données et a extraire automatiquement des
parametres pertinents. Les prochains chapitres approfondiront ce domaine et

son impact croissant sur le diagnostic médical.
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Chapitre II

Concepts de base pour ’apprentissage profond

II.1.Introduction

Le Deep Learning également connu sous le nom d’apprentissage profond, est
une avancée dans le domaine de l'apprentissage automatique (ML), qui fait
participer tous les chercheurs grace a son efficacité dans le traitement et la
résolution de problémes complexes a travers plusieurs domaines, notamment
le traitement d’images, la reconnaissance vocale et le traitement du langage
naturel [46][47]. Le succés de cette technologie repose principalement sur
deux piliers : la disponibilité massive de données ("big data") et L'expansion
significative des capacités de traitement des unités graphiques (GPU). Ces
GPU permettent aujourd'hui l'entrainement de réseaux neuronaux profonds,
composés de multiples couches cachées, qui peuvent capturer des
représentations hiérarchiques et abstraites des données. En effet, cette
capacité a traiter des volumes de données énormes tout en apprenant des
caractéristiques complexes fait du Deep Learning 1'une des technologies les

plus adaptées pour relever les défis modernes de l'intelligence artificielle [48].

La figure II.1 illustre trois facteurs qui ont contribué a l'essor du Deep
Learning : la disponibilité des données d'apprentissage en grandes quantités,
la puissance des GPU, et l'accés aux frameworks open-source tels que
TensorFlow et PyTorch, offerts par des géants technologiques comme Google,
Facebook, et Microsoft. Ces outils ont démocratisé l'usage de l'apprentissage

profond, ouvrant la voie a des innovations dans des domaines diversifiés [49].

(Internet, big data,
réseau sociaux, base
Ui attares Open-Source des GAFAM

universitaire) l (TensorFlow, PyTorch, ..)

Données pour

apprentissage Dee .
(10 - 10° - 10° images) P . Algorlthmes

Learning
(GPU |

{Graphical Processing
Units) : puissance de

Puissance
calcul trés importante de calcul

Figure II.1. Facteurs clés pour l'essor du Deep Learning[48].
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Chapitre II : Concepts de base pour l'apprentissage profond

Ce chapitre, examine en détail les composants essentiels du Deep Learning et
leur role dans la résolution de problémes complexes. Il explore 1'architecture
des réseaux neuronaux profonds, en expliquant comment ils sont construits
et comment ils fonctionnent.

I1.2. Définition de L’apprentissage profond

L’apprentissage profond (AP), est une branche de I'IA (Intelligence artificielle]
permettant aux ordinateurs d'acquérir des connaissances et de traiter de
maniere autonome des problémes complexes en utilisant de grandes quantités
de données, sans programmation explicite [50]. Inspiré par le fonctionnement
du cerveau humain, le Deep Learning vise a imiter le réseau de neurones
biologiques en utilisant des structures de calcul appelées réseaux de neurones
artificiels. Cette approche a permis des progrés notables dans divers domaines
notamment la compréhension du langage naturel, la reconnaissance
d'images, la traduction automatique, etc. [51].

La figure II.2 illustre la hiérarchie des concepts d'intelligence artificielle, de

machine Learning et de Deep Learning.

Intelligence
Artificielle

Toute technique
permettant aux
ordinateurs dimiter le
comportement humain.

Figure II.2. Relation entre IA, ML et DL.
I1.3.Evolution historique

L'évolution historique du Deep Learning est étroitement liée aux progrés de
l'intelligence artificielle et des réseaux neuronaux. Ses origines remontent aux
années 1940 avec la proposition du perceptron, un modéle simple de neurone
artificiel. Cependant, les premiéres tentatives de réseaux multicouches furent
freinées par des limitations informatiques et théoriques, notamment l'absence

de méthodes efficaces pour l'entrainement.
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Ce n'est qu'a partir de la fin des années 1980, avec l'avénement de 'approche
de rétropropagation du gradient, que les réseaux de neurones a couches
profondes sont devenus plus pratiques. Les années 2000 ont vu un essor
majeur, grace a l'augmentation des puissances de traitement et a I'accés a de
grandes quantités d’échantillons. Des architectures avancées comme les CNN
et les RNN ont contribué a des progrés considérables dans des domaines
notamment les systémes intelligents pour analyser les données textuelles et
visuelles de maniére automatisée. Aujourd'hui, le Deep Learning s'est imposé
comme une méthode centrale de 1A, transformant des secteurs variés, de la
médecine a la robotique, tout en continuant d'évoluer avec l'introduction de
nouvelles architectures [52].

II.4.Les Raisons de I’essor du Deep Learning

Le Deep Learning a révolutionné le domaine de 1'IA pour plusieurs raisons :

= Capacité a Apprendre des Représentations Complexes.

» Performances Supérieures.

= Adaptabilité [S3].

II.5.Domaines d'Application
Le DL a trouvé des applications dans un large éventail de domaines :

» Vision par Ordinateur : Utilis€ a la reconnaissance des visages et
d’images, a lidentification d'objets, a la segmentation des images, etc.

» Traitement du Langage Naturel (NLP) : utilisé dans le domaine de la
rédaction de texte, de l'analyse de sentiments, de la traduction
automatique, la reconnaissance vocale, etc.

» Santé : Détection de maladies a partir d'images médicales, prédiction
des résultats cliniques, découverte de médicaments.

= Automobile : Développement de véhicules autonomes, systémes avancés
d'assistance a la conduite.

= Finance : Prévision des marchés financiers, détection de fraudes,
gestion des risques [54].

I1.6.Principe de Base

Les réseaux neuronaux artificiels (RNA) constituent 1'épine dorsale du Deep
Learning, reproduisant des mécanismes cognitifs humains au moyen de

systémes mathématiques.
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Chapitre II : Concepts de base pour l'apprentissage profond

Ces réseaux sont constitués de couches de neurones artificiels, ou chaque
couche traite les données d'une maniére spécifique avant qu’elles ne soient

transmises a la couche suivante.

Il convient de noter que le « profond » dans l'apprentissage en profondeur fait
référence a la profondeur des couches d'un réseau neuronal. Un réseau
composé de plus de trois couches, qui inclurait les entrées et la sortie, peut
étre considéré comme un algorithme d'apprentissage en profondeur [55]. Ceci

est généralement représenté a 1'aide du schéma de la figure ci-dessous.

Hidden Layer

(a) réseau a faible profondeur (b) réseau de neurones profond

Figure II.3. Architecture d'un Réseau de Neurones Artificiels [50].
» La Couche d'entrée (Input Layer) : Recoit les données brutes.
» Les Couches cachées (Hidden Layers) : Traitent les données en extrayant
des caractéristiques de plus en plus abstraites.
» La Couche de sortie (Output Layer) : Produit le résultat final, tel qu'une
étiquette de classe ou une prédiction.
Pour bien saisir le fonctionnement de cette approche puissante, il faut

comprendre les composants fondamentaux du Deep Learning.
I1.6.1. Neurone artificiel

Le neurone artificiel, également appelé perceptron, constitue 1'élément
fondamental du réseau de neurones artificiels. Il est con¢u pour imiter le

fonctionnement d'un neurone biologique (Voir Figure I1.4) [57].

a) b)
Dendrite Axon terminal X4 Neurone j
) ‘/L | >
) y N X
{‘X\ '\%;}//‘/ Cell body J% 2 pondérée .
X Q/ e B : Sortie
f \B Node of Ranvxez/ A . : m
& c )" 4 Entrées y K0 > Y
Dl : &g
O ‘/\ ) Fonction
on Schwann cell : d'activation
Nucleus S e Xn bj (seuil)

Figure II.4. a) Schéma d'un neurone biologique ; b) Schéma du neurone artificiel [58]
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Chapitre II : Concepts de base pour l'apprentissage profond

Dans un neurone artificiel, les multiples entrées et la sortie sont analogues
aux dendrites et a l'axone d'un neurone biologique. Il recoit des signaux
d'entrée pondéreés, effectue une somme pondérée de ces signaux, ajoute un
biais, puis applique une fonction d'activation pour générer la sortie [58].
Mathématiquement, cela peut étre formulé comme suit :

Z=YW;=X;)+b (1)

Y= f(2) (2)
Ou Z représente l'activation pondérée ;
W Poids correspondants : W = [W;, W,, .......W,] ;
X Signaux d'entrée : X = [X;, X3, oo oo Xpl;
b Le biais ;
f(Z) La fonction d'activation non linéaire.
Dans un réseau de neurones, les valeurs Y du neurone sont propagées aux
neurones de la couche suivante [59].
I1.6.2.Poids et Biais
I1.6.2.a.Poids (Weights)

Des coefficients appliqués aux entrées des neurones. Ils sont ajustés durant

I'entrainement pour minimiser l'erreur de prédiction [59].
I1.6.2.b.Biais (Biases) :

Des valeurs ajoutées au résultat pondéré de chaque neurone avant
l'application de la fonction d'activation. Ils permettent de décaler la fonction

d'activation, aidant le réseau a mieux modéliser les données [59].
I1.6.3.Fonctions d'activation

Introduisent une non-linéarité dans le réseau neuronal, dans le but de
modéliser des relations complexes entre les données.
Les fonctions d'activation courantes incluent ReLU (Rectified Linear Unit),

Sigmoide et Tanh [60].
I1.6.3.a.Fonction Sigmoide

Mathématiquement, la fonction sigmoide est définie comme suit :

£(Z) =

1
14e~2

(3)
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Elle est fréequemment exploitée dans les couches cachées des réseaux
neuronaux, et donne une sortie dans lintervalle [0,1], ce qui facilite son
interprétation probabiliste, notamment dans des taches de classification

binaire [60]. Son graphique est le suivant :

Figure II.5. Fonction Sigmoide

I1.6.3.b.Fonction ReLU (Rectified Linear Unit)

Couramment appliquée comme fonction d'activation dans les architectures de
Deep Learning [61]. La définition mathématique de la fonction ReLU est la
suivante :

ReLU(X) = max(0,X) 4)

La figure I1.6 illustre la fonction d'activation ReLU, mettant en évidence deux

caractéristiques clés :

ReLU Activation Function

max(0,x)

-100 -75 -50 -25 00 25 50 75 100
X Axis

Figure II.6. Fonction ReLU (Rectified Linear Unit).

» Linéaire pour les Entrées Positives : Pour des valeurs d'entrée positives,
la fonction ReLU renvoie directement l'entrée elle-méme, exprimée
mathématiquement par (f(X) =X). Cela signifie qu'il y a une relation
linéaire directe entre l'entrée et la sortie dans cette région.

> Nulle pour les Entrées Négatives : Pour des valeurs d'entrée négatives,

la fonction ReLU renvoie toujours O (f(X) = 0).
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Cette caractéristique rend ReLU une fonction de seuil qui "coupe" toutes

les valeurs négatives, produisant ainsi une sortie nulle.
I1.6.3.c.Fonction Tanh

Tanh, qui signifie tangente hyperbolique, est une fonction mathématique
couramment utilisée en apprentissage automatique.

Elle a le méme principe que la fonction sigmoide, mais elle cartographie les
valeurs d'entrée dans une plage entre -1 et 1 au lieu de O et 1 [61]. Elle est

définie mathématiquement comme suit :
e—(l

Tanh(a) = eoe”

er+e™®

Son graphique est représenté par la figure I1.7 :

1.5 — tlaih

-1 -3 -1 n 1 7 1

Figure II.7. Fonction tangente hyperbolique (Tanh)

Un exemple concret de la production d'une sortie peut étre illustré par le

neurone représenté dans la figure I1.8.

Weights Bias
211 1.0 o0—— wy : —0.32 0.002 Activate Node
\ 0.93 function §(z) output
Node (302 fmarto-om—— 000

T9: 0.8 o0— wy : 0.11

Figure I1.8. Exemple de neurone artificiel avec fonction d'activation ReLU [02]
Ce neurone recoit deux entrées, x1 et x, auxquelles sont associés des poids
de -0,32 et 0,11 respectivement, ainsi qu'un biais de 0,002. La somme
pondérée de ces entrées, c'est-a-dire la somme des produits de chaque entrée
par son poids, s'éleve a -0,23. Cette derniére est ensuite transmise a une
fonction d'activation, ici la fonction ReLU (Rectified Linear Unit), renvoie une

sortie de 0,00 car ReLU met a zéro toutes les valeurs négatives.
19



Chapitre II : Concepts de base pour l'apprentissage profond

Cette sortie constitue la réponse finale de ce neurone. Cet exemple met en
évidence l'influence des poids et du biais sur la sortie du neurone, ainsi que
Iimpact de la fonction d'activation dans la transformation de la somme
pondérée en une sortie finale.

Comprendre ces mécanismes est fondamental pour saisir le fonctionnement
d'un réseau de neurones, ou chaque neurone interagit avec d'autres pour
traiter les informations de maniére complexe et produire une sortie globale

[62].
I1.6.4. Propagation Avant (Forward Propagation)

Flux des données au sein du réseau, depuis la couche d'entrée jusqu'a celle
de sortie, pour générer une prédiction [63].

I1.6.5. Rétropropagation (Backpropagation)

Meéthode d'entrainement utilisée pour ajuster les poids et les biais (Figure I1.9).
Apres chaque prédiction, l'erreur entre la sortie estimée et la valeur cible est

calculée, puis propagée en arriére a travers le réseau pour mettre a jour les

parametres [63].

@ Propagation avant @ Rétropropagation

Figure II.9 Propagation Avant et Rétropropagation dans un Réseau Neuronal [64] .

I1.6.6. Fonction de Coiit (Loss Function)

Quantifie la disparité entre les sorties estimées du réseau et les valeurs cibles.
Plus cet écart est faible, meilleure est l'efficacité du modéle [65]. La figure I1.10
illustre la fonction de cout dans l'apprentissage neuronal.

Divers types de fonctions de perte sont disponibles, chacune étant concue
pour répondre a des problémes spécifiques, et a des types de données

différents. Voici quelques exemples courants :
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I1.6.6.a. Erreur MSE (Erreur Quadratique Moyenne)

La MSE évalue la moyenne des carrés des différences entre les prévisions du
réseau et les valeurs réelles des données d'entrainement. Elle est fréequemment

utilisée pour résoudre des problémes de régression [60].

Propagation Avant (Forward Propagation)

n
»

Erreur E

X1 w Neurone j

pondérée

Fonction
d'activation

Dérivée de
Loss

Rétropropagation (Backpropagation)

Figure II.10. Illustration de la Fonction de Perte dans I'Apprentissage des Réseaux de Neurones.

- Formule :
La MSE est calculée par le biais de la moyenne des carrés des écarts entre les
valeurs prédites (Y) et les valeurs réelles (Y) pour chaque instance
d'entrainement (i) [60] :
1 -~

MSE = —¥iL;(Y; — Yi)? (6)
n: Nombre total d'exemples d'entrainement.
Y;: Valeur réelle de l'exemple d'entrainement i.

?i: Valeur prédite par le modéle pour l'exemple d'entrainement i.

I1.6.6.b.Cross-Entropy Loss

Aussi connue sous le nom de "log loss", est souvent utilisée pour les problémes
de classification. Elle évalue la différence entre la probabilité prédite par le
modele et la distribution réelle des étiquettes de classe [606].

L'équation de la fonction de perte pour la classification binaire, souvent

appelée fonction de perte logistique ou entropie croisée binaire, est la suivante:

Loss = — [Y * log(ypred) + (1 - Y) * lOg (1 - (Ypred)] (7)
21



Chapitre II : Concepts de base pour l'apprentissage profond

Y : La véritable étiquette de la classe. Y est égal a 1 pour la classe positive et
O pour la classe négative.

Yrea : La prédiction du modéle, qui est une probabilité que I'exemple
appartienne a la classe positive (compris entre O et 1).

Pour la classe positive (Y = 1) :
La perte devient : Loss = — [log(Ypre d)]

Si Ypred est proche de 1 (bonne prediction), la perte est faible.

Si Y,,eq est proche de O (mauvaise prediction), la perte est élevée.
Pour la classe négative (Y = 0) :

La perte devient : Loss = — l0og(1 — Ypreq)
Si Ypred est proche de O (bonne prediction), la perte est faible.

Si Ypred est proche de 1 (mauvaise prediction), la perte est élevée.

Perte totale pour une base de données (dataset)
Pour une base de données avec N exemples, la perte totale est la moyenne des

pertes individuelles [66] :

1
LosSiotar = ;Z?’ﬂ —[Y; * log(Yprea,) + (1 — Y;) *log (1 — (Yprea)] (8)

La figure II.11, montre deux courbes qui illustrent la fonction de perte

logistique (Cross-Entropy) utilisée dans la classification binaire.

Positive Class (Y = 1) Negative Class (Y = 0)

Y_pred Y_pred

Figure II.11. Courbes de la fonction de perte logistique (Cross-Entropy)

I1.6.6.c. Fonction de perte Hinge

Utilisée dans les problémes de classification, notamment pour les machines a
vecteurs de support (SVM), elle mesure la marge entre les prédictions du

modele et les vraies étiquettes [67].
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La fonction Hinge Loss est définie comme suit :
L(Y, £(X)) = max (0,1 = Y. f(X)) )
Ou:
Y est I’étiquette de classe réelle (1 pour la classe positive, -1 pour la classe
négative).
f(X) est la prédiction du modéle pour ’exemple X

La fonction max renvoie le maximum entre O et 1 —Y. f(X).

