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Abstract

This thesis introduces novel deep learning-based frameworks for secure medical image

steganography, addressing the critical challenge of protecting sensitive patient information

while preserving diagnostic quality. Medical images present unique security requirements

due to their dual nature: containing both critical visual data for diagnosis and sensi-

tive patient metadata, which conventional steganographic techniques do not adequately

address.

Our work presents two complementary approaches to this challenge. First, we develop

a Mask-RCNN based framework that intelligently identifies diagnostically insignificant

regions within medical images for strategic data embedding. By combining this region-

aware detection with Discrete Cosine Transform (DCT) embedding in the frequency do-

main, our method achieves remarkable imperceptibility with Peak Signal-to-Noise Ratio

(PSNR) values exceeding 115 dB while maintaining high payload capacity.

Second, we propose a clinical quality-aware convolutional neural network architec-

ture that leverages an encoder-decoder framework for end-to-end steganography. This

approach employs parallel processing paths with scaled residual learning to embed secret

medical images within cover images while preserving diagnostic features. Extensive exper-

imentation across multiple medical imaging modalities (CT, MRI) from datasets includ-

ing MIDRC-RICORD-1B, and IQ-OTH/NCCD, demonstrates that our method achieves

a good trade-off between payload and imperceptibility.

The frameworks developed in this thesis achieve an optimal balance between embed-

ding capacity, imperceptibility, and robust secret recovery, providing healthcare institu-

tions with effective tools for safeguarding patient privacy while maintaining the integrity

of medical diagnostics. This work significantly advances the field of medical image secu-

rity and establishes a foundation for future innovations in secure healthcare information

systems.

Keywords: Medical Image Steganography, Deep Learning, DICOM, Mask-RCNN,

DCT, Encoder-Decoder, Data Security.
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Résumé

Cette thèse introduit de nouveaux Architectures basés sur l’apprentissage profond

pour la stéganographie sécurisée des images médicales, en répondant au défi crucial de la

protection des informations sensibles des patients tout en préservant la qualité diagnos-

tique. Les images médicales présentent des exigences de sécurité uniques en raison de leur

double nature : elles contiennent à la fois des données visuelles essentielles au diagnostic

et des métadonnées sensibles relatives aux patients, que les techniques stéganographiques

conventionnelles ne prennent pas en charge de manière adéquate.

Notre travail propose deux approches complémentaires pour relever ce défi. Tout

d’abord, nous développons une architectures basé sur Mask R-CNN permettant d’identi-

fier intelligemment les régions diagnostiquement non significatives des images médicales

afin d’y intégrer stratégiquement des données. En combinant cette détection orientée

région avec l’insertion des données dans le domaine fréquentiel à l’aide de la Transformée

en Cosinus Discrète (DCT), notre méthode atteint une imperceptibilité remarquable avec

des valeurs de Peak Signal-to-Noise Ratio (PSNR) dépassant 115 dB, tout en conservant

une capacité d’insertion élevée.

Ensuite, nous proposons une architecture de réseau neuronal convolutif tenant compte

de la qualité clinique, exploitant un cadre encodeur-décodeur pour une stéganographie

de bout en bout. Cette approche met en œuvre des chemins de traitement parallèles

avec un apprentissage résiduel à échelle adaptée, permettant d’intégrer des images médi-

cales secrètes au sein d’images de couverture tout en préservant les caractéristiques diag-

nostiques. Des expérimentations approfondies sur plusieurs modalités d’imagerie médi-

cale (CT, IRM) à partir de bases de données telles que MIDRC-RICORD-1B et IQ-

OTH/NCCD démontre que notre méthode offre un bon compromis entre la capacité de

charge utile et l’imperceptibilité.

Les cadres développés dans cette thèse atteignent un équilibre optimal entre capacité

d’insertion, imperceptibilité et récupération robuste des données secrètes, offrant ainsi

aux établissements de santé des outils efficaces pour la protection de la confidentialité

des patients tout en maintenant l’intégrité du diagnostic médical. Ce travail constitue

une avancée significative dans le domaine de la sécurité des images médicales et pose les

IV



bases de futures innovations dans les systèmes d’information sécurisés pour le secteur de

la santé.

Mots-clés: Stéganographie d’images médicales, Apprentissage profond, DICOM,

Mask-RCNN, DCT, Encodeur-Décodeur, Sécurité des données.
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صخلم

يدحتلاجلاعيامم،ةيبطلاروصلليرسلاءافخإللقيمعلاملعتلاىلعامئاقاًديدجاًجهنةحورطألاهذهتمدق

تابلطتمةيبطلاروصلامدقت.صيخشتلاةدوجىلعظافحلاعمةساسحلاىضرملاتامولعمةيامحيفلثمتملا

ةساسحةيفصوتانايبوصيخشتللةيرورضةيئرمتانايبىلعيوتحتيتلا—ةجودزملااهتعيبطببسبةديرفةينمأ

.فٍاكلكشباهتجلاعميفةيديلقتلاءافخإلاتاينقتلشفتيتلاو—ىضرملل

قطانملاءاكذبددحيMask-RCNNىلعدمتعياًراطإانروطً،الوأ.يدحتلااذهلنيلماكتمنيجهنانثحبمدقي

فشك�لااذهنيبعمجلالالخنم.يجيتارتسالكشبتانايبلاجامدإلةيبطلاروصلالخاداًيصيخشتةمهملاريغ

ءافخإانتقيرطققحت،ددرتلالاجميف(DCT)عطقتملامامتلابيجليوحتنيمضتعمقطانملاىلعمئاقلا
ً

اظًوحلم

.ةيلاعةلومحةعسىلعظافحلاعملبيسيد115زواجتت(PSNR)ءاضوضلاىلإةراشإلاةبسنميقعم

ءافخإللريفشتلاكف-رفشملاراطإنمديفتستةيريرسلاةدوجلايعارتةيفيفالتةيبصعةكبشةينبحرتقن،اًيناث

ةيبطلاروصلانيمضتلسايقميقبتمملعتعمةيزاوتمةجلاعمتاراسمجهنلااذهمدختسي.ةياهنلاىلإةيادبلانم

ةيبطريوصتقرطربعةفثكملابراجتلارهظُت.صيخشتلاتازيمىلعظافحلاعمفالغلاروصلخادةيرسلا

MIDRC-RICORD-1Bلمشتتانايبتاعومجمنم(يسيطانغملانينرلابريوصتلا،يعطقملاريوصتلا)ةددعتم

.فاشتكاللةيلباقلامدعوءافخإلاةعسنيبًاديجًانزاوتققحتانتقيرطنأIQ-OTH/NCCDو

امم،ةوقبرسلاعاجرتساو،ءافخإلاو،نيمضتلاةعسنيباًيلاثماًنزاوتةحورطألاهذهيفةروطملارطألاققحت

اذهززعي.يبطلاصيخشتلاةمالسىلعظافحلاعمىضرملاةيصوصخةيامحلةلاعفتاودأةيحصلاتاسسؤمللرفوي

ةيحصلاةياعرلاتامولعمةمظنأيفةيلبقتسملاتاراكتباللاسًاسأعضيوةيبطلاروصلانمألاجمريبكلكشبلمعلا

.ةنمآلا

،DICOM،Mask-RCNN،DCT،قيمعلاملعتلا،ةيبطلاروصلايفتانايبلاءافخإ:ةيحاتفملاتاملكلا

.تانايبلانامأ،كفلا-زيمرتلا
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Chapter 1

Introduction

1 Context and Motivation

The digitization of healthcare has transformed medical imaging into an

essential component of modern diagnostics, treatment planning, and re-

search. Medical images, such as MRI, CT, and X-rays, contain not

only visual diagnostic information, but also sensitive patient metadata

embedded within the DICOM (Digital Imaging and Communications in

Medicine) format. These images constitute a substantial component of

electronic health records and are frequently transmitted across health-

care networks, creating complex data assets that require comprehensive

protection against data breaches, unauthorized access, and cybersecurity

attacks.

The healthcare sector faces unique security challenges due to the sensi-

tive nature of patient information and the strict regulatory frameworks

2



Chapter 1. Introduction

governing its protection. Current regulatory frameworks, such as the

Health Insurance Portability and Accountability Act (HIPAA) and the

General Data Protection Regulation (GDPR), impose strict requirements

for protecting medical data. However, conventional security measures

such as cryptography primarily focus on securing data in transmission

or storage, leaving it vulnerable once decrypted. In contrast, steganog-

raphy—the practice of hiding information within digital media—offers a

promising solution by embedding patient data directly within medical im-

ages, ensuring that security remains intact throughout the data lifecycle.

DICOM, the standard format for medical imaging widely used in hos-

pitals, clinics, and research institutions, presents unique challenges for

steganography that conventional approaches fail to address:

• Sensitive Metadata Protection: Unlike conventional image for-

mats (JPEG, PNG), DICOM files store both pixel data and patient

metadata. Securing only the image portion is insufficient—a robust

approach must also safeguard metadata.

• High Diagnostic Sensitivity: Any alteration in a DICOM image

must not compromise diagnostic accuracy. Even minor distortions

can lead to misinterpretations by radiologists or medical profession-

als.

• Compression and Format Constraints: DICOM images may

3



Chapter 1. Introduction

undergo lossy or lossless compression, requiring a steganographic

method that remains robust across different storage and transmis-

sion scenarios.

Traditional steganographic techniques like Least Significant Bit (LSB)

substitution and transform domain methods face significant limitations

when applied to medical images, particularly in balancing three criti-

cal factors: embedding capacity, imperceptibility, and robustness. These

methods typically embed data uniformly across the image, potentially

modifying critical diagnostic regions and affecting clinical decision-making.

Recent advancements in deep learning have revolutionized medical imag-

ing, creating unprecedented opportunities to enhance steganographic tech-

niques. Deep learning offers several advantages over conventional ap-

proaches:

• Feature-Aware Data Embedding: Deep neural networks, par-

ticularly Convolutional Neural Networks (CNNs), can automatically

learn the most suitable regions for embedding hidden data while min-

imizing perceptual distortions.

• Context-Aware Steganography: Mask Region-based Convolu-

tional Neural Networks (Mask-RCNN) can intelligently segment non-

diagnostic regions within medical images, ensuring that hidden data

does not interfere with critical areas.
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• End-to-End Optimization: Deep learning architectures such as

encoder-decoder networks can dynamically optimize the balance be-

tween imperceptibility, robustness, and embedding capacity without

manual parameter tuning.

By leveraging these deep learning capabilities, we aim to develop ad-

vanced steganographic techniques that address the challenges of medical

image security while preserving diagnostic integrity.

2 Problem Statement

Despite the promising potential of medical image steganography, several

critical challenges remain unresolved in current implementations. Tradi-

tional steganographic techniques often suffer from a fundamental tradeoff

between embedding capacity, imperceptibility, and robustness. In medi-

cal contexts, this tradeoff becomes even more critical, as any degradation

in image quality could potentially affect diagnostic accuracy, with severe

consequences for patient care.

Traditional techniques like Least Significant Bit (LSB) substitution and

transform domain methods offer limited embedding capacity and often

introduce perceptible distortions when attempting to embed substantial

amounts of data. These distortions, while possibly acceptable in general

image steganography, are problematic in medical imaging, where even
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subtle artifacts could lead to misdiagnosis. Furthermore, many existing

approaches fail to account for the structural heterogeneity of medical im-

ages, treating diagnostically critical and non-critical regions equally during

the embedding process.

The problem is further compounded by the diverse range of medical

imaging modalities, each with unique characteristics, resolutions, and di-

agnostic requirements. A steganographic approach that works well for

one modality might be unsuitable for another, highlighting the need for

adaptive, context-aware embedding techniques that can accommodate this

diversity while maintaining consistent security and quality standards.

In this work, we focus primarily on developing deep learning-based

data hiding techniques for patients’ medical information. We address

two main deep learning-based image steganography paradigms. For the

first type—deep learning for optimal embedding locations—we developed

a system that utilizes a deep learning architecture to pinpoint the most

suitable regions within medical images for data concealment, ensuring the

hidden information remains undetectable by both human observation and

steganalysis techniques. For the second type—deep learning for end-to-

end stego generation—we propose an innovative framework that employs

convolutional neural networks (CNNs) to directly produce stego-images

from cover images and secret messages, thereby eliminating the need for

manually designed embedding rules.
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Our proposed framework consists of embedding patients’ information

by strategically modifying selected coefficients within multi-resolution med-

ical images, particularly targeting the Digital Imaging and Communica-

tions in Medicine (DICOM) data format. This approach aims to overcome

the limitations of traditional methods by preserving diagnostic quality

while ensuring robust security.

3 Research Questions

The problem to be addressed in this thesis are expressed by the following

research questions:

1. How can deep learning architectures, notably encoder-decoder

frameworks, be designed to balance embedding impercep-

tibility, capacity, and recovery accuracy in medical image

steganography?

This question explores the architectural considerations necessary to

develop neural networks that can effectively hide information within

medical images while ensuring that the resulting stego images main-

tain visual fidelity and that the embedded information can be accu-

rately recovered.

2. How can diagnostically insignificant regions in medical im-

ages be effectively identified and utilized for data embedding
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without compromising clinical value?

This question investigates methods for intelligently identifying ar-

eas within medical images that have minimal diagnostic significance,

allowing for strategic embedding that preserves essential clinical in-

formation while maximizing data hiding capacity.

3. How can advanced steganographic techniques be optimized

to achieve high embedding capacity while maintaining image

quality in medical images?

This question addresses the technical challenge of increasing the amount

of information that can be embedded within medical images without

introducing perceptible artifacts or compromising diagnostic utility.

4 Contributions

This thesis makes several significant contributions to the field of medical

image steganography.

1. Development of a deep learning-based framework for medi-

cal image steganography: We propose a new approach that lever-

ages the Mask Region-based Convolutional Neural Network (Mask-

RCNN) architecture to identify diagnostically insignificant regions in

medical images. This allows for strategic embedding of patient infor-

mation in areas that do not compromise the image’s diagnostic value,
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significantly advancing the state-of-the-art in context-aware medical

image steganography.

2. Integration of QR codes for efficient patient information rep-

resentation: Our framework incorporates QR code generation to

efficiently encode and embed patient information within medical im-

ages. This approach provides a structured representation of patient

data that can be reliably embedded and extracted, enhancing the

practical utility of the steganographic system in clinical workflows.

3. Implementation of DCT-based embedding in insignificant

regions: We introduce a Discrete Cosine Transform (DCT) based

embedding technique specifically designed for medical images. This

approach enables high-capacity data hiding in the frequency domain

while minimizing perceptual distortion, Attain high PSNR levels,

reaching as much as 115 dB.

4. Design of a clinical quality-aware deep learning framework:

We develop a CNN-based encoder-decoder architecture specifically

optimized for medical images that preserves diagnostic features through

multi-scale feature extraction, maintains embedding imperceptibility

via constrained residual learning, and achieves robust secret recovery

through progressive feature reconstruction.

5. Experimental validation on diverse medical imaging modal-
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ities: Through extensive experimentation on medical datasets like

CHAOS, MIDRC-RICORD-1B, and IQ-OTH/NCCD, we demonstrate

the versatility and effectiveness of our approach across different med-

ical imaging modalities. The framework achieves consistent perfor-

mance with superior image quality compared to existing methods,

showing up to 9.76 dB improvement in PSNR while maintaining full

embedding capacity.

