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Résumé 

La détection précoce du cancer du sein est essentielle pour améliorer les chances de survie, mais 

le diagnostic repose encore largement sur des méthodes manuelles, comme la biopsie histologique. 

Ce processus, exigeant en expertise et prenant beaucoup de temps, ralentit le diagnostic et peut 

compromettre la qualité des soins. Pour surmonter ces limitations, l’introduction des systèmes de 

conception assistée par ordinateur (CAO) et des modèles de deep learning a considérablement 

amélioré la détection d’anomalies, notamment dans le cas du cancer du sein. 

Dans cette thèse, l’objectif est de concevoir un modèle de réseaux de neurones profonds capables 

de classer les tumeurs du sein en bénignes ou malignes, en exploitant la base de données 

histopathologiques BreakHis (Breast Cancer Histopathological Database), caractérisée par un 

déséquilibre marqué en faveur des tumeurs malignes. Pour atténuer l’effet du déséquilibre des 

classes, deux approches sont proposées : la génération d’images synthétiques à l’aide de réseaux 

génératifs adverses convolutifs (DCGAN), et la transformation en ondelettes. Dans les deux cas, 

des méthodes classiques d’augmentation de données sont également appliquées. Ces méthodes, 

intégrées dans une architecture DenseNet201, ont permis une amélioration significative de la 

précision dans la classification des tumeurs bénignes et malignes, contribuant ainsi au 

développement d’outils d’aide au diagnostic plus performants. 

Mots-clés : Classification, augmentation de données, apprentissage profond, déséquilibre, 
DCGAN, ondelettes. 

 
 

Abstract 
 

Early detection of breast cancer is essential to improve the chances of survival, but diagnosis still 

relies heavily on manual methods such as histological biopsy. This process, which requires a great 

deal of expertise and is time-consuming, slows down diagnosis and can compromise the quality of 

care. To overcome these limitations, the introduction of computer-aided design (CAD) systems and 

deep learning models has significantly improved anomaly detection, particularly in breast cancer. 

In this thesis, the aim is to design deep neural network model capable of classifying breast tumours 

as benign or malignant, by exploiting the BreakHis (Breast Cancer Histopathological Database) 

histopathological database, characterised by a marked imbalance in favour of malignant tumours. 

To mitigate the effect of class imbalance, two approaches are proposed: the generation of synthetic 

images using Deep Convolutional Generative Adversarial Networks (DCGAN), and wavelet 

transformation. In both cases, standard data augmentation techniques are also applied. These 

methods, integrated into a DenseNet201 architecture, have led to a significant improvement in the 

accuracy of classification of benign and malignant tumours, contributing to the development of more 

effective diagnostic tools. 

 

Keywords: Classification, data augmentation, deep learning, imbalance, DCGAN, wavelets. 
 



 ملخص الأطروحة 

ثل الخزعة  يعد الكشف المبكر عن سرطان الثدي أمراً حيوياً لتعزيز فرص النجاة، ومع ذلك، لا يزال التشخيص يعتمد بشكل كبير على الطرق اليدوية، م

اية الصحية. ولتجاوز  النسيجية. إن هذه العملية، التي تتطلب خبرة عالية وتستغرق وقتاً طويلاً، تؤدي إلى إبطاء التشخيص وقد تؤثر سلباً على جودة الرع

في تحسين كشف الاختلالات   (Deep Learning) ونماذج التعلم العميق (CAD) هذه العقبات، ساهم إدخال أنظمة التشخيص بمساعدة الحاسوب

 .بشكل ملحوظ، لا سيما في حالات سرطان الثدي

اعدة البيانات  تهدف هذه الأطروحة إلى تصميم نموذج للشبكات العصبية العميقة قادر على تصنيف أورام الثدي إلى حميدة أو خبيثة، وذلك بالاعتماد على ق 

، والتي تتميز بعدم توازن ملحوظ لصالح الأورام  BreakHis (Breast Cancer Histopathological Database)النسيجية المرضية  

 لتفافية العميقةالخبيثة. وللتخفيف من حدة هذا التفاوت بين الفئات، تم اقتراح منهجين: توليد صور اصطناعية باستخدام الشبكات التنافسية التوليدية الا

(DCGAN)والتحويل بالموجات ، (Wavelet Transformation). وفي كلتا الحالتين، تم تطبيق أساليب كلاسيكية لتعزيز البيانات (Data 

Augmentation).   أدت هذه الأساليب، المدمجة في هندسةDenseNet201  ،إلى تحسين جوهري في دقة تصنيف الأورام الحميدة والخبيثة ،

 .مما يساهم في تطوير أدوات أكثر كفاءة للمساعدة في التشخيص الطبي

. التحويل بالموجات الشبكات التنافسية التوليدية الالتفافية العميقة،  عدم توازن البيانات،  التعلم العميق،   البيانات،  تعزيز  التصنيف،  :المفتاحية الكلمات 
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Introduction Générale 

Au cours des dernières décennies, le domaine de la santé a connu des 

avancées technologiques sans précédent, transformant profondément les 

méthodes de diagnostic, de traitement et de gestion des maladies. Parmi ces 

avancées, l’intelligence artificielle (IA) et, plus particulièrement, 

l’apprentissage profond (Deep Learning), ont émergé comme des outils 

puissants capables de relever les défis complexes à partir de données 

volumineuses et variées.  

Grâce à ces capacités, il surpasse les méthodes traditionnelles dans des 

domaines tels que la reconnaissance d’images, la classification, la prédiction 

et l’analyse des données. En médecine, ces technologies se sont avérées 

particulièrement prometteuses pour l’analyse des images médicales, 

permettant d’identifier des pathologies avec une précision souvent 

comparable, voire supérieure, à celle des experts humains.  

Les recherches et les travaux récents s’intéressent à appliquer l’apprentissage 

profond dans le diagnostic du cancer du sein, l’une des principales causes de 

mortalité chez les femmes dans le monde, avec 2,3 millions de cas féminins et 

670 000 décès recensés en 2022 selon l’OMS. Malgré les progrès médicaux, 

les erreurs de diagnostic et les retards de détection restent des défis majeurs, 

compromettant les chances de survie des patientes. 

1. Problématique 

Le diagnostic du cancer du sein repose principalement sur l'analyse d'images 

histopathologiques, une tâche qui nécessite l'expertise de pathologistes pour 

identifier les anomalies cellulaires. Cependant, cette évaluation reste 

subjective, dépend fortement du niveau d'expérience du spécialiste et peut 

être influencée par la variabilité des échantillons. Avec l'essor du deep 

learning, des modèles de classification automatique des images 

histopathologiques ont été développés pour améliorer la précision du 

diagnostic. Néanmoins, plusieurs défis persistent :  

- Le déséquilibre des classes dans les bases de données : Les bases de 

données médicales, comme BreaKHis, sont souvent déséquilibrées, avec 

une prédominance d’échantillons appartenant à certaines classes (ex. : 
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tissus malins), ce qui peut biaiser les performances des modèles 

d’apprentissage profond. 

- Complexité et variabilité des images : Les structures tissulaires 

présentent une diversité importante, avec des variations entre malades et 

des différences subtiles entre les tissus bénins et malins. 

- L’extraction optimale des caractéristiques pertinentes.  

Face à ces défis, une question clé émerge : Comment développer une approche 

basée sur l’apprentissage profond capable d'améliorer la classification des 

images histopathologiques du cancer du sein, tout en prenant en compte les 

défis liés à la qualité des données, à l'extraction des caractéristiques et à la 

robustesse du modèle ? 

2. Objectifs 

Cette thèse s’articule autour des objectifs suivants : 

- Développer une méthode innovante pour surmonter le déséquilibre des 

classes dans les ensembles de données d’images histopathologiques, en 

explorant des techniques de prétraitement, telles que la transformation 

par ondelettes. 

- Exploiter les capacités des modèles pré-entraînés, tels que DenseNet201, 

pour améliorer l’extraction des caractéristiques discriminatives et capturer 

des informations pertinentes à différents niveaux d’abstraction. 

Cette thèse ambitionne d’apporter une contribution significative à la recherche 

en apprentissage profond appliqué au diagnostic médical, en proposant des 

solutions concrètes et performantes pour l’analyse des images 

histopathologiques. Ces travaux visent à renforcer le potentiel des 

technologies d’IA dans les environnements cliniques, notamment pour la 

détection précoce et la prise en charge du cancer. 

 

3. Structure de la thèse 

La présente thèse est constituée de cinq chapitres présentés comme suit : 

 

Le premier chapitre sera consacré à l'évolution de l'intelligence artificielle (IA) 

et à son exploitation croissante dans le diagnostic médical. 
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Dans le deuxième chapitre, nous aborderons les concepts fondamentaux de 

l'apprentissage profond, en mettant l'accent sur la structure des réseaux 

neuronaux, les approches de régularisation et les méthodes d'optimisation. 

 

Dans le troisième chapitre, nous approfondirons l'étude des réseaux de 

neurones convolutifs (CNN) , qui constitue un pilier majeur de la vision par 

ordinateur. Nous y examinerons leur architecture en détail, en mettant 

l'accent sur la manière dont les CNN sont conçus pour extraire des 

caractéristiques visuelles. De plus, nous aborderons le concept de « transfert. 

Learning », une technique qui permet d'adapter un modèle pré-entraîné à de 

nouvelles tâches, facilitant ainsi l'application des CNN dans des domaines 

spécifiques, tels que la classification d'images médicales. 

 

Dans le quatrième chapitre, nous présenterons la base de données BreakHis 

utilisée pour cette étude, qui présente un déséquilibre de classe et un nombre 

d'échantillons réduits. Nous explorons les défis associés à ces problèmes, 

notamment les biais potentiels dans les résultats du modèle. Ce chapitre 

passe en revue les différentes solutions proposées dans la littérature pour 

contourner ces problèmes, telles que les techniques de rééchantillonnage, et 

l'augmentation de données. 

 

Nous présenterons dans le cinquième chapitre, les résultats expérimentaux 

obtenus pour la classification des images histopathologiques du cancer du 

sein, en mettant l'accent sur les méthodes utilisées pour améliorer l'efficacité 

de notre modèle proposé.  

 

Enfin, cette thèse se terminera par une conclusion générale, accompagnée de 

perspectives éventuelles. 
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Chapitre I 

L'IA dédiée au diagnostic médical 

 

I.1. Introduction 

Le diagnostic représente l'une des tâches primordiales des cliniciens, car les 

erreurs dans ce domaine ont une incidence significative sur les taux de 

maladie et les pertes de vies humaines, affectant environ 10 à 15 % des cas 

en raison de diagnostics incorrects ou tardifs [1]. Améliorer la précision des 

diagnostics demeure un défi capital pour les systèmes de santé à l'échelle 

mondiale [2]. Initialement, la recherche se concentrait sur des méthodes 

statistiques, mettant l'accent sur les données quantitatives mais limitant la 

prise en considération des facteurs contextuels et qualitatifs. Les orientations 

de recherche ont évolué par la suite vers des approches prenant en compte 

des aspects cliniques, comportementaux, sociaux et psychologiques. De nos 

jours, les diagnostics médicaux bénéficient de l'intégration de diverses sources 

d'informations telles que l'imagerie médicale et les avancées technologiques, 

ce qui permet une prise en charge plus précise des patients [3]. Cette 

transformation est en grande partie liée à l’émergence de l'intelligence 

artificielle (IA), une branche de l'informatique dédiée à la conception de 

systèmes aptes à simuler certaines capacités humaines telles que la 

perception, la compréhension du langage, le raisonnement, et la prise de 

décision. L’IA soutient les praticiens dans des tâches administratives, la 

documentation clinique, la sensibilisation des patients, ainsi que dans des 

applications spécifiques comme l'analyse des images médicales, le suivi des 

dispositifs médicaux et des patients. La figure I.1 met en évidence neuf 

applications essentielles de l'intelligence artificielle dans le domaine médical 

[4]. Ce chapitre offre un aperçu général sur l'histoire et les fondements de l'IA 

dans le diagnostic médical. 

 

I.2.Histoire de l’IA 

Au cours des années 1950 et 1970, les premières explorations de l'IA ont été 

marquées par des contributions importantes de chercheurs tels qu'Alan 

Turing et John McCarthy [5][6].  
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Figure I.1. Contributions de l’intelligence artificielle au domaine médical. 

 

L'article de Turing de 1950 a posé les bases de l'IA en définissant l'objectif de 

reproduire l'intelligence humaine dans des machines [7][8]. L'intelligence 

artificielle a été formellement introduite lors de la conférence de Dartmouth 

en 1956, Un événement marquant le début de l'IA moderne, sous la direction 

de chercheurs renommés tels que John McCarthy et ses collaborateurs [8][9]. 

Au cours des années ultérieures, les chercheurs ont développé des 

programmes permettant aux ordinateurs d'exécuter des tâches faisant appel 

à des capacités cognitives, notamment les échecs, la détection de formes et 

l’analyse du langage naturel. 

Toutefois, les progrès ont été freinées, en raison des limites des capacités de 

traitement et des systèmes de stockage des ordinateurs de l'époque [10]. 

L'émergence de l'apprentissage automatique dans les années 1980 a redonné 

un vif intérêt à l'IA, facilitant l'apprentissage des ordinateurs à partir de 

données sans être programmes de façon directe. Ce développement a favorisé 

des avancées marquantes, en particulier dans des secteurs comme la 

reconnaissance vocale et la vision par ordinateur [11]. 
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Au cours des dernières décennies, l'IA a enregistré un développement rapide 

en raison de l'énorme volume de données, l'optimisation des performances des 

systèmes de traitement (la puissance de calcul) et l'essor des réseaux de 

neurones profonds. Ces avancées ont permis à l'IA d'accomplir des fonctions 

complexes telles que la traduction automatique, la conduite autonome et la 

reconnaissance faciale [12]. Ces dernières années, le domaine de l’IA a 

enregistré une évolution spectaculaire, dans plusieurs secteurs notamment la 

santé, les transports, la finance, le marketing, ou encore l'éducation. Parmi 

les nombreuses applications concrètes, on peut citer les assistants vocaux 

(Siri et Alexa), les véhicules autonomes, ainsi que les robots collaboratifs, qui 

illustrent l'intégration croissante de l'IA dans la vie quotidienne. La 

technologie ne cesse de se développer rapidement, ouvrant la voie à des 

innovations inédites et à une multiplication des usages potentiels [13]. Une 

chronologie simplifiée des étapes importantes de l’IA est présentée dans la 

figure I.2. 

 

Figure I.2. Brève chronologie de l'histoire de l'IA. 

 

I.3.Histoire de l'IA dans la santé  

L'avènement de l'IA dans le domaine médical a pris racine dans les années 

1960- 1970, avec le développement de MYCIN par Edward Shortliffe et son 

équipe à l'Université Stanford marquant ainsi le début la première génération 

d'IA en médecine [14]. Ce système expert visait à identifier les bactéries 

responsables d'infections graves (bactériémie, méningite), et à recommander 
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des antibiotiques. Son nom est dérivé du suffixe “-mycin” utilisé pour de 

nombreux antibiotiques [8]. MYCIN utilisait une base de connaissances 

d'environ 600 règles. Il interrogeait le médecin exécutant le programme via 

une série de questions simples (oui/non ou textuelles). A la fin, il fournissait 

une liste de bactéries suspectes classées par probabilité de diagnostic, avec 

diagnostics expliqués et traitements médicamenteux adaptés [1]. 

Parallèlement, l'utilisation de techniques d'IA, notamment les réseaux 

neuronaux, pour modéliser des processus biologiques complexes, ainsi que 

l'émergence des techniques de reconnaissance de formes, ont ouvert la voie 

aux systèmes de diagnostic assisté par ordinateur (DAO) en radiologie et en 

pathologie [15]. 

Les avancées réalisées au cours des années 1980 dans les domaines des 

arbres de décision, des réseaux neuronaux et des machines à vecteurs de 

support ont marqué un tournant pour l'intégration de l'IA en médecine, 

contribuant ainsi à une amélioration significative du diagnostic et du 

traitement des maladies [16]. 

Durant les années 1990, l'IA a largement contribué à l'analyse d'images 

médicales, utilisant des réseaux de neurones artificiels et d'autres techniques 

d'apprentissage automatique (machine Learning) pour détecter et classer les 

anomalies, améliorant ainsi la précision des diagnostics radiologiques 

[17][18]. Parallèlement, elle a été employée pour évaluer les risques de 

maladies chez les patients en analysant leurs antécédents médicaux et 

d'autres données cliniques, permettant aux médecins de détecter les cas à 

risque élevé et d'instaurer des actions préventives adaptées [19][20]. Dans le 

cadre des études cliniques, l'IA a accéléré l'analyse de vastes ensembles de 

données, identifiant des schémas et des tendances essentiels pour la 

découverte de médicaments et la compréhension des maladies, contribuant 

ainsi à l'avancement des connaissances médicales [21][22]. 

Les avancées des années 1990 se sont poursuivies durant les années 2000, 

avec l'introduction de robots dotés d'algorithmes d'IA. Ces robots ont été 

utilisés dans le domaine médical pour réaliser des interventions chirurgicales 

telles que le traitement de la tumeur pulmonaire, de la membrane interne de 

l'utérus, des organes prostatiques et coliques [4]. 
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Depuis la dernière décennie (2010), les techniques de Deep Learning (DL), en 

particulier les CNN (réseaux de neurones convolutifs), ont connu une adoption 

croissante dans de nombreux secteurs de la santé. En radiologie, en 

pathologie et en dermatologie, les CNN ont été massivement intégrés pour des 

tâches de reconnaissance d'images [23]. De plus, dans le cadre du traitement 

du langage naturel (Natural Language Processing), les CNN sont utilisés pour 

analyser les dossiers électroniques de santé, ouvrant ainsi de nouvelles 

perspectives pour l'exploitation des données textuelles en santé [24]. 

Dans les années 2020, l'intelligence artificielle (IA) continue de se développer 

dans les domaines de la médecine de précision, de la découverte de 

médicaments et de la génomique. On assiste également au développement de 

robots et d'assistant virtuels alimentés par l'IA pour prendre en charge les 

patients et faciliter les consultations à distance (télé-médecine) [25]. 

 

I.4. Application de IA dans le diagnostic médical  

L'exploitation de l'IA dans les systèmes de diagnostic médical, présente un 

immense potentiel pour améliorer la précision, la rapidité et l'efficacité des 

diagnostics, tout en réduisant les erreurs humaines. En analysant des 

volumes importants de données (images médicales, tests sanguins et des 

antécédents), elle fournit des diagnostics à la fois fiables et précis. Cette revue 

présente quelques travaux publiés sur les méthodes d'apprentissage profond 

et examine leurs succès dans le diagnostic. 

Diwakaran et al ont développé un modèle, de diagnostic du cancer du sein 

basé sur la BCP-TL (Breast Cancer Prognosis Based Transfer Learning) à l'aide 

d'architectures CNN telles que Xception et Channel Boosted CNN sur la base 

de données MIAS (Mammographic Image Analysis Society). Ce modèle a 

démontré d'excellentes performances, avec une précision globale de 98,96% 

grâce à la combinaison de Xception et de Channel Boosted CNN [26].  

Izadkhah et al, ont proposé un modèle de deep learning pour la classification 

du cancer du sein, atteignant une précision élevée sur des images 

échographiques et histopathologiques. Inspiré des architectures GoogLeNet et 

ResNet, ce modèle intègre des connexions courtes, des convolutions 1×1 pour 

réduire les coûts de calcul et améliorer les performances, ainsi que 
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l'informatique granulaire pour une extraction fine des caractéristiques. Les 

précisions obtenues s'élèvent respectivement à 93 % et 95 % [27]. 

Khan et Elfouly ont développé un modèle de diagnostic des maladies 

cardiovasculaires basé sur un réseau neuronal convolutionnel 

unidimensionnel (1D CNN), utilisant des paramètres cliniques issus du 

NHANES (National Health and Nutrition Examination Survey). Pour pallier le 

déséquilibre des données, ils ont appliqué des techniques de sous-

échantillonnage et de pondération des classes. Les résultats indiquent que le 

modèle 1D CNN surpasse les algorithmes d'apprentissage automatique 

traditionnels en termes de précision ainsi que de réduction des erreurs 

positives et négatives [28].  

Hassan et al ont développé ont conçu un modèle de diagnostic du COVID-19 

spécifiquement destiné aux patients cardiaques, en s'appuyant sur 

l'apprentissage profond et l'analyse d'images ECG. Ce modèle combine des 

techniques d'apprentissage par transfert et ensembliste, intégrant les 

architectures pré-entraînées VGG-19, AlexNet et ResNet-101. L'utilisation de 

techniques d'augmentation des données a permis d'améliorer ses 

performances, atteignant une précision globale de 99,1 %, une sensibilité de 

99 % et une précision de 100 %. Cette étude met en avant l'importance de 

modèles adaptés à des populations spécifiques pour optimiser le diagnostic 

malgré des données limitées [29].  

L’article de Hameed et al présente une méthode basée sur un ensemble de 

modèles d'apprentissage profond pour classifier les images histopathologiques 

du cancer du sein en carcinome (malin) et non-carcinome (bénin ou normal). 

En utilisant des variantes des architectures VGG16 et VGG19, les auteurs ont 

combiné les prédictions des modèles ajustés via une stratégie d'ensemble. 

Cette méthode a atteint une précision globale de 95,29 % et une sensibilité de 

97,73 % pour le carcinome, démontrant son efficacité [30]. 