I1.6.6.d. Fonction de perte Huber

Similaire a la MSE, mais moins sensible aux valeurs aberrantes. Elle est
souvent utilisée dans les problémes de régression ou les données peuvent
contenir du bruit [68].

La fonction de perte de Huber est définie comme suit :

1

S(Y-f®)°  silY-fX0l <6

L(Y,f(X)) =12
(v.f0) 5(|Y—f(X)|—§5) sinon 1o

Ou:

-Y: est la valeur réelle de la cible,

-f(X): est la prédiction du modeéle pour l'exemple X

-6: est le seuil qui détermine la transition entre la pénalité quadratique et
linéaire.

La figure II.12 illustre de maniére concréte l'application de la propagation
avant (forward propagation) et de la rétropropagation (backpropagation) dans
le contexte de l'apprentissage automatique. Au sein d'un réseau neuronal
organisé en une couche d'entrée, une couche cachée et une couche de sortie,
on peut suivre le cheminement des données d'entrée jusqu'a la génération de
la sortie finale. Cette figure met également en évidence, le calcul de la fonction
de cout (loss function) et 1'utilisation des gradients pour ajuster les poids du
réseau, étape importante dans l'optimisation et I'entrainement des réseaux de
neurones. Ce processus permet d'améliorer les performances du modéle.

Cet exemple pratique permet de mieux appréhender les principes
fondamentaux de l'apprentissage profond et leur mise en ceuvre concréte dans

des scénarios réels.
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Input layer Hidden layer Output layer .
) Ground Truth: Y
Forward propagation

Cross- 1.0
entropy

Y2 0.0

L=- Ji log(y;
SGD: update weights Z i log(y:)

A = —1.0 % log(0.74) — 0.0 * log(0.26)
Error backpropagation —=1.31

N

Figure II.12. Exemple concret de propagation avant et rétropropagation dans un réseau
neuronal [02].

I1.6.7. Optimiseurs
Algorithmes utilisés pour minimiser la fonction de coit en ajustant les poids
et les biais. Les optimiseurs courants incluent la descente de gradient

stochastique (SGD), Adam et RMSprop.
I1.6.7.a. Approche SGD (La descente de gradient stochastique)

Est une méthode d'optimisation utilisée pour minimiser une fonction de cout
en ajustant les parametres du modéle. Elle est particulierement utile dans
l'apprentissage automatique et l'apprentissage profond pour optimiser les
réseaux de neurones et autres modeles complexes [69].

Principe de Base

L'objectif de la descente de gradient stochastique est de trouver les parameétres
0 (theta) qui minimisent une fonction de cout](0). Plutoét que de calculer le
gradient de J(0) en utilisant l'ensemble complet des données (comme dans la
descente de gradient par lot complet), SGD met a jour les parameétres en
utilisant un seul échantillon de données a la fois [70].

Formule de Mise a Jour

La mise a jour des parameétres 6 pour un exemple d'entrainement (X (i), Y(i))

est donnée par :
0=0-nvJ(O; XO, Y1 (11)

Ou : n : est le taux d'apprentissage,
vJ(6; X®, YD) représente le gradient de la fonction de cotit J par rapport aux

parametres 0.
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Cette mise a jour permet d'ajuster les parameétres du modéle en fonction de

I'erreur observée pour chaque exemple d'entrainement [70].

I1.6.7.b. Approche Adam

Adam est un algorithme d'optimisation pour l'apprentissage automatique qui
combine les avantages de AdaGrad et RMSProp. Il adapte dynamiquement le
taux d'apprentissage pour chaque parameétre du modéle en utilisant des
estimations exponentiellement pondérées des premiers et deuxiémes
moments des gradients [71].

Les étapes clés de 1'algorithme Adam sont :

Mise a jour des moments [69] : A chaque étape t, Adam calcule la moyenne

mobile des gradients m; et la moyenne mobile des carrés des gradients v,.

my = Bime_y + (1 — B1)g: (12)
Ve = Boveg + (1 — ﬁz)gtz (13)

m;: C'est la moyenne mobile des gradients a 1’étapet, qui lisse les gradients
sur plusieurs itérations pour réduire le bruit dans les mises a jour des poids
[72].

v : C'est la moyenne mobile des carrés des gradients a I’étape t, qui estime la
variance des gradients pour adapter le taux d'apprentissage selon leur taille
[72].

B1 : Coefficient de décroissance exponentielle pourm,, controlant la
contribution des gradients passés, généralement fixé a 0,9 [72].

B, : Coefficient de décroissance exponentielle pourv,, controlant la
contribution des carrés des gradients passés, généralement fixé a 0,999 [72].
g:: Gradients calculés a I'étape t pour les parameétres du modeéle, représentant
la direction et la magnitude du changement nécessaire pour minimiser la

fonction de perte [72].

Correction du biais : En raison de l'initialisation a zéro de m, etv,, les
estimations initiales sont biaisées. Adam corrige ce biais en ajustant m, et v;

(72].

(14)
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Vit
t
1-B;

Ajustement des parameétres : Finalement, les paramétres du modéle sont

Vi = (15)

réajustés en utilisant les moments corrigés et un taux d’apprentissage o [72].
o Mg

JVite

Ot41 = O — (16)

I1.6.7.c. Approche RMSprop

Est un algorithme d'optimisation pour l'apprentissage automatique qui
modifie dynamiquement le taux d'apprentissage pour chaque parameétre d'un
réseau en fonction des gradients précédents. Il maintient une estimation
décadente de la moyenne des carrés des gradients passés pour chaque
parametre et utilise cette estimation pour normaliser le gradient actuel [73].
Les étapes clés de 1'algorithme RMSprop sont :

* Mise a jour de l'estimation des carrés des gradients : A chaque étapet,
RMSprop met a jour une estimation v, de la moyenne des carrés des gradients

passés pour un parametre 0, [73].
Ve = Bve_g + (1= Bgf (17)

* Mise a jour des parameétres : Les parameétres sont ensuite mis a jour en
utilisant le gradient normalisé par la racine carrée de v, et un taux

d'apprentissage a [73].

Ory1 = B — \/% 8t (18)

I1.6.8. Epoche et Lot (Epoch and Batch)

I1.6.8.a. Epoche (Epoch)

Une passe compléte a travers l'ensemble de données d'apprentissage [74].
I1.6.8.b. Lot (Batch)

Un sous-ensemble des échantillons utilisé pour une itération de réajustement
des poids. L'entrainement par lots peut améliorer la stabilité et l'efficacité de

l'entrainement [74].

II.7. Limites de l'apprentissage profond
Certaines difficultés sont fréquemment rencontrées lors de l'utilisation de

l'apprentissage profond. Nous énumeérons certaines d'entre elles.
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I1.7.1. Surajustement & sou-ajustement

Le surajustement (overfitting) et le sous-ajustement (underfitting) constituent
des défis majeurs en apprentissage automatique, affectant a la fois les
performances et la capacité de généralisation des modéles. Le surajustement
se produit lorsqu'un modéle apprend trop bien les données d'entrainement, y
compris le bruit, ce qui conduit a de mauvaises performances sur de nouvelles
données [75]. A l'inverse, le sous-ajustement survient lorsque le modéle est
trop limité pour capturer les motifs sous-jacents des données, entrainant une
faible précision aussi bien sur les ensembles d'entrainement que de test [76].
La Figure II.13 illustre le concept d'underfitting et d'overfitting dans le contexte

de l'apprentissage automatique.

Loss
A

Validation

Training
» Epochs

Underfitting Good Model Overfitting

Figure II.13. Illustration de l'overfitting et I'underfitting
o Courbes :

o La courbe bleue montre la perte sur l'ensemble d'entrainement, qui
diminue au fur et a mesure que le modéle apprend.

o La courbe orange représente la perte sur l'ensemble de validation, qui
permet de mesurer la capacité du modeéle a généraliser.

e Zones:

o Sous-apprentissage : Au début, la perte d'entrainement est élevée,
signe que le modéle n'a pas assez appris.

o Bon modeéle : Lorsque les pertes d'entrainement et de validation sont
proches, le modéle généralise correctement.

o Surapprentissage : Quand la perte de validation augmente alors que
celle d'entrainement continue de baisser, le modéle capture trop de bruit
et perd en généralisation.

Le point optimal se situe la ou la perte de validation est la plus basse, avant

l'apparition du surapprentissage, ce qui peut étre détecté via des techniques
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comme Early stopping. Pour limiter ces problémes, plusieurs méthodes ont

été proposees :

» Early stopping : est une technique en apprentissage automatique qui vise
a prévenir le surapprentissage en arrétant l'entrainement d'un modeéle lorsque
sa performance sur un ensemble de validation commence a se dégrader. Le
processus consiste a surveiller 'erreur de validation a chaque itération, et
lorsque celle-ci augmente, cela signale que le modéle surapprend.
L'entrainement est donc interrompu pour préserver le modeéle dans son état
optimal. En plus de prévenir le surapprentissage, cette approche permet
également de réduire les coUts computationnels en évitant des itérations
inutiles [77].

» Dropout : Le dropout est une technique de régularisation utilisée dans les
réseaux neuronaux pour prévenir le surajustement en désactivant
aléatoirement un pourcentage de neurones pendant l'entrainement,
empéchant ainsi les parameétres de s'adapter trop fortement aux données
d'entrainement. [77][78].

» Batch Normalization

Normalise les activations, c'est-a-dire qu'elle les ajuste pour qu'elles aient une
moyenne et une variance fixe. Cela rend l'entrainement plus stable et rapide,
et aide aussi a améliorer les performances du modele sur de nouvelles données
[79].

» Augmentation de données

Augmente explicitement la quantité de données d'entrainement pour mieux

couvrir la distribution réelle.
I1.7.2. Le manque de données

Est un défi majeur dans l'application de l'apprentissage profond, car ces
modéles nécessitent beaucoup de données pour apprendre efficacement. Voici
trois stratégies pour surmonter ce probléme :

» Transfert d'apprentissage (Transfer Learning) : Utiliser des données
provenant de taches similaires pour aider a apprendre une meilleure fonction
de mappage et une meilleure représentation des entrées initiales, sans
augmenter directement la quantité de données réelles. On peut également
utiliser un modéle pré-entrainé sur une tache similaire et l'affiner en utilisant

les derniéres couches et un petit ensemble de données réelles [80].
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> Augmentation de données : Particuliérement utile pour les données

d'image (par exemple, rotation, miroir, translation).
I1.7.3. Les données déséquilibrées

Les données déséquilibrées surviennent lorsqu'une classe est beaucoup plus
représentée que d'autres dans une base de données, ce qui peut entrainer un
biais dans l'apprentissage automatique. Cela rend les modéles moins
performants sur les classes minoritaires. Pour résoudre ce probléme, on
utilise des techniques comme le sur-échantillonnage des classes sous-
représentées, le sous-échantillonnage des classes majoritaires, ou des
algorithmes adaptés aux données déséquilibrées. Ces stratégies visent a
améliorer la capacité du modele a bien prédire toutes les classes [81].
I1.8.Algorithmes d’apprentissage
Les algorithmes d'apprentissage servent a ajuster les poids et les biais des
connexions d'entrée des neurones pendant l'entrainement du réseau. Ils se
répartissent en trois catégories :

- Supervisé (supervised learning) ;

- Non supervisé (unsupervised learning) ;

- Par renforcement (reinforcement learning).

Les différents types d'apprentissage automatique sont présentés dans la

figurell.14.
[ Apprentissage automatique
Apprentissage supervisé Apprentissage non Apprentissage par
Apprentissage par les Supervisé Renforcement
Exemples Apprentissage par Apprentissage par les

\ Observation Erreurs

Jeux vidéo, Robotique
CLASSIFICATION REGRESSION REGROUPEMENT Voiture autopilotée

Figure II.14. Taxonomie des méthodes d'apprentissage automatique.

I1.8.1. L'apprentissage supervisé

Est une méthode ou les modéles de Deep Learning sont entrainés a partir de
données étiquetées, c'est-a-dire des données d'entrainement ou chaque

exemple est associé a une sortie connue.
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Les réseaux de neurones profonds sont ajustés en minimisant 1'écart entre les
prédictions du modéle et les sorties attendues, permettant ainsi au modeéle de
généraliser et de faire des prédictions précises sur de nouvelles données.

Apres l'entrainement, les performances du systéme sont mesurées sur un
ensemble d'exemples différent appelé ensemble de test. Cela permet de tester
la capacité de généralisation de la machine, c'est-a-dire sa capacité a produire
des réponses. Cette approche est largement utilisée dans des domaines tels
que la classification d'images, la détection d'objets et la prédiction de valeurs.
Cependant, il nécessite des ensembles de données annotées pour
l'apprentissage, ce qui peut étre couteux et laborieux a obtenir [82]. La figure

I1.15 illustre le principe de 'apprentissage supervisé.

[ Mise a jour des poids

Signal d'entrée ‘

N Signal de Sortie
—— Réseau de
()4)() l- Neurones

(Entrainement)

Ameélioration

Signal cible

Figure II.15. Principe de ’apprentissage supervisé (SL) [83]

I1.8.2. L'apprentissage non supervisé (unsupervised learning)

Est une technique de l'apprentissage automatique qui se concentre sur
I'analyse et la compréhension de données brutes, sans l'utilisation de labels
ou de réponses prédéfinies. Un ensemble de données de formation est présenté
au systéme au niveau de la couche d'entrée, et les poids de connexion du
réseau sont ajustés au fil du temps par une forme de compétition entre les
nceuds de la couche de sortie. Le noeud ayant la valeur la plus élevée est
retenu comme candidat principal, et ses poids sont ensuite mis a jour pour
mieux représenter les données. Ce processus itératif permet aux algorithmes
d'identifier des structures internes, des motifs cachés et des relations au sein
des données, accomplissant ainsi des taches telles que la classification non

supervisée, la réduction de la dimensionnalité [84].
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[ Mise a jour des poids

Signal d'entrée ‘
A
—

®)

i

Ameélioration

Réseau de neurones Signal de

(Entrainement) Sortie

Figure II.16. Apprentissage non supervisé. [83]

I1.8.3. Apprentissage par renforcement (RL)

Le RL, également appelé apprentissage graduel, imite d'une certaine maniére
le comportement d'adaptation des humains qui interagissent avec un
environnement physique donné. Les connexions du réseau sont modifiées en
fonction des informations de retour fournies au réseau par son
environnement. En cas de réponse correcte, les connexions correspondantes
menant a cette sortie sont renforcées, sinon elles sont affaiblies.

L'apprentissage par renforcement est appliqué dans divers domaines tels que
les jeux, la robotique et l'optimisation de systémes, ou l'agent doit apprendre

par essais et erreurs dans un environnement complexe et incertain [85][86].

Signal de
Renforcement

Mise a jour des poids

Signal d'entrée

, Ameélioration
] )
‘ t') I Réseau de neurones Signal de
(Entrainement) Sortie

i a

Figure II.16. Apprentissage par renforcement. [83]

I1.9. Conclusion

Ce chapitre a établi les bases théoriques de l'apprentissage profond en
détaillant les réseaux neuronaux, les fonctions d'activation, les algorithmes
d'optimisation, supervisés et non supervisés. Ces notions essentielles forment

un socle indispensable pour les contributions des chapitres suivants.
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Chapitre III

CNN pour la classification des images
III.1. Introduction
La classification, dans le contexte du Deep Learning, est un domaine
dynamique en pleine expansion qui consiste a attribuer des étiquettes ou des
catégories aux images en fonction de leur contenu. Ce processus s'appuie sur
des algorithmes avancés, notamment les réseaux de neurones convolutifs
(CNN), qui se révelent particulierement efficaces pour extraire des
caractéristiques des images. Cette approche est importante pour Ile
développement de technologies intelligentes et autonomes [87].
Le processus typique de classification comprend les étapes suivantes :
> Préparation des données: Collecte et prétraitement des images
étiquetées pour l'entrainement.
> Entrainement: Le modeéle apprend a partir des données
d'entrainement, ajustant ses poids pour minimiser l'erreur entre ses
prédictions et les étiquettes réelles.
» Validation : Evaluation du modéle sur un ensemble de validation pour
optimiser les hyperparameétres.
» Test : Mesure de la performance du modéle sur un ensemble de test
non vu.
La classification est utilisée dans de nombreux domaines, tels que la
reconnaissance d'objets, la classification de textes et l'analyse de sentiments.
Elle joue un role essentiel dans la compréhension des scénes visuelles et

l'interprétation des données.