Our work collectively address the fundamental challenges in medical

image steganography by providing a comprehensive framework that bal-

ances security, capacity, and clinical utility. The practical implications

of this work include enhanced protection of patient privacy, streamlined

secure data sharing in clinical settings, and improved integration with ex-

isting healthcare information systems.

5 Thesis Structure

This thesis is organized into the following chapters:

Chapter 1: General Introduction

This chapter provides an overview of the research context, introduces the

problem statement, outlines the research questions, summarizes the main

contributions, and presents the structure of the thesis.

Chapter 2: Healthcare Data Security and Data Hiding Tech-
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niques

This chapter delivers an overview of fundamental concepts in image steganog-

raphy, covering traditional techniques such as spatial domain and trans-

form domain methods. It also provides a presentation of medical image

characteristics and security requirements.

Chapter 3: Literature Review

This chapter surveys the state-of-the-art in medical image steganography,

focusing on both traditional approaches and emerging deep learning-based

methods. It critically analyzes the strengths and limitations of existing

techniques, identifying research gaps that this thesis aims to address.

Chapter 4: High-Capacity Data Hiding for Medical Images

Based on the Mask-RCNN Model

This chapter elaborates on our first major contribution, extending our

framework with advanced DCT-based embedding techniques and compre-

hensive evaluation on the CHAOS dataset. We demonstrate significant

improvements in embedding capacity and image quality, with PSNR val-

ues exceeding 115 dB while maintaining diagnostic integrity.

Chapter 5: Privacy-Preserving Medical Image Steganogra-

phy: A Clinical Quality-Aware Deep Learning Framework

This chapter details our second major contribution, presenting our most

advanced approach using a CNN-based encoder-decoder architecture specif-

ically designed for medical images. This framework achieves a remarkable
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balance between embedding capacity and image quality, outperforming

existing methods by 9.76 dB in PSNR while maintaining high capacity.

Chapter 6: Conclusion and Perspectives

This chapter summarizes the key findings and contributions of the thesis,

discusses the limitations of the current approaches, and outlines promising

directions for future research in medical image steganography.

12



Chapter 2

Healthcare Data Security and Data Hiding
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2.1 Introduction

This chapter delves into the critical subject of healthcare data security by exploring a

range of data hiding techniques that play a pivotal role in protecting sensitive informa-

tion. It begins with a detailed examination of security concerns in the medical field and

then transitions to the field of data hiding, explaining its principles and frameworks for

covert communication. By discussing both classical approaches—such as LSB substi-

tution, transform domain methods, statistical techniques, and spread spectrum meth-

ods—and modern deep learning-based techniques like CNN-based models and GANs, the

chapter sets the stage for understanding the evolution and integration of these methods

to secure sensitive healthcare data.

2.2 Healthcare Data Protection

Digital imaging is advancing quickly in the modern day due to innovations in image-

capturing technology and the development of communication networks that have made

life more easier for people. In the medical area, where the sharing of medical pictures

across healthcare facilities has become crucial for precise diagnosis and all-encompassing

patient care, photos have emerged as one of the most effective means of information

transmission. The smooth exchange of medical images is essential for enabling prompt

and efficient medical choices, which in turn improves the standard of healthcare services.

Therefore, it is even more important to highlight the need to preserve the privacy of

medical images, which presents particular concerns in comparison with ordinary images,

because any distortion might negatively impact the accuracy of diagnosis. To protect

patient privacy, many legal and regulated frameworks for healthcare data security have

been developed. The fundamental principles of security and privacy for healthcare data

will be discussed in this part, along with the main standard frameworks and regulatory
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that are intended to safeguard patient data.

2.2.1 Essential Security and Privacy Pillars for Protecting Health-

care Data

For the protection of digital information, various security techniques are employed [1],

primarily addressing the following aspects:

Confidentiality

Confidentiality is the concept of ensuring that information is accessible for reading,

listening, recording or physical removal only to subjects entitled to it, and that subjects

only read or listens to the information to the extent permitted. A subject may be a

person, a process or an organization [2]. The confidentiality in the healthcare system

ensuring that information is accessed only by authorized subjects and only to the extent

permitted—translates into concrete role-based permissions, secure login procedures, and

audit trails that protect patient data. This ensures that each subject (whether a person,

process, or department) interacts with health information strictly within their scope of

authorization

Integrity

Integrity, in the context of information flow, means that reliable outputs must remain

unaffected by any untrusted inputs. This concept serves as the counterpart to traditional

confidentiality models, where public outputs must not be influenced by sensitive inputs.

When viewed through the lens of access control, integrity is about preventing unautho-

rized or improper modification of data—specifically, stopping any changes by principals

who do not hold the necessary rights [3]. In a healthcare context, integrity means en-

suring that reliable patient information is not compromised by untrusted sources or
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unauthorized inputs. This mirrors how, in confidentiality, sensitive clinical details must

remain separate from public or untrusted outputs. From an access control perspective,

integrity centers on preventing any unauthorized alteration of patient data—only autho-

rized clinicians and staff should be able to modify a patient’s records, while all others

must be blocked from making changes.

Authentication

Digital authentication is the process of confirming that the individual requesting access

to a digital service really owns the credentials linked to their identity [4] . In simpler

terms, it checks that the person trying to log in is who they claim to be by verifying they

possess the valid “authenticator” (such as a password, token, or fingerprint) associated

with that identity [5].

In a healthcare system, authentication ensures that anyone accessing electronic pa-

tient records or other clinical information truly is who they claim to be, by verifying

they possess the valid credentials linked to their authorized identity. This helps main-

tain patient privacy, uphold data integrity, and ensure that only approved personnel or

patients can view or update sensitive medical information.

Availability

Availability is the ability to make information and related physical and logical resources

accessible as needed, when they are needed, and where they are needed [6]. In a health-

care context, availability means ensuring that patient information, medical records, and

supporting resources—both physical and digital—are readily accessible to authorized

healthcare providers whenever and wherever they are needed. This timely access is cru-

cial for delivering accurate and efficient care, maintaining patient safety, and supporting

critical clinical decisions.
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Authorization

Authorization is the process of deciding whether a verified individual or system is allowed

to carry out certain operations or retrieve specific information. In a healthcare context,

authorization is the process of determining whether a verified healthcare provider or

system is allowed to carry out certain actions—such as updating medical records or

viewing specific patient data—based on their assigned roles and permissions.

Privacy

Privacy is the right of the individual to decide about himself/herself [7]. In a healthcare

setting, privacy refers to each patient’s right to determine how, when, and with whom

their personal health information is collected, used, or shared.

2.2.2 Key Regulatory and Standard Frameworks for Healthcare

Data Security

There are numerous established standards and tools for safeguarding personal medical

information; here, we will focus on HIPAA [8] and ISO/IEC 27799 [9].

• The Health Insurance Portability and Accountability Act (HIPAA): enacted in

1996, is a federal law that aims to reduce healthcare fraud and abuse while cre-

ating nationwide safeguards to protect patient health information. It also ensures

that people can keep their health insurance coverage when they change or lose

their jobs. Beyond these protections, HIPAA encourages initiatives such as medical

savings accounts and expanded long-term care options. In addition, it establishes

standards to maintain the confidentiality and security of electronic health data.The

primary objectives of Public Law 104-191, the Health Insurance Portability and

Accountability Act (HIPAA) of 1996, are to improve the portability and continuity

of health insurance coverage, combat health care fraud and abuse, promote medical
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savings accounts, enhance access to long-term care coverage, and simplify the ad-

ministration of health insurance. A key part of this law also establishes nationwide

standards for the privacy and security of electronic health information, ensuring

the confidentiality and integrity of individuals’ health data.

• ISO/IEC 27799: is an international standard designed especially for the medical

field. In order to safeguard the availability, confidentiality, and integrity of personal

health information, it interprets and modifies the security measures of the more

general ISO/IEC 27002 standard. It acknowledges that the healthcare industry

is a special one, with numerous providers, a wide range of third-party services,

and sensitive patient data necessitating a less generic approach to information

security management. The main aims of ISO/IEC 27799 is to provide guidance

to healthcare organizations and other health information custodians on how to

adopt a minimal degree of security suitable for their situation in order to maintain

the confidentiality, accuracy, and ease of access to personal health information

for patient care. In essence, it offers a comprehensive action plan for the setup

and maintenance of an Information Security Management System (ISMS) in the

healthcare industry, guaranteeing that particular risks and demands of the field

are consistently met, such as patient privacy and legal compliance.

2.3 Medical Images and DICOM File Structure

Since medical imaging is crucial for diagnosing diseases and planning treatments, it is

essential that both the images and their associated data are consistently maintained

and exchanged. DICOM (Digital Imaging and Communications in Medicine) is one of

the most commonly adopted standards in medical imaging [10]. DICOM is a standard

used for handling, storing, printing, and transmitting information in medical imaging.

It encompasses both a file format and a network communications protocol, ensuring
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seamless interoperability among various medical devices and software.

2.3.1 DICOM File Structure

A DICOM file consists of two main components:

1. Header (Metadata Section): Contains patient information, acquisition details, and

imaging parameters.

2. Image Data Section: Stores the actual pixel data of the medical image.

DICOM files use a tag-based structure, where each piece of information is represented

as a data element identified by a unique tag (Group, Element).

2.3.2 Patient Data Information Tags in DICOM

Patient-related metadata is essential for identifying, managing, and ensuring the integrity

of medical records. DICOM provides specific tags to store patient demographics and

medical history. Table 2.1 displays the key tags associated with patient information.

Table 2.1: Patient Data Information Tags in DICOM

Tag (Group, Element) Attribute Name Description

(0010,0010) Patient’s Name Stores the patient’s full name.

(0010,0020) Patient ID A unique identifier for the patient.

(0010,0030) Patient’s Birth Date Date of birth (YYYYMMDD).

(0010,0040) Patient’s Sex Gender (M = Male, F = Female, O =

Other).

(0010,1010) Patient’s Age Patient’s age in years.

(0010,1020) Patient’s Weight Weight of the patient in kilograms.

(0010,21B0) Additional Patient History Relevant medical history or diagnosis.

19



Chapter 2. Healthcare Data Security and Data Hiding Techniques

2.3.3 Image Data Information Tags in DICOM

DICOM also contains image-specific metadata that provides critical details about the

imaging process and the properties of the acquired image. Table 2.2 presents the primary

tags corresponding to image information.

Table 2.2: Image Data Information Tags in DICOM

Tag (Group, Element) Attribute Name Description

(0020,000D) Study Instance UID A unique identifier for the imaging

study.

(0020,000E) Series Instance UID A unique identifier for a series within

a study.

(0020,0013) Instance Number The position of this image in the se-

ries.

(0008,0060) Modality Imaging type (e.g. CT, MR, X-ray,

Ultrasound).

(0028,0010) Rows Number of rows (image height, in pix-

els).

(0028,0011) Columns Number of columns (image width, in

pixels).

(0028,0030) Pixel Spacing Physical spacing between pixels (in

mm).

(0028,0100) Bits Allocated Number of bits allocated per pixel.

(0028,1050) Window Center Center of the grayscale display range.

(0028,1051) Window Width Width of the grayscale display range.
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2.4 Data hiding

Data hiding has historically referred to the act of concealing communications or infor-

mation so that only the intended recipients are aware of its existence. Although modern

data hiding techniques often rely on digital technology, information hiding is the process

of embedding secret data within various forms of redundant cover media (e.g., images,

audio files, videos, or text documents) in such a way that the presence of the data remains

undetectable to unauthorized parties [11]. Data hiding includes two sections: Steganog-

raphy and Watermarking. Steganography is the process of secretly encoding data into

a carrier media , such as an image or audio file, so that its existence is not detected. In

contrast, watermarking usually entails adding ownership or identifying information to a

piece of media without substantially changing the original content, usually for copyright

protection or authentication.

The complete process of concealing information relies on two operations: insertion, which

involves embedding the information into the medium (the original document in water-

marking, or the cover medium in steganography), and extraction, which retrieves this

information. Additionally, the term detection is used when verifying the presence of

information in the watermarked medium, without necessarily intending to extract it. In

data hiding, three fundamental concepts serve as essential performance indicators: Im-

perceptibility, capacity, and robustness.

• Imperceptibility : Imperceptibility is the characteristic of a data-hiding technique

that allows information to be embedded without causing visible or audible distor-

tions in the cover medium, ensuring that the hidden data remains unnoticeable

to human perception [12]. Imperceptibility in steganography ensures hidden data

does not noticeably alter the original medium, keeping it indistinguishable from an

unmodified version. In digital watermarking, it maintains the host signal’s quality

while embedding a watermark without perceptual degradation.
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• Capacity: Capacity in data hiding refers to the highest amount of information that

can be embedded in a cover medium while preserving its quality and keeping the

hidden data undetectable [12]. Capacity in steganography is the maximum data

that can be embedded while ensuring imperceptibility and resistance to detection.

In watermarking, it refers to the amount of embedded data that preserves the host

signal’s quality and robustness.

• Robustness: Robustness in data hiding is the capability of embedded informa-

tion to remain intact despite intentional or unintentional alterations to the cover

medium, including compression, noise, filtering, or geometric transformations [13].

Robustness in steganography ensures hidden data remains intact despite process-

ing or attacks like compression or format conversion. In digital watermarking, it

signifies the watermark’s resistance to distortions while remaining detectable and

recoverable under transformations such as cropping and filtering.

2.4.1 Degital watermarking

In the following section, we introduce the fundamental concepts of digital watermarking

and explore the different types of watermarking schemes.

What is watermarking?

Digital watermarking is the process of imperceptibly embedding auxiliary information

(a “watermark”) into a host signal—such as an image, audio track, video stream, or

software binary—so that the added data remain invisible or inaudible to human percep-

tion [14]. The embedded watermark (which may be a bit-sequence, text string, logo, or

cryptographic hash) can later be extracted or detected to prove ownership, trace distri-

bution, authenticate content, or signal tampering.

Watermarking is classified into visible and invisible types. Visible watermarking alters
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Figure 2.1: Digital watermarking framwork

a file by adding a noticeable mark, such as a copyright symbol on images. Invisible wa-

termarking subtly modifies the document without detection, often by altering the least

significant bits, making it a form of steganography.

2.4.2 Watermarking Framework

A watermarking framework is a methodical procedure for adding a watermark on a host

image and then extracting it. The following is a description of the main elements and

procedures that make up this framework:

• Host image: The host image is the original digital image that serves as the medium

for embedding the watermark. It remains visually unchanged or minimally affected

after watermark insertion.

• The key: In order to guarantee security and permitted access, the watermarking

procedure uses a secret parameter called the key. It aids in the extraction and

embedding procedures by preventing the watermark from being removed or altered

without authorization.

• Watermark: The distinctive information included into the host image is known as

the watermark, and it may take the shape of a binary pattern, text, serial number,
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or logo.

• Insertion process: By employing a specialized algorithm, the watermark is em-

bedded into the host image during the insertion phase, ensuring that it remains

unobtrusive and resistant to attacks.

• Watermarked image: The image that results from embedding the watermark is

known as the watermarked image. It should safely include the concealed watermark

and look like the original host image.

• Extraction process: Using the appropriate key and extraction technique, the wa-

termark is extracted from the watermarked picture in the extraction phase, which

is the opposite of the insertion process.

• Recovered watermark: It is the extracted watermark obtained from the water-

marked image. Ideally, it should match the original watermark embedded in the

host image.

• Compare process (Original vs. Extracted Watermark): The resemblance between

the recovered watermark and the original watermark is assessed in this comparison

stage. While differences might be a sign of manipulation or integrity loss, a high

similarity ensures legitimacy by confirming effective watermark recovery.