L’article de Wang et al présente une méthode de classification de la sclérose 

en plaques basée sur DenseNet-201 et une stratégie de facteur 

d'apprentissage composite (CLF). En exploitant le transfert d'apprentissage, 

cette approche optimise l'entraînement des couches et utilise un pré-calcul 

pour réduire les besoins en stockage. Avec une sensibilité de 98,27 %, une 

spécificité de 98,35 %, et une précision de 98,31 %, DenseNet-201 (réglage D) 



Chapitre I : L'IA dédiée au diagnostic médical  

7 
 

surpasse les méthodes classiques et avancées. Les auteurs soulignent son 

efficacité et proposent d'explorer des modèles combinés et d'autres modalités  

[31].  

Suganya et al, ont proposé une approche de diagnostic automatique et 

interprétable de la maladie de Parkinson (PD), en combinant l'imagerie par 

résonance magnétique quantitative et les images pondérées T1. Leur pipeline 

se compose de deux étapes : (1) une segmentation des régions d'intérêt 

cérébrales (noyaux gris profonds) à l'aide d'un CNN (réseau de neurones 

convolutifs), et (2) un modèle de classification basé sur un CNN avec un 

mécanisme d'attention anatomique pour différencier les patients atteints de 

PD des sujets sains. Les résultats obtenus montrent une précision de 92,0 % 

et une aire sous la courbe (AUC) de 0,901 pour le diagnostic de la PD. 

L'utilisation du mécanisme d'attention anatomique renforce l'interprétabilité 

du modèle en identifiant les régions cérébrales les plus pertinentes pour le 

diagnostic, ce qui en fait un outil réellement applicable en clinique pour la 

détection précoce et le suivi de la maladie [32]. 

Yoo et al ont proposé un algorithme basé sur l'apprentissage profond (DL) pour 

diagnostiquer la myopathie et la neuropathie à partir des résultats 

d'électromyographie (EMG) à l'aiguille. Les chercheurs ont développé un 

réseau neuronal convolutif unidimensionnel et ont comparé les performances 

de leur modèle avec celles de six médecins expérimentés. Les résultats ont 

révélé que l'algorithme basé sur le DL a obtenu une Accuracy de 0,875, un 

Recall de 0,820 et une spécificité de 0,904, tandis que les médecins ont obtenu 

une précision moyenne de 0,694, une sensibilité de 0,537 et une spécificité de 

0,773. L'étude suggère que l'apprentissage profond (DL) pourrait jouer un rôle 

clé dans le diagnostic des maladies neuromusculaires, offrant une méthode 

plus précise et efficace pour interpréter les données EMG [33]. 

Podder et coll. ont une approche développée basée sur le deep learning pour 

détecter la COVID-19, la pneumonie et distinguer les patients normaux à 

partir d'images radiographiques pulmonaires. En utilisant DenseNet-169 et 

DenseNet-201 optimisés avec transfert d'apprentissage, prétraitement et 

augmentation des données, ils ont obtenu des précisions de 91,95 % et 92,35 

%, surpassant les modèles existants. Cette étude met en évidence l'impact de 
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l'optimisation des architectures et des techniques d'augmentation sur le 

diagnostic précoce des maladies pulmonaires.[34]. 

Sfayyih et coll. ont réalisé une revue complete des architectures de réseaux de 

neurones profonds basées sur l'analyse acoustique pour le diagnostic des 

maladies pulmonaires. Leur travail aborde le prétraitement des signaux 

acoustiques, incluant la détection des bruits de fond et la normalisation, ainsi 

que l'extraction de caractéristiques telles que les Coefficients cepstraux en 

fréquence de Mel (MFCC)  et les transformés en ondelette. Ils comparent 

ensuite diverses architectures de réseau, comme VGG, ResNet, LeNet, 

Inception Net et AlexNet, en se référant à des bases de données telles que RSD 

ICBHI 2017, HF_Lung_V1 et Respiratory-Database@TR. Les auteurs 

soulignent également les défis tels que le déséquilibre et la qualité des 

données, ainsi que les perspectives pour des applications cliniques. Leur revue 

inclut des exemples de performances des modèles et discute des méthodes 

d'augmentation des données, tout en mettant en lumière les avantages et 

inconvénients des DNN par rapport à d'autres méthodes de classification. [35]. 

L'article de Podder propose un nouveau cadre de deep learning (DL) pour 

l'analyse des maladies pulmonaires infectieuses, y compris le COVID-19 et la 

pneumonie, à partir de scanners thoraciques et d'images radiographiques 

(CXR). Le modèle proposé, appelé LDDNet, est basé sur DenseNet201 optimisé 

avec des couches supplémentaires de pooling global 2D, des couches denses 

et de dropout, et la normalisation par lot. LDDNet a été évalué sur trois 

ensembles de données multiclasse de maladies pulmonaires provenant de 

sources open access. Les résultats montrent que LDDNet offre une meilleure 

performance que les modèles ResNet152V2 et XceptionNet existants pour la 

détection de COVID-19 et la pneumonie. LDDNet peut être considéré comme 

un modèle potentiel pour la classification multiclasse des images de scanners 

thoraciques et radiographiques pour le diagnostic des maladies pulmonaires 

infectieuses [36]. 

Solano et al ont présenté une comparaison de différentes architectures de 

réseaux de neurones pour la segmentation des vaisseaux sanguins rétiniens 

dans le cadre du diagnostic de la rétinopathie diabétique. Les architectures 

étudiées comprennent U-Net (CNN), UNETR et Swin-UNET et ConvMixer).  
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Les résultats montrent que ConvMixer, avec moins de paramètres, atteint les 

performances les plus remarquables sur les plans de la précision et de la 

robustesse. Les auteurs concluent que les architectures hybrides comme 

ConvMixer peuvent offrir un bon compromis entre complexité et performance 

pour les tâches de segmentation d'images médicales [37]. 

Aslan et al ont développé une approche originale fondée sur l'apprentissage 

profond permettant la prédiction du diabète en convertissant les données 

cliniques numériques en images. L'étude utilise l'algorithme de sélection de 

caractéristiques Relief pour déterminer l'importance des caractéristiques et les 

convertir en images. Des techniques d'augmentation de données sont 

appliquées sur les images pour améliorer la diversité et la robustesse de 

l'ensemble de données. Les modèles CNN pré-entraînés ResNet18 et ResNet50 

sont utilisés pour extraire des paramètres profonds à partir des images, qui 

sont ensuite fusionnées et classées avec un algorithme SVM pour prédire le 

statut du diabète. Les performances de différentes architectures CNN et de 

différentes fonctions noyau SVM sont comparées pour évaluer la méthode 

proposée. Les résultats révèlent que la méthode atteint une précision de 

classification de 92,19 %, dépassant les résultats de la plupart des études 

antérieures sur le même ensemble de données [38]. 

Xu et al ont présenté un modèle de prédiction de diabète innovant qui combine 

l'apprentissage profond et l'intégration de représentations de connaissances 

médicales. Il construit un graphe de connaissances en utilisant les plages 

normales des indices de bilan de santé et les valeurs de détection, puis utilise 

la représentation de connaissances pour encoder ces données en vecteurs. 

Ces vecteurs sont ensuite intégrés dans un modèle d'apprentissage profond 

utilisant un mécanisme d'auto-attention et des réseaux de neurones 

convolutifs (CNN) pour extraire les paramètres pertinents. Les résultats 

montrent une amélioration significative en termes d'exactitude et de rappel 

par rapport aux méthodes de machine Learning et d'apprentissage profond 

existantes. L'étude de l'impact des changements de la dimension des vecteurs 

de représentation des connaissances montre que la performance est optimale 

avec une dimension de 256. Enfin, la visualisation des poids de l'auto-

attention illustre l'interprétabilité du modèle et sa capacité à capturer les 

relations pertinentes entre les indices de bilan de santé et les valeurs de 
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détection. Cette approche novatrice offre des performances améliorées et une 

interprétabilité accrue pour la prédiction du diabète, avec des implications 

importantes pour les applications médicales et la recherche en intelligence 

artificielle [39]. 

Aptekarev et al ont présenté une méthode innovante de diagnostic de l'asthme 

bronchial basée sur l'analyse de sons respiratoires en utilisant des techniques 

d'apprentissage profond. Les chercheurs ont constitué une base de données 

anonyme comprenant des enregistrements de sons respiratoires de patients 

atteints de diverses maladies respiratoires et de volontaires en bonne santé. 

Les enregistrements ont été capturés à quatre points clés : dans la cavité 

buccale, au-dessus de la trachée, sur la poitrine et sur le dos. Le logiciel 

développé fournit des classifications binaires, notamment "malade/sain" et 

"patient asthmatique/non-patient asthmatique et sain", en utilisant des 

modèles d'apprentissage profond entraînés sur la base de données. Les 

métriques de sensibilité, de spécificité et d'exactitude pour les deux 

classifieurs ont été évaluées sur des échantillons de test allant de 50 

enregistrements dans le groupe de contrôle (personnes en bonne santé) à 50 

enregistrements dans le groupe de comparaison (patients atteints de maladies 

respiratoires), avec des résultats allant de 82% à 93% [40]. 

 

I.5.Approches de classification des images du cancer du sein 

Dans le domaine de la classification des images histopathologiques du cancer 

du sein, plusieurs études ont été réalisées en se concentrant sur des modèles 

d’apprentissage profond . Ces travaux utilisent des approches d'apprentissage 

profond pour relever des défis complexes, tels que le déséquilibre des classes 

et la variabilité des données. 

Afin d'établir une comparaison pertinente avec les contributions de cette 

thèse, un tableau récapitulatif est présenté ci-dessous. Il met en évidence Le 

prétraitement des données, les modèles appliqués et les performances 

obtenues. 
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Reference Prétraitement des 
données 

Méthode/Modèle Performances Conclusion 

Das et al. 

[41]. 
 

- Décomposition des 

images avec EWT et 

VMD.  

- Utilisation de trois 

CNN pour 

classificateurs de 

base. 

- Ensemble avec 

MLP combinant 

les sorties des 

trois CNN. 

- Précision : 98.08% 

sur la base de 

données de cancer 

du sein 

histopathologique. 

- Méthode 

d'apprentissage 

profond en ensemble 

efficace pour la 

détection du cancer du 

sein, améliorant les 

performances avec 

EWT et VMD. 

Khan et 
al. (2022) 

[42] 

- Plusieurs 

techniques 

d'augmentation des 

données sont 

appliquées  

- le nombre d'images 

dans le dataset 

BreakHis est passé 

de 7909 à 54403. 

- Utilisation de 

plusieurs 

modèles CNN 

pré-entraînés 

suivie d'une 

fusion de ces 

caractéristiques 

pour la 

classification. 

- 99% de précision 

pour la 

classification 

binaire. 

- Aire sous la 

courbe ROC 

(AUC) : 0.993. 

- Le cadre MultiNet a 

montré une 

Précision élevée 

dans la classification 

des images, 

 

Liew et al. 
(2021) [43] 

- Le 

rééchantillonnage 

corrige le 

déséquilibre des 

classes. 

- La normalisation 

des couleurs 

atténue les 

variations. 

- Les images sont 

redimensionnées et 

augmentées 

- Amélioration de 

l'apprentissage 

en utilisant 

DenseNet . 

-  XGBoost 

remplace la 

couche 

entièrement 

connectée 

d'origine dans 

DenseNet201. 

- La méthode 

combine 

l'apprentissage 

en profondeur et 

XGBoost pour 

une 

classification 

efficace, avec 

une précision de 

97 %. 

- Une précision et une 

généralisation 

améliorées. 

- Le rééchantillonnage 

et l'augmentation 

des données 

permettent de 

corriger efficacement 

les biais et le 

surajustement. 

- La robustesse des 

tâches binaires est 

démontrée.  

Hiren et 
al.(2020) 
[44] 

- Les images ont été 

divisées en patches de 

512x512 pixels avec 

un chevauchement de 

50 %.  

- Des transformations 

telles que la rotation, 

mirroring vertical et le 

décalage ont été 

appliquées. 

- Une structure 

CNN qui intègre 

des 

caractéristiques 

spatiales et  

spectrales 

obtenues à partir 

d'une 

transformation en 

ondelettes  

-  La normalisation 

par lots est 

appliquée après 

chaque couche 

pour améliorer la 

convergence. 

- La méthode 

Proposée a atteint 

Une précision 

Moyenne de 

97,58 %  

 
 

- L'intégration des 

Caractéristiques 

Spectrales et 

spatiales améliore 

considérablement la 

précision de la 

classification. 

Saini and 
Susan 
(2020) [45] 

Redimensionnées à une 
taille uniforme de 224 × 
224 × 3 (RVB) à l'aide 

d'une interpolation 
bilinéaire 
Méthode DCGAN pour 
générer des données 

synthétiques 

- Combinaison de 

DCGAN pour 

l'augmentation des 

données de la 

classe minoritaire 

et du transfert 

d'apprentissage 

avec le modèle 

pré-entraîné 

VGG16. 

- Une précision de 

96,5 %  
- L’approche de 

transfert 

d'apprentissage 

associée à 

l'augmentation des 

données avec 

DCGAN est efficace 

pour traiter les 

déséquilibres dans 

la classification des 

images 

histopathologiques. 
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I.6. Conclusion  

Ce chapitre a exploré l'application de l'intelligence artificielle (IA) au diagnostic 

médical, soulignant son potentiel à améliorer la précision et la rapidité des 

diagnostics, tout en dépassant les limites des approches traditionnelles. En 

intégrant des données variées comme l'imagerie médicale, l'IA contribue à 

l'optimisation des systèmes de santé, de l'analyse d'images au suivi des 

patients. Parmi ses avancées, le Deep Learning s'impose grâce à sa capacité à 

traiter de grandes quantités de données et à extraire automatiquement des 

paramètres pertinents. Les prochains chapitres approfondiront ce domaine et 

son impact croissant sur le diagnostic médical. 
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Chapitre II 

Concepts de base pour l’apprentissage profond 

II.1.Introduction 

Le Deep Learning également connu sous le nom d’apprentissage profond, est 

une avancée dans le domaine de l’apprentissage automatique (ML), qui fait 

participer tous les chercheurs grâce á son efficacité dans le traitement et la 

résolution de problèmes complexes á travers plusieurs domaines, notamment 

le traitement d’images, la reconnaissance vocale et le traitement du langage 

naturel [46][47]. Le succès de cette technologie repose principalement sur 

deux piliers : la disponibilité massive de données ("big data") et L'expansion 

significative des capacités de traitement des unités graphiques (GPU). Ces 

GPU permettent aujourd'hui l'entraînement de réseaux neuronaux profonds, 

composés de multiples couches cachées, qui peuvent capturer des 

représentations hiérarchiques et abstraites des données. En effet, cette 

capacité à traiter des volumes de données énormes tout en apprenant des 

caractéristiques complexes fait du Deep Learning l’une des technologies les 

plus adaptées pour relever les défis modernes de l'intelligence artificielle [48]. 

La figure II.1 illustre trois facteurs qui ont contribué à l'essor du Deep 

Learning : la disponibilité des données d'apprentissage en grandes quantités, 

la puissance des GPU, et l'accès aux frameworks open-source tels que 

TensorFlow et PyTorch, offerts par des géants technologiques comme Google, 

Facebook, et Microsoft. Ces outils ont démocratisé l'usage de l'apprentissage 

profond, ouvrant la voie à des innovations dans des domaines diversifiés [49]. 

 

 

 

 

 

 

 

 

 

Figure II.1. Facteurs clés pour l'essor du Deep Learning[48]. 
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Ce chapitre, examine en détail les composants essentiels du Deep Learning et 

leur rôle dans la résolution de problèmes complexes. Il explore l'architecture 

des réseaux neuronaux profonds, en expliquant comment ils sont construits 

et comment ils fonctionnent. 

II.2. Définition de L’apprentissage profond 
 

L’apprentissage profond (AP), est une branche de l’IA (Intelligence artificielle] 

permettant aux ordinateurs d'acquérir des connaissances et de traiter de 

manière autonome des problèmes complexes en utilisant de grandes quantités 

de données, sans programmation explicite [50]. Inspiré par le fonctionnement 

du cerveau humain, le Deep Learning vise à imiter le réseau de neurones 

biologiques en utilisant des structures de calcul appelées réseaux de neurones 

artificiels. Cette approche a permis des progrès notables dans divers domaines 

notamment la compréhension du langage naturel, la reconnaissance 

d'images, la traduction automatique, etc. [51]. 

La figure II.2 illustre la hiérarchie des concepts d'intelligence artificielle, de 

machine Learning et de Deep Learning. 

 

 

 

 

 

 

 

 

Figure II.2. Relation entre IA, ML et DL. 

II.3.Evolution historique 
 

L'évolution historique du Deep Learning est étroitement liée aux progrès de 

l'intelligence artificielle et des réseaux neuronaux. Ses origines remontent aux 

années 1940 avec la proposition du perceptron, un modèle simple de neurone 

artificiel. Cependant, les premières tentatives de réseaux multicouches furent 

freinées par des limitations informatiques et théoriques, notamment l'absence 

de méthodes efficaces pour l'entraînement.  
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Ce n'est qu'à partir de la fin des années 1980, avec l'avènement de l'approche 

de rétropropagation du gradient, que les réseaux de neurones à couches 

profondes sont devenus plus pratiques. Les années 2000 ont vu un essor 

majeur, grâce à l'augmentation des puissances de traitement et à l'accès à de 

grandes quantités d’échantillons. Des architectures avancées comme les CNN 

et les RNN ont contribué á des progrès considérables dans des domaines 

notamment les systèmes intelligents pour analyser les données textuelles et 

visuelles de manière automatisée. Aujourd'hui, le Deep Learning s'est imposé 

comme une méthode centrale de l'IA, transformant des secteurs variés, de la 

médecine à la robotique, tout en continuant d'évoluer avec l'introduction de 

nouvelles architectures [52]. 

II.4.Les Raisons de l’essor du Deep Learning 
 

Le Deep Learning a révolutionné le domaine de l'IA pour plusieurs raisons : 

▪ Capacité à Apprendre des Représentations Complexes. 

▪ Performances Supérieures. 

▪ Adaptabilité [53]. 

II.5.Domaines d'Application 

Le DL a trouvé des applications dans un large éventail de domaines : 

▪ Vision par Ordinateur : Utilisé à la reconnaissance des visages et 

d’images, á l’identification d'objets, á la segmentation des images, etc. 

▪ Traitement du Langage Naturel (NLP) : utilisé dans le domaine de la 

rédaction de texte, de l'analyse de sentiments, de la traduction 

automatique, la reconnaissance vocale, etc.  

▪ Santé : Détection de maladies à partir d'images médicales, prédiction 

des résultats cliniques, découverte de médicaments. 

▪ Automobile : Développement de véhicules autonomes, systèmes avancés 

d'assistance à la conduite. 

▪ Finance : Prévision des marchés financiers, détection de fraudes, 

gestion des risques [54]. 

II.6.Principe de Base 

Les réseaux neuronaux artificiels (RNA) constituent l'épine dorsale du Deep 

Learning, reproduisant des mécanismes cognitifs humains au moyen de 

systèmes mathématiques.  
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Ces réseaux sont constitués de couches de neurones artificiels, où chaque 

couche traite les données d'une manière spécifique avant qu’elles ne soient 

transmises à la couche suivante.  

Il convient de noter que le « profond » dans l'apprentissage en profondeur fait 

référence à la profondeur des couches d'un réseau neuronal. Un réseau 

composé de plus de trois couches, qui inclurait les entrées et la sortie, peut 

être considéré comme un algorithme d'apprentissage en profondeur [55]. Ceci 

est généralement représenté à l'aide du schéma de la figure ci-dessous. 

 

 

 

 

 

 

 

Figure II.3. Architecture d'un Réseau de Neurones Artificiels [56]. 
 

▪ La Couche d'entrée (Input Layer) : Reçoit les données brutes. 

▪ Les Couches cachées (Hidden Layers) : Traitent les données en extrayant 

des caractéristiques de plus en plus abstraites. 

▪ La Couche de sortie (Output Layer) : Produit le résultat final, tel qu'une 

étiquette de classe ou une prédiction. 

Pour bien saisir le fonctionnement de cette approche puissante, il faut 

comprendre les composants fondamentaux du Deep Learning. 

II.6.1. Neurone artificiel 

Le neurone artificiel, également appelé perceptron, constitue l'élément 

fondamental du réseau de neurones artificiels. Il est conçu pour imiter le 

fonctionnement d'un neurone biologique (Voir Figure II.4) [57].  

 

 

 

 

 

 

Figure II.4.  a) Schéma d'un neurone biologique ; b) Schéma du neurone artificiel [58] 

a)                                                                b) 
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Dans un neurone artificiel, les multiples entrées et la sortie sont analogues 

aux dendrites et à l'axone d'un neurone biologique. Il reçoit des signaux 

d'entrée pondérés, effectue une somme pondérée de ces signaux, ajoute un 

biais, puis applique une fonction d'activation pour générer la sortie [58]. 

Mathématiquement, cela peut être formulé comme suit : 

𝑍 =  ∑(Wi ∗ Xi) + b                         (1) 

𝑌 =  𝑓(𝑍)                                      (2) 

Où 𝑍 représente l'activation pondérée ;  

W Poids correspondants : W = [W1, W2, … … . Wn] ; 

X Signaux d'entrée : X = [X1, X2, … … . Xn]; 

b Le biais ; 

𝑓(𝑍) La fonction d'activation non linéaire. 