III.2. Réseaux de neurones convolutifs (CNN)

Les réseaux de neurones convolutifs, souvent désignés par l'acronyme CNN
(Convolutional Neural Networks), sont des algorithmes populaires dans le
domaine de l'apprentissage profond qui permettent de trouver
automatiquement les caractéristiques les plus importantes sans intervention
humaine [88]. Ils représentent une classe de réseaux de neurones
particulierement reconnue pour son efficacité dans le traitement des données

structurées en grille, telles que les images.
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Cette fonctionnalité permet une classification efficace dans divers domaines,

notamment l'imagerie médicale et la détection d'objets [89]. La figure III.1

représente ’architecture de base d’un réseau de neurones convolutifs.

III.3. Applications des CNN

Reconnaissance d'images : Identification d'objets ou de personnes
dans des images.

Segmentation d'images : Attribution de labels a des pixels dans une
image.

Analyse vidéo : Détection d'actions ou de mouvements dans des
séquences vidéo.

Traitement de texte : Utilisation dans certaines applications de

traitement du langage naturel.

- Output
Pooling Pooling Pooling H
gl Normal
= Bénin
u Malin
: SoftMax
Convolution Convolution  Convolution — ‘;Etr'\‘git"]’?]"
Kernel ReLU ReLU ReLU Flatten
Layer
| Fully
Feature Maps———————— Connected
Layer
K N
Feature Extraction Classification PDVI‘S’E?;’&L'IS;:_‘C

Figure III.1 : Architecture de base d'un réseau de neurones [88].

III.4. Caractéristiques principales des CNN

- Noyau de Convolution : Un noyau de convolution est une petite matrice

de poids qui glisse sur l'image d'entrée. Chaque noyau est concu pour

détecter des motifs spécifiques, comme des bords, des textures ou d'autres

caractéristiques.

Chaque noyau de convolution posséde trois dimensions :

» Longueur (L) : Correspond a la dimension verticale du noyau.

» Largeur (W) : Correspond a la dimension horizontale du noyau.

» Profondeur (D): Représente le nombre de canaux d'entrée. Par
exemple, pour une image en couleur, la profondeur serait de 3 (rouge,

vert, bleu).
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- Taille du Noyau : La taille du noyau est généralement exprimée sous la
forme L x W. Les tailles courantes de noyaux de convolution incluent 3 x 3
ou 5 x 5. Le choix de la taille du noyau dépend de la tache a réaliser et de

la complexité des caractéristiques a extraire.

III.5. Convolution

Dans un réseau de neurones convolutifs (CNN), les couches de convolution
extraient des caractéristiques de plus en plus abstraites a mesure que l'on
monte en profondeur.

Les couches inférieures capturent des éléments simples comme des textures,
lignes et bords, tandis que les couches supérieures identifient des
caractéristiques plus complexes. Chaque couche contient des noyaux de
convolution, qui sont des matrices de poids apprenables, souvent de taille 3x3,
S5x5 ou 7x7 [90].

Le noyau est appliqué a l'image en effectuant une opération de convolution.
Cela implique de multiplier les valeurs du noyau par les valeurs des pixels de
l'image sous-jacente et d'additionner les résultats pour obtenir une valeur
unique.

Ce processus est répété en déplacant le noyau sur toute l'image, ligne par ligne
et colonne par colonne. Chaque position du noyau produit une valeur dans la
carte de caractéristiques [91].

La figure III.2 explique le processus de convolution dans un réseau de

neurones convolutifs (CNN).

Bias matrix

Feature Maps  Convolution kernel ES

Qutput

N%

S5x5x%x3 3x3x3 ¥

Figure III.2 Processus de convolution [9 1]
En regle générale, les dimensions des caractéristiques d'entrée sont de H x W

x C (hauteur H, largeur W et nombre de canaux C).
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Chaque noyau de convolution a une taille de K x K x C, ce qui implique que le
nombre de noyaux doit correspondre au nombre de canaux d'entrée. Le
traitement des données au sein de la couche de convolution peut étre
approximativement décrit par 1'équation suivante :

feature _surfaceout = f(Xi_, M; * W; + M) (19)
Ou:

M; : représente une feature map des feature maps d'entrée.

W;: est la matrice des poids du noyau de convolution.

M: est une matrice de biais.

f(.) : est une fonction d'activation non linéaire.
e feature _surfaceout : est la feature map de sortie résultante.

Par exemple, dans la figure II1.3, nous avons trois filtres, un pour chaque canal
RVB. Pour le filtre rouge en haut a gauche, la valeur de sortie 148 est obtenue
en effectuant le calcul suivant sur les valeurs des pixels sous le filtre : 156 *
(-1) + 155 *(-1) + 156*(1) + 153*(0) + 154*(1) +157*(-1) + 149*(0) + 151*(1) +
155*%(1). De méme, pour le filtre vert, la valeur -8 est calculée en additionnant
167, 164, (-165), (-168), ((160) et (-166) (avec les autres valeurs a 0). Enfin,
pour le filtre bleu, la valeur 646 est obtenue par les calculs 162 + 163

+161+156 -158 +162.

Canal d'entrée 1 (Rouge) Canal d'entrée 2 (Vert) Canal d'entrée 3 (bleu)

1 0 0

1 ]-1|-1

1 0 | -1

Canal du noyaul Canal du noyau 2 Canal du noyau 3
148 -8 646

646 - 578 = 68 68
Biais= - 578

Figure III.3 : opération de convolution sur une matrice d'image 5X5X3 avec un noyau 3X3X3
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Remarques

- Lavaleur du biais peut étre déterminée par essais et erreurs. Elle peut étre
ajustée pour optimiser les performances de la transformation de l'image.

- Lorsqu'une convolution est appliquée a une image, un filtre de taille 3x3
transforme les valeurs de 9 pixels en une seule valeur, ce qui réduit la taille
de l'image. Pour conserver la taille d'origine de 1'image, on peut ajouter des
zéros autour de celle-ci, une technique appelée padding. Par exemple, en
utilisant une image de 5x5x1 avec un filtre 3x3, la sortie serait une image de
3x3x1. En ajoutant un contour de zéros d'un pixel, l'image devient 6x6x1, et
la sortie de convolution reste de 5x5x1. Ainsi, le padding permet de maintenir
la taille d'origine de l'image, ce qui est souvent avantageux. Le nombre de zéros
ajoutés dépend de la valeur du padding : un padding de O signifie aucun ajout,
tandis qu'un padding de 1 signifie I'ajout d'un contour de zéros, et ainsi de
suite.

- Lors de la convolution, le filtre est déplacé sur 'image, et le décalage effectué
a chaque étape est appelé stride. Ce dernier peut étre ajusté selon les besoins
: avec un stride de 1, le filtre se déplace d'un pixel a la fois, tandis qu'avec un
stride de 2, il se déplace de deux pixels a la fois. En général, le choix du stride
est fait de maniére que la taille de l'image de sortie soit un entier et non un
nombre décimal.

- La taille de 'image de sortie d'une convolution peut étre calculée a 1'aide de
la formule suivante, en fonction de la taille de 1'image d'entrée (W), de la taille
du filtre (F), du padding (P) et du stride (S) [92] :

W—F+2P
S

Taille de l'image de sortie d'une convolution = 1 + (20)

Prenons un exemple pour illustrer le calcul de la taille de l'image de sortie
d'une convolution :
- Soit une image d'entrée de taille 5x5, un filtre de taille 3x3, un padding de

0 et un stride de 1. En appliquant la formule :
5—3+4+2%(0)
1

Taille de 1'image de sortie d'une convolution = 1 +
On obtient donc une image de sortie de taille 3x3.

III.6. Activation
Aprés une opération de convolution, il est courant d'appliquer une fonction

d'activation, pour introduire de la non-linéarité dans le réseau de neurones,
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ce qui permet d'établir une relation fonctionnelle entre les entrées et les
sorties, ce qui améliore significativement les performances du réseau [93]. La
figure III.4 présente des fonctions d'activation telles que Sigmoid et Tanh,
appelées non-linéarités saturantes, car elles atteignent des valeurs limites (O
ou 1 pour Sigmoid, -1 ou 1 pour Tanh) lorsque les entrées sont trés grandes
ou trés petites. Pour résoudre ces limitations, des fonctions non-saturantes

comme ReLU, Leaky ReLU, PReLU, RReLU et ELU ont été introduites [94].

Sigmoid Tanh ReLU
1.0 1.0 10
S =1/1+e™) f()=2/0+e™)-1
0.5, 0.5
5
J Jx=x
=10 -5 5 10 X =10 -5 5 10 X
—05 —p, -10 -5 5 10 X
f(x)=0
-1.0 =10
-5
LeakyReLU / PReLU f(x)
/RRALU 10 ELU 0
5
Sf(x)=x s .
J(x)=x
-10 -5 5 10 X
-10 —5 5 10 x
S(x)=a(e" -1
f)=ax _,
-5
different «

Figure III.4 : Fonctions d'Activation dans les Réseaux de Neurones.

II1I.7. Sous-échantillonnage (Pooling)

La couche de pooling, généralement placée aprés la couche de convolution,
joue un role essentiel dans la réduction de la dimensionnalité des données
tout en conservant les caractéristiques importantes. Elle effectue un sous-
échantillonnage qui diminue le nombre de connexions dans la couche de
convolution, allégeant ainsi la charge de calcul du réseau [93]|. Pour
comprendre comment les dimensions changent lors des opérations de
convolution, on peut utiliser la formule suivante pour calculer la taille de la
sortie :

(i—k)

S

0 = [ + 1] (21)

37



Chapitre IIl : CNN pour la classification des images

Ou 0 représente la taille de la sortie, i la taille de 1'entrée, k la taille du noyau
de convolution et s le stride. Par exemple, si l'entrée mesure 32 pixels et que
I'on utilise un noyau de 5 pixels avec un stride de 1, la taille de la sortie sera
de 28 pixels. Cette réduction de dimension permet d'atteindre une invariance
d'échelle, rendant le modéle plus robuste aux variations de taille et de position
des objets dans les images. Les méthodes de pooling les plus courantes sont
le pooling moyen et le pooling maximal, bien que d'autres variantes, comme le
pooling Lp, stochastique ou pyramidal, soient aussi utilisées pour mieux éviter

le surajustement des réseaux [935].

—
9 8 7
2X2 9 |8
S |4 |3 Max Pooling
S 4
1 2 |1 Strides = 1
M 2X2
3X3 -~
2 ¢ 9% 2 6,5 5,5
Average Pooling
R ° 3,0|2,5
Strides = 1
o2 |t 5% 5
3X3

Figure IIL.5 : Exemples de Max Pooling et Average Pooling dans une couche de réseau de

neurones.

III.8. La couche d’aplatissement (Flatten)

La couche Flatten dans un réseau de neurones sert a convertir des données
d'entrée multidimensionnelles, comme les images, en un vecteur
unidimensionnel. Aprés plusieurs opérations de convolution et de pooling qui
conservent une structure en plusieurs dimensions (par exemple, une image
28x28x1 devient une carte de caractéristiques 28x28), la couche Flatten déplie
ces données en un vecteur (28x28 devient 784 éléments). Cette transformation
est essentielle pour préparer les données pour les couches denses
(entiérement connectées), qui nécessitent des entrées sous forme de vecteurs
pour effectuer des taches de classification ou de régression, tout en conservant

toutes les informations extraites par les couches précédentes [96].
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II1.9. Couche entiérement connectée (FC)

La couche entierement connectée (FC) se situe généralement apres les couches
convolutives et de mise en commun dans un réseau de neurones convolutif
(CNN). Elle relie tous les neurones entre ses couches et agit comme un
classificateur, intégrant les informations locales extraites par la convolution
et le pooling pour fournir la catégorie de l'image. Elle contient plusieurs
couches cachées qui capturent des caractéristiques complexes. Le nombre de
neurones en sortie correspond au nombre de catégories, et la sortie est
souvent normalisée via une régression softmax avant la fonction de perte. Pour
éviter le surajustement, des techniques comme la régularisation L2 et le

dropout sont souvent utilisées [97],[98].

III.10. Function de perte

La classification finale dans une architecture de réseau de neurones convolutionnel
(CNN) s'effectue a travers la couche de sortie, qui est généralement la derniére couche
des couches entiérement connectées (FC). Les performances du CNN dépendent de
diverses fonctions de perte, concues pour des taches visuelles variées telles que la
classification d'images, la reconnaissance faciale et la détection d'objets. La fonction
de perte la plus fréequemment utilisée est la combinaison de Softmax et de Cross-
Entropy, bien qu'il existe plusieurs versions améliorées, comme center-loss,
LSoftmax, A-Softmax, AM-Softmax et PEDCC loss, qui jouent un réle important dans

différentes applications visuelles [99].

III.11. L’optimiseur

Un optimiseur est un algorithme essentiel dans l'entrainement des réseaux de
neurones, car il ajuste les parametres du modeéle pour minimiser la fonction
de perte. Il met a jour les poids en réponse aux erreurs calculées lors de la
rétropropagation. Parmi les optimiseurs courants, on trouve le Stochastic
Gradient Descent (SGD) et ses variantes comme Adam, qui adapte les taux
d'apprentissage pour une meilleure efficacité. D'autres, comme RMSprop et
Adagrad, ajustent également les taux d'apprentissage en fonction des
gradients passés, améliorant la stabilité et la vitesse de convergence. Le choix

de 'optimiseur influence grandement la performance du modéle [100].
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III.12. Les modéles classiques du CNN
III.12.1. LeNet Network

La figure II1.6 montre l'architecture du modéle LeNet-5, concu par Lecun et al

en 1998 pour la classification de chiffres manuscrits.

- C3: f. maps 16@10x10
: feature maps S4: f. maps 16@5x5
INPUT 6@28x28 .

32x32

S2: f. maps
6@14x14

\ Full coanection ’ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Figure III.6 : Architecture de LeNet-5 telle que publiée dans l'article original

Ce modéle surpassait les méthodes de 1'époque et marquait la premiére
utilisation de la rétropropagation dans les réseaux de neurones convolutifs
(CNN). LeNet-5 est constitué de 7 couches et environ 60 000 parameétres. Il est
divisé en deux parties principales : une zone de convolution et une zone
entierement connectée (fully connected). La zone de convolution, située a
gauche, applique des filtres convolutifs suivis de couches de pooling, tandis
que la zone entiérement connectée, a droite, intégre et classe les
caractéristiques extraites a l'aide de trois couches qui contiennent
respectivement 120, 84 et 10 neurones. Le modele utilise une fonction
d'activation sigmoide et un classificateur softmax en sortie. Bien qu'efficace
sur la base de données MNIST, LeNet-5 montrait des limites sur des

ensembles de données plus vastes en raison de sa complexité [101].
II1.12.2. Réseau AlexNet

En 2012, AlexNet, développé par Krizhevsky et al., a révolutionné la vision par
ordinateur en remportant le concours ILSVRC14 (ImageNet LargeScale Visual
Recognition Challenge 2014) avec une avance significative, démontrant que
les caractéristiques apprises par un modéle surpassent celles concues
manuellement. Ce réseau, entrainé sur un sous-ensemble de la base de
données ImageNet comprenant environ 1,2 million d'images pour
l'entrainement et 150000 pour les tests, a été le premier CNN a exploiter
pleinement le potentiel du deep learning sur des ensembles de données
volumineux.
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Comme illustré en Figure II1.7, I'entrée du réseau est une image de taille 224
x 224 x 3, et la sortie est une fonction softmax pour la classification [102].

L’architecture d'AlexNet se compose de cinq couches de convolution, trois
couches de mise en commun maximale, et trois couches entiérement
connectées, utilisant des noyaux de tailles variées (11 x 11 pour la premiére,
S x 5 pour la deuxiéme, et 3 x 3 pour les suivantes). Le réseau a introduit des
innovations clés telles que l'activation ReLU pour accélérer la convergence, le
dropout pour éviter le surajustement, et 1'augmentation des données pour
améliorer la généralisation. AlexNet a également adopté la mise en commun
avec chevauchement pour affiner la précision du modeéle. Afin d'accélérer les
calculs, il a été formé sur deux GPUs (GTX 580) en traitement paralléle,
permettant de surmonter les limitations matérielles. Ces innovations ont
établi de nouveaux standards pour les réseaux neuronaux convolutionnels

[102].
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Figure III.7 : Architecture d'AlexNet telle que publiée dans l'article original [102] .

III.12.3. VGGNet

En 2014, Simonyan et Zisserman de l'Université d'Oxford ont introduit le
modele VGG, qui a remporté le premier prix pour la localisation et le deuxiéme
pour la classification lors de I'ILSVRC 2014. VGG comprend plusieurs
architectures de réseaux convolutifs (figure II1.8), dont les plus connus sont
VGG16 et VGG19, appliqués a la reconnaissance faciale et a la classification
d'images. L'objectif principal de leur recherche était de comprendre l'impact
de la profondeur des réseaux convolutifs sur la précision de la classification a

grande échelle.
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Figure III.8 : Architecture du VGG16.

VGG utilise de petits filtres de 3 x 3 dans ses couches convolutives,
augmentant les performances tout en réduisant le nombre de paramétres. Par
exemple Le réseau VGG16 traite des images RGB de 224 x 224 pixels et se
compose de 13 couches convolutives suivies de trois couches entiérement
connectées (FC). Les deux premiéres couches FC ont 4096 neurones chacune,
et la derniére utilise une couche softmax pour classifier les images en 1000
catégories [103].