• Extracted image: The Image that remains after the extraction or watermark re-

moval operation is known as the extracted image. This image may still show signs

of watermarking or it may be quite similar to the original host image, depending

on the watermarking method employed.

2.4.3 Watermarking classification

Digital watermarking can be classified based on various criteria, including visibility,

robustness, domain of embedding, and application [15].
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Figure 2.2: Classification criteria of digital watermarking

• Based on visibility: In visible watermarking, the watermark is clearly noticeable

to users, appearing as logos or text superimposed on images or videos, primarily

for copyright protection. In invisible watermarking, the watermark is discreetly

embedded within the content, making it imperceptible to the human eye or ear,

and is commonly utilized for authentication and content tracking.

• Based on robustness: Robust watermarking designed to withstand common signal

processing operations, such as compression, filtering, cropping, and format con-

version. Used for copyright protection. Fragile watermarking easily destroyed or

altered if the host media is modified, making it useful for integrity verification and

tamper detection. And for the semi-fragile watermarking can tolerate some level

of modification, such as compression, but is sensitive to malicious tampering, it

used for content authentication.

• Based on embedding domain: In spatial domain watermarking, the watermark is

embedded directly by modifying pixel or sample values in images, audio, or video.

It is simple but less robust against attacks. As for frequency domain watermark-

ing, the watermark is embedded in transformed coefficients, such as Discrete Cosine

Transform (DCT), Discrete Wavelet Transform (DWT), or Discrete Fourier Trans-

form (DFT), making it more robust.

• Based on application: Used for copyright protection to establish ownership and
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prevent unauthorized use, content authentication to detect tampering and verify

integrity, and broadcast monitoring to track media distribution.

Digital watermarking plays a key role in securing digital content through embedding

and authentication techniques. With various classifications and applications, it ensures

protection while maintaining media integrity. In the next section, we explore the other

aspect of data hiding—steganography.

2.4.4 Image Steganography

What is Steganography?

Steganography is the practice and science of covert communication, achieved by embed-

ding information within other data to conceal its existence [16]. The term originates from

the Greek words ”stegos” (meaning ”cover”) and ”grafia” (meaning ”writing”), which to-

gether translate to ”covered writing.”

2.4.5 Image steganography Framework

The fundamental aim of image steganography is to securely transmit an image (cover)

that maintains its original appearance while covertly carrying concealed information

(secret message) from sender Alice to recipient Bob. Despite being targeted by Eve’s

attacks in the communication channel. While maintaining secrecy amidst the steganal-

ysis process, which endeavours to reveal concealed information within digital files. Fig.

2.4 displays the fundamental framework of image steganography, and the several key

elements and processes are described below:

• Secret: Refers to the hidden information that needs to be securely transmitted. It

can be text, an image, audio, or any other form of digital data.
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Figure 2.3: Steganography Framework

• Cover: Is the original medium in which the secret is embedded. It can be an

image, audio, video, or any digital file used to hide the secret data without raising

suspicion.

• Key: Is a secret parameter used in the steganographic process to enhance security.

It ensures that only the intended recipient with the correct key can extract the

hidden information.

• Alice: Represents the sender in the steganographic system. She embeds the se-

cret information into the cover using an embedding process before transmitting it

through a communication channel.

• Embedding Process: Is the method used to hide the secret within the cover. This

can be done using different techniques, such as modifying pixel values in images,

altering frequency components in audio, or appending data in text files. The result

of this process is a stego object.

• Communication Channel: Is the medium through which the stego object is trans-

mitted from Alice to Bob. It can be the internet, email, cloud storage, or any other

means of data transfer.
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• Stego: Is the final output after the secret has been embedded into the cover. It

should resemble the original cover as closely as possible to avoid detection.

• Extraction Process: Is the reverse of the embedding process. It involves retrieving

the hidden secret from the stego object using the correct extraction method and

key.

• Bob: Represents the receiver in the steganographic system. He uses the extraction

process and the correct key (if required) to retrieve the hidden secret from the

stego object.

• Extracted Secret: Is the recovered hidden information that Bob successfully re-

trieves from the stego object. If the process is executed correctly, the extracted

secret should match the original secret embedded by Alice.

The steganography framework provides a structured approach to concealing and

transmitting secret information securely. By embedding data within a cover medium

and ensuring proper extraction, it enables covert communication between Alice and Bob

while minimizing the risk of detection. In the following section, we explore the methods

and approaches that demonstrate the digital steganography framework.

2.5 The Steganographic Approaches for Data Con-

cealment

Over the years, steganography has been extensively studied through various research

efforts, employing different techniques. These approaches can be broadly categorized

into two main types based on their feature selection and classification algorithms. The

first category, known as classical steganography, relies on traditional embedding methods

such as Least Significant Bit (LSB) to conceal information within a cover medium. The
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Figure 2.4: Steganography Framework

second category leverages deep learning techniques to enhance the concealment process,

offering more advanced and adaptive methods for data hiding. The figure 2.4 illustrates

the general classification of this method.

2.5.1 Classical approaches for image steganography

Traditional image steganography conceals data by leveraging regular patterns in digi-

tal pictures, and the field is chiefly organized around four prominent technique fami-

lies: Least Significant Bit (LSB) substitution, transform-domain embedding, statistical

steganography, and spread-spectrum techniques.

Least Significant Bit (LSB)

Least Significant Bit (LSB) insertion is a widely used and straightforward technique

for embedding information in an image. It is one of the most recognized methods for

concealing secret text within an image. This approach replaces the LSBs of pixel values

in the cover image with bits from the hidden message. Since only the LSBs are modified,

the resulting stego-image remains nearly identical to the original, as the alterations have

little visible impact [17].
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• Advantages of LSB-based techniques:

- Simplicity and Efficiency – LSB substitution is straightforward to implement and

requires minimal computational resources.

- Minimal Visual Distortion – Since only the least significant bits are modified, the

changes are imperceptible to the human eye, preserving the visual quality of the

image.

- High Data Hiding Capacity – In 24-bit images (RGB), three bits per pixel can

be used, allowing a reasonable amount of data to be embedded.

- Easy to Extract Hidden Data – The embedded message can be easily retrieved if

the method and key (if used) are known.

- No Need for Complex Algorithms – Unlike other steganographic techniques, LSB

embedding does not require sophisticated mathematical models.

• Weaknesses of LSB-based techniques:

- Low Resistance to Image Processing – Common operations like compression,

resizing, filtering, or format conversion can alter the LSBs, potentially corrupting

the hidden message.

- Vulnerability to Detection – Statistical and steganalysis tools can detect patterns

in modified LSBs, making the method less secure against attacks.

- Limited Robustness – If an image undergoes slight modifications, such as noise

addition or cropping, the hidden data can be lost or altered.

- Lower Security Compared to Advanced Techniques – Since LSB substitution is

well-known, it is more susceptible to steganalysis, making it less secure for highly

confidential data.

- Capacity vs. Quality Trade-off – Embedding too much data can create noticeable

distortions in the image, making the steganography detectable.
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Transform Domain Techniques

Transform domain techniques are advanced methods used in steganography, where secret

information is embedded in the frequency domain of an image instead of directly altering

pixel values in the spatial domain (as in LSB-based techniques) . These methods utilize

mathematical transformations such as the Discrete Cosine Transform (DCT) [18], Dis-

crete Wavelet Transform (DWT) [19] , and Discrete Fourier Transform (DFT) to embed

data into less noticeable regions of the image, making it more resistant to common image

processing operations like compression, filtering, and noise addition [20]

• Advantages of frequency domain techniques:

- Higher Robustness: Frequency domain techniques are more resistant to common

image processing operations such as compression, filtering, and noise addition com-

pared to spatial domain methods.

- Better Security: Since the secret information is embedded in transformed coeffi-

cients rather than raw pixel values, it is harder for attackers to detect and extract

the hidden data.

- Decreased Perceptual Distortion: To maintain the overall quality of the stego-

image, data is frequently placed in high-frequency components where human eye-

sight is less sensitive.

- Effective for Compressed images: JPEG pictures frequently employ techniques

like Discrete Cosine Transform (DCT), which makes them appropriate for conceal-

ing data in compressed forms without appreciably compromising visual quality.

- More Data Hiding Capacity: Depending on the transformation technique, fre-

quency domain methods can provide a larger embedding capacity without making

noticeable changes to the image.

- Resistant to Statistical Attacks: Unlike LSB substitution, which can be detected

through histogram analysis, transform domain techniques distribute hidden data
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more evenly, making steganalysis more challenging.

• Weaknesses of frequency domain techniques:

- Higher Computational Complexity – Transform domain methods involve mathe-

matical transformations like DCT, DWT, or DFT, which require more processing

power and time compared to simpler spatial domain techniques.

- More Difficult Implementation: Unlike LSB-based approaches, frequency domain

techniques require specialized knowledge in signal processing and transformation

algorithms.

- Limited Applicability to Certain Image types: These methods perform best with

compressed forms like JPEG, but they might not work as well with uncompressed

formats like BMP or PNG.

- Possibility Loss of Hidden Data: Some embedded information may be lost or

damaged if an image is subjected to substantial modifications, including signifi-

cant compression or scaling.

- In our research presented in the chapter 4 , we prefer to use the 2-D DCT

because it concentrates most visual energy into a few low-frequency coefficients

within small blocks, allowing data to be embedded in the mid-frequencies with

minimal distortion while maintaining block-level control. DCT coefficients are

real and supported by fast hardware instructions, giving simpler quantization and

lower computational cost than the multiscale DWT or the global, complex-valued

DFT—both of which spread embedding changes more widely and are less resilient

to routine post-processing.

Statistical Methods

Statistical methods in image steganography focus on embedding information by modi-

fying the statistical properties of an image while ensuring that global statistical char-
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acteristics remain unchanged. These methods are designed to counteract steganalysis

techniques that detect anomalies in image structures caused by hidden data [21] [22].

Unlike spatial domain techniques (such as LSB substitution) or frequency domain tech-

niques (such as DCT-based steganography), statistical steganography does not directly

alter pixel values or frequency coefficients in an obvious manner. Instead, it manipulates

statistical distributions to ensure that embedding does not introduce detectable irregu-

larities. Changing the histogram of a picture is one of the most basic statistical stegano-

graphic methods [23]. Since the frequency distribution of pixel values is represented by

an image’s histogram, data may be embedded by subtly altering pixel intensities while

preserving the form of the histogram to guarantee that the changes are imperceptible.

For instance, an algorithm may: Group pixels into pairs (e.g., 120 and 121). If a message

bit is 0, keep the pair unchanged. If a message bit is 1, slightly increase or decrease one

of the pixel values to encode data while maintaining the histogram’s overall structure.

This method is effective against basic histogram analysis attacks, which attempt to de-

tect anomalies in pixel distributions.

• Advantages of statistical Methods

- More Secure than LSB Substitution: Since these methods avoid directly modify-

ing LSBs in a predictable way, they are less susceptible to detection by chi-square

steganalysis or histogram-based attacks.

- Higher Robustness: These techniques offer better resilience against image pro-

cessing operations like compression, filtering, and noise addition.

- Difficult to Detect Using Basic Statistical Tests: By preserving first-order and

second-order statistics, these methods can bypass simple steganalysis techniques

that look for anomalies in pixel distributions.

• Weaknesses of statistical Methods

- Lower Embedding Capacity: Since these methods must maintain statistical con-
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sistency, they often allow less data to be hidden compared to LSB-based techniques.

- More Computationally Complex: Adjusting pixel distributions while preserving

statistical properties requires more processing power than simple bit replacement

methods.

- Still Vulnerable to Advanced Steganalysis: While they evade basic detection

methods, more advanced machine learning-based steganalysis techniques can still

detect statistical irregularities.

Spread Spectrum Techniques

Spread Spectrum (SS) techniques are inspired by wireless communication systems [24],

where a signal is spread over a wide frequency spectrum to make it resistant to noise

and interference. In the context of image steganography, these techniques distribute the

hidden data across multiple frequency components of the image, making detection and

removal more difficult [25]. Unlike LSB or transform domain methods, Spread Spectrum

Steganography (SSS) ensures that the hidden message is embedded in a way that closely

resembles natural image noise, increasing its robustness against attacks. Spread spectrum

techniques introduce a small amount of modification across a large number of pixels or

frequency coefficients, rather than concentrating the changes in a specific region. This

is achieved through pseudorandom sequences, which help distribute the hidden message

throughout the image in a noise-like manner.

• Advantages of Spread Spectrum Techniques

- High Robustness: The embedded data is spread across multiple frequencies or

spatial locations, making it resilient to compression, filtering, and noise.

- Strong Security: Because the message resembles natural image noise, it is difficult

for attackers to detect using statistical or steganalysis methods.

- Low Perceptibility: The changes made to the image are subtle and spread over a
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wide area, making them hard to notice visually.

- Resistance to Steganalysis: Traditional detection methods struggle to differenti-

ate the hidden message from normal variations in the image.

• Weaknesses of Spread Spectrum Techniques

- Lower Embedding Capacity: Since the message is distributed across a large part

of the image, the total amount of data that can be hidden is lower compared to

LSB-based methods.

- Higher Computational Complexity: Encoding and decoding require additional

processing, such as correlation techniques and pseudorandom sequence generation.

- Susceptibility to Desynchronization: If the original image undergoes significant

modifications (e.g., cropping, rotation, or excessive compression), retrieving the

embedded message may become difficult without proper synchronization.

2.5.2 Deep Learning-Based Image Steganography Approaches

The integration of deep learning techniques into steganography has brought substantial

advancements and improvements [26]. This is achieved by enhancing the concealment

quality, allowing confidential information to be seamlessly embedded within the cover

media in a way that makes it difficult to differentiate between the original and the

stego. Deep learning-based steganography, in contrast to traditional techniques, may

automatically discover the best embedding techniques, boosting security, resilience, and

imperceptibility. Deep learning-based image steganography approaches are generally

divided into two main categories:

• Deep Learning for Optimal Embedding Locations: In these techniques, the cover

image is processed using deep learning models to identify the best places for data
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embedding, with the goal of embedding information in areas where steganalysis or

human eye are less likely to notice changes.

• Deep Learning for End-to-End Stego Generation: These approaches use deep neu-

ral networks to directly generate stego-images from the original cover images and

secret messages, eliminating the need for handcrafted embedding rules.

• GAN-Based Steganography: leverages generative adversarial networks, where the

generator creates stego images that contain hidden data, while the discriminator

pushes the generator to produce outputs that are visually indistinguishable from

normal images.

End-to-End Deep Learning Models

End-to-end deep learning models automate the entire steganographic process, from em-

bedding to extraction, without relying on predefined rules. These models typically use

encoder-decoder architectures, where:

The encoder takes a cover image and a secret message as input and learns to em-

bed the message while maintaining image quality. The decoder is trained to extract

the hidden message from the stego-image. A well-known example of this approach is

HiDDeN (High-Capacity Deep Neural Networks for Image Steganography) [27], which

uses CNN-based architectures to embed secret messages while optimizing for robustness

and imperceptibility.

CNN-Based Steganography

Convolutional Neural Networks (CNNs) are widely used to improve the embedding pro-

cess in image steganography. These methods leverage CNNs for two main tasks:

Feature-based embedding: CNNs analyze image features (e.g., textures, edges, noise
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levels) to determine the best regions for embedding data, ensuring that modifications

blend naturally with the cover image. Steganalysis-resistant embedding: CNNs can be

trained to hide information in ways that are difficult for traditional steganalysis methods

to detect.