Dans un réseau de neurones, les valeurs 𝑌 du neurone sont propagées aux 

neurones de la couche suivante [59]. 

II.6.2.Poids et Biais 

II.6.2.a.Poids (Weights)  

Des coefficients appliqués aux entrées des neurones. Ils sont ajustés durant 

l'entraînement pour minimiser l'erreur de prédiction [59]. 

II.6.2.b.Biais (Biases) :  

Des valeurs ajoutées au résultat pondéré de chaque neurone avant 

l'application de la fonction d'activation. Ils permettent de décaler la fonction 

d'activation, aidant le réseau à mieux modéliser les données [59]. 

II.6.3.Fonctions d'activation   

Introduisent une non-linéarité dans le réseau neuronal, dans le but de 

modéliser des relations complexes entre les données.  

Les fonctions d'activation courantes incluent ReLU (Rectified Linear Unit), 

Sigmoïde et Tanh [60]. 

II.6.3.a.Fonction Sigmoïde 

Mathématiquement, la fonction sigmoïde est définie comme suit : 

f(𝑍) =
1

1+e−Z
                         (3) 
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Elle est fréquemment exploitée dans les couches cachées des réseaux 

neuronaux, et donne une sortie dans l’intervalle [0,1], ce qui facilite son 

interprétation probabiliste, notamment dans des taches de classification 

binaire [60].  Son graphique est le suivant :    

 

 

 

 

 

 

 

Figure II.5. Fonction Sigmoïde 

II.6.3.b.Fonction ReLU (Rectified Linear Unit)  

Couramment appliquée comme fonction d'activation dans les architectures de 

Deep Learning [61]. La définition mathématique de la fonction ReLU est la 

suivante : 

ReLU(X) = max(0, X)          (4) 

 

La figure II.6 illustre la fonction d'activation ReLU, mettant en évidence deux 

caractéristiques clés :  

 

 

 

 

 

 

 

Figure II.6. Fonction ReLU (Rectified Linear Unit). 

 

➢ Linéaire pour les Entrées Positives : Pour des valeurs d'entrée positives, 

la fonction ReLU renvoie directement l'entrée elle-même, exprimée 

mathématiquement par (𝑓(X) = X). Cela signifie qu'il y a une relation 

linéaire directe entre l'entrée et la sortie dans cette région. 

➢ Nulle pour les Entrées Négatives : Pour des valeurs d'entrée négatives, 

la fonction ReLU renvoie toujours 0 (𝑓(X) = 0).  
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Cette caractéristique rend ReLU une fonction de seuil qui "coupe" toutes 

les valeurs négatives, produisant ainsi une sortie nulle. 

II.6.3.c.Fonction Tanh  

Tanh, qui signifie tangente hyperbolique, est une fonction mathématique 

couramment utilisée en apprentissage automatique.  

Elle a le même principe que la fonction sigmoïde, mais elle cartographie les 

valeurs d'entrée dans une plage entre -1 et 1 au lieu de 0 et 1 [61]. Elle est 

définie mathématiquement comme suit : 

Tanh() =
e − e− 

e + e−
                    (5) 

 

Son graphique est représenté par la figure II.7 :   

  

 

 

 

 

 

 

Figure II.7. Fonction tangente hyperbolique (Tanh) 
 

Un exemple concret de la production d'une sortie peut être illustré par le 

neurone représenté dans la figure II.8.  

 

 

 

 

 

 

 

Figure II.8. Exemple de neurone artificiel avec fonction d'activation ReLU [62] 

Ce neurone reçoit deux entrées, x1 et x2, auxquelles sont associés des poids 

de -0,32 et 0,11 respectivement, ainsi qu'un biais de 0,002. La somme 

pondérée de ces entrées, c'est-à-dire la somme des produits de chaque entrée 

par son poids, s'élève à -0,23. Cette dernière est ensuite transmise à une 

fonction d'activation, ici la fonction ReLU (Rectified Linear Unit), renvoie une 

sortie de 0,00 car ReLU met à zéro toutes les valeurs négatives. 
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Cette sortie constitue la réponse finale de ce neurone. Cet exemple met en 

évidence l'influence des poids et du biais sur la sortie du neurone, ainsi que 

l’impact de la fonction d'activation dans la transformation de la somme 

pondérée en une sortie finale. 

Comprendre ces mécanismes est fondamental pour saisir le fonctionnement 

d'un réseau de neurones, où chaque neurone interagit avec d'autres pour 

traiter les informations de manière complexe et produire une sortie globale 

[62]. 

II.6.4. Propagation Avant (Forward Propagation)  

Flux des données au sein du réseau, depuis la couche d'entrée jusqu'à celle 

de sortie, pour générer une prédiction [63]. 

II.6.5. Rétropropagation (Backpropagation)  

Méthode d'entraînement utilisée pour ajuster les poids et les biais (Figure II.9). 

Après chaque prédiction, l'erreur entre la sortie estimée et la valeur cible est 

calculée, puis propagée en arrière à travers le réseau pour mettre à jour les 

paramètres [63]. 

 

 

 

 

 

 

Figure II.9 Propagation Avant et Rétropropagation dans un Réseau Neuronal [64]. 

 

II.6.6. Fonction de Coût (Loss Function) 

Quantifie la disparité entre les sorties estimées du réseau et les valeurs cibles. 

Plus cet écart est faible, meilleure est l’efficacité du modèle [65]. La figure II.10 

illustre la fonction de coût dans l’apprentissage neuronal. 

Divers types de fonctions de perte sont disponibles, chacune étant conçue 

pour répondre à des problèmes spécifiques, et à des types de données 

différents. Voici quelques exemples courants : 
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II.6.6.a. Erreur MSE (Erreur Quadratique Moyenne) 

La MSE évalue la moyenne des carrés des différences entre les prévisions du 

réseau et les valeurs réelles des données d'entraînement. Elle est fréquemment 

utilisée pour résoudre des problèmes de régression [60]. 

 

Figure II.10. Illustration de la Fonction de Perte dans l'Apprentissage des Réseaux de Neurones. 

- Formule : 

La MSE est calculée par le biais de la moyenne des carrés des écarts entre les 

valeurs prédites (Ŷ) et les valeurs réelles (Y) pour chaque instance 

d'entraînement (i) [60] : 

MSE =
1

n
∑ (Yi − Ŷi)

2n
i=1                       (6) 

n: Nombre total d'exemples d'entraînement. 

Yi: Valeur réelle de l'exemple d'entraînement i. 

Ŷi: Valeur prédite par le modèle pour l'exemple d'entraînement i. 

II.6.6.b.Cross-Entropy Loss  

Aussi connue sous le nom de "log loss", est souvent utilisée pour les problèmes 

de classification. Elle évalue la différence entre la probabilité prédite par le 

modèle et la distribution réelle des étiquettes de classe [66]. 

L'équation de la fonction de perte pour la classification binaire, souvent 

appelée fonction de perte logistique ou entropie croisée binaire, est la suivante: 

𝐿𝑜𝑠𝑠 = − [𝑌 ∗ 𝑙𝑜𝑔(𝑌
𝑝𝑟𝑒𝑑

) + (1 − 𝑌) ∗ log (1 − (𝑌
𝑝𝑟𝑒𝑑

)]         (7) 

dZ dE 

Loss 
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y ŷ 
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- 𝑌 : La véritable étiquette de la classe. Y est égal à 1 pour la classe positive et 

0 pour la classe négative. 

- 𝑌𝑝𝑟𝑒𝑑 : La prédiction du modèle, qui est une probabilité que l'exemple 

appartienne à la classe positive (compris entre 0 et 1). 

- Pour la classe positive (𝑌 = 1) :  

- La perte devient :   𝐿𝑜𝑠𝑠 = − [𝑙𝑜𝑔(𝑌
𝑝𝑟𝑒𝑑

)] 

- Si 𝑌𝑝𝑟𝑒𝑑 est proche de 1 (bonne prediction), la perte est faible. 

- Si 𝑌𝑝𝑟𝑒𝑑 est proche de 0 (mauvaise prediction), la perte est élevée. 

- Pour la classe négative (𝑌 = 0) :  

- La perte devient :   𝐿𝑜𝑠𝑠 = − 𝑙𝑜𝑔(1 − Y𝑝𝑟𝑒𝑑) 

- Si 𝑌𝑝𝑟𝑒𝑑 est proche de 0 (bonne prediction), la perte est faible. 

- Si 𝑌𝑝𝑟𝑒𝑑 est proche de 1 (mauvaise prediction), la perte est élevée. 

• Perte totale pour une base de données (dataset)  

Pour une base de données avec N exemples, la perte totale est la moyenne des 

pertes individuelles [66] : 

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 =
1

𝑁
∑ −[Yi ∗ 𝑙𝑜𝑔(Y𝑝𝑟𝑒𝑑,𝑖) + (1 − Yi) ∗ log (1 − (Y𝑝𝑟𝑒𝑑,𝑖)]𝑁

𝑖=1    (8)  

 

La figure II.11, montre deux courbes qui illustrent la fonction de perte 

logistique (Cross-Entropy) utilisée dans la classification binaire. 

 

Figure II.11. Courbes de la fonction de perte logistique (Cross-Entropy) 

 

II.6.6.c. Fonction de perte Hinge  

Utilisée dans les problèmes de classification, notamment pour les machines à 

vecteurs de support (SVM), elle mesure la marge entre les prédictions du 

modèle et les vraies étiquettes [67].  
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La fonction Hinge Loss est définie comme suit : 

L(Y, 𝑓(X)) = max (0,1 − Y. 𝑓(X))                      (9) 

Où:  

- Y est l’étiquette de classe réelle (1 pour la classe positive, -1 pour la classe 

négative). 

- 𝑓(X) est la prédiction du modèle pour l’exemple X 

- La fonction max  renvoie le maximum entre 0 et 1 − Y. 𝑓(X). 

II.6.6.d. Fonction de perte Huber 

Similaire à la MSE, mais moins sensible aux valeurs aberrantes. Elle est 

souvent utilisée dans les problèmes de régression où les données peuvent 

contenir du bruit [68]. 

La fonction de perte de Huber est définie comme suit : 

L(Y, f(X)) = {

1

2
(Y − 𝑓(X))

2
             si |Y − 𝑓(X)|  ≤ δ

δ(|Y − f(X)| −
1

2
δ)    sinon

                     (10) 

Où : 

-Y: est la valeur réelle de la cible, 

-𝑓(X): est la prédiction du modèle pour l'exemple 𝑋 

-δ: est le seuil qui détermine la transition entre la pénalité quadratique et 

linéaire. 

La figure II.12 illustre de manière concrète l'application de la propagation 

avant (forward propagation) et de la rétropropagation (backpropagation) dans 

le contexte de l'apprentissage automatique. Au sein d'un réseau neuronal 

organisé en une couche d'entrée, une couche cachée et une couche de sortie, 

on peut suivre le cheminement des données d'entrée jusqu'à la génération de 

la sortie finale. Cette figure met également en évidence, le calcul de la fonction 

de coût (loss function) et l'utilisation des gradients pour ajuster les poids du 

réseau, étape importante dans l'optimisation et l'entraînement des réseaux de 

neurones. Ce processus permet d'améliorer les performances du modèle.  

Cet exemple pratique permet de mieux appréhender les principes 

fondamentaux de l'apprentissage profond et leur mise en œuvre concrète dans 

des scénarios réels. 
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Figure II.12. Exemple concret de propagation avant et rétropropagation dans un réseau 

neuronal [62]. 

II.6.7. Optimiseurs  

Algorithmes utilisés pour minimiser la fonction de coût en ajustant les poids 

et les biais. Les optimiseurs courants incluent la descente de gradient 

stochastique (SGD), Adam et RMSprop. 

II.6.7.a. Approche SGD (La descente de gradient stochastique)  

Est une méthode d'optimisation utilisée pour minimiser une fonction de coût 

en ajustant les paramètres du modèle. Elle est particulièrement utile dans 

l'apprentissage automatique et l'apprentissage profond pour optimiser les 

réseaux de neurones et autres modèles complexes [69]. 

▪ Principe de Base  

L'objectif de la descente de gradient stochastique est de trouver les paramètres 

θ (theta) qui minimisent une fonction de coût J(θ). Plutôt que de calculer le 

gradient de J(θ) en utilisant l'ensemble complet des données (comme dans la 

descente de gradient par lot complet), SGD met à jour les paramètres en 

utilisant un seul échantillon de données à la fois [70]. 

▪ Formule de Mise à Jour 

La mise à jour des paramètres θ pour un exemple d'entraînement (𝑋(𝑖), 𝑌(𝑖)) 

est donnée par : 

θ = θ - η∇J(θ; 𝑋(𝑖), 𝑌(𝑖))                     (11) 

Où : η : est le taux d'apprentissage, 

∇J(θ; 𝑋(𝑖), 𝑌(𝑖)) représente le gradient de la fonction de coût J par rapport aux 

paramètres θ. 
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Cette mise à jour permet d'ajuster les paramètres du modèle en fonction de 

l'erreur observée pour chaque exemple d'entraînement [70]. 

II.6.7.b. Approche Adam  

Adam est un algorithme d'optimisation pour l'apprentissage automatique qui 

combine les avantages de AdaGrad et RMSProp. Il adapte dynamiquement le 

taux d'apprentissage pour chaque paramètre du modèle en utilisant des 

estimations exponentiellement pondérées des premiers et deuxièmes 

moments des gradients [71]. 

Les étapes clés de l'algorithme Adam sont : 

▪ Mise à jour des moments [69] : A chaque étape t, Adam calcule la moyenne 

mobile des gradients 𝑚𝑡 et la moyenne mobile des carrés des gradients 𝑣𝑡. 

 

𝑚𝑡 =  𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡                          (12) 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2

                            (13) 

 

𝑚𝑡: C'est la moyenne mobile des gradients à l’étape t, qui lisse les gradients 

sur plusieurs itérations pour réduire le bruit dans les mises à jour des poids 

[72].  

𝑣𝑡 : C'est la moyenne mobile des carrés des gradients à l’étape t, qui estime la 

variance des gradients pour adapter le taux d'apprentissage selon leur taille 

[72]. 

𝛽1 : Coefficient de décroissance exponentielle pour mt, contrôlant la 

contribution des gradients passés, généralement fixé à 0,9 [72]. 

𝛽2 : Coefficient de décroissance exponentielle pour 𝑣𝑡, contrôlant la 

contribution des carrés des gradients passés, généralement fixé à 0,999 [72]. 

𝑔𝑡: Gradients calculés à l'étape 𝑡 pour les paramètres du modèle, représentant 

la direction et la magnitude du changement nécessaire pour minimiser la 

fonction de perte [72]. 

Correction du biais : En raison de l'initialisation à zéro de m0 et 𝑣0, les 

estimations initiales sont biaisées. Adam corrige ce biais en ajustant mt et vt 

[72]. 

mt̂ =  
mt

1−β1
t                          (14) 
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vt̂ =  
vt

1−β2
t                            (15) 

▪ Ajustement des paramètres : Finalement, les paramètres du modèle sont 

réajustés en utilisant les moments corrigés et un taux d’apprentissage α [72]. 

θt+1 =  θt − 
α mt̂

√vt+ϵ
             (16) 

II.6.7.c. Approche RMSprop  

Est un algorithme d'optimisation pour l'apprentissage automatique qui 

modifie dynamiquement le taux d'apprentissage pour chaque paramètre d'un 

réseau en fonction des gradients précédents. Il maintient une estimation 

décadente de la moyenne des carrés des gradients passés pour chaque 

paramètre et utilise cette estimation pour normaliser le gradient actuel [73]. 

Les étapes clés de l'algorithme RMSprop sont : 

▪ Mise à jour de l'estimation des carrés des gradients : A chaque étape t, 

RMSprop met à jour une estimation vt de la moyenne des carrés des gradients 

passés pour un paramètre θt [73]. 

 

vt = βvt−1 + (1 −  β)gt
2                     (17) 

 

▪ Mise à jour des paramètres : Les paramètres sont ensuite mis à jour en 

utilisant le gradient normalisé par la racine carrée de vt et un taux 

d'apprentissage α [73]. 

θt+1 =  θt − 
α 

√vt+ϵ
 gt                      (18) 

II.6.8. Epoche et Lot (Epoch and Batch) 

II.6.8.a. Epoche (Epoch)   

Une passe complète à travers l'ensemble de données d'apprentissage [74]. 

II.6.8.b. Lot (Batch)  

Un sous-ensemble des échantillons utilisé pour une itération de réajustement 

des poids. L'entraînement par lots peut améliorer la stabilité et l'efficacité de 

l'entraînement [74]. 

 

II.7. Limites de l'apprentissage profond 

Certaines difficultés sont fréquemment rencontrées lors de l'utilisation de 

l'apprentissage profond. Nous énumérons certaines d'entre elles. 
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II.7.1. Surajustement & sou-ajustement 

Le surajustement (overfitting) et le sous-ajustement (underfitting) constituent 

des défis majeurs en apprentissage automatique, affectant à la fois les 

performances et la capacité de généralisation des modèles. Le surajustement 

se produit lorsqu'un modèle apprend trop bien les données d'entraînement, y 

compris le bruit, ce qui conduit à de mauvaises performances sur de nouvelles 

données [75]. A l'inverse, le sous-ajustement survient lorsque le modèle est 

trop limité pour capturer les motifs sous-jacents des données, entraînant une 

faible précision aussi bien sur les ensembles d'entraînement que de test [76].  

La Figure II.13 illustre le concept d'underfitting et d'overfitting dans le contexte 

de l'apprentissage automatique. 

 

 

 

 

 

 

 

 

Figure II.13. Illustration de l'overfitting et l'underfitting 

• Courbes : 

o La courbe bleue montre la perte sur l'ensemble d'entraînement, qui 

diminue au fur et à mesure que le modèle apprend. 

o La courbe orange représente la perte sur l'ensemble de validation, qui 

permet de mesurer la capacité du modèle à généraliser. 

• Zones : 

o Sous-apprentissage : Au début, la perte d'entraînement est élevée, 

signe que le modèle n'a pas assez appris. 

o Bon modèle : Lorsque les pertes d'entraînement et de validation sont 

proches, le modèle généralise correctement. 

o Surapprentissage : Quand la perte de validation augmente alors que 

celle d'entraînement continue de baisser, le modèle capture trop de bruit 

et perd en généralisation. 

Le point optimal se situe là où la perte de validation est la plus basse, avant 

l'apparition du surapprentissage, ce qui peut être détecté via des techniques 
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comme Early stopping. Pour limiter ces problèmes, plusieurs méthodes ont 

été proposées : 

➢ Early stopping : est une technique en apprentissage automatique qui vise 

à prévenir le surapprentissage en arrêtant l'entraînement d'un modèle lorsque 

sa performance sur un ensemble de validation commence à se dégrader. Le 

processus consiste à surveiller l'erreur de validation à chaque itération, et 

lorsque celle-ci augmente, cela signale que le modèle surapprend. 

L'entraînement est donc interrompu pour préserver le modèle dans son état 

optimal. En plus de prévenir le surapprentissage, cette approche permet 

également de réduire les coûts computationnels en évitant des itérations 

inutiles [77]. 

➢ Dropout : Le dropout est une technique de régularisation utilisée dans les 

réseaux neuronaux pour prévenir le surajustement en désactivant 

aléatoirement un pourcentage de neurones pendant l'entraînement, 

empêchant ainsi les paramètres de s'adapter trop fortement aux données 

d'entraînement. [77][78].  

➢ Batch Normalization  

Normalise les activations, c'est-à-dire qu'elle les ajuste pour qu'elles aient une 

moyenne et une variance fixe. Cela rend l'entraînement plus stable et rapide, 

et aide aussi à améliorer les performances du modèle sur de nouvelles données 

[79]. 

➢ Augmentation de données  

Augmente explicitement la quantité de données d'entraînement pour mieux 

couvrir la distribution réelle. 

II.7.2. Le manque de données 

Est un défi majeur dans l'application de l'apprentissage profond, car ces 

modèles nécessitent beaucoup de données pour apprendre efficacement. Voici 

trois stratégies pour surmonter ce problème : 

➢ Transfert d'apprentissage (Transfer Learning) : Utiliser des données 

provenant de tâches similaires pour aider à apprendre une meilleure fonction 

de mappage et une meilleure représentation des entrées initiales, sans 

augmenter directement la quantité de données réelles. On peut également 

utiliser un modèle pré-entraîné sur une tâche similaire et l'affiner en utilisant 

les dernières couches et un petit ensemble de données réelles [80]. 
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➢ Augmentation de données : Particulièrement utile pour les données 

d'image (par exemple, rotation, miroir, translation). 

II.7.3. Les données déséquilibrées  

Les données déséquilibrées surviennent lorsqu'une classe est beaucoup plus 

représentée que d'autres dans une base de données, ce qui peut entraîner un 

biais dans l'apprentissage automatique. Cela rend les modèles moins 

performants sur les classes minoritaires. Pour résoudre ce problème, on 

utilise des techniques comme le sur-échantillonnage des classes sous-

représentées, le sous-échantillonnage des classes majoritaires, ou des 

algorithmes adaptés aux données déséquilibrées. Ces stratégies visent à 

améliorer la capacité du modèle à bien prédire toutes les classes [81]. 