II1.12.4. Google Net / InceptionV1 a V3

En 2014, Szegedy et al ont introduit GoogLeNet, un modéle révolutionnaire
qui a remporté le premier prix lors de 'ILSVRC 2014 grace a son architecture
innovante. Ce réseau repose sur des modules Inception, combinant plusieurs
types de convolutions (1 x 1, 3 x 3, 5 x 5) et du pooling, ce qui permet d'extraire
simultanément des caractéristiques a différentes échelles. L'utilisation des
convolutions 1 x 1 constitue l'une des avancées majeures de ce modéle,
réduisant la dimensionnalité des données et optimisant ainsi le nombre de
parametres, tout en accélérant les calculs. Avec ses 22 couches, GoogLeNet
surpasse la profondeur de modéles comme VGG, tout en restant trés efficace
avec seulement 6 millions de parameétres. Il intégre également des stratégies
d'apprentissage telles que le dropout, pour éviter le surapprentissage, et la
normalisation des activations afin de stabiliser le processus d'entrainement.
Cette architecture se distingue par sa faible consommation en ressources tout
en offrant des performances remarquables en classification d'images [104]. La

figure III.9 représente la structure de GoogLeNet
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Figure IIL9 : structures de GoogLeNet. [104]
II1.12.5. Modules Inception

Le module Inception est un composant architectural puissant pour
l'apprentissage en profondeur, en particulier pour la classification des images
et l'analyse du comportement. Il utilise des filtres convolutifs paralléles de
différentes tailles pour capturer des caractéristiques multi-échelles, et une
couche de pooling. Les sorties de ces couches sont concaténées et transmises
a la couche suivante. Les convolutions 1 x 1 agissent comme des couches de
goulot d'étranglement pour réduire la dimensionnalité des cartes de
caractéristiques [105]. Le module Inception, a évolué au cours de plusieurs
itérations de la V1 a la V3, améliorant ainsi ses fonctionnalités dans diverses
applications. Chaque version apporte des améliorations en termes
d'architecture et de performances, ce qui en fait un outil puissant dans des
domaines tels que la détection des défauts, le diagnostic médical et la gestion

environnementale [1035].

- Améliorations architecturales :

» Le module Inception V1 repose sur l'utilisation de filtres de différentes
tailles (1x1, 3x3, 5x5) et d'une opération de mise en commun maximale
(max pooling) appliqués en parallele au méme niveau. Cela permet au
réseau d'étre plus large que profond. Les sorties des différentes opérations
sont ensuite concaténées et transmises a 1'étape suivante. La figure I1I1.10.a
montre ’architecture initiale de Inception V1.

Pour optimiser les couts de calcul, une convolution 1x1 est introduite avant
les convolutions 3x3 et 5x5, réduisant ainsi le nombre de canaux d'entrée,
ce qui allége la charge computationnelle. La convolution 1x1 est également
appliquée aprés la mise en commun maximale, augmentant l'efficacité

globale du module.
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La figure III.10.b montre le module Inception V1 avec une réduction de
dimension.

L'architecture de réseau neuronal connue sous le nom de GooglLeNet, ou
Inception v1, a été construite en utilisant le module d'initiation a dimension

réduite [106].

Filter Filter
concatenation concatenation

3x3 convolutions

1

5x5 convelutions

t

1x1 convolutions

1x1 convolutions 3x3 convolutions 5x5 convolutions

1x1 convolutions

1x1 convolutions 1x1 convolutions

Previous layer

Previous layer

(a) Inception module, initial form (b) Inception module with dimension reductions

Figure II1.10 : Modules Inception. [100]

» Pour réduire la complexité de calcul, Inception V2 (Figure II.11) factorise les
convolutions 5x5 en deux convolutions 3x3, ce qui réduit le cott de calcul
tout en maintenant la performance. De plus, les convolutions nxn sont
remplacées par une combinaison de convolutions 1xn et nxl, réduisant

ainsi la complexité de 33 % par rapport aux convolutions classiques [1035].

Filter Concat

1x1 1x1 Pool 1x1

Base

Figure III.11 : Schéma du module Inception V2 avec factorisation des convolutions. [105]
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» Inception V3 a encore optimisé le modeéle grace a des techniques telles
I'utilisation de l'optimiseur RMSProp, des convolutions factorisées 7x7,
l'application de la BatchNorm dans les classificateurs auxiliaires, et le
lissage des étiquettes pour éviter le surajustement en régularisant la

fonction de perte [105].

II1.12.6. ResNet

ResNet (2015), proposé par Kaiming He et al., a remporté I'I[LSVRC 2015 grace
a l'introduction de connexions résiduelles, une innovation qui permet de
surmonter la "dégradation" observée dans les réseaux profonds au-dela de 20
couches. Ces connexions directes contournent une ou plusieurs couches du
réseau, ajoutant l'entrée directement a la sortie. Plutot que d'apprendre une
transformation compléte des données, le réseau apprend la différence (ou
"résidu") entre 'entrée et la sortie attendue, simplifiant ainsi l'optimisation des
réseaux tres profonds et améliorant leur performance (voir Figure 12) [107].

Une connexion résiduelle permet de définir la sortie d'un bloc comme :

Y=FX)+ X (22)

Ou :F(X) est la transformation apprise par les couches du bloc, et X est

l'entrée du bloc qui est ajoutée a la sortie finale.

Input

Convolution

Batch Norm

Convolution

Batch Norm

Addition

Output

Figure III.12 : Bloc de base d'un ResNet. [108]
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L'architecture de ResNet, illustrée dans la figure III.13, se distingue par ses
blocs résiduels et ses connexions directes qui permettent de contourner
plusieurs couches. Ces connexions facilitent 1'optimisation de réseaux tres
profonds en évitant la dégradation des performances. Les différentes versions
de ResNet, telles que ResNet-50, ResNet-101 et ResNet-152, se différencient

principalement par le nombre de couches, chacune étant construite autour de

ces blocs résiduels.

image
pool, /2
3x3 conw, 512
3x3 conv, 512
3x3 conw, 512
3x3 conv, 512
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333 conv, 256
33 conv, 512
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3x3 conv, 128
3x3 conv, 128
3x3 conv, 128
3x3 conw, 128
3x3 conw, 128
3x3 conv, 128
33 conv, 256
3x3 conv, 256

33 conv, 512, /2

34-layer residual

Figure II1.13 : Architecture de ResNet [107].

II1.12.7. DenseNet

DenseNet, proposé par Huang et al. [109], introduit, une architecture
composée de blocs denses, ou les cartes de caractéristiques de chaque couche
sont connectées a celles de toutes les couches suivantes par concaténation.
Cette approche, illustrée a la figure III.14, facilite la propagation des
informations et des gradients a travers le réseau, simplifiant ainsi
l'apprentissage et améliorant les performances en classification.

Equation:

X, = H[Xo, X1, X5 ... X -4] (23)

Oou [Xy, X1,X3...X;_1] représente la concaténation des sorties des couches
antérieures. Cette approche améliore le flux d'informations et des gradients
entre les couches, facilitant ainsi l'apprentissage et renforcant les
performances en classification. La transformation H;[.] est une fonction
composite comprenant trois opérations : normalisation par lot (Batch
Normalization), activation ReLU et convolution 3x3.

DenseNet organise le réseau en blocs denses, entre lesquels des couches de
transition sont insérées pour gérer les variations de taille des cartes de
caractéristiques. Ces couches effectuent des convolutions et du pooling,

permettant de réduire la taille des cartes tout en maintenant la connectivité

dense.
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Figure III.14 : DensNet block [110]

III.13. L'apprentissage par transfert (Le transfer learning)

L'apprentissage par transfert est une technique de machine learning
permettant d'adapter un modéle préalablement entrainé sur une tache
spécifique a une nouvelle tache connexe. Cette approche est particuliérement
efficace lorsque les deux taches partagent des similarités et que les données
disponibles pour la nouvelle tache sont limitées. Elle permet de réutiliser les
connaissances acquises par le modéle pour accélérer l'entrainement et
améliorer les performances sur la nouvelle tache. Ce concept s'applique
notamment dans des domaines comme 1'analyse d'images médicales, ou il est
souvent couteux et difficile de collecter un nombre suffisant de données
d'entrainement. Une approche courante qui consiste a pré-entrainer un
réseau de neurones sur une grande base de données, telle qu'ImageNet (qui
contient plus de quatorze millions d'images annotées et classées dans plus de
vingt mille catégories), puis a ajuster ce modéle pour des applications
spécifiques [111].

Le principe du transfer learning, est illustré dans la figure II1.15.

III.13.1. Mise au point des techniques d'apprentissage par transfert

En pratique l'apprentissage par transfert se fait comme suit :

> Seélection du Domaine Source et Cible

Identifiez un domaine source ou vous disposez de données abondantes et
d'un modele pré-entrainé. Par exemple, un modéle de classification
d'images pré-entrainé sur ImageNet peut étre utilisé pour des taches

spécifiques comme la classification d'images médicales.
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Figure III.15 : transfert d'apprentissage a partir d'imageNet. [112]

> Prétraitement des Données
Les données du domaine cible doivent étre prétraitées pour correspondre
au format des données du domaine source. Cela peut inclure la

normalisation, le redimensionnement des images, ou l'encodage des textes.

» Adaptation du Modéle

Le modéle pré-entrainé est souvent ajusté (fine-tuning) pour le domaine

cible. Cela peut impliquer :

- Congeélation des Couches : Dans cette approche, certaines couches du
modéle pré-entrainé sont gelées et les couches restantes sont adaptées
a la nouvelle tache. Généralement, les couches inférieures du modéle
pré-entrainé, qui capturent des caractéristiques de bas niveau telles que
les bords et les coins, sont gelées, tandis que les couches supérieures,
qui capturent des caractéristiques plus complexes, sont affinées.

- Ajout de Couches : Des couches supplémentaires peuvent étre ajoutées

pour adapter le modéle a la nouvelle tache.

> Entrainement sur le Domaine Cible

Le modéle est ensuite entrainé sur les données du domaine cible.
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Cela peut nécessiter moins de données étiquetées que si vous entrainiez
un modele a partir de zéro, car le modele a déja appris des caractéristiques

utiles a partir du domaine source.

» Evaluation et Ajustement

Apres l'entrainement, le modéle est évalué sur un ensemble de validation
ou de test. Des ajustements peuvent étre nécessaires, comme le réglage des
hyperparameétres ou 1'ajout de techniques de régularisation pour éviter le

surapprentissage.

III.14. Conclusion

Les réseaux de neurones convolutifs (CNN) se sont imposés comme une
solution de pointe pour le diagnostic médical, notamment dans le domaine de
la vision par ordinateur et de 1'analyse d'images médicales, ou ils ont atteint
des performances a la pointe de la technologie. Grace a leurs couches de
convolution, de pooling et entierement connectées, les CNN peuvent extraire
des informations a difféerentes échelles et niveaux de granularité. Des modéles
populaires tels que ResNet, VGG et DenseNet, ainsi que des techniques
comme l'apprentissage par transfert et l'augmentation des données, ont
permis d'améliorer considérablement la précision des modéles tout en
réduisant le risque de surajustement.

Dans ce chapitre, nous avons présenté plusieurs modéles basés sur les CNN,
largement utilisés pour la classification d'images. Ces réseaux sont
aujourd'’hui au coceur de nombreuses applications complexes, y compris la
classification des images médicales, un probléme clé abordé dans cette thése.
Le succes indéniable des CNN dans le traitement d'images a motivé leur
adoption dans ce travail pour résoudre des problémes spécifiques en imagerie
meédicale, en utilisant ce type de réseau comme base des approches proposées.
Par conséquent, les CNN continuent d'évoluer, offrant des solutions toujours

plus performantes et adaptées aux besoins croissants en analyse d'images.
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Chapitre IV

Data Augmentation pour les Images Histopathologiques
IV.1. Introduction
Le cancer du sein est 'un des cancers les plus répandus dans le monde et
demeure 1'une des principales causes de mortalité chez les femmes. Selon
I'Organisation mondiale de la santé (OMS), en 2020, on a recensé 2,3 millions
de nouveaux cas et 685 000 déces liés a cette maladie, touchant principalement
les femmes aprées la puberté (Figure IV.1). Cette pathologie se caractérise par la

multiplication incontrélée de cellules formant des tumeurs invasives, qui peuvent

Breast
2 261 419 (24.5%)

se propager et endommager d'autres tissus [113].

Other cancers
3 489 618 (37.8%)

Colorectum
865 630 (9.4%)

Stomach
369 580 (4%)
Corpus uteri
417 367 (4.5%)
Thyroid Cervix uteri
248915 (4.9%) 604 127 (6.5%)

Lung
770 828 (8.4%)

Total : 9 227 484

Figure IV.1. : Estimation mondiale des cas en 2020 chez les femmes.

Historiquement, les taux de mortalité du cancer du sein sont restés €levés jusqu'a
l'introduction des programmes de détection précoce et de traitements adaptés
dans les années 1980 [114]. Ces avancées ont considérablement amélioré les
chances de survie des patients et la qualité des soins. La détection précoce du
cancer du sein est importante, car elle permet d’initier des traitements adaptés
dans des délais réduits, ce qui augmente significativement les chances de
guérison [114]|. L’analyse d’images histopathologiques est essentielle pour
classifier les tumeurs mammaires en bénignes ou malignes. Cependant, cette

tache complexe exige une expertise pointue pour détecter des variations
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histologiques subtiles. L’interprétation manuelle des biopsies est longue et
laborieuse, pouvant retarder le diagnostic jusqu’a deux semaines, avec des
risques accrus d’erreurs et de retard de traitement [115]. Dans ce contexte, Les
systémes de diagnostic assistés par ordinateur (CAD), basés sur des algorithmes
avanceés, offrent une interprétation rapide et précise des images meédicales,

ameéliorant significativement les diagnostics en oncologie mammaire [116],[117].

L’apprentissage profond joue un role essentiel dans l'automatisation du
diagnostic meédical, car il renforce lefficacité et la précision des processus
cliniques. Des recherches récentes ont démontré l’efficacité des algorithmes
basés sur les réseaux de neurones convolutifs (CNN) dans l'extraction
automatique de caractéristiques et la classification des types de tumeurs. Ces
modéles nécessitent toutefois une grande quantité de données et un temps de
calcul conséquent pour atteindre des performances optimales [118],[119],[120].
Comme illustré dans la figure IV.2, les algorithmes d'apprentissage profond
améliorent considérablement leurs performances a mesure que la quantité de
données augmente, contrairement aux algorithmes de machine Learning
traditionnels, dont les gains de performance sont plus limités [121]. Ainsi, pour
maximiser l'efficacité de ces systémes, il est indispensable de disposer de
données variées permettant d'apprendre des caractéristiques complexes et de
repérer des motifs subtils dans les images médicales. Cette diversité est
essentielle pour former des modéles robustes capables de détecter des anomalies

et de fournir des diagnostics fiables [122].

Deep learning
algorithms

Traditional machine
learning algorithms

Performance

Data

Figure IV.2. Importance de big data dans I’apprentissage profond.
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Malheureusement, de nombreux jeux de données en imagerie médicale, comme
BreakHis, présentent un déséquilibre des classes et un nombre limité d'images,
ce qui complique le développement de modeéles robustes [115]. La base de
données BreakHis est largement utilisée dans la recherche sur le cancer du sein
pour la classification des tumeurs bénignes et malignes a travers des images
histopathologiques. Elle se distingue par son organisation en plusieurs niveaux
de grossissement (40x, 100x, 200x et 400x), offrant ainsi une représentation
diversifiee des échantillons tissulaires. BreakHis constitue une ressource
précieuse pour développer et tester des modeéles de classification en imagerie
meédicale, mais son déséquilibre des classes pose des défis que cette recherche

s’efforce de surmonter [123].

IV.2 Origine et création de la base de données BreakHis

La base de données BreakHis (Breast Cancer Histopathological Database) a été
créée dans le cadre d’'une collaboration entre 1'Université Fédérale de Parana
(UFPR) au Breésil et des chercheurs spécialisés en imagerie médicale et oncologie,
en partenariat avec le Laboratoire P&D d’anatomie pathologique et
cytopathologie. Elle a été mise a disposition en 2016 pour fournir a la
communauté scientifique un ensemble de données complet et standardisé,
destiné au développement de modeéles d’intelligence artificielle (IA) pour le
diagnostic du cancer du sein. L’objectif principal de cette initiative était de
combler les lacunes des jeux de données existants, souvent limités en diversité
et en standardisation, ce qui compliquait la comparaison des résultats entre
différentes approches de classification. Par ailleurs, l'ensemble de données
BreakHis, disponible en acceés libre, a été spécialement concu pour surmonter
les défis du diagnostic manuel, en facilitant 'automatisation de l'interprétation

des images histopathologiques [124],[125].