Generative Adversarial Networks (GANs) for Steganography

GAN-based steganography is one of the most advanced deep learning approaches for

hiding information in images. GANs consist of two networks:

A Generator that learns to embed secret data while making the stego-image indis-

tinguishable from real images. A Discriminator that tries to distinguish between real

images and stego-images, forcing the generator to improve its ability to hide data ef-

fectively. A well-known model in this category is StegGAN [28], which uses adversarial

training to ensure that stego-images closely resemble natural images. By continuously

improving through adversarial learning, these models can create stego-images that are

highly resistant to detection.

2.6 Conclusion

In summary, this chapter underscores the importance of robust data hiding techniques in

protecting healthcare data. The comprehensive analysis of traditional watermarking and

steganographic methods alongside emerging deep learning approaches demonstrates how

these technologies contribute to enhanced security, resilience, and imperceptibility. By

integrating these techniques, the chapter provides valuable insights into building secure

systems that effectively guard against unauthorized access and tampering, ensuring the

integrity of sensitive healthcare information.
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3.1 Introduction

In this chapter, we provide an overview of the latest research and methodologies in the

field of data hiding, with a particular focus on image steganography. We explore both

traditional steganographic techniques and modern deep learning-based approaches. Ad-

ditionally, we review studies that leverage steganography to enhance the confidentiality

of medical data. Furthermore, we detail the evaluation metrics employed in this study

to assess the performance of the proposed methods, ensuring a thorough analysis of their

effectiveness.

3.2 Image Steganography Metrics

In this introductory section, we outline the essential metrics employed in image steganog-

raphy. Table 3.1 encapsulates these metrics, each addressing a distinct aspect of image

quality or the embedding process. Collectively, they serve to evaluate the imperceptibil-

ity, robustness, and capacity of the data-hiding method.
Metric Description When is it better ?

Peak Signal-to-Noise Ratio (PSNR)

It calculates the discrepancy between two
images by comparing the maximum signal

power to the power of noise that disrupts the signal.
It is mesured in decibels (db)

A higher value (Exceeds 30 dB)

Structural Similarity Index (SSIM) It compare luminance, contrast and
the structural of the cover and the stego . Close to 1

Mean Square Error (MSE) It measures the average squared difference between
the pixel values of the cover image and the stego image. A lower value

Universal Image Quality Index (UIQI) It computes the similarity between the cover and the stego
based on similarities in luminance, contrast, and structure. close to 1

Embedding Capacity (EC) It is the number of secret bits that are embedded per pixels,
it is calculated in Bpp (Bit Per Pixel) A higher value

Payload capacity

It is the quantity of information that
can be concealed within the cover media.

It is represented as a specific number of bits or the percentage designated
for concealing data relative to the total size of the cover.

A higher value

Bit Error Rate (BER) Determining the proportion of wrongly recovered
bits relative to the concealed data’s original value. close to 0

Table 3.1: Most common image steganography matrices

• PSNR: A higher PSNR value indicates that the stego image maintains a quality

closer to the original cover image, suggesting minimal perceptible differences [29].
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• SSIM: A value near 1 implies that the structural information in the stego image

closely matches that of the cover image, ensuring strong visual similarity [30].

• MSE: A lower MSE signifies fewer errors between the cover and stego images,

indicating higher fidelity in the stego image [31].

• UIQI: A UIQI near 1 reflects a high level of similarity in luminance, contrast, and

structure between the cover and stego images [32].

• Embedding Capacity (EC): A higher EC allows more secret data to be embedded

without significantly affecting the cover image’s quality [33].

• Payload Capacity: A greater payload capacity enables the concealment of larger

amounts of information within the cover media.

• Bit Error Rate (BER): A BER close to 0 emphasizes that the extracted secret data

closely matches the original, ensuring data integrity [34].

3.3 Classical Approaches to Medical-Image Steganog-

raphy

Numerous studies have applied steganography in medical imaging. Notably, Bozhidar

et al. [35] introduced an innovative method known as BOOST, designed to conceal user

data within medical images. Their approach unfolded in two distinct stages: Initially, the

confidential patient data was encrypted using a novel ”pseudo-random generator based

on the nuclear spin generator” technique, resulting in encrypted data. This encrypted

output was subsequently transcribed into a binary sequence using an ASCII table. In the

subsequent step, this binary sequence found its place within the least significant bit of the

non-black pixels in the image. In particular, their method achieved remarkable results,

boasting PSNR values exceeding 113 dB, all while accommodating a payload capacity of
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0.74 bits per pixel. The substantial payload capacity emphasizes the potential for real-

world applications. However, it is important to consider the computational overhead of

these encryption and embedding processes, especially when dealing with large medical

image datasets.

In [36], Romany et al. introduced an encompassing steganography method that

amalgamates several techniques for robust data hiding within medical images. They

proposed the application of RSA encryption for safeguarding sensitive information, the

Ripplet Transform for image manipulation, and LSB substitution for embedding secret

data. An adaptive genetic-algorithm-based Optimum Pixel Adjustment Process (OPAP)

was implemented to enhance imperceptibility by fine-tuning the stego image. This com-

prehensive approach demonstrated resilience against RS attacks and established that

Discrete Ripplet Transform (DRT) yielded superior results in comparison to Integer

Wavelet Transform (IWT). Notably, the achieved PSNR values ranged from 49 to 56

dB, indicating a trade-off between visual quality and payload capacity.

In [37], Songul K and Engin A presented an innovative steganography technique

termed ”Genetic Algorithm-Optimum Pixel Similarity.” This approach leverages pixel

similarity and LSB embedding to seamlessly integrate a substantial amount of data,

specifically 10,000 characters, into 256 × 256 medical images. What sets this method

apart is its ability to achieve embedding without resorting to data compression tech-

niques. The fitness function for the genetic algorithm is adopted from PSNR, with ran-

dom selection as the key method. Impressively, the average PSNR achieved was recorded

at 47.41 dB, highlighting the delicate balance between imperceptibility and embedding

capacity.

Partha et al. explored patient data protection in [38] through a novel steganographic

method, employing Support Vector Machine (SVM) and Discrete Wavelet Transform

(DWT). The SVM was utilized for the recognition of Regions of Interest (ROI) and

Non-ROI (NROI) within medical images. RGB components were subjected to IWT, and
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a circular array technique facilitated the integration of confidential information within

NROI pixels. Impressively, this approach yielded an average PSNR value of 64 dB,

showcasing its potential for robust and secure patient data embedding. In another study

[39], a robust and reversible data hiding scheme was proposed, involving a Support

Vector Neural Network (SVNN) classifier and the Contourlet Transform method. The

SVNN was trained to identify suitable pixels for concealment, with the HL band of the

CT coefficient serving as the container for hidden data. The method was rigorously

analyzed with and without noise, demonstrating exceptional results with a PSNR value

of up to 89.3253 dB, outperforming the SVNN-wavelet approach from [40].

In [41], an innovative approach was introduced that encoded patient data using En-

hanced Huffman compression coding for enhanced payload capacity and security. This

encoded data was then concealed within medical images using Pixels Contrast (PC) and

the Henon map algorithm. The study evaluated outcomes based on histogram analysis,

PSNR, and SIMM metrics, with achieved PSNR values ranging between 70 dB and 71

dB. A novel steganography technique was proposed in [42], utilizing a combination of a 3-

D chaotic system, one-particle Quantum Walk (QW), and Particle Swarm Optimization

(PSO). This intricate methodology ensured the privacy of medical data by generating

sequences for PSO through chaotic systems and QW, which were then utilized to replace

confidential medical images with concealed data. Despite its high visual quality, this

technique achieved an average PSNR of 44.1 dB, reflecting inherent limitations in data

capacity.

In [43], Quantum Walks were employed for a pixel-based steganography technique

with added security. The approach aimed to identify two LSB pixels in the carrier image

for the concealed two bits of confidential data. The technique leveraged quantum walk

states as a private key, promising robust security and resilience against data loss attacks.

With a PSNR close to 44.40 dB, the method achieved remarkable visual quality.

The authors in [44] proposed an alternative method using the Rabin public key cryp-
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tosystem to safeguard patient medical records. This concealed information within med-

ical cover images using diagonal queue replacements and the LSB plane. The technique

showcased robustness and yielded high PSNR values, reaching 76 dB. However, careful

consideration is needed when using significant areas, as they might impact diagnostic

accuracy. The steganography technique presented by Hashim et al. in [45] targeted data

security during transmission within an IoT framework. Encrypted patient data was di-

vided into blocks and concealed within medical images using the Henon map parameters

for random pixel selection. This technique demonstrates effective use of steganography

mechanisms for IoT data security.

Prasanth et al. introduced an invisible watermarking scheme in [46] for embed-

ding patient information into EGG signals for telemedicine applications. A QR code

of patient data was decomposed and utilized for watermarking EGG signals. This in-

tricate approach provided a unique approach to securing medical information within

telemedicine applications. Thiyagarajan et al.’s approach in [47] centered on reversible

steganography, using LSB for embedding. Canny edge detection distinguished between

Regions of Interest (ROI) and Non-ROI (NROI) in medical images, with NROI serving

as payload pixels. Graph 3 coloring was employed to generate a private dynamic key,

adding an innovative layer of security.

S. Jeevitha et al.’s technique in [48] utilized the ElGamal encryption algorithm for

patient data security, concealing data within Non-ROI (NROI) areas to ensure patient

information remains secure. The approach relied on the comparison between DWT seg-

mentation and Canny Edge Detection results to determine pixel locations for embedding.

The method showcased the advantages of DWT-based approaches and achieved strong

embedding rates. In [49], R. Bala Krishnan introduced a unique approach where patient

data was not encrypted, but the image itself was encrypted using a Sudoku-based mech-

anism. The encrypted image was then employed for data hiding using Queen Traversal

Based Secret Code Substitution based on LSB. This intricate process added layers of
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protection to the concealed information, yielding high-quality stego images.

Arunkumar S et al. proposed a novel technique in [50] for secure medical image

transmission. The medical image was encrypted using the logistic chaotic map, fol-

lowed by embedding using an Embedding Distortion Measure based co-accurate matrix.

The method prioritized security and yielded high visual quality while ensuring secure

image transmission. The secure steganography method outlined in [51] incorporated a

shell matrix and LSB for enhanced data security. While the method exhibited high pay-

load capacity, it required substantial computational resources for high-resolution images,

thereby impacting complexity. The authors, in [52], introduced a novel approach involv-

ing a genetic algorithm to enhance PSNR levels in Stego images. The technique aimed to

cover a medical image with a natural image, utilizing a combination of mechanisms such

as one-point crossover, random resetting mutation, and tournament selection. While the

method achieved infinite PSNR and SSIM values without causing distortion, its com-

plexity remained a significant consideration.

Early works present in [53] by Lina Zhang et al. propose a reversible selective encryp-

tion scheme tailored for medical images. Their approach extracts the region of interest

(ROI) using advanced edge detection and boundary tracking techniques, encrypts the

ROI through coupled chaotic maps, and embeds key information via a steganographic

method. This method not only secures sensitive medical data but also ensures lossless

decryption and improved computational efficiency.In tests on 342 medical images, the

average Shannon entropy of the encrypted images was 7.9979, indicating near-optimal

randomness. Additionally, the scheme reached NPCR and UACI values of approximately

99.61% and 33.51% respectively, demonstrating strong resistance against differential at-

tacks while maintaining lossless decryption.

Gulfam A. et al. [54] propose a secure medical data transmission method that embeds

sensitive patient information into DICOM images using steganography. Their approach

first encrypts an RGB patient image using Adversarial Neural Cryptography combined
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with SHA-256 (ANC-SHA-256) and then hides it in the Region of Non-Interest (RONI)

via an adaptive LSB replacement technique. A digital signature is generated from the DI-

COM metadata using SHA-256 to ensure the file’s integrity and authenticity. Evaluations

on various medical image datasets—including MRI, CT, X-ray, and ultrasound—demon-

strate high visual quality, with average metrics of 67.55 dB for PSNR, 0.9959 for NCC,

0.9887 for SSIM, 0.9859 for UQI, and 3.83 for APE, while maintaining strong robustness

against geometric and physical attacks.

These various techniques highlight the diversity of approaches employed for medical

image steganography, each balancing imperceptibility, security, and capacity in distinct

ways.

3.4 Deep Learning-Based Image Steganography Ap-

proaches

This section explores deep learning-based image steganography approaches that leverage

the power of neural networks to embed and extract information with enhanced security

and robustness. These innovative methods often employ convolutional neural networks,

autoencoders, and generative adversarial networks to improve the imperceptibility and

capacity of steganographic techniques. In the following discussion, we review key research

contributions and evaluate their methodologies.

3.4.1 Encoder-Decoder Image Steganography

Encoder-decoder image steganography leverages deep neural network architectures(often

in the form of autoencoders) to embed secret data into cover images while preserving

visual quality. These methods learn to extract meaningful features from both cover

and secret images, optimize the embedding process jointly, and then decode the hidden
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information with high fidelity, striking a balance between payload capacity and imper-

ceptibility.

In [55], Buljia introduced a pioneering architecture for image steganography that

employs neural networks to conceal a color image within another image of identical

dimensions. This technique adopts the structure of auto-encoding networks. The first

network is responsible for resizing the secret image to match the cover’s size, while the

second network serves as the hiding network. The encoder extracts cover characteristics,

and the decoder conceals the image within latent space bits randomly. The third network

handles extraction. All networks are jointly trained to minimize differences between

cover-stego and secret-reconstructed images. This method guarantees imperceptibility

and withstands detection by StegExpose, albeit solely designed for lossless images.

In [56], Atique et al. proposed an automated steganography approach using an

encoder-decoder architecture to embed gray images into color images. The encoder

generates stego images, and the decoder retrieves hidden images. Dual CNN branches

in the encoder extract features from cover and secret images, merged to create stego

images. This method supports substantial payload (8 bpp) but introduces noticeable

distortion detectable by human visual perception. Constraints on hidden image types

and sizes exist.

Abhishek Das et al. [57] built upon methods from [55] and [58], aiming to hide

three secret images within one cover. Their encoder, called ”Prep Networks,” comprises

three CNNs that upscale secret images to match the cover size. Another CNN, the

”hiding network,” concatenates pre-processed secret images with the cover, yielding stego

images. Decoding employs multiple reveal networks, each trained independently for

message recovery. This approach faces challenges, including a significant loss rate for

recovered secrets and stego images. In [59], Nandhini et al. introduced a steganography

technique concealing color images within other color images, leveraging auto-encoders.

Pre-processing networks extract features from both cover and secret images through
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convolutional layers. Extracted features merge in a central layer before feeding into a

decoder network for stego image reconstruction. Payload capacity reaches 1, with a

PSNR of 34.55 dB as an imperceptibility metric.

Biswarup et al.’s [60] method employs CNNs to differentiate edge pixels from others.

Edge pixels are prioritized in the embedding process based on their resistance to attacks.

A supervised CNN identifies edge pixels from a secret image transformed into a 1D array

of bitstreams. Edge images undergo masking and threshold testing before embedding

secret data in the 5 least significant bits of edge maps. This approach outperforms some

spatial domain methods, with PSNR ranging from 36.16 dB to 50.12 dB.