II.8.Algorithmes d’apprentissage 

Les algorithmes d'apprentissage servent à ajuster les poids et les biais des 

connexions d'entrée des neurones pendant l'entraînement du réseau. Ils se 

répartissent en trois catégories :  

- Supervisé (supervised learning) ; 

- Non supervisé (unsupervised learning) ; 

- Par renforcement (reinforcement learning). 

Les différents types d'apprentissage automatique sont présentés dans la 

figureII.14. 

 

Figure II.14. Taxonomie des méthodes d'apprentissage automatique. 
 

II.8.1. L'apprentissage supervisé  

Est une méthode où les modèles de Deep Learning sont entraînés à partir de 

données étiquetées, c'est-à-dire des données d'entraînement où chaque 

exemple est associé à une sortie connue.  
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Les réseaux de neurones profonds sont ajustés en minimisant l'écart entre les 

prédictions du modèle et les sorties attendues, permettant ainsi au modèle de 

généraliser et de faire des prédictions précises sur de nouvelles données.  

Après l'entraînement, les performances du système sont mesurées sur un 

ensemble d'exemples différent appelé ensemble de test. Cela permet de tester 

la capacité de généralisation de la machine, c'est-à-dire sa capacité à produire 

des réponses. Cette approche est largement utilisée dans des domaines tels 

que la classification d'images, la détection d'objets et la prédiction de valeurs. 

Cependant, il nécessite des ensembles de données annotées pour 

l'apprentissage, ce qui peut être coûteux et laborieux à obtenir [82]. La figure 

II.15 illustre le principe de l’apprentissage supervisé.  

 

 

Figure II.15. Principe de l’apprentissage supervisé (SL) [83] 

 

II.8.2. L'apprentissage non supervisé (unsupervised learning)  

Est une technique de l'apprentissage automatique qui se concentre sur 

l'analyse et la compréhension de données brutes, sans l'utilisation de labels 

ou de réponses prédéfinies. Un ensemble de données de formation est présenté 

au système au niveau de la couche d'entrée, et les poids de connexion du 

réseau sont ajustés au fil du temps par une forme de compétition entre les 

nœuds de la couche de sortie. Le nœud ayant la valeur la plus élevée est 

retenu comme candidat principal, et ses poids sont ensuite mis à jour pour 

mieux représenter les données. Ce processus itératif permet aux algorithmes 

d'identifier des structures internes, des motifs cachés et des relations au sein 

des données, accomplissant ainsi des tâches telles que la classification non 

supervisée, la réduction de la dimensionnalité [84]. 
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Figure II.16. Apprentissage non supervisé. [83] 

II.8.3. Apprentissage par renforcement (RL)  

Le RL, également appelé apprentissage graduel, imite d'une certaine manière 

le comportement d'adaptation des humains qui interagissent avec un 

environnement physique donné. Les connexions du réseau sont modifiées en 

fonction des informations de retour fournies au réseau par son 

environnement. En cas de réponse correcte, les connexions correspondantes 

menant à cette sortie sont renforcées, sinon elles sont affaiblies.  

L'apprentissage par renforcement est appliqué dans divers domaines tels que 

les jeux, la robotique et l'optimisation de systèmes, où l'agent doit apprendre 

par essais et erreurs dans un environnement complexe et incertain [85][86]. 

 

 

 

 

 

 

 

 

 

Figure II.16. Apprentissage par renforcement. [83] 

 

II.9. Conclusion  

Ce chapitre a établi les bases théoriques de l'apprentissage profond en 

détaillant les réseaux neuronaux, les fonctions d'activation, les algorithmes 

d'optimisation, supervisés et non supervisés. Ces notions essentielles forment 

un socle indispensable pour les contributions des chapitres suivants.
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Chapitre III  

CNN pour la classification des images 

III.1. Introduction  

La classification, dans le contexte du Deep Learning, est un domaine 

dynamique en pleine expansion qui consiste à attribuer des étiquettes ou des 

catégories aux images en fonction de leur contenu. Ce processus s'appuie sur 

des algorithmes avancés, notamment les réseaux de neurones convolutifs 

(CNN), qui se révèlent particulièrement efficaces pour extraire des 

caractéristiques des images. Cette approche est importante pour le 

développement de technologies intelligentes et autonomes [87].  

Le processus typique de classification comprend les étapes suivantes : 

➢ Préparation des données : Collecte et prétraitement des images 

étiquetées pour l'entraînement. 

➢ Entraînement : Le modèle apprend à partir des données 

d'entraînement, ajustant ses poids pour minimiser l'erreur entre ses 

prédictions et les étiquettes réelles. 

➢ Validation : Evaluation du modèle sur un ensemble de validation pour 

optimiser les hyperparamètres. 

➢ Test : Mesure de la performance du modèle sur un ensemble de test 

non vu. 

La classification est utilisée dans de nombreux domaines, tels que la 

reconnaissance d'objets, la classification de textes et l'analyse de sentiments. 

Elle joue un rôle essentiel dans la compréhension des scènes visuelles et 

l'interprétation des données. 

 

III.2. Réseaux de neurones convolutifs (CNN)  

Les réseaux de neurones convolutifs, souvent désignés par l'acronyme CNN 

(Convolutional Neural Networks), sont des algorithmes populaires dans le 

domaine de l'apprentissage profond qui permettent de trouver 

automatiquement les caractéristiques les plus importantes sans intervention 

humaine [88]. Ils représentent une classe de réseaux de neurones 

particulièrement reconnue pour son efficacité dans le traitement des données 

structurées en grille, telles que les images.  
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Cette fonctionnalité permet une classification efficace dans divers domaines, 

notamment l'imagerie médicale et la détection d'objets [89]. La figure III.1 

représente l’architecture de base d’un réseau de neurones convolutifs. 

 

III.3. Applications des CNN 

- Reconnaissance d'images : Identification d'objets ou de personnes 

dans des images. 

- Segmentation d'images : Attribution de labels à des pixels dans une 

image. 

- Analyse vidéo : Détection d'actions ou de mouvements dans des 

séquences vidéo. 

- Traitement de texte : Utilisation dans certaines applications de 

traitement du langage naturel.  

 

Figure III.1 : Architecture de base d'un réseau de neurones [88]. 

 

III.4. Caractéristiques principales des CNN 
 

- Noyau de Convolution : Un noyau de convolution est une petite matrice 

de poids qui glisse sur l'image d'entrée. Chaque noyau est conçu pour 

détecter des motifs spécifiques, comme des bords, des textures ou d'autres 

caractéristiques.  

Chaque noyau de convolution possède trois dimensions : 
 

➢ Longueur (L) : Correspond à la dimension verticale du noyau. 

➢ Largeur (W) : Correspond à la dimension horizontale du noyau. 

➢ Profondeur (D) : Représente le nombre de canaux d'entrée. Par 

exemple, pour une image en couleur, la profondeur serait de 3 (rouge, 

vert, bleu). 

Normal 

Bénin 

Malin 
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- Taille du Noyau : La taille du noyau est généralement exprimée sous la 

forme L × W. Les tailles courantes de noyaux de convolution incluent 3 × 3 

ou 5 × 5. Le choix de la taille du noyau dépend de la tâche à réaliser et de 

la complexité des caractéristiques à extraire. 

 

III.5. Convolution  

Dans un réseau de neurones convolutifs (CNN), les couches de convolution 

extraient des caractéristiques de plus en plus abstraites à mesure que l'on 

monte en profondeur.  

Les couches inférieures capturent des éléments simples comme des textures, 

lignes et bords, tandis que les couches supérieures identifient des 

caractéristiques plus complexes. Chaque couche contient des noyaux de 

convolution, qui sont des matrices de poids apprenables, souvent de taille 3x3, 

5x5 ou 7x7 [90].  

Le noyau est appliqué à l'image en effectuant une opération de convolution. 

Cela implique de multiplier les valeurs du noyau par les valeurs des pixels de 

l'image sous-jacente et d'additionner les résultats pour obtenir une valeur 

unique.  

Ce processus est répété en déplaçant le noyau sur toute l'image, ligne par ligne 

et colonne par colonne. Chaque position du noyau produit une valeur dans la 

carte de caractéristiques [91].  

La figure III.2 explique le processus de convolution dans un réseau de 

neurones convolutifs (CNN). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.2 Processus de convolution [91] 

En règle générale, les dimensions des caractéristiques d'entrée sont de H × W 

× C (hauteur H, largeur W et nombre de canaux C).  
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Chaque noyau de convolution a une taille de K × K × C, ce qui implique que le 

nombre de noyaux doit correspondre au nombre de canaux d'entrée. Le 

traitement des données au sein de la couche de convolution peut être 

approximativement décrit par l'équation suivante :  

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 _ 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑜𝑢𝑡  = 𝑓(∑ 𝑀𝑖 ∗ 𝑊𝑖 + 𝑀)3
𝑖=1                    (19) 

Où : 

• 𝑀𝑖  : représente une feature map des feature maps d'entrée. 

• 𝑊𝑖: est la matrice des poids du noyau de convolution. 

• 𝑀: est une matrice de biais. 

• 𝑓(. ) : est une fonction d'activation non linéaire. 

• 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 _ 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑜𝑢𝑡 : est la feature map de sortie résultante. 

Par exemple, dans la figure III.3, nous avons trois filtres, un pour chaque canal 

RVB. Pour le filtre rouge en haut à gauche, la valeur de sortie 148 est obtenue 

en effectuant le calcul suivant sur les valeurs des pixels sous le filtre : 156 * 

(-1) + 155 *(-1) + 156*(1) + 153*(0) + 154*(1) +157*(-1) + 149*(0) + 151*(1) + 

155*(1). De même, pour le filtre vert, la valeur -8 est calculée en additionnant 

167, 164, (-165), (-168), ((160) et (-166) (avec les autres valeurs à 0). Enfin, 

pour le filtre bleu, la valeur 646 est obtenue par les calculs 162 + 163 

+161+156 -158 +162.  

 
 

Figure III.3 : opération de convolution sur une matrice d'image 5X5X3 avec un noyau 3X3X3 
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Remarques 

-  La valeur du biais peut être déterminée par essais et erreurs. Elle peut être 

ajustée pour optimiser les performances de la transformation de l'image. 

-  Lorsqu'une convolution est appliquée à une image, un filtre de taille 3x3 

transforme les valeurs de 9 pixels en une seule valeur, ce qui réduit la taille 

de l'image. Pour conserver la taille d'origine de l'image, on peut ajouter des 

zéros autour de celle-ci, une technique appelée padding. Par exemple, en 

utilisant une image de 5x5x1 avec un filtre 3x3, la sortie serait une image de 

3x3x1. En ajoutant un contour de zéros d'un pixel, l'image devient 6x6x1, et 

la sortie de convolution reste de 5x5x1. Ainsi, le padding permet de maintenir 

la taille d'origine de l'image, ce qui est souvent avantageux. Le nombre de zéros 

ajoutés dépend de la valeur du padding : un padding de 0 signifie aucun ajout, 

tandis qu'un padding de 1 signifie l'ajout d'un contour de zéros, et ainsi de 

suite. 

- Lors de la convolution, le filtre est déplacé sur l'image, et le décalage effectué 

à chaque étape est appelé stride. Ce dernier peut être ajusté selon les besoins 

: avec un stride de 1, le filtre se déplace d'un pixel à la fois, tandis qu'avec un 

stride de 2, il se déplace de deux pixels à la fois. En général, le choix du stride 

est fait de manière que la taille de l'image de sortie soit un entier et non un 

nombre décimal.  

- La taille de l'image de sortie d'une convolution peut être calculée à l'aide de 

la formule suivante, en fonction de la taille de l'image d'entrée (W), de la taille 

du filtre (F), du padding (P) et du stride (S) [92] :   

Taille de l′image de sortie d′une convolution = 1 +
W−F+2P

𝑆
             (20)   

Prenons un exemple pour illustrer le calcul de la taille de l'image de sortie 

d'une convolution :  

- Soit une image d'entrée de taille 5x5, un filtre de taille 3x3, un padding de 

0 et un stride de 1. En appliquant la formule : 

Taille de l′image de sortie d′une convolution = 1 +
5 − 3 + 2 ∗ (0)

1
 

On obtient donc une image de sortie de taille 3x3. 
 

III.6. Activation 

Après une opération de convolution, il est courant d'appliquer une fonction 

d'activation, pour introduire de la non-linéarité dans le réseau de neurones, 
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ce qui permet d'établir une relation fonctionnelle entre les entrées et les 

sorties, ce qui améliore significativement les performances du réseau [93]. La 

figure III.4 présente des fonctions d'activation telles que Sigmoid et Tanh, 

appelées non-linéarités saturantes, car elles atteignent des valeurs limites (0 

ou 1 pour Sigmoid, -1 ou 1 pour Tanh) lorsque les entrées sont très grandes 

ou très petites. Pour résoudre ces limitations, des fonctions non-saturantes 

comme ReLU, Leaky ReLU, PReLU, RReLU et ELU ont été introduites [94].  

 

 

Figure III.4 : Fonctions d'Activation dans les Réseaux de Neurones. 

 

III.7. Sous-échantillonnage (Pooling)  

La couche de pooling, généralement placée après la couche de convolution, 

joue un rôle essentiel dans la réduction de la dimensionnalité des données 

tout en conservant les caractéristiques importantes. Elle effectue un sous-

échantillonnage qui diminue le nombre de connexions dans la couche de 

convolution, allégeant ainsi la charge de calcul du réseau [93]. Pour 

comprendre comment les dimensions changent lors des opérations de 

convolution, on peut utiliser la formule suivante pour calculer la taille de la 

sortie : 

𝑂 = [
(𝑖−𝑘)

𝑠
+ 1]                      (21) 
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Où 𝑂 représente la taille de la sortie, 𝑖 la taille de l'entrée, 𝑘 la taille du noyau 

de convolution et 𝑠 le stride. Par exemple, si l'entrée mesure 32 pixels et que 

l'on utilise un noyau de 5 pixels avec un stride de 1, la taille de la sortie sera 

de 28 pixels. Cette réduction de dimension permet d'atteindre une invariance 

d'échelle, rendant le modèle plus robuste aux variations de taille et de position 

des objets dans les images. Les méthodes de pooling les plus courantes sont 

le pooling moyen et le pooling maximal, bien que d'autres variantes, comme le 

pooling Lp, stochastique ou pyramidal, soient aussi utilisées pour mieux éviter 

le surajustement des réseaux [95]. 

 

Figure III.5 : Exemples de Max Pooling et Average Pooling dans une couche de réseau de 

neurones. 

 

III.8. La couche d’aplatissement (Flatten) 

La couche Flatten dans un réseau de neurones sert à convertir des données 

d'entrée multidimensionnelles, comme les images, en un vecteur 

unidimensionnel. Après plusieurs opérations de convolution et de pooling qui 

conservent une structure en plusieurs dimensions (par exemple, une image 

28x28x1 devient une carte de caractéristiques 28x28), la couche Flatten déplie 

ces données en un vecteur (28x28 devient 784 éléments). Cette transformation 

est essentielle pour préparer les données pour les couches denses 

(entièrement connectées), qui nécessitent des entrées sous forme de vecteurs 

pour effectuer des tâches de classification ou de régression, tout en conservant 

toutes les informations extraites par les couches précédentes [96]. 
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III.9. Couche entièrement connectée (FC)   

La couche entièrement connectée (FC) se situe généralement après les couches 

convolutives et de mise en commun dans un réseau de neurones convolutif 

(CNN). Elle relie tous les neurones entre ses couches et agit comme un 

classificateur, intégrant les informations locales extraites par la convolution 

et le pooling pour fournir la catégorie de l'image. Elle contient plusieurs 

couches cachées qui capturent des caractéristiques complexes. Le nombre de 

neurones en sortie correspond au nombre de catégories, et la sortie est 

souvent normalisée via une régression softmax avant la fonction de perte. Pour 

éviter le surajustement, des techniques comme la régularisation L2 et le 

dropout sont souvent utilisées [97],[98]. 

 

III.10. Function de perte 

La classification finale dans une architecture de réseau de neurones convolutionnel 

(CNN) s'effectue à travers la couche de sortie, qui est généralement la dernière couche 

des couches entièrement connectées (FC). Les performances du CNN dépendent de 

diverses fonctions de perte, conçues pour des tâches visuelles variées telles que la 

classification d'images, la reconnaissance faciale et la détection d'objets. La fonction 

de perte la plus fréquemment utilisée est la combinaison de Softmax et de Cross-

Entropy, bien qu'il existe plusieurs versions améliorées, comme center-loss, 

LSoftmax, A-Softmax, AM-Softmax et PEDCC loss, qui jouent un rôle important dans 

différentes applications visuelles [99]. 

 

III.11. L’optimiseur  

Un optimiseur est un algorithme essentiel dans l'entraînement des réseaux de 

neurones, car il ajuste les paramètres du modèle pour minimiser la fonction 

de perte. Il met à jour les poids en réponse aux erreurs calculées lors de la 

rétropropagation. Parmi les optimiseurs courants, on trouve le Stochastic 

Gradient Descent (SGD) et ses variantes comme Adam, qui adapte les taux 

d'apprentissage pour une meilleure efficacité. D'autres, comme RMSprop et 

Adagrad, ajustent également les taux d'apprentissage en fonction des 

gradients passés, améliorant la stabilité et la vitesse de convergence. Le choix 

de l'optimiseur influence grandement la performance du modèle [100]. 
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III.12. Les modèles classiques du CNN 

III.12.1. LeNet Network  

La figure III.6 montre l'architecture du modèle LeNet-5, conçu par Lecun et al 

en 1998 pour la classification de chiffres manuscrits. 

Figure III.6 : Architecture de LeNet-5 telle que publiée dans l'article original 

Ce modèle surpassait les méthodes de l'époque et marquait la première 

utilisation de la rétropropagation dans les réseaux de neurones convolutifs 

(CNN). LeNet-5 est constitué de 7 couches et environ 60 000 paramètres. Il est 

divisé en deux parties principales : une zone de convolution et une zone 

entièrement connectée (fully connected). La zone de convolution, située à 

gauche, applique des filtres convolutifs suivis de couches de pooling, tandis 

que la zone entièrement connectée, à droite, intègre et classe les 

caractéristiques extraites à l'aide de trois couches qui contiennent 

respectivement 120, 84 et 10 neurones. Le modèle utilise une fonction 

d'activation sigmoïde et un classificateur softmax en sortie. Bien qu'efficace 

sur la base de données MNIST, LeNet-5 montrait des limites sur des 

ensembles de données plus vastes en raison de sa complexité [101]. 

III.12.2. Réseau AlexNet   

En 2012, AlexNet, développé par Krizhevsky et al., a révolutionné la vision par 

ordinateur en remportant le concours ILSVRC14 (ImageNet LargeScale Visual 

Recognition Challenge 2014) avec une avance significative, démontrant que 

les caractéristiques apprises par un modèle surpassent celles conçues 

manuellement. Ce réseau, entraîné sur un sous-ensemble de la base de 

données ImageNet comprenant environ 1,2 million d'images pour 

l'entraînement et 150000 pour les tests, a été le premier CNN à exploiter 

pleinement le potentiel du deep learning sur des ensembles de données 

volumineux.  
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Comme illustré en Figure III.7, l'entrée du réseau est une image de taille 224 

× 224 × 3, et la sortie est une fonction softmax pour la classification [102].  

L’architecture d'AlexNet se compose de cinq couches de convolution, trois 

couches de mise en commun maximale, et trois couches entièrement 

connectées, utilisant des noyaux de tailles variées (11 × 11 pour la première, 

5 × 5 pour la deuxième, et 3 × 3 pour les suivantes). Le réseau a introduit des 

innovations clés telles que l'activation ReLU pour accélérer la convergence, le 

dropout pour éviter le surajustement, et l'augmentation des données pour 

améliorer la généralisation. AlexNet a également adopté la mise en commun 

avec chevauchement pour affiner la précision du modèle. Afin d'accélérer les 

calculs, il a été formé sur deux GPUs (GTX 580) en traitement parallèle, 

permettant de surmonter les limitations matérielles. Ces innovations ont 

établi de nouveaux standards pour les réseaux neuronaux convolutionnels 

[102]. 

 

 

Figure III.7 : Architecture d'AlexNet telle que publiée dans l'article original [102]. 

 

III.12.3. VGGNet 

En 2014, Simonyan et Zisserman de l'Université d'Oxford ont introduit le 

modèle VGG, qui a remporté le premier prix pour la localisation et le deuxième 

pour la classification lors de l'ILSVRC 2014. VGG comprend plusieurs 

architectures de réseaux convolutifs (figure III.8), dont les plus connus sont 

VGG16 et VGG19, appliqués à la reconnaissance faciale et à la classification 

d'images. L'objectif principal de leur recherche était de comprendre l'impact 

de la profondeur des réseaux convolutifs sur la précision de la classification à 

grande échelle.  
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Figure III.8 : Architecture du VGG16. 

 

VGG utilise de petits filtres de 3 × 3 dans ses couches convolutives, 

augmentant les performances tout en réduisant le nombre de paramètres. Par 

exemple Le réseau VGG16 traite des images RGB de 224 × 224 pixels et se 

compose de 13 couches convolutives suivies de trois couches entièrement 

connectées (FC). Les deux premières couches FC ont 4096 neurones chacune, 

et la dernière utilise une couche softmax pour classifier les images en 1000 

catégories [103].  