IV.2.1. Contenu et structure de la base de données BreakHis

Le diagnostic du cancer du sein repose en grande partie sur l'analyse
histopathologique des tissus, qui implique une biopsie suivie d’'une observation

au microscope (Figure IV.3) [126].
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Figure IV.3. Le processus complet d'une biopsie

Ce processus permet d’évaluer la nature bénigne ou maligne des tumeurs en
examinant la structure cellulaire et tissulaire. Les étapes principales sont les
suivantes :

1. Prélévement de I’échantillon (Biopsie)

Un échantillon de tissu est prélevé dans la zone suspecte a l'aide d'une aiguille
(biopsie a l’aiguille fine) ou d’'un punch, ou lors d'une intervention chirurgicale.
2. Fixation du tissu

Le tissu est immergé dans une solution de fixation (comme le formol) pour
préserver sa structure cellulaire et éviter sa dégradation pour 'analyse.

3. Inclusion en paraffine

Le tissu est déshydraté et enrobé de paraffine pour former un bloc rigide. Ce bloc
permet de réaliser des coupes fines (environ 3 a 5 micromeétres) a 'aide d’'un
microtome.

4. Coupe et montage sur lame

Les coupes de tissu sont posées sur des lames de verre en vue de leur observation
au microscope. Cela facilite I'examen des structures internes des cellules.

5. Coloration

Les lames sont colorées avec des agents spécifiques, comme 1’hématoxyline-
éosine (H&E), pour mettre en évidence les structures cellulaires et faciliter
l’analyse. Des colorations supplémentaires ou des techniques
d'immunohistochimie peuvent étre employées pour détecter des marqueurs

associés a des tumeurs spécifiques.

53



Chapitre IV : Data augmentation pour les images histopathologiques

6. Observation au microscope
Le pathologiste examine les coupes sous différents grossissements (40x, 100x,
200x et 400x) pour évaluer les caractéristiques morphologiques des cellules et

tissus (Figure IV.4) [127].
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Figure IV.4. Diapositive d'une tumeur bégnine du sein vue sous différents facteurs

100 300 400 500

d'agrandissement : (A) 40x, (B) 100x, (C) 200x, et (D) 400x [123].

e Les images issues de cette analyse sont capturées a travers trois canaux
(RGB), permettant une visualisation détaillée des tissus sous divers niveaux
de détail.

e L’observation porte sur des aspects tels que la taille, la forme et I'organisation
des cellules, permettant de détecter les anomalies caractéristiques des

tumeurs bénignes ou malignes.

7. Interprétation et diagnostic

En fonction de l'analyse microscopique, le pathologiste identifie si le tissu
présente des lésions bénignes ou malignes. Le stade et le type de tumeur (par
exemple, carcinome canalaire ou lobulaire) peuvent également étre déterminés.
8. Rapport histopathologique

Le pathologiste rédige un rapport diagnostique, qui détaille les observations et
fournit un diagnostic final. Ce rapport est transmis au médecin pour définir le

traitement approprié.
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La base de données BreakHis comprend un total de 7909 images microscopiques
de biopsies mammaires, chacune d'une résolution de 700x460 pixels. Ces images
proviennent de 82 patients et se répartissent en 2480 images de tumeurs

bénignes et 5429 images de tumeurs malignes [128].
IV.2.2. Organisation et catégorisation des images

Les images de BreakHis sont classées selon deux grandes catégories : tumeurs
bénignes et tumeurs malignes. Chaque catégorie comprend plusieurs sous-

catégories histopathologiques :

Tumeurs bénignes Tumeurs malignes
- Adenosis (A) - Ductal Carcinoma (DC)
- Fibroadenoma (F) - Lobular Carcinoma (LC)
- Phyllodes Tumor (PT) - Mucinous Carcinoma (MC)
- Tubular Adenoma (TA) - Papillary Carcinoma (PC)

La répartition des images entre les catégories bénignes et malignes, en fonction
du niveau de grossissement, est présentée par la figure IV.5 et le tableau VI.1.
Ces données permettent aux chercheurs d’explorer l'influence du déséquilibre
des classes sur les performances des modéles et de développer des stratégies

pour y remédier.
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Figure IV.5. Distribution des images bénignes et malignes selon les grossissements.
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Catégorie Bénin Malin

Total Total | Total
Sous-catégorie A | F |PT|TA DC | LC [MC| PC
Bénin Malin

40x [114|253|109|149| 625 |864|156(205|145| 1370 | 1995
100x|113|260]121|150| 644 |903|170|222|142| 1437 | 2081
200x|111|264|108|140| 623 |896|163|196|135| 1390 | 2013
400x|106|237|115|130| 588 |788|137|169|138| 1232 | 1820

Nombre d'images

Par facteur

D’agrandissement

Tableau VI.1. Catégorisation des images bénignes/malignes par grossissement [123].

IV.2.3. Illustration du déséquilibre des classes selon le grossissement

La Figure IV.6 présente la distribution des images entre les tumeurs bénignes et
malignes a travers les quatre niveaux de grossissement disponibles dans la base

de données BreakHis (40x, 100x, 200x, et 400x).

40X IMAGE DISTRIBUTION 100X IMAGE DISTRIBUTION

69.1%

count
count

30.9%

benign malignant . benign malignant
category category
200X IMAGE DISTRIBUTION 400X IMAGE DISTRIBUTION

count
count
2
(<]

30.9% %650 32.3%

0o
benign malignant benign malignant
category category

Figure IV.6. Distribution des classes BreaKhis [113].
On observe un déséquilibre notable entre les deux catégories : les images de
tumeurs malignes sont systématiquement plus nombreuses, représentant
environ 67 % a 69 % des échantillons a chaque niveau de grossissement. A
I'inverse, les tumeurs bénignes représentent seulement 30 % a 32 % des images
[113].
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Le manque de données et le déséquilibre des classes limitent la généralisation
des modéles, favorisant les classes majoritaires comme les tumeurs malignes.
Des techniques comme le rééchantillonnage, 'augmentation de données et des
méthodes spécifiques améliorent la généralisation et traitent les classes sous-

représentées. Un résumé de ces techniques est présenté ci-dessous.

IV.3. Techniques de gestion des données déséquilibrées
IV.3.1. Rééchantillonnage : Suréchantillonnage et Sous-échantillonnage

Le rééchantillonnage vise a équilibrer le nombre d’échantillons entre les classes.
Le suréchantillonnage consiste a augmenter artificiellement le nombre
d’exemples de la classe minoritaire, par duplication simple ou par la génération
de données synthétiques avec des techniques telles que SMOTE et ADASYN. En
parallele, le sous-échantillonnage réduit le nombre d’exemples de la classe
majoritaire, ce qui peut étre utile lorsque la classe dominante contient beaucoup
d’exemples redondants.

1. Suréchantillonnage (Oversampling)

- Duplication simple : Répéter les échantillons de la classe minoritaire.

- SMOTE (Synthetic Minority Over-sampling Technique) : Générer des
échantillons synthétiques en interpolant entre des points proches de la
classe minoritaire.

- ADASYN (Adaptive Synthetic Sampling) : Extension de SMOTE, cette
technique se concentre sur les échantillons difficiles a classifier en

générant plus de points synthétiques autour d’eux.

2. Sous-échantillonnage (Undersampling)
- Echantillonnage aléatoire : Réduire le nombre d'échantillons de la classe
majoritaire en supprimant des données.
- Cluster-based Undersampling : Grouper les échantillons majoritaires en
clusters et n’en garder qu'un sous-ensemble représentatif.
- NearMiss : Sélectionner les exemples majoritaires les plus proches des

exemples minoritaires pour un meilleur équilibre.
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IV.3.2. Techniques d’Augmentation de Données

L'augmentation des données est une technique qui consiste a générer de
nouveaux ensembles de données a partir de données existantes, en créant des
données synthétiques pour augmenter artificiellement la taille de l'ensemble de
données. Cette méthode vise a améliorer les performances et la généralisation
des modeéles d'apprentissage profond, en réduisant les erreurs, et est
particulierement utile pour les taches de classification. Les principales stratégies

de cette technologie sont présentées ci-dessous.

I1.3.2.a. Augmentation géométrique

Sont des opérations appliquées aux images qui modifient leur forme ou leur
position, tout en préservant les informations visuelles essentielles. Ces
transformations sont importantes pour l'augmentation des données et
l'amélioration des performances des modeles d'apprentissage profond. Voici

quelques opérations courantes :

> Rotation : Faire pivoter les images a différents angles. Voir Figure IV.7.

e

Figure IV.7. Opération de rotation.

» Miroir : Cette méthode consiste a faire pivoter l'image le long de l'axe
horizontal ou vertical en partant du principe que la taille de la matrice est

cohérente (Voir Figure IV.8).

Figure IV.8. Opération de miroir.
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» Zoom : Appliquer un zoom avant ou arriére (Voir Figure IV.9)

Figure IV.9. Opération de Zoom.

» Shift : déplace les pixels d’'une image vers une direction spécifique (haut,

bas, gauche ou droite). (Voir Figure IV.10).

Figure IV.10. Opération de shift.

I1.3.2.b. Modifications photométriques

Ajustement de la luminosité, du contraste (Figure IV.11a) ou ajout de bruit

(Figure IV.11Db).

Figure IV.11b. Ajout de bruit
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» Mixup
Est une technique d'augmentation de données qui consiste a créer de
nouvelles images (Figure IV. 12) en combinant linéairement deux images

existantes et en faisant de méme pour leurs étiquettes (labels).

Image 1 Image 2 Image Mixée

\ ; i.. ‘,"."( /\ .
B B\
\’\ \ (\ ¢

@ | ‘;

¥

Figure IV.12. Technique de Mixup
» CutMix

Est une technique d'augmentation de données qui consiste a remplacer une
région d'une image par une région d'une autre image (Figure IV. 13). Cette
méthode améliore la robustesse des modeéles de classification en combinant
les informations de deux images différentes.

Image 1 Image 2 Image CutMixée
: — -

>

’ \\ : ‘ {\ ¢ q
; "( ‘.\‘ i §

Figure IV.13. Technique de CutMix

IV.3.3. Méthodes Basées sur les Algorithmes

1. Ensembles d'apprentissage (Ensemble Learning)

Utilisation de plusieurs modéles pour ameéliorer la précision globale, par exemple:
» Bagging (Bootstrap Aggregating): est une technique d'apprentissage
automatique utilisée pour améliorer la précision des modéles en combinant les
prédictions de plusieurs modéles de base (ex : Random Forest).

» Boosting : est une technique d'apprentissage automatique qui vise a ameéliorer
la précision des modéles en combinant plusieurs modéles faibles pour créer un
modele puissant (ex : AdaBoost, XGBoost).

Ces techniques peuvent ajuster les modéles pour donner plus d'importance aux

classes minoritaires.
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2. Réseaux Adversaires (GANSs)

L’utilisation GANs permet de générer des échantillons synthétiques dans des
ensembles de données déséquilibrés.

3. Autoencodeurs

Apprennent a générer de nouvelles variations des données a partir de
représentations internes, ce qui enrichit I'ensemble d'entrainement avec des
exemples synthétiques.

4. Le transfer learning

L’apprentissage par transfert consiste a réutiliser les poids d'un modele déja
entrainé sur un grand ensemble de données pour une nouvelle tache. Cette
méthode est utile lorsque les données spécifiques sont limitées, comme avec des
modeles pré-entrainés tels que GoogleNet ou ResNet formés sur ImageNet. Elle
permet de diminuer le temps d'entrainement et les couts tout en offrant de

bonnes performances.

IV.4. Le traitement des données

Le traitement des données regroupe 1'ensemble des étapes et techniques utilisées
pour préparer, nettoyer, transformer et analyser des données brutes, afin de les
rendre exploitables par les modeles d'apprentissage profond. Les données
peuvent exister sous plusieurs formes : tables structurées ou non structurées,
images, fichiers audio, vidéos, etc. Une machine ne peut pas interpréter
directement du texte libre, des vidéos ou des images sous leur forme brute ; il est
nécessaire de convertir ces informations en une forme numérique,
principalement en 1 et 0. Par conséquent, les données brutes ne peuvent pas étre
directement fournies a un modeéle d'apprentissage automatique en espérant qu'il
soit capable de s'entrainer efficacement. Le prétraitement des données est une
étape fondamentale de 'apprentissage profond.

Il consiste a transformer ou encoder les données afin de les rendre
compréhensibles et utilisables par la machine. Un prétraitement soigné garantit
que les données sont dans un format que la machine peut facilement traiter et
analyser. C’est I'une des étapes les plus importantes pour assurer une bonne

performance de généralisation du modéle, influencant directement sa capacité a
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faire des prédictions précises sur des données nouvelles. Ci-aprés quelques
techniques couramment utilisées pour le traitement des données dans le cadre

de 'apprentissage profond.

IV.4.1. Nettoyage des données

e Suppression du bruit : Identification et suppression des données
incohérentes ou erronées (par exemple, des échantillons mal étiquetés).

e Normalisation des données : Conversion des données dans un intervalle
commun (par exemple, entre O et 1) pour faciliter l'entrainement des

modéles.
IV.4.2. Encodage des données

e Encodage one-hot : Transformation des données catégorielles en vecteurs

binaires.
IV.4.3. Réduction de la dimensionnalité

e PCA (Analyse en Composantes Principales) : Réduit le nombre de

variables en identifiant les combinaisons les plus significatives.
IV.4.4. Traitement spécifique selon le type de données

» Images : Conversion des images en matrices de pixels (par exemple, RGB
en vecteurs).

» Audio : Transformation en spectrogrammes pour une analyse plus facile.
IV.4.5. Batching et Shuffling

» Batching : Division des données en lots (batches) pour un entrainement
plus efficace.
» Shuffling : Mélange aléatoire des données a chaque itération pour éviter le

surapprentissage d’un ordre particulier.

IV.5. Conclusion
Dans ce chapitre nous avons exploré les différentes techniques décrites dans la
littérature pour gérer les données déséquilibrées et améliorer les performances

des modeles de deep learning appliqués aux données histopathologiques du
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cancer du sein. Ces approches incluent des techniques d'augmentation de
données (transformations géomeétriques, photométriques, et meéthodes
génératives) ainsi que des stratégies de gestion du déséquilibre des classes, telles
que le suréchantillonnage et l'utilisation de GAN pour enrichir la classe
minoritaire avec des données synthétiques réalistes. Le prochain chapitre sera
consacré aux solutions adoptées pour résoudre le probléme du déséquilibre des

classes, un défi majeur en imagerie médicale.
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Chapitre V

Etude Expérimentale
V.1. Introduction
L'objectif de ce chapitre est de classer les images du cancer du sein issues de
l'ensemble de données BreakHis en deux catégories : bénin et malin, afin
d'améliorer les diagnostics assistés par ordinateur (DAO) dans le domaine de la
santé en utilisant l'apprentissage profond. Les progrés des architectures de
réseaux de neurones convolutifs (CNN) ont rendu possible I'analyse automatisée
des images histopathologiques numeériques, malgré la complexité liée a la
diversité morphologique des cellules tumorales et au déséquilibre des classes.
Ce déséquilibre, associé a un nombre limité d'échantillons, peut biaiser les
modeles et réduire leur capacité a effectuer une classification précise.
Deux éléments clés influencent les performances des modeéles : la qualité des
données d'apprentissage et le choix du modéle d'extraction des caractéristiques.
Ce dernier est particulierement essentiel, car il conditionne la capacité du modéle
a détecter les caractéristiques discriminantes nécessaires a une classification
précise.
Relever ces défis est indispensable pour développer des systémes robustes et
fiables, capables de fournir des diagnostics précis dans des contextes cliniques.

Afin de résoudre cette problématique, nous avons proposé deux méthodes.
V.1.1. Méthode 1 : DCGAN et DenseNet201

Cette approche équilibre les classes en générant des images synthétiques avec
DCGAN (Deep Convolutional Generative Adversarial), suivie d'une augmentation
de données. Le modéle DenseNet201 pré-entrainé est utilisé pour extraire les

caractéristiques.

V.1.2. Méthode 2 : WDT et DenseNet201

L'approche repose sur l'utilisation d'images générées a partir de la
transformation par ondelettes discrétes pour augmenter la classe bénigne,

corrigeant ainsi le déséquilibre des classes dans la base de données BreakHis.
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En exploitant le modeéle DenseNet201, elle améliore la classification des images
histopathologiques du cancer du sein en intégrant les informations spatiales et
spectrales, réduisant le risque d'erreurs critiques, comme la classification
incorrecte de cas malins en bénins.

La structure générale du modeéle proposé est décrite dans la figure V.1.

\4

Extraction des images

!

Prétraitrement des images

|

Répartition des données

N

Ensemble d'entrainement Ensemble de données de test

Images générées > / >

\ 4

Augmentation des données

y

Entrainement du modeéle

Evaluation des performances

Figure V.1. Structure générale du modéle de classification des images histopathologiques

du cancer du sein.

Les images générées par les deux méthodes proposées sont représentées par la

figure V.2.
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Images générées
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Figure V.2. Méthodes proposées pour la génération des images.