In [61], Toan et al. proposed CNN-based steganography utilizing two networks. The

first, employing a U-net architecture, crafts container images. The second network,

comprising a six-layer CNN, retrieves the hidden image. This approach reduces training

time by half, yielding a lower mean square error of pixel differences than [55]. Akshay et

al.’s [62] steganography method, akin to U-net and based on the Dilated Inception Net

Module, conceals one image within another. The network, comprised of convolutional

layers, concatenation layers, and Dilated Inception Net Blocks, learns to extract hidden

image features and incorporate them within cover features. However, this approach

advances [56] in terms of Stego quality.

3.4.2 GAN-Based Image Steganography

GAN-based image steganography employs a generator to embed secret data within a

cover image while a discriminator learns to distinguish between cover and stego im-

ages [63]. Through adversarial training, the generator is optimized to minimize visual

distortions, ensuring the stego image remains indistinguishable from the original while

maintaining a high payload capacity; some frameworks also include an extractor network

to accurately retrieve the hidden data.

In this context, Volkhonskiy et al. introduced the first GAN-driven image steganog-
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raphy model called SGAN [64]. This approach utilizes a DCGAN [65] to convert random

noise into cover images, followed by conventional embedding techniques to encode confi-

dential data into these generated covers, thereby producing Stego images. However, the

use of DCGAN in SGAN resulted in training instability, leading to suboptimal trans-

parency conforming to steganography criteria [66]. To overcome this shortcoming, Shi et

al. [67] replaced DCGAN with WGAN [68], giving rise to SSGAN, which exhibits visu-

ally more realistic cover images compared to SGAN and demonstrates partial resilience

against training instability.

Lui and al. [69] proposed ACGAN, a variant of a GAN based steganography technique

that takes as input noise and label classes to generate new images by linking the secret

data to the corresponding class/category label. The receiver trains the ACGAN with

the same noise, label categories, dataset to get the same discriminator responsible for

extracting the secret information.

Tang et al. [70] combined GAN with Syndrome-Trellis Codes (STC) [71] encoding to

propose ASDL-GAN, although it displayed comparatively inferior performance versus

conventional adaptive steganography techniques. Nevertheless, the introduction of the

Ternary Embedding Simulator activation function elongated the training cycle, in con-

trast to traditional steganography methods. Thus, Yang et al. [72] replaced the Ternary

Embedding Simulator in ASDL-GAN by a Tanh resulting in the UT-SCA-GAN model,

that enhances performance and minimizes training time.

Wang et al. [73] proposed the Stego-WGAN framework. Unlike SGAN and SSGAN,

Stego-WGAN incorporates both the stego image and the original image as inputs for

the discriminative network. This technique ensures not only the concealed image’s suit-

ability for secret information embedding but also maintains visual fidelity between the

Stego-image and the original one.

Yu et al. [74] proposed to enhance the GAN architecture by including an attention mech-

anism on top of the architecture, which increased the accuracy of the recovery process.
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Similarly, Zhang et al. [66] proposed a model that fuses a GAN, attention mechanisms,

and image interpolation techniques to generates images containing confidential informa-

tion without using cover images and used GANs for information embedding, thus having

better anti-detection capability. Moreover, the IDGAN uses an attention mechanism to

improve the image details and clarity and optimizes the steganography effect through an

image interpolation algorithm.

in [75] Ambika V et al. propose an attention vector-guided GAN (AVG-GAN) for cover-

less image steganography on medical images that preserves diagnostic features by apply-

ing transformations only in non-critical regions. Unlike traditional GAN-based steganog-

raphy which globally alters the image and can distort important features used for disease

diagnosis, the AVG-GAN employs an attention vector to selectively modify only non-

discriminative areas, thereby maintaining high image quality. Evaluated on brain tumor,

glaucoma, and ovarian cancer datasets, the proposed method achieved a PSNR of ap-

proximately 40 dB, RS-BPP around 6.3, WPSNR nearly 38.5 dB, and an SSIM of about

0.98. Additionally, it maintained classification accuracy with only a 1–2% difference

between the original and transformed images, and reduced embedding capacity by less

than 2% confirming its effectiveness in preserving the clinical utility of medical images

while securely embedding secret information.

The generative nature of these techniques presents significant challenges in medical

image steganography, as these images often contain intricate details crucial for accurate

diagnosis, and any loss of detail can compromise their diagnostic value. In such cases,

encoder-decoder architectures are preferable because they better preserve the fine details

necessary for effective medical analysis.
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3.5 Summary of literature review for medical image

steganography

Table 3.2 offers an overview of various image steganography studies. The table is orga-

nized into the following columns:

• Approach/Method: Lists the technique along with its associated reference.

• Key Techniques: Highlights the primary methods employed (e.g., encryption, trans-

form domain techniques, neural networks).

• Performance Metrics: Summarizes the reported performance (e.g., PSNR values,

payload capacity).

• Remarks: Provides brief insights on strengths, limitations, or notable trade-offs.
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Table 3.2: Summary of data-hiding approaches for medical-image steganography

Approach /
Method

Key Techniques Performance
Metrics

Remarks

BOOST [35] Nuclear‐spin generator for
encryption; LSB embedding
in non-black pixels

PSNR > 113 dB;
Payload 0.74 bpp

Very high visual qual-
ity and capacity; com-
putational overhead
may be a concern

Romany et al.
[36]

RSA encryption; Ripplet
transform; LSB substitution;
adaptive OPAP

PSNR 49–56 dB Robust against RS at-
tacks; quality–payload
trade-off

Genetic Algo-
rithm / Opti-
mum Pixel Simi-
larity [37]

GA-based pixel selection;
LSB embedding

PSNR 47.4 dB;
embeds 10 000
chars in 256×256
images

Balances impercep-
tibility and capacity
without compression

Chowdhuri et
al. [38]

SVM for ROI/NROI detec-
tion; IWT; circular-array
embedding

PSNR 64 dB Secure embedding
within medically rel-
evant regions

SVNN approach
[39]

Support Vector Neural Net-
work; contourlet transform;
HL-band embedding

PSNR up to 89.3
dB

Reversible; robust even
with noise

Quantum Walks
[43]

Quantum walks for pixel se-
lection; chaotic LSB embed-
ding

PSNR 44.1–44.4
dB

Extra security via
quantum keys; mod-
erate visual quality

Deep-Learning-Based Approaches
Encoder–Decoder
[55]

Autoencoders for resizing,
hiding, extraction

Imperceptible
(near-lossless)
stego images

Joint training min-
imises differences

Encoder–Decoder
[56]

Dual CNN branches; auto-
mated embed/extract

Supports payload
� 8 bpp; some
visible distortion

Higher capacity intro-
duces artifacts

GAN models
(SGAN, SSGAN,
ACGAN) [64, 67,
69]

GANs with adversarial train-
ing; attention mechanisms

Mixed PSNR;
better train-
ing stability
(WGAN)

Preserving fine medical
details remains hard

3.6 Critical Analysis of Medical Image Steganogra-

phy Techniques

The literature on medical image steganography demonstrates a broad array of methods,

each offering distinct benefits and presenting specific challenges.
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3.6.1 Traditional Approaches

Techniques such as BOOST [35] exhibit exceptionally high PSNR values (exceeding 113

dB) and robust payload capacities, indicating that the stego images maintain high visual

fidelity. However, these methods often rely on complex multi-stage processes—such as

pseudo-random generators based on nuclear spin generators for encryption followed by

LSB embedding—which can incur significant computational overhead. This may limit

their scalability when processing large medical datasets, a critical factor in real-world

clinical applications.

Romany et al. [36] provide a comprehensive approach that combines RSA encryption,

Ripplet Transform, and adaptive pixel adjustment. While their method demonstrates ro-

bustness against RS attacks and effective trade-offs between quality and capacity (PSNR

ranging from 49 to 56 dB), the reliance on multiple sequential processes can introduce la-

tency and complicate implementation. Similarly, the Genetic Algorithm-Optimum Pixel

Similarity approach [37] efficiently embeds large amounts of data without compression.

Despite its innovation, it achieves moderate PSNR (around 47.41 dB), highlighting the

inherent trade-off between payload capacity and imperceptibility.

Other methods, such as those employing SVM for ROI/NROI detection [38] and SVNN

with Contourlet Transform [39], focus on preserving diagnostically significant regions.

While they offer higher PSNR values (up to 89.33 dB) and targeted embedding, these

techniques depend heavily on accurate segmentation and can be sensitive to noise, po-

tentially affecting their robustness in varied clinical conditions.

3.6.2 Deep Learning-Based Approaches

Encoder-decoder architectures [55, 56] leverage the power of deep neural networks to

automate feature extraction and optimize the embedding process. These models, when
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jointly trained, can produce nearly lossless stego images and offer significant advantages

in preserving image quality. However, they are typically designed for specific image types

(often lossless) and require large, annotated datasets, which may not be readily avail-

able in medical imaging. GAN-based steganography methods, including SGAN and its

derivatives [64,67], introduce adversarial training to improve anti-detection capabilities.

Although these models can generate realistic cover images and effectively hide data, they

frequently suffer from training instability and may struggle to preserve fine details crucial

for diagnostic accuracy. The incorporation of attention mechanisms [66, 74] has shown

promise in addressing some of these issues, yet the challenge of ensuring consistent per-

formance across diverse medical images remains unresolved.

3.7 Conclusion

The literature review outlined in this chapter demonstrated that traditional stegano-

graphic techniques excel in security and high visual fidelity but often come with the

drawback of high computational complexity and scalability concerns. In contrast, deep

learning-based methods offer automated, high-quality embedding but require substantial

computational resources and large datasets, and they may face issues related to training

stability and detail preservation.

In the following chapter, we delve into our primary contribution, which employs ad-

vanced deep learning techniques in the realm of medical image steganography. This

method is designed to optimize the selection of embedding areas, ensuring that hidden

information is placed in appropriate regions while utilizing a secure concealment tech-

nique based on the DCT transform. This approach maximizes both security and integrity

while minimizing the risk of influencing medical diagnosis.
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4.1 Introduction

This study’s contribution lies in the creation of DICOM files that seamlessly integrate pa-

tient information into medical images with an exceedingly minimal impact—almost inconse-

quential—in order to safeguard against misdiagnosis, all achieved through the application of

steganography principles. The devised approach involves concealing patient data within areas

of the medical image that hold marginal relevance. Here, ”insignificant areas” refer to regions

devoid of crucial medical data, such as the black segments found in grayscale DICOM images.

Non-essential image regions are first located with Mask R-CNN- [76] a two-stage deep-learning

model that detects, classifies, and produces pixel-accurate masks for every object in the scene.

The model trains end-to-end with a combined loss over these outputs, achieving state-of-the-art

accuracy for tasks like autonomous driving, medical imaging, and augmented reality. Sensitive

medical information is then covertly embedded into these low-salience areas using DCT-based

steganography.

4.2 The proposed Method

A comprehensive visual representation of the proposed methodology is depicted in Figure 4.1,

outlining three fundamental stages: Neural network training, Embedding, and Extraction.

4.2.1 Neural network training

The key-concept in the proposed method is the detection of insignificant areas in medical DI-

COM images which will be exploited to conceal sensitive information. We assume that the

best way to detect these regions is by correctly detecting the main objects in the image. In

the literature, CNN-based methods outperform traditional techniques in the detection and seg-

mentation of objects inside images. Thus, we adopt Mask-RCNN architecture [77], as one of

the efficient techniques especially in the field of medical images. This architecture is proposed

to detect the main objects which represent the significant area that should be kept safe dur-
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Figure 4.1: Overview of the proposed steganography method
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ing information embedding. To train the Mask-RCNN model to obtain binary segmentation

masks, we use the architecture depicted in Figure 4.2 on various DICOM files datasets. This

architecture is divided into two stages :

Region Proposal Network (RPN)

Input Image
512×512 

The backbone (Resnet + FPN) 

Feature Map

Object Classification 

Bounding box regression 

R
O

IA
lig

ne
 

Object Bounding Box

Object Category

Binary segmentation Mask

Output Image
512×512

The Second Stage The First Stage 

Fully Connection layer

Convolutional layer

Region Proposal Network (RPN) 

Figure 4.2: Mask R-CNN architecture

1. First Stage: It takes an image and produces a feature map and regions proposals. The

feature map is obtained through a series of operations conducted on the original image by

a backbone constructed from CNN layers (ResNet and feature pyramid. Region proposal

Network [77] takes the feature map and produces regions that may contain objects.

2. Second Stage: it consists of aligning regions of Interests (RoIalign). It takes as input

feature map and region proposals and generates as output the fixed size regions of in-

terest from region proposals, and three parallel branches for predicting: object category,

instance bounding-box, and binary segmentation masks [77].

This architecture is trained on various datasets to determine the binary segmentation mask

where 1’s represents object pixels (significant region) and 0’s represents the background of the

image (i.e. the insignificant area). The loss function used to train this model is defined by

Equation (4.1) [77].

L = Lclass + Lbox + Lmask (4.1)
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patient_id:COVID-19-AR-
16406513study
Modality:CR,DXImage Study
Description:XR CHEST PA
AND LATERALRadiologist
KEY FINDINGS:patchy
increased opacity in the lower
lobes bilaterally, more
pronounced on the lateral view.
Small pleural effusions

patient_id:COVID-19-AR-
16424070study
Modality:CR,DXImage Study
Description:XR CHEST AP
PORTABLERadiologist KEY
FINDINGS:Chronic lung
disease/emphysema noted.
Multifocal airspace opacities
are noted throughout both
lungs.

patient_id:COVID-19-AR-
16424105study
Modality:CR,DXImage Study
Description:XR CHEST PA
AND LATERALRadiologist
KEY FINDINGS:Lungs are
clear, no nodule, airspace
disease or pleural effusion.

patient_id:COVID-19-AR-
16424105study
Modality:CR,DXImage Study
Description:XR CHEST PA
AND LATERALRadiologist
KEY FINDINGS:Lungs are
clear, no nodule, airspace
disease or pleural effusion.

Figure 4.3: Examples of patient data with their corresponding QR codes

where Lclass is the Classification Loss, Lbox is the Bounding Box Regression Loss, and Lmask

is the mask Loss.

4.2.2 Embedding Process

The process of embedding, also known as the concealment process, encompasses a series of

sequential steps aimed at seamlessly integrating confidential patient-related data into DICOM

images, ultimately giving rise to a Stego image. To elaborate, the focal point of this embed-

ding is the inconspicuous area previously identified using the Mask-RCNN model. This entire

procedure can be delineated into three distinct phases, outlined in the subsequent subsections.

Sensitive information preprocessing

In this first phase, the sensitive patient information is retrieved from the DICOM file and

transformed into a QR code image via QR Code generator. Figure 4.3 depicts some examples

of patient information with their corresponding QR codes generated using the Zxing library [78].

The Generated QR code image is then normalized using Equation 4.2 to convert the values

within the image to a range between 0 and 1. After that, the normalized image is adjusted
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using Equation 4.3, where the value of α is fixed experimentally (α=0,02). The adjusted image

is then divided into 4×4 mini matrices called Blocks (BQr) that are hidden one by one during

the concealment phase.

Norm(Img) = Img−min(Img)
max(Img)− min(Img)

. (4.2)

Equation (4.2) applies min–max normalisation (feature scaling) to the image matrix Img:

• min(Img) is the smallest grey-level (or colour-channel) value in the image.

• max(Img) is the largest value in the image.

• Subtracting the minimum shifts every pixel so the new minimum becomes 0.

• Dividing by the dynamic range
(
max−min

)
stretches the data so the new maximum be-

comes 1.

• After scaling, every pixel intensity lies in the interval [0, 1]; contrast is preserved but rescaled,

which is convenient for many algorithms and neural-network inputs.