III.12.4. Google Net / InceptionV1 à V3 

En 2014, Szegedy et al ont introduit GoogLeNet, un modèle révolutionnaire 

qui a remporté le premier prix lors de l'ILSVRC 2014 grâce à son architecture 

innovante. Ce réseau repose sur des modules Inception, combinant plusieurs 

types de convolutions (1 × 1, 3 × 3, 5 × 5) et du pooling, ce qui permet d'extraire 

simultanément des caractéristiques à différentes échelles. L'utilisation des 

convolutions 1 × 1 constitue l'une des avancées majeures de ce modèle, 

réduisant la dimensionnalité des données et optimisant ainsi le nombre de 

paramètres, tout en accélérant les calculs. Avec ses 22 couches, GoogLeNet 

surpasse la profondeur de modèles comme VGG, tout en restant très efficace 

avec seulement 6 millions de paramètres. Il intègre également des stratégies 

d'apprentissage telles que le dropout, pour éviter le surapprentissage, et la 

normalisation des activations afin de stabiliser le processus d'entraînement. 

Cette architecture se distingue par sa faible consommation en ressources tout 

en offrant des performances remarquables en classification d'images [104]. La 

figure III.9 représente la structure de GoogLeNet 
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Figure III.9 : structures de GoogLeNet. [104] 

III.12.5. Modules Inception 

Le module Inception est un composant architectural puissant pour 

l'apprentissage en profondeur, en particulier pour la classification des images 

et l'analyse du comportement. Il utilise des filtres convolutifs parallèles de 

différentes tailles pour capturer des caractéristiques multi-échelles, et une 

couche de pooling. Les sorties de ces couches sont concaténées et transmises 

à la couche suivante. Les convolutions 1 × 1 agissent comme des couches de 

goulot d'étranglement pour réduire la dimensionnalité des cartes de 

caractéristiques [105]. Le module Inception, a évolué au cours de plusieurs 

itérations de la V1 à la V3, améliorant ainsi ses fonctionnalités dans diverses 

applications. Chaque version apporte des améliorations en termes 

d'architecture et de performances, ce qui en fait un outil puissant dans des 

domaines tels que la détection des défauts, le diagnostic médical et la gestion 

environnementale [105].  

 

- Améliorations architecturales :  

➢ Le module Inception V1 repose sur l'utilisation de filtres de différentes 

tailles (1x1, 3x3, 5x5) et d'une opération de mise en commun maximale 

(max pooling) appliqués en parallèle au même niveau. Cela permet au 

réseau d'être plus large que profond. Les sorties des différentes opérations 

sont ensuite concaténées et transmises à l'étape suivante. La figure III.10.a 

montre l’architecture initiale de Inception V1. 

Pour optimiser les coûts de calcul, une convolution 1x1 est introduite avant 

les convolutions 3x3 et 5x5, réduisant ainsi le nombre de canaux d'entrée, 

ce qui allège la charge computationnelle. La convolution 1x1 est également 

appliquée après la mise en commun maximale, augmentant l'efficacité 

globale du module.  
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La figure III.10.b montre le module Inception V1 avec une réduction de 

dimension. 

L'architecture de réseau neuronal connue sous le nom de GoogLeNet, ou 

Inception v1, a été construite en utilisant le module d'initiation à dimension 

réduite [106].  
 

 

Figure III.10 : Modules Inception. [106] 

 

➢ Pour réduire la complexité de calcul, Inception V2 (Figure II.11) factorise les 

convolutions 5x5 en deux convolutions 3x3, ce qui réduit le coût de calcul 

tout en maintenant la performance. De plus, les convolutions nxn sont 

remplacées par une combinaison de convolutions 1xn et nx1, réduisant 

ainsi la complexité de 33 % par rapport aux convolutions classiques [105].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.11 : Schéma du module Inception V2 avec factorisation des convolutions. [105] 



Chapitre III : CNN pour la classification des images 

45 
 

➢ Inception V3 a encore optimisé le modèle grâce à des techniques telles 

l'utilisation de l'optimiseur RMSProp, des convolutions factorisées 7x7, 

l'application de la BatchNorm dans les classificateurs auxiliaires, et le 

lissage des étiquettes pour éviter le surajustement en régularisant la 

fonction de perte [105].  
  

III.12.6. ResNet 

ResNet (2015), proposé par Kaiming He et al., a remporté l'ILSVRC 2015 grâce 

à l'introduction de connexions résiduelles, une innovation qui permet de 

surmonter la "dégradation" observée dans les réseaux profonds au-delà de 20 

couches. Ces connexions directes contournent une ou plusieurs couches du 

réseau, ajoutant l'entrée directement à la sortie. Plutôt que d'apprendre une 

transformation complète des données, le réseau apprend la différence (ou 

"résidu") entre l'entrée et la sortie attendue, simplifiant ainsi l'optimisation des 

réseaux très profonds et améliorant leur performance (voir Figure 12) [107]. 

Une connexion résiduelle permet de définir la sortie d'un bloc comme : 

 

𝑌 = 𝐹(𝑋) +  𝑋                      (22) 

 

Où :𝐹(𝑋) est la transformation apprise par les couches du bloc, et 𝑋 est 

l'entrée du bloc qui est ajoutée à la sortie finale. 

 

 

 

Figure III.12 : Bloc de base d'un ResNet. [108] 
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L'architecture de ResNet, illustrée dans la figure III.13, se distingue par ses 

blocs résiduels et ses connexions directes qui permettent de contourner 

plusieurs couches. Ces connexions facilitent l'optimisation de réseaux très 

profonds en évitant la dégradation des performances. Les différentes versions 

de ResNet, telles que ResNet-50, ResNet-101 et ResNet-152, se différencient 

principalement par le nombre de couches, chacune étant construite autour de 

ces blocs résiduels. 

Figure III.13 : Architecture de ResNet [107]. 

 

III.12.7. DenseNet 

DenseNet, proposé par Huang et al. [109], introduit, une architecture 

composée de blocs denses, où les cartes de caractéristiques de chaque couche 

sont connectées à celles de toutes les couches suivantes par concaténation. 

Cette approche, illustrée à la figure III.14, facilite la propagation des 

informations et des gradients à travers le réseau, simplifiant ainsi 

l'apprentissage et améliorant les performances en classification.  

Equation:  

𝑋𝑙 = 𝐻𝑙[𝑋0, 𝑋1, 𝑋2 … 𝑋𝑙−1]                      (23) 

 

Où [𝑋0, 𝑋1, 𝑋2 … 𝑋𝑙−1] représente la concaténation des sorties des couches 

antérieures. Cette approche améliore le flux d'informations et des gradients 

entre les couches, facilitant ainsi l'apprentissage et renforçant les 

performances en classification. La transformation 𝐻𝑙[. ] est une fonction 

composite comprenant trois opérations : normalisation par lot (Batch 

Normalization), activation ReLU et convolution 3x3. 

DenseNet organise le réseau en blocs denses, entre lesquels des couches de 

transition sont insérées pour gérer les variations de taille des cartes de 

caractéristiques. Ces couches effectuent des convolutions et du pooling, 

permettant de réduire la taille des cartes tout en maintenant la connectivité 

dense.  
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Figure III.14 : DensNet block [110] 

 

III.13. L'apprentissage par transfert (Le transfer learning) 
 

L'apprentissage par transfert est une technique de machine learning 

permettant d'adapter un modèle préalablement entraîné sur une tâche 

spécifique à une nouvelle tâche connexe. Cette approche est particulièrement 

efficace lorsque les deux tâches partagent des similarités et que les données 

disponibles pour la nouvelle tâche sont limitées. Elle permet de réutiliser les 

connaissances acquises par le modèle pour accélérer l'entraînement et 

améliorer les performances sur la nouvelle tâche. Ce concept s'applique 

notamment dans des domaines comme l'analyse d'images médicales, où il est 

souvent coûteux et difficile de collecter un nombre suffisant de données 

d'entraînement. Une approche courante qui consiste à pré-entraîner un 

réseau de neurones sur une grande base de données, telle qu'ImageNet (qui 

contient plus de quatorze millions d'images annotées et classées dans plus de 

vingt mille catégories), puis à ajuster ce modèle pour des applications 

spécifiques [111]. 

Le principe du transfer learning, est illustré dans la figure III.15. 

 

III.13.1. Mise au point des techniques d'apprentissage par transfert  

En pratique l'apprentissage par transfert se fait comme suit : 

 

➢ Sélection du Domaine Source et Cible 

Identifiez un domaine source où vous disposez de données abondantes et 

d'un modèle pré-entraîné. Par exemple, un modèle de classification 

d'images pré-entraîné sur ImageNet peut être utilisé pour des tâches 

spécifiques comme la classification d'images médicales. 
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Figure III.15 : transfert d'apprentissage à partir d'imageNet. [112] 

 

➢ Prétraitement des Données  

Les données du domaine cible doivent être prétraitées pour correspondre 

au format des données du domaine source. Cela peut inclure la 

normalisation, le redimensionnement des images, ou l'encodage des textes. 
 

➢ Adaptation du Modèle  

Le modèle pré-entraîné est souvent ajusté (fine-tuning) pour le domaine 

cible. Cela peut impliquer : 

- Congélation des Couches : Dans cette approche, certaines couches du 

modèle pré-entraîné sont gelées et les couches restantes sont adaptées 

à la nouvelle tâche. Généralement, les couches inférieures du modèle 

pré-entraîné, qui capturent des caractéristiques de bas niveau telles que 

les bords et les coins, sont gelées, tandis que les couches supérieures, 

qui capturent des caractéristiques plus complexes, sont affinées.  

- Ajout de Couches : Des couches supplémentaires peuvent être ajoutées 

pour adapter le modèle à la nouvelle tâche. 

 

➢ Entraînement sur le Domaine Cible  

Le modèle est ensuite entraîné sur les données du domaine cible.  
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Cela peut nécessiter moins de données étiquetées que si vous entraîniez 

un modèle à partir de zéro, car le modèle a déjà appris des caractéristiques 

utiles à partir du domaine source. 

 

➢ Evaluation et Ajustement  

Après l'entraînement, le modèle est évalué sur un ensemble de validation 

ou de test. Des ajustements peuvent être nécessaires, comme le réglage des 

hyperparamètres ou l'ajout de techniques de régularisation pour éviter le 

surapprentissage. 

 

III.14. Conclusion  

Les réseaux de neurones convolutifs (CNN) se sont imposés comme une 

solution de pointe pour le diagnostic médical, notamment dans le domaine de 

la vision par ordinateur et de l'analyse d'images médicales, où ils ont atteint 

des performances à la pointe de la technologie. Grâce à leurs couches de 

convolution, de pooling et entièrement connectées, les CNN peuvent extraire 

des informations à différentes échelles et niveaux de granularité. Des modèles 

populaires tels que ResNet, VGG et DenseNet, ainsi que des techniques 

comme l'apprentissage par transfert et l'augmentation des données, ont 

permis d'améliorer considérablement la précision des modèles tout en 

réduisant le risque de surajustement. 

Dans ce chapitre, nous avons présenté plusieurs modèles basés sur les CNN, 

largement utilisés pour la classification d'images. Ces réseaux sont 

aujourd'hui au cœur de nombreuses applications complexes, y compris la 

classification des images médicales, un problème clé abordé dans cette thèse. 

Le succès indéniable des CNN dans le traitement d'images a motivé leur 

adoption dans ce travail pour résoudre des problèmes spécifiques en imagerie 

médicale, en utilisant ce type de réseau comme base des approches proposées. 

Par conséquent, les CNN continuent d'évoluer, offrant des solutions toujours 

plus performantes et adaptées aux besoins croissants en analyse d'images. 
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Chapitre IV 

Data Augmentation pour les Images Histopathologiques 

IV.1. Introduction  

Le cancer du sein est l’un des cancers les plus répandus dans le monde et 

demeure l’une des principales causes de mortalité chez les femmes. Selon 

l'Organisation mondiale de la santé (OMS), en 2020, on a recensé 2,3 millions 

de nouveaux cas et 685 000 décès liés à cette maladie, touchant principalement 

les femmes après la puberté (Figure IV.1). Cette pathologie se caractérise par la 

multiplication incontrôlée de cellules formant des tumeurs invasives, qui peuvent 

se propager et endommager d'autres tissus [113]. 

 

Figure IV.1. : Estimation mondiale des cas en 2020 chez les femmes. 

Historiquement, les taux de mortalité du cancer du sein sont restés élevés jusqu'à 

l'introduction des programmes de détection précoce et de traitements adaptés 

dans les années 1980 [114]. Ces avancées ont considérablement amélioré les 

chances de survie des patients et la qualité des soins. La détection précoce du 

cancer du sein est importante, car elle permet d’initier des traitements adaptés 

dans des délais réduits, ce qui augmente significativement les chances de 

guérison [114]. L’analyse d’images histopathologiques est essentielle pour 

classifier les tumeurs mammaires en bénignes ou malignes. Cependant, cette 

tâche complexe exige une expertise pointue pour détecter des variations 
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histologiques subtiles. L’interprétation manuelle des biopsies est longue et 

laborieuse, pouvant retarder le diagnostic jusqu’à deux semaines, avec des 

risques accrus d’erreurs et de retard de traitement [115]. Dans ce contexte, Les 

systèmes de diagnostic assistés par ordinateur (CAD), basés sur des algorithmes 

avancés, offrent une interprétation rapide et précise des images médicales, 

améliorant significativement les diagnostics en oncologie mammaire [116],[117]. 

L’apprentissage profond joue un rôle essentiel dans l’automatisation du 

diagnostic médical, car il renforce l’efficacité et la précision des processus 

cliniques. Des recherches récentes ont démontré l’efficacité des algorithmes 

basés sur les réseaux de neurones convolutifs (CNN) dans l'extraction 

automatique de caractéristiques et la classification des types de tumeurs. Ces 

modèles nécessitent toutefois une grande quantité de données et un temps de 

calcul conséquent pour atteindre des performances optimales [118],[119],[120]. 

Comme illustré dans la figure IV.2, les algorithmes d'apprentissage profond 

améliorent considérablement leurs performances à mesure que la quantité de 

données augmente, contrairement aux algorithmes de machine Learning 

traditionnels, dont les gains de performance sont plus limités [121]. Ainsi, pour 

maximiser l'efficacité de ces systèmes, il est indispensable de disposer de 

données variées permettant d'apprendre des caractéristiques complexes et de 

repérer des motifs subtils dans les images médicales. Cette diversité est 

essentielle pour former des modèles robustes capables de détecter des anomalies 

et de fournir des diagnostics fiables [122]. 

 

 

 

 

 

 

 

 

Figure IV.2. Importance de big data dans l’apprentissage profond. 
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Malheureusement, de nombreux jeux de données en imagerie médicale, comme 

BreakHis, présentent un déséquilibre des classes et un nombre limité d'images, 

ce qui complique le développement de modèles robustes [115]. La base de 

données BreakHis est largement utilisée dans la recherche sur le cancer du sein 

pour la classification des tumeurs bénignes et malignes à travers des images 

histopathologiques. Elle se distingue par son organisation en plusieurs niveaux 

de grossissement (40x, 100x, 200x et 400x), offrant ainsi une représentation 

diversifiée des échantillons tissulaires. BreakHis constitue une ressource 

précieuse pour développer et tester des modèles de classification en imagerie 

médicale, mais son déséquilibre des classes pose des défis que cette recherche 

s’efforce de surmonter [123]. 

 

IV.2 Origine et création de la base de données BreakHis 

La base de données BreakHis (Breast Cancer Histopathological Database) a été 

créée dans le cadre d’une collaboration entre l’Université Fédérale de Paraná 

(UFPR) au Brésil et des chercheurs spécialisés en imagerie médicale et oncologie, 

en partenariat avec le Laboratoire P&D d’anatomie pathologique et 

cytopathologie. Elle a été mise à disposition en 2016 pour fournir à la 

communauté scientifique un ensemble de données complet et standardisé, 

destiné au développement de modèles d’intelligence artificielle (IA) pour le 

diagnostic du cancer du sein. L’objectif principal de cette initiative était de 

combler les lacunes des jeux de données existants, souvent limités en diversité 

et en standardisation, ce qui compliquait la comparaison des résultats entre 

différentes approches de classification. Par ailleurs, l’ensemble de données 

BreakHis, disponible en accès libre, a été spécialement conçu pour surmonter 

les défis du diagnostic manuel, en facilitant l’automatisation de l'interprétation 

des images histopathologiques [124],[125]. 

 

IV.2.1.  Contenu et structure de la base de données BreakHis 

Le diagnostic du cancer du sein repose en grande partie sur l’analyse 

histopathologique des tissus, qui implique une biopsie suivie d’une observation 

au microscope (Figure IV.3) [126].  
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Figure IV.3. Le processus complet d'une biopsie 

 

Ce processus permet d’évaluer la nature bénigne ou maligne des tumeurs en 

examinant la structure cellulaire et tissulaire. Les étapes principales sont les 

suivantes : 

1. Prélèvement de l’échantillon (Biopsie) 

Un échantillon de tissu est prélevé dans la zone suspecte à l'aide d'une aiguille 

(biopsie à l’aiguille fine) ou d’un punch, ou lors d'une intervention chirurgicale. 

2. Fixation du tissu  

Le tissu est immergé dans une solution de fixation (comme le formol) pour 

préserver sa structure cellulaire et éviter sa dégradation pour l’analyse. 

3. Inclusion en paraffine  

Le tissu est déshydraté et enrobé de paraffine pour former un bloc rigide. Ce bloc 

permet de réaliser des coupes fines (environ 3 à 5 micromètres) à l’aide d’un 

microtome. 

4. Coupe et montage sur lame  

Les coupes de tissu sont posées sur des lames de verre en vue de leur observation 

au microscope. Cela facilite l'examen des structures internes des cellules. 

5. Coloration  

Les lames sont colorées avec des agents spécifiques, comme l’hématoxyline-

éosine (H&E), pour mettre en évidence les structures cellulaires et faciliter 

l’analyse. Des colorations supplémentaires ou des techniques 

d'immunohistochimie peuvent être employées pour détecter des marqueurs 

associés à des tumeurs spécifiques. 
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6. Observation au microscope  

Le pathologiste examine les coupes sous différents grossissements (40x, 100x, 

200x et 400x) pour évaluer les caractéristiques morphologiques des cellules et 

tissus (Figure IV.4) [127]. 

 

Figure IV.4. Diapositive d'une tumeur bégnine du sein vue sous différents facteurs 

d'agrandissement : (A) 40x, (B) 100x, (C) 200x, et (D) 400x [123]. 
 

 

• Les images issues de cette analyse sont capturées à travers trois canaux 

(RGB), permettant une visualisation détaillée des tissus sous divers niveaux 

de détail. 

• L’observation porte sur des aspects tels que la taille, la forme et l'organisation 

des cellules, permettant de détecter les anomalies caractéristiques des 

tumeurs bénignes ou malignes. 

 

7. Interprétation et diagnostic  

En fonction de l’analyse microscopique, le pathologiste identifie si le tissu 

présente des lésions bénignes ou malignes. Le stade et le type de tumeur (par 

exemple, carcinome canalaire ou lobulaire) peuvent également être déterminés. 

8. Rapport histopathologique  

Le pathologiste rédige un rapport diagnostique, qui détaille les observations et 

fournit un diagnostic final. Ce rapport est transmis au médecin pour définir le 

traitement approprié. 
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La base de données BreakHis comprend un total de 7909 images microscopiques 

de biopsies mammaires, chacune d’une résolution de 700x460 pixels. Ces images 

proviennent de 82 patients et se répartissent en 2480 images de tumeurs 

bénignes et 5429 images de tumeurs malignes [128]. 

IV.2.2.  Organisation et catégorisation des images  

Les images de BreakHis sont classées selon deux grandes catégories : tumeurs 

bénignes et tumeurs malignes. Chaque catégorie comprend plusieurs sous- 

catégories histopathologiques : 

 

Tumeurs bénignes Tumeurs malignes 

- Adenosis (A) 

- Fibroadenoma (F) 

- Phyllodes Tumor (PT) 

- Tubular Adenoma (TA) 

- Ductal Carcinoma (DC) 

- Lobular Carcinoma (LC) 

- Mucinous Carcinoma (MC) 

- Papillary Carcinoma (PC) 

 

La répartition des images entre les catégories bénignes et malignes, en fonction 

du niveau de grossissement, est présentée par la figure IV.5 et le tableau VI.1. 

Ces données permettent aux chercheurs d’explorer l’influence du déséquilibre 

des classes sur les performances des modèles et de développer des stratégies 

pour y remédier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV.5. Distribution des images bénignes et malignes selon les grossissements. 
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Tableau VI.1. Catégorisation des images bénignes/malignes par grossissement [123]. 

 

IV.2.3.  Illustration du déséquilibre des classes selon le grossissement 

La Figure IV.6 présente la distribution des images entre les tumeurs bénignes et 

malignes à travers les quatre niveaux de grossissement disponibles dans la base 

de données BreakHis (40x, 100x, 200x, et 400x).  
 

 

 

Figure IV.6. Distribution des classes BreaKhis [113]. 
 

On observe un déséquilibre notable entre les deux catégories : les images de 

tumeurs malignes sont systématiquement plus nombreuses, représentant 

environ 67 % à 69 % des échantillons à chaque niveau de grossissement. A 

l’inverse, les tumeurs bénignes représentent seulement 30 % à 32 % des images 

[113]. 