V.2. Premiére partie
V.2.1. Résolution du déséquilibre des classes avec DCGAN

Dans cette premiére partie, nous présentons l'utilisation du Deep Convolutional
Generative Adversarial Network (DCGAN), pour résoudre le déséquilibre des
classes dans la base de données BreakHis. Les DCGAN intégrent des réseaux de
neurones convolutifs marquant ainsi une avancée significative dans la capacité

des modéles génératifs a produire des images de haute qualité.
V.2.1.a. Deep Convolutional Generative Adversarial Networks (DCGAN)

Les Réseaux Antagonistes Génératifs Convolutionnels (DCGAN) sont une
extension des GAN qui exploitent des couches de réseaux de neurones
convolutionnels pour ameéliorer la qualité des images générées. Introduits en
2015, les DCGAN sont particulierement efficaces pour générer des images
synthétiques a haute résolution en exploitant les propriétés de la convolution
[113]. Le schéma fonctionnel d'un DCGAN, illustré par la figure V.3, montre le
processus de génération d'images synthétiques. Ce principe repose sur deux
réseaux en compétition : un générateur (G) et un discriminateur (D).

Le générateur prend en entrée un vecteur aléatoire issu de l’espace latent et
utilise des couches de convolution transposée (Conv2DTranspose) pour créer des
images synthétiques a partir de cette entrée. En paralléle, le discriminateur, basé
sur un réseau de convolution classique, essaie de différencier les images générées

par le générateur de celles provenant de I'ensemble de données réelles.
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Le processus d’apprentissage repose sur l'amélioration continue des deux
réseaux : le générateur apprend a produire des images plus réalistes, tandis que
le discriminateur affine sa capacité a distinguer les images générées des images
réelles [129].

Les DCGAN sont connus pour leur capacité a générer des images visuellement
cohérentes et détaillées, grace a l'utilisation de meécanismes de Batch
Normalization. L’adoption de fonctions d’activation comme LeakyReLU contribue

a la convergence rapide du modeéle.

X

] >0 | Discriminateur
Bruit v D
¢ G(n)
A
e Fausses
Générateur
L G

Décision
Probabilité

Figure V.3. Schéma fonctionnel d’un DCGAN.

V.2.1.b. Architecture du DCGAN proposé

L'architecture du DCGAN proposé est constituée de :

1. Le Générateur

La figure V.4 illustre 'architecture détaillée du générateur du DCGAN développée
dans ce travail. Le réseau commence par une entrée latente (vecteur de bruit
aléatoire) transformée progressivement en une image synthétique grace a une
série de couches dense, de convolutions transposées, de normalisation par lot et
de fonctions d’activation. L’entrée est un vecteur latent aléatoire z de dimension
100.

eEtapes du réseau :

1. Dense Layer : Une couche dense de taille 224x224x10.
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. Dense
R InputLayer —b[ BatchNormalization
Kernel :224%224*10
Conv2DTrymspose; BatchNormalization ]—m Conv2DTranspose:
(16, kernel size=5) (32, kernel size=5) ]

BatchNormalization Conv2DTranspose: BatchNormalization ]_
(64, kernel size=5)

DCGAN-Generator

Activation

Activation

Kernel :224%224%*3

Figure V.4. Architecture détaillée du générateur du DCGAN proposé.

2. Batch Normalization : Utilisée pour stabiliser l'entrainement et normaliser
les activations.
LeakyReLU : Fonction d'activation
Convolution Transposée : Plusieurs couches avec des filtres de tailles
différentes :

» Conv2DTranspose (5x5x16) : Augmente la taille sans perte d'information.

» Conv2DTranspose (5x5x32) et (5x5x64) : Ameéliore la structure spatiale de
I'image.

5. Derniére couche de sortie : Conv2D avec une activation sigmoide pour

produire une image normalisée avec trois canaux (RGB) dans la plage [0,1].

2. Le discriminateur

Le discriminateur (figure V.5), agit comme un classificateur binaire, prenant en
entrée une image (réelle ou générée) et produisant une probabilité indiquant si
l'image est réelle ou non. Il utilise plusieurs couches convolutives, suivies de
normalisation et de fonctions d’activation.

1.Image_input (224,224,3) : Ce bloc représente les images d'entrée avec une
taille de 224x224 pixels et 3 canaux (RVB). Cette taille est cohérente avec les
dimensions couramment utilisées dans les architectures de réseaux de
convolution modernes, telles que DenseNet, tout en offrant un bon compromis

entre résolution et efficacité computationnelle.
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Image_input InputLayer LeakyReLU
(224,224.3) Kernel :3*3%32 Kernel :4*4%32
Kernel :4*4*16 _l

—P[ DCGAN-Discriminator ]

(1, sigmoid)

Figure V.5. Architecture détaillée du discriminateur du DCGAN proposé.

2. InputLayer : Ce bloc indique le début de l'architecture du réseau, préparant
les données d'entrée pour les couches suivantes.

3. Premiére couche (Conv2D (Kernel : 3x3x32)) : Cette couche effectue une
convolution 2D sur l'image d'entrée en utilisant 32 filtres de taille 3x3 pour
extraire les caractéristiques spatiales locales.

4. Fonction d’activation (LeakyReLU) : Appliqués aprés chaque couche de
convolution pour introduire une non-linéarité. Ceci est pour permettre au réseau
de modéliser des relations complexes.

S. Conv2D (Kernel : 4x4x32) : Applique une autre convolution 2D avec 32 filtres
de taille 4x4 pour extraire davantage de caractéristiques.

6. Conv2D (Kernel : 4x4x16) : Réduit le nombre de filtres a 16 pour extraire
des caractéristiques spécifiques et réduire progressivement la taille des données.
7. Flatten: Transforme les données en une représentation vectorielle
unidimensionnelle pour les connecter a des couches denses.

8. Dropout : prévenir le surapprentissage en désactivant aléatoirement 20% des
neurones de cette couche pendant 'entrainement.

9. Dense : Connecte toutes les entrées a toutes les sorties via des poids (dense
layer), générant un vecteur de taille correspondant au nombre de neurones
spécifié.

10. La sortie est une couche Dense finale avec une activation sigmoide donnant
une probabilité entre O et 1, indiquant si I'image est réelle ou générée.

3. L’entrainement du DCGAN repose sur une compétition entre les deux
réseaux: le générateur et le discriminateur. Le déroulement de 'apprentissage

peut étre décrit selon les étapes suivantes :
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1. Génération d'images

» Passage par le générateur : Des vecteurs latents (bruit aléatoire) sont
échantillonnés et transmis au modeéle du générateur.

» Transformation : Le générateur, qui est un réseau de neurones, applique
plusieurs transformations non linéaires au bruit d'entrée Z. Ces
transformations permettent au générateur de capturer des caractéristiques
complexes des données d’entrainement et de générer des images
artificielles aux mémes grossissements (40x, 100x, 200x, 400x) que les
images réelles.

» Résultat : Le générateur produit un lot d'images générées qui tentent
d’imiter les images réelles de la base de données.

2. Calcul des pertes

Discriminateur
e Le discriminateur recoit deux types d'images :
» Des images réelles (classe bénigne) provenant de la base de données BreakHis
avec plusieurs niveaux de grossissement (40x, 100x, 200x, 400x).
» Des images synthétiques, générées par le générateur.
e Le discriminateur tente de classer chaque image en lui attribuant une
étiquette:
» 1 pour une image réelle.
» O pour une image générée.
e La perte du discriminateur est calculée a ’'aide d’'une fonction de perte (binaire
croisée) qui mesure ’écart entre :
» Les prédictions du discriminateur.
» Les étiquettes correctes (1 pour les images réelles, O pour les images
géneéreées).
- Générateur :
e Le générateur est évalué en utilisant les images qu'il a générées et qui ont été
transmises au discriminateur.
Le but du générateur est de tromper le discriminateur pour que celui-ci classifie

les images générées comme étant réelles.
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e La perte du générateur est également calculée avec une fonction de perte, qui
évalue dans quelle mesure le discriminateur a mal classé les images générées (le

générateur cherche idéalement a obtenir une étiquette de 1 pour ces images).

3. Mise a jour des poids
e Une fois les pertes calculées, les poids des deux réseaux (générateur et
discriminateur) sont mis a jour en utilisant un algorithme d'optimisation (Adam).
e Ce processus est répété sur un grand nombre d’itérations (ou époques).
L’entrainement se fait en alternant la mise a jour du générateur et du
discriminateur. A chaque itération, les deux réseaux s'améliorent
progressivement :

» Le discriminateur devient meilleur a identifier les images générées.

» Le générateur produit des images de plus en plus réalistes pour tromper le

discriminateur. La Figure V.6 présente le modeéle DCGAN proposeé.

Separate entrances
1. 40X l Update model | /‘ Fake (O)
2. 100X - Predicted
3_ 200X i (cI:ssllbeggnine) ‘ ! Netmrk ‘\‘
4. 400X Real (1)
B Update model
Fake images
Noise vector Generator Network T —» 2. 100X
(classe begg:ine) — 3 200X
—— 4, 400X

Figure V.6. Modéle DCGAN proposé [1 13]

La Figure V.7, illustre des échantillons d'images réelles et générées pour la classe
minoritaire (bénigne).
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Figure V.7. Images réelles et synthétiques des tumeurs bénignes

Le tableau V.I présente le nombre d’images aprés l'utilisation de la technique
d’augmentation DCGAN, permettant d’équilibrer les échantillons entre les

classes « Bénin » et « Malin » a différents niveaux de grossissement.

Niveau de Type Images Images Images Images Total apres
Grossissement | d’échantillon | Originales | réservées | restantes | générées | Augmentation
Bénin 625 76 549 674 1223
40x Malin 1370 147 1223 / 1223
Total 1995 223 1772 074 2446
Bénin 644 79 565 722 1287
100x Malin 1437 150 1287 / 1287
Total 2081 229 1852 722 2574
Bénin 623 77 546 697 1243
200x Malin 1390 147 1243 / 1243
Total 2013 224 1789 097 2486
Bénin 588 72 516 493 1009
400x Malin 1232 223 1009 / 1009
Total 1820 295 1525 493 2018

Table V.1 Distribution des images avant et aprés DCGAN

V.2.2. Augmentation des données

Dans cette étude, nous avons appliqué plusieurs techniques d'augmentation de
données pour ameéliorer l'entrainement du modéle, éviter le surapprentissage et
optimiser ses performances. Ces techniques incluent le retournement, le
recadrage, la rotation, le zoom et la mise a 1’échelle. En générant différentes
versions des images, ces transformations augmentent la diversité de la base de

données BreakHis, renforcant ainsi la robustesse du modeéle face a la variabilité
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des données. Des exemples d’images augmentées sont présentés dans la figure

V.8.

Figure V.8. Exemples d'images augmentées [123]

Le tableau V.2 récapitule les valeurs utilisées pour les transformations

géomeétriques appliquées dans le cadre de 'augmentation de la base de données.

Data augmentation | Value

Rotation range 15
shear_range 0.2
zoom_range 0.2

horizontal_flip True

fill_ mode 'nearest'

width_shift_range 0.1

height_shift range 0.1

Table V.2. Techniques d'augmentation des données.

V.2.3. Extraction de caractéristiques par apprentissage profond

Les réseaux de neurones convolutifs (CNN) sont utilisés pour extraire
automatiquement des informations pertinentes des images brutes, pixel par
pixel. Cependant, l'application des CNN nécessite une grande quantité de
données, rendant difficile 1'obtention des ensembles de formation et de test
correspondants. Pour surmonter ce défi, 1'apprentissage par transfert est
introduit, permettant d'améliorer la précision de classification en utilisant les
connaissances de modéles pré-entrainés sur de vastes ensembles de données.
Cette approche est particuliérement avantageuse dans des scénarios ou les
données disponibles pour l'entrainement sont limitées. L'apprentissage par
transfert implique souvent un entrainement sur ImageNet, un ensemble de
données contenant 14 millions de photographies annotées, réparties sur environ

1000 classes distinctes.
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Ce concept a gagné en popularité dans divers domaines de la vision par
ordinateur, tels que la détection d'objets, la classification d'images et la

segmentation.
V.2.3.a. La structure DenseNet

DenseNet présente une architecture de réseau neuronal qui atténue la perte
d'information en permettant aux couches de recevoir des entrées de toutes les
couches précédentes et de les transmettre aux couches suivantes. Cette
architecture compacte privilégie la concaténation séquentielle des cartes de
caractéristiques. DenseNet a démontré des performances de classification
supérieures sur des ensembles de données de référence tels que CIFAR-100 et
ImageNet. La figure V.9 illustre la précision top-1 en validation, une meétrique
utilisée en DL pour évaluer les performances de modeles de classification sur un
ensemble de validation. La comparaison montre clairement que DenseNet
surpasse les autres modéles pré-entrainés, ce qui justifie son choix en tant que

modeéle de base pour cette étude.
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Figure V.9. Meilleures performances obtenues pour ImageNet | 123

V.2.4. Méthodologie

Un sous-ensemble de test a été réservé pour chaque classe avant la correction
du déséquilibre. Afin de compenser linégalité entre les classes, 'approche
DCGAN a été utilisée pour générer des images bénignes synthétiques et équilibrer
leur nombre avec celui des images malignes. L’ensemble des images, initialement

de taille (700x460%3), a été redimensionné en (224x224x3) afin de réduire la
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complexité computationnelle et de respecter les contraintes d’entrée du modeéle
DenseNet-201. Aprés équilibrage, les données ont été réparties en deux
ensembles : 96 % pour 'entrainement et 4 % pour la validation, et ce pour chaque
niveau de grossissement (40x, 100x, 200x et 400x).

Les images, provenant de divers niveaux de grossissement (40x, 100x, 200x et
400x), ont été entrainées et testées séparément selon leur grossissement
respectif. L'extraction des caractéristiques a été réalisée a l'aide du modele preé-
entrainé DenseNet201. Contrairement a l'utilisation traditionnelle du réseau, ou
l'on applique un Flatten, cette approche utilise le Global Average Pooling (GAP)
pour réduire la dimensionnalité, évitant ainsi un nombre excessif de parameétres
qui pourrait entrainer un surapprentissage et compliquer l'entrainement du
modele. Les caractéristiques ont été extraites des couches pool3_pool du bloc
dense 2, pool4_pool du bloc dense 3, et conv5_block32_concat du bloc dense 4.
Ces sorties ont été transformées en une représentation vectorielle via le GAP,
aboutissant a un vecteur de 3072 dimensions. En outre, une couche de
régularisation (DROPOUT) a été intégrée pour atténuer le surapprentissage, et
une couche dense finale, avec une fonction SOFTMAX, a permis la classification

binaire. La figure V.10 illustre 1'architecture proposée.

[ Reel images (Benign + Malignant class) + Fake images (Benign class) ]

—’

v
DenseNet201 }

=

Y

Softmax Activation

Dense_Block Dense_Block Dense_Block
12 X Conv_block 48 X Conv_block 32 X Conv_block
Malignant | Benign 0
K Global Average Pooling
256 ﬁ 1920
. 896
N A
—~
. 3072

Feature Vector

Figure V.10. Architecture proposée pour la classification des images histopathologiques | 123|
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V.2.5. Parameétres d’entrainement du modeéle

e Poids pré-entrainés : Utilisation de poids initiaux pré-entrainés sur la base
de données ImageNet.

e Algorithme d'entrainement : Entrainement avec l'algorithme RMSprop,
connu pour sa capacité d'adaptation dynamique aux gradients.

e Taux d'apprentissage : Taux d'apprentissage initial fixé a 10e-4,

progressivement réduit vers zéro pour améliorer la convergence.
Le taux d'apprentissage est initialement configuré avec 1optimiseur
RMSprop. Ensuite, le ReduceLROnPlateau ajuste le taux d'apprentissage
pendant l'entrainement, basé sur 1'évolution de la précision de validation. Si
la précision ne s'améliore pas, le taux d'apprentissage est réduit par un
facteur de 0.2, ce qui peut aider a améliorer la convergence du modéle.

e Epoques et taille de lot : Entrainement réalisé sur 40 époques avec une
taille de lot de 35, sans convergence significative constatée apres ces 40
époques.

e Fonction de perte : Utilisation de la cross-entropie catégorique, adaptée
pour quantifier la différence entre distributions de probabilité dans un
contexte multi-classe.

e Fonction d'activation : Application de la fonction d'activation SOFTMAX
pour transformer les scores bruts en probabilités, facilitant l'interprétation
des résultats.

- Principe de Fonctionnement de SOFTMAX
La fonction SOFTMAX prend en entrée un vecteur de scores produits par le
modele, typiquement dans la derniére couche d'un réseau de neurones. Ces
scores peuvent étre n'importe quelle valeur réelle, positive ou négative.

La fonction commence par faire ’exponentielle de chaque score, ce qui permet
de transformer tous les scores en valeurs positives. La formule pour chaque
élément Z; du vecteur d'entrée est : eZi (24)

Ensuite, on calcule la somme des exposants de tous les scores :

Ss=Ye% (25)
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Enfin, chaque score obtenu dans le calcul des exposants est divisé par cette

somme. Cela donne une probabilité pour chaque classe, qui varie entre O et

1, et la somme de toutes les probabilités est égale a 1 :

Zj
Softmax(Z;) = ET (26)

V.2.6. Métriques de performance

Pour évaluer la performance du modeéle proposé, plusieurs métriques basées sur

les éléments de la matrice de confusion ont été utilisés, a savoir :

- Vrai positif (TP) : Le modéle identifie correctement un cas positif de cancer.