Adjustment(Msg) =

 1− α,Msg ≥ 1

α,Msg = 0
(4.3)

Equation 4.3 applies a simple smoothing / clipping transform to a binary message symbol

(BQr) :

• α ∈ (0, 1) is a small, tunable constant.

• If the symbol is logic “1” (or any value ≥ 1), its adjusted value becomes 1− α (slightly less

than one).

• If the symbol is logic “0”, its adjusted value becomes α (slightly greater than zero).

• This prevents the adjusted data from taking the extreme values exactly 0 or 1, which can

help to conceal the BQr within the cover image’s insignificant DCT coefficients.

Cover preprocessing

The cover, derived from the DICOM file, is subjected to a dual stage preprocessing procedure.

Initially, the mask-RCNN model is employed in inference mode to pinpoint the inconsequen-
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tial regions within the cover, which yields a binary segmentation mask. Subsequently, given

that DICOM images are frequently encoded in 16-bit grayscale, the cover is normalized using

Equation 4.2 to effectively remap its values within the [0, 1] interval.

The resulting mask obtained from the first preprocessing step is utilized to determine the

indices corresponding to the insignificant areas within the normalized cover image, referred

to us as Cover insignificant (Cins) image. These insignificant areas are subsequently divided

into blocks with dimensions of 4×4, denoted as (BCins). The transformation coefficients of

(BCins) are then computed using the two-dimensional discrete cosine transform function (2D

DCT) [79], resulting in the generation of DCT coefficient of the cover insignificant (BDCins)

blocks. The 2D DCT for a matrix I (with dimensions M×N) is calculated using the formula

specified in Equation 4.4.

C(u, v) = α(u).α(v)×

[
M−1∑
m=0

N−1∑
n=0

I(m,n)× cos
(2m+ 1)uπ

2M
cos

(2n+ 1)vπ

2N

]
0 ≤ u ≤ M − 1

0 ≤ v ≤ N − 1

(4.4)

Where: a(u) =

 0 ≤ u ≤ M − 1

0 ≤ v ≤ N − 1

(m,n) and I(m,n) correspond to the position values and the pixel value at position (m,n)

in the spatial domain respectively. C(u, v) isthe corresponding position value and the frequency

coefficient at position (u, v) in the transform domain.

Information Concealment

During this stage, the 4×4 blocks originating from the cover, denoted as (BDCins), and the

4×4 blocks representing the secret message, referred to as (BQr) and generated in the prior

phase, are merged together—specifically, (BQr) is concealed within (BDCins)—resulting in the

formation of the corresponding block (Bs) within the Stego image. This concealment process

is executed through the application of Equation 4.5.

BS = IDCT2(Qun(BDCins, BQr)) (4.5)
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Where:

• Bs: Represents the block of the Stego image resulting from the concealment process.

• IDCT2 is the inverse two-dimensional discrete cosine transform function (2D-IDCT).

This function is explained by Equation 4.6.

I(m,n) = α(u).α(v)×

[
M−1∑
u=0

N−1∑
v=0

C(u, v)× cos
(2m+ 1)uπ

2M
cos

(2n+ 1)vπ

2N

]
(4.6)

• Qun: Denotes the function that integrates the BQr block into BDCins and generates the

pre-Stego blockBQS . This block is computed using the formula depicted in (Eq.4.7).

Bi,j
QS = k + (

4

β
×Bi,j

Qr) ; (
4k

β
) <| Bi,j

DCins |<
(4k + 1)

β
(4.7)

where:

– i,j: Are respectively the i-th and j-th ligne and column in the block.

– β: Is the number of intervals that satisfy the cover coefficients on the interval of

[0, 4].

– k ∈ 1, 2, 3, ..., β − 1.

Subsequently, the inverse two-dimensional discrete cosine transform function (2D-IDCT)

is employed on BQS , yielding the ultimate BS that characterizes the Stego blocks. Following

this, the Stego blocks are amalgamated to forge the Stego image, which subsequently undergoes

de-normalization to confine values within the [0, 65535] range. This critical step guarantees

that the Stego image adheres to the 16-bit DICOM file format, conserving the initial encoding

scheme. An illustrative demonstration of the concealment process can be found in Figure 4.4.

The main idea illustrated in Fig. 4.4 is to divide the DCT-coefficient range [0, 4] into β equal

sub-intervals, since most BDCins values fall within this span.

Embedding example To embed the secret value BQR = 0.7 into the cover coefficient

BDCins = 1.2:
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1. Locate the sub-interval. Since 1.2 ∈ [1.0, 1.5[, the left-hand bound is k = 1.0.

2. Compute the stego coefficient. Using the quantisation rule

BS = k + (
4

8
×BQR)

we obtain

BS = 1.0 + (
4

8
× 0.7) = 1.35

Note that BS also lies within the same interval [1.0, 1.5[.

Algorithm 4.1 prescribes the sequential steps that constitute the embedding process.

0.7 0.9 0.4 0.02

0.9 0.8 0.03 0.9

0.9 0.9 0.02 0.7

0.8 0.9 0.7 0.9

1.2 1.7 1.9 1.6

0.9 2.5 1.8 2.1

0.3 1.6 3.2 1.4

0.6 2.6 1.4 1.4

BDCins BQR

β=8

1.35 1.7 1.9 1.6

0.9 2.5 1.8 2.1

0.3 1.6 3.2 1.4

0.6 2.6 1.4 1.4

BQS= 1.0 +( 4/8 × 0.7)

BQS

Figure 4.4: A visual illustration of the hiding technique when β = 8
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Algorithm 4.1 Embedding Algorithm
Input : Medical image with size m × n, the QR code image of patient informa-

tion
Output :Steganography medical image with size m × n

1: Generate the binary segmentation mask
2: Normalize the cover using equation 4.2
3: Normalize and adjust the QR code image using equations 4.2, 4.3.
4: Get the index of 0 in the binary mask and generate the insignificant area of the

Cover
5: Split the insignificant cover and the QR code into 4×4 blocks
6: Calculate the DCT transformation coefficients to cover insignificant block using 4.4
7: Conceal the QR code block in the DCT coefficients with equation 4.7
8: Calculate the IDCT of the result blocks of step 7, to transform the image into the

spatial domain
9: Reconstruct the Stego image

4.2.3 Extraction Process

The extraction process serves as the reverse of the concealment process, with the aim of re-

covering the patient data hidden within Stego images. This retrieval is exclusively authorized

for users possessing the requisite key. The extraction unfolds across two distinct phases: Mask

Generation and the Extraction Process.

In the Mask Generation phase, the Stego image is subjected to the Mask R-CNN model

operating in inference mode. This operation generates a binary segmentation mask tailored

to pinpoint insignificant regions. This mask, a critical tool, facilitates the identification and

indexing of these areas—precisely where the secret data has been concealed.

Moving to the Extraction Process, an essential preliminary step involves normalizing the

Stego image to ensure pixel values are confined within the [0, 1] range. Leveraging the binary

mask associated with the Stego image, the positioning of pixels utilized for concealment is

discerned. This determination is pivotal in the creation of the insignificant Stego matrix.

Subsequently, the matrix is partitioned into 4x4 blocks and subjected to the Discrete Cosine

Transform (DCT) function, transitioning it into the frequency domain. The outcome is a

set of transformation coefficients. By employing the inverse merge operation (IQun), these
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coefficients facilitate the extraction of the mini block corresponding to the QR code, denoted

as BQR. The extraction equation is formally expressed as detailed in Equation 4.8.

BQR = IQun(DCT2(BS)) (4.8)

where the inverse merge equation (IQun) is calculated by Equation 4.9.

BQR = (BS − k)× β/4; (
4k

β
) <| Bi,j

S |< (4k + 1)

β
(4.9)

Finally, the resulting BQ blocks are then concatenated to produce the QR code of the

patient information. The reverse process is summarized by Algorithm 4.2

Algorithm 4.2 Extraction Algorithm
Input :Stego medical image with size m × n
Output :Private patient information.

1: Generate the binary segmentation mask with size m × n
2: Normalize the Stego
3: Get the index of 0 in the binary mask and generate the insignificant Stego area
4: Split the insignificant Stego into 4×4 blocks
5: Calculate the 2DCT transformation coefficients for Stego insignificant block using

Eq. 4.4
6: Extract the QR code block from the DCT coefficients using the formula 4.9
7: Recreate the private patient information QR code

4.3 Experiments

4.3.1 CHAOS Dataset

CHAOS dataset aims to segment abdominal organs (liver, kidneys, and Spleen) using CT

and MRI data [80]. It consists of two datasets, Each one corresponding to a series of DICOM

images. The first comprises CT images of 40 different patients with a healthy liver. The patient

orientation and alignment are the same for all the data sets. The data consists of 16-bit DICOM

images with a resolution of 512x512, an x-y spacing of 0.7-0.8 mm, and an inter-slice distance
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(ISD) of 3 to 3.2 mm. The second database includes 120 DICOM data sets from two different

MRI sequences, each of which is being routinely performed to scan the abdomen using different

radiofrequency pulse and gradient combinations. The data sets are acquired by a 1.5T Philips

MRI, which produces 12 bit DICOM images having a resolution of 256 x 256. The ISDs vary

between 5.5-9 mm (average 7.84 mm), x-y spacing is between 1.36 - 1.89 mm (average 1.61 mm)

and the number of slices is between 26 and 50. we have randomly selected 1200 DICOM images

from the CHAOS dataset. These images are divided into 1023 images (11 patient images) for

training, 199 images for validation (3 patient images) 10 images for testing. We manually

created the annotation of these images using VIA Annotation Software [81], with the intention

to make a semantic segmentation to separate the foreground that we consider as Significant

area from the background that we consider as insignificant area.

4.3.2 Mask RCNN model training and evaluation

We leveraged transfer learning to prepare a Mask-RCNN model that detects insignificant areas

in DICOM images. We started by fine-tuning the pre-trained weights of the MS COCO model

[82], which is a large object detection and instance segmentation dataset that comprises 328k

images with 91 labeled categories. To fine-tune this model, we used the implementation of

MASK-RCNN proposed by Matterport in [83] and we started the training on the CHAOS

dataset with the MS COCO weights to produce a variation of the network that targets our

detection goals.

Table 4.1 presents the configuration details for training our variant of the Mask-RCNN

model [84]. The parameters listed in the table include the backbone architecture, which is the

ResNet101 architecture in this case. The batch size, which is the number of images used in each

training iteration, is set to 4. The Feature Pyramid Network (FPN) used for classification is a

fully connected layer with a size of 1024. The learning rate and momentum parameters are set

to 0.001 and 0.9 respectively. And to prevent overfitting, we set the weight decay parameter to

0.0001. The RPN Train Anchors per Image parameter, which refers to the number of anchors

used in the region proposal network (RPN) during training, is set to 256. and the Images
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Parameter Value
Backbone resnet101
BATCH_SIZE 4
FPN_CLASSIF_FC_LAYERS_SIZE 1024
PU_COUNT 1
IMAGES_PER_GPU 4
LEARNING_MOMENTUM 0.9
LEARNING_RATE 0.001
RPN_TRAIN_ANCHORS_PER_IMAG 256
STEPS_PER_EPOCH 10
VALIDATION_STEPS 50
WEIGHT_DECAY 0.0001

Table 4.1: Mask R-CNN configuration

Per GPU parameter is set to 4, indicating that each GPU processes 4 images at a time. The

Steps Per Epoch parameter is set to 10, and the Validation Steps parameter is set to 50. These

parameters control the training process and the number of training and validation iterations.

The training was conducted on a machine empowered by Core I7 and 10th generation

processor, Intel UHD graphics, and 16 GB of RAM. The training is done in 20 epochs (8

epochs for the head and 12 epochs to fine-tune all layers). The curves of the training and

validation losses are presented in Figure 4.5. Sub-figure (a) displays the general training and

validation losses, while sub-figure (b) displays the losses of the MR-CNN mask training and

validation. The MR-CNN general loss is recorded as 0.1291 at the end of the training, and the

MR-CNN mask loss is noted as 0.0450.

We evaluated the overlap between the annotated and the generated masks of the validation

dataset using the Intersection Over Union (IoU) metric [85]. IoU is calculated using Equation

4.10.

(IOU) =
Area of intersection of two masks

Area of Union of two masks
(4.10)

A lower value of IoU indicates inadequate prediction (i.e. poor prediction) [86], whereas a

value of 1 represents an entirely accurate prediction. The validation process yielded an Average

IoU of 0.9146, signifying that the model can be safely used.
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(a) MR-CNN Loss

(b) MR-CNN Mask Loss

Figure 4.5: Model training and validation losses
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4.3.3 Imperceptibility measurement

The second part of the experiment was dedicated to the embedded process that uses the trained

MR-CNN model. We tested the process on 10 images. After extracting patient information

from the DICOM files and transforming them into QR codes, we applied the embedding method

described above to conceal the QR codes (Message) in the Cover images to obtain Stego images

as a first step. Then, we applied the extraction process to retrieve secret messages from the

Stego images as a second step.

Table 4.2 shows the obtained results (the cover, message, Stego, and the Retrieved message)

for a sample of 4 DICOM files. Based on visual inspection, it appears that there is no discernible

disparity between the original (Cover and Message) and generated images (Stego and retrieved

Qr code). However, we used the PSNR (Peak Signal to Noise Ratio) metric to evaluate the

visual quality of the generated images and The CNN (Normalized Correlation Coefficient)

metric to check the similarity between the cover mask and the stego mask obtained by the

MR-CNN model, which affects the correctness of the extraction process.

Furthermore, PSNR is calculated in decibels between two images using Equation 4.12:

MSE =

∑
M,N [I1(m,n)− I2(m,n)]2

M ∗N
(4.11)

PSNR = 10 log10
(

R2

MSE

)
(4.12)

Where M and N are the numbers of rows and columns in the input images. R is the

maximum fluctuation in the input image data type.

Moreover, NCC is used in our case to measure the robustness of the model and estimate

the difference between the cover mask and the Stego mask, NCC value adjacent to 1 implies

that the two masks are similar. NCC formula is given in Equation 4.13 :

NCC =

∑m
i=0

∑n
j=0(MC − µMC)(MS − µMS)(√∑m

i=0(MC − µMC)2
)(√∑m

i=0(MS − µMS)2
) (4.13)

Where, µMC and µMS are the mean pixel values of the cover mask and the Stego mask,
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The cover The message The stego The Retrieved Message

CT 1

CT 2

MRI 1

MRI 2

Table 4.2: The obtained results (the cover, message, Stego, and the Retrieved message)
for a sample of 4 DICOM files

respectively. Table 4.3 presents the NCC and PSNR values for the tested DICOM images,

along with their image sizes and scan types. The NCC values listed in the table fall within

the range of 0.83 to 1 for all images, signifying that our MR-CNN models can predict identical

masks from both the Cover and Stego images. This successful prediction enables the accurate

detection of the insignificant area where concealment operations take place. The PNSR values

depicted in the table 4.3, in case of the embedding parameters β and α are set to 1000 and

0.02 respectively, are ranging between 107.47 and 116.57, indicating that our method effectively

conceals sensitive patient information with a high level of imperceptibility.
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Patient ID 1 2 3 4 5 6 7 8 9 10

Scan Type CT CT CT CT CT MRI MRI MRI MRI MRI
Image size
(Pixel) 512 x 512 512 x 512 512 x 512 512 x 512 512 x 512 256 x 256 256 x 256 512 x 512 256 x 256 256 x 256

NCC 1.00 1.00 0.83 1.00 0.99 1.00 0.99 1.00 0.99 0.99
PSNR (dB) 116.07 113.69 115.53 116.57 116.02 107.47 110.3 117.4 110.3 110.33

Table 4.3: The NCC and PSNR values for the tested DICOM images.