Catégorie Bénin Malin 

Total 
Sous-catégorie A F PT TA 

Total 

Bénin 
DC LC MC PC 

Total  

Malin 

Nombre d'images  

Par facteur  

D’agrandissement 

40x 114 253 109 149 625 864 156 205 145 1370 1995 

100x 113 260 121 150 644 903 170 222 142 1437 2081 

200x 111 264 108 140 623 896 163 196 135 1390 2013 

400x 106 237 115 130 588 788 137 169 138 1232 1820 
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Le manque de données et le déséquilibre des classes limitent la généralisation 

des modèles, favorisant les classes majoritaires comme les tumeurs malignes. 

Des techniques comme le rééchantillonnage, l'augmentation de données et des 

méthodes spécifiques améliorent la généralisation et traitent les classes sous-

représentées. Un résumé de ces techniques est présenté ci-dessous. 

 

IV.3. Techniques de gestion des données déséquilibrées  

IV.3.1.  Rééchantillonnage : Suréchantillonnage et Sous-échantillonnage  

Le rééchantillonnage vise à équilibrer le nombre d’échantillons entre les classes. 

Le suréchantillonnage consiste à augmenter artificiellement le nombre 

d’exemples de la classe minoritaire, par duplication simple ou par la génération 

de données synthétiques avec des techniques telles que SMOTE et ADASYN. En 

parallèle, le sous-échantillonnage réduit le nombre d’exemples de la classe 

majoritaire, ce qui peut être utile lorsque la classe dominante contient beaucoup 

d’exemples redondants. 

1. Suréchantillonnage (Oversampling) 

- Duplication simple : Répéter les échantillons de la classe minoritaire. 

- SMOTE (Synthetic Minority Over-sampling Technique) : Générer des 

échantillons synthétiques en interpolant entre des points proches de la 

classe minoritaire. 

- ADASYN (Adaptive Synthetic Sampling) : Extension de SMOTE, cette 

technique se concentre sur les échantillons difficiles à classifier en 

générant plus de points synthétiques autour d’eux. 

 

2. Sous-échantillonnage (Undersampling) 

- Echantillonnage aléatoire : Réduire le nombre d'échantillons de la classe 

majoritaire en supprimant des données. 

- Cluster-based Undersampling : Grouper les échantillons majoritaires en 

clusters et n’en garder qu’un sous-ensemble représentatif. 

- NearMiss : Sélectionner les exemples majoritaires les plus proches des 

exemples minoritaires pour un meilleur équilibre. 
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IV.3.2.  Techniques d’Augmentation de Données 

L'augmentation des données est une technique qui consiste à générer de 

nouveaux ensembles de données à partir de données existantes, en créant des 

données synthétiques pour augmenter artificiellement la taille de l'ensemble de 

données. Cette méthode vise à améliorer les performances et la généralisation 

des modèles d'apprentissage profond, en réduisant les erreurs, et est 

particulièrement utile pour les tâches de classification. Les principales stratégies 

de cette technologie sont présentées ci-dessous. 

 

II.3.2.a. Augmentation géométrique  

Sont des opérations appliquées aux images qui modifient leur forme ou leur 

position, tout en préservant les informations visuelles essentielles. Ces 

transformations sont importantes pour l'augmentation des données et 

l'amélioration des performances des modèles d'apprentissage profond. Voici 

quelques opérations courantes : 

 

➢ Rotation : Faire pivoter les images à différents angles. Voir Figure IV.7. 

 

 

 

 

 

 

 
Figure IV.7. Opération de rotation. 

 

➢ Miroir : Cette méthode consiste à faire pivoter l'image le long de l'axe 

horizontal ou vertical en partant du principe que la taille de la matrice est 

cohérente (Voir Figure IV.8). 

 

 

 

 

 

 
Figure IV.8. Opération de miroir. 
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➢ Zoom : Appliquer un zoom avant ou arrière (Voir Figure IV.9) 

 

 

 

 

 

Figure IV.9. Opération de Zoom. 

 

➢ Shift : déplace les pixels d’une image vers une direction spécifique (haut, 

bas, gauche ou droite). (Voir Figure IV.10).  
 

 

 

 

 

 

Figure IV.10. Opération de shift. 

 

II.3.2.b. Modifications photométriques 

Ajustement de la luminosité, du contraste (Figure IV.11a) ou ajout de bruit 

(Figure IV.11b).  

 

 

 

 

 

 

Figure IV.11a. Modifications de luminosité et de contraste. 

 

 

 

 

 

Figure IV.11b. Ajout de bruit 
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➢ Mixup  

Est une technique d'augmentation de données qui consiste à créer de 

nouvelles images (Figure IV. 12) en combinant linéairement deux images 

existantes et en faisant de même pour leurs étiquettes (labels).  

 

Figure IV.12. Technique de Mixup 

➢ CutMix  

Est une technique d'augmentation de données qui consiste à remplacer une 

région d'une image par une région d'une autre image (Figure IV. 13). Cette 

méthode améliore la robustesse des modèles de classification en combinant 

les informations de deux images différentes. 

 

 

 

 

 

 

Figure IV.13. Technique de CutMix 
 

 

IV.3.3.  Méthodes Basées sur les Algorithmes 

1. Ensembles d'apprentissage (Ensemble Learning) 

Utilisation de plusieurs modèles pour améliorer la précision globale, par exemple: 

➢ Bagging (Bootstrap Aggregating) : est une technique d'apprentissage 

automatique utilisée pour améliorer la précision des modèles en combinant les 

prédictions de plusieurs modèles de base (ex : Random Forest). 

➢ Boosting : est une technique d'apprentissage automatique qui vise à améliorer 

la précision des modèles en combinant plusieurs modèles faibles pour créer un 

modèle puissant (ex : AdaBoost, XGBoost). 

Ces techniques peuvent ajuster les modèles pour donner plus d’importance aux 

classes minoritaires. 
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2. Réseaux Adversaires (GANs) 

L’utilisation GANs permet de générer des échantillons synthétiques dans des 

ensembles de données déséquilibrés. 

3. Autoencodeurs  

Apprennent à générer de nouvelles variations des données à partir de 

représentations internes, ce qui enrichit l’ensemble d'entraînement avec des 

exemples synthétiques. 

4. Le transfer learning 

L’apprentissage par transfert consiste à réutiliser les poids d’un modèle déjà 

entraîné sur un grand ensemble de données pour une nouvelle tâche. Cette 

méthode est utile lorsque les données spécifiques sont limitées, comme avec des 

modèles pré-entraînés tels que GoogLeNet ou ResNet formés sur ImageNet. Elle 

permet de diminuer le temps d'entraînement et les coûts tout en offrant de 

bonnes performances. 

 

IV.4. Le traitement des données 

Le traitement des données regroupe l'ensemble des étapes et techniques utilisées 

pour préparer, nettoyer, transformer et analyser des données brutes, afin de les 

rendre exploitables par les modèles d'apprentissage profond. Les données 

peuvent exister sous plusieurs formes : tables structurées ou non structurées, 

images, fichiers audio, vidéos, etc. Une machine ne peut pas interpréter 

directement du texte libre, des vidéos ou des images sous leur forme brute ; il est 

nécessaire de convertir ces informations en une forme numérique, 

principalement en 1 et 0. Par conséquent, les données brutes ne peuvent pas être 

directement fournies à un modèle d'apprentissage automatique en espérant qu'il 

soit capable de s'entraîner efficacement. Le prétraitement des données est une 

étape fondamentale de l’apprentissage profond.  

Il consiste à transformer ou encoder les données afin de les rendre 

compréhensibles et utilisables par la machine. Un prétraitement soigné garantit 

que les données sont dans un format que la machine peut facilement traiter et 

analyser. C’est l'une des étapes les plus importantes pour assurer une bonne 

performance de généralisation du modèle, influençant directement sa capacité à 
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faire des prédictions précises sur des données nouvelles. Ci-après quelques 

techniques couramment utilisées pour le traitement des données dans le cadre 

de l’apprentissage profond. 

 

IV.4.1.  Nettoyage des données 

• Suppression du bruit : Identification et suppression des données 

incohérentes ou erronées (par exemple, des échantillons mal étiquetés). 

• Normalisation des données : Conversion des données dans un intervalle 

commun (par exemple, entre 0 et 1) pour faciliter l'entraînement des 

modèles. 

IV.4.2.  Encodage des données 

• Encodage one-hot : Transformation des données catégorielles en vecteurs 

binaires. 

IV.4.3.  Réduction de la dimensionnalité 

• PCA (Analyse en Composantes Principales) : Réduit le nombre de 

variables en identifiant les combinaisons les plus significatives. 

IV.4.4.  Traitement spécifique selon le type de données 

➢ Images : Conversion des images en matrices de pixels (par exemple, RGB 

en vecteurs). 

➢ Audio : Transformation en spectrogrammes pour une analyse plus facile. 

IV.4.5.  Batching et Shuffling  

➢ Batching : Division des données en lots (batches) pour un entraînement 

plus efficace. 

➢ Shuffling : Mélange aléatoire des données à chaque itération pour éviter le 

surapprentissage d’un ordre particulier. 

 

IV.5. Conclusion  

Dans ce chapitre nous avons exploré les différentes techniques décrites dans la 

littérature pour gérer les données déséquilibrées et améliorer les performances 

des modèles de deep learning appliqués aux données histopathologiques du 
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cancer du sein. Ces approches incluent des techniques d'augmentation de 

données (transformations géométriques, photométriques, et méthodes 

génératives) ainsi que des stratégies de gestion du déséquilibre des classes, telles 

que le suréchantillonnage et l’utilisation de GAN pour enrichir la classe 

minoritaire avec des données synthétiques réalistes. Le prochain chapitre sera 

consacré aux solutions adoptées pour résoudre le problème du déséquilibre des 

classes, un défi majeur en imagerie médicale.  
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Chapitre V 

Etude Expérimentale 

V.1. Introduction  

L'objectif de ce chapitre est de classer les images du cancer du sein issues de 

l'ensemble de données BreakHis en deux catégories : bénin et malin, afin 

d'améliorer les diagnostics assistés par ordinateur (DAO) dans le domaine de la 

santé en utilisant l'apprentissage profond. Les progrès des architectures de 

réseaux de neurones convolutifs (CNN) ont rendu possible l'analyse automatisée 

des images histopathologiques numériques, malgré la complexité liée à la 

diversité morphologique des cellules tumorales et au déséquilibre des classes.  

Ce déséquilibre, associé à un nombre limité d'échantillons, peut biaiser les 

modèles et réduire leur capacité à effectuer une classification précise. 

Deux éléments clés influencent les performances des modèles : la qualité des 

données d'apprentissage et le choix du modèle d'extraction des caractéristiques. 

Ce dernier est particulièrement essentiel, car il conditionne la capacité du modèle 

à détecter les caractéristiques discriminantes nécessaires à une classification 

précise. 

Relever ces défis est indispensable pour développer des systèmes robustes et 

fiables, capables de fournir des diagnostics précis dans des contextes cliniques. 

Afin de résoudre cette problématique, nous avons proposé deux méthodes. 

V.1.1. Méthode 1 : DCGAN et DenseNet201 

Cette approche équilibre les classes en générant des images synthétiques avec 

DCGAN (Deep Convolutional Generative Adversarial), suivie d'une augmentation 

de données. Le modèle DenseNet201 pré-entraîné est utilisé pour extraire les 

caractéristiques. 

 

V.1.2. Méthode 2 : WDT et DenseNet201 

L'approche repose sur l'utilisation d'images générées à partir de la 

transformation par ondelettes discrètes pour augmenter la classe bénigne, 

corrigeant ainsi le déséquilibre des classes dans la base de données BreakHis.  
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En exploitant le modèle DenseNet201, elle améliore la classification des images 

histopathologiques du cancer du sein en intégrant les informations spatiales et 

spectrales, réduisant le risque d'erreurs critiques, comme la classification 

incorrecte de cas malins en bénins. 

La structure générale du modèle proposé est décrite dans la figure V.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure V.1. Structure générale du modèle de classification des images histopathologiques  

du cancer du sein. 

 

Les images générées par les deux méthodes proposées sont représentées par la 

figure V.2. 
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Images générées 

Images en ondelettes (issues 

de la classe Bénin réelle)  

  

Images DCGAN (issues de la 

classe Bénin réelle) 

 

Première méthode Deuxième méthode 

 

 

 

 

 

 

 

 

 

Figure V.2. Méthodes proposées pour la génération des images. 

V.2. Première partie 

V.2.1. Résolution du déséquilibre des classes avec DCGAN 

Dans cette première partie, nous présentons l'utilisation du Deep Convolutional 

Generative Adversarial Network (DCGAN), pour résoudre le déséquilibre des 

classes dans la base de données BreakHis.  Les DCGAN intègrent des réseaux de 

neurones convolutifs marquant ainsi une avancée significative dans la capacité 

des modèles génératifs à produire des images de haute qualité. 

V.2.1.a. Deep Convolutional Generative Adversarial Networks (DCGAN) 

Les Réseaux Antagonistes Génératifs Convolutionnels (DCGAN) sont une 

extension des GAN qui exploitent des couches de réseaux de neurones 

convolutionnels pour améliorer la qualité des images générées. Introduits en 

2015, les DCGAN sont particulièrement efficaces pour générer des images 

synthétiques à haute résolution en exploitant les propriétés de la convolution 

[113]. Le schéma fonctionnel d’un DCGAN, illustré par la figure V.3, montre le 

processus de génération d'images synthétiques. Ce principe repose sur deux 

réseaux en compétition : un générateur (G) et un discriminateur (D).  

Le générateur prend en entrée un vecteur aléatoire issu de l’espace latent et 

utilise des couches de convolution transposée (Conv2DTranspose) pour créer des 

images synthétiques à partir de cette entrée. En parallèle, le discriminateur, basé 

sur un réseau de convolution classique, essaie de différencier les images générées 

par le générateur de celles provenant de l’ensemble de données réelles.  
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Le processus d’apprentissage repose sur l’amélioration continue des deux 

réseaux : le générateur apprend à produire des images plus réalistes, tandis que 

le discriminateur affine sa capacité à distinguer les images générées des images 

réelles [129].  

Les DCGAN sont connus pour leur capacité à générer des images visuellement 

cohérentes et détaillées, grâce à l'utilisation de mécanismes de Batch 

Normalization. L’adoption de fonctions d’activation comme LeakyReLU contribue 

à la convergence rapide du modèle.  

 

  

 

 

 

 

 

 

 

 

 

Figure V.3. Schéma fonctionnel d’un DCGAN. 

 

V.2.1.b. Architecture du DCGAN proposé  

L'architecture du DCGAN proposé est constituée de :  

1. Le Générateur  

La figure V.4 illustre l’architecture détaillée du générateur du DCGAN développée 

dans ce travail. Le réseau commence par une entrée latente (vecteur de bruit 

aléatoire) transformée progressivement en une image synthétique grâce à une 

série de couches dense, de convolutions transposées, de normalisation par lot et 

de fonctions d’activation. L’entrée est un vecteur latent aléatoire z de dimension 

100. 

•Etapes du réseau : 

1. Dense Layer : Une couche dense de taille 224×224×10.  
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aléatoire 

X 

G(n) 

  
  

  

Décision 
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D 
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  Kernel :224*224*3 
 

 

 

 

 

 

 

 

 

 

Figure V.4. Architecture détaillée du générateur du DCGAN proposé. 
 

2. Batch Normalization : Utilisée pour stabiliser l'entraînement et normaliser 

les activations. 

3. LeakyReLU : Fonction d'activation  

4. Convolution Transposée : Plusieurs couches avec des filtres de tailles 

différentes : 

➢ Conv2DTranspose (5x5x16) : Augmente la taille sans perte d'information. 

➢ Conv2DTranspose (5x5x32) et (5x5x64) : Améliore la structure spatiale de 

l’image. 

5. Dernière couche de sortie : Conv2D avec une activation sigmoïde pour 

produire une image normalisée avec trois canaux (RGB) dans la plage [0,1]. 

 

2. Le discriminateur  

Le discriminateur (figure V.5), agit comme un classificateur binaire, prenant en 

entrée une image (réelle ou générée) et produisant une probabilité indiquant si 

l'image est réelle ou non. Il utilise plusieurs couches convolutives, suivies de 

normalisation et de fonctions d’activation. 

1.Image_input (224,224,3) : Ce bloc représente les images d'entrée avec une 

taille de 224×224 pixels et 3 canaux (RVB). Cette taille est cohérente avec les 

dimensions couramment utilisées dans les architectures de réseaux de 

convolution modernes, telles que DenseNet, tout en offrant un bon compromis 

entre résolution et efficacité computationnelle. 
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Figure V.5. Architecture détaillée du discriminateur du DCGAN proposé. 

 

2. InputLayer : Ce bloc indique le début de l'architecture du réseau, préparant 

les données d'entrée pour les couches suivantes. 

3. Première couche (Conv2D (Kernel : 3×3×32)) : Cette couche effectue une 

convolution 2D sur l'image d'entrée en utilisant 32 filtres de taille 3×3 pour 

extraire les caractéristiques spatiales locales. 

4. Fonction d’activation (LeakyReLU) : Appliqués après chaque couche de 

convolution pour introduire une non-linéarité. Ceci est pour permettre au réseau 

de modéliser des relations complexes.  

5. Conv2D (Kernel : 4×4×32) : Applique une autre convolution 2D avec 32 filtres 

de taille 4×4 pour extraire davantage de caractéristiques. 

6. Conv2D (Kernel : 4×4×16) : Réduit le nombre de filtres à 16 pour extraire 

des caractéristiques spécifiques et réduire progressivement la taille des données. 

7. Flatten: Transforme les données en une représentation vectorielle 

unidimensionnelle pour les connecter à des couches denses. 

8. Dropout : prévenir le surapprentissage en désactivant aléatoirement 20% des 

neurones de cette couche pendant l’entraînement.  

9. Dense : Connecte toutes les entrées à toutes les sorties via des poids (dense 

layer), générant un vecteur de taille correspondant au nombre de neurones 

spécifié. 

10. La sortie est une couche Dense finale avec une activation sigmoïde donnant 

une probabilité entre 0 et 1, indiquant si l'image est réelle ou générée. 

3. L’entraînement du DCGAN repose sur une compétition entre les deux 

réseaux: le générateur et le discriminateur. Le déroulement de l’apprentissage 

peut être décrit selon les étapes suivantes : 

Image_input 

(224,224,3) 

InputLayer 

Flatten 

LeakyReLU 

Dropout 

DCGAN-Discriminator 

Conv2D 

Kernel :3*3*32 
 

Conv2D 

Kernel :4*4*32 
 

LeakyReLU 
Conv2D 

Kernel :4*4*16 
 

LeakyReLU 

Dense 
(1, sigmoid)  
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1. Génération d'images  

▪ Passage par le générateur : Des vecteurs latents (bruit aléatoire) sont 

échantillonnés et transmis au modèle du générateur. 

▪ Transformation : Le générateur, qui est un réseau de neurones, applique 

plusieurs transformations non linéaires au bruit d'entrée Z. Ces 

transformations permettent au générateur de capturer des caractéristiques 

complexes des données d’entraînement et de générer des images 

artificielles aux mêmes grossissements (40x, 100x, 200x, 400x) que les 

images réelles. 

▪ Résultat : Le générateur produit un lot d'images générées qui tentent 

d’imiter les images réelles de la base de données. 

2. Calcul des pertes  

- Discriminateur  

• Le discriminateur reçoit deux types d'images : 

➢ Des images réelles (classe bénigne) provenant de la base de données BreakHis 

avec plusieurs niveaux de grossissement (40x, 100x, 200x, 400x). 

➢ Des images synthétiques, générées par le générateur. 

• Le discriminateur tente de classer chaque image en lui attribuant une 

étiquette: 

➢ 1 pour une image réelle. 

➢ 0 pour une image générée. 

• La perte du discriminateur est calculée à l’aide d’une fonction de perte (binaire 

croisée) qui mesure l’écart entre : 

➢ Les prédictions du discriminateur. 

➢ Les étiquettes correctes (1 pour les images réelles, 0 pour les images 

générées). 

- Générateur : 

• Le générateur est évalué en utilisant les images qu'il a générées et qui ont été 

transmises au discriminateur. 

Le but du générateur est de tromper le discriminateur pour que celui-ci classifie 

les images générées comme étant réelles. 
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• La perte du générateur est également calculée avec une fonction de perte, qui 

évalue dans quelle mesure le discriminateur a mal classé les images générées (le 

générateur cherche idéalement à obtenir une étiquette de 1 pour ces images). 

 

3. Mise à jour des poids  

• Une fois les pertes calculées, les poids des deux réseaux (générateur et 

discriminateur) sont mis à jour en utilisant un algorithme d'optimisation (Adam). 

• Ce processus est répété sur un grand nombre d’itérations (ou époques). 

L’entraînement se fait en alternant la mise à jour du générateur et du 

discriminateur. A chaque itération, les deux réseaux s'améliorent 

progressivement : 

▪ Le discriminateur devient meilleur à identifier les images générées. 

▪ Le générateur produit des images de plus en plus réalistes pour tromper le 

discriminateur. La Figure V.6 présente le modèle DCGAN proposé. 

 

 

Figure V.6. Modèle DCGAN proposé [113] 

 
La Figure V.7, illustre des échantillons d'images réelles et générées pour la classe 
minoritaire (bénigne). 
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Figure V.7. Images réelles et synthétiques des tumeurs bénignes 

 

Le tableau V.I présente le nombre d’images après l’utilisation de la technique 

d’augmentation DCGAN, permettant d’équilibrer les échantillons entre les 

classes « Bénin » et « Malin » à différents niveaux de grossissement. 

