Utilisation des réseaux de neurones dans l'estimation et la prédiction des signaux. Application à la séparation aveugle de sources

توبة, مصطفى محمد (2014) Utilisation des réseaux de neurones dans l'estimation et la prédiction des signaux. Application à la séparation aveugle de sources. ["eprint_fieldopt_thesis_type_phd" not defined] thesis, Université Mohamed Khider Biskra.

[img]
Preview
Text
elect_d1.pdf

Download (1MB) | Preview

Abstract

Dans cette thése, nous proposant un nouvel algorithme de séparation aveugle de sources, basé sur l'optimisation de l'information mutuelle sous contraintes.Le probléme d'optimisation sous contraintes est résolu par passage au probléme dual. L'estimateur proposé du gradient utilise l'estimation des densités de probabilité par maximum de vraisemblance est réseaux de neurones MLP pour des modéles de lois exponentielles choisis par minimisation du critére AIC. Ensuite, la méthode a été généralisée à l'ensemble des divergences entre densités de probabilité. Nous montrons que l'algorithme utilisant la modélisation neuronale de la loi de probabilité a de bonnes performances d'estimation des signaux sources. Nous proposons aussi un algorithme de séparation aveugle de sources de mélange post non linéaire (PNL) en utilisant un réseaux de neurones multicouches.La procédure consiste à la fois à compenser les nonlinéarités du modéles PNL et d'estimer les sources tout en maximisant un critére déentropie des signaux de sortie. Nous illustrons les performances des algorithmes proposés pour des signaux simulés dans l'environnement MATLAB

Item Type: Thesis (["eprint_fieldopt_thesis_type_phd" not defined])
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Faculté des Sciences et de la technologie > Département de Génie Electrique
Depositing User: Admin01 TMLBiskra
Date Deposited: 16 Jun 2014 10:03
Last Modified: 16 Jun 2014 10:03
URI: http://thesis.univ-biskra.dz/id/eprint/31

Actions (login required)

View Item View Item