To examine the effect of the β coefficient on the final quality of the Stego, we measured the

PSNR by variating the embedding parameter β. Table 4.4 shows visual examples for various

values of β.

β 100 500 1000

PSNR (dB) 90.222 104.303 110.333

The stego

Table 4.4: Visual examples when βtakes different values

Table 4.5 shows the obtained average results of the PSNR values between the Cover and

Stego DICOM images of 10 patients for different β values. The value of PSNR was between

101.447 and 111.386 for β = 500. The minimum and maximum value of PSNR are 66.494 dB

( β =10, patient MRI 1) and 117.400 dB (β = 1000, patient MRI 3) demonstrating that the

highest value of β produces a high-quality Stego image and low β value produces low stego

quality . Generally, PSNR higher values refer to the invisibility of higher quality.
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Scan type β

10 100 200 300 400 500 600 700 800 900 1000

CT

1 75.051 95.955 102.01 105.557 108.094 110.039 111.578 112.993 114.129 115.225 116.074
2 72.661 93.551 99.64 103.166 105.729 107.661 109.222 110.618 111.748 112.888 113.695
3 74.555 95.424 72.483 101.500 105.029 107.563 109.494 112.45 113.585 114.696 115.532
4 75.136 96.313 102.442 105.998 108.55 110.517 112.07 113.444 114.644 115.723 116.571
5 75.076 95.914 101.994 105.526 108.067 109.995 111.557 112.945 114.076 115.191 116.022

Averag 74.4958 95.4314 95.7138 104.3494 107.0938 109.155 110.7842 112.49 113.6364 114.7446 115.5788

MRI

1 66.494 87.347 93.425 96.949 99.500 101.447 102.984 104.394 105.533 106.643 107.473
2 69.389 90.217 96.281 99.803 102.345 104.283 105.823 107.227 108.365 109.476 110.304
3 76.472 97.313 103.385 106.904 109.447 111.386 112.925 114.321 115.472 116.581 117.400
4 69.389 90.217 96.281 99.803 102.345 104.283 105.823 107.227 108.365 109.476 110.304
5 69.39 90.222 96.29 99.816 102.362 104.303 105.847 107.253 108.393 109.505 110.333

Avrag 70.2268 91.0632 97.1324 100.655 103.1998 105.1404 106.6804 108.0844 109.2256 110.3362 111.1628

Table 4.5: The average results of the MSE values between the Cover and Stego DICOM.
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4.3.4 Capacity and payload

CT images MRI images
Patient id 1 2 3 4 5 6 7 8 9 10 Average
Capacity 0.5 0.54 0.50 0.48 0.49 0.63 0.61 0.54 0.72 0.58 0.54
Payload 0.248 0.296 0.248 0.256 0.248 0.72 0.8 0.16 0.64 0.8 0.43

Table 4.6: The resultant Capacity and payload.

Table 4.6 presents a detailed analysis of capacity and payload values for both CT (Computed

Tomography) and MRI (Magnetic Resonance Imaging) images across ten different patient IDs.

These values provide crucial insights into the performance and efficiency of a data hiding

technique when applied to medical images. It’s essential to consider these capacity and payload

values when designing and implementing data hiding techniques for medical images, as they

provide insights into the trade-off between data capacity and image quality in the context of

medical data security. Capacity refers to the amount of secret data that can be embedded

within the medical image while maintaining the image’s visual quality and integrity. The

capacity is calculated using the equation 4.14.

ρ =
Nsel
Ntotal

β, (4.14)

where

• Nsel — total number of DCT coefficients

• Ntotal — total number of DCT coefficients in the entire image

• β — bits embedded per selected coefficient (β = 1).

Equation 4.14 yields the embedding capacityρ in bits per pixel. For CT images, the capacity

ranges from 0.24 to 0.29, with an average capacity of 0.25. This indicates that, on average,

approximately 25 % of the image can be utilized to hide secret data without significant degra-

dation in image quality. For MRI images, the capacity varies from 0.16 to 0.72, with an average

capacity of 0.62. MRI images show a slightly lower but still substantial capacity, with approx-

imately 62 % of the image available for data embedding. Payload refers to the amount of

secret data that is successfully embedded within the image. The payload is calculated using
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the equation 4.15 Equation 4.15 yields the Payload in bits per pixel. .

Payload =
HsWs b

Nsel
β (4.15)

where

Hs, Ws Height × width of the secret image.

b Bits per secret pixel (8 for grayscale, 24 for RGB).

Nsel Number of cover coefficients you actually modify.

β Bits embedded in each selected coefficient (often 1).

It is a critical metric as it indicates how much data can be reliably hidden within the image.

For CT images, the payload values range from 0.24 to 0.29, with an average payload of 0.50.

This suggests that, on average, 50 % of the image can be effectively used to conceal secret

data. For MRI images, the payload varies between 0.16 and 0.8, with an average payload of

0.5, mirroring the payload results of CT images.

4.3.5 Robustness analysis

A critical aspect of our proposed data hiding technique for medical images is its robustness

against various types of noise attacks. To evaluate the resilience of our method, we subjected

the stego images to three common noise attacks: Gaussian noise, uniform noise, and salt

and pepper noise. Te robustness was assessed by retrieving the embedded QR code from the

noise-afected stego images and measuring the similarity and visual quality through normalized

cross-correlation (NCC) and peak signal-to-noise ratio (PSNR), respectively.

In 4.7, the NCC values obtained under Gaussian noise, uniform noise, and salt and pepper

noise attacks were 0.3188, 0.3150, and 0.3193, respectively. Tese results indicate a moderate

level of correlation between the original and retrieved QR codes post-attack, demonstrating the

method’s capability to withstand noise perturbations to a certain extent. Moreover, the PSNR

values remained above 53 dB across all noise types, suggesting that the visual quality of the
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Stego attack Gaussian noise Uniform noise Salt and pepper noise

Te retrieved QR code
NCC 0.3188 0.3150 0.3193
PSNR (dB) 53.36 53.33 53.39

Table 4.7: The robustness evaluation results under the noise attacks.

stego images is preserved well above acceptable thresholds, even in the presence of noise. Tis

is signifcant as it ensures that the diagnostic value of medical images is not compromised due

to embedding and subsequent noise attacks. In developing our data hiding approach for med-

ical images based on the Mask-RCNN model, we meticulously balanced the trade-of between

robustness, visual quality, and payload capacity. Tis delicate equilibrium ensures that while

concealing data within the medical images, the method maintains resilience against various

attacks, preserves high visual fdelity, and accommodates a signifcant payload for information

embedding. By optimizing the embedding process and incorporating error correction coding

techniques, we mitigate the risk of information loss and maintain the integrity of the stego

images, even in the presence of noise or other forms of interference. Furthermore, careful se-

lection of embedding parameters and compression algorithms allows us to strike an optimal

balance between concealing capacity and visual imperceptibility, ensuring that the embedded

data remains imperceptible to the human eye while maximizing the amount of information that

can be securely hidden within the images. Tis careful consideration of trade-ofs empowers our

method to deliver robust and high-quality stego images suitable for secure transmission and

storage of sensitive medical data.
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Method Image Size Technique Embedding Capacity(Bpp) Payload (bits) Best PSNR

Bozhidar S and Borislav S. [35] 336×336 Nuclear Spin Generator 0.75 83883 113.50
Subhadip M and al [51] 256×256 LSB and shell matrix 3 786432 48.42
Akshay K and al [62] 128×128 Deep learning 24 - 37.55
Atique R and al [56] 300×300 Deep learning 8 89910 36.58
Proposed Method 512×512 Deep learning 0.50 131524 115.53

Table 4.8: Compare the proposed method with other methods.

4.3.6 Comparison

Table 4.8 provides a comprehensive comparison between the proposed data hiding method and

several other existing techniques, highlighting key parameters such as image size, embedding

capacity, payload, and best PSNR (Peak Signal-to-Noise Ratio). Bozhidar S and Borislav

S.’s [35] method employs a Nuclear Spin Generator on 336x336 images, achieving a relatively

high embedding capacity of 0.75 Bpp. It successfully hides 83,883 bits of data while main-

taining a remarkable PSNR of 113.50, indicating good image quality preservation. Subhadip

M [51] and his team utilize a combination of LSB (Least Significant Bit) and a shell matrix

technique on 256x256 images, resulting in a much higher embedding capacity of 3 Bpp. This

approach allows the concealment of a substantial 786,432 bits of data. However, the PSNR of

48.42 indicates some loss in image quality compared to the previous method. Akshay K [62]

and his collaborators employ deep learning on 128x128 images, achieving an impressive em-

bedding capacity of 24 Bpp. While the exact payload is not specified, this approach prioritizes

data capacity over PSNR, which is lower at 37.55, indicating some visual quality degradation.

Atique R [56] and his team also apply deep learning, but on 300x300 images, resulting in an

embedding capacity of 8 Bpp. They manage to conceal 89,910 bits of data with a PSNR of

36.58, indicating some trade-off between capacity and image quality. In contrast, the Proposed

Method operates on 512x512 images using deep learning and achieves a reasonable embedding

capacity of 0.50 Bpp, which allows the concealment of 131,524 bits of data. Notably, it out-

performs the other methods [51] [62] [56] in terms of PSNR, attaining an impressive 115.53,

signifying exceptional image quality preservation. In summary, the proposed method strikes

a balance between embedding capacity and image quality, achieving a competitive capacity

while maintaining outstanding PSNR, making it a promising choice for data hiding in medical
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images.

4.4 Conclusion

In this chapter, we presented our first contribution to the field of high-capacity data hiding in

medical images. We introduced a novel approach that integrates Mask R-CNN segmentation

with DCT steganography.

By fine-tuning and pretraining the Mask R-CNN model, our proposed method ensures

consistency in identifying embedding regions across both original and stego images, thereby

guaranteeing the accurate recovery of medical information. Experimental results demonstrate

the effectiveness of this approach in achieving high-capacity data embedding with minimal

distortion, as reflected by PSNR values ranging from 70 to 115, ensuring imperceptibility to

the human eye. Additionally, comparative analysis highlights the superior performance of our

method over existing alternatives.

In the next chapter, we present our second contribution, which explores another aspect of

deep learning-based image steganography, where a CNN-based architecture is solely responsible

for both concealment and extraction.
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5.1 Introduction

This chapter presents the description of our second research contribution to the field of medical

image steganography and its experimental results. Our second contribution focuses on develop-

ing a deep learning-based approach where a CNN architecture is fully responsible for both the

concealment and extraction of hidden information within medical images. Unlike traditional

steganographic methods that require manual optimization for embedding security and quality,

our proposed approach leverages deep neural networks to learn an optimal embedding strategy

while preserving medical image integrity.

This study specifically aims to conceal a medical image containing sensitive diagnostic

information within another medical image that does not contain such information, utilizing the

structure of a single DICOM file, which is inherently designed to store a series of images (or

”frames”) together. This approach ensures that confidential medical data is securely embedded

within a diagnostically neutral image.

To evaluate our method, we conducted extensive experiments on medical imaging datasets,

assessing the performance of our CNN-based framework in terms of embedding capacity, im-

perceptibility, and secret image recovery accuracy. We also compare our approach with existing

steganographic techniques to highlight its advantages in terms of robustness, security, and re-

construction fidelity.

This chapter is structured into four sections, starting with an introduction and a review

of background information in Section 5.2. Section 5.3 introduces the proposed deep learning-

based steganography method and provides details on its implementation, including dataset

information, network architecture, and training procedure. Section 5.4 presents the analysis of

experimental results, covering both quantitative evaluation and visual assessment, along with

a comparative analysis of competitive methods. Finally, Section 5.5 concludes the chapter with

a summary of key findings and potential directions for future research.
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5.2 Background

Convolutional Neural Networks (CNNs): CNNs are designed to automatically extract hier-

archical features from images using layers of convolution, pooling, and activation functions.

Pre-trained CNN architectures such as VGG16 [87], ResNet [88], and EfficientNet [89]are com-

monly used for feature extraction and image authentication. Autoencoders: An autoencoder is

a method based on neural networks designed to reconstruct input data, capturing meaningful

representations of the underlying information. [90]. It is made up of three primary parts:

• Encoder – Transforms the input into a lower-dimensional latent feature representation.

• Latent Representation – A compact, meaningful representation of the input data.

• Decoder – Reconstructs the input from the latent representation.

An autoencoder seeks to strike a compromise between learning a practical latent representation

that captures key data features and reducing reconstruction error. Applications such as feature

extraction, classification, and clustering can make use of this model. An ideal autoencoder is one

that minimizes reconstruction error as much as possible given the constraints of its bottleneck

layer size. A well-trained autoencoder with sufficient capacity approximates this ideal state

at the end of training, providing a theoretical limit for information preservation (IP) during

learning. However, the exact training trajectory depends on the optimization process.

By combining steganography principles with deep learning techniques, advanced secure

image transmission frameworks can be developed, ensuring both data confidentiality and au-

thenticity in sensitive applications such as medical image security.

Our method leverages an autoencoder-inspired architecture for image steganography, where

the encoder embeds the secret image within the cover image through feature extraction and

residual learning, ensuring minimal distortion. The decoder then reconstructs the secret image

from the stego image using convolutional layers. The training process optimizes a reconstruction

loss, similar to autoencoders, to ensure accurate recovery of the hidden information while

preserving the visual integrity of the cover image.
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5.3 The Proposed Method

In this work, We present a convolutional auto-encoder steganography framework that conceals

a medical image inside a cover image while introducing virtually no visible distortion. The

architecture pairs a CNN-based encoder, which learns a subtle pixel-level residual to embed

the secret, with a CNN decoder that reconstructs the hidden image from the resulting stego

image. Both subnetworks are trained jointly, end to end, with tailored loss functions that

enforce two objectives at once: (i) high cover fidelity (PSNR > 40 dB) and (ii) precise secret

recovery. This fully convolutional design therefore supports secure, high-capacity embedding

without compromising the diagnostic quality of the host image.

The proposed method consists of two principal components:

• Encoder: A deep convolutional network that integrates the secret image into the cover

image while preserving its visual integrity.

• Decoder: A corresponding convolutional network that accurately retrieves the hidden

image from the stego image with high precision.

5.3.1 Model Overview

Figure 5.1 provides an overall diagram of the model, showing how the CNN encoder embeds

the secret as a low-amplitude residual and how the accompanying CNN decoder extracts it.

Together, these two components form a unified architecture trained end-to-end.

Encoder Network

The encoder processes two input images: the cover image (a typical medical image) and the

secret image (another medical image intended for embedding). The encoder consists of two

separate convolutional branches:

• Cover Image Processing Branch: Extracts spatial features from the cover image

using a series of convolutional layers.
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Figure 5.1: The Model architecture

• Secret Image Processing Branch: Encodes the secret image using a separate convo-

lutional pathway to ensure effective integration into the cover image.

These extracted features are then concatenated and passed through additional convolutional

layers to generate a residual image. This residual represents a small perturbation that, when

added to the cover image, forms the stego image. The residual is scaled using a factor of 0.1

and clipped to ensure minimal perceptual distortion in the cover image.

Mathematically, the stego image can be represented as:

S = C + 0.1R (5.1)

where S is the stego image, C is the cover image, and R is the learned residual.