 

Table V.1 Distribution des images avant et après DCGAN 
 

V.2.2. Augmentation des données  

Dans cette étude, nous avons appliqué plusieurs techniques d'augmentation de 

données pour améliorer l'entraînement du modèle, éviter le surapprentissage et 

optimiser ses performances. Ces techniques incluent le retournement, le 

recadrage, la rotation, le zoom et la mise à l’échelle. En générant différentes 

versions des images, ces transformations augmentent la diversité de la base de 

données BreakHis, renforçant ainsi la robustesse du modèle face à la variabilité 

Niveau de 

Grossissement 

Type 

d’échantillon 

Images 

Originales 

Images 

réservées 

Images 

restantes 

Images 

générées 

Total après 

Augmentation 

40x 

Bénin 625 76 549 674 1223 

Malin 1370 147 1223 / 1223 

Total 1995 223 1772 674 2446 

100x 

Bénin 644 79 565 722 1287 

Malin 1437 150 1287 / 1287 

Total 2081 229 1852 722 2574 

200x 

Bénin 623 77 546 697 1243 

Malin 1390 147 1243 / 1243 

Total 2013 224 1789 697 2486 

400x 

Bénin 588 72 516 493 1009 

Malin 1232 223 1009 / 1009 

Total 1820 295 1525 493 2018 

Images synthétiques 

Images réelles 
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des données. Des exemples d’images augmentées sont présentés dans la figure 

V.8. 

 

 

 

 
 

 

Figure V.8. Exemples d'images augmentées [123] 
 

Le tableau V.2 récapitule les valeurs utilisées pour les transformations 

géométriques appliquées dans le cadre de l'augmentation de la base de données. 

 

 

 

 

 

 

 

 

 

Table V.2. Techniques d'augmentation des données. 

V.2.3. Extraction de caractéristiques par apprentissage profond  

Les réseaux de neurones convolutifs (CNN) sont utilisés pour extraire 

automatiquement des informations pertinentes des images brutes, pixel par 

pixel. Cependant, l'application des CNN nécessite une grande quantité de 

données, rendant difficile l'obtention des ensembles de formation et de test 

correspondants. Pour surmonter ce défi, l'apprentissage par transfert est 

introduit, permettant d'améliorer la précision de classification en utilisant les 

connaissances de modèles pré-entraînés sur de vastes ensembles de données. 

Cette approche est particulièrement avantageuse dans des scénarios où les 

données disponibles pour l'entraînement sont limitées. L'apprentissage par 

transfert implique souvent un entraînement sur ImageNet, un ensemble de 

données contenant 14 millions de photographies annotées, réparties sur environ 

1000 classes distinctes.  

Data augmentation Value 

Rotation range 15 

shear_range 0.2 

zoom_range 0.2 

horizontal_flip True 

fill_mode 'nearest' 

width_shift_range 0.1 

height_shift_range 0.1 
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Ce concept a gagné en popularité dans divers domaines de la vision par 

ordinateur, tels que la détection d'objets, la classification d'images et la 

segmentation. 

V.2.3.a. La structure DenseNet  

DenseNet présente une architecture de réseau neuronal qui atténue la perte 

d'information en permettant aux couches de recevoir des entrées de toutes les 

couches précédentes et de les transmettre aux couches suivantes. Cette 

architecture compacte privilégie la concaténation séquentielle des cartes de 

caractéristiques. DenseNet a démontré des performances de classification 

supérieures sur des ensembles de données de référence tels que CIFAR-100 et 

ImageNet. La figure V.9 illustre la précision top-1 en validation, une métrique 

utilisée en DL pour évaluer les performances de modèles de classification sur un 

ensemble de validation. La comparaison montre clairement que DenseNet 

surpasse les autres modèles pré-entraînés, ce qui justifie son choix en tant que 

modèle de base pour cette étude.  

 

 

 

 

 

 

 

 

 

 

Figure V.9. Meilleures performances obtenues pour ImageNet [123] 

V.2.4. Méthodologie  

Un sous-ensemble de test a été réservé pour chaque classe avant la correction 

du déséquilibre. Afin de compenser l’inégalité entre les classes, l’approche 

DCGAN a été utilisée pour générer des images bénignes synthétiques et équilibrer 

leur nombre avec celui des images malignes.  L’ensemble des images, initialement 

de taille (700×460×3), a été redimensionné en (224×224×3) afin de réduire la 
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complexité computationnelle et de respecter les contraintes d’entrée du modèle 

DenseNet-201. Après équilibrage, les données ont été réparties en deux 

ensembles : 96 % pour l’entraînement et 4 % pour la validation, et ce pour chaque 

niveau de grossissement (40x, 100x, 200x et 400x). 

Les images, provenant de divers niveaux de grossissement (40x, 100x, 200x et 

400x), ont été entraînées et testées séparément selon leur grossissement 

respectif. L'extraction des caractéristiques a été réalisée à l'aide du modèle pré-

entraîné DenseNet201. Contrairement à l'utilisation traditionnelle du réseau, où 

l'on applique un Flatten, cette approche utilise le Global Average Pooling (GAP) 

pour réduire la dimensionnalité, évitant ainsi un nombre excessif de paramètres 

qui pourrait entraîner un surapprentissage et compliquer l'entraînement du 

modèle. Les caractéristiques ont été extraites des couches pool3_pool du bloc 

dense 2, pool4_pool du bloc dense 3, et conv5_block32_concat du bloc dense 4. 

Ces sorties ont été transformées en une représentation vectorielle via le GAP, 

aboutissant à un vecteur de 3072 dimensions. En outre, une couche de 

régularisation (DROPOUT) a été intégrée pour atténuer le surapprentissage, et 

une couche dense finale, avec une fonction SOFTMAX, a permis la classification 

binaire. La figure V.10 illustre l'architecture proposée. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure V.10. Architecture proposée pour la classification des images histopathologiques [123] 
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V.2.5. Paramètres d’entraînement du modèle 

• Poids pré-entraînés : Utilisation de poids initiaux pré-entraînés sur la base 

de données ImageNet. 

• Algorithme d'entraînement : Entraînement avec l'algorithme RMSprop, 

connu pour sa capacité d'adaptation dynamique aux gradients. 

• Taux d'apprentissage : Taux d'apprentissage initial fixé à 10e-4, 

progressivement réduit vers zéro pour améliorer la convergence. 

Le taux d'apprentissage est initialement configuré avec l'optimiseur 

RMSprop. Ensuite, le ReduceLROnPlateau ajuste le taux d'apprentissage 

pendant l'entraînement, basé sur l'évolution de la précision de validation. Si 

la précision ne s'améliore pas, le taux d'apprentissage est réduit par un 

facteur de 0.2, ce qui peut aider à améliorer la convergence du modèle. 

• Epoques et taille de lot : Entraînement réalisé sur 40 époques avec une 

taille de lot de 35, sans convergence significative constatée après ces 40 

époques. 

• Fonction de perte : Utilisation de la cross-entropie catégorique, adaptée 

pour quantifier la différence entre distributions de probabilité dans un 

contexte multi-classe. 

• Fonction d'activation : Application de la fonction d'activation SOFTMAX 

pour transformer les scores bruts en probabilités, facilitant l'interprétation 

des résultats. 

- Principe de Fonctionnement de SOFTMAX  

La fonction SOFTMAX prend en entrée un vecteur de scores produits par le 

modèle, typiquement dans la dernière couche d'un réseau de neurones. Ces 

scores peuvent être n'importe quelle valeur réelle, positive ou négative. 

La fonction commence par faire l’exponentielle de chaque score, ce qui permet 

de transformer tous les scores en valeurs positives. La formule pour chaque 

élément 𝑍𝑖 du vecteur d'entrée est : 𝑒𝑍𝑖                      (24) 

Ensuite, on calcule la somme des exposants de tous les scores :  

                   𝑺 = ∑ 𝒆𝒁𝒋
𝒋                              (25) 
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Enfin, chaque score obtenu dans le calcul des exposants est divisé par cette 

somme. Cela donne une probabilité pour chaque classe, qui varie entre 0 et 

1, et la somme de toutes les probabilités est égale à 1 : 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑍𝑖) =
𝑒𝑍𝑖

𝑆
                       (26) 

V.2.6. Métriques de performance  

Pour évaluer la performance du modèle proposé, plusieurs métriques basées sur 

les éléments de la matrice de confusion ont été utilisés, à savoir : 

- Vrai positif (TP) : Le modèle identifie correctement un cas positif de cancer. 

- Vrai négatif (TN) : Le modèle identifie correctement un cas négatif de cancer. 

- Faux positif (FP) : Le modèle classe incorrectement un cas négatif comme 

positif. 

- Faux négatif (FN) : Le modèle classe incorrectement un cas positif comme 

négatif. 

➢ Définition des métriques : 

• Précision globale (Accuracy) : Mesure le pourcentage de bonnes 

prédictions parmi le total des prédictions effectuées. Elle peut cependant 

être trompeuse en cas de déséquilibre des classes. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
 

• Rappel (Recall) : Evalue la capacité du modèle à détecter correctement les 

cas positifs. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃 

𝑇𝑃 +   𝐹𝑁 
 

• Précision (Precision) : Mesure la proportion des prédictions positives 

correctes parmi l’ensemble des prédictions positives. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃 

𝑇𝑃 +   𝐹𝑃 
 

• F1-Score : Combine la précision et le rappel pour fournir une évaluation 

globale de la performance du modèle. 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 × (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × Recall)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +   Recall 
 

En recherche médicale, la réduction des faux positifs et des faux négatifs est 

primordiale.  
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Classer à tort un cancer malin comme bénin peut entraîner une fausse 

assurance, poussant la patiente à ignorer des symptômes inquiétants. 

Inversement, diagnostiquer un cancer bénin comme malin conduit à des 

traitements invasifs et inutiles (chirurgies ou chimiothérapies), provoquant un 

stress évitable.  

La Table V.3 présente les mesures de performance calculées à partir de la matrice 

de confusion binaire. 

 

 Confusion Matrix 
Facteurs 

d’agrandi- 

ssement 

Algorithmes 
DenseNet 

Métriques de performance 

Predit→ 

Réel ↓ 
Benin Malin Support 

Precision Recall F1-Score 
Accuracy 

B M B M B M 

Benin 66 10 76 

40x 

Block2 0.98 0.92 0.84 0.99 0.91 0.96 0.94 

Block3 1.00 0.84 1.00 0.91 0.96 0.95 0.95 

Malin 3 144 147 
Block4 0.96 0.94 0.87 0.98 0.91 0.96 0.94 

Concaténation 0.96 0.95 0.91 0.98 0.93 0.97 0.96 

Benin 76 3 79 

100x 

Block2 0.86 0.99 0.97 0.91 0.91 0.95 0.93 

Block3 0.90 0.95 0.91 0.95 0.91 0.95 0.93 

Malin 9 141 150 
Block4 0.88 0.98 0.96 0.93 0.92 0.96 0.94 

Concaténation 0.89 0.98 0.96 0.94 0.93 0.96 95 

Benin 76 1 77 

200x 

Block2 0.78 1.00 1.00 0.85 0.88 0.92 0.90 

Block3 0.80 0.98 0.96 0.87 0.87 0.92 0.90 

Malin 25 122 147 
Block4 0.76 0.96 0.94 0.84 0.84 0.90 0.88 

Concaténation 0.75 0.99 0.99 0.83 0.85 0.90 0.88 

Benin 70 2 72 

400x 

Block2 0.74 0.99 0.97 0.89 0.84 0.94 0.91 

Block3 0.71 0.99 0.97 0.87 0.82 0.93 0.90 

Malin 22 201 223 
Block4 0.77 0.98 0.94 0.91 0.85 0.94 0.92 

Concaténation 0.76   0.99     0.97 0.90 0.85 0.94 0.92 

Table V.3. Résultats de la classification. 

 
V.2.7. Discussion des résultats  

- Comparaison des blocs individuels et de la concaténation 

•  La concaténation des blocs produit de meilleures performances, notamment 

pour l'Accuracy, le rappel (Recall) , et le F1-score. 
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•  Cette approche semble compenser les limitations des blocs individuels en 

combinant leurs caractéristiques extraites, ce qui enrichit l’apprentissage du 

modèle. 

•  Les différences de performance entre les blocs individuels et la concaténation 

sont plus prononcées à des niveaux de grossissement plus faibles (40x et 100x), 

ce qui montre que l’intégration des informations globales et locales est 

particulièrement bénéfique pour ces niveaux. 

- Analyse des performances selon les métriques 

• Le rappel pour la classe maligne (M) est généralement élevé pour tous les 

niveaux de zoom, ce qui indique que le modèle est performant pour détecter les 

échantillons malins, une caractéristique souhaitable pour éviter les faux négatifs. 

• En revanche, la précision pour la classe bénigne (B) est plus variable et tend 

à diminuer aux niveaux de zoom plus élevés (200x et 400x), suggérant une 

difficulté à identifier correctement les échantillons bénins. 

• Le score F1 pour la classe bénigne (B) est souvent plus faible que pour la 

classe maligne (M), ce qui reflète cette asymétrie de performance et pourrait 

nécessiter des ajustements des méthodes de traitement des données 

supplémentaires. 

Globalement, le modèle DenseNet201, utilisant la concaténation des trois blocs 

internes, offre les meilleures performances pour la classification des images 

histopathologiques de cancer du sein, en particulier aux niveaux de 

grossissement 40x et 100x. Les résultats montrent une robustesse dans la 

détection des échantillons malins, mais des difficultés à distinguer les 

échantillons bénins à des niveaux de zoom plus élevés. Cette analyse souligne 

l’importance de la fusion des caractéristiques pour améliorer la robustesse du 

modèle et la nécessité d’explorer des techniques supplémentaires pour optimiser 

la classification des images à des grossissements plus détaillés. 
 

V.3. Deuxième partie 

V.3.1. Résolution du déséquilibre des classes avec les ondelettes 

Dans cette seconde partie, en décomposant les images bénignes à l'aide de la 

transformée en ondelettes discrète, nous avons pu équilibrer les classes et 
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enrichir la qualité des données. Cette méthode améliore l'extraction des 

caractéristiques essentielles tout en atténuant le bruit, contribuant ainsi à 

optimiser la classification des images histopathologiques du cancer du sein. 

 

V.3.2. Transformée en ondelettes discrète (DWT) 

La transformée en ondelettes discrète (DWT) est un outil d'analyse mathématique 

qui décrit une image en termes de caractéristiques spatiales et de fréquences. 

Elle utilise des filtres avec des fréquences de coupure différentes. L'image est 

soumise à un filtre passe-bas, connu sous le nom de « fonction en échelon », et à 

un filtre passe-haut, appelé « fonction d'ondelette ». Ces deux filtres sont 

appliqués successivement à l'ensemble de l'image. A la sortie, nous obtenons 

quatre bandes de fréquence : la première bande de basse fréquence (LL) 

représente une sorte de moyenne du signal original, appelée image 

approximative, ainsi qu'une version réduite et lissée de l'image originale. La 

deuxième partie comprend trois sous-bandes à haute fréquence, caractérisées 

par leur orientation spatiale : HL (horizontale), LH (verticale) et HH (diagonale). 

Les images détaillées (HH, HL et LH) sont généralement appelées coefficients 

d'ondelettes et mettent en évidence les contours des régions de l'image. Ce 

processus peut être répété autant de fois que nécessaire [130]. Alfred Haar a 

introduit les ondelettes en 1909 et les a appliquées à la représentation de signaux 

unidimensionnels. Stéphane G. Mallat a étendu l'application des transformées 

en ondelettes aux images. Il a donc introduit un algorithme rapide de 

décomposition/reconstruction des ondelettes. Cet algorithme est récursif et 

repose principalement sur deux opérations [130]. 

Filtrage : Convolution d'un signal avec un filtre passe-bas (h0) ou un filtre passe-

haut (g0). 

Sous-échantillonnage : Réduit le nombre d'échantillons du signal. En fait, le 

sous-échantillonnage horizontal (1:2) d'une image équivaut à supprimer une 

colonne sur deux, réduisant ainsi le nombre de pixels par ligne de moitié. La 

figure V.11 montre l'algorithme de MALLAT.  



Chapitre V : Etude expérimentale 

81 
 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure V.11. Algorithme de MALLAT [123] 
 

L’algorithme de MALLAT peut être expliqué comme suit : 

Soit 𝑺𝒋 représentant l'image approximative au niveau de résolution j, et 

𝑫𝒋
𝑿 représentant la sous-bande à l'orientation x (où x ϵ{H, V, D}) qui est extraite au 

niveau de résolution j. Dans l'algorithme, l'image d'entrée 𝑺𝒋  est d'abord soumise 

à un filtrage passe-haut et passe-bas. Les images résultantes sont ensuite sous-

échantillonnées sur les lignes, et chacune des images sous-échantillonnées est à 

nouveau filtrée par des filtres passe-haut et passe-bas, ce qui donne un total de 

quatre images. Ces quatre images sont à nouveau sous-échantillonnées, 

résultant en quatre images de la même taille : une image d'approximation 𝑺𝒋+𝟏 et 

trois images de détail 𝑫𝒋+𝟏
𝑿 , où x ϵ{H, V, D} [129], [130]. 

Pour générer des images en ondelettes à partir d'images histopathologiques de 

cancers du sein bénins, nous avons suivi plusieurs étapes. Tout d'abord, les 

images d’entrées au format PNG ont été converties en niveaux de gris. Cette 

conversion est essentielle car la décomposition en ondelettes est plus efficace sur 

des images unidimensionnelles (niveaux de gris) que sur des images en couleur 

(tridimensionnelles avec canaux rouge, vert, et bleu).  
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En niveaux de gris, les coefficients d’ondelettes permettent de mieux capter les 

variations d’intensité, ce qui renforce la visibilité des contours, textures et 

structures de l’image. Nous avons spécifiquement choisi le filtre d'ondelettes « 

bior1.3 », qui appartient à la famille des ondelettes biorthogonales, parce qu'il 

offre une meilleure performance en termes de réduction du bruit et de 

préservation des détails dans les signaux. Cela le rend particulièrement efficace 

pour le traitement d'images médicales. Le filtre « bior1.3 » se compose d'un filtre 

passe-bas (𝒉𝟎 ) et d'un filtre passe-haut (𝒈𝟎 ).  

▪ 𝒉𝟎  (Filtre passe-bas) : capture les composantes d'approximation (basses 

fréquences), qui représentent les variations globales et structures 

principales de l’image. 

▪ 𝒈𝟎  (Filtre passe-haut) : détecte les détails (hautes fréquences), mettant en 

évidence les contours, textures et fines structures. 

Les coefficients d'ondelettes obtenus sont :  

• LL (approximation). 

• LH, HL, HH (détails). 

La figure V.12 illustre l'image histologique après avoir effectué une transformée 

en ondelettes (DWT). 

 

Figure V.12. Exemple Image histologique après transformation en ondelettes (DWT) [123] 

V.3.3. Méthodologie  

Pour classer les images histopathologiques de l'ensemble de données BreakHis, 

deux approches complémentaires ont été adoptées : une classification tenant 

compte des facteurs de grossissement (afin d’intégrer les variations visuelles liées 

à l’agrandissement) et une classification indépendante du grossissement (visant 

à renforcer la capacité de généralisation du modèle). Ces deux stratégies sont 

illustrées dans la Figure V.13. 
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Figure V.13. Approche multi-résolutions pour la classification 

 

Dans un premier temps, 4 % de l’ensemble de données ont été réservés afin de valider 

la fiabilité du réseau entraîné. Ensuite, une augmentation des données a été effectuée 

sur les 96 % restants à l’aide de la décomposition en ondelettes, afin de corriger le 

déséquilibre entre les classes en égalisant la proportion entre la classe minoritaire et la 

classe majoritaire. L’ensemble de données a ensuite été mélangé aléatoirement et 

divisé en ensembles d’apprentissage et de validation, avec des proportions respectives 

de 84 % et 16 %. Enfin, des transformations géométriques ont été appliquées pour 

générer plusieurs versions des images, utilisées pour l’extraction des caractéristiques 

par DenseNet201. 

Le réseau pré-entraîné DenseNet201 a été choisi pour ses capacités d'extraction 

de caractéristiques robustes et sa précision supérieure par rapport aux autres 

modèles d'apprentissage profond. Pour l'adapter à la tâche de classification des 

images histopathologiques, un fine-tuning a été réalisé en plusieurs étapes. Tout 

d'abord, les caractéristiques ont été extraites et concaténées à différents niveaux 

Grossissement spécifique - classification binaire 

40x 

100x 

200x 

400x 

Modèle de classification à 40x Bénin ou Malin 

Modèle de classification à 100x 

Modèle de classification à 200x 

Modèle de classification à 400x Bénin ou Malin 

Bénin ou Malin 

Bénin ou Malin 

Grossissement Indépendant - classification binaire 

40x 

100x 

200x 

400x 

Modèle de Classification  Bénin ou Malin 



Chapitre V : Etude expérimentale 

84 
 

du modèle (pool3_pool, pool4_pool, conv5_block32_conca) grâce à une mise en 

commun des moyennes globales (GAP), produisant un vecteur de taille 3072 où 

chaque composante représente une caractéristique de l'image. Cette opération a 

permis d'exploiter pleinement les informations du modèle, de réduire la 

dimensionnalité et d'éviter le surajustement lié à l'utilisation de couches Flatten.  

La figure V.14 présente une visualisation des différentes cartes de 

caractéristiques obtenues à partir des différents niveaux du modèle . 