- Vrai négatif (TN) : Le modéle identifie correctement un cas négatif de cancer.

- Faux positif (FP) : Le modéle classe incorrectement un cas négatif comme

positif.

- Faux négatif (FN) : Le modéle classe incorrectement un cas positif comme

négatif.

» Deéfinition des métriques :

Précision globale (Accuracy) : Mesure le pourcentage de bonnes
prédictions parmi le total des prédictions effectuées. Elle peut cependant

étre trompeuse en cas de déséquilibre des classes.

TP + TN
TP + TN + FP + FN

Rappel (Recall) : Evalue la capacité du modéle a détecter correctement les

Accuracy =

cas positifs.

Recall =
ecAt =Th ¥ FN

Précision (Precision) : Mesure la proportion des prédictions positives
correctes parmi ’ensemble des prédictions positives.

TP
TP + FP

F1-Score : Combine la précision et le rappel pour fournir une évaluation

Precision =

globale de la performance du modéle.

2 X (precision X Recall)

F1 =
score Precision + Recall

En recherche meédicale, la réduction des faux positifs et des faux négatifs est

primordiale.
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Classer a tort un cancer malin comme bénin peut entrainer une fausse
assurance,
Inversement, diagnostiquer un cancer bénin comme malin conduit a des

traitements invasifs et inutiles (chirurgies ou chimiothérapies), provoquant un

stress évitable.

La Table V.3 présente les mesures de performance calculées a partir de la matrice

de confusion binaire.

poussant la patiente a ignorer des symptomes

inquiétants.

Confusion Matrix Métriques de performance
Facteurs
Predit— d’agrandi-| Algorithmes "p ccision Recall F1-Score
Benin | Malin | Support| ssement DenseNet Accuracy
Réel | B M B M B M
Block?2 0.98(0.92|0.84|0.99|0.91 | 0.96 0.94
Benin 66 10 76
Block3 1.00 | 0.84 | 1.00 | 0.91 [ 0.96 | 0.95 0.95
40x
Block4 0.96 [ 0.94|0.87|0.98|0.91|0.96 0.94
Malin 3 144 147
Concaténation | 0.96 | 0.95 | 0.91 | 0.98 | 0.93 | 0.97 0.96
Block?2 0.860.99|0.97|0.91|0.91|0.95 0.93
Benin 76 3 79
Block3 0.90(0.95|0.91|0.95[0.91|0.95 0.93
100x
Block4 0.8810.98|0.96|0.93|0.92 | 0.96 0.94
Malin 9 141 150
Concaténation | 0.89 | 0.98 | 0.96 | 0.94 | 0.93 | 0.96 95
Block?2 0.78 | 1.00 | 1.00 | 0.85| 0.88 | 0.92 0.90
Benin 76 1 77
Block3 0.8010.98|0.96|0.87|0.87|0.92 0.90
200x
Block4 0.76 | 0.96 | 0.94 | 0.84 | 0.84 | 0.90 0.88
Malin 25 122 147
Concaténation | 0.75 | 0.99 | 0.99 | 0.83 | 0.85 | 0.90 0.88
Block?2 0.7410.99 | 0.97 | 0.89 | 0.84 | 0.94 0.91
Benin 70 2 72
Block3 0.7110.99|0.97|0.87 | 0.82 | 0.93 0.90
400x
Block4 0.7710.98|0.94|0.91|0.85|0.94 0.92
Malin 22 201 223
Concaténation | 0.76 | 0.99 | 0.97 | 0.90 | 0.85 | 0.94 0.92

Table V.3. Résultats de la classification.

V.2.7. Discussion des résultats

- Comparaison des blocs individuels et de la concaténation

e La concaténation des blocs produit de meilleures performances, notamment

pour 1'Accuracy, le rappel (Recall) , et le F1-score.
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o Cette approche semble compenser les limitations des blocs individuels en
combinant leurs caractéristiques extraites, ce qui enrichit 'apprentissage du
modeéle.

e Les différences de performance entre les blocs individuels et la concaténation
sont plus prononcées a des niveaux de grossissement plus faibles (40x et 100x),
ce qui montre que lintégration des informations globales et locales est
particulierement bénéfique pour ces niveaux.

- Analyse des performances selon les métriques

o Le rappel pour la classe maligne (M) est généralement élevé pour tous les
niveaux de zoom, ce qui indique que le modéle est performant pour détecter les
échantillons malins, une caractéristique souhaitable pour éviter les faux négatifs.
o En revanche, la précision pour la classe bénigne (B) est plus variable et tend
a diminuer aux niveaux de zoom plus élevés (200x et 400x), suggérant une
difficulté a identifier correctement les échantillons bénins.

o Le score F1 pour la classe bénigne (B) est souvent plus faible que pour la
classe maligne (M), ce qui reflete cette asymeétrie de performance et pourrait
nécessiter des ajustements des méthodes de traitement des données
supplémentaires.

Globalement, le modeéle DenseNet201, utilisant la concaténation des trois blocs
internes, offre les meilleures performances pour la classification des images
histopathologiques de cancer du sein, en particulier aux niveaux de
grossissement 40x et 100x. Les résultats montrent une robustesse dans la
détection des échantillons malins, mais des difficultés a distinguer les
échantillons bénins a des niveaux de zoom plus élevés. Cette analyse souligne
I'importance de la fusion des caractéristiques pour améliorer la robustesse du
modeéle et la nécessité d’explorer des techniques supplémentaires pour optimiser

la classification des images a des grossissements plus détaillés.

V.3. Deuxiéme partie
V.3.1. Résolution du déséquilibre des classes avec les ondelettes

Dans cette seconde partie, en décomposant les images bénignes a l'aide de la

transformée en ondelettes discréte, nous avons pu équilibrer les classes et
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enrichir la qualité des données. Cette meéthode améliore l'extraction des
caractéristiques essentielles tout en atténuant le bruit, contribuant ainsi a

optimiser la classification des images histopathologiques du cancer du sein.

V.3.2. Transformée en ondelettes discréte (DWT)

La transformée en ondelettes discréte (DWT) est un outil d'analyse mathématique
qui décrit une image en termes de caractéristiques spatiales et de fréquences.
Elle utilise des filtres avec des fréquences de coupure différentes. L'image est
soumise a un filtre passe-bas, connu sous le nom de « fonction en échelon », et a
un filtre passe-haut, appelé « fonction d'ondelette ». Ces deux filtres sont
appliqués successivement a l'ensemble de l'image. A la sortie, nous obtenons
quatre bandes de fréquence : la premiére bande de basse fréquence (LL)
représente une sorte de moyenne du signal original, appelée image
approximative, ainsi qu'une version réduite et lissée de l'image originale. La
deuxiéme partie comprend trois sous-bandes a haute fréquence, caractérisées
par leur orientation spatiale : HL (horizontale), LH (verticale) et HH (diagonale).
Les images détaillées (HH, HL et LH) sont généralement appelées coefficients
d'ondelettes et mettent en évidence les contours des régions de limage. Ce
processus peut étre répété autant de fois que nécessaire [130]. Alfred Haar a
introduit les ondelettes en 1909 et les a appliquées a la représentation de signaux
unidimensionnels. Stéphane G. Mallat a étendu l'application des transformées
en ondelettes aux images. II a donc introduit un algorithme rapide de
décomposition/reconstruction des ondelettes. Cet algorithme est récursif et
repose principalement sur deux opérations [130].

Filtrage : Convolution d'un signal avec un filtre passe-bas (h0) ou un filtre passe-
haut (g0).

Sous-échantillonnage : Réduit le nombre d'échantillons du signal. En fait, le
sous-échantillonnage horizontal (1:2) d'une image équivaut a supprimer une
colonne sur deux, réduisant ainsi le nombre de pixels par ligne de moitié. La

figure V.11 montre 1'algorithme de MALLAT.
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Figure V.11. Algorithme de MALLAT [123]
L’algorithme de MALLAT peut étre expliqué comme suit :
Soit §jreprésentant l'image approximative au niveau de résolutionj, et
D]’-‘ représentant la sous-bande a l'orientation x (ou x e{H, V,D}) qui est extraite au
niveau de résolution j. Dans l'algorithme, l'image d'entrée §; est d'abord soumise
a un filtrage passe-haut et passe-bas. Les images résultantes sont ensuite sous-
échantillonnées sur les lignes, et chacune des images sous-échantillonnées est a
nouveau filtrée par des filtres passe-haut et passe-bas, ce qui donne un total de
quatre images. Ces quatre images sont a nouveau sous-échantillonnées,
résultant en quatre images de la méme taille : une image d'approximation §j,4 et
trois images de détail D4, ou x {H,V,D} [129], [130].
Pour générer des images en ondelettes a partir d'images histopathologiques de
cancers du sein bénins, nous avons suivi plusieurs étapes. Tout d'abord, les
images d’entrées au format PNG ont été converties en niveaux de gris. Cette
conversion est essentielle car la décomposition en ondelettes est plus efficace sur
des images unidimensionnelles (niveaux de gris) que sur des images en couleur

(tridimensionnelles avec canaux rouge, vert, et bleu).
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En niveaux de gris, les coefficients d’ondelettes permettent de mieux capter les
variations d’intensité, ce qui renforce la visibilité des contours, textures et
structures de limage. Nous avons spécifiquement choisi le filtre d'ondelettes «
biorl.3 », qui appartient a la famille des ondelettes biorthogonales, parce qu'il
offre une meilleure performance en termes de réduction du bruit et de
préservation des détails dans les signaux. Cela le rend particulierement efficace
pour le traitement d'images médicales. Le filtre « bior1.3 » se compose d'un filtre
passe-bas (hg) et d'un filtre passe-haut (gg).

» h, (Filtre passe-bas) : capture les composantes d'approximation (basses
fréquences), qui représentent les variations globales et structures
principales de I'image.

» g, (Filtre passe-haut) : détecte les détails (hautes fréquences), mettant en
évidence les contours, textures et fines structures.

Les coefficients d'ondelettes obtenus sont :
« LL (approximation).
. LH, HL, HH (détails).
La figure V.12 illustre 1'image histologique aprés avoir effectué une transformée

en ondelettes (DWT).

Horizontal detail Vertical detail Diagonal detail

Figure V.12. Exemple Image histologique aprés transformation en ondelettes (DWT) [123]

V.3.3. Méthodologie

Pour classer les images histopathologiques de l'ensemble de données BreakHis,
deux approches complémentaires ont été adoptées : une classification tenant
compte des facteurs de grossissement (afin d’intégrer les variations visuelles liées
a 'agrandissement) et une classification indépendante du grossissement (visant
a renforcer la capacité de généralisation du modeéle). Ces deux stratégies sont

illustrées dans la Figure V.13.
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Grossissement spécifique - classification binaire
40x — Bénin ou Malin
400x Modeéle de classification a 400x Bénin ou Malin

Grossissement Indépendant - classification binaire

40x
100x
200x

400x

Bénin ou Malin

Figure V.13. Approche multi-résolutions pour la classification

Dans un premier temps, 4 % de ’ensemble de données ont été réservés afin de valider
la fiabilité du réseau entrainé. Ensuite, une augmentation des données a été effectuée
sur les 96 % restants a 'aide de la décomposition en ondelettes, afin de corriger le
déséquilibre entre les classes en égalisant la proportion entre la classe minoritaire et la
classe majoritaire. L'ensemble de données a ensuite été mélangé aléatoirement et
divisé en ensembles d’apprentissage et de validation, avec des proportions respectives
de 84 % et 16 %. Enfin, des transformations géométriques ont été appliquées pour
générer plusieurs versions des images, utilisées pour l'extraction des caractéristiques
par DenseNet201.

Le réseau pré-entrainé DenseNet201 a été choisi pour ses capacités d'extraction
de caractéristiques robustes et sa précision supérieure par rapport aux autres
modeles d'apprentissage profond. Pour l'adapter a la tache de classification des
images histopathologiques, un fine-tuning a été réalisé en plusieurs étapes. Tout

d'abord, les caractéristiques ont été extraites et concaténées a différents niveaux
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du modeéle (pool3_pool, pool4_pool, convS_block32_conca) grace a une mise en
commun des moyennes globales (GAP), produisant un vecteur de taille 3072 ou
chaque composante représente une caractéristique de 1'image. Cette opération a
permis d'exploiter pleinement les informations du modéle, de réduire la
dimensionnalité et d'éviter le surajustement lié a l'utilisation de couches Flatten.
La figure V.14 présente une visualisation des différentes cartes de

caractéristiques obtenues a partir des différents niveaux du modéle .
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Figure V.14.Illustration des cartes de caractéristiques obtenues a partir des couches (poolS_pool,

pool4_pool, conv5_block32_conca)

Pour renforcer la régularisation et minimiser le risque de surajustement, des
couches de dropout et de batchNormalization ont été intégrées. Une stratégie de
fine-tuning partiel a été appliquée pour adapter DenseNet aux images de la base
BreakHis. Les couches situées avant le bloc convS_block32 ont été gelées afin de
préserver les caractéristiques générales apprises lors de l'entrainement initial.
Seules les couches finales ont été rendues entrainables afin d'ajuster le modéle
aux speécificités de la classification binaire. La couche de sortie d’origine, concue
pour 1000 classes, a été remplacée par une nouvelle couche dense adaptée aux
deux catégories ciblées. Le modéle a ensuite €té entrainé avec un taux
d’apprentissage réduit. Ce choix a permis d’ajuster les poids des derniéres
couches sans altérer les représentations utiles déja acquises. Sur un total de 18
332 738 parameétres, seuls 294 850 (environ 1.12 Mo) ont été mis a jour. Les 18

037 888 autres (environ 68.81 Mo) ont été conservés. Cette méthode a contribué
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a limiter le surapprentissage tout en améliorant la capacité du modeéele a
distinguer les images bénignes et malignes.

La figure V.15 illustre 'architecture proposée pour la classification des images
histopathologiques, mettant en évidence les étapes principales de l'approche
adoptée.

Extraction de caractéristiques par apprentissage profond (DenseNet 201)

Images d'entrée

(224,224,3)
— M
x 12 DB x 48 DB x 32 DB
pool3_pool pool4_pool conv5_block32_concat
Global Average Global Average Global Average
Pooling 2D Pooling 2D Pooling 2D
256 896§ 19204,
Merge Layer
BatchNormalization
Fine Tuning

Dropout.5

v

Dense (2 classes)

v

Softmax

Malin Benin

Figure V.15. Modéle proposé pour la classification des images histopathologiques.
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Ce processus est détaillé de manieére formelle dans l’algorithme, qui décrit

méthodiquement les différentes phases de traitement, depuis la préparation des

données jusqu'a l'obtention des résultats de classification.

Algorithme : Classification automatisée des images histopathologiques du cancer

du sein.

1: Input:

10

Ensemble de données pour 'entrainement : dfI,
Ensemble de données pour la validation : df2,
Ensemble de données pour le test : df3,

Ep : Epochs,

bch: Batch size,

Lr: Taux dapprentissage,

N : Couverture par taille de lot,

X : Poids du modéle CNN pré-entrainé.

: Début : Entrainement du cadre

: Redimensionner chaque image microscopique des jeux de données a une taille de

224x224 pixels.

: Utiliser des techniques d'augmentation pour augmenter la taille de la base de

données.

: Normaliser les images pour s'assurer que les valeurs sont dans une plage

adaptée au modéle.

: Extraire les caractéristiques des couches inférieures de DenseNet201 :

e Charger le modéle DenseNet201 pré-entrainé,

e Extraire les caractéristiques des couches intermédiaires :
» pool3_pool du bloc dense 2,
» pool4_pool du bloc dense 3,
» conv5_block32 _concat du bloc 4.

: Fusionner les caractéristiques extraites a ’aide d’une couche de concaténation.

: Appliquer une normalisation par lot (batch normalization), un abandon (dropout),

et une fonction SOFTMAX aux couches ajustées du CNN.

: Initialisation du modéle et Fine-Tuning :

Geler les premiéres couches du modéle pré-entrainé pour conserver les
caractéristiques générales.

Débloquer les couches supérieures pour les ajuster aux images
histopathologiques.

: Entrainer le cadre et déterminer les poids initiaux.
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11: Boucle d’entrainement:
for Ep=1 to Ep do
1. Sélectionner N échantillons pour entrainer le modéle sur I’ensemble
d’entrainement df1.
2. Effectuer une propagation avant (forward propagation) et calculer le cout.
3. Effectuer une rétropropagation (backpropagation) et mettre a jour les poids
X.
Fin de la boucle.
12: Validation et Test
e Evaluer les performances du modele sur df2 (validation).
e Tester le modéle sur df3 (test) et mesurer la précision.

13 : Fin de l’algorithme.