Decoder Network

The decoder is designed to recover the hidden secret image from the generated stego image. It

consists of multiple convolutional layers that progressively reconstruct the secret image from

81



Chapter 5. Quality-Aware DNN-based Framework for Medical-Image Steganography

Figure 5.2: The encoder architecture

the stego image input. The final output of the decoder is a single-channel grayscale image that

represents the recovered secret.

5.3.2 Training Objective

To ensure effective learning, we define a composite loss function:

• Cover Loss: Ensures that the stego image remains visually similar to the cover image,

measured using Mean Absolute Error (MAE):

Lcover = MAE(C,S)
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Figure 5.3: The decoder architecture

where C is the cover image and S is the stego image.

• Secret Loss: Ensures that the extracted secret image is as close as possible to the

original secret image:

Lsecret = MAE(S′, Sorig)

where S′ is the recovered secret image and Sorig is the original secret image.

The total loss function is defined as:
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Ltotal = λcoverLcover + λsecretLsecret

where λcover and λsecret are weighting factors controlling the trade-off between image con-

cealment and extraction accuracy. We set λcover = λsecret to balance both objectives equally.

5.3.3 Implementation Details

Dataset description

For training, we utilize two distinct medical image datasets: the MIDRC-RICORD-1B dataset,

serving as the source for cover images, and the IQ-OTH/NCCD - Lung Cancer Dataset, pro-

viding the secret images. The IQ-OTH/NCCD dataset was gathered from the Iraq-Oncology

Teaching Hospital/National Center for Cancer Diseases. It contains 1190 CT scan images from

110 patients, categorized into normal (55 cases), benign (15 cases), and malignant (40 cases).

The scans, marked by oncologists and radiologists, were acquired using a Siemens SOMATOM

scanner with a 120 kV protocol and 1 mm slice thickness. Images were collected in DICOM

format, deidentified, and analyzed with institutional review board approval. The dataset rep-

resents patients from various backgrounds across central Iraq and provides multiple CT slices

(80–200 per scan) capturing different chest angles. The MIDRC-RICORD-1B dataset is part

of the RSNA International COVID-19 Open Radiology Database (RICORD), containing 120

de-identified thoracic CT scans from COVID-negative patients. It includes supporting clinical

variables such as age, sex, exam date/time (pseudonymous), exam description, symptomatic

status, testing result, specimen source, study UID (pseudonymous), image count, and modal-

ity. This dataset is designed for research in medical imaging, providing structured data for

analyzing thoracic CT characteristics in non-COVID cases.

Training

The Adam optimizer is used to train the model with a batch size of 16 and a learning rate of

0.001 across 70 epochs. The dataset includes paired medical images, where each pair consists
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of a cover image and a secret image. As part of preprocessing, the images are resized to 128

× 128 pixels, and their pixel values are adjusted through normalization to fit within a defined

range. For evaluation, we utilize Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity

Index Measure (SSIM) to assess the similarity between the cover and stego images, as well

as between the extracted secret and the original secret images. Higher PSNR values indicate

better performance and lower distortion, and for SSIM 1 indicates perfect similarity, 0 indicates

no similarity.

5.4 Results

5.4.1 Quantitative Evaluation

The table presents PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity Index)

for two processes Cover-Stego and Secret-Recsecret across five test samples. A high PSNR (≥

40 dB) indicates minimal distortion, while an SSIM value close to 1.0 reflects strong structural

similarity. In Samples 1 and 3, the stego images achieve very high PSNR values (≥ 45 dB),

suggesting minimal distortion, and the recovered secrets also exhibit impressive quality (PSNR

≥ 37 dB, SSIM ≥ 0.985).

Samples 2 and 5 maintain excellent fidelity, with stego images around 44 dB PSNR and the

recovered secrets remaining around 38 dB PSNR with an SSIM of about 0.99. Sample 4, though

it shows the lowest PSNR (41.73 dB), still remains within the high-fidelity range by standard

image-processing metrics, and its recovered secret also demonstrates solid performance (35.72

dB, SSIM = 0.9881).

The stego image’s average PSNR across all samples is around 44.31 dB, with an SSIM of

roughly 0.9626, suggesting that the cover images have been well-preserved after embedding.

The recovery of the secrets demonstrates the resilience of the technique, with an average PSNR

of around 37.57 dB and an SSIM of approximately 0.9897. Overall, these metrics reflect both

minimal impact on the cover image and near-lossless retrieval of the hidden content.
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Cover - Stego Secret - Recsecret
PSNR SSIM PSNR SSIM

Test Sample 1 45.37 dB 0.9731 38.11 dB 0.9889
Test Sample 2 44.46 dB 0.9578 38.83 dB 0.9931
Test Sample 3 45.69 dB 0.9751 37.11 dB 0.9855
Test Sample 4 41.73 dB 0.9531 35.72 dB 0.9881
Test Sample 5 44.31 dB 0.9539 38.09 dB 0.9928
Table 5.1: PSNR and SSIM values for Cover-Stego and Secret-RecSecret comparisons.

5.4.2 Sample Visuals

Table 5.2 presents visual sample results. When comparing the columns for each sample—cover,

secret, stego, and recovered secret—it is clear that the stego images (third column) remain visu-

ally consistent with their respective cover images (first column). This indicates that the embed-

ding process introduces minimal or nearly imperceptible alterations, preserving key structural

elements such as tissue density contrasts and organ boundaries. Meanwhile, the recovered se-

crets (fourth column) closely resemble the original secrets (second column), with only subtle

variations in brightness or artifact visibility. The high degree of similarity between the cover

and stego images, coupled with the faithful reproduction of the hidden content, suggests that

the steganography method is effective at both preserving the cover images’ appearance and

accurately reconstructing the embedded secret images.

From a practical standpoint, these results indicate a highly effective steganographic method:

the cover images remain visually indistinguishable from the originals, and the secret images

can be recovered with minimal loss. Both the quantitative metrics (PSNR and SSIM) and a

visual inspection support the conclusion that the embedding and extraction processes exhibit

high fidelity.
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Test Sample Cover Secret Stego Recovered Secret

Test Sample 1

Test Sample 2

Test Sample 3

Test Sample 4

Test Sample 5

Table 5.2: Results of steganography encoding and decoding for five test samples.
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Approach Based on Cover Size Secret Size Payload (%) PSNR (dB)
Rehman [91] Encoder–Decoder 32×32×3 32×32×1 33 29.6
Zhang [92] GAN 256×256×3 256×256×1 33 33.92
Chen [93] GAN 300×300×3 300×300×1 33 34.07
Subramanian [59] Encoder–Decoder 256×256×3 256×256×3 100 34.55
Proposed Encoder–Decoder 128×128×3 128×128×3 100 44.31

Table 5.3: Comparison of our method with other deep-learning schemes

5.4.3 Comparison with competitive methods

The proposed method performance was evaluated against several state-of-the-art deep learning-

based steganography approaches, as shown in the table 5.3. The comparison reveals significant

advantages of our proposed architecture: First, while methods like Rehman’s and Zhang’s

achieve PSNR values of 29.6 dB and 33.92 dB respectively, our approach demonstrates superior

imperceptibility with a PSNR of 44.31 dB - an improvement of approximately 9.76 dB over

the next best performer. This substantial gain in PSNR indicates that our method introduces

significantly less distortion in the cover image while maintaining the same embedding capacity.

Second, unlike competitive methods that often limit payload capacity to 33% of the cover

image size, our method achieves 100% capacity, matching only Subramanian’s method in this

aspect. However, we maintain this full capacity while delivering nearly 10 dB higher PSNR

than Subramanian’s approach (44.31 dB vs 34.55 dB), demonstrating that our architecture

more effectively balances the traditional trade-off between capacity and imperceptibility.

5.5 Conclusion

In this chapter, we presented our second research contribution to the field of medical image

steganography, focusing on a deep learning-based approach where an auto-encoder architecture

is fully responsible for both the concealment and extraction of hidden information. Unlike

traditional steganographic techniques, our method leverages an encoder-decoder architecture

that learns an optimal embedding strategy while preserving medical image integrity.

A key aspect of our approach is the secure concealment of a medical image containing sen-

88



Chapter 5. Quality-Aware DNN-based Framework for Medical-Image Steganography

sitive diagnostic information within another diagnostically neutral medical image. By utilizing

the structure of a single DICOM file, which is designed to store multiple images (or ”frames”)

together, our method ensures seamless integration into existing medical imaging workflows.

Through extensive experiments on medical imaging datasets, we demonstrated the effec-

tiveness of our approach in terms of embedding capacity, imperceptibility, and secret image

recovery accuracy. Quantitative evaluations using PSNR and SSIM confirmed that our method

achieves high-quality embedding with minimal distortion, while visual assessments further val-

idated the imperceptibility of stego images and the accuracy of extracted secrets.

Additionally, comparative analysis with state-of-the-art steganographic methods highlighted

the superiority of our approach in achieving a balance between high payload capacity and im-

perceptibility. Our method achieves a significantly higher PSNR value while maintaining full

embedding capacity, outperforming existing deep learning-based steganographic techniques.

These findings establish a strong foundation for further research in secure medical image

steganography. Future work may explore improvements in robustness against steganalysis

attacks, adaptation to varying medical imaging modalities, and real-time applicability in clinical

settings.
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1 Summary of Contributions

This thesis explores the challenge of securing medical data in digital healthcare systems where

medical imaging plays an important role in diagnostics and patient management. We studied

how deep learning and steganography can be combined to improve confidentiality of medical

images while maintaining their diagnostic integrity.

Our work focuses on three main contributions. First, we developed a region identification

method based on Mask-RCNN that reliably distinguishes between diagnostically significant and

insignificant regions. This segmentation method achieves an average Intersection over Union

(IoU) score of 0.9146 and ensures consistent region identification between original and stego

images, as demonstrated by normalized cross-correlation (NCC) values ranging from 0.83 to 1.0,

thereby maintaining clinical integrity. Second, integration of a DCT-based frequency-domain

embedding approach combines spatial and transform-domain techniques to achieve exceptional

image quality, with PSNR values exceeding 115 dB for CT images. The embedding process is

finely tunable through a � coefficient that controls the quality-capacity trade-off, and the use of

QR code representations for patient information standardizes diverse data formats, optimizing

embedding efficiency. Finally, we introduce a clinical quality-aware deep learning framework

that expertly balances embedding capacity, imperceptibility, and recovery accuracy. This is

achieved by a dual-branch encoder that preserves essential diagnostic features while embedding

secret data in less critical areas, and a decoder that employs progressive feature reconstruction

to improve recovery. This design achieves an average PSNR of 44.31 dB at full embedding

capacity. We evaluated our approach using multiple medical imaging datasets, including CT

and MRI scans. The results show improvements in image quality, with PSNR gains of 9.76

dB over existing methods, and better embedding capacity, ensuring minimal distortion while

securing data.

2 Addressing Research Questions

We reflect on the research questions introduced in this thesis:

91



Conclusion and Future works

RQ 1: How can deep learning architectures, particularly encoder-decoder mod-

els, balance imperceptibility, capacity, and recovery accuracy?

The proposed clinical quality-aware CNN has achieved this balance through specific design

choices. The dual-branch encoder preserved diagnostic features while embedding secret data,

and the decoder’s progressive feature reconstruction improved recovery. Using a scaled residual

learning approach, we maintained good imperceptibility, achieving an average PSNR of 44.31

dB with 100% embedding capacity, performing 9.76 dB better than other methods.

RQ 2: How can diagnostically less relevant regions in medical images be iden-

tified and used for embedding without affecting clinical value? The Mask-RCNN

framework we developed proved remarkably effective at distinguishing between significant and

insignificant regions, with an average IoU score of 0.9146. This region-aware approach ensured

embedding occurred only in areas that would not affect diagnosis, with NCC values between

0.83 and 1.0 confirming the consistency of region identification between original and stego im-

ages. This intelligent segmentation was fundamental to maintaining diagnostic integrity while

maximizing embedding capacity.

RQ 3: How can steganographic techniques be improved to increase embedding

capacity while maintaining image quality?

Our integration of deep learning for region identification with DCT-based embedding in

the frequency domain achieved remarkable results, with PSNR values exceeding 115 dB for

CT images. The parameterizable embedding process through the β coefficient provided precise

control over the quality-capacity trade-off. Additionally, the QR code representation of patient

information optimized the embedding process by standardizing diverse data formats.

3 Limitations

Although the proposed work has introduced promising techniques for medical image security,

there are certain limitations that should be acknowledged. The computational cost of deep

learning models, particularly Mask-RCNN, may restrict practical implementation in healthcare

settings with limited hardware resources. Optimization strategies such as model pruning and
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quantization could help improve efficiency.

While our method demonstrated robustness against common image processing operations,

a more detailed analysis against advanced steganalysis attacks is necessary to assess long-term

security. Future research could explore adversarial training or other defensive mechanisms to

strengthen resistance against detection.

Finally, this study primarily focuses on 2D medical images. However, modern healthcare

increasingly relies on 3D imaging, such as MRI and CT volumes. Applying our steganographic

approach to volumetric data presents additional challenges, including the need to maintain spa-

tial consistency across multiple slices. Addressing these issues would enhance the applicability

of this method in real-world medical environments.

4 Future Research Directions

To address these limitations and expand this work, we propose the following future research

directions:

4.1 Optimizing for Resource-Limited Environments

Deploying deep learning models in clinical settings with limited computational resources re-

quires optimizing model efficiency. Techniques such as model compression, quantization, and

knowledge distillation can reduce memory and processing requirements while maintaining per-

formance. Developing lightweight architectures specifically tailored for edge devices and hos-

pital systems could make steganography-based security solutions more accessible in real-world

healthcare environments.

4.2 Integrating Steganography with Blockchain for Secure Med-

ical Data Management

Combining steganography with blockchain technology could enhance security, integrity, and

authenticity in medical image management. Blockchain offers decentralized and tamper-proof
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storage, ensuring that any modification to a medical image is traceable. By embedding cryp-

tographic hashes or digital signatures within steganographic content, we can create a secure

framework for verifying image authenticity while maintaining confidentiality. This integration

could be useful for medical data sharing across institutions while complying with regulatory

standards such as HIPAA and GDPR.

4.3 Extending Steganographic Techniques to 3D Medical Imag-

ing

Modern medical imaging increasingly relies on 3D volumetric data, such as MRI and CT scans,

which require new steganographic methods. Unlike 2D images, 3D datasets consist of multi-

ple slices with spatial dependencies, making conventional embedding techniques less effective.

Future research should explore volumetric steganography approaches that maintain spatial

coherence across slices, ensuring that hidden information remains robust while preserving diag-

nostic accuracy. Techniques such as 3D convolutional neural networks (CNNs) or graph-based

embeddings could be investigated for this purpose.

4.4 Enhancing Robustness Against Advanced Steganalysis Tech-

niques

As steganalysis techniques evolve, it is crucial to ensure that steganographic methods remain

resistant to detection. Future work should focus on adversarial training strategies, where

steganographic models are trained alongside steganalysis networks to improve their ability to

evade detection. Additionally, generative adversarial networks (GANs) can be used to create

more adaptive and imperceptible embedding strategies, ensuring that hidden data remains

secure against increasingly sophisticated detection methods.

These perspectives aim to improve medical image security by building on the findings of

this thesis while addressing challenges in digital healthcare data protection. Advancing these

areas will contribute to the development of more secure, efficient, and clinically applicable
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steganographic methods for protecting sensitive medical data.
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