 

 

Figure V.14.Illustration des cartes de caractéristiques obtenues à partir des couches (pool3_pool, 

pool4_pool, conv5_block32_conca) 

 

Pour renforcer la régularisation et minimiser le risque de surajustement, des 

couches de dropout et de batchNormalization ont été intégrées. Une stratégie de 

fine-tuning partiel a été appliquée pour adapter DenseNet aux images de la base 

BreakHis. Les couches situées avant le bloc conv5_block32 ont été gelées afin de 

préserver les caractéristiques générales apprises lors de l'entraînement initial. 

Seules les couches finales ont été rendues entraînables afin d'ajuster le modèle 

aux spécificités de la classification binaire. La couche de sortie d’origine, conçue 

pour 1000 classes, a été remplacée par une nouvelle couche dense adaptée aux 

deux catégories ciblées. Le modèle a ensuite été entraîné avec un taux 

d’apprentissage réduit. Ce choix a permis d’ajuster les poids des dernières 

couches sans altérer les représentations utiles déjà acquises. Sur un total de 18 

332 738 paramètres, seuls 294 850 (environ 1.12 Mo) ont été mis à jour. Les 18 

037 888 autres (environ 68.81 Mo) ont été conservés. Cette méthode a contribué 
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à limiter le surapprentissage tout en améliorant la capacité du modèle à 

distinguer les images bénignes et malignes. 

La figure V.15 illustre l’architecture proposée pour la classification des images 

histopathologiques, mettant en évidence les étapes principales de l'approche 

adoptée.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure V.15. Modèle proposé pour la classification des images histopathologiques. 
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Ce processus est détaillé de manière formelle dans l’algorithme, qui décrit 

méthodiquement les différentes phases de traitement, depuis la préparation des 

données jusqu'à l'obtention des résultats de classification. 
 

Algorithme : Classification automatisée des images histopathologiques du cancer 

du sein. 

1: Input: 

- Ensemble de données pour l’entraînement : df1,  

- Ensemble de données pour la validation : df2,  

- Ensemble de données pour le test : df3,  

- Ep : Epochs,  

- bch: Batch size, 

- Lr: Taux dapprentissage,  

- N : Couverture par taille de lot, 

- X : Poids du modèle CNN pré-entraîné. 

2 : Début : Entraînement du cadre 

3 : Redimensionner chaque image microscopique des jeux de données à une taille de 

224×224 pixels. 

4 : Utiliser des techniques d'augmentation pour augmenter la taille de la base de 

données. 

5 : Normaliser les images pour s'assurer que les valeurs sont dans une plage 

adaptée au modèle. 

6 : Extraire les caractéristiques des couches inférieures de DenseNet201 : 

• Charger le modèle DenseNet201 pré-entraîné, 

• Extraire les caractéristiques des couches intermédiaires : 
➢ pool3_pool du bloc dense 2, 
➢ pool4_pool du bloc dense 3, 
➢ conv5_block32_concat du bloc 4. 

7 : Fusionner les caractéristiques extraites à l’aide d’une couche de concaténation. 

8 : Appliquer une normalisation par lot (batch normalization), un abandon (dropout), 

et une fonction SOFTMAX aux couches ajustées du CNN. 

9 : Initialisation du modèle et Fine-Tuning :  

- Geler les premières couches du modèle pré-entraîné pour conserver les 

caractéristiques générales.  

- Débloquer les couches supérieures pour les ajuster aux images 

histopathologiques. 

10 : Entraîner le cadre et déterminer les poids initiaux. 
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V.3.4. Paramètres d’entraînement du modèle 

La figure V.16 représente les résultats de la simulation du processus 

d'apprentissage. Différents hyperparamètres sont utilisés pour former le cadre 

proposé. 

• Poids formés : Le modèle proposé utilise des poids ImageNet pré-entraînés 

au début du réseau. 

• Algorithme d'entraînement : Entraînement avec l'algorithme RMSprop. 

• Taux d'apprentissage : Taux d'apprentissage initial fixé à 10e-7, 

progressivement réduit vers zéro pour améliorer la convergence. 

Le ReduceLROnPlateau ajuste le taux d'apprentissage pendant 

l'entraînement, basé sur l'évolution de la précision de validation. Si la 

précision ne s'améliore pas, le taux d'apprentissage est réduit par un facteur 

de 0.2, ce qui peut aider à améliorer la convergence du modèle. 

• Fonction de perte : Utilisation de la cross-entropie catégorique, adaptée 

pour quantifier la différence entre distributions de probabilité dans un 

contexte multi-classe. 

• Epoques et taille de lot : Entraînement réalisé sur 100 époques avec une 

taille de lot de 35, sans convergence significative constatée après ces 100 

époques. 

 11: Boucle d’entrainement: 

       for Ep=1 to Ep do 

1. Sélectionner N échantillons pour entraîner le modèle sur l’ensemble 

d’entraînement df1. 

2. Effectuer une propagation avant (forward propagation) et calculer le coût. 

3. Effectuer une rétropropagation (backpropagation) et mettre à jour les poids 

X. 

              Fin de la boucle. 

12: Validation et Test 

• Evaluer les performances du modèle sur df2 (validation). 

• Tester le modèle sur df3 (test) et mesurer la précision. 

13 : Fin de l’algorithme. 
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• Fonction d'activation : Application de la fonction d'activation SOFTMAX 

pour transformer les scores bruts en probabilités, facilitant l'interprétation 

des résultats. 

• DROPOUT : Pour améliorer les performances du réseau, une couche 

d'abandon (DROPOUT) a été appliquée avec une probabilité de P=0,5. 

Figure V.16. Evolution de l'apprentissage de la base de données BreakHis avec/sans grossissement.   

V.3.5. Analyse des résultats 

L’analyse des résultats par facteur de grossissement révèle les excellentes 

performances du modèle DenseNet201. Selon la matrice de confusion (Tableau 

V.4), les faux négatifs (cas malins classés comme bénins) et les faux positifs (cas 
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bénins classés comme malins) sont très négligeables, variant entre 0 et 1. Avec 

un F1-score dépassant 98 % pour les deux classes, ainsi qu'une précision et un 

rappel également supérieurs à 96 %, le modèle démontre une capacité 

remarquable à minimiser les erreurs critiques, susceptibles d’entraîner des 

conséquences graves pour les patients. 

En ce qui concerne la classification indépendante d’agrandissement, les résultats 

démontrent une efficacité remarquable, avec une précision globale atteignant 99 

%. Cette approche vise à évaluer les capacités du modèle à classifier correctement 

les échantillons sans tenir compte des variations de résolution ou de détail 

offertes par les différents grossissements. 

La matrice de confusion associée montre un nombre négligeable de faux négatifs 

et de faux positifs. Cette observation confirme que le modèle parvient à maintenir 

des performances élevées tout en réduisant les erreurs graves, telles que la 

classification erronée d’un échantillon malin comme bénin ou vice-versa. 

Les métriques de précision, rappel et F1-score atteignent également 99 %, 

soulignant la capacité du modèle à extraire efficacement des caractéristiques 

pertinentes, indépendamment du grossissement. Ces performances stables 

démontrent que le modèle est non seulement robuste, mais également flexible 

dans des conditions d’acquisition d’images variées. 

La classification indépendante du grossissement présente un intérêt particulier 

dans des contextes cliniques où les conditions d’acquisition des images peuvent 

varier en fonction de l’équipement ou des protocoles utilisés. L’absence de la 

dépendance au grossissement permet également une meilleure généralisation 

sur des ensembles de données diversifiés. 
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  Matrice de Confusion Métriques de performances  

Facteurs 

d’agrandissement 

Predict→ 

Réel↓ 
Benin Malin Support Precision Recall F1-Score Accuracy 

Agrandissement 

spécifique 

40x 
Benin 25 0 25 0.96 1.00 0.98 

0.99 
Malin 1 54 55 1.00 0.98 0.99 

100x 
Benin 25 1 26 1.00 0.96 0.98 

0.98 
Malin 0 58 58 0.98 1.00 0.99 

200x 
Benin 25 0 25 0.96 1.00 0.98 

0.99 
Malin 1 55 56 1.00 0.98 0.99 

400x 
Benin 24 0 24 0.96 1.00 0.98 

0.99 
Malin 1 49 50 1.00 0.98 0.99 

Aggrandisement 

Independant  

Sans facteurs 

d'agrandissement 

Benin 212 5 217 1.00 0.98 0.99 
0.99 

Malin 0 218 218 0.98 1.00 0.99 

 
Tableau V.4. Rapport de classification de l'approche appliquée à l'ensemble de tests  

du cancer du sein. 
 

La Figure V.17 montre que la précision et le RECALL du modèle restent élevés 

(96 à 100 %) pour les deux classes, quel que soit le facteur de grossissement, 

indiquant une excellente capacité à distinguer les échantillons et à détecter les 

vrais cas, tout en minimisant les faux négatifs. 

Les scores F1 atteignent 99 %, démontrant un équilibre optimal entre précision 

et rappel. Ce résultat confirme la robustesse du modèle de classification. 

Figure V.17. Performances par métrique et facteur de grossissement pour la classification binaire 

des images BreaKHis 
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La courbe ROC présentée par la figure V.18, illustre les excellentes performances 

du modèle DenseNet-201 pour la classification des images histopathologiques, 

quel que soit le facteur de grossissement (40x, 100x, 200x, 400x) ou l'ensemble 

global. Les AUC, atteignant 1,0 pour les grossissements 200x et 400x, et 

dépassant 0,99 pour les autres (40x : 0,9985, 100x : 0,9940), ce qui confirme une 

discrimination quasi parfaite entre les classes. L'AUC globale de 0,9998 souligne 

la stabilité et l'efficacité du modèle, en accord avec les métriques élevées 

observées précédemment. 

• Faible Taux de Faux Positifs (FPR) : Les courbes montrent que le modèle 

maintient un très faible taux de faux positifs, avec une True Positive Rate (TPR) 

élevée dès les premières valeurs de FPR, ce qui est idéal pour les diagnostics 

médicaux où minimiser les erreurs est primordial. 

• Robustesse aux niveaux 200X et 400X : Les AUC parfaites pour ces niveaux 

montrent que le modèle a réussi à extraire efficacement les caractéristiques 

pertinentes malgré les détails microscopiques complexes présents à ces 

grossissements. 

• Légère diminution à 100X : La baisse marginale de l’AUC à 100X peut 

indiquer une difficulté à discriminer certaines caractéristiques intermédiaires 

des échantillons bénins ou malins. 

Globalement, la courbe ROC confirme l’excellente performance du modèle 

DenseNet201 pour la classification des images histopathologiques à tous les 

niveaux de grossissement. Les AUC très élevées (approchant 1) indiquent une 

capacité exceptionnelle du modèle à distinguer les classes. Toutefois, l’AUC 

légèrement inférieure à 100X pourrait inciter à des investigations 

supplémentaires pour améliorer ce niveau spécifique. 
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Figure V.18. Performances de la classification binaire de BreaKHis avec/sans grossissement. 

 

L'analyse des figures montre la grande fiabilité et stabilité du modèle pour la 

classification des images histopathologiques du cancer du sein, 

indépendamment du facteur de grossissement. Le Tableau V.5 compare notre 

approche à d'autres travaux sur la classification des images BreakHis dans des 

conditions similaires. 

 Reference Accuracy (%) 
Type de 

Classification 
Methode de Classification  

1 

[1] Khan et al. 

2021 
 

[114] 

99 

Magnification 

independent-binary 

classification 

Data augmentation+MultiNet 

2 

Saini and 

Susan (2020) 

[115] 

40x: 96.5 

100x: 94.0 

200x: 95.5 

400x: 93.0 

Magnification specific 

binary classification 

w/BatchNormalization, w/DCGAN 

samples and w/hyperparameter 

tuning 

3 
Liew et al. 

(2021) [118] 
97 

Magnification 

independent-binary 

classification 

data resampling+DenseNet201 and 

XGBoost 

4 
Toğaçar et al. 

(2020) [131] 
98.80 

Magnification 

independent-binary 

classification 

Data augmentation/BreastNet 

5 

Han et al. 

(2017) 

[132] 

40x: 95.8±3.1 

100x: 96.9±1.9 

200x: 96.7±2.0 

400x: 94.9±1.8 

Magnification specific-

binary classification 
Data over-sampling+CSDCNN model 

6 

 

Eshun et al. 

[129] 

40x: 97 

100x: 91 

200x: 93.6 

Magnification specific 

binary classification 
DCGAN+ReseNet50 
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400x: 90.2 

7 

Proposed 

Without data 

augmentation 

40x:   92 

100x: 91 

200x: 88 

400x: 91 

Magnification specific 

binary classification 

Without data 

augmentation 

8 

Djouima et 

al. (2022) 

[113] 

40x:   96 

100x: 95 

200x: 88 

400x: 92 

Magnification specific 

binary classification 

DCGAN augmentation+densnet201 

blocks 

9 
Proposed 

[123] 
99 

 

Magnification 

independent binary 

classification 

Wavelet transform data 

augmentation+densnet201blocks 

10 
Proposed 

[123] 

40x:   99 

100x: 98 

200x: 99 

400x: 99 

Magnification specific-

binary classification 

Wavelet transform data 

augmentation+densnet201 

blocks 

 
Tableau V.5. Comparaison du cadre proposé avec d'autres méthodes sur BreaKHis. 

 

V.4. Conclusion 

Dans ce chapitre, nous avons présenté deux approches visant à résoudre le 

déséquilibre des classes et à améliorer la classification des images 

histopathologiques du cancer du sein issues de la base de données BreakHis. 

Ces méthodes combinent des stratégies avancées d’enrichissement des données 

avec l’utilisation du modèle DenseNet201 comme extracteur de caractéristiques, 

afin d’atteindre des performances optimales pour des applications médicales 

sensibles. 

- Première méthode : DCGAN et DenseNet201 

La première approche utilise les DCGAN pour générer des images synthétiques 

de la classe bénigne. Ces images, associées à une augmentation supplémentaire, 

réduisent le déséquilibre des classes et enrichissent la diversité des échantillons.  

Grâce à la concaténation des blocs internes de DenseNet201, cette approche a 

amélioré la précision, malgré qu’elle puisse introduire des biais si les images 

générées ne reflètent pas fidèlement les cas réels. 

 

- Deuxième méthode : transformation par ondelettes et DenseNet201 

La transformation par ondelettes a permis de résoudre le problème du 

déséquilibre des classes, une limitation majeure affectant la performance des 

réseaux d'apprentissage profond appliqués à la classification d'images. 
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Contrairement aux travaux précédents, centrées sur la fusion spectrale et 

spatiale des caractéristiques, notre méthode utilise la décomposition par 

ondelettes pour augmenter les données et réduire les biais liés aux classes 

minoritaires. Cela a permet d’optimiser les ressources computationnelles et de 

réduire le temps de convolution, tout en maintenant une haute précision. 

En outre, la stratégie de concaténation des caractéristiques extraites des 

différents blocs de DenseNet201 a capturé efficacement des informations 

discriminatives à plusieurs niveaux d'abstraction, améliorant ainsi la 

généralisation et la robustesse du modèle. Les résultats montrent une précision 

globale de 99 % pour la classification binaire et des précisions entre 98 % et 99 

% pour les classifications spécifiques aux différents facteurs de grossissement.  

Ces résultats soulignent l’efficacité de la transformation par ondelettes et de la 

concaténation des caractéristiques pour améliorer les performances des modèles 

d’apprentissage profond en analyse d’images histopathologiques, offrant un 

potentiel prometteur pour le diagnostic assisté des maladies. 

Les deux méthodes se révèlent complémentaires : l’approche DCGAN génère un 

volume significatif de données synthétiques, tandis que la transformation par 

ondelettes assure une meilleure interprétabilité et préservation des 

caractéristiques spatiales et spectrales. 
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Conclusion Générale 

 

Cette thèse a exploré de manière approfondie l’application des techniques de 

Deep Learning au diagnostic médical, en particulier dans le domaine de la 

classification d’images histopathologiques du cancer du sein. Les travaux 

présentés mettent en évidence les capacités remarquables des approches basées 

sur l'intelligence artificielle à relever des défis complexes, en surmontant les 

limitations des méthodes traditionnelles. 

Initialement, le contexte global a été établi en illustrant le rôle croissant de l’IA 

dans l’optimisation des systèmes de santé. Cette technologie s’est démontrée 

essentielle pour améliorer la précision et la rapidité des diagnostics médicaux, 

notamment grâce à sa capacité à analyser des données massives et variées 

comme les images médicales. Le Deep Learning s’est affirmé comme un outil 

important dans ce domaine, préparant le terrain pour les chapitres suivants. 

Par la suite, une base théorique solide a été fournie en introduisant les concepts 

fondamentaux de l’apprentissage profond. Ces concepts, notamment la structure 

des réseaux neuronaux, les stratégies de régularisation et les méthodes 

d’optimisation, sont indispensables pour comprendre et appliquer efficacement 

les modèles avancés dans des contextes variés. Cette compréhension théorique 

a permis d’éclairer les choix architecturaux développés ultérieurement. 

L'étude s'est ensuite concentrée, sur les réseaux de neurones convolutifs (CNN), 

qui constituent un pilier majeur de la vision par ordinateur. Les CNN se sont 

distingués par leur aptitude à extraire des informations à différents niveaux de 

granularité, offrant des performances à la pointe de la technologie pour la 

classification d’images médicales. Leur efficacité, combinée à des techniques 

telles que l’apprentissage par transfert et l’augmentation des données, a été 

démontrée à travers divers modèles, incluant DenseNet, qui a été retenu pour 

nos travaux ultérieurs. 

Parallèlement, l’un des principaux défis en imagerie médicale a été abordé : le 

déséquilibre des classes. Les stratégies présentées, notamment l’augmentation 
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de données et l’utilisation de méthodes génératives comme les GAN, ont illustré 

des approches novatrices pour enrichir les ensembles de données et améliorer la 

fiabilité des modèles. Ces contributions ont été validées par des publications 

scientifiques, témoignant de leur impact dans le domaine. 

A ce stade de la recherche, deux approches ont été explorées pour répondre aux 

défis liés à la classification des images histopathologiques du cancer du sein. La 

première méthode, combinant DCGAN pour la génération d’images synthétiques 

et DenseNet201 comme extracteur de caractéristiques, a permis de corriger 

efficacement le déséquilibre des classes. Cette stratégie a montré des 

performances globales prometteuses, notamment aux niveaux de zoom inférieurs 

(40x et 100x). Toutefois, certaines limites subsistent aux niveaux de 

grossissement plus élevés (200x et 400x), en particulier pour la détection des 

échantillons bénins, en raison de la complexité des détails microscopiques et de 

la représentativité limitée des données générées. 

Dans la seconde méthode, une solution complète a été proposée en utilisant la 

décomposition en ondelettes pour l'augmentation des données et le modèle 

DenseNet201 pré-entraîné pour l'extraction des caractéristiques. L’augmentation 

par décomposition en ondelettes, a permis de traiter le déséquilibre des classes, 

qui affecte négativement les performances des réseaux d’apprentissage profond 

en classification d’images. Grâce à son extraction multi-échelle, la décomposition 

en ondelettes capture les détails à différentes résolutions, conservant ainsi les 

informations essentielles comme les contours, les textures et les motifs. De plus, 

elle filtre naturellement le bruit, améliorant la qualité des données d'entrée, et 

renforçant ainsi la robustesse du diagnostic médical. 

L'efficacité d'une approche repose aussi sur l'extraction des caractéristiques les 

plus pertinentes. Le modèle d'apprentissage par transfert DenseNet201, a été 

choisi pour ses capacités d'extraction de caractéristiques robustes et sa précision 

supérieure par rapport aux autres modèles d'apprentissage par transfert 

profond. 
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Afin d'exploiter pleinement cette capacité, notre approche consistait à concaténer 

les caractéristiques extraites des blocs spécifiques du modèle DenseNet201 pré-

entraîné ( pool3_pool , pool4_pool et conv5_block32_conca ) grâce à l'application 

de GAP (Global Average Pooling). 

En intégrant les caractéristiques extraites à différents niveaux, cette stratégie a 

permis de réduire les biais et d’augmenter la robustesse des prédictions, 

atteignant une précision globale remarquable de 99%. 

Pour éviter le surajustement, des couches de régularisation (dropout et 

batchNormalization) sont ajoutées pour la régularisation. Enfin, le réseau est 

adapté à la classification binaire en incorporant une couche dense (ou couche 

entièrement connectée) avec une fonction Softmax à la fin de l'architecture. 

L’approche proposée, a été mise en œuvre selon deux taxonomies appliquées à la 

classification des images histologiques du cancer du sein colorées à l’H&E : la 

classification binaire spécifique au grossissement et la classification binaire 

indépendante du grossissement. Les résultats expérimentaux ont atteint une 

précision de classification de 99 % pour la classification indépendante du 

grossissement et respectivement 99 %, 98 %, 99 % et 99 % pour les différentes 

échelles. 

Finalement, cette thèse contribue significativement au domaine de l’imagerie 

médicale en proposant des solutions robustes et innovantes pour améliorer la 

classification des images histopathologiques.  

Perspectives 

Pour de futurs travaux, nous proposons l'évaluation des capacités de généralisation de 

notre modèle à d'autres ensembles de données d'images histopathologiques tels que 

l'ensemble de données BACH et les ensembles de données couvrant différents types de 

cancer. 
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