V.3.4. Parameétres d’entrainement du modéle

La figure V.16 représente les résultats de la simulation du processus

d'apprentissage. Différents hyperparameétres sont utilisés pour former le cadre

propose.

o Poids formés : Le modéle proposé utilise des poids ImageNet pré-entrainés

au début du réseau.

e Algorithme d'entrainement : Entrainement avec l'algorithme RMSprop.

e Taux d'apprentissage : Taux d'apprentissage initial fixé a 10e-7,

progressivement réduit vers zéro pour améliorer la convergence.

Le ReduceLROnPlateau ajuste le taux d'apprentissage pendant

l'entrainement, basé sur l'évolution de la précision de validation. Si la

précision ne s'améliore pas, le taux d'apprentissage est réduit par un facteur

de 0.2, ce qui peut aider a améliorer la convergence du modéle.

e Fonction de perte : Utilisation de la cross-entropie catégorique, adaptée

pour quantifier la différence entre distributions de probabilité dans un

contexte multi-classe.

e Epoques et taille de lot : Entrainement réalisé sur 100 époques avec une

taille de lot de 35, sans convergence significative constatée apres ces 100

époques.
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e Fonction d'activation : Application de la fonction d'activation SOFTMAX
pour transformer les scores bruts en probabilités, facilitant l'interprétation
des résultats.

e DROPOUT : Pour améliorer les performances du réseau, une couche

d'abandon (DROPOUT) a été appliquée avec une probabilité de P=0,5.
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Figure V.16. Evolution de l'apprentissage de la base de données BreakHis avec/sans grossissement.
V.3.5. Analyse des résultats

L’analyse des résultats par facteur de grossissement révele les excellentes
performances du modéle DenseNet201. Selon la matrice de confusion (Tableau

V.4), les faux négatifs (cas malins classés comme bénins) et les faux positifs (cas
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bénins classés comme malins) sont trés négligeables, variant entre O et 1. Avec
un Fl-score dépassant 98 % pour les deux classes, ainsi qu'une précision et un
rappel également supérieurs a 96 %, le modéle démontre une capacité
remarquable a minimiser les erreurs critiques, susceptibles d’entrainer des
conséquences graves pour les patients.

En ce qui concerne la classification indépendante d’agrandissement, les résultats
démontrent une efficacité remarquable, avec une précision globale atteignant 99
%. Cette approche vise a évaluer les capacités du modéle a classifier correctement
les échantillons sans tenir compte des variations de résolution ou de détail

offertes par les différents grossissements.

La matrice de confusion associée montre un nombre négligeable de faux négatifs
et de faux positifs. Cette observation confirme que le modéle parvient a maintenir
des performances élevées tout en réduisant les erreurs graves, telles que la

classification erronée d’un échantillon malin comme bénin ou vice-versa.

Les métriques de précision, rappel et Fl-score atteignent également 99 %,
soulignant la capacité du modele a extraire efficacement des caractéristiques
pertinentes, indépendamment du grossissement. Ces performances stables
démontrent que le modéle est non seulement robuste, mais également flexible

dans des conditions d’acquisition d’images variées.

La classification indépendante du grossissement présente un intérét particulier
dans des contextes cliniques ou les conditions d’acquisition des images peuvent
varier en fonction de I'’équipement ou des protocoles utilisés. L’absence de la
dépendance au grossissement permet également une meilleure généralisation

sur des ensembles de données diversifiés.
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Matrice de Confusion Métriques de performances
Facteurs Predict—
Benin | Malin | Support | Precision | Recall | F1-Score | Accuracy
d’agrandissement| Réel|
Benin 25 0 25 0.96 1.00 0.98
40x 0.99
Malin 1 54 55 1.00 0.98 0.99
Benin 25 1 26 1.00 0.96 0.98
100x 0.98
Agrandissement Malin 0 58 58 0.98 1.00 0.99
spécifique Benin 25 0 25 0.96 1.00 0.98
200x 0.99
Malin 1 55 56 1.00 0.98 0.99
Benin 24 0 24 0.96 1.00 0.98
400x 0.99
Malin 1 49 50 1.00 0.98 0.99
Aggrandisement Sans facteurs Benin 212 ) 217 1.00 0.98 0.99 0.99
Independant d'agrandissement Malin 0 218 218 0.98 1.00 0.99 ’

Tableau V.4. Rapport de classification de l'approche appliquée a l'ensemble de tests
du cancer du sein.

La Figure V.17 montre que la précision et le RECALL du modele restent élevés
(96 a 100 %) pour les deux classes, quel que soit le facteur de grossissement,
indiquant une excellente capacité a distinguer les échantillons et a détecter les
vrais cas, tout en minimisant les faux négatifs.

Les scores F1 atteignent 99 %, démontrant un équilibre optimal entre précision

et rappel. Ce résultat confirme la robustesse du modéle de classification.

M senin [ Malin Benin Malin
100 g 100 gg 96 100 100 gg 100 gg

40X 100X 200X 400X
F1-SCORE RECALL
Benin [ Malin B senin [l MALIN
o 96 1% 100 gg 9 100 o6
80
60
40
20
0
40X 100X 200X 400X 40X 100X 0X 400X
Accuracy
PRECISION

Figure V.17. Performances par métrique et facteur de grossissement pour la classification binaire

des images BreaKHis
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La courbe ROC présentée par la figure V.18, illustre les excellentes performances
du modéle DenseNet-201 pour la classification des images histopathologiques,
quel que soit le facteur de grossissement (40x, 100x, 200x, 400x) ou l'ensemble
global. Les AUC, atteignant 1,0 pour les grossissements 200x et 400x, et
dépassant 0,99 pour les autres (40x : 0,9985, 100x : 0,9940), ce qui confirme une
discrimination quasi parfaite entre les classes. L'AUC globale de 0,9998 souligne
la stabilité et l'efficacité du modéle, en accord avec les métriques élevées
observées précédemment.
o Faible Taux de Faux Positifs (FPR) : Les courbes montrent que le modéle
maintient un trés faible taux de faux positifs, avec une True Positive Rate (TPR)
élevée deés les premieéres valeurs de FPR, ce qui est idéal pour les diagnostics

meédicaux ou minimiser les erreurs est primordial.

 Robustesse aux niveaux 200X et 400X : Les AUC parfaites pour ces niveaux
montrent que le modele a réussi a extraire efficacement les caractéristiques
pertinentes malgré les détails microscopiques complexes présents a ces

grossissements.

o« Légére diminution a 100X : La baisse marginale de 'AUC a 100X peut
indiquer une difficulté a discriminer certaines caractéristiques intermédiaires

des échantillons bénins ou malins.

Globalement, la courbe ROC confirme l’excellente performance du modéle
DenseNet201 pour la classification des images histopathologiques a tous les
niveaux de grossissement. Les AUC trés élevées (approchant 1) indiquent une
capacité exceptionnelle du modéle a distinguer les classes. Toutefois, 'TAUC
léegérement inférieure a 100X pourrait inciter a des investigations

supplémentaires pour améliorer ce niveau spécifique.
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Figure V.18. Performances de la classification binaire de BreaKHis avec/sans grossissement.

L'analyse des figures montre la grande fiabilité et stabilité du modele pour la

classification

des

images

histopathologiques

du cancer du sein,

indépendamment du facteur de grossissement. Le Tableau V.5 compare notre

approche a d'autres travaux sur la classification des images BreakHis dans des

conditions similaires.

Type de
Reference Accuracy (%) Methode de Classification
Classification
[1]Khan et al. Magnification
1 2021 99 independent-binary Data augmentation+MultiNet
[114] classification
40x: 96.
Saini and 0x: 96.5 . . . w/BatchNormalization, w/DCGAN
100x: 94.0 Magnification specific
2 | Susan (2020) . . . samples and w/hyperparameter
115 200x: 95.5 binary classification unin
Lol 400x: 93.0 &
. Magnification )
3 Liew et al. 97 independent-binary data resampling+DenseNet201 and
1) [11 XGB
(2021) [118] classification GBoost
Tosacar et al Magnification
4 gac ' 98.80 independent-binary Data augmentation/BreastNet
(2020) [131 e
classification
Han et al 40x: 95.8+3.1
' 100x: 96.9£1.9 | Magnificati ific-
S (2017) x a}gm rea 1on‘ Spec,l © Data over-sampling+CSDCNN model
139 200x: 96.7+2.0 | binary classification

400x: 94.91£1.8

6 | Eshun et al.
129

40x: 97
100x: 91
200x: 93.6

Magnification specific
binary classification

DCGAN+ReseNet50
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400x: 90.2
Proposed 40x: 92
7 Without data 100x: 91 Magnification specific Without data
augmentation 200x: 88 binary classification augmentation
400x: 91
Djouima et 40x: 96
] 100x: 95 Magnification specific | DCGAN augmentation+densnet201
8 al. (2022) . . .
113 200x: 88 binary classification blocks
(sl 400x: 92
9 Proposed 99 . Magniﬁcatic?n Wavelet transform data
123 independent binary augmentation+densnet201blocks
classification
40x: 99
Wavelet t fi dat
Proposed 100x: 98 Magnification specific- avele ra'ns orm cata
10 . . . augmentation+densnet201
123 200x: 99 binary classification blocks
400x: 99

Tableau V.5. Comparaison du cadre proposé avec d'autres méthodes sur BreaKHis.

V.4. Conclusion

Dans ce chapitre, nous avons présenté deux approches visant a résoudre le
déséquilibre des classes et a améliorer la classification des images
histopathologiques du cancer du sein issues de la base de données BreakHis.
Ces méthodes combinent des stratégies avancées d’enrichissement des données
avec l'utilisation du modéle DenseNet201 comme extracteur de caractéristiques,
afin d’atteindre des performances optimales pour des applications médicales
sensibles.

- Premiére méthode : DCGAN et DenseNet201

La premiére approche utilise les DCGAN pour générer des images synthétiques
de la classe bénigne. Ces images, associées a une augmentation supplémentaire,
réduisent le déséquilibre des classes et enrichissent la diversité des échantillons.
Grace a la concaténation des blocs internes de DenseNet201, cette approche a
amélioré la précision, malgré qu’elle puisse introduire des biais si les images

générées ne refletent pas fidélement les cas réels.

- Deuxiéme méthode : transformation par ondelettes et DenseNet201
La transformation par ondelettes a permis de résoudre le probléme du
déséquilibre des classes, une limitation majeure affectant la performance des

réseaux d'apprentissage profond appliqués a la classification d'images.
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Contrairement aux travaux précédents, centrées sur la fusion spectrale et
spatiale des caractéristiques, notre méthode utilise la décomposition par
ondelettes pour augmenter les données et réduire les biais liés aux classes
minoritaires. Cela a permet d’optimiser les ressources computationnelles et de

réduire le temps de convolution, tout en maintenant une haute précision.

En outre, la stratégie de concaténation des caractéristiques extraites des
diffétrents blocs de DenseNet201 a capturé efficacement des informations
discriminatives a plusieurs niveaux d'abstraction, ameéliorant ainsi la
généralisation et la robustesse du modeéle. Les résultats montrent une précision
globale de 99 % pour la classification binaire et des précisions entre 98 % et 99

% pour les classifications spécifiques aux difféerents facteurs de grossissement.

Ces résultats soulignent l'efficacité de la transformation par ondelettes et de la
concaténation des caractéristiques pour améliorer les performances des modeéles
d’apprentissage profond en analyse d’images histopathologiques, offrant un

potentiel prometteur pour le diagnostic assisté des maladies.

Les deux méthodes se révélent complémentaires : 'approche DCGAN génére un
volume significatif de données synthétiques, tandis que la transformation par
ondelettes assure une meilleure interprétabilité et préservation des

caractéristiques spatiales et spectrales.
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Conclusion Générale

Cette thése a exploré de maniére approfondie 'application des techniques de
Deep Learning au diagnostic médical, en particulier dans le domaine de la
classification d’images histopathologiques du cancer du sein. Les travaux
présentés mettent en évidence les capacités remarquables des approches basées

sur l'intelligence artificielle a relever des défis complexes, en surmontant les

limitations des méthodes traditionnelles.

Initialement, le contexte global a été établi en illustrant le role croissant de I'TA
dans l'optimisation des systémes de santé. Cette technologie s’est démontrée
essentielle pour améliorer la précision et la rapidité des diagnostics médicaux,
notamment grace a sa capacité a analyser des données massives et variées
comme les images médicales. Le Deep Learning s’est affirmé comme un outil

important dans ce domaine, préparant le terrain pour les chapitres suivants.

Par la suite, une base théorique solide a été fournie en introduisant les concepts
fondamentaux de 'apprentissage profond. Ces concepts, notamment la structure
des réseaux neuronaux, les stratégies de régularisation et les meéthodes
d’optimisation, sont indispensables pour comprendre et appliquer efficacement
les modeles avancés dans des contextes variés. Cette compréhension théorique

a permis d’éclairer les choix architecturaux développés ultérieurement.

L'étude s'est ensuite concentrée, sur les réseaux de neurones convolutifs (CNN),
qui constituent un pilier majeur de la vision par ordinateur. Les CNN se sont
distingués par leur aptitude a extraire des informations a différents niveaux de
granularité, offrant des performances a la pointe de la technologie pour la
classification d’images meédicales. Leur efficacité, combinée a des techniques
telles que l'apprentissage par transfert et 'augmentation des données, a été
démontrée a travers divers modeéles, incluant DenseNet, qui a été retenu pour

nos travaux ultérieurs.

Parallélement, I'un des principaux défis en imagerie médicale a été abordé : le

déséquilibre des classes. Les stratégies présentées, notamment 'augmentation
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de données et l'utilisation de méthodes génératives comme les GAN, ont illustré
des approches novatrices pour enrichir les ensembles de données et améliorer la
fiabilité des modéles. Ces contributions ont été validées par des publications

scientifiques, témoignant de leur impact dans le domaine.

A ce stade de la recherche, deux approches ont été explorées pour répondre aux
défis liés a la classification des images histopathologiques du cancer du sein. La
premieére méthode, combinant DCGAN pour la génération d’images synthétiques
et DenseNet201 comme extracteur de caractéristiques, a permis de corriger
efficacement le déséquilibre des classes. Cette stratégie a montré des
performances globales prometteuses, notamment aux niveaux de zoom inférieurs
(40x et 100x). Toutefois, certaines limites subsistent aux niveaux de
grossissement plus élevés (200x et 400x), en particulier pour la détection des
échantillons bénins, en raison de la complexité des détails microscopiques et de

la représentativité limitée des données générées.

Dans la seconde méthode, une solution compléte a été proposée en utilisant la
décomposition en ondelettes pour l'augmentation des données et le modéle
DenseNet201 pré-entrainé pour l'extraction des caractéristiques. L’augmentation
par décomposition en ondelettes, a permis de traiter le déséquilibre des classes,
qui affecte négativement les performances des réseaux d’apprentissage profond
en classification d’'images. Grace a son extraction multi-échelle, la décomposition
en ondelettes capture les détails a différentes résolutions, conservant ainsi les
informations essentielles comme les contours, les textures et les motifs. De plus,
elle filtre naturellement le bruit, améliorant la qualité des données d'entrée, et

renforcant ainsi la robustesse du diagnostic médical.

L'efficacité d'une approche repose aussi sur l'extraction des caractéristiques les
plus pertinentes. Le modéle d'apprentissage par transfert DenseNet201, a été
choisi pour ses capacités d'extraction de caractéristiques robustes et sa précision
supérieure par rapport aux autres modéles d'apprentissage par transfert

profond.
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Afin d'exploiter pleinement cette capacité, notre approche consistait a concaténer
les caractéristiques extraites des blocs spécifiques du modéle DenseNet201 pre-
entrainé ( pool3_pool , pool4_pool et conv5_block32_conca ) grace a l'application

de GAP (Global Average Pooling).

En intégrant les caractéristiques extraites a différents niveaux, cette stratégie a
permis de réduire les biais et d’augmenter la robustesse des prédictions,

atteignant une précision globale remarquable de 99%.

Pour éviter le surajustement, des couches de régularisation (dropout et
batchNormalization) sont ajoutées pour la régularisation. Enfin, le réseau est
adapté a la classification binaire en incorporant une couche dense (ou couche

entierement connectée) avec une fonction Softmax a la fin de l'architecture.

L’approche proposée, a été mise en ceuvre selon deux taxonomies appliquées a la
classification des images histologiques du cancer du sein colorées a 'H&E : la
classification binaire spécifique au grossissement et la classification binaire
indépendante du grossissement. Les résultats expérimentaux ont atteint une
précision de classification de 99 % pour la classification indépendante du
grossissement et respectivement 99 %, 98 %, 99 % et 99 % pour les différentes

échelles.

Finalement, cette thése contribue significativement au domaine de l'imagerie
meédicale en proposant des solutions robustes et innovantes pour améliorer la

classification des images histopathologiques.

Perspectives

Pour de futurs travaux, nous proposons l'évaluation des capacités de généralisation de
notre modele a d'autres ensembles de données d'images histopathologiques tels que
l'ensemble de données BACH et les ensembles de données couvrant différents types de

cancer.
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