ABDESLAM, NORA AMELE (2013) Simulation bidimensionnelle de l’effet des pièges profonds dans le substrat sur les caractéristiques des Transistors à Effet de Champ en Arséniure de Gallium (GaAs FETs) (Two Dimensional Simulation of Deep Level Substrate Effect on the Characteristics of the GaAs Field Effect Transistor (GaAs FETs). Doctoral thesis, Université Mohamed Khider-Biskra.
|
Text
Abdeslam_thesis.pdf Download (8MB) | Preview |
Abstract
In this thesis, the reduction of the conductance of GaAs FETs by a negative voltage applied to the substrate, termed backgating or sidegating, was numerically modeled to determine which type of traps is responsible of this phenomenon. Drift diffusion Modelling was carried out for several sets of deep levels in the substrate. It has been observed that deep acceptors are mainly responsible for backgating, independently of the shallow level type in the substrate. In this case, there is no threshold. However, when deep donors are present in the substrate, backgating is again reduced but with a threshold. The presence of a buffer layer between the channel and the semi-insulating substrate also helps reducing backgating. A two dimensional-hydrodynamic model was carried out to predict the performance of short-gate length power III–V field effect transistors. The model is based on the conservation equations, deduced from the Boltzmann transport equation and solved in their whole form. This model is also well suited to study the effect of substrate deep levels on the device. The results of hydrodynamic model (physical model) were compared to those of the fully distributed model (electrical model), especially, as for high frequency operating. In fact, at high frequencies, the dimensions of the electrodes of microwave transistors such as FETs become comparable to the wavelength, highlighting the parasitic effect of wave propagation. Thus, this effect needs to be accurately evaluated in the device model to assure a reliable design. In the electrical model, the device width was then divided into an infinity number of segments, while each segment was considered as a combination of three coupled lines and a conventional FET equivalent circuit. By solving a set of multi-conductor transmission line equations using the Finite-Difference Time-Domain (FDTD) technique, an accurate and efficient transistor modeling approach was proposed. Furthermore, the two dimensional hydrodynamic model had been shown to provide a valuable insight into the operation devices and confirm in many cases the measurements. Thus, the HDM model was used to study the effect of the gate length and its the recess depth on the recessed gate MESFET and pHEMT. It was found that, the performance of these devices is improuved by shrinking the gate length and deepening the recess. The effect of increasing the delta doped density on the pHEMT performance was also studied. It is a way to improve the transfer efficiency of electrons from the delta-doped AlGaAs layer to the InGaAs channel. For the deep levels, it was found that deep acceptors improve the transistor performance while deep donors degraded it.Dans cette thèse, la réduction de la conductance des transistors GaAs FETs par une tension négative appliquée au substrat (effet backgating ou sidegating) a été modélisée numériquement dans le but de préciser quel est le type de piège responsable de ce phénomène. La modélisation dérive-diffusion est effectuée pour plusieurs ensembles de niveaux profonds dans le substrat. Il a été observé que les accepteurs profonds sont principalement responsables du backgating et ce, indépendamment du type de niveau peu profond dans le substrat. Dans ce cas, il n'existe pas de seuil. Lorsque les niveaux donneurs profonds sont présents dans le substrat, on observe que cet effet est réduit avec une tension de seui. La présence d'une couche tampon entre le canal et le substrat semi-isolant contribue également à réduire l’effet backgating. Le modèle hydrodynamique bidimensionnel est réalisé pour prédire les performances des transistors de puissance III-V à grille courte. Le modèle est basé sur les équations de conservation, déduites de l'équation de transport de Boltzmann, et résolues dans leur forme entière. Ce modèle est également bien adapté pour étudier les effets des niveaux profonds de substrat sur le dispositif. Les résultats du modèle hydrodynamique (modèle physique) ont été comparés à celui du modèle entièrement-distribué (modèle électrique), en particulier, dans le cas de fonctionnement en hautes fréquences où les dimensions des électrodes des transistors comme les FET deviennent comparables à la longueur d'onde, mettant en évidence l’effet parasite de la propagation des ondes. Ainsi, cet effet doit être évalué avec précision afin d'assurer une conception fiable. Dans le modèle électrique, les électrodes des transistors ont été divisées en un nombre infini de segments, chaque segment étant considéré comme une combinaison de trois lignes de transmission couplées et d’un circuit équivalent FET classique. Les équations différentielles résultantes ont été résolues en utilisant la méthode des différences finies dans le domaine temporel, une approche temporelle précise et efficace de modélisation du transistor. En outre, nous avons démontré l’aptitude du modèle hydrodynamique bidimensionnel de fournir des indications précieuses sur les caractéristiques des composants, indications confirmées par les mesures. Ainsi, le modèle HDM a été utilisé pour étudier l'effet de la longueur de la grille et la profondeur de son recess sur le MESFET à grille creusée et le pHEMT. Il a été constaté que les performances sont améliorées en réduisant la longueur de la grille et l’augmentation de son approfondissement. L’effet de l’augmentation de la densité de la couche delta–doped a été aussi étudié. En effet, ca améliore l'efficacité du transfert des électrons de la couche AlGaAs au canal InGaAs. Pour les niveaux profonds, il a été constaté que les accepteurs profonds améliorent les performances des transistors tandis que les donateurs profonds les dégradent.
Item Type: | Thesis (Doctoral) |
---|---|
Uncontrolled Keywords: | GaAs FETs, Backgating, deep traps, Hydrodynamic model, FDTD, time domain, wave effects. |
Subjects: | Q Science > QC Physics |
Divisions: | Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie > Département des Sciences de la Matière |
Depositing User: | BFSE |
Date Deposited: | 21 Apr 2019 09:12 |
Last Modified: | 20 Jan 2020 09:09 |
URI: | http://thesis.univ-biskra.dz/id/eprint/4164 |
Actions (login required)
View